xref: /openbmc/linux/drivers/block/loop.c (revision 1e047eaa)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include "loop.h"
80 
81 #include <linux/uaccess.h>
82 
83 static DEFINE_IDR(loop_index_idr);
84 static DEFINE_MUTEX(loop_index_mutex);
85 
86 static int max_part;
87 static int part_shift;
88 
89 static int transfer_xor(struct loop_device *lo, int cmd,
90 			struct page *raw_page, unsigned raw_off,
91 			struct page *loop_page, unsigned loop_off,
92 			int size, sector_t real_block)
93 {
94 	char *raw_buf = kmap_atomic(raw_page) + raw_off;
95 	char *loop_buf = kmap_atomic(loop_page) + loop_off;
96 	char *in, *out, *key;
97 	int i, keysize;
98 
99 	if (cmd == READ) {
100 		in = raw_buf;
101 		out = loop_buf;
102 	} else {
103 		in = loop_buf;
104 		out = raw_buf;
105 	}
106 
107 	key = lo->lo_encrypt_key;
108 	keysize = lo->lo_encrypt_key_size;
109 	for (i = 0; i < size; i++)
110 		*out++ = *in++ ^ key[(i & 511) % keysize];
111 
112 	kunmap_atomic(loop_buf);
113 	kunmap_atomic(raw_buf);
114 	cond_resched();
115 	return 0;
116 }
117 
118 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
119 {
120 	if (unlikely(info->lo_encrypt_key_size <= 0))
121 		return -EINVAL;
122 	return 0;
123 }
124 
125 static struct loop_func_table none_funcs = {
126 	.number = LO_CRYPT_NONE,
127 };
128 
129 static struct loop_func_table xor_funcs = {
130 	.number = LO_CRYPT_XOR,
131 	.transfer = transfer_xor,
132 	.init = xor_init
133 };
134 
135 /* xfer_funcs[0] is special - its release function is never called */
136 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
137 	&none_funcs,
138 	&xor_funcs
139 };
140 
141 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
142 {
143 	loff_t loopsize;
144 
145 	/* Compute loopsize in bytes */
146 	loopsize = i_size_read(file->f_mapping->host);
147 	if (offset > 0)
148 		loopsize -= offset;
149 	/* offset is beyond i_size, weird but possible */
150 	if (loopsize < 0)
151 		return 0;
152 
153 	if (sizelimit > 0 && sizelimit < loopsize)
154 		loopsize = sizelimit;
155 	/*
156 	 * Unfortunately, if we want to do I/O on the device,
157 	 * the number of 512-byte sectors has to fit into a sector_t.
158 	 */
159 	return loopsize >> 9;
160 }
161 
162 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
163 {
164 	return get_size(lo->lo_offset, lo->lo_sizelimit, file);
165 }
166 
167 static void __loop_update_dio(struct loop_device *lo, bool dio)
168 {
169 	struct file *file = lo->lo_backing_file;
170 	struct address_space *mapping = file->f_mapping;
171 	struct inode *inode = mapping->host;
172 	unsigned short sb_bsize = 0;
173 	unsigned dio_align = 0;
174 	bool use_dio;
175 
176 	if (inode->i_sb->s_bdev) {
177 		sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
178 		dio_align = sb_bsize - 1;
179 	}
180 
181 	/*
182 	 * We support direct I/O only if lo_offset is aligned with the
183 	 * logical I/O size of backing device, and the logical block
184 	 * size of loop is bigger than the backing device's and the loop
185 	 * needn't transform transfer.
186 	 *
187 	 * TODO: the above condition may be loosed in the future, and
188 	 * direct I/O may be switched runtime at that time because most
189 	 * of requests in sane applications should be PAGE_SIZE aligned
190 	 */
191 	if (dio) {
192 		if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
193 				!(lo->lo_offset & dio_align) &&
194 				mapping->a_ops->direct_IO &&
195 				!lo->transfer)
196 			use_dio = true;
197 		else
198 			use_dio = false;
199 	} else {
200 		use_dio = false;
201 	}
202 
203 	if (lo->use_dio == use_dio)
204 		return;
205 
206 	/* flush dirty pages before changing direct IO */
207 	vfs_fsync(file, 0);
208 
209 	/*
210 	 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
211 	 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
212 	 * will get updated by ioctl(LOOP_GET_STATUS)
213 	 */
214 	blk_mq_freeze_queue(lo->lo_queue);
215 	lo->use_dio = use_dio;
216 	if (use_dio) {
217 		blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue);
218 		lo->lo_flags |= LO_FLAGS_DIRECT_IO;
219 	} else {
220 		blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
221 		lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
222 	}
223 	blk_mq_unfreeze_queue(lo->lo_queue);
224 }
225 
226 static int
227 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
228 {
229 	loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
230 	sector_t x = (sector_t)size;
231 	struct block_device *bdev = lo->lo_device;
232 
233 	if (unlikely((loff_t)x != size))
234 		return -EFBIG;
235 	if (lo->lo_offset != offset)
236 		lo->lo_offset = offset;
237 	if (lo->lo_sizelimit != sizelimit)
238 		lo->lo_sizelimit = sizelimit;
239 	set_capacity(lo->lo_disk, x);
240 	bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
241 	/* let user-space know about the new size */
242 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
243 	return 0;
244 }
245 
246 static inline int
247 lo_do_transfer(struct loop_device *lo, int cmd,
248 	       struct page *rpage, unsigned roffs,
249 	       struct page *lpage, unsigned loffs,
250 	       int size, sector_t rblock)
251 {
252 	int ret;
253 
254 	ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
255 	if (likely(!ret))
256 		return 0;
257 
258 	printk_ratelimited(KERN_ERR
259 		"loop: Transfer error at byte offset %llu, length %i.\n",
260 		(unsigned long long)rblock << 9, size);
261 	return ret;
262 }
263 
264 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
265 {
266 	struct iov_iter i;
267 	ssize_t bw;
268 
269 	iov_iter_bvec(&i, ITER_BVEC | WRITE, bvec, 1, bvec->bv_len);
270 
271 	file_start_write(file);
272 	bw = vfs_iter_write(file, &i, ppos, 0);
273 	file_end_write(file);
274 
275 	if (likely(bw ==  bvec->bv_len))
276 		return 0;
277 
278 	printk_ratelimited(KERN_ERR
279 		"loop: Write error at byte offset %llu, length %i.\n",
280 		(unsigned long long)*ppos, bvec->bv_len);
281 	if (bw >= 0)
282 		bw = -EIO;
283 	return bw;
284 }
285 
286 static int lo_write_simple(struct loop_device *lo, struct request *rq,
287 		loff_t pos)
288 {
289 	struct bio_vec bvec;
290 	struct req_iterator iter;
291 	int ret = 0;
292 
293 	rq_for_each_segment(bvec, rq, iter) {
294 		ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
295 		if (ret < 0)
296 			break;
297 		cond_resched();
298 	}
299 
300 	return ret;
301 }
302 
303 /*
304  * This is the slow, transforming version that needs to double buffer the
305  * data as it cannot do the transformations in place without having direct
306  * access to the destination pages of the backing file.
307  */
308 static int lo_write_transfer(struct loop_device *lo, struct request *rq,
309 		loff_t pos)
310 {
311 	struct bio_vec bvec, b;
312 	struct req_iterator iter;
313 	struct page *page;
314 	int ret = 0;
315 
316 	page = alloc_page(GFP_NOIO);
317 	if (unlikely(!page))
318 		return -ENOMEM;
319 
320 	rq_for_each_segment(bvec, rq, iter) {
321 		ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
322 			bvec.bv_offset, bvec.bv_len, pos >> 9);
323 		if (unlikely(ret))
324 			break;
325 
326 		b.bv_page = page;
327 		b.bv_offset = 0;
328 		b.bv_len = bvec.bv_len;
329 		ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
330 		if (ret < 0)
331 			break;
332 	}
333 
334 	__free_page(page);
335 	return ret;
336 }
337 
338 static int lo_read_simple(struct loop_device *lo, struct request *rq,
339 		loff_t pos)
340 {
341 	struct bio_vec bvec;
342 	struct req_iterator iter;
343 	struct iov_iter i;
344 	ssize_t len;
345 
346 	rq_for_each_segment(bvec, rq, iter) {
347 		iov_iter_bvec(&i, ITER_BVEC, &bvec, 1, bvec.bv_len);
348 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
349 		if (len < 0)
350 			return len;
351 
352 		flush_dcache_page(bvec.bv_page);
353 
354 		if (len != bvec.bv_len) {
355 			struct bio *bio;
356 
357 			__rq_for_each_bio(bio, rq)
358 				zero_fill_bio(bio);
359 			break;
360 		}
361 		cond_resched();
362 	}
363 
364 	return 0;
365 }
366 
367 static int lo_read_transfer(struct loop_device *lo, struct request *rq,
368 		loff_t pos)
369 {
370 	struct bio_vec bvec, b;
371 	struct req_iterator iter;
372 	struct iov_iter i;
373 	struct page *page;
374 	ssize_t len;
375 	int ret = 0;
376 
377 	page = alloc_page(GFP_NOIO);
378 	if (unlikely(!page))
379 		return -ENOMEM;
380 
381 	rq_for_each_segment(bvec, rq, iter) {
382 		loff_t offset = pos;
383 
384 		b.bv_page = page;
385 		b.bv_offset = 0;
386 		b.bv_len = bvec.bv_len;
387 
388 		iov_iter_bvec(&i, ITER_BVEC, &b, 1, b.bv_len);
389 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
390 		if (len < 0) {
391 			ret = len;
392 			goto out_free_page;
393 		}
394 
395 		ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
396 			bvec.bv_offset, len, offset >> 9);
397 		if (ret)
398 			goto out_free_page;
399 
400 		flush_dcache_page(bvec.bv_page);
401 
402 		if (len != bvec.bv_len) {
403 			struct bio *bio;
404 
405 			__rq_for_each_bio(bio, rq)
406 				zero_fill_bio(bio);
407 			break;
408 		}
409 	}
410 
411 	ret = 0;
412 out_free_page:
413 	__free_page(page);
414 	return ret;
415 }
416 
417 static int lo_discard(struct loop_device *lo, struct request *rq, loff_t pos)
418 {
419 	/*
420 	 * We use punch hole to reclaim the free space used by the
421 	 * image a.k.a. discard. However we do not support discard if
422 	 * encryption is enabled, because it may give an attacker
423 	 * useful information.
424 	 */
425 	struct file *file = lo->lo_backing_file;
426 	int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
427 	int ret;
428 
429 	if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) {
430 		ret = -EOPNOTSUPP;
431 		goto out;
432 	}
433 
434 	ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
435 	if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
436 		ret = -EIO;
437  out:
438 	return ret;
439 }
440 
441 static int lo_req_flush(struct loop_device *lo, struct request *rq)
442 {
443 	struct file *file = lo->lo_backing_file;
444 	int ret = vfs_fsync(file, 0);
445 	if (unlikely(ret && ret != -EINVAL))
446 		ret = -EIO;
447 
448 	return ret;
449 }
450 
451 static void lo_complete_rq(struct request *rq)
452 {
453 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
454 
455 	if (unlikely(req_op(cmd->rq) == REQ_OP_READ && cmd->use_aio &&
456 		     cmd->ret >= 0 && cmd->ret < blk_rq_bytes(cmd->rq))) {
457 		struct bio *bio = cmd->rq->bio;
458 
459 		bio_advance(bio, cmd->ret);
460 		zero_fill_bio(bio);
461 	}
462 
463 	blk_mq_end_request(rq, cmd->ret < 0 ? BLK_STS_IOERR : BLK_STS_OK);
464 }
465 
466 static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
467 {
468 	if (!atomic_dec_and_test(&cmd->ref))
469 		return;
470 	kfree(cmd->bvec);
471 	cmd->bvec = NULL;
472 	blk_mq_complete_request(cmd->rq);
473 }
474 
475 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
476 {
477 	struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
478 
479 	if (cmd->css)
480 		css_put(cmd->css);
481 	cmd->ret = ret;
482 	lo_rw_aio_do_completion(cmd);
483 }
484 
485 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
486 		     loff_t pos, bool rw)
487 {
488 	struct iov_iter iter;
489 	struct bio_vec *bvec;
490 	struct request *rq = cmd->rq;
491 	struct bio *bio = rq->bio;
492 	struct file *file = lo->lo_backing_file;
493 	unsigned int offset;
494 	int segments = 0;
495 	int ret;
496 
497 	if (rq->bio != rq->biotail) {
498 		struct req_iterator iter;
499 		struct bio_vec tmp;
500 
501 		__rq_for_each_bio(bio, rq)
502 			segments += bio_segments(bio);
503 		bvec = kmalloc(sizeof(struct bio_vec) * segments, GFP_NOIO);
504 		if (!bvec)
505 			return -EIO;
506 		cmd->bvec = bvec;
507 
508 		/*
509 		 * The bios of the request may be started from the middle of
510 		 * the 'bvec' because of bio splitting, so we can't directly
511 		 * copy bio->bi_iov_vec to new bvec. The rq_for_each_segment
512 		 * API will take care of all details for us.
513 		 */
514 		rq_for_each_segment(tmp, rq, iter) {
515 			*bvec = tmp;
516 			bvec++;
517 		}
518 		bvec = cmd->bvec;
519 		offset = 0;
520 	} else {
521 		/*
522 		 * Same here, this bio may be started from the middle of the
523 		 * 'bvec' because of bio splitting, so offset from the bvec
524 		 * must be passed to iov iterator
525 		 */
526 		offset = bio->bi_iter.bi_bvec_done;
527 		bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
528 		segments = bio_segments(bio);
529 	}
530 	atomic_set(&cmd->ref, 2);
531 
532 	iov_iter_bvec(&iter, ITER_BVEC | rw, bvec,
533 		      segments, blk_rq_bytes(rq));
534 	iter.iov_offset = offset;
535 
536 	cmd->iocb.ki_pos = pos;
537 	cmd->iocb.ki_filp = file;
538 	cmd->iocb.ki_complete = lo_rw_aio_complete;
539 	cmd->iocb.ki_flags = IOCB_DIRECT;
540 	if (cmd->css)
541 		kthread_associate_blkcg(cmd->css);
542 
543 	if (rw == WRITE)
544 		ret = call_write_iter(file, &cmd->iocb, &iter);
545 	else
546 		ret = call_read_iter(file, &cmd->iocb, &iter);
547 
548 	lo_rw_aio_do_completion(cmd);
549 	kthread_associate_blkcg(NULL);
550 
551 	if (ret != -EIOCBQUEUED)
552 		cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
553 	return 0;
554 }
555 
556 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
557 {
558 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
559 	loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
560 
561 	/*
562 	 * lo_write_simple and lo_read_simple should have been covered
563 	 * by io submit style function like lo_rw_aio(), one blocker
564 	 * is that lo_read_simple() need to call flush_dcache_page after
565 	 * the page is written from kernel, and it isn't easy to handle
566 	 * this in io submit style function which submits all segments
567 	 * of the req at one time. And direct read IO doesn't need to
568 	 * run flush_dcache_page().
569 	 */
570 	switch (req_op(rq)) {
571 	case REQ_OP_FLUSH:
572 		return lo_req_flush(lo, rq);
573 	case REQ_OP_DISCARD:
574 	case REQ_OP_WRITE_ZEROES:
575 		return lo_discard(lo, rq, pos);
576 	case REQ_OP_WRITE:
577 		if (lo->transfer)
578 			return lo_write_transfer(lo, rq, pos);
579 		else if (cmd->use_aio)
580 			return lo_rw_aio(lo, cmd, pos, WRITE);
581 		else
582 			return lo_write_simple(lo, rq, pos);
583 	case REQ_OP_READ:
584 		if (lo->transfer)
585 			return lo_read_transfer(lo, rq, pos);
586 		else if (cmd->use_aio)
587 			return lo_rw_aio(lo, cmd, pos, READ);
588 		else
589 			return lo_read_simple(lo, rq, pos);
590 	default:
591 		WARN_ON_ONCE(1);
592 		return -EIO;
593 		break;
594 	}
595 }
596 
597 static inline void loop_update_dio(struct loop_device *lo)
598 {
599 	__loop_update_dio(lo, io_is_direct(lo->lo_backing_file) |
600 			lo->use_dio);
601 }
602 
603 static void loop_reread_partitions(struct loop_device *lo,
604 				   struct block_device *bdev)
605 {
606 	int rc;
607 
608 	/*
609 	 * bd_mutex has been held already in release path, so don't
610 	 * acquire it if this function is called in such case.
611 	 *
612 	 * If the reread partition isn't from release path, lo_refcnt
613 	 * must be at least one and it can only become zero when the
614 	 * current holder is released.
615 	 */
616 	if (!atomic_read(&lo->lo_refcnt))
617 		rc = __blkdev_reread_part(bdev);
618 	else
619 		rc = blkdev_reread_part(bdev);
620 	if (rc)
621 		pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
622 			__func__, lo->lo_number, lo->lo_file_name, rc);
623 }
624 
625 /*
626  * loop_change_fd switched the backing store of a loopback device to
627  * a new file. This is useful for operating system installers to free up
628  * the original file and in High Availability environments to switch to
629  * an alternative location for the content in case of server meltdown.
630  * This can only work if the loop device is used read-only, and if the
631  * new backing store is the same size and type as the old backing store.
632  */
633 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
634 			  unsigned int arg)
635 {
636 	struct file	*file, *old_file;
637 	struct inode	*inode;
638 	int		error;
639 
640 	error = -ENXIO;
641 	if (lo->lo_state != Lo_bound)
642 		goto out;
643 
644 	/* the loop device has to be read-only */
645 	error = -EINVAL;
646 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
647 		goto out;
648 
649 	error = -EBADF;
650 	file = fget(arg);
651 	if (!file)
652 		goto out;
653 
654 	inode = file->f_mapping->host;
655 	old_file = lo->lo_backing_file;
656 
657 	error = -EINVAL;
658 
659 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
660 		goto out_putf;
661 
662 	/* size of the new backing store needs to be the same */
663 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
664 		goto out_putf;
665 
666 	/* and ... switch */
667 	blk_mq_freeze_queue(lo->lo_queue);
668 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
669 	lo->lo_backing_file = file;
670 	lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
671 	mapping_set_gfp_mask(file->f_mapping,
672 			     lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
673 	loop_update_dio(lo);
674 	blk_mq_unfreeze_queue(lo->lo_queue);
675 
676 	fput(old_file);
677 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
678 		loop_reread_partitions(lo, bdev);
679 	return 0;
680 
681  out_putf:
682 	fput(file);
683  out:
684 	return error;
685 }
686 
687 static inline int is_loop_device(struct file *file)
688 {
689 	struct inode *i = file->f_mapping->host;
690 
691 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
692 }
693 
694 /* loop sysfs attributes */
695 
696 static ssize_t loop_attr_show(struct device *dev, char *page,
697 			      ssize_t (*callback)(struct loop_device *, char *))
698 {
699 	struct gendisk *disk = dev_to_disk(dev);
700 	struct loop_device *lo = disk->private_data;
701 
702 	return callback(lo, page);
703 }
704 
705 #define LOOP_ATTR_RO(_name)						\
706 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
707 static ssize_t loop_attr_do_show_##_name(struct device *d,		\
708 				struct device_attribute *attr, char *b)	\
709 {									\
710 	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
711 }									\
712 static struct device_attribute loop_attr_##_name =			\
713 	__ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
714 
715 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
716 {
717 	ssize_t ret;
718 	char *p = NULL;
719 
720 	spin_lock_irq(&lo->lo_lock);
721 	if (lo->lo_backing_file)
722 		p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
723 	spin_unlock_irq(&lo->lo_lock);
724 
725 	if (IS_ERR_OR_NULL(p))
726 		ret = PTR_ERR(p);
727 	else {
728 		ret = strlen(p);
729 		memmove(buf, p, ret);
730 		buf[ret++] = '\n';
731 		buf[ret] = 0;
732 	}
733 
734 	return ret;
735 }
736 
737 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
738 {
739 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
740 }
741 
742 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
743 {
744 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
745 }
746 
747 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
748 {
749 	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
750 
751 	return sprintf(buf, "%s\n", autoclear ? "1" : "0");
752 }
753 
754 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
755 {
756 	int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
757 
758 	return sprintf(buf, "%s\n", partscan ? "1" : "0");
759 }
760 
761 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
762 {
763 	int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
764 
765 	return sprintf(buf, "%s\n", dio ? "1" : "0");
766 }
767 
768 LOOP_ATTR_RO(backing_file);
769 LOOP_ATTR_RO(offset);
770 LOOP_ATTR_RO(sizelimit);
771 LOOP_ATTR_RO(autoclear);
772 LOOP_ATTR_RO(partscan);
773 LOOP_ATTR_RO(dio);
774 
775 static struct attribute *loop_attrs[] = {
776 	&loop_attr_backing_file.attr,
777 	&loop_attr_offset.attr,
778 	&loop_attr_sizelimit.attr,
779 	&loop_attr_autoclear.attr,
780 	&loop_attr_partscan.attr,
781 	&loop_attr_dio.attr,
782 	NULL,
783 };
784 
785 static struct attribute_group loop_attribute_group = {
786 	.name = "loop",
787 	.attrs= loop_attrs,
788 };
789 
790 static int loop_sysfs_init(struct loop_device *lo)
791 {
792 	return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
793 				  &loop_attribute_group);
794 }
795 
796 static void loop_sysfs_exit(struct loop_device *lo)
797 {
798 	sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
799 			   &loop_attribute_group);
800 }
801 
802 static void loop_config_discard(struct loop_device *lo)
803 {
804 	struct file *file = lo->lo_backing_file;
805 	struct inode *inode = file->f_mapping->host;
806 	struct request_queue *q = lo->lo_queue;
807 
808 	/*
809 	 * We use punch hole to reclaim the free space used by the
810 	 * image a.k.a. discard. However we do not support discard if
811 	 * encryption is enabled, because it may give an attacker
812 	 * useful information.
813 	 */
814 	if ((!file->f_op->fallocate) ||
815 	    lo->lo_encrypt_key_size) {
816 		q->limits.discard_granularity = 0;
817 		q->limits.discard_alignment = 0;
818 		blk_queue_max_discard_sectors(q, 0);
819 		blk_queue_max_write_zeroes_sectors(q, 0);
820 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
821 		return;
822 	}
823 
824 	q->limits.discard_granularity = inode->i_sb->s_blocksize;
825 	q->limits.discard_alignment = 0;
826 
827 	blk_queue_max_discard_sectors(q, UINT_MAX >> 9);
828 	blk_queue_max_write_zeroes_sectors(q, UINT_MAX >> 9);
829 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
830 }
831 
832 static void loop_unprepare_queue(struct loop_device *lo)
833 {
834 	kthread_flush_worker(&lo->worker);
835 	kthread_stop(lo->worker_task);
836 }
837 
838 static int loop_kthread_worker_fn(void *worker_ptr)
839 {
840 	current->flags |= PF_LESS_THROTTLE;
841 	return kthread_worker_fn(worker_ptr);
842 }
843 
844 static int loop_prepare_queue(struct loop_device *lo)
845 {
846 	kthread_init_worker(&lo->worker);
847 	lo->worker_task = kthread_run(loop_kthread_worker_fn,
848 			&lo->worker, "loop%d", lo->lo_number);
849 	if (IS_ERR(lo->worker_task))
850 		return -ENOMEM;
851 	set_user_nice(lo->worker_task, MIN_NICE);
852 	return 0;
853 }
854 
855 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
856 		       struct block_device *bdev, unsigned int arg)
857 {
858 	struct file	*file, *f;
859 	struct inode	*inode;
860 	struct address_space *mapping;
861 	int		lo_flags = 0;
862 	int		error;
863 	loff_t		size;
864 
865 	/* This is safe, since we have a reference from open(). */
866 	__module_get(THIS_MODULE);
867 
868 	error = -EBADF;
869 	file = fget(arg);
870 	if (!file)
871 		goto out;
872 
873 	error = -EBUSY;
874 	if (lo->lo_state != Lo_unbound)
875 		goto out_putf;
876 
877 	/* Avoid recursion */
878 	f = file;
879 	while (is_loop_device(f)) {
880 		struct loop_device *l;
881 
882 		if (f->f_mapping->host->i_bdev == bdev)
883 			goto out_putf;
884 
885 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
886 		if (l->lo_state == Lo_unbound) {
887 			error = -EINVAL;
888 			goto out_putf;
889 		}
890 		f = l->lo_backing_file;
891 	}
892 
893 	mapping = file->f_mapping;
894 	inode = mapping->host;
895 
896 	error = -EINVAL;
897 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
898 		goto out_putf;
899 
900 	if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
901 	    !file->f_op->write_iter)
902 		lo_flags |= LO_FLAGS_READ_ONLY;
903 
904 	error = -EFBIG;
905 	size = get_loop_size(lo, file);
906 	if ((loff_t)(sector_t)size != size)
907 		goto out_putf;
908 	error = loop_prepare_queue(lo);
909 	if (error)
910 		goto out_putf;
911 
912 	error = 0;
913 
914 	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
915 
916 	lo->use_dio = false;
917 	lo->lo_device = bdev;
918 	lo->lo_flags = lo_flags;
919 	lo->lo_backing_file = file;
920 	lo->transfer = NULL;
921 	lo->ioctl = NULL;
922 	lo->lo_sizelimit = 0;
923 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
924 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
925 
926 	if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
927 		blk_queue_write_cache(lo->lo_queue, true, false);
928 
929 	loop_update_dio(lo);
930 	set_capacity(lo->lo_disk, size);
931 	bd_set_size(bdev, size << 9);
932 	loop_sysfs_init(lo);
933 	/* let user-space know about the new size */
934 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
935 
936 	set_blocksize(bdev, S_ISBLK(inode->i_mode) ?
937 		      block_size(inode->i_bdev) : PAGE_SIZE);
938 
939 	lo->lo_state = Lo_bound;
940 	if (part_shift)
941 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
942 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
943 		loop_reread_partitions(lo, bdev);
944 
945 	/* Grab the block_device to prevent its destruction after we
946 	 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev).
947 	 */
948 	bdgrab(bdev);
949 	return 0;
950 
951  out_putf:
952 	fput(file);
953  out:
954 	/* This is safe: open() is still holding a reference. */
955 	module_put(THIS_MODULE);
956 	return error;
957 }
958 
959 static int
960 loop_release_xfer(struct loop_device *lo)
961 {
962 	int err = 0;
963 	struct loop_func_table *xfer = lo->lo_encryption;
964 
965 	if (xfer) {
966 		if (xfer->release)
967 			err = xfer->release(lo);
968 		lo->transfer = NULL;
969 		lo->lo_encryption = NULL;
970 		module_put(xfer->owner);
971 	}
972 	return err;
973 }
974 
975 static int
976 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
977 	       const struct loop_info64 *i)
978 {
979 	int err = 0;
980 
981 	if (xfer) {
982 		struct module *owner = xfer->owner;
983 
984 		if (!try_module_get(owner))
985 			return -EINVAL;
986 		if (xfer->init)
987 			err = xfer->init(lo, i);
988 		if (err)
989 			module_put(owner);
990 		else
991 			lo->lo_encryption = xfer;
992 	}
993 	return err;
994 }
995 
996 static int loop_clr_fd(struct loop_device *lo)
997 {
998 	struct file *filp = lo->lo_backing_file;
999 	gfp_t gfp = lo->old_gfp_mask;
1000 	struct block_device *bdev = lo->lo_device;
1001 
1002 	if (lo->lo_state != Lo_bound)
1003 		return -ENXIO;
1004 
1005 	/*
1006 	 * If we've explicitly asked to tear down the loop device,
1007 	 * and it has an elevated reference count, set it for auto-teardown when
1008 	 * the last reference goes away. This stops $!~#$@ udev from
1009 	 * preventing teardown because it decided that it needs to run blkid on
1010 	 * the loopback device whenever they appear. xfstests is notorious for
1011 	 * failing tests because blkid via udev races with a losetup
1012 	 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1013 	 * command to fail with EBUSY.
1014 	 */
1015 	if (atomic_read(&lo->lo_refcnt) > 1) {
1016 		lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1017 		mutex_unlock(&lo->lo_ctl_mutex);
1018 		return 0;
1019 	}
1020 
1021 	if (filp == NULL)
1022 		return -EINVAL;
1023 
1024 	/* freeze request queue during the transition */
1025 	blk_mq_freeze_queue(lo->lo_queue);
1026 
1027 	spin_lock_irq(&lo->lo_lock);
1028 	lo->lo_state = Lo_rundown;
1029 	lo->lo_backing_file = NULL;
1030 	spin_unlock_irq(&lo->lo_lock);
1031 
1032 	loop_release_xfer(lo);
1033 	lo->transfer = NULL;
1034 	lo->ioctl = NULL;
1035 	lo->lo_device = NULL;
1036 	lo->lo_encryption = NULL;
1037 	lo->lo_offset = 0;
1038 	lo->lo_sizelimit = 0;
1039 	lo->lo_encrypt_key_size = 0;
1040 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1041 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1042 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1043 	blk_queue_logical_block_size(lo->lo_queue, 512);
1044 	blk_queue_physical_block_size(lo->lo_queue, 512);
1045 	blk_queue_io_min(lo->lo_queue, 512);
1046 	if (bdev) {
1047 		bdput(bdev);
1048 		invalidate_bdev(bdev);
1049 	}
1050 	set_capacity(lo->lo_disk, 0);
1051 	loop_sysfs_exit(lo);
1052 	if (bdev) {
1053 		bd_set_size(bdev, 0);
1054 		/* let user-space know about this change */
1055 		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1056 	}
1057 	mapping_set_gfp_mask(filp->f_mapping, gfp);
1058 	lo->lo_state = Lo_unbound;
1059 	/* This is safe: open() is still holding a reference. */
1060 	module_put(THIS_MODULE);
1061 	blk_mq_unfreeze_queue(lo->lo_queue);
1062 
1063 	if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
1064 		loop_reread_partitions(lo, bdev);
1065 	lo->lo_flags = 0;
1066 	if (!part_shift)
1067 		lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1068 	loop_unprepare_queue(lo);
1069 	mutex_unlock(&lo->lo_ctl_mutex);
1070 	/*
1071 	 * Need not hold lo_ctl_mutex to fput backing file.
1072 	 * Calling fput holding lo_ctl_mutex triggers a circular
1073 	 * lock dependency possibility warning as fput can take
1074 	 * bd_mutex which is usually taken before lo_ctl_mutex.
1075 	 */
1076 	fput(filp);
1077 	return 0;
1078 }
1079 
1080 static int
1081 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1082 {
1083 	int err;
1084 	struct loop_func_table *xfer;
1085 	kuid_t uid = current_uid();
1086 
1087 	if (lo->lo_encrypt_key_size &&
1088 	    !uid_eq(lo->lo_key_owner, uid) &&
1089 	    !capable(CAP_SYS_ADMIN))
1090 		return -EPERM;
1091 	if (lo->lo_state != Lo_bound)
1092 		return -ENXIO;
1093 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1094 		return -EINVAL;
1095 
1096 	/* I/O need to be drained during transfer transition */
1097 	blk_mq_freeze_queue(lo->lo_queue);
1098 
1099 	err = loop_release_xfer(lo);
1100 	if (err)
1101 		goto exit;
1102 
1103 	if (info->lo_encrypt_type) {
1104 		unsigned int type = info->lo_encrypt_type;
1105 
1106 		if (type >= MAX_LO_CRYPT) {
1107 			err = -EINVAL;
1108 			goto exit;
1109 		}
1110 		xfer = xfer_funcs[type];
1111 		if (xfer == NULL) {
1112 			err = -EINVAL;
1113 			goto exit;
1114 		}
1115 	} else
1116 		xfer = NULL;
1117 
1118 	err = loop_init_xfer(lo, xfer, info);
1119 	if (err)
1120 		goto exit;
1121 
1122 	if (lo->lo_offset != info->lo_offset ||
1123 	    lo->lo_sizelimit != info->lo_sizelimit) {
1124 		if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) {
1125 			err = -EFBIG;
1126 			goto exit;
1127 		}
1128 	}
1129 
1130 	loop_config_discard(lo);
1131 
1132 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1133 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1134 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1135 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1136 
1137 	if (!xfer)
1138 		xfer = &none_funcs;
1139 	lo->transfer = xfer->transfer;
1140 	lo->ioctl = xfer->ioctl;
1141 
1142 	if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1143 	     (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1144 		lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1145 
1146 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1147 	lo->lo_init[0] = info->lo_init[0];
1148 	lo->lo_init[1] = info->lo_init[1];
1149 	if (info->lo_encrypt_key_size) {
1150 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1151 		       info->lo_encrypt_key_size);
1152 		lo->lo_key_owner = uid;
1153 	}
1154 
1155 	/* update dio if lo_offset or transfer is changed */
1156 	__loop_update_dio(lo, lo->use_dio);
1157 
1158  exit:
1159 	blk_mq_unfreeze_queue(lo->lo_queue);
1160 
1161 	if (!err && (info->lo_flags & LO_FLAGS_PARTSCAN) &&
1162 	     !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1163 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
1164 		lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1165 		loop_reread_partitions(lo, lo->lo_device);
1166 	}
1167 
1168 	return err;
1169 }
1170 
1171 static int
1172 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1173 {
1174 	struct file *file;
1175 	struct kstat stat;
1176 	int ret;
1177 
1178 	if (lo->lo_state != Lo_bound) {
1179 		mutex_unlock(&lo->lo_ctl_mutex);
1180 		return -ENXIO;
1181 	}
1182 
1183 	memset(info, 0, sizeof(*info));
1184 	info->lo_number = lo->lo_number;
1185 	info->lo_offset = lo->lo_offset;
1186 	info->lo_sizelimit = lo->lo_sizelimit;
1187 	info->lo_flags = lo->lo_flags;
1188 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1189 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1190 	info->lo_encrypt_type =
1191 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1192 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1193 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1194 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1195 		       lo->lo_encrypt_key_size);
1196 	}
1197 
1198 	/* Drop lo_ctl_mutex while we call into the filesystem. */
1199 	file = get_file(lo->lo_backing_file);
1200 	mutex_unlock(&lo->lo_ctl_mutex);
1201 	ret = vfs_getattr(&file->f_path, &stat, STATX_INO,
1202 			  AT_STATX_SYNC_AS_STAT);
1203 	if (!ret) {
1204 		info->lo_device = huge_encode_dev(stat.dev);
1205 		info->lo_inode = stat.ino;
1206 		info->lo_rdevice = huge_encode_dev(stat.rdev);
1207 	}
1208 	fput(file);
1209 	return ret;
1210 }
1211 
1212 static void
1213 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1214 {
1215 	memset(info64, 0, sizeof(*info64));
1216 	info64->lo_number = info->lo_number;
1217 	info64->lo_device = info->lo_device;
1218 	info64->lo_inode = info->lo_inode;
1219 	info64->lo_rdevice = info->lo_rdevice;
1220 	info64->lo_offset = info->lo_offset;
1221 	info64->lo_sizelimit = 0;
1222 	info64->lo_encrypt_type = info->lo_encrypt_type;
1223 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1224 	info64->lo_flags = info->lo_flags;
1225 	info64->lo_init[0] = info->lo_init[0];
1226 	info64->lo_init[1] = info->lo_init[1];
1227 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1228 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1229 	else
1230 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1231 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1232 }
1233 
1234 static int
1235 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1236 {
1237 	memset(info, 0, sizeof(*info));
1238 	info->lo_number = info64->lo_number;
1239 	info->lo_device = info64->lo_device;
1240 	info->lo_inode = info64->lo_inode;
1241 	info->lo_rdevice = info64->lo_rdevice;
1242 	info->lo_offset = info64->lo_offset;
1243 	info->lo_encrypt_type = info64->lo_encrypt_type;
1244 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1245 	info->lo_flags = info64->lo_flags;
1246 	info->lo_init[0] = info64->lo_init[0];
1247 	info->lo_init[1] = info64->lo_init[1];
1248 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1249 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1250 	else
1251 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1252 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1253 
1254 	/* error in case values were truncated */
1255 	if (info->lo_device != info64->lo_device ||
1256 	    info->lo_rdevice != info64->lo_rdevice ||
1257 	    info->lo_inode != info64->lo_inode ||
1258 	    info->lo_offset != info64->lo_offset)
1259 		return -EOVERFLOW;
1260 
1261 	return 0;
1262 }
1263 
1264 static int
1265 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1266 {
1267 	struct loop_info info;
1268 	struct loop_info64 info64;
1269 
1270 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1271 		return -EFAULT;
1272 	loop_info64_from_old(&info, &info64);
1273 	return loop_set_status(lo, &info64);
1274 }
1275 
1276 static int
1277 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1278 {
1279 	struct loop_info64 info64;
1280 
1281 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1282 		return -EFAULT;
1283 	return loop_set_status(lo, &info64);
1284 }
1285 
1286 static int
1287 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1288 	struct loop_info info;
1289 	struct loop_info64 info64;
1290 	int err = 0;
1291 
1292 	if (!arg)
1293 		err = -EINVAL;
1294 	if (!err)
1295 		err = loop_get_status(lo, &info64);
1296 	if (!err)
1297 		err = loop_info64_to_old(&info64, &info);
1298 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1299 		err = -EFAULT;
1300 
1301 	return err;
1302 }
1303 
1304 static int
1305 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1306 	struct loop_info64 info64;
1307 	int err = 0;
1308 
1309 	if (!arg)
1310 		err = -EINVAL;
1311 	if (!err)
1312 		err = loop_get_status(lo, &info64);
1313 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1314 		err = -EFAULT;
1315 
1316 	return err;
1317 }
1318 
1319 static int loop_set_capacity(struct loop_device *lo)
1320 {
1321 	if (unlikely(lo->lo_state != Lo_bound))
1322 		return -ENXIO;
1323 
1324 	return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1325 }
1326 
1327 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1328 {
1329 	int error = -ENXIO;
1330 	if (lo->lo_state != Lo_bound)
1331 		goto out;
1332 
1333 	__loop_update_dio(lo, !!arg);
1334 	if (lo->use_dio == !!arg)
1335 		return 0;
1336 	error = -EINVAL;
1337  out:
1338 	return error;
1339 }
1340 
1341 static int loop_set_block_size(struct loop_device *lo, unsigned long arg)
1342 {
1343 	if (lo->lo_state != Lo_bound)
1344 		return -ENXIO;
1345 
1346 	if (arg < 512 || arg > PAGE_SIZE || !is_power_of_2(arg))
1347 		return -EINVAL;
1348 
1349 	blk_mq_freeze_queue(lo->lo_queue);
1350 
1351 	blk_queue_logical_block_size(lo->lo_queue, arg);
1352 	blk_queue_physical_block_size(lo->lo_queue, arg);
1353 	blk_queue_io_min(lo->lo_queue, arg);
1354 	loop_update_dio(lo);
1355 
1356 	blk_mq_unfreeze_queue(lo->lo_queue);
1357 
1358 	return 0;
1359 }
1360 
1361 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1362 	unsigned int cmd, unsigned long arg)
1363 {
1364 	struct loop_device *lo = bdev->bd_disk->private_data;
1365 	int err;
1366 
1367 	err = mutex_lock_killable_nested(&lo->lo_ctl_mutex, 1);
1368 	if (err)
1369 		goto out_unlocked;
1370 
1371 	switch (cmd) {
1372 	case LOOP_SET_FD:
1373 		err = loop_set_fd(lo, mode, bdev, arg);
1374 		break;
1375 	case LOOP_CHANGE_FD:
1376 		err = loop_change_fd(lo, bdev, arg);
1377 		break;
1378 	case LOOP_CLR_FD:
1379 		/* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1380 		err = loop_clr_fd(lo);
1381 		if (!err)
1382 			goto out_unlocked;
1383 		break;
1384 	case LOOP_SET_STATUS:
1385 		err = -EPERM;
1386 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1387 			err = loop_set_status_old(lo,
1388 					(struct loop_info __user *)arg);
1389 		break;
1390 	case LOOP_GET_STATUS:
1391 		err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1392 		/* loop_get_status() unlocks lo_ctl_mutex */
1393 		goto out_unlocked;
1394 	case LOOP_SET_STATUS64:
1395 		err = -EPERM;
1396 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1397 			err = loop_set_status64(lo,
1398 					(struct loop_info64 __user *) arg);
1399 		break;
1400 	case LOOP_GET_STATUS64:
1401 		err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1402 		/* loop_get_status() unlocks lo_ctl_mutex */
1403 		goto out_unlocked;
1404 	case LOOP_SET_CAPACITY:
1405 		err = -EPERM;
1406 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1407 			err = loop_set_capacity(lo);
1408 		break;
1409 	case LOOP_SET_DIRECT_IO:
1410 		err = -EPERM;
1411 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1412 			err = loop_set_dio(lo, arg);
1413 		break;
1414 	case LOOP_SET_BLOCK_SIZE:
1415 		err = -EPERM;
1416 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1417 			err = loop_set_block_size(lo, arg);
1418 		break;
1419 	default:
1420 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1421 	}
1422 	mutex_unlock(&lo->lo_ctl_mutex);
1423 
1424 out_unlocked:
1425 	return err;
1426 }
1427 
1428 #ifdef CONFIG_COMPAT
1429 struct compat_loop_info {
1430 	compat_int_t	lo_number;      /* ioctl r/o */
1431 	compat_dev_t	lo_device;      /* ioctl r/o */
1432 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1433 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1434 	compat_int_t	lo_offset;
1435 	compat_int_t	lo_encrypt_type;
1436 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1437 	compat_int_t	lo_flags;       /* ioctl r/o */
1438 	char		lo_name[LO_NAME_SIZE];
1439 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1440 	compat_ulong_t	lo_init[2];
1441 	char		reserved[4];
1442 };
1443 
1444 /*
1445  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1446  * - noinlined to reduce stack space usage in main part of driver
1447  */
1448 static noinline int
1449 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1450 			struct loop_info64 *info64)
1451 {
1452 	struct compat_loop_info info;
1453 
1454 	if (copy_from_user(&info, arg, sizeof(info)))
1455 		return -EFAULT;
1456 
1457 	memset(info64, 0, sizeof(*info64));
1458 	info64->lo_number = info.lo_number;
1459 	info64->lo_device = info.lo_device;
1460 	info64->lo_inode = info.lo_inode;
1461 	info64->lo_rdevice = info.lo_rdevice;
1462 	info64->lo_offset = info.lo_offset;
1463 	info64->lo_sizelimit = 0;
1464 	info64->lo_encrypt_type = info.lo_encrypt_type;
1465 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1466 	info64->lo_flags = info.lo_flags;
1467 	info64->lo_init[0] = info.lo_init[0];
1468 	info64->lo_init[1] = info.lo_init[1];
1469 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1470 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1471 	else
1472 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1473 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1474 	return 0;
1475 }
1476 
1477 /*
1478  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1479  * - noinlined to reduce stack space usage in main part of driver
1480  */
1481 static noinline int
1482 loop_info64_to_compat(const struct loop_info64 *info64,
1483 		      struct compat_loop_info __user *arg)
1484 {
1485 	struct compat_loop_info info;
1486 
1487 	memset(&info, 0, sizeof(info));
1488 	info.lo_number = info64->lo_number;
1489 	info.lo_device = info64->lo_device;
1490 	info.lo_inode = info64->lo_inode;
1491 	info.lo_rdevice = info64->lo_rdevice;
1492 	info.lo_offset = info64->lo_offset;
1493 	info.lo_encrypt_type = info64->lo_encrypt_type;
1494 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1495 	info.lo_flags = info64->lo_flags;
1496 	info.lo_init[0] = info64->lo_init[0];
1497 	info.lo_init[1] = info64->lo_init[1];
1498 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1499 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1500 	else
1501 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1502 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1503 
1504 	/* error in case values were truncated */
1505 	if (info.lo_device != info64->lo_device ||
1506 	    info.lo_rdevice != info64->lo_rdevice ||
1507 	    info.lo_inode != info64->lo_inode ||
1508 	    info.lo_offset != info64->lo_offset ||
1509 	    info.lo_init[0] != info64->lo_init[0] ||
1510 	    info.lo_init[1] != info64->lo_init[1])
1511 		return -EOVERFLOW;
1512 
1513 	if (copy_to_user(arg, &info, sizeof(info)))
1514 		return -EFAULT;
1515 	return 0;
1516 }
1517 
1518 static int
1519 loop_set_status_compat(struct loop_device *lo,
1520 		       const struct compat_loop_info __user *arg)
1521 {
1522 	struct loop_info64 info64;
1523 	int ret;
1524 
1525 	ret = loop_info64_from_compat(arg, &info64);
1526 	if (ret < 0)
1527 		return ret;
1528 	return loop_set_status(lo, &info64);
1529 }
1530 
1531 static int
1532 loop_get_status_compat(struct loop_device *lo,
1533 		       struct compat_loop_info __user *arg)
1534 {
1535 	struct loop_info64 info64;
1536 	int err = 0;
1537 
1538 	if (!arg)
1539 		err = -EINVAL;
1540 	if (!err)
1541 		err = loop_get_status(lo, &info64);
1542 	if (!err)
1543 		err = loop_info64_to_compat(&info64, arg);
1544 	return err;
1545 }
1546 
1547 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1548 			   unsigned int cmd, unsigned long arg)
1549 {
1550 	struct loop_device *lo = bdev->bd_disk->private_data;
1551 	int err;
1552 
1553 	switch(cmd) {
1554 	case LOOP_SET_STATUS:
1555 		err = mutex_lock_killable(&lo->lo_ctl_mutex);
1556 		if (!err) {
1557 			err = loop_set_status_compat(lo,
1558 						     (const struct compat_loop_info __user *)arg);
1559 			mutex_unlock(&lo->lo_ctl_mutex);
1560 		}
1561 		break;
1562 	case LOOP_GET_STATUS:
1563 		err = mutex_lock_killable(&lo->lo_ctl_mutex);
1564 		if (!err) {
1565 			err = loop_get_status_compat(lo,
1566 						     (struct compat_loop_info __user *)arg);
1567 			/* loop_get_status() unlocks lo_ctl_mutex */
1568 		}
1569 		break;
1570 	case LOOP_SET_CAPACITY:
1571 	case LOOP_CLR_FD:
1572 	case LOOP_GET_STATUS64:
1573 	case LOOP_SET_STATUS64:
1574 		arg = (unsigned long) compat_ptr(arg);
1575 	case LOOP_SET_FD:
1576 	case LOOP_CHANGE_FD:
1577 		err = lo_ioctl(bdev, mode, cmd, arg);
1578 		break;
1579 	default:
1580 		err = -ENOIOCTLCMD;
1581 		break;
1582 	}
1583 	return err;
1584 }
1585 #endif
1586 
1587 static int lo_open(struct block_device *bdev, fmode_t mode)
1588 {
1589 	struct loop_device *lo;
1590 	int err = 0;
1591 
1592 	mutex_lock(&loop_index_mutex);
1593 	lo = bdev->bd_disk->private_data;
1594 	if (!lo) {
1595 		err = -ENXIO;
1596 		goto out;
1597 	}
1598 
1599 	atomic_inc(&lo->lo_refcnt);
1600 out:
1601 	mutex_unlock(&loop_index_mutex);
1602 	return err;
1603 }
1604 
1605 static void __lo_release(struct loop_device *lo)
1606 {
1607 	int err;
1608 
1609 	if (atomic_dec_return(&lo->lo_refcnt))
1610 		return;
1611 
1612 	mutex_lock(&lo->lo_ctl_mutex);
1613 	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1614 		/*
1615 		 * In autoclear mode, stop the loop thread
1616 		 * and remove configuration after last close.
1617 		 */
1618 		err = loop_clr_fd(lo);
1619 		if (!err)
1620 			return;
1621 	} else if (lo->lo_state == Lo_bound) {
1622 		/*
1623 		 * Otherwise keep thread (if running) and config,
1624 		 * but flush possible ongoing bios in thread.
1625 		 */
1626 		blk_mq_freeze_queue(lo->lo_queue);
1627 		blk_mq_unfreeze_queue(lo->lo_queue);
1628 	}
1629 
1630 	mutex_unlock(&lo->lo_ctl_mutex);
1631 }
1632 
1633 static void lo_release(struct gendisk *disk, fmode_t mode)
1634 {
1635 	mutex_lock(&loop_index_mutex);
1636 	__lo_release(disk->private_data);
1637 	mutex_unlock(&loop_index_mutex);
1638 }
1639 
1640 static const struct block_device_operations lo_fops = {
1641 	.owner =	THIS_MODULE,
1642 	.open =		lo_open,
1643 	.release =	lo_release,
1644 	.ioctl =	lo_ioctl,
1645 #ifdef CONFIG_COMPAT
1646 	.compat_ioctl =	lo_compat_ioctl,
1647 #endif
1648 };
1649 
1650 /*
1651  * And now the modules code and kernel interface.
1652  */
1653 static int max_loop;
1654 module_param(max_loop, int, S_IRUGO);
1655 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1656 module_param(max_part, int, S_IRUGO);
1657 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1658 MODULE_LICENSE("GPL");
1659 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1660 
1661 int loop_register_transfer(struct loop_func_table *funcs)
1662 {
1663 	unsigned int n = funcs->number;
1664 
1665 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1666 		return -EINVAL;
1667 	xfer_funcs[n] = funcs;
1668 	return 0;
1669 }
1670 
1671 static int unregister_transfer_cb(int id, void *ptr, void *data)
1672 {
1673 	struct loop_device *lo = ptr;
1674 	struct loop_func_table *xfer = data;
1675 
1676 	mutex_lock(&lo->lo_ctl_mutex);
1677 	if (lo->lo_encryption == xfer)
1678 		loop_release_xfer(lo);
1679 	mutex_unlock(&lo->lo_ctl_mutex);
1680 	return 0;
1681 }
1682 
1683 int loop_unregister_transfer(int number)
1684 {
1685 	unsigned int n = number;
1686 	struct loop_func_table *xfer;
1687 
1688 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1689 		return -EINVAL;
1690 
1691 	xfer_funcs[n] = NULL;
1692 	idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1693 	return 0;
1694 }
1695 
1696 EXPORT_SYMBOL(loop_register_transfer);
1697 EXPORT_SYMBOL(loop_unregister_transfer);
1698 
1699 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1700 		const struct blk_mq_queue_data *bd)
1701 {
1702 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(bd->rq);
1703 	struct loop_device *lo = cmd->rq->q->queuedata;
1704 
1705 	blk_mq_start_request(bd->rq);
1706 
1707 	if (lo->lo_state != Lo_bound)
1708 		return BLK_STS_IOERR;
1709 
1710 	switch (req_op(cmd->rq)) {
1711 	case REQ_OP_FLUSH:
1712 	case REQ_OP_DISCARD:
1713 	case REQ_OP_WRITE_ZEROES:
1714 		cmd->use_aio = false;
1715 		break;
1716 	default:
1717 		cmd->use_aio = lo->use_dio;
1718 		break;
1719 	}
1720 
1721 	/* always use the first bio's css */
1722 #ifdef CONFIG_BLK_CGROUP
1723 	if (cmd->use_aio && cmd->rq->bio && cmd->rq->bio->bi_css) {
1724 		cmd->css = cmd->rq->bio->bi_css;
1725 		css_get(cmd->css);
1726 	} else
1727 #endif
1728 		cmd->css = NULL;
1729 	kthread_queue_work(&lo->worker, &cmd->work);
1730 
1731 	return BLK_STS_OK;
1732 }
1733 
1734 static void loop_handle_cmd(struct loop_cmd *cmd)
1735 {
1736 	const bool write = op_is_write(req_op(cmd->rq));
1737 	struct loop_device *lo = cmd->rq->q->queuedata;
1738 	int ret = 0;
1739 
1740 	if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1741 		ret = -EIO;
1742 		goto failed;
1743 	}
1744 
1745 	ret = do_req_filebacked(lo, cmd->rq);
1746  failed:
1747 	/* complete non-aio request */
1748 	if (!cmd->use_aio || ret) {
1749 		cmd->ret = ret ? -EIO : 0;
1750 		blk_mq_complete_request(cmd->rq);
1751 	}
1752 }
1753 
1754 static void loop_queue_work(struct kthread_work *work)
1755 {
1756 	struct loop_cmd *cmd =
1757 		container_of(work, struct loop_cmd, work);
1758 
1759 	loop_handle_cmd(cmd);
1760 }
1761 
1762 static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq,
1763 		unsigned int hctx_idx, unsigned int numa_node)
1764 {
1765 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1766 
1767 	cmd->rq = rq;
1768 	kthread_init_work(&cmd->work, loop_queue_work);
1769 
1770 	return 0;
1771 }
1772 
1773 static const struct blk_mq_ops loop_mq_ops = {
1774 	.queue_rq       = loop_queue_rq,
1775 	.init_request	= loop_init_request,
1776 	.complete	= lo_complete_rq,
1777 };
1778 
1779 static int loop_add(struct loop_device **l, int i)
1780 {
1781 	struct loop_device *lo;
1782 	struct gendisk *disk;
1783 	int err;
1784 
1785 	err = -ENOMEM;
1786 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1787 	if (!lo)
1788 		goto out;
1789 
1790 	lo->lo_state = Lo_unbound;
1791 
1792 	/* allocate id, if @id >= 0, we're requesting that specific id */
1793 	if (i >= 0) {
1794 		err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1795 		if (err == -ENOSPC)
1796 			err = -EEXIST;
1797 	} else {
1798 		err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
1799 	}
1800 	if (err < 0)
1801 		goto out_free_dev;
1802 	i = err;
1803 
1804 	err = -ENOMEM;
1805 	lo->tag_set.ops = &loop_mq_ops;
1806 	lo->tag_set.nr_hw_queues = 1;
1807 	lo->tag_set.queue_depth = 128;
1808 	lo->tag_set.numa_node = NUMA_NO_NODE;
1809 	lo->tag_set.cmd_size = sizeof(struct loop_cmd);
1810 	lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
1811 	lo->tag_set.driver_data = lo;
1812 
1813 	err = blk_mq_alloc_tag_set(&lo->tag_set);
1814 	if (err)
1815 		goto out_free_idr;
1816 
1817 	lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
1818 	if (IS_ERR_OR_NULL(lo->lo_queue)) {
1819 		err = PTR_ERR(lo->lo_queue);
1820 		goto out_cleanup_tags;
1821 	}
1822 	lo->lo_queue->queuedata = lo;
1823 
1824 	blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS);
1825 
1826 	/*
1827 	 * By default, we do buffer IO, so it doesn't make sense to enable
1828 	 * merge because the I/O submitted to backing file is handled page by
1829 	 * page. For directio mode, merge does help to dispatch bigger request
1830 	 * to underlayer disk. We will enable merge once directio is enabled.
1831 	 */
1832 	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
1833 
1834 	err = -ENOMEM;
1835 	disk = lo->lo_disk = alloc_disk(1 << part_shift);
1836 	if (!disk)
1837 		goto out_free_queue;
1838 
1839 	/*
1840 	 * Disable partition scanning by default. The in-kernel partition
1841 	 * scanning can be requested individually per-device during its
1842 	 * setup. Userspace can always add and remove partitions from all
1843 	 * devices. The needed partition minors are allocated from the
1844 	 * extended minor space, the main loop device numbers will continue
1845 	 * to match the loop minors, regardless of the number of partitions
1846 	 * used.
1847 	 *
1848 	 * If max_part is given, partition scanning is globally enabled for
1849 	 * all loop devices. The minors for the main loop devices will be
1850 	 * multiples of max_part.
1851 	 *
1852 	 * Note: Global-for-all-devices, set-only-at-init, read-only module
1853 	 * parameteters like 'max_loop' and 'max_part' make things needlessly
1854 	 * complicated, are too static, inflexible and may surprise
1855 	 * userspace tools. Parameters like this in general should be avoided.
1856 	 */
1857 	if (!part_shift)
1858 		disk->flags |= GENHD_FL_NO_PART_SCAN;
1859 	disk->flags |= GENHD_FL_EXT_DEVT;
1860 	mutex_init(&lo->lo_ctl_mutex);
1861 	atomic_set(&lo->lo_refcnt, 0);
1862 	lo->lo_number		= i;
1863 	spin_lock_init(&lo->lo_lock);
1864 	disk->major		= LOOP_MAJOR;
1865 	disk->first_minor	= i << part_shift;
1866 	disk->fops		= &lo_fops;
1867 	disk->private_data	= lo;
1868 	disk->queue		= lo->lo_queue;
1869 	sprintf(disk->disk_name, "loop%d", i);
1870 	add_disk(disk);
1871 	*l = lo;
1872 	return lo->lo_number;
1873 
1874 out_free_queue:
1875 	blk_cleanup_queue(lo->lo_queue);
1876 out_cleanup_tags:
1877 	blk_mq_free_tag_set(&lo->tag_set);
1878 out_free_idr:
1879 	idr_remove(&loop_index_idr, i);
1880 out_free_dev:
1881 	kfree(lo);
1882 out:
1883 	return err;
1884 }
1885 
1886 static void loop_remove(struct loop_device *lo)
1887 {
1888 	del_gendisk(lo->lo_disk);
1889 	blk_cleanup_queue(lo->lo_queue);
1890 	blk_mq_free_tag_set(&lo->tag_set);
1891 	put_disk(lo->lo_disk);
1892 	kfree(lo);
1893 }
1894 
1895 static int find_free_cb(int id, void *ptr, void *data)
1896 {
1897 	struct loop_device *lo = ptr;
1898 	struct loop_device **l = data;
1899 
1900 	if (lo->lo_state == Lo_unbound) {
1901 		*l = lo;
1902 		return 1;
1903 	}
1904 	return 0;
1905 }
1906 
1907 static int loop_lookup(struct loop_device **l, int i)
1908 {
1909 	struct loop_device *lo;
1910 	int ret = -ENODEV;
1911 
1912 	if (i < 0) {
1913 		int err;
1914 
1915 		err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1916 		if (err == 1) {
1917 			*l = lo;
1918 			ret = lo->lo_number;
1919 		}
1920 		goto out;
1921 	}
1922 
1923 	/* lookup and return a specific i */
1924 	lo = idr_find(&loop_index_idr, i);
1925 	if (lo) {
1926 		*l = lo;
1927 		ret = lo->lo_number;
1928 	}
1929 out:
1930 	return ret;
1931 }
1932 
1933 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1934 {
1935 	struct loop_device *lo;
1936 	struct kobject *kobj;
1937 	int err;
1938 
1939 	mutex_lock(&loop_index_mutex);
1940 	err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1941 	if (err < 0)
1942 		err = loop_add(&lo, MINOR(dev) >> part_shift);
1943 	if (err < 0)
1944 		kobj = NULL;
1945 	else
1946 		kobj = get_disk_and_module(lo->lo_disk);
1947 	mutex_unlock(&loop_index_mutex);
1948 
1949 	*part = 0;
1950 	return kobj;
1951 }
1952 
1953 static long loop_control_ioctl(struct file *file, unsigned int cmd,
1954 			       unsigned long parm)
1955 {
1956 	struct loop_device *lo;
1957 	int ret = -ENOSYS;
1958 
1959 	mutex_lock(&loop_index_mutex);
1960 	switch (cmd) {
1961 	case LOOP_CTL_ADD:
1962 		ret = loop_lookup(&lo, parm);
1963 		if (ret >= 0) {
1964 			ret = -EEXIST;
1965 			break;
1966 		}
1967 		ret = loop_add(&lo, parm);
1968 		break;
1969 	case LOOP_CTL_REMOVE:
1970 		ret = loop_lookup(&lo, parm);
1971 		if (ret < 0)
1972 			break;
1973 		ret = mutex_lock_killable(&lo->lo_ctl_mutex);
1974 		if (ret)
1975 			break;
1976 		if (lo->lo_state != Lo_unbound) {
1977 			ret = -EBUSY;
1978 			mutex_unlock(&lo->lo_ctl_mutex);
1979 			break;
1980 		}
1981 		if (atomic_read(&lo->lo_refcnt) > 0) {
1982 			ret = -EBUSY;
1983 			mutex_unlock(&lo->lo_ctl_mutex);
1984 			break;
1985 		}
1986 		lo->lo_disk->private_data = NULL;
1987 		mutex_unlock(&lo->lo_ctl_mutex);
1988 		idr_remove(&loop_index_idr, lo->lo_number);
1989 		loop_remove(lo);
1990 		break;
1991 	case LOOP_CTL_GET_FREE:
1992 		ret = loop_lookup(&lo, -1);
1993 		if (ret >= 0)
1994 			break;
1995 		ret = loop_add(&lo, -1);
1996 	}
1997 	mutex_unlock(&loop_index_mutex);
1998 
1999 	return ret;
2000 }
2001 
2002 static const struct file_operations loop_ctl_fops = {
2003 	.open		= nonseekable_open,
2004 	.unlocked_ioctl	= loop_control_ioctl,
2005 	.compat_ioctl	= loop_control_ioctl,
2006 	.owner		= THIS_MODULE,
2007 	.llseek		= noop_llseek,
2008 };
2009 
2010 static struct miscdevice loop_misc = {
2011 	.minor		= LOOP_CTRL_MINOR,
2012 	.name		= "loop-control",
2013 	.fops		= &loop_ctl_fops,
2014 };
2015 
2016 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2017 MODULE_ALIAS("devname:loop-control");
2018 
2019 static int __init loop_init(void)
2020 {
2021 	int i, nr;
2022 	unsigned long range;
2023 	struct loop_device *lo;
2024 	int err;
2025 
2026 	part_shift = 0;
2027 	if (max_part > 0) {
2028 		part_shift = fls(max_part);
2029 
2030 		/*
2031 		 * Adjust max_part according to part_shift as it is exported
2032 		 * to user space so that user can decide correct minor number
2033 		 * if [s]he want to create more devices.
2034 		 *
2035 		 * Note that -1 is required because partition 0 is reserved
2036 		 * for the whole disk.
2037 		 */
2038 		max_part = (1UL << part_shift) - 1;
2039 	}
2040 
2041 	if ((1UL << part_shift) > DISK_MAX_PARTS) {
2042 		err = -EINVAL;
2043 		goto err_out;
2044 	}
2045 
2046 	if (max_loop > 1UL << (MINORBITS - part_shift)) {
2047 		err = -EINVAL;
2048 		goto err_out;
2049 	}
2050 
2051 	/*
2052 	 * If max_loop is specified, create that many devices upfront.
2053 	 * This also becomes a hard limit. If max_loop is not specified,
2054 	 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
2055 	 * init time. Loop devices can be requested on-demand with the
2056 	 * /dev/loop-control interface, or be instantiated by accessing
2057 	 * a 'dead' device node.
2058 	 */
2059 	if (max_loop) {
2060 		nr = max_loop;
2061 		range = max_loop << part_shift;
2062 	} else {
2063 		nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
2064 		range = 1UL << MINORBITS;
2065 	}
2066 
2067 	err = misc_register(&loop_misc);
2068 	if (err < 0)
2069 		goto err_out;
2070 
2071 
2072 	if (register_blkdev(LOOP_MAJOR, "loop")) {
2073 		err = -EIO;
2074 		goto misc_out;
2075 	}
2076 
2077 	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
2078 				  THIS_MODULE, loop_probe, NULL, NULL);
2079 
2080 	/* pre-create number of devices given by config or max_loop */
2081 	mutex_lock(&loop_index_mutex);
2082 	for (i = 0; i < nr; i++)
2083 		loop_add(&lo, i);
2084 	mutex_unlock(&loop_index_mutex);
2085 
2086 	printk(KERN_INFO "loop: module loaded\n");
2087 	return 0;
2088 
2089 misc_out:
2090 	misc_deregister(&loop_misc);
2091 err_out:
2092 	return err;
2093 }
2094 
2095 static int loop_exit_cb(int id, void *ptr, void *data)
2096 {
2097 	struct loop_device *lo = ptr;
2098 
2099 	loop_remove(lo);
2100 	return 0;
2101 }
2102 
2103 static void __exit loop_exit(void)
2104 {
2105 	unsigned long range;
2106 
2107 	range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
2108 
2109 	idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
2110 	idr_destroy(&loop_index_idr);
2111 
2112 	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
2113 	unregister_blkdev(LOOP_MAJOR, "loop");
2114 
2115 	misc_deregister(&loop_misc);
2116 }
2117 
2118 module_init(loop_init);
2119 module_exit(loop_exit);
2120 
2121 #ifndef MODULE
2122 static int __init max_loop_setup(char *str)
2123 {
2124 	max_loop = simple_strtol(str, NULL, 0);
2125 	return 1;
2126 }
2127 
2128 __setup("max_loop=", max_loop_setup);
2129 #endif
2130