1 /* 2 drbd_worker.c 3 4 This file is part of DRBD by Philipp Reisner and Lars Ellenberg. 5 6 Copyright (C) 2001-2008, LINBIT Information Technologies GmbH. 7 Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>. 8 Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>. 9 10 drbd is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation; either version 2, or (at your option) 13 any later version. 14 15 drbd is distributed in the hope that it will be useful, 16 but WITHOUT ANY WARRANTY; without even the implied warranty of 17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 GNU General Public License for more details. 19 20 You should have received a copy of the GNU General Public License 21 along with drbd; see the file COPYING. If not, write to 22 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 23 24 */ 25 26 #include <linux/module.h> 27 #include <linux/drbd.h> 28 #include <linux/sched.h> 29 #include <linux/wait.h> 30 #include <linux/mm.h> 31 #include <linux/memcontrol.h> 32 #include <linux/mm_inline.h> 33 #include <linux/slab.h> 34 #include <linux/random.h> 35 #include <linux/string.h> 36 #include <linux/scatterlist.h> 37 38 #include "drbd_int.h" 39 #include "drbd_protocol.h" 40 #include "drbd_req.h" 41 42 static int make_ov_request(struct drbd_device *, int); 43 static int make_resync_request(struct drbd_device *, int); 44 45 /* endio handlers: 46 * drbd_md_io_complete (defined here) 47 * drbd_request_endio (defined here) 48 * drbd_peer_request_endio (defined here) 49 * bm_async_io_complete (defined in drbd_bitmap.c) 50 * 51 * For all these callbacks, note the following: 52 * The callbacks will be called in irq context by the IDE drivers, 53 * and in Softirqs/Tasklets/BH context by the SCSI drivers. 54 * Try to get the locking right :) 55 * 56 */ 57 58 59 /* About the global_state_lock 60 Each state transition on an device holds a read lock. In case we have 61 to evaluate the resync after dependencies, we grab a write lock, because 62 we need stable states on all devices for that. */ 63 rwlock_t global_state_lock; 64 65 /* used for synchronous meta data and bitmap IO 66 * submitted by drbd_md_sync_page_io() 67 */ 68 void drbd_md_io_complete(struct bio *bio, int error) 69 { 70 struct drbd_md_io *md_io; 71 struct drbd_device *device; 72 73 md_io = (struct drbd_md_io *)bio->bi_private; 74 device = container_of(md_io, struct drbd_device, md_io); 75 76 md_io->error = error; 77 78 /* We grabbed an extra reference in _drbd_md_sync_page_io() to be able 79 * to timeout on the lower level device, and eventually detach from it. 80 * If this io completion runs after that timeout expired, this 81 * drbd_md_put_buffer() may allow us to finally try and re-attach. 82 * During normal operation, this only puts that extra reference 83 * down to 1 again. 84 * Make sure we first drop the reference, and only then signal 85 * completion, or we may (in drbd_al_read_log()) cycle so fast into the 86 * next drbd_md_sync_page_io(), that we trigger the 87 * ASSERT(atomic_read(&device->md_io_in_use) == 1) there. 88 */ 89 drbd_md_put_buffer(device); 90 md_io->done = 1; 91 wake_up(&device->misc_wait); 92 bio_put(bio); 93 if (device->ldev) /* special case: drbd_md_read() during drbd_adm_attach() */ 94 put_ldev(device); 95 } 96 97 /* reads on behalf of the partner, 98 * "submitted" by the receiver 99 */ 100 static void drbd_endio_read_sec_final(struct drbd_peer_request *peer_req) __releases(local) 101 { 102 unsigned long flags = 0; 103 struct drbd_peer_device *peer_device = peer_req->peer_device; 104 struct drbd_device *device = peer_device->device; 105 106 spin_lock_irqsave(&device->resource->req_lock, flags); 107 device->read_cnt += peer_req->i.size >> 9; 108 list_del(&peer_req->w.list); 109 if (list_empty(&device->read_ee)) 110 wake_up(&device->ee_wait); 111 if (test_bit(__EE_WAS_ERROR, &peer_req->flags)) 112 __drbd_chk_io_error(device, DRBD_READ_ERROR); 113 spin_unlock_irqrestore(&device->resource->req_lock, flags); 114 115 drbd_queue_work(&peer_device->connection->sender_work, &peer_req->w); 116 put_ldev(device); 117 } 118 119 /* writes on behalf of the partner, or resync writes, 120 * "submitted" by the receiver, final stage. */ 121 static void drbd_endio_write_sec_final(struct drbd_peer_request *peer_req) __releases(local) 122 { 123 unsigned long flags = 0; 124 struct drbd_peer_device *peer_device = peer_req->peer_device; 125 struct drbd_device *device = peer_device->device; 126 struct drbd_interval i; 127 int do_wake; 128 u64 block_id; 129 int do_al_complete_io; 130 131 /* after we moved peer_req to done_ee, 132 * we may no longer access it, 133 * it may be freed/reused already! 134 * (as soon as we release the req_lock) */ 135 i = peer_req->i; 136 do_al_complete_io = peer_req->flags & EE_CALL_AL_COMPLETE_IO; 137 block_id = peer_req->block_id; 138 139 spin_lock_irqsave(&device->resource->req_lock, flags); 140 device->writ_cnt += peer_req->i.size >> 9; 141 list_move_tail(&peer_req->w.list, &device->done_ee); 142 143 /* 144 * Do not remove from the write_requests tree here: we did not send the 145 * Ack yet and did not wake possibly waiting conflicting requests. 146 * Removed from the tree from "drbd_process_done_ee" within the 147 * appropriate dw.cb (e_end_block/e_end_resync_block) or from 148 * _drbd_clear_done_ee. 149 */ 150 151 do_wake = list_empty(block_id == ID_SYNCER ? &device->sync_ee : &device->active_ee); 152 153 if (test_bit(__EE_WAS_ERROR, &peer_req->flags)) 154 __drbd_chk_io_error(device, DRBD_WRITE_ERROR); 155 spin_unlock_irqrestore(&device->resource->req_lock, flags); 156 157 if (block_id == ID_SYNCER) 158 drbd_rs_complete_io(device, i.sector); 159 160 if (do_wake) 161 wake_up(&device->ee_wait); 162 163 if (do_al_complete_io) 164 drbd_al_complete_io(device, &i); 165 166 wake_asender(peer_device->connection); 167 put_ldev(device); 168 } 169 170 /* writes on behalf of the partner, or resync writes, 171 * "submitted" by the receiver. 172 */ 173 void drbd_peer_request_endio(struct bio *bio, int error) 174 { 175 struct drbd_peer_request *peer_req = bio->bi_private; 176 struct drbd_device *device = peer_req->peer_device->device; 177 int uptodate = bio_flagged(bio, BIO_UPTODATE); 178 int is_write = bio_data_dir(bio) == WRITE; 179 180 if (error && __ratelimit(&drbd_ratelimit_state)) 181 drbd_warn(device, "%s: error=%d s=%llus\n", 182 is_write ? "write" : "read", error, 183 (unsigned long long)peer_req->i.sector); 184 if (!error && !uptodate) { 185 if (__ratelimit(&drbd_ratelimit_state)) 186 drbd_warn(device, "%s: setting error to -EIO s=%llus\n", 187 is_write ? "write" : "read", 188 (unsigned long long)peer_req->i.sector); 189 /* strange behavior of some lower level drivers... 190 * fail the request by clearing the uptodate flag, 191 * but do not return any error?! */ 192 error = -EIO; 193 } 194 195 if (error) 196 set_bit(__EE_WAS_ERROR, &peer_req->flags); 197 198 bio_put(bio); /* no need for the bio anymore */ 199 if (atomic_dec_and_test(&peer_req->pending_bios)) { 200 if (is_write) 201 drbd_endio_write_sec_final(peer_req); 202 else 203 drbd_endio_read_sec_final(peer_req); 204 } 205 } 206 207 /* read, readA or write requests on R_PRIMARY coming from drbd_make_request 208 */ 209 void drbd_request_endio(struct bio *bio, int error) 210 { 211 unsigned long flags; 212 struct drbd_request *req = bio->bi_private; 213 struct drbd_device *device = req->device; 214 struct bio_and_error m; 215 enum drbd_req_event what; 216 int uptodate = bio_flagged(bio, BIO_UPTODATE); 217 218 if (!error && !uptodate) { 219 drbd_warn(device, "p %s: setting error to -EIO\n", 220 bio_data_dir(bio) == WRITE ? "write" : "read"); 221 /* strange behavior of some lower level drivers... 222 * fail the request by clearing the uptodate flag, 223 * but do not return any error?! */ 224 error = -EIO; 225 } 226 227 228 /* If this request was aborted locally before, 229 * but now was completed "successfully", 230 * chances are that this caused arbitrary data corruption. 231 * 232 * "aborting" requests, or force-detaching the disk, is intended for 233 * completely blocked/hung local backing devices which do no longer 234 * complete requests at all, not even do error completions. In this 235 * situation, usually a hard-reset and failover is the only way out. 236 * 237 * By "aborting", basically faking a local error-completion, 238 * we allow for a more graceful swichover by cleanly migrating services. 239 * Still the affected node has to be rebooted "soon". 240 * 241 * By completing these requests, we allow the upper layers to re-use 242 * the associated data pages. 243 * 244 * If later the local backing device "recovers", and now DMAs some data 245 * from disk into the original request pages, in the best case it will 246 * just put random data into unused pages; but typically it will corrupt 247 * meanwhile completely unrelated data, causing all sorts of damage. 248 * 249 * Which means delayed successful completion, 250 * especially for READ requests, 251 * is a reason to panic(). 252 * 253 * We assume that a delayed *error* completion is OK, 254 * though we still will complain noisily about it. 255 */ 256 if (unlikely(req->rq_state & RQ_LOCAL_ABORTED)) { 257 if (__ratelimit(&drbd_ratelimit_state)) 258 drbd_emerg(device, "delayed completion of aborted local request; disk-timeout may be too aggressive\n"); 259 260 if (!error) 261 panic("possible random memory corruption caused by delayed completion of aborted local request\n"); 262 } 263 264 /* to avoid recursion in __req_mod */ 265 if (unlikely(error)) { 266 what = (bio_data_dir(bio) == WRITE) 267 ? WRITE_COMPLETED_WITH_ERROR 268 : (bio_rw(bio) == READ) 269 ? READ_COMPLETED_WITH_ERROR 270 : READ_AHEAD_COMPLETED_WITH_ERROR; 271 } else 272 what = COMPLETED_OK; 273 274 bio_put(req->private_bio); 275 req->private_bio = ERR_PTR(error); 276 277 /* not req_mod(), we need irqsave here! */ 278 spin_lock_irqsave(&device->resource->req_lock, flags); 279 __req_mod(req, what, &m); 280 spin_unlock_irqrestore(&device->resource->req_lock, flags); 281 put_ldev(device); 282 283 if (m.bio) 284 complete_master_bio(device, &m); 285 } 286 287 void drbd_csum_ee(struct crypto_hash *tfm, struct drbd_peer_request *peer_req, void *digest) 288 { 289 struct hash_desc desc; 290 struct scatterlist sg; 291 struct page *page = peer_req->pages; 292 struct page *tmp; 293 unsigned len; 294 295 desc.tfm = tfm; 296 desc.flags = 0; 297 298 sg_init_table(&sg, 1); 299 crypto_hash_init(&desc); 300 301 while ((tmp = page_chain_next(page))) { 302 /* all but the last page will be fully used */ 303 sg_set_page(&sg, page, PAGE_SIZE, 0); 304 crypto_hash_update(&desc, &sg, sg.length); 305 page = tmp; 306 } 307 /* and now the last, possibly only partially used page */ 308 len = peer_req->i.size & (PAGE_SIZE - 1); 309 sg_set_page(&sg, page, len ?: PAGE_SIZE, 0); 310 crypto_hash_update(&desc, &sg, sg.length); 311 crypto_hash_final(&desc, digest); 312 } 313 314 void drbd_csum_bio(struct crypto_hash *tfm, struct bio *bio, void *digest) 315 { 316 struct hash_desc desc; 317 struct scatterlist sg; 318 struct bio_vec bvec; 319 struct bvec_iter iter; 320 321 desc.tfm = tfm; 322 desc.flags = 0; 323 324 sg_init_table(&sg, 1); 325 crypto_hash_init(&desc); 326 327 bio_for_each_segment(bvec, bio, iter) { 328 sg_set_page(&sg, bvec.bv_page, bvec.bv_len, bvec.bv_offset); 329 crypto_hash_update(&desc, &sg, sg.length); 330 } 331 crypto_hash_final(&desc, digest); 332 } 333 334 /* MAYBE merge common code with w_e_end_ov_req */ 335 static int w_e_send_csum(struct drbd_work *w, int cancel) 336 { 337 struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w); 338 struct drbd_peer_device *peer_device = peer_req->peer_device; 339 struct drbd_device *device = peer_device->device; 340 int digest_size; 341 void *digest; 342 int err = 0; 343 344 if (unlikely(cancel)) 345 goto out; 346 347 if (unlikely((peer_req->flags & EE_WAS_ERROR) != 0)) 348 goto out; 349 350 digest_size = crypto_hash_digestsize(peer_device->connection->csums_tfm); 351 digest = kmalloc(digest_size, GFP_NOIO); 352 if (digest) { 353 sector_t sector = peer_req->i.sector; 354 unsigned int size = peer_req->i.size; 355 drbd_csum_ee(peer_device->connection->csums_tfm, peer_req, digest); 356 /* Free peer_req and pages before send. 357 * In case we block on congestion, we could otherwise run into 358 * some distributed deadlock, if the other side blocks on 359 * congestion as well, because our receiver blocks in 360 * drbd_alloc_pages due to pp_in_use > max_buffers. */ 361 drbd_free_peer_req(device, peer_req); 362 peer_req = NULL; 363 inc_rs_pending(device); 364 err = drbd_send_drequest_csum(peer_device, sector, size, 365 digest, digest_size, 366 P_CSUM_RS_REQUEST); 367 kfree(digest); 368 } else { 369 drbd_err(device, "kmalloc() of digest failed.\n"); 370 err = -ENOMEM; 371 } 372 373 out: 374 if (peer_req) 375 drbd_free_peer_req(device, peer_req); 376 377 if (unlikely(err)) 378 drbd_err(device, "drbd_send_drequest(..., csum) failed\n"); 379 return err; 380 } 381 382 #define GFP_TRY (__GFP_HIGHMEM | __GFP_NOWARN) 383 384 static int read_for_csum(struct drbd_peer_device *peer_device, sector_t sector, int size) 385 { 386 struct drbd_device *device = peer_device->device; 387 struct drbd_peer_request *peer_req; 388 389 if (!get_ldev(device)) 390 return -EIO; 391 392 if (drbd_rs_should_slow_down(device, sector)) 393 goto defer; 394 395 /* GFP_TRY, because if there is no memory available right now, this may 396 * be rescheduled for later. It is "only" background resync, after all. */ 397 peer_req = drbd_alloc_peer_req(peer_device, ID_SYNCER /* unused */, sector, 398 size, GFP_TRY); 399 if (!peer_req) 400 goto defer; 401 402 peer_req->w.cb = w_e_send_csum; 403 spin_lock_irq(&device->resource->req_lock); 404 list_add(&peer_req->w.list, &device->read_ee); 405 spin_unlock_irq(&device->resource->req_lock); 406 407 atomic_add(size >> 9, &device->rs_sect_ev); 408 if (drbd_submit_peer_request(device, peer_req, READ, DRBD_FAULT_RS_RD) == 0) 409 return 0; 410 411 /* If it failed because of ENOMEM, retry should help. If it failed 412 * because bio_add_page failed (probably broken lower level driver), 413 * retry may or may not help. 414 * If it does not, you may need to force disconnect. */ 415 spin_lock_irq(&device->resource->req_lock); 416 list_del(&peer_req->w.list); 417 spin_unlock_irq(&device->resource->req_lock); 418 419 drbd_free_peer_req(device, peer_req); 420 defer: 421 put_ldev(device); 422 return -EAGAIN; 423 } 424 425 int w_resync_timer(struct drbd_work *w, int cancel) 426 { 427 struct drbd_device *device = 428 container_of(w, struct drbd_device, resync_work); 429 430 switch (device->state.conn) { 431 case C_VERIFY_S: 432 make_ov_request(device, cancel); 433 break; 434 case C_SYNC_TARGET: 435 make_resync_request(device, cancel); 436 break; 437 } 438 439 return 0; 440 } 441 442 void resync_timer_fn(unsigned long data) 443 { 444 struct drbd_device *device = (struct drbd_device *) data; 445 446 if (list_empty(&device->resync_work.list)) 447 drbd_queue_work(&first_peer_device(device)->connection->sender_work, 448 &device->resync_work); 449 } 450 451 static void fifo_set(struct fifo_buffer *fb, int value) 452 { 453 int i; 454 455 for (i = 0; i < fb->size; i++) 456 fb->values[i] = value; 457 } 458 459 static int fifo_push(struct fifo_buffer *fb, int value) 460 { 461 int ov; 462 463 ov = fb->values[fb->head_index]; 464 fb->values[fb->head_index++] = value; 465 466 if (fb->head_index >= fb->size) 467 fb->head_index = 0; 468 469 return ov; 470 } 471 472 static void fifo_add_val(struct fifo_buffer *fb, int value) 473 { 474 int i; 475 476 for (i = 0; i < fb->size; i++) 477 fb->values[i] += value; 478 } 479 480 struct fifo_buffer *fifo_alloc(int fifo_size) 481 { 482 struct fifo_buffer *fb; 483 484 fb = kzalloc(sizeof(struct fifo_buffer) + sizeof(int) * fifo_size, GFP_NOIO); 485 if (!fb) 486 return NULL; 487 488 fb->head_index = 0; 489 fb->size = fifo_size; 490 fb->total = 0; 491 492 return fb; 493 } 494 495 static int drbd_rs_controller(struct drbd_device *device) 496 { 497 struct disk_conf *dc; 498 unsigned int sect_in; /* Number of sectors that came in since the last turn */ 499 unsigned int want; /* The number of sectors we want in the proxy */ 500 int req_sect; /* Number of sectors to request in this turn */ 501 int correction; /* Number of sectors more we need in the proxy*/ 502 int cps; /* correction per invocation of drbd_rs_controller() */ 503 int steps; /* Number of time steps to plan ahead */ 504 int curr_corr; 505 int max_sect; 506 struct fifo_buffer *plan; 507 508 sect_in = atomic_xchg(&device->rs_sect_in, 0); /* Number of sectors that came in */ 509 device->rs_in_flight -= sect_in; 510 511 dc = rcu_dereference(device->ldev->disk_conf); 512 plan = rcu_dereference(device->rs_plan_s); 513 514 steps = plan->size; /* (dc->c_plan_ahead * 10 * SLEEP_TIME) / HZ; */ 515 516 if (device->rs_in_flight + sect_in == 0) { /* At start of resync */ 517 want = ((dc->resync_rate * 2 * SLEEP_TIME) / HZ) * steps; 518 } else { /* normal path */ 519 want = dc->c_fill_target ? dc->c_fill_target : 520 sect_in * dc->c_delay_target * HZ / (SLEEP_TIME * 10); 521 } 522 523 correction = want - device->rs_in_flight - plan->total; 524 525 /* Plan ahead */ 526 cps = correction / steps; 527 fifo_add_val(plan, cps); 528 plan->total += cps * steps; 529 530 /* What we do in this step */ 531 curr_corr = fifo_push(plan, 0); 532 plan->total -= curr_corr; 533 534 req_sect = sect_in + curr_corr; 535 if (req_sect < 0) 536 req_sect = 0; 537 538 max_sect = (dc->c_max_rate * 2 * SLEEP_TIME) / HZ; 539 if (req_sect > max_sect) 540 req_sect = max_sect; 541 542 /* 543 drbd_warn(device, "si=%u if=%d wa=%u co=%d st=%d cps=%d pl=%d cc=%d rs=%d\n", 544 sect_in, device->rs_in_flight, want, correction, 545 steps, cps, device->rs_planed, curr_corr, req_sect); 546 */ 547 548 return req_sect; 549 } 550 551 static int drbd_rs_number_requests(struct drbd_device *device) 552 { 553 int number; 554 555 rcu_read_lock(); 556 if (rcu_dereference(device->rs_plan_s)->size) { 557 number = drbd_rs_controller(device) >> (BM_BLOCK_SHIFT - 9); 558 device->c_sync_rate = number * HZ * (BM_BLOCK_SIZE / 1024) / SLEEP_TIME; 559 } else { 560 device->c_sync_rate = rcu_dereference(device->ldev->disk_conf)->resync_rate; 561 number = SLEEP_TIME * device->c_sync_rate / ((BM_BLOCK_SIZE / 1024) * HZ); 562 } 563 rcu_read_unlock(); 564 565 /* ignore the amount of pending requests, the resync controller should 566 * throttle down to incoming reply rate soon enough anyways. */ 567 return number; 568 } 569 570 static int make_resync_request(struct drbd_device *device, int cancel) 571 { 572 unsigned long bit; 573 sector_t sector; 574 const sector_t capacity = drbd_get_capacity(device->this_bdev); 575 int max_bio_size; 576 int number, rollback_i, size; 577 int align, queued, sndbuf; 578 int i = 0; 579 580 if (unlikely(cancel)) 581 return 0; 582 583 if (device->rs_total == 0) { 584 /* empty resync? */ 585 drbd_resync_finished(device); 586 return 0; 587 } 588 589 if (!get_ldev(device)) { 590 /* Since we only need to access device->rsync a 591 get_ldev_if_state(device,D_FAILED) would be sufficient, but 592 to continue resync with a broken disk makes no sense at 593 all */ 594 drbd_err(device, "Disk broke down during resync!\n"); 595 return 0; 596 } 597 598 max_bio_size = queue_max_hw_sectors(device->rq_queue) << 9; 599 number = drbd_rs_number_requests(device); 600 if (number == 0) 601 goto requeue; 602 603 for (i = 0; i < number; i++) { 604 /* Stop generating RS requests, when half of the send buffer is filled */ 605 mutex_lock(&first_peer_device(device)->connection->data.mutex); 606 if (first_peer_device(device)->connection->data.socket) { 607 queued = first_peer_device(device)->connection->data.socket->sk->sk_wmem_queued; 608 sndbuf = first_peer_device(device)->connection->data.socket->sk->sk_sndbuf; 609 } else { 610 queued = 1; 611 sndbuf = 0; 612 } 613 mutex_unlock(&first_peer_device(device)->connection->data.mutex); 614 if (queued > sndbuf / 2) 615 goto requeue; 616 617 next_sector: 618 size = BM_BLOCK_SIZE; 619 bit = drbd_bm_find_next(device, device->bm_resync_fo); 620 621 if (bit == DRBD_END_OF_BITMAP) { 622 device->bm_resync_fo = drbd_bm_bits(device); 623 put_ldev(device); 624 return 0; 625 } 626 627 sector = BM_BIT_TO_SECT(bit); 628 629 if (drbd_rs_should_slow_down(device, sector) || 630 drbd_try_rs_begin_io(device, sector)) { 631 device->bm_resync_fo = bit; 632 goto requeue; 633 } 634 device->bm_resync_fo = bit + 1; 635 636 if (unlikely(drbd_bm_test_bit(device, bit) == 0)) { 637 drbd_rs_complete_io(device, sector); 638 goto next_sector; 639 } 640 641 #if DRBD_MAX_BIO_SIZE > BM_BLOCK_SIZE 642 /* try to find some adjacent bits. 643 * we stop if we have already the maximum req size. 644 * 645 * Additionally always align bigger requests, in order to 646 * be prepared for all stripe sizes of software RAIDs. 647 */ 648 align = 1; 649 rollback_i = i; 650 for (;;) { 651 if (size + BM_BLOCK_SIZE > max_bio_size) 652 break; 653 654 /* Be always aligned */ 655 if (sector & ((1<<(align+3))-1)) 656 break; 657 658 /* do not cross extent boundaries */ 659 if (((bit+1) & BM_BLOCKS_PER_BM_EXT_MASK) == 0) 660 break; 661 /* now, is it actually dirty, after all? 662 * caution, drbd_bm_test_bit is tri-state for some 663 * obscure reason; ( b == 0 ) would get the out-of-band 664 * only accidentally right because of the "oddly sized" 665 * adjustment below */ 666 if (drbd_bm_test_bit(device, bit+1) != 1) 667 break; 668 bit++; 669 size += BM_BLOCK_SIZE; 670 if ((BM_BLOCK_SIZE << align) <= size) 671 align++; 672 i++; 673 } 674 /* if we merged some, 675 * reset the offset to start the next drbd_bm_find_next from */ 676 if (size > BM_BLOCK_SIZE) 677 device->bm_resync_fo = bit + 1; 678 #endif 679 680 /* adjust very last sectors, in case we are oddly sized */ 681 if (sector + (size>>9) > capacity) 682 size = (capacity-sector)<<9; 683 if (first_peer_device(device)->connection->agreed_pro_version >= 89 && 684 first_peer_device(device)->connection->csums_tfm) { 685 switch (read_for_csum(first_peer_device(device), sector, size)) { 686 case -EIO: /* Disk failure */ 687 put_ldev(device); 688 return -EIO; 689 case -EAGAIN: /* allocation failed, or ldev busy */ 690 drbd_rs_complete_io(device, sector); 691 device->bm_resync_fo = BM_SECT_TO_BIT(sector); 692 i = rollback_i; 693 goto requeue; 694 case 0: 695 /* everything ok */ 696 break; 697 default: 698 BUG(); 699 } 700 } else { 701 int err; 702 703 inc_rs_pending(device); 704 err = drbd_send_drequest(first_peer_device(device), P_RS_DATA_REQUEST, 705 sector, size, ID_SYNCER); 706 if (err) { 707 drbd_err(device, "drbd_send_drequest() failed, aborting...\n"); 708 dec_rs_pending(device); 709 put_ldev(device); 710 return err; 711 } 712 } 713 } 714 715 if (device->bm_resync_fo >= drbd_bm_bits(device)) { 716 /* last syncer _request_ was sent, 717 * but the P_RS_DATA_REPLY not yet received. sync will end (and 718 * next sync group will resume), as soon as we receive the last 719 * resync data block, and the last bit is cleared. 720 * until then resync "work" is "inactive" ... 721 */ 722 put_ldev(device); 723 return 0; 724 } 725 726 requeue: 727 device->rs_in_flight += (i << (BM_BLOCK_SHIFT - 9)); 728 mod_timer(&device->resync_timer, jiffies + SLEEP_TIME); 729 put_ldev(device); 730 return 0; 731 } 732 733 static int make_ov_request(struct drbd_device *device, int cancel) 734 { 735 int number, i, size; 736 sector_t sector; 737 const sector_t capacity = drbd_get_capacity(device->this_bdev); 738 bool stop_sector_reached = false; 739 740 if (unlikely(cancel)) 741 return 1; 742 743 number = drbd_rs_number_requests(device); 744 745 sector = device->ov_position; 746 for (i = 0; i < number; i++) { 747 if (sector >= capacity) 748 return 1; 749 750 /* We check for "finished" only in the reply path: 751 * w_e_end_ov_reply(). 752 * We need to send at least one request out. */ 753 stop_sector_reached = i > 0 754 && verify_can_do_stop_sector(device) 755 && sector >= device->ov_stop_sector; 756 if (stop_sector_reached) 757 break; 758 759 size = BM_BLOCK_SIZE; 760 761 if (drbd_rs_should_slow_down(device, sector) || 762 drbd_try_rs_begin_io(device, sector)) { 763 device->ov_position = sector; 764 goto requeue; 765 } 766 767 if (sector + (size>>9) > capacity) 768 size = (capacity-sector)<<9; 769 770 inc_rs_pending(device); 771 if (drbd_send_ov_request(first_peer_device(device), sector, size)) { 772 dec_rs_pending(device); 773 return 0; 774 } 775 sector += BM_SECT_PER_BIT; 776 } 777 device->ov_position = sector; 778 779 requeue: 780 device->rs_in_flight += (i << (BM_BLOCK_SHIFT - 9)); 781 if (i == 0 || !stop_sector_reached) 782 mod_timer(&device->resync_timer, jiffies + SLEEP_TIME); 783 return 1; 784 } 785 786 int w_ov_finished(struct drbd_work *w, int cancel) 787 { 788 struct drbd_device_work *dw = 789 container_of(w, struct drbd_device_work, w); 790 struct drbd_device *device = dw->device; 791 kfree(dw); 792 ov_out_of_sync_print(device); 793 drbd_resync_finished(device); 794 795 return 0; 796 } 797 798 static int w_resync_finished(struct drbd_work *w, int cancel) 799 { 800 struct drbd_device_work *dw = 801 container_of(w, struct drbd_device_work, w); 802 struct drbd_device *device = dw->device; 803 kfree(dw); 804 805 drbd_resync_finished(device); 806 807 return 0; 808 } 809 810 static void ping_peer(struct drbd_device *device) 811 { 812 struct drbd_connection *connection = first_peer_device(device)->connection; 813 814 clear_bit(GOT_PING_ACK, &connection->flags); 815 request_ping(connection); 816 wait_event(connection->ping_wait, 817 test_bit(GOT_PING_ACK, &connection->flags) || device->state.conn < C_CONNECTED); 818 } 819 820 int drbd_resync_finished(struct drbd_device *device) 821 { 822 unsigned long db, dt, dbdt; 823 unsigned long n_oos; 824 union drbd_state os, ns; 825 struct drbd_device_work *dw; 826 char *khelper_cmd = NULL; 827 int verify_done = 0; 828 829 /* Remove all elements from the resync LRU. Since future actions 830 * might set bits in the (main) bitmap, then the entries in the 831 * resync LRU would be wrong. */ 832 if (drbd_rs_del_all(device)) { 833 /* In case this is not possible now, most probably because 834 * there are P_RS_DATA_REPLY Packets lingering on the worker's 835 * queue (or even the read operations for those packets 836 * is not finished by now). Retry in 100ms. */ 837 838 schedule_timeout_interruptible(HZ / 10); 839 dw = kmalloc(sizeof(struct drbd_device_work), GFP_ATOMIC); 840 if (dw) { 841 dw->w.cb = w_resync_finished; 842 dw->device = device; 843 drbd_queue_work(&first_peer_device(device)->connection->sender_work, 844 &dw->w); 845 return 1; 846 } 847 drbd_err(device, "Warn failed to drbd_rs_del_all() and to kmalloc(dw).\n"); 848 } 849 850 dt = (jiffies - device->rs_start - device->rs_paused) / HZ; 851 if (dt <= 0) 852 dt = 1; 853 854 db = device->rs_total; 855 /* adjust for verify start and stop sectors, respective reached position */ 856 if (device->state.conn == C_VERIFY_S || device->state.conn == C_VERIFY_T) 857 db -= device->ov_left; 858 859 dbdt = Bit2KB(db/dt); 860 device->rs_paused /= HZ; 861 862 if (!get_ldev(device)) 863 goto out; 864 865 ping_peer(device); 866 867 spin_lock_irq(&device->resource->req_lock); 868 os = drbd_read_state(device); 869 870 verify_done = (os.conn == C_VERIFY_S || os.conn == C_VERIFY_T); 871 872 /* This protects us against multiple calls (that can happen in the presence 873 of application IO), and against connectivity loss just before we arrive here. */ 874 if (os.conn <= C_CONNECTED) 875 goto out_unlock; 876 877 ns = os; 878 ns.conn = C_CONNECTED; 879 880 drbd_info(device, "%s done (total %lu sec; paused %lu sec; %lu K/sec)\n", 881 verify_done ? "Online verify" : "Resync", 882 dt + device->rs_paused, device->rs_paused, dbdt); 883 884 n_oos = drbd_bm_total_weight(device); 885 886 if (os.conn == C_VERIFY_S || os.conn == C_VERIFY_T) { 887 if (n_oos) { 888 drbd_alert(device, "Online verify found %lu %dk block out of sync!\n", 889 n_oos, Bit2KB(1)); 890 khelper_cmd = "out-of-sync"; 891 } 892 } else { 893 D_ASSERT(device, (n_oos - device->rs_failed) == 0); 894 895 if (os.conn == C_SYNC_TARGET || os.conn == C_PAUSED_SYNC_T) 896 khelper_cmd = "after-resync-target"; 897 898 if (first_peer_device(device)->connection->csums_tfm && device->rs_total) { 899 const unsigned long s = device->rs_same_csum; 900 const unsigned long t = device->rs_total; 901 const int ratio = 902 (t == 0) ? 0 : 903 (t < 100000) ? ((s*100)/t) : (s/(t/100)); 904 drbd_info(device, "%u %% had equal checksums, eliminated: %luK; " 905 "transferred %luK total %luK\n", 906 ratio, 907 Bit2KB(device->rs_same_csum), 908 Bit2KB(device->rs_total - device->rs_same_csum), 909 Bit2KB(device->rs_total)); 910 } 911 } 912 913 if (device->rs_failed) { 914 drbd_info(device, " %lu failed blocks\n", device->rs_failed); 915 916 if (os.conn == C_SYNC_TARGET || os.conn == C_PAUSED_SYNC_T) { 917 ns.disk = D_INCONSISTENT; 918 ns.pdsk = D_UP_TO_DATE; 919 } else { 920 ns.disk = D_UP_TO_DATE; 921 ns.pdsk = D_INCONSISTENT; 922 } 923 } else { 924 ns.disk = D_UP_TO_DATE; 925 ns.pdsk = D_UP_TO_DATE; 926 927 if (os.conn == C_SYNC_TARGET || os.conn == C_PAUSED_SYNC_T) { 928 if (device->p_uuid) { 929 int i; 930 for (i = UI_BITMAP ; i <= UI_HISTORY_END ; i++) 931 _drbd_uuid_set(device, i, device->p_uuid[i]); 932 drbd_uuid_set(device, UI_BITMAP, device->ldev->md.uuid[UI_CURRENT]); 933 _drbd_uuid_set(device, UI_CURRENT, device->p_uuid[UI_CURRENT]); 934 } else { 935 drbd_err(device, "device->p_uuid is NULL! BUG\n"); 936 } 937 } 938 939 if (!(os.conn == C_VERIFY_S || os.conn == C_VERIFY_T)) { 940 /* for verify runs, we don't update uuids here, 941 * so there would be nothing to report. */ 942 drbd_uuid_set_bm(device, 0UL); 943 drbd_print_uuids(device, "updated UUIDs"); 944 if (device->p_uuid) { 945 /* Now the two UUID sets are equal, update what we 946 * know of the peer. */ 947 int i; 948 for (i = UI_CURRENT ; i <= UI_HISTORY_END ; i++) 949 device->p_uuid[i] = device->ldev->md.uuid[i]; 950 } 951 } 952 } 953 954 _drbd_set_state(device, ns, CS_VERBOSE, NULL); 955 out_unlock: 956 spin_unlock_irq(&device->resource->req_lock); 957 put_ldev(device); 958 out: 959 device->rs_total = 0; 960 device->rs_failed = 0; 961 device->rs_paused = 0; 962 963 /* reset start sector, if we reached end of device */ 964 if (verify_done && device->ov_left == 0) 965 device->ov_start_sector = 0; 966 967 drbd_md_sync(device); 968 969 if (khelper_cmd) 970 drbd_khelper(device, khelper_cmd); 971 972 return 1; 973 } 974 975 /* helper */ 976 static void move_to_net_ee_or_free(struct drbd_device *device, struct drbd_peer_request *peer_req) 977 { 978 if (drbd_peer_req_has_active_page(peer_req)) { 979 /* This might happen if sendpage() has not finished */ 980 int i = (peer_req->i.size + PAGE_SIZE -1) >> PAGE_SHIFT; 981 atomic_add(i, &device->pp_in_use_by_net); 982 atomic_sub(i, &device->pp_in_use); 983 spin_lock_irq(&device->resource->req_lock); 984 list_add_tail(&peer_req->w.list, &device->net_ee); 985 spin_unlock_irq(&device->resource->req_lock); 986 wake_up(&drbd_pp_wait); 987 } else 988 drbd_free_peer_req(device, peer_req); 989 } 990 991 /** 992 * w_e_end_data_req() - Worker callback, to send a P_DATA_REPLY packet in response to a P_DATA_REQUEST 993 * @device: DRBD device. 994 * @w: work object. 995 * @cancel: The connection will be closed anyways 996 */ 997 int w_e_end_data_req(struct drbd_work *w, int cancel) 998 { 999 struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w); 1000 struct drbd_peer_device *peer_device = peer_req->peer_device; 1001 struct drbd_device *device = peer_device->device; 1002 int err; 1003 1004 if (unlikely(cancel)) { 1005 drbd_free_peer_req(device, peer_req); 1006 dec_unacked(device); 1007 return 0; 1008 } 1009 1010 if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) { 1011 err = drbd_send_block(peer_device, P_DATA_REPLY, peer_req); 1012 } else { 1013 if (__ratelimit(&drbd_ratelimit_state)) 1014 drbd_err(device, "Sending NegDReply. sector=%llus.\n", 1015 (unsigned long long)peer_req->i.sector); 1016 1017 err = drbd_send_ack(peer_device, P_NEG_DREPLY, peer_req); 1018 } 1019 1020 dec_unacked(device); 1021 1022 move_to_net_ee_or_free(device, peer_req); 1023 1024 if (unlikely(err)) 1025 drbd_err(device, "drbd_send_block() failed\n"); 1026 return err; 1027 } 1028 1029 /** 1030 * w_e_end_rsdata_req() - Worker callback to send a P_RS_DATA_REPLY packet in response to a P_RS_DATA_REQUEST 1031 * @w: work object. 1032 * @cancel: The connection will be closed anyways 1033 */ 1034 int w_e_end_rsdata_req(struct drbd_work *w, int cancel) 1035 { 1036 struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w); 1037 struct drbd_peer_device *peer_device = peer_req->peer_device; 1038 struct drbd_device *device = peer_device->device; 1039 int err; 1040 1041 if (unlikely(cancel)) { 1042 drbd_free_peer_req(device, peer_req); 1043 dec_unacked(device); 1044 return 0; 1045 } 1046 1047 if (get_ldev_if_state(device, D_FAILED)) { 1048 drbd_rs_complete_io(device, peer_req->i.sector); 1049 put_ldev(device); 1050 } 1051 1052 if (device->state.conn == C_AHEAD) { 1053 err = drbd_send_ack(peer_device, P_RS_CANCEL, peer_req); 1054 } else if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) { 1055 if (likely(device->state.pdsk >= D_INCONSISTENT)) { 1056 inc_rs_pending(device); 1057 err = drbd_send_block(peer_device, P_RS_DATA_REPLY, peer_req); 1058 } else { 1059 if (__ratelimit(&drbd_ratelimit_state)) 1060 drbd_err(device, "Not sending RSDataReply, " 1061 "partner DISKLESS!\n"); 1062 err = 0; 1063 } 1064 } else { 1065 if (__ratelimit(&drbd_ratelimit_state)) 1066 drbd_err(device, "Sending NegRSDReply. sector %llus.\n", 1067 (unsigned long long)peer_req->i.sector); 1068 1069 err = drbd_send_ack(peer_device, P_NEG_RS_DREPLY, peer_req); 1070 1071 /* update resync data with failure */ 1072 drbd_rs_failed_io(device, peer_req->i.sector, peer_req->i.size); 1073 } 1074 1075 dec_unacked(device); 1076 1077 move_to_net_ee_or_free(device, peer_req); 1078 1079 if (unlikely(err)) 1080 drbd_err(device, "drbd_send_block() failed\n"); 1081 return err; 1082 } 1083 1084 int w_e_end_csum_rs_req(struct drbd_work *w, int cancel) 1085 { 1086 struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w); 1087 struct drbd_peer_device *peer_device = peer_req->peer_device; 1088 struct drbd_device *device = peer_device->device; 1089 struct digest_info *di; 1090 int digest_size; 1091 void *digest = NULL; 1092 int err, eq = 0; 1093 1094 if (unlikely(cancel)) { 1095 drbd_free_peer_req(device, peer_req); 1096 dec_unacked(device); 1097 return 0; 1098 } 1099 1100 if (get_ldev(device)) { 1101 drbd_rs_complete_io(device, peer_req->i.sector); 1102 put_ldev(device); 1103 } 1104 1105 di = peer_req->digest; 1106 1107 if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) { 1108 /* quick hack to try to avoid a race against reconfiguration. 1109 * a real fix would be much more involved, 1110 * introducing more locking mechanisms */ 1111 if (peer_device->connection->csums_tfm) { 1112 digest_size = crypto_hash_digestsize(peer_device->connection->csums_tfm); 1113 D_ASSERT(device, digest_size == di->digest_size); 1114 digest = kmalloc(digest_size, GFP_NOIO); 1115 } 1116 if (digest) { 1117 drbd_csum_ee(peer_device->connection->csums_tfm, peer_req, digest); 1118 eq = !memcmp(digest, di->digest, digest_size); 1119 kfree(digest); 1120 } 1121 1122 if (eq) { 1123 drbd_set_in_sync(device, peer_req->i.sector, peer_req->i.size); 1124 /* rs_same_csums unit is BM_BLOCK_SIZE */ 1125 device->rs_same_csum += peer_req->i.size >> BM_BLOCK_SHIFT; 1126 err = drbd_send_ack(peer_device, P_RS_IS_IN_SYNC, peer_req); 1127 } else { 1128 inc_rs_pending(device); 1129 peer_req->block_id = ID_SYNCER; /* By setting block_id, digest pointer becomes invalid! */ 1130 peer_req->flags &= ~EE_HAS_DIGEST; /* This peer request no longer has a digest pointer */ 1131 kfree(di); 1132 err = drbd_send_block(peer_device, P_RS_DATA_REPLY, peer_req); 1133 } 1134 } else { 1135 err = drbd_send_ack(peer_device, P_NEG_RS_DREPLY, peer_req); 1136 if (__ratelimit(&drbd_ratelimit_state)) 1137 drbd_err(device, "Sending NegDReply. I guess it gets messy.\n"); 1138 } 1139 1140 dec_unacked(device); 1141 move_to_net_ee_or_free(device, peer_req); 1142 1143 if (unlikely(err)) 1144 drbd_err(device, "drbd_send_block/ack() failed\n"); 1145 return err; 1146 } 1147 1148 int w_e_end_ov_req(struct drbd_work *w, int cancel) 1149 { 1150 struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w); 1151 struct drbd_peer_device *peer_device = peer_req->peer_device; 1152 struct drbd_device *device = peer_device->device; 1153 sector_t sector = peer_req->i.sector; 1154 unsigned int size = peer_req->i.size; 1155 int digest_size; 1156 void *digest; 1157 int err = 0; 1158 1159 if (unlikely(cancel)) 1160 goto out; 1161 1162 digest_size = crypto_hash_digestsize(peer_device->connection->verify_tfm); 1163 digest = kmalloc(digest_size, GFP_NOIO); 1164 if (!digest) { 1165 err = 1; /* terminate the connection in case the allocation failed */ 1166 goto out; 1167 } 1168 1169 if (likely(!(peer_req->flags & EE_WAS_ERROR))) 1170 drbd_csum_ee(peer_device->connection->verify_tfm, peer_req, digest); 1171 else 1172 memset(digest, 0, digest_size); 1173 1174 /* Free e and pages before send. 1175 * In case we block on congestion, we could otherwise run into 1176 * some distributed deadlock, if the other side blocks on 1177 * congestion as well, because our receiver blocks in 1178 * drbd_alloc_pages due to pp_in_use > max_buffers. */ 1179 drbd_free_peer_req(device, peer_req); 1180 peer_req = NULL; 1181 inc_rs_pending(device); 1182 err = drbd_send_drequest_csum(peer_device, sector, size, digest, digest_size, P_OV_REPLY); 1183 if (err) 1184 dec_rs_pending(device); 1185 kfree(digest); 1186 1187 out: 1188 if (peer_req) 1189 drbd_free_peer_req(device, peer_req); 1190 dec_unacked(device); 1191 return err; 1192 } 1193 1194 void drbd_ov_out_of_sync_found(struct drbd_device *device, sector_t sector, int size) 1195 { 1196 if (device->ov_last_oos_start + device->ov_last_oos_size == sector) { 1197 device->ov_last_oos_size += size>>9; 1198 } else { 1199 device->ov_last_oos_start = sector; 1200 device->ov_last_oos_size = size>>9; 1201 } 1202 drbd_set_out_of_sync(device, sector, size); 1203 } 1204 1205 int w_e_end_ov_reply(struct drbd_work *w, int cancel) 1206 { 1207 struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w); 1208 struct drbd_peer_device *peer_device = peer_req->peer_device; 1209 struct drbd_device *device = peer_device->device; 1210 struct digest_info *di; 1211 void *digest; 1212 sector_t sector = peer_req->i.sector; 1213 unsigned int size = peer_req->i.size; 1214 int digest_size; 1215 int err, eq = 0; 1216 bool stop_sector_reached = false; 1217 1218 if (unlikely(cancel)) { 1219 drbd_free_peer_req(device, peer_req); 1220 dec_unacked(device); 1221 return 0; 1222 } 1223 1224 /* after "cancel", because after drbd_disconnect/drbd_rs_cancel_all 1225 * the resync lru has been cleaned up already */ 1226 if (get_ldev(device)) { 1227 drbd_rs_complete_io(device, peer_req->i.sector); 1228 put_ldev(device); 1229 } 1230 1231 di = peer_req->digest; 1232 1233 if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) { 1234 digest_size = crypto_hash_digestsize(peer_device->connection->verify_tfm); 1235 digest = kmalloc(digest_size, GFP_NOIO); 1236 if (digest) { 1237 drbd_csum_ee(peer_device->connection->verify_tfm, peer_req, digest); 1238 1239 D_ASSERT(device, digest_size == di->digest_size); 1240 eq = !memcmp(digest, di->digest, digest_size); 1241 kfree(digest); 1242 } 1243 } 1244 1245 /* Free peer_req and pages before send. 1246 * In case we block on congestion, we could otherwise run into 1247 * some distributed deadlock, if the other side blocks on 1248 * congestion as well, because our receiver blocks in 1249 * drbd_alloc_pages due to pp_in_use > max_buffers. */ 1250 drbd_free_peer_req(device, peer_req); 1251 if (!eq) 1252 drbd_ov_out_of_sync_found(device, sector, size); 1253 else 1254 ov_out_of_sync_print(device); 1255 1256 err = drbd_send_ack_ex(peer_device, P_OV_RESULT, sector, size, 1257 eq ? ID_IN_SYNC : ID_OUT_OF_SYNC); 1258 1259 dec_unacked(device); 1260 1261 --device->ov_left; 1262 1263 /* let's advance progress step marks only for every other megabyte */ 1264 if ((device->ov_left & 0x200) == 0x200) 1265 drbd_advance_rs_marks(device, device->ov_left); 1266 1267 stop_sector_reached = verify_can_do_stop_sector(device) && 1268 (sector + (size>>9)) >= device->ov_stop_sector; 1269 1270 if (device->ov_left == 0 || stop_sector_reached) { 1271 ov_out_of_sync_print(device); 1272 drbd_resync_finished(device); 1273 } 1274 1275 return err; 1276 } 1277 1278 /* FIXME 1279 * We need to track the number of pending barrier acks, 1280 * and to be able to wait for them. 1281 * See also comment in drbd_adm_attach before drbd_suspend_io. 1282 */ 1283 static int drbd_send_barrier(struct drbd_connection *connection) 1284 { 1285 struct p_barrier *p; 1286 struct drbd_socket *sock; 1287 1288 sock = &connection->data; 1289 p = conn_prepare_command(connection, sock); 1290 if (!p) 1291 return -EIO; 1292 p->barrier = connection->send.current_epoch_nr; 1293 p->pad = 0; 1294 connection->send.current_epoch_writes = 0; 1295 1296 return conn_send_command(connection, sock, P_BARRIER, sizeof(*p), NULL, 0); 1297 } 1298 1299 int w_send_write_hint(struct drbd_work *w, int cancel) 1300 { 1301 struct drbd_device *device = 1302 container_of(w, struct drbd_device, unplug_work); 1303 struct drbd_socket *sock; 1304 1305 if (cancel) 1306 return 0; 1307 sock = &first_peer_device(device)->connection->data; 1308 if (!drbd_prepare_command(first_peer_device(device), sock)) 1309 return -EIO; 1310 return drbd_send_command(first_peer_device(device), sock, P_UNPLUG_REMOTE, 0, NULL, 0); 1311 } 1312 1313 static void re_init_if_first_write(struct drbd_connection *connection, unsigned int epoch) 1314 { 1315 if (!connection->send.seen_any_write_yet) { 1316 connection->send.seen_any_write_yet = true; 1317 connection->send.current_epoch_nr = epoch; 1318 connection->send.current_epoch_writes = 0; 1319 } 1320 } 1321 1322 static void maybe_send_barrier(struct drbd_connection *connection, unsigned int epoch) 1323 { 1324 /* re-init if first write on this connection */ 1325 if (!connection->send.seen_any_write_yet) 1326 return; 1327 if (connection->send.current_epoch_nr != epoch) { 1328 if (connection->send.current_epoch_writes) 1329 drbd_send_barrier(connection); 1330 connection->send.current_epoch_nr = epoch; 1331 } 1332 } 1333 1334 int w_send_out_of_sync(struct drbd_work *w, int cancel) 1335 { 1336 struct drbd_request *req = container_of(w, struct drbd_request, w); 1337 struct drbd_device *device = req->device; 1338 struct drbd_connection *connection = first_peer_device(device)->connection; 1339 int err; 1340 1341 if (unlikely(cancel)) { 1342 req_mod(req, SEND_CANCELED); 1343 return 0; 1344 } 1345 1346 /* this time, no connection->send.current_epoch_writes++; 1347 * If it was sent, it was the closing barrier for the last 1348 * replicated epoch, before we went into AHEAD mode. 1349 * No more barriers will be sent, until we leave AHEAD mode again. */ 1350 maybe_send_barrier(connection, req->epoch); 1351 1352 err = drbd_send_out_of_sync(first_peer_device(device), req); 1353 req_mod(req, OOS_HANDED_TO_NETWORK); 1354 1355 return err; 1356 } 1357 1358 /** 1359 * w_send_dblock() - Worker callback to send a P_DATA packet in order to mirror a write request 1360 * @w: work object. 1361 * @cancel: The connection will be closed anyways 1362 */ 1363 int w_send_dblock(struct drbd_work *w, int cancel) 1364 { 1365 struct drbd_request *req = container_of(w, struct drbd_request, w); 1366 struct drbd_device *device = req->device; 1367 struct drbd_connection *connection = first_peer_device(device)->connection; 1368 int err; 1369 1370 if (unlikely(cancel)) { 1371 req_mod(req, SEND_CANCELED); 1372 return 0; 1373 } 1374 1375 re_init_if_first_write(connection, req->epoch); 1376 maybe_send_barrier(connection, req->epoch); 1377 connection->send.current_epoch_writes++; 1378 1379 err = drbd_send_dblock(first_peer_device(device), req); 1380 req_mod(req, err ? SEND_FAILED : HANDED_OVER_TO_NETWORK); 1381 1382 return err; 1383 } 1384 1385 /** 1386 * w_send_read_req() - Worker callback to send a read request (P_DATA_REQUEST) packet 1387 * @w: work object. 1388 * @cancel: The connection will be closed anyways 1389 */ 1390 int w_send_read_req(struct drbd_work *w, int cancel) 1391 { 1392 struct drbd_request *req = container_of(w, struct drbd_request, w); 1393 struct drbd_device *device = req->device; 1394 struct drbd_connection *connection = first_peer_device(device)->connection; 1395 int err; 1396 1397 if (unlikely(cancel)) { 1398 req_mod(req, SEND_CANCELED); 1399 return 0; 1400 } 1401 1402 /* Even read requests may close a write epoch, 1403 * if there was any yet. */ 1404 maybe_send_barrier(connection, req->epoch); 1405 1406 err = drbd_send_drequest(first_peer_device(device), P_DATA_REQUEST, req->i.sector, req->i.size, 1407 (unsigned long)req); 1408 1409 req_mod(req, err ? SEND_FAILED : HANDED_OVER_TO_NETWORK); 1410 1411 return err; 1412 } 1413 1414 int w_restart_disk_io(struct drbd_work *w, int cancel) 1415 { 1416 struct drbd_request *req = container_of(w, struct drbd_request, w); 1417 struct drbd_device *device = req->device; 1418 1419 if (bio_data_dir(req->master_bio) == WRITE && req->rq_state & RQ_IN_ACT_LOG) 1420 drbd_al_begin_io(device, &req->i, false); 1421 1422 drbd_req_make_private_bio(req, req->master_bio); 1423 req->private_bio->bi_bdev = device->ldev->backing_bdev; 1424 generic_make_request(req->private_bio); 1425 1426 return 0; 1427 } 1428 1429 static int _drbd_may_sync_now(struct drbd_device *device) 1430 { 1431 struct drbd_device *odev = device; 1432 int resync_after; 1433 1434 while (1) { 1435 if (!odev->ldev || odev->state.disk == D_DISKLESS) 1436 return 1; 1437 rcu_read_lock(); 1438 resync_after = rcu_dereference(odev->ldev->disk_conf)->resync_after; 1439 rcu_read_unlock(); 1440 if (resync_after == -1) 1441 return 1; 1442 odev = minor_to_device(resync_after); 1443 if (!odev) 1444 return 1; 1445 if ((odev->state.conn >= C_SYNC_SOURCE && 1446 odev->state.conn <= C_PAUSED_SYNC_T) || 1447 odev->state.aftr_isp || odev->state.peer_isp || 1448 odev->state.user_isp) 1449 return 0; 1450 } 1451 } 1452 1453 /** 1454 * _drbd_pause_after() - Pause resync on all devices that may not resync now 1455 * @device: DRBD device. 1456 * 1457 * Called from process context only (admin command and after_state_ch). 1458 */ 1459 static int _drbd_pause_after(struct drbd_device *device) 1460 { 1461 struct drbd_device *odev; 1462 int i, rv = 0; 1463 1464 rcu_read_lock(); 1465 idr_for_each_entry(&drbd_devices, odev, i) { 1466 if (odev->state.conn == C_STANDALONE && odev->state.disk == D_DISKLESS) 1467 continue; 1468 if (!_drbd_may_sync_now(odev)) 1469 rv |= (__drbd_set_state(_NS(odev, aftr_isp, 1), CS_HARD, NULL) 1470 != SS_NOTHING_TO_DO); 1471 } 1472 rcu_read_unlock(); 1473 1474 return rv; 1475 } 1476 1477 /** 1478 * _drbd_resume_next() - Resume resync on all devices that may resync now 1479 * @device: DRBD device. 1480 * 1481 * Called from process context only (admin command and worker). 1482 */ 1483 static int _drbd_resume_next(struct drbd_device *device) 1484 { 1485 struct drbd_device *odev; 1486 int i, rv = 0; 1487 1488 rcu_read_lock(); 1489 idr_for_each_entry(&drbd_devices, odev, i) { 1490 if (odev->state.conn == C_STANDALONE && odev->state.disk == D_DISKLESS) 1491 continue; 1492 if (odev->state.aftr_isp) { 1493 if (_drbd_may_sync_now(odev)) 1494 rv |= (__drbd_set_state(_NS(odev, aftr_isp, 0), 1495 CS_HARD, NULL) 1496 != SS_NOTHING_TO_DO) ; 1497 } 1498 } 1499 rcu_read_unlock(); 1500 return rv; 1501 } 1502 1503 void resume_next_sg(struct drbd_device *device) 1504 { 1505 write_lock_irq(&global_state_lock); 1506 _drbd_resume_next(device); 1507 write_unlock_irq(&global_state_lock); 1508 } 1509 1510 void suspend_other_sg(struct drbd_device *device) 1511 { 1512 write_lock_irq(&global_state_lock); 1513 _drbd_pause_after(device); 1514 write_unlock_irq(&global_state_lock); 1515 } 1516 1517 /* caller must hold global_state_lock */ 1518 enum drbd_ret_code drbd_resync_after_valid(struct drbd_device *device, int o_minor) 1519 { 1520 struct drbd_device *odev; 1521 int resync_after; 1522 1523 if (o_minor == -1) 1524 return NO_ERROR; 1525 if (o_minor < -1 || o_minor > MINORMASK) 1526 return ERR_RESYNC_AFTER; 1527 1528 /* check for loops */ 1529 odev = minor_to_device(o_minor); 1530 while (1) { 1531 if (odev == device) 1532 return ERR_RESYNC_AFTER_CYCLE; 1533 1534 /* You are free to depend on diskless, non-existing, 1535 * or not yet/no longer existing minors. 1536 * We only reject dependency loops. 1537 * We cannot follow the dependency chain beyond a detached or 1538 * missing minor. 1539 */ 1540 if (!odev || !odev->ldev || odev->state.disk == D_DISKLESS) 1541 return NO_ERROR; 1542 1543 rcu_read_lock(); 1544 resync_after = rcu_dereference(odev->ldev->disk_conf)->resync_after; 1545 rcu_read_unlock(); 1546 /* dependency chain ends here, no cycles. */ 1547 if (resync_after == -1) 1548 return NO_ERROR; 1549 1550 /* follow the dependency chain */ 1551 odev = minor_to_device(resync_after); 1552 } 1553 } 1554 1555 /* caller must hold global_state_lock */ 1556 void drbd_resync_after_changed(struct drbd_device *device) 1557 { 1558 int changes; 1559 1560 do { 1561 changes = _drbd_pause_after(device); 1562 changes |= _drbd_resume_next(device); 1563 } while (changes); 1564 } 1565 1566 void drbd_rs_controller_reset(struct drbd_device *device) 1567 { 1568 struct fifo_buffer *plan; 1569 1570 atomic_set(&device->rs_sect_in, 0); 1571 atomic_set(&device->rs_sect_ev, 0); 1572 device->rs_in_flight = 0; 1573 1574 /* Updating the RCU protected object in place is necessary since 1575 this function gets called from atomic context. 1576 It is valid since all other updates also lead to an completely 1577 empty fifo */ 1578 rcu_read_lock(); 1579 plan = rcu_dereference(device->rs_plan_s); 1580 plan->total = 0; 1581 fifo_set(plan, 0); 1582 rcu_read_unlock(); 1583 } 1584 1585 void start_resync_timer_fn(unsigned long data) 1586 { 1587 struct drbd_device *device = (struct drbd_device *) data; 1588 1589 drbd_queue_work(&first_peer_device(device)->connection->sender_work, 1590 &device->start_resync_work); 1591 } 1592 1593 int w_start_resync(struct drbd_work *w, int cancel) 1594 { 1595 struct drbd_device *device = 1596 container_of(w, struct drbd_device, start_resync_work); 1597 1598 if (atomic_read(&device->unacked_cnt) || atomic_read(&device->rs_pending_cnt)) { 1599 drbd_warn(device, "w_start_resync later...\n"); 1600 device->start_resync_timer.expires = jiffies + HZ/10; 1601 add_timer(&device->start_resync_timer); 1602 return 0; 1603 } 1604 1605 drbd_start_resync(device, C_SYNC_SOURCE); 1606 clear_bit(AHEAD_TO_SYNC_SOURCE, &device->flags); 1607 return 0; 1608 } 1609 1610 /** 1611 * drbd_start_resync() - Start the resync process 1612 * @device: DRBD device. 1613 * @side: Either C_SYNC_SOURCE or C_SYNC_TARGET 1614 * 1615 * This function might bring you directly into one of the 1616 * C_PAUSED_SYNC_* states. 1617 */ 1618 void drbd_start_resync(struct drbd_device *device, enum drbd_conns side) 1619 { 1620 union drbd_state ns; 1621 int r; 1622 1623 if (device->state.conn >= C_SYNC_SOURCE && device->state.conn < C_AHEAD) { 1624 drbd_err(device, "Resync already running!\n"); 1625 return; 1626 } 1627 1628 if (!test_bit(B_RS_H_DONE, &device->flags)) { 1629 if (side == C_SYNC_TARGET) { 1630 /* Since application IO was locked out during C_WF_BITMAP_T and 1631 C_WF_SYNC_UUID we are still unmodified. Before going to C_SYNC_TARGET 1632 we check that we might make the data inconsistent. */ 1633 r = drbd_khelper(device, "before-resync-target"); 1634 r = (r >> 8) & 0xff; 1635 if (r > 0) { 1636 drbd_info(device, "before-resync-target handler returned %d, " 1637 "dropping connection.\n", r); 1638 conn_request_state(first_peer_device(device)->connection, NS(conn, C_DISCONNECTING), CS_HARD); 1639 return; 1640 } 1641 } else /* C_SYNC_SOURCE */ { 1642 r = drbd_khelper(device, "before-resync-source"); 1643 r = (r >> 8) & 0xff; 1644 if (r > 0) { 1645 if (r == 3) { 1646 drbd_info(device, "before-resync-source handler returned %d, " 1647 "ignoring. Old userland tools?", r); 1648 } else { 1649 drbd_info(device, "before-resync-source handler returned %d, " 1650 "dropping connection.\n", r); 1651 conn_request_state(first_peer_device(device)->connection, 1652 NS(conn, C_DISCONNECTING), CS_HARD); 1653 return; 1654 } 1655 } 1656 } 1657 } 1658 1659 if (current == first_peer_device(device)->connection->worker.task) { 1660 /* The worker should not sleep waiting for state_mutex, 1661 that can take long */ 1662 if (!mutex_trylock(device->state_mutex)) { 1663 set_bit(B_RS_H_DONE, &device->flags); 1664 device->start_resync_timer.expires = jiffies + HZ/5; 1665 add_timer(&device->start_resync_timer); 1666 return; 1667 } 1668 } else { 1669 mutex_lock(device->state_mutex); 1670 } 1671 clear_bit(B_RS_H_DONE, &device->flags); 1672 1673 write_lock_irq(&global_state_lock); 1674 /* Did some connection breakage or IO error race with us? */ 1675 if (device->state.conn < C_CONNECTED 1676 || !get_ldev_if_state(device, D_NEGOTIATING)) { 1677 write_unlock_irq(&global_state_lock); 1678 mutex_unlock(device->state_mutex); 1679 return; 1680 } 1681 1682 ns = drbd_read_state(device); 1683 1684 ns.aftr_isp = !_drbd_may_sync_now(device); 1685 1686 ns.conn = side; 1687 1688 if (side == C_SYNC_TARGET) 1689 ns.disk = D_INCONSISTENT; 1690 else /* side == C_SYNC_SOURCE */ 1691 ns.pdsk = D_INCONSISTENT; 1692 1693 r = __drbd_set_state(device, ns, CS_VERBOSE, NULL); 1694 ns = drbd_read_state(device); 1695 1696 if (ns.conn < C_CONNECTED) 1697 r = SS_UNKNOWN_ERROR; 1698 1699 if (r == SS_SUCCESS) { 1700 unsigned long tw = drbd_bm_total_weight(device); 1701 unsigned long now = jiffies; 1702 int i; 1703 1704 device->rs_failed = 0; 1705 device->rs_paused = 0; 1706 device->rs_same_csum = 0; 1707 device->rs_last_events = 0; 1708 device->rs_last_sect_ev = 0; 1709 device->rs_total = tw; 1710 device->rs_start = now; 1711 for (i = 0; i < DRBD_SYNC_MARKS; i++) { 1712 device->rs_mark_left[i] = tw; 1713 device->rs_mark_time[i] = now; 1714 } 1715 _drbd_pause_after(device); 1716 } 1717 write_unlock_irq(&global_state_lock); 1718 1719 if (r == SS_SUCCESS) { 1720 /* reset rs_last_bcast when a resync or verify is started, 1721 * to deal with potential jiffies wrap. */ 1722 device->rs_last_bcast = jiffies - HZ; 1723 1724 drbd_info(device, "Began resync as %s (will sync %lu KB [%lu bits set]).\n", 1725 drbd_conn_str(ns.conn), 1726 (unsigned long) device->rs_total << (BM_BLOCK_SHIFT-10), 1727 (unsigned long) device->rs_total); 1728 if (side == C_SYNC_TARGET) 1729 device->bm_resync_fo = 0; 1730 1731 /* Since protocol 96, we must serialize drbd_gen_and_send_sync_uuid 1732 * with w_send_oos, or the sync target will get confused as to 1733 * how much bits to resync. We cannot do that always, because for an 1734 * empty resync and protocol < 95, we need to do it here, as we call 1735 * drbd_resync_finished from here in that case. 1736 * We drbd_gen_and_send_sync_uuid here for protocol < 96, 1737 * and from after_state_ch otherwise. */ 1738 if (side == C_SYNC_SOURCE && 1739 first_peer_device(device)->connection->agreed_pro_version < 96) 1740 drbd_gen_and_send_sync_uuid(first_peer_device(device)); 1741 1742 if (first_peer_device(device)->connection->agreed_pro_version < 95 && 1743 device->rs_total == 0) { 1744 /* This still has a race (about when exactly the peers 1745 * detect connection loss) that can lead to a full sync 1746 * on next handshake. In 8.3.9 we fixed this with explicit 1747 * resync-finished notifications, but the fix 1748 * introduces a protocol change. Sleeping for some 1749 * time longer than the ping interval + timeout on the 1750 * SyncSource, to give the SyncTarget the chance to 1751 * detect connection loss, then waiting for a ping 1752 * response (implicit in drbd_resync_finished) reduces 1753 * the race considerably, but does not solve it. */ 1754 if (side == C_SYNC_SOURCE) { 1755 struct net_conf *nc; 1756 int timeo; 1757 1758 rcu_read_lock(); 1759 nc = rcu_dereference(first_peer_device(device)->connection->net_conf); 1760 timeo = nc->ping_int * HZ + nc->ping_timeo * HZ / 9; 1761 rcu_read_unlock(); 1762 schedule_timeout_interruptible(timeo); 1763 } 1764 drbd_resync_finished(device); 1765 } 1766 1767 drbd_rs_controller_reset(device); 1768 /* ns.conn may already be != device->state.conn, 1769 * we may have been paused in between, or become paused until 1770 * the timer triggers. 1771 * No matter, that is handled in resync_timer_fn() */ 1772 if (ns.conn == C_SYNC_TARGET) 1773 mod_timer(&device->resync_timer, jiffies); 1774 1775 drbd_md_sync(device); 1776 } 1777 put_ldev(device); 1778 mutex_unlock(device->state_mutex); 1779 } 1780 1781 /* If the resource already closed the current epoch, but we did not 1782 * (because we have not yet seen new requests), we should send the 1783 * corresponding barrier now. Must be checked within the same spinlock 1784 * that is used to check for new requests. */ 1785 static bool need_to_send_barrier(struct drbd_connection *connection) 1786 { 1787 if (!connection->send.seen_any_write_yet) 1788 return false; 1789 1790 /* Skip barriers that do not contain any writes. 1791 * This may happen during AHEAD mode. */ 1792 if (!connection->send.current_epoch_writes) 1793 return false; 1794 1795 /* ->req_lock is held when requests are queued on 1796 * connection->sender_work, and put into ->transfer_log. 1797 * It is also held when ->current_tle_nr is increased. 1798 * So either there are already new requests queued, 1799 * and corresponding barriers will be send there. 1800 * Or nothing new is queued yet, so the difference will be 1. 1801 */ 1802 if (atomic_read(&connection->current_tle_nr) != 1803 connection->send.current_epoch_nr + 1) 1804 return false; 1805 1806 return true; 1807 } 1808 1809 static bool dequeue_work_batch(struct drbd_work_queue *queue, struct list_head *work_list) 1810 { 1811 spin_lock_irq(&queue->q_lock); 1812 list_splice_init(&queue->q, work_list); 1813 spin_unlock_irq(&queue->q_lock); 1814 return !list_empty(work_list); 1815 } 1816 1817 static bool dequeue_work_item(struct drbd_work_queue *queue, struct list_head *work_list) 1818 { 1819 spin_lock_irq(&queue->q_lock); 1820 if (!list_empty(&queue->q)) 1821 list_move(queue->q.next, work_list); 1822 spin_unlock_irq(&queue->q_lock); 1823 return !list_empty(work_list); 1824 } 1825 1826 static void wait_for_work(struct drbd_connection *connection, struct list_head *work_list) 1827 { 1828 DEFINE_WAIT(wait); 1829 struct net_conf *nc; 1830 int uncork, cork; 1831 1832 dequeue_work_item(&connection->sender_work, work_list); 1833 if (!list_empty(work_list)) 1834 return; 1835 1836 /* Still nothing to do? 1837 * Maybe we still need to close the current epoch, 1838 * even if no new requests are queued yet. 1839 * 1840 * Also, poke TCP, just in case. 1841 * Then wait for new work (or signal). */ 1842 rcu_read_lock(); 1843 nc = rcu_dereference(connection->net_conf); 1844 uncork = nc ? nc->tcp_cork : 0; 1845 rcu_read_unlock(); 1846 if (uncork) { 1847 mutex_lock(&connection->data.mutex); 1848 if (connection->data.socket) 1849 drbd_tcp_uncork(connection->data.socket); 1850 mutex_unlock(&connection->data.mutex); 1851 } 1852 1853 for (;;) { 1854 int send_barrier; 1855 prepare_to_wait(&connection->sender_work.q_wait, &wait, TASK_INTERRUPTIBLE); 1856 spin_lock_irq(&connection->resource->req_lock); 1857 spin_lock(&connection->sender_work.q_lock); /* FIXME get rid of this one? */ 1858 /* dequeue single item only, 1859 * we still use drbd_queue_work_front() in some places */ 1860 if (!list_empty(&connection->sender_work.q)) 1861 list_move(connection->sender_work.q.next, work_list); 1862 spin_unlock(&connection->sender_work.q_lock); /* FIXME get rid of this one? */ 1863 if (!list_empty(work_list) || signal_pending(current)) { 1864 spin_unlock_irq(&connection->resource->req_lock); 1865 break; 1866 } 1867 send_barrier = need_to_send_barrier(connection); 1868 spin_unlock_irq(&connection->resource->req_lock); 1869 if (send_barrier) { 1870 drbd_send_barrier(connection); 1871 connection->send.current_epoch_nr++; 1872 } 1873 schedule(); 1874 /* may be woken up for other things but new work, too, 1875 * e.g. if the current epoch got closed. 1876 * In which case we send the barrier above. */ 1877 } 1878 finish_wait(&connection->sender_work.q_wait, &wait); 1879 1880 /* someone may have changed the config while we have been waiting above. */ 1881 rcu_read_lock(); 1882 nc = rcu_dereference(connection->net_conf); 1883 cork = nc ? nc->tcp_cork : 0; 1884 rcu_read_unlock(); 1885 mutex_lock(&connection->data.mutex); 1886 if (connection->data.socket) { 1887 if (cork) 1888 drbd_tcp_cork(connection->data.socket); 1889 else if (!uncork) 1890 drbd_tcp_uncork(connection->data.socket); 1891 } 1892 mutex_unlock(&connection->data.mutex); 1893 } 1894 1895 int drbd_worker(struct drbd_thread *thi) 1896 { 1897 struct drbd_connection *connection = thi->connection; 1898 struct drbd_work *w = NULL; 1899 struct drbd_peer_device *peer_device; 1900 LIST_HEAD(work_list); 1901 int vnr; 1902 1903 while (get_t_state(thi) == RUNNING) { 1904 drbd_thread_current_set_cpu(thi); 1905 1906 /* as long as we use drbd_queue_work_front(), 1907 * we may only dequeue single work items here, not batches. */ 1908 if (list_empty(&work_list)) 1909 wait_for_work(connection, &work_list); 1910 1911 if (signal_pending(current)) { 1912 flush_signals(current); 1913 if (get_t_state(thi) == RUNNING) { 1914 drbd_warn(connection, "Worker got an unexpected signal\n"); 1915 continue; 1916 } 1917 break; 1918 } 1919 1920 if (get_t_state(thi) != RUNNING) 1921 break; 1922 1923 while (!list_empty(&work_list)) { 1924 w = list_first_entry(&work_list, struct drbd_work, list); 1925 list_del_init(&w->list); 1926 if (w->cb(w, connection->cstate < C_WF_REPORT_PARAMS) == 0) 1927 continue; 1928 if (connection->cstate >= C_WF_REPORT_PARAMS) 1929 conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD); 1930 } 1931 } 1932 1933 do { 1934 while (!list_empty(&work_list)) { 1935 w = list_first_entry(&work_list, struct drbd_work, list); 1936 list_del_init(&w->list); 1937 w->cb(w, 1); 1938 } 1939 dequeue_work_batch(&connection->sender_work, &work_list); 1940 } while (!list_empty(&work_list)); 1941 1942 rcu_read_lock(); 1943 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 1944 struct drbd_device *device = peer_device->device; 1945 D_ASSERT(device, device->state.disk == D_DISKLESS && device->state.conn == C_STANDALONE); 1946 kref_get(&device->kref); 1947 rcu_read_unlock(); 1948 drbd_device_cleanup(device); 1949 kref_put(&device->kref, drbd_destroy_device); 1950 rcu_read_lock(); 1951 } 1952 rcu_read_unlock(); 1953 1954 return 0; 1955 } 1956