1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 drbd_state.c 4 5 This file is part of DRBD by Philipp Reisner and Lars Ellenberg. 6 7 Copyright (C) 2001-2008, LINBIT Information Technologies GmbH. 8 Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>. 9 Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>. 10 11 Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev 12 from Logicworks, Inc. for making SDP replication support possible. 13 14 */ 15 16 #include <linux/drbd_limits.h> 17 #include "drbd_int.h" 18 #include "drbd_protocol.h" 19 #include "drbd_req.h" 20 #include "drbd_state_change.h" 21 22 struct after_state_chg_work { 23 struct drbd_work w; 24 struct drbd_device *device; 25 union drbd_state os; 26 union drbd_state ns; 27 enum chg_state_flags flags; 28 struct completion *done; 29 struct drbd_state_change *state_change; 30 }; 31 32 enum sanitize_state_warnings { 33 NO_WARNING, 34 ABORTED_ONLINE_VERIFY, 35 ABORTED_RESYNC, 36 CONNECTION_LOST_NEGOTIATING, 37 IMPLICITLY_UPGRADED_DISK, 38 IMPLICITLY_UPGRADED_PDSK, 39 }; 40 41 static void count_objects(struct drbd_resource *resource, 42 unsigned int *n_devices, 43 unsigned int *n_connections) 44 { 45 struct drbd_device *device; 46 struct drbd_connection *connection; 47 int vnr; 48 49 *n_devices = 0; 50 *n_connections = 0; 51 52 idr_for_each_entry(&resource->devices, device, vnr) 53 (*n_devices)++; 54 for_each_connection(connection, resource) 55 (*n_connections)++; 56 } 57 58 static struct drbd_state_change *alloc_state_change(unsigned int n_devices, unsigned int n_connections, gfp_t gfp) 59 { 60 struct drbd_state_change *state_change; 61 unsigned int size, n; 62 63 size = sizeof(struct drbd_state_change) + 64 n_devices * sizeof(struct drbd_device_state_change) + 65 n_connections * sizeof(struct drbd_connection_state_change) + 66 n_devices * n_connections * sizeof(struct drbd_peer_device_state_change); 67 state_change = kmalloc(size, gfp); 68 if (!state_change) 69 return NULL; 70 state_change->n_devices = n_devices; 71 state_change->n_connections = n_connections; 72 state_change->devices = (void *)(state_change + 1); 73 state_change->connections = (void *)&state_change->devices[n_devices]; 74 state_change->peer_devices = (void *)&state_change->connections[n_connections]; 75 state_change->resource->resource = NULL; 76 for (n = 0; n < n_devices; n++) 77 state_change->devices[n].device = NULL; 78 for (n = 0; n < n_connections; n++) 79 state_change->connections[n].connection = NULL; 80 return state_change; 81 } 82 83 struct drbd_state_change *remember_old_state(struct drbd_resource *resource, gfp_t gfp) 84 { 85 struct drbd_state_change *state_change; 86 struct drbd_device *device; 87 unsigned int n_devices; 88 struct drbd_connection *connection; 89 unsigned int n_connections; 90 int vnr; 91 92 struct drbd_device_state_change *device_state_change; 93 struct drbd_peer_device_state_change *peer_device_state_change; 94 struct drbd_connection_state_change *connection_state_change; 95 96 /* Caller holds req_lock spinlock. 97 * No state, no device IDR, no connections lists can change. */ 98 count_objects(resource, &n_devices, &n_connections); 99 state_change = alloc_state_change(n_devices, n_connections, gfp); 100 if (!state_change) 101 return NULL; 102 103 kref_get(&resource->kref); 104 state_change->resource->resource = resource; 105 state_change->resource->role[OLD] = 106 conn_highest_role(first_connection(resource)); 107 state_change->resource->susp[OLD] = resource->susp; 108 state_change->resource->susp_nod[OLD] = resource->susp_nod; 109 state_change->resource->susp_fen[OLD] = resource->susp_fen; 110 111 connection_state_change = state_change->connections; 112 for_each_connection(connection, resource) { 113 kref_get(&connection->kref); 114 connection_state_change->connection = connection; 115 connection_state_change->cstate[OLD] = 116 connection->cstate; 117 connection_state_change->peer_role[OLD] = 118 conn_highest_peer(connection); 119 connection_state_change++; 120 } 121 122 device_state_change = state_change->devices; 123 peer_device_state_change = state_change->peer_devices; 124 idr_for_each_entry(&resource->devices, device, vnr) { 125 kref_get(&device->kref); 126 device_state_change->device = device; 127 device_state_change->disk_state[OLD] = device->state.disk; 128 129 /* The peer_devices for each device have to be enumerated in 130 the order of the connections. We may not use for_each_peer_device() here. */ 131 for_each_connection(connection, resource) { 132 struct drbd_peer_device *peer_device; 133 134 peer_device = conn_peer_device(connection, device->vnr); 135 peer_device_state_change->peer_device = peer_device; 136 peer_device_state_change->disk_state[OLD] = 137 device->state.pdsk; 138 peer_device_state_change->repl_state[OLD] = 139 max_t(enum drbd_conns, 140 C_WF_REPORT_PARAMS, device->state.conn); 141 peer_device_state_change->resync_susp_user[OLD] = 142 device->state.user_isp; 143 peer_device_state_change->resync_susp_peer[OLD] = 144 device->state.peer_isp; 145 peer_device_state_change->resync_susp_dependency[OLD] = 146 device->state.aftr_isp; 147 peer_device_state_change++; 148 } 149 device_state_change++; 150 } 151 152 return state_change; 153 } 154 155 static void remember_new_state(struct drbd_state_change *state_change) 156 { 157 struct drbd_resource_state_change *resource_state_change; 158 struct drbd_resource *resource; 159 unsigned int n; 160 161 if (!state_change) 162 return; 163 164 resource_state_change = &state_change->resource[0]; 165 resource = resource_state_change->resource; 166 167 resource_state_change->role[NEW] = 168 conn_highest_role(first_connection(resource)); 169 resource_state_change->susp[NEW] = resource->susp; 170 resource_state_change->susp_nod[NEW] = resource->susp_nod; 171 resource_state_change->susp_fen[NEW] = resource->susp_fen; 172 173 for (n = 0; n < state_change->n_devices; n++) { 174 struct drbd_device_state_change *device_state_change = 175 &state_change->devices[n]; 176 struct drbd_device *device = device_state_change->device; 177 178 device_state_change->disk_state[NEW] = device->state.disk; 179 } 180 181 for (n = 0; n < state_change->n_connections; n++) { 182 struct drbd_connection_state_change *connection_state_change = 183 &state_change->connections[n]; 184 struct drbd_connection *connection = 185 connection_state_change->connection; 186 187 connection_state_change->cstate[NEW] = connection->cstate; 188 connection_state_change->peer_role[NEW] = 189 conn_highest_peer(connection); 190 } 191 192 for (n = 0; n < state_change->n_devices * state_change->n_connections; n++) { 193 struct drbd_peer_device_state_change *peer_device_state_change = 194 &state_change->peer_devices[n]; 195 struct drbd_device *device = 196 peer_device_state_change->peer_device->device; 197 union drbd_dev_state state = device->state; 198 199 peer_device_state_change->disk_state[NEW] = state.pdsk; 200 peer_device_state_change->repl_state[NEW] = 201 max_t(enum drbd_conns, C_WF_REPORT_PARAMS, state.conn); 202 peer_device_state_change->resync_susp_user[NEW] = 203 state.user_isp; 204 peer_device_state_change->resync_susp_peer[NEW] = 205 state.peer_isp; 206 peer_device_state_change->resync_susp_dependency[NEW] = 207 state.aftr_isp; 208 } 209 } 210 211 void copy_old_to_new_state_change(struct drbd_state_change *state_change) 212 { 213 struct drbd_resource_state_change *resource_state_change = &state_change->resource[0]; 214 unsigned int n_device, n_connection, n_peer_device, n_peer_devices; 215 216 #define OLD_TO_NEW(x) \ 217 (x[NEW] = x[OLD]) 218 219 OLD_TO_NEW(resource_state_change->role); 220 OLD_TO_NEW(resource_state_change->susp); 221 OLD_TO_NEW(resource_state_change->susp_nod); 222 OLD_TO_NEW(resource_state_change->susp_fen); 223 224 for (n_connection = 0; n_connection < state_change->n_connections; n_connection++) { 225 struct drbd_connection_state_change *connection_state_change = 226 &state_change->connections[n_connection]; 227 228 OLD_TO_NEW(connection_state_change->peer_role); 229 OLD_TO_NEW(connection_state_change->cstate); 230 } 231 232 for (n_device = 0; n_device < state_change->n_devices; n_device++) { 233 struct drbd_device_state_change *device_state_change = 234 &state_change->devices[n_device]; 235 236 OLD_TO_NEW(device_state_change->disk_state); 237 } 238 239 n_peer_devices = state_change->n_devices * state_change->n_connections; 240 for (n_peer_device = 0; n_peer_device < n_peer_devices; n_peer_device++) { 241 struct drbd_peer_device_state_change *p = 242 &state_change->peer_devices[n_peer_device]; 243 244 OLD_TO_NEW(p->disk_state); 245 OLD_TO_NEW(p->repl_state); 246 OLD_TO_NEW(p->resync_susp_user); 247 OLD_TO_NEW(p->resync_susp_peer); 248 OLD_TO_NEW(p->resync_susp_dependency); 249 } 250 251 #undef OLD_TO_NEW 252 } 253 254 void forget_state_change(struct drbd_state_change *state_change) 255 { 256 unsigned int n; 257 258 if (!state_change) 259 return; 260 261 if (state_change->resource->resource) 262 kref_put(&state_change->resource->resource->kref, drbd_destroy_resource); 263 for (n = 0; n < state_change->n_devices; n++) { 264 struct drbd_device *device = state_change->devices[n].device; 265 266 if (device) 267 kref_put(&device->kref, drbd_destroy_device); 268 } 269 for (n = 0; n < state_change->n_connections; n++) { 270 struct drbd_connection *connection = 271 state_change->connections[n].connection; 272 273 if (connection) 274 kref_put(&connection->kref, drbd_destroy_connection); 275 } 276 kfree(state_change); 277 } 278 279 static int w_after_state_ch(struct drbd_work *w, int unused); 280 static void after_state_ch(struct drbd_device *device, union drbd_state os, 281 union drbd_state ns, enum chg_state_flags flags, 282 struct drbd_state_change *); 283 static enum drbd_state_rv is_valid_state(struct drbd_device *, union drbd_state); 284 static enum drbd_state_rv is_valid_soft_transition(union drbd_state, union drbd_state, struct drbd_connection *); 285 static enum drbd_state_rv is_valid_transition(union drbd_state os, union drbd_state ns); 286 static union drbd_state sanitize_state(struct drbd_device *device, union drbd_state os, 287 union drbd_state ns, enum sanitize_state_warnings *warn); 288 289 static inline bool is_susp(union drbd_state s) 290 { 291 return s.susp || s.susp_nod || s.susp_fen; 292 } 293 294 bool conn_all_vols_unconf(struct drbd_connection *connection) 295 { 296 struct drbd_peer_device *peer_device; 297 bool rv = true; 298 int vnr; 299 300 rcu_read_lock(); 301 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 302 struct drbd_device *device = peer_device->device; 303 if (device->state.disk != D_DISKLESS || 304 device->state.conn != C_STANDALONE || 305 device->state.role != R_SECONDARY) { 306 rv = false; 307 break; 308 } 309 } 310 rcu_read_unlock(); 311 312 return rv; 313 } 314 315 /* Unfortunately the states where not correctly ordered, when 316 they where defined. therefore can not use max_t() here. */ 317 static enum drbd_role max_role(enum drbd_role role1, enum drbd_role role2) 318 { 319 if (role1 == R_PRIMARY || role2 == R_PRIMARY) 320 return R_PRIMARY; 321 if (role1 == R_SECONDARY || role2 == R_SECONDARY) 322 return R_SECONDARY; 323 return R_UNKNOWN; 324 } 325 326 static enum drbd_role min_role(enum drbd_role role1, enum drbd_role role2) 327 { 328 if (role1 == R_UNKNOWN || role2 == R_UNKNOWN) 329 return R_UNKNOWN; 330 if (role1 == R_SECONDARY || role2 == R_SECONDARY) 331 return R_SECONDARY; 332 return R_PRIMARY; 333 } 334 335 enum drbd_role conn_highest_role(struct drbd_connection *connection) 336 { 337 enum drbd_role role = R_SECONDARY; 338 struct drbd_peer_device *peer_device; 339 int vnr; 340 341 rcu_read_lock(); 342 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 343 struct drbd_device *device = peer_device->device; 344 role = max_role(role, device->state.role); 345 } 346 rcu_read_unlock(); 347 348 return role; 349 } 350 351 enum drbd_role conn_highest_peer(struct drbd_connection *connection) 352 { 353 enum drbd_role peer = R_UNKNOWN; 354 struct drbd_peer_device *peer_device; 355 int vnr; 356 357 rcu_read_lock(); 358 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 359 struct drbd_device *device = peer_device->device; 360 peer = max_role(peer, device->state.peer); 361 } 362 rcu_read_unlock(); 363 364 return peer; 365 } 366 367 enum drbd_disk_state conn_highest_disk(struct drbd_connection *connection) 368 { 369 enum drbd_disk_state disk_state = D_DISKLESS; 370 struct drbd_peer_device *peer_device; 371 int vnr; 372 373 rcu_read_lock(); 374 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 375 struct drbd_device *device = peer_device->device; 376 disk_state = max_t(enum drbd_disk_state, disk_state, device->state.disk); 377 } 378 rcu_read_unlock(); 379 380 return disk_state; 381 } 382 383 enum drbd_disk_state conn_lowest_disk(struct drbd_connection *connection) 384 { 385 enum drbd_disk_state disk_state = D_MASK; 386 struct drbd_peer_device *peer_device; 387 int vnr; 388 389 rcu_read_lock(); 390 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 391 struct drbd_device *device = peer_device->device; 392 disk_state = min_t(enum drbd_disk_state, disk_state, device->state.disk); 393 } 394 rcu_read_unlock(); 395 396 return disk_state; 397 } 398 399 enum drbd_disk_state conn_highest_pdsk(struct drbd_connection *connection) 400 { 401 enum drbd_disk_state disk_state = D_DISKLESS; 402 struct drbd_peer_device *peer_device; 403 int vnr; 404 405 rcu_read_lock(); 406 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 407 struct drbd_device *device = peer_device->device; 408 disk_state = max_t(enum drbd_disk_state, disk_state, device->state.pdsk); 409 } 410 rcu_read_unlock(); 411 412 return disk_state; 413 } 414 415 enum drbd_conns conn_lowest_conn(struct drbd_connection *connection) 416 { 417 enum drbd_conns conn = C_MASK; 418 struct drbd_peer_device *peer_device; 419 int vnr; 420 421 rcu_read_lock(); 422 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 423 struct drbd_device *device = peer_device->device; 424 conn = min_t(enum drbd_conns, conn, device->state.conn); 425 } 426 rcu_read_unlock(); 427 428 return conn; 429 } 430 431 static bool no_peer_wf_report_params(struct drbd_connection *connection) 432 { 433 struct drbd_peer_device *peer_device; 434 int vnr; 435 bool rv = true; 436 437 rcu_read_lock(); 438 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) 439 if (peer_device->device->state.conn == C_WF_REPORT_PARAMS) { 440 rv = false; 441 break; 442 } 443 rcu_read_unlock(); 444 445 return rv; 446 } 447 448 static void wake_up_all_devices(struct drbd_connection *connection) 449 { 450 struct drbd_peer_device *peer_device; 451 int vnr; 452 453 rcu_read_lock(); 454 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) 455 wake_up(&peer_device->device->state_wait); 456 rcu_read_unlock(); 457 458 } 459 460 461 /** 462 * cl_wide_st_chg() - true if the state change is a cluster wide one 463 * @device: DRBD device. 464 * @os: old (current) state. 465 * @ns: new (wanted) state. 466 */ 467 static int cl_wide_st_chg(struct drbd_device *device, 468 union drbd_state os, union drbd_state ns) 469 { 470 return (os.conn >= C_CONNECTED && ns.conn >= C_CONNECTED && 471 ((os.role != R_PRIMARY && ns.role == R_PRIMARY) || 472 (os.conn != C_STARTING_SYNC_T && ns.conn == C_STARTING_SYNC_T) || 473 (os.conn != C_STARTING_SYNC_S && ns.conn == C_STARTING_SYNC_S) || 474 (os.disk != D_FAILED && ns.disk == D_FAILED))) || 475 (os.conn >= C_CONNECTED && ns.conn == C_DISCONNECTING) || 476 (os.conn == C_CONNECTED && ns.conn == C_VERIFY_S) || 477 (os.conn == C_CONNECTED && ns.conn == C_WF_REPORT_PARAMS); 478 } 479 480 static union drbd_state 481 apply_mask_val(union drbd_state os, union drbd_state mask, union drbd_state val) 482 { 483 union drbd_state ns; 484 ns.i = (os.i & ~mask.i) | val.i; 485 return ns; 486 } 487 488 enum drbd_state_rv 489 drbd_change_state(struct drbd_device *device, enum chg_state_flags f, 490 union drbd_state mask, union drbd_state val) 491 { 492 unsigned long flags; 493 union drbd_state ns; 494 enum drbd_state_rv rv; 495 496 spin_lock_irqsave(&device->resource->req_lock, flags); 497 ns = apply_mask_val(drbd_read_state(device), mask, val); 498 rv = _drbd_set_state(device, ns, f, NULL); 499 spin_unlock_irqrestore(&device->resource->req_lock, flags); 500 501 return rv; 502 } 503 504 /** 505 * drbd_force_state() - Impose a change which happens outside our control on our state 506 * @device: DRBD device. 507 * @mask: mask of state bits to change. 508 * @val: value of new state bits. 509 */ 510 void drbd_force_state(struct drbd_device *device, 511 union drbd_state mask, union drbd_state val) 512 { 513 drbd_change_state(device, CS_HARD, mask, val); 514 } 515 516 static enum drbd_state_rv 517 _req_st_cond(struct drbd_device *device, union drbd_state mask, 518 union drbd_state val) 519 { 520 union drbd_state os, ns; 521 unsigned long flags; 522 enum drbd_state_rv rv; 523 524 if (test_and_clear_bit(CL_ST_CHG_SUCCESS, &device->flags)) 525 return SS_CW_SUCCESS; 526 527 if (test_and_clear_bit(CL_ST_CHG_FAIL, &device->flags)) 528 return SS_CW_FAILED_BY_PEER; 529 530 spin_lock_irqsave(&device->resource->req_lock, flags); 531 os = drbd_read_state(device); 532 ns = sanitize_state(device, os, apply_mask_val(os, mask, val), NULL); 533 rv = is_valid_transition(os, ns); 534 if (rv >= SS_SUCCESS) 535 rv = SS_UNKNOWN_ERROR; /* cont waiting, otherwise fail. */ 536 537 if (!cl_wide_st_chg(device, os, ns)) 538 rv = SS_CW_NO_NEED; 539 if (rv == SS_UNKNOWN_ERROR) { 540 rv = is_valid_state(device, ns); 541 if (rv >= SS_SUCCESS) { 542 rv = is_valid_soft_transition(os, ns, first_peer_device(device)->connection); 543 if (rv >= SS_SUCCESS) 544 rv = SS_UNKNOWN_ERROR; /* cont waiting, otherwise fail. */ 545 } 546 } 547 spin_unlock_irqrestore(&device->resource->req_lock, flags); 548 549 return rv; 550 } 551 552 /** 553 * drbd_req_state() - Perform an eventually cluster wide state change 554 * @device: DRBD device. 555 * @mask: mask of state bits to change. 556 * @val: value of new state bits. 557 * @f: flags 558 * 559 * Should not be called directly, use drbd_request_state() or 560 * _drbd_request_state(). 561 */ 562 static enum drbd_state_rv 563 drbd_req_state(struct drbd_device *device, union drbd_state mask, 564 union drbd_state val, enum chg_state_flags f) 565 { 566 struct completion done; 567 unsigned long flags; 568 union drbd_state os, ns; 569 enum drbd_state_rv rv; 570 void *buffer = NULL; 571 572 init_completion(&done); 573 574 if (f & CS_SERIALIZE) 575 mutex_lock(device->state_mutex); 576 if (f & CS_INHIBIT_MD_IO) 577 buffer = drbd_md_get_buffer(device, __func__); 578 579 spin_lock_irqsave(&device->resource->req_lock, flags); 580 os = drbd_read_state(device); 581 ns = sanitize_state(device, os, apply_mask_val(os, mask, val), NULL); 582 rv = is_valid_transition(os, ns); 583 if (rv < SS_SUCCESS) { 584 spin_unlock_irqrestore(&device->resource->req_lock, flags); 585 goto abort; 586 } 587 588 if (cl_wide_st_chg(device, os, ns)) { 589 rv = is_valid_state(device, ns); 590 if (rv == SS_SUCCESS) 591 rv = is_valid_soft_transition(os, ns, first_peer_device(device)->connection); 592 spin_unlock_irqrestore(&device->resource->req_lock, flags); 593 594 if (rv < SS_SUCCESS) { 595 if (f & CS_VERBOSE) 596 print_st_err(device, os, ns, rv); 597 goto abort; 598 } 599 600 if (drbd_send_state_req(first_peer_device(device), mask, val)) { 601 rv = SS_CW_FAILED_BY_PEER; 602 if (f & CS_VERBOSE) 603 print_st_err(device, os, ns, rv); 604 goto abort; 605 } 606 607 wait_event(device->state_wait, 608 (rv = _req_st_cond(device, mask, val))); 609 610 if (rv < SS_SUCCESS) { 611 if (f & CS_VERBOSE) 612 print_st_err(device, os, ns, rv); 613 goto abort; 614 } 615 spin_lock_irqsave(&device->resource->req_lock, flags); 616 ns = apply_mask_val(drbd_read_state(device), mask, val); 617 rv = _drbd_set_state(device, ns, f, &done); 618 } else { 619 rv = _drbd_set_state(device, ns, f, &done); 620 } 621 622 spin_unlock_irqrestore(&device->resource->req_lock, flags); 623 624 if (f & CS_WAIT_COMPLETE && rv == SS_SUCCESS) { 625 D_ASSERT(device, current != first_peer_device(device)->connection->worker.task); 626 wait_for_completion(&done); 627 } 628 629 abort: 630 if (buffer) 631 drbd_md_put_buffer(device); 632 if (f & CS_SERIALIZE) 633 mutex_unlock(device->state_mutex); 634 635 return rv; 636 } 637 638 /** 639 * _drbd_request_state() - Request a state change (with flags) 640 * @device: DRBD device. 641 * @mask: mask of state bits to change. 642 * @val: value of new state bits. 643 * @f: flags 644 * 645 * Cousin of drbd_request_state(), useful with the CS_WAIT_COMPLETE 646 * flag, or when logging of failed state change requests is not desired. 647 */ 648 enum drbd_state_rv 649 _drbd_request_state(struct drbd_device *device, union drbd_state mask, 650 union drbd_state val, enum chg_state_flags f) 651 { 652 enum drbd_state_rv rv; 653 654 wait_event(device->state_wait, 655 (rv = drbd_req_state(device, mask, val, f)) != SS_IN_TRANSIENT_STATE); 656 657 return rv; 658 } 659 660 /* 661 * We grab drbd_md_get_buffer(), because we don't want to "fail" the disk while 662 * there is IO in-flight: the transition into D_FAILED for detach purposes 663 * may get misinterpreted as actual IO error in a confused endio function. 664 * 665 * We wrap it all into wait_event(), to retry in case the drbd_req_state() 666 * returns SS_IN_TRANSIENT_STATE. 667 * 668 * To avoid potential deadlock with e.g. the receiver thread trying to grab 669 * drbd_md_get_buffer() while trying to get out of the "transient state", we 670 * need to grab and release the meta data buffer inside of that wait_event loop. 671 */ 672 static enum drbd_state_rv 673 request_detach(struct drbd_device *device) 674 { 675 return drbd_req_state(device, NS(disk, D_FAILED), 676 CS_VERBOSE | CS_ORDERED | CS_INHIBIT_MD_IO); 677 } 678 679 int drbd_request_detach_interruptible(struct drbd_device *device) 680 { 681 int ret, rv; 682 683 drbd_suspend_io(device); /* so no-one is stuck in drbd_al_begin_io */ 684 wait_event_interruptible(device->state_wait, 685 (rv = request_detach(device)) != SS_IN_TRANSIENT_STATE); 686 drbd_resume_io(device); 687 688 ret = wait_event_interruptible(device->misc_wait, 689 device->state.disk != D_FAILED); 690 691 if (rv == SS_IS_DISKLESS) 692 rv = SS_NOTHING_TO_DO; 693 if (ret) 694 rv = ERR_INTR; 695 696 return rv; 697 } 698 699 enum drbd_state_rv 700 _drbd_request_state_holding_state_mutex(struct drbd_device *device, union drbd_state mask, 701 union drbd_state val, enum chg_state_flags f) 702 { 703 enum drbd_state_rv rv; 704 705 BUG_ON(f & CS_SERIALIZE); 706 707 wait_event_cmd(device->state_wait, 708 (rv = drbd_req_state(device, mask, val, f)) != SS_IN_TRANSIENT_STATE, 709 mutex_unlock(device->state_mutex), 710 mutex_lock(device->state_mutex)); 711 712 return rv; 713 } 714 715 static void print_st(struct drbd_device *device, const char *name, union drbd_state ns) 716 { 717 drbd_err(device, " %s = { cs:%s ro:%s/%s ds:%s/%s %c%c%c%c%c%c }\n", 718 name, 719 drbd_conn_str(ns.conn), 720 drbd_role_str(ns.role), 721 drbd_role_str(ns.peer), 722 drbd_disk_str(ns.disk), 723 drbd_disk_str(ns.pdsk), 724 is_susp(ns) ? 's' : 'r', 725 ns.aftr_isp ? 'a' : '-', 726 ns.peer_isp ? 'p' : '-', 727 ns.user_isp ? 'u' : '-', 728 ns.susp_fen ? 'F' : '-', 729 ns.susp_nod ? 'N' : '-' 730 ); 731 } 732 733 void print_st_err(struct drbd_device *device, union drbd_state os, 734 union drbd_state ns, enum drbd_state_rv err) 735 { 736 if (err == SS_IN_TRANSIENT_STATE) 737 return; 738 drbd_err(device, "State change failed: %s\n", drbd_set_st_err_str(err)); 739 print_st(device, " state", os); 740 print_st(device, "wanted", ns); 741 } 742 743 static long print_state_change(char *pb, union drbd_state os, union drbd_state ns, 744 enum chg_state_flags flags) 745 { 746 char *pbp; 747 pbp = pb; 748 *pbp = 0; 749 750 if (ns.role != os.role && flags & CS_DC_ROLE) 751 pbp += sprintf(pbp, "role( %s -> %s ) ", 752 drbd_role_str(os.role), 753 drbd_role_str(ns.role)); 754 if (ns.peer != os.peer && flags & CS_DC_PEER) 755 pbp += sprintf(pbp, "peer( %s -> %s ) ", 756 drbd_role_str(os.peer), 757 drbd_role_str(ns.peer)); 758 if (ns.conn != os.conn && flags & CS_DC_CONN) 759 pbp += sprintf(pbp, "conn( %s -> %s ) ", 760 drbd_conn_str(os.conn), 761 drbd_conn_str(ns.conn)); 762 if (ns.disk != os.disk && flags & CS_DC_DISK) 763 pbp += sprintf(pbp, "disk( %s -> %s ) ", 764 drbd_disk_str(os.disk), 765 drbd_disk_str(ns.disk)); 766 if (ns.pdsk != os.pdsk && flags & CS_DC_PDSK) 767 pbp += sprintf(pbp, "pdsk( %s -> %s ) ", 768 drbd_disk_str(os.pdsk), 769 drbd_disk_str(ns.pdsk)); 770 771 return pbp - pb; 772 } 773 774 static void drbd_pr_state_change(struct drbd_device *device, union drbd_state os, union drbd_state ns, 775 enum chg_state_flags flags) 776 { 777 char pb[300]; 778 char *pbp = pb; 779 780 pbp += print_state_change(pbp, os, ns, flags ^ CS_DC_MASK); 781 782 if (ns.aftr_isp != os.aftr_isp) 783 pbp += sprintf(pbp, "aftr_isp( %d -> %d ) ", 784 os.aftr_isp, 785 ns.aftr_isp); 786 if (ns.peer_isp != os.peer_isp) 787 pbp += sprintf(pbp, "peer_isp( %d -> %d ) ", 788 os.peer_isp, 789 ns.peer_isp); 790 if (ns.user_isp != os.user_isp) 791 pbp += sprintf(pbp, "user_isp( %d -> %d ) ", 792 os.user_isp, 793 ns.user_isp); 794 795 if (pbp != pb) 796 drbd_info(device, "%s\n", pb); 797 } 798 799 static void conn_pr_state_change(struct drbd_connection *connection, union drbd_state os, union drbd_state ns, 800 enum chg_state_flags flags) 801 { 802 char pb[300]; 803 char *pbp = pb; 804 805 pbp += print_state_change(pbp, os, ns, flags); 806 807 if (is_susp(ns) != is_susp(os) && flags & CS_DC_SUSP) 808 pbp += sprintf(pbp, "susp( %d -> %d ) ", 809 is_susp(os), 810 is_susp(ns)); 811 812 if (pbp != pb) 813 drbd_info(connection, "%s\n", pb); 814 } 815 816 817 /** 818 * is_valid_state() - Returns an SS_ error code if ns is not valid 819 * @device: DRBD device. 820 * @ns: State to consider. 821 */ 822 static enum drbd_state_rv 823 is_valid_state(struct drbd_device *device, union drbd_state ns) 824 { 825 /* See drbd_state_sw_errors in drbd_strings.c */ 826 827 enum drbd_fencing_p fp; 828 enum drbd_state_rv rv = SS_SUCCESS; 829 struct net_conf *nc; 830 831 rcu_read_lock(); 832 fp = FP_DONT_CARE; 833 if (get_ldev(device)) { 834 fp = rcu_dereference(device->ldev->disk_conf)->fencing; 835 put_ldev(device); 836 } 837 838 nc = rcu_dereference(first_peer_device(device)->connection->net_conf); 839 if (nc) { 840 if (!nc->two_primaries && ns.role == R_PRIMARY) { 841 if (ns.peer == R_PRIMARY) 842 rv = SS_TWO_PRIMARIES; 843 else if (conn_highest_peer(first_peer_device(device)->connection) == R_PRIMARY) 844 rv = SS_O_VOL_PEER_PRI; 845 } 846 } 847 848 if (rv <= 0) 849 goto out; /* already found a reason to abort */ 850 else if (ns.role == R_SECONDARY && device->open_cnt) 851 rv = SS_DEVICE_IN_USE; 852 853 else if (ns.role == R_PRIMARY && ns.conn < C_CONNECTED && ns.disk < D_UP_TO_DATE) 854 rv = SS_NO_UP_TO_DATE_DISK; 855 856 else if (fp >= FP_RESOURCE && 857 ns.role == R_PRIMARY && ns.conn < C_CONNECTED && ns.pdsk >= D_UNKNOWN) 858 rv = SS_PRIMARY_NOP; 859 860 else if (ns.role == R_PRIMARY && ns.disk <= D_INCONSISTENT && ns.pdsk <= D_INCONSISTENT) 861 rv = SS_NO_UP_TO_DATE_DISK; 862 863 else if (ns.conn > C_CONNECTED && ns.disk < D_INCONSISTENT) 864 rv = SS_NO_LOCAL_DISK; 865 866 else if (ns.conn > C_CONNECTED && ns.pdsk < D_INCONSISTENT) 867 rv = SS_NO_REMOTE_DISK; 868 869 else if (ns.conn > C_CONNECTED && ns.disk < D_UP_TO_DATE && ns.pdsk < D_UP_TO_DATE) 870 rv = SS_NO_UP_TO_DATE_DISK; 871 872 else if ((ns.conn == C_CONNECTED || 873 ns.conn == C_WF_BITMAP_S || 874 ns.conn == C_SYNC_SOURCE || 875 ns.conn == C_PAUSED_SYNC_S) && 876 ns.disk == D_OUTDATED) 877 rv = SS_CONNECTED_OUTDATES; 878 879 else if ((ns.conn == C_VERIFY_S || ns.conn == C_VERIFY_T) && 880 (nc->verify_alg[0] == 0)) 881 rv = SS_NO_VERIFY_ALG; 882 883 else if ((ns.conn == C_VERIFY_S || ns.conn == C_VERIFY_T) && 884 first_peer_device(device)->connection->agreed_pro_version < 88) 885 rv = SS_NOT_SUPPORTED; 886 887 else if (ns.role == R_PRIMARY && ns.disk < D_UP_TO_DATE && ns.pdsk < D_UP_TO_DATE) 888 rv = SS_NO_UP_TO_DATE_DISK; 889 890 else if ((ns.conn == C_STARTING_SYNC_S || ns.conn == C_STARTING_SYNC_T) && 891 ns.pdsk == D_UNKNOWN) 892 rv = SS_NEED_CONNECTION; 893 894 else if (ns.conn >= C_CONNECTED && ns.pdsk == D_UNKNOWN) 895 rv = SS_CONNECTED_OUTDATES; 896 897 out: 898 rcu_read_unlock(); 899 900 return rv; 901 } 902 903 /** 904 * is_valid_soft_transition() - Returns an SS_ error code if the state transition is not possible 905 * This function limits state transitions that may be declined by DRBD. I.e. 906 * user requests (aka soft transitions). 907 * @device: DRBD device. 908 * @ns: new state. 909 * @os: old state. 910 */ 911 static enum drbd_state_rv 912 is_valid_soft_transition(union drbd_state os, union drbd_state ns, struct drbd_connection *connection) 913 { 914 enum drbd_state_rv rv = SS_SUCCESS; 915 916 if ((ns.conn == C_STARTING_SYNC_T || ns.conn == C_STARTING_SYNC_S) && 917 os.conn > C_CONNECTED) 918 rv = SS_RESYNC_RUNNING; 919 920 if (ns.conn == C_DISCONNECTING && os.conn == C_STANDALONE) 921 rv = SS_ALREADY_STANDALONE; 922 923 if (ns.disk > D_ATTACHING && os.disk == D_DISKLESS) 924 rv = SS_IS_DISKLESS; 925 926 if (ns.conn == C_WF_CONNECTION && os.conn < C_UNCONNECTED) 927 rv = SS_NO_NET_CONFIG; 928 929 if (ns.disk == D_OUTDATED && os.disk < D_OUTDATED && os.disk != D_ATTACHING) 930 rv = SS_LOWER_THAN_OUTDATED; 931 932 if (ns.conn == C_DISCONNECTING && os.conn == C_UNCONNECTED) 933 rv = SS_IN_TRANSIENT_STATE; 934 935 /* While establishing a connection only allow cstate to change. 936 Delay/refuse role changes, detach attach etc... (they do not touch cstate) */ 937 if (test_bit(STATE_SENT, &connection->flags) && 938 !((ns.conn == C_WF_REPORT_PARAMS && os.conn == C_WF_CONNECTION) || 939 (ns.conn >= C_CONNECTED && os.conn == C_WF_REPORT_PARAMS))) 940 rv = SS_IN_TRANSIENT_STATE; 941 942 /* Do not promote during resync handshake triggered by "force primary". 943 * This is a hack. It should really be rejected by the peer during the 944 * cluster wide state change request. */ 945 if (os.role != R_PRIMARY && ns.role == R_PRIMARY 946 && ns.pdsk == D_UP_TO_DATE 947 && ns.disk != D_UP_TO_DATE && ns.disk != D_DISKLESS 948 && (ns.conn <= C_WF_SYNC_UUID || ns.conn != os.conn)) 949 rv = SS_IN_TRANSIENT_STATE; 950 951 if ((ns.conn == C_VERIFY_S || ns.conn == C_VERIFY_T) && os.conn < C_CONNECTED) 952 rv = SS_NEED_CONNECTION; 953 954 if ((ns.conn == C_VERIFY_S || ns.conn == C_VERIFY_T) && 955 ns.conn != os.conn && os.conn > C_CONNECTED) 956 rv = SS_RESYNC_RUNNING; 957 958 if ((ns.conn == C_STARTING_SYNC_S || ns.conn == C_STARTING_SYNC_T) && 959 os.conn < C_CONNECTED) 960 rv = SS_NEED_CONNECTION; 961 962 if ((ns.conn == C_SYNC_TARGET || ns.conn == C_SYNC_SOURCE) 963 && os.conn < C_WF_REPORT_PARAMS) 964 rv = SS_NEED_CONNECTION; /* No NetworkFailure -> SyncTarget etc... */ 965 966 if (ns.conn == C_DISCONNECTING && ns.pdsk == D_OUTDATED && 967 os.conn < C_CONNECTED && os.pdsk > D_OUTDATED) 968 rv = SS_OUTDATE_WO_CONN; 969 970 return rv; 971 } 972 973 static enum drbd_state_rv 974 is_valid_conn_transition(enum drbd_conns oc, enum drbd_conns nc) 975 { 976 /* no change -> nothing to do, at least for the connection part */ 977 if (oc == nc) 978 return SS_NOTHING_TO_DO; 979 980 /* disconnect of an unconfigured connection does not make sense */ 981 if (oc == C_STANDALONE && nc == C_DISCONNECTING) 982 return SS_ALREADY_STANDALONE; 983 984 /* from C_STANDALONE, we start with C_UNCONNECTED */ 985 if (oc == C_STANDALONE && nc != C_UNCONNECTED) 986 return SS_NEED_CONNECTION; 987 988 /* When establishing a connection we need to go through WF_REPORT_PARAMS! 989 Necessary to do the right thing upon invalidate-remote on a disconnected resource */ 990 if (oc < C_WF_REPORT_PARAMS && nc >= C_CONNECTED) 991 return SS_NEED_CONNECTION; 992 993 /* After a network error only C_UNCONNECTED or C_DISCONNECTING may follow. */ 994 if (oc >= C_TIMEOUT && oc <= C_TEAR_DOWN && nc != C_UNCONNECTED && nc != C_DISCONNECTING) 995 return SS_IN_TRANSIENT_STATE; 996 997 /* After C_DISCONNECTING only C_STANDALONE may follow */ 998 if (oc == C_DISCONNECTING && nc != C_STANDALONE) 999 return SS_IN_TRANSIENT_STATE; 1000 1001 return SS_SUCCESS; 1002 } 1003 1004 1005 /** 1006 * is_valid_transition() - Returns an SS_ error code if the state transition is not possible 1007 * This limits hard state transitions. Hard state transitions are facts there are 1008 * imposed on DRBD by the environment. E.g. disk broke or network broke down. 1009 * But those hard state transitions are still not allowed to do everything. 1010 * @ns: new state. 1011 * @os: old state. 1012 */ 1013 static enum drbd_state_rv 1014 is_valid_transition(union drbd_state os, union drbd_state ns) 1015 { 1016 enum drbd_state_rv rv; 1017 1018 rv = is_valid_conn_transition(os.conn, ns.conn); 1019 1020 /* we cannot fail (again) if we already detached */ 1021 if (ns.disk == D_FAILED && os.disk == D_DISKLESS) 1022 rv = SS_IS_DISKLESS; 1023 1024 return rv; 1025 } 1026 1027 static void print_sanitize_warnings(struct drbd_device *device, enum sanitize_state_warnings warn) 1028 { 1029 static const char *msg_table[] = { 1030 [NO_WARNING] = "", 1031 [ABORTED_ONLINE_VERIFY] = "Online-verify aborted.", 1032 [ABORTED_RESYNC] = "Resync aborted.", 1033 [CONNECTION_LOST_NEGOTIATING] = "Connection lost while negotiating, no data!", 1034 [IMPLICITLY_UPGRADED_DISK] = "Implicitly upgraded disk", 1035 [IMPLICITLY_UPGRADED_PDSK] = "Implicitly upgraded pdsk", 1036 }; 1037 1038 if (warn != NO_WARNING) 1039 drbd_warn(device, "%s\n", msg_table[warn]); 1040 } 1041 1042 /** 1043 * sanitize_state() - Resolves implicitly necessary additional changes to a state transition 1044 * @device: DRBD device. 1045 * @os: old state. 1046 * @ns: new state. 1047 * @warn_sync_abort: 1048 * 1049 * When we loose connection, we have to set the state of the peers disk (pdsk) 1050 * to D_UNKNOWN. This rule and many more along those lines are in this function. 1051 */ 1052 static union drbd_state sanitize_state(struct drbd_device *device, union drbd_state os, 1053 union drbd_state ns, enum sanitize_state_warnings *warn) 1054 { 1055 enum drbd_fencing_p fp; 1056 enum drbd_disk_state disk_min, disk_max, pdsk_min, pdsk_max; 1057 1058 if (warn) 1059 *warn = NO_WARNING; 1060 1061 fp = FP_DONT_CARE; 1062 if (get_ldev(device)) { 1063 rcu_read_lock(); 1064 fp = rcu_dereference(device->ldev->disk_conf)->fencing; 1065 rcu_read_unlock(); 1066 put_ldev(device); 1067 } 1068 1069 /* Implications from connection to peer and peer_isp */ 1070 if (ns.conn < C_CONNECTED) { 1071 ns.peer_isp = 0; 1072 ns.peer = R_UNKNOWN; 1073 if (ns.pdsk > D_UNKNOWN || ns.pdsk < D_INCONSISTENT) 1074 ns.pdsk = D_UNKNOWN; 1075 } 1076 1077 /* Clear the aftr_isp when becoming unconfigured */ 1078 if (ns.conn == C_STANDALONE && ns.disk == D_DISKLESS && ns.role == R_SECONDARY) 1079 ns.aftr_isp = 0; 1080 1081 /* An implication of the disk states onto the connection state */ 1082 /* Abort resync if a disk fails/detaches */ 1083 if (ns.conn > C_CONNECTED && (ns.disk <= D_FAILED || ns.pdsk <= D_FAILED)) { 1084 if (warn) 1085 *warn = ns.conn == C_VERIFY_S || ns.conn == C_VERIFY_T ? 1086 ABORTED_ONLINE_VERIFY : ABORTED_RESYNC; 1087 ns.conn = C_CONNECTED; 1088 } 1089 1090 /* Connection breaks down before we finished "Negotiating" */ 1091 if (ns.conn < C_CONNECTED && ns.disk == D_NEGOTIATING && 1092 get_ldev_if_state(device, D_NEGOTIATING)) { 1093 if (device->ed_uuid == device->ldev->md.uuid[UI_CURRENT]) { 1094 ns.disk = device->new_state_tmp.disk; 1095 ns.pdsk = device->new_state_tmp.pdsk; 1096 } else { 1097 if (warn) 1098 *warn = CONNECTION_LOST_NEGOTIATING; 1099 ns.disk = D_DISKLESS; 1100 ns.pdsk = D_UNKNOWN; 1101 } 1102 put_ldev(device); 1103 } 1104 1105 /* D_CONSISTENT and D_OUTDATED vanish when we get connected */ 1106 if (ns.conn >= C_CONNECTED && ns.conn < C_AHEAD) { 1107 if (ns.disk == D_CONSISTENT || ns.disk == D_OUTDATED) 1108 ns.disk = D_UP_TO_DATE; 1109 if (ns.pdsk == D_CONSISTENT || ns.pdsk == D_OUTDATED) 1110 ns.pdsk = D_UP_TO_DATE; 1111 } 1112 1113 /* Implications of the connection state on the disk states */ 1114 disk_min = D_DISKLESS; 1115 disk_max = D_UP_TO_DATE; 1116 pdsk_min = D_INCONSISTENT; 1117 pdsk_max = D_UNKNOWN; 1118 switch ((enum drbd_conns)ns.conn) { 1119 case C_WF_BITMAP_T: 1120 case C_PAUSED_SYNC_T: 1121 case C_STARTING_SYNC_T: 1122 case C_WF_SYNC_UUID: 1123 case C_BEHIND: 1124 disk_min = D_INCONSISTENT; 1125 disk_max = D_OUTDATED; 1126 pdsk_min = D_UP_TO_DATE; 1127 pdsk_max = D_UP_TO_DATE; 1128 break; 1129 case C_VERIFY_S: 1130 case C_VERIFY_T: 1131 disk_min = D_UP_TO_DATE; 1132 disk_max = D_UP_TO_DATE; 1133 pdsk_min = D_UP_TO_DATE; 1134 pdsk_max = D_UP_TO_DATE; 1135 break; 1136 case C_CONNECTED: 1137 disk_min = D_DISKLESS; 1138 disk_max = D_UP_TO_DATE; 1139 pdsk_min = D_DISKLESS; 1140 pdsk_max = D_UP_TO_DATE; 1141 break; 1142 case C_WF_BITMAP_S: 1143 case C_PAUSED_SYNC_S: 1144 case C_STARTING_SYNC_S: 1145 case C_AHEAD: 1146 disk_min = D_UP_TO_DATE; 1147 disk_max = D_UP_TO_DATE; 1148 pdsk_min = D_INCONSISTENT; 1149 pdsk_max = D_CONSISTENT; /* D_OUTDATED would be nice. But explicit outdate necessary*/ 1150 break; 1151 case C_SYNC_TARGET: 1152 disk_min = D_INCONSISTENT; 1153 disk_max = D_INCONSISTENT; 1154 pdsk_min = D_UP_TO_DATE; 1155 pdsk_max = D_UP_TO_DATE; 1156 break; 1157 case C_SYNC_SOURCE: 1158 disk_min = D_UP_TO_DATE; 1159 disk_max = D_UP_TO_DATE; 1160 pdsk_min = D_INCONSISTENT; 1161 pdsk_max = D_INCONSISTENT; 1162 break; 1163 case C_STANDALONE: 1164 case C_DISCONNECTING: 1165 case C_UNCONNECTED: 1166 case C_TIMEOUT: 1167 case C_BROKEN_PIPE: 1168 case C_NETWORK_FAILURE: 1169 case C_PROTOCOL_ERROR: 1170 case C_TEAR_DOWN: 1171 case C_WF_CONNECTION: 1172 case C_WF_REPORT_PARAMS: 1173 case C_MASK: 1174 break; 1175 } 1176 if (ns.disk > disk_max) 1177 ns.disk = disk_max; 1178 1179 if (ns.disk < disk_min) { 1180 if (warn) 1181 *warn = IMPLICITLY_UPGRADED_DISK; 1182 ns.disk = disk_min; 1183 } 1184 if (ns.pdsk > pdsk_max) 1185 ns.pdsk = pdsk_max; 1186 1187 if (ns.pdsk < pdsk_min) { 1188 if (warn) 1189 *warn = IMPLICITLY_UPGRADED_PDSK; 1190 ns.pdsk = pdsk_min; 1191 } 1192 1193 if (fp == FP_STONITH && 1194 (ns.role == R_PRIMARY && ns.conn < C_CONNECTED && ns.pdsk > D_OUTDATED) && 1195 !(os.role == R_PRIMARY && os.conn < C_CONNECTED && os.pdsk > D_OUTDATED)) 1196 ns.susp_fen = 1; /* Suspend IO while fence-peer handler runs (peer lost) */ 1197 1198 if (device->resource->res_opts.on_no_data == OND_SUSPEND_IO && 1199 (ns.role == R_PRIMARY && ns.disk < D_UP_TO_DATE && ns.pdsk < D_UP_TO_DATE) && 1200 !(os.role == R_PRIMARY && os.disk < D_UP_TO_DATE && os.pdsk < D_UP_TO_DATE)) 1201 ns.susp_nod = 1; /* Suspend IO while no data available (no accessible data available) */ 1202 1203 if (ns.aftr_isp || ns.peer_isp || ns.user_isp) { 1204 if (ns.conn == C_SYNC_SOURCE) 1205 ns.conn = C_PAUSED_SYNC_S; 1206 if (ns.conn == C_SYNC_TARGET) 1207 ns.conn = C_PAUSED_SYNC_T; 1208 } else { 1209 if (ns.conn == C_PAUSED_SYNC_S) 1210 ns.conn = C_SYNC_SOURCE; 1211 if (ns.conn == C_PAUSED_SYNC_T) 1212 ns.conn = C_SYNC_TARGET; 1213 } 1214 1215 return ns; 1216 } 1217 1218 void drbd_resume_al(struct drbd_device *device) 1219 { 1220 if (test_and_clear_bit(AL_SUSPENDED, &device->flags)) 1221 drbd_info(device, "Resumed AL updates\n"); 1222 } 1223 1224 /* helper for _drbd_set_state */ 1225 static void set_ov_position(struct drbd_device *device, enum drbd_conns cs) 1226 { 1227 if (first_peer_device(device)->connection->agreed_pro_version < 90) 1228 device->ov_start_sector = 0; 1229 device->rs_total = drbd_bm_bits(device); 1230 device->ov_position = 0; 1231 if (cs == C_VERIFY_T) { 1232 /* starting online verify from an arbitrary position 1233 * does not fit well into the existing protocol. 1234 * on C_VERIFY_T, we initialize ov_left and friends 1235 * implicitly in receive_DataRequest once the 1236 * first P_OV_REQUEST is received */ 1237 device->ov_start_sector = ~(sector_t)0; 1238 } else { 1239 unsigned long bit = BM_SECT_TO_BIT(device->ov_start_sector); 1240 if (bit >= device->rs_total) { 1241 device->ov_start_sector = 1242 BM_BIT_TO_SECT(device->rs_total - 1); 1243 device->rs_total = 1; 1244 } else 1245 device->rs_total -= bit; 1246 device->ov_position = device->ov_start_sector; 1247 } 1248 device->ov_left = device->rs_total; 1249 } 1250 1251 /** 1252 * _drbd_set_state() - Set a new DRBD state 1253 * @device: DRBD device. 1254 * @ns: new state. 1255 * @flags: Flags 1256 * @done: Optional completion, that will get completed after the after_state_ch() finished 1257 * 1258 * Caller needs to hold req_lock. Do not call directly. 1259 */ 1260 enum drbd_state_rv 1261 _drbd_set_state(struct drbd_device *device, union drbd_state ns, 1262 enum chg_state_flags flags, struct completion *done) 1263 { 1264 struct drbd_peer_device *peer_device = first_peer_device(device); 1265 struct drbd_connection *connection = peer_device ? peer_device->connection : NULL; 1266 union drbd_state os; 1267 enum drbd_state_rv rv = SS_SUCCESS; 1268 enum sanitize_state_warnings ssw; 1269 struct after_state_chg_work *ascw; 1270 struct drbd_state_change *state_change; 1271 1272 os = drbd_read_state(device); 1273 1274 ns = sanitize_state(device, os, ns, &ssw); 1275 if (ns.i == os.i) 1276 return SS_NOTHING_TO_DO; 1277 1278 rv = is_valid_transition(os, ns); 1279 if (rv < SS_SUCCESS) 1280 return rv; 1281 1282 if (!(flags & CS_HARD)) { 1283 /* pre-state-change checks ; only look at ns */ 1284 /* See drbd_state_sw_errors in drbd_strings.c */ 1285 1286 rv = is_valid_state(device, ns); 1287 if (rv < SS_SUCCESS) { 1288 /* If the old state was illegal as well, then let 1289 this happen...*/ 1290 1291 if (is_valid_state(device, os) == rv) 1292 rv = is_valid_soft_transition(os, ns, connection); 1293 } else 1294 rv = is_valid_soft_transition(os, ns, connection); 1295 } 1296 1297 if (rv < SS_SUCCESS) { 1298 if (flags & CS_VERBOSE) 1299 print_st_err(device, os, ns, rv); 1300 return rv; 1301 } 1302 1303 print_sanitize_warnings(device, ssw); 1304 1305 drbd_pr_state_change(device, os, ns, flags); 1306 1307 /* Display changes to the susp* flags that where caused by the call to 1308 sanitize_state(). Only display it here if we where not called from 1309 _conn_request_state() */ 1310 if (!(flags & CS_DC_SUSP)) 1311 conn_pr_state_change(connection, os, ns, 1312 (flags & ~CS_DC_MASK) | CS_DC_SUSP); 1313 1314 /* if we are going -> D_FAILED or D_DISKLESS, grab one extra reference 1315 * on the ldev here, to be sure the transition -> D_DISKLESS resp. 1316 * drbd_ldev_destroy() won't happen before our corresponding 1317 * after_state_ch works run, where we put_ldev again. */ 1318 if ((os.disk != D_FAILED && ns.disk == D_FAILED) || 1319 (os.disk != D_DISKLESS && ns.disk == D_DISKLESS)) 1320 atomic_inc(&device->local_cnt); 1321 1322 if (!is_sync_state(os.conn) && is_sync_state(ns.conn)) 1323 clear_bit(RS_DONE, &device->flags); 1324 1325 /* FIXME: Have any flags been set earlier in this function already? */ 1326 state_change = remember_old_state(device->resource, GFP_ATOMIC); 1327 1328 /* changes to local_cnt and device flags should be visible before 1329 * changes to state, which again should be visible before anything else 1330 * depending on that change happens. */ 1331 smp_wmb(); 1332 device->state.i = ns.i; 1333 device->resource->susp = ns.susp; 1334 device->resource->susp_nod = ns.susp_nod; 1335 device->resource->susp_fen = ns.susp_fen; 1336 smp_wmb(); 1337 1338 remember_new_state(state_change); 1339 1340 /* put replicated vs not-replicated requests in seperate epochs */ 1341 if (drbd_should_do_remote((union drbd_dev_state)os.i) != 1342 drbd_should_do_remote((union drbd_dev_state)ns.i)) 1343 start_new_tl_epoch(connection); 1344 1345 if (os.disk == D_ATTACHING && ns.disk >= D_NEGOTIATING) 1346 drbd_print_uuids(device, "attached to UUIDs"); 1347 1348 /* Wake up role changes, that were delayed because of connection establishing */ 1349 if (os.conn == C_WF_REPORT_PARAMS && ns.conn != C_WF_REPORT_PARAMS && 1350 no_peer_wf_report_params(connection)) { 1351 clear_bit(STATE_SENT, &connection->flags); 1352 wake_up_all_devices(connection); 1353 } 1354 1355 wake_up(&device->misc_wait); 1356 wake_up(&device->state_wait); 1357 wake_up(&connection->ping_wait); 1358 1359 /* Aborted verify run, or we reached the stop sector. 1360 * Log the last position, unless end-of-device. */ 1361 if ((os.conn == C_VERIFY_S || os.conn == C_VERIFY_T) && 1362 ns.conn <= C_CONNECTED) { 1363 device->ov_start_sector = 1364 BM_BIT_TO_SECT(drbd_bm_bits(device) - device->ov_left); 1365 if (device->ov_left) 1366 drbd_info(device, "Online Verify reached sector %llu\n", 1367 (unsigned long long)device->ov_start_sector); 1368 } 1369 1370 if ((os.conn == C_PAUSED_SYNC_T || os.conn == C_PAUSED_SYNC_S) && 1371 (ns.conn == C_SYNC_TARGET || ns.conn == C_SYNC_SOURCE)) { 1372 drbd_info(device, "Syncer continues.\n"); 1373 device->rs_paused += (long)jiffies 1374 -(long)device->rs_mark_time[device->rs_last_mark]; 1375 if (ns.conn == C_SYNC_TARGET) 1376 mod_timer(&device->resync_timer, jiffies); 1377 } 1378 1379 if ((os.conn == C_SYNC_TARGET || os.conn == C_SYNC_SOURCE) && 1380 (ns.conn == C_PAUSED_SYNC_T || ns.conn == C_PAUSED_SYNC_S)) { 1381 drbd_info(device, "Resync suspended\n"); 1382 device->rs_mark_time[device->rs_last_mark] = jiffies; 1383 } 1384 1385 if (os.conn == C_CONNECTED && 1386 (ns.conn == C_VERIFY_S || ns.conn == C_VERIFY_T)) { 1387 unsigned long now = jiffies; 1388 int i; 1389 1390 set_ov_position(device, ns.conn); 1391 device->rs_start = now; 1392 device->rs_last_sect_ev = 0; 1393 device->ov_last_oos_size = 0; 1394 device->ov_last_oos_start = 0; 1395 1396 for (i = 0; i < DRBD_SYNC_MARKS; i++) { 1397 device->rs_mark_left[i] = device->ov_left; 1398 device->rs_mark_time[i] = now; 1399 } 1400 1401 drbd_rs_controller_reset(device); 1402 1403 if (ns.conn == C_VERIFY_S) { 1404 drbd_info(device, "Starting Online Verify from sector %llu\n", 1405 (unsigned long long)device->ov_position); 1406 mod_timer(&device->resync_timer, jiffies); 1407 } 1408 } 1409 1410 if (get_ldev(device)) { 1411 u32 mdf = device->ldev->md.flags & ~(MDF_CONSISTENT|MDF_PRIMARY_IND| 1412 MDF_CONNECTED_IND|MDF_WAS_UP_TO_DATE| 1413 MDF_PEER_OUT_DATED|MDF_CRASHED_PRIMARY); 1414 1415 mdf &= ~MDF_AL_CLEAN; 1416 if (test_bit(CRASHED_PRIMARY, &device->flags)) 1417 mdf |= MDF_CRASHED_PRIMARY; 1418 if (device->state.role == R_PRIMARY || 1419 (device->state.pdsk < D_INCONSISTENT && device->state.peer == R_PRIMARY)) 1420 mdf |= MDF_PRIMARY_IND; 1421 if (device->state.conn > C_WF_REPORT_PARAMS) 1422 mdf |= MDF_CONNECTED_IND; 1423 if (device->state.disk > D_INCONSISTENT) 1424 mdf |= MDF_CONSISTENT; 1425 if (device->state.disk > D_OUTDATED) 1426 mdf |= MDF_WAS_UP_TO_DATE; 1427 if (device->state.pdsk <= D_OUTDATED && device->state.pdsk >= D_INCONSISTENT) 1428 mdf |= MDF_PEER_OUT_DATED; 1429 if (mdf != device->ldev->md.flags) { 1430 device->ldev->md.flags = mdf; 1431 drbd_md_mark_dirty(device); 1432 } 1433 if (os.disk < D_CONSISTENT && ns.disk >= D_CONSISTENT) 1434 drbd_set_ed_uuid(device, device->ldev->md.uuid[UI_CURRENT]); 1435 put_ldev(device); 1436 } 1437 1438 /* Peer was forced D_UP_TO_DATE & R_PRIMARY, consider to resync */ 1439 if (os.disk == D_INCONSISTENT && os.pdsk == D_INCONSISTENT && 1440 os.peer == R_SECONDARY && ns.peer == R_PRIMARY) 1441 set_bit(CONSIDER_RESYNC, &device->flags); 1442 1443 /* Receiver should clean up itself */ 1444 if (os.conn != C_DISCONNECTING && ns.conn == C_DISCONNECTING) 1445 drbd_thread_stop_nowait(&connection->receiver); 1446 1447 /* Now the receiver finished cleaning up itself, it should die */ 1448 if (os.conn != C_STANDALONE && ns.conn == C_STANDALONE) 1449 drbd_thread_stop_nowait(&connection->receiver); 1450 1451 /* Upon network failure, we need to restart the receiver. */ 1452 if (os.conn > C_WF_CONNECTION && 1453 ns.conn <= C_TEAR_DOWN && ns.conn >= C_TIMEOUT) 1454 drbd_thread_restart_nowait(&connection->receiver); 1455 1456 /* Resume AL writing if we get a connection */ 1457 if (os.conn < C_CONNECTED && ns.conn >= C_CONNECTED) { 1458 drbd_resume_al(device); 1459 connection->connect_cnt++; 1460 } 1461 1462 /* remember last attach time so request_timer_fn() won't 1463 * kill newly established sessions while we are still trying to thaw 1464 * previously frozen IO */ 1465 if ((os.disk == D_ATTACHING || os.disk == D_NEGOTIATING) && 1466 ns.disk > D_NEGOTIATING) 1467 device->last_reattach_jif = jiffies; 1468 1469 ascw = kmalloc(sizeof(*ascw), GFP_ATOMIC); 1470 if (ascw) { 1471 ascw->os = os; 1472 ascw->ns = ns; 1473 ascw->flags = flags; 1474 ascw->w.cb = w_after_state_ch; 1475 ascw->device = device; 1476 ascw->done = done; 1477 ascw->state_change = state_change; 1478 drbd_queue_work(&connection->sender_work, 1479 &ascw->w); 1480 } else { 1481 drbd_err(device, "Could not kmalloc an ascw\n"); 1482 } 1483 1484 return rv; 1485 } 1486 1487 static int w_after_state_ch(struct drbd_work *w, int unused) 1488 { 1489 struct after_state_chg_work *ascw = 1490 container_of(w, struct after_state_chg_work, w); 1491 struct drbd_device *device = ascw->device; 1492 1493 after_state_ch(device, ascw->os, ascw->ns, ascw->flags, ascw->state_change); 1494 forget_state_change(ascw->state_change); 1495 if (ascw->flags & CS_WAIT_COMPLETE) 1496 complete(ascw->done); 1497 kfree(ascw); 1498 1499 return 0; 1500 } 1501 1502 static void abw_start_sync(struct drbd_device *device, int rv) 1503 { 1504 if (rv) { 1505 drbd_err(device, "Writing the bitmap failed not starting resync.\n"); 1506 _drbd_request_state(device, NS(conn, C_CONNECTED), CS_VERBOSE); 1507 return; 1508 } 1509 1510 switch (device->state.conn) { 1511 case C_STARTING_SYNC_T: 1512 _drbd_request_state(device, NS(conn, C_WF_SYNC_UUID), CS_VERBOSE); 1513 break; 1514 case C_STARTING_SYNC_S: 1515 drbd_start_resync(device, C_SYNC_SOURCE); 1516 break; 1517 } 1518 } 1519 1520 int drbd_bitmap_io_from_worker(struct drbd_device *device, 1521 int (*io_fn)(struct drbd_device *), 1522 char *why, enum bm_flag flags) 1523 { 1524 int rv; 1525 1526 D_ASSERT(device, current == first_peer_device(device)->connection->worker.task); 1527 1528 /* open coded non-blocking drbd_suspend_io(device); */ 1529 atomic_inc(&device->suspend_cnt); 1530 1531 drbd_bm_lock(device, why, flags); 1532 rv = io_fn(device); 1533 drbd_bm_unlock(device); 1534 1535 drbd_resume_io(device); 1536 1537 return rv; 1538 } 1539 1540 void notify_resource_state_change(struct sk_buff *skb, 1541 unsigned int seq, 1542 struct drbd_resource_state_change *resource_state_change, 1543 enum drbd_notification_type type) 1544 { 1545 struct drbd_resource *resource = resource_state_change->resource; 1546 struct resource_info resource_info = { 1547 .res_role = resource_state_change->role[NEW], 1548 .res_susp = resource_state_change->susp[NEW], 1549 .res_susp_nod = resource_state_change->susp_nod[NEW], 1550 .res_susp_fen = resource_state_change->susp_fen[NEW], 1551 }; 1552 1553 notify_resource_state(skb, seq, resource, &resource_info, type); 1554 } 1555 1556 void notify_connection_state_change(struct sk_buff *skb, 1557 unsigned int seq, 1558 struct drbd_connection_state_change *connection_state_change, 1559 enum drbd_notification_type type) 1560 { 1561 struct drbd_connection *connection = connection_state_change->connection; 1562 struct connection_info connection_info = { 1563 .conn_connection_state = connection_state_change->cstate[NEW], 1564 .conn_role = connection_state_change->peer_role[NEW], 1565 }; 1566 1567 notify_connection_state(skb, seq, connection, &connection_info, type); 1568 } 1569 1570 void notify_device_state_change(struct sk_buff *skb, 1571 unsigned int seq, 1572 struct drbd_device_state_change *device_state_change, 1573 enum drbd_notification_type type) 1574 { 1575 struct drbd_device *device = device_state_change->device; 1576 struct device_info device_info = { 1577 .dev_disk_state = device_state_change->disk_state[NEW], 1578 }; 1579 1580 notify_device_state(skb, seq, device, &device_info, type); 1581 } 1582 1583 void notify_peer_device_state_change(struct sk_buff *skb, 1584 unsigned int seq, 1585 struct drbd_peer_device_state_change *p, 1586 enum drbd_notification_type type) 1587 { 1588 struct drbd_peer_device *peer_device = p->peer_device; 1589 struct peer_device_info peer_device_info = { 1590 .peer_repl_state = p->repl_state[NEW], 1591 .peer_disk_state = p->disk_state[NEW], 1592 .peer_resync_susp_user = p->resync_susp_user[NEW], 1593 .peer_resync_susp_peer = p->resync_susp_peer[NEW], 1594 .peer_resync_susp_dependency = p->resync_susp_dependency[NEW], 1595 }; 1596 1597 notify_peer_device_state(skb, seq, peer_device, &peer_device_info, type); 1598 } 1599 1600 static void broadcast_state_change(struct drbd_state_change *state_change) 1601 { 1602 struct drbd_resource_state_change *resource_state_change = &state_change->resource[0]; 1603 bool resource_state_has_changed; 1604 unsigned int n_device, n_connection, n_peer_device, n_peer_devices; 1605 void (*last_func)(struct sk_buff *, unsigned int, void *, 1606 enum drbd_notification_type) = NULL; 1607 void *uninitialized_var(last_arg); 1608 1609 #define HAS_CHANGED(state) ((state)[OLD] != (state)[NEW]) 1610 #define FINAL_STATE_CHANGE(type) \ 1611 ({ if (last_func) \ 1612 last_func(NULL, 0, last_arg, type); \ 1613 }) 1614 #define REMEMBER_STATE_CHANGE(func, arg, type) \ 1615 ({ FINAL_STATE_CHANGE(type | NOTIFY_CONTINUES); \ 1616 last_func = (typeof(last_func))func; \ 1617 last_arg = arg; \ 1618 }) 1619 1620 mutex_lock(¬ification_mutex); 1621 1622 resource_state_has_changed = 1623 HAS_CHANGED(resource_state_change->role) || 1624 HAS_CHANGED(resource_state_change->susp) || 1625 HAS_CHANGED(resource_state_change->susp_nod) || 1626 HAS_CHANGED(resource_state_change->susp_fen); 1627 1628 if (resource_state_has_changed) 1629 REMEMBER_STATE_CHANGE(notify_resource_state_change, 1630 resource_state_change, NOTIFY_CHANGE); 1631 1632 for (n_connection = 0; n_connection < state_change->n_connections; n_connection++) { 1633 struct drbd_connection_state_change *connection_state_change = 1634 &state_change->connections[n_connection]; 1635 1636 if (HAS_CHANGED(connection_state_change->peer_role) || 1637 HAS_CHANGED(connection_state_change->cstate)) 1638 REMEMBER_STATE_CHANGE(notify_connection_state_change, 1639 connection_state_change, NOTIFY_CHANGE); 1640 } 1641 1642 for (n_device = 0; n_device < state_change->n_devices; n_device++) { 1643 struct drbd_device_state_change *device_state_change = 1644 &state_change->devices[n_device]; 1645 1646 if (HAS_CHANGED(device_state_change->disk_state)) 1647 REMEMBER_STATE_CHANGE(notify_device_state_change, 1648 device_state_change, NOTIFY_CHANGE); 1649 } 1650 1651 n_peer_devices = state_change->n_devices * state_change->n_connections; 1652 for (n_peer_device = 0; n_peer_device < n_peer_devices; n_peer_device++) { 1653 struct drbd_peer_device_state_change *p = 1654 &state_change->peer_devices[n_peer_device]; 1655 1656 if (HAS_CHANGED(p->disk_state) || 1657 HAS_CHANGED(p->repl_state) || 1658 HAS_CHANGED(p->resync_susp_user) || 1659 HAS_CHANGED(p->resync_susp_peer) || 1660 HAS_CHANGED(p->resync_susp_dependency)) 1661 REMEMBER_STATE_CHANGE(notify_peer_device_state_change, 1662 p, NOTIFY_CHANGE); 1663 } 1664 1665 FINAL_STATE_CHANGE(NOTIFY_CHANGE); 1666 mutex_unlock(¬ification_mutex); 1667 1668 #undef HAS_CHANGED 1669 #undef FINAL_STATE_CHANGE 1670 #undef REMEMBER_STATE_CHANGE 1671 } 1672 1673 /* takes old and new peer disk state */ 1674 static bool lost_contact_to_peer_data(enum drbd_disk_state os, enum drbd_disk_state ns) 1675 { 1676 if ((os >= D_INCONSISTENT && os != D_UNKNOWN && os != D_OUTDATED) 1677 && (ns < D_INCONSISTENT || ns == D_UNKNOWN || ns == D_OUTDATED)) 1678 return true; 1679 1680 /* Scenario, starting with normal operation 1681 * Connected Primary/Secondary UpToDate/UpToDate 1682 * NetworkFailure Primary/Unknown UpToDate/DUnknown (frozen) 1683 * ... 1684 * Connected Primary/Secondary UpToDate/Diskless (resumed; needs to bump uuid!) 1685 */ 1686 if (os == D_UNKNOWN 1687 && (ns == D_DISKLESS || ns == D_FAILED || ns == D_OUTDATED)) 1688 return true; 1689 1690 return false; 1691 } 1692 1693 /** 1694 * after_state_ch() - Perform after state change actions that may sleep 1695 * @device: DRBD device. 1696 * @os: old state. 1697 * @ns: new state. 1698 * @flags: Flags 1699 */ 1700 static void after_state_ch(struct drbd_device *device, union drbd_state os, 1701 union drbd_state ns, enum chg_state_flags flags, 1702 struct drbd_state_change *state_change) 1703 { 1704 struct drbd_resource *resource = device->resource; 1705 struct drbd_peer_device *peer_device = first_peer_device(device); 1706 struct drbd_connection *connection = peer_device ? peer_device->connection : NULL; 1707 struct sib_info sib; 1708 1709 broadcast_state_change(state_change); 1710 1711 sib.sib_reason = SIB_STATE_CHANGE; 1712 sib.os = os; 1713 sib.ns = ns; 1714 1715 if ((os.disk != D_UP_TO_DATE || os.pdsk != D_UP_TO_DATE) 1716 && (ns.disk == D_UP_TO_DATE && ns.pdsk == D_UP_TO_DATE)) { 1717 clear_bit(CRASHED_PRIMARY, &device->flags); 1718 if (device->p_uuid) 1719 device->p_uuid[UI_FLAGS] &= ~((u64)2); 1720 } 1721 1722 /* Inform userspace about the change... */ 1723 drbd_bcast_event(device, &sib); 1724 1725 if (!(os.role == R_PRIMARY && os.disk < D_UP_TO_DATE && os.pdsk < D_UP_TO_DATE) && 1726 (ns.role == R_PRIMARY && ns.disk < D_UP_TO_DATE && ns.pdsk < D_UP_TO_DATE)) 1727 drbd_khelper(device, "pri-on-incon-degr"); 1728 1729 /* Here we have the actions that are performed after a 1730 state change. This function might sleep */ 1731 1732 if (ns.susp_nod) { 1733 enum drbd_req_event what = NOTHING; 1734 1735 spin_lock_irq(&device->resource->req_lock); 1736 if (os.conn < C_CONNECTED && conn_lowest_conn(connection) >= C_CONNECTED) 1737 what = RESEND; 1738 1739 if ((os.disk == D_ATTACHING || os.disk == D_NEGOTIATING) && 1740 conn_lowest_disk(connection) == D_UP_TO_DATE) 1741 what = RESTART_FROZEN_DISK_IO; 1742 1743 if (resource->susp_nod && what != NOTHING) { 1744 _tl_restart(connection, what); 1745 _conn_request_state(connection, 1746 (union drbd_state) { { .susp_nod = 1 } }, 1747 (union drbd_state) { { .susp_nod = 0 } }, 1748 CS_VERBOSE); 1749 } 1750 spin_unlock_irq(&device->resource->req_lock); 1751 } 1752 1753 if (ns.susp_fen) { 1754 spin_lock_irq(&device->resource->req_lock); 1755 if (resource->susp_fen && conn_lowest_conn(connection) >= C_CONNECTED) { 1756 /* case2: The connection was established again: */ 1757 struct drbd_peer_device *peer_device; 1758 int vnr; 1759 1760 rcu_read_lock(); 1761 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) 1762 clear_bit(NEW_CUR_UUID, &peer_device->device->flags); 1763 rcu_read_unlock(); 1764 1765 /* We should actively create a new uuid, _before_ 1766 * we resume/resent, if the peer is diskless 1767 * (recovery from a multiple error scenario). 1768 * Currently, this happens with a slight delay 1769 * below when checking lost_contact_to_peer_data() ... 1770 */ 1771 _tl_restart(connection, RESEND); 1772 _conn_request_state(connection, 1773 (union drbd_state) { { .susp_fen = 1 } }, 1774 (union drbd_state) { { .susp_fen = 0 } }, 1775 CS_VERBOSE); 1776 } 1777 spin_unlock_irq(&device->resource->req_lock); 1778 } 1779 1780 /* Became sync source. With protocol >= 96, we still need to send out 1781 * the sync uuid now. Need to do that before any drbd_send_state, or 1782 * the other side may go "paused sync" before receiving the sync uuids, 1783 * which is unexpected. */ 1784 if ((os.conn != C_SYNC_SOURCE && os.conn != C_PAUSED_SYNC_S) && 1785 (ns.conn == C_SYNC_SOURCE || ns.conn == C_PAUSED_SYNC_S) && 1786 connection->agreed_pro_version >= 96 && get_ldev(device)) { 1787 drbd_gen_and_send_sync_uuid(peer_device); 1788 put_ldev(device); 1789 } 1790 1791 /* Do not change the order of the if above and the two below... */ 1792 if (os.pdsk == D_DISKLESS && 1793 ns.pdsk > D_DISKLESS && ns.pdsk != D_UNKNOWN) { /* attach on the peer */ 1794 /* we probably will start a resync soon. 1795 * make sure those things are properly reset. */ 1796 device->rs_total = 0; 1797 device->rs_failed = 0; 1798 atomic_set(&device->rs_pending_cnt, 0); 1799 drbd_rs_cancel_all(device); 1800 1801 drbd_send_uuids(peer_device); 1802 drbd_send_state(peer_device, ns); 1803 } 1804 /* No point in queuing send_bitmap if we don't have a connection 1805 * anymore, so check also the _current_ state, not only the new state 1806 * at the time this work was queued. */ 1807 if (os.conn != C_WF_BITMAP_S && ns.conn == C_WF_BITMAP_S && 1808 device->state.conn == C_WF_BITMAP_S) 1809 drbd_queue_bitmap_io(device, &drbd_send_bitmap, NULL, 1810 "send_bitmap (WFBitMapS)", 1811 BM_LOCKED_TEST_ALLOWED); 1812 1813 /* Lost contact to peer's copy of the data */ 1814 if (lost_contact_to_peer_data(os.pdsk, ns.pdsk)) { 1815 if (get_ldev(device)) { 1816 if ((ns.role == R_PRIMARY || ns.peer == R_PRIMARY) && 1817 device->ldev->md.uuid[UI_BITMAP] == 0 && ns.disk >= D_UP_TO_DATE) { 1818 if (drbd_suspended(device)) { 1819 set_bit(NEW_CUR_UUID, &device->flags); 1820 } else { 1821 drbd_uuid_new_current(device); 1822 drbd_send_uuids(peer_device); 1823 } 1824 } 1825 put_ldev(device); 1826 } 1827 } 1828 1829 if (ns.pdsk < D_INCONSISTENT && get_ldev(device)) { 1830 if (os.peer != R_PRIMARY && ns.peer == R_PRIMARY && 1831 device->ldev->md.uuid[UI_BITMAP] == 0 && ns.disk >= D_UP_TO_DATE) { 1832 drbd_uuid_new_current(device); 1833 drbd_send_uuids(peer_device); 1834 } 1835 /* D_DISKLESS Peer becomes secondary */ 1836 if (os.peer == R_PRIMARY && ns.peer == R_SECONDARY) 1837 /* We may still be Primary ourselves. 1838 * No harm done if the bitmap still changes, 1839 * redirtied pages will follow later. */ 1840 drbd_bitmap_io_from_worker(device, &drbd_bm_write, 1841 "demote diskless peer", BM_LOCKED_SET_ALLOWED); 1842 put_ldev(device); 1843 } 1844 1845 /* Write out all changed bits on demote. 1846 * Though, no need to da that just yet 1847 * if there is a resync going on still */ 1848 if (os.role == R_PRIMARY && ns.role == R_SECONDARY && 1849 device->state.conn <= C_CONNECTED && get_ldev(device)) { 1850 /* No changes to the bitmap expected this time, so assert that, 1851 * even though no harm was done if it did change. */ 1852 drbd_bitmap_io_from_worker(device, &drbd_bm_write, 1853 "demote", BM_LOCKED_TEST_ALLOWED); 1854 put_ldev(device); 1855 } 1856 1857 /* Last part of the attaching process ... */ 1858 if (ns.conn >= C_CONNECTED && 1859 os.disk == D_ATTACHING && ns.disk == D_NEGOTIATING) { 1860 drbd_send_sizes(peer_device, 0, 0); /* to start sync... */ 1861 drbd_send_uuids(peer_device); 1862 drbd_send_state(peer_device, ns); 1863 } 1864 1865 /* We want to pause/continue resync, tell peer. */ 1866 if (ns.conn >= C_CONNECTED && 1867 ((os.aftr_isp != ns.aftr_isp) || 1868 (os.user_isp != ns.user_isp))) 1869 drbd_send_state(peer_device, ns); 1870 1871 /* In case one of the isp bits got set, suspend other devices. */ 1872 if ((!os.aftr_isp && !os.peer_isp && !os.user_isp) && 1873 (ns.aftr_isp || ns.peer_isp || ns.user_isp)) 1874 suspend_other_sg(device); 1875 1876 /* Make sure the peer gets informed about eventual state 1877 changes (ISP bits) while we were in WFReportParams. */ 1878 if (os.conn == C_WF_REPORT_PARAMS && ns.conn >= C_CONNECTED) 1879 drbd_send_state(peer_device, ns); 1880 1881 if (os.conn != C_AHEAD && ns.conn == C_AHEAD) 1882 drbd_send_state(peer_device, ns); 1883 1884 /* We are in the progress to start a full sync... */ 1885 if ((os.conn != C_STARTING_SYNC_T && ns.conn == C_STARTING_SYNC_T) || 1886 (os.conn != C_STARTING_SYNC_S && ns.conn == C_STARTING_SYNC_S)) 1887 /* no other bitmap changes expected during this phase */ 1888 drbd_queue_bitmap_io(device, 1889 &drbd_bmio_set_n_write, &abw_start_sync, 1890 "set_n_write from StartingSync", BM_LOCKED_TEST_ALLOWED); 1891 1892 /* first half of local IO error, failure to attach, 1893 * or administrative detach */ 1894 if (os.disk != D_FAILED && ns.disk == D_FAILED) { 1895 enum drbd_io_error_p eh = EP_PASS_ON; 1896 int was_io_error = 0; 1897 /* corresponding get_ldev was in _drbd_set_state, to serialize 1898 * our cleanup here with the transition to D_DISKLESS. 1899 * But is is still not save to dreference ldev here, since 1900 * we might come from an failed Attach before ldev was set. */ 1901 if (device->ldev) { 1902 rcu_read_lock(); 1903 eh = rcu_dereference(device->ldev->disk_conf)->on_io_error; 1904 rcu_read_unlock(); 1905 1906 was_io_error = test_and_clear_bit(WAS_IO_ERROR, &device->flags); 1907 1908 /* Intentionally call this handler first, before drbd_send_state(). 1909 * See: 2932204 drbd: call local-io-error handler early 1910 * People may chose to hard-reset the box from this handler. 1911 * It is useful if this looks like a "regular node crash". */ 1912 if (was_io_error && eh == EP_CALL_HELPER) 1913 drbd_khelper(device, "local-io-error"); 1914 1915 /* Immediately allow completion of all application IO, 1916 * that waits for completion from the local disk, 1917 * if this was a force-detach due to disk_timeout 1918 * or administrator request (drbdsetup detach --force). 1919 * Do NOT abort otherwise. 1920 * Aborting local requests may cause serious problems, 1921 * if requests are completed to upper layers already, 1922 * and then later the already submitted local bio completes. 1923 * This can cause DMA into former bio pages that meanwhile 1924 * have been re-used for other things. 1925 * So aborting local requests may cause crashes, 1926 * or even worse, silent data corruption. 1927 */ 1928 if (test_and_clear_bit(FORCE_DETACH, &device->flags)) 1929 tl_abort_disk_io(device); 1930 1931 /* current state still has to be D_FAILED, 1932 * there is only one way out: to D_DISKLESS, 1933 * and that may only happen after our put_ldev below. */ 1934 if (device->state.disk != D_FAILED) 1935 drbd_err(device, 1936 "ASSERT FAILED: disk is %s during detach\n", 1937 drbd_disk_str(device->state.disk)); 1938 1939 if (ns.conn >= C_CONNECTED) 1940 drbd_send_state(peer_device, ns); 1941 1942 drbd_rs_cancel_all(device); 1943 1944 /* In case we want to get something to stable storage still, 1945 * this may be the last chance. 1946 * Following put_ldev may transition to D_DISKLESS. */ 1947 drbd_md_sync(device); 1948 } 1949 put_ldev(device); 1950 } 1951 1952 /* second half of local IO error, failure to attach, 1953 * or administrative detach, 1954 * after local_cnt references have reached zero again */ 1955 if (os.disk != D_DISKLESS && ns.disk == D_DISKLESS) { 1956 /* We must still be diskless, 1957 * re-attach has to be serialized with this! */ 1958 if (device->state.disk != D_DISKLESS) 1959 drbd_err(device, 1960 "ASSERT FAILED: disk is %s while going diskless\n", 1961 drbd_disk_str(device->state.disk)); 1962 1963 if (ns.conn >= C_CONNECTED) 1964 drbd_send_state(peer_device, ns); 1965 /* corresponding get_ldev in __drbd_set_state 1966 * this may finally trigger drbd_ldev_destroy. */ 1967 put_ldev(device); 1968 } 1969 1970 /* Notify peer that I had a local IO error, and did not detached.. */ 1971 if (os.disk == D_UP_TO_DATE && ns.disk == D_INCONSISTENT && ns.conn >= C_CONNECTED) 1972 drbd_send_state(peer_device, ns); 1973 1974 /* Disks got bigger while they were detached */ 1975 if (ns.disk > D_NEGOTIATING && ns.pdsk > D_NEGOTIATING && 1976 test_and_clear_bit(RESYNC_AFTER_NEG, &device->flags)) { 1977 if (ns.conn == C_CONNECTED) 1978 resync_after_online_grow(device); 1979 } 1980 1981 /* A resync finished or aborted, wake paused devices... */ 1982 if ((os.conn > C_CONNECTED && ns.conn <= C_CONNECTED) || 1983 (os.peer_isp && !ns.peer_isp) || 1984 (os.user_isp && !ns.user_isp)) 1985 resume_next_sg(device); 1986 1987 /* sync target done with resync. Explicitly notify peer, even though 1988 * it should (at least for non-empty resyncs) already know itself. */ 1989 if (os.disk < D_UP_TO_DATE && os.conn >= C_SYNC_SOURCE && ns.conn == C_CONNECTED) 1990 drbd_send_state(peer_device, ns); 1991 1992 /* Verify finished, or reached stop sector. Peer did not know about 1993 * the stop sector, and we may even have changed the stop sector during 1994 * verify to interrupt/stop early. Send the new state. */ 1995 if (os.conn == C_VERIFY_S && ns.conn == C_CONNECTED 1996 && verify_can_do_stop_sector(device)) 1997 drbd_send_state(peer_device, ns); 1998 1999 /* This triggers bitmap writeout of potentially still unwritten pages 2000 * if the resync finished cleanly, or aborted because of peer disk 2001 * failure, or on transition from resync back to AHEAD/BEHIND. 2002 * 2003 * Connection loss is handled in drbd_disconnected() by the receiver. 2004 * 2005 * For resync aborted because of local disk failure, we cannot do 2006 * any bitmap writeout anymore. 2007 * 2008 * No harm done if some bits change during this phase. 2009 */ 2010 if ((os.conn > C_CONNECTED && os.conn < C_AHEAD) && 2011 (ns.conn == C_CONNECTED || ns.conn >= C_AHEAD) && get_ldev(device)) { 2012 drbd_queue_bitmap_io(device, &drbd_bm_write_copy_pages, NULL, 2013 "write from resync_finished", BM_LOCKED_CHANGE_ALLOWED); 2014 put_ldev(device); 2015 } 2016 2017 if (ns.disk == D_DISKLESS && 2018 ns.conn == C_STANDALONE && 2019 ns.role == R_SECONDARY) { 2020 if (os.aftr_isp != ns.aftr_isp) 2021 resume_next_sg(device); 2022 } 2023 2024 drbd_md_sync(device); 2025 } 2026 2027 struct after_conn_state_chg_work { 2028 struct drbd_work w; 2029 enum drbd_conns oc; 2030 union drbd_state ns_min; 2031 union drbd_state ns_max; /* new, max state, over all devices */ 2032 enum chg_state_flags flags; 2033 struct drbd_connection *connection; 2034 struct drbd_state_change *state_change; 2035 }; 2036 2037 static int w_after_conn_state_ch(struct drbd_work *w, int unused) 2038 { 2039 struct after_conn_state_chg_work *acscw = 2040 container_of(w, struct after_conn_state_chg_work, w); 2041 struct drbd_connection *connection = acscw->connection; 2042 enum drbd_conns oc = acscw->oc; 2043 union drbd_state ns_max = acscw->ns_max; 2044 struct drbd_peer_device *peer_device; 2045 int vnr; 2046 2047 broadcast_state_change(acscw->state_change); 2048 forget_state_change(acscw->state_change); 2049 kfree(acscw); 2050 2051 /* Upon network configuration, we need to start the receiver */ 2052 if (oc == C_STANDALONE && ns_max.conn == C_UNCONNECTED) 2053 drbd_thread_start(&connection->receiver); 2054 2055 if (oc == C_DISCONNECTING && ns_max.conn == C_STANDALONE) { 2056 struct net_conf *old_conf; 2057 2058 mutex_lock(¬ification_mutex); 2059 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) 2060 notify_peer_device_state(NULL, 0, peer_device, NULL, 2061 NOTIFY_DESTROY | NOTIFY_CONTINUES); 2062 notify_connection_state(NULL, 0, connection, NULL, NOTIFY_DESTROY); 2063 mutex_unlock(¬ification_mutex); 2064 2065 mutex_lock(&connection->resource->conf_update); 2066 old_conf = connection->net_conf; 2067 connection->my_addr_len = 0; 2068 connection->peer_addr_len = 0; 2069 RCU_INIT_POINTER(connection->net_conf, NULL); 2070 conn_free_crypto(connection); 2071 mutex_unlock(&connection->resource->conf_update); 2072 2073 synchronize_rcu(); 2074 kfree(old_conf); 2075 } 2076 2077 if (ns_max.susp_fen) { 2078 /* case1: The outdate peer handler is successful: */ 2079 if (ns_max.pdsk <= D_OUTDATED) { 2080 rcu_read_lock(); 2081 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 2082 struct drbd_device *device = peer_device->device; 2083 if (test_bit(NEW_CUR_UUID, &device->flags)) { 2084 drbd_uuid_new_current(device); 2085 clear_bit(NEW_CUR_UUID, &device->flags); 2086 } 2087 } 2088 rcu_read_unlock(); 2089 spin_lock_irq(&connection->resource->req_lock); 2090 _tl_restart(connection, CONNECTION_LOST_WHILE_PENDING); 2091 _conn_request_state(connection, 2092 (union drbd_state) { { .susp_fen = 1 } }, 2093 (union drbd_state) { { .susp_fen = 0 } }, 2094 CS_VERBOSE); 2095 spin_unlock_irq(&connection->resource->req_lock); 2096 } 2097 } 2098 conn_md_sync(connection); 2099 kref_put(&connection->kref, drbd_destroy_connection); 2100 2101 return 0; 2102 } 2103 2104 static void conn_old_common_state(struct drbd_connection *connection, union drbd_state *pcs, enum chg_state_flags *pf) 2105 { 2106 enum chg_state_flags flags = ~0; 2107 struct drbd_peer_device *peer_device; 2108 int vnr, first_vol = 1; 2109 union drbd_dev_state os, cs = { 2110 { .role = R_SECONDARY, 2111 .peer = R_UNKNOWN, 2112 .conn = connection->cstate, 2113 .disk = D_DISKLESS, 2114 .pdsk = D_UNKNOWN, 2115 } }; 2116 2117 rcu_read_lock(); 2118 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 2119 struct drbd_device *device = peer_device->device; 2120 os = device->state; 2121 2122 if (first_vol) { 2123 cs = os; 2124 first_vol = 0; 2125 continue; 2126 } 2127 2128 if (cs.role != os.role) 2129 flags &= ~CS_DC_ROLE; 2130 2131 if (cs.peer != os.peer) 2132 flags &= ~CS_DC_PEER; 2133 2134 if (cs.conn != os.conn) 2135 flags &= ~CS_DC_CONN; 2136 2137 if (cs.disk != os.disk) 2138 flags &= ~CS_DC_DISK; 2139 2140 if (cs.pdsk != os.pdsk) 2141 flags &= ~CS_DC_PDSK; 2142 } 2143 rcu_read_unlock(); 2144 2145 *pf |= CS_DC_MASK; 2146 *pf &= flags; 2147 (*pcs).i = cs.i; 2148 } 2149 2150 static enum drbd_state_rv 2151 conn_is_valid_transition(struct drbd_connection *connection, union drbd_state mask, union drbd_state val, 2152 enum chg_state_flags flags) 2153 { 2154 enum drbd_state_rv rv = SS_SUCCESS; 2155 union drbd_state ns, os; 2156 struct drbd_peer_device *peer_device; 2157 int vnr; 2158 2159 rcu_read_lock(); 2160 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 2161 struct drbd_device *device = peer_device->device; 2162 os = drbd_read_state(device); 2163 ns = sanitize_state(device, os, apply_mask_val(os, mask, val), NULL); 2164 2165 if (flags & CS_IGN_OUTD_FAIL && ns.disk == D_OUTDATED && os.disk < D_OUTDATED) 2166 ns.disk = os.disk; 2167 2168 if (ns.i == os.i) 2169 continue; 2170 2171 rv = is_valid_transition(os, ns); 2172 2173 if (rv >= SS_SUCCESS && !(flags & CS_HARD)) { 2174 rv = is_valid_state(device, ns); 2175 if (rv < SS_SUCCESS) { 2176 if (is_valid_state(device, os) == rv) 2177 rv = is_valid_soft_transition(os, ns, connection); 2178 } else 2179 rv = is_valid_soft_transition(os, ns, connection); 2180 } 2181 2182 if (rv < SS_SUCCESS) { 2183 if (flags & CS_VERBOSE) 2184 print_st_err(device, os, ns, rv); 2185 break; 2186 } 2187 } 2188 rcu_read_unlock(); 2189 2190 return rv; 2191 } 2192 2193 static void 2194 conn_set_state(struct drbd_connection *connection, union drbd_state mask, union drbd_state val, 2195 union drbd_state *pns_min, union drbd_state *pns_max, enum chg_state_flags flags) 2196 { 2197 union drbd_state ns, os, ns_max = { }; 2198 union drbd_state ns_min = { 2199 { .role = R_MASK, 2200 .peer = R_MASK, 2201 .conn = val.conn, 2202 .disk = D_MASK, 2203 .pdsk = D_MASK 2204 } }; 2205 struct drbd_peer_device *peer_device; 2206 enum drbd_state_rv rv; 2207 int vnr, number_of_volumes = 0; 2208 2209 if (mask.conn == C_MASK) { 2210 /* remember last connect time so request_timer_fn() won't 2211 * kill newly established sessions while we are still trying to thaw 2212 * previously frozen IO */ 2213 if (connection->cstate != C_WF_REPORT_PARAMS && val.conn == C_WF_REPORT_PARAMS) 2214 connection->last_reconnect_jif = jiffies; 2215 2216 connection->cstate = val.conn; 2217 } 2218 2219 rcu_read_lock(); 2220 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 2221 struct drbd_device *device = peer_device->device; 2222 number_of_volumes++; 2223 os = drbd_read_state(device); 2224 ns = apply_mask_val(os, mask, val); 2225 ns = sanitize_state(device, os, ns, NULL); 2226 2227 if (flags & CS_IGN_OUTD_FAIL && ns.disk == D_OUTDATED && os.disk < D_OUTDATED) 2228 ns.disk = os.disk; 2229 2230 rv = _drbd_set_state(device, ns, flags, NULL); 2231 BUG_ON(rv < SS_SUCCESS); 2232 ns.i = device->state.i; 2233 ns_max.role = max_role(ns.role, ns_max.role); 2234 ns_max.peer = max_role(ns.peer, ns_max.peer); 2235 ns_max.conn = max_t(enum drbd_conns, ns.conn, ns_max.conn); 2236 ns_max.disk = max_t(enum drbd_disk_state, ns.disk, ns_max.disk); 2237 ns_max.pdsk = max_t(enum drbd_disk_state, ns.pdsk, ns_max.pdsk); 2238 2239 ns_min.role = min_role(ns.role, ns_min.role); 2240 ns_min.peer = min_role(ns.peer, ns_min.peer); 2241 ns_min.conn = min_t(enum drbd_conns, ns.conn, ns_min.conn); 2242 ns_min.disk = min_t(enum drbd_disk_state, ns.disk, ns_min.disk); 2243 ns_min.pdsk = min_t(enum drbd_disk_state, ns.pdsk, ns_min.pdsk); 2244 } 2245 rcu_read_unlock(); 2246 2247 if (number_of_volumes == 0) { 2248 ns_min = ns_max = (union drbd_state) { { 2249 .role = R_SECONDARY, 2250 .peer = R_UNKNOWN, 2251 .conn = val.conn, 2252 .disk = D_DISKLESS, 2253 .pdsk = D_UNKNOWN 2254 } }; 2255 } 2256 2257 ns_min.susp = ns_max.susp = connection->resource->susp; 2258 ns_min.susp_nod = ns_max.susp_nod = connection->resource->susp_nod; 2259 ns_min.susp_fen = ns_max.susp_fen = connection->resource->susp_fen; 2260 2261 *pns_min = ns_min; 2262 *pns_max = ns_max; 2263 } 2264 2265 static enum drbd_state_rv 2266 _conn_rq_cond(struct drbd_connection *connection, union drbd_state mask, union drbd_state val) 2267 { 2268 enum drbd_state_rv err, rv = SS_UNKNOWN_ERROR; /* continue waiting */; 2269 2270 if (test_and_clear_bit(CONN_WD_ST_CHG_OKAY, &connection->flags)) 2271 rv = SS_CW_SUCCESS; 2272 2273 if (test_and_clear_bit(CONN_WD_ST_CHG_FAIL, &connection->flags)) 2274 rv = SS_CW_FAILED_BY_PEER; 2275 2276 err = conn_is_valid_transition(connection, mask, val, 0); 2277 if (err == SS_SUCCESS && connection->cstate == C_WF_REPORT_PARAMS) 2278 return rv; 2279 2280 return err; 2281 } 2282 2283 enum drbd_state_rv 2284 _conn_request_state(struct drbd_connection *connection, union drbd_state mask, union drbd_state val, 2285 enum chg_state_flags flags) 2286 { 2287 enum drbd_state_rv rv = SS_SUCCESS; 2288 struct after_conn_state_chg_work *acscw; 2289 enum drbd_conns oc = connection->cstate; 2290 union drbd_state ns_max, ns_min, os; 2291 bool have_mutex = false; 2292 struct drbd_state_change *state_change; 2293 2294 if (mask.conn) { 2295 rv = is_valid_conn_transition(oc, val.conn); 2296 if (rv < SS_SUCCESS) 2297 goto abort; 2298 } 2299 2300 rv = conn_is_valid_transition(connection, mask, val, flags); 2301 if (rv < SS_SUCCESS) 2302 goto abort; 2303 2304 if (oc == C_WF_REPORT_PARAMS && val.conn == C_DISCONNECTING && 2305 !(flags & (CS_LOCAL_ONLY | CS_HARD))) { 2306 2307 /* This will be a cluster-wide state change. 2308 * Need to give up the spinlock, grab the mutex, 2309 * then send the state change request, ... */ 2310 spin_unlock_irq(&connection->resource->req_lock); 2311 mutex_lock(&connection->cstate_mutex); 2312 have_mutex = true; 2313 2314 set_bit(CONN_WD_ST_CHG_REQ, &connection->flags); 2315 if (conn_send_state_req(connection, mask, val)) { 2316 /* sending failed. */ 2317 clear_bit(CONN_WD_ST_CHG_REQ, &connection->flags); 2318 rv = SS_CW_FAILED_BY_PEER; 2319 /* need to re-aquire the spin lock, though */ 2320 goto abort_unlocked; 2321 } 2322 2323 if (val.conn == C_DISCONNECTING) 2324 set_bit(DISCONNECT_SENT, &connection->flags); 2325 2326 /* ... and re-aquire the spinlock. 2327 * If _conn_rq_cond() returned >= SS_SUCCESS, we must call 2328 * conn_set_state() within the same spinlock. */ 2329 spin_lock_irq(&connection->resource->req_lock); 2330 wait_event_lock_irq(connection->ping_wait, 2331 (rv = _conn_rq_cond(connection, mask, val)), 2332 connection->resource->req_lock); 2333 clear_bit(CONN_WD_ST_CHG_REQ, &connection->flags); 2334 if (rv < SS_SUCCESS) 2335 goto abort; 2336 } 2337 2338 state_change = remember_old_state(connection->resource, GFP_ATOMIC); 2339 conn_old_common_state(connection, &os, &flags); 2340 flags |= CS_DC_SUSP; 2341 conn_set_state(connection, mask, val, &ns_min, &ns_max, flags); 2342 conn_pr_state_change(connection, os, ns_max, flags); 2343 remember_new_state(state_change); 2344 2345 acscw = kmalloc(sizeof(*acscw), GFP_ATOMIC); 2346 if (acscw) { 2347 acscw->oc = os.conn; 2348 acscw->ns_min = ns_min; 2349 acscw->ns_max = ns_max; 2350 acscw->flags = flags; 2351 acscw->w.cb = w_after_conn_state_ch; 2352 kref_get(&connection->kref); 2353 acscw->connection = connection; 2354 acscw->state_change = state_change; 2355 drbd_queue_work(&connection->sender_work, &acscw->w); 2356 } else { 2357 drbd_err(connection, "Could not kmalloc an acscw\n"); 2358 } 2359 2360 abort: 2361 if (have_mutex) { 2362 /* mutex_unlock() "... must not be used in interrupt context.", 2363 * so give up the spinlock, then re-aquire it */ 2364 spin_unlock_irq(&connection->resource->req_lock); 2365 abort_unlocked: 2366 mutex_unlock(&connection->cstate_mutex); 2367 spin_lock_irq(&connection->resource->req_lock); 2368 } 2369 if (rv < SS_SUCCESS && flags & CS_VERBOSE) { 2370 drbd_err(connection, "State change failed: %s\n", drbd_set_st_err_str(rv)); 2371 drbd_err(connection, " mask = 0x%x val = 0x%x\n", mask.i, val.i); 2372 drbd_err(connection, " old_conn:%s wanted_conn:%s\n", drbd_conn_str(oc), drbd_conn_str(val.conn)); 2373 } 2374 return rv; 2375 } 2376 2377 enum drbd_state_rv 2378 conn_request_state(struct drbd_connection *connection, union drbd_state mask, union drbd_state val, 2379 enum chg_state_flags flags) 2380 { 2381 enum drbd_state_rv rv; 2382 2383 spin_lock_irq(&connection->resource->req_lock); 2384 rv = _conn_request_state(connection, mask, val, flags); 2385 spin_unlock_irq(&connection->resource->req_lock); 2386 2387 return rv; 2388 } 2389