1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 drbd_worker.c 4 5 This file is part of DRBD by Philipp Reisner and Lars Ellenberg. 6 7 Copyright (C) 2001-2008, LINBIT Information Technologies GmbH. 8 Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>. 9 Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>. 10 11 12 */ 13 14 #include <linux/module.h> 15 #include <linux/drbd.h> 16 #include <linux/sched/signal.h> 17 #include <linux/wait.h> 18 #include <linux/mm.h> 19 #include <linux/memcontrol.h> 20 #include <linux/mm_inline.h> 21 #include <linux/slab.h> 22 #include <linux/random.h> 23 #include <linux/string.h> 24 #include <linux/scatterlist.h> 25 #include <linux/part_stat.h> 26 27 #include "drbd_int.h" 28 #include "drbd_protocol.h" 29 #include "drbd_req.h" 30 31 static int make_ov_request(struct drbd_device *, int); 32 static int make_resync_request(struct drbd_device *, int); 33 34 /* endio handlers: 35 * drbd_md_endio (defined here) 36 * drbd_request_endio (defined here) 37 * drbd_peer_request_endio (defined here) 38 * drbd_bm_endio (defined in drbd_bitmap.c) 39 * 40 * For all these callbacks, note the following: 41 * The callbacks will be called in irq context by the IDE drivers, 42 * and in Softirqs/Tasklets/BH context by the SCSI drivers. 43 * Try to get the locking right :) 44 * 45 */ 46 47 /* used for synchronous meta data and bitmap IO 48 * submitted by drbd_md_sync_page_io() 49 */ 50 void drbd_md_endio(struct bio *bio) 51 { 52 struct drbd_device *device; 53 54 device = bio->bi_private; 55 device->md_io.error = blk_status_to_errno(bio->bi_status); 56 57 /* special case: drbd_md_read() during drbd_adm_attach() */ 58 if (device->ldev) 59 put_ldev(device); 60 bio_put(bio); 61 62 /* We grabbed an extra reference in _drbd_md_sync_page_io() to be able 63 * to timeout on the lower level device, and eventually detach from it. 64 * If this io completion runs after that timeout expired, this 65 * drbd_md_put_buffer() may allow us to finally try and re-attach. 66 * During normal operation, this only puts that extra reference 67 * down to 1 again. 68 * Make sure we first drop the reference, and only then signal 69 * completion, or we may (in drbd_al_read_log()) cycle so fast into the 70 * next drbd_md_sync_page_io(), that we trigger the 71 * ASSERT(atomic_read(&device->md_io_in_use) == 1) there. 72 */ 73 drbd_md_put_buffer(device); 74 device->md_io.done = 1; 75 wake_up(&device->misc_wait); 76 } 77 78 /* reads on behalf of the partner, 79 * "submitted" by the receiver 80 */ 81 static void drbd_endio_read_sec_final(struct drbd_peer_request *peer_req) __releases(local) 82 { 83 unsigned long flags = 0; 84 struct drbd_peer_device *peer_device = peer_req->peer_device; 85 struct drbd_device *device = peer_device->device; 86 87 spin_lock_irqsave(&device->resource->req_lock, flags); 88 device->read_cnt += peer_req->i.size >> 9; 89 list_del(&peer_req->w.list); 90 if (list_empty(&device->read_ee)) 91 wake_up(&device->ee_wait); 92 if (test_bit(__EE_WAS_ERROR, &peer_req->flags)) 93 __drbd_chk_io_error(device, DRBD_READ_ERROR); 94 spin_unlock_irqrestore(&device->resource->req_lock, flags); 95 96 drbd_queue_work(&peer_device->connection->sender_work, &peer_req->w); 97 put_ldev(device); 98 } 99 100 /* writes on behalf of the partner, or resync writes, 101 * "submitted" by the receiver, final stage. */ 102 void drbd_endio_write_sec_final(struct drbd_peer_request *peer_req) __releases(local) 103 { 104 unsigned long flags = 0; 105 struct drbd_peer_device *peer_device = peer_req->peer_device; 106 struct drbd_device *device = peer_device->device; 107 struct drbd_connection *connection = peer_device->connection; 108 struct drbd_interval i; 109 int do_wake; 110 u64 block_id; 111 int do_al_complete_io; 112 113 /* after we moved peer_req to done_ee, 114 * we may no longer access it, 115 * it may be freed/reused already! 116 * (as soon as we release the req_lock) */ 117 i = peer_req->i; 118 do_al_complete_io = peer_req->flags & EE_CALL_AL_COMPLETE_IO; 119 block_id = peer_req->block_id; 120 peer_req->flags &= ~EE_CALL_AL_COMPLETE_IO; 121 122 if (peer_req->flags & EE_WAS_ERROR) { 123 /* In protocol != C, we usually do not send write acks. 124 * In case of a write error, send the neg ack anyways. */ 125 if (!__test_and_set_bit(__EE_SEND_WRITE_ACK, &peer_req->flags)) 126 inc_unacked(device); 127 drbd_set_out_of_sync(device, peer_req->i.sector, peer_req->i.size); 128 } 129 130 spin_lock_irqsave(&device->resource->req_lock, flags); 131 device->writ_cnt += peer_req->i.size >> 9; 132 list_move_tail(&peer_req->w.list, &device->done_ee); 133 134 /* 135 * Do not remove from the write_requests tree here: we did not send the 136 * Ack yet and did not wake possibly waiting conflicting requests. 137 * Removed from the tree from "drbd_process_done_ee" within the 138 * appropriate dw.cb (e_end_block/e_end_resync_block) or from 139 * _drbd_clear_done_ee. 140 */ 141 142 do_wake = list_empty(block_id == ID_SYNCER ? &device->sync_ee : &device->active_ee); 143 144 /* FIXME do we want to detach for failed REQ_OP_DISCARD? 145 * ((peer_req->flags & (EE_WAS_ERROR|EE_TRIM)) == EE_WAS_ERROR) */ 146 if (peer_req->flags & EE_WAS_ERROR) 147 __drbd_chk_io_error(device, DRBD_WRITE_ERROR); 148 149 if (connection->cstate >= C_WF_REPORT_PARAMS) { 150 kref_get(&device->kref); /* put is in drbd_send_acks_wf() */ 151 if (!queue_work(connection->ack_sender, &peer_device->send_acks_work)) 152 kref_put(&device->kref, drbd_destroy_device); 153 } 154 spin_unlock_irqrestore(&device->resource->req_lock, flags); 155 156 if (block_id == ID_SYNCER) 157 drbd_rs_complete_io(device, i.sector); 158 159 if (do_wake) 160 wake_up(&device->ee_wait); 161 162 if (do_al_complete_io) 163 drbd_al_complete_io(device, &i); 164 165 put_ldev(device); 166 } 167 168 /* writes on behalf of the partner, or resync writes, 169 * "submitted" by the receiver. 170 */ 171 void drbd_peer_request_endio(struct bio *bio) 172 { 173 struct drbd_peer_request *peer_req = bio->bi_private; 174 struct drbd_device *device = peer_req->peer_device->device; 175 bool is_write = bio_data_dir(bio) == WRITE; 176 bool is_discard = bio_op(bio) == REQ_OP_WRITE_ZEROES || 177 bio_op(bio) == REQ_OP_DISCARD; 178 179 if (bio->bi_status && __ratelimit(&drbd_ratelimit_state)) 180 drbd_warn(device, "%s: error=%d s=%llus\n", 181 is_write ? (is_discard ? "discard" : "write") 182 : "read", bio->bi_status, 183 (unsigned long long)peer_req->i.sector); 184 185 if (bio->bi_status) 186 set_bit(__EE_WAS_ERROR, &peer_req->flags); 187 188 bio_put(bio); /* no need for the bio anymore */ 189 if (atomic_dec_and_test(&peer_req->pending_bios)) { 190 if (is_write) 191 drbd_endio_write_sec_final(peer_req); 192 else 193 drbd_endio_read_sec_final(peer_req); 194 } 195 } 196 197 static void 198 drbd_panic_after_delayed_completion_of_aborted_request(struct drbd_device *device) 199 { 200 panic("drbd%u %s/%u potential random memory corruption caused by delayed completion of aborted local request\n", 201 device->minor, device->resource->name, device->vnr); 202 } 203 204 /* read, readA or write requests on R_PRIMARY coming from drbd_make_request 205 */ 206 void drbd_request_endio(struct bio *bio) 207 { 208 unsigned long flags; 209 struct drbd_request *req = bio->bi_private; 210 struct drbd_device *device = req->device; 211 struct bio_and_error m; 212 enum drbd_req_event what; 213 214 /* If this request was aborted locally before, 215 * but now was completed "successfully", 216 * chances are that this caused arbitrary data corruption. 217 * 218 * "aborting" requests, or force-detaching the disk, is intended for 219 * completely blocked/hung local backing devices which do no longer 220 * complete requests at all, not even do error completions. In this 221 * situation, usually a hard-reset and failover is the only way out. 222 * 223 * By "aborting", basically faking a local error-completion, 224 * we allow for a more graceful swichover by cleanly migrating services. 225 * Still the affected node has to be rebooted "soon". 226 * 227 * By completing these requests, we allow the upper layers to re-use 228 * the associated data pages. 229 * 230 * If later the local backing device "recovers", and now DMAs some data 231 * from disk into the original request pages, in the best case it will 232 * just put random data into unused pages; but typically it will corrupt 233 * meanwhile completely unrelated data, causing all sorts of damage. 234 * 235 * Which means delayed successful completion, 236 * especially for READ requests, 237 * is a reason to panic(). 238 * 239 * We assume that a delayed *error* completion is OK, 240 * though we still will complain noisily about it. 241 */ 242 if (unlikely(req->rq_state & RQ_LOCAL_ABORTED)) { 243 if (__ratelimit(&drbd_ratelimit_state)) 244 drbd_emerg(device, "delayed completion of aborted local request; disk-timeout may be too aggressive\n"); 245 246 if (!bio->bi_status) 247 drbd_panic_after_delayed_completion_of_aborted_request(device); 248 } 249 250 /* to avoid recursion in __req_mod */ 251 if (unlikely(bio->bi_status)) { 252 switch (bio_op(bio)) { 253 case REQ_OP_WRITE_ZEROES: 254 case REQ_OP_DISCARD: 255 if (bio->bi_status == BLK_STS_NOTSUPP) 256 what = DISCARD_COMPLETED_NOTSUPP; 257 else 258 what = DISCARD_COMPLETED_WITH_ERROR; 259 break; 260 case REQ_OP_READ: 261 if (bio->bi_opf & REQ_RAHEAD) 262 what = READ_AHEAD_COMPLETED_WITH_ERROR; 263 else 264 what = READ_COMPLETED_WITH_ERROR; 265 break; 266 default: 267 what = WRITE_COMPLETED_WITH_ERROR; 268 break; 269 } 270 } else { 271 what = COMPLETED_OK; 272 } 273 274 req->private_bio = ERR_PTR(blk_status_to_errno(bio->bi_status)); 275 bio_put(bio); 276 277 /* not req_mod(), we need irqsave here! */ 278 spin_lock_irqsave(&device->resource->req_lock, flags); 279 __req_mod(req, what, &m); 280 spin_unlock_irqrestore(&device->resource->req_lock, flags); 281 put_ldev(device); 282 283 if (m.bio) 284 complete_master_bio(device, &m); 285 } 286 287 void drbd_csum_ee(struct crypto_shash *tfm, struct drbd_peer_request *peer_req, void *digest) 288 { 289 SHASH_DESC_ON_STACK(desc, tfm); 290 struct page *page = peer_req->pages; 291 struct page *tmp; 292 unsigned len; 293 void *src; 294 295 desc->tfm = tfm; 296 297 crypto_shash_init(desc); 298 299 src = kmap_atomic(page); 300 while ((tmp = page_chain_next(page))) { 301 /* all but the last page will be fully used */ 302 crypto_shash_update(desc, src, PAGE_SIZE); 303 kunmap_atomic(src); 304 page = tmp; 305 src = kmap_atomic(page); 306 } 307 /* and now the last, possibly only partially used page */ 308 len = peer_req->i.size & (PAGE_SIZE - 1); 309 crypto_shash_update(desc, src, len ?: PAGE_SIZE); 310 kunmap_atomic(src); 311 312 crypto_shash_final(desc, digest); 313 shash_desc_zero(desc); 314 } 315 316 void drbd_csum_bio(struct crypto_shash *tfm, struct bio *bio, void *digest) 317 { 318 SHASH_DESC_ON_STACK(desc, tfm); 319 struct bio_vec bvec; 320 struct bvec_iter iter; 321 322 desc->tfm = tfm; 323 324 crypto_shash_init(desc); 325 326 bio_for_each_segment(bvec, bio, iter) { 327 u8 *src; 328 329 src = bvec_kmap_local(&bvec); 330 crypto_shash_update(desc, src, bvec.bv_len); 331 kunmap_local(src); 332 } 333 crypto_shash_final(desc, digest); 334 shash_desc_zero(desc); 335 } 336 337 /* MAYBE merge common code with w_e_end_ov_req */ 338 static int w_e_send_csum(struct drbd_work *w, int cancel) 339 { 340 struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w); 341 struct drbd_peer_device *peer_device = peer_req->peer_device; 342 struct drbd_device *device = peer_device->device; 343 int digest_size; 344 void *digest; 345 int err = 0; 346 347 if (unlikely(cancel)) 348 goto out; 349 350 if (unlikely((peer_req->flags & EE_WAS_ERROR) != 0)) 351 goto out; 352 353 digest_size = crypto_shash_digestsize(peer_device->connection->csums_tfm); 354 digest = kmalloc(digest_size, GFP_NOIO); 355 if (digest) { 356 sector_t sector = peer_req->i.sector; 357 unsigned int size = peer_req->i.size; 358 drbd_csum_ee(peer_device->connection->csums_tfm, peer_req, digest); 359 /* Free peer_req and pages before send. 360 * In case we block on congestion, we could otherwise run into 361 * some distributed deadlock, if the other side blocks on 362 * congestion as well, because our receiver blocks in 363 * drbd_alloc_pages due to pp_in_use > max_buffers. */ 364 drbd_free_peer_req(device, peer_req); 365 peer_req = NULL; 366 inc_rs_pending(device); 367 err = drbd_send_drequest_csum(peer_device, sector, size, 368 digest, digest_size, 369 P_CSUM_RS_REQUEST); 370 kfree(digest); 371 } else { 372 drbd_err(device, "kmalloc() of digest failed.\n"); 373 err = -ENOMEM; 374 } 375 376 out: 377 if (peer_req) 378 drbd_free_peer_req(device, peer_req); 379 380 if (unlikely(err)) 381 drbd_err(device, "drbd_send_drequest(..., csum) failed\n"); 382 return err; 383 } 384 385 #define GFP_TRY (__GFP_HIGHMEM | __GFP_NOWARN) 386 387 static int read_for_csum(struct drbd_peer_device *peer_device, sector_t sector, int size) 388 { 389 struct drbd_device *device = peer_device->device; 390 struct drbd_peer_request *peer_req; 391 392 if (!get_ldev(device)) 393 return -EIO; 394 395 /* GFP_TRY, because if there is no memory available right now, this may 396 * be rescheduled for later. It is "only" background resync, after all. */ 397 peer_req = drbd_alloc_peer_req(peer_device, ID_SYNCER /* unused */, sector, 398 size, size, GFP_TRY); 399 if (!peer_req) 400 goto defer; 401 402 peer_req->w.cb = w_e_send_csum; 403 spin_lock_irq(&device->resource->req_lock); 404 list_add_tail(&peer_req->w.list, &device->read_ee); 405 spin_unlock_irq(&device->resource->req_lock); 406 407 atomic_add(size >> 9, &device->rs_sect_ev); 408 if (drbd_submit_peer_request(device, peer_req, REQ_OP_READ, 409 DRBD_FAULT_RS_RD) == 0) 410 return 0; 411 412 /* If it failed because of ENOMEM, retry should help. If it failed 413 * because bio_add_page failed (probably broken lower level driver), 414 * retry may or may not help. 415 * If it does not, you may need to force disconnect. */ 416 spin_lock_irq(&device->resource->req_lock); 417 list_del(&peer_req->w.list); 418 spin_unlock_irq(&device->resource->req_lock); 419 420 drbd_free_peer_req(device, peer_req); 421 defer: 422 put_ldev(device); 423 return -EAGAIN; 424 } 425 426 int w_resync_timer(struct drbd_work *w, int cancel) 427 { 428 struct drbd_device *device = 429 container_of(w, struct drbd_device, resync_work); 430 431 switch (device->state.conn) { 432 case C_VERIFY_S: 433 make_ov_request(device, cancel); 434 break; 435 case C_SYNC_TARGET: 436 make_resync_request(device, cancel); 437 break; 438 } 439 440 return 0; 441 } 442 443 void resync_timer_fn(struct timer_list *t) 444 { 445 struct drbd_device *device = from_timer(device, t, resync_timer); 446 447 drbd_queue_work_if_unqueued( 448 &first_peer_device(device)->connection->sender_work, 449 &device->resync_work); 450 } 451 452 static void fifo_set(struct fifo_buffer *fb, int value) 453 { 454 int i; 455 456 for (i = 0; i < fb->size; i++) 457 fb->values[i] = value; 458 } 459 460 static int fifo_push(struct fifo_buffer *fb, int value) 461 { 462 int ov; 463 464 ov = fb->values[fb->head_index]; 465 fb->values[fb->head_index++] = value; 466 467 if (fb->head_index >= fb->size) 468 fb->head_index = 0; 469 470 return ov; 471 } 472 473 static void fifo_add_val(struct fifo_buffer *fb, int value) 474 { 475 int i; 476 477 for (i = 0; i < fb->size; i++) 478 fb->values[i] += value; 479 } 480 481 struct fifo_buffer *fifo_alloc(unsigned int fifo_size) 482 { 483 struct fifo_buffer *fb; 484 485 fb = kzalloc(struct_size(fb, values, fifo_size), GFP_NOIO); 486 if (!fb) 487 return NULL; 488 489 fb->head_index = 0; 490 fb->size = fifo_size; 491 fb->total = 0; 492 493 return fb; 494 } 495 496 static int drbd_rs_controller(struct drbd_device *device, unsigned int sect_in) 497 { 498 struct disk_conf *dc; 499 unsigned int want; /* The number of sectors we want in-flight */ 500 int req_sect; /* Number of sectors to request in this turn */ 501 int correction; /* Number of sectors more we need in-flight */ 502 int cps; /* correction per invocation of drbd_rs_controller() */ 503 int steps; /* Number of time steps to plan ahead */ 504 int curr_corr; 505 int max_sect; 506 struct fifo_buffer *plan; 507 508 dc = rcu_dereference(device->ldev->disk_conf); 509 plan = rcu_dereference(device->rs_plan_s); 510 511 steps = plan->size; /* (dc->c_plan_ahead * 10 * SLEEP_TIME) / HZ; */ 512 513 if (device->rs_in_flight + sect_in == 0) { /* At start of resync */ 514 want = ((dc->resync_rate * 2 * SLEEP_TIME) / HZ) * steps; 515 } else { /* normal path */ 516 want = dc->c_fill_target ? dc->c_fill_target : 517 sect_in * dc->c_delay_target * HZ / (SLEEP_TIME * 10); 518 } 519 520 correction = want - device->rs_in_flight - plan->total; 521 522 /* Plan ahead */ 523 cps = correction / steps; 524 fifo_add_val(plan, cps); 525 plan->total += cps * steps; 526 527 /* What we do in this step */ 528 curr_corr = fifo_push(plan, 0); 529 plan->total -= curr_corr; 530 531 req_sect = sect_in + curr_corr; 532 if (req_sect < 0) 533 req_sect = 0; 534 535 max_sect = (dc->c_max_rate * 2 * SLEEP_TIME) / HZ; 536 if (req_sect > max_sect) 537 req_sect = max_sect; 538 539 /* 540 drbd_warn(device, "si=%u if=%d wa=%u co=%d st=%d cps=%d pl=%d cc=%d rs=%d\n", 541 sect_in, device->rs_in_flight, want, correction, 542 steps, cps, device->rs_planed, curr_corr, req_sect); 543 */ 544 545 return req_sect; 546 } 547 548 static int drbd_rs_number_requests(struct drbd_device *device) 549 { 550 unsigned int sect_in; /* Number of sectors that came in since the last turn */ 551 int number, mxb; 552 553 sect_in = atomic_xchg(&device->rs_sect_in, 0); 554 device->rs_in_flight -= sect_in; 555 556 rcu_read_lock(); 557 mxb = drbd_get_max_buffers(device) / 2; 558 if (rcu_dereference(device->rs_plan_s)->size) { 559 number = drbd_rs_controller(device, sect_in) >> (BM_BLOCK_SHIFT - 9); 560 device->c_sync_rate = number * HZ * (BM_BLOCK_SIZE / 1024) / SLEEP_TIME; 561 } else { 562 device->c_sync_rate = rcu_dereference(device->ldev->disk_conf)->resync_rate; 563 number = SLEEP_TIME * device->c_sync_rate / ((BM_BLOCK_SIZE / 1024) * HZ); 564 } 565 rcu_read_unlock(); 566 567 /* Don't have more than "max-buffers"/2 in-flight. 568 * Otherwise we may cause the remote site to stall on drbd_alloc_pages(), 569 * potentially causing a distributed deadlock on congestion during 570 * online-verify or (checksum-based) resync, if max-buffers, 571 * socket buffer sizes and resync rate settings are mis-configured. */ 572 573 /* note that "number" is in units of "BM_BLOCK_SIZE" (which is 4k), 574 * mxb (as used here, and in drbd_alloc_pages on the peer) is 575 * "number of pages" (typically also 4k), 576 * but "rs_in_flight" is in "sectors" (512 Byte). */ 577 if (mxb - device->rs_in_flight/8 < number) 578 number = mxb - device->rs_in_flight/8; 579 580 return number; 581 } 582 583 static int make_resync_request(struct drbd_device *const device, int cancel) 584 { 585 struct drbd_peer_device *const peer_device = first_peer_device(device); 586 struct drbd_connection *const connection = peer_device ? peer_device->connection : NULL; 587 unsigned long bit; 588 sector_t sector; 589 const sector_t capacity = get_capacity(device->vdisk); 590 int max_bio_size; 591 int number, rollback_i, size; 592 int align, requeue = 0; 593 int i = 0; 594 int discard_granularity = 0; 595 596 if (unlikely(cancel)) 597 return 0; 598 599 if (device->rs_total == 0) { 600 /* empty resync? */ 601 drbd_resync_finished(device); 602 return 0; 603 } 604 605 if (!get_ldev(device)) { 606 /* Since we only need to access device->rsync a 607 get_ldev_if_state(device,D_FAILED) would be sufficient, but 608 to continue resync with a broken disk makes no sense at 609 all */ 610 drbd_err(device, "Disk broke down during resync!\n"); 611 return 0; 612 } 613 614 if (connection->agreed_features & DRBD_FF_THIN_RESYNC) { 615 rcu_read_lock(); 616 discard_granularity = rcu_dereference(device->ldev->disk_conf)->rs_discard_granularity; 617 rcu_read_unlock(); 618 } 619 620 max_bio_size = queue_max_hw_sectors(device->rq_queue) << 9; 621 number = drbd_rs_number_requests(device); 622 if (number <= 0) 623 goto requeue; 624 625 for (i = 0; i < number; i++) { 626 /* Stop generating RS requests when half of the send buffer is filled, 627 * but notify TCP that we'd like to have more space. */ 628 mutex_lock(&connection->data.mutex); 629 if (connection->data.socket) { 630 struct sock *sk = connection->data.socket->sk; 631 int queued = sk->sk_wmem_queued; 632 int sndbuf = sk->sk_sndbuf; 633 if (queued > sndbuf / 2) { 634 requeue = 1; 635 if (sk->sk_socket) 636 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 637 } 638 } else 639 requeue = 1; 640 mutex_unlock(&connection->data.mutex); 641 if (requeue) 642 goto requeue; 643 644 next_sector: 645 size = BM_BLOCK_SIZE; 646 bit = drbd_bm_find_next(device, device->bm_resync_fo); 647 648 if (bit == DRBD_END_OF_BITMAP) { 649 device->bm_resync_fo = drbd_bm_bits(device); 650 put_ldev(device); 651 return 0; 652 } 653 654 sector = BM_BIT_TO_SECT(bit); 655 656 if (drbd_try_rs_begin_io(device, sector)) { 657 device->bm_resync_fo = bit; 658 goto requeue; 659 } 660 device->bm_resync_fo = bit + 1; 661 662 if (unlikely(drbd_bm_test_bit(device, bit) == 0)) { 663 drbd_rs_complete_io(device, sector); 664 goto next_sector; 665 } 666 667 #if DRBD_MAX_BIO_SIZE > BM_BLOCK_SIZE 668 /* try to find some adjacent bits. 669 * we stop if we have already the maximum req size. 670 * 671 * Additionally always align bigger requests, in order to 672 * be prepared for all stripe sizes of software RAIDs. 673 */ 674 align = 1; 675 rollback_i = i; 676 while (i < number) { 677 if (size + BM_BLOCK_SIZE > max_bio_size) 678 break; 679 680 /* Be always aligned */ 681 if (sector & ((1<<(align+3))-1)) 682 break; 683 684 if (discard_granularity && size == discard_granularity) 685 break; 686 687 /* do not cross extent boundaries */ 688 if (((bit+1) & BM_BLOCKS_PER_BM_EXT_MASK) == 0) 689 break; 690 /* now, is it actually dirty, after all? 691 * caution, drbd_bm_test_bit is tri-state for some 692 * obscure reason; ( b == 0 ) would get the out-of-band 693 * only accidentally right because of the "oddly sized" 694 * adjustment below */ 695 if (drbd_bm_test_bit(device, bit+1) != 1) 696 break; 697 bit++; 698 size += BM_BLOCK_SIZE; 699 if ((BM_BLOCK_SIZE << align) <= size) 700 align++; 701 i++; 702 } 703 /* if we merged some, 704 * reset the offset to start the next drbd_bm_find_next from */ 705 if (size > BM_BLOCK_SIZE) 706 device->bm_resync_fo = bit + 1; 707 #endif 708 709 /* adjust very last sectors, in case we are oddly sized */ 710 if (sector + (size>>9) > capacity) 711 size = (capacity-sector)<<9; 712 713 if (device->use_csums) { 714 switch (read_for_csum(peer_device, sector, size)) { 715 case -EIO: /* Disk failure */ 716 put_ldev(device); 717 return -EIO; 718 case -EAGAIN: /* allocation failed, or ldev busy */ 719 drbd_rs_complete_io(device, sector); 720 device->bm_resync_fo = BM_SECT_TO_BIT(sector); 721 i = rollback_i; 722 goto requeue; 723 case 0: 724 /* everything ok */ 725 break; 726 default: 727 BUG(); 728 } 729 } else { 730 int err; 731 732 inc_rs_pending(device); 733 err = drbd_send_drequest(peer_device, 734 size == discard_granularity ? P_RS_THIN_REQ : P_RS_DATA_REQUEST, 735 sector, size, ID_SYNCER); 736 if (err) { 737 drbd_err(device, "drbd_send_drequest() failed, aborting...\n"); 738 dec_rs_pending(device); 739 put_ldev(device); 740 return err; 741 } 742 } 743 } 744 745 if (device->bm_resync_fo >= drbd_bm_bits(device)) { 746 /* last syncer _request_ was sent, 747 * but the P_RS_DATA_REPLY not yet received. sync will end (and 748 * next sync group will resume), as soon as we receive the last 749 * resync data block, and the last bit is cleared. 750 * until then resync "work" is "inactive" ... 751 */ 752 put_ldev(device); 753 return 0; 754 } 755 756 requeue: 757 device->rs_in_flight += (i << (BM_BLOCK_SHIFT - 9)); 758 mod_timer(&device->resync_timer, jiffies + SLEEP_TIME); 759 put_ldev(device); 760 return 0; 761 } 762 763 static int make_ov_request(struct drbd_device *device, int cancel) 764 { 765 int number, i, size; 766 sector_t sector; 767 const sector_t capacity = get_capacity(device->vdisk); 768 bool stop_sector_reached = false; 769 770 if (unlikely(cancel)) 771 return 1; 772 773 number = drbd_rs_number_requests(device); 774 775 sector = device->ov_position; 776 for (i = 0; i < number; i++) { 777 if (sector >= capacity) 778 return 1; 779 780 /* We check for "finished" only in the reply path: 781 * w_e_end_ov_reply(). 782 * We need to send at least one request out. */ 783 stop_sector_reached = i > 0 784 && verify_can_do_stop_sector(device) 785 && sector >= device->ov_stop_sector; 786 if (stop_sector_reached) 787 break; 788 789 size = BM_BLOCK_SIZE; 790 791 if (drbd_try_rs_begin_io(device, sector)) { 792 device->ov_position = sector; 793 goto requeue; 794 } 795 796 if (sector + (size>>9) > capacity) 797 size = (capacity-sector)<<9; 798 799 inc_rs_pending(device); 800 if (drbd_send_ov_request(first_peer_device(device), sector, size)) { 801 dec_rs_pending(device); 802 return 0; 803 } 804 sector += BM_SECT_PER_BIT; 805 } 806 device->ov_position = sector; 807 808 requeue: 809 device->rs_in_flight += (i << (BM_BLOCK_SHIFT - 9)); 810 if (i == 0 || !stop_sector_reached) 811 mod_timer(&device->resync_timer, jiffies + SLEEP_TIME); 812 return 1; 813 } 814 815 int w_ov_finished(struct drbd_work *w, int cancel) 816 { 817 struct drbd_device_work *dw = 818 container_of(w, struct drbd_device_work, w); 819 struct drbd_device *device = dw->device; 820 kfree(dw); 821 ov_out_of_sync_print(device); 822 drbd_resync_finished(device); 823 824 return 0; 825 } 826 827 static int w_resync_finished(struct drbd_work *w, int cancel) 828 { 829 struct drbd_device_work *dw = 830 container_of(w, struct drbd_device_work, w); 831 struct drbd_device *device = dw->device; 832 kfree(dw); 833 834 drbd_resync_finished(device); 835 836 return 0; 837 } 838 839 static void ping_peer(struct drbd_device *device) 840 { 841 struct drbd_connection *connection = first_peer_device(device)->connection; 842 843 clear_bit(GOT_PING_ACK, &connection->flags); 844 request_ping(connection); 845 wait_event(connection->ping_wait, 846 test_bit(GOT_PING_ACK, &connection->flags) || device->state.conn < C_CONNECTED); 847 } 848 849 int drbd_resync_finished(struct drbd_device *device) 850 { 851 struct drbd_connection *connection = first_peer_device(device)->connection; 852 unsigned long db, dt, dbdt; 853 unsigned long n_oos; 854 union drbd_state os, ns; 855 struct drbd_device_work *dw; 856 char *khelper_cmd = NULL; 857 int verify_done = 0; 858 859 /* Remove all elements from the resync LRU. Since future actions 860 * might set bits in the (main) bitmap, then the entries in the 861 * resync LRU would be wrong. */ 862 if (drbd_rs_del_all(device)) { 863 /* In case this is not possible now, most probably because 864 * there are P_RS_DATA_REPLY Packets lingering on the worker's 865 * queue (or even the read operations for those packets 866 * is not finished by now). Retry in 100ms. */ 867 868 schedule_timeout_interruptible(HZ / 10); 869 dw = kmalloc(sizeof(struct drbd_device_work), GFP_ATOMIC); 870 if (dw) { 871 dw->w.cb = w_resync_finished; 872 dw->device = device; 873 drbd_queue_work(&connection->sender_work, &dw->w); 874 return 1; 875 } 876 drbd_err(device, "Warn failed to drbd_rs_del_all() and to kmalloc(dw).\n"); 877 } 878 879 dt = (jiffies - device->rs_start - device->rs_paused) / HZ; 880 if (dt <= 0) 881 dt = 1; 882 883 db = device->rs_total; 884 /* adjust for verify start and stop sectors, respective reached position */ 885 if (device->state.conn == C_VERIFY_S || device->state.conn == C_VERIFY_T) 886 db -= device->ov_left; 887 888 dbdt = Bit2KB(db/dt); 889 device->rs_paused /= HZ; 890 891 if (!get_ldev(device)) 892 goto out; 893 894 ping_peer(device); 895 896 spin_lock_irq(&device->resource->req_lock); 897 os = drbd_read_state(device); 898 899 verify_done = (os.conn == C_VERIFY_S || os.conn == C_VERIFY_T); 900 901 /* This protects us against multiple calls (that can happen in the presence 902 of application IO), and against connectivity loss just before we arrive here. */ 903 if (os.conn <= C_CONNECTED) 904 goto out_unlock; 905 906 ns = os; 907 ns.conn = C_CONNECTED; 908 909 drbd_info(device, "%s done (total %lu sec; paused %lu sec; %lu K/sec)\n", 910 verify_done ? "Online verify" : "Resync", 911 dt + device->rs_paused, device->rs_paused, dbdt); 912 913 n_oos = drbd_bm_total_weight(device); 914 915 if (os.conn == C_VERIFY_S || os.conn == C_VERIFY_T) { 916 if (n_oos) { 917 drbd_alert(device, "Online verify found %lu %dk block out of sync!\n", 918 n_oos, Bit2KB(1)); 919 khelper_cmd = "out-of-sync"; 920 } 921 } else { 922 D_ASSERT(device, (n_oos - device->rs_failed) == 0); 923 924 if (os.conn == C_SYNC_TARGET || os.conn == C_PAUSED_SYNC_T) 925 khelper_cmd = "after-resync-target"; 926 927 if (device->use_csums && device->rs_total) { 928 const unsigned long s = device->rs_same_csum; 929 const unsigned long t = device->rs_total; 930 const int ratio = 931 (t == 0) ? 0 : 932 (t < 100000) ? ((s*100)/t) : (s/(t/100)); 933 drbd_info(device, "%u %% had equal checksums, eliminated: %luK; " 934 "transferred %luK total %luK\n", 935 ratio, 936 Bit2KB(device->rs_same_csum), 937 Bit2KB(device->rs_total - device->rs_same_csum), 938 Bit2KB(device->rs_total)); 939 } 940 } 941 942 if (device->rs_failed) { 943 drbd_info(device, " %lu failed blocks\n", device->rs_failed); 944 945 if (os.conn == C_SYNC_TARGET || os.conn == C_PAUSED_SYNC_T) { 946 ns.disk = D_INCONSISTENT; 947 ns.pdsk = D_UP_TO_DATE; 948 } else { 949 ns.disk = D_UP_TO_DATE; 950 ns.pdsk = D_INCONSISTENT; 951 } 952 } else { 953 ns.disk = D_UP_TO_DATE; 954 ns.pdsk = D_UP_TO_DATE; 955 956 if (os.conn == C_SYNC_TARGET || os.conn == C_PAUSED_SYNC_T) { 957 if (device->p_uuid) { 958 int i; 959 for (i = UI_BITMAP ; i <= UI_HISTORY_END ; i++) 960 _drbd_uuid_set(device, i, device->p_uuid[i]); 961 drbd_uuid_set(device, UI_BITMAP, device->ldev->md.uuid[UI_CURRENT]); 962 _drbd_uuid_set(device, UI_CURRENT, device->p_uuid[UI_CURRENT]); 963 } else { 964 drbd_err(device, "device->p_uuid is NULL! BUG\n"); 965 } 966 } 967 968 if (!(os.conn == C_VERIFY_S || os.conn == C_VERIFY_T)) { 969 /* for verify runs, we don't update uuids here, 970 * so there would be nothing to report. */ 971 drbd_uuid_set_bm(device, 0UL); 972 drbd_print_uuids(device, "updated UUIDs"); 973 if (device->p_uuid) { 974 /* Now the two UUID sets are equal, update what we 975 * know of the peer. */ 976 int i; 977 for (i = UI_CURRENT ; i <= UI_HISTORY_END ; i++) 978 device->p_uuid[i] = device->ldev->md.uuid[i]; 979 } 980 } 981 } 982 983 _drbd_set_state(device, ns, CS_VERBOSE, NULL); 984 out_unlock: 985 spin_unlock_irq(&device->resource->req_lock); 986 987 /* If we have been sync source, and have an effective fencing-policy, 988 * once *all* volumes are back in sync, call "unfence". */ 989 if (os.conn == C_SYNC_SOURCE) { 990 enum drbd_disk_state disk_state = D_MASK; 991 enum drbd_disk_state pdsk_state = D_MASK; 992 enum drbd_fencing_p fp = FP_DONT_CARE; 993 994 rcu_read_lock(); 995 fp = rcu_dereference(device->ldev->disk_conf)->fencing; 996 if (fp != FP_DONT_CARE) { 997 struct drbd_peer_device *peer_device; 998 int vnr; 999 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 1000 struct drbd_device *device = peer_device->device; 1001 disk_state = min_t(enum drbd_disk_state, disk_state, device->state.disk); 1002 pdsk_state = min_t(enum drbd_disk_state, pdsk_state, device->state.pdsk); 1003 } 1004 } 1005 rcu_read_unlock(); 1006 if (disk_state == D_UP_TO_DATE && pdsk_state == D_UP_TO_DATE) 1007 conn_khelper(connection, "unfence-peer"); 1008 } 1009 1010 put_ldev(device); 1011 out: 1012 device->rs_total = 0; 1013 device->rs_failed = 0; 1014 device->rs_paused = 0; 1015 1016 /* reset start sector, if we reached end of device */ 1017 if (verify_done && device->ov_left == 0) 1018 device->ov_start_sector = 0; 1019 1020 drbd_md_sync(device); 1021 1022 if (khelper_cmd) 1023 drbd_khelper(device, khelper_cmd); 1024 1025 return 1; 1026 } 1027 1028 /* helper */ 1029 static void move_to_net_ee_or_free(struct drbd_device *device, struct drbd_peer_request *peer_req) 1030 { 1031 if (drbd_peer_req_has_active_page(peer_req)) { 1032 /* This might happen if sendpage() has not finished */ 1033 int i = PFN_UP(peer_req->i.size); 1034 atomic_add(i, &device->pp_in_use_by_net); 1035 atomic_sub(i, &device->pp_in_use); 1036 spin_lock_irq(&device->resource->req_lock); 1037 list_add_tail(&peer_req->w.list, &device->net_ee); 1038 spin_unlock_irq(&device->resource->req_lock); 1039 wake_up(&drbd_pp_wait); 1040 } else 1041 drbd_free_peer_req(device, peer_req); 1042 } 1043 1044 /** 1045 * w_e_end_data_req() - Worker callback, to send a P_DATA_REPLY packet in response to a P_DATA_REQUEST 1046 * @w: work object. 1047 * @cancel: The connection will be closed anyways 1048 */ 1049 int w_e_end_data_req(struct drbd_work *w, int cancel) 1050 { 1051 struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w); 1052 struct drbd_peer_device *peer_device = peer_req->peer_device; 1053 struct drbd_device *device = peer_device->device; 1054 int err; 1055 1056 if (unlikely(cancel)) { 1057 drbd_free_peer_req(device, peer_req); 1058 dec_unacked(device); 1059 return 0; 1060 } 1061 1062 if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) { 1063 err = drbd_send_block(peer_device, P_DATA_REPLY, peer_req); 1064 } else { 1065 if (__ratelimit(&drbd_ratelimit_state)) 1066 drbd_err(device, "Sending NegDReply. sector=%llus.\n", 1067 (unsigned long long)peer_req->i.sector); 1068 1069 err = drbd_send_ack(peer_device, P_NEG_DREPLY, peer_req); 1070 } 1071 1072 dec_unacked(device); 1073 1074 move_to_net_ee_or_free(device, peer_req); 1075 1076 if (unlikely(err)) 1077 drbd_err(device, "drbd_send_block() failed\n"); 1078 return err; 1079 } 1080 1081 static bool all_zero(struct drbd_peer_request *peer_req) 1082 { 1083 struct page *page = peer_req->pages; 1084 unsigned int len = peer_req->i.size; 1085 1086 page_chain_for_each(page) { 1087 unsigned int l = min_t(unsigned int, len, PAGE_SIZE); 1088 unsigned int i, words = l / sizeof(long); 1089 unsigned long *d; 1090 1091 d = kmap_atomic(page); 1092 for (i = 0; i < words; i++) { 1093 if (d[i]) { 1094 kunmap_atomic(d); 1095 return false; 1096 } 1097 } 1098 kunmap_atomic(d); 1099 len -= l; 1100 } 1101 1102 return true; 1103 } 1104 1105 /** 1106 * w_e_end_rsdata_req() - Worker callback to send a P_RS_DATA_REPLY packet in response to a P_RS_DATA_REQUEST 1107 * @w: work object. 1108 * @cancel: The connection will be closed anyways 1109 */ 1110 int w_e_end_rsdata_req(struct drbd_work *w, int cancel) 1111 { 1112 struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w); 1113 struct drbd_peer_device *peer_device = peer_req->peer_device; 1114 struct drbd_device *device = peer_device->device; 1115 int err; 1116 1117 if (unlikely(cancel)) { 1118 drbd_free_peer_req(device, peer_req); 1119 dec_unacked(device); 1120 return 0; 1121 } 1122 1123 if (get_ldev_if_state(device, D_FAILED)) { 1124 drbd_rs_complete_io(device, peer_req->i.sector); 1125 put_ldev(device); 1126 } 1127 1128 if (device->state.conn == C_AHEAD) { 1129 err = drbd_send_ack(peer_device, P_RS_CANCEL, peer_req); 1130 } else if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) { 1131 if (likely(device->state.pdsk >= D_INCONSISTENT)) { 1132 inc_rs_pending(device); 1133 if (peer_req->flags & EE_RS_THIN_REQ && all_zero(peer_req)) 1134 err = drbd_send_rs_deallocated(peer_device, peer_req); 1135 else 1136 err = drbd_send_block(peer_device, P_RS_DATA_REPLY, peer_req); 1137 } else { 1138 if (__ratelimit(&drbd_ratelimit_state)) 1139 drbd_err(device, "Not sending RSDataReply, " 1140 "partner DISKLESS!\n"); 1141 err = 0; 1142 } 1143 } else { 1144 if (__ratelimit(&drbd_ratelimit_state)) 1145 drbd_err(device, "Sending NegRSDReply. sector %llus.\n", 1146 (unsigned long long)peer_req->i.sector); 1147 1148 err = drbd_send_ack(peer_device, P_NEG_RS_DREPLY, peer_req); 1149 1150 /* update resync data with failure */ 1151 drbd_rs_failed_io(device, peer_req->i.sector, peer_req->i.size); 1152 } 1153 1154 dec_unacked(device); 1155 1156 move_to_net_ee_or_free(device, peer_req); 1157 1158 if (unlikely(err)) 1159 drbd_err(device, "drbd_send_block() failed\n"); 1160 return err; 1161 } 1162 1163 int w_e_end_csum_rs_req(struct drbd_work *w, int cancel) 1164 { 1165 struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w); 1166 struct drbd_peer_device *peer_device = peer_req->peer_device; 1167 struct drbd_device *device = peer_device->device; 1168 struct digest_info *di; 1169 int digest_size; 1170 void *digest = NULL; 1171 int err, eq = 0; 1172 1173 if (unlikely(cancel)) { 1174 drbd_free_peer_req(device, peer_req); 1175 dec_unacked(device); 1176 return 0; 1177 } 1178 1179 if (get_ldev(device)) { 1180 drbd_rs_complete_io(device, peer_req->i.sector); 1181 put_ldev(device); 1182 } 1183 1184 di = peer_req->digest; 1185 1186 if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) { 1187 /* quick hack to try to avoid a race against reconfiguration. 1188 * a real fix would be much more involved, 1189 * introducing more locking mechanisms */ 1190 if (peer_device->connection->csums_tfm) { 1191 digest_size = crypto_shash_digestsize(peer_device->connection->csums_tfm); 1192 D_ASSERT(device, digest_size == di->digest_size); 1193 digest = kmalloc(digest_size, GFP_NOIO); 1194 } 1195 if (digest) { 1196 drbd_csum_ee(peer_device->connection->csums_tfm, peer_req, digest); 1197 eq = !memcmp(digest, di->digest, digest_size); 1198 kfree(digest); 1199 } 1200 1201 if (eq) { 1202 drbd_set_in_sync(device, peer_req->i.sector, peer_req->i.size); 1203 /* rs_same_csums unit is BM_BLOCK_SIZE */ 1204 device->rs_same_csum += peer_req->i.size >> BM_BLOCK_SHIFT; 1205 err = drbd_send_ack(peer_device, P_RS_IS_IN_SYNC, peer_req); 1206 } else { 1207 inc_rs_pending(device); 1208 peer_req->block_id = ID_SYNCER; /* By setting block_id, digest pointer becomes invalid! */ 1209 peer_req->flags &= ~EE_HAS_DIGEST; /* This peer request no longer has a digest pointer */ 1210 kfree(di); 1211 err = drbd_send_block(peer_device, P_RS_DATA_REPLY, peer_req); 1212 } 1213 } else { 1214 err = drbd_send_ack(peer_device, P_NEG_RS_DREPLY, peer_req); 1215 if (__ratelimit(&drbd_ratelimit_state)) 1216 drbd_err(device, "Sending NegDReply. I guess it gets messy.\n"); 1217 } 1218 1219 dec_unacked(device); 1220 move_to_net_ee_or_free(device, peer_req); 1221 1222 if (unlikely(err)) 1223 drbd_err(device, "drbd_send_block/ack() failed\n"); 1224 return err; 1225 } 1226 1227 int w_e_end_ov_req(struct drbd_work *w, int cancel) 1228 { 1229 struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w); 1230 struct drbd_peer_device *peer_device = peer_req->peer_device; 1231 struct drbd_device *device = peer_device->device; 1232 sector_t sector = peer_req->i.sector; 1233 unsigned int size = peer_req->i.size; 1234 int digest_size; 1235 void *digest; 1236 int err = 0; 1237 1238 if (unlikely(cancel)) 1239 goto out; 1240 1241 digest_size = crypto_shash_digestsize(peer_device->connection->verify_tfm); 1242 digest = kmalloc(digest_size, GFP_NOIO); 1243 if (!digest) { 1244 err = 1; /* terminate the connection in case the allocation failed */ 1245 goto out; 1246 } 1247 1248 if (likely(!(peer_req->flags & EE_WAS_ERROR))) 1249 drbd_csum_ee(peer_device->connection->verify_tfm, peer_req, digest); 1250 else 1251 memset(digest, 0, digest_size); 1252 1253 /* Free e and pages before send. 1254 * In case we block on congestion, we could otherwise run into 1255 * some distributed deadlock, if the other side blocks on 1256 * congestion as well, because our receiver blocks in 1257 * drbd_alloc_pages due to pp_in_use > max_buffers. */ 1258 drbd_free_peer_req(device, peer_req); 1259 peer_req = NULL; 1260 inc_rs_pending(device); 1261 err = drbd_send_drequest_csum(peer_device, sector, size, digest, digest_size, P_OV_REPLY); 1262 if (err) 1263 dec_rs_pending(device); 1264 kfree(digest); 1265 1266 out: 1267 if (peer_req) 1268 drbd_free_peer_req(device, peer_req); 1269 dec_unacked(device); 1270 return err; 1271 } 1272 1273 void drbd_ov_out_of_sync_found(struct drbd_device *device, sector_t sector, int size) 1274 { 1275 if (device->ov_last_oos_start + device->ov_last_oos_size == sector) { 1276 device->ov_last_oos_size += size>>9; 1277 } else { 1278 device->ov_last_oos_start = sector; 1279 device->ov_last_oos_size = size>>9; 1280 } 1281 drbd_set_out_of_sync(device, sector, size); 1282 } 1283 1284 int w_e_end_ov_reply(struct drbd_work *w, int cancel) 1285 { 1286 struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w); 1287 struct drbd_peer_device *peer_device = peer_req->peer_device; 1288 struct drbd_device *device = peer_device->device; 1289 struct digest_info *di; 1290 void *digest; 1291 sector_t sector = peer_req->i.sector; 1292 unsigned int size = peer_req->i.size; 1293 int digest_size; 1294 int err, eq = 0; 1295 bool stop_sector_reached = false; 1296 1297 if (unlikely(cancel)) { 1298 drbd_free_peer_req(device, peer_req); 1299 dec_unacked(device); 1300 return 0; 1301 } 1302 1303 /* after "cancel", because after drbd_disconnect/drbd_rs_cancel_all 1304 * the resync lru has been cleaned up already */ 1305 if (get_ldev(device)) { 1306 drbd_rs_complete_io(device, peer_req->i.sector); 1307 put_ldev(device); 1308 } 1309 1310 di = peer_req->digest; 1311 1312 if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) { 1313 digest_size = crypto_shash_digestsize(peer_device->connection->verify_tfm); 1314 digest = kmalloc(digest_size, GFP_NOIO); 1315 if (digest) { 1316 drbd_csum_ee(peer_device->connection->verify_tfm, peer_req, digest); 1317 1318 D_ASSERT(device, digest_size == di->digest_size); 1319 eq = !memcmp(digest, di->digest, digest_size); 1320 kfree(digest); 1321 } 1322 } 1323 1324 /* Free peer_req and pages before send. 1325 * In case we block on congestion, we could otherwise run into 1326 * some distributed deadlock, if the other side blocks on 1327 * congestion as well, because our receiver blocks in 1328 * drbd_alloc_pages due to pp_in_use > max_buffers. */ 1329 drbd_free_peer_req(device, peer_req); 1330 if (!eq) 1331 drbd_ov_out_of_sync_found(device, sector, size); 1332 else 1333 ov_out_of_sync_print(device); 1334 1335 err = drbd_send_ack_ex(peer_device, P_OV_RESULT, sector, size, 1336 eq ? ID_IN_SYNC : ID_OUT_OF_SYNC); 1337 1338 dec_unacked(device); 1339 1340 --device->ov_left; 1341 1342 /* let's advance progress step marks only for every other megabyte */ 1343 if ((device->ov_left & 0x200) == 0x200) 1344 drbd_advance_rs_marks(device, device->ov_left); 1345 1346 stop_sector_reached = verify_can_do_stop_sector(device) && 1347 (sector + (size>>9)) >= device->ov_stop_sector; 1348 1349 if (device->ov_left == 0 || stop_sector_reached) { 1350 ov_out_of_sync_print(device); 1351 drbd_resync_finished(device); 1352 } 1353 1354 return err; 1355 } 1356 1357 /* FIXME 1358 * We need to track the number of pending barrier acks, 1359 * and to be able to wait for them. 1360 * See also comment in drbd_adm_attach before drbd_suspend_io. 1361 */ 1362 static int drbd_send_barrier(struct drbd_connection *connection) 1363 { 1364 struct p_barrier *p; 1365 struct drbd_socket *sock; 1366 1367 sock = &connection->data; 1368 p = conn_prepare_command(connection, sock); 1369 if (!p) 1370 return -EIO; 1371 p->barrier = connection->send.current_epoch_nr; 1372 p->pad = 0; 1373 connection->send.current_epoch_writes = 0; 1374 connection->send.last_sent_barrier_jif = jiffies; 1375 1376 return conn_send_command(connection, sock, P_BARRIER, sizeof(*p), NULL, 0); 1377 } 1378 1379 static int pd_send_unplug_remote(struct drbd_peer_device *pd) 1380 { 1381 struct drbd_socket *sock = &pd->connection->data; 1382 if (!drbd_prepare_command(pd, sock)) 1383 return -EIO; 1384 return drbd_send_command(pd, sock, P_UNPLUG_REMOTE, 0, NULL, 0); 1385 } 1386 1387 int w_send_write_hint(struct drbd_work *w, int cancel) 1388 { 1389 struct drbd_device *device = 1390 container_of(w, struct drbd_device, unplug_work); 1391 1392 if (cancel) 1393 return 0; 1394 return pd_send_unplug_remote(first_peer_device(device)); 1395 } 1396 1397 static void re_init_if_first_write(struct drbd_connection *connection, unsigned int epoch) 1398 { 1399 if (!connection->send.seen_any_write_yet) { 1400 connection->send.seen_any_write_yet = true; 1401 connection->send.current_epoch_nr = epoch; 1402 connection->send.current_epoch_writes = 0; 1403 connection->send.last_sent_barrier_jif = jiffies; 1404 } 1405 } 1406 1407 static void maybe_send_barrier(struct drbd_connection *connection, unsigned int epoch) 1408 { 1409 /* re-init if first write on this connection */ 1410 if (!connection->send.seen_any_write_yet) 1411 return; 1412 if (connection->send.current_epoch_nr != epoch) { 1413 if (connection->send.current_epoch_writes) 1414 drbd_send_barrier(connection); 1415 connection->send.current_epoch_nr = epoch; 1416 } 1417 } 1418 1419 int w_send_out_of_sync(struct drbd_work *w, int cancel) 1420 { 1421 struct drbd_request *req = container_of(w, struct drbd_request, w); 1422 struct drbd_device *device = req->device; 1423 struct drbd_peer_device *const peer_device = first_peer_device(device); 1424 struct drbd_connection *const connection = peer_device->connection; 1425 int err; 1426 1427 if (unlikely(cancel)) { 1428 req_mod(req, SEND_CANCELED); 1429 return 0; 1430 } 1431 req->pre_send_jif = jiffies; 1432 1433 /* this time, no connection->send.current_epoch_writes++; 1434 * If it was sent, it was the closing barrier for the last 1435 * replicated epoch, before we went into AHEAD mode. 1436 * No more barriers will be sent, until we leave AHEAD mode again. */ 1437 maybe_send_barrier(connection, req->epoch); 1438 1439 err = drbd_send_out_of_sync(peer_device, req); 1440 req_mod(req, OOS_HANDED_TO_NETWORK); 1441 1442 return err; 1443 } 1444 1445 /** 1446 * w_send_dblock() - Worker callback to send a P_DATA packet in order to mirror a write request 1447 * @w: work object. 1448 * @cancel: The connection will be closed anyways 1449 */ 1450 int w_send_dblock(struct drbd_work *w, int cancel) 1451 { 1452 struct drbd_request *req = container_of(w, struct drbd_request, w); 1453 struct drbd_device *device = req->device; 1454 struct drbd_peer_device *const peer_device = first_peer_device(device); 1455 struct drbd_connection *connection = peer_device->connection; 1456 bool do_send_unplug = req->rq_state & RQ_UNPLUG; 1457 int err; 1458 1459 if (unlikely(cancel)) { 1460 req_mod(req, SEND_CANCELED); 1461 return 0; 1462 } 1463 req->pre_send_jif = jiffies; 1464 1465 re_init_if_first_write(connection, req->epoch); 1466 maybe_send_barrier(connection, req->epoch); 1467 connection->send.current_epoch_writes++; 1468 1469 err = drbd_send_dblock(peer_device, req); 1470 req_mod(req, err ? SEND_FAILED : HANDED_OVER_TO_NETWORK); 1471 1472 if (do_send_unplug && !err) 1473 pd_send_unplug_remote(peer_device); 1474 1475 return err; 1476 } 1477 1478 /** 1479 * w_send_read_req() - Worker callback to send a read request (P_DATA_REQUEST) packet 1480 * @w: work object. 1481 * @cancel: The connection will be closed anyways 1482 */ 1483 int w_send_read_req(struct drbd_work *w, int cancel) 1484 { 1485 struct drbd_request *req = container_of(w, struct drbd_request, w); 1486 struct drbd_device *device = req->device; 1487 struct drbd_peer_device *const peer_device = first_peer_device(device); 1488 struct drbd_connection *connection = peer_device->connection; 1489 bool do_send_unplug = req->rq_state & RQ_UNPLUG; 1490 int err; 1491 1492 if (unlikely(cancel)) { 1493 req_mod(req, SEND_CANCELED); 1494 return 0; 1495 } 1496 req->pre_send_jif = jiffies; 1497 1498 /* Even read requests may close a write epoch, 1499 * if there was any yet. */ 1500 maybe_send_barrier(connection, req->epoch); 1501 1502 err = drbd_send_drequest(peer_device, P_DATA_REQUEST, req->i.sector, req->i.size, 1503 (unsigned long)req); 1504 1505 req_mod(req, err ? SEND_FAILED : HANDED_OVER_TO_NETWORK); 1506 1507 if (do_send_unplug && !err) 1508 pd_send_unplug_remote(peer_device); 1509 1510 return err; 1511 } 1512 1513 int w_restart_disk_io(struct drbd_work *w, int cancel) 1514 { 1515 struct drbd_request *req = container_of(w, struct drbd_request, w); 1516 struct drbd_device *device = req->device; 1517 1518 if (bio_data_dir(req->master_bio) == WRITE && req->rq_state & RQ_IN_ACT_LOG) 1519 drbd_al_begin_io(device, &req->i); 1520 1521 req->private_bio = bio_alloc_clone(device->ldev->backing_bdev, 1522 req->master_bio, GFP_NOIO, 1523 &drbd_io_bio_set); 1524 req->private_bio->bi_private = req; 1525 req->private_bio->bi_end_io = drbd_request_endio; 1526 submit_bio_noacct(req->private_bio); 1527 1528 return 0; 1529 } 1530 1531 static int _drbd_may_sync_now(struct drbd_device *device) 1532 { 1533 struct drbd_device *odev = device; 1534 int resync_after; 1535 1536 while (1) { 1537 if (!odev->ldev || odev->state.disk == D_DISKLESS) 1538 return 1; 1539 rcu_read_lock(); 1540 resync_after = rcu_dereference(odev->ldev->disk_conf)->resync_after; 1541 rcu_read_unlock(); 1542 if (resync_after == -1) 1543 return 1; 1544 odev = minor_to_device(resync_after); 1545 if (!odev) 1546 return 1; 1547 if ((odev->state.conn >= C_SYNC_SOURCE && 1548 odev->state.conn <= C_PAUSED_SYNC_T) || 1549 odev->state.aftr_isp || odev->state.peer_isp || 1550 odev->state.user_isp) 1551 return 0; 1552 } 1553 } 1554 1555 /** 1556 * drbd_pause_after() - Pause resync on all devices that may not resync now 1557 * @device: DRBD device. 1558 * 1559 * Called from process context only (admin command and after_state_ch). 1560 */ 1561 static bool drbd_pause_after(struct drbd_device *device) 1562 { 1563 bool changed = false; 1564 struct drbd_device *odev; 1565 int i; 1566 1567 rcu_read_lock(); 1568 idr_for_each_entry(&drbd_devices, odev, i) { 1569 if (odev->state.conn == C_STANDALONE && odev->state.disk == D_DISKLESS) 1570 continue; 1571 if (!_drbd_may_sync_now(odev) && 1572 _drbd_set_state(_NS(odev, aftr_isp, 1), 1573 CS_HARD, NULL) != SS_NOTHING_TO_DO) 1574 changed = true; 1575 } 1576 rcu_read_unlock(); 1577 1578 return changed; 1579 } 1580 1581 /** 1582 * drbd_resume_next() - Resume resync on all devices that may resync now 1583 * @device: DRBD device. 1584 * 1585 * Called from process context only (admin command and worker). 1586 */ 1587 static bool drbd_resume_next(struct drbd_device *device) 1588 { 1589 bool changed = false; 1590 struct drbd_device *odev; 1591 int i; 1592 1593 rcu_read_lock(); 1594 idr_for_each_entry(&drbd_devices, odev, i) { 1595 if (odev->state.conn == C_STANDALONE && odev->state.disk == D_DISKLESS) 1596 continue; 1597 if (odev->state.aftr_isp) { 1598 if (_drbd_may_sync_now(odev) && 1599 _drbd_set_state(_NS(odev, aftr_isp, 0), 1600 CS_HARD, NULL) != SS_NOTHING_TO_DO) 1601 changed = true; 1602 } 1603 } 1604 rcu_read_unlock(); 1605 return changed; 1606 } 1607 1608 void resume_next_sg(struct drbd_device *device) 1609 { 1610 lock_all_resources(); 1611 drbd_resume_next(device); 1612 unlock_all_resources(); 1613 } 1614 1615 void suspend_other_sg(struct drbd_device *device) 1616 { 1617 lock_all_resources(); 1618 drbd_pause_after(device); 1619 unlock_all_resources(); 1620 } 1621 1622 /* caller must lock_all_resources() */ 1623 enum drbd_ret_code drbd_resync_after_valid(struct drbd_device *device, int o_minor) 1624 { 1625 struct drbd_device *odev; 1626 int resync_after; 1627 1628 if (o_minor == -1) 1629 return NO_ERROR; 1630 if (o_minor < -1 || o_minor > MINORMASK) 1631 return ERR_RESYNC_AFTER; 1632 1633 /* check for loops */ 1634 odev = minor_to_device(o_minor); 1635 while (1) { 1636 if (odev == device) 1637 return ERR_RESYNC_AFTER_CYCLE; 1638 1639 /* You are free to depend on diskless, non-existing, 1640 * or not yet/no longer existing minors. 1641 * We only reject dependency loops. 1642 * We cannot follow the dependency chain beyond a detached or 1643 * missing minor. 1644 */ 1645 if (!odev || !odev->ldev || odev->state.disk == D_DISKLESS) 1646 return NO_ERROR; 1647 1648 rcu_read_lock(); 1649 resync_after = rcu_dereference(odev->ldev->disk_conf)->resync_after; 1650 rcu_read_unlock(); 1651 /* dependency chain ends here, no cycles. */ 1652 if (resync_after == -1) 1653 return NO_ERROR; 1654 1655 /* follow the dependency chain */ 1656 odev = minor_to_device(resync_after); 1657 } 1658 } 1659 1660 /* caller must lock_all_resources() */ 1661 void drbd_resync_after_changed(struct drbd_device *device) 1662 { 1663 int changed; 1664 1665 do { 1666 changed = drbd_pause_after(device); 1667 changed |= drbd_resume_next(device); 1668 } while (changed); 1669 } 1670 1671 void drbd_rs_controller_reset(struct drbd_device *device) 1672 { 1673 struct gendisk *disk = device->ldev->backing_bdev->bd_disk; 1674 struct fifo_buffer *plan; 1675 1676 atomic_set(&device->rs_sect_in, 0); 1677 atomic_set(&device->rs_sect_ev, 0); 1678 device->rs_in_flight = 0; 1679 device->rs_last_events = 1680 (int)part_stat_read_accum(disk->part0, sectors); 1681 1682 /* Updating the RCU protected object in place is necessary since 1683 this function gets called from atomic context. 1684 It is valid since all other updates also lead to an completely 1685 empty fifo */ 1686 rcu_read_lock(); 1687 plan = rcu_dereference(device->rs_plan_s); 1688 plan->total = 0; 1689 fifo_set(plan, 0); 1690 rcu_read_unlock(); 1691 } 1692 1693 void start_resync_timer_fn(struct timer_list *t) 1694 { 1695 struct drbd_device *device = from_timer(device, t, start_resync_timer); 1696 drbd_device_post_work(device, RS_START); 1697 } 1698 1699 static void do_start_resync(struct drbd_device *device) 1700 { 1701 if (atomic_read(&device->unacked_cnt) || atomic_read(&device->rs_pending_cnt)) { 1702 drbd_warn(device, "postponing start_resync ...\n"); 1703 device->start_resync_timer.expires = jiffies + HZ/10; 1704 add_timer(&device->start_resync_timer); 1705 return; 1706 } 1707 1708 drbd_start_resync(device, C_SYNC_SOURCE); 1709 clear_bit(AHEAD_TO_SYNC_SOURCE, &device->flags); 1710 } 1711 1712 static bool use_checksum_based_resync(struct drbd_connection *connection, struct drbd_device *device) 1713 { 1714 bool csums_after_crash_only; 1715 rcu_read_lock(); 1716 csums_after_crash_only = rcu_dereference(connection->net_conf)->csums_after_crash_only; 1717 rcu_read_unlock(); 1718 return connection->agreed_pro_version >= 89 && /* supported? */ 1719 connection->csums_tfm && /* configured? */ 1720 (csums_after_crash_only == false /* use for each resync? */ 1721 || test_bit(CRASHED_PRIMARY, &device->flags)); /* or only after Primary crash? */ 1722 } 1723 1724 /** 1725 * drbd_start_resync() - Start the resync process 1726 * @device: DRBD device. 1727 * @side: Either C_SYNC_SOURCE or C_SYNC_TARGET 1728 * 1729 * This function might bring you directly into one of the 1730 * C_PAUSED_SYNC_* states. 1731 */ 1732 void drbd_start_resync(struct drbd_device *device, enum drbd_conns side) 1733 { 1734 struct drbd_peer_device *peer_device = first_peer_device(device); 1735 struct drbd_connection *connection = peer_device ? peer_device->connection : NULL; 1736 union drbd_state ns; 1737 int r; 1738 1739 if (device->state.conn >= C_SYNC_SOURCE && device->state.conn < C_AHEAD) { 1740 drbd_err(device, "Resync already running!\n"); 1741 return; 1742 } 1743 1744 if (!connection) { 1745 drbd_err(device, "No connection to peer, aborting!\n"); 1746 return; 1747 } 1748 1749 if (!test_bit(B_RS_H_DONE, &device->flags)) { 1750 if (side == C_SYNC_TARGET) { 1751 /* Since application IO was locked out during C_WF_BITMAP_T and 1752 C_WF_SYNC_UUID we are still unmodified. Before going to C_SYNC_TARGET 1753 we check that we might make the data inconsistent. */ 1754 r = drbd_khelper(device, "before-resync-target"); 1755 r = (r >> 8) & 0xff; 1756 if (r > 0) { 1757 drbd_info(device, "before-resync-target handler returned %d, " 1758 "dropping connection.\n", r); 1759 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 1760 return; 1761 } 1762 } else /* C_SYNC_SOURCE */ { 1763 r = drbd_khelper(device, "before-resync-source"); 1764 r = (r >> 8) & 0xff; 1765 if (r > 0) { 1766 if (r == 3) { 1767 drbd_info(device, "before-resync-source handler returned %d, " 1768 "ignoring. Old userland tools?", r); 1769 } else { 1770 drbd_info(device, "before-resync-source handler returned %d, " 1771 "dropping connection.\n", r); 1772 conn_request_state(connection, 1773 NS(conn, C_DISCONNECTING), CS_HARD); 1774 return; 1775 } 1776 } 1777 } 1778 } 1779 1780 if (current == connection->worker.task) { 1781 /* The worker should not sleep waiting for state_mutex, 1782 that can take long */ 1783 if (!mutex_trylock(device->state_mutex)) { 1784 set_bit(B_RS_H_DONE, &device->flags); 1785 device->start_resync_timer.expires = jiffies + HZ/5; 1786 add_timer(&device->start_resync_timer); 1787 return; 1788 } 1789 } else { 1790 mutex_lock(device->state_mutex); 1791 } 1792 1793 lock_all_resources(); 1794 clear_bit(B_RS_H_DONE, &device->flags); 1795 /* Did some connection breakage or IO error race with us? */ 1796 if (device->state.conn < C_CONNECTED 1797 || !get_ldev_if_state(device, D_NEGOTIATING)) { 1798 unlock_all_resources(); 1799 goto out; 1800 } 1801 1802 ns = drbd_read_state(device); 1803 1804 ns.aftr_isp = !_drbd_may_sync_now(device); 1805 1806 ns.conn = side; 1807 1808 if (side == C_SYNC_TARGET) 1809 ns.disk = D_INCONSISTENT; 1810 else /* side == C_SYNC_SOURCE */ 1811 ns.pdsk = D_INCONSISTENT; 1812 1813 r = _drbd_set_state(device, ns, CS_VERBOSE, NULL); 1814 ns = drbd_read_state(device); 1815 1816 if (ns.conn < C_CONNECTED) 1817 r = SS_UNKNOWN_ERROR; 1818 1819 if (r == SS_SUCCESS) { 1820 unsigned long tw = drbd_bm_total_weight(device); 1821 unsigned long now = jiffies; 1822 int i; 1823 1824 device->rs_failed = 0; 1825 device->rs_paused = 0; 1826 device->rs_same_csum = 0; 1827 device->rs_last_sect_ev = 0; 1828 device->rs_total = tw; 1829 device->rs_start = now; 1830 for (i = 0; i < DRBD_SYNC_MARKS; i++) { 1831 device->rs_mark_left[i] = tw; 1832 device->rs_mark_time[i] = now; 1833 } 1834 drbd_pause_after(device); 1835 /* Forget potentially stale cached per resync extent bit-counts. 1836 * Open coded drbd_rs_cancel_all(device), we already have IRQs 1837 * disabled, and know the disk state is ok. */ 1838 spin_lock(&device->al_lock); 1839 lc_reset(device->resync); 1840 device->resync_locked = 0; 1841 device->resync_wenr = LC_FREE; 1842 spin_unlock(&device->al_lock); 1843 } 1844 unlock_all_resources(); 1845 1846 if (r == SS_SUCCESS) { 1847 wake_up(&device->al_wait); /* for lc_reset() above */ 1848 /* reset rs_last_bcast when a resync or verify is started, 1849 * to deal with potential jiffies wrap. */ 1850 device->rs_last_bcast = jiffies - HZ; 1851 1852 drbd_info(device, "Began resync as %s (will sync %lu KB [%lu bits set]).\n", 1853 drbd_conn_str(ns.conn), 1854 (unsigned long) device->rs_total << (BM_BLOCK_SHIFT-10), 1855 (unsigned long) device->rs_total); 1856 if (side == C_SYNC_TARGET) { 1857 device->bm_resync_fo = 0; 1858 device->use_csums = use_checksum_based_resync(connection, device); 1859 } else { 1860 device->use_csums = false; 1861 } 1862 1863 /* Since protocol 96, we must serialize drbd_gen_and_send_sync_uuid 1864 * with w_send_oos, or the sync target will get confused as to 1865 * how much bits to resync. We cannot do that always, because for an 1866 * empty resync and protocol < 95, we need to do it here, as we call 1867 * drbd_resync_finished from here in that case. 1868 * We drbd_gen_and_send_sync_uuid here for protocol < 96, 1869 * and from after_state_ch otherwise. */ 1870 if (side == C_SYNC_SOURCE && connection->agreed_pro_version < 96) 1871 drbd_gen_and_send_sync_uuid(peer_device); 1872 1873 if (connection->agreed_pro_version < 95 && device->rs_total == 0) { 1874 /* This still has a race (about when exactly the peers 1875 * detect connection loss) that can lead to a full sync 1876 * on next handshake. In 8.3.9 we fixed this with explicit 1877 * resync-finished notifications, but the fix 1878 * introduces a protocol change. Sleeping for some 1879 * time longer than the ping interval + timeout on the 1880 * SyncSource, to give the SyncTarget the chance to 1881 * detect connection loss, then waiting for a ping 1882 * response (implicit in drbd_resync_finished) reduces 1883 * the race considerably, but does not solve it. */ 1884 if (side == C_SYNC_SOURCE) { 1885 struct net_conf *nc; 1886 int timeo; 1887 1888 rcu_read_lock(); 1889 nc = rcu_dereference(connection->net_conf); 1890 timeo = nc->ping_int * HZ + nc->ping_timeo * HZ / 9; 1891 rcu_read_unlock(); 1892 schedule_timeout_interruptible(timeo); 1893 } 1894 drbd_resync_finished(device); 1895 } 1896 1897 drbd_rs_controller_reset(device); 1898 /* ns.conn may already be != device->state.conn, 1899 * we may have been paused in between, or become paused until 1900 * the timer triggers. 1901 * No matter, that is handled in resync_timer_fn() */ 1902 if (ns.conn == C_SYNC_TARGET) 1903 mod_timer(&device->resync_timer, jiffies); 1904 1905 drbd_md_sync(device); 1906 } 1907 put_ldev(device); 1908 out: 1909 mutex_unlock(device->state_mutex); 1910 } 1911 1912 static void update_on_disk_bitmap(struct drbd_device *device, bool resync_done) 1913 { 1914 struct sib_info sib = { .sib_reason = SIB_SYNC_PROGRESS, }; 1915 device->rs_last_bcast = jiffies; 1916 1917 if (!get_ldev(device)) 1918 return; 1919 1920 drbd_bm_write_lazy(device, 0); 1921 if (resync_done && is_sync_state(device->state.conn)) 1922 drbd_resync_finished(device); 1923 1924 drbd_bcast_event(device, &sib); 1925 /* update timestamp, in case it took a while to write out stuff */ 1926 device->rs_last_bcast = jiffies; 1927 put_ldev(device); 1928 } 1929 1930 static void drbd_ldev_destroy(struct drbd_device *device) 1931 { 1932 lc_destroy(device->resync); 1933 device->resync = NULL; 1934 lc_destroy(device->act_log); 1935 device->act_log = NULL; 1936 1937 __acquire(local); 1938 drbd_backing_dev_free(device, device->ldev); 1939 device->ldev = NULL; 1940 __release(local); 1941 1942 clear_bit(GOING_DISKLESS, &device->flags); 1943 wake_up(&device->misc_wait); 1944 } 1945 1946 static void go_diskless(struct drbd_device *device) 1947 { 1948 D_ASSERT(device, device->state.disk == D_FAILED); 1949 /* we cannot assert local_cnt == 0 here, as get_ldev_if_state will 1950 * inc/dec it frequently. Once we are D_DISKLESS, no one will touch 1951 * the protected members anymore, though, so once put_ldev reaches zero 1952 * again, it will be safe to free them. */ 1953 1954 /* Try to write changed bitmap pages, read errors may have just 1955 * set some bits outside the area covered by the activity log. 1956 * 1957 * If we have an IO error during the bitmap writeout, 1958 * we will want a full sync next time, just in case. 1959 * (Do we want a specific meta data flag for this?) 1960 * 1961 * If that does not make it to stable storage either, 1962 * we cannot do anything about that anymore. 1963 * 1964 * We still need to check if both bitmap and ldev are present, we may 1965 * end up here after a failed attach, before ldev was even assigned. 1966 */ 1967 if (device->bitmap && device->ldev) { 1968 /* An interrupted resync or similar is allowed to recounts bits 1969 * while we detach. 1970 * Any modifications would not be expected anymore, though. 1971 */ 1972 if (drbd_bitmap_io_from_worker(device, drbd_bm_write, 1973 "detach", BM_LOCKED_TEST_ALLOWED)) { 1974 if (test_bit(WAS_READ_ERROR, &device->flags)) { 1975 drbd_md_set_flag(device, MDF_FULL_SYNC); 1976 drbd_md_sync(device); 1977 } 1978 } 1979 } 1980 1981 drbd_force_state(device, NS(disk, D_DISKLESS)); 1982 } 1983 1984 static int do_md_sync(struct drbd_device *device) 1985 { 1986 drbd_warn(device, "md_sync_timer expired! Worker calls drbd_md_sync().\n"); 1987 drbd_md_sync(device); 1988 return 0; 1989 } 1990 1991 /* only called from drbd_worker thread, no locking */ 1992 void __update_timing_details( 1993 struct drbd_thread_timing_details *tdp, 1994 unsigned int *cb_nr, 1995 void *cb, 1996 const char *fn, const unsigned int line) 1997 { 1998 unsigned int i = *cb_nr % DRBD_THREAD_DETAILS_HIST; 1999 struct drbd_thread_timing_details *td = tdp + i; 2000 2001 td->start_jif = jiffies; 2002 td->cb_addr = cb; 2003 td->caller_fn = fn; 2004 td->line = line; 2005 td->cb_nr = *cb_nr; 2006 2007 i = (i+1) % DRBD_THREAD_DETAILS_HIST; 2008 td = tdp + i; 2009 memset(td, 0, sizeof(*td)); 2010 2011 ++(*cb_nr); 2012 } 2013 2014 static void do_device_work(struct drbd_device *device, const unsigned long todo) 2015 { 2016 if (test_bit(MD_SYNC, &todo)) 2017 do_md_sync(device); 2018 if (test_bit(RS_DONE, &todo) || 2019 test_bit(RS_PROGRESS, &todo)) 2020 update_on_disk_bitmap(device, test_bit(RS_DONE, &todo)); 2021 if (test_bit(GO_DISKLESS, &todo)) 2022 go_diskless(device); 2023 if (test_bit(DESTROY_DISK, &todo)) 2024 drbd_ldev_destroy(device); 2025 if (test_bit(RS_START, &todo)) 2026 do_start_resync(device); 2027 } 2028 2029 #define DRBD_DEVICE_WORK_MASK \ 2030 ((1UL << GO_DISKLESS) \ 2031 |(1UL << DESTROY_DISK) \ 2032 |(1UL << MD_SYNC) \ 2033 |(1UL << RS_START) \ 2034 |(1UL << RS_PROGRESS) \ 2035 |(1UL << RS_DONE) \ 2036 ) 2037 2038 static unsigned long get_work_bits(unsigned long *flags) 2039 { 2040 unsigned long old, new; 2041 do { 2042 old = *flags; 2043 new = old & ~DRBD_DEVICE_WORK_MASK; 2044 } while (cmpxchg(flags, old, new) != old); 2045 return old & DRBD_DEVICE_WORK_MASK; 2046 } 2047 2048 static void do_unqueued_work(struct drbd_connection *connection) 2049 { 2050 struct drbd_peer_device *peer_device; 2051 int vnr; 2052 2053 rcu_read_lock(); 2054 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 2055 struct drbd_device *device = peer_device->device; 2056 unsigned long todo = get_work_bits(&device->flags); 2057 if (!todo) 2058 continue; 2059 2060 kref_get(&device->kref); 2061 rcu_read_unlock(); 2062 do_device_work(device, todo); 2063 kref_put(&device->kref, drbd_destroy_device); 2064 rcu_read_lock(); 2065 } 2066 rcu_read_unlock(); 2067 } 2068 2069 static bool dequeue_work_batch(struct drbd_work_queue *queue, struct list_head *work_list) 2070 { 2071 spin_lock_irq(&queue->q_lock); 2072 list_splice_tail_init(&queue->q, work_list); 2073 spin_unlock_irq(&queue->q_lock); 2074 return !list_empty(work_list); 2075 } 2076 2077 static void wait_for_work(struct drbd_connection *connection, struct list_head *work_list) 2078 { 2079 DEFINE_WAIT(wait); 2080 struct net_conf *nc; 2081 int uncork, cork; 2082 2083 dequeue_work_batch(&connection->sender_work, work_list); 2084 if (!list_empty(work_list)) 2085 return; 2086 2087 /* Still nothing to do? 2088 * Maybe we still need to close the current epoch, 2089 * even if no new requests are queued yet. 2090 * 2091 * Also, poke TCP, just in case. 2092 * Then wait for new work (or signal). */ 2093 rcu_read_lock(); 2094 nc = rcu_dereference(connection->net_conf); 2095 uncork = nc ? nc->tcp_cork : 0; 2096 rcu_read_unlock(); 2097 if (uncork) { 2098 mutex_lock(&connection->data.mutex); 2099 if (connection->data.socket) 2100 tcp_sock_set_cork(connection->data.socket->sk, false); 2101 mutex_unlock(&connection->data.mutex); 2102 } 2103 2104 for (;;) { 2105 int send_barrier; 2106 prepare_to_wait(&connection->sender_work.q_wait, &wait, TASK_INTERRUPTIBLE); 2107 spin_lock_irq(&connection->resource->req_lock); 2108 spin_lock(&connection->sender_work.q_lock); /* FIXME get rid of this one? */ 2109 if (!list_empty(&connection->sender_work.q)) 2110 list_splice_tail_init(&connection->sender_work.q, work_list); 2111 spin_unlock(&connection->sender_work.q_lock); /* FIXME get rid of this one? */ 2112 if (!list_empty(work_list) || signal_pending(current)) { 2113 spin_unlock_irq(&connection->resource->req_lock); 2114 break; 2115 } 2116 2117 /* We found nothing new to do, no to-be-communicated request, 2118 * no other work item. We may still need to close the last 2119 * epoch. Next incoming request epoch will be connection -> 2120 * current transfer log epoch number. If that is different 2121 * from the epoch of the last request we communicated, it is 2122 * safe to send the epoch separating barrier now. 2123 */ 2124 send_barrier = 2125 atomic_read(&connection->current_tle_nr) != 2126 connection->send.current_epoch_nr; 2127 spin_unlock_irq(&connection->resource->req_lock); 2128 2129 if (send_barrier) 2130 maybe_send_barrier(connection, 2131 connection->send.current_epoch_nr + 1); 2132 2133 if (test_bit(DEVICE_WORK_PENDING, &connection->flags)) 2134 break; 2135 2136 /* drbd_send() may have called flush_signals() */ 2137 if (get_t_state(&connection->worker) != RUNNING) 2138 break; 2139 2140 schedule(); 2141 /* may be woken up for other things but new work, too, 2142 * e.g. if the current epoch got closed. 2143 * In which case we send the barrier above. */ 2144 } 2145 finish_wait(&connection->sender_work.q_wait, &wait); 2146 2147 /* someone may have changed the config while we have been waiting above. */ 2148 rcu_read_lock(); 2149 nc = rcu_dereference(connection->net_conf); 2150 cork = nc ? nc->tcp_cork : 0; 2151 rcu_read_unlock(); 2152 mutex_lock(&connection->data.mutex); 2153 if (connection->data.socket) { 2154 if (cork) 2155 tcp_sock_set_cork(connection->data.socket->sk, true); 2156 else if (!uncork) 2157 tcp_sock_set_cork(connection->data.socket->sk, false); 2158 } 2159 mutex_unlock(&connection->data.mutex); 2160 } 2161 2162 int drbd_worker(struct drbd_thread *thi) 2163 { 2164 struct drbd_connection *connection = thi->connection; 2165 struct drbd_work *w = NULL; 2166 struct drbd_peer_device *peer_device; 2167 LIST_HEAD(work_list); 2168 int vnr; 2169 2170 while (get_t_state(thi) == RUNNING) { 2171 drbd_thread_current_set_cpu(thi); 2172 2173 if (list_empty(&work_list)) { 2174 update_worker_timing_details(connection, wait_for_work); 2175 wait_for_work(connection, &work_list); 2176 } 2177 2178 if (test_and_clear_bit(DEVICE_WORK_PENDING, &connection->flags)) { 2179 update_worker_timing_details(connection, do_unqueued_work); 2180 do_unqueued_work(connection); 2181 } 2182 2183 if (signal_pending(current)) { 2184 flush_signals(current); 2185 if (get_t_state(thi) == RUNNING) { 2186 drbd_warn(connection, "Worker got an unexpected signal\n"); 2187 continue; 2188 } 2189 break; 2190 } 2191 2192 if (get_t_state(thi) != RUNNING) 2193 break; 2194 2195 if (!list_empty(&work_list)) { 2196 w = list_first_entry(&work_list, struct drbd_work, list); 2197 list_del_init(&w->list); 2198 update_worker_timing_details(connection, w->cb); 2199 if (w->cb(w, connection->cstate < C_WF_REPORT_PARAMS) == 0) 2200 continue; 2201 if (connection->cstate >= C_WF_REPORT_PARAMS) 2202 conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD); 2203 } 2204 } 2205 2206 do { 2207 if (test_and_clear_bit(DEVICE_WORK_PENDING, &connection->flags)) { 2208 update_worker_timing_details(connection, do_unqueued_work); 2209 do_unqueued_work(connection); 2210 } 2211 if (!list_empty(&work_list)) { 2212 w = list_first_entry(&work_list, struct drbd_work, list); 2213 list_del_init(&w->list); 2214 update_worker_timing_details(connection, w->cb); 2215 w->cb(w, 1); 2216 } else 2217 dequeue_work_batch(&connection->sender_work, &work_list); 2218 } while (!list_empty(&work_list) || test_bit(DEVICE_WORK_PENDING, &connection->flags)); 2219 2220 rcu_read_lock(); 2221 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 2222 struct drbd_device *device = peer_device->device; 2223 D_ASSERT(device, device->state.disk == D_DISKLESS && device->state.conn == C_STANDALONE); 2224 kref_get(&device->kref); 2225 rcu_read_unlock(); 2226 drbd_device_cleanup(device); 2227 kref_put(&device->kref, drbd_destroy_device); 2228 rcu_read_lock(); 2229 } 2230 rcu_read_unlock(); 2231 2232 return 0; 2233 } 2234