xref: /openbmc/linux/drivers/block/loop.c (revision 05bcf503)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/loop.h>
67 #include <linux/compat.h>
68 #include <linux/suspend.h>
69 #include <linux/freezer.h>
70 #include <linux/mutex.h>
71 #include <linux/writeback.h>
72 #include <linux/completion.h>
73 #include <linux/highmem.h>
74 #include <linux/kthread.h>
75 #include <linux/splice.h>
76 #include <linux/sysfs.h>
77 #include <linux/miscdevice.h>
78 #include <linux/falloc.h>
79 
80 #include <asm/uaccess.h>
81 
82 static DEFINE_IDR(loop_index_idr);
83 static DEFINE_MUTEX(loop_index_mutex);
84 
85 static int max_part;
86 static int part_shift;
87 
88 /*
89  * Transfer functions
90  */
91 static int transfer_none(struct loop_device *lo, int cmd,
92 			 struct page *raw_page, unsigned raw_off,
93 			 struct page *loop_page, unsigned loop_off,
94 			 int size, sector_t real_block)
95 {
96 	char *raw_buf = kmap_atomic(raw_page) + raw_off;
97 	char *loop_buf = kmap_atomic(loop_page) + loop_off;
98 
99 	if (cmd == READ)
100 		memcpy(loop_buf, raw_buf, size);
101 	else
102 		memcpy(raw_buf, loop_buf, size);
103 
104 	kunmap_atomic(loop_buf);
105 	kunmap_atomic(raw_buf);
106 	cond_resched();
107 	return 0;
108 }
109 
110 static int transfer_xor(struct loop_device *lo, int cmd,
111 			struct page *raw_page, unsigned raw_off,
112 			struct page *loop_page, unsigned loop_off,
113 			int size, sector_t real_block)
114 {
115 	char *raw_buf = kmap_atomic(raw_page) + raw_off;
116 	char *loop_buf = kmap_atomic(loop_page) + loop_off;
117 	char *in, *out, *key;
118 	int i, keysize;
119 
120 	if (cmd == READ) {
121 		in = raw_buf;
122 		out = loop_buf;
123 	} else {
124 		in = loop_buf;
125 		out = raw_buf;
126 	}
127 
128 	key = lo->lo_encrypt_key;
129 	keysize = lo->lo_encrypt_key_size;
130 	for (i = 0; i < size; i++)
131 		*out++ = *in++ ^ key[(i & 511) % keysize];
132 
133 	kunmap_atomic(loop_buf);
134 	kunmap_atomic(raw_buf);
135 	cond_resched();
136 	return 0;
137 }
138 
139 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
140 {
141 	if (unlikely(info->lo_encrypt_key_size <= 0))
142 		return -EINVAL;
143 	return 0;
144 }
145 
146 static struct loop_func_table none_funcs = {
147 	.number = LO_CRYPT_NONE,
148 	.transfer = transfer_none,
149 };
150 
151 static struct loop_func_table xor_funcs = {
152 	.number = LO_CRYPT_XOR,
153 	.transfer = transfer_xor,
154 	.init = xor_init
155 };
156 
157 /* xfer_funcs[0] is special - its release function is never called */
158 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
159 	&none_funcs,
160 	&xor_funcs
161 };
162 
163 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
164 {
165 	loff_t size, loopsize;
166 
167 	/* Compute loopsize in bytes */
168 	size = i_size_read(file->f_mapping->host);
169 	loopsize = size - offset;
170 	/* offset is beyond i_size, wierd but possible */
171 	if (loopsize < 0)
172 		return 0;
173 
174 	if (sizelimit > 0 && sizelimit < loopsize)
175 		loopsize = sizelimit;
176 	/*
177 	 * Unfortunately, if we want to do I/O on the device,
178 	 * the number of 512-byte sectors has to fit into a sector_t.
179 	 */
180 	return loopsize >> 9;
181 }
182 
183 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
184 {
185 	return get_size(lo->lo_offset, lo->lo_sizelimit, file);
186 }
187 
188 static int
189 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
190 {
191 	loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
192 	sector_t x = (sector_t)size;
193 
194 	if (unlikely((loff_t)x != size))
195 		return -EFBIG;
196 	if (lo->lo_offset != offset)
197 		lo->lo_offset = offset;
198 	if (lo->lo_sizelimit != sizelimit)
199 		lo->lo_sizelimit = sizelimit;
200 	set_capacity(lo->lo_disk, x);
201 	return 0;
202 }
203 
204 static inline int
205 lo_do_transfer(struct loop_device *lo, int cmd,
206 	       struct page *rpage, unsigned roffs,
207 	       struct page *lpage, unsigned loffs,
208 	       int size, sector_t rblock)
209 {
210 	if (unlikely(!lo->transfer))
211 		return 0;
212 
213 	return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
214 }
215 
216 /**
217  * __do_lo_send_write - helper for writing data to a loop device
218  *
219  * This helper just factors out common code between do_lo_send_direct_write()
220  * and do_lo_send_write().
221  */
222 static int __do_lo_send_write(struct file *file,
223 		u8 *buf, const int len, loff_t pos)
224 {
225 	ssize_t bw;
226 	mm_segment_t old_fs = get_fs();
227 
228 	set_fs(get_ds());
229 	bw = file->f_op->write(file, buf, len, &pos);
230 	set_fs(old_fs);
231 	if (likely(bw == len))
232 		return 0;
233 	printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
234 			(unsigned long long)pos, len);
235 	if (bw >= 0)
236 		bw = -EIO;
237 	return bw;
238 }
239 
240 /**
241  * do_lo_send_direct_write - helper for writing data to a loop device
242  *
243  * This is the fast, non-transforming version that does not need double
244  * buffering.
245  */
246 static int do_lo_send_direct_write(struct loop_device *lo,
247 		struct bio_vec *bvec, loff_t pos, struct page *page)
248 {
249 	ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
250 			kmap(bvec->bv_page) + bvec->bv_offset,
251 			bvec->bv_len, pos);
252 	kunmap(bvec->bv_page);
253 	cond_resched();
254 	return bw;
255 }
256 
257 /**
258  * do_lo_send_write - helper for writing data to a loop device
259  *
260  * This is the slow, transforming version that needs to double buffer the
261  * data as it cannot do the transformations in place without having direct
262  * access to the destination pages of the backing file.
263  */
264 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
265 		loff_t pos, struct page *page)
266 {
267 	int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
268 			bvec->bv_offset, bvec->bv_len, pos >> 9);
269 	if (likely(!ret))
270 		return __do_lo_send_write(lo->lo_backing_file,
271 				page_address(page), bvec->bv_len,
272 				pos);
273 	printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
274 			"length %i.\n", (unsigned long long)pos, bvec->bv_len);
275 	if (ret > 0)
276 		ret = -EIO;
277 	return ret;
278 }
279 
280 static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos)
281 {
282 	int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t,
283 			struct page *page);
284 	struct bio_vec *bvec;
285 	struct page *page = NULL;
286 	int i, ret = 0;
287 
288 	if (lo->transfer != transfer_none) {
289 		page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
290 		if (unlikely(!page))
291 			goto fail;
292 		kmap(page);
293 		do_lo_send = do_lo_send_write;
294 	} else {
295 		do_lo_send = do_lo_send_direct_write;
296 	}
297 
298 	bio_for_each_segment(bvec, bio, i) {
299 		ret = do_lo_send(lo, bvec, pos, page);
300 		if (ret < 0)
301 			break;
302 		pos += bvec->bv_len;
303 	}
304 	if (page) {
305 		kunmap(page);
306 		__free_page(page);
307 	}
308 out:
309 	return ret;
310 fail:
311 	printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
312 	ret = -ENOMEM;
313 	goto out;
314 }
315 
316 struct lo_read_data {
317 	struct loop_device *lo;
318 	struct page *page;
319 	unsigned offset;
320 	int bsize;
321 };
322 
323 static int
324 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
325 		struct splice_desc *sd)
326 {
327 	struct lo_read_data *p = sd->u.data;
328 	struct loop_device *lo = p->lo;
329 	struct page *page = buf->page;
330 	sector_t IV;
331 	int size;
332 
333 	IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) +
334 							(buf->offset >> 9);
335 	size = sd->len;
336 	if (size > p->bsize)
337 		size = p->bsize;
338 
339 	if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) {
340 		printk(KERN_ERR "loop: transfer error block %ld\n",
341 		       page->index);
342 		size = -EINVAL;
343 	}
344 
345 	flush_dcache_page(p->page);
346 
347 	if (size > 0)
348 		p->offset += size;
349 
350 	return size;
351 }
352 
353 static int
354 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd)
355 {
356 	return __splice_from_pipe(pipe, sd, lo_splice_actor);
357 }
358 
359 static ssize_t
360 do_lo_receive(struct loop_device *lo,
361 	      struct bio_vec *bvec, int bsize, loff_t pos)
362 {
363 	struct lo_read_data cookie;
364 	struct splice_desc sd;
365 	struct file *file;
366 	ssize_t retval;
367 
368 	cookie.lo = lo;
369 	cookie.page = bvec->bv_page;
370 	cookie.offset = bvec->bv_offset;
371 	cookie.bsize = bsize;
372 
373 	sd.len = 0;
374 	sd.total_len = bvec->bv_len;
375 	sd.flags = 0;
376 	sd.pos = pos;
377 	sd.u.data = &cookie;
378 
379 	file = lo->lo_backing_file;
380 	retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor);
381 
382 	return retval;
383 }
384 
385 static int
386 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
387 {
388 	struct bio_vec *bvec;
389 	ssize_t s;
390 	int i;
391 
392 	bio_for_each_segment(bvec, bio, i) {
393 		s = do_lo_receive(lo, bvec, bsize, pos);
394 		if (s < 0)
395 			return s;
396 
397 		if (s != bvec->bv_len) {
398 			zero_fill_bio(bio);
399 			break;
400 		}
401 		pos += bvec->bv_len;
402 	}
403 	return 0;
404 }
405 
406 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
407 {
408 	loff_t pos;
409 	int ret;
410 
411 	pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
412 
413 	if (bio_rw(bio) == WRITE) {
414 		struct file *file = lo->lo_backing_file;
415 
416 		if (bio->bi_rw & REQ_FLUSH) {
417 			ret = vfs_fsync(file, 0);
418 			if (unlikely(ret && ret != -EINVAL)) {
419 				ret = -EIO;
420 				goto out;
421 			}
422 		}
423 
424 		/*
425 		 * We use punch hole to reclaim the free space used by the
426 		 * image a.k.a. discard. However we do not support discard if
427 		 * encryption is enabled, because it may give an attacker
428 		 * useful information.
429 		 */
430 		if (bio->bi_rw & REQ_DISCARD) {
431 			struct file *file = lo->lo_backing_file;
432 			int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
433 
434 			if ((!file->f_op->fallocate) ||
435 			    lo->lo_encrypt_key_size) {
436 				ret = -EOPNOTSUPP;
437 				goto out;
438 			}
439 			ret = file->f_op->fallocate(file, mode, pos,
440 						    bio->bi_size);
441 			if (unlikely(ret && ret != -EINVAL &&
442 				     ret != -EOPNOTSUPP))
443 				ret = -EIO;
444 			goto out;
445 		}
446 
447 		ret = lo_send(lo, bio, pos);
448 
449 		if ((bio->bi_rw & REQ_FUA) && !ret) {
450 			ret = vfs_fsync(file, 0);
451 			if (unlikely(ret && ret != -EINVAL))
452 				ret = -EIO;
453 		}
454 	} else
455 		ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
456 
457 out:
458 	return ret;
459 }
460 
461 /*
462  * Add bio to back of pending list
463  */
464 static void loop_add_bio(struct loop_device *lo, struct bio *bio)
465 {
466 	bio_list_add(&lo->lo_bio_list, bio);
467 }
468 
469 /*
470  * Grab first pending buffer
471  */
472 static struct bio *loop_get_bio(struct loop_device *lo)
473 {
474 	return bio_list_pop(&lo->lo_bio_list);
475 }
476 
477 static void loop_make_request(struct request_queue *q, struct bio *old_bio)
478 {
479 	struct loop_device *lo = q->queuedata;
480 	int rw = bio_rw(old_bio);
481 
482 	if (rw == READA)
483 		rw = READ;
484 
485 	BUG_ON(!lo || (rw != READ && rw != WRITE));
486 
487 	spin_lock_irq(&lo->lo_lock);
488 	if (lo->lo_state != Lo_bound)
489 		goto out;
490 	if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
491 		goto out;
492 	loop_add_bio(lo, old_bio);
493 	wake_up(&lo->lo_event);
494 	spin_unlock_irq(&lo->lo_lock);
495 	return;
496 
497 out:
498 	spin_unlock_irq(&lo->lo_lock);
499 	bio_io_error(old_bio);
500 }
501 
502 struct switch_request {
503 	struct file *file;
504 	struct completion wait;
505 };
506 
507 static void do_loop_switch(struct loop_device *, struct switch_request *);
508 
509 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
510 {
511 	if (unlikely(!bio->bi_bdev)) {
512 		do_loop_switch(lo, bio->bi_private);
513 		bio_put(bio);
514 	} else {
515 		int ret = do_bio_filebacked(lo, bio);
516 		bio_endio(bio, ret);
517 	}
518 }
519 
520 /*
521  * worker thread that handles reads/writes to file backed loop devices,
522  * to avoid blocking in our make_request_fn. it also does loop decrypting
523  * on reads for block backed loop, as that is too heavy to do from
524  * b_end_io context where irqs may be disabled.
525  *
526  * Loop explanation:  loop_clr_fd() sets lo_state to Lo_rundown before
527  * calling kthread_stop().  Therefore once kthread_should_stop() is
528  * true, make_request will not place any more requests.  Therefore
529  * once kthread_should_stop() is true and lo_bio is NULL, we are
530  * done with the loop.
531  */
532 static int loop_thread(void *data)
533 {
534 	struct loop_device *lo = data;
535 	struct bio *bio;
536 
537 	set_user_nice(current, -20);
538 
539 	while (!kthread_should_stop() || !bio_list_empty(&lo->lo_bio_list)) {
540 
541 		wait_event_interruptible(lo->lo_event,
542 				!bio_list_empty(&lo->lo_bio_list) ||
543 				kthread_should_stop());
544 
545 		if (bio_list_empty(&lo->lo_bio_list))
546 			continue;
547 		spin_lock_irq(&lo->lo_lock);
548 		bio = loop_get_bio(lo);
549 		spin_unlock_irq(&lo->lo_lock);
550 
551 		BUG_ON(!bio);
552 		loop_handle_bio(lo, bio);
553 	}
554 
555 	return 0;
556 }
557 
558 /*
559  * loop_switch performs the hard work of switching a backing store.
560  * First it needs to flush existing IO, it does this by sending a magic
561  * BIO down the pipe. The completion of this BIO does the actual switch.
562  */
563 static int loop_switch(struct loop_device *lo, struct file *file)
564 {
565 	struct switch_request w;
566 	struct bio *bio = bio_alloc(GFP_KERNEL, 0);
567 	if (!bio)
568 		return -ENOMEM;
569 	init_completion(&w.wait);
570 	w.file = file;
571 	bio->bi_private = &w;
572 	bio->bi_bdev = NULL;
573 	loop_make_request(lo->lo_queue, bio);
574 	wait_for_completion(&w.wait);
575 	return 0;
576 }
577 
578 /*
579  * Helper to flush the IOs in loop, but keeping loop thread running
580  */
581 static int loop_flush(struct loop_device *lo)
582 {
583 	/* loop not yet configured, no running thread, nothing to flush */
584 	if (!lo->lo_thread)
585 		return 0;
586 
587 	return loop_switch(lo, NULL);
588 }
589 
590 /*
591  * Do the actual switch; called from the BIO completion routine
592  */
593 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
594 {
595 	struct file *file = p->file;
596 	struct file *old_file = lo->lo_backing_file;
597 	struct address_space *mapping;
598 
599 	/* if no new file, only flush of queued bios requested */
600 	if (!file)
601 		goto out;
602 
603 	mapping = file->f_mapping;
604 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
605 	lo->lo_backing_file = file;
606 	lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
607 		mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
608 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
609 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
610 out:
611 	complete(&p->wait);
612 }
613 
614 
615 /*
616  * loop_change_fd switched the backing store of a loopback device to
617  * a new file. This is useful for operating system installers to free up
618  * the original file and in High Availability environments to switch to
619  * an alternative location for the content in case of server meltdown.
620  * This can only work if the loop device is used read-only, and if the
621  * new backing store is the same size and type as the old backing store.
622  */
623 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
624 			  unsigned int arg)
625 {
626 	struct file	*file, *old_file;
627 	struct inode	*inode;
628 	int		error;
629 
630 	error = -ENXIO;
631 	if (lo->lo_state != Lo_bound)
632 		goto out;
633 
634 	/* the loop device has to be read-only */
635 	error = -EINVAL;
636 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
637 		goto out;
638 
639 	error = -EBADF;
640 	file = fget(arg);
641 	if (!file)
642 		goto out;
643 
644 	inode = file->f_mapping->host;
645 	old_file = lo->lo_backing_file;
646 
647 	error = -EINVAL;
648 
649 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
650 		goto out_putf;
651 
652 	/* size of the new backing store needs to be the same */
653 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
654 		goto out_putf;
655 
656 	/* and ... switch */
657 	error = loop_switch(lo, file);
658 	if (error)
659 		goto out_putf;
660 
661 	fput(old_file);
662 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
663 		ioctl_by_bdev(bdev, BLKRRPART, 0);
664 	return 0;
665 
666  out_putf:
667 	fput(file);
668  out:
669 	return error;
670 }
671 
672 static inline int is_loop_device(struct file *file)
673 {
674 	struct inode *i = file->f_mapping->host;
675 
676 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
677 }
678 
679 /* loop sysfs attributes */
680 
681 static ssize_t loop_attr_show(struct device *dev, char *page,
682 			      ssize_t (*callback)(struct loop_device *, char *))
683 {
684 	struct gendisk *disk = dev_to_disk(dev);
685 	struct loop_device *lo = disk->private_data;
686 
687 	return callback(lo, page);
688 }
689 
690 #define LOOP_ATTR_RO(_name)						\
691 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
692 static ssize_t loop_attr_do_show_##_name(struct device *d,		\
693 				struct device_attribute *attr, char *b)	\
694 {									\
695 	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
696 }									\
697 static struct device_attribute loop_attr_##_name =			\
698 	__ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
699 
700 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
701 {
702 	ssize_t ret;
703 	char *p = NULL;
704 
705 	spin_lock_irq(&lo->lo_lock);
706 	if (lo->lo_backing_file)
707 		p = d_path(&lo->lo_backing_file->f_path, buf, PAGE_SIZE - 1);
708 	spin_unlock_irq(&lo->lo_lock);
709 
710 	if (IS_ERR_OR_NULL(p))
711 		ret = PTR_ERR(p);
712 	else {
713 		ret = strlen(p);
714 		memmove(buf, p, ret);
715 		buf[ret++] = '\n';
716 		buf[ret] = 0;
717 	}
718 
719 	return ret;
720 }
721 
722 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
723 {
724 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
725 }
726 
727 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
728 {
729 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
730 }
731 
732 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
733 {
734 	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
735 
736 	return sprintf(buf, "%s\n", autoclear ? "1" : "0");
737 }
738 
739 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
740 {
741 	int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
742 
743 	return sprintf(buf, "%s\n", partscan ? "1" : "0");
744 }
745 
746 LOOP_ATTR_RO(backing_file);
747 LOOP_ATTR_RO(offset);
748 LOOP_ATTR_RO(sizelimit);
749 LOOP_ATTR_RO(autoclear);
750 LOOP_ATTR_RO(partscan);
751 
752 static struct attribute *loop_attrs[] = {
753 	&loop_attr_backing_file.attr,
754 	&loop_attr_offset.attr,
755 	&loop_attr_sizelimit.attr,
756 	&loop_attr_autoclear.attr,
757 	&loop_attr_partscan.attr,
758 	NULL,
759 };
760 
761 static struct attribute_group loop_attribute_group = {
762 	.name = "loop",
763 	.attrs= loop_attrs,
764 };
765 
766 static int loop_sysfs_init(struct loop_device *lo)
767 {
768 	return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
769 				  &loop_attribute_group);
770 }
771 
772 static void loop_sysfs_exit(struct loop_device *lo)
773 {
774 	sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
775 			   &loop_attribute_group);
776 }
777 
778 static void loop_config_discard(struct loop_device *lo)
779 {
780 	struct file *file = lo->lo_backing_file;
781 	struct inode *inode = file->f_mapping->host;
782 	struct request_queue *q = lo->lo_queue;
783 
784 	/*
785 	 * We use punch hole to reclaim the free space used by the
786 	 * image a.k.a. discard. However we do support discard if
787 	 * encryption is enabled, because it may give an attacker
788 	 * useful information.
789 	 */
790 	if ((!file->f_op->fallocate) ||
791 	    lo->lo_encrypt_key_size) {
792 		q->limits.discard_granularity = 0;
793 		q->limits.discard_alignment = 0;
794 		q->limits.max_discard_sectors = 0;
795 		q->limits.discard_zeroes_data = 0;
796 		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
797 		return;
798 	}
799 
800 	q->limits.discard_granularity = inode->i_sb->s_blocksize;
801 	q->limits.discard_alignment = 0;
802 	q->limits.max_discard_sectors = UINT_MAX >> 9;
803 	q->limits.discard_zeroes_data = 1;
804 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
805 }
806 
807 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
808 		       struct block_device *bdev, unsigned int arg)
809 {
810 	struct file	*file, *f;
811 	struct inode	*inode;
812 	struct address_space *mapping;
813 	unsigned lo_blocksize;
814 	int		lo_flags = 0;
815 	int		error;
816 	loff_t		size;
817 
818 	/* This is safe, since we have a reference from open(). */
819 	__module_get(THIS_MODULE);
820 
821 	error = -EBADF;
822 	file = fget(arg);
823 	if (!file)
824 		goto out;
825 
826 	error = -EBUSY;
827 	if (lo->lo_state != Lo_unbound)
828 		goto out_putf;
829 
830 	/* Avoid recursion */
831 	f = file;
832 	while (is_loop_device(f)) {
833 		struct loop_device *l;
834 
835 		if (f->f_mapping->host->i_bdev == bdev)
836 			goto out_putf;
837 
838 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
839 		if (l->lo_state == Lo_unbound) {
840 			error = -EINVAL;
841 			goto out_putf;
842 		}
843 		f = l->lo_backing_file;
844 	}
845 
846 	mapping = file->f_mapping;
847 	inode = mapping->host;
848 
849 	error = -EINVAL;
850 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
851 		goto out_putf;
852 
853 	if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
854 	    !file->f_op->write)
855 		lo_flags |= LO_FLAGS_READ_ONLY;
856 
857 	lo_blocksize = S_ISBLK(inode->i_mode) ?
858 		inode->i_bdev->bd_block_size : PAGE_SIZE;
859 
860 	error = -EFBIG;
861 	size = get_loop_size(lo, file);
862 	if ((loff_t)(sector_t)size != size)
863 		goto out_putf;
864 
865 	error = 0;
866 
867 	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
868 
869 	lo->lo_blocksize = lo_blocksize;
870 	lo->lo_device = bdev;
871 	lo->lo_flags = lo_flags;
872 	lo->lo_backing_file = file;
873 	lo->transfer = transfer_none;
874 	lo->ioctl = NULL;
875 	lo->lo_sizelimit = 0;
876 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
877 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
878 
879 	bio_list_init(&lo->lo_bio_list);
880 
881 	/*
882 	 * set queue make_request_fn, and add limits based on lower level
883 	 * device
884 	 */
885 	blk_queue_make_request(lo->lo_queue, loop_make_request);
886 	lo->lo_queue->queuedata = lo;
887 
888 	if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
889 		blk_queue_flush(lo->lo_queue, REQ_FLUSH);
890 
891 	set_capacity(lo->lo_disk, size);
892 	bd_set_size(bdev, size << 9);
893 	loop_sysfs_init(lo);
894 	/* let user-space know about the new size */
895 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
896 
897 	set_blocksize(bdev, lo_blocksize);
898 
899 	lo->lo_thread = kthread_create(loop_thread, lo, "loop%d",
900 						lo->lo_number);
901 	if (IS_ERR(lo->lo_thread)) {
902 		error = PTR_ERR(lo->lo_thread);
903 		goto out_clr;
904 	}
905 	lo->lo_state = Lo_bound;
906 	wake_up_process(lo->lo_thread);
907 	if (part_shift)
908 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
909 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
910 		ioctl_by_bdev(bdev, BLKRRPART, 0);
911 	return 0;
912 
913 out_clr:
914 	loop_sysfs_exit(lo);
915 	lo->lo_thread = NULL;
916 	lo->lo_device = NULL;
917 	lo->lo_backing_file = NULL;
918 	lo->lo_flags = 0;
919 	set_capacity(lo->lo_disk, 0);
920 	invalidate_bdev(bdev);
921 	bd_set_size(bdev, 0);
922 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
923 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask);
924 	lo->lo_state = Lo_unbound;
925  out_putf:
926 	fput(file);
927  out:
928 	/* This is safe: open() is still holding a reference. */
929 	module_put(THIS_MODULE);
930 	return error;
931 }
932 
933 static int
934 loop_release_xfer(struct loop_device *lo)
935 {
936 	int err = 0;
937 	struct loop_func_table *xfer = lo->lo_encryption;
938 
939 	if (xfer) {
940 		if (xfer->release)
941 			err = xfer->release(lo);
942 		lo->transfer = NULL;
943 		lo->lo_encryption = NULL;
944 		module_put(xfer->owner);
945 	}
946 	return err;
947 }
948 
949 static int
950 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
951 	       const struct loop_info64 *i)
952 {
953 	int err = 0;
954 
955 	if (xfer) {
956 		struct module *owner = xfer->owner;
957 
958 		if (!try_module_get(owner))
959 			return -EINVAL;
960 		if (xfer->init)
961 			err = xfer->init(lo, i);
962 		if (err)
963 			module_put(owner);
964 		else
965 			lo->lo_encryption = xfer;
966 	}
967 	return err;
968 }
969 
970 static int loop_clr_fd(struct loop_device *lo)
971 {
972 	struct file *filp = lo->lo_backing_file;
973 	gfp_t gfp = lo->old_gfp_mask;
974 	struct block_device *bdev = lo->lo_device;
975 
976 	if (lo->lo_state != Lo_bound)
977 		return -ENXIO;
978 
979 	/*
980 	 * If we've explicitly asked to tear down the loop device,
981 	 * and it has an elevated reference count, set it for auto-teardown when
982 	 * the last reference goes away. This stops $!~#$@ udev from
983 	 * preventing teardown because it decided that it needs to run blkid on
984 	 * the loopback device whenever they appear. xfstests is notorious for
985 	 * failing tests because blkid via udev races with a losetup
986 	 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
987 	 * command to fail with EBUSY.
988 	 */
989 	if (lo->lo_refcnt > 1) {
990 		lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
991 		mutex_unlock(&lo->lo_ctl_mutex);
992 		return 0;
993 	}
994 
995 	if (filp == NULL)
996 		return -EINVAL;
997 
998 	spin_lock_irq(&lo->lo_lock);
999 	lo->lo_state = Lo_rundown;
1000 	spin_unlock_irq(&lo->lo_lock);
1001 
1002 	kthread_stop(lo->lo_thread);
1003 
1004 	spin_lock_irq(&lo->lo_lock);
1005 	lo->lo_backing_file = NULL;
1006 	spin_unlock_irq(&lo->lo_lock);
1007 
1008 	loop_release_xfer(lo);
1009 	lo->transfer = NULL;
1010 	lo->ioctl = NULL;
1011 	lo->lo_device = NULL;
1012 	lo->lo_encryption = NULL;
1013 	lo->lo_offset = 0;
1014 	lo->lo_sizelimit = 0;
1015 	lo->lo_encrypt_key_size = 0;
1016 	lo->lo_thread = NULL;
1017 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1018 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1019 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1020 	if (bdev)
1021 		invalidate_bdev(bdev);
1022 	set_capacity(lo->lo_disk, 0);
1023 	loop_sysfs_exit(lo);
1024 	if (bdev) {
1025 		bd_set_size(bdev, 0);
1026 		/* let user-space know about this change */
1027 		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1028 	}
1029 	mapping_set_gfp_mask(filp->f_mapping, gfp);
1030 	lo->lo_state = Lo_unbound;
1031 	/* This is safe: open() is still holding a reference. */
1032 	module_put(THIS_MODULE);
1033 	if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
1034 		ioctl_by_bdev(bdev, BLKRRPART, 0);
1035 	lo->lo_flags = 0;
1036 	if (!part_shift)
1037 		lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1038 	mutex_unlock(&lo->lo_ctl_mutex);
1039 	/*
1040 	 * Need not hold lo_ctl_mutex to fput backing file.
1041 	 * Calling fput holding lo_ctl_mutex triggers a circular
1042 	 * lock dependency possibility warning as fput can take
1043 	 * bd_mutex which is usually taken before lo_ctl_mutex.
1044 	 */
1045 	fput(filp);
1046 	return 0;
1047 }
1048 
1049 static int
1050 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1051 {
1052 	int err;
1053 	struct loop_func_table *xfer;
1054 	kuid_t uid = current_uid();
1055 
1056 	if (lo->lo_encrypt_key_size &&
1057 	    !uid_eq(lo->lo_key_owner, uid) &&
1058 	    !capable(CAP_SYS_ADMIN))
1059 		return -EPERM;
1060 	if (lo->lo_state != Lo_bound)
1061 		return -ENXIO;
1062 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1063 		return -EINVAL;
1064 
1065 	err = loop_release_xfer(lo);
1066 	if (err)
1067 		return err;
1068 
1069 	if (info->lo_encrypt_type) {
1070 		unsigned int type = info->lo_encrypt_type;
1071 
1072 		if (type >= MAX_LO_CRYPT)
1073 			return -EINVAL;
1074 		xfer = xfer_funcs[type];
1075 		if (xfer == NULL)
1076 			return -EINVAL;
1077 	} else
1078 		xfer = NULL;
1079 
1080 	err = loop_init_xfer(lo, xfer, info);
1081 	if (err)
1082 		return err;
1083 
1084 	if (lo->lo_offset != info->lo_offset ||
1085 	    lo->lo_sizelimit != info->lo_sizelimit) {
1086 		if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit))
1087 			return -EFBIG;
1088 	}
1089 	loop_config_discard(lo);
1090 
1091 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1092 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1093 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1094 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1095 
1096 	if (!xfer)
1097 		xfer = &none_funcs;
1098 	lo->transfer = xfer->transfer;
1099 	lo->ioctl = xfer->ioctl;
1100 
1101 	if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1102 	     (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1103 		lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1104 
1105 	if ((info->lo_flags & LO_FLAGS_PARTSCAN) &&
1106 	     !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1107 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
1108 		lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1109 		ioctl_by_bdev(lo->lo_device, BLKRRPART, 0);
1110 	}
1111 
1112 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1113 	lo->lo_init[0] = info->lo_init[0];
1114 	lo->lo_init[1] = info->lo_init[1];
1115 	if (info->lo_encrypt_key_size) {
1116 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1117 		       info->lo_encrypt_key_size);
1118 		lo->lo_key_owner = uid;
1119 	}
1120 
1121 	return 0;
1122 }
1123 
1124 static int
1125 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1126 {
1127 	struct file *file = lo->lo_backing_file;
1128 	struct kstat stat;
1129 	int error;
1130 
1131 	if (lo->lo_state != Lo_bound)
1132 		return -ENXIO;
1133 	error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat);
1134 	if (error)
1135 		return error;
1136 	memset(info, 0, sizeof(*info));
1137 	info->lo_number = lo->lo_number;
1138 	info->lo_device = huge_encode_dev(stat.dev);
1139 	info->lo_inode = stat.ino;
1140 	info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1141 	info->lo_offset = lo->lo_offset;
1142 	info->lo_sizelimit = lo->lo_sizelimit;
1143 	info->lo_flags = lo->lo_flags;
1144 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1145 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1146 	info->lo_encrypt_type =
1147 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1148 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1149 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1150 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1151 		       lo->lo_encrypt_key_size);
1152 	}
1153 	return 0;
1154 }
1155 
1156 static void
1157 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1158 {
1159 	memset(info64, 0, sizeof(*info64));
1160 	info64->lo_number = info->lo_number;
1161 	info64->lo_device = info->lo_device;
1162 	info64->lo_inode = info->lo_inode;
1163 	info64->lo_rdevice = info->lo_rdevice;
1164 	info64->lo_offset = info->lo_offset;
1165 	info64->lo_sizelimit = 0;
1166 	info64->lo_encrypt_type = info->lo_encrypt_type;
1167 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1168 	info64->lo_flags = info->lo_flags;
1169 	info64->lo_init[0] = info->lo_init[0];
1170 	info64->lo_init[1] = info->lo_init[1];
1171 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1172 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1173 	else
1174 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1175 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1176 }
1177 
1178 static int
1179 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1180 {
1181 	memset(info, 0, sizeof(*info));
1182 	info->lo_number = info64->lo_number;
1183 	info->lo_device = info64->lo_device;
1184 	info->lo_inode = info64->lo_inode;
1185 	info->lo_rdevice = info64->lo_rdevice;
1186 	info->lo_offset = info64->lo_offset;
1187 	info->lo_encrypt_type = info64->lo_encrypt_type;
1188 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1189 	info->lo_flags = info64->lo_flags;
1190 	info->lo_init[0] = info64->lo_init[0];
1191 	info->lo_init[1] = info64->lo_init[1];
1192 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1193 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1194 	else
1195 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1196 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1197 
1198 	/* error in case values were truncated */
1199 	if (info->lo_device != info64->lo_device ||
1200 	    info->lo_rdevice != info64->lo_rdevice ||
1201 	    info->lo_inode != info64->lo_inode ||
1202 	    info->lo_offset != info64->lo_offset)
1203 		return -EOVERFLOW;
1204 
1205 	return 0;
1206 }
1207 
1208 static int
1209 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1210 {
1211 	struct loop_info info;
1212 	struct loop_info64 info64;
1213 
1214 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1215 		return -EFAULT;
1216 	loop_info64_from_old(&info, &info64);
1217 	return loop_set_status(lo, &info64);
1218 }
1219 
1220 static int
1221 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1222 {
1223 	struct loop_info64 info64;
1224 
1225 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1226 		return -EFAULT;
1227 	return loop_set_status(lo, &info64);
1228 }
1229 
1230 static int
1231 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1232 	struct loop_info info;
1233 	struct loop_info64 info64;
1234 	int err = 0;
1235 
1236 	if (!arg)
1237 		err = -EINVAL;
1238 	if (!err)
1239 		err = loop_get_status(lo, &info64);
1240 	if (!err)
1241 		err = loop_info64_to_old(&info64, &info);
1242 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1243 		err = -EFAULT;
1244 
1245 	return err;
1246 }
1247 
1248 static int
1249 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1250 	struct loop_info64 info64;
1251 	int err = 0;
1252 
1253 	if (!arg)
1254 		err = -EINVAL;
1255 	if (!err)
1256 		err = loop_get_status(lo, &info64);
1257 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1258 		err = -EFAULT;
1259 
1260 	return err;
1261 }
1262 
1263 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1264 {
1265 	int err;
1266 	sector_t sec;
1267 	loff_t sz;
1268 
1269 	err = -ENXIO;
1270 	if (unlikely(lo->lo_state != Lo_bound))
1271 		goto out;
1272 	err = figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1273 	if (unlikely(err))
1274 		goto out;
1275 	sec = get_capacity(lo->lo_disk);
1276 	/* the width of sector_t may be narrow for bit-shift */
1277 	sz = sec;
1278 	sz <<= 9;
1279 	mutex_lock(&bdev->bd_mutex);
1280 	bd_set_size(bdev, sz);
1281 	/* let user-space know about the new size */
1282 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1283 	mutex_unlock(&bdev->bd_mutex);
1284 
1285  out:
1286 	return err;
1287 }
1288 
1289 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1290 	unsigned int cmd, unsigned long arg)
1291 {
1292 	struct loop_device *lo = bdev->bd_disk->private_data;
1293 	int err;
1294 
1295 	mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1296 	switch (cmd) {
1297 	case LOOP_SET_FD:
1298 		err = loop_set_fd(lo, mode, bdev, arg);
1299 		break;
1300 	case LOOP_CHANGE_FD:
1301 		err = loop_change_fd(lo, bdev, arg);
1302 		break;
1303 	case LOOP_CLR_FD:
1304 		/* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1305 		err = loop_clr_fd(lo);
1306 		if (!err)
1307 			goto out_unlocked;
1308 		break;
1309 	case LOOP_SET_STATUS:
1310 		err = -EPERM;
1311 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1312 			err = loop_set_status_old(lo,
1313 					(struct loop_info __user *)arg);
1314 		break;
1315 	case LOOP_GET_STATUS:
1316 		err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1317 		break;
1318 	case LOOP_SET_STATUS64:
1319 		err = -EPERM;
1320 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1321 			err = loop_set_status64(lo,
1322 					(struct loop_info64 __user *) arg);
1323 		break;
1324 	case LOOP_GET_STATUS64:
1325 		err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1326 		break;
1327 	case LOOP_SET_CAPACITY:
1328 		err = -EPERM;
1329 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1330 			err = loop_set_capacity(lo, bdev);
1331 		break;
1332 	default:
1333 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1334 	}
1335 	mutex_unlock(&lo->lo_ctl_mutex);
1336 
1337 out_unlocked:
1338 	return err;
1339 }
1340 
1341 #ifdef CONFIG_COMPAT
1342 struct compat_loop_info {
1343 	compat_int_t	lo_number;      /* ioctl r/o */
1344 	compat_dev_t	lo_device;      /* ioctl r/o */
1345 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1346 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1347 	compat_int_t	lo_offset;
1348 	compat_int_t	lo_encrypt_type;
1349 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1350 	compat_int_t	lo_flags;       /* ioctl r/o */
1351 	char		lo_name[LO_NAME_SIZE];
1352 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1353 	compat_ulong_t	lo_init[2];
1354 	char		reserved[4];
1355 };
1356 
1357 /*
1358  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1359  * - noinlined to reduce stack space usage in main part of driver
1360  */
1361 static noinline int
1362 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1363 			struct loop_info64 *info64)
1364 {
1365 	struct compat_loop_info info;
1366 
1367 	if (copy_from_user(&info, arg, sizeof(info)))
1368 		return -EFAULT;
1369 
1370 	memset(info64, 0, sizeof(*info64));
1371 	info64->lo_number = info.lo_number;
1372 	info64->lo_device = info.lo_device;
1373 	info64->lo_inode = info.lo_inode;
1374 	info64->lo_rdevice = info.lo_rdevice;
1375 	info64->lo_offset = info.lo_offset;
1376 	info64->lo_sizelimit = 0;
1377 	info64->lo_encrypt_type = info.lo_encrypt_type;
1378 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1379 	info64->lo_flags = info.lo_flags;
1380 	info64->lo_init[0] = info.lo_init[0];
1381 	info64->lo_init[1] = info.lo_init[1];
1382 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1383 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1384 	else
1385 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1386 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1387 	return 0;
1388 }
1389 
1390 /*
1391  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1392  * - noinlined to reduce stack space usage in main part of driver
1393  */
1394 static noinline int
1395 loop_info64_to_compat(const struct loop_info64 *info64,
1396 		      struct compat_loop_info __user *arg)
1397 {
1398 	struct compat_loop_info info;
1399 
1400 	memset(&info, 0, sizeof(info));
1401 	info.lo_number = info64->lo_number;
1402 	info.lo_device = info64->lo_device;
1403 	info.lo_inode = info64->lo_inode;
1404 	info.lo_rdevice = info64->lo_rdevice;
1405 	info.lo_offset = info64->lo_offset;
1406 	info.lo_encrypt_type = info64->lo_encrypt_type;
1407 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1408 	info.lo_flags = info64->lo_flags;
1409 	info.lo_init[0] = info64->lo_init[0];
1410 	info.lo_init[1] = info64->lo_init[1];
1411 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1412 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1413 	else
1414 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1415 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1416 
1417 	/* error in case values were truncated */
1418 	if (info.lo_device != info64->lo_device ||
1419 	    info.lo_rdevice != info64->lo_rdevice ||
1420 	    info.lo_inode != info64->lo_inode ||
1421 	    info.lo_offset != info64->lo_offset ||
1422 	    info.lo_init[0] != info64->lo_init[0] ||
1423 	    info.lo_init[1] != info64->lo_init[1])
1424 		return -EOVERFLOW;
1425 
1426 	if (copy_to_user(arg, &info, sizeof(info)))
1427 		return -EFAULT;
1428 	return 0;
1429 }
1430 
1431 static int
1432 loop_set_status_compat(struct loop_device *lo,
1433 		       const struct compat_loop_info __user *arg)
1434 {
1435 	struct loop_info64 info64;
1436 	int ret;
1437 
1438 	ret = loop_info64_from_compat(arg, &info64);
1439 	if (ret < 0)
1440 		return ret;
1441 	return loop_set_status(lo, &info64);
1442 }
1443 
1444 static int
1445 loop_get_status_compat(struct loop_device *lo,
1446 		       struct compat_loop_info __user *arg)
1447 {
1448 	struct loop_info64 info64;
1449 	int err = 0;
1450 
1451 	if (!arg)
1452 		err = -EINVAL;
1453 	if (!err)
1454 		err = loop_get_status(lo, &info64);
1455 	if (!err)
1456 		err = loop_info64_to_compat(&info64, arg);
1457 	return err;
1458 }
1459 
1460 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1461 			   unsigned int cmd, unsigned long arg)
1462 {
1463 	struct loop_device *lo = bdev->bd_disk->private_data;
1464 	int err;
1465 
1466 	switch(cmd) {
1467 	case LOOP_SET_STATUS:
1468 		mutex_lock(&lo->lo_ctl_mutex);
1469 		err = loop_set_status_compat(
1470 			lo, (const struct compat_loop_info __user *) arg);
1471 		mutex_unlock(&lo->lo_ctl_mutex);
1472 		break;
1473 	case LOOP_GET_STATUS:
1474 		mutex_lock(&lo->lo_ctl_mutex);
1475 		err = loop_get_status_compat(
1476 			lo, (struct compat_loop_info __user *) arg);
1477 		mutex_unlock(&lo->lo_ctl_mutex);
1478 		break;
1479 	case LOOP_SET_CAPACITY:
1480 	case LOOP_CLR_FD:
1481 	case LOOP_GET_STATUS64:
1482 	case LOOP_SET_STATUS64:
1483 		arg = (unsigned long) compat_ptr(arg);
1484 	case LOOP_SET_FD:
1485 	case LOOP_CHANGE_FD:
1486 		err = lo_ioctl(bdev, mode, cmd, arg);
1487 		break;
1488 	default:
1489 		err = -ENOIOCTLCMD;
1490 		break;
1491 	}
1492 	return err;
1493 }
1494 #endif
1495 
1496 static int lo_open(struct block_device *bdev, fmode_t mode)
1497 {
1498 	struct loop_device *lo;
1499 	int err = 0;
1500 
1501 	mutex_lock(&loop_index_mutex);
1502 	lo = bdev->bd_disk->private_data;
1503 	if (!lo) {
1504 		err = -ENXIO;
1505 		goto out;
1506 	}
1507 
1508 	mutex_lock(&lo->lo_ctl_mutex);
1509 	lo->lo_refcnt++;
1510 	mutex_unlock(&lo->lo_ctl_mutex);
1511 out:
1512 	mutex_unlock(&loop_index_mutex);
1513 	return err;
1514 }
1515 
1516 static int lo_release(struct gendisk *disk, fmode_t mode)
1517 {
1518 	struct loop_device *lo = disk->private_data;
1519 	int err;
1520 
1521 	mutex_lock(&lo->lo_ctl_mutex);
1522 
1523 	if (--lo->lo_refcnt)
1524 		goto out;
1525 
1526 	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1527 		/*
1528 		 * In autoclear mode, stop the loop thread
1529 		 * and remove configuration after last close.
1530 		 */
1531 		err = loop_clr_fd(lo);
1532 		if (!err)
1533 			goto out_unlocked;
1534 	} else {
1535 		/*
1536 		 * Otherwise keep thread (if running) and config,
1537 		 * but flush possible ongoing bios in thread.
1538 		 */
1539 		loop_flush(lo);
1540 	}
1541 
1542 out:
1543 	mutex_unlock(&lo->lo_ctl_mutex);
1544 out_unlocked:
1545 	return 0;
1546 }
1547 
1548 static const struct block_device_operations lo_fops = {
1549 	.owner =	THIS_MODULE,
1550 	.open =		lo_open,
1551 	.release =	lo_release,
1552 	.ioctl =	lo_ioctl,
1553 #ifdef CONFIG_COMPAT
1554 	.compat_ioctl =	lo_compat_ioctl,
1555 #endif
1556 };
1557 
1558 /*
1559  * And now the modules code and kernel interface.
1560  */
1561 static int max_loop;
1562 module_param(max_loop, int, S_IRUGO);
1563 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1564 module_param(max_part, int, S_IRUGO);
1565 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1566 MODULE_LICENSE("GPL");
1567 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1568 
1569 int loop_register_transfer(struct loop_func_table *funcs)
1570 {
1571 	unsigned int n = funcs->number;
1572 
1573 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1574 		return -EINVAL;
1575 	xfer_funcs[n] = funcs;
1576 	return 0;
1577 }
1578 
1579 static int unregister_transfer_cb(int id, void *ptr, void *data)
1580 {
1581 	struct loop_device *lo = ptr;
1582 	struct loop_func_table *xfer = data;
1583 
1584 	mutex_lock(&lo->lo_ctl_mutex);
1585 	if (lo->lo_encryption == xfer)
1586 		loop_release_xfer(lo);
1587 	mutex_unlock(&lo->lo_ctl_mutex);
1588 	return 0;
1589 }
1590 
1591 int loop_unregister_transfer(int number)
1592 {
1593 	unsigned int n = number;
1594 	struct loop_func_table *xfer;
1595 
1596 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1597 		return -EINVAL;
1598 
1599 	xfer_funcs[n] = NULL;
1600 	idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1601 	return 0;
1602 }
1603 
1604 EXPORT_SYMBOL(loop_register_transfer);
1605 EXPORT_SYMBOL(loop_unregister_transfer);
1606 
1607 static int loop_add(struct loop_device **l, int i)
1608 {
1609 	struct loop_device *lo;
1610 	struct gendisk *disk;
1611 	int err;
1612 
1613 	err = -ENOMEM;
1614 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1615 	if (!lo)
1616 		goto out;
1617 
1618 	if (!idr_pre_get(&loop_index_idr, GFP_KERNEL))
1619 		goto out_free_dev;
1620 
1621 	if (i >= 0) {
1622 		int m;
1623 
1624 		/* create specific i in the index */
1625 		err = idr_get_new_above(&loop_index_idr, lo, i, &m);
1626 		if (err >= 0 && i != m) {
1627 			idr_remove(&loop_index_idr, m);
1628 			err = -EEXIST;
1629 		}
1630 	} else if (i == -1) {
1631 		int m;
1632 
1633 		/* get next free nr */
1634 		err = idr_get_new(&loop_index_idr, lo, &m);
1635 		if (err >= 0)
1636 			i = m;
1637 	} else {
1638 		err = -EINVAL;
1639 	}
1640 	if (err < 0)
1641 		goto out_free_dev;
1642 
1643 	lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
1644 	if (!lo->lo_queue)
1645 		goto out_free_dev;
1646 
1647 	disk = lo->lo_disk = alloc_disk(1 << part_shift);
1648 	if (!disk)
1649 		goto out_free_queue;
1650 
1651 	/*
1652 	 * Disable partition scanning by default. The in-kernel partition
1653 	 * scanning can be requested individually per-device during its
1654 	 * setup. Userspace can always add and remove partitions from all
1655 	 * devices. The needed partition minors are allocated from the
1656 	 * extended minor space, the main loop device numbers will continue
1657 	 * to match the loop minors, regardless of the number of partitions
1658 	 * used.
1659 	 *
1660 	 * If max_part is given, partition scanning is globally enabled for
1661 	 * all loop devices. The minors for the main loop devices will be
1662 	 * multiples of max_part.
1663 	 *
1664 	 * Note: Global-for-all-devices, set-only-at-init, read-only module
1665 	 * parameteters like 'max_loop' and 'max_part' make things needlessly
1666 	 * complicated, are too static, inflexible and may surprise
1667 	 * userspace tools. Parameters like this in general should be avoided.
1668 	 */
1669 	if (!part_shift)
1670 		disk->flags |= GENHD_FL_NO_PART_SCAN;
1671 	disk->flags |= GENHD_FL_EXT_DEVT;
1672 	mutex_init(&lo->lo_ctl_mutex);
1673 	lo->lo_number		= i;
1674 	lo->lo_thread		= NULL;
1675 	init_waitqueue_head(&lo->lo_event);
1676 	spin_lock_init(&lo->lo_lock);
1677 	disk->major		= LOOP_MAJOR;
1678 	disk->first_minor	= i << part_shift;
1679 	disk->fops		= &lo_fops;
1680 	disk->private_data	= lo;
1681 	disk->queue		= lo->lo_queue;
1682 	sprintf(disk->disk_name, "loop%d", i);
1683 	add_disk(disk);
1684 	*l = lo;
1685 	return lo->lo_number;
1686 
1687 out_free_queue:
1688 	blk_cleanup_queue(lo->lo_queue);
1689 out_free_dev:
1690 	kfree(lo);
1691 out:
1692 	return err;
1693 }
1694 
1695 static void loop_remove(struct loop_device *lo)
1696 {
1697 	del_gendisk(lo->lo_disk);
1698 	blk_cleanup_queue(lo->lo_queue);
1699 	put_disk(lo->lo_disk);
1700 	kfree(lo);
1701 }
1702 
1703 static int find_free_cb(int id, void *ptr, void *data)
1704 {
1705 	struct loop_device *lo = ptr;
1706 	struct loop_device **l = data;
1707 
1708 	if (lo->lo_state == Lo_unbound) {
1709 		*l = lo;
1710 		return 1;
1711 	}
1712 	return 0;
1713 }
1714 
1715 static int loop_lookup(struct loop_device **l, int i)
1716 {
1717 	struct loop_device *lo;
1718 	int ret = -ENODEV;
1719 
1720 	if (i < 0) {
1721 		int err;
1722 
1723 		err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1724 		if (err == 1) {
1725 			*l = lo;
1726 			ret = lo->lo_number;
1727 		}
1728 		goto out;
1729 	}
1730 
1731 	/* lookup and return a specific i */
1732 	lo = idr_find(&loop_index_idr, i);
1733 	if (lo) {
1734 		*l = lo;
1735 		ret = lo->lo_number;
1736 	}
1737 out:
1738 	return ret;
1739 }
1740 
1741 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1742 {
1743 	struct loop_device *lo;
1744 	struct kobject *kobj;
1745 	int err;
1746 
1747 	mutex_lock(&loop_index_mutex);
1748 	err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1749 	if (err < 0)
1750 		err = loop_add(&lo, MINOR(dev) >> part_shift);
1751 	if (err < 0)
1752 		kobj = ERR_PTR(err);
1753 	else
1754 		kobj = get_disk(lo->lo_disk);
1755 	mutex_unlock(&loop_index_mutex);
1756 
1757 	*part = 0;
1758 	return kobj;
1759 }
1760 
1761 static long loop_control_ioctl(struct file *file, unsigned int cmd,
1762 			       unsigned long parm)
1763 {
1764 	struct loop_device *lo;
1765 	int ret = -ENOSYS;
1766 
1767 	mutex_lock(&loop_index_mutex);
1768 	switch (cmd) {
1769 	case LOOP_CTL_ADD:
1770 		ret = loop_lookup(&lo, parm);
1771 		if (ret >= 0) {
1772 			ret = -EEXIST;
1773 			break;
1774 		}
1775 		ret = loop_add(&lo, parm);
1776 		break;
1777 	case LOOP_CTL_REMOVE:
1778 		ret = loop_lookup(&lo, parm);
1779 		if (ret < 0)
1780 			break;
1781 		mutex_lock(&lo->lo_ctl_mutex);
1782 		if (lo->lo_state != Lo_unbound) {
1783 			ret = -EBUSY;
1784 			mutex_unlock(&lo->lo_ctl_mutex);
1785 			break;
1786 		}
1787 		if (lo->lo_refcnt > 0) {
1788 			ret = -EBUSY;
1789 			mutex_unlock(&lo->lo_ctl_mutex);
1790 			break;
1791 		}
1792 		lo->lo_disk->private_data = NULL;
1793 		mutex_unlock(&lo->lo_ctl_mutex);
1794 		idr_remove(&loop_index_idr, lo->lo_number);
1795 		loop_remove(lo);
1796 		break;
1797 	case LOOP_CTL_GET_FREE:
1798 		ret = loop_lookup(&lo, -1);
1799 		if (ret >= 0)
1800 			break;
1801 		ret = loop_add(&lo, -1);
1802 	}
1803 	mutex_unlock(&loop_index_mutex);
1804 
1805 	return ret;
1806 }
1807 
1808 static const struct file_operations loop_ctl_fops = {
1809 	.open		= nonseekable_open,
1810 	.unlocked_ioctl	= loop_control_ioctl,
1811 	.compat_ioctl	= loop_control_ioctl,
1812 	.owner		= THIS_MODULE,
1813 	.llseek		= noop_llseek,
1814 };
1815 
1816 static struct miscdevice loop_misc = {
1817 	.minor		= LOOP_CTRL_MINOR,
1818 	.name		= "loop-control",
1819 	.fops		= &loop_ctl_fops,
1820 };
1821 
1822 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
1823 MODULE_ALIAS("devname:loop-control");
1824 
1825 static int __init loop_init(void)
1826 {
1827 	int i, nr;
1828 	unsigned long range;
1829 	struct loop_device *lo;
1830 	int err;
1831 
1832 	err = misc_register(&loop_misc);
1833 	if (err < 0)
1834 		return err;
1835 
1836 	part_shift = 0;
1837 	if (max_part > 0) {
1838 		part_shift = fls(max_part);
1839 
1840 		/*
1841 		 * Adjust max_part according to part_shift as it is exported
1842 		 * to user space so that user can decide correct minor number
1843 		 * if [s]he want to create more devices.
1844 		 *
1845 		 * Note that -1 is required because partition 0 is reserved
1846 		 * for the whole disk.
1847 		 */
1848 		max_part = (1UL << part_shift) - 1;
1849 	}
1850 
1851 	if ((1UL << part_shift) > DISK_MAX_PARTS)
1852 		return -EINVAL;
1853 
1854 	if (max_loop > 1UL << (MINORBITS - part_shift))
1855 		return -EINVAL;
1856 
1857 	/*
1858 	 * If max_loop is specified, create that many devices upfront.
1859 	 * This also becomes a hard limit. If max_loop is not specified,
1860 	 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1861 	 * init time. Loop devices can be requested on-demand with the
1862 	 * /dev/loop-control interface, or be instantiated by accessing
1863 	 * a 'dead' device node.
1864 	 */
1865 	if (max_loop) {
1866 		nr = max_loop;
1867 		range = max_loop << part_shift;
1868 	} else {
1869 		nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
1870 		range = 1UL << MINORBITS;
1871 	}
1872 
1873 	if (register_blkdev(LOOP_MAJOR, "loop"))
1874 		return -EIO;
1875 
1876 	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
1877 				  THIS_MODULE, loop_probe, NULL, NULL);
1878 
1879 	/* pre-create number of devices given by config or max_loop */
1880 	mutex_lock(&loop_index_mutex);
1881 	for (i = 0; i < nr; i++)
1882 		loop_add(&lo, i);
1883 	mutex_unlock(&loop_index_mutex);
1884 
1885 	printk(KERN_INFO "loop: module loaded\n");
1886 	return 0;
1887 }
1888 
1889 static int loop_exit_cb(int id, void *ptr, void *data)
1890 {
1891 	struct loop_device *lo = ptr;
1892 
1893 	loop_remove(lo);
1894 	return 0;
1895 }
1896 
1897 static void __exit loop_exit(void)
1898 {
1899 	unsigned long range;
1900 
1901 	range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
1902 
1903 	idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
1904 	idr_remove_all(&loop_index_idr);
1905 	idr_destroy(&loop_index_idr);
1906 
1907 	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
1908 	unregister_blkdev(LOOP_MAJOR, "loop");
1909 
1910 	misc_deregister(&loop_misc);
1911 }
1912 
1913 module_init(loop_init);
1914 module_exit(loop_exit);
1915 
1916 #ifndef MODULE
1917 static int __init max_loop_setup(char *str)
1918 {
1919 	max_loop = simple_strtol(str, NULL, 0);
1920 	return 1;
1921 }
1922 
1923 __setup("max_loop=", max_loop_setup);
1924 #endif
1925