xref: /openbmc/linux/drivers/block/drbd/drbd_worker.c (revision efdbd7345f8836f7495f3ac6ee237d86cb3bb6b0)
1 /*
2    drbd_worker.c
3 
4    This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
5 
6    Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
7    Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
8    Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
9 
10    drbd is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation; either version 2, or (at your option)
13    any later version.
14 
15    drbd is distributed in the hope that it will be useful,
16    but WITHOUT ANY WARRANTY; without even the implied warranty of
17    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18    GNU General Public License for more details.
19 
20    You should have received a copy of the GNU General Public License
21    along with drbd; see the file COPYING.  If not, write to
22    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23 
24 */
25 
26 #include <linux/module.h>
27 #include <linux/drbd.h>
28 #include <linux/sched.h>
29 #include <linux/wait.h>
30 #include <linux/mm.h>
31 #include <linux/memcontrol.h>
32 #include <linux/mm_inline.h>
33 #include <linux/slab.h>
34 #include <linux/random.h>
35 #include <linux/string.h>
36 #include <linux/scatterlist.h>
37 
38 #include "drbd_int.h"
39 #include "drbd_protocol.h"
40 #include "drbd_req.h"
41 
42 static int make_ov_request(struct drbd_device *, int);
43 static int make_resync_request(struct drbd_device *, int);
44 
45 /* endio handlers:
46  *   drbd_md_endio (defined here)
47  *   drbd_request_endio (defined here)
48  *   drbd_peer_request_endio (defined here)
49  *   drbd_bm_endio (defined in drbd_bitmap.c)
50  *
51  * For all these callbacks, note the following:
52  * The callbacks will be called in irq context by the IDE drivers,
53  * and in Softirqs/Tasklets/BH context by the SCSI drivers.
54  * Try to get the locking right :)
55  *
56  */
57 
58 
59 /* About the global_state_lock
60    Each state transition on an device holds a read lock. In case we have
61    to evaluate the resync after dependencies, we grab a write lock, because
62    we need stable states on all devices for that.  */
63 rwlock_t global_state_lock;
64 
65 /* used for synchronous meta data and bitmap IO
66  * submitted by drbd_md_sync_page_io()
67  */
68 void drbd_md_endio(struct bio *bio)
69 {
70 	struct drbd_device *device;
71 
72 	device = bio->bi_private;
73 	device->md_io.error = bio->bi_error;
74 
75 	/* We grabbed an extra reference in _drbd_md_sync_page_io() to be able
76 	 * to timeout on the lower level device, and eventually detach from it.
77 	 * If this io completion runs after that timeout expired, this
78 	 * drbd_md_put_buffer() may allow us to finally try and re-attach.
79 	 * During normal operation, this only puts that extra reference
80 	 * down to 1 again.
81 	 * Make sure we first drop the reference, and only then signal
82 	 * completion, or we may (in drbd_al_read_log()) cycle so fast into the
83 	 * next drbd_md_sync_page_io(), that we trigger the
84 	 * ASSERT(atomic_read(&device->md_io_in_use) == 1) there.
85 	 */
86 	drbd_md_put_buffer(device);
87 	device->md_io.done = 1;
88 	wake_up(&device->misc_wait);
89 	bio_put(bio);
90 	if (device->ldev) /* special case: drbd_md_read() during drbd_adm_attach() */
91 		put_ldev(device);
92 }
93 
94 /* reads on behalf of the partner,
95  * "submitted" by the receiver
96  */
97 static void drbd_endio_read_sec_final(struct drbd_peer_request *peer_req) __releases(local)
98 {
99 	unsigned long flags = 0;
100 	struct drbd_peer_device *peer_device = peer_req->peer_device;
101 	struct drbd_device *device = peer_device->device;
102 
103 	spin_lock_irqsave(&device->resource->req_lock, flags);
104 	device->read_cnt += peer_req->i.size >> 9;
105 	list_del(&peer_req->w.list);
106 	if (list_empty(&device->read_ee))
107 		wake_up(&device->ee_wait);
108 	if (test_bit(__EE_WAS_ERROR, &peer_req->flags))
109 		__drbd_chk_io_error(device, DRBD_READ_ERROR);
110 	spin_unlock_irqrestore(&device->resource->req_lock, flags);
111 
112 	drbd_queue_work(&peer_device->connection->sender_work, &peer_req->w);
113 	put_ldev(device);
114 }
115 
116 /* writes on behalf of the partner, or resync writes,
117  * "submitted" by the receiver, final stage.  */
118 void drbd_endio_write_sec_final(struct drbd_peer_request *peer_req) __releases(local)
119 {
120 	unsigned long flags = 0;
121 	struct drbd_peer_device *peer_device = peer_req->peer_device;
122 	struct drbd_device *device = peer_device->device;
123 	struct drbd_interval i;
124 	int do_wake;
125 	u64 block_id;
126 	int do_al_complete_io;
127 
128 	/* after we moved peer_req to done_ee,
129 	 * we may no longer access it,
130 	 * it may be freed/reused already!
131 	 * (as soon as we release the req_lock) */
132 	i = peer_req->i;
133 	do_al_complete_io = peer_req->flags & EE_CALL_AL_COMPLETE_IO;
134 	block_id = peer_req->block_id;
135 	peer_req->flags &= ~EE_CALL_AL_COMPLETE_IO;
136 
137 	spin_lock_irqsave(&device->resource->req_lock, flags);
138 	device->writ_cnt += peer_req->i.size >> 9;
139 	list_move_tail(&peer_req->w.list, &device->done_ee);
140 
141 	/*
142 	 * Do not remove from the write_requests tree here: we did not send the
143 	 * Ack yet and did not wake possibly waiting conflicting requests.
144 	 * Removed from the tree from "drbd_process_done_ee" within the
145 	 * appropriate dw.cb (e_end_block/e_end_resync_block) or from
146 	 * _drbd_clear_done_ee.
147 	 */
148 
149 	do_wake = list_empty(block_id == ID_SYNCER ? &device->sync_ee : &device->active_ee);
150 
151 	/* FIXME do we want to detach for failed REQ_DISCARD?
152 	 * ((peer_req->flags & (EE_WAS_ERROR|EE_IS_TRIM)) == EE_WAS_ERROR) */
153 	if (peer_req->flags & EE_WAS_ERROR)
154 		__drbd_chk_io_error(device, DRBD_WRITE_ERROR);
155 	spin_unlock_irqrestore(&device->resource->req_lock, flags);
156 
157 	if (block_id == ID_SYNCER)
158 		drbd_rs_complete_io(device, i.sector);
159 
160 	if (do_wake)
161 		wake_up(&device->ee_wait);
162 
163 	if (do_al_complete_io)
164 		drbd_al_complete_io(device, &i);
165 
166 	wake_asender(peer_device->connection);
167 	put_ldev(device);
168 }
169 
170 /* writes on behalf of the partner, or resync writes,
171  * "submitted" by the receiver.
172  */
173 void drbd_peer_request_endio(struct bio *bio)
174 {
175 	struct drbd_peer_request *peer_req = bio->bi_private;
176 	struct drbd_device *device = peer_req->peer_device->device;
177 	int is_write = bio_data_dir(bio) == WRITE;
178 	int is_discard = !!(bio->bi_rw & REQ_DISCARD);
179 
180 	if (bio->bi_error && __ratelimit(&drbd_ratelimit_state))
181 		drbd_warn(device, "%s: error=%d s=%llus\n",
182 				is_write ? (is_discard ? "discard" : "write")
183 					: "read", bio->bi_error,
184 				(unsigned long long)peer_req->i.sector);
185 
186 	if (bio->bi_error)
187 		set_bit(__EE_WAS_ERROR, &peer_req->flags);
188 
189 	bio_put(bio); /* no need for the bio anymore */
190 	if (atomic_dec_and_test(&peer_req->pending_bios)) {
191 		if (is_write)
192 			drbd_endio_write_sec_final(peer_req);
193 		else
194 			drbd_endio_read_sec_final(peer_req);
195 	}
196 }
197 
198 /* read, readA or write requests on R_PRIMARY coming from drbd_make_request
199  */
200 void drbd_request_endio(struct bio *bio)
201 {
202 	unsigned long flags;
203 	struct drbd_request *req = bio->bi_private;
204 	struct drbd_device *device = req->device;
205 	struct bio_and_error m;
206 	enum drbd_req_event what;
207 
208 	/* If this request was aborted locally before,
209 	 * but now was completed "successfully",
210 	 * chances are that this caused arbitrary data corruption.
211 	 *
212 	 * "aborting" requests, or force-detaching the disk, is intended for
213 	 * completely blocked/hung local backing devices which do no longer
214 	 * complete requests at all, not even do error completions.  In this
215 	 * situation, usually a hard-reset and failover is the only way out.
216 	 *
217 	 * By "aborting", basically faking a local error-completion,
218 	 * we allow for a more graceful swichover by cleanly migrating services.
219 	 * Still the affected node has to be rebooted "soon".
220 	 *
221 	 * By completing these requests, we allow the upper layers to re-use
222 	 * the associated data pages.
223 	 *
224 	 * If later the local backing device "recovers", and now DMAs some data
225 	 * from disk into the original request pages, in the best case it will
226 	 * just put random data into unused pages; but typically it will corrupt
227 	 * meanwhile completely unrelated data, causing all sorts of damage.
228 	 *
229 	 * Which means delayed successful completion,
230 	 * especially for READ requests,
231 	 * is a reason to panic().
232 	 *
233 	 * We assume that a delayed *error* completion is OK,
234 	 * though we still will complain noisily about it.
235 	 */
236 	if (unlikely(req->rq_state & RQ_LOCAL_ABORTED)) {
237 		if (__ratelimit(&drbd_ratelimit_state))
238 			drbd_emerg(device, "delayed completion of aborted local request; disk-timeout may be too aggressive\n");
239 
240 		if (!bio->bi_error)
241 			panic("possible random memory corruption caused by delayed completion of aborted local request\n");
242 	}
243 
244 	/* to avoid recursion in __req_mod */
245 	if (unlikely(bio->bi_error)) {
246 		if (bio->bi_rw & REQ_DISCARD)
247 			what = (bio->bi_error == -EOPNOTSUPP)
248 				? DISCARD_COMPLETED_NOTSUPP
249 				: DISCARD_COMPLETED_WITH_ERROR;
250 		else
251 			what = (bio_data_dir(bio) == WRITE)
252 			? WRITE_COMPLETED_WITH_ERROR
253 			: (bio_rw(bio) == READ)
254 			  ? READ_COMPLETED_WITH_ERROR
255 			  : READ_AHEAD_COMPLETED_WITH_ERROR;
256 	} else
257 		what = COMPLETED_OK;
258 
259 	bio_put(req->private_bio);
260 	req->private_bio = ERR_PTR(bio->bi_error);
261 
262 	/* not req_mod(), we need irqsave here! */
263 	spin_lock_irqsave(&device->resource->req_lock, flags);
264 	__req_mod(req, what, &m);
265 	spin_unlock_irqrestore(&device->resource->req_lock, flags);
266 	put_ldev(device);
267 
268 	if (m.bio)
269 		complete_master_bio(device, &m);
270 }
271 
272 void drbd_csum_ee(struct crypto_hash *tfm, struct drbd_peer_request *peer_req, void *digest)
273 {
274 	struct hash_desc desc;
275 	struct scatterlist sg;
276 	struct page *page = peer_req->pages;
277 	struct page *tmp;
278 	unsigned len;
279 
280 	desc.tfm = tfm;
281 	desc.flags = 0;
282 
283 	sg_init_table(&sg, 1);
284 	crypto_hash_init(&desc);
285 
286 	while ((tmp = page_chain_next(page))) {
287 		/* all but the last page will be fully used */
288 		sg_set_page(&sg, page, PAGE_SIZE, 0);
289 		crypto_hash_update(&desc, &sg, sg.length);
290 		page = tmp;
291 	}
292 	/* and now the last, possibly only partially used page */
293 	len = peer_req->i.size & (PAGE_SIZE - 1);
294 	sg_set_page(&sg, page, len ?: PAGE_SIZE, 0);
295 	crypto_hash_update(&desc, &sg, sg.length);
296 	crypto_hash_final(&desc, digest);
297 }
298 
299 void drbd_csum_bio(struct crypto_hash *tfm, struct bio *bio, void *digest)
300 {
301 	struct hash_desc desc;
302 	struct scatterlist sg;
303 	struct bio_vec bvec;
304 	struct bvec_iter iter;
305 
306 	desc.tfm = tfm;
307 	desc.flags = 0;
308 
309 	sg_init_table(&sg, 1);
310 	crypto_hash_init(&desc);
311 
312 	bio_for_each_segment(bvec, bio, iter) {
313 		sg_set_page(&sg, bvec.bv_page, bvec.bv_len, bvec.bv_offset);
314 		crypto_hash_update(&desc, &sg, sg.length);
315 	}
316 	crypto_hash_final(&desc, digest);
317 }
318 
319 /* MAYBE merge common code with w_e_end_ov_req */
320 static int w_e_send_csum(struct drbd_work *w, int cancel)
321 {
322 	struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w);
323 	struct drbd_peer_device *peer_device = peer_req->peer_device;
324 	struct drbd_device *device = peer_device->device;
325 	int digest_size;
326 	void *digest;
327 	int err = 0;
328 
329 	if (unlikely(cancel))
330 		goto out;
331 
332 	if (unlikely((peer_req->flags & EE_WAS_ERROR) != 0))
333 		goto out;
334 
335 	digest_size = crypto_hash_digestsize(peer_device->connection->csums_tfm);
336 	digest = kmalloc(digest_size, GFP_NOIO);
337 	if (digest) {
338 		sector_t sector = peer_req->i.sector;
339 		unsigned int size = peer_req->i.size;
340 		drbd_csum_ee(peer_device->connection->csums_tfm, peer_req, digest);
341 		/* Free peer_req and pages before send.
342 		 * In case we block on congestion, we could otherwise run into
343 		 * some distributed deadlock, if the other side blocks on
344 		 * congestion as well, because our receiver blocks in
345 		 * drbd_alloc_pages due to pp_in_use > max_buffers. */
346 		drbd_free_peer_req(device, peer_req);
347 		peer_req = NULL;
348 		inc_rs_pending(device);
349 		err = drbd_send_drequest_csum(peer_device, sector, size,
350 					      digest, digest_size,
351 					      P_CSUM_RS_REQUEST);
352 		kfree(digest);
353 	} else {
354 		drbd_err(device, "kmalloc() of digest failed.\n");
355 		err = -ENOMEM;
356 	}
357 
358 out:
359 	if (peer_req)
360 		drbd_free_peer_req(device, peer_req);
361 
362 	if (unlikely(err))
363 		drbd_err(device, "drbd_send_drequest(..., csum) failed\n");
364 	return err;
365 }
366 
367 #define GFP_TRY	(__GFP_HIGHMEM | __GFP_NOWARN)
368 
369 static int read_for_csum(struct drbd_peer_device *peer_device, sector_t sector, int size)
370 {
371 	struct drbd_device *device = peer_device->device;
372 	struct drbd_peer_request *peer_req;
373 
374 	if (!get_ldev(device))
375 		return -EIO;
376 
377 	/* GFP_TRY, because if there is no memory available right now, this may
378 	 * be rescheduled for later. It is "only" background resync, after all. */
379 	peer_req = drbd_alloc_peer_req(peer_device, ID_SYNCER /* unused */, sector,
380 				       size, true /* has real payload */, GFP_TRY);
381 	if (!peer_req)
382 		goto defer;
383 
384 	peer_req->w.cb = w_e_send_csum;
385 	spin_lock_irq(&device->resource->req_lock);
386 	list_add_tail(&peer_req->w.list, &device->read_ee);
387 	spin_unlock_irq(&device->resource->req_lock);
388 
389 	atomic_add(size >> 9, &device->rs_sect_ev);
390 	if (drbd_submit_peer_request(device, peer_req, READ, DRBD_FAULT_RS_RD) == 0)
391 		return 0;
392 
393 	/* If it failed because of ENOMEM, retry should help.  If it failed
394 	 * because bio_add_page failed (probably broken lower level driver),
395 	 * retry may or may not help.
396 	 * If it does not, you may need to force disconnect. */
397 	spin_lock_irq(&device->resource->req_lock);
398 	list_del(&peer_req->w.list);
399 	spin_unlock_irq(&device->resource->req_lock);
400 
401 	drbd_free_peer_req(device, peer_req);
402 defer:
403 	put_ldev(device);
404 	return -EAGAIN;
405 }
406 
407 int w_resync_timer(struct drbd_work *w, int cancel)
408 {
409 	struct drbd_device *device =
410 		container_of(w, struct drbd_device, resync_work);
411 
412 	switch (device->state.conn) {
413 	case C_VERIFY_S:
414 		make_ov_request(device, cancel);
415 		break;
416 	case C_SYNC_TARGET:
417 		make_resync_request(device, cancel);
418 		break;
419 	}
420 
421 	return 0;
422 }
423 
424 void resync_timer_fn(unsigned long data)
425 {
426 	struct drbd_device *device = (struct drbd_device *) data;
427 
428 	drbd_queue_work_if_unqueued(
429 		&first_peer_device(device)->connection->sender_work,
430 		&device->resync_work);
431 }
432 
433 static void fifo_set(struct fifo_buffer *fb, int value)
434 {
435 	int i;
436 
437 	for (i = 0; i < fb->size; i++)
438 		fb->values[i] = value;
439 }
440 
441 static int fifo_push(struct fifo_buffer *fb, int value)
442 {
443 	int ov;
444 
445 	ov = fb->values[fb->head_index];
446 	fb->values[fb->head_index++] = value;
447 
448 	if (fb->head_index >= fb->size)
449 		fb->head_index = 0;
450 
451 	return ov;
452 }
453 
454 static void fifo_add_val(struct fifo_buffer *fb, int value)
455 {
456 	int i;
457 
458 	for (i = 0; i < fb->size; i++)
459 		fb->values[i] += value;
460 }
461 
462 struct fifo_buffer *fifo_alloc(int fifo_size)
463 {
464 	struct fifo_buffer *fb;
465 
466 	fb = kzalloc(sizeof(struct fifo_buffer) + sizeof(int) * fifo_size, GFP_NOIO);
467 	if (!fb)
468 		return NULL;
469 
470 	fb->head_index = 0;
471 	fb->size = fifo_size;
472 	fb->total = 0;
473 
474 	return fb;
475 }
476 
477 static int drbd_rs_controller(struct drbd_device *device, unsigned int sect_in)
478 {
479 	struct disk_conf *dc;
480 	unsigned int want;     /* The number of sectors we want in-flight */
481 	int req_sect; /* Number of sectors to request in this turn */
482 	int correction; /* Number of sectors more we need in-flight */
483 	int cps; /* correction per invocation of drbd_rs_controller() */
484 	int steps; /* Number of time steps to plan ahead */
485 	int curr_corr;
486 	int max_sect;
487 	struct fifo_buffer *plan;
488 
489 	dc = rcu_dereference(device->ldev->disk_conf);
490 	plan = rcu_dereference(device->rs_plan_s);
491 
492 	steps = plan->size; /* (dc->c_plan_ahead * 10 * SLEEP_TIME) / HZ; */
493 
494 	if (device->rs_in_flight + sect_in == 0) { /* At start of resync */
495 		want = ((dc->resync_rate * 2 * SLEEP_TIME) / HZ) * steps;
496 	} else { /* normal path */
497 		want = dc->c_fill_target ? dc->c_fill_target :
498 			sect_in * dc->c_delay_target * HZ / (SLEEP_TIME * 10);
499 	}
500 
501 	correction = want - device->rs_in_flight - plan->total;
502 
503 	/* Plan ahead */
504 	cps = correction / steps;
505 	fifo_add_val(plan, cps);
506 	plan->total += cps * steps;
507 
508 	/* What we do in this step */
509 	curr_corr = fifo_push(plan, 0);
510 	plan->total -= curr_corr;
511 
512 	req_sect = sect_in + curr_corr;
513 	if (req_sect < 0)
514 		req_sect = 0;
515 
516 	max_sect = (dc->c_max_rate * 2 * SLEEP_TIME) / HZ;
517 	if (req_sect > max_sect)
518 		req_sect = max_sect;
519 
520 	/*
521 	drbd_warn(device, "si=%u if=%d wa=%u co=%d st=%d cps=%d pl=%d cc=%d rs=%d\n",
522 		 sect_in, device->rs_in_flight, want, correction,
523 		 steps, cps, device->rs_planed, curr_corr, req_sect);
524 	*/
525 
526 	return req_sect;
527 }
528 
529 static int drbd_rs_number_requests(struct drbd_device *device)
530 {
531 	unsigned int sect_in;  /* Number of sectors that came in since the last turn */
532 	int number, mxb;
533 
534 	sect_in = atomic_xchg(&device->rs_sect_in, 0);
535 	device->rs_in_flight -= sect_in;
536 
537 	rcu_read_lock();
538 	mxb = drbd_get_max_buffers(device) / 2;
539 	if (rcu_dereference(device->rs_plan_s)->size) {
540 		number = drbd_rs_controller(device, sect_in) >> (BM_BLOCK_SHIFT - 9);
541 		device->c_sync_rate = number * HZ * (BM_BLOCK_SIZE / 1024) / SLEEP_TIME;
542 	} else {
543 		device->c_sync_rate = rcu_dereference(device->ldev->disk_conf)->resync_rate;
544 		number = SLEEP_TIME * device->c_sync_rate  / ((BM_BLOCK_SIZE / 1024) * HZ);
545 	}
546 	rcu_read_unlock();
547 
548 	/* Don't have more than "max-buffers"/2 in-flight.
549 	 * Otherwise we may cause the remote site to stall on drbd_alloc_pages(),
550 	 * potentially causing a distributed deadlock on congestion during
551 	 * online-verify or (checksum-based) resync, if max-buffers,
552 	 * socket buffer sizes and resync rate settings are mis-configured. */
553 
554 	/* note that "number" is in units of "BM_BLOCK_SIZE" (which is 4k),
555 	 * mxb (as used here, and in drbd_alloc_pages on the peer) is
556 	 * "number of pages" (typically also 4k),
557 	 * but "rs_in_flight" is in "sectors" (512 Byte). */
558 	if (mxb - device->rs_in_flight/8 < number)
559 		number = mxb - device->rs_in_flight/8;
560 
561 	return number;
562 }
563 
564 static int make_resync_request(struct drbd_device *const device, int cancel)
565 {
566 	struct drbd_peer_device *const peer_device = first_peer_device(device);
567 	struct drbd_connection *const connection = peer_device ? peer_device->connection : NULL;
568 	unsigned long bit;
569 	sector_t sector;
570 	const sector_t capacity = drbd_get_capacity(device->this_bdev);
571 	int max_bio_size;
572 	int number, rollback_i, size;
573 	int align, requeue = 0;
574 	int i = 0;
575 
576 	if (unlikely(cancel))
577 		return 0;
578 
579 	if (device->rs_total == 0) {
580 		/* empty resync? */
581 		drbd_resync_finished(device);
582 		return 0;
583 	}
584 
585 	if (!get_ldev(device)) {
586 		/* Since we only need to access device->rsync a
587 		   get_ldev_if_state(device,D_FAILED) would be sufficient, but
588 		   to continue resync with a broken disk makes no sense at
589 		   all */
590 		drbd_err(device, "Disk broke down during resync!\n");
591 		return 0;
592 	}
593 
594 	max_bio_size = queue_max_hw_sectors(device->rq_queue) << 9;
595 	number = drbd_rs_number_requests(device);
596 	if (number <= 0)
597 		goto requeue;
598 
599 	for (i = 0; i < number; i++) {
600 		/* Stop generating RS requests when half of the send buffer is filled,
601 		 * but notify TCP that we'd like to have more space. */
602 		mutex_lock(&connection->data.mutex);
603 		if (connection->data.socket) {
604 			struct sock *sk = connection->data.socket->sk;
605 			int queued = sk->sk_wmem_queued;
606 			int sndbuf = sk->sk_sndbuf;
607 			if (queued > sndbuf / 2) {
608 				requeue = 1;
609 				if (sk->sk_socket)
610 					set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
611 			}
612 		} else
613 			requeue = 1;
614 		mutex_unlock(&connection->data.mutex);
615 		if (requeue)
616 			goto requeue;
617 
618 next_sector:
619 		size = BM_BLOCK_SIZE;
620 		bit  = drbd_bm_find_next(device, device->bm_resync_fo);
621 
622 		if (bit == DRBD_END_OF_BITMAP) {
623 			device->bm_resync_fo = drbd_bm_bits(device);
624 			put_ldev(device);
625 			return 0;
626 		}
627 
628 		sector = BM_BIT_TO_SECT(bit);
629 
630 		if (drbd_try_rs_begin_io(device, sector)) {
631 			device->bm_resync_fo = bit;
632 			goto requeue;
633 		}
634 		device->bm_resync_fo = bit + 1;
635 
636 		if (unlikely(drbd_bm_test_bit(device, bit) == 0)) {
637 			drbd_rs_complete_io(device, sector);
638 			goto next_sector;
639 		}
640 
641 #if DRBD_MAX_BIO_SIZE > BM_BLOCK_SIZE
642 		/* try to find some adjacent bits.
643 		 * we stop if we have already the maximum req size.
644 		 *
645 		 * Additionally always align bigger requests, in order to
646 		 * be prepared for all stripe sizes of software RAIDs.
647 		 */
648 		align = 1;
649 		rollback_i = i;
650 		while (i < number) {
651 			if (size + BM_BLOCK_SIZE > max_bio_size)
652 				break;
653 
654 			/* Be always aligned */
655 			if (sector & ((1<<(align+3))-1))
656 				break;
657 
658 			/* do not cross extent boundaries */
659 			if (((bit+1) & BM_BLOCKS_PER_BM_EXT_MASK) == 0)
660 				break;
661 			/* now, is it actually dirty, after all?
662 			 * caution, drbd_bm_test_bit is tri-state for some
663 			 * obscure reason; ( b == 0 ) would get the out-of-band
664 			 * only accidentally right because of the "oddly sized"
665 			 * adjustment below */
666 			if (drbd_bm_test_bit(device, bit+1) != 1)
667 				break;
668 			bit++;
669 			size += BM_BLOCK_SIZE;
670 			if ((BM_BLOCK_SIZE << align) <= size)
671 				align++;
672 			i++;
673 		}
674 		/* if we merged some,
675 		 * reset the offset to start the next drbd_bm_find_next from */
676 		if (size > BM_BLOCK_SIZE)
677 			device->bm_resync_fo = bit + 1;
678 #endif
679 
680 		/* adjust very last sectors, in case we are oddly sized */
681 		if (sector + (size>>9) > capacity)
682 			size = (capacity-sector)<<9;
683 
684 		if (device->use_csums) {
685 			switch (read_for_csum(peer_device, sector, size)) {
686 			case -EIO: /* Disk failure */
687 				put_ldev(device);
688 				return -EIO;
689 			case -EAGAIN: /* allocation failed, or ldev busy */
690 				drbd_rs_complete_io(device, sector);
691 				device->bm_resync_fo = BM_SECT_TO_BIT(sector);
692 				i = rollback_i;
693 				goto requeue;
694 			case 0:
695 				/* everything ok */
696 				break;
697 			default:
698 				BUG();
699 			}
700 		} else {
701 			int err;
702 
703 			inc_rs_pending(device);
704 			err = drbd_send_drequest(peer_device, P_RS_DATA_REQUEST,
705 						 sector, size, ID_SYNCER);
706 			if (err) {
707 				drbd_err(device, "drbd_send_drequest() failed, aborting...\n");
708 				dec_rs_pending(device);
709 				put_ldev(device);
710 				return err;
711 			}
712 		}
713 	}
714 
715 	if (device->bm_resync_fo >= drbd_bm_bits(device)) {
716 		/* last syncer _request_ was sent,
717 		 * but the P_RS_DATA_REPLY not yet received.  sync will end (and
718 		 * next sync group will resume), as soon as we receive the last
719 		 * resync data block, and the last bit is cleared.
720 		 * until then resync "work" is "inactive" ...
721 		 */
722 		put_ldev(device);
723 		return 0;
724 	}
725 
726  requeue:
727 	device->rs_in_flight += (i << (BM_BLOCK_SHIFT - 9));
728 	mod_timer(&device->resync_timer, jiffies + SLEEP_TIME);
729 	put_ldev(device);
730 	return 0;
731 }
732 
733 static int make_ov_request(struct drbd_device *device, int cancel)
734 {
735 	int number, i, size;
736 	sector_t sector;
737 	const sector_t capacity = drbd_get_capacity(device->this_bdev);
738 	bool stop_sector_reached = false;
739 
740 	if (unlikely(cancel))
741 		return 1;
742 
743 	number = drbd_rs_number_requests(device);
744 
745 	sector = device->ov_position;
746 	for (i = 0; i < number; i++) {
747 		if (sector >= capacity)
748 			return 1;
749 
750 		/* We check for "finished" only in the reply path:
751 		 * w_e_end_ov_reply().
752 		 * We need to send at least one request out. */
753 		stop_sector_reached = i > 0
754 			&& verify_can_do_stop_sector(device)
755 			&& sector >= device->ov_stop_sector;
756 		if (stop_sector_reached)
757 			break;
758 
759 		size = BM_BLOCK_SIZE;
760 
761 		if (drbd_try_rs_begin_io(device, sector)) {
762 			device->ov_position = sector;
763 			goto requeue;
764 		}
765 
766 		if (sector + (size>>9) > capacity)
767 			size = (capacity-sector)<<9;
768 
769 		inc_rs_pending(device);
770 		if (drbd_send_ov_request(first_peer_device(device), sector, size)) {
771 			dec_rs_pending(device);
772 			return 0;
773 		}
774 		sector += BM_SECT_PER_BIT;
775 	}
776 	device->ov_position = sector;
777 
778  requeue:
779 	device->rs_in_flight += (i << (BM_BLOCK_SHIFT - 9));
780 	if (i == 0 || !stop_sector_reached)
781 		mod_timer(&device->resync_timer, jiffies + SLEEP_TIME);
782 	return 1;
783 }
784 
785 int w_ov_finished(struct drbd_work *w, int cancel)
786 {
787 	struct drbd_device_work *dw =
788 		container_of(w, struct drbd_device_work, w);
789 	struct drbd_device *device = dw->device;
790 	kfree(dw);
791 	ov_out_of_sync_print(device);
792 	drbd_resync_finished(device);
793 
794 	return 0;
795 }
796 
797 static int w_resync_finished(struct drbd_work *w, int cancel)
798 {
799 	struct drbd_device_work *dw =
800 		container_of(w, struct drbd_device_work, w);
801 	struct drbd_device *device = dw->device;
802 	kfree(dw);
803 
804 	drbd_resync_finished(device);
805 
806 	return 0;
807 }
808 
809 static void ping_peer(struct drbd_device *device)
810 {
811 	struct drbd_connection *connection = first_peer_device(device)->connection;
812 
813 	clear_bit(GOT_PING_ACK, &connection->flags);
814 	request_ping(connection);
815 	wait_event(connection->ping_wait,
816 		   test_bit(GOT_PING_ACK, &connection->flags) || device->state.conn < C_CONNECTED);
817 }
818 
819 int drbd_resync_finished(struct drbd_device *device)
820 {
821 	unsigned long db, dt, dbdt;
822 	unsigned long n_oos;
823 	union drbd_state os, ns;
824 	struct drbd_device_work *dw;
825 	char *khelper_cmd = NULL;
826 	int verify_done = 0;
827 
828 	/* Remove all elements from the resync LRU. Since future actions
829 	 * might set bits in the (main) bitmap, then the entries in the
830 	 * resync LRU would be wrong. */
831 	if (drbd_rs_del_all(device)) {
832 		/* In case this is not possible now, most probably because
833 		 * there are P_RS_DATA_REPLY Packets lingering on the worker's
834 		 * queue (or even the read operations for those packets
835 		 * is not finished by now).   Retry in 100ms. */
836 
837 		schedule_timeout_interruptible(HZ / 10);
838 		dw = kmalloc(sizeof(struct drbd_device_work), GFP_ATOMIC);
839 		if (dw) {
840 			dw->w.cb = w_resync_finished;
841 			dw->device = device;
842 			drbd_queue_work(&first_peer_device(device)->connection->sender_work,
843 					&dw->w);
844 			return 1;
845 		}
846 		drbd_err(device, "Warn failed to drbd_rs_del_all() and to kmalloc(dw).\n");
847 	}
848 
849 	dt = (jiffies - device->rs_start - device->rs_paused) / HZ;
850 	if (dt <= 0)
851 		dt = 1;
852 
853 	db = device->rs_total;
854 	/* adjust for verify start and stop sectors, respective reached position */
855 	if (device->state.conn == C_VERIFY_S || device->state.conn == C_VERIFY_T)
856 		db -= device->ov_left;
857 
858 	dbdt = Bit2KB(db/dt);
859 	device->rs_paused /= HZ;
860 
861 	if (!get_ldev(device))
862 		goto out;
863 
864 	ping_peer(device);
865 
866 	spin_lock_irq(&device->resource->req_lock);
867 	os = drbd_read_state(device);
868 
869 	verify_done = (os.conn == C_VERIFY_S || os.conn == C_VERIFY_T);
870 
871 	/* This protects us against multiple calls (that can happen in the presence
872 	   of application IO), and against connectivity loss just before we arrive here. */
873 	if (os.conn <= C_CONNECTED)
874 		goto out_unlock;
875 
876 	ns = os;
877 	ns.conn = C_CONNECTED;
878 
879 	drbd_info(device, "%s done (total %lu sec; paused %lu sec; %lu K/sec)\n",
880 	     verify_done ? "Online verify" : "Resync",
881 	     dt + device->rs_paused, device->rs_paused, dbdt);
882 
883 	n_oos = drbd_bm_total_weight(device);
884 
885 	if (os.conn == C_VERIFY_S || os.conn == C_VERIFY_T) {
886 		if (n_oos) {
887 			drbd_alert(device, "Online verify found %lu %dk block out of sync!\n",
888 			      n_oos, Bit2KB(1));
889 			khelper_cmd = "out-of-sync";
890 		}
891 	} else {
892 		D_ASSERT(device, (n_oos - device->rs_failed) == 0);
893 
894 		if (os.conn == C_SYNC_TARGET || os.conn == C_PAUSED_SYNC_T)
895 			khelper_cmd = "after-resync-target";
896 
897 		if (device->use_csums && device->rs_total) {
898 			const unsigned long s = device->rs_same_csum;
899 			const unsigned long t = device->rs_total;
900 			const int ratio =
901 				(t == 0)     ? 0 :
902 			(t < 100000) ? ((s*100)/t) : (s/(t/100));
903 			drbd_info(device, "%u %% had equal checksums, eliminated: %luK; "
904 			     "transferred %luK total %luK\n",
905 			     ratio,
906 			     Bit2KB(device->rs_same_csum),
907 			     Bit2KB(device->rs_total - device->rs_same_csum),
908 			     Bit2KB(device->rs_total));
909 		}
910 	}
911 
912 	if (device->rs_failed) {
913 		drbd_info(device, "            %lu failed blocks\n", device->rs_failed);
914 
915 		if (os.conn == C_SYNC_TARGET || os.conn == C_PAUSED_SYNC_T) {
916 			ns.disk = D_INCONSISTENT;
917 			ns.pdsk = D_UP_TO_DATE;
918 		} else {
919 			ns.disk = D_UP_TO_DATE;
920 			ns.pdsk = D_INCONSISTENT;
921 		}
922 	} else {
923 		ns.disk = D_UP_TO_DATE;
924 		ns.pdsk = D_UP_TO_DATE;
925 
926 		if (os.conn == C_SYNC_TARGET || os.conn == C_PAUSED_SYNC_T) {
927 			if (device->p_uuid) {
928 				int i;
929 				for (i = UI_BITMAP ; i <= UI_HISTORY_END ; i++)
930 					_drbd_uuid_set(device, i, device->p_uuid[i]);
931 				drbd_uuid_set(device, UI_BITMAP, device->ldev->md.uuid[UI_CURRENT]);
932 				_drbd_uuid_set(device, UI_CURRENT, device->p_uuid[UI_CURRENT]);
933 			} else {
934 				drbd_err(device, "device->p_uuid is NULL! BUG\n");
935 			}
936 		}
937 
938 		if (!(os.conn == C_VERIFY_S || os.conn == C_VERIFY_T)) {
939 			/* for verify runs, we don't update uuids here,
940 			 * so there would be nothing to report. */
941 			drbd_uuid_set_bm(device, 0UL);
942 			drbd_print_uuids(device, "updated UUIDs");
943 			if (device->p_uuid) {
944 				/* Now the two UUID sets are equal, update what we
945 				 * know of the peer. */
946 				int i;
947 				for (i = UI_CURRENT ; i <= UI_HISTORY_END ; i++)
948 					device->p_uuid[i] = device->ldev->md.uuid[i];
949 			}
950 		}
951 	}
952 
953 	_drbd_set_state(device, ns, CS_VERBOSE, NULL);
954 out_unlock:
955 	spin_unlock_irq(&device->resource->req_lock);
956 	put_ldev(device);
957 out:
958 	device->rs_total  = 0;
959 	device->rs_failed = 0;
960 	device->rs_paused = 0;
961 
962 	/* reset start sector, if we reached end of device */
963 	if (verify_done && device->ov_left == 0)
964 		device->ov_start_sector = 0;
965 
966 	drbd_md_sync(device);
967 
968 	if (khelper_cmd)
969 		drbd_khelper(device, khelper_cmd);
970 
971 	return 1;
972 }
973 
974 /* helper */
975 static void move_to_net_ee_or_free(struct drbd_device *device, struct drbd_peer_request *peer_req)
976 {
977 	if (drbd_peer_req_has_active_page(peer_req)) {
978 		/* This might happen if sendpage() has not finished */
979 		int i = (peer_req->i.size + PAGE_SIZE -1) >> PAGE_SHIFT;
980 		atomic_add(i, &device->pp_in_use_by_net);
981 		atomic_sub(i, &device->pp_in_use);
982 		spin_lock_irq(&device->resource->req_lock);
983 		list_add_tail(&peer_req->w.list, &device->net_ee);
984 		spin_unlock_irq(&device->resource->req_lock);
985 		wake_up(&drbd_pp_wait);
986 	} else
987 		drbd_free_peer_req(device, peer_req);
988 }
989 
990 /**
991  * w_e_end_data_req() - Worker callback, to send a P_DATA_REPLY packet in response to a P_DATA_REQUEST
992  * @device:	DRBD device.
993  * @w:		work object.
994  * @cancel:	The connection will be closed anyways
995  */
996 int w_e_end_data_req(struct drbd_work *w, int cancel)
997 {
998 	struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w);
999 	struct drbd_peer_device *peer_device = peer_req->peer_device;
1000 	struct drbd_device *device = peer_device->device;
1001 	int err;
1002 
1003 	if (unlikely(cancel)) {
1004 		drbd_free_peer_req(device, peer_req);
1005 		dec_unacked(device);
1006 		return 0;
1007 	}
1008 
1009 	if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) {
1010 		err = drbd_send_block(peer_device, P_DATA_REPLY, peer_req);
1011 	} else {
1012 		if (__ratelimit(&drbd_ratelimit_state))
1013 			drbd_err(device, "Sending NegDReply. sector=%llus.\n",
1014 			    (unsigned long long)peer_req->i.sector);
1015 
1016 		err = drbd_send_ack(peer_device, P_NEG_DREPLY, peer_req);
1017 	}
1018 
1019 	dec_unacked(device);
1020 
1021 	move_to_net_ee_or_free(device, peer_req);
1022 
1023 	if (unlikely(err))
1024 		drbd_err(device, "drbd_send_block() failed\n");
1025 	return err;
1026 }
1027 
1028 /**
1029  * w_e_end_rsdata_req() - Worker callback to send a P_RS_DATA_REPLY packet in response to a P_RS_DATA_REQUEST
1030  * @w:		work object.
1031  * @cancel:	The connection will be closed anyways
1032  */
1033 int w_e_end_rsdata_req(struct drbd_work *w, int cancel)
1034 {
1035 	struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w);
1036 	struct drbd_peer_device *peer_device = peer_req->peer_device;
1037 	struct drbd_device *device = peer_device->device;
1038 	int err;
1039 
1040 	if (unlikely(cancel)) {
1041 		drbd_free_peer_req(device, peer_req);
1042 		dec_unacked(device);
1043 		return 0;
1044 	}
1045 
1046 	if (get_ldev_if_state(device, D_FAILED)) {
1047 		drbd_rs_complete_io(device, peer_req->i.sector);
1048 		put_ldev(device);
1049 	}
1050 
1051 	if (device->state.conn == C_AHEAD) {
1052 		err = drbd_send_ack(peer_device, P_RS_CANCEL, peer_req);
1053 	} else if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) {
1054 		if (likely(device->state.pdsk >= D_INCONSISTENT)) {
1055 			inc_rs_pending(device);
1056 			err = drbd_send_block(peer_device, P_RS_DATA_REPLY, peer_req);
1057 		} else {
1058 			if (__ratelimit(&drbd_ratelimit_state))
1059 				drbd_err(device, "Not sending RSDataReply, "
1060 				    "partner DISKLESS!\n");
1061 			err = 0;
1062 		}
1063 	} else {
1064 		if (__ratelimit(&drbd_ratelimit_state))
1065 			drbd_err(device, "Sending NegRSDReply. sector %llus.\n",
1066 			    (unsigned long long)peer_req->i.sector);
1067 
1068 		err = drbd_send_ack(peer_device, P_NEG_RS_DREPLY, peer_req);
1069 
1070 		/* update resync data with failure */
1071 		drbd_rs_failed_io(device, peer_req->i.sector, peer_req->i.size);
1072 	}
1073 
1074 	dec_unacked(device);
1075 
1076 	move_to_net_ee_or_free(device, peer_req);
1077 
1078 	if (unlikely(err))
1079 		drbd_err(device, "drbd_send_block() failed\n");
1080 	return err;
1081 }
1082 
1083 int w_e_end_csum_rs_req(struct drbd_work *w, int cancel)
1084 {
1085 	struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w);
1086 	struct drbd_peer_device *peer_device = peer_req->peer_device;
1087 	struct drbd_device *device = peer_device->device;
1088 	struct digest_info *di;
1089 	int digest_size;
1090 	void *digest = NULL;
1091 	int err, eq = 0;
1092 
1093 	if (unlikely(cancel)) {
1094 		drbd_free_peer_req(device, peer_req);
1095 		dec_unacked(device);
1096 		return 0;
1097 	}
1098 
1099 	if (get_ldev(device)) {
1100 		drbd_rs_complete_io(device, peer_req->i.sector);
1101 		put_ldev(device);
1102 	}
1103 
1104 	di = peer_req->digest;
1105 
1106 	if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) {
1107 		/* quick hack to try to avoid a race against reconfiguration.
1108 		 * a real fix would be much more involved,
1109 		 * introducing more locking mechanisms */
1110 		if (peer_device->connection->csums_tfm) {
1111 			digest_size = crypto_hash_digestsize(peer_device->connection->csums_tfm);
1112 			D_ASSERT(device, digest_size == di->digest_size);
1113 			digest = kmalloc(digest_size, GFP_NOIO);
1114 		}
1115 		if (digest) {
1116 			drbd_csum_ee(peer_device->connection->csums_tfm, peer_req, digest);
1117 			eq = !memcmp(digest, di->digest, digest_size);
1118 			kfree(digest);
1119 		}
1120 
1121 		if (eq) {
1122 			drbd_set_in_sync(device, peer_req->i.sector, peer_req->i.size);
1123 			/* rs_same_csums unit is BM_BLOCK_SIZE */
1124 			device->rs_same_csum += peer_req->i.size >> BM_BLOCK_SHIFT;
1125 			err = drbd_send_ack(peer_device, P_RS_IS_IN_SYNC, peer_req);
1126 		} else {
1127 			inc_rs_pending(device);
1128 			peer_req->block_id = ID_SYNCER; /* By setting block_id, digest pointer becomes invalid! */
1129 			peer_req->flags &= ~EE_HAS_DIGEST; /* This peer request no longer has a digest pointer */
1130 			kfree(di);
1131 			err = drbd_send_block(peer_device, P_RS_DATA_REPLY, peer_req);
1132 		}
1133 	} else {
1134 		err = drbd_send_ack(peer_device, P_NEG_RS_DREPLY, peer_req);
1135 		if (__ratelimit(&drbd_ratelimit_state))
1136 			drbd_err(device, "Sending NegDReply. I guess it gets messy.\n");
1137 	}
1138 
1139 	dec_unacked(device);
1140 	move_to_net_ee_or_free(device, peer_req);
1141 
1142 	if (unlikely(err))
1143 		drbd_err(device, "drbd_send_block/ack() failed\n");
1144 	return err;
1145 }
1146 
1147 int w_e_end_ov_req(struct drbd_work *w, int cancel)
1148 {
1149 	struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w);
1150 	struct drbd_peer_device *peer_device = peer_req->peer_device;
1151 	struct drbd_device *device = peer_device->device;
1152 	sector_t sector = peer_req->i.sector;
1153 	unsigned int size = peer_req->i.size;
1154 	int digest_size;
1155 	void *digest;
1156 	int err = 0;
1157 
1158 	if (unlikely(cancel))
1159 		goto out;
1160 
1161 	digest_size = crypto_hash_digestsize(peer_device->connection->verify_tfm);
1162 	digest = kmalloc(digest_size, GFP_NOIO);
1163 	if (!digest) {
1164 		err = 1;	/* terminate the connection in case the allocation failed */
1165 		goto out;
1166 	}
1167 
1168 	if (likely(!(peer_req->flags & EE_WAS_ERROR)))
1169 		drbd_csum_ee(peer_device->connection->verify_tfm, peer_req, digest);
1170 	else
1171 		memset(digest, 0, digest_size);
1172 
1173 	/* Free e and pages before send.
1174 	 * In case we block on congestion, we could otherwise run into
1175 	 * some distributed deadlock, if the other side blocks on
1176 	 * congestion as well, because our receiver blocks in
1177 	 * drbd_alloc_pages due to pp_in_use > max_buffers. */
1178 	drbd_free_peer_req(device, peer_req);
1179 	peer_req = NULL;
1180 	inc_rs_pending(device);
1181 	err = drbd_send_drequest_csum(peer_device, sector, size, digest, digest_size, P_OV_REPLY);
1182 	if (err)
1183 		dec_rs_pending(device);
1184 	kfree(digest);
1185 
1186 out:
1187 	if (peer_req)
1188 		drbd_free_peer_req(device, peer_req);
1189 	dec_unacked(device);
1190 	return err;
1191 }
1192 
1193 void drbd_ov_out_of_sync_found(struct drbd_device *device, sector_t sector, int size)
1194 {
1195 	if (device->ov_last_oos_start + device->ov_last_oos_size == sector) {
1196 		device->ov_last_oos_size += size>>9;
1197 	} else {
1198 		device->ov_last_oos_start = sector;
1199 		device->ov_last_oos_size = size>>9;
1200 	}
1201 	drbd_set_out_of_sync(device, sector, size);
1202 }
1203 
1204 int w_e_end_ov_reply(struct drbd_work *w, int cancel)
1205 {
1206 	struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w);
1207 	struct drbd_peer_device *peer_device = peer_req->peer_device;
1208 	struct drbd_device *device = peer_device->device;
1209 	struct digest_info *di;
1210 	void *digest;
1211 	sector_t sector = peer_req->i.sector;
1212 	unsigned int size = peer_req->i.size;
1213 	int digest_size;
1214 	int err, eq = 0;
1215 	bool stop_sector_reached = false;
1216 
1217 	if (unlikely(cancel)) {
1218 		drbd_free_peer_req(device, peer_req);
1219 		dec_unacked(device);
1220 		return 0;
1221 	}
1222 
1223 	/* after "cancel", because after drbd_disconnect/drbd_rs_cancel_all
1224 	 * the resync lru has been cleaned up already */
1225 	if (get_ldev(device)) {
1226 		drbd_rs_complete_io(device, peer_req->i.sector);
1227 		put_ldev(device);
1228 	}
1229 
1230 	di = peer_req->digest;
1231 
1232 	if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) {
1233 		digest_size = crypto_hash_digestsize(peer_device->connection->verify_tfm);
1234 		digest = kmalloc(digest_size, GFP_NOIO);
1235 		if (digest) {
1236 			drbd_csum_ee(peer_device->connection->verify_tfm, peer_req, digest);
1237 
1238 			D_ASSERT(device, digest_size == di->digest_size);
1239 			eq = !memcmp(digest, di->digest, digest_size);
1240 			kfree(digest);
1241 		}
1242 	}
1243 
1244 	/* Free peer_req and pages before send.
1245 	 * In case we block on congestion, we could otherwise run into
1246 	 * some distributed deadlock, if the other side blocks on
1247 	 * congestion as well, because our receiver blocks in
1248 	 * drbd_alloc_pages due to pp_in_use > max_buffers. */
1249 	drbd_free_peer_req(device, peer_req);
1250 	if (!eq)
1251 		drbd_ov_out_of_sync_found(device, sector, size);
1252 	else
1253 		ov_out_of_sync_print(device);
1254 
1255 	err = drbd_send_ack_ex(peer_device, P_OV_RESULT, sector, size,
1256 			       eq ? ID_IN_SYNC : ID_OUT_OF_SYNC);
1257 
1258 	dec_unacked(device);
1259 
1260 	--device->ov_left;
1261 
1262 	/* let's advance progress step marks only for every other megabyte */
1263 	if ((device->ov_left & 0x200) == 0x200)
1264 		drbd_advance_rs_marks(device, device->ov_left);
1265 
1266 	stop_sector_reached = verify_can_do_stop_sector(device) &&
1267 		(sector + (size>>9)) >= device->ov_stop_sector;
1268 
1269 	if (device->ov_left == 0 || stop_sector_reached) {
1270 		ov_out_of_sync_print(device);
1271 		drbd_resync_finished(device);
1272 	}
1273 
1274 	return err;
1275 }
1276 
1277 /* FIXME
1278  * We need to track the number of pending barrier acks,
1279  * and to be able to wait for them.
1280  * See also comment in drbd_adm_attach before drbd_suspend_io.
1281  */
1282 static int drbd_send_barrier(struct drbd_connection *connection)
1283 {
1284 	struct p_barrier *p;
1285 	struct drbd_socket *sock;
1286 
1287 	sock = &connection->data;
1288 	p = conn_prepare_command(connection, sock);
1289 	if (!p)
1290 		return -EIO;
1291 	p->barrier = connection->send.current_epoch_nr;
1292 	p->pad = 0;
1293 	connection->send.current_epoch_writes = 0;
1294 
1295 	return conn_send_command(connection, sock, P_BARRIER, sizeof(*p), NULL, 0);
1296 }
1297 
1298 int w_send_write_hint(struct drbd_work *w, int cancel)
1299 {
1300 	struct drbd_device *device =
1301 		container_of(w, struct drbd_device, unplug_work);
1302 	struct drbd_socket *sock;
1303 
1304 	if (cancel)
1305 		return 0;
1306 	sock = &first_peer_device(device)->connection->data;
1307 	if (!drbd_prepare_command(first_peer_device(device), sock))
1308 		return -EIO;
1309 	return drbd_send_command(first_peer_device(device), sock, P_UNPLUG_REMOTE, 0, NULL, 0);
1310 }
1311 
1312 static void re_init_if_first_write(struct drbd_connection *connection, unsigned int epoch)
1313 {
1314 	if (!connection->send.seen_any_write_yet) {
1315 		connection->send.seen_any_write_yet = true;
1316 		connection->send.current_epoch_nr = epoch;
1317 		connection->send.current_epoch_writes = 0;
1318 	}
1319 }
1320 
1321 static void maybe_send_barrier(struct drbd_connection *connection, unsigned int epoch)
1322 {
1323 	/* re-init if first write on this connection */
1324 	if (!connection->send.seen_any_write_yet)
1325 		return;
1326 	if (connection->send.current_epoch_nr != epoch) {
1327 		if (connection->send.current_epoch_writes)
1328 			drbd_send_barrier(connection);
1329 		connection->send.current_epoch_nr = epoch;
1330 	}
1331 }
1332 
1333 int w_send_out_of_sync(struct drbd_work *w, int cancel)
1334 {
1335 	struct drbd_request *req = container_of(w, struct drbd_request, w);
1336 	struct drbd_device *device = req->device;
1337 	struct drbd_peer_device *const peer_device = first_peer_device(device);
1338 	struct drbd_connection *const connection = peer_device->connection;
1339 	int err;
1340 
1341 	if (unlikely(cancel)) {
1342 		req_mod(req, SEND_CANCELED);
1343 		return 0;
1344 	}
1345 	req->pre_send_jif = jiffies;
1346 
1347 	/* this time, no connection->send.current_epoch_writes++;
1348 	 * If it was sent, it was the closing barrier for the last
1349 	 * replicated epoch, before we went into AHEAD mode.
1350 	 * No more barriers will be sent, until we leave AHEAD mode again. */
1351 	maybe_send_barrier(connection, req->epoch);
1352 
1353 	err = drbd_send_out_of_sync(peer_device, req);
1354 	req_mod(req, OOS_HANDED_TO_NETWORK);
1355 
1356 	return err;
1357 }
1358 
1359 /**
1360  * w_send_dblock() - Worker callback to send a P_DATA packet in order to mirror a write request
1361  * @w:		work object.
1362  * @cancel:	The connection will be closed anyways
1363  */
1364 int w_send_dblock(struct drbd_work *w, int cancel)
1365 {
1366 	struct drbd_request *req = container_of(w, struct drbd_request, w);
1367 	struct drbd_device *device = req->device;
1368 	struct drbd_peer_device *const peer_device = first_peer_device(device);
1369 	struct drbd_connection *connection = peer_device->connection;
1370 	int err;
1371 
1372 	if (unlikely(cancel)) {
1373 		req_mod(req, SEND_CANCELED);
1374 		return 0;
1375 	}
1376 	req->pre_send_jif = jiffies;
1377 
1378 	re_init_if_first_write(connection, req->epoch);
1379 	maybe_send_barrier(connection, req->epoch);
1380 	connection->send.current_epoch_writes++;
1381 
1382 	err = drbd_send_dblock(peer_device, req);
1383 	req_mod(req, err ? SEND_FAILED : HANDED_OVER_TO_NETWORK);
1384 
1385 	return err;
1386 }
1387 
1388 /**
1389  * w_send_read_req() - Worker callback to send a read request (P_DATA_REQUEST) packet
1390  * @w:		work object.
1391  * @cancel:	The connection will be closed anyways
1392  */
1393 int w_send_read_req(struct drbd_work *w, int cancel)
1394 {
1395 	struct drbd_request *req = container_of(w, struct drbd_request, w);
1396 	struct drbd_device *device = req->device;
1397 	struct drbd_peer_device *const peer_device = first_peer_device(device);
1398 	struct drbd_connection *connection = peer_device->connection;
1399 	int err;
1400 
1401 	if (unlikely(cancel)) {
1402 		req_mod(req, SEND_CANCELED);
1403 		return 0;
1404 	}
1405 	req->pre_send_jif = jiffies;
1406 
1407 	/* Even read requests may close a write epoch,
1408 	 * if there was any yet. */
1409 	maybe_send_barrier(connection, req->epoch);
1410 
1411 	err = drbd_send_drequest(peer_device, P_DATA_REQUEST, req->i.sector, req->i.size,
1412 				 (unsigned long)req);
1413 
1414 	req_mod(req, err ? SEND_FAILED : HANDED_OVER_TO_NETWORK);
1415 
1416 	return err;
1417 }
1418 
1419 int w_restart_disk_io(struct drbd_work *w, int cancel)
1420 {
1421 	struct drbd_request *req = container_of(w, struct drbd_request, w);
1422 	struct drbd_device *device = req->device;
1423 
1424 	if (bio_data_dir(req->master_bio) == WRITE && req->rq_state & RQ_IN_ACT_LOG)
1425 		drbd_al_begin_io(device, &req->i);
1426 
1427 	drbd_req_make_private_bio(req, req->master_bio);
1428 	req->private_bio->bi_bdev = device->ldev->backing_bdev;
1429 	generic_make_request(req->private_bio);
1430 
1431 	return 0;
1432 }
1433 
1434 static int _drbd_may_sync_now(struct drbd_device *device)
1435 {
1436 	struct drbd_device *odev = device;
1437 	int resync_after;
1438 
1439 	while (1) {
1440 		if (!odev->ldev || odev->state.disk == D_DISKLESS)
1441 			return 1;
1442 		rcu_read_lock();
1443 		resync_after = rcu_dereference(odev->ldev->disk_conf)->resync_after;
1444 		rcu_read_unlock();
1445 		if (resync_after == -1)
1446 			return 1;
1447 		odev = minor_to_device(resync_after);
1448 		if (!odev)
1449 			return 1;
1450 		if ((odev->state.conn >= C_SYNC_SOURCE &&
1451 		     odev->state.conn <= C_PAUSED_SYNC_T) ||
1452 		    odev->state.aftr_isp || odev->state.peer_isp ||
1453 		    odev->state.user_isp)
1454 			return 0;
1455 	}
1456 }
1457 
1458 /**
1459  * _drbd_pause_after() - Pause resync on all devices that may not resync now
1460  * @device:	DRBD device.
1461  *
1462  * Called from process context only (admin command and after_state_ch).
1463  */
1464 static int _drbd_pause_after(struct drbd_device *device)
1465 {
1466 	struct drbd_device *odev;
1467 	int i, rv = 0;
1468 
1469 	rcu_read_lock();
1470 	idr_for_each_entry(&drbd_devices, odev, i) {
1471 		if (odev->state.conn == C_STANDALONE && odev->state.disk == D_DISKLESS)
1472 			continue;
1473 		if (!_drbd_may_sync_now(odev))
1474 			rv |= (__drbd_set_state(_NS(odev, aftr_isp, 1), CS_HARD, NULL)
1475 			       != SS_NOTHING_TO_DO);
1476 	}
1477 	rcu_read_unlock();
1478 
1479 	return rv;
1480 }
1481 
1482 /**
1483  * _drbd_resume_next() - Resume resync on all devices that may resync now
1484  * @device:	DRBD device.
1485  *
1486  * Called from process context only (admin command and worker).
1487  */
1488 static int _drbd_resume_next(struct drbd_device *device)
1489 {
1490 	struct drbd_device *odev;
1491 	int i, rv = 0;
1492 
1493 	rcu_read_lock();
1494 	idr_for_each_entry(&drbd_devices, odev, i) {
1495 		if (odev->state.conn == C_STANDALONE && odev->state.disk == D_DISKLESS)
1496 			continue;
1497 		if (odev->state.aftr_isp) {
1498 			if (_drbd_may_sync_now(odev))
1499 				rv |= (__drbd_set_state(_NS(odev, aftr_isp, 0),
1500 							CS_HARD, NULL)
1501 				       != SS_NOTHING_TO_DO) ;
1502 		}
1503 	}
1504 	rcu_read_unlock();
1505 	return rv;
1506 }
1507 
1508 void resume_next_sg(struct drbd_device *device)
1509 {
1510 	write_lock_irq(&global_state_lock);
1511 	_drbd_resume_next(device);
1512 	write_unlock_irq(&global_state_lock);
1513 }
1514 
1515 void suspend_other_sg(struct drbd_device *device)
1516 {
1517 	write_lock_irq(&global_state_lock);
1518 	_drbd_pause_after(device);
1519 	write_unlock_irq(&global_state_lock);
1520 }
1521 
1522 /* caller must hold global_state_lock */
1523 enum drbd_ret_code drbd_resync_after_valid(struct drbd_device *device, int o_minor)
1524 {
1525 	struct drbd_device *odev;
1526 	int resync_after;
1527 
1528 	if (o_minor == -1)
1529 		return NO_ERROR;
1530 	if (o_minor < -1 || o_minor > MINORMASK)
1531 		return ERR_RESYNC_AFTER;
1532 
1533 	/* check for loops */
1534 	odev = minor_to_device(o_minor);
1535 	while (1) {
1536 		if (odev == device)
1537 			return ERR_RESYNC_AFTER_CYCLE;
1538 
1539 		/* You are free to depend on diskless, non-existing,
1540 		 * or not yet/no longer existing minors.
1541 		 * We only reject dependency loops.
1542 		 * We cannot follow the dependency chain beyond a detached or
1543 		 * missing minor.
1544 		 */
1545 		if (!odev || !odev->ldev || odev->state.disk == D_DISKLESS)
1546 			return NO_ERROR;
1547 
1548 		rcu_read_lock();
1549 		resync_after = rcu_dereference(odev->ldev->disk_conf)->resync_after;
1550 		rcu_read_unlock();
1551 		/* dependency chain ends here, no cycles. */
1552 		if (resync_after == -1)
1553 			return NO_ERROR;
1554 
1555 		/* follow the dependency chain */
1556 		odev = minor_to_device(resync_after);
1557 	}
1558 }
1559 
1560 /* caller must hold global_state_lock */
1561 void drbd_resync_after_changed(struct drbd_device *device)
1562 {
1563 	int changes;
1564 
1565 	do {
1566 		changes  = _drbd_pause_after(device);
1567 		changes |= _drbd_resume_next(device);
1568 	} while (changes);
1569 }
1570 
1571 void drbd_rs_controller_reset(struct drbd_device *device)
1572 {
1573 	struct gendisk *disk = device->ldev->backing_bdev->bd_contains->bd_disk;
1574 	struct fifo_buffer *plan;
1575 
1576 	atomic_set(&device->rs_sect_in, 0);
1577 	atomic_set(&device->rs_sect_ev, 0);
1578 	device->rs_in_flight = 0;
1579 	device->rs_last_events =
1580 		(int)part_stat_read(&disk->part0, sectors[0]) +
1581 		(int)part_stat_read(&disk->part0, sectors[1]);
1582 
1583 	/* Updating the RCU protected object in place is necessary since
1584 	   this function gets called from atomic context.
1585 	   It is valid since all other updates also lead to an completely
1586 	   empty fifo */
1587 	rcu_read_lock();
1588 	plan = rcu_dereference(device->rs_plan_s);
1589 	plan->total = 0;
1590 	fifo_set(plan, 0);
1591 	rcu_read_unlock();
1592 }
1593 
1594 void start_resync_timer_fn(unsigned long data)
1595 {
1596 	struct drbd_device *device = (struct drbd_device *) data;
1597 	drbd_device_post_work(device, RS_START);
1598 }
1599 
1600 static void do_start_resync(struct drbd_device *device)
1601 {
1602 	if (atomic_read(&device->unacked_cnt) || atomic_read(&device->rs_pending_cnt)) {
1603 		drbd_warn(device, "postponing start_resync ...\n");
1604 		device->start_resync_timer.expires = jiffies + HZ/10;
1605 		add_timer(&device->start_resync_timer);
1606 		return;
1607 	}
1608 
1609 	drbd_start_resync(device, C_SYNC_SOURCE);
1610 	clear_bit(AHEAD_TO_SYNC_SOURCE, &device->flags);
1611 }
1612 
1613 static bool use_checksum_based_resync(struct drbd_connection *connection, struct drbd_device *device)
1614 {
1615 	bool csums_after_crash_only;
1616 	rcu_read_lock();
1617 	csums_after_crash_only = rcu_dereference(connection->net_conf)->csums_after_crash_only;
1618 	rcu_read_unlock();
1619 	return connection->agreed_pro_version >= 89 &&		/* supported? */
1620 		connection->csums_tfm &&			/* configured? */
1621 		(csums_after_crash_only == 0			/* use for each resync? */
1622 		 || test_bit(CRASHED_PRIMARY, &device->flags));	/* or only after Primary crash? */
1623 }
1624 
1625 /**
1626  * drbd_start_resync() - Start the resync process
1627  * @device:	DRBD device.
1628  * @side:	Either C_SYNC_SOURCE or C_SYNC_TARGET
1629  *
1630  * This function might bring you directly into one of the
1631  * C_PAUSED_SYNC_* states.
1632  */
1633 void drbd_start_resync(struct drbd_device *device, enum drbd_conns side)
1634 {
1635 	struct drbd_peer_device *peer_device = first_peer_device(device);
1636 	struct drbd_connection *connection = peer_device ? peer_device->connection : NULL;
1637 	union drbd_state ns;
1638 	int r;
1639 
1640 	if (device->state.conn >= C_SYNC_SOURCE && device->state.conn < C_AHEAD) {
1641 		drbd_err(device, "Resync already running!\n");
1642 		return;
1643 	}
1644 
1645 	if (!test_bit(B_RS_H_DONE, &device->flags)) {
1646 		if (side == C_SYNC_TARGET) {
1647 			/* Since application IO was locked out during C_WF_BITMAP_T and
1648 			   C_WF_SYNC_UUID we are still unmodified. Before going to C_SYNC_TARGET
1649 			   we check that we might make the data inconsistent. */
1650 			r = drbd_khelper(device, "before-resync-target");
1651 			r = (r >> 8) & 0xff;
1652 			if (r > 0) {
1653 				drbd_info(device, "before-resync-target handler returned %d, "
1654 					 "dropping connection.\n", r);
1655 				conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
1656 				return;
1657 			}
1658 		} else /* C_SYNC_SOURCE */ {
1659 			r = drbd_khelper(device, "before-resync-source");
1660 			r = (r >> 8) & 0xff;
1661 			if (r > 0) {
1662 				if (r == 3) {
1663 					drbd_info(device, "before-resync-source handler returned %d, "
1664 						 "ignoring. Old userland tools?", r);
1665 				} else {
1666 					drbd_info(device, "before-resync-source handler returned %d, "
1667 						 "dropping connection.\n", r);
1668 					conn_request_state(connection,
1669 							   NS(conn, C_DISCONNECTING), CS_HARD);
1670 					return;
1671 				}
1672 			}
1673 		}
1674 	}
1675 
1676 	if (current == connection->worker.task) {
1677 		/* The worker should not sleep waiting for state_mutex,
1678 		   that can take long */
1679 		if (!mutex_trylock(device->state_mutex)) {
1680 			set_bit(B_RS_H_DONE, &device->flags);
1681 			device->start_resync_timer.expires = jiffies + HZ/5;
1682 			add_timer(&device->start_resync_timer);
1683 			return;
1684 		}
1685 	} else {
1686 		mutex_lock(device->state_mutex);
1687 	}
1688 	clear_bit(B_RS_H_DONE, &device->flags);
1689 
1690 	/* req_lock: serialize with drbd_send_and_submit() and others
1691 	 * global_state_lock: for stable sync-after dependencies */
1692 	spin_lock_irq(&device->resource->req_lock);
1693 	write_lock(&global_state_lock);
1694 	/* Did some connection breakage or IO error race with us? */
1695 	if (device->state.conn < C_CONNECTED
1696 	|| !get_ldev_if_state(device, D_NEGOTIATING)) {
1697 		write_unlock(&global_state_lock);
1698 		spin_unlock_irq(&device->resource->req_lock);
1699 		mutex_unlock(device->state_mutex);
1700 		return;
1701 	}
1702 
1703 	ns = drbd_read_state(device);
1704 
1705 	ns.aftr_isp = !_drbd_may_sync_now(device);
1706 
1707 	ns.conn = side;
1708 
1709 	if (side == C_SYNC_TARGET)
1710 		ns.disk = D_INCONSISTENT;
1711 	else /* side == C_SYNC_SOURCE */
1712 		ns.pdsk = D_INCONSISTENT;
1713 
1714 	r = __drbd_set_state(device, ns, CS_VERBOSE, NULL);
1715 	ns = drbd_read_state(device);
1716 
1717 	if (ns.conn < C_CONNECTED)
1718 		r = SS_UNKNOWN_ERROR;
1719 
1720 	if (r == SS_SUCCESS) {
1721 		unsigned long tw = drbd_bm_total_weight(device);
1722 		unsigned long now = jiffies;
1723 		int i;
1724 
1725 		device->rs_failed    = 0;
1726 		device->rs_paused    = 0;
1727 		device->rs_same_csum = 0;
1728 		device->rs_last_sect_ev = 0;
1729 		device->rs_total     = tw;
1730 		device->rs_start     = now;
1731 		for (i = 0; i < DRBD_SYNC_MARKS; i++) {
1732 			device->rs_mark_left[i] = tw;
1733 			device->rs_mark_time[i] = now;
1734 		}
1735 		_drbd_pause_after(device);
1736 		/* Forget potentially stale cached per resync extent bit-counts.
1737 		 * Open coded drbd_rs_cancel_all(device), we already have IRQs
1738 		 * disabled, and know the disk state is ok. */
1739 		spin_lock(&device->al_lock);
1740 		lc_reset(device->resync);
1741 		device->resync_locked = 0;
1742 		device->resync_wenr = LC_FREE;
1743 		spin_unlock(&device->al_lock);
1744 	}
1745 	write_unlock(&global_state_lock);
1746 	spin_unlock_irq(&device->resource->req_lock);
1747 
1748 	if (r == SS_SUCCESS) {
1749 		wake_up(&device->al_wait); /* for lc_reset() above */
1750 		/* reset rs_last_bcast when a resync or verify is started,
1751 		 * to deal with potential jiffies wrap. */
1752 		device->rs_last_bcast = jiffies - HZ;
1753 
1754 		drbd_info(device, "Began resync as %s (will sync %lu KB [%lu bits set]).\n",
1755 		     drbd_conn_str(ns.conn),
1756 		     (unsigned long) device->rs_total << (BM_BLOCK_SHIFT-10),
1757 		     (unsigned long) device->rs_total);
1758 		if (side == C_SYNC_TARGET) {
1759 			device->bm_resync_fo = 0;
1760 			device->use_csums = use_checksum_based_resync(connection, device);
1761 		} else {
1762 			device->use_csums = 0;
1763 		}
1764 
1765 		/* Since protocol 96, we must serialize drbd_gen_and_send_sync_uuid
1766 		 * with w_send_oos, or the sync target will get confused as to
1767 		 * how much bits to resync.  We cannot do that always, because for an
1768 		 * empty resync and protocol < 95, we need to do it here, as we call
1769 		 * drbd_resync_finished from here in that case.
1770 		 * We drbd_gen_and_send_sync_uuid here for protocol < 96,
1771 		 * and from after_state_ch otherwise. */
1772 		if (side == C_SYNC_SOURCE && connection->agreed_pro_version < 96)
1773 			drbd_gen_and_send_sync_uuid(peer_device);
1774 
1775 		if (connection->agreed_pro_version < 95 && device->rs_total == 0) {
1776 			/* This still has a race (about when exactly the peers
1777 			 * detect connection loss) that can lead to a full sync
1778 			 * on next handshake. In 8.3.9 we fixed this with explicit
1779 			 * resync-finished notifications, but the fix
1780 			 * introduces a protocol change.  Sleeping for some
1781 			 * time longer than the ping interval + timeout on the
1782 			 * SyncSource, to give the SyncTarget the chance to
1783 			 * detect connection loss, then waiting for a ping
1784 			 * response (implicit in drbd_resync_finished) reduces
1785 			 * the race considerably, but does not solve it. */
1786 			if (side == C_SYNC_SOURCE) {
1787 				struct net_conf *nc;
1788 				int timeo;
1789 
1790 				rcu_read_lock();
1791 				nc = rcu_dereference(connection->net_conf);
1792 				timeo = nc->ping_int * HZ + nc->ping_timeo * HZ / 9;
1793 				rcu_read_unlock();
1794 				schedule_timeout_interruptible(timeo);
1795 			}
1796 			drbd_resync_finished(device);
1797 		}
1798 
1799 		drbd_rs_controller_reset(device);
1800 		/* ns.conn may already be != device->state.conn,
1801 		 * we may have been paused in between, or become paused until
1802 		 * the timer triggers.
1803 		 * No matter, that is handled in resync_timer_fn() */
1804 		if (ns.conn == C_SYNC_TARGET)
1805 			mod_timer(&device->resync_timer, jiffies);
1806 
1807 		drbd_md_sync(device);
1808 	}
1809 	put_ldev(device);
1810 	mutex_unlock(device->state_mutex);
1811 }
1812 
1813 static void update_on_disk_bitmap(struct drbd_device *device, bool resync_done)
1814 {
1815 	struct sib_info sib = { .sib_reason = SIB_SYNC_PROGRESS, };
1816 	device->rs_last_bcast = jiffies;
1817 
1818 	if (!get_ldev(device))
1819 		return;
1820 
1821 	drbd_bm_write_lazy(device, 0);
1822 	if (resync_done && is_sync_state(device->state.conn))
1823 		drbd_resync_finished(device);
1824 
1825 	drbd_bcast_event(device, &sib);
1826 	/* update timestamp, in case it took a while to write out stuff */
1827 	device->rs_last_bcast = jiffies;
1828 	put_ldev(device);
1829 }
1830 
1831 static void drbd_ldev_destroy(struct drbd_device *device)
1832 {
1833 	lc_destroy(device->resync);
1834 	device->resync = NULL;
1835 	lc_destroy(device->act_log);
1836 	device->act_log = NULL;
1837 
1838 	__acquire(local);
1839 	drbd_free_ldev(device->ldev);
1840 	device->ldev = NULL;
1841 	__release(local);
1842 
1843 	clear_bit(GOING_DISKLESS, &device->flags);
1844 	wake_up(&device->misc_wait);
1845 }
1846 
1847 static void go_diskless(struct drbd_device *device)
1848 {
1849 	D_ASSERT(device, device->state.disk == D_FAILED);
1850 	/* we cannot assert local_cnt == 0 here, as get_ldev_if_state will
1851 	 * inc/dec it frequently. Once we are D_DISKLESS, no one will touch
1852 	 * the protected members anymore, though, so once put_ldev reaches zero
1853 	 * again, it will be safe to free them. */
1854 
1855 	/* Try to write changed bitmap pages, read errors may have just
1856 	 * set some bits outside the area covered by the activity log.
1857 	 *
1858 	 * If we have an IO error during the bitmap writeout,
1859 	 * we will want a full sync next time, just in case.
1860 	 * (Do we want a specific meta data flag for this?)
1861 	 *
1862 	 * If that does not make it to stable storage either,
1863 	 * we cannot do anything about that anymore.
1864 	 *
1865 	 * We still need to check if both bitmap and ldev are present, we may
1866 	 * end up here after a failed attach, before ldev was even assigned.
1867 	 */
1868 	if (device->bitmap && device->ldev) {
1869 		/* An interrupted resync or similar is allowed to recounts bits
1870 		 * while we detach.
1871 		 * Any modifications would not be expected anymore, though.
1872 		 */
1873 		if (drbd_bitmap_io_from_worker(device, drbd_bm_write,
1874 					"detach", BM_LOCKED_TEST_ALLOWED)) {
1875 			if (test_bit(WAS_READ_ERROR, &device->flags)) {
1876 				drbd_md_set_flag(device, MDF_FULL_SYNC);
1877 				drbd_md_sync(device);
1878 			}
1879 		}
1880 	}
1881 
1882 	drbd_force_state(device, NS(disk, D_DISKLESS));
1883 }
1884 
1885 static int do_md_sync(struct drbd_device *device)
1886 {
1887 	drbd_warn(device, "md_sync_timer expired! Worker calls drbd_md_sync().\n");
1888 	drbd_md_sync(device);
1889 	return 0;
1890 }
1891 
1892 /* only called from drbd_worker thread, no locking */
1893 void __update_timing_details(
1894 		struct drbd_thread_timing_details *tdp,
1895 		unsigned int *cb_nr,
1896 		void *cb,
1897 		const char *fn, const unsigned int line)
1898 {
1899 	unsigned int i = *cb_nr % DRBD_THREAD_DETAILS_HIST;
1900 	struct drbd_thread_timing_details *td = tdp + i;
1901 
1902 	td->start_jif = jiffies;
1903 	td->cb_addr = cb;
1904 	td->caller_fn = fn;
1905 	td->line = line;
1906 	td->cb_nr = *cb_nr;
1907 
1908 	i = (i+1) % DRBD_THREAD_DETAILS_HIST;
1909 	td = tdp + i;
1910 	memset(td, 0, sizeof(*td));
1911 
1912 	++(*cb_nr);
1913 }
1914 
1915 static void do_device_work(struct drbd_device *device, const unsigned long todo)
1916 {
1917 	if (test_bit(MD_SYNC, &todo))
1918 		do_md_sync(device);
1919 	if (test_bit(RS_DONE, &todo) ||
1920 	    test_bit(RS_PROGRESS, &todo))
1921 		update_on_disk_bitmap(device, test_bit(RS_DONE, &todo));
1922 	if (test_bit(GO_DISKLESS, &todo))
1923 		go_diskless(device);
1924 	if (test_bit(DESTROY_DISK, &todo))
1925 		drbd_ldev_destroy(device);
1926 	if (test_bit(RS_START, &todo))
1927 		do_start_resync(device);
1928 }
1929 
1930 #define DRBD_DEVICE_WORK_MASK	\
1931 	((1UL << GO_DISKLESS)	\
1932 	|(1UL << DESTROY_DISK)	\
1933 	|(1UL << MD_SYNC)	\
1934 	|(1UL << RS_START)	\
1935 	|(1UL << RS_PROGRESS)	\
1936 	|(1UL << RS_DONE)	\
1937 	)
1938 
1939 static unsigned long get_work_bits(unsigned long *flags)
1940 {
1941 	unsigned long old, new;
1942 	do {
1943 		old = *flags;
1944 		new = old & ~DRBD_DEVICE_WORK_MASK;
1945 	} while (cmpxchg(flags, old, new) != old);
1946 	return old & DRBD_DEVICE_WORK_MASK;
1947 }
1948 
1949 static void do_unqueued_work(struct drbd_connection *connection)
1950 {
1951 	struct drbd_peer_device *peer_device;
1952 	int vnr;
1953 
1954 	rcu_read_lock();
1955 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
1956 		struct drbd_device *device = peer_device->device;
1957 		unsigned long todo = get_work_bits(&device->flags);
1958 		if (!todo)
1959 			continue;
1960 
1961 		kref_get(&device->kref);
1962 		rcu_read_unlock();
1963 		do_device_work(device, todo);
1964 		kref_put(&device->kref, drbd_destroy_device);
1965 		rcu_read_lock();
1966 	}
1967 	rcu_read_unlock();
1968 }
1969 
1970 static bool dequeue_work_batch(struct drbd_work_queue *queue, struct list_head *work_list)
1971 {
1972 	spin_lock_irq(&queue->q_lock);
1973 	list_splice_tail_init(&queue->q, work_list);
1974 	spin_unlock_irq(&queue->q_lock);
1975 	return !list_empty(work_list);
1976 }
1977 
1978 static void wait_for_work(struct drbd_connection *connection, struct list_head *work_list)
1979 {
1980 	DEFINE_WAIT(wait);
1981 	struct net_conf *nc;
1982 	int uncork, cork;
1983 
1984 	dequeue_work_batch(&connection->sender_work, work_list);
1985 	if (!list_empty(work_list))
1986 		return;
1987 
1988 	/* Still nothing to do?
1989 	 * Maybe we still need to close the current epoch,
1990 	 * even if no new requests are queued yet.
1991 	 *
1992 	 * Also, poke TCP, just in case.
1993 	 * Then wait for new work (or signal). */
1994 	rcu_read_lock();
1995 	nc = rcu_dereference(connection->net_conf);
1996 	uncork = nc ? nc->tcp_cork : 0;
1997 	rcu_read_unlock();
1998 	if (uncork) {
1999 		mutex_lock(&connection->data.mutex);
2000 		if (connection->data.socket)
2001 			drbd_tcp_uncork(connection->data.socket);
2002 		mutex_unlock(&connection->data.mutex);
2003 	}
2004 
2005 	for (;;) {
2006 		int send_barrier;
2007 		prepare_to_wait(&connection->sender_work.q_wait, &wait, TASK_INTERRUPTIBLE);
2008 		spin_lock_irq(&connection->resource->req_lock);
2009 		spin_lock(&connection->sender_work.q_lock);	/* FIXME get rid of this one? */
2010 		if (!list_empty(&connection->sender_work.q))
2011 			list_splice_tail_init(&connection->sender_work.q, work_list);
2012 		spin_unlock(&connection->sender_work.q_lock);	/* FIXME get rid of this one? */
2013 		if (!list_empty(work_list) || signal_pending(current)) {
2014 			spin_unlock_irq(&connection->resource->req_lock);
2015 			break;
2016 		}
2017 
2018 		/* We found nothing new to do, no to-be-communicated request,
2019 		 * no other work item.  We may still need to close the last
2020 		 * epoch.  Next incoming request epoch will be connection ->
2021 		 * current transfer log epoch number.  If that is different
2022 		 * from the epoch of the last request we communicated, it is
2023 		 * safe to send the epoch separating barrier now.
2024 		 */
2025 		send_barrier =
2026 			atomic_read(&connection->current_tle_nr) !=
2027 			connection->send.current_epoch_nr;
2028 		spin_unlock_irq(&connection->resource->req_lock);
2029 
2030 		if (send_barrier)
2031 			maybe_send_barrier(connection,
2032 					connection->send.current_epoch_nr + 1);
2033 
2034 		if (test_bit(DEVICE_WORK_PENDING, &connection->flags))
2035 			break;
2036 
2037 		/* drbd_send() may have called flush_signals() */
2038 		if (get_t_state(&connection->worker) != RUNNING)
2039 			break;
2040 
2041 		schedule();
2042 		/* may be woken up for other things but new work, too,
2043 		 * e.g. if the current epoch got closed.
2044 		 * In which case we send the barrier above. */
2045 	}
2046 	finish_wait(&connection->sender_work.q_wait, &wait);
2047 
2048 	/* someone may have changed the config while we have been waiting above. */
2049 	rcu_read_lock();
2050 	nc = rcu_dereference(connection->net_conf);
2051 	cork = nc ? nc->tcp_cork : 0;
2052 	rcu_read_unlock();
2053 	mutex_lock(&connection->data.mutex);
2054 	if (connection->data.socket) {
2055 		if (cork)
2056 			drbd_tcp_cork(connection->data.socket);
2057 		else if (!uncork)
2058 			drbd_tcp_uncork(connection->data.socket);
2059 	}
2060 	mutex_unlock(&connection->data.mutex);
2061 }
2062 
2063 int drbd_worker(struct drbd_thread *thi)
2064 {
2065 	struct drbd_connection *connection = thi->connection;
2066 	struct drbd_work *w = NULL;
2067 	struct drbd_peer_device *peer_device;
2068 	LIST_HEAD(work_list);
2069 	int vnr;
2070 
2071 	while (get_t_state(thi) == RUNNING) {
2072 		drbd_thread_current_set_cpu(thi);
2073 
2074 		if (list_empty(&work_list)) {
2075 			update_worker_timing_details(connection, wait_for_work);
2076 			wait_for_work(connection, &work_list);
2077 		}
2078 
2079 		if (test_and_clear_bit(DEVICE_WORK_PENDING, &connection->flags)) {
2080 			update_worker_timing_details(connection, do_unqueued_work);
2081 			do_unqueued_work(connection);
2082 		}
2083 
2084 		if (signal_pending(current)) {
2085 			flush_signals(current);
2086 			if (get_t_state(thi) == RUNNING) {
2087 				drbd_warn(connection, "Worker got an unexpected signal\n");
2088 				continue;
2089 			}
2090 			break;
2091 		}
2092 
2093 		if (get_t_state(thi) != RUNNING)
2094 			break;
2095 
2096 		if (!list_empty(&work_list)) {
2097 			w = list_first_entry(&work_list, struct drbd_work, list);
2098 			list_del_init(&w->list);
2099 			update_worker_timing_details(connection, w->cb);
2100 			if (w->cb(w, connection->cstate < C_WF_REPORT_PARAMS) == 0)
2101 				continue;
2102 			if (connection->cstate >= C_WF_REPORT_PARAMS)
2103 				conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD);
2104 		}
2105 	}
2106 
2107 	do {
2108 		if (test_and_clear_bit(DEVICE_WORK_PENDING, &connection->flags)) {
2109 			update_worker_timing_details(connection, do_unqueued_work);
2110 			do_unqueued_work(connection);
2111 		}
2112 		if (!list_empty(&work_list)) {
2113 			w = list_first_entry(&work_list, struct drbd_work, list);
2114 			list_del_init(&w->list);
2115 			update_worker_timing_details(connection, w->cb);
2116 			w->cb(w, 1);
2117 		} else
2118 			dequeue_work_batch(&connection->sender_work, &work_list);
2119 	} while (!list_empty(&work_list) || test_bit(DEVICE_WORK_PENDING, &connection->flags));
2120 
2121 	rcu_read_lock();
2122 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
2123 		struct drbd_device *device = peer_device->device;
2124 		D_ASSERT(device, device->state.disk == D_DISKLESS && device->state.conn == C_STANDALONE);
2125 		kref_get(&device->kref);
2126 		rcu_read_unlock();
2127 		drbd_device_cleanup(device);
2128 		kref_put(&device->kref, drbd_destroy_device);
2129 		rcu_read_lock();
2130 	}
2131 	rcu_read_unlock();
2132 
2133 	return 0;
2134 }
2135