xref: /openbmc/linux/drivers/block/loop.c (revision 0455bef6)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/pagemap.h>
57 #include <linux/file.h>
58 #include <linux/stat.h>
59 #include <linux/errno.h>
60 #include <linux/major.h>
61 #include <linux/wait.h>
62 #include <linux/blkdev.h>
63 #include <linux/blkpg.h>
64 #include <linux/init.h>
65 #include <linux/swap.h>
66 #include <linux/slab.h>
67 #include <linux/compat.h>
68 #include <linux/suspend.h>
69 #include <linux/freezer.h>
70 #include <linux/mutex.h>
71 #include <linux/writeback.h>
72 #include <linux/completion.h>
73 #include <linux/highmem.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include <linux/ioprio.h>
80 #include <linux/blk-cgroup.h>
81 #include <linux/sched/mm.h>
82 #include <linux/statfs.h>
83 
84 #include "loop.h"
85 
86 #include <linux/uaccess.h>
87 
88 #define LOOP_IDLE_WORKER_TIMEOUT (60 * HZ)
89 
90 static DEFINE_IDR(loop_index_idr);
91 static DEFINE_MUTEX(loop_ctl_mutex);
92 static DEFINE_MUTEX(loop_validate_mutex);
93 
94 /**
95  * loop_global_lock_killable() - take locks for safe loop_validate_file() test
96  *
97  * @lo: struct loop_device
98  * @global: true if @lo is about to bind another "struct loop_device", false otherwise
99  *
100  * Returns 0 on success, -EINTR otherwise.
101  *
102  * Since loop_validate_file() traverses on other "struct loop_device" if
103  * is_loop_device() is true, we need a global lock for serializing concurrent
104  * loop_configure()/loop_change_fd()/__loop_clr_fd() calls.
105  */
106 static int loop_global_lock_killable(struct loop_device *lo, bool global)
107 {
108 	int err;
109 
110 	if (global) {
111 		err = mutex_lock_killable(&loop_validate_mutex);
112 		if (err)
113 			return err;
114 	}
115 	err = mutex_lock_killable(&lo->lo_mutex);
116 	if (err && global)
117 		mutex_unlock(&loop_validate_mutex);
118 	return err;
119 }
120 
121 /**
122  * loop_global_unlock() - release locks taken by loop_global_lock_killable()
123  *
124  * @lo: struct loop_device
125  * @global: true if @lo was about to bind another "struct loop_device", false otherwise
126  */
127 static void loop_global_unlock(struct loop_device *lo, bool global)
128 {
129 	mutex_unlock(&lo->lo_mutex);
130 	if (global)
131 		mutex_unlock(&loop_validate_mutex);
132 }
133 
134 static int max_part;
135 static int part_shift;
136 
137 static int transfer_xor(struct loop_device *lo, int cmd,
138 			struct page *raw_page, unsigned raw_off,
139 			struct page *loop_page, unsigned loop_off,
140 			int size, sector_t real_block)
141 {
142 	char *raw_buf = kmap_atomic(raw_page) + raw_off;
143 	char *loop_buf = kmap_atomic(loop_page) + loop_off;
144 	char *in, *out, *key;
145 	int i, keysize;
146 
147 	if (cmd == READ) {
148 		in = raw_buf;
149 		out = loop_buf;
150 	} else {
151 		in = loop_buf;
152 		out = raw_buf;
153 	}
154 
155 	key = lo->lo_encrypt_key;
156 	keysize = lo->lo_encrypt_key_size;
157 	for (i = 0; i < size; i++)
158 		*out++ = *in++ ^ key[(i & 511) % keysize];
159 
160 	kunmap_atomic(loop_buf);
161 	kunmap_atomic(raw_buf);
162 	cond_resched();
163 	return 0;
164 }
165 
166 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
167 {
168 	if (unlikely(info->lo_encrypt_key_size <= 0))
169 		return -EINVAL;
170 	return 0;
171 }
172 
173 static struct loop_func_table none_funcs = {
174 	.number = LO_CRYPT_NONE,
175 };
176 
177 static struct loop_func_table xor_funcs = {
178 	.number = LO_CRYPT_XOR,
179 	.transfer = transfer_xor,
180 	.init = xor_init
181 };
182 
183 /* xfer_funcs[0] is special - its release function is never called */
184 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
185 	&none_funcs,
186 	&xor_funcs
187 };
188 
189 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
190 {
191 	loff_t loopsize;
192 
193 	/* Compute loopsize in bytes */
194 	loopsize = i_size_read(file->f_mapping->host);
195 	if (offset > 0)
196 		loopsize -= offset;
197 	/* offset is beyond i_size, weird but possible */
198 	if (loopsize < 0)
199 		return 0;
200 
201 	if (sizelimit > 0 && sizelimit < loopsize)
202 		loopsize = sizelimit;
203 	/*
204 	 * Unfortunately, if we want to do I/O on the device,
205 	 * the number of 512-byte sectors has to fit into a sector_t.
206 	 */
207 	return loopsize >> 9;
208 }
209 
210 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
211 {
212 	return get_size(lo->lo_offset, lo->lo_sizelimit, file);
213 }
214 
215 static void __loop_update_dio(struct loop_device *lo, bool dio)
216 {
217 	struct file *file = lo->lo_backing_file;
218 	struct address_space *mapping = file->f_mapping;
219 	struct inode *inode = mapping->host;
220 	unsigned short sb_bsize = 0;
221 	unsigned dio_align = 0;
222 	bool use_dio;
223 
224 	if (inode->i_sb->s_bdev) {
225 		sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
226 		dio_align = sb_bsize - 1;
227 	}
228 
229 	/*
230 	 * We support direct I/O only if lo_offset is aligned with the
231 	 * logical I/O size of backing device, and the logical block
232 	 * size of loop is bigger than the backing device's and the loop
233 	 * needn't transform transfer.
234 	 *
235 	 * TODO: the above condition may be loosed in the future, and
236 	 * direct I/O may be switched runtime at that time because most
237 	 * of requests in sane applications should be PAGE_SIZE aligned
238 	 */
239 	if (dio) {
240 		if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
241 				!(lo->lo_offset & dio_align) &&
242 				mapping->a_ops->direct_IO &&
243 				!lo->transfer)
244 			use_dio = true;
245 		else
246 			use_dio = false;
247 	} else {
248 		use_dio = false;
249 	}
250 
251 	if (lo->use_dio == use_dio)
252 		return;
253 
254 	/* flush dirty pages before changing direct IO */
255 	vfs_fsync(file, 0);
256 
257 	/*
258 	 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
259 	 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
260 	 * will get updated by ioctl(LOOP_GET_STATUS)
261 	 */
262 	if (lo->lo_state == Lo_bound)
263 		blk_mq_freeze_queue(lo->lo_queue);
264 	lo->use_dio = use_dio;
265 	if (use_dio) {
266 		blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue);
267 		lo->lo_flags |= LO_FLAGS_DIRECT_IO;
268 	} else {
269 		blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
270 		lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
271 	}
272 	if (lo->lo_state == Lo_bound)
273 		blk_mq_unfreeze_queue(lo->lo_queue);
274 }
275 
276 /**
277  * loop_set_size() - sets device size and notifies userspace
278  * @lo: struct loop_device to set the size for
279  * @size: new size of the loop device
280  *
281  * Callers must validate that the size passed into this function fits into
282  * a sector_t, eg using loop_validate_size()
283  */
284 static void loop_set_size(struct loop_device *lo, loff_t size)
285 {
286 	if (!set_capacity_and_notify(lo->lo_disk, size))
287 		kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
288 }
289 
290 static inline int
291 lo_do_transfer(struct loop_device *lo, int cmd,
292 	       struct page *rpage, unsigned roffs,
293 	       struct page *lpage, unsigned loffs,
294 	       int size, sector_t rblock)
295 {
296 	int ret;
297 
298 	ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
299 	if (likely(!ret))
300 		return 0;
301 
302 	printk_ratelimited(KERN_ERR
303 		"loop: Transfer error at byte offset %llu, length %i.\n",
304 		(unsigned long long)rblock << 9, size);
305 	return ret;
306 }
307 
308 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
309 {
310 	struct iov_iter i;
311 	ssize_t bw;
312 
313 	iov_iter_bvec(&i, WRITE, bvec, 1, bvec->bv_len);
314 
315 	file_start_write(file);
316 	bw = vfs_iter_write(file, &i, ppos, 0);
317 	file_end_write(file);
318 
319 	if (likely(bw ==  bvec->bv_len))
320 		return 0;
321 
322 	printk_ratelimited(KERN_ERR
323 		"loop: Write error at byte offset %llu, length %i.\n",
324 		(unsigned long long)*ppos, bvec->bv_len);
325 	if (bw >= 0)
326 		bw = -EIO;
327 	return bw;
328 }
329 
330 static int lo_write_simple(struct loop_device *lo, struct request *rq,
331 		loff_t pos)
332 {
333 	struct bio_vec bvec;
334 	struct req_iterator iter;
335 	int ret = 0;
336 
337 	rq_for_each_segment(bvec, rq, iter) {
338 		ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
339 		if (ret < 0)
340 			break;
341 		cond_resched();
342 	}
343 
344 	return ret;
345 }
346 
347 /*
348  * This is the slow, transforming version that needs to double buffer the
349  * data as it cannot do the transformations in place without having direct
350  * access to the destination pages of the backing file.
351  */
352 static int lo_write_transfer(struct loop_device *lo, struct request *rq,
353 		loff_t pos)
354 {
355 	struct bio_vec bvec, b;
356 	struct req_iterator iter;
357 	struct page *page;
358 	int ret = 0;
359 
360 	page = alloc_page(GFP_NOIO);
361 	if (unlikely(!page))
362 		return -ENOMEM;
363 
364 	rq_for_each_segment(bvec, rq, iter) {
365 		ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
366 			bvec.bv_offset, bvec.bv_len, pos >> 9);
367 		if (unlikely(ret))
368 			break;
369 
370 		b.bv_page = page;
371 		b.bv_offset = 0;
372 		b.bv_len = bvec.bv_len;
373 		ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
374 		if (ret < 0)
375 			break;
376 	}
377 
378 	__free_page(page);
379 	return ret;
380 }
381 
382 static int lo_read_simple(struct loop_device *lo, struct request *rq,
383 		loff_t pos)
384 {
385 	struct bio_vec bvec;
386 	struct req_iterator iter;
387 	struct iov_iter i;
388 	ssize_t len;
389 
390 	rq_for_each_segment(bvec, rq, iter) {
391 		iov_iter_bvec(&i, READ, &bvec, 1, bvec.bv_len);
392 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
393 		if (len < 0)
394 			return len;
395 
396 		flush_dcache_page(bvec.bv_page);
397 
398 		if (len != bvec.bv_len) {
399 			struct bio *bio;
400 
401 			__rq_for_each_bio(bio, rq)
402 				zero_fill_bio(bio);
403 			break;
404 		}
405 		cond_resched();
406 	}
407 
408 	return 0;
409 }
410 
411 static int lo_read_transfer(struct loop_device *lo, struct request *rq,
412 		loff_t pos)
413 {
414 	struct bio_vec bvec, b;
415 	struct req_iterator iter;
416 	struct iov_iter i;
417 	struct page *page;
418 	ssize_t len;
419 	int ret = 0;
420 
421 	page = alloc_page(GFP_NOIO);
422 	if (unlikely(!page))
423 		return -ENOMEM;
424 
425 	rq_for_each_segment(bvec, rq, iter) {
426 		loff_t offset = pos;
427 
428 		b.bv_page = page;
429 		b.bv_offset = 0;
430 		b.bv_len = bvec.bv_len;
431 
432 		iov_iter_bvec(&i, READ, &b, 1, b.bv_len);
433 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
434 		if (len < 0) {
435 			ret = len;
436 			goto out_free_page;
437 		}
438 
439 		ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
440 			bvec.bv_offset, len, offset >> 9);
441 		if (ret)
442 			goto out_free_page;
443 
444 		flush_dcache_page(bvec.bv_page);
445 
446 		if (len != bvec.bv_len) {
447 			struct bio *bio;
448 
449 			__rq_for_each_bio(bio, rq)
450 				zero_fill_bio(bio);
451 			break;
452 		}
453 	}
454 
455 	ret = 0;
456 out_free_page:
457 	__free_page(page);
458 	return ret;
459 }
460 
461 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos,
462 			int mode)
463 {
464 	/*
465 	 * We use fallocate to manipulate the space mappings used by the image
466 	 * a.k.a. discard/zerorange. However we do not support this if
467 	 * encryption is enabled, because it may give an attacker useful
468 	 * information.
469 	 */
470 	struct file *file = lo->lo_backing_file;
471 	struct request_queue *q = lo->lo_queue;
472 	int ret;
473 
474 	mode |= FALLOC_FL_KEEP_SIZE;
475 
476 	if (!blk_queue_discard(q)) {
477 		ret = -EOPNOTSUPP;
478 		goto out;
479 	}
480 
481 	ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
482 	if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
483 		ret = -EIO;
484  out:
485 	return ret;
486 }
487 
488 static int lo_req_flush(struct loop_device *lo, struct request *rq)
489 {
490 	struct file *file = lo->lo_backing_file;
491 	int ret = vfs_fsync(file, 0);
492 	if (unlikely(ret && ret != -EINVAL))
493 		ret = -EIO;
494 
495 	return ret;
496 }
497 
498 static void lo_complete_rq(struct request *rq)
499 {
500 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
501 	blk_status_t ret = BLK_STS_OK;
502 
503 	if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) ||
504 	    req_op(rq) != REQ_OP_READ) {
505 		if (cmd->ret < 0)
506 			ret = errno_to_blk_status(cmd->ret);
507 		goto end_io;
508 	}
509 
510 	/*
511 	 * Short READ - if we got some data, advance our request and
512 	 * retry it. If we got no data, end the rest with EIO.
513 	 */
514 	if (cmd->ret) {
515 		blk_update_request(rq, BLK_STS_OK, cmd->ret);
516 		cmd->ret = 0;
517 		blk_mq_requeue_request(rq, true);
518 	} else {
519 		if (cmd->use_aio) {
520 			struct bio *bio = rq->bio;
521 
522 			while (bio) {
523 				zero_fill_bio(bio);
524 				bio = bio->bi_next;
525 			}
526 		}
527 		ret = BLK_STS_IOERR;
528 end_io:
529 		blk_mq_end_request(rq, ret);
530 	}
531 }
532 
533 static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
534 {
535 	struct request *rq = blk_mq_rq_from_pdu(cmd);
536 
537 	if (!atomic_dec_and_test(&cmd->ref))
538 		return;
539 	kfree(cmd->bvec);
540 	cmd->bvec = NULL;
541 	if (likely(!blk_should_fake_timeout(rq->q)))
542 		blk_mq_complete_request(rq);
543 }
544 
545 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
546 {
547 	struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
548 
549 	cmd->ret = ret;
550 	lo_rw_aio_do_completion(cmd);
551 }
552 
553 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
554 		     loff_t pos, bool rw)
555 {
556 	struct iov_iter iter;
557 	struct req_iterator rq_iter;
558 	struct bio_vec *bvec;
559 	struct request *rq = blk_mq_rq_from_pdu(cmd);
560 	struct bio *bio = rq->bio;
561 	struct file *file = lo->lo_backing_file;
562 	struct bio_vec tmp;
563 	unsigned int offset;
564 	int nr_bvec = 0;
565 	int ret;
566 
567 	rq_for_each_bvec(tmp, rq, rq_iter)
568 		nr_bvec++;
569 
570 	if (rq->bio != rq->biotail) {
571 
572 		bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec),
573 				     GFP_NOIO);
574 		if (!bvec)
575 			return -EIO;
576 		cmd->bvec = bvec;
577 
578 		/*
579 		 * The bios of the request may be started from the middle of
580 		 * the 'bvec' because of bio splitting, so we can't directly
581 		 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec
582 		 * API will take care of all details for us.
583 		 */
584 		rq_for_each_bvec(tmp, rq, rq_iter) {
585 			*bvec = tmp;
586 			bvec++;
587 		}
588 		bvec = cmd->bvec;
589 		offset = 0;
590 	} else {
591 		/*
592 		 * Same here, this bio may be started from the middle of the
593 		 * 'bvec' because of bio splitting, so offset from the bvec
594 		 * must be passed to iov iterator
595 		 */
596 		offset = bio->bi_iter.bi_bvec_done;
597 		bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
598 	}
599 	atomic_set(&cmd->ref, 2);
600 
601 	iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq));
602 	iter.iov_offset = offset;
603 
604 	cmd->iocb.ki_pos = pos;
605 	cmd->iocb.ki_filp = file;
606 	cmd->iocb.ki_complete = lo_rw_aio_complete;
607 	cmd->iocb.ki_flags = IOCB_DIRECT;
608 	cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
609 
610 	if (rw == WRITE)
611 		ret = call_write_iter(file, &cmd->iocb, &iter);
612 	else
613 		ret = call_read_iter(file, &cmd->iocb, &iter);
614 
615 	lo_rw_aio_do_completion(cmd);
616 
617 	if (ret != -EIOCBQUEUED)
618 		cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
619 	return 0;
620 }
621 
622 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
623 {
624 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
625 	loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
626 
627 	/*
628 	 * lo_write_simple and lo_read_simple should have been covered
629 	 * by io submit style function like lo_rw_aio(), one blocker
630 	 * is that lo_read_simple() need to call flush_dcache_page after
631 	 * the page is written from kernel, and it isn't easy to handle
632 	 * this in io submit style function which submits all segments
633 	 * of the req at one time. And direct read IO doesn't need to
634 	 * run flush_dcache_page().
635 	 */
636 	switch (req_op(rq)) {
637 	case REQ_OP_FLUSH:
638 		return lo_req_flush(lo, rq);
639 	case REQ_OP_WRITE_ZEROES:
640 		/*
641 		 * If the caller doesn't want deallocation, call zeroout to
642 		 * write zeroes the range.  Otherwise, punch them out.
643 		 */
644 		return lo_fallocate(lo, rq, pos,
645 			(rq->cmd_flags & REQ_NOUNMAP) ?
646 				FALLOC_FL_ZERO_RANGE :
647 				FALLOC_FL_PUNCH_HOLE);
648 	case REQ_OP_DISCARD:
649 		return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE);
650 	case REQ_OP_WRITE:
651 		if (lo->transfer)
652 			return lo_write_transfer(lo, rq, pos);
653 		else if (cmd->use_aio)
654 			return lo_rw_aio(lo, cmd, pos, WRITE);
655 		else
656 			return lo_write_simple(lo, rq, pos);
657 	case REQ_OP_READ:
658 		if (lo->transfer)
659 			return lo_read_transfer(lo, rq, pos);
660 		else if (cmd->use_aio)
661 			return lo_rw_aio(lo, cmd, pos, READ);
662 		else
663 			return lo_read_simple(lo, rq, pos);
664 	default:
665 		WARN_ON_ONCE(1);
666 		return -EIO;
667 	}
668 }
669 
670 static inline void loop_update_dio(struct loop_device *lo)
671 {
672 	__loop_update_dio(lo, (lo->lo_backing_file->f_flags & O_DIRECT) |
673 				lo->use_dio);
674 }
675 
676 static void loop_reread_partitions(struct loop_device *lo)
677 {
678 	int rc;
679 
680 	mutex_lock(&lo->lo_disk->open_mutex);
681 	rc = bdev_disk_changed(lo->lo_disk, false);
682 	mutex_unlock(&lo->lo_disk->open_mutex);
683 	if (rc)
684 		pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
685 			__func__, lo->lo_number, lo->lo_file_name, rc);
686 }
687 
688 static inline int is_loop_device(struct file *file)
689 {
690 	struct inode *i = file->f_mapping->host;
691 
692 	return i && S_ISBLK(i->i_mode) && imajor(i) == LOOP_MAJOR;
693 }
694 
695 static int loop_validate_file(struct file *file, struct block_device *bdev)
696 {
697 	struct inode	*inode = file->f_mapping->host;
698 	struct file	*f = file;
699 
700 	/* Avoid recursion */
701 	while (is_loop_device(f)) {
702 		struct loop_device *l;
703 
704 		lockdep_assert_held(&loop_validate_mutex);
705 		if (f->f_mapping->host->i_rdev == bdev->bd_dev)
706 			return -EBADF;
707 
708 		l = I_BDEV(f->f_mapping->host)->bd_disk->private_data;
709 		if (l->lo_state != Lo_bound)
710 			return -EINVAL;
711 		/* Order wrt setting lo->lo_backing_file in loop_configure(). */
712 		rmb();
713 		f = l->lo_backing_file;
714 	}
715 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
716 		return -EINVAL;
717 	return 0;
718 }
719 
720 /*
721  * loop_change_fd switched the backing store of a loopback device to
722  * a new file. This is useful for operating system installers to free up
723  * the original file and in High Availability environments to switch to
724  * an alternative location for the content in case of server meltdown.
725  * This can only work if the loop device is used read-only, and if the
726  * new backing store is the same size and type as the old backing store.
727  */
728 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
729 			  unsigned int arg)
730 {
731 	struct file *file = fget(arg);
732 	struct file *old_file;
733 	int error;
734 	bool partscan;
735 	bool is_loop;
736 
737 	if (!file)
738 		return -EBADF;
739 	is_loop = is_loop_device(file);
740 	error = loop_global_lock_killable(lo, is_loop);
741 	if (error)
742 		goto out_putf;
743 	error = -ENXIO;
744 	if (lo->lo_state != Lo_bound)
745 		goto out_err;
746 
747 	/* the loop device has to be read-only */
748 	error = -EINVAL;
749 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
750 		goto out_err;
751 
752 	error = loop_validate_file(file, bdev);
753 	if (error)
754 		goto out_err;
755 
756 	old_file = lo->lo_backing_file;
757 
758 	error = -EINVAL;
759 
760 	/* size of the new backing store needs to be the same */
761 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
762 		goto out_err;
763 
764 	/* and ... switch */
765 	disk_force_media_change(lo->lo_disk, DISK_EVENT_MEDIA_CHANGE);
766 	blk_mq_freeze_queue(lo->lo_queue);
767 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
768 	lo->lo_backing_file = file;
769 	lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
770 	mapping_set_gfp_mask(file->f_mapping,
771 			     lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
772 	loop_update_dio(lo);
773 	blk_mq_unfreeze_queue(lo->lo_queue);
774 	partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
775 	loop_global_unlock(lo, is_loop);
776 
777 	/*
778 	 * Flush loop_validate_file() before fput(), for l->lo_backing_file
779 	 * might be pointing at old_file which might be the last reference.
780 	 */
781 	if (!is_loop) {
782 		mutex_lock(&loop_validate_mutex);
783 		mutex_unlock(&loop_validate_mutex);
784 	}
785 	/*
786 	 * We must drop file reference outside of lo_mutex as dropping
787 	 * the file ref can take open_mutex which creates circular locking
788 	 * dependency.
789 	 */
790 	fput(old_file);
791 	if (partscan)
792 		loop_reread_partitions(lo);
793 	return 0;
794 
795 out_err:
796 	loop_global_unlock(lo, is_loop);
797 out_putf:
798 	fput(file);
799 	return error;
800 }
801 
802 /* loop sysfs attributes */
803 
804 static ssize_t loop_attr_show(struct device *dev, char *page,
805 			      ssize_t (*callback)(struct loop_device *, char *))
806 {
807 	struct gendisk *disk = dev_to_disk(dev);
808 	struct loop_device *lo = disk->private_data;
809 
810 	return callback(lo, page);
811 }
812 
813 #define LOOP_ATTR_RO(_name)						\
814 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
815 static ssize_t loop_attr_do_show_##_name(struct device *d,		\
816 				struct device_attribute *attr, char *b)	\
817 {									\
818 	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
819 }									\
820 static struct device_attribute loop_attr_##_name =			\
821 	__ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
822 
823 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
824 {
825 	ssize_t ret;
826 	char *p = NULL;
827 
828 	spin_lock_irq(&lo->lo_lock);
829 	if (lo->lo_backing_file)
830 		p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
831 	spin_unlock_irq(&lo->lo_lock);
832 
833 	if (IS_ERR_OR_NULL(p))
834 		ret = PTR_ERR(p);
835 	else {
836 		ret = strlen(p);
837 		memmove(buf, p, ret);
838 		buf[ret++] = '\n';
839 		buf[ret] = 0;
840 	}
841 
842 	return ret;
843 }
844 
845 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
846 {
847 	return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_offset);
848 }
849 
850 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
851 {
852 	return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
853 }
854 
855 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
856 {
857 	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
858 
859 	return sysfs_emit(buf, "%s\n", autoclear ? "1" : "0");
860 }
861 
862 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
863 {
864 	int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
865 
866 	return sysfs_emit(buf, "%s\n", partscan ? "1" : "0");
867 }
868 
869 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
870 {
871 	int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
872 
873 	return sysfs_emit(buf, "%s\n", dio ? "1" : "0");
874 }
875 
876 LOOP_ATTR_RO(backing_file);
877 LOOP_ATTR_RO(offset);
878 LOOP_ATTR_RO(sizelimit);
879 LOOP_ATTR_RO(autoclear);
880 LOOP_ATTR_RO(partscan);
881 LOOP_ATTR_RO(dio);
882 
883 static struct attribute *loop_attrs[] = {
884 	&loop_attr_backing_file.attr,
885 	&loop_attr_offset.attr,
886 	&loop_attr_sizelimit.attr,
887 	&loop_attr_autoclear.attr,
888 	&loop_attr_partscan.attr,
889 	&loop_attr_dio.attr,
890 	NULL,
891 };
892 
893 static struct attribute_group loop_attribute_group = {
894 	.name = "loop",
895 	.attrs= loop_attrs,
896 };
897 
898 static void loop_sysfs_init(struct loop_device *lo)
899 {
900 	lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
901 						&loop_attribute_group);
902 }
903 
904 static void loop_sysfs_exit(struct loop_device *lo)
905 {
906 	if (lo->sysfs_inited)
907 		sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
908 				   &loop_attribute_group);
909 }
910 
911 static void loop_config_discard(struct loop_device *lo)
912 {
913 	struct file *file = lo->lo_backing_file;
914 	struct inode *inode = file->f_mapping->host;
915 	struct request_queue *q = lo->lo_queue;
916 	u32 granularity, max_discard_sectors;
917 
918 	/*
919 	 * If the backing device is a block device, mirror its zeroing
920 	 * capability. Set the discard sectors to the block device's zeroing
921 	 * capabilities because loop discards result in blkdev_issue_zeroout(),
922 	 * not blkdev_issue_discard(). This maintains consistent behavior with
923 	 * file-backed loop devices: discarded regions read back as zero.
924 	 */
925 	if (S_ISBLK(inode->i_mode) && !lo->lo_encrypt_key_size) {
926 		struct request_queue *backingq = bdev_get_queue(I_BDEV(inode));
927 
928 		max_discard_sectors = backingq->limits.max_write_zeroes_sectors;
929 		granularity = backingq->limits.discard_granularity ?:
930 			queue_physical_block_size(backingq);
931 
932 	/*
933 	 * We use punch hole to reclaim the free space used by the
934 	 * image a.k.a. discard. However we do not support discard if
935 	 * encryption is enabled, because it may give an attacker
936 	 * useful information.
937 	 */
938 	} else if (!file->f_op->fallocate || lo->lo_encrypt_key_size) {
939 		max_discard_sectors = 0;
940 		granularity = 0;
941 
942 	} else {
943 		struct kstatfs sbuf;
944 
945 		max_discard_sectors = UINT_MAX >> 9;
946 		if (!vfs_statfs(&file->f_path, &sbuf))
947 			granularity = sbuf.f_bsize;
948 		else
949 			max_discard_sectors = 0;
950 	}
951 
952 	if (max_discard_sectors) {
953 		q->limits.discard_granularity = granularity;
954 		blk_queue_max_discard_sectors(q, max_discard_sectors);
955 		blk_queue_max_write_zeroes_sectors(q, max_discard_sectors);
956 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
957 	} else {
958 		q->limits.discard_granularity = 0;
959 		blk_queue_max_discard_sectors(q, 0);
960 		blk_queue_max_write_zeroes_sectors(q, 0);
961 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
962 	}
963 	q->limits.discard_alignment = 0;
964 }
965 
966 struct loop_worker {
967 	struct rb_node rb_node;
968 	struct work_struct work;
969 	struct list_head cmd_list;
970 	struct list_head idle_list;
971 	struct loop_device *lo;
972 	struct cgroup_subsys_state *blkcg_css;
973 	unsigned long last_ran_at;
974 };
975 
976 static void loop_workfn(struct work_struct *work);
977 static void loop_rootcg_workfn(struct work_struct *work);
978 static void loop_free_idle_workers(struct timer_list *timer);
979 
980 #ifdef CONFIG_BLK_CGROUP
981 static inline int queue_on_root_worker(struct cgroup_subsys_state *css)
982 {
983 	return !css || css == blkcg_root_css;
984 }
985 #else
986 static inline int queue_on_root_worker(struct cgroup_subsys_state *css)
987 {
988 	return !css;
989 }
990 #endif
991 
992 static void loop_queue_work(struct loop_device *lo, struct loop_cmd *cmd)
993 {
994 	struct rb_node **node = &(lo->worker_tree.rb_node), *parent = NULL;
995 	struct loop_worker *cur_worker, *worker = NULL;
996 	struct work_struct *work;
997 	struct list_head *cmd_list;
998 
999 	spin_lock_irq(&lo->lo_work_lock);
1000 
1001 	if (queue_on_root_worker(cmd->blkcg_css))
1002 		goto queue_work;
1003 
1004 	node = &lo->worker_tree.rb_node;
1005 
1006 	while (*node) {
1007 		parent = *node;
1008 		cur_worker = container_of(*node, struct loop_worker, rb_node);
1009 		if (cur_worker->blkcg_css == cmd->blkcg_css) {
1010 			worker = cur_worker;
1011 			break;
1012 		} else if ((long)cur_worker->blkcg_css < (long)cmd->blkcg_css) {
1013 			node = &(*node)->rb_left;
1014 		} else {
1015 			node = &(*node)->rb_right;
1016 		}
1017 	}
1018 	if (worker)
1019 		goto queue_work;
1020 
1021 	worker = kzalloc(sizeof(struct loop_worker), GFP_NOWAIT | __GFP_NOWARN);
1022 	/*
1023 	 * In the event we cannot allocate a worker, just queue on the
1024 	 * rootcg worker and issue the I/O as the rootcg
1025 	 */
1026 	if (!worker) {
1027 		cmd->blkcg_css = NULL;
1028 		if (cmd->memcg_css)
1029 			css_put(cmd->memcg_css);
1030 		cmd->memcg_css = NULL;
1031 		goto queue_work;
1032 	}
1033 
1034 	worker->blkcg_css = cmd->blkcg_css;
1035 	css_get(worker->blkcg_css);
1036 	INIT_WORK(&worker->work, loop_workfn);
1037 	INIT_LIST_HEAD(&worker->cmd_list);
1038 	INIT_LIST_HEAD(&worker->idle_list);
1039 	worker->lo = lo;
1040 	rb_link_node(&worker->rb_node, parent, node);
1041 	rb_insert_color(&worker->rb_node, &lo->worker_tree);
1042 queue_work:
1043 	if (worker) {
1044 		/*
1045 		 * We need to remove from the idle list here while
1046 		 * holding the lock so that the idle timer doesn't
1047 		 * free the worker
1048 		 */
1049 		if (!list_empty(&worker->idle_list))
1050 			list_del_init(&worker->idle_list);
1051 		work = &worker->work;
1052 		cmd_list = &worker->cmd_list;
1053 	} else {
1054 		work = &lo->rootcg_work;
1055 		cmd_list = &lo->rootcg_cmd_list;
1056 	}
1057 	list_add_tail(&cmd->list_entry, cmd_list);
1058 	queue_work(lo->workqueue, work);
1059 	spin_unlock_irq(&lo->lo_work_lock);
1060 }
1061 
1062 static void loop_update_rotational(struct loop_device *lo)
1063 {
1064 	struct file *file = lo->lo_backing_file;
1065 	struct inode *file_inode = file->f_mapping->host;
1066 	struct block_device *file_bdev = file_inode->i_sb->s_bdev;
1067 	struct request_queue *q = lo->lo_queue;
1068 	bool nonrot = true;
1069 
1070 	/* not all filesystems (e.g. tmpfs) have a sb->s_bdev */
1071 	if (file_bdev)
1072 		nonrot = blk_queue_nonrot(bdev_get_queue(file_bdev));
1073 
1074 	if (nonrot)
1075 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
1076 	else
1077 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
1078 }
1079 
1080 static int
1081 loop_release_xfer(struct loop_device *lo)
1082 {
1083 	int err = 0;
1084 	struct loop_func_table *xfer = lo->lo_encryption;
1085 
1086 	if (xfer) {
1087 		if (xfer->release)
1088 			err = xfer->release(lo);
1089 		lo->transfer = NULL;
1090 		lo->lo_encryption = NULL;
1091 		module_put(xfer->owner);
1092 	}
1093 	return err;
1094 }
1095 
1096 static int
1097 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
1098 	       const struct loop_info64 *i)
1099 {
1100 	int err = 0;
1101 
1102 	if (xfer) {
1103 		struct module *owner = xfer->owner;
1104 
1105 		if (!try_module_get(owner))
1106 			return -EINVAL;
1107 		if (xfer->init)
1108 			err = xfer->init(lo, i);
1109 		if (err)
1110 			module_put(owner);
1111 		else
1112 			lo->lo_encryption = xfer;
1113 	}
1114 	return err;
1115 }
1116 
1117 /**
1118  * loop_set_status_from_info - configure device from loop_info
1119  * @lo: struct loop_device to configure
1120  * @info: struct loop_info64 to configure the device with
1121  *
1122  * Configures the loop device parameters according to the passed
1123  * in loop_info64 configuration.
1124  */
1125 static int
1126 loop_set_status_from_info(struct loop_device *lo,
1127 			  const struct loop_info64 *info)
1128 {
1129 	int err;
1130 	struct loop_func_table *xfer;
1131 	kuid_t uid = current_uid();
1132 
1133 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1134 		return -EINVAL;
1135 
1136 	err = loop_release_xfer(lo);
1137 	if (err)
1138 		return err;
1139 
1140 	if (info->lo_encrypt_type) {
1141 		unsigned int type = info->lo_encrypt_type;
1142 
1143 		if (type >= MAX_LO_CRYPT)
1144 			return -EINVAL;
1145 		xfer = xfer_funcs[type];
1146 		if (xfer == NULL)
1147 			return -EINVAL;
1148 	} else
1149 		xfer = NULL;
1150 
1151 	err = loop_init_xfer(lo, xfer, info);
1152 	if (err)
1153 		return err;
1154 
1155 	lo->lo_offset = info->lo_offset;
1156 	lo->lo_sizelimit = info->lo_sizelimit;
1157 
1158 	/* loff_t vars have been assigned __u64 */
1159 	if (lo->lo_offset < 0 || lo->lo_sizelimit < 0)
1160 		return -EOVERFLOW;
1161 
1162 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1163 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1164 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1165 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1166 
1167 	if (!xfer)
1168 		xfer = &none_funcs;
1169 	lo->transfer = xfer->transfer;
1170 	lo->ioctl = xfer->ioctl;
1171 
1172 	lo->lo_flags = info->lo_flags;
1173 
1174 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1175 	lo->lo_init[0] = info->lo_init[0];
1176 	lo->lo_init[1] = info->lo_init[1];
1177 	if (info->lo_encrypt_key_size) {
1178 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1179 		       info->lo_encrypt_key_size);
1180 		lo->lo_key_owner = uid;
1181 	}
1182 
1183 	return 0;
1184 }
1185 
1186 static int loop_configure(struct loop_device *lo, fmode_t mode,
1187 			  struct block_device *bdev,
1188 			  const struct loop_config *config)
1189 {
1190 	struct file *file = fget(config->fd);
1191 	struct inode *inode;
1192 	struct address_space *mapping;
1193 	int error;
1194 	loff_t size;
1195 	bool partscan;
1196 	unsigned short bsize;
1197 	bool is_loop;
1198 
1199 	if (!file)
1200 		return -EBADF;
1201 	is_loop = is_loop_device(file);
1202 
1203 	/* This is safe, since we have a reference from open(). */
1204 	__module_get(THIS_MODULE);
1205 
1206 	/*
1207 	 * If we don't hold exclusive handle for the device, upgrade to it
1208 	 * here to avoid changing device under exclusive owner.
1209 	 */
1210 	if (!(mode & FMODE_EXCL)) {
1211 		error = bd_prepare_to_claim(bdev, loop_configure);
1212 		if (error)
1213 			goto out_putf;
1214 	}
1215 
1216 	error = loop_global_lock_killable(lo, is_loop);
1217 	if (error)
1218 		goto out_bdev;
1219 
1220 	error = -EBUSY;
1221 	if (lo->lo_state != Lo_unbound)
1222 		goto out_unlock;
1223 
1224 	error = loop_validate_file(file, bdev);
1225 	if (error)
1226 		goto out_unlock;
1227 
1228 	mapping = file->f_mapping;
1229 	inode = mapping->host;
1230 
1231 	if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) {
1232 		error = -EINVAL;
1233 		goto out_unlock;
1234 	}
1235 
1236 	if (config->block_size) {
1237 		error = blk_validate_block_size(config->block_size);
1238 		if (error)
1239 			goto out_unlock;
1240 	}
1241 
1242 	error = loop_set_status_from_info(lo, &config->info);
1243 	if (error)
1244 		goto out_unlock;
1245 
1246 	if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
1247 	    !file->f_op->write_iter)
1248 		lo->lo_flags |= LO_FLAGS_READ_ONLY;
1249 
1250 	lo->workqueue = alloc_workqueue("loop%d",
1251 					WQ_UNBOUND | WQ_FREEZABLE,
1252 					0,
1253 					lo->lo_number);
1254 	if (!lo->workqueue) {
1255 		error = -ENOMEM;
1256 		goto out_unlock;
1257 	}
1258 
1259 	disk_force_media_change(lo->lo_disk, DISK_EVENT_MEDIA_CHANGE);
1260 	set_disk_ro(lo->lo_disk, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0);
1261 
1262 	INIT_WORK(&lo->rootcg_work, loop_rootcg_workfn);
1263 	INIT_LIST_HEAD(&lo->rootcg_cmd_list);
1264 	INIT_LIST_HEAD(&lo->idle_worker_list);
1265 	lo->worker_tree = RB_ROOT;
1266 	timer_setup(&lo->timer, loop_free_idle_workers,
1267 		TIMER_DEFERRABLE);
1268 	lo->use_dio = lo->lo_flags & LO_FLAGS_DIRECT_IO;
1269 	lo->lo_device = bdev;
1270 	lo->lo_backing_file = file;
1271 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
1272 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
1273 
1274 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
1275 		blk_queue_write_cache(lo->lo_queue, true, false);
1276 
1277 	if (config->block_size)
1278 		bsize = config->block_size;
1279 	else if ((lo->lo_backing_file->f_flags & O_DIRECT) && inode->i_sb->s_bdev)
1280 		/* In case of direct I/O, match underlying block size */
1281 		bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
1282 	else
1283 		bsize = 512;
1284 
1285 	blk_queue_logical_block_size(lo->lo_queue, bsize);
1286 	blk_queue_physical_block_size(lo->lo_queue, bsize);
1287 	blk_queue_io_min(lo->lo_queue, bsize);
1288 
1289 	loop_config_discard(lo);
1290 	loop_update_rotational(lo);
1291 	loop_update_dio(lo);
1292 	loop_sysfs_init(lo);
1293 
1294 	size = get_loop_size(lo, file);
1295 	loop_set_size(lo, size);
1296 
1297 	/* Order wrt reading lo_state in loop_validate_file(). */
1298 	wmb();
1299 
1300 	lo->lo_state = Lo_bound;
1301 	if (part_shift)
1302 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
1303 	partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
1304 	if (partscan)
1305 		lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1306 
1307 	loop_global_unlock(lo, is_loop);
1308 	if (partscan)
1309 		loop_reread_partitions(lo);
1310 	if (!(mode & FMODE_EXCL))
1311 		bd_abort_claiming(bdev, loop_configure);
1312 	return 0;
1313 
1314 out_unlock:
1315 	loop_global_unlock(lo, is_loop);
1316 out_bdev:
1317 	if (!(mode & FMODE_EXCL))
1318 		bd_abort_claiming(bdev, loop_configure);
1319 out_putf:
1320 	fput(file);
1321 	/* This is safe: open() is still holding a reference. */
1322 	module_put(THIS_MODULE);
1323 	return error;
1324 }
1325 
1326 static int __loop_clr_fd(struct loop_device *lo, bool release)
1327 {
1328 	struct file *filp = NULL;
1329 	gfp_t gfp = lo->old_gfp_mask;
1330 	struct block_device *bdev = lo->lo_device;
1331 	int err = 0;
1332 	bool partscan = false;
1333 	int lo_number;
1334 	struct loop_worker *pos, *worker;
1335 
1336 	/*
1337 	 * Flush loop_configure() and loop_change_fd(). It is acceptable for
1338 	 * loop_validate_file() to succeed, for actual clear operation has not
1339 	 * started yet.
1340 	 */
1341 	mutex_lock(&loop_validate_mutex);
1342 	mutex_unlock(&loop_validate_mutex);
1343 	/*
1344 	 * loop_validate_file() now fails because l->lo_state != Lo_bound
1345 	 * became visible.
1346 	 */
1347 
1348 	mutex_lock(&lo->lo_mutex);
1349 	if (WARN_ON_ONCE(lo->lo_state != Lo_rundown)) {
1350 		err = -ENXIO;
1351 		goto out_unlock;
1352 	}
1353 
1354 	filp = lo->lo_backing_file;
1355 	if (filp == NULL) {
1356 		err = -EINVAL;
1357 		goto out_unlock;
1358 	}
1359 
1360 	if (test_bit(QUEUE_FLAG_WC, &lo->lo_queue->queue_flags))
1361 		blk_queue_write_cache(lo->lo_queue, false, false);
1362 
1363 	/* freeze request queue during the transition */
1364 	blk_mq_freeze_queue(lo->lo_queue);
1365 
1366 	destroy_workqueue(lo->workqueue);
1367 	spin_lock_irq(&lo->lo_work_lock);
1368 	list_for_each_entry_safe(worker, pos, &lo->idle_worker_list,
1369 				idle_list) {
1370 		list_del(&worker->idle_list);
1371 		rb_erase(&worker->rb_node, &lo->worker_tree);
1372 		css_put(worker->blkcg_css);
1373 		kfree(worker);
1374 	}
1375 	spin_unlock_irq(&lo->lo_work_lock);
1376 	del_timer_sync(&lo->timer);
1377 
1378 	spin_lock_irq(&lo->lo_lock);
1379 	lo->lo_backing_file = NULL;
1380 	spin_unlock_irq(&lo->lo_lock);
1381 
1382 	loop_release_xfer(lo);
1383 	lo->transfer = NULL;
1384 	lo->ioctl = NULL;
1385 	lo->lo_device = NULL;
1386 	lo->lo_encryption = NULL;
1387 	lo->lo_offset = 0;
1388 	lo->lo_sizelimit = 0;
1389 	lo->lo_encrypt_key_size = 0;
1390 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1391 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1392 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1393 	blk_queue_logical_block_size(lo->lo_queue, 512);
1394 	blk_queue_physical_block_size(lo->lo_queue, 512);
1395 	blk_queue_io_min(lo->lo_queue, 512);
1396 	if (bdev) {
1397 		invalidate_bdev(bdev);
1398 		bdev->bd_inode->i_mapping->wb_err = 0;
1399 	}
1400 	set_capacity(lo->lo_disk, 0);
1401 	loop_sysfs_exit(lo);
1402 	if (bdev) {
1403 		/* let user-space know about this change */
1404 		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1405 	}
1406 	mapping_set_gfp_mask(filp->f_mapping, gfp);
1407 	/* This is safe: open() is still holding a reference. */
1408 	module_put(THIS_MODULE);
1409 	blk_mq_unfreeze_queue(lo->lo_queue);
1410 
1411 	partscan = lo->lo_flags & LO_FLAGS_PARTSCAN && bdev;
1412 	lo_number = lo->lo_number;
1413 	disk_force_media_change(lo->lo_disk, DISK_EVENT_MEDIA_CHANGE);
1414 out_unlock:
1415 	mutex_unlock(&lo->lo_mutex);
1416 	if (partscan) {
1417 		/*
1418 		 * open_mutex has been held already in release path, so don't
1419 		 * acquire it if this function is called in such case.
1420 		 *
1421 		 * If the reread partition isn't from release path, lo_refcnt
1422 		 * must be at least one and it can only become zero when the
1423 		 * current holder is released.
1424 		 */
1425 		if (!release)
1426 			mutex_lock(&lo->lo_disk->open_mutex);
1427 		err = bdev_disk_changed(lo->lo_disk, false);
1428 		if (!release)
1429 			mutex_unlock(&lo->lo_disk->open_mutex);
1430 		if (err)
1431 			pr_warn("%s: partition scan of loop%d failed (rc=%d)\n",
1432 				__func__, lo_number, err);
1433 		/* Device is gone, no point in returning error */
1434 		err = 0;
1435 	}
1436 
1437 	/*
1438 	 * lo->lo_state is set to Lo_unbound here after above partscan has
1439 	 * finished.
1440 	 *
1441 	 * There cannot be anybody else entering __loop_clr_fd() as
1442 	 * lo->lo_backing_file is already cleared and Lo_rundown state
1443 	 * protects us from all the other places trying to change the 'lo'
1444 	 * device.
1445 	 */
1446 	mutex_lock(&lo->lo_mutex);
1447 	lo->lo_flags = 0;
1448 	if (!part_shift)
1449 		lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1450 	lo->lo_state = Lo_unbound;
1451 	mutex_unlock(&lo->lo_mutex);
1452 
1453 	/*
1454 	 * Need not hold lo_mutex to fput backing file. Calling fput holding
1455 	 * lo_mutex triggers a circular lock dependency possibility warning as
1456 	 * fput can take open_mutex which is usually taken before lo_mutex.
1457 	 */
1458 	if (filp)
1459 		fput(filp);
1460 	return err;
1461 }
1462 
1463 static int loop_clr_fd(struct loop_device *lo)
1464 {
1465 	int err;
1466 
1467 	err = mutex_lock_killable(&lo->lo_mutex);
1468 	if (err)
1469 		return err;
1470 	if (lo->lo_state != Lo_bound) {
1471 		mutex_unlock(&lo->lo_mutex);
1472 		return -ENXIO;
1473 	}
1474 	/*
1475 	 * If we've explicitly asked to tear down the loop device,
1476 	 * and it has an elevated reference count, set it for auto-teardown when
1477 	 * the last reference goes away. This stops $!~#$@ udev from
1478 	 * preventing teardown because it decided that it needs to run blkid on
1479 	 * the loopback device whenever they appear. xfstests is notorious for
1480 	 * failing tests because blkid via udev races with a losetup
1481 	 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1482 	 * command to fail with EBUSY.
1483 	 */
1484 	if (atomic_read(&lo->lo_refcnt) > 1) {
1485 		lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1486 		mutex_unlock(&lo->lo_mutex);
1487 		return 0;
1488 	}
1489 	lo->lo_state = Lo_rundown;
1490 	mutex_unlock(&lo->lo_mutex);
1491 
1492 	return __loop_clr_fd(lo, false);
1493 }
1494 
1495 static int
1496 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1497 {
1498 	int err;
1499 	kuid_t uid = current_uid();
1500 	int prev_lo_flags;
1501 	bool partscan = false;
1502 	bool size_changed = false;
1503 
1504 	err = mutex_lock_killable(&lo->lo_mutex);
1505 	if (err)
1506 		return err;
1507 	if (lo->lo_encrypt_key_size &&
1508 	    !uid_eq(lo->lo_key_owner, uid) &&
1509 	    !capable(CAP_SYS_ADMIN)) {
1510 		err = -EPERM;
1511 		goto out_unlock;
1512 	}
1513 	if (lo->lo_state != Lo_bound) {
1514 		err = -ENXIO;
1515 		goto out_unlock;
1516 	}
1517 
1518 	if (lo->lo_offset != info->lo_offset ||
1519 	    lo->lo_sizelimit != info->lo_sizelimit) {
1520 		size_changed = true;
1521 		sync_blockdev(lo->lo_device);
1522 		invalidate_bdev(lo->lo_device);
1523 	}
1524 
1525 	/* I/O need to be drained during transfer transition */
1526 	blk_mq_freeze_queue(lo->lo_queue);
1527 
1528 	if (size_changed && lo->lo_device->bd_inode->i_mapping->nrpages) {
1529 		/* If any pages were dirtied after invalidate_bdev(), try again */
1530 		err = -EAGAIN;
1531 		pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1532 			__func__, lo->lo_number, lo->lo_file_name,
1533 			lo->lo_device->bd_inode->i_mapping->nrpages);
1534 		goto out_unfreeze;
1535 	}
1536 
1537 	prev_lo_flags = lo->lo_flags;
1538 
1539 	err = loop_set_status_from_info(lo, info);
1540 	if (err)
1541 		goto out_unfreeze;
1542 
1543 	/* Mask out flags that can't be set using LOOP_SET_STATUS. */
1544 	lo->lo_flags &= LOOP_SET_STATUS_SETTABLE_FLAGS;
1545 	/* For those flags, use the previous values instead */
1546 	lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_SETTABLE_FLAGS;
1547 	/* For flags that can't be cleared, use previous values too */
1548 	lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_CLEARABLE_FLAGS;
1549 
1550 	if (size_changed) {
1551 		loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit,
1552 					   lo->lo_backing_file);
1553 		loop_set_size(lo, new_size);
1554 	}
1555 
1556 	loop_config_discard(lo);
1557 
1558 	/* update dio if lo_offset or transfer is changed */
1559 	__loop_update_dio(lo, lo->use_dio);
1560 
1561 out_unfreeze:
1562 	blk_mq_unfreeze_queue(lo->lo_queue);
1563 
1564 	if (!err && (lo->lo_flags & LO_FLAGS_PARTSCAN) &&
1565 	     !(prev_lo_flags & LO_FLAGS_PARTSCAN)) {
1566 		lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1567 		partscan = true;
1568 	}
1569 out_unlock:
1570 	mutex_unlock(&lo->lo_mutex);
1571 	if (partscan)
1572 		loop_reread_partitions(lo);
1573 
1574 	return err;
1575 }
1576 
1577 static int
1578 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1579 {
1580 	struct path path;
1581 	struct kstat stat;
1582 	int ret;
1583 
1584 	ret = mutex_lock_killable(&lo->lo_mutex);
1585 	if (ret)
1586 		return ret;
1587 	if (lo->lo_state != Lo_bound) {
1588 		mutex_unlock(&lo->lo_mutex);
1589 		return -ENXIO;
1590 	}
1591 
1592 	memset(info, 0, sizeof(*info));
1593 	info->lo_number = lo->lo_number;
1594 	info->lo_offset = lo->lo_offset;
1595 	info->lo_sizelimit = lo->lo_sizelimit;
1596 	info->lo_flags = lo->lo_flags;
1597 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1598 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1599 	info->lo_encrypt_type =
1600 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1601 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1602 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1603 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1604 		       lo->lo_encrypt_key_size);
1605 	}
1606 
1607 	/* Drop lo_mutex while we call into the filesystem. */
1608 	path = lo->lo_backing_file->f_path;
1609 	path_get(&path);
1610 	mutex_unlock(&lo->lo_mutex);
1611 	ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT);
1612 	if (!ret) {
1613 		info->lo_device = huge_encode_dev(stat.dev);
1614 		info->lo_inode = stat.ino;
1615 		info->lo_rdevice = huge_encode_dev(stat.rdev);
1616 	}
1617 	path_put(&path);
1618 	return ret;
1619 }
1620 
1621 static void
1622 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1623 {
1624 	memset(info64, 0, sizeof(*info64));
1625 	info64->lo_number = info->lo_number;
1626 	info64->lo_device = info->lo_device;
1627 	info64->lo_inode = info->lo_inode;
1628 	info64->lo_rdevice = info->lo_rdevice;
1629 	info64->lo_offset = info->lo_offset;
1630 	info64->lo_sizelimit = 0;
1631 	info64->lo_encrypt_type = info->lo_encrypt_type;
1632 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1633 	info64->lo_flags = info->lo_flags;
1634 	info64->lo_init[0] = info->lo_init[0];
1635 	info64->lo_init[1] = info->lo_init[1];
1636 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1637 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1638 	else
1639 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1640 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1641 }
1642 
1643 static int
1644 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1645 {
1646 	memset(info, 0, sizeof(*info));
1647 	info->lo_number = info64->lo_number;
1648 	info->lo_device = info64->lo_device;
1649 	info->lo_inode = info64->lo_inode;
1650 	info->lo_rdevice = info64->lo_rdevice;
1651 	info->lo_offset = info64->lo_offset;
1652 	info->lo_encrypt_type = info64->lo_encrypt_type;
1653 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1654 	info->lo_flags = info64->lo_flags;
1655 	info->lo_init[0] = info64->lo_init[0];
1656 	info->lo_init[1] = info64->lo_init[1];
1657 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1658 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1659 	else
1660 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1661 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1662 
1663 	/* error in case values were truncated */
1664 	if (info->lo_device != info64->lo_device ||
1665 	    info->lo_rdevice != info64->lo_rdevice ||
1666 	    info->lo_inode != info64->lo_inode ||
1667 	    info->lo_offset != info64->lo_offset)
1668 		return -EOVERFLOW;
1669 
1670 	return 0;
1671 }
1672 
1673 static int
1674 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1675 {
1676 	struct loop_info info;
1677 	struct loop_info64 info64;
1678 
1679 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1680 		return -EFAULT;
1681 	loop_info64_from_old(&info, &info64);
1682 	return loop_set_status(lo, &info64);
1683 }
1684 
1685 static int
1686 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1687 {
1688 	struct loop_info64 info64;
1689 
1690 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1691 		return -EFAULT;
1692 	return loop_set_status(lo, &info64);
1693 }
1694 
1695 static int
1696 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1697 	struct loop_info info;
1698 	struct loop_info64 info64;
1699 	int err;
1700 
1701 	if (!arg)
1702 		return -EINVAL;
1703 	err = loop_get_status(lo, &info64);
1704 	if (!err)
1705 		err = loop_info64_to_old(&info64, &info);
1706 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1707 		err = -EFAULT;
1708 
1709 	return err;
1710 }
1711 
1712 static int
1713 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1714 	struct loop_info64 info64;
1715 	int err;
1716 
1717 	if (!arg)
1718 		return -EINVAL;
1719 	err = loop_get_status(lo, &info64);
1720 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1721 		err = -EFAULT;
1722 
1723 	return err;
1724 }
1725 
1726 static int loop_set_capacity(struct loop_device *lo)
1727 {
1728 	loff_t size;
1729 
1730 	if (unlikely(lo->lo_state != Lo_bound))
1731 		return -ENXIO;
1732 
1733 	size = get_loop_size(lo, lo->lo_backing_file);
1734 	loop_set_size(lo, size);
1735 
1736 	return 0;
1737 }
1738 
1739 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1740 {
1741 	int error = -ENXIO;
1742 	if (lo->lo_state != Lo_bound)
1743 		goto out;
1744 
1745 	__loop_update_dio(lo, !!arg);
1746 	if (lo->use_dio == !!arg)
1747 		return 0;
1748 	error = -EINVAL;
1749  out:
1750 	return error;
1751 }
1752 
1753 static int loop_set_block_size(struct loop_device *lo, unsigned long arg)
1754 {
1755 	int err = 0;
1756 
1757 	if (lo->lo_state != Lo_bound)
1758 		return -ENXIO;
1759 
1760 	err = blk_validate_block_size(arg);
1761 	if (err)
1762 		return err;
1763 
1764 	if (lo->lo_queue->limits.logical_block_size == arg)
1765 		return 0;
1766 
1767 	sync_blockdev(lo->lo_device);
1768 	invalidate_bdev(lo->lo_device);
1769 
1770 	blk_mq_freeze_queue(lo->lo_queue);
1771 
1772 	/* invalidate_bdev should have truncated all the pages */
1773 	if (lo->lo_device->bd_inode->i_mapping->nrpages) {
1774 		err = -EAGAIN;
1775 		pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1776 			__func__, lo->lo_number, lo->lo_file_name,
1777 			lo->lo_device->bd_inode->i_mapping->nrpages);
1778 		goto out_unfreeze;
1779 	}
1780 
1781 	blk_queue_logical_block_size(lo->lo_queue, arg);
1782 	blk_queue_physical_block_size(lo->lo_queue, arg);
1783 	blk_queue_io_min(lo->lo_queue, arg);
1784 	loop_update_dio(lo);
1785 out_unfreeze:
1786 	blk_mq_unfreeze_queue(lo->lo_queue);
1787 
1788 	return err;
1789 }
1790 
1791 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd,
1792 			   unsigned long arg)
1793 {
1794 	int err;
1795 
1796 	err = mutex_lock_killable(&lo->lo_mutex);
1797 	if (err)
1798 		return err;
1799 	switch (cmd) {
1800 	case LOOP_SET_CAPACITY:
1801 		err = loop_set_capacity(lo);
1802 		break;
1803 	case LOOP_SET_DIRECT_IO:
1804 		err = loop_set_dio(lo, arg);
1805 		break;
1806 	case LOOP_SET_BLOCK_SIZE:
1807 		err = loop_set_block_size(lo, arg);
1808 		break;
1809 	default:
1810 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1811 	}
1812 	mutex_unlock(&lo->lo_mutex);
1813 	return err;
1814 }
1815 
1816 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1817 	unsigned int cmd, unsigned long arg)
1818 {
1819 	struct loop_device *lo = bdev->bd_disk->private_data;
1820 	void __user *argp = (void __user *) arg;
1821 	int err;
1822 
1823 	switch (cmd) {
1824 	case LOOP_SET_FD: {
1825 		/*
1826 		 * Legacy case - pass in a zeroed out struct loop_config with
1827 		 * only the file descriptor set , which corresponds with the
1828 		 * default parameters we'd have used otherwise.
1829 		 */
1830 		struct loop_config config;
1831 
1832 		memset(&config, 0, sizeof(config));
1833 		config.fd = arg;
1834 
1835 		return loop_configure(lo, mode, bdev, &config);
1836 	}
1837 	case LOOP_CONFIGURE: {
1838 		struct loop_config config;
1839 
1840 		if (copy_from_user(&config, argp, sizeof(config)))
1841 			return -EFAULT;
1842 
1843 		return loop_configure(lo, mode, bdev, &config);
1844 	}
1845 	case LOOP_CHANGE_FD:
1846 		return loop_change_fd(lo, bdev, arg);
1847 	case LOOP_CLR_FD:
1848 		return loop_clr_fd(lo);
1849 	case LOOP_SET_STATUS:
1850 		err = -EPERM;
1851 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1852 			err = loop_set_status_old(lo, argp);
1853 		}
1854 		break;
1855 	case LOOP_GET_STATUS:
1856 		return loop_get_status_old(lo, argp);
1857 	case LOOP_SET_STATUS64:
1858 		err = -EPERM;
1859 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1860 			err = loop_set_status64(lo, argp);
1861 		}
1862 		break;
1863 	case LOOP_GET_STATUS64:
1864 		return loop_get_status64(lo, argp);
1865 	case LOOP_SET_CAPACITY:
1866 	case LOOP_SET_DIRECT_IO:
1867 	case LOOP_SET_BLOCK_SIZE:
1868 		if (!(mode & FMODE_WRITE) && !capable(CAP_SYS_ADMIN))
1869 			return -EPERM;
1870 		fallthrough;
1871 	default:
1872 		err = lo_simple_ioctl(lo, cmd, arg);
1873 		break;
1874 	}
1875 
1876 	return err;
1877 }
1878 
1879 #ifdef CONFIG_COMPAT
1880 struct compat_loop_info {
1881 	compat_int_t	lo_number;      /* ioctl r/o */
1882 	compat_dev_t	lo_device;      /* ioctl r/o */
1883 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1884 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1885 	compat_int_t	lo_offset;
1886 	compat_int_t	lo_encrypt_type;
1887 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1888 	compat_int_t	lo_flags;       /* ioctl r/o */
1889 	char		lo_name[LO_NAME_SIZE];
1890 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1891 	compat_ulong_t	lo_init[2];
1892 	char		reserved[4];
1893 };
1894 
1895 /*
1896  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1897  * - noinlined to reduce stack space usage in main part of driver
1898  */
1899 static noinline int
1900 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1901 			struct loop_info64 *info64)
1902 {
1903 	struct compat_loop_info info;
1904 
1905 	if (copy_from_user(&info, arg, sizeof(info)))
1906 		return -EFAULT;
1907 
1908 	memset(info64, 0, sizeof(*info64));
1909 	info64->lo_number = info.lo_number;
1910 	info64->lo_device = info.lo_device;
1911 	info64->lo_inode = info.lo_inode;
1912 	info64->lo_rdevice = info.lo_rdevice;
1913 	info64->lo_offset = info.lo_offset;
1914 	info64->lo_sizelimit = 0;
1915 	info64->lo_encrypt_type = info.lo_encrypt_type;
1916 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1917 	info64->lo_flags = info.lo_flags;
1918 	info64->lo_init[0] = info.lo_init[0];
1919 	info64->lo_init[1] = info.lo_init[1];
1920 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1921 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1922 	else
1923 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1924 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1925 	return 0;
1926 }
1927 
1928 /*
1929  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1930  * - noinlined to reduce stack space usage in main part of driver
1931  */
1932 static noinline int
1933 loop_info64_to_compat(const struct loop_info64 *info64,
1934 		      struct compat_loop_info __user *arg)
1935 {
1936 	struct compat_loop_info info;
1937 
1938 	memset(&info, 0, sizeof(info));
1939 	info.lo_number = info64->lo_number;
1940 	info.lo_device = info64->lo_device;
1941 	info.lo_inode = info64->lo_inode;
1942 	info.lo_rdevice = info64->lo_rdevice;
1943 	info.lo_offset = info64->lo_offset;
1944 	info.lo_encrypt_type = info64->lo_encrypt_type;
1945 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1946 	info.lo_flags = info64->lo_flags;
1947 	info.lo_init[0] = info64->lo_init[0];
1948 	info.lo_init[1] = info64->lo_init[1];
1949 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1950 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1951 	else
1952 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1953 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1954 
1955 	/* error in case values were truncated */
1956 	if (info.lo_device != info64->lo_device ||
1957 	    info.lo_rdevice != info64->lo_rdevice ||
1958 	    info.lo_inode != info64->lo_inode ||
1959 	    info.lo_offset != info64->lo_offset ||
1960 	    info.lo_init[0] != info64->lo_init[0] ||
1961 	    info.lo_init[1] != info64->lo_init[1])
1962 		return -EOVERFLOW;
1963 
1964 	if (copy_to_user(arg, &info, sizeof(info)))
1965 		return -EFAULT;
1966 	return 0;
1967 }
1968 
1969 static int
1970 loop_set_status_compat(struct loop_device *lo,
1971 		       const struct compat_loop_info __user *arg)
1972 {
1973 	struct loop_info64 info64;
1974 	int ret;
1975 
1976 	ret = loop_info64_from_compat(arg, &info64);
1977 	if (ret < 0)
1978 		return ret;
1979 	return loop_set_status(lo, &info64);
1980 }
1981 
1982 static int
1983 loop_get_status_compat(struct loop_device *lo,
1984 		       struct compat_loop_info __user *arg)
1985 {
1986 	struct loop_info64 info64;
1987 	int err;
1988 
1989 	if (!arg)
1990 		return -EINVAL;
1991 	err = loop_get_status(lo, &info64);
1992 	if (!err)
1993 		err = loop_info64_to_compat(&info64, arg);
1994 	return err;
1995 }
1996 
1997 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1998 			   unsigned int cmd, unsigned long arg)
1999 {
2000 	struct loop_device *lo = bdev->bd_disk->private_data;
2001 	int err;
2002 
2003 	switch(cmd) {
2004 	case LOOP_SET_STATUS:
2005 		err = loop_set_status_compat(lo,
2006 			     (const struct compat_loop_info __user *)arg);
2007 		break;
2008 	case LOOP_GET_STATUS:
2009 		err = loop_get_status_compat(lo,
2010 				     (struct compat_loop_info __user *)arg);
2011 		break;
2012 	case LOOP_SET_CAPACITY:
2013 	case LOOP_CLR_FD:
2014 	case LOOP_GET_STATUS64:
2015 	case LOOP_SET_STATUS64:
2016 	case LOOP_CONFIGURE:
2017 		arg = (unsigned long) compat_ptr(arg);
2018 		fallthrough;
2019 	case LOOP_SET_FD:
2020 	case LOOP_CHANGE_FD:
2021 	case LOOP_SET_BLOCK_SIZE:
2022 	case LOOP_SET_DIRECT_IO:
2023 		err = lo_ioctl(bdev, mode, cmd, arg);
2024 		break;
2025 	default:
2026 		err = -ENOIOCTLCMD;
2027 		break;
2028 	}
2029 	return err;
2030 }
2031 #endif
2032 
2033 static int lo_open(struct block_device *bdev, fmode_t mode)
2034 {
2035 	struct loop_device *lo = bdev->bd_disk->private_data;
2036 	int err;
2037 
2038 	err = mutex_lock_killable(&lo->lo_mutex);
2039 	if (err)
2040 		return err;
2041 	if (lo->lo_state == Lo_deleting)
2042 		err = -ENXIO;
2043 	else
2044 		atomic_inc(&lo->lo_refcnt);
2045 	mutex_unlock(&lo->lo_mutex);
2046 	return err;
2047 }
2048 
2049 static void lo_release(struct gendisk *disk, fmode_t mode)
2050 {
2051 	struct loop_device *lo = disk->private_data;
2052 
2053 	mutex_lock(&lo->lo_mutex);
2054 	if (atomic_dec_return(&lo->lo_refcnt))
2055 		goto out_unlock;
2056 
2057 	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
2058 		if (lo->lo_state != Lo_bound)
2059 			goto out_unlock;
2060 		lo->lo_state = Lo_rundown;
2061 		mutex_unlock(&lo->lo_mutex);
2062 		/*
2063 		 * In autoclear mode, stop the loop thread
2064 		 * and remove configuration after last close.
2065 		 */
2066 		__loop_clr_fd(lo, true);
2067 		return;
2068 	} else if (lo->lo_state == Lo_bound) {
2069 		/*
2070 		 * Otherwise keep thread (if running) and config,
2071 		 * but flush possible ongoing bios in thread.
2072 		 */
2073 		blk_mq_freeze_queue(lo->lo_queue);
2074 		blk_mq_unfreeze_queue(lo->lo_queue);
2075 	}
2076 
2077 out_unlock:
2078 	mutex_unlock(&lo->lo_mutex);
2079 }
2080 
2081 static const struct block_device_operations lo_fops = {
2082 	.owner =	THIS_MODULE,
2083 	.open =		lo_open,
2084 	.release =	lo_release,
2085 	.ioctl =	lo_ioctl,
2086 #ifdef CONFIG_COMPAT
2087 	.compat_ioctl =	lo_compat_ioctl,
2088 #endif
2089 };
2090 
2091 /*
2092  * And now the modules code and kernel interface.
2093  */
2094 static int max_loop;
2095 module_param(max_loop, int, 0444);
2096 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
2097 module_param(max_part, int, 0444);
2098 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
2099 MODULE_LICENSE("GPL");
2100 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
2101 
2102 int loop_register_transfer(struct loop_func_table *funcs)
2103 {
2104 	unsigned int n = funcs->number;
2105 
2106 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
2107 		return -EINVAL;
2108 	xfer_funcs[n] = funcs;
2109 	return 0;
2110 }
2111 
2112 int loop_unregister_transfer(int number)
2113 {
2114 	unsigned int n = number;
2115 	struct loop_func_table *xfer;
2116 
2117 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
2118 		return -EINVAL;
2119 	/*
2120 	 * This function is called from only cleanup_cryptoloop().
2121 	 * Given that each loop device that has a transfer enabled holds a
2122 	 * reference to the module implementing it we should never get here
2123 	 * with a transfer that is set (unless forced module unloading is
2124 	 * requested). Thus, check module's refcount and warn if this is
2125 	 * not a clean unloading.
2126 	 */
2127 #ifdef CONFIG_MODULE_UNLOAD
2128 	if (xfer->owner && module_refcount(xfer->owner) != -1)
2129 		pr_err("Danger! Unregistering an in use transfer function.\n");
2130 #endif
2131 
2132 	xfer_funcs[n] = NULL;
2133 	return 0;
2134 }
2135 
2136 EXPORT_SYMBOL(loop_register_transfer);
2137 EXPORT_SYMBOL(loop_unregister_transfer);
2138 
2139 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
2140 		const struct blk_mq_queue_data *bd)
2141 {
2142 	struct request *rq = bd->rq;
2143 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
2144 	struct loop_device *lo = rq->q->queuedata;
2145 
2146 	blk_mq_start_request(rq);
2147 
2148 	if (lo->lo_state != Lo_bound)
2149 		return BLK_STS_IOERR;
2150 
2151 	switch (req_op(rq)) {
2152 	case REQ_OP_FLUSH:
2153 	case REQ_OP_DISCARD:
2154 	case REQ_OP_WRITE_ZEROES:
2155 		cmd->use_aio = false;
2156 		break;
2157 	default:
2158 		cmd->use_aio = lo->use_dio;
2159 		break;
2160 	}
2161 
2162 	/* always use the first bio's css */
2163 	cmd->blkcg_css = NULL;
2164 	cmd->memcg_css = NULL;
2165 #ifdef CONFIG_BLK_CGROUP
2166 	if (rq->bio && rq->bio->bi_blkg) {
2167 		cmd->blkcg_css = &bio_blkcg(rq->bio)->css;
2168 #ifdef CONFIG_MEMCG
2169 		cmd->memcg_css =
2170 			cgroup_get_e_css(cmd->blkcg_css->cgroup,
2171 					&memory_cgrp_subsys);
2172 #endif
2173 	}
2174 #endif
2175 	loop_queue_work(lo, cmd);
2176 
2177 	return BLK_STS_OK;
2178 }
2179 
2180 static void loop_handle_cmd(struct loop_cmd *cmd)
2181 {
2182 	struct request *rq = blk_mq_rq_from_pdu(cmd);
2183 	const bool write = op_is_write(req_op(rq));
2184 	struct loop_device *lo = rq->q->queuedata;
2185 	int ret = 0;
2186 	struct mem_cgroup *old_memcg = NULL;
2187 
2188 	if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
2189 		ret = -EIO;
2190 		goto failed;
2191 	}
2192 
2193 	if (cmd->blkcg_css)
2194 		kthread_associate_blkcg(cmd->blkcg_css);
2195 	if (cmd->memcg_css)
2196 		old_memcg = set_active_memcg(
2197 			mem_cgroup_from_css(cmd->memcg_css));
2198 
2199 	ret = do_req_filebacked(lo, rq);
2200 
2201 	if (cmd->blkcg_css)
2202 		kthread_associate_blkcg(NULL);
2203 
2204 	if (cmd->memcg_css) {
2205 		set_active_memcg(old_memcg);
2206 		css_put(cmd->memcg_css);
2207 	}
2208  failed:
2209 	/* complete non-aio request */
2210 	if (!cmd->use_aio || ret) {
2211 		if (ret == -EOPNOTSUPP)
2212 			cmd->ret = ret;
2213 		else
2214 			cmd->ret = ret ? -EIO : 0;
2215 		if (likely(!blk_should_fake_timeout(rq->q)))
2216 			blk_mq_complete_request(rq);
2217 	}
2218 }
2219 
2220 static void loop_set_timer(struct loop_device *lo)
2221 {
2222 	timer_reduce(&lo->timer, jiffies + LOOP_IDLE_WORKER_TIMEOUT);
2223 }
2224 
2225 static void loop_process_work(struct loop_worker *worker,
2226 			struct list_head *cmd_list, struct loop_device *lo)
2227 {
2228 	int orig_flags = current->flags;
2229 	struct loop_cmd *cmd;
2230 
2231 	current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO;
2232 	spin_lock_irq(&lo->lo_work_lock);
2233 	while (!list_empty(cmd_list)) {
2234 		cmd = container_of(
2235 			cmd_list->next, struct loop_cmd, list_entry);
2236 		list_del(cmd_list->next);
2237 		spin_unlock_irq(&lo->lo_work_lock);
2238 
2239 		loop_handle_cmd(cmd);
2240 		cond_resched();
2241 
2242 		spin_lock_irq(&lo->lo_work_lock);
2243 	}
2244 
2245 	/*
2246 	 * We only add to the idle list if there are no pending cmds
2247 	 * *and* the worker will not run again which ensures that it
2248 	 * is safe to free any worker on the idle list
2249 	 */
2250 	if (worker && !work_pending(&worker->work)) {
2251 		worker->last_ran_at = jiffies;
2252 		list_add_tail(&worker->idle_list, &lo->idle_worker_list);
2253 		loop_set_timer(lo);
2254 	}
2255 	spin_unlock_irq(&lo->lo_work_lock);
2256 	current->flags = orig_flags;
2257 }
2258 
2259 static void loop_workfn(struct work_struct *work)
2260 {
2261 	struct loop_worker *worker =
2262 		container_of(work, struct loop_worker, work);
2263 	loop_process_work(worker, &worker->cmd_list, worker->lo);
2264 }
2265 
2266 static void loop_rootcg_workfn(struct work_struct *work)
2267 {
2268 	struct loop_device *lo =
2269 		container_of(work, struct loop_device, rootcg_work);
2270 	loop_process_work(NULL, &lo->rootcg_cmd_list, lo);
2271 }
2272 
2273 static void loop_free_idle_workers(struct timer_list *timer)
2274 {
2275 	struct loop_device *lo = container_of(timer, struct loop_device, timer);
2276 	struct loop_worker *pos, *worker;
2277 
2278 	spin_lock_irq(&lo->lo_work_lock);
2279 	list_for_each_entry_safe(worker, pos, &lo->idle_worker_list,
2280 				idle_list) {
2281 		if (time_is_after_jiffies(worker->last_ran_at +
2282 						LOOP_IDLE_WORKER_TIMEOUT))
2283 			break;
2284 		list_del(&worker->idle_list);
2285 		rb_erase(&worker->rb_node, &lo->worker_tree);
2286 		css_put(worker->blkcg_css);
2287 		kfree(worker);
2288 	}
2289 	if (!list_empty(&lo->idle_worker_list))
2290 		loop_set_timer(lo);
2291 	spin_unlock_irq(&lo->lo_work_lock);
2292 }
2293 
2294 static const struct blk_mq_ops loop_mq_ops = {
2295 	.queue_rq       = loop_queue_rq,
2296 	.complete	= lo_complete_rq,
2297 };
2298 
2299 static int loop_add(int i)
2300 {
2301 	struct loop_device *lo;
2302 	struct gendisk *disk;
2303 	int err;
2304 
2305 	err = -ENOMEM;
2306 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
2307 	if (!lo)
2308 		goto out;
2309 	lo->lo_state = Lo_unbound;
2310 
2311 	err = mutex_lock_killable(&loop_ctl_mutex);
2312 	if (err)
2313 		goto out_free_dev;
2314 
2315 	/* allocate id, if @id >= 0, we're requesting that specific id */
2316 	if (i >= 0) {
2317 		err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
2318 		if (err == -ENOSPC)
2319 			err = -EEXIST;
2320 	} else {
2321 		err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
2322 	}
2323 	mutex_unlock(&loop_ctl_mutex);
2324 	if (err < 0)
2325 		goto out_free_dev;
2326 	i = err;
2327 
2328 	err = -ENOMEM;
2329 	lo->tag_set.ops = &loop_mq_ops;
2330 	lo->tag_set.nr_hw_queues = 1;
2331 	lo->tag_set.queue_depth = 128;
2332 	lo->tag_set.numa_node = NUMA_NO_NODE;
2333 	lo->tag_set.cmd_size = sizeof(struct loop_cmd);
2334 	lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_STACKING |
2335 		BLK_MQ_F_NO_SCHED_BY_DEFAULT;
2336 	lo->tag_set.driver_data = lo;
2337 
2338 	err = blk_mq_alloc_tag_set(&lo->tag_set);
2339 	if (err)
2340 		goto out_free_idr;
2341 
2342 	disk = lo->lo_disk = blk_mq_alloc_disk(&lo->tag_set, lo);
2343 	if (IS_ERR(disk)) {
2344 		err = PTR_ERR(disk);
2345 		goto out_cleanup_tags;
2346 	}
2347 	lo->lo_queue = lo->lo_disk->queue;
2348 
2349 	blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS);
2350 
2351 	/*
2352 	 * By default, we do buffer IO, so it doesn't make sense to enable
2353 	 * merge because the I/O submitted to backing file is handled page by
2354 	 * page. For directio mode, merge does help to dispatch bigger request
2355 	 * to underlayer disk. We will enable merge once directio is enabled.
2356 	 */
2357 	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
2358 
2359 	/*
2360 	 * Disable partition scanning by default. The in-kernel partition
2361 	 * scanning can be requested individually per-device during its
2362 	 * setup. Userspace can always add and remove partitions from all
2363 	 * devices. The needed partition minors are allocated from the
2364 	 * extended minor space, the main loop device numbers will continue
2365 	 * to match the loop minors, regardless of the number of partitions
2366 	 * used.
2367 	 *
2368 	 * If max_part is given, partition scanning is globally enabled for
2369 	 * all loop devices. The minors for the main loop devices will be
2370 	 * multiples of max_part.
2371 	 *
2372 	 * Note: Global-for-all-devices, set-only-at-init, read-only module
2373 	 * parameteters like 'max_loop' and 'max_part' make things needlessly
2374 	 * complicated, are too static, inflexible and may surprise
2375 	 * userspace tools. Parameters like this in general should be avoided.
2376 	 */
2377 	if (!part_shift)
2378 		disk->flags |= GENHD_FL_NO_PART_SCAN;
2379 	disk->flags |= GENHD_FL_EXT_DEVT;
2380 	atomic_set(&lo->lo_refcnt, 0);
2381 	mutex_init(&lo->lo_mutex);
2382 	lo->lo_number		= i;
2383 	spin_lock_init(&lo->lo_lock);
2384 	spin_lock_init(&lo->lo_work_lock);
2385 	disk->major		= LOOP_MAJOR;
2386 	disk->first_minor	= i << part_shift;
2387 	disk->minors		= 1 << part_shift;
2388 	disk->fops		= &lo_fops;
2389 	disk->private_data	= lo;
2390 	disk->queue		= lo->lo_queue;
2391 	disk->events		= DISK_EVENT_MEDIA_CHANGE;
2392 	disk->event_flags	= DISK_EVENT_FLAG_UEVENT;
2393 	sprintf(disk->disk_name, "loop%d", i);
2394 	/* Make this loop device reachable from pathname. */
2395 	add_disk(disk);
2396 	/* Show this loop device. */
2397 	mutex_lock(&loop_ctl_mutex);
2398 	lo->idr_visible = true;
2399 	mutex_unlock(&loop_ctl_mutex);
2400 	return i;
2401 
2402 out_cleanup_tags:
2403 	blk_mq_free_tag_set(&lo->tag_set);
2404 out_free_idr:
2405 	mutex_lock(&loop_ctl_mutex);
2406 	idr_remove(&loop_index_idr, i);
2407 	mutex_unlock(&loop_ctl_mutex);
2408 out_free_dev:
2409 	kfree(lo);
2410 out:
2411 	return err;
2412 }
2413 
2414 static void loop_remove(struct loop_device *lo)
2415 {
2416 	/* Make this loop device unreachable from pathname. */
2417 	del_gendisk(lo->lo_disk);
2418 	blk_cleanup_disk(lo->lo_disk);
2419 	blk_mq_free_tag_set(&lo->tag_set);
2420 	mutex_lock(&loop_ctl_mutex);
2421 	idr_remove(&loop_index_idr, lo->lo_number);
2422 	mutex_unlock(&loop_ctl_mutex);
2423 	/* There is no route which can find this loop device. */
2424 	mutex_destroy(&lo->lo_mutex);
2425 	kfree(lo);
2426 }
2427 
2428 static void loop_probe(dev_t dev)
2429 {
2430 	int idx = MINOR(dev) >> part_shift;
2431 
2432 	if (max_loop && idx >= max_loop)
2433 		return;
2434 	loop_add(idx);
2435 }
2436 
2437 static int loop_control_remove(int idx)
2438 {
2439 	struct loop_device *lo;
2440 	int ret;
2441 
2442 	if (idx < 0) {
2443 		pr_warn_once("deleting an unspecified loop device is not supported.\n");
2444 		return -EINVAL;
2445 	}
2446 
2447 	/* Hide this loop device for serialization. */
2448 	ret = mutex_lock_killable(&loop_ctl_mutex);
2449 	if (ret)
2450 		return ret;
2451 	lo = idr_find(&loop_index_idr, idx);
2452 	if (!lo || !lo->idr_visible)
2453 		ret = -ENODEV;
2454 	else
2455 		lo->idr_visible = false;
2456 	mutex_unlock(&loop_ctl_mutex);
2457 	if (ret)
2458 		return ret;
2459 
2460 	/* Check whether this loop device can be removed. */
2461 	ret = mutex_lock_killable(&lo->lo_mutex);
2462 	if (ret)
2463 		goto mark_visible;
2464 	if (lo->lo_state != Lo_unbound ||
2465 	    atomic_read(&lo->lo_refcnt) > 0) {
2466 		mutex_unlock(&lo->lo_mutex);
2467 		ret = -EBUSY;
2468 		goto mark_visible;
2469 	}
2470 	/* Mark this loop device no longer open()-able. */
2471 	lo->lo_state = Lo_deleting;
2472 	mutex_unlock(&lo->lo_mutex);
2473 
2474 	loop_remove(lo);
2475 	return 0;
2476 
2477 mark_visible:
2478 	/* Show this loop device again. */
2479 	mutex_lock(&loop_ctl_mutex);
2480 	lo->idr_visible = true;
2481 	mutex_unlock(&loop_ctl_mutex);
2482 	return ret;
2483 }
2484 
2485 static int loop_control_get_free(int idx)
2486 {
2487 	struct loop_device *lo;
2488 	int id, ret;
2489 
2490 	ret = mutex_lock_killable(&loop_ctl_mutex);
2491 	if (ret)
2492 		return ret;
2493 	idr_for_each_entry(&loop_index_idr, lo, id) {
2494 		/* Hitting a race results in creating a new loop device which is harmless. */
2495 		if (lo->idr_visible && data_race(lo->lo_state) == Lo_unbound)
2496 			goto found;
2497 	}
2498 	mutex_unlock(&loop_ctl_mutex);
2499 	return loop_add(-1);
2500 found:
2501 	mutex_unlock(&loop_ctl_mutex);
2502 	return id;
2503 }
2504 
2505 static long loop_control_ioctl(struct file *file, unsigned int cmd,
2506 			       unsigned long parm)
2507 {
2508 	switch (cmd) {
2509 	case LOOP_CTL_ADD:
2510 		return loop_add(parm);
2511 	case LOOP_CTL_REMOVE:
2512 		return loop_control_remove(parm);
2513 	case LOOP_CTL_GET_FREE:
2514 		return loop_control_get_free(parm);
2515 	default:
2516 		return -ENOSYS;
2517 	}
2518 }
2519 
2520 static const struct file_operations loop_ctl_fops = {
2521 	.open		= nonseekable_open,
2522 	.unlocked_ioctl	= loop_control_ioctl,
2523 	.compat_ioctl	= loop_control_ioctl,
2524 	.owner		= THIS_MODULE,
2525 	.llseek		= noop_llseek,
2526 };
2527 
2528 static struct miscdevice loop_misc = {
2529 	.minor		= LOOP_CTRL_MINOR,
2530 	.name		= "loop-control",
2531 	.fops		= &loop_ctl_fops,
2532 };
2533 
2534 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2535 MODULE_ALIAS("devname:loop-control");
2536 
2537 static int __init loop_init(void)
2538 {
2539 	int i, nr;
2540 	int err;
2541 
2542 	part_shift = 0;
2543 	if (max_part > 0) {
2544 		part_shift = fls(max_part);
2545 
2546 		/*
2547 		 * Adjust max_part according to part_shift as it is exported
2548 		 * to user space so that user can decide correct minor number
2549 		 * if [s]he want to create more devices.
2550 		 *
2551 		 * Note that -1 is required because partition 0 is reserved
2552 		 * for the whole disk.
2553 		 */
2554 		max_part = (1UL << part_shift) - 1;
2555 	}
2556 
2557 	if ((1UL << part_shift) > DISK_MAX_PARTS) {
2558 		err = -EINVAL;
2559 		goto err_out;
2560 	}
2561 
2562 	if (max_loop > 1UL << (MINORBITS - part_shift)) {
2563 		err = -EINVAL;
2564 		goto err_out;
2565 	}
2566 
2567 	/*
2568 	 * If max_loop is specified, create that many devices upfront.
2569 	 * This also becomes a hard limit. If max_loop is not specified,
2570 	 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
2571 	 * init time. Loop devices can be requested on-demand with the
2572 	 * /dev/loop-control interface, or be instantiated by accessing
2573 	 * a 'dead' device node.
2574 	 */
2575 	if (max_loop)
2576 		nr = max_loop;
2577 	else
2578 		nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
2579 
2580 	err = misc_register(&loop_misc);
2581 	if (err < 0)
2582 		goto err_out;
2583 
2584 
2585 	if (__register_blkdev(LOOP_MAJOR, "loop", loop_probe)) {
2586 		err = -EIO;
2587 		goto misc_out;
2588 	}
2589 
2590 	/* pre-create number of devices given by config or max_loop */
2591 	for (i = 0; i < nr; i++)
2592 		loop_add(i);
2593 
2594 	printk(KERN_INFO "loop: module loaded\n");
2595 	return 0;
2596 
2597 misc_out:
2598 	misc_deregister(&loop_misc);
2599 err_out:
2600 	return err;
2601 }
2602 
2603 static void __exit loop_exit(void)
2604 {
2605 	struct loop_device *lo;
2606 	int id;
2607 
2608 	unregister_blkdev(LOOP_MAJOR, "loop");
2609 	misc_deregister(&loop_misc);
2610 
2611 	/*
2612 	 * There is no need to use loop_ctl_mutex here, for nobody else can
2613 	 * access loop_index_idr when this module is unloading (unless forced
2614 	 * module unloading is requested). If this is not a clean unloading,
2615 	 * we have no means to avoid kernel crash.
2616 	 */
2617 	idr_for_each_entry(&loop_index_idr, lo, id)
2618 		loop_remove(lo);
2619 
2620 	idr_destroy(&loop_index_idr);
2621 }
2622 
2623 module_init(loop_init);
2624 module_exit(loop_exit);
2625 
2626 #ifndef MODULE
2627 static int __init max_loop_setup(char *str)
2628 {
2629 	max_loop = simple_strtol(str, NULL, 0);
2630 	return 1;
2631 }
2632 
2633 __setup("max_loop=", max_loop_setup);
2634 #endif
2635