xref: /openbmc/linux/drivers/block/loop.c (revision 1e6ec9ea)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include "loop.h"
80 
81 #include <linux/uaccess.h>
82 
83 static DEFINE_IDR(loop_index_idr);
84 static DEFINE_MUTEX(loop_index_mutex);
85 
86 static int max_part;
87 static int part_shift;
88 
89 static int transfer_xor(struct loop_device *lo, int cmd,
90 			struct page *raw_page, unsigned raw_off,
91 			struct page *loop_page, unsigned loop_off,
92 			int size, sector_t real_block)
93 {
94 	char *raw_buf = kmap_atomic(raw_page) + raw_off;
95 	char *loop_buf = kmap_atomic(loop_page) + loop_off;
96 	char *in, *out, *key;
97 	int i, keysize;
98 
99 	if (cmd == READ) {
100 		in = raw_buf;
101 		out = loop_buf;
102 	} else {
103 		in = loop_buf;
104 		out = raw_buf;
105 	}
106 
107 	key = lo->lo_encrypt_key;
108 	keysize = lo->lo_encrypt_key_size;
109 	for (i = 0; i < size; i++)
110 		*out++ = *in++ ^ key[(i & 511) % keysize];
111 
112 	kunmap_atomic(loop_buf);
113 	kunmap_atomic(raw_buf);
114 	cond_resched();
115 	return 0;
116 }
117 
118 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
119 {
120 	if (unlikely(info->lo_encrypt_key_size <= 0))
121 		return -EINVAL;
122 	return 0;
123 }
124 
125 static struct loop_func_table none_funcs = {
126 	.number = LO_CRYPT_NONE,
127 };
128 
129 static struct loop_func_table xor_funcs = {
130 	.number = LO_CRYPT_XOR,
131 	.transfer = transfer_xor,
132 	.init = xor_init
133 };
134 
135 /* xfer_funcs[0] is special - its release function is never called */
136 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
137 	&none_funcs,
138 	&xor_funcs
139 };
140 
141 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
142 {
143 	loff_t loopsize;
144 
145 	/* Compute loopsize in bytes */
146 	loopsize = i_size_read(file->f_mapping->host);
147 	if (offset > 0)
148 		loopsize -= offset;
149 	/* offset is beyond i_size, weird but possible */
150 	if (loopsize < 0)
151 		return 0;
152 
153 	if (sizelimit > 0 && sizelimit < loopsize)
154 		loopsize = sizelimit;
155 	/*
156 	 * Unfortunately, if we want to do I/O on the device,
157 	 * the number of 512-byte sectors has to fit into a sector_t.
158 	 */
159 	return loopsize >> 9;
160 }
161 
162 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
163 {
164 	return get_size(lo->lo_offset, lo->lo_sizelimit, file);
165 }
166 
167 static void __loop_update_dio(struct loop_device *lo, bool dio)
168 {
169 	struct file *file = lo->lo_backing_file;
170 	struct address_space *mapping = file->f_mapping;
171 	struct inode *inode = mapping->host;
172 	unsigned short sb_bsize = 0;
173 	unsigned dio_align = 0;
174 	bool use_dio;
175 
176 	if (inode->i_sb->s_bdev) {
177 		sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
178 		dio_align = sb_bsize - 1;
179 	}
180 
181 	/*
182 	 * We support direct I/O only if lo_offset is aligned with the
183 	 * logical I/O size of backing device, and the logical block
184 	 * size of loop is bigger than the backing device's and the loop
185 	 * needn't transform transfer.
186 	 *
187 	 * TODO: the above condition may be loosed in the future, and
188 	 * direct I/O may be switched runtime at that time because most
189 	 * of requests in sane applications should be PAGE_SIZE aligned
190 	 */
191 	if (dio) {
192 		if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
193 				!(lo->lo_offset & dio_align) &&
194 				mapping->a_ops->direct_IO &&
195 				!lo->transfer)
196 			use_dio = true;
197 		else
198 			use_dio = false;
199 	} else {
200 		use_dio = false;
201 	}
202 
203 	if (lo->use_dio == use_dio)
204 		return;
205 
206 	/* flush dirty pages before changing direct IO */
207 	vfs_fsync(file, 0);
208 
209 	/*
210 	 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
211 	 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
212 	 * will get updated by ioctl(LOOP_GET_STATUS)
213 	 */
214 	blk_mq_freeze_queue(lo->lo_queue);
215 	lo->use_dio = use_dio;
216 	if (use_dio)
217 		lo->lo_flags |= LO_FLAGS_DIRECT_IO;
218 	else
219 		lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
220 	blk_mq_unfreeze_queue(lo->lo_queue);
221 }
222 
223 static int
224 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
225 {
226 	loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
227 	sector_t x = (sector_t)size;
228 	struct block_device *bdev = lo->lo_device;
229 
230 	if (unlikely((loff_t)x != size))
231 		return -EFBIG;
232 	if (lo->lo_offset != offset)
233 		lo->lo_offset = offset;
234 	if (lo->lo_sizelimit != sizelimit)
235 		lo->lo_sizelimit = sizelimit;
236 	set_capacity(lo->lo_disk, x);
237 	bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
238 	/* let user-space know about the new size */
239 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
240 	return 0;
241 }
242 
243 static inline int
244 lo_do_transfer(struct loop_device *lo, int cmd,
245 	       struct page *rpage, unsigned roffs,
246 	       struct page *lpage, unsigned loffs,
247 	       int size, sector_t rblock)
248 {
249 	int ret;
250 
251 	ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
252 	if (likely(!ret))
253 		return 0;
254 
255 	printk_ratelimited(KERN_ERR
256 		"loop: Transfer error at byte offset %llu, length %i.\n",
257 		(unsigned long long)rblock << 9, size);
258 	return ret;
259 }
260 
261 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
262 {
263 	struct iov_iter i;
264 	ssize_t bw;
265 
266 	iov_iter_bvec(&i, ITER_BVEC, bvec, 1, bvec->bv_len);
267 
268 	file_start_write(file);
269 	bw = vfs_iter_write(file, &i, ppos, 0);
270 	file_end_write(file);
271 
272 	if (likely(bw ==  bvec->bv_len))
273 		return 0;
274 
275 	printk_ratelimited(KERN_ERR
276 		"loop: Write error at byte offset %llu, length %i.\n",
277 		(unsigned long long)*ppos, bvec->bv_len);
278 	if (bw >= 0)
279 		bw = -EIO;
280 	return bw;
281 }
282 
283 static int lo_write_simple(struct loop_device *lo, struct request *rq,
284 		loff_t pos)
285 {
286 	struct bio_vec bvec;
287 	struct req_iterator iter;
288 	int ret = 0;
289 
290 	rq_for_each_segment(bvec, rq, iter) {
291 		ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
292 		if (ret < 0)
293 			break;
294 		cond_resched();
295 	}
296 
297 	return ret;
298 }
299 
300 /*
301  * This is the slow, transforming version that needs to double buffer the
302  * data as it cannot do the transformations in place without having direct
303  * access to the destination pages of the backing file.
304  */
305 static int lo_write_transfer(struct loop_device *lo, struct request *rq,
306 		loff_t pos)
307 {
308 	struct bio_vec bvec, b;
309 	struct req_iterator iter;
310 	struct page *page;
311 	int ret = 0;
312 
313 	page = alloc_page(GFP_NOIO);
314 	if (unlikely(!page))
315 		return -ENOMEM;
316 
317 	rq_for_each_segment(bvec, rq, iter) {
318 		ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
319 			bvec.bv_offset, bvec.bv_len, pos >> 9);
320 		if (unlikely(ret))
321 			break;
322 
323 		b.bv_page = page;
324 		b.bv_offset = 0;
325 		b.bv_len = bvec.bv_len;
326 		ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
327 		if (ret < 0)
328 			break;
329 	}
330 
331 	__free_page(page);
332 	return ret;
333 }
334 
335 static int lo_read_simple(struct loop_device *lo, struct request *rq,
336 		loff_t pos)
337 {
338 	struct bio_vec bvec;
339 	struct req_iterator iter;
340 	struct iov_iter i;
341 	ssize_t len;
342 
343 	rq_for_each_segment(bvec, rq, iter) {
344 		iov_iter_bvec(&i, ITER_BVEC, &bvec, 1, bvec.bv_len);
345 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
346 		if (len < 0)
347 			return len;
348 
349 		flush_dcache_page(bvec.bv_page);
350 
351 		if (len != bvec.bv_len) {
352 			struct bio *bio;
353 
354 			__rq_for_each_bio(bio, rq)
355 				zero_fill_bio(bio);
356 			break;
357 		}
358 		cond_resched();
359 	}
360 
361 	return 0;
362 }
363 
364 static int lo_read_transfer(struct loop_device *lo, struct request *rq,
365 		loff_t pos)
366 {
367 	struct bio_vec bvec, b;
368 	struct req_iterator iter;
369 	struct iov_iter i;
370 	struct page *page;
371 	ssize_t len;
372 	int ret = 0;
373 
374 	page = alloc_page(GFP_NOIO);
375 	if (unlikely(!page))
376 		return -ENOMEM;
377 
378 	rq_for_each_segment(bvec, rq, iter) {
379 		loff_t offset = pos;
380 
381 		b.bv_page = page;
382 		b.bv_offset = 0;
383 		b.bv_len = bvec.bv_len;
384 
385 		iov_iter_bvec(&i, ITER_BVEC, &b, 1, b.bv_len);
386 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
387 		if (len < 0) {
388 			ret = len;
389 			goto out_free_page;
390 		}
391 
392 		ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
393 			bvec.bv_offset, len, offset >> 9);
394 		if (ret)
395 			goto out_free_page;
396 
397 		flush_dcache_page(bvec.bv_page);
398 
399 		if (len != bvec.bv_len) {
400 			struct bio *bio;
401 
402 			__rq_for_each_bio(bio, rq)
403 				zero_fill_bio(bio);
404 			break;
405 		}
406 	}
407 
408 	ret = 0;
409 out_free_page:
410 	__free_page(page);
411 	return ret;
412 }
413 
414 static int lo_discard(struct loop_device *lo, struct request *rq, loff_t pos)
415 {
416 	/*
417 	 * We use punch hole to reclaim the free space used by the
418 	 * image a.k.a. discard. However we do not support discard if
419 	 * encryption is enabled, because it may give an attacker
420 	 * useful information.
421 	 */
422 	struct file *file = lo->lo_backing_file;
423 	int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
424 	int ret;
425 
426 	if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) {
427 		ret = -EOPNOTSUPP;
428 		goto out;
429 	}
430 
431 	ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
432 	if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
433 		ret = -EIO;
434  out:
435 	return ret;
436 }
437 
438 static int lo_req_flush(struct loop_device *lo, struct request *rq)
439 {
440 	struct file *file = lo->lo_backing_file;
441 	int ret = vfs_fsync(file, 0);
442 	if (unlikely(ret && ret != -EINVAL))
443 		ret = -EIO;
444 
445 	return ret;
446 }
447 
448 static void lo_complete_rq(struct request *rq)
449 {
450 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
451 
452 	if (unlikely(req_op(cmd->rq) == REQ_OP_READ && cmd->use_aio &&
453 		     cmd->ret >= 0 && cmd->ret < blk_rq_bytes(cmd->rq))) {
454 		struct bio *bio = cmd->rq->bio;
455 
456 		bio_advance(bio, cmd->ret);
457 		zero_fill_bio(bio);
458 	}
459 
460 	blk_mq_end_request(rq, cmd->ret < 0 ? BLK_STS_IOERR : BLK_STS_OK);
461 }
462 
463 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
464 {
465 	struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
466 
467 	cmd->ret = ret;
468 	blk_mq_complete_request(cmd->rq);
469 }
470 
471 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
472 		     loff_t pos, bool rw)
473 {
474 	struct iov_iter iter;
475 	struct bio_vec *bvec;
476 	struct bio *bio = cmd->rq->bio;
477 	struct file *file = lo->lo_backing_file;
478 	int ret;
479 
480 	/* nomerge for loop request queue */
481 	WARN_ON(cmd->rq->bio != cmd->rq->biotail);
482 
483 	bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
484 	iov_iter_bvec(&iter, ITER_BVEC | rw, bvec,
485 		      bio_segments(bio), blk_rq_bytes(cmd->rq));
486 	/*
487 	 * This bio may be started from the middle of the 'bvec'
488 	 * because of bio splitting, so offset from the bvec must
489 	 * be passed to iov iterator
490 	 */
491 	iter.iov_offset = bio->bi_iter.bi_bvec_done;
492 
493 	cmd->iocb.ki_pos = pos;
494 	cmd->iocb.ki_filp = file;
495 	cmd->iocb.ki_complete = lo_rw_aio_complete;
496 	cmd->iocb.ki_flags = IOCB_DIRECT;
497 
498 	if (rw == WRITE)
499 		ret = call_write_iter(file, &cmd->iocb, &iter);
500 	else
501 		ret = call_read_iter(file, &cmd->iocb, &iter);
502 
503 	if (ret != -EIOCBQUEUED)
504 		cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
505 	return 0;
506 }
507 
508 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
509 {
510 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
511 	loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
512 
513 	/*
514 	 * lo_write_simple and lo_read_simple should have been covered
515 	 * by io submit style function like lo_rw_aio(), one blocker
516 	 * is that lo_read_simple() need to call flush_dcache_page after
517 	 * the page is written from kernel, and it isn't easy to handle
518 	 * this in io submit style function which submits all segments
519 	 * of the req at one time. And direct read IO doesn't need to
520 	 * run flush_dcache_page().
521 	 */
522 	switch (req_op(rq)) {
523 	case REQ_OP_FLUSH:
524 		return lo_req_flush(lo, rq);
525 	case REQ_OP_DISCARD:
526 	case REQ_OP_WRITE_ZEROES:
527 		return lo_discard(lo, rq, pos);
528 	case REQ_OP_WRITE:
529 		if (lo->transfer)
530 			return lo_write_transfer(lo, rq, pos);
531 		else if (cmd->use_aio)
532 			return lo_rw_aio(lo, cmd, pos, WRITE);
533 		else
534 			return lo_write_simple(lo, rq, pos);
535 	case REQ_OP_READ:
536 		if (lo->transfer)
537 			return lo_read_transfer(lo, rq, pos);
538 		else if (cmd->use_aio)
539 			return lo_rw_aio(lo, cmd, pos, READ);
540 		else
541 			return lo_read_simple(lo, rq, pos);
542 	default:
543 		WARN_ON_ONCE(1);
544 		return -EIO;
545 		break;
546 	}
547 }
548 
549 struct switch_request {
550 	struct file *file;
551 	struct completion wait;
552 };
553 
554 static inline void loop_update_dio(struct loop_device *lo)
555 {
556 	__loop_update_dio(lo, io_is_direct(lo->lo_backing_file) |
557 			lo->use_dio);
558 }
559 
560 /*
561  * Do the actual switch; called from the BIO completion routine
562  */
563 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
564 {
565 	struct file *file = p->file;
566 	struct file *old_file = lo->lo_backing_file;
567 	struct address_space *mapping;
568 
569 	/* if no new file, only flush of queued bios requested */
570 	if (!file)
571 		return;
572 
573 	mapping = file->f_mapping;
574 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
575 	lo->lo_backing_file = file;
576 	lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
577 		mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
578 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
579 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
580 	loop_update_dio(lo);
581 }
582 
583 /*
584  * loop_switch performs the hard work of switching a backing store.
585  * First it needs to flush existing IO, it does this by sending a magic
586  * BIO down the pipe. The completion of this BIO does the actual switch.
587  */
588 static int loop_switch(struct loop_device *lo, struct file *file)
589 {
590 	struct switch_request w;
591 
592 	w.file = file;
593 
594 	/* freeze queue and wait for completion of scheduled requests */
595 	blk_mq_freeze_queue(lo->lo_queue);
596 
597 	/* do the switch action */
598 	do_loop_switch(lo, &w);
599 
600 	/* unfreeze */
601 	blk_mq_unfreeze_queue(lo->lo_queue);
602 
603 	return 0;
604 }
605 
606 /*
607  * Helper to flush the IOs in loop, but keeping loop thread running
608  */
609 static int loop_flush(struct loop_device *lo)
610 {
611 	/* loop not yet configured, no running thread, nothing to flush */
612 	if (lo->lo_state != Lo_bound)
613 		return 0;
614 	return loop_switch(lo, NULL);
615 }
616 
617 static void loop_reread_partitions(struct loop_device *lo,
618 				   struct block_device *bdev)
619 {
620 	int rc;
621 
622 	/*
623 	 * bd_mutex has been held already in release path, so don't
624 	 * acquire it if this function is called in such case.
625 	 *
626 	 * If the reread partition isn't from release path, lo_refcnt
627 	 * must be at least one and it can only become zero when the
628 	 * current holder is released.
629 	 */
630 	if (!atomic_read(&lo->lo_refcnt))
631 		rc = __blkdev_reread_part(bdev);
632 	else
633 		rc = blkdev_reread_part(bdev);
634 	if (rc)
635 		pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
636 			__func__, lo->lo_number, lo->lo_file_name, rc);
637 }
638 
639 /*
640  * loop_change_fd switched the backing store of a loopback device to
641  * a new file. This is useful for operating system installers to free up
642  * the original file and in High Availability environments to switch to
643  * an alternative location for the content in case of server meltdown.
644  * This can only work if the loop device is used read-only, and if the
645  * new backing store is the same size and type as the old backing store.
646  */
647 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
648 			  unsigned int arg)
649 {
650 	struct file	*file, *old_file;
651 	struct inode	*inode;
652 	int		error;
653 
654 	error = -ENXIO;
655 	if (lo->lo_state != Lo_bound)
656 		goto out;
657 
658 	/* the loop device has to be read-only */
659 	error = -EINVAL;
660 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
661 		goto out;
662 
663 	error = -EBADF;
664 	file = fget(arg);
665 	if (!file)
666 		goto out;
667 
668 	inode = file->f_mapping->host;
669 	old_file = lo->lo_backing_file;
670 
671 	error = -EINVAL;
672 
673 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
674 		goto out_putf;
675 
676 	/* size of the new backing store needs to be the same */
677 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
678 		goto out_putf;
679 
680 	/* and ... switch */
681 	error = loop_switch(lo, file);
682 	if (error)
683 		goto out_putf;
684 
685 	fput(old_file);
686 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
687 		loop_reread_partitions(lo, bdev);
688 	return 0;
689 
690  out_putf:
691 	fput(file);
692  out:
693 	return error;
694 }
695 
696 static inline int is_loop_device(struct file *file)
697 {
698 	struct inode *i = file->f_mapping->host;
699 
700 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
701 }
702 
703 /* loop sysfs attributes */
704 
705 static ssize_t loop_attr_show(struct device *dev, char *page,
706 			      ssize_t (*callback)(struct loop_device *, char *))
707 {
708 	struct gendisk *disk = dev_to_disk(dev);
709 	struct loop_device *lo = disk->private_data;
710 
711 	return callback(lo, page);
712 }
713 
714 #define LOOP_ATTR_RO(_name)						\
715 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
716 static ssize_t loop_attr_do_show_##_name(struct device *d,		\
717 				struct device_attribute *attr, char *b)	\
718 {									\
719 	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
720 }									\
721 static struct device_attribute loop_attr_##_name =			\
722 	__ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
723 
724 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
725 {
726 	ssize_t ret;
727 	char *p = NULL;
728 
729 	spin_lock_irq(&lo->lo_lock);
730 	if (lo->lo_backing_file)
731 		p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
732 	spin_unlock_irq(&lo->lo_lock);
733 
734 	if (IS_ERR_OR_NULL(p))
735 		ret = PTR_ERR(p);
736 	else {
737 		ret = strlen(p);
738 		memmove(buf, p, ret);
739 		buf[ret++] = '\n';
740 		buf[ret] = 0;
741 	}
742 
743 	return ret;
744 }
745 
746 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
747 {
748 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
749 }
750 
751 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
752 {
753 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
754 }
755 
756 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
757 {
758 	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
759 
760 	return sprintf(buf, "%s\n", autoclear ? "1" : "0");
761 }
762 
763 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
764 {
765 	int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
766 
767 	return sprintf(buf, "%s\n", partscan ? "1" : "0");
768 }
769 
770 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
771 {
772 	int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
773 
774 	return sprintf(buf, "%s\n", dio ? "1" : "0");
775 }
776 
777 LOOP_ATTR_RO(backing_file);
778 LOOP_ATTR_RO(offset);
779 LOOP_ATTR_RO(sizelimit);
780 LOOP_ATTR_RO(autoclear);
781 LOOP_ATTR_RO(partscan);
782 LOOP_ATTR_RO(dio);
783 
784 static struct attribute *loop_attrs[] = {
785 	&loop_attr_backing_file.attr,
786 	&loop_attr_offset.attr,
787 	&loop_attr_sizelimit.attr,
788 	&loop_attr_autoclear.attr,
789 	&loop_attr_partscan.attr,
790 	&loop_attr_dio.attr,
791 	NULL,
792 };
793 
794 static struct attribute_group loop_attribute_group = {
795 	.name = "loop",
796 	.attrs= loop_attrs,
797 };
798 
799 static int loop_sysfs_init(struct loop_device *lo)
800 {
801 	return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
802 				  &loop_attribute_group);
803 }
804 
805 static void loop_sysfs_exit(struct loop_device *lo)
806 {
807 	sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
808 			   &loop_attribute_group);
809 }
810 
811 static void loop_config_discard(struct loop_device *lo)
812 {
813 	struct file *file = lo->lo_backing_file;
814 	struct inode *inode = file->f_mapping->host;
815 	struct request_queue *q = lo->lo_queue;
816 
817 	/*
818 	 * We use punch hole to reclaim the free space used by the
819 	 * image a.k.a. discard. However we do not support discard if
820 	 * encryption is enabled, because it may give an attacker
821 	 * useful information.
822 	 */
823 	if ((!file->f_op->fallocate) ||
824 	    lo->lo_encrypt_key_size) {
825 		q->limits.discard_granularity = 0;
826 		q->limits.discard_alignment = 0;
827 		blk_queue_max_discard_sectors(q, 0);
828 		blk_queue_max_write_zeroes_sectors(q, 0);
829 		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
830 		return;
831 	}
832 
833 	q->limits.discard_granularity = inode->i_sb->s_blocksize;
834 	q->limits.discard_alignment = 0;
835 
836 	blk_queue_max_discard_sectors(q, UINT_MAX >> 9);
837 	blk_queue_max_write_zeroes_sectors(q, UINT_MAX >> 9);
838 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
839 }
840 
841 static void loop_unprepare_queue(struct loop_device *lo)
842 {
843 	kthread_flush_worker(&lo->worker);
844 	kthread_stop(lo->worker_task);
845 }
846 
847 static int loop_kthread_worker_fn(void *worker_ptr)
848 {
849 	current->flags |= PF_LESS_THROTTLE;
850 	return kthread_worker_fn(worker_ptr);
851 }
852 
853 static int loop_prepare_queue(struct loop_device *lo)
854 {
855 	kthread_init_worker(&lo->worker);
856 	lo->worker_task = kthread_run(loop_kthread_worker_fn,
857 			&lo->worker, "loop%d", lo->lo_number);
858 	if (IS_ERR(lo->worker_task))
859 		return -ENOMEM;
860 	set_user_nice(lo->worker_task, MIN_NICE);
861 	return 0;
862 }
863 
864 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
865 		       struct block_device *bdev, unsigned int arg)
866 {
867 	struct file	*file, *f;
868 	struct inode	*inode;
869 	struct address_space *mapping;
870 	unsigned lo_blocksize;
871 	int		lo_flags = 0;
872 	int		error;
873 	loff_t		size;
874 
875 	/* This is safe, since we have a reference from open(). */
876 	__module_get(THIS_MODULE);
877 
878 	error = -EBADF;
879 	file = fget(arg);
880 	if (!file)
881 		goto out;
882 
883 	error = -EBUSY;
884 	if (lo->lo_state != Lo_unbound)
885 		goto out_putf;
886 
887 	/* Avoid recursion */
888 	f = file;
889 	while (is_loop_device(f)) {
890 		struct loop_device *l;
891 
892 		if (f->f_mapping->host->i_bdev == bdev)
893 			goto out_putf;
894 
895 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
896 		if (l->lo_state == Lo_unbound) {
897 			error = -EINVAL;
898 			goto out_putf;
899 		}
900 		f = l->lo_backing_file;
901 	}
902 
903 	mapping = file->f_mapping;
904 	inode = mapping->host;
905 
906 	error = -EINVAL;
907 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
908 		goto out_putf;
909 
910 	if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
911 	    !file->f_op->write_iter)
912 		lo_flags |= LO_FLAGS_READ_ONLY;
913 
914 	lo_blocksize = S_ISBLK(inode->i_mode) ?
915 		inode->i_bdev->bd_block_size : PAGE_SIZE;
916 
917 	error = -EFBIG;
918 	size = get_loop_size(lo, file);
919 	if ((loff_t)(sector_t)size != size)
920 		goto out_putf;
921 	error = loop_prepare_queue(lo);
922 	if (error)
923 		goto out_putf;
924 
925 	error = 0;
926 
927 	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
928 
929 	lo->use_dio = false;
930 	lo->lo_blocksize = lo_blocksize;
931 	lo->lo_device = bdev;
932 	lo->lo_flags = lo_flags;
933 	lo->lo_backing_file = file;
934 	lo->transfer = NULL;
935 	lo->ioctl = NULL;
936 	lo->lo_sizelimit = 0;
937 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
938 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
939 
940 	if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
941 		blk_queue_write_cache(lo->lo_queue, true, false);
942 
943 	loop_update_dio(lo);
944 	set_capacity(lo->lo_disk, size);
945 	bd_set_size(bdev, size << 9);
946 	loop_sysfs_init(lo);
947 	/* let user-space know about the new size */
948 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
949 
950 	set_blocksize(bdev, lo_blocksize);
951 
952 	lo->lo_state = Lo_bound;
953 	if (part_shift)
954 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
955 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
956 		loop_reread_partitions(lo, bdev);
957 
958 	/* Grab the block_device to prevent its destruction after we
959 	 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev).
960 	 */
961 	bdgrab(bdev);
962 	return 0;
963 
964  out_putf:
965 	fput(file);
966  out:
967 	/* This is safe: open() is still holding a reference. */
968 	module_put(THIS_MODULE);
969 	return error;
970 }
971 
972 static int
973 loop_release_xfer(struct loop_device *lo)
974 {
975 	int err = 0;
976 	struct loop_func_table *xfer = lo->lo_encryption;
977 
978 	if (xfer) {
979 		if (xfer->release)
980 			err = xfer->release(lo);
981 		lo->transfer = NULL;
982 		lo->lo_encryption = NULL;
983 		module_put(xfer->owner);
984 	}
985 	return err;
986 }
987 
988 static int
989 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
990 	       const struct loop_info64 *i)
991 {
992 	int err = 0;
993 
994 	if (xfer) {
995 		struct module *owner = xfer->owner;
996 
997 		if (!try_module_get(owner))
998 			return -EINVAL;
999 		if (xfer->init)
1000 			err = xfer->init(lo, i);
1001 		if (err)
1002 			module_put(owner);
1003 		else
1004 			lo->lo_encryption = xfer;
1005 	}
1006 	return err;
1007 }
1008 
1009 static int loop_clr_fd(struct loop_device *lo)
1010 {
1011 	struct file *filp = lo->lo_backing_file;
1012 	gfp_t gfp = lo->old_gfp_mask;
1013 	struct block_device *bdev = lo->lo_device;
1014 
1015 	if (lo->lo_state != Lo_bound)
1016 		return -ENXIO;
1017 
1018 	/*
1019 	 * If we've explicitly asked to tear down the loop device,
1020 	 * and it has an elevated reference count, set it for auto-teardown when
1021 	 * the last reference goes away. This stops $!~#$@ udev from
1022 	 * preventing teardown because it decided that it needs to run blkid on
1023 	 * the loopback device whenever they appear. xfstests is notorious for
1024 	 * failing tests because blkid via udev races with a losetup
1025 	 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1026 	 * command to fail with EBUSY.
1027 	 */
1028 	if (atomic_read(&lo->lo_refcnt) > 1) {
1029 		lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1030 		mutex_unlock(&lo->lo_ctl_mutex);
1031 		return 0;
1032 	}
1033 
1034 	if (filp == NULL)
1035 		return -EINVAL;
1036 
1037 	/* freeze request queue during the transition */
1038 	blk_mq_freeze_queue(lo->lo_queue);
1039 
1040 	spin_lock_irq(&lo->lo_lock);
1041 	lo->lo_state = Lo_rundown;
1042 	lo->lo_backing_file = NULL;
1043 	spin_unlock_irq(&lo->lo_lock);
1044 
1045 	loop_release_xfer(lo);
1046 	lo->transfer = NULL;
1047 	lo->ioctl = NULL;
1048 	lo->lo_device = NULL;
1049 	lo->lo_encryption = NULL;
1050 	lo->lo_offset = 0;
1051 	lo->lo_sizelimit = 0;
1052 	lo->lo_encrypt_key_size = 0;
1053 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1054 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1055 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1056 	if (bdev) {
1057 		bdput(bdev);
1058 		invalidate_bdev(bdev);
1059 	}
1060 	set_capacity(lo->lo_disk, 0);
1061 	loop_sysfs_exit(lo);
1062 	if (bdev) {
1063 		bd_set_size(bdev, 0);
1064 		/* let user-space know about this change */
1065 		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1066 	}
1067 	mapping_set_gfp_mask(filp->f_mapping, gfp);
1068 	lo->lo_state = Lo_unbound;
1069 	/* This is safe: open() is still holding a reference. */
1070 	module_put(THIS_MODULE);
1071 	blk_mq_unfreeze_queue(lo->lo_queue);
1072 
1073 	if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
1074 		loop_reread_partitions(lo, bdev);
1075 	lo->lo_flags = 0;
1076 	if (!part_shift)
1077 		lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1078 	loop_unprepare_queue(lo);
1079 	mutex_unlock(&lo->lo_ctl_mutex);
1080 	/*
1081 	 * Need not hold lo_ctl_mutex to fput backing file.
1082 	 * Calling fput holding lo_ctl_mutex triggers a circular
1083 	 * lock dependency possibility warning as fput can take
1084 	 * bd_mutex which is usually taken before lo_ctl_mutex.
1085 	 */
1086 	fput(filp);
1087 	return 0;
1088 }
1089 
1090 static int
1091 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1092 {
1093 	int err;
1094 	struct loop_func_table *xfer;
1095 	kuid_t uid = current_uid();
1096 
1097 	if (lo->lo_encrypt_key_size &&
1098 	    !uid_eq(lo->lo_key_owner, uid) &&
1099 	    !capable(CAP_SYS_ADMIN))
1100 		return -EPERM;
1101 	if (lo->lo_state != Lo_bound)
1102 		return -ENXIO;
1103 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1104 		return -EINVAL;
1105 
1106 	/* I/O need to be drained during transfer transition */
1107 	blk_mq_freeze_queue(lo->lo_queue);
1108 
1109 	err = loop_release_xfer(lo);
1110 	if (err)
1111 		goto exit;
1112 
1113 	if (info->lo_encrypt_type) {
1114 		unsigned int type = info->lo_encrypt_type;
1115 
1116 		if (type >= MAX_LO_CRYPT)
1117 			return -EINVAL;
1118 		xfer = xfer_funcs[type];
1119 		if (xfer == NULL)
1120 			return -EINVAL;
1121 	} else
1122 		xfer = NULL;
1123 
1124 	err = loop_init_xfer(lo, xfer, info);
1125 	if (err)
1126 		goto exit;
1127 
1128 	if (lo->lo_offset != info->lo_offset ||
1129 	    lo->lo_sizelimit != info->lo_sizelimit) {
1130 		if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) {
1131 			err = -EFBIG;
1132 			goto exit;
1133 		}
1134 	}
1135 
1136 	loop_config_discard(lo);
1137 
1138 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1139 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1140 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1141 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1142 
1143 	if (!xfer)
1144 		xfer = &none_funcs;
1145 	lo->transfer = xfer->transfer;
1146 	lo->ioctl = xfer->ioctl;
1147 
1148 	if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1149 	     (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1150 		lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1151 
1152 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1153 	lo->lo_init[0] = info->lo_init[0];
1154 	lo->lo_init[1] = info->lo_init[1];
1155 	if (info->lo_encrypt_key_size) {
1156 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1157 		       info->lo_encrypt_key_size);
1158 		lo->lo_key_owner = uid;
1159 	}
1160 
1161 	/* update dio if lo_offset or transfer is changed */
1162 	__loop_update_dio(lo, lo->use_dio);
1163 
1164  exit:
1165 	blk_mq_unfreeze_queue(lo->lo_queue);
1166 
1167 	if (!err && (info->lo_flags & LO_FLAGS_PARTSCAN) &&
1168 	     !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1169 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
1170 		lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1171 		loop_reread_partitions(lo, lo->lo_device);
1172 	}
1173 
1174 	return err;
1175 }
1176 
1177 static int
1178 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1179 {
1180 	struct file *file = lo->lo_backing_file;
1181 	struct kstat stat;
1182 	int error;
1183 
1184 	if (lo->lo_state != Lo_bound)
1185 		return -ENXIO;
1186 	error = vfs_getattr(&file->f_path, &stat,
1187 			    STATX_INO, AT_STATX_SYNC_AS_STAT);
1188 	if (error)
1189 		return error;
1190 	memset(info, 0, sizeof(*info));
1191 	info->lo_number = lo->lo_number;
1192 	info->lo_device = huge_encode_dev(stat.dev);
1193 	info->lo_inode = stat.ino;
1194 	info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1195 	info->lo_offset = lo->lo_offset;
1196 	info->lo_sizelimit = lo->lo_sizelimit;
1197 	info->lo_flags = lo->lo_flags;
1198 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1199 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1200 	info->lo_encrypt_type =
1201 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1202 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1203 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1204 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1205 		       lo->lo_encrypt_key_size);
1206 	}
1207 	return 0;
1208 }
1209 
1210 static void
1211 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1212 {
1213 	memset(info64, 0, sizeof(*info64));
1214 	info64->lo_number = info->lo_number;
1215 	info64->lo_device = info->lo_device;
1216 	info64->lo_inode = info->lo_inode;
1217 	info64->lo_rdevice = info->lo_rdevice;
1218 	info64->lo_offset = info->lo_offset;
1219 	info64->lo_sizelimit = 0;
1220 	info64->lo_encrypt_type = info->lo_encrypt_type;
1221 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1222 	info64->lo_flags = info->lo_flags;
1223 	info64->lo_init[0] = info->lo_init[0];
1224 	info64->lo_init[1] = info->lo_init[1];
1225 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1226 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1227 	else
1228 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1229 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1230 }
1231 
1232 static int
1233 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1234 {
1235 	memset(info, 0, sizeof(*info));
1236 	info->lo_number = info64->lo_number;
1237 	info->lo_device = info64->lo_device;
1238 	info->lo_inode = info64->lo_inode;
1239 	info->lo_rdevice = info64->lo_rdevice;
1240 	info->lo_offset = info64->lo_offset;
1241 	info->lo_encrypt_type = info64->lo_encrypt_type;
1242 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1243 	info->lo_flags = info64->lo_flags;
1244 	info->lo_init[0] = info64->lo_init[0];
1245 	info->lo_init[1] = info64->lo_init[1];
1246 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1247 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1248 	else
1249 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1250 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1251 
1252 	/* error in case values were truncated */
1253 	if (info->lo_device != info64->lo_device ||
1254 	    info->lo_rdevice != info64->lo_rdevice ||
1255 	    info->lo_inode != info64->lo_inode ||
1256 	    info->lo_offset != info64->lo_offset)
1257 		return -EOVERFLOW;
1258 
1259 	return 0;
1260 }
1261 
1262 static int
1263 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1264 {
1265 	struct loop_info info;
1266 	struct loop_info64 info64;
1267 
1268 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1269 		return -EFAULT;
1270 	loop_info64_from_old(&info, &info64);
1271 	return loop_set_status(lo, &info64);
1272 }
1273 
1274 static int
1275 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1276 {
1277 	struct loop_info64 info64;
1278 
1279 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1280 		return -EFAULT;
1281 	return loop_set_status(lo, &info64);
1282 }
1283 
1284 static int
1285 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1286 	struct loop_info info;
1287 	struct loop_info64 info64;
1288 	int err = 0;
1289 
1290 	if (!arg)
1291 		err = -EINVAL;
1292 	if (!err)
1293 		err = loop_get_status(lo, &info64);
1294 	if (!err)
1295 		err = loop_info64_to_old(&info64, &info);
1296 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1297 		err = -EFAULT;
1298 
1299 	return err;
1300 }
1301 
1302 static int
1303 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1304 	struct loop_info64 info64;
1305 	int err = 0;
1306 
1307 	if (!arg)
1308 		err = -EINVAL;
1309 	if (!err)
1310 		err = loop_get_status(lo, &info64);
1311 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1312 		err = -EFAULT;
1313 
1314 	return err;
1315 }
1316 
1317 static int loop_set_capacity(struct loop_device *lo)
1318 {
1319 	if (unlikely(lo->lo_state != Lo_bound))
1320 		return -ENXIO;
1321 
1322 	return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1323 }
1324 
1325 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1326 {
1327 	int error = -ENXIO;
1328 	if (lo->lo_state != Lo_bound)
1329 		goto out;
1330 
1331 	__loop_update_dio(lo, !!arg);
1332 	if (lo->use_dio == !!arg)
1333 		return 0;
1334 	error = -EINVAL;
1335  out:
1336 	return error;
1337 }
1338 
1339 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1340 	unsigned int cmd, unsigned long arg)
1341 {
1342 	struct loop_device *lo = bdev->bd_disk->private_data;
1343 	int err;
1344 
1345 	mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1346 	switch (cmd) {
1347 	case LOOP_SET_FD:
1348 		err = loop_set_fd(lo, mode, bdev, arg);
1349 		break;
1350 	case LOOP_CHANGE_FD:
1351 		err = loop_change_fd(lo, bdev, arg);
1352 		break;
1353 	case LOOP_CLR_FD:
1354 		/* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1355 		err = loop_clr_fd(lo);
1356 		if (!err)
1357 			goto out_unlocked;
1358 		break;
1359 	case LOOP_SET_STATUS:
1360 		err = -EPERM;
1361 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1362 			err = loop_set_status_old(lo,
1363 					(struct loop_info __user *)arg);
1364 		break;
1365 	case LOOP_GET_STATUS:
1366 		err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1367 		break;
1368 	case LOOP_SET_STATUS64:
1369 		err = -EPERM;
1370 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1371 			err = loop_set_status64(lo,
1372 					(struct loop_info64 __user *) arg);
1373 		break;
1374 	case LOOP_GET_STATUS64:
1375 		err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1376 		break;
1377 	case LOOP_SET_CAPACITY:
1378 		err = -EPERM;
1379 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1380 			err = loop_set_capacity(lo);
1381 		break;
1382 	case LOOP_SET_DIRECT_IO:
1383 		err = -EPERM;
1384 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1385 			err = loop_set_dio(lo, arg);
1386 		break;
1387 	default:
1388 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1389 	}
1390 	mutex_unlock(&lo->lo_ctl_mutex);
1391 
1392 out_unlocked:
1393 	return err;
1394 }
1395 
1396 #ifdef CONFIG_COMPAT
1397 struct compat_loop_info {
1398 	compat_int_t	lo_number;      /* ioctl r/o */
1399 	compat_dev_t	lo_device;      /* ioctl r/o */
1400 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1401 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1402 	compat_int_t	lo_offset;
1403 	compat_int_t	lo_encrypt_type;
1404 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1405 	compat_int_t	lo_flags;       /* ioctl r/o */
1406 	char		lo_name[LO_NAME_SIZE];
1407 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1408 	compat_ulong_t	lo_init[2];
1409 	char		reserved[4];
1410 };
1411 
1412 /*
1413  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1414  * - noinlined to reduce stack space usage in main part of driver
1415  */
1416 static noinline int
1417 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1418 			struct loop_info64 *info64)
1419 {
1420 	struct compat_loop_info info;
1421 
1422 	if (copy_from_user(&info, arg, sizeof(info)))
1423 		return -EFAULT;
1424 
1425 	memset(info64, 0, sizeof(*info64));
1426 	info64->lo_number = info.lo_number;
1427 	info64->lo_device = info.lo_device;
1428 	info64->lo_inode = info.lo_inode;
1429 	info64->lo_rdevice = info.lo_rdevice;
1430 	info64->lo_offset = info.lo_offset;
1431 	info64->lo_sizelimit = 0;
1432 	info64->lo_encrypt_type = info.lo_encrypt_type;
1433 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1434 	info64->lo_flags = info.lo_flags;
1435 	info64->lo_init[0] = info.lo_init[0];
1436 	info64->lo_init[1] = info.lo_init[1];
1437 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1438 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1439 	else
1440 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1441 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1442 	return 0;
1443 }
1444 
1445 /*
1446  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1447  * - noinlined to reduce stack space usage in main part of driver
1448  */
1449 static noinline int
1450 loop_info64_to_compat(const struct loop_info64 *info64,
1451 		      struct compat_loop_info __user *arg)
1452 {
1453 	struct compat_loop_info info;
1454 
1455 	memset(&info, 0, sizeof(info));
1456 	info.lo_number = info64->lo_number;
1457 	info.lo_device = info64->lo_device;
1458 	info.lo_inode = info64->lo_inode;
1459 	info.lo_rdevice = info64->lo_rdevice;
1460 	info.lo_offset = info64->lo_offset;
1461 	info.lo_encrypt_type = info64->lo_encrypt_type;
1462 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1463 	info.lo_flags = info64->lo_flags;
1464 	info.lo_init[0] = info64->lo_init[0];
1465 	info.lo_init[1] = info64->lo_init[1];
1466 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1467 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1468 	else
1469 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1470 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1471 
1472 	/* error in case values were truncated */
1473 	if (info.lo_device != info64->lo_device ||
1474 	    info.lo_rdevice != info64->lo_rdevice ||
1475 	    info.lo_inode != info64->lo_inode ||
1476 	    info.lo_offset != info64->lo_offset ||
1477 	    info.lo_init[0] != info64->lo_init[0] ||
1478 	    info.lo_init[1] != info64->lo_init[1])
1479 		return -EOVERFLOW;
1480 
1481 	if (copy_to_user(arg, &info, sizeof(info)))
1482 		return -EFAULT;
1483 	return 0;
1484 }
1485 
1486 static int
1487 loop_set_status_compat(struct loop_device *lo,
1488 		       const struct compat_loop_info __user *arg)
1489 {
1490 	struct loop_info64 info64;
1491 	int ret;
1492 
1493 	ret = loop_info64_from_compat(arg, &info64);
1494 	if (ret < 0)
1495 		return ret;
1496 	return loop_set_status(lo, &info64);
1497 }
1498 
1499 static int
1500 loop_get_status_compat(struct loop_device *lo,
1501 		       struct compat_loop_info __user *arg)
1502 {
1503 	struct loop_info64 info64;
1504 	int err = 0;
1505 
1506 	if (!arg)
1507 		err = -EINVAL;
1508 	if (!err)
1509 		err = loop_get_status(lo, &info64);
1510 	if (!err)
1511 		err = loop_info64_to_compat(&info64, arg);
1512 	return err;
1513 }
1514 
1515 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1516 			   unsigned int cmd, unsigned long arg)
1517 {
1518 	struct loop_device *lo = bdev->bd_disk->private_data;
1519 	int err;
1520 
1521 	switch(cmd) {
1522 	case LOOP_SET_STATUS:
1523 		mutex_lock(&lo->lo_ctl_mutex);
1524 		err = loop_set_status_compat(
1525 			lo, (const struct compat_loop_info __user *) arg);
1526 		mutex_unlock(&lo->lo_ctl_mutex);
1527 		break;
1528 	case LOOP_GET_STATUS:
1529 		mutex_lock(&lo->lo_ctl_mutex);
1530 		err = loop_get_status_compat(
1531 			lo, (struct compat_loop_info __user *) arg);
1532 		mutex_unlock(&lo->lo_ctl_mutex);
1533 		break;
1534 	case LOOP_SET_CAPACITY:
1535 	case LOOP_CLR_FD:
1536 	case LOOP_GET_STATUS64:
1537 	case LOOP_SET_STATUS64:
1538 		arg = (unsigned long) compat_ptr(arg);
1539 	case LOOP_SET_FD:
1540 	case LOOP_CHANGE_FD:
1541 		err = lo_ioctl(bdev, mode, cmd, arg);
1542 		break;
1543 	default:
1544 		err = -ENOIOCTLCMD;
1545 		break;
1546 	}
1547 	return err;
1548 }
1549 #endif
1550 
1551 static int lo_open(struct block_device *bdev, fmode_t mode)
1552 {
1553 	struct loop_device *lo;
1554 	int err = 0;
1555 
1556 	mutex_lock(&loop_index_mutex);
1557 	lo = bdev->bd_disk->private_data;
1558 	if (!lo) {
1559 		err = -ENXIO;
1560 		goto out;
1561 	}
1562 
1563 	atomic_inc(&lo->lo_refcnt);
1564 out:
1565 	mutex_unlock(&loop_index_mutex);
1566 	return err;
1567 }
1568 
1569 static void lo_release(struct gendisk *disk, fmode_t mode)
1570 {
1571 	struct loop_device *lo = disk->private_data;
1572 	int err;
1573 
1574 	if (atomic_dec_return(&lo->lo_refcnt))
1575 		return;
1576 
1577 	mutex_lock(&lo->lo_ctl_mutex);
1578 	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1579 		/*
1580 		 * In autoclear mode, stop the loop thread
1581 		 * and remove configuration after last close.
1582 		 */
1583 		err = loop_clr_fd(lo);
1584 		if (!err)
1585 			return;
1586 	} else {
1587 		/*
1588 		 * Otherwise keep thread (if running) and config,
1589 		 * but flush possible ongoing bios in thread.
1590 		 */
1591 		loop_flush(lo);
1592 	}
1593 
1594 	mutex_unlock(&lo->lo_ctl_mutex);
1595 }
1596 
1597 static const struct block_device_operations lo_fops = {
1598 	.owner =	THIS_MODULE,
1599 	.open =		lo_open,
1600 	.release =	lo_release,
1601 	.ioctl =	lo_ioctl,
1602 #ifdef CONFIG_COMPAT
1603 	.compat_ioctl =	lo_compat_ioctl,
1604 #endif
1605 };
1606 
1607 /*
1608  * And now the modules code and kernel interface.
1609  */
1610 static int max_loop;
1611 module_param(max_loop, int, S_IRUGO);
1612 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1613 module_param(max_part, int, S_IRUGO);
1614 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1615 MODULE_LICENSE("GPL");
1616 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1617 
1618 int loop_register_transfer(struct loop_func_table *funcs)
1619 {
1620 	unsigned int n = funcs->number;
1621 
1622 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1623 		return -EINVAL;
1624 	xfer_funcs[n] = funcs;
1625 	return 0;
1626 }
1627 
1628 static int unregister_transfer_cb(int id, void *ptr, void *data)
1629 {
1630 	struct loop_device *lo = ptr;
1631 	struct loop_func_table *xfer = data;
1632 
1633 	mutex_lock(&lo->lo_ctl_mutex);
1634 	if (lo->lo_encryption == xfer)
1635 		loop_release_xfer(lo);
1636 	mutex_unlock(&lo->lo_ctl_mutex);
1637 	return 0;
1638 }
1639 
1640 int loop_unregister_transfer(int number)
1641 {
1642 	unsigned int n = number;
1643 	struct loop_func_table *xfer;
1644 
1645 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1646 		return -EINVAL;
1647 
1648 	xfer_funcs[n] = NULL;
1649 	idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1650 	return 0;
1651 }
1652 
1653 EXPORT_SYMBOL(loop_register_transfer);
1654 EXPORT_SYMBOL(loop_unregister_transfer);
1655 
1656 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1657 		const struct blk_mq_queue_data *bd)
1658 {
1659 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(bd->rq);
1660 	struct loop_device *lo = cmd->rq->q->queuedata;
1661 
1662 	blk_mq_start_request(bd->rq);
1663 
1664 	if (lo->lo_state != Lo_bound)
1665 		return BLK_STS_IOERR;
1666 
1667 	switch (req_op(cmd->rq)) {
1668 	case REQ_OP_FLUSH:
1669 	case REQ_OP_DISCARD:
1670 	case REQ_OP_WRITE_ZEROES:
1671 		cmd->use_aio = false;
1672 		break;
1673 	default:
1674 		cmd->use_aio = lo->use_dio;
1675 		break;
1676 	}
1677 
1678 	kthread_queue_work(&lo->worker, &cmd->work);
1679 
1680 	return BLK_STS_OK;
1681 }
1682 
1683 static void loop_handle_cmd(struct loop_cmd *cmd)
1684 {
1685 	const bool write = op_is_write(req_op(cmd->rq));
1686 	struct loop_device *lo = cmd->rq->q->queuedata;
1687 	int ret = 0;
1688 
1689 	if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1690 		ret = -EIO;
1691 		goto failed;
1692 	}
1693 
1694 	ret = do_req_filebacked(lo, cmd->rq);
1695  failed:
1696 	/* complete non-aio request */
1697 	if (!cmd->use_aio || ret) {
1698 		cmd->ret = ret ? -EIO : 0;
1699 		blk_mq_complete_request(cmd->rq);
1700 	}
1701 }
1702 
1703 static void loop_queue_work(struct kthread_work *work)
1704 {
1705 	struct loop_cmd *cmd =
1706 		container_of(work, struct loop_cmd, work);
1707 
1708 	loop_handle_cmd(cmd);
1709 }
1710 
1711 static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq,
1712 		unsigned int hctx_idx, unsigned int numa_node)
1713 {
1714 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1715 
1716 	cmd->rq = rq;
1717 	kthread_init_work(&cmd->work, loop_queue_work);
1718 
1719 	return 0;
1720 }
1721 
1722 static const struct blk_mq_ops loop_mq_ops = {
1723 	.queue_rq       = loop_queue_rq,
1724 	.init_request	= loop_init_request,
1725 	.complete	= lo_complete_rq,
1726 };
1727 
1728 static int loop_add(struct loop_device **l, int i)
1729 {
1730 	struct loop_device *lo;
1731 	struct gendisk *disk;
1732 	int err;
1733 
1734 	err = -ENOMEM;
1735 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1736 	if (!lo)
1737 		goto out;
1738 
1739 	lo->lo_state = Lo_unbound;
1740 
1741 	/* allocate id, if @id >= 0, we're requesting that specific id */
1742 	if (i >= 0) {
1743 		err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1744 		if (err == -ENOSPC)
1745 			err = -EEXIST;
1746 	} else {
1747 		err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
1748 	}
1749 	if (err < 0)
1750 		goto out_free_dev;
1751 	i = err;
1752 
1753 	err = -ENOMEM;
1754 	lo->tag_set.ops = &loop_mq_ops;
1755 	lo->tag_set.nr_hw_queues = 1;
1756 	lo->tag_set.queue_depth = 128;
1757 	lo->tag_set.numa_node = NUMA_NO_NODE;
1758 	lo->tag_set.cmd_size = sizeof(struct loop_cmd);
1759 	lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
1760 	lo->tag_set.driver_data = lo;
1761 
1762 	err = blk_mq_alloc_tag_set(&lo->tag_set);
1763 	if (err)
1764 		goto out_free_idr;
1765 
1766 	lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
1767 	if (IS_ERR_OR_NULL(lo->lo_queue)) {
1768 		err = PTR_ERR(lo->lo_queue);
1769 		goto out_cleanup_tags;
1770 	}
1771 	lo->lo_queue->queuedata = lo;
1772 
1773 	/*
1774 	 * It doesn't make sense to enable merge because the I/O
1775 	 * submitted to backing file is handled page by page.
1776 	 */
1777 	queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, lo->lo_queue);
1778 
1779 	err = -ENOMEM;
1780 	disk = lo->lo_disk = alloc_disk(1 << part_shift);
1781 	if (!disk)
1782 		goto out_free_queue;
1783 
1784 	/*
1785 	 * Disable partition scanning by default. The in-kernel partition
1786 	 * scanning can be requested individually per-device during its
1787 	 * setup. Userspace can always add and remove partitions from all
1788 	 * devices. The needed partition minors are allocated from the
1789 	 * extended minor space, the main loop device numbers will continue
1790 	 * to match the loop minors, regardless of the number of partitions
1791 	 * used.
1792 	 *
1793 	 * If max_part is given, partition scanning is globally enabled for
1794 	 * all loop devices. The minors for the main loop devices will be
1795 	 * multiples of max_part.
1796 	 *
1797 	 * Note: Global-for-all-devices, set-only-at-init, read-only module
1798 	 * parameteters like 'max_loop' and 'max_part' make things needlessly
1799 	 * complicated, are too static, inflexible and may surprise
1800 	 * userspace tools. Parameters like this in general should be avoided.
1801 	 */
1802 	if (!part_shift)
1803 		disk->flags |= GENHD_FL_NO_PART_SCAN;
1804 	disk->flags |= GENHD_FL_EXT_DEVT;
1805 	mutex_init(&lo->lo_ctl_mutex);
1806 	atomic_set(&lo->lo_refcnt, 0);
1807 	lo->lo_number		= i;
1808 	spin_lock_init(&lo->lo_lock);
1809 	disk->major		= LOOP_MAJOR;
1810 	disk->first_minor	= i << part_shift;
1811 	disk->fops		= &lo_fops;
1812 	disk->private_data	= lo;
1813 	disk->queue		= lo->lo_queue;
1814 	sprintf(disk->disk_name, "loop%d", i);
1815 	add_disk(disk);
1816 	*l = lo;
1817 	return lo->lo_number;
1818 
1819 out_free_queue:
1820 	blk_cleanup_queue(lo->lo_queue);
1821 out_cleanup_tags:
1822 	blk_mq_free_tag_set(&lo->tag_set);
1823 out_free_idr:
1824 	idr_remove(&loop_index_idr, i);
1825 out_free_dev:
1826 	kfree(lo);
1827 out:
1828 	return err;
1829 }
1830 
1831 static void loop_remove(struct loop_device *lo)
1832 {
1833 	blk_cleanup_queue(lo->lo_queue);
1834 	del_gendisk(lo->lo_disk);
1835 	blk_mq_free_tag_set(&lo->tag_set);
1836 	put_disk(lo->lo_disk);
1837 	kfree(lo);
1838 }
1839 
1840 static int find_free_cb(int id, void *ptr, void *data)
1841 {
1842 	struct loop_device *lo = ptr;
1843 	struct loop_device **l = data;
1844 
1845 	if (lo->lo_state == Lo_unbound) {
1846 		*l = lo;
1847 		return 1;
1848 	}
1849 	return 0;
1850 }
1851 
1852 static int loop_lookup(struct loop_device **l, int i)
1853 {
1854 	struct loop_device *lo;
1855 	int ret = -ENODEV;
1856 
1857 	if (i < 0) {
1858 		int err;
1859 
1860 		err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1861 		if (err == 1) {
1862 			*l = lo;
1863 			ret = lo->lo_number;
1864 		}
1865 		goto out;
1866 	}
1867 
1868 	/* lookup and return a specific i */
1869 	lo = idr_find(&loop_index_idr, i);
1870 	if (lo) {
1871 		*l = lo;
1872 		ret = lo->lo_number;
1873 	}
1874 out:
1875 	return ret;
1876 }
1877 
1878 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1879 {
1880 	struct loop_device *lo;
1881 	struct kobject *kobj;
1882 	int err;
1883 
1884 	mutex_lock(&loop_index_mutex);
1885 	err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1886 	if (err < 0)
1887 		err = loop_add(&lo, MINOR(dev) >> part_shift);
1888 	if (err < 0)
1889 		kobj = NULL;
1890 	else
1891 		kobj = get_disk(lo->lo_disk);
1892 	mutex_unlock(&loop_index_mutex);
1893 
1894 	*part = 0;
1895 	return kobj;
1896 }
1897 
1898 static long loop_control_ioctl(struct file *file, unsigned int cmd,
1899 			       unsigned long parm)
1900 {
1901 	struct loop_device *lo;
1902 	int ret = -ENOSYS;
1903 
1904 	mutex_lock(&loop_index_mutex);
1905 	switch (cmd) {
1906 	case LOOP_CTL_ADD:
1907 		ret = loop_lookup(&lo, parm);
1908 		if (ret >= 0) {
1909 			ret = -EEXIST;
1910 			break;
1911 		}
1912 		ret = loop_add(&lo, parm);
1913 		break;
1914 	case LOOP_CTL_REMOVE:
1915 		ret = loop_lookup(&lo, parm);
1916 		if (ret < 0)
1917 			break;
1918 		mutex_lock(&lo->lo_ctl_mutex);
1919 		if (lo->lo_state != Lo_unbound) {
1920 			ret = -EBUSY;
1921 			mutex_unlock(&lo->lo_ctl_mutex);
1922 			break;
1923 		}
1924 		if (atomic_read(&lo->lo_refcnt) > 0) {
1925 			ret = -EBUSY;
1926 			mutex_unlock(&lo->lo_ctl_mutex);
1927 			break;
1928 		}
1929 		lo->lo_disk->private_data = NULL;
1930 		mutex_unlock(&lo->lo_ctl_mutex);
1931 		idr_remove(&loop_index_idr, lo->lo_number);
1932 		loop_remove(lo);
1933 		break;
1934 	case LOOP_CTL_GET_FREE:
1935 		ret = loop_lookup(&lo, -1);
1936 		if (ret >= 0)
1937 			break;
1938 		ret = loop_add(&lo, -1);
1939 	}
1940 	mutex_unlock(&loop_index_mutex);
1941 
1942 	return ret;
1943 }
1944 
1945 static const struct file_operations loop_ctl_fops = {
1946 	.open		= nonseekable_open,
1947 	.unlocked_ioctl	= loop_control_ioctl,
1948 	.compat_ioctl	= loop_control_ioctl,
1949 	.owner		= THIS_MODULE,
1950 	.llseek		= noop_llseek,
1951 };
1952 
1953 static struct miscdevice loop_misc = {
1954 	.minor		= LOOP_CTRL_MINOR,
1955 	.name		= "loop-control",
1956 	.fops		= &loop_ctl_fops,
1957 };
1958 
1959 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
1960 MODULE_ALIAS("devname:loop-control");
1961 
1962 static int __init loop_init(void)
1963 {
1964 	int i, nr;
1965 	unsigned long range;
1966 	struct loop_device *lo;
1967 	int err;
1968 
1969 	err = misc_register(&loop_misc);
1970 	if (err < 0)
1971 		return err;
1972 
1973 	part_shift = 0;
1974 	if (max_part > 0) {
1975 		part_shift = fls(max_part);
1976 
1977 		/*
1978 		 * Adjust max_part according to part_shift as it is exported
1979 		 * to user space so that user can decide correct minor number
1980 		 * if [s]he want to create more devices.
1981 		 *
1982 		 * Note that -1 is required because partition 0 is reserved
1983 		 * for the whole disk.
1984 		 */
1985 		max_part = (1UL << part_shift) - 1;
1986 	}
1987 
1988 	if ((1UL << part_shift) > DISK_MAX_PARTS) {
1989 		err = -EINVAL;
1990 		goto misc_out;
1991 	}
1992 
1993 	if (max_loop > 1UL << (MINORBITS - part_shift)) {
1994 		err = -EINVAL;
1995 		goto misc_out;
1996 	}
1997 
1998 	/*
1999 	 * If max_loop is specified, create that many devices upfront.
2000 	 * This also becomes a hard limit. If max_loop is not specified,
2001 	 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
2002 	 * init time. Loop devices can be requested on-demand with the
2003 	 * /dev/loop-control interface, or be instantiated by accessing
2004 	 * a 'dead' device node.
2005 	 */
2006 	if (max_loop) {
2007 		nr = max_loop;
2008 		range = max_loop << part_shift;
2009 	} else {
2010 		nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
2011 		range = 1UL << MINORBITS;
2012 	}
2013 
2014 	if (register_blkdev(LOOP_MAJOR, "loop")) {
2015 		err = -EIO;
2016 		goto misc_out;
2017 	}
2018 
2019 	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
2020 				  THIS_MODULE, loop_probe, NULL, NULL);
2021 
2022 	/* pre-create number of devices given by config or max_loop */
2023 	mutex_lock(&loop_index_mutex);
2024 	for (i = 0; i < nr; i++)
2025 		loop_add(&lo, i);
2026 	mutex_unlock(&loop_index_mutex);
2027 
2028 	printk(KERN_INFO "loop: module loaded\n");
2029 	return 0;
2030 
2031 misc_out:
2032 	misc_deregister(&loop_misc);
2033 	return err;
2034 }
2035 
2036 static int loop_exit_cb(int id, void *ptr, void *data)
2037 {
2038 	struct loop_device *lo = ptr;
2039 
2040 	loop_remove(lo);
2041 	return 0;
2042 }
2043 
2044 static void __exit loop_exit(void)
2045 {
2046 	unsigned long range;
2047 
2048 	range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
2049 
2050 	idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
2051 	idr_destroy(&loop_index_idr);
2052 
2053 	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
2054 	unregister_blkdev(LOOP_MAJOR, "loop");
2055 
2056 	misc_deregister(&loop_misc);
2057 }
2058 
2059 module_init(loop_init);
2060 module_exit(loop_exit);
2061 
2062 #ifndef MODULE
2063 static int __init max_loop_setup(char *str)
2064 {
2065 	max_loop = simple_strtol(str, NULL, 0);
2066 	return 1;
2067 }
2068 
2069 __setup("max_loop=", max_loop_setup);
2070 #endif
2071