xref: /openbmc/linux/drivers/block/loop.c (revision 19372e27)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include "loop.h"
80 
81 #include <linux/uaccess.h>
82 
83 static DEFINE_IDR(loop_index_idr);
84 static DEFINE_MUTEX(loop_index_mutex);
85 
86 static int max_part;
87 static int part_shift;
88 
89 static int transfer_xor(struct loop_device *lo, int cmd,
90 			struct page *raw_page, unsigned raw_off,
91 			struct page *loop_page, unsigned loop_off,
92 			int size, sector_t real_block)
93 {
94 	char *raw_buf = kmap_atomic(raw_page) + raw_off;
95 	char *loop_buf = kmap_atomic(loop_page) + loop_off;
96 	char *in, *out, *key;
97 	int i, keysize;
98 
99 	if (cmd == READ) {
100 		in = raw_buf;
101 		out = loop_buf;
102 	} else {
103 		in = loop_buf;
104 		out = raw_buf;
105 	}
106 
107 	key = lo->lo_encrypt_key;
108 	keysize = lo->lo_encrypt_key_size;
109 	for (i = 0; i < size; i++)
110 		*out++ = *in++ ^ key[(i & 511) % keysize];
111 
112 	kunmap_atomic(loop_buf);
113 	kunmap_atomic(raw_buf);
114 	cond_resched();
115 	return 0;
116 }
117 
118 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
119 {
120 	if (unlikely(info->lo_encrypt_key_size <= 0))
121 		return -EINVAL;
122 	return 0;
123 }
124 
125 static struct loop_func_table none_funcs = {
126 	.number = LO_CRYPT_NONE,
127 };
128 
129 static struct loop_func_table xor_funcs = {
130 	.number = LO_CRYPT_XOR,
131 	.transfer = transfer_xor,
132 	.init = xor_init
133 };
134 
135 /* xfer_funcs[0] is special - its release function is never called */
136 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
137 	&none_funcs,
138 	&xor_funcs
139 };
140 
141 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
142 {
143 	loff_t loopsize;
144 
145 	/* Compute loopsize in bytes */
146 	loopsize = i_size_read(file->f_mapping->host);
147 	if (offset > 0)
148 		loopsize -= offset;
149 	/* offset is beyond i_size, weird but possible */
150 	if (loopsize < 0)
151 		return 0;
152 
153 	if (sizelimit > 0 && sizelimit < loopsize)
154 		loopsize = sizelimit;
155 	/*
156 	 * Unfortunately, if we want to do I/O on the device,
157 	 * the number of 512-byte sectors has to fit into a sector_t.
158 	 */
159 	return loopsize >> 9;
160 }
161 
162 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
163 {
164 	return get_size(lo->lo_offset, lo->lo_sizelimit, file);
165 }
166 
167 static void __loop_update_dio(struct loop_device *lo, bool dio)
168 {
169 	struct file *file = lo->lo_backing_file;
170 	struct address_space *mapping = file->f_mapping;
171 	struct inode *inode = mapping->host;
172 	unsigned short sb_bsize = 0;
173 	unsigned dio_align = 0;
174 	bool use_dio;
175 
176 	if (inode->i_sb->s_bdev) {
177 		sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
178 		dio_align = sb_bsize - 1;
179 	}
180 
181 	/*
182 	 * We support direct I/O only if lo_offset is aligned with the
183 	 * logical I/O size of backing device, and the logical block
184 	 * size of loop is bigger than the backing device's and the loop
185 	 * needn't transform transfer.
186 	 *
187 	 * TODO: the above condition may be loosed in the future, and
188 	 * direct I/O may be switched runtime at that time because most
189 	 * of requests in sane applications should be PAGE_SIZE aligned
190 	 */
191 	if (dio) {
192 		if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
193 				!(lo->lo_offset & dio_align) &&
194 				mapping->a_ops->direct_IO &&
195 				!lo->transfer)
196 			use_dio = true;
197 		else
198 			use_dio = false;
199 	} else {
200 		use_dio = false;
201 	}
202 
203 	if (lo->use_dio == use_dio)
204 		return;
205 
206 	/* flush dirty pages before changing direct IO */
207 	vfs_fsync(file, 0);
208 
209 	/*
210 	 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
211 	 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
212 	 * will get updated by ioctl(LOOP_GET_STATUS)
213 	 */
214 	blk_mq_freeze_queue(lo->lo_queue);
215 	lo->use_dio = use_dio;
216 	if (use_dio)
217 		lo->lo_flags |= LO_FLAGS_DIRECT_IO;
218 	else
219 		lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
220 	blk_mq_unfreeze_queue(lo->lo_queue);
221 }
222 
223 static int
224 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
225 {
226 	loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
227 	sector_t x = (sector_t)size;
228 	struct block_device *bdev = lo->lo_device;
229 
230 	if (unlikely((loff_t)x != size))
231 		return -EFBIG;
232 	if (lo->lo_offset != offset)
233 		lo->lo_offset = offset;
234 	if (lo->lo_sizelimit != sizelimit)
235 		lo->lo_sizelimit = sizelimit;
236 	set_capacity(lo->lo_disk, x);
237 	bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
238 	/* let user-space know about the new size */
239 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
240 	return 0;
241 }
242 
243 static inline int
244 lo_do_transfer(struct loop_device *lo, int cmd,
245 	       struct page *rpage, unsigned roffs,
246 	       struct page *lpage, unsigned loffs,
247 	       int size, sector_t rblock)
248 {
249 	int ret;
250 
251 	ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
252 	if (likely(!ret))
253 		return 0;
254 
255 	printk_ratelimited(KERN_ERR
256 		"loop: Transfer error at byte offset %llu, length %i.\n",
257 		(unsigned long long)rblock << 9, size);
258 	return ret;
259 }
260 
261 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
262 {
263 	struct iov_iter i;
264 	ssize_t bw;
265 
266 	iov_iter_bvec(&i, ITER_BVEC, bvec, 1, bvec->bv_len);
267 
268 	file_start_write(file);
269 	bw = vfs_iter_write(file, &i, ppos);
270 	file_end_write(file);
271 
272 	if (likely(bw ==  bvec->bv_len))
273 		return 0;
274 
275 	printk_ratelimited(KERN_ERR
276 		"loop: Write error at byte offset %llu, length %i.\n",
277 		(unsigned long long)*ppos, bvec->bv_len);
278 	if (bw >= 0)
279 		bw = -EIO;
280 	return bw;
281 }
282 
283 static int lo_write_simple(struct loop_device *lo, struct request *rq,
284 		loff_t pos)
285 {
286 	struct bio_vec bvec;
287 	struct req_iterator iter;
288 	int ret = 0;
289 
290 	rq_for_each_segment(bvec, rq, iter) {
291 		ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
292 		if (ret < 0)
293 			break;
294 		cond_resched();
295 	}
296 
297 	return ret;
298 }
299 
300 /*
301  * This is the slow, transforming version that needs to double buffer the
302  * data as it cannot do the transformations in place without having direct
303  * access to the destination pages of the backing file.
304  */
305 static int lo_write_transfer(struct loop_device *lo, struct request *rq,
306 		loff_t pos)
307 {
308 	struct bio_vec bvec, b;
309 	struct req_iterator iter;
310 	struct page *page;
311 	int ret = 0;
312 
313 	page = alloc_page(GFP_NOIO);
314 	if (unlikely(!page))
315 		return -ENOMEM;
316 
317 	rq_for_each_segment(bvec, rq, iter) {
318 		ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
319 			bvec.bv_offset, bvec.bv_len, pos >> 9);
320 		if (unlikely(ret))
321 			break;
322 
323 		b.bv_page = page;
324 		b.bv_offset = 0;
325 		b.bv_len = bvec.bv_len;
326 		ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
327 		if (ret < 0)
328 			break;
329 	}
330 
331 	__free_page(page);
332 	return ret;
333 }
334 
335 static int lo_read_simple(struct loop_device *lo, struct request *rq,
336 		loff_t pos)
337 {
338 	struct bio_vec bvec;
339 	struct req_iterator iter;
340 	struct iov_iter i;
341 	ssize_t len;
342 
343 	rq_for_each_segment(bvec, rq, iter) {
344 		iov_iter_bvec(&i, ITER_BVEC, &bvec, 1, bvec.bv_len);
345 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos);
346 		if (len < 0)
347 			return len;
348 
349 		flush_dcache_page(bvec.bv_page);
350 
351 		if (len != bvec.bv_len) {
352 			struct bio *bio;
353 
354 			__rq_for_each_bio(bio, rq)
355 				zero_fill_bio(bio);
356 			break;
357 		}
358 		cond_resched();
359 	}
360 
361 	return 0;
362 }
363 
364 static int lo_read_transfer(struct loop_device *lo, struct request *rq,
365 		loff_t pos)
366 {
367 	struct bio_vec bvec, b;
368 	struct req_iterator iter;
369 	struct iov_iter i;
370 	struct page *page;
371 	ssize_t len;
372 	int ret = 0;
373 
374 	page = alloc_page(GFP_NOIO);
375 	if (unlikely(!page))
376 		return -ENOMEM;
377 
378 	rq_for_each_segment(bvec, rq, iter) {
379 		loff_t offset = pos;
380 
381 		b.bv_page = page;
382 		b.bv_offset = 0;
383 		b.bv_len = bvec.bv_len;
384 
385 		iov_iter_bvec(&i, ITER_BVEC, &b, 1, b.bv_len);
386 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos);
387 		if (len < 0) {
388 			ret = len;
389 			goto out_free_page;
390 		}
391 
392 		ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
393 			bvec.bv_offset, len, offset >> 9);
394 		if (ret)
395 			goto out_free_page;
396 
397 		flush_dcache_page(bvec.bv_page);
398 
399 		if (len != bvec.bv_len) {
400 			struct bio *bio;
401 
402 			__rq_for_each_bio(bio, rq)
403 				zero_fill_bio(bio);
404 			break;
405 		}
406 	}
407 
408 	ret = 0;
409 out_free_page:
410 	__free_page(page);
411 	return ret;
412 }
413 
414 static int lo_discard(struct loop_device *lo, struct request *rq, loff_t pos)
415 {
416 	/*
417 	 * We use punch hole to reclaim the free space used by the
418 	 * image a.k.a. discard. However we do not support discard if
419 	 * encryption is enabled, because it may give an attacker
420 	 * useful information.
421 	 */
422 	struct file *file = lo->lo_backing_file;
423 	int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
424 	int ret;
425 
426 	if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) {
427 		ret = -EOPNOTSUPP;
428 		goto out;
429 	}
430 
431 	ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
432 	if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
433 		ret = -EIO;
434  out:
435 	return ret;
436 }
437 
438 static int lo_req_flush(struct loop_device *lo, struct request *rq)
439 {
440 	struct file *file = lo->lo_backing_file;
441 	int ret = vfs_fsync(file, 0);
442 	if (unlikely(ret && ret != -EINVAL))
443 		ret = -EIO;
444 
445 	return ret;
446 }
447 
448 static inline void handle_partial_read(struct loop_cmd *cmd, long bytes)
449 {
450 	if (bytes < 0 || op_is_write(req_op(cmd->rq)))
451 		return;
452 
453 	if (unlikely(bytes < blk_rq_bytes(cmd->rq))) {
454 		struct bio *bio = cmd->rq->bio;
455 
456 		bio_advance(bio, bytes);
457 		zero_fill_bio(bio);
458 	}
459 }
460 
461 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
462 {
463 	struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
464 	struct request *rq = cmd->rq;
465 
466 	handle_partial_read(cmd, ret);
467 
468 	if (ret > 0)
469 		ret = 0;
470 	else if (ret < 0)
471 		ret = -EIO;
472 
473 	blk_mq_complete_request(rq, ret);
474 }
475 
476 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
477 		     loff_t pos, bool rw)
478 {
479 	struct iov_iter iter;
480 	struct bio_vec *bvec;
481 	struct bio *bio = cmd->rq->bio;
482 	struct file *file = lo->lo_backing_file;
483 	int ret;
484 
485 	/* nomerge for loop request queue */
486 	WARN_ON(cmd->rq->bio != cmd->rq->biotail);
487 
488 	bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
489 	iov_iter_bvec(&iter, ITER_BVEC | rw, bvec,
490 		      bio_segments(bio), blk_rq_bytes(cmd->rq));
491 	/*
492 	 * This bio may be started from the middle of the 'bvec'
493 	 * because of bio splitting, so offset from the bvec must
494 	 * be passed to iov iterator
495 	 */
496 	iter.iov_offset = bio->bi_iter.bi_bvec_done;
497 
498 	cmd->iocb.ki_pos = pos;
499 	cmd->iocb.ki_filp = file;
500 	cmd->iocb.ki_complete = lo_rw_aio_complete;
501 	cmd->iocb.ki_flags = IOCB_DIRECT;
502 
503 	if (rw == WRITE)
504 		ret = call_write_iter(file, &cmd->iocb, &iter);
505 	else
506 		ret = call_read_iter(file, &cmd->iocb, &iter);
507 
508 	if (ret != -EIOCBQUEUED)
509 		cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
510 	return 0;
511 }
512 
513 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
514 {
515 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
516 	loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
517 
518 	/*
519 	 * lo_write_simple and lo_read_simple should have been covered
520 	 * by io submit style function like lo_rw_aio(), one blocker
521 	 * is that lo_read_simple() need to call flush_dcache_page after
522 	 * the page is written from kernel, and it isn't easy to handle
523 	 * this in io submit style function which submits all segments
524 	 * of the req at one time. And direct read IO doesn't need to
525 	 * run flush_dcache_page().
526 	 */
527 	switch (req_op(rq)) {
528 	case REQ_OP_FLUSH:
529 		return lo_req_flush(lo, rq);
530 	case REQ_OP_DISCARD:
531 	case REQ_OP_WRITE_ZEROES:
532 		return lo_discard(lo, rq, pos);
533 	case REQ_OP_WRITE:
534 		if (lo->transfer)
535 			return lo_write_transfer(lo, rq, pos);
536 		else if (cmd->use_aio)
537 			return lo_rw_aio(lo, cmd, pos, WRITE);
538 		else
539 			return lo_write_simple(lo, rq, pos);
540 	case REQ_OP_READ:
541 		if (lo->transfer)
542 			return lo_read_transfer(lo, rq, pos);
543 		else if (cmd->use_aio)
544 			return lo_rw_aio(lo, cmd, pos, READ);
545 		else
546 			return lo_read_simple(lo, rq, pos);
547 	default:
548 		WARN_ON_ONCE(1);
549 		return -EIO;
550 		break;
551 	}
552 }
553 
554 struct switch_request {
555 	struct file *file;
556 	struct completion wait;
557 };
558 
559 static inline void loop_update_dio(struct loop_device *lo)
560 {
561 	__loop_update_dio(lo, io_is_direct(lo->lo_backing_file) |
562 			lo->use_dio);
563 }
564 
565 /*
566  * Do the actual switch; called from the BIO completion routine
567  */
568 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
569 {
570 	struct file *file = p->file;
571 	struct file *old_file = lo->lo_backing_file;
572 	struct address_space *mapping;
573 
574 	/* if no new file, only flush of queued bios requested */
575 	if (!file)
576 		return;
577 
578 	mapping = file->f_mapping;
579 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
580 	lo->lo_backing_file = file;
581 	lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
582 		mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
583 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
584 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
585 	loop_update_dio(lo);
586 }
587 
588 /*
589  * loop_switch performs the hard work of switching a backing store.
590  * First it needs to flush existing IO, it does this by sending a magic
591  * BIO down the pipe. The completion of this BIO does the actual switch.
592  */
593 static int loop_switch(struct loop_device *lo, struct file *file)
594 {
595 	struct switch_request w;
596 
597 	w.file = file;
598 
599 	/* freeze queue and wait for completion of scheduled requests */
600 	blk_mq_freeze_queue(lo->lo_queue);
601 
602 	/* do the switch action */
603 	do_loop_switch(lo, &w);
604 
605 	/* unfreeze */
606 	blk_mq_unfreeze_queue(lo->lo_queue);
607 
608 	return 0;
609 }
610 
611 /*
612  * Helper to flush the IOs in loop, but keeping loop thread running
613  */
614 static int loop_flush(struct loop_device *lo)
615 {
616 	return loop_switch(lo, NULL);
617 }
618 
619 static void loop_reread_partitions(struct loop_device *lo,
620 				   struct block_device *bdev)
621 {
622 	int rc;
623 
624 	/*
625 	 * bd_mutex has been held already in release path, so don't
626 	 * acquire it if this function is called in such case.
627 	 *
628 	 * If the reread partition isn't from release path, lo_refcnt
629 	 * must be at least one and it can only become zero when the
630 	 * current holder is released.
631 	 */
632 	if (!atomic_read(&lo->lo_refcnt))
633 		rc = __blkdev_reread_part(bdev);
634 	else
635 		rc = blkdev_reread_part(bdev);
636 	if (rc)
637 		pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
638 			__func__, lo->lo_number, lo->lo_file_name, rc);
639 }
640 
641 /*
642  * loop_change_fd switched the backing store of a loopback device to
643  * a new file. This is useful for operating system installers to free up
644  * the original file and in High Availability environments to switch to
645  * an alternative location for the content in case of server meltdown.
646  * This can only work if the loop device is used read-only, and if the
647  * new backing store is the same size and type as the old backing store.
648  */
649 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
650 			  unsigned int arg)
651 {
652 	struct file	*file, *old_file;
653 	struct inode	*inode;
654 	int		error;
655 
656 	error = -ENXIO;
657 	if (lo->lo_state != Lo_bound)
658 		goto out;
659 
660 	/* the loop device has to be read-only */
661 	error = -EINVAL;
662 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
663 		goto out;
664 
665 	error = -EBADF;
666 	file = fget(arg);
667 	if (!file)
668 		goto out;
669 
670 	inode = file->f_mapping->host;
671 	old_file = lo->lo_backing_file;
672 
673 	error = -EINVAL;
674 
675 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
676 		goto out_putf;
677 
678 	/* size of the new backing store needs to be the same */
679 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
680 		goto out_putf;
681 
682 	/* and ... switch */
683 	error = loop_switch(lo, file);
684 	if (error)
685 		goto out_putf;
686 
687 	fput(old_file);
688 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
689 		loop_reread_partitions(lo, bdev);
690 	return 0;
691 
692  out_putf:
693 	fput(file);
694  out:
695 	return error;
696 }
697 
698 static inline int is_loop_device(struct file *file)
699 {
700 	struct inode *i = file->f_mapping->host;
701 
702 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
703 }
704 
705 /* loop sysfs attributes */
706 
707 static ssize_t loop_attr_show(struct device *dev, char *page,
708 			      ssize_t (*callback)(struct loop_device *, char *))
709 {
710 	struct gendisk *disk = dev_to_disk(dev);
711 	struct loop_device *lo = disk->private_data;
712 
713 	return callback(lo, page);
714 }
715 
716 #define LOOP_ATTR_RO(_name)						\
717 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
718 static ssize_t loop_attr_do_show_##_name(struct device *d,		\
719 				struct device_attribute *attr, char *b)	\
720 {									\
721 	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
722 }									\
723 static struct device_attribute loop_attr_##_name =			\
724 	__ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
725 
726 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
727 {
728 	ssize_t ret;
729 	char *p = NULL;
730 
731 	spin_lock_irq(&lo->lo_lock);
732 	if (lo->lo_backing_file)
733 		p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
734 	spin_unlock_irq(&lo->lo_lock);
735 
736 	if (IS_ERR_OR_NULL(p))
737 		ret = PTR_ERR(p);
738 	else {
739 		ret = strlen(p);
740 		memmove(buf, p, ret);
741 		buf[ret++] = '\n';
742 		buf[ret] = 0;
743 	}
744 
745 	return ret;
746 }
747 
748 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
749 {
750 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
751 }
752 
753 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
754 {
755 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
756 }
757 
758 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
759 {
760 	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
761 
762 	return sprintf(buf, "%s\n", autoclear ? "1" : "0");
763 }
764 
765 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
766 {
767 	int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
768 
769 	return sprintf(buf, "%s\n", partscan ? "1" : "0");
770 }
771 
772 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
773 {
774 	int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
775 
776 	return sprintf(buf, "%s\n", dio ? "1" : "0");
777 }
778 
779 LOOP_ATTR_RO(backing_file);
780 LOOP_ATTR_RO(offset);
781 LOOP_ATTR_RO(sizelimit);
782 LOOP_ATTR_RO(autoclear);
783 LOOP_ATTR_RO(partscan);
784 LOOP_ATTR_RO(dio);
785 
786 static struct attribute *loop_attrs[] = {
787 	&loop_attr_backing_file.attr,
788 	&loop_attr_offset.attr,
789 	&loop_attr_sizelimit.attr,
790 	&loop_attr_autoclear.attr,
791 	&loop_attr_partscan.attr,
792 	&loop_attr_dio.attr,
793 	NULL,
794 };
795 
796 static struct attribute_group loop_attribute_group = {
797 	.name = "loop",
798 	.attrs= loop_attrs,
799 };
800 
801 static int loop_sysfs_init(struct loop_device *lo)
802 {
803 	return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
804 				  &loop_attribute_group);
805 }
806 
807 static void loop_sysfs_exit(struct loop_device *lo)
808 {
809 	sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
810 			   &loop_attribute_group);
811 }
812 
813 static void loop_config_discard(struct loop_device *lo)
814 {
815 	struct file *file = lo->lo_backing_file;
816 	struct inode *inode = file->f_mapping->host;
817 	struct request_queue *q = lo->lo_queue;
818 
819 	/*
820 	 * We use punch hole to reclaim the free space used by the
821 	 * image a.k.a. discard. However we do not support discard if
822 	 * encryption is enabled, because it may give an attacker
823 	 * useful information.
824 	 */
825 	if ((!file->f_op->fallocate) ||
826 	    lo->lo_encrypt_key_size) {
827 		q->limits.discard_granularity = 0;
828 		q->limits.discard_alignment = 0;
829 		blk_queue_max_discard_sectors(q, 0);
830 		blk_queue_max_write_zeroes_sectors(q, 0);
831 		q->limits.discard_zeroes_data = 0;
832 		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
833 		return;
834 	}
835 
836 	q->limits.discard_granularity = inode->i_sb->s_blocksize;
837 	q->limits.discard_alignment = 0;
838 	blk_queue_max_discard_sectors(q, UINT_MAX >> 9);
839 	blk_queue_max_write_zeroes_sectors(q, UINT_MAX >> 9);
840 	q->limits.discard_zeroes_data = 1;
841 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
842 }
843 
844 static void loop_unprepare_queue(struct loop_device *lo)
845 {
846 	kthread_flush_worker(&lo->worker);
847 	kthread_stop(lo->worker_task);
848 }
849 
850 static int loop_prepare_queue(struct loop_device *lo)
851 {
852 	kthread_init_worker(&lo->worker);
853 	lo->worker_task = kthread_run(kthread_worker_fn,
854 			&lo->worker, "loop%d", lo->lo_number);
855 	if (IS_ERR(lo->worker_task))
856 		return -ENOMEM;
857 	set_user_nice(lo->worker_task, MIN_NICE);
858 	return 0;
859 }
860 
861 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
862 		       struct block_device *bdev, unsigned int arg)
863 {
864 	struct file	*file, *f;
865 	struct inode	*inode;
866 	struct address_space *mapping;
867 	unsigned lo_blocksize;
868 	int		lo_flags = 0;
869 	int		error;
870 	loff_t		size;
871 
872 	/* This is safe, since we have a reference from open(). */
873 	__module_get(THIS_MODULE);
874 
875 	error = -EBADF;
876 	file = fget(arg);
877 	if (!file)
878 		goto out;
879 
880 	error = -EBUSY;
881 	if (lo->lo_state != Lo_unbound)
882 		goto out_putf;
883 
884 	/* Avoid recursion */
885 	f = file;
886 	while (is_loop_device(f)) {
887 		struct loop_device *l;
888 
889 		if (f->f_mapping->host->i_bdev == bdev)
890 			goto out_putf;
891 
892 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
893 		if (l->lo_state == Lo_unbound) {
894 			error = -EINVAL;
895 			goto out_putf;
896 		}
897 		f = l->lo_backing_file;
898 	}
899 
900 	mapping = file->f_mapping;
901 	inode = mapping->host;
902 
903 	error = -EINVAL;
904 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
905 		goto out_putf;
906 
907 	if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
908 	    !file->f_op->write_iter)
909 		lo_flags |= LO_FLAGS_READ_ONLY;
910 
911 	lo_blocksize = S_ISBLK(inode->i_mode) ?
912 		inode->i_bdev->bd_block_size : PAGE_SIZE;
913 
914 	error = -EFBIG;
915 	size = get_loop_size(lo, file);
916 	if ((loff_t)(sector_t)size != size)
917 		goto out_putf;
918 	error = loop_prepare_queue(lo);
919 	if (error)
920 		goto out_putf;
921 
922 	error = 0;
923 
924 	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
925 
926 	lo->use_dio = false;
927 	lo->lo_blocksize = lo_blocksize;
928 	lo->lo_device = bdev;
929 	lo->lo_flags = lo_flags;
930 	lo->lo_backing_file = file;
931 	lo->transfer = NULL;
932 	lo->ioctl = NULL;
933 	lo->lo_sizelimit = 0;
934 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
935 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
936 
937 	if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
938 		blk_queue_write_cache(lo->lo_queue, true, false);
939 
940 	loop_update_dio(lo);
941 	set_capacity(lo->lo_disk, size);
942 	bd_set_size(bdev, size << 9);
943 	loop_sysfs_init(lo);
944 	/* let user-space know about the new size */
945 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
946 
947 	set_blocksize(bdev, lo_blocksize);
948 
949 	lo->lo_state = Lo_bound;
950 	if (part_shift)
951 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
952 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
953 		loop_reread_partitions(lo, bdev);
954 
955 	/* Grab the block_device to prevent its destruction after we
956 	 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev).
957 	 */
958 	bdgrab(bdev);
959 	return 0;
960 
961  out_putf:
962 	fput(file);
963  out:
964 	/* This is safe: open() is still holding a reference. */
965 	module_put(THIS_MODULE);
966 	return error;
967 }
968 
969 static int
970 loop_release_xfer(struct loop_device *lo)
971 {
972 	int err = 0;
973 	struct loop_func_table *xfer = lo->lo_encryption;
974 
975 	if (xfer) {
976 		if (xfer->release)
977 			err = xfer->release(lo);
978 		lo->transfer = NULL;
979 		lo->lo_encryption = NULL;
980 		module_put(xfer->owner);
981 	}
982 	return err;
983 }
984 
985 static int
986 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
987 	       const struct loop_info64 *i)
988 {
989 	int err = 0;
990 
991 	if (xfer) {
992 		struct module *owner = xfer->owner;
993 
994 		if (!try_module_get(owner))
995 			return -EINVAL;
996 		if (xfer->init)
997 			err = xfer->init(lo, i);
998 		if (err)
999 			module_put(owner);
1000 		else
1001 			lo->lo_encryption = xfer;
1002 	}
1003 	return err;
1004 }
1005 
1006 static int loop_clr_fd(struct loop_device *lo)
1007 {
1008 	struct file *filp = lo->lo_backing_file;
1009 	gfp_t gfp = lo->old_gfp_mask;
1010 	struct block_device *bdev = lo->lo_device;
1011 
1012 	if (lo->lo_state != Lo_bound)
1013 		return -ENXIO;
1014 
1015 	/*
1016 	 * If we've explicitly asked to tear down the loop device,
1017 	 * and it has an elevated reference count, set it for auto-teardown when
1018 	 * the last reference goes away. This stops $!~#$@ udev from
1019 	 * preventing teardown because it decided that it needs to run blkid on
1020 	 * the loopback device whenever they appear. xfstests is notorious for
1021 	 * failing tests because blkid via udev races with a losetup
1022 	 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1023 	 * command to fail with EBUSY.
1024 	 */
1025 	if (atomic_read(&lo->lo_refcnt) > 1) {
1026 		lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1027 		mutex_unlock(&lo->lo_ctl_mutex);
1028 		return 0;
1029 	}
1030 
1031 	if (filp == NULL)
1032 		return -EINVAL;
1033 
1034 	/* freeze request queue during the transition */
1035 	blk_mq_freeze_queue(lo->lo_queue);
1036 
1037 	spin_lock_irq(&lo->lo_lock);
1038 	lo->lo_state = Lo_rundown;
1039 	lo->lo_backing_file = NULL;
1040 	spin_unlock_irq(&lo->lo_lock);
1041 
1042 	loop_release_xfer(lo);
1043 	lo->transfer = NULL;
1044 	lo->ioctl = NULL;
1045 	lo->lo_device = NULL;
1046 	lo->lo_encryption = NULL;
1047 	lo->lo_offset = 0;
1048 	lo->lo_sizelimit = 0;
1049 	lo->lo_encrypt_key_size = 0;
1050 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1051 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1052 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1053 	if (bdev) {
1054 		bdput(bdev);
1055 		invalidate_bdev(bdev);
1056 	}
1057 	set_capacity(lo->lo_disk, 0);
1058 	loop_sysfs_exit(lo);
1059 	if (bdev) {
1060 		bd_set_size(bdev, 0);
1061 		/* let user-space know about this change */
1062 		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1063 	}
1064 	mapping_set_gfp_mask(filp->f_mapping, gfp);
1065 	lo->lo_state = Lo_unbound;
1066 	/* This is safe: open() is still holding a reference. */
1067 	module_put(THIS_MODULE);
1068 	blk_mq_unfreeze_queue(lo->lo_queue);
1069 
1070 	if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
1071 		loop_reread_partitions(lo, bdev);
1072 	lo->lo_flags = 0;
1073 	if (!part_shift)
1074 		lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1075 	loop_unprepare_queue(lo);
1076 	mutex_unlock(&lo->lo_ctl_mutex);
1077 	/*
1078 	 * Need not hold lo_ctl_mutex to fput backing file.
1079 	 * Calling fput holding lo_ctl_mutex triggers a circular
1080 	 * lock dependency possibility warning as fput can take
1081 	 * bd_mutex which is usually taken before lo_ctl_mutex.
1082 	 */
1083 	fput(filp);
1084 	return 0;
1085 }
1086 
1087 static int
1088 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1089 {
1090 	int err;
1091 	struct loop_func_table *xfer;
1092 	kuid_t uid = current_uid();
1093 
1094 	if (lo->lo_encrypt_key_size &&
1095 	    !uid_eq(lo->lo_key_owner, uid) &&
1096 	    !capable(CAP_SYS_ADMIN))
1097 		return -EPERM;
1098 	if (lo->lo_state != Lo_bound)
1099 		return -ENXIO;
1100 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1101 		return -EINVAL;
1102 
1103 	/* I/O need to be drained during transfer transition */
1104 	blk_mq_freeze_queue(lo->lo_queue);
1105 
1106 	err = loop_release_xfer(lo);
1107 	if (err)
1108 		goto exit;
1109 
1110 	if (info->lo_encrypt_type) {
1111 		unsigned int type = info->lo_encrypt_type;
1112 
1113 		if (type >= MAX_LO_CRYPT)
1114 			return -EINVAL;
1115 		xfer = xfer_funcs[type];
1116 		if (xfer == NULL)
1117 			return -EINVAL;
1118 	} else
1119 		xfer = NULL;
1120 
1121 	err = loop_init_xfer(lo, xfer, info);
1122 	if (err)
1123 		goto exit;
1124 
1125 	if (lo->lo_offset != info->lo_offset ||
1126 	    lo->lo_sizelimit != info->lo_sizelimit)
1127 		if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) {
1128 			err = -EFBIG;
1129 			goto exit;
1130 		}
1131 
1132 	loop_config_discard(lo);
1133 
1134 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1135 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1136 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1137 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1138 
1139 	if (!xfer)
1140 		xfer = &none_funcs;
1141 	lo->transfer = xfer->transfer;
1142 	lo->ioctl = xfer->ioctl;
1143 
1144 	if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1145 	     (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1146 		lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1147 
1148 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1149 	lo->lo_init[0] = info->lo_init[0];
1150 	lo->lo_init[1] = info->lo_init[1];
1151 	if (info->lo_encrypt_key_size) {
1152 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1153 		       info->lo_encrypt_key_size);
1154 		lo->lo_key_owner = uid;
1155 	}
1156 
1157 	/* update dio if lo_offset or transfer is changed */
1158 	__loop_update_dio(lo, lo->use_dio);
1159 
1160  exit:
1161 	blk_mq_unfreeze_queue(lo->lo_queue);
1162 
1163 	if (!err && (info->lo_flags & LO_FLAGS_PARTSCAN) &&
1164 	     !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1165 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
1166 		lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1167 		loop_reread_partitions(lo, lo->lo_device);
1168 	}
1169 
1170 	return err;
1171 }
1172 
1173 static int
1174 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1175 {
1176 	struct file *file = lo->lo_backing_file;
1177 	struct kstat stat;
1178 	int error;
1179 
1180 	if (lo->lo_state != Lo_bound)
1181 		return -ENXIO;
1182 	error = vfs_getattr(&file->f_path, &stat,
1183 			    STATX_INO, AT_STATX_SYNC_AS_STAT);
1184 	if (error)
1185 		return error;
1186 	memset(info, 0, sizeof(*info));
1187 	info->lo_number = lo->lo_number;
1188 	info->lo_device = huge_encode_dev(stat.dev);
1189 	info->lo_inode = stat.ino;
1190 	info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1191 	info->lo_offset = lo->lo_offset;
1192 	info->lo_sizelimit = lo->lo_sizelimit;
1193 	info->lo_flags = lo->lo_flags;
1194 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1195 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1196 	info->lo_encrypt_type =
1197 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1198 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1199 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1200 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1201 		       lo->lo_encrypt_key_size);
1202 	}
1203 	return 0;
1204 }
1205 
1206 static void
1207 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1208 {
1209 	memset(info64, 0, sizeof(*info64));
1210 	info64->lo_number = info->lo_number;
1211 	info64->lo_device = info->lo_device;
1212 	info64->lo_inode = info->lo_inode;
1213 	info64->lo_rdevice = info->lo_rdevice;
1214 	info64->lo_offset = info->lo_offset;
1215 	info64->lo_sizelimit = 0;
1216 	info64->lo_encrypt_type = info->lo_encrypt_type;
1217 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1218 	info64->lo_flags = info->lo_flags;
1219 	info64->lo_init[0] = info->lo_init[0];
1220 	info64->lo_init[1] = info->lo_init[1];
1221 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1222 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1223 	else
1224 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1225 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1226 }
1227 
1228 static int
1229 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1230 {
1231 	memset(info, 0, sizeof(*info));
1232 	info->lo_number = info64->lo_number;
1233 	info->lo_device = info64->lo_device;
1234 	info->lo_inode = info64->lo_inode;
1235 	info->lo_rdevice = info64->lo_rdevice;
1236 	info->lo_offset = info64->lo_offset;
1237 	info->lo_encrypt_type = info64->lo_encrypt_type;
1238 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1239 	info->lo_flags = info64->lo_flags;
1240 	info->lo_init[0] = info64->lo_init[0];
1241 	info->lo_init[1] = info64->lo_init[1];
1242 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1243 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1244 	else
1245 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1246 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1247 
1248 	/* error in case values were truncated */
1249 	if (info->lo_device != info64->lo_device ||
1250 	    info->lo_rdevice != info64->lo_rdevice ||
1251 	    info->lo_inode != info64->lo_inode ||
1252 	    info->lo_offset != info64->lo_offset)
1253 		return -EOVERFLOW;
1254 
1255 	return 0;
1256 }
1257 
1258 static int
1259 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1260 {
1261 	struct loop_info info;
1262 	struct loop_info64 info64;
1263 
1264 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1265 		return -EFAULT;
1266 	loop_info64_from_old(&info, &info64);
1267 	return loop_set_status(lo, &info64);
1268 }
1269 
1270 static int
1271 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1272 {
1273 	struct loop_info64 info64;
1274 
1275 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1276 		return -EFAULT;
1277 	return loop_set_status(lo, &info64);
1278 }
1279 
1280 static int
1281 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1282 	struct loop_info info;
1283 	struct loop_info64 info64;
1284 	int err = 0;
1285 
1286 	if (!arg)
1287 		err = -EINVAL;
1288 	if (!err)
1289 		err = loop_get_status(lo, &info64);
1290 	if (!err)
1291 		err = loop_info64_to_old(&info64, &info);
1292 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1293 		err = -EFAULT;
1294 
1295 	return err;
1296 }
1297 
1298 static int
1299 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1300 	struct loop_info64 info64;
1301 	int err = 0;
1302 
1303 	if (!arg)
1304 		err = -EINVAL;
1305 	if (!err)
1306 		err = loop_get_status(lo, &info64);
1307 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1308 		err = -EFAULT;
1309 
1310 	return err;
1311 }
1312 
1313 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1314 {
1315 	if (unlikely(lo->lo_state != Lo_bound))
1316 		return -ENXIO;
1317 
1318 	return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1319 }
1320 
1321 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1322 {
1323 	int error = -ENXIO;
1324 	if (lo->lo_state != Lo_bound)
1325 		goto out;
1326 
1327 	__loop_update_dio(lo, !!arg);
1328 	if (lo->use_dio == !!arg)
1329 		return 0;
1330 	error = -EINVAL;
1331  out:
1332 	return error;
1333 }
1334 
1335 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1336 	unsigned int cmd, unsigned long arg)
1337 {
1338 	struct loop_device *lo = bdev->bd_disk->private_data;
1339 	int err;
1340 
1341 	mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1342 	switch (cmd) {
1343 	case LOOP_SET_FD:
1344 		err = loop_set_fd(lo, mode, bdev, arg);
1345 		break;
1346 	case LOOP_CHANGE_FD:
1347 		err = loop_change_fd(lo, bdev, arg);
1348 		break;
1349 	case LOOP_CLR_FD:
1350 		/* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1351 		err = loop_clr_fd(lo);
1352 		if (!err)
1353 			goto out_unlocked;
1354 		break;
1355 	case LOOP_SET_STATUS:
1356 		err = -EPERM;
1357 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1358 			err = loop_set_status_old(lo,
1359 					(struct loop_info __user *)arg);
1360 		break;
1361 	case LOOP_GET_STATUS:
1362 		err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1363 		break;
1364 	case LOOP_SET_STATUS64:
1365 		err = -EPERM;
1366 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1367 			err = loop_set_status64(lo,
1368 					(struct loop_info64 __user *) arg);
1369 		break;
1370 	case LOOP_GET_STATUS64:
1371 		err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1372 		break;
1373 	case LOOP_SET_CAPACITY:
1374 		err = -EPERM;
1375 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1376 			err = loop_set_capacity(lo, bdev);
1377 		break;
1378 	case LOOP_SET_DIRECT_IO:
1379 		err = -EPERM;
1380 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1381 			err = loop_set_dio(lo, arg);
1382 		break;
1383 	default:
1384 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1385 	}
1386 	mutex_unlock(&lo->lo_ctl_mutex);
1387 
1388 out_unlocked:
1389 	return err;
1390 }
1391 
1392 #ifdef CONFIG_COMPAT
1393 struct compat_loop_info {
1394 	compat_int_t	lo_number;      /* ioctl r/o */
1395 	compat_dev_t	lo_device;      /* ioctl r/o */
1396 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1397 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1398 	compat_int_t	lo_offset;
1399 	compat_int_t	lo_encrypt_type;
1400 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1401 	compat_int_t	lo_flags;       /* ioctl r/o */
1402 	char		lo_name[LO_NAME_SIZE];
1403 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1404 	compat_ulong_t	lo_init[2];
1405 	char		reserved[4];
1406 };
1407 
1408 /*
1409  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1410  * - noinlined to reduce stack space usage in main part of driver
1411  */
1412 static noinline int
1413 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1414 			struct loop_info64 *info64)
1415 {
1416 	struct compat_loop_info info;
1417 
1418 	if (copy_from_user(&info, arg, sizeof(info)))
1419 		return -EFAULT;
1420 
1421 	memset(info64, 0, sizeof(*info64));
1422 	info64->lo_number = info.lo_number;
1423 	info64->lo_device = info.lo_device;
1424 	info64->lo_inode = info.lo_inode;
1425 	info64->lo_rdevice = info.lo_rdevice;
1426 	info64->lo_offset = info.lo_offset;
1427 	info64->lo_sizelimit = 0;
1428 	info64->lo_encrypt_type = info.lo_encrypt_type;
1429 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1430 	info64->lo_flags = info.lo_flags;
1431 	info64->lo_init[0] = info.lo_init[0];
1432 	info64->lo_init[1] = info.lo_init[1];
1433 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1434 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1435 	else
1436 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1437 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1438 	return 0;
1439 }
1440 
1441 /*
1442  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1443  * - noinlined to reduce stack space usage in main part of driver
1444  */
1445 static noinline int
1446 loop_info64_to_compat(const struct loop_info64 *info64,
1447 		      struct compat_loop_info __user *arg)
1448 {
1449 	struct compat_loop_info info;
1450 
1451 	memset(&info, 0, sizeof(info));
1452 	info.lo_number = info64->lo_number;
1453 	info.lo_device = info64->lo_device;
1454 	info.lo_inode = info64->lo_inode;
1455 	info.lo_rdevice = info64->lo_rdevice;
1456 	info.lo_offset = info64->lo_offset;
1457 	info.lo_encrypt_type = info64->lo_encrypt_type;
1458 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1459 	info.lo_flags = info64->lo_flags;
1460 	info.lo_init[0] = info64->lo_init[0];
1461 	info.lo_init[1] = info64->lo_init[1];
1462 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1463 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1464 	else
1465 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1466 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1467 
1468 	/* error in case values were truncated */
1469 	if (info.lo_device != info64->lo_device ||
1470 	    info.lo_rdevice != info64->lo_rdevice ||
1471 	    info.lo_inode != info64->lo_inode ||
1472 	    info.lo_offset != info64->lo_offset ||
1473 	    info.lo_init[0] != info64->lo_init[0] ||
1474 	    info.lo_init[1] != info64->lo_init[1])
1475 		return -EOVERFLOW;
1476 
1477 	if (copy_to_user(arg, &info, sizeof(info)))
1478 		return -EFAULT;
1479 	return 0;
1480 }
1481 
1482 static int
1483 loop_set_status_compat(struct loop_device *lo,
1484 		       const struct compat_loop_info __user *arg)
1485 {
1486 	struct loop_info64 info64;
1487 	int ret;
1488 
1489 	ret = loop_info64_from_compat(arg, &info64);
1490 	if (ret < 0)
1491 		return ret;
1492 	return loop_set_status(lo, &info64);
1493 }
1494 
1495 static int
1496 loop_get_status_compat(struct loop_device *lo,
1497 		       struct compat_loop_info __user *arg)
1498 {
1499 	struct loop_info64 info64;
1500 	int err = 0;
1501 
1502 	if (!arg)
1503 		err = -EINVAL;
1504 	if (!err)
1505 		err = loop_get_status(lo, &info64);
1506 	if (!err)
1507 		err = loop_info64_to_compat(&info64, arg);
1508 	return err;
1509 }
1510 
1511 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1512 			   unsigned int cmd, unsigned long arg)
1513 {
1514 	struct loop_device *lo = bdev->bd_disk->private_data;
1515 	int err;
1516 
1517 	switch(cmd) {
1518 	case LOOP_SET_STATUS:
1519 		mutex_lock(&lo->lo_ctl_mutex);
1520 		err = loop_set_status_compat(
1521 			lo, (const struct compat_loop_info __user *) arg);
1522 		mutex_unlock(&lo->lo_ctl_mutex);
1523 		break;
1524 	case LOOP_GET_STATUS:
1525 		mutex_lock(&lo->lo_ctl_mutex);
1526 		err = loop_get_status_compat(
1527 			lo, (struct compat_loop_info __user *) arg);
1528 		mutex_unlock(&lo->lo_ctl_mutex);
1529 		break;
1530 	case LOOP_SET_CAPACITY:
1531 	case LOOP_CLR_FD:
1532 	case LOOP_GET_STATUS64:
1533 	case LOOP_SET_STATUS64:
1534 		arg = (unsigned long) compat_ptr(arg);
1535 	case LOOP_SET_FD:
1536 	case LOOP_CHANGE_FD:
1537 		err = lo_ioctl(bdev, mode, cmd, arg);
1538 		break;
1539 	default:
1540 		err = -ENOIOCTLCMD;
1541 		break;
1542 	}
1543 	return err;
1544 }
1545 #endif
1546 
1547 static int lo_open(struct block_device *bdev, fmode_t mode)
1548 {
1549 	struct loop_device *lo;
1550 	int err = 0;
1551 
1552 	mutex_lock(&loop_index_mutex);
1553 	lo = bdev->bd_disk->private_data;
1554 	if (!lo) {
1555 		err = -ENXIO;
1556 		goto out;
1557 	}
1558 
1559 	atomic_inc(&lo->lo_refcnt);
1560 out:
1561 	mutex_unlock(&loop_index_mutex);
1562 	return err;
1563 }
1564 
1565 static void lo_release(struct gendisk *disk, fmode_t mode)
1566 {
1567 	struct loop_device *lo = disk->private_data;
1568 	int err;
1569 
1570 	if (atomic_dec_return(&lo->lo_refcnt))
1571 		return;
1572 
1573 	mutex_lock(&lo->lo_ctl_mutex);
1574 	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1575 		/*
1576 		 * In autoclear mode, stop the loop thread
1577 		 * and remove configuration after last close.
1578 		 */
1579 		err = loop_clr_fd(lo);
1580 		if (!err)
1581 			return;
1582 	} else {
1583 		/*
1584 		 * Otherwise keep thread (if running) and config,
1585 		 * but flush possible ongoing bios in thread.
1586 		 */
1587 		loop_flush(lo);
1588 	}
1589 
1590 	mutex_unlock(&lo->lo_ctl_mutex);
1591 }
1592 
1593 static const struct block_device_operations lo_fops = {
1594 	.owner =	THIS_MODULE,
1595 	.open =		lo_open,
1596 	.release =	lo_release,
1597 	.ioctl =	lo_ioctl,
1598 #ifdef CONFIG_COMPAT
1599 	.compat_ioctl =	lo_compat_ioctl,
1600 #endif
1601 };
1602 
1603 /*
1604  * And now the modules code and kernel interface.
1605  */
1606 static int max_loop;
1607 module_param(max_loop, int, S_IRUGO);
1608 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1609 module_param(max_part, int, S_IRUGO);
1610 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1611 MODULE_LICENSE("GPL");
1612 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1613 
1614 int loop_register_transfer(struct loop_func_table *funcs)
1615 {
1616 	unsigned int n = funcs->number;
1617 
1618 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1619 		return -EINVAL;
1620 	xfer_funcs[n] = funcs;
1621 	return 0;
1622 }
1623 
1624 static int unregister_transfer_cb(int id, void *ptr, void *data)
1625 {
1626 	struct loop_device *lo = ptr;
1627 	struct loop_func_table *xfer = data;
1628 
1629 	mutex_lock(&lo->lo_ctl_mutex);
1630 	if (lo->lo_encryption == xfer)
1631 		loop_release_xfer(lo);
1632 	mutex_unlock(&lo->lo_ctl_mutex);
1633 	return 0;
1634 }
1635 
1636 int loop_unregister_transfer(int number)
1637 {
1638 	unsigned int n = number;
1639 	struct loop_func_table *xfer;
1640 
1641 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1642 		return -EINVAL;
1643 
1644 	xfer_funcs[n] = NULL;
1645 	idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1646 	return 0;
1647 }
1648 
1649 EXPORT_SYMBOL(loop_register_transfer);
1650 EXPORT_SYMBOL(loop_unregister_transfer);
1651 
1652 static int loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1653 		const struct blk_mq_queue_data *bd)
1654 {
1655 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(bd->rq);
1656 	struct loop_device *lo = cmd->rq->q->queuedata;
1657 
1658 	blk_mq_start_request(bd->rq);
1659 
1660 	if (lo->lo_state != Lo_bound)
1661 		return BLK_MQ_RQ_QUEUE_ERROR;
1662 
1663 	switch (req_op(cmd->rq)) {
1664 	case REQ_OP_FLUSH:
1665 	case REQ_OP_DISCARD:
1666 	case REQ_OP_WRITE_ZEROES:
1667 		cmd->use_aio = false;
1668 		break;
1669 	default:
1670 		cmd->use_aio = lo->use_dio;
1671 		break;
1672 	}
1673 
1674 	kthread_queue_work(&lo->worker, &cmd->work);
1675 
1676 	return BLK_MQ_RQ_QUEUE_OK;
1677 }
1678 
1679 static void loop_handle_cmd(struct loop_cmd *cmd)
1680 {
1681 	const bool write = op_is_write(req_op(cmd->rq));
1682 	struct loop_device *lo = cmd->rq->q->queuedata;
1683 	int ret = 0;
1684 
1685 	if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1686 		ret = -EIO;
1687 		goto failed;
1688 	}
1689 
1690 	ret = do_req_filebacked(lo, cmd->rq);
1691  failed:
1692 	/* complete non-aio request */
1693 	if (!cmd->use_aio || ret)
1694 		blk_mq_complete_request(cmd->rq, ret ? -EIO : 0);
1695 }
1696 
1697 static void loop_queue_work(struct kthread_work *work)
1698 {
1699 	struct loop_cmd *cmd =
1700 		container_of(work, struct loop_cmd, work);
1701 
1702 	loop_handle_cmd(cmd);
1703 }
1704 
1705 static int loop_init_request(void *data, struct request *rq,
1706 		unsigned int hctx_idx, unsigned int request_idx,
1707 		unsigned int numa_node)
1708 {
1709 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1710 
1711 	cmd->rq = rq;
1712 	kthread_init_work(&cmd->work, loop_queue_work);
1713 
1714 	return 0;
1715 }
1716 
1717 static const struct blk_mq_ops loop_mq_ops = {
1718 	.queue_rq       = loop_queue_rq,
1719 	.init_request	= loop_init_request,
1720 };
1721 
1722 static int loop_add(struct loop_device **l, int i)
1723 {
1724 	struct loop_device *lo;
1725 	struct gendisk *disk;
1726 	int err;
1727 
1728 	err = -ENOMEM;
1729 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1730 	if (!lo)
1731 		goto out;
1732 
1733 	lo->lo_state = Lo_unbound;
1734 
1735 	/* allocate id, if @id >= 0, we're requesting that specific id */
1736 	if (i >= 0) {
1737 		err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1738 		if (err == -ENOSPC)
1739 			err = -EEXIST;
1740 	} else {
1741 		err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
1742 	}
1743 	if (err < 0)
1744 		goto out_free_dev;
1745 	i = err;
1746 
1747 	err = -ENOMEM;
1748 	lo->tag_set.ops = &loop_mq_ops;
1749 	lo->tag_set.nr_hw_queues = 1;
1750 	lo->tag_set.queue_depth = 128;
1751 	lo->tag_set.numa_node = NUMA_NO_NODE;
1752 	lo->tag_set.cmd_size = sizeof(struct loop_cmd);
1753 	lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
1754 	lo->tag_set.driver_data = lo;
1755 
1756 	err = blk_mq_alloc_tag_set(&lo->tag_set);
1757 	if (err)
1758 		goto out_free_idr;
1759 
1760 	lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
1761 	if (IS_ERR_OR_NULL(lo->lo_queue)) {
1762 		err = PTR_ERR(lo->lo_queue);
1763 		goto out_cleanup_tags;
1764 	}
1765 	lo->lo_queue->queuedata = lo;
1766 
1767 	/*
1768 	 * It doesn't make sense to enable merge because the I/O
1769 	 * submitted to backing file is handled page by page.
1770 	 */
1771 	queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, lo->lo_queue);
1772 
1773 	err = -ENOMEM;
1774 	disk = lo->lo_disk = alloc_disk(1 << part_shift);
1775 	if (!disk)
1776 		goto out_free_queue;
1777 
1778 	/*
1779 	 * Disable partition scanning by default. The in-kernel partition
1780 	 * scanning can be requested individually per-device during its
1781 	 * setup. Userspace can always add and remove partitions from all
1782 	 * devices. The needed partition minors are allocated from the
1783 	 * extended minor space, the main loop device numbers will continue
1784 	 * to match the loop minors, regardless of the number of partitions
1785 	 * used.
1786 	 *
1787 	 * If max_part is given, partition scanning is globally enabled for
1788 	 * all loop devices. The minors for the main loop devices will be
1789 	 * multiples of max_part.
1790 	 *
1791 	 * Note: Global-for-all-devices, set-only-at-init, read-only module
1792 	 * parameteters like 'max_loop' and 'max_part' make things needlessly
1793 	 * complicated, are too static, inflexible and may surprise
1794 	 * userspace tools. Parameters like this in general should be avoided.
1795 	 */
1796 	if (!part_shift)
1797 		disk->flags |= GENHD_FL_NO_PART_SCAN;
1798 	disk->flags |= GENHD_FL_EXT_DEVT;
1799 	mutex_init(&lo->lo_ctl_mutex);
1800 	atomic_set(&lo->lo_refcnt, 0);
1801 	lo->lo_number		= i;
1802 	spin_lock_init(&lo->lo_lock);
1803 	disk->major		= LOOP_MAJOR;
1804 	disk->first_minor	= i << part_shift;
1805 	disk->fops		= &lo_fops;
1806 	disk->private_data	= lo;
1807 	disk->queue		= lo->lo_queue;
1808 	sprintf(disk->disk_name, "loop%d", i);
1809 	add_disk(disk);
1810 	*l = lo;
1811 	return lo->lo_number;
1812 
1813 out_free_queue:
1814 	blk_cleanup_queue(lo->lo_queue);
1815 out_cleanup_tags:
1816 	blk_mq_free_tag_set(&lo->tag_set);
1817 out_free_idr:
1818 	idr_remove(&loop_index_idr, i);
1819 out_free_dev:
1820 	kfree(lo);
1821 out:
1822 	return err;
1823 }
1824 
1825 static void loop_remove(struct loop_device *lo)
1826 {
1827 	blk_cleanup_queue(lo->lo_queue);
1828 	del_gendisk(lo->lo_disk);
1829 	blk_mq_free_tag_set(&lo->tag_set);
1830 	put_disk(lo->lo_disk);
1831 	kfree(lo);
1832 }
1833 
1834 static int find_free_cb(int id, void *ptr, void *data)
1835 {
1836 	struct loop_device *lo = ptr;
1837 	struct loop_device **l = data;
1838 
1839 	if (lo->lo_state == Lo_unbound) {
1840 		*l = lo;
1841 		return 1;
1842 	}
1843 	return 0;
1844 }
1845 
1846 static int loop_lookup(struct loop_device **l, int i)
1847 {
1848 	struct loop_device *lo;
1849 	int ret = -ENODEV;
1850 
1851 	if (i < 0) {
1852 		int err;
1853 
1854 		err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1855 		if (err == 1) {
1856 			*l = lo;
1857 			ret = lo->lo_number;
1858 		}
1859 		goto out;
1860 	}
1861 
1862 	/* lookup and return a specific i */
1863 	lo = idr_find(&loop_index_idr, i);
1864 	if (lo) {
1865 		*l = lo;
1866 		ret = lo->lo_number;
1867 	}
1868 out:
1869 	return ret;
1870 }
1871 
1872 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1873 {
1874 	struct loop_device *lo;
1875 	struct kobject *kobj;
1876 	int err;
1877 
1878 	mutex_lock(&loop_index_mutex);
1879 	err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1880 	if (err < 0)
1881 		err = loop_add(&lo, MINOR(dev) >> part_shift);
1882 	if (err < 0)
1883 		kobj = NULL;
1884 	else
1885 		kobj = get_disk(lo->lo_disk);
1886 	mutex_unlock(&loop_index_mutex);
1887 
1888 	*part = 0;
1889 	return kobj;
1890 }
1891 
1892 static long loop_control_ioctl(struct file *file, unsigned int cmd,
1893 			       unsigned long parm)
1894 {
1895 	struct loop_device *lo;
1896 	int ret = -ENOSYS;
1897 
1898 	mutex_lock(&loop_index_mutex);
1899 	switch (cmd) {
1900 	case LOOP_CTL_ADD:
1901 		ret = loop_lookup(&lo, parm);
1902 		if (ret >= 0) {
1903 			ret = -EEXIST;
1904 			break;
1905 		}
1906 		ret = loop_add(&lo, parm);
1907 		break;
1908 	case LOOP_CTL_REMOVE:
1909 		ret = loop_lookup(&lo, parm);
1910 		if (ret < 0)
1911 			break;
1912 		mutex_lock(&lo->lo_ctl_mutex);
1913 		if (lo->lo_state != Lo_unbound) {
1914 			ret = -EBUSY;
1915 			mutex_unlock(&lo->lo_ctl_mutex);
1916 			break;
1917 		}
1918 		if (atomic_read(&lo->lo_refcnt) > 0) {
1919 			ret = -EBUSY;
1920 			mutex_unlock(&lo->lo_ctl_mutex);
1921 			break;
1922 		}
1923 		lo->lo_disk->private_data = NULL;
1924 		mutex_unlock(&lo->lo_ctl_mutex);
1925 		idr_remove(&loop_index_idr, lo->lo_number);
1926 		loop_remove(lo);
1927 		break;
1928 	case LOOP_CTL_GET_FREE:
1929 		ret = loop_lookup(&lo, -1);
1930 		if (ret >= 0)
1931 			break;
1932 		ret = loop_add(&lo, -1);
1933 	}
1934 	mutex_unlock(&loop_index_mutex);
1935 
1936 	return ret;
1937 }
1938 
1939 static const struct file_operations loop_ctl_fops = {
1940 	.open		= nonseekable_open,
1941 	.unlocked_ioctl	= loop_control_ioctl,
1942 	.compat_ioctl	= loop_control_ioctl,
1943 	.owner		= THIS_MODULE,
1944 	.llseek		= noop_llseek,
1945 };
1946 
1947 static struct miscdevice loop_misc = {
1948 	.minor		= LOOP_CTRL_MINOR,
1949 	.name		= "loop-control",
1950 	.fops		= &loop_ctl_fops,
1951 };
1952 
1953 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
1954 MODULE_ALIAS("devname:loop-control");
1955 
1956 static int __init loop_init(void)
1957 {
1958 	int i, nr;
1959 	unsigned long range;
1960 	struct loop_device *lo;
1961 	int err;
1962 
1963 	err = misc_register(&loop_misc);
1964 	if (err < 0)
1965 		return err;
1966 
1967 	part_shift = 0;
1968 	if (max_part > 0) {
1969 		part_shift = fls(max_part);
1970 
1971 		/*
1972 		 * Adjust max_part according to part_shift as it is exported
1973 		 * to user space so that user can decide correct minor number
1974 		 * if [s]he want to create more devices.
1975 		 *
1976 		 * Note that -1 is required because partition 0 is reserved
1977 		 * for the whole disk.
1978 		 */
1979 		max_part = (1UL << part_shift) - 1;
1980 	}
1981 
1982 	if ((1UL << part_shift) > DISK_MAX_PARTS) {
1983 		err = -EINVAL;
1984 		goto misc_out;
1985 	}
1986 
1987 	if (max_loop > 1UL << (MINORBITS - part_shift)) {
1988 		err = -EINVAL;
1989 		goto misc_out;
1990 	}
1991 
1992 	/*
1993 	 * If max_loop is specified, create that many devices upfront.
1994 	 * This also becomes a hard limit. If max_loop is not specified,
1995 	 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1996 	 * init time. Loop devices can be requested on-demand with the
1997 	 * /dev/loop-control interface, or be instantiated by accessing
1998 	 * a 'dead' device node.
1999 	 */
2000 	if (max_loop) {
2001 		nr = max_loop;
2002 		range = max_loop << part_shift;
2003 	} else {
2004 		nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
2005 		range = 1UL << MINORBITS;
2006 	}
2007 
2008 	if (register_blkdev(LOOP_MAJOR, "loop")) {
2009 		err = -EIO;
2010 		goto misc_out;
2011 	}
2012 
2013 	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
2014 				  THIS_MODULE, loop_probe, NULL, NULL);
2015 
2016 	/* pre-create number of devices given by config or max_loop */
2017 	mutex_lock(&loop_index_mutex);
2018 	for (i = 0; i < nr; i++)
2019 		loop_add(&lo, i);
2020 	mutex_unlock(&loop_index_mutex);
2021 
2022 	printk(KERN_INFO "loop: module loaded\n");
2023 	return 0;
2024 
2025 misc_out:
2026 	misc_deregister(&loop_misc);
2027 	return err;
2028 }
2029 
2030 static int loop_exit_cb(int id, void *ptr, void *data)
2031 {
2032 	struct loop_device *lo = ptr;
2033 
2034 	loop_remove(lo);
2035 	return 0;
2036 }
2037 
2038 static void __exit loop_exit(void)
2039 {
2040 	unsigned long range;
2041 
2042 	range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
2043 
2044 	idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
2045 	idr_destroy(&loop_index_idr);
2046 
2047 	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
2048 	unregister_blkdev(LOOP_MAJOR, "loop");
2049 
2050 	misc_deregister(&loop_misc);
2051 }
2052 
2053 module_init(loop_init);
2054 module_exit(loop_exit);
2055 
2056 #ifndef MODULE
2057 static int __init max_loop_setup(char *str)
2058 {
2059 	max_loop = simple_strtol(str, NULL, 0);
2060 	return 1;
2061 }
2062 
2063 __setup("max_loop=", max_loop_setup);
2064 #endif
2065