xref: /openbmc/linux/drivers/block/loop.c (revision 0b26ca68)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include <linux/ioprio.h>
80 #include <linux/blk-cgroup.h>
81 
82 #include "loop.h"
83 
84 #include <linux/uaccess.h>
85 
86 static DEFINE_IDR(loop_index_idr);
87 static DEFINE_MUTEX(loop_ctl_mutex);
88 
89 static int max_part;
90 static int part_shift;
91 
92 static int transfer_xor(struct loop_device *lo, int cmd,
93 			struct page *raw_page, unsigned raw_off,
94 			struct page *loop_page, unsigned loop_off,
95 			int size, sector_t real_block)
96 {
97 	char *raw_buf = kmap_atomic(raw_page) + raw_off;
98 	char *loop_buf = kmap_atomic(loop_page) + loop_off;
99 	char *in, *out, *key;
100 	int i, keysize;
101 
102 	if (cmd == READ) {
103 		in = raw_buf;
104 		out = loop_buf;
105 	} else {
106 		in = loop_buf;
107 		out = raw_buf;
108 	}
109 
110 	key = lo->lo_encrypt_key;
111 	keysize = lo->lo_encrypt_key_size;
112 	for (i = 0; i < size; i++)
113 		*out++ = *in++ ^ key[(i & 511) % keysize];
114 
115 	kunmap_atomic(loop_buf);
116 	kunmap_atomic(raw_buf);
117 	cond_resched();
118 	return 0;
119 }
120 
121 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
122 {
123 	if (unlikely(info->lo_encrypt_key_size <= 0))
124 		return -EINVAL;
125 	return 0;
126 }
127 
128 static struct loop_func_table none_funcs = {
129 	.number = LO_CRYPT_NONE,
130 };
131 
132 static struct loop_func_table xor_funcs = {
133 	.number = LO_CRYPT_XOR,
134 	.transfer = transfer_xor,
135 	.init = xor_init
136 };
137 
138 /* xfer_funcs[0] is special - its release function is never called */
139 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
140 	&none_funcs,
141 	&xor_funcs
142 };
143 
144 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
145 {
146 	loff_t loopsize;
147 
148 	/* Compute loopsize in bytes */
149 	loopsize = i_size_read(file->f_mapping->host);
150 	if (offset > 0)
151 		loopsize -= offset;
152 	/* offset is beyond i_size, weird but possible */
153 	if (loopsize < 0)
154 		return 0;
155 
156 	if (sizelimit > 0 && sizelimit < loopsize)
157 		loopsize = sizelimit;
158 	/*
159 	 * Unfortunately, if we want to do I/O on the device,
160 	 * the number of 512-byte sectors has to fit into a sector_t.
161 	 */
162 	return loopsize >> 9;
163 }
164 
165 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
166 {
167 	return get_size(lo->lo_offset, lo->lo_sizelimit, file);
168 }
169 
170 static void __loop_update_dio(struct loop_device *lo, bool dio)
171 {
172 	struct file *file = lo->lo_backing_file;
173 	struct address_space *mapping = file->f_mapping;
174 	struct inode *inode = mapping->host;
175 	unsigned short sb_bsize = 0;
176 	unsigned dio_align = 0;
177 	bool use_dio;
178 
179 	if (inode->i_sb->s_bdev) {
180 		sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
181 		dio_align = sb_bsize - 1;
182 	}
183 
184 	/*
185 	 * We support direct I/O only if lo_offset is aligned with the
186 	 * logical I/O size of backing device, and the logical block
187 	 * size of loop is bigger than the backing device's and the loop
188 	 * needn't transform transfer.
189 	 *
190 	 * TODO: the above condition may be loosed in the future, and
191 	 * direct I/O may be switched runtime at that time because most
192 	 * of requests in sane applications should be PAGE_SIZE aligned
193 	 */
194 	if (dio) {
195 		if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
196 				!(lo->lo_offset & dio_align) &&
197 				mapping->a_ops->direct_IO &&
198 				!lo->transfer)
199 			use_dio = true;
200 		else
201 			use_dio = false;
202 	} else {
203 		use_dio = false;
204 	}
205 
206 	if (lo->use_dio == use_dio)
207 		return;
208 
209 	/* flush dirty pages before changing direct IO */
210 	vfs_fsync(file, 0);
211 
212 	/*
213 	 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
214 	 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
215 	 * will get updated by ioctl(LOOP_GET_STATUS)
216 	 */
217 	if (lo->lo_state == Lo_bound)
218 		blk_mq_freeze_queue(lo->lo_queue);
219 	lo->use_dio = use_dio;
220 	if (use_dio) {
221 		blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue);
222 		lo->lo_flags |= LO_FLAGS_DIRECT_IO;
223 	} else {
224 		blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
225 		lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
226 	}
227 	if (lo->lo_state == Lo_bound)
228 		blk_mq_unfreeze_queue(lo->lo_queue);
229 }
230 
231 /**
232  * loop_validate_block_size() - validates the passed in block size
233  * @bsize: size to validate
234  */
235 static int
236 loop_validate_block_size(unsigned short bsize)
237 {
238 	if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize))
239 		return -EINVAL;
240 
241 	return 0;
242 }
243 
244 /**
245  * loop_set_size() - sets device size and notifies userspace
246  * @lo: struct loop_device to set the size for
247  * @size: new size of the loop device
248  *
249  * Callers must validate that the size passed into this function fits into
250  * a sector_t, eg using loop_validate_size()
251  */
252 static void loop_set_size(struct loop_device *lo, loff_t size)
253 {
254 	if (!set_capacity_and_notify(lo->lo_disk, size))
255 		kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
256 }
257 
258 static inline int
259 lo_do_transfer(struct loop_device *lo, int cmd,
260 	       struct page *rpage, unsigned roffs,
261 	       struct page *lpage, unsigned loffs,
262 	       int size, sector_t rblock)
263 {
264 	int ret;
265 
266 	ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
267 	if (likely(!ret))
268 		return 0;
269 
270 	printk_ratelimited(KERN_ERR
271 		"loop: Transfer error at byte offset %llu, length %i.\n",
272 		(unsigned long long)rblock << 9, size);
273 	return ret;
274 }
275 
276 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
277 {
278 	struct iov_iter i;
279 	ssize_t bw;
280 
281 	iov_iter_bvec(&i, WRITE, bvec, 1, bvec->bv_len);
282 
283 	file_start_write(file);
284 	bw = vfs_iter_write(file, &i, ppos, 0);
285 	file_end_write(file);
286 
287 	if (likely(bw ==  bvec->bv_len))
288 		return 0;
289 
290 	printk_ratelimited(KERN_ERR
291 		"loop: Write error at byte offset %llu, length %i.\n",
292 		(unsigned long long)*ppos, bvec->bv_len);
293 	if (bw >= 0)
294 		bw = -EIO;
295 	return bw;
296 }
297 
298 static int lo_write_simple(struct loop_device *lo, struct request *rq,
299 		loff_t pos)
300 {
301 	struct bio_vec bvec;
302 	struct req_iterator iter;
303 	int ret = 0;
304 
305 	rq_for_each_segment(bvec, rq, iter) {
306 		ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
307 		if (ret < 0)
308 			break;
309 		cond_resched();
310 	}
311 
312 	return ret;
313 }
314 
315 /*
316  * This is the slow, transforming version that needs to double buffer the
317  * data as it cannot do the transformations in place without having direct
318  * access to the destination pages of the backing file.
319  */
320 static int lo_write_transfer(struct loop_device *lo, struct request *rq,
321 		loff_t pos)
322 {
323 	struct bio_vec bvec, b;
324 	struct req_iterator iter;
325 	struct page *page;
326 	int ret = 0;
327 
328 	page = alloc_page(GFP_NOIO);
329 	if (unlikely(!page))
330 		return -ENOMEM;
331 
332 	rq_for_each_segment(bvec, rq, iter) {
333 		ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
334 			bvec.bv_offset, bvec.bv_len, pos >> 9);
335 		if (unlikely(ret))
336 			break;
337 
338 		b.bv_page = page;
339 		b.bv_offset = 0;
340 		b.bv_len = bvec.bv_len;
341 		ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
342 		if (ret < 0)
343 			break;
344 	}
345 
346 	__free_page(page);
347 	return ret;
348 }
349 
350 static int lo_read_simple(struct loop_device *lo, struct request *rq,
351 		loff_t pos)
352 {
353 	struct bio_vec bvec;
354 	struct req_iterator iter;
355 	struct iov_iter i;
356 	ssize_t len;
357 
358 	rq_for_each_segment(bvec, rq, iter) {
359 		iov_iter_bvec(&i, READ, &bvec, 1, bvec.bv_len);
360 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
361 		if (len < 0)
362 			return len;
363 
364 		flush_dcache_page(bvec.bv_page);
365 
366 		if (len != bvec.bv_len) {
367 			struct bio *bio;
368 
369 			__rq_for_each_bio(bio, rq)
370 				zero_fill_bio(bio);
371 			break;
372 		}
373 		cond_resched();
374 	}
375 
376 	return 0;
377 }
378 
379 static int lo_read_transfer(struct loop_device *lo, struct request *rq,
380 		loff_t pos)
381 {
382 	struct bio_vec bvec, b;
383 	struct req_iterator iter;
384 	struct iov_iter i;
385 	struct page *page;
386 	ssize_t len;
387 	int ret = 0;
388 
389 	page = alloc_page(GFP_NOIO);
390 	if (unlikely(!page))
391 		return -ENOMEM;
392 
393 	rq_for_each_segment(bvec, rq, iter) {
394 		loff_t offset = pos;
395 
396 		b.bv_page = page;
397 		b.bv_offset = 0;
398 		b.bv_len = bvec.bv_len;
399 
400 		iov_iter_bvec(&i, READ, &b, 1, b.bv_len);
401 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
402 		if (len < 0) {
403 			ret = len;
404 			goto out_free_page;
405 		}
406 
407 		ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
408 			bvec.bv_offset, len, offset >> 9);
409 		if (ret)
410 			goto out_free_page;
411 
412 		flush_dcache_page(bvec.bv_page);
413 
414 		if (len != bvec.bv_len) {
415 			struct bio *bio;
416 
417 			__rq_for_each_bio(bio, rq)
418 				zero_fill_bio(bio);
419 			break;
420 		}
421 	}
422 
423 	ret = 0;
424 out_free_page:
425 	__free_page(page);
426 	return ret;
427 }
428 
429 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos,
430 			int mode)
431 {
432 	/*
433 	 * We use fallocate to manipulate the space mappings used by the image
434 	 * a.k.a. discard/zerorange. However we do not support this if
435 	 * encryption is enabled, because it may give an attacker useful
436 	 * information.
437 	 */
438 	struct file *file = lo->lo_backing_file;
439 	struct request_queue *q = lo->lo_queue;
440 	int ret;
441 
442 	mode |= FALLOC_FL_KEEP_SIZE;
443 
444 	if (!blk_queue_discard(q)) {
445 		ret = -EOPNOTSUPP;
446 		goto out;
447 	}
448 
449 	ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
450 	if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
451 		ret = -EIO;
452  out:
453 	return ret;
454 }
455 
456 static int lo_req_flush(struct loop_device *lo, struct request *rq)
457 {
458 	struct file *file = lo->lo_backing_file;
459 	int ret = vfs_fsync(file, 0);
460 	if (unlikely(ret && ret != -EINVAL))
461 		ret = -EIO;
462 
463 	return ret;
464 }
465 
466 static void lo_complete_rq(struct request *rq)
467 {
468 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
469 	blk_status_t ret = BLK_STS_OK;
470 
471 	if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) ||
472 	    req_op(rq) != REQ_OP_READ) {
473 		if (cmd->ret < 0)
474 			ret = errno_to_blk_status(cmd->ret);
475 		goto end_io;
476 	}
477 
478 	/*
479 	 * Short READ - if we got some data, advance our request and
480 	 * retry it. If we got no data, end the rest with EIO.
481 	 */
482 	if (cmd->ret) {
483 		blk_update_request(rq, BLK_STS_OK, cmd->ret);
484 		cmd->ret = 0;
485 		blk_mq_requeue_request(rq, true);
486 	} else {
487 		if (cmd->use_aio) {
488 			struct bio *bio = rq->bio;
489 
490 			while (bio) {
491 				zero_fill_bio(bio);
492 				bio = bio->bi_next;
493 			}
494 		}
495 		ret = BLK_STS_IOERR;
496 end_io:
497 		blk_mq_end_request(rq, ret);
498 	}
499 }
500 
501 static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
502 {
503 	struct request *rq = blk_mq_rq_from_pdu(cmd);
504 
505 	if (!atomic_dec_and_test(&cmd->ref))
506 		return;
507 	kfree(cmd->bvec);
508 	cmd->bvec = NULL;
509 	if (likely(!blk_should_fake_timeout(rq->q)))
510 		blk_mq_complete_request(rq);
511 }
512 
513 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
514 {
515 	struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
516 
517 	if (cmd->css)
518 		css_put(cmd->css);
519 	cmd->ret = ret;
520 	lo_rw_aio_do_completion(cmd);
521 }
522 
523 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
524 		     loff_t pos, bool rw)
525 {
526 	struct iov_iter iter;
527 	struct req_iterator rq_iter;
528 	struct bio_vec *bvec;
529 	struct request *rq = blk_mq_rq_from_pdu(cmd);
530 	struct bio *bio = rq->bio;
531 	struct file *file = lo->lo_backing_file;
532 	struct bio_vec tmp;
533 	unsigned int offset;
534 	int nr_bvec = 0;
535 	int ret;
536 
537 	rq_for_each_bvec(tmp, rq, rq_iter)
538 		nr_bvec++;
539 
540 	if (rq->bio != rq->biotail) {
541 
542 		bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec),
543 				     GFP_NOIO);
544 		if (!bvec)
545 			return -EIO;
546 		cmd->bvec = bvec;
547 
548 		/*
549 		 * The bios of the request may be started from the middle of
550 		 * the 'bvec' because of bio splitting, so we can't directly
551 		 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec
552 		 * API will take care of all details for us.
553 		 */
554 		rq_for_each_bvec(tmp, rq, rq_iter) {
555 			*bvec = tmp;
556 			bvec++;
557 		}
558 		bvec = cmd->bvec;
559 		offset = 0;
560 	} else {
561 		/*
562 		 * Same here, this bio may be started from the middle of the
563 		 * 'bvec' because of bio splitting, so offset from the bvec
564 		 * must be passed to iov iterator
565 		 */
566 		offset = bio->bi_iter.bi_bvec_done;
567 		bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
568 	}
569 	atomic_set(&cmd->ref, 2);
570 
571 	iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq));
572 	iter.iov_offset = offset;
573 
574 	cmd->iocb.ki_pos = pos;
575 	cmd->iocb.ki_filp = file;
576 	cmd->iocb.ki_complete = lo_rw_aio_complete;
577 	cmd->iocb.ki_flags = IOCB_DIRECT;
578 	cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
579 	if (cmd->css)
580 		kthread_associate_blkcg(cmd->css);
581 
582 	if (rw == WRITE)
583 		ret = call_write_iter(file, &cmd->iocb, &iter);
584 	else
585 		ret = call_read_iter(file, &cmd->iocb, &iter);
586 
587 	lo_rw_aio_do_completion(cmd);
588 	kthread_associate_blkcg(NULL);
589 
590 	if (ret != -EIOCBQUEUED)
591 		cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
592 	return 0;
593 }
594 
595 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
596 {
597 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
598 	loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
599 
600 	/*
601 	 * lo_write_simple and lo_read_simple should have been covered
602 	 * by io submit style function like lo_rw_aio(), one blocker
603 	 * is that lo_read_simple() need to call flush_dcache_page after
604 	 * the page is written from kernel, and it isn't easy to handle
605 	 * this in io submit style function which submits all segments
606 	 * of the req at one time. And direct read IO doesn't need to
607 	 * run flush_dcache_page().
608 	 */
609 	switch (req_op(rq)) {
610 	case REQ_OP_FLUSH:
611 		return lo_req_flush(lo, rq);
612 	case REQ_OP_WRITE_ZEROES:
613 		/*
614 		 * If the caller doesn't want deallocation, call zeroout to
615 		 * write zeroes the range.  Otherwise, punch them out.
616 		 */
617 		return lo_fallocate(lo, rq, pos,
618 			(rq->cmd_flags & REQ_NOUNMAP) ?
619 				FALLOC_FL_ZERO_RANGE :
620 				FALLOC_FL_PUNCH_HOLE);
621 	case REQ_OP_DISCARD:
622 		return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE);
623 	case REQ_OP_WRITE:
624 		if (lo->transfer)
625 			return lo_write_transfer(lo, rq, pos);
626 		else if (cmd->use_aio)
627 			return lo_rw_aio(lo, cmd, pos, WRITE);
628 		else
629 			return lo_write_simple(lo, rq, pos);
630 	case REQ_OP_READ:
631 		if (lo->transfer)
632 			return lo_read_transfer(lo, rq, pos);
633 		else if (cmd->use_aio)
634 			return lo_rw_aio(lo, cmd, pos, READ);
635 		else
636 			return lo_read_simple(lo, rq, pos);
637 	default:
638 		WARN_ON_ONCE(1);
639 		return -EIO;
640 	}
641 }
642 
643 static inline void loop_update_dio(struct loop_device *lo)
644 {
645 	__loop_update_dio(lo, (lo->lo_backing_file->f_flags & O_DIRECT) |
646 				lo->use_dio);
647 }
648 
649 static void loop_reread_partitions(struct loop_device *lo,
650 				   struct block_device *bdev)
651 {
652 	int rc;
653 
654 	mutex_lock(&bdev->bd_mutex);
655 	rc = bdev_disk_changed(bdev, false);
656 	mutex_unlock(&bdev->bd_mutex);
657 	if (rc)
658 		pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
659 			__func__, lo->lo_number, lo->lo_file_name, rc);
660 }
661 
662 static inline int is_loop_device(struct file *file)
663 {
664 	struct inode *i = file->f_mapping->host;
665 
666 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
667 }
668 
669 static int loop_validate_file(struct file *file, struct block_device *bdev)
670 {
671 	struct inode	*inode = file->f_mapping->host;
672 	struct file	*f = file;
673 
674 	/* Avoid recursion */
675 	while (is_loop_device(f)) {
676 		struct loop_device *l;
677 
678 		if (f->f_mapping->host->i_rdev == bdev->bd_dev)
679 			return -EBADF;
680 
681 		l = I_BDEV(f->f_mapping->host)->bd_disk->private_data;
682 		if (l->lo_state != Lo_bound) {
683 			return -EINVAL;
684 		}
685 		f = l->lo_backing_file;
686 	}
687 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
688 		return -EINVAL;
689 	return 0;
690 }
691 
692 /*
693  * loop_change_fd switched the backing store of a loopback device to
694  * a new file. This is useful for operating system installers to free up
695  * the original file and in High Availability environments to switch to
696  * an alternative location for the content in case of server meltdown.
697  * This can only work if the loop device is used read-only, and if the
698  * new backing store is the same size and type as the old backing store.
699  */
700 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
701 			  unsigned int arg)
702 {
703 	struct file	*file = NULL, *old_file;
704 	int		error;
705 	bool		partscan;
706 
707 	error = mutex_lock_killable(&loop_ctl_mutex);
708 	if (error)
709 		return error;
710 	error = -ENXIO;
711 	if (lo->lo_state != Lo_bound)
712 		goto out_err;
713 
714 	/* the loop device has to be read-only */
715 	error = -EINVAL;
716 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
717 		goto out_err;
718 
719 	error = -EBADF;
720 	file = fget(arg);
721 	if (!file)
722 		goto out_err;
723 
724 	error = loop_validate_file(file, bdev);
725 	if (error)
726 		goto out_err;
727 
728 	old_file = lo->lo_backing_file;
729 
730 	error = -EINVAL;
731 
732 	/* size of the new backing store needs to be the same */
733 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
734 		goto out_err;
735 
736 	/* and ... switch */
737 	blk_mq_freeze_queue(lo->lo_queue);
738 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
739 	lo->lo_backing_file = file;
740 	lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
741 	mapping_set_gfp_mask(file->f_mapping,
742 			     lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
743 	loop_update_dio(lo);
744 	blk_mq_unfreeze_queue(lo->lo_queue);
745 	partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
746 	mutex_unlock(&loop_ctl_mutex);
747 	/*
748 	 * We must drop file reference outside of loop_ctl_mutex as dropping
749 	 * the file ref can take bd_mutex which creates circular locking
750 	 * dependency.
751 	 */
752 	fput(old_file);
753 	if (partscan)
754 		loop_reread_partitions(lo, bdev);
755 	return 0;
756 
757 out_err:
758 	mutex_unlock(&loop_ctl_mutex);
759 	if (file)
760 		fput(file);
761 	return error;
762 }
763 
764 /* loop sysfs attributes */
765 
766 static ssize_t loop_attr_show(struct device *dev, char *page,
767 			      ssize_t (*callback)(struct loop_device *, char *))
768 {
769 	struct gendisk *disk = dev_to_disk(dev);
770 	struct loop_device *lo = disk->private_data;
771 
772 	return callback(lo, page);
773 }
774 
775 #define LOOP_ATTR_RO(_name)						\
776 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
777 static ssize_t loop_attr_do_show_##_name(struct device *d,		\
778 				struct device_attribute *attr, char *b)	\
779 {									\
780 	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
781 }									\
782 static struct device_attribute loop_attr_##_name =			\
783 	__ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
784 
785 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
786 {
787 	ssize_t ret;
788 	char *p = NULL;
789 
790 	spin_lock_irq(&lo->lo_lock);
791 	if (lo->lo_backing_file)
792 		p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
793 	spin_unlock_irq(&lo->lo_lock);
794 
795 	if (IS_ERR_OR_NULL(p))
796 		ret = PTR_ERR(p);
797 	else {
798 		ret = strlen(p);
799 		memmove(buf, p, ret);
800 		buf[ret++] = '\n';
801 		buf[ret] = 0;
802 	}
803 
804 	return ret;
805 }
806 
807 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
808 {
809 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
810 }
811 
812 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
813 {
814 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
815 }
816 
817 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
818 {
819 	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
820 
821 	return sprintf(buf, "%s\n", autoclear ? "1" : "0");
822 }
823 
824 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
825 {
826 	int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
827 
828 	return sprintf(buf, "%s\n", partscan ? "1" : "0");
829 }
830 
831 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
832 {
833 	int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
834 
835 	return sprintf(buf, "%s\n", dio ? "1" : "0");
836 }
837 
838 LOOP_ATTR_RO(backing_file);
839 LOOP_ATTR_RO(offset);
840 LOOP_ATTR_RO(sizelimit);
841 LOOP_ATTR_RO(autoclear);
842 LOOP_ATTR_RO(partscan);
843 LOOP_ATTR_RO(dio);
844 
845 static struct attribute *loop_attrs[] = {
846 	&loop_attr_backing_file.attr,
847 	&loop_attr_offset.attr,
848 	&loop_attr_sizelimit.attr,
849 	&loop_attr_autoclear.attr,
850 	&loop_attr_partscan.attr,
851 	&loop_attr_dio.attr,
852 	NULL,
853 };
854 
855 static struct attribute_group loop_attribute_group = {
856 	.name = "loop",
857 	.attrs= loop_attrs,
858 };
859 
860 static void loop_sysfs_init(struct loop_device *lo)
861 {
862 	lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
863 						&loop_attribute_group);
864 }
865 
866 static void loop_sysfs_exit(struct loop_device *lo)
867 {
868 	if (lo->sysfs_inited)
869 		sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
870 				   &loop_attribute_group);
871 }
872 
873 static void loop_config_discard(struct loop_device *lo)
874 {
875 	struct file *file = lo->lo_backing_file;
876 	struct inode *inode = file->f_mapping->host;
877 	struct request_queue *q = lo->lo_queue;
878 	u32 granularity, max_discard_sectors;
879 
880 	/*
881 	 * If the backing device is a block device, mirror its zeroing
882 	 * capability. Set the discard sectors to the block device's zeroing
883 	 * capabilities because loop discards result in blkdev_issue_zeroout(),
884 	 * not blkdev_issue_discard(). This maintains consistent behavior with
885 	 * file-backed loop devices: discarded regions read back as zero.
886 	 */
887 	if (S_ISBLK(inode->i_mode) && !lo->lo_encrypt_key_size) {
888 		struct request_queue *backingq = bdev_get_queue(I_BDEV(inode));
889 
890 		max_discard_sectors = backingq->limits.max_write_zeroes_sectors;
891 		granularity = backingq->limits.discard_granularity ?:
892 			queue_physical_block_size(backingq);
893 
894 	/*
895 	 * We use punch hole to reclaim the free space used by the
896 	 * image a.k.a. discard. However we do not support discard if
897 	 * encryption is enabled, because it may give an attacker
898 	 * useful information.
899 	 */
900 	} else if (!file->f_op->fallocate || lo->lo_encrypt_key_size) {
901 		max_discard_sectors = 0;
902 		granularity = 0;
903 
904 	} else {
905 		max_discard_sectors = UINT_MAX >> 9;
906 		granularity = inode->i_sb->s_blocksize;
907 	}
908 
909 	if (max_discard_sectors) {
910 		q->limits.discard_granularity = granularity;
911 		blk_queue_max_discard_sectors(q, max_discard_sectors);
912 		blk_queue_max_write_zeroes_sectors(q, max_discard_sectors);
913 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
914 	} else {
915 		q->limits.discard_granularity = 0;
916 		blk_queue_max_discard_sectors(q, 0);
917 		blk_queue_max_write_zeroes_sectors(q, 0);
918 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
919 	}
920 	q->limits.discard_alignment = 0;
921 }
922 
923 static void loop_unprepare_queue(struct loop_device *lo)
924 {
925 	kthread_flush_worker(&lo->worker);
926 	kthread_stop(lo->worker_task);
927 }
928 
929 static int loop_kthread_worker_fn(void *worker_ptr)
930 {
931 	current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO;
932 	return kthread_worker_fn(worker_ptr);
933 }
934 
935 static int loop_prepare_queue(struct loop_device *lo)
936 {
937 	kthread_init_worker(&lo->worker);
938 	lo->worker_task = kthread_run(loop_kthread_worker_fn,
939 			&lo->worker, "loop%d", lo->lo_number);
940 	if (IS_ERR(lo->worker_task))
941 		return -ENOMEM;
942 	set_user_nice(lo->worker_task, MIN_NICE);
943 	return 0;
944 }
945 
946 static void loop_update_rotational(struct loop_device *lo)
947 {
948 	struct file *file = lo->lo_backing_file;
949 	struct inode *file_inode = file->f_mapping->host;
950 	struct block_device *file_bdev = file_inode->i_sb->s_bdev;
951 	struct request_queue *q = lo->lo_queue;
952 	bool nonrot = true;
953 
954 	/* not all filesystems (e.g. tmpfs) have a sb->s_bdev */
955 	if (file_bdev)
956 		nonrot = blk_queue_nonrot(bdev_get_queue(file_bdev));
957 
958 	if (nonrot)
959 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
960 	else
961 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
962 }
963 
964 static int
965 loop_release_xfer(struct loop_device *lo)
966 {
967 	int err = 0;
968 	struct loop_func_table *xfer = lo->lo_encryption;
969 
970 	if (xfer) {
971 		if (xfer->release)
972 			err = xfer->release(lo);
973 		lo->transfer = NULL;
974 		lo->lo_encryption = NULL;
975 		module_put(xfer->owner);
976 	}
977 	return err;
978 }
979 
980 static int
981 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
982 	       const struct loop_info64 *i)
983 {
984 	int err = 0;
985 
986 	if (xfer) {
987 		struct module *owner = xfer->owner;
988 
989 		if (!try_module_get(owner))
990 			return -EINVAL;
991 		if (xfer->init)
992 			err = xfer->init(lo, i);
993 		if (err)
994 			module_put(owner);
995 		else
996 			lo->lo_encryption = xfer;
997 	}
998 	return err;
999 }
1000 
1001 /**
1002  * loop_set_status_from_info - configure device from loop_info
1003  * @lo: struct loop_device to configure
1004  * @info: struct loop_info64 to configure the device with
1005  *
1006  * Configures the loop device parameters according to the passed
1007  * in loop_info64 configuration.
1008  */
1009 static int
1010 loop_set_status_from_info(struct loop_device *lo,
1011 			  const struct loop_info64 *info)
1012 {
1013 	int err;
1014 	struct loop_func_table *xfer;
1015 	kuid_t uid = current_uid();
1016 
1017 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1018 		return -EINVAL;
1019 
1020 	err = loop_release_xfer(lo);
1021 	if (err)
1022 		return err;
1023 
1024 	if (info->lo_encrypt_type) {
1025 		unsigned int type = info->lo_encrypt_type;
1026 
1027 		if (type >= MAX_LO_CRYPT)
1028 			return -EINVAL;
1029 		xfer = xfer_funcs[type];
1030 		if (xfer == NULL)
1031 			return -EINVAL;
1032 	} else
1033 		xfer = NULL;
1034 
1035 	err = loop_init_xfer(lo, xfer, info);
1036 	if (err)
1037 		return err;
1038 
1039 	lo->lo_offset = info->lo_offset;
1040 	lo->lo_sizelimit = info->lo_sizelimit;
1041 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1042 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1043 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1044 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1045 
1046 	if (!xfer)
1047 		xfer = &none_funcs;
1048 	lo->transfer = xfer->transfer;
1049 	lo->ioctl = xfer->ioctl;
1050 
1051 	lo->lo_flags = info->lo_flags;
1052 
1053 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1054 	lo->lo_init[0] = info->lo_init[0];
1055 	lo->lo_init[1] = info->lo_init[1];
1056 	if (info->lo_encrypt_key_size) {
1057 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1058 		       info->lo_encrypt_key_size);
1059 		lo->lo_key_owner = uid;
1060 	}
1061 
1062 	return 0;
1063 }
1064 
1065 static int loop_configure(struct loop_device *lo, fmode_t mode,
1066 			  struct block_device *bdev,
1067 			  const struct loop_config *config)
1068 {
1069 	struct file	*file;
1070 	struct inode	*inode;
1071 	struct address_space *mapping;
1072 	int		error;
1073 	loff_t		size;
1074 	bool		partscan;
1075 	unsigned short  bsize;
1076 
1077 	/* This is safe, since we have a reference from open(). */
1078 	__module_get(THIS_MODULE);
1079 
1080 	error = -EBADF;
1081 	file = fget(config->fd);
1082 	if (!file)
1083 		goto out;
1084 
1085 	/*
1086 	 * If we don't hold exclusive handle for the device, upgrade to it
1087 	 * here to avoid changing device under exclusive owner.
1088 	 */
1089 	if (!(mode & FMODE_EXCL)) {
1090 		error = bd_prepare_to_claim(bdev, loop_configure);
1091 		if (error)
1092 			goto out_putf;
1093 	}
1094 
1095 	error = mutex_lock_killable(&loop_ctl_mutex);
1096 	if (error)
1097 		goto out_bdev;
1098 
1099 	error = -EBUSY;
1100 	if (lo->lo_state != Lo_unbound)
1101 		goto out_unlock;
1102 
1103 	error = loop_validate_file(file, bdev);
1104 	if (error)
1105 		goto out_unlock;
1106 
1107 	mapping = file->f_mapping;
1108 	inode = mapping->host;
1109 
1110 	if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) {
1111 		error = -EINVAL;
1112 		goto out_unlock;
1113 	}
1114 
1115 	if (config->block_size) {
1116 		error = loop_validate_block_size(config->block_size);
1117 		if (error)
1118 			goto out_unlock;
1119 	}
1120 
1121 	error = loop_set_status_from_info(lo, &config->info);
1122 	if (error)
1123 		goto out_unlock;
1124 
1125 	if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
1126 	    !file->f_op->write_iter)
1127 		lo->lo_flags |= LO_FLAGS_READ_ONLY;
1128 
1129 	error = loop_prepare_queue(lo);
1130 	if (error)
1131 		goto out_unlock;
1132 
1133 	set_disk_ro(lo->lo_disk, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0);
1134 
1135 	lo->use_dio = lo->lo_flags & LO_FLAGS_DIRECT_IO;
1136 	lo->lo_device = bdev;
1137 	lo->lo_backing_file = file;
1138 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
1139 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
1140 
1141 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
1142 		blk_queue_write_cache(lo->lo_queue, true, false);
1143 
1144 	if (config->block_size)
1145 		bsize = config->block_size;
1146 	else if ((lo->lo_backing_file->f_flags & O_DIRECT) && inode->i_sb->s_bdev)
1147 		/* In case of direct I/O, match underlying block size */
1148 		bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
1149 	else
1150 		bsize = 512;
1151 
1152 	blk_queue_logical_block_size(lo->lo_queue, bsize);
1153 	blk_queue_physical_block_size(lo->lo_queue, bsize);
1154 	blk_queue_io_min(lo->lo_queue, bsize);
1155 
1156 	loop_update_rotational(lo);
1157 	loop_update_dio(lo);
1158 	loop_sysfs_init(lo);
1159 
1160 	size = get_loop_size(lo, file);
1161 	loop_set_size(lo, size);
1162 
1163 	lo->lo_state = Lo_bound;
1164 	if (part_shift)
1165 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
1166 	partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
1167 	if (partscan)
1168 		lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1169 
1170 	/* Grab the block_device to prevent its destruction after we
1171 	 * put /dev/loopXX inode. Later in __loop_clr_fd() we bdput(bdev).
1172 	 */
1173 	bdgrab(bdev);
1174 	mutex_unlock(&loop_ctl_mutex);
1175 	if (partscan)
1176 		loop_reread_partitions(lo, bdev);
1177 	if (!(mode & FMODE_EXCL))
1178 		bd_abort_claiming(bdev, loop_configure);
1179 	return 0;
1180 
1181 out_unlock:
1182 	mutex_unlock(&loop_ctl_mutex);
1183 out_bdev:
1184 	if (!(mode & FMODE_EXCL))
1185 		bd_abort_claiming(bdev, loop_configure);
1186 out_putf:
1187 	fput(file);
1188 out:
1189 	/* This is safe: open() is still holding a reference. */
1190 	module_put(THIS_MODULE);
1191 	return error;
1192 }
1193 
1194 static int __loop_clr_fd(struct loop_device *lo, bool release)
1195 {
1196 	struct file *filp = NULL;
1197 	gfp_t gfp = lo->old_gfp_mask;
1198 	struct block_device *bdev = lo->lo_device;
1199 	int err = 0;
1200 	bool partscan = false;
1201 	int lo_number;
1202 
1203 	mutex_lock(&loop_ctl_mutex);
1204 	if (WARN_ON_ONCE(lo->lo_state != Lo_rundown)) {
1205 		err = -ENXIO;
1206 		goto out_unlock;
1207 	}
1208 
1209 	filp = lo->lo_backing_file;
1210 	if (filp == NULL) {
1211 		err = -EINVAL;
1212 		goto out_unlock;
1213 	}
1214 
1215 	/* freeze request queue during the transition */
1216 	blk_mq_freeze_queue(lo->lo_queue);
1217 
1218 	spin_lock_irq(&lo->lo_lock);
1219 	lo->lo_backing_file = NULL;
1220 	spin_unlock_irq(&lo->lo_lock);
1221 
1222 	loop_release_xfer(lo);
1223 	lo->transfer = NULL;
1224 	lo->ioctl = NULL;
1225 	lo->lo_device = NULL;
1226 	lo->lo_encryption = NULL;
1227 	lo->lo_offset = 0;
1228 	lo->lo_sizelimit = 0;
1229 	lo->lo_encrypt_key_size = 0;
1230 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1231 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1232 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1233 	blk_queue_logical_block_size(lo->lo_queue, 512);
1234 	blk_queue_physical_block_size(lo->lo_queue, 512);
1235 	blk_queue_io_min(lo->lo_queue, 512);
1236 	if (bdev) {
1237 		bdput(bdev);
1238 		invalidate_bdev(bdev);
1239 		bdev->bd_inode->i_mapping->wb_err = 0;
1240 	}
1241 	set_capacity(lo->lo_disk, 0);
1242 	loop_sysfs_exit(lo);
1243 	if (bdev) {
1244 		/* let user-space know about this change */
1245 		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1246 	}
1247 	mapping_set_gfp_mask(filp->f_mapping, gfp);
1248 	/* This is safe: open() is still holding a reference. */
1249 	module_put(THIS_MODULE);
1250 	blk_mq_unfreeze_queue(lo->lo_queue);
1251 
1252 	partscan = lo->lo_flags & LO_FLAGS_PARTSCAN && bdev;
1253 	lo_number = lo->lo_number;
1254 	loop_unprepare_queue(lo);
1255 out_unlock:
1256 	mutex_unlock(&loop_ctl_mutex);
1257 	if (partscan) {
1258 		/*
1259 		 * bd_mutex has been held already in release path, so don't
1260 		 * acquire it if this function is called in such case.
1261 		 *
1262 		 * If the reread partition isn't from release path, lo_refcnt
1263 		 * must be at least one and it can only become zero when the
1264 		 * current holder is released.
1265 		 */
1266 		if (!release)
1267 			mutex_lock(&bdev->bd_mutex);
1268 		err = bdev_disk_changed(bdev, false);
1269 		if (!release)
1270 			mutex_unlock(&bdev->bd_mutex);
1271 		if (err)
1272 			pr_warn("%s: partition scan of loop%d failed (rc=%d)\n",
1273 				__func__, lo_number, err);
1274 		/* Device is gone, no point in returning error */
1275 		err = 0;
1276 	}
1277 
1278 	/*
1279 	 * lo->lo_state is set to Lo_unbound here after above partscan has
1280 	 * finished.
1281 	 *
1282 	 * There cannot be anybody else entering __loop_clr_fd() as
1283 	 * lo->lo_backing_file is already cleared and Lo_rundown state
1284 	 * protects us from all the other places trying to change the 'lo'
1285 	 * device.
1286 	 */
1287 	mutex_lock(&loop_ctl_mutex);
1288 	lo->lo_flags = 0;
1289 	if (!part_shift)
1290 		lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1291 	lo->lo_state = Lo_unbound;
1292 	mutex_unlock(&loop_ctl_mutex);
1293 
1294 	/*
1295 	 * Need not hold loop_ctl_mutex to fput backing file.
1296 	 * Calling fput holding loop_ctl_mutex triggers a circular
1297 	 * lock dependency possibility warning as fput can take
1298 	 * bd_mutex which is usually taken before loop_ctl_mutex.
1299 	 */
1300 	if (filp)
1301 		fput(filp);
1302 	return err;
1303 }
1304 
1305 static int loop_clr_fd(struct loop_device *lo)
1306 {
1307 	int err;
1308 
1309 	err = mutex_lock_killable(&loop_ctl_mutex);
1310 	if (err)
1311 		return err;
1312 	if (lo->lo_state != Lo_bound) {
1313 		mutex_unlock(&loop_ctl_mutex);
1314 		return -ENXIO;
1315 	}
1316 	/*
1317 	 * If we've explicitly asked to tear down the loop device,
1318 	 * and it has an elevated reference count, set it for auto-teardown when
1319 	 * the last reference goes away. This stops $!~#$@ udev from
1320 	 * preventing teardown because it decided that it needs to run blkid on
1321 	 * the loopback device whenever they appear. xfstests is notorious for
1322 	 * failing tests because blkid via udev races with a losetup
1323 	 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1324 	 * command to fail with EBUSY.
1325 	 */
1326 	if (atomic_read(&lo->lo_refcnt) > 1) {
1327 		lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1328 		mutex_unlock(&loop_ctl_mutex);
1329 		return 0;
1330 	}
1331 	lo->lo_state = Lo_rundown;
1332 	mutex_unlock(&loop_ctl_mutex);
1333 
1334 	return __loop_clr_fd(lo, false);
1335 }
1336 
1337 static int
1338 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1339 {
1340 	int err;
1341 	struct block_device *bdev;
1342 	kuid_t uid = current_uid();
1343 	int prev_lo_flags;
1344 	bool partscan = false;
1345 	bool size_changed = false;
1346 
1347 	err = mutex_lock_killable(&loop_ctl_mutex);
1348 	if (err)
1349 		return err;
1350 	if (lo->lo_encrypt_key_size &&
1351 	    !uid_eq(lo->lo_key_owner, uid) &&
1352 	    !capable(CAP_SYS_ADMIN)) {
1353 		err = -EPERM;
1354 		goto out_unlock;
1355 	}
1356 	if (lo->lo_state != Lo_bound) {
1357 		err = -ENXIO;
1358 		goto out_unlock;
1359 	}
1360 
1361 	if (lo->lo_offset != info->lo_offset ||
1362 	    lo->lo_sizelimit != info->lo_sizelimit) {
1363 		size_changed = true;
1364 		sync_blockdev(lo->lo_device);
1365 		invalidate_bdev(lo->lo_device);
1366 	}
1367 
1368 	/* I/O need to be drained during transfer transition */
1369 	blk_mq_freeze_queue(lo->lo_queue);
1370 
1371 	if (size_changed && lo->lo_device->bd_inode->i_mapping->nrpages) {
1372 		/* If any pages were dirtied after invalidate_bdev(), try again */
1373 		err = -EAGAIN;
1374 		pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1375 			__func__, lo->lo_number, lo->lo_file_name,
1376 			lo->lo_device->bd_inode->i_mapping->nrpages);
1377 		goto out_unfreeze;
1378 	}
1379 
1380 	prev_lo_flags = lo->lo_flags;
1381 
1382 	err = loop_set_status_from_info(lo, info);
1383 	if (err)
1384 		goto out_unfreeze;
1385 
1386 	/* Mask out flags that can't be set using LOOP_SET_STATUS. */
1387 	lo->lo_flags &= LOOP_SET_STATUS_SETTABLE_FLAGS;
1388 	/* For those flags, use the previous values instead */
1389 	lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_SETTABLE_FLAGS;
1390 	/* For flags that can't be cleared, use previous values too */
1391 	lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_CLEARABLE_FLAGS;
1392 
1393 	if (size_changed) {
1394 		loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit,
1395 					   lo->lo_backing_file);
1396 		loop_set_size(lo, new_size);
1397 	}
1398 
1399 	loop_config_discard(lo);
1400 
1401 	/* update dio if lo_offset or transfer is changed */
1402 	__loop_update_dio(lo, lo->use_dio);
1403 
1404 out_unfreeze:
1405 	blk_mq_unfreeze_queue(lo->lo_queue);
1406 
1407 	if (!err && (lo->lo_flags & LO_FLAGS_PARTSCAN) &&
1408 	     !(prev_lo_flags & LO_FLAGS_PARTSCAN)) {
1409 		lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1410 		bdev = lo->lo_device;
1411 		partscan = true;
1412 	}
1413 out_unlock:
1414 	mutex_unlock(&loop_ctl_mutex);
1415 	if (partscan)
1416 		loop_reread_partitions(lo, bdev);
1417 
1418 	return err;
1419 }
1420 
1421 static int
1422 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1423 {
1424 	struct path path;
1425 	struct kstat stat;
1426 	int ret;
1427 
1428 	ret = mutex_lock_killable(&loop_ctl_mutex);
1429 	if (ret)
1430 		return ret;
1431 	if (lo->lo_state != Lo_bound) {
1432 		mutex_unlock(&loop_ctl_mutex);
1433 		return -ENXIO;
1434 	}
1435 
1436 	memset(info, 0, sizeof(*info));
1437 	info->lo_number = lo->lo_number;
1438 	info->lo_offset = lo->lo_offset;
1439 	info->lo_sizelimit = lo->lo_sizelimit;
1440 	info->lo_flags = lo->lo_flags;
1441 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1442 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1443 	info->lo_encrypt_type =
1444 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1445 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1446 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1447 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1448 		       lo->lo_encrypt_key_size);
1449 	}
1450 
1451 	/* Drop loop_ctl_mutex while we call into the filesystem. */
1452 	path = lo->lo_backing_file->f_path;
1453 	path_get(&path);
1454 	mutex_unlock(&loop_ctl_mutex);
1455 	ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT);
1456 	if (!ret) {
1457 		info->lo_device = huge_encode_dev(stat.dev);
1458 		info->lo_inode = stat.ino;
1459 		info->lo_rdevice = huge_encode_dev(stat.rdev);
1460 	}
1461 	path_put(&path);
1462 	return ret;
1463 }
1464 
1465 static void
1466 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1467 {
1468 	memset(info64, 0, sizeof(*info64));
1469 	info64->lo_number = info->lo_number;
1470 	info64->lo_device = info->lo_device;
1471 	info64->lo_inode = info->lo_inode;
1472 	info64->lo_rdevice = info->lo_rdevice;
1473 	info64->lo_offset = info->lo_offset;
1474 	info64->lo_sizelimit = 0;
1475 	info64->lo_encrypt_type = info->lo_encrypt_type;
1476 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1477 	info64->lo_flags = info->lo_flags;
1478 	info64->lo_init[0] = info->lo_init[0];
1479 	info64->lo_init[1] = info->lo_init[1];
1480 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1481 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1482 	else
1483 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1484 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1485 }
1486 
1487 static int
1488 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1489 {
1490 	memset(info, 0, sizeof(*info));
1491 	info->lo_number = info64->lo_number;
1492 	info->lo_device = info64->lo_device;
1493 	info->lo_inode = info64->lo_inode;
1494 	info->lo_rdevice = info64->lo_rdevice;
1495 	info->lo_offset = info64->lo_offset;
1496 	info->lo_encrypt_type = info64->lo_encrypt_type;
1497 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1498 	info->lo_flags = info64->lo_flags;
1499 	info->lo_init[0] = info64->lo_init[0];
1500 	info->lo_init[1] = info64->lo_init[1];
1501 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1502 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1503 	else
1504 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1505 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1506 
1507 	/* error in case values were truncated */
1508 	if (info->lo_device != info64->lo_device ||
1509 	    info->lo_rdevice != info64->lo_rdevice ||
1510 	    info->lo_inode != info64->lo_inode ||
1511 	    info->lo_offset != info64->lo_offset)
1512 		return -EOVERFLOW;
1513 
1514 	return 0;
1515 }
1516 
1517 static int
1518 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1519 {
1520 	struct loop_info info;
1521 	struct loop_info64 info64;
1522 
1523 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1524 		return -EFAULT;
1525 	loop_info64_from_old(&info, &info64);
1526 	return loop_set_status(lo, &info64);
1527 }
1528 
1529 static int
1530 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1531 {
1532 	struct loop_info64 info64;
1533 
1534 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1535 		return -EFAULT;
1536 	return loop_set_status(lo, &info64);
1537 }
1538 
1539 static int
1540 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1541 	struct loop_info info;
1542 	struct loop_info64 info64;
1543 	int err;
1544 
1545 	if (!arg)
1546 		return -EINVAL;
1547 	err = loop_get_status(lo, &info64);
1548 	if (!err)
1549 		err = loop_info64_to_old(&info64, &info);
1550 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1551 		err = -EFAULT;
1552 
1553 	return err;
1554 }
1555 
1556 static int
1557 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1558 	struct loop_info64 info64;
1559 	int err;
1560 
1561 	if (!arg)
1562 		return -EINVAL;
1563 	err = loop_get_status(lo, &info64);
1564 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1565 		err = -EFAULT;
1566 
1567 	return err;
1568 }
1569 
1570 static int loop_set_capacity(struct loop_device *lo)
1571 {
1572 	loff_t size;
1573 
1574 	if (unlikely(lo->lo_state != Lo_bound))
1575 		return -ENXIO;
1576 
1577 	size = get_loop_size(lo, lo->lo_backing_file);
1578 	loop_set_size(lo, size);
1579 
1580 	return 0;
1581 }
1582 
1583 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1584 {
1585 	int error = -ENXIO;
1586 	if (lo->lo_state != Lo_bound)
1587 		goto out;
1588 
1589 	__loop_update_dio(lo, !!arg);
1590 	if (lo->use_dio == !!arg)
1591 		return 0;
1592 	error = -EINVAL;
1593  out:
1594 	return error;
1595 }
1596 
1597 static int loop_set_block_size(struct loop_device *lo, unsigned long arg)
1598 {
1599 	int err = 0;
1600 
1601 	if (lo->lo_state != Lo_bound)
1602 		return -ENXIO;
1603 
1604 	err = loop_validate_block_size(arg);
1605 	if (err)
1606 		return err;
1607 
1608 	if (lo->lo_queue->limits.logical_block_size == arg)
1609 		return 0;
1610 
1611 	sync_blockdev(lo->lo_device);
1612 	invalidate_bdev(lo->lo_device);
1613 
1614 	blk_mq_freeze_queue(lo->lo_queue);
1615 
1616 	/* invalidate_bdev should have truncated all the pages */
1617 	if (lo->lo_device->bd_inode->i_mapping->nrpages) {
1618 		err = -EAGAIN;
1619 		pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1620 			__func__, lo->lo_number, lo->lo_file_name,
1621 			lo->lo_device->bd_inode->i_mapping->nrpages);
1622 		goto out_unfreeze;
1623 	}
1624 
1625 	blk_queue_logical_block_size(lo->lo_queue, arg);
1626 	blk_queue_physical_block_size(lo->lo_queue, arg);
1627 	blk_queue_io_min(lo->lo_queue, arg);
1628 	loop_update_dio(lo);
1629 out_unfreeze:
1630 	blk_mq_unfreeze_queue(lo->lo_queue);
1631 
1632 	return err;
1633 }
1634 
1635 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd,
1636 			   unsigned long arg)
1637 {
1638 	int err;
1639 
1640 	err = mutex_lock_killable(&loop_ctl_mutex);
1641 	if (err)
1642 		return err;
1643 	switch (cmd) {
1644 	case LOOP_SET_CAPACITY:
1645 		err = loop_set_capacity(lo);
1646 		break;
1647 	case LOOP_SET_DIRECT_IO:
1648 		err = loop_set_dio(lo, arg);
1649 		break;
1650 	case LOOP_SET_BLOCK_SIZE:
1651 		err = loop_set_block_size(lo, arg);
1652 		break;
1653 	default:
1654 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1655 	}
1656 	mutex_unlock(&loop_ctl_mutex);
1657 	return err;
1658 }
1659 
1660 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1661 	unsigned int cmd, unsigned long arg)
1662 {
1663 	struct loop_device *lo = bdev->bd_disk->private_data;
1664 	void __user *argp = (void __user *) arg;
1665 	int err;
1666 
1667 	switch (cmd) {
1668 	case LOOP_SET_FD: {
1669 		/*
1670 		 * Legacy case - pass in a zeroed out struct loop_config with
1671 		 * only the file descriptor set , which corresponds with the
1672 		 * default parameters we'd have used otherwise.
1673 		 */
1674 		struct loop_config config;
1675 
1676 		memset(&config, 0, sizeof(config));
1677 		config.fd = arg;
1678 
1679 		return loop_configure(lo, mode, bdev, &config);
1680 	}
1681 	case LOOP_CONFIGURE: {
1682 		struct loop_config config;
1683 
1684 		if (copy_from_user(&config, argp, sizeof(config)))
1685 			return -EFAULT;
1686 
1687 		return loop_configure(lo, mode, bdev, &config);
1688 	}
1689 	case LOOP_CHANGE_FD:
1690 		return loop_change_fd(lo, bdev, arg);
1691 	case LOOP_CLR_FD:
1692 		return loop_clr_fd(lo);
1693 	case LOOP_SET_STATUS:
1694 		err = -EPERM;
1695 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1696 			err = loop_set_status_old(lo, argp);
1697 		}
1698 		break;
1699 	case LOOP_GET_STATUS:
1700 		return loop_get_status_old(lo, argp);
1701 	case LOOP_SET_STATUS64:
1702 		err = -EPERM;
1703 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1704 			err = loop_set_status64(lo, argp);
1705 		}
1706 		break;
1707 	case LOOP_GET_STATUS64:
1708 		return loop_get_status64(lo, argp);
1709 	case LOOP_SET_CAPACITY:
1710 	case LOOP_SET_DIRECT_IO:
1711 	case LOOP_SET_BLOCK_SIZE:
1712 		if (!(mode & FMODE_WRITE) && !capable(CAP_SYS_ADMIN))
1713 			return -EPERM;
1714 		fallthrough;
1715 	default:
1716 		err = lo_simple_ioctl(lo, cmd, arg);
1717 		break;
1718 	}
1719 
1720 	return err;
1721 }
1722 
1723 #ifdef CONFIG_COMPAT
1724 struct compat_loop_info {
1725 	compat_int_t	lo_number;      /* ioctl r/o */
1726 	compat_dev_t	lo_device;      /* ioctl r/o */
1727 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1728 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1729 	compat_int_t	lo_offset;
1730 	compat_int_t	lo_encrypt_type;
1731 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1732 	compat_int_t	lo_flags;       /* ioctl r/o */
1733 	char		lo_name[LO_NAME_SIZE];
1734 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1735 	compat_ulong_t	lo_init[2];
1736 	char		reserved[4];
1737 };
1738 
1739 /*
1740  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1741  * - noinlined to reduce stack space usage in main part of driver
1742  */
1743 static noinline int
1744 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1745 			struct loop_info64 *info64)
1746 {
1747 	struct compat_loop_info info;
1748 
1749 	if (copy_from_user(&info, arg, sizeof(info)))
1750 		return -EFAULT;
1751 
1752 	memset(info64, 0, sizeof(*info64));
1753 	info64->lo_number = info.lo_number;
1754 	info64->lo_device = info.lo_device;
1755 	info64->lo_inode = info.lo_inode;
1756 	info64->lo_rdevice = info.lo_rdevice;
1757 	info64->lo_offset = info.lo_offset;
1758 	info64->lo_sizelimit = 0;
1759 	info64->lo_encrypt_type = info.lo_encrypt_type;
1760 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1761 	info64->lo_flags = info.lo_flags;
1762 	info64->lo_init[0] = info.lo_init[0];
1763 	info64->lo_init[1] = info.lo_init[1];
1764 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1765 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1766 	else
1767 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1768 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1769 	return 0;
1770 }
1771 
1772 /*
1773  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1774  * - noinlined to reduce stack space usage in main part of driver
1775  */
1776 static noinline int
1777 loop_info64_to_compat(const struct loop_info64 *info64,
1778 		      struct compat_loop_info __user *arg)
1779 {
1780 	struct compat_loop_info info;
1781 
1782 	memset(&info, 0, sizeof(info));
1783 	info.lo_number = info64->lo_number;
1784 	info.lo_device = info64->lo_device;
1785 	info.lo_inode = info64->lo_inode;
1786 	info.lo_rdevice = info64->lo_rdevice;
1787 	info.lo_offset = info64->lo_offset;
1788 	info.lo_encrypt_type = info64->lo_encrypt_type;
1789 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1790 	info.lo_flags = info64->lo_flags;
1791 	info.lo_init[0] = info64->lo_init[0];
1792 	info.lo_init[1] = info64->lo_init[1];
1793 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1794 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1795 	else
1796 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1797 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1798 
1799 	/* error in case values were truncated */
1800 	if (info.lo_device != info64->lo_device ||
1801 	    info.lo_rdevice != info64->lo_rdevice ||
1802 	    info.lo_inode != info64->lo_inode ||
1803 	    info.lo_offset != info64->lo_offset ||
1804 	    info.lo_init[0] != info64->lo_init[0] ||
1805 	    info.lo_init[1] != info64->lo_init[1])
1806 		return -EOVERFLOW;
1807 
1808 	if (copy_to_user(arg, &info, sizeof(info)))
1809 		return -EFAULT;
1810 	return 0;
1811 }
1812 
1813 static int
1814 loop_set_status_compat(struct loop_device *lo,
1815 		       const struct compat_loop_info __user *arg)
1816 {
1817 	struct loop_info64 info64;
1818 	int ret;
1819 
1820 	ret = loop_info64_from_compat(arg, &info64);
1821 	if (ret < 0)
1822 		return ret;
1823 	return loop_set_status(lo, &info64);
1824 }
1825 
1826 static int
1827 loop_get_status_compat(struct loop_device *lo,
1828 		       struct compat_loop_info __user *arg)
1829 {
1830 	struct loop_info64 info64;
1831 	int err;
1832 
1833 	if (!arg)
1834 		return -EINVAL;
1835 	err = loop_get_status(lo, &info64);
1836 	if (!err)
1837 		err = loop_info64_to_compat(&info64, arg);
1838 	return err;
1839 }
1840 
1841 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1842 			   unsigned int cmd, unsigned long arg)
1843 {
1844 	struct loop_device *lo = bdev->bd_disk->private_data;
1845 	int err;
1846 
1847 	switch(cmd) {
1848 	case LOOP_SET_STATUS:
1849 		err = loop_set_status_compat(lo,
1850 			     (const struct compat_loop_info __user *)arg);
1851 		break;
1852 	case LOOP_GET_STATUS:
1853 		err = loop_get_status_compat(lo,
1854 				     (struct compat_loop_info __user *)arg);
1855 		break;
1856 	case LOOP_SET_CAPACITY:
1857 	case LOOP_CLR_FD:
1858 	case LOOP_GET_STATUS64:
1859 	case LOOP_SET_STATUS64:
1860 	case LOOP_CONFIGURE:
1861 		arg = (unsigned long) compat_ptr(arg);
1862 		fallthrough;
1863 	case LOOP_SET_FD:
1864 	case LOOP_CHANGE_FD:
1865 	case LOOP_SET_BLOCK_SIZE:
1866 	case LOOP_SET_DIRECT_IO:
1867 		err = lo_ioctl(bdev, mode, cmd, arg);
1868 		break;
1869 	default:
1870 		err = -ENOIOCTLCMD;
1871 		break;
1872 	}
1873 	return err;
1874 }
1875 #endif
1876 
1877 static int lo_open(struct block_device *bdev, fmode_t mode)
1878 {
1879 	struct loop_device *lo;
1880 	int err;
1881 
1882 	err = mutex_lock_killable(&loop_ctl_mutex);
1883 	if (err)
1884 		return err;
1885 	lo = bdev->bd_disk->private_data;
1886 	if (!lo) {
1887 		err = -ENXIO;
1888 		goto out;
1889 	}
1890 
1891 	atomic_inc(&lo->lo_refcnt);
1892 out:
1893 	mutex_unlock(&loop_ctl_mutex);
1894 	return err;
1895 }
1896 
1897 static void lo_release(struct gendisk *disk, fmode_t mode)
1898 {
1899 	struct loop_device *lo;
1900 
1901 	mutex_lock(&loop_ctl_mutex);
1902 	lo = disk->private_data;
1903 	if (atomic_dec_return(&lo->lo_refcnt))
1904 		goto out_unlock;
1905 
1906 	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1907 		if (lo->lo_state != Lo_bound)
1908 			goto out_unlock;
1909 		lo->lo_state = Lo_rundown;
1910 		mutex_unlock(&loop_ctl_mutex);
1911 		/*
1912 		 * In autoclear mode, stop the loop thread
1913 		 * and remove configuration after last close.
1914 		 */
1915 		__loop_clr_fd(lo, true);
1916 		return;
1917 	} else if (lo->lo_state == Lo_bound) {
1918 		/*
1919 		 * Otherwise keep thread (if running) and config,
1920 		 * but flush possible ongoing bios in thread.
1921 		 */
1922 		blk_mq_freeze_queue(lo->lo_queue);
1923 		blk_mq_unfreeze_queue(lo->lo_queue);
1924 	}
1925 
1926 out_unlock:
1927 	mutex_unlock(&loop_ctl_mutex);
1928 }
1929 
1930 static const struct block_device_operations lo_fops = {
1931 	.owner =	THIS_MODULE,
1932 	.open =		lo_open,
1933 	.release =	lo_release,
1934 	.ioctl =	lo_ioctl,
1935 #ifdef CONFIG_COMPAT
1936 	.compat_ioctl =	lo_compat_ioctl,
1937 #endif
1938 };
1939 
1940 /*
1941  * And now the modules code and kernel interface.
1942  */
1943 static int max_loop;
1944 module_param(max_loop, int, 0444);
1945 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1946 module_param(max_part, int, 0444);
1947 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1948 MODULE_LICENSE("GPL");
1949 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1950 
1951 int loop_register_transfer(struct loop_func_table *funcs)
1952 {
1953 	unsigned int n = funcs->number;
1954 
1955 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1956 		return -EINVAL;
1957 	xfer_funcs[n] = funcs;
1958 	return 0;
1959 }
1960 
1961 static int unregister_transfer_cb(int id, void *ptr, void *data)
1962 {
1963 	struct loop_device *lo = ptr;
1964 	struct loop_func_table *xfer = data;
1965 
1966 	mutex_lock(&loop_ctl_mutex);
1967 	if (lo->lo_encryption == xfer)
1968 		loop_release_xfer(lo);
1969 	mutex_unlock(&loop_ctl_mutex);
1970 	return 0;
1971 }
1972 
1973 int loop_unregister_transfer(int number)
1974 {
1975 	unsigned int n = number;
1976 	struct loop_func_table *xfer;
1977 
1978 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1979 		return -EINVAL;
1980 
1981 	xfer_funcs[n] = NULL;
1982 	idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1983 	return 0;
1984 }
1985 
1986 EXPORT_SYMBOL(loop_register_transfer);
1987 EXPORT_SYMBOL(loop_unregister_transfer);
1988 
1989 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1990 		const struct blk_mq_queue_data *bd)
1991 {
1992 	struct request *rq = bd->rq;
1993 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1994 	struct loop_device *lo = rq->q->queuedata;
1995 
1996 	blk_mq_start_request(rq);
1997 
1998 	if (lo->lo_state != Lo_bound)
1999 		return BLK_STS_IOERR;
2000 
2001 	switch (req_op(rq)) {
2002 	case REQ_OP_FLUSH:
2003 	case REQ_OP_DISCARD:
2004 	case REQ_OP_WRITE_ZEROES:
2005 		cmd->use_aio = false;
2006 		break;
2007 	default:
2008 		cmd->use_aio = lo->use_dio;
2009 		break;
2010 	}
2011 
2012 	/* always use the first bio's css */
2013 #ifdef CONFIG_BLK_CGROUP
2014 	if (cmd->use_aio && rq->bio && rq->bio->bi_blkg) {
2015 		cmd->css = &bio_blkcg(rq->bio)->css;
2016 		css_get(cmd->css);
2017 	} else
2018 #endif
2019 		cmd->css = NULL;
2020 	kthread_queue_work(&lo->worker, &cmd->work);
2021 
2022 	return BLK_STS_OK;
2023 }
2024 
2025 static void loop_handle_cmd(struct loop_cmd *cmd)
2026 {
2027 	struct request *rq = blk_mq_rq_from_pdu(cmd);
2028 	const bool write = op_is_write(req_op(rq));
2029 	struct loop_device *lo = rq->q->queuedata;
2030 	int ret = 0;
2031 
2032 	if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
2033 		ret = -EIO;
2034 		goto failed;
2035 	}
2036 
2037 	ret = do_req_filebacked(lo, rq);
2038  failed:
2039 	/* complete non-aio request */
2040 	if (!cmd->use_aio || ret) {
2041 		if (ret == -EOPNOTSUPP)
2042 			cmd->ret = ret;
2043 		else
2044 			cmd->ret = ret ? -EIO : 0;
2045 		if (likely(!blk_should_fake_timeout(rq->q)))
2046 			blk_mq_complete_request(rq);
2047 	}
2048 }
2049 
2050 static void loop_queue_work(struct kthread_work *work)
2051 {
2052 	struct loop_cmd *cmd =
2053 		container_of(work, struct loop_cmd, work);
2054 
2055 	loop_handle_cmd(cmd);
2056 }
2057 
2058 static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq,
2059 		unsigned int hctx_idx, unsigned int numa_node)
2060 {
2061 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
2062 
2063 	kthread_init_work(&cmd->work, loop_queue_work);
2064 	return 0;
2065 }
2066 
2067 static const struct blk_mq_ops loop_mq_ops = {
2068 	.queue_rq       = loop_queue_rq,
2069 	.init_request	= loop_init_request,
2070 	.complete	= lo_complete_rq,
2071 };
2072 
2073 static int loop_add(struct loop_device **l, int i)
2074 {
2075 	struct loop_device *lo;
2076 	struct gendisk *disk;
2077 	int err;
2078 
2079 	err = -ENOMEM;
2080 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
2081 	if (!lo)
2082 		goto out;
2083 
2084 	lo->lo_state = Lo_unbound;
2085 
2086 	/* allocate id, if @id >= 0, we're requesting that specific id */
2087 	if (i >= 0) {
2088 		err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
2089 		if (err == -ENOSPC)
2090 			err = -EEXIST;
2091 	} else {
2092 		err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
2093 	}
2094 	if (err < 0)
2095 		goto out_free_dev;
2096 	i = err;
2097 
2098 	err = -ENOMEM;
2099 	lo->tag_set.ops = &loop_mq_ops;
2100 	lo->tag_set.nr_hw_queues = 1;
2101 	lo->tag_set.queue_depth = 128;
2102 	lo->tag_set.numa_node = NUMA_NO_NODE;
2103 	lo->tag_set.cmd_size = sizeof(struct loop_cmd);
2104 	lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_STACKING;
2105 	lo->tag_set.driver_data = lo;
2106 
2107 	err = blk_mq_alloc_tag_set(&lo->tag_set);
2108 	if (err)
2109 		goto out_free_idr;
2110 
2111 	lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
2112 	if (IS_ERR(lo->lo_queue)) {
2113 		err = PTR_ERR(lo->lo_queue);
2114 		goto out_cleanup_tags;
2115 	}
2116 	lo->lo_queue->queuedata = lo;
2117 
2118 	blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS);
2119 
2120 	/*
2121 	 * By default, we do buffer IO, so it doesn't make sense to enable
2122 	 * merge because the I/O submitted to backing file is handled page by
2123 	 * page. For directio mode, merge does help to dispatch bigger request
2124 	 * to underlayer disk. We will enable merge once directio is enabled.
2125 	 */
2126 	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
2127 
2128 	err = -ENOMEM;
2129 	disk = lo->lo_disk = alloc_disk(1 << part_shift);
2130 	if (!disk)
2131 		goto out_free_queue;
2132 
2133 	/*
2134 	 * Disable partition scanning by default. The in-kernel partition
2135 	 * scanning can be requested individually per-device during its
2136 	 * setup. Userspace can always add and remove partitions from all
2137 	 * devices. The needed partition minors are allocated from the
2138 	 * extended minor space, the main loop device numbers will continue
2139 	 * to match the loop minors, regardless of the number of partitions
2140 	 * used.
2141 	 *
2142 	 * If max_part is given, partition scanning is globally enabled for
2143 	 * all loop devices. The minors for the main loop devices will be
2144 	 * multiples of max_part.
2145 	 *
2146 	 * Note: Global-for-all-devices, set-only-at-init, read-only module
2147 	 * parameteters like 'max_loop' and 'max_part' make things needlessly
2148 	 * complicated, are too static, inflexible and may surprise
2149 	 * userspace tools. Parameters like this in general should be avoided.
2150 	 */
2151 	if (!part_shift)
2152 		disk->flags |= GENHD_FL_NO_PART_SCAN;
2153 	disk->flags |= GENHD_FL_EXT_DEVT;
2154 	atomic_set(&lo->lo_refcnt, 0);
2155 	lo->lo_number		= i;
2156 	spin_lock_init(&lo->lo_lock);
2157 	disk->major		= LOOP_MAJOR;
2158 	disk->first_minor	= i << part_shift;
2159 	disk->fops		= &lo_fops;
2160 	disk->private_data	= lo;
2161 	disk->queue		= lo->lo_queue;
2162 	sprintf(disk->disk_name, "loop%d", i);
2163 	add_disk(disk);
2164 	*l = lo;
2165 	return lo->lo_number;
2166 
2167 out_free_queue:
2168 	blk_cleanup_queue(lo->lo_queue);
2169 out_cleanup_tags:
2170 	blk_mq_free_tag_set(&lo->tag_set);
2171 out_free_idr:
2172 	idr_remove(&loop_index_idr, i);
2173 out_free_dev:
2174 	kfree(lo);
2175 out:
2176 	return err;
2177 }
2178 
2179 static void loop_remove(struct loop_device *lo)
2180 {
2181 	del_gendisk(lo->lo_disk);
2182 	blk_cleanup_queue(lo->lo_queue);
2183 	blk_mq_free_tag_set(&lo->tag_set);
2184 	put_disk(lo->lo_disk);
2185 	kfree(lo);
2186 }
2187 
2188 static int find_free_cb(int id, void *ptr, void *data)
2189 {
2190 	struct loop_device *lo = ptr;
2191 	struct loop_device **l = data;
2192 
2193 	if (lo->lo_state == Lo_unbound) {
2194 		*l = lo;
2195 		return 1;
2196 	}
2197 	return 0;
2198 }
2199 
2200 static int loop_lookup(struct loop_device **l, int i)
2201 {
2202 	struct loop_device *lo;
2203 	int ret = -ENODEV;
2204 
2205 	if (i < 0) {
2206 		int err;
2207 
2208 		err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
2209 		if (err == 1) {
2210 			*l = lo;
2211 			ret = lo->lo_number;
2212 		}
2213 		goto out;
2214 	}
2215 
2216 	/* lookup and return a specific i */
2217 	lo = idr_find(&loop_index_idr, i);
2218 	if (lo) {
2219 		*l = lo;
2220 		ret = lo->lo_number;
2221 	}
2222 out:
2223 	return ret;
2224 }
2225 
2226 static void loop_probe(dev_t dev)
2227 {
2228 	int idx = MINOR(dev) >> part_shift;
2229 	struct loop_device *lo;
2230 
2231 	if (max_loop && idx >= max_loop)
2232 		return;
2233 
2234 	mutex_lock(&loop_ctl_mutex);
2235 	if (loop_lookup(&lo, idx) < 0)
2236 		loop_add(&lo, idx);
2237 	mutex_unlock(&loop_ctl_mutex);
2238 }
2239 
2240 static long loop_control_ioctl(struct file *file, unsigned int cmd,
2241 			       unsigned long parm)
2242 {
2243 	struct loop_device *lo;
2244 	int ret;
2245 
2246 	ret = mutex_lock_killable(&loop_ctl_mutex);
2247 	if (ret)
2248 		return ret;
2249 
2250 	ret = -ENOSYS;
2251 	switch (cmd) {
2252 	case LOOP_CTL_ADD:
2253 		ret = loop_lookup(&lo, parm);
2254 		if (ret >= 0) {
2255 			ret = -EEXIST;
2256 			break;
2257 		}
2258 		ret = loop_add(&lo, parm);
2259 		break;
2260 	case LOOP_CTL_REMOVE:
2261 		ret = loop_lookup(&lo, parm);
2262 		if (ret < 0)
2263 			break;
2264 		if (lo->lo_state != Lo_unbound) {
2265 			ret = -EBUSY;
2266 			break;
2267 		}
2268 		if (atomic_read(&lo->lo_refcnt) > 0) {
2269 			ret = -EBUSY;
2270 			break;
2271 		}
2272 		lo->lo_disk->private_data = NULL;
2273 		idr_remove(&loop_index_idr, lo->lo_number);
2274 		loop_remove(lo);
2275 		break;
2276 	case LOOP_CTL_GET_FREE:
2277 		ret = loop_lookup(&lo, -1);
2278 		if (ret >= 0)
2279 			break;
2280 		ret = loop_add(&lo, -1);
2281 	}
2282 	mutex_unlock(&loop_ctl_mutex);
2283 
2284 	return ret;
2285 }
2286 
2287 static const struct file_operations loop_ctl_fops = {
2288 	.open		= nonseekable_open,
2289 	.unlocked_ioctl	= loop_control_ioctl,
2290 	.compat_ioctl	= loop_control_ioctl,
2291 	.owner		= THIS_MODULE,
2292 	.llseek		= noop_llseek,
2293 };
2294 
2295 static struct miscdevice loop_misc = {
2296 	.minor		= LOOP_CTRL_MINOR,
2297 	.name		= "loop-control",
2298 	.fops		= &loop_ctl_fops,
2299 };
2300 
2301 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2302 MODULE_ALIAS("devname:loop-control");
2303 
2304 static int __init loop_init(void)
2305 {
2306 	int i, nr;
2307 	struct loop_device *lo;
2308 	int err;
2309 
2310 	part_shift = 0;
2311 	if (max_part > 0) {
2312 		part_shift = fls(max_part);
2313 
2314 		/*
2315 		 * Adjust max_part according to part_shift as it is exported
2316 		 * to user space so that user can decide correct minor number
2317 		 * if [s]he want to create more devices.
2318 		 *
2319 		 * Note that -1 is required because partition 0 is reserved
2320 		 * for the whole disk.
2321 		 */
2322 		max_part = (1UL << part_shift) - 1;
2323 	}
2324 
2325 	if ((1UL << part_shift) > DISK_MAX_PARTS) {
2326 		err = -EINVAL;
2327 		goto err_out;
2328 	}
2329 
2330 	if (max_loop > 1UL << (MINORBITS - part_shift)) {
2331 		err = -EINVAL;
2332 		goto err_out;
2333 	}
2334 
2335 	/*
2336 	 * If max_loop is specified, create that many devices upfront.
2337 	 * This also becomes a hard limit. If max_loop is not specified,
2338 	 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
2339 	 * init time. Loop devices can be requested on-demand with the
2340 	 * /dev/loop-control interface, or be instantiated by accessing
2341 	 * a 'dead' device node.
2342 	 */
2343 	if (max_loop)
2344 		nr = max_loop;
2345 	else
2346 		nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
2347 
2348 	err = misc_register(&loop_misc);
2349 	if (err < 0)
2350 		goto err_out;
2351 
2352 
2353 	if (__register_blkdev(LOOP_MAJOR, "loop", loop_probe)) {
2354 		err = -EIO;
2355 		goto misc_out;
2356 	}
2357 
2358 	/* pre-create number of devices given by config or max_loop */
2359 	mutex_lock(&loop_ctl_mutex);
2360 	for (i = 0; i < nr; i++)
2361 		loop_add(&lo, i);
2362 	mutex_unlock(&loop_ctl_mutex);
2363 
2364 	printk(KERN_INFO "loop: module loaded\n");
2365 	return 0;
2366 
2367 misc_out:
2368 	misc_deregister(&loop_misc);
2369 err_out:
2370 	return err;
2371 }
2372 
2373 static int loop_exit_cb(int id, void *ptr, void *data)
2374 {
2375 	struct loop_device *lo = ptr;
2376 
2377 	loop_remove(lo);
2378 	return 0;
2379 }
2380 
2381 static void __exit loop_exit(void)
2382 {
2383 	mutex_lock(&loop_ctl_mutex);
2384 
2385 	idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
2386 	idr_destroy(&loop_index_idr);
2387 
2388 	unregister_blkdev(LOOP_MAJOR, "loop");
2389 
2390 	misc_deregister(&loop_misc);
2391 
2392 	mutex_unlock(&loop_ctl_mutex);
2393 }
2394 
2395 module_init(loop_init);
2396 module_exit(loop_exit);
2397 
2398 #ifndef MODULE
2399 static int __init max_loop_setup(char *str)
2400 {
2401 	max_loop = simple_strtol(str, NULL, 0);
2402 	return 1;
2403 }
2404 
2405 __setup("max_loop=", max_loop_setup);
2406 #endif
2407