1 /* 2 drbd_receiver.c 3 4 This file is part of DRBD by Philipp Reisner and Lars Ellenberg. 5 6 Copyright (C) 2001-2008, LINBIT Information Technologies GmbH. 7 Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>. 8 Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>. 9 10 drbd is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation; either version 2, or (at your option) 13 any later version. 14 15 drbd is distributed in the hope that it will be useful, 16 but WITHOUT ANY WARRANTY; without even the implied warranty of 17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 GNU General Public License for more details. 19 20 You should have received a copy of the GNU General Public License 21 along with drbd; see the file COPYING. If not, write to 22 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 23 */ 24 25 26 #include <linux/module.h> 27 28 #include <linux/uaccess.h> 29 #include <net/sock.h> 30 31 #include <linux/drbd.h> 32 #include <linux/fs.h> 33 #include <linux/file.h> 34 #include <linux/in.h> 35 #include <linux/mm.h> 36 #include <linux/memcontrol.h> 37 #include <linux/mm_inline.h> 38 #include <linux/slab.h> 39 #include <uapi/linux/sched/types.h> 40 #include <linux/sched/signal.h> 41 #include <linux/pkt_sched.h> 42 #define __KERNEL_SYSCALLS__ 43 #include <linux/unistd.h> 44 #include <linux/vmalloc.h> 45 #include <linux/random.h> 46 #include <linux/string.h> 47 #include <linux/scatterlist.h> 48 #include "drbd_int.h" 49 #include "drbd_protocol.h" 50 #include "drbd_req.h" 51 #include "drbd_vli.h" 52 53 #define PRO_FEATURES (DRBD_FF_TRIM|DRBD_FF_THIN_RESYNC|DRBD_FF_WSAME) 54 55 struct packet_info { 56 enum drbd_packet cmd; 57 unsigned int size; 58 unsigned int vnr; 59 void *data; 60 }; 61 62 enum finish_epoch { 63 FE_STILL_LIVE, 64 FE_DESTROYED, 65 FE_RECYCLED, 66 }; 67 68 static int drbd_do_features(struct drbd_connection *connection); 69 static int drbd_do_auth(struct drbd_connection *connection); 70 static int drbd_disconnected(struct drbd_peer_device *); 71 static void conn_wait_active_ee_empty(struct drbd_connection *connection); 72 static enum finish_epoch drbd_may_finish_epoch(struct drbd_connection *, struct drbd_epoch *, enum epoch_event); 73 static int e_end_block(struct drbd_work *, int); 74 75 76 #define GFP_TRY (__GFP_HIGHMEM | __GFP_NOWARN) 77 78 /* 79 * some helper functions to deal with single linked page lists, 80 * page->private being our "next" pointer. 81 */ 82 83 /* If at least n pages are linked at head, get n pages off. 84 * Otherwise, don't modify head, and return NULL. 85 * Locking is the responsibility of the caller. 86 */ 87 static struct page *page_chain_del(struct page **head, int n) 88 { 89 struct page *page; 90 struct page *tmp; 91 92 BUG_ON(!n); 93 BUG_ON(!head); 94 95 page = *head; 96 97 if (!page) 98 return NULL; 99 100 while (page) { 101 tmp = page_chain_next(page); 102 if (--n == 0) 103 break; /* found sufficient pages */ 104 if (tmp == NULL) 105 /* insufficient pages, don't use any of them. */ 106 return NULL; 107 page = tmp; 108 } 109 110 /* add end of list marker for the returned list */ 111 set_page_private(page, 0); 112 /* actual return value, and adjustment of head */ 113 page = *head; 114 *head = tmp; 115 return page; 116 } 117 118 /* may be used outside of locks to find the tail of a (usually short) 119 * "private" page chain, before adding it back to a global chain head 120 * with page_chain_add() under a spinlock. */ 121 static struct page *page_chain_tail(struct page *page, int *len) 122 { 123 struct page *tmp; 124 int i = 1; 125 while ((tmp = page_chain_next(page))) 126 ++i, page = tmp; 127 if (len) 128 *len = i; 129 return page; 130 } 131 132 static int page_chain_free(struct page *page) 133 { 134 struct page *tmp; 135 int i = 0; 136 page_chain_for_each_safe(page, tmp) { 137 put_page(page); 138 ++i; 139 } 140 return i; 141 } 142 143 static void page_chain_add(struct page **head, 144 struct page *chain_first, struct page *chain_last) 145 { 146 #if 1 147 struct page *tmp; 148 tmp = page_chain_tail(chain_first, NULL); 149 BUG_ON(tmp != chain_last); 150 #endif 151 152 /* add chain to head */ 153 set_page_private(chain_last, (unsigned long)*head); 154 *head = chain_first; 155 } 156 157 static struct page *__drbd_alloc_pages(struct drbd_device *device, 158 unsigned int number) 159 { 160 struct page *page = NULL; 161 struct page *tmp = NULL; 162 unsigned int i = 0; 163 164 /* Yes, testing drbd_pp_vacant outside the lock is racy. 165 * So what. It saves a spin_lock. */ 166 if (drbd_pp_vacant >= number) { 167 spin_lock(&drbd_pp_lock); 168 page = page_chain_del(&drbd_pp_pool, number); 169 if (page) 170 drbd_pp_vacant -= number; 171 spin_unlock(&drbd_pp_lock); 172 if (page) 173 return page; 174 } 175 176 /* GFP_TRY, because we must not cause arbitrary write-out: in a DRBD 177 * "criss-cross" setup, that might cause write-out on some other DRBD, 178 * which in turn might block on the other node at this very place. */ 179 for (i = 0; i < number; i++) { 180 tmp = alloc_page(GFP_TRY); 181 if (!tmp) 182 break; 183 set_page_private(tmp, (unsigned long)page); 184 page = tmp; 185 } 186 187 if (i == number) 188 return page; 189 190 /* Not enough pages immediately available this time. 191 * No need to jump around here, drbd_alloc_pages will retry this 192 * function "soon". */ 193 if (page) { 194 tmp = page_chain_tail(page, NULL); 195 spin_lock(&drbd_pp_lock); 196 page_chain_add(&drbd_pp_pool, page, tmp); 197 drbd_pp_vacant += i; 198 spin_unlock(&drbd_pp_lock); 199 } 200 return NULL; 201 } 202 203 static void reclaim_finished_net_peer_reqs(struct drbd_device *device, 204 struct list_head *to_be_freed) 205 { 206 struct drbd_peer_request *peer_req, *tmp; 207 208 /* The EEs are always appended to the end of the list. Since 209 they are sent in order over the wire, they have to finish 210 in order. As soon as we see the first not finished we can 211 stop to examine the list... */ 212 213 list_for_each_entry_safe(peer_req, tmp, &device->net_ee, w.list) { 214 if (drbd_peer_req_has_active_page(peer_req)) 215 break; 216 list_move(&peer_req->w.list, to_be_freed); 217 } 218 } 219 220 static void drbd_reclaim_net_peer_reqs(struct drbd_device *device) 221 { 222 LIST_HEAD(reclaimed); 223 struct drbd_peer_request *peer_req, *t; 224 225 spin_lock_irq(&device->resource->req_lock); 226 reclaim_finished_net_peer_reqs(device, &reclaimed); 227 spin_unlock_irq(&device->resource->req_lock); 228 list_for_each_entry_safe(peer_req, t, &reclaimed, w.list) 229 drbd_free_net_peer_req(device, peer_req); 230 } 231 232 static void conn_reclaim_net_peer_reqs(struct drbd_connection *connection) 233 { 234 struct drbd_peer_device *peer_device; 235 int vnr; 236 237 rcu_read_lock(); 238 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 239 struct drbd_device *device = peer_device->device; 240 if (!atomic_read(&device->pp_in_use_by_net)) 241 continue; 242 243 kref_get(&device->kref); 244 rcu_read_unlock(); 245 drbd_reclaim_net_peer_reqs(device); 246 kref_put(&device->kref, drbd_destroy_device); 247 rcu_read_lock(); 248 } 249 rcu_read_unlock(); 250 } 251 252 /** 253 * drbd_alloc_pages() - Returns @number pages, retries forever (or until signalled) 254 * @device: DRBD device. 255 * @number: number of pages requested 256 * @retry: whether to retry, if not enough pages are available right now 257 * 258 * Tries to allocate number pages, first from our own page pool, then from 259 * the kernel. 260 * Possibly retry until DRBD frees sufficient pages somewhere else. 261 * 262 * If this allocation would exceed the max_buffers setting, we throttle 263 * allocation (schedule_timeout) to give the system some room to breathe. 264 * 265 * We do not use max-buffers as hard limit, because it could lead to 266 * congestion and further to a distributed deadlock during online-verify or 267 * (checksum based) resync, if the max-buffers, socket buffer sizes and 268 * resync-rate settings are mis-configured. 269 * 270 * Returns a page chain linked via page->private. 271 */ 272 struct page *drbd_alloc_pages(struct drbd_peer_device *peer_device, unsigned int number, 273 bool retry) 274 { 275 struct drbd_device *device = peer_device->device; 276 struct page *page = NULL; 277 struct net_conf *nc; 278 DEFINE_WAIT(wait); 279 unsigned int mxb; 280 281 rcu_read_lock(); 282 nc = rcu_dereference(peer_device->connection->net_conf); 283 mxb = nc ? nc->max_buffers : 1000000; 284 rcu_read_unlock(); 285 286 if (atomic_read(&device->pp_in_use) < mxb) 287 page = __drbd_alloc_pages(device, number); 288 289 /* Try to keep the fast path fast, but occasionally we need 290 * to reclaim the pages we lended to the network stack. */ 291 if (page && atomic_read(&device->pp_in_use_by_net) > 512) 292 drbd_reclaim_net_peer_reqs(device); 293 294 while (page == NULL) { 295 prepare_to_wait(&drbd_pp_wait, &wait, TASK_INTERRUPTIBLE); 296 297 drbd_reclaim_net_peer_reqs(device); 298 299 if (atomic_read(&device->pp_in_use) < mxb) { 300 page = __drbd_alloc_pages(device, number); 301 if (page) 302 break; 303 } 304 305 if (!retry) 306 break; 307 308 if (signal_pending(current)) { 309 drbd_warn(device, "drbd_alloc_pages interrupted!\n"); 310 break; 311 } 312 313 if (schedule_timeout(HZ/10) == 0) 314 mxb = UINT_MAX; 315 } 316 finish_wait(&drbd_pp_wait, &wait); 317 318 if (page) 319 atomic_add(number, &device->pp_in_use); 320 return page; 321 } 322 323 /* Must not be used from irq, as that may deadlock: see drbd_alloc_pages. 324 * Is also used from inside an other spin_lock_irq(&resource->req_lock); 325 * Either links the page chain back to the global pool, 326 * or returns all pages to the system. */ 327 static void drbd_free_pages(struct drbd_device *device, struct page *page, int is_net) 328 { 329 atomic_t *a = is_net ? &device->pp_in_use_by_net : &device->pp_in_use; 330 int i; 331 332 if (page == NULL) 333 return; 334 335 if (drbd_pp_vacant > (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * drbd_minor_count) 336 i = page_chain_free(page); 337 else { 338 struct page *tmp; 339 tmp = page_chain_tail(page, &i); 340 spin_lock(&drbd_pp_lock); 341 page_chain_add(&drbd_pp_pool, page, tmp); 342 drbd_pp_vacant += i; 343 spin_unlock(&drbd_pp_lock); 344 } 345 i = atomic_sub_return(i, a); 346 if (i < 0) 347 drbd_warn(device, "ASSERTION FAILED: %s: %d < 0\n", 348 is_net ? "pp_in_use_by_net" : "pp_in_use", i); 349 wake_up(&drbd_pp_wait); 350 } 351 352 /* 353 You need to hold the req_lock: 354 _drbd_wait_ee_list_empty() 355 356 You must not have the req_lock: 357 drbd_free_peer_req() 358 drbd_alloc_peer_req() 359 drbd_free_peer_reqs() 360 drbd_ee_fix_bhs() 361 drbd_finish_peer_reqs() 362 drbd_clear_done_ee() 363 drbd_wait_ee_list_empty() 364 */ 365 366 /* normal: payload_size == request size (bi_size) 367 * w_same: payload_size == logical_block_size 368 * trim: payload_size == 0 */ 369 struct drbd_peer_request * 370 drbd_alloc_peer_req(struct drbd_peer_device *peer_device, u64 id, sector_t sector, 371 unsigned int request_size, unsigned int payload_size, gfp_t gfp_mask) __must_hold(local) 372 { 373 struct drbd_device *device = peer_device->device; 374 struct drbd_peer_request *peer_req; 375 struct page *page = NULL; 376 unsigned nr_pages = (payload_size + PAGE_SIZE -1) >> PAGE_SHIFT; 377 378 if (drbd_insert_fault(device, DRBD_FAULT_AL_EE)) 379 return NULL; 380 381 peer_req = mempool_alloc(drbd_ee_mempool, gfp_mask & ~__GFP_HIGHMEM); 382 if (!peer_req) { 383 if (!(gfp_mask & __GFP_NOWARN)) 384 drbd_err(device, "%s: allocation failed\n", __func__); 385 return NULL; 386 } 387 388 if (nr_pages) { 389 page = drbd_alloc_pages(peer_device, nr_pages, 390 gfpflags_allow_blocking(gfp_mask)); 391 if (!page) 392 goto fail; 393 } 394 395 memset(peer_req, 0, sizeof(*peer_req)); 396 INIT_LIST_HEAD(&peer_req->w.list); 397 drbd_clear_interval(&peer_req->i); 398 peer_req->i.size = request_size; 399 peer_req->i.sector = sector; 400 peer_req->submit_jif = jiffies; 401 peer_req->peer_device = peer_device; 402 peer_req->pages = page; 403 /* 404 * The block_id is opaque to the receiver. It is not endianness 405 * converted, and sent back to the sender unchanged. 406 */ 407 peer_req->block_id = id; 408 409 return peer_req; 410 411 fail: 412 mempool_free(peer_req, drbd_ee_mempool); 413 return NULL; 414 } 415 416 void __drbd_free_peer_req(struct drbd_device *device, struct drbd_peer_request *peer_req, 417 int is_net) 418 { 419 might_sleep(); 420 if (peer_req->flags & EE_HAS_DIGEST) 421 kfree(peer_req->digest); 422 drbd_free_pages(device, peer_req->pages, is_net); 423 D_ASSERT(device, atomic_read(&peer_req->pending_bios) == 0); 424 D_ASSERT(device, drbd_interval_empty(&peer_req->i)); 425 if (!expect(!(peer_req->flags & EE_CALL_AL_COMPLETE_IO))) { 426 peer_req->flags &= ~EE_CALL_AL_COMPLETE_IO; 427 drbd_al_complete_io(device, &peer_req->i); 428 } 429 mempool_free(peer_req, drbd_ee_mempool); 430 } 431 432 int drbd_free_peer_reqs(struct drbd_device *device, struct list_head *list) 433 { 434 LIST_HEAD(work_list); 435 struct drbd_peer_request *peer_req, *t; 436 int count = 0; 437 int is_net = list == &device->net_ee; 438 439 spin_lock_irq(&device->resource->req_lock); 440 list_splice_init(list, &work_list); 441 spin_unlock_irq(&device->resource->req_lock); 442 443 list_for_each_entry_safe(peer_req, t, &work_list, w.list) { 444 __drbd_free_peer_req(device, peer_req, is_net); 445 count++; 446 } 447 return count; 448 } 449 450 /* 451 * See also comments in _req_mod(,BARRIER_ACKED) and receive_Barrier. 452 */ 453 static int drbd_finish_peer_reqs(struct drbd_device *device) 454 { 455 LIST_HEAD(work_list); 456 LIST_HEAD(reclaimed); 457 struct drbd_peer_request *peer_req, *t; 458 int err = 0; 459 460 spin_lock_irq(&device->resource->req_lock); 461 reclaim_finished_net_peer_reqs(device, &reclaimed); 462 list_splice_init(&device->done_ee, &work_list); 463 spin_unlock_irq(&device->resource->req_lock); 464 465 list_for_each_entry_safe(peer_req, t, &reclaimed, w.list) 466 drbd_free_net_peer_req(device, peer_req); 467 468 /* possible callbacks here: 469 * e_end_block, and e_end_resync_block, e_send_superseded. 470 * all ignore the last argument. 471 */ 472 list_for_each_entry_safe(peer_req, t, &work_list, w.list) { 473 int err2; 474 475 /* list_del not necessary, next/prev members not touched */ 476 err2 = peer_req->w.cb(&peer_req->w, !!err); 477 if (!err) 478 err = err2; 479 drbd_free_peer_req(device, peer_req); 480 } 481 wake_up(&device->ee_wait); 482 483 return err; 484 } 485 486 static void _drbd_wait_ee_list_empty(struct drbd_device *device, 487 struct list_head *head) 488 { 489 DEFINE_WAIT(wait); 490 491 /* avoids spin_lock/unlock 492 * and calling prepare_to_wait in the fast path */ 493 while (!list_empty(head)) { 494 prepare_to_wait(&device->ee_wait, &wait, TASK_UNINTERRUPTIBLE); 495 spin_unlock_irq(&device->resource->req_lock); 496 io_schedule(); 497 finish_wait(&device->ee_wait, &wait); 498 spin_lock_irq(&device->resource->req_lock); 499 } 500 } 501 502 static void drbd_wait_ee_list_empty(struct drbd_device *device, 503 struct list_head *head) 504 { 505 spin_lock_irq(&device->resource->req_lock); 506 _drbd_wait_ee_list_empty(device, head); 507 spin_unlock_irq(&device->resource->req_lock); 508 } 509 510 static int drbd_recv_short(struct socket *sock, void *buf, size_t size, int flags) 511 { 512 struct kvec iov = { 513 .iov_base = buf, 514 .iov_len = size, 515 }; 516 struct msghdr msg = { 517 .msg_flags = (flags ? flags : MSG_WAITALL | MSG_NOSIGNAL) 518 }; 519 iov_iter_kvec(&msg.msg_iter, READ | ITER_KVEC, &iov, 1, size); 520 return sock_recvmsg(sock, &msg, msg.msg_flags); 521 } 522 523 static int drbd_recv(struct drbd_connection *connection, void *buf, size_t size) 524 { 525 int rv; 526 527 rv = drbd_recv_short(connection->data.socket, buf, size, 0); 528 529 if (rv < 0) { 530 if (rv == -ECONNRESET) 531 drbd_info(connection, "sock was reset by peer\n"); 532 else if (rv != -ERESTARTSYS) 533 drbd_err(connection, "sock_recvmsg returned %d\n", rv); 534 } else if (rv == 0) { 535 if (test_bit(DISCONNECT_SENT, &connection->flags)) { 536 long t; 537 rcu_read_lock(); 538 t = rcu_dereference(connection->net_conf)->ping_timeo * HZ/10; 539 rcu_read_unlock(); 540 541 t = wait_event_timeout(connection->ping_wait, connection->cstate < C_WF_REPORT_PARAMS, t); 542 543 if (t) 544 goto out; 545 } 546 drbd_info(connection, "sock was shut down by peer\n"); 547 } 548 549 if (rv != size) 550 conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD); 551 552 out: 553 return rv; 554 } 555 556 static int drbd_recv_all(struct drbd_connection *connection, void *buf, size_t size) 557 { 558 int err; 559 560 err = drbd_recv(connection, buf, size); 561 if (err != size) { 562 if (err >= 0) 563 err = -EIO; 564 } else 565 err = 0; 566 return err; 567 } 568 569 static int drbd_recv_all_warn(struct drbd_connection *connection, void *buf, size_t size) 570 { 571 int err; 572 573 err = drbd_recv_all(connection, buf, size); 574 if (err && !signal_pending(current)) 575 drbd_warn(connection, "short read (expected size %d)\n", (int)size); 576 return err; 577 } 578 579 /* quoting tcp(7): 580 * On individual connections, the socket buffer size must be set prior to the 581 * listen(2) or connect(2) calls in order to have it take effect. 582 * This is our wrapper to do so. 583 */ 584 static void drbd_setbufsize(struct socket *sock, unsigned int snd, 585 unsigned int rcv) 586 { 587 /* open coded SO_SNDBUF, SO_RCVBUF */ 588 if (snd) { 589 sock->sk->sk_sndbuf = snd; 590 sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 591 } 592 if (rcv) { 593 sock->sk->sk_rcvbuf = rcv; 594 sock->sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 595 } 596 } 597 598 static struct socket *drbd_try_connect(struct drbd_connection *connection) 599 { 600 const char *what; 601 struct socket *sock; 602 struct sockaddr_in6 src_in6; 603 struct sockaddr_in6 peer_in6; 604 struct net_conf *nc; 605 int err, peer_addr_len, my_addr_len; 606 int sndbuf_size, rcvbuf_size, connect_int; 607 int disconnect_on_error = 1; 608 609 rcu_read_lock(); 610 nc = rcu_dereference(connection->net_conf); 611 if (!nc) { 612 rcu_read_unlock(); 613 return NULL; 614 } 615 sndbuf_size = nc->sndbuf_size; 616 rcvbuf_size = nc->rcvbuf_size; 617 connect_int = nc->connect_int; 618 rcu_read_unlock(); 619 620 my_addr_len = min_t(int, connection->my_addr_len, sizeof(src_in6)); 621 memcpy(&src_in6, &connection->my_addr, my_addr_len); 622 623 if (((struct sockaddr *)&connection->my_addr)->sa_family == AF_INET6) 624 src_in6.sin6_port = 0; 625 else 626 ((struct sockaddr_in *)&src_in6)->sin_port = 0; /* AF_INET & AF_SCI */ 627 628 peer_addr_len = min_t(int, connection->peer_addr_len, sizeof(src_in6)); 629 memcpy(&peer_in6, &connection->peer_addr, peer_addr_len); 630 631 what = "sock_create_kern"; 632 err = sock_create_kern(&init_net, ((struct sockaddr *)&src_in6)->sa_family, 633 SOCK_STREAM, IPPROTO_TCP, &sock); 634 if (err < 0) { 635 sock = NULL; 636 goto out; 637 } 638 639 sock->sk->sk_rcvtimeo = 640 sock->sk->sk_sndtimeo = connect_int * HZ; 641 drbd_setbufsize(sock, sndbuf_size, rcvbuf_size); 642 643 /* explicitly bind to the configured IP as source IP 644 * for the outgoing connections. 645 * This is needed for multihomed hosts and to be 646 * able to use lo: interfaces for drbd. 647 * Make sure to use 0 as port number, so linux selects 648 * a free one dynamically. 649 */ 650 what = "bind before connect"; 651 err = sock->ops->bind(sock, (struct sockaddr *) &src_in6, my_addr_len); 652 if (err < 0) 653 goto out; 654 655 /* connect may fail, peer not yet available. 656 * stay C_WF_CONNECTION, don't go Disconnecting! */ 657 disconnect_on_error = 0; 658 what = "connect"; 659 err = sock->ops->connect(sock, (struct sockaddr *) &peer_in6, peer_addr_len, 0); 660 661 out: 662 if (err < 0) { 663 if (sock) { 664 sock_release(sock); 665 sock = NULL; 666 } 667 switch (-err) { 668 /* timeout, busy, signal pending */ 669 case ETIMEDOUT: case EAGAIN: case EINPROGRESS: 670 case EINTR: case ERESTARTSYS: 671 /* peer not (yet) available, network problem */ 672 case ECONNREFUSED: case ENETUNREACH: 673 case EHOSTDOWN: case EHOSTUNREACH: 674 disconnect_on_error = 0; 675 break; 676 default: 677 drbd_err(connection, "%s failed, err = %d\n", what, err); 678 } 679 if (disconnect_on_error) 680 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 681 } 682 683 return sock; 684 } 685 686 struct accept_wait_data { 687 struct drbd_connection *connection; 688 struct socket *s_listen; 689 struct completion door_bell; 690 void (*original_sk_state_change)(struct sock *sk); 691 692 }; 693 694 static void drbd_incoming_connection(struct sock *sk) 695 { 696 struct accept_wait_data *ad = sk->sk_user_data; 697 void (*state_change)(struct sock *sk); 698 699 state_change = ad->original_sk_state_change; 700 if (sk->sk_state == TCP_ESTABLISHED) 701 complete(&ad->door_bell); 702 state_change(sk); 703 } 704 705 static int prepare_listen_socket(struct drbd_connection *connection, struct accept_wait_data *ad) 706 { 707 int err, sndbuf_size, rcvbuf_size, my_addr_len; 708 struct sockaddr_in6 my_addr; 709 struct socket *s_listen; 710 struct net_conf *nc; 711 const char *what; 712 713 rcu_read_lock(); 714 nc = rcu_dereference(connection->net_conf); 715 if (!nc) { 716 rcu_read_unlock(); 717 return -EIO; 718 } 719 sndbuf_size = nc->sndbuf_size; 720 rcvbuf_size = nc->rcvbuf_size; 721 rcu_read_unlock(); 722 723 my_addr_len = min_t(int, connection->my_addr_len, sizeof(struct sockaddr_in6)); 724 memcpy(&my_addr, &connection->my_addr, my_addr_len); 725 726 what = "sock_create_kern"; 727 err = sock_create_kern(&init_net, ((struct sockaddr *)&my_addr)->sa_family, 728 SOCK_STREAM, IPPROTO_TCP, &s_listen); 729 if (err) { 730 s_listen = NULL; 731 goto out; 732 } 733 734 s_listen->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */ 735 drbd_setbufsize(s_listen, sndbuf_size, rcvbuf_size); 736 737 what = "bind before listen"; 738 err = s_listen->ops->bind(s_listen, (struct sockaddr *)&my_addr, my_addr_len); 739 if (err < 0) 740 goto out; 741 742 ad->s_listen = s_listen; 743 write_lock_bh(&s_listen->sk->sk_callback_lock); 744 ad->original_sk_state_change = s_listen->sk->sk_state_change; 745 s_listen->sk->sk_state_change = drbd_incoming_connection; 746 s_listen->sk->sk_user_data = ad; 747 write_unlock_bh(&s_listen->sk->sk_callback_lock); 748 749 what = "listen"; 750 err = s_listen->ops->listen(s_listen, 5); 751 if (err < 0) 752 goto out; 753 754 return 0; 755 out: 756 if (s_listen) 757 sock_release(s_listen); 758 if (err < 0) { 759 if (err != -EAGAIN && err != -EINTR && err != -ERESTARTSYS) { 760 drbd_err(connection, "%s failed, err = %d\n", what, err); 761 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 762 } 763 } 764 765 return -EIO; 766 } 767 768 static void unregister_state_change(struct sock *sk, struct accept_wait_data *ad) 769 { 770 write_lock_bh(&sk->sk_callback_lock); 771 sk->sk_state_change = ad->original_sk_state_change; 772 sk->sk_user_data = NULL; 773 write_unlock_bh(&sk->sk_callback_lock); 774 } 775 776 static struct socket *drbd_wait_for_connect(struct drbd_connection *connection, struct accept_wait_data *ad) 777 { 778 int timeo, connect_int, err = 0; 779 struct socket *s_estab = NULL; 780 struct net_conf *nc; 781 782 rcu_read_lock(); 783 nc = rcu_dereference(connection->net_conf); 784 if (!nc) { 785 rcu_read_unlock(); 786 return NULL; 787 } 788 connect_int = nc->connect_int; 789 rcu_read_unlock(); 790 791 timeo = connect_int * HZ; 792 /* 28.5% random jitter */ 793 timeo += (prandom_u32() & 1) ? timeo / 7 : -timeo / 7; 794 795 err = wait_for_completion_interruptible_timeout(&ad->door_bell, timeo); 796 if (err <= 0) 797 return NULL; 798 799 err = kernel_accept(ad->s_listen, &s_estab, 0); 800 if (err < 0) { 801 if (err != -EAGAIN && err != -EINTR && err != -ERESTARTSYS) { 802 drbd_err(connection, "accept failed, err = %d\n", err); 803 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 804 } 805 } 806 807 if (s_estab) 808 unregister_state_change(s_estab->sk, ad); 809 810 return s_estab; 811 } 812 813 static int decode_header(struct drbd_connection *, void *, struct packet_info *); 814 815 static int send_first_packet(struct drbd_connection *connection, struct drbd_socket *sock, 816 enum drbd_packet cmd) 817 { 818 if (!conn_prepare_command(connection, sock)) 819 return -EIO; 820 return conn_send_command(connection, sock, cmd, 0, NULL, 0); 821 } 822 823 static int receive_first_packet(struct drbd_connection *connection, struct socket *sock) 824 { 825 unsigned int header_size = drbd_header_size(connection); 826 struct packet_info pi; 827 struct net_conf *nc; 828 int err; 829 830 rcu_read_lock(); 831 nc = rcu_dereference(connection->net_conf); 832 if (!nc) { 833 rcu_read_unlock(); 834 return -EIO; 835 } 836 sock->sk->sk_rcvtimeo = nc->ping_timeo * 4 * HZ / 10; 837 rcu_read_unlock(); 838 839 err = drbd_recv_short(sock, connection->data.rbuf, header_size, 0); 840 if (err != header_size) { 841 if (err >= 0) 842 err = -EIO; 843 return err; 844 } 845 err = decode_header(connection, connection->data.rbuf, &pi); 846 if (err) 847 return err; 848 return pi.cmd; 849 } 850 851 /** 852 * drbd_socket_okay() - Free the socket if its connection is not okay 853 * @sock: pointer to the pointer to the socket. 854 */ 855 static bool drbd_socket_okay(struct socket **sock) 856 { 857 int rr; 858 char tb[4]; 859 860 if (!*sock) 861 return false; 862 863 rr = drbd_recv_short(*sock, tb, 4, MSG_DONTWAIT | MSG_PEEK); 864 865 if (rr > 0 || rr == -EAGAIN) { 866 return true; 867 } else { 868 sock_release(*sock); 869 *sock = NULL; 870 return false; 871 } 872 } 873 874 static bool connection_established(struct drbd_connection *connection, 875 struct socket **sock1, 876 struct socket **sock2) 877 { 878 struct net_conf *nc; 879 int timeout; 880 bool ok; 881 882 if (!*sock1 || !*sock2) 883 return false; 884 885 rcu_read_lock(); 886 nc = rcu_dereference(connection->net_conf); 887 timeout = (nc->sock_check_timeo ?: nc->ping_timeo) * HZ / 10; 888 rcu_read_unlock(); 889 schedule_timeout_interruptible(timeout); 890 891 ok = drbd_socket_okay(sock1); 892 ok = drbd_socket_okay(sock2) && ok; 893 894 return ok; 895 } 896 897 /* Gets called if a connection is established, or if a new minor gets created 898 in a connection */ 899 int drbd_connected(struct drbd_peer_device *peer_device) 900 { 901 struct drbd_device *device = peer_device->device; 902 int err; 903 904 atomic_set(&device->packet_seq, 0); 905 device->peer_seq = 0; 906 907 device->state_mutex = peer_device->connection->agreed_pro_version < 100 ? 908 &peer_device->connection->cstate_mutex : 909 &device->own_state_mutex; 910 911 err = drbd_send_sync_param(peer_device); 912 if (!err) 913 err = drbd_send_sizes(peer_device, 0, 0); 914 if (!err) 915 err = drbd_send_uuids(peer_device); 916 if (!err) 917 err = drbd_send_current_state(peer_device); 918 clear_bit(USE_DEGR_WFC_T, &device->flags); 919 clear_bit(RESIZE_PENDING, &device->flags); 920 atomic_set(&device->ap_in_flight, 0); 921 mod_timer(&device->request_timer, jiffies + HZ); /* just start it here. */ 922 return err; 923 } 924 925 /* 926 * return values: 927 * 1 yes, we have a valid connection 928 * 0 oops, did not work out, please try again 929 * -1 peer talks different language, 930 * no point in trying again, please go standalone. 931 * -2 We do not have a network config... 932 */ 933 static int conn_connect(struct drbd_connection *connection) 934 { 935 struct drbd_socket sock, msock; 936 struct drbd_peer_device *peer_device; 937 struct net_conf *nc; 938 int vnr, timeout, h; 939 bool discard_my_data, ok; 940 enum drbd_state_rv rv; 941 struct accept_wait_data ad = { 942 .connection = connection, 943 .door_bell = COMPLETION_INITIALIZER_ONSTACK(ad.door_bell), 944 }; 945 946 clear_bit(DISCONNECT_SENT, &connection->flags); 947 if (conn_request_state(connection, NS(conn, C_WF_CONNECTION), CS_VERBOSE) < SS_SUCCESS) 948 return -2; 949 950 mutex_init(&sock.mutex); 951 sock.sbuf = connection->data.sbuf; 952 sock.rbuf = connection->data.rbuf; 953 sock.socket = NULL; 954 mutex_init(&msock.mutex); 955 msock.sbuf = connection->meta.sbuf; 956 msock.rbuf = connection->meta.rbuf; 957 msock.socket = NULL; 958 959 /* Assume that the peer only understands protocol 80 until we know better. */ 960 connection->agreed_pro_version = 80; 961 962 if (prepare_listen_socket(connection, &ad)) 963 return 0; 964 965 do { 966 struct socket *s; 967 968 s = drbd_try_connect(connection); 969 if (s) { 970 if (!sock.socket) { 971 sock.socket = s; 972 send_first_packet(connection, &sock, P_INITIAL_DATA); 973 } else if (!msock.socket) { 974 clear_bit(RESOLVE_CONFLICTS, &connection->flags); 975 msock.socket = s; 976 send_first_packet(connection, &msock, P_INITIAL_META); 977 } else { 978 drbd_err(connection, "Logic error in conn_connect()\n"); 979 goto out_release_sockets; 980 } 981 } 982 983 if (connection_established(connection, &sock.socket, &msock.socket)) 984 break; 985 986 retry: 987 s = drbd_wait_for_connect(connection, &ad); 988 if (s) { 989 int fp = receive_first_packet(connection, s); 990 drbd_socket_okay(&sock.socket); 991 drbd_socket_okay(&msock.socket); 992 switch (fp) { 993 case P_INITIAL_DATA: 994 if (sock.socket) { 995 drbd_warn(connection, "initial packet S crossed\n"); 996 sock_release(sock.socket); 997 sock.socket = s; 998 goto randomize; 999 } 1000 sock.socket = s; 1001 break; 1002 case P_INITIAL_META: 1003 set_bit(RESOLVE_CONFLICTS, &connection->flags); 1004 if (msock.socket) { 1005 drbd_warn(connection, "initial packet M crossed\n"); 1006 sock_release(msock.socket); 1007 msock.socket = s; 1008 goto randomize; 1009 } 1010 msock.socket = s; 1011 break; 1012 default: 1013 drbd_warn(connection, "Error receiving initial packet\n"); 1014 sock_release(s); 1015 randomize: 1016 if (prandom_u32() & 1) 1017 goto retry; 1018 } 1019 } 1020 1021 if (connection->cstate <= C_DISCONNECTING) 1022 goto out_release_sockets; 1023 if (signal_pending(current)) { 1024 flush_signals(current); 1025 smp_rmb(); 1026 if (get_t_state(&connection->receiver) == EXITING) 1027 goto out_release_sockets; 1028 } 1029 1030 ok = connection_established(connection, &sock.socket, &msock.socket); 1031 } while (!ok); 1032 1033 if (ad.s_listen) 1034 sock_release(ad.s_listen); 1035 1036 sock.socket->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */ 1037 msock.socket->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */ 1038 1039 sock.socket->sk->sk_allocation = GFP_NOIO; 1040 msock.socket->sk->sk_allocation = GFP_NOIO; 1041 1042 sock.socket->sk->sk_priority = TC_PRIO_INTERACTIVE_BULK; 1043 msock.socket->sk->sk_priority = TC_PRIO_INTERACTIVE; 1044 1045 /* NOT YET ... 1046 * sock.socket->sk->sk_sndtimeo = connection->net_conf->timeout*HZ/10; 1047 * sock.socket->sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 1048 * first set it to the P_CONNECTION_FEATURES timeout, 1049 * which we set to 4x the configured ping_timeout. */ 1050 rcu_read_lock(); 1051 nc = rcu_dereference(connection->net_conf); 1052 1053 sock.socket->sk->sk_sndtimeo = 1054 sock.socket->sk->sk_rcvtimeo = nc->ping_timeo*4*HZ/10; 1055 1056 msock.socket->sk->sk_rcvtimeo = nc->ping_int*HZ; 1057 timeout = nc->timeout * HZ / 10; 1058 discard_my_data = nc->discard_my_data; 1059 rcu_read_unlock(); 1060 1061 msock.socket->sk->sk_sndtimeo = timeout; 1062 1063 /* we don't want delays. 1064 * we use TCP_CORK where appropriate, though */ 1065 drbd_tcp_nodelay(sock.socket); 1066 drbd_tcp_nodelay(msock.socket); 1067 1068 connection->data.socket = sock.socket; 1069 connection->meta.socket = msock.socket; 1070 connection->last_received = jiffies; 1071 1072 h = drbd_do_features(connection); 1073 if (h <= 0) 1074 return h; 1075 1076 if (connection->cram_hmac_tfm) { 1077 /* drbd_request_state(device, NS(conn, WFAuth)); */ 1078 switch (drbd_do_auth(connection)) { 1079 case -1: 1080 drbd_err(connection, "Authentication of peer failed\n"); 1081 return -1; 1082 case 0: 1083 drbd_err(connection, "Authentication of peer failed, trying again.\n"); 1084 return 0; 1085 } 1086 } 1087 1088 connection->data.socket->sk->sk_sndtimeo = timeout; 1089 connection->data.socket->sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 1090 1091 if (drbd_send_protocol(connection) == -EOPNOTSUPP) 1092 return -1; 1093 1094 /* Prevent a race between resync-handshake and 1095 * being promoted to Primary. 1096 * 1097 * Grab and release the state mutex, so we know that any current 1098 * drbd_set_role() is finished, and any incoming drbd_set_role 1099 * will see the STATE_SENT flag, and wait for it to be cleared. 1100 */ 1101 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) 1102 mutex_lock(peer_device->device->state_mutex); 1103 1104 /* avoid a race with conn_request_state( C_DISCONNECTING ) */ 1105 spin_lock_irq(&connection->resource->req_lock); 1106 set_bit(STATE_SENT, &connection->flags); 1107 spin_unlock_irq(&connection->resource->req_lock); 1108 1109 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) 1110 mutex_unlock(peer_device->device->state_mutex); 1111 1112 rcu_read_lock(); 1113 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 1114 struct drbd_device *device = peer_device->device; 1115 kref_get(&device->kref); 1116 rcu_read_unlock(); 1117 1118 if (discard_my_data) 1119 set_bit(DISCARD_MY_DATA, &device->flags); 1120 else 1121 clear_bit(DISCARD_MY_DATA, &device->flags); 1122 1123 drbd_connected(peer_device); 1124 kref_put(&device->kref, drbd_destroy_device); 1125 rcu_read_lock(); 1126 } 1127 rcu_read_unlock(); 1128 1129 rv = conn_request_state(connection, NS(conn, C_WF_REPORT_PARAMS), CS_VERBOSE); 1130 if (rv < SS_SUCCESS || connection->cstate != C_WF_REPORT_PARAMS) { 1131 clear_bit(STATE_SENT, &connection->flags); 1132 return 0; 1133 } 1134 1135 drbd_thread_start(&connection->ack_receiver); 1136 /* opencoded create_singlethread_workqueue(), 1137 * to be able to use format string arguments */ 1138 connection->ack_sender = 1139 alloc_ordered_workqueue("drbd_as_%s", WQ_MEM_RECLAIM, connection->resource->name); 1140 if (!connection->ack_sender) { 1141 drbd_err(connection, "Failed to create workqueue ack_sender\n"); 1142 return 0; 1143 } 1144 1145 mutex_lock(&connection->resource->conf_update); 1146 /* The discard_my_data flag is a single-shot modifier to the next 1147 * connection attempt, the handshake of which is now well underway. 1148 * No need for rcu style copying of the whole struct 1149 * just to clear a single value. */ 1150 connection->net_conf->discard_my_data = 0; 1151 mutex_unlock(&connection->resource->conf_update); 1152 1153 return h; 1154 1155 out_release_sockets: 1156 if (ad.s_listen) 1157 sock_release(ad.s_listen); 1158 if (sock.socket) 1159 sock_release(sock.socket); 1160 if (msock.socket) 1161 sock_release(msock.socket); 1162 return -1; 1163 } 1164 1165 static int decode_header(struct drbd_connection *connection, void *header, struct packet_info *pi) 1166 { 1167 unsigned int header_size = drbd_header_size(connection); 1168 1169 if (header_size == sizeof(struct p_header100) && 1170 *(__be32 *)header == cpu_to_be32(DRBD_MAGIC_100)) { 1171 struct p_header100 *h = header; 1172 if (h->pad != 0) { 1173 drbd_err(connection, "Header padding is not zero\n"); 1174 return -EINVAL; 1175 } 1176 pi->vnr = be16_to_cpu(h->volume); 1177 pi->cmd = be16_to_cpu(h->command); 1178 pi->size = be32_to_cpu(h->length); 1179 } else if (header_size == sizeof(struct p_header95) && 1180 *(__be16 *)header == cpu_to_be16(DRBD_MAGIC_BIG)) { 1181 struct p_header95 *h = header; 1182 pi->cmd = be16_to_cpu(h->command); 1183 pi->size = be32_to_cpu(h->length); 1184 pi->vnr = 0; 1185 } else if (header_size == sizeof(struct p_header80) && 1186 *(__be32 *)header == cpu_to_be32(DRBD_MAGIC)) { 1187 struct p_header80 *h = header; 1188 pi->cmd = be16_to_cpu(h->command); 1189 pi->size = be16_to_cpu(h->length); 1190 pi->vnr = 0; 1191 } else { 1192 drbd_err(connection, "Wrong magic value 0x%08x in protocol version %d\n", 1193 be32_to_cpu(*(__be32 *)header), 1194 connection->agreed_pro_version); 1195 return -EINVAL; 1196 } 1197 pi->data = header + header_size; 1198 return 0; 1199 } 1200 1201 static void drbd_unplug_all_devices(struct drbd_connection *connection) 1202 { 1203 if (current->plug == &connection->receiver_plug) { 1204 blk_finish_plug(&connection->receiver_plug); 1205 blk_start_plug(&connection->receiver_plug); 1206 } /* else: maybe just schedule() ?? */ 1207 } 1208 1209 static int drbd_recv_header(struct drbd_connection *connection, struct packet_info *pi) 1210 { 1211 void *buffer = connection->data.rbuf; 1212 int err; 1213 1214 err = drbd_recv_all_warn(connection, buffer, drbd_header_size(connection)); 1215 if (err) 1216 return err; 1217 1218 err = decode_header(connection, buffer, pi); 1219 connection->last_received = jiffies; 1220 1221 return err; 1222 } 1223 1224 static int drbd_recv_header_maybe_unplug(struct drbd_connection *connection, struct packet_info *pi) 1225 { 1226 void *buffer = connection->data.rbuf; 1227 unsigned int size = drbd_header_size(connection); 1228 int err; 1229 1230 err = drbd_recv_short(connection->data.socket, buffer, size, MSG_NOSIGNAL|MSG_DONTWAIT); 1231 if (err != size) { 1232 /* If we have nothing in the receive buffer now, to reduce 1233 * application latency, try to drain the backend queues as 1234 * quickly as possible, and let remote TCP know what we have 1235 * received so far. */ 1236 if (err == -EAGAIN) { 1237 drbd_tcp_quickack(connection->data.socket); 1238 drbd_unplug_all_devices(connection); 1239 } 1240 if (err > 0) { 1241 buffer += err; 1242 size -= err; 1243 } 1244 err = drbd_recv_all_warn(connection, buffer, size); 1245 if (err) 1246 return err; 1247 } 1248 1249 err = decode_header(connection, connection->data.rbuf, pi); 1250 connection->last_received = jiffies; 1251 1252 return err; 1253 } 1254 /* This is blkdev_issue_flush, but asynchronous. 1255 * We want to submit to all component volumes in parallel, 1256 * then wait for all completions. 1257 */ 1258 struct issue_flush_context { 1259 atomic_t pending; 1260 int error; 1261 struct completion done; 1262 }; 1263 struct one_flush_context { 1264 struct drbd_device *device; 1265 struct issue_flush_context *ctx; 1266 }; 1267 1268 static void one_flush_endio(struct bio *bio) 1269 { 1270 struct one_flush_context *octx = bio->bi_private; 1271 struct drbd_device *device = octx->device; 1272 struct issue_flush_context *ctx = octx->ctx; 1273 1274 if (bio->bi_status) { 1275 ctx->error = blk_status_to_errno(bio->bi_status); 1276 drbd_info(device, "local disk FLUSH FAILED with status %d\n", bio->bi_status); 1277 } 1278 kfree(octx); 1279 bio_put(bio); 1280 1281 clear_bit(FLUSH_PENDING, &device->flags); 1282 put_ldev(device); 1283 kref_put(&device->kref, drbd_destroy_device); 1284 1285 if (atomic_dec_and_test(&ctx->pending)) 1286 complete(&ctx->done); 1287 } 1288 1289 static void submit_one_flush(struct drbd_device *device, struct issue_flush_context *ctx) 1290 { 1291 struct bio *bio = bio_alloc(GFP_NOIO, 0); 1292 struct one_flush_context *octx = kmalloc(sizeof(*octx), GFP_NOIO); 1293 if (!bio || !octx) { 1294 drbd_warn(device, "Could not allocate a bio, CANNOT ISSUE FLUSH\n"); 1295 /* FIXME: what else can I do now? disconnecting or detaching 1296 * really does not help to improve the state of the world, either. 1297 */ 1298 kfree(octx); 1299 if (bio) 1300 bio_put(bio); 1301 1302 ctx->error = -ENOMEM; 1303 put_ldev(device); 1304 kref_put(&device->kref, drbd_destroy_device); 1305 return; 1306 } 1307 1308 octx->device = device; 1309 octx->ctx = ctx; 1310 bio_set_dev(bio, device->ldev->backing_bdev); 1311 bio->bi_private = octx; 1312 bio->bi_end_io = one_flush_endio; 1313 bio->bi_opf = REQ_OP_FLUSH | REQ_PREFLUSH; 1314 1315 device->flush_jif = jiffies; 1316 set_bit(FLUSH_PENDING, &device->flags); 1317 atomic_inc(&ctx->pending); 1318 submit_bio(bio); 1319 } 1320 1321 static void drbd_flush(struct drbd_connection *connection) 1322 { 1323 if (connection->resource->write_ordering >= WO_BDEV_FLUSH) { 1324 struct drbd_peer_device *peer_device; 1325 struct issue_flush_context ctx; 1326 int vnr; 1327 1328 atomic_set(&ctx.pending, 1); 1329 ctx.error = 0; 1330 init_completion(&ctx.done); 1331 1332 rcu_read_lock(); 1333 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 1334 struct drbd_device *device = peer_device->device; 1335 1336 if (!get_ldev(device)) 1337 continue; 1338 kref_get(&device->kref); 1339 rcu_read_unlock(); 1340 1341 submit_one_flush(device, &ctx); 1342 1343 rcu_read_lock(); 1344 } 1345 rcu_read_unlock(); 1346 1347 /* Do we want to add a timeout, 1348 * if disk-timeout is set? */ 1349 if (!atomic_dec_and_test(&ctx.pending)) 1350 wait_for_completion(&ctx.done); 1351 1352 if (ctx.error) { 1353 /* would rather check on EOPNOTSUPP, but that is not reliable. 1354 * don't try again for ANY return value != 0 1355 * if (rv == -EOPNOTSUPP) */ 1356 /* Any error is already reported by bio_endio callback. */ 1357 drbd_bump_write_ordering(connection->resource, NULL, WO_DRAIN_IO); 1358 } 1359 } 1360 } 1361 1362 /** 1363 * drbd_may_finish_epoch() - Applies an epoch_event to the epoch's state, eventually finishes it. 1364 * @device: DRBD device. 1365 * @epoch: Epoch object. 1366 * @ev: Epoch event. 1367 */ 1368 static enum finish_epoch drbd_may_finish_epoch(struct drbd_connection *connection, 1369 struct drbd_epoch *epoch, 1370 enum epoch_event ev) 1371 { 1372 int epoch_size; 1373 struct drbd_epoch *next_epoch; 1374 enum finish_epoch rv = FE_STILL_LIVE; 1375 1376 spin_lock(&connection->epoch_lock); 1377 do { 1378 next_epoch = NULL; 1379 1380 epoch_size = atomic_read(&epoch->epoch_size); 1381 1382 switch (ev & ~EV_CLEANUP) { 1383 case EV_PUT: 1384 atomic_dec(&epoch->active); 1385 break; 1386 case EV_GOT_BARRIER_NR: 1387 set_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags); 1388 break; 1389 case EV_BECAME_LAST: 1390 /* nothing to do*/ 1391 break; 1392 } 1393 1394 if (epoch_size != 0 && 1395 atomic_read(&epoch->active) == 0 && 1396 (test_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags) || ev & EV_CLEANUP)) { 1397 if (!(ev & EV_CLEANUP)) { 1398 spin_unlock(&connection->epoch_lock); 1399 drbd_send_b_ack(epoch->connection, epoch->barrier_nr, epoch_size); 1400 spin_lock(&connection->epoch_lock); 1401 } 1402 #if 0 1403 /* FIXME: dec unacked on connection, once we have 1404 * something to count pending connection packets in. */ 1405 if (test_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags)) 1406 dec_unacked(epoch->connection); 1407 #endif 1408 1409 if (connection->current_epoch != epoch) { 1410 next_epoch = list_entry(epoch->list.next, struct drbd_epoch, list); 1411 list_del(&epoch->list); 1412 ev = EV_BECAME_LAST | (ev & EV_CLEANUP); 1413 connection->epochs--; 1414 kfree(epoch); 1415 1416 if (rv == FE_STILL_LIVE) 1417 rv = FE_DESTROYED; 1418 } else { 1419 epoch->flags = 0; 1420 atomic_set(&epoch->epoch_size, 0); 1421 /* atomic_set(&epoch->active, 0); is already zero */ 1422 if (rv == FE_STILL_LIVE) 1423 rv = FE_RECYCLED; 1424 } 1425 } 1426 1427 if (!next_epoch) 1428 break; 1429 1430 epoch = next_epoch; 1431 } while (1); 1432 1433 spin_unlock(&connection->epoch_lock); 1434 1435 return rv; 1436 } 1437 1438 static enum write_ordering_e 1439 max_allowed_wo(struct drbd_backing_dev *bdev, enum write_ordering_e wo) 1440 { 1441 struct disk_conf *dc; 1442 1443 dc = rcu_dereference(bdev->disk_conf); 1444 1445 if (wo == WO_BDEV_FLUSH && !dc->disk_flushes) 1446 wo = WO_DRAIN_IO; 1447 if (wo == WO_DRAIN_IO && !dc->disk_drain) 1448 wo = WO_NONE; 1449 1450 return wo; 1451 } 1452 1453 /** 1454 * drbd_bump_write_ordering() - Fall back to an other write ordering method 1455 * @connection: DRBD connection. 1456 * @wo: Write ordering method to try. 1457 */ 1458 void drbd_bump_write_ordering(struct drbd_resource *resource, struct drbd_backing_dev *bdev, 1459 enum write_ordering_e wo) 1460 { 1461 struct drbd_device *device; 1462 enum write_ordering_e pwo; 1463 int vnr; 1464 static char *write_ordering_str[] = { 1465 [WO_NONE] = "none", 1466 [WO_DRAIN_IO] = "drain", 1467 [WO_BDEV_FLUSH] = "flush", 1468 }; 1469 1470 pwo = resource->write_ordering; 1471 if (wo != WO_BDEV_FLUSH) 1472 wo = min(pwo, wo); 1473 rcu_read_lock(); 1474 idr_for_each_entry(&resource->devices, device, vnr) { 1475 if (get_ldev(device)) { 1476 wo = max_allowed_wo(device->ldev, wo); 1477 if (device->ldev == bdev) 1478 bdev = NULL; 1479 put_ldev(device); 1480 } 1481 } 1482 1483 if (bdev) 1484 wo = max_allowed_wo(bdev, wo); 1485 1486 rcu_read_unlock(); 1487 1488 resource->write_ordering = wo; 1489 if (pwo != resource->write_ordering || wo == WO_BDEV_FLUSH) 1490 drbd_info(resource, "Method to ensure write ordering: %s\n", write_ordering_str[resource->write_ordering]); 1491 } 1492 1493 static void drbd_issue_peer_discard(struct drbd_device *device, struct drbd_peer_request *peer_req) 1494 { 1495 struct block_device *bdev = device->ldev->backing_bdev; 1496 1497 if (blkdev_issue_zeroout(bdev, peer_req->i.sector, peer_req->i.size >> 9, 1498 GFP_NOIO, 0)) 1499 peer_req->flags |= EE_WAS_ERROR; 1500 1501 drbd_endio_write_sec_final(peer_req); 1502 } 1503 1504 static void drbd_issue_peer_wsame(struct drbd_device *device, 1505 struct drbd_peer_request *peer_req) 1506 { 1507 struct block_device *bdev = device->ldev->backing_bdev; 1508 sector_t s = peer_req->i.sector; 1509 sector_t nr = peer_req->i.size >> 9; 1510 if (blkdev_issue_write_same(bdev, s, nr, GFP_NOIO, peer_req->pages)) 1511 peer_req->flags |= EE_WAS_ERROR; 1512 drbd_endio_write_sec_final(peer_req); 1513 } 1514 1515 1516 /** 1517 * drbd_submit_peer_request() 1518 * @device: DRBD device. 1519 * @peer_req: peer request 1520 * @rw: flag field, see bio->bi_opf 1521 * 1522 * May spread the pages to multiple bios, 1523 * depending on bio_add_page restrictions. 1524 * 1525 * Returns 0 if all bios have been submitted, 1526 * -ENOMEM if we could not allocate enough bios, 1527 * -ENOSPC (any better suggestion?) if we have not been able to bio_add_page a 1528 * single page to an empty bio (which should never happen and likely indicates 1529 * that the lower level IO stack is in some way broken). This has been observed 1530 * on certain Xen deployments. 1531 */ 1532 /* TODO allocate from our own bio_set. */ 1533 int drbd_submit_peer_request(struct drbd_device *device, 1534 struct drbd_peer_request *peer_req, 1535 const unsigned op, const unsigned op_flags, 1536 const int fault_type) 1537 { 1538 struct bio *bios = NULL; 1539 struct bio *bio; 1540 struct page *page = peer_req->pages; 1541 sector_t sector = peer_req->i.sector; 1542 unsigned data_size = peer_req->i.size; 1543 unsigned n_bios = 0; 1544 unsigned nr_pages = (data_size + PAGE_SIZE -1) >> PAGE_SHIFT; 1545 int err = -ENOMEM; 1546 1547 /* TRIM/DISCARD: for now, always use the helper function 1548 * blkdev_issue_zeroout(..., discard=true). 1549 * It's synchronous, but it does the right thing wrt. bio splitting. 1550 * Correctness first, performance later. Next step is to code an 1551 * asynchronous variant of the same. 1552 */ 1553 if (peer_req->flags & (EE_IS_TRIM|EE_WRITE_SAME)) { 1554 /* wait for all pending IO completions, before we start 1555 * zeroing things out. */ 1556 conn_wait_active_ee_empty(peer_req->peer_device->connection); 1557 /* add it to the active list now, 1558 * so we can find it to present it in debugfs */ 1559 peer_req->submit_jif = jiffies; 1560 peer_req->flags |= EE_SUBMITTED; 1561 1562 /* If this was a resync request from receive_rs_deallocated(), 1563 * it is already on the sync_ee list */ 1564 if (list_empty(&peer_req->w.list)) { 1565 spin_lock_irq(&device->resource->req_lock); 1566 list_add_tail(&peer_req->w.list, &device->active_ee); 1567 spin_unlock_irq(&device->resource->req_lock); 1568 } 1569 1570 if (peer_req->flags & EE_IS_TRIM) 1571 drbd_issue_peer_discard(device, peer_req); 1572 else /* EE_WRITE_SAME */ 1573 drbd_issue_peer_wsame(device, peer_req); 1574 return 0; 1575 } 1576 1577 /* In most cases, we will only need one bio. But in case the lower 1578 * level restrictions happen to be different at this offset on this 1579 * side than those of the sending peer, we may need to submit the 1580 * request in more than one bio. 1581 * 1582 * Plain bio_alloc is good enough here, this is no DRBD internally 1583 * generated bio, but a bio allocated on behalf of the peer. 1584 */ 1585 next_bio: 1586 bio = bio_alloc(GFP_NOIO, nr_pages); 1587 if (!bio) { 1588 drbd_err(device, "submit_ee: Allocation of a bio failed (nr_pages=%u)\n", nr_pages); 1589 goto fail; 1590 } 1591 /* > peer_req->i.sector, unless this is the first bio */ 1592 bio->bi_iter.bi_sector = sector; 1593 bio_set_dev(bio, device->ldev->backing_bdev); 1594 bio_set_op_attrs(bio, op, op_flags); 1595 bio->bi_private = peer_req; 1596 bio->bi_end_io = drbd_peer_request_endio; 1597 1598 bio->bi_next = bios; 1599 bios = bio; 1600 ++n_bios; 1601 1602 page_chain_for_each(page) { 1603 unsigned len = min_t(unsigned, data_size, PAGE_SIZE); 1604 if (!bio_add_page(bio, page, len, 0)) 1605 goto next_bio; 1606 data_size -= len; 1607 sector += len >> 9; 1608 --nr_pages; 1609 } 1610 D_ASSERT(device, data_size == 0); 1611 D_ASSERT(device, page == NULL); 1612 1613 atomic_set(&peer_req->pending_bios, n_bios); 1614 /* for debugfs: update timestamp, mark as submitted */ 1615 peer_req->submit_jif = jiffies; 1616 peer_req->flags |= EE_SUBMITTED; 1617 do { 1618 bio = bios; 1619 bios = bios->bi_next; 1620 bio->bi_next = NULL; 1621 1622 drbd_generic_make_request(device, fault_type, bio); 1623 } while (bios); 1624 return 0; 1625 1626 fail: 1627 while (bios) { 1628 bio = bios; 1629 bios = bios->bi_next; 1630 bio_put(bio); 1631 } 1632 return err; 1633 } 1634 1635 static void drbd_remove_epoch_entry_interval(struct drbd_device *device, 1636 struct drbd_peer_request *peer_req) 1637 { 1638 struct drbd_interval *i = &peer_req->i; 1639 1640 drbd_remove_interval(&device->write_requests, i); 1641 drbd_clear_interval(i); 1642 1643 /* Wake up any processes waiting for this peer request to complete. */ 1644 if (i->waiting) 1645 wake_up(&device->misc_wait); 1646 } 1647 1648 static void conn_wait_active_ee_empty(struct drbd_connection *connection) 1649 { 1650 struct drbd_peer_device *peer_device; 1651 int vnr; 1652 1653 rcu_read_lock(); 1654 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 1655 struct drbd_device *device = peer_device->device; 1656 1657 kref_get(&device->kref); 1658 rcu_read_unlock(); 1659 drbd_wait_ee_list_empty(device, &device->active_ee); 1660 kref_put(&device->kref, drbd_destroy_device); 1661 rcu_read_lock(); 1662 } 1663 rcu_read_unlock(); 1664 } 1665 1666 static int receive_Barrier(struct drbd_connection *connection, struct packet_info *pi) 1667 { 1668 int rv; 1669 struct p_barrier *p = pi->data; 1670 struct drbd_epoch *epoch; 1671 1672 /* FIXME these are unacked on connection, 1673 * not a specific (peer)device. 1674 */ 1675 connection->current_epoch->barrier_nr = p->barrier; 1676 connection->current_epoch->connection = connection; 1677 rv = drbd_may_finish_epoch(connection, connection->current_epoch, EV_GOT_BARRIER_NR); 1678 1679 /* P_BARRIER_ACK may imply that the corresponding extent is dropped from 1680 * the activity log, which means it would not be resynced in case the 1681 * R_PRIMARY crashes now. 1682 * Therefore we must send the barrier_ack after the barrier request was 1683 * completed. */ 1684 switch (connection->resource->write_ordering) { 1685 case WO_NONE: 1686 if (rv == FE_RECYCLED) 1687 return 0; 1688 1689 /* receiver context, in the writeout path of the other node. 1690 * avoid potential distributed deadlock */ 1691 epoch = kmalloc(sizeof(struct drbd_epoch), GFP_NOIO); 1692 if (epoch) 1693 break; 1694 else 1695 drbd_warn(connection, "Allocation of an epoch failed, slowing down\n"); 1696 /* Fall through */ 1697 1698 case WO_BDEV_FLUSH: 1699 case WO_DRAIN_IO: 1700 conn_wait_active_ee_empty(connection); 1701 drbd_flush(connection); 1702 1703 if (atomic_read(&connection->current_epoch->epoch_size)) { 1704 epoch = kmalloc(sizeof(struct drbd_epoch), GFP_NOIO); 1705 if (epoch) 1706 break; 1707 } 1708 1709 return 0; 1710 default: 1711 drbd_err(connection, "Strangeness in connection->write_ordering %d\n", 1712 connection->resource->write_ordering); 1713 return -EIO; 1714 } 1715 1716 epoch->flags = 0; 1717 atomic_set(&epoch->epoch_size, 0); 1718 atomic_set(&epoch->active, 0); 1719 1720 spin_lock(&connection->epoch_lock); 1721 if (atomic_read(&connection->current_epoch->epoch_size)) { 1722 list_add(&epoch->list, &connection->current_epoch->list); 1723 connection->current_epoch = epoch; 1724 connection->epochs++; 1725 } else { 1726 /* The current_epoch got recycled while we allocated this one... */ 1727 kfree(epoch); 1728 } 1729 spin_unlock(&connection->epoch_lock); 1730 1731 return 0; 1732 } 1733 1734 /* quick wrapper in case payload size != request_size (write same) */ 1735 static void drbd_csum_ee_size(struct crypto_ahash *h, 1736 struct drbd_peer_request *r, void *d, 1737 unsigned int payload_size) 1738 { 1739 unsigned int tmp = r->i.size; 1740 r->i.size = payload_size; 1741 drbd_csum_ee(h, r, d); 1742 r->i.size = tmp; 1743 } 1744 1745 /* used from receive_RSDataReply (recv_resync_read) 1746 * and from receive_Data. 1747 * data_size: actual payload ("data in") 1748 * for normal writes that is bi_size. 1749 * for discards, that is zero. 1750 * for write same, it is logical_block_size. 1751 * both trim and write same have the bi_size ("data len to be affected") 1752 * as extra argument in the packet header. 1753 */ 1754 static struct drbd_peer_request * 1755 read_in_block(struct drbd_peer_device *peer_device, u64 id, sector_t sector, 1756 struct packet_info *pi) __must_hold(local) 1757 { 1758 struct drbd_device *device = peer_device->device; 1759 const sector_t capacity = drbd_get_capacity(device->this_bdev); 1760 struct drbd_peer_request *peer_req; 1761 struct page *page; 1762 int digest_size, err; 1763 unsigned int data_size = pi->size, ds; 1764 void *dig_in = peer_device->connection->int_dig_in; 1765 void *dig_vv = peer_device->connection->int_dig_vv; 1766 unsigned long *data; 1767 struct p_trim *trim = (pi->cmd == P_TRIM) ? pi->data : NULL; 1768 struct p_trim *wsame = (pi->cmd == P_WSAME) ? pi->data : NULL; 1769 1770 digest_size = 0; 1771 if (!trim && peer_device->connection->peer_integrity_tfm) { 1772 digest_size = crypto_ahash_digestsize(peer_device->connection->peer_integrity_tfm); 1773 /* 1774 * FIXME: Receive the incoming digest into the receive buffer 1775 * here, together with its struct p_data? 1776 */ 1777 err = drbd_recv_all_warn(peer_device->connection, dig_in, digest_size); 1778 if (err) 1779 return NULL; 1780 data_size -= digest_size; 1781 } 1782 1783 /* assume request_size == data_size, but special case trim and wsame. */ 1784 ds = data_size; 1785 if (trim) { 1786 if (!expect(data_size == 0)) 1787 return NULL; 1788 ds = be32_to_cpu(trim->size); 1789 } else if (wsame) { 1790 if (data_size != queue_logical_block_size(device->rq_queue)) { 1791 drbd_err(peer_device, "data size (%u) != drbd logical block size (%u)\n", 1792 data_size, queue_logical_block_size(device->rq_queue)); 1793 return NULL; 1794 } 1795 if (data_size != bdev_logical_block_size(device->ldev->backing_bdev)) { 1796 drbd_err(peer_device, "data size (%u) != backend logical block size (%u)\n", 1797 data_size, bdev_logical_block_size(device->ldev->backing_bdev)); 1798 return NULL; 1799 } 1800 ds = be32_to_cpu(wsame->size); 1801 } 1802 1803 if (!expect(IS_ALIGNED(ds, 512))) 1804 return NULL; 1805 if (trim || wsame) { 1806 if (!expect(ds <= (DRBD_MAX_BBIO_SECTORS << 9))) 1807 return NULL; 1808 } else if (!expect(ds <= DRBD_MAX_BIO_SIZE)) 1809 return NULL; 1810 1811 /* even though we trust out peer, 1812 * we sometimes have to double check. */ 1813 if (sector + (ds>>9) > capacity) { 1814 drbd_err(device, "request from peer beyond end of local disk: " 1815 "capacity: %llus < sector: %llus + size: %u\n", 1816 (unsigned long long)capacity, 1817 (unsigned long long)sector, ds); 1818 return NULL; 1819 } 1820 1821 /* GFP_NOIO, because we must not cause arbitrary write-out: in a DRBD 1822 * "criss-cross" setup, that might cause write-out on some other DRBD, 1823 * which in turn might block on the other node at this very place. */ 1824 peer_req = drbd_alloc_peer_req(peer_device, id, sector, ds, data_size, GFP_NOIO); 1825 if (!peer_req) 1826 return NULL; 1827 1828 peer_req->flags |= EE_WRITE; 1829 if (trim) { 1830 peer_req->flags |= EE_IS_TRIM; 1831 return peer_req; 1832 } 1833 if (wsame) 1834 peer_req->flags |= EE_WRITE_SAME; 1835 1836 /* receive payload size bytes into page chain */ 1837 ds = data_size; 1838 page = peer_req->pages; 1839 page_chain_for_each(page) { 1840 unsigned len = min_t(int, ds, PAGE_SIZE); 1841 data = kmap(page); 1842 err = drbd_recv_all_warn(peer_device->connection, data, len); 1843 if (drbd_insert_fault(device, DRBD_FAULT_RECEIVE)) { 1844 drbd_err(device, "Fault injection: Corrupting data on receive\n"); 1845 data[0] = data[0] ^ (unsigned long)-1; 1846 } 1847 kunmap(page); 1848 if (err) { 1849 drbd_free_peer_req(device, peer_req); 1850 return NULL; 1851 } 1852 ds -= len; 1853 } 1854 1855 if (digest_size) { 1856 drbd_csum_ee_size(peer_device->connection->peer_integrity_tfm, peer_req, dig_vv, data_size); 1857 if (memcmp(dig_in, dig_vv, digest_size)) { 1858 drbd_err(device, "Digest integrity check FAILED: %llus +%u\n", 1859 (unsigned long long)sector, data_size); 1860 drbd_free_peer_req(device, peer_req); 1861 return NULL; 1862 } 1863 } 1864 device->recv_cnt += data_size >> 9; 1865 return peer_req; 1866 } 1867 1868 /* drbd_drain_block() just takes a data block 1869 * out of the socket input buffer, and discards it. 1870 */ 1871 static int drbd_drain_block(struct drbd_peer_device *peer_device, int data_size) 1872 { 1873 struct page *page; 1874 int err = 0; 1875 void *data; 1876 1877 if (!data_size) 1878 return 0; 1879 1880 page = drbd_alloc_pages(peer_device, 1, 1); 1881 1882 data = kmap(page); 1883 while (data_size) { 1884 unsigned int len = min_t(int, data_size, PAGE_SIZE); 1885 1886 err = drbd_recv_all_warn(peer_device->connection, data, len); 1887 if (err) 1888 break; 1889 data_size -= len; 1890 } 1891 kunmap(page); 1892 drbd_free_pages(peer_device->device, page, 0); 1893 return err; 1894 } 1895 1896 static int recv_dless_read(struct drbd_peer_device *peer_device, struct drbd_request *req, 1897 sector_t sector, int data_size) 1898 { 1899 struct bio_vec bvec; 1900 struct bvec_iter iter; 1901 struct bio *bio; 1902 int digest_size, err, expect; 1903 void *dig_in = peer_device->connection->int_dig_in; 1904 void *dig_vv = peer_device->connection->int_dig_vv; 1905 1906 digest_size = 0; 1907 if (peer_device->connection->peer_integrity_tfm) { 1908 digest_size = crypto_ahash_digestsize(peer_device->connection->peer_integrity_tfm); 1909 err = drbd_recv_all_warn(peer_device->connection, dig_in, digest_size); 1910 if (err) 1911 return err; 1912 data_size -= digest_size; 1913 } 1914 1915 /* optimistically update recv_cnt. if receiving fails below, 1916 * we disconnect anyways, and counters will be reset. */ 1917 peer_device->device->recv_cnt += data_size>>9; 1918 1919 bio = req->master_bio; 1920 D_ASSERT(peer_device->device, sector == bio->bi_iter.bi_sector); 1921 1922 bio_for_each_segment(bvec, bio, iter) { 1923 void *mapped = kmap(bvec.bv_page) + bvec.bv_offset; 1924 expect = min_t(int, data_size, bvec.bv_len); 1925 err = drbd_recv_all_warn(peer_device->connection, mapped, expect); 1926 kunmap(bvec.bv_page); 1927 if (err) 1928 return err; 1929 data_size -= expect; 1930 } 1931 1932 if (digest_size) { 1933 drbd_csum_bio(peer_device->connection->peer_integrity_tfm, bio, dig_vv); 1934 if (memcmp(dig_in, dig_vv, digest_size)) { 1935 drbd_err(peer_device, "Digest integrity check FAILED. Broken NICs?\n"); 1936 return -EINVAL; 1937 } 1938 } 1939 1940 D_ASSERT(peer_device->device, data_size == 0); 1941 return 0; 1942 } 1943 1944 /* 1945 * e_end_resync_block() is called in ack_sender context via 1946 * drbd_finish_peer_reqs(). 1947 */ 1948 static int e_end_resync_block(struct drbd_work *w, int unused) 1949 { 1950 struct drbd_peer_request *peer_req = 1951 container_of(w, struct drbd_peer_request, w); 1952 struct drbd_peer_device *peer_device = peer_req->peer_device; 1953 struct drbd_device *device = peer_device->device; 1954 sector_t sector = peer_req->i.sector; 1955 int err; 1956 1957 D_ASSERT(device, drbd_interval_empty(&peer_req->i)); 1958 1959 if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) { 1960 drbd_set_in_sync(device, sector, peer_req->i.size); 1961 err = drbd_send_ack(peer_device, P_RS_WRITE_ACK, peer_req); 1962 } else { 1963 /* Record failure to sync */ 1964 drbd_rs_failed_io(device, sector, peer_req->i.size); 1965 1966 err = drbd_send_ack(peer_device, P_NEG_ACK, peer_req); 1967 } 1968 dec_unacked(device); 1969 1970 return err; 1971 } 1972 1973 static int recv_resync_read(struct drbd_peer_device *peer_device, sector_t sector, 1974 struct packet_info *pi) __releases(local) 1975 { 1976 struct drbd_device *device = peer_device->device; 1977 struct drbd_peer_request *peer_req; 1978 1979 peer_req = read_in_block(peer_device, ID_SYNCER, sector, pi); 1980 if (!peer_req) 1981 goto fail; 1982 1983 dec_rs_pending(device); 1984 1985 inc_unacked(device); 1986 /* corresponding dec_unacked() in e_end_resync_block() 1987 * respective _drbd_clear_done_ee */ 1988 1989 peer_req->w.cb = e_end_resync_block; 1990 peer_req->submit_jif = jiffies; 1991 1992 spin_lock_irq(&device->resource->req_lock); 1993 list_add_tail(&peer_req->w.list, &device->sync_ee); 1994 spin_unlock_irq(&device->resource->req_lock); 1995 1996 atomic_add(pi->size >> 9, &device->rs_sect_ev); 1997 if (drbd_submit_peer_request(device, peer_req, REQ_OP_WRITE, 0, 1998 DRBD_FAULT_RS_WR) == 0) 1999 return 0; 2000 2001 /* don't care for the reason here */ 2002 drbd_err(device, "submit failed, triggering re-connect\n"); 2003 spin_lock_irq(&device->resource->req_lock); 2004 list_del(&peer_req->w.list); 2005 spin_unlock_irq(&device->resource->req_lock); 2006 2007 drbd_free_peer_req(device, peer_req); 2008 fail: 2009 put_ldev(device); 2010 return -EIO; 2011 } 2012 2013 static struct drbd_request * 2014 find_request(struct drbd_device *device, struct rb_root *root, u64 id, 2015 sector_t sector, bool missing_ok, const char *func) 2016 { 2017 struct drbd_request *req; 2018 2019 /* Request object according to our peer */ 2020 req = (struct drbd_request *)(unsigned long)id; 2021 if (drbd_contains_interval(root, sector, &req->i) && req->i.local) 2022 return req; 2023 if (!missing_ok) { 2024 drbd_err(device, "%s: failed to find request 0x%lx, sector %llus\n", func, 2025 (unsigned long)id, (unsigned long long)sector); 2026 } 2027 return NULL; 2028 } 2029 2030 static int receive_DataReply(struct drbd_connection *connection, struct packet_info *pi) 2031 { 2032 struct drbd_peer_device *peer_device; 2033 struct drbd_device *device; 2034 struct drbd_request *req; 2035 sector_t sector; 2036 int err; 2037 struct p_data *p = pi->data; 2038 2039 peer_device = conn_peer_device(connection, pi->vnr); 2040 if (!peer_device) 2041 return -EIO; 2042 device = peer_device->device; 2043 2044 sector = be64_to_cpu(p->sector); 2045 2046 spin_lock_irq(&device->resource->req_lock); 2047 req = find_request(device, &device->read_requests, p->block_id, sector, false, __func__); 2048 spin_unlock_irq(&device->resource->req_lock); 2049 if (unlikely(!req)) 2050 return -EIO; 2051 2052 /* hlist_del(&req->collision) is done in _req_may_be_done, to avoid 2053 * special casing it there for the various failure cases. 2054 * still no race with drbd_fail_pending_reads */ 2055 err = recv_dless_read(peer_device, req, sector, pi->size); 2056 if (!err) 2057 req_mod(req, DATA_RECEIVED); 2058 /* else: nothing. handled from drbd_disconnect... 2059 * I don't think we may complete this just yet 2060 * in case we are "on-disconnect: freeze" */ 2061 2062 return err; 2063 } 2064 2065 static int receive_RSDataReply(struct drbd_connection *connection, struct packet_info *pi) 2066 { 2067 struct drbd_peer_device *peer_device; 2068 struct drbd_device *device; 2069 sector_t sector; 2070 int err; 2071 struct p_data *p = pi->data; 2072 2073 peer_device = conn_peer_device(connection, pi->vnr); 2074 if (!peer_device) 2075 return -EIO; 2076 device = peer_device->device; 2077 2078 sector = be64_to_cpu(p->sector); 2079 D_ASSERT(device, p->block_id == ID_SYNCER); 2080 2081 if (get_ldev(device)) { 2082 /* data is submitted to disk within recv_resync_read. 2083 * corresponding put_ldev done below on error, 2084 * or in drbd_peer_request_endio. */ 2085 err = recv_resync_read(peer_device, sector, pi); 2086 } else { 2087 if (__ratelimit(&drbd_ratelimit_state)) 2088 drbd_err(device, "Can not write resync data to local disk.\n"); 2089 2090 err = drbd_drain_block(peer_device, pi->size); 2091 2092 drbd_send_ack_dp(peer_device, P_NEG_ACK, p, pi->size); 2093 } 2094 2095 atomic_add(pi->size >> 9, &device->rs_sect_in); 2096 2097 return err; 2098 } 2099 2100 static void restart_conflicting_writes(struct drbd_device *device, 2101 sector_t sector, int size) 2102 { 2103 struct drbd_interval *i; 2104 struct drbd_request *req; 2105 2106 drbd_for_each_overlap(i, &device->write_requests, sector, size) { 2107 if (!i->local) 2108 continue; 2109 req = container_of(i, struct drbd_request, i); 2110 if (req->rq_state & RQ_LOCAL_PENDING || 2111 !(req->rq_state & RQ_POSTPONED)) 2112 continue; 2113 /* as it is RQ_POSTPONED, this will cause it to 2114 * be queued on the retry workqueue. */ 2115 __req_mod(req, CONFLICT_RESOLVED, NULL); 2116 } 2117 } 2118 2119 /* 2120 * e_end_block() is called in ack_sender context via drbd_finish_peer_reqs(). 2121 */ 2122 static int e_end_block(struct drbd_work *w, int cancel) 2123 { 2124 struct drbd_peer_request *peer_req = 2125 container_of(w, struct drbd_peer_request, w); 2126 struct drbd_peer_device *peer_device = peer_req->peer_device; 2127 struct drbd_device *device = peer_device->device; 2128 sector_t sector = peer_req->i.sector; 2129 int err = 0, pcmd; 2130 2131 if (peer_req->flags & EE_SEND_WRITE_ACK) { 2132 if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) { 2133 pcmd = (device->state.conn >= C_SYNC_SOURCE && 2134 device->state.conn <= C_PAUSED_SYNC_T && 2135 peer_req->flags & EE_MAY_SET_IN_SYNC) ? 2136 P_RS_WRITE_ACK : P_WRITE_ACK; 2137 err = drbd_send_ack(peer_device, pcmd, peer_req); 2138 if (pcmd == P_RS_WRITE_ACK) 2139 drbd_set_in_sync(device, sector, peer_req->i.size); 2140 } else { 2141 err = drbd_send_ack(peer_device, P_NEG_ACK, peer_req); 2142 /* we expect it to be marked out of sync anyways... 2143 * maybe assert this? */ 2144 } 2145 dec_unacked(device); 2146 } 2147 2148 /* we delete from the conflict detection hash _after_ we sent out the 2149 * P_WRITE_ACK / P_NEG_ACK, to get the sequence number right. */ 2150 if (peer_req->flags & EE_IN_INTERVAL_TREE) { 2151 spin_lock_irq(&device->resource->req_lock); 2152 D_ASSERT(device, !drbd_interval_empty(&peer_req->i)); 2153 drbd_remove_epoch_entry_interval(device, peer_req); 2154 if (peer_req->flags & EE_RESTART_REQUESTS) 2155 restart_conflicting_writes(device, sector, peer_req->i.size); 2156 spin_unlock_irq(&device->resource->req_lock); 2157 } else 2158 D_ASSERT(device, drbd_interval_empty(&peer_req->i)); 2159 2160 drbd_may_finish_epoch(peer_device->connection, peer_req->epoch, EV_PUT + (cancel ? EV_CLEANUP : 0)); 2161 2162 return err; 2163 } 2164 2165 static int e_send_ack(struct drbd_work *w, enum drbd_packet ack) 2166 { 2167 struct drbd_peer_request *peer_req = 2168 container_of(w, struct drbd_peer_request, w); 2169 struct drbd_peer_device *peer_device = peer_req->peer_device; 2170 int err; 2171 2172 err = drbd_send_ack(peer_device, ack, peer_req); 2173 dec_unacked(peer_device->device); 2174 2175 return err; 2176 } 2177 2178 static int e_send_superseded(struct drbd_work *w, int unused) 2179 { 2180 return e_send_ack(w, P_SUPERSEDED); 2181 } 2182 2183 static int e_send_retry_write(struct drbd_work *w, int unused) 2184 { 2185 struct drbd_peer_request *peer_req = 2186 container_of(w, struct drbd_peer_request, w); 2187 struct drbd_connection *connection = peer_req->peer_device->connection; 2188 2189 return e_send_ack(w, connection->agreed_pro_version >= 100 ? 2190 P_RETRY_WRITE : P_SUPERSEDED); 2191 } 2192 2193 static bool seq_greater(u32 a, u32 b) 2194 { 2195 /* 2196 * We assume 32-bit wrap-around here. 2197 * For 24-bit wrap-around, we would have to shift: 2198 * a <<= 8; b <<= 8; 2199 */ 2200 return (s32)a - (s32)b > 0; 2201 } 2202 2203 static u32 seq_max(u32 a, u32 b) 2204 { 2205 return seq_greater(a, b) ? a : b; 2206 } 2207 2208 static void update_peer_seq(struct drbd_peer_device *peer_device, unsigned int peer_seq) 2209 { 2210 struct drbd_device *device = peer_device->device; 2211 unsigned int newest_peer_seq; 2212 2213 if (test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags)) { 2214 spin_lock(&device->peer_seq_lock); 2215 newest_peer_seq = seq_max(device->peer_seq, peer_seq); 2216 device->peer_seq = newest_peer_seq; 2217 spin_unlock(&device->peer_seq_lock); 2218 /* wake up only if we actually changed device->peer_seq */ 2219 if (peer_seq == newest_peer_seq) 2220 wake_up(&device->seq_wait); 2221 } 2222 } 2223 2224 static inline int overlaps(sector_t s1, int l1, sector_t s2, int l2) 2225 { 2226 return !((s1 + (l1>>9) <= s2) || (s1 >= s2 + (l2>>9))); 2227 } 2228 2229 /* maybe change sync_ee into interval trees as well? */ 2230 static bool overlapping_resync_write(struct drbd_device *device, struct drbd_peer_request *peer_req) 2231 { 2232 struct drbd_peer_request *rs_req; 2233 bool rv = false; 2234 2235 spin_lock_irq(&device->resource->req_lock); 2236 list_for_each_entry(rs_req, &device->sync_ee, w.list) { 2237 if (overlaps(peer_req->i.sector, peer_req->i.size, 2238 rs_req->i.sector, rs_req->i.size)) { 2239 rv = true; 2240 break; 2241 } 2242 } 2243 spin_unlock_irq(&device->resource->req_lock); 2244 2245 return rv; 2246 } 2247 2248 /* Called from receive_Data. 2249 * Synchronize packets on sock with packets on msock. 2250 * 2251 * This is here so even when a P_DATA packet traveling via sock overtook an Ack 2252 * packet traveling on msock, they are still processed in the order they have 2253 * been sent. 2254 * 2255 * Note: we don't care for Ack packets overtaking P_DATA packets. 2256 * 2257 * In case packet_seq is larger than device->peer_seq number, there are 2258 * outstanding packets on the msock. We wait for them to arrive. 2259 * In case we are the logically next packet, we update device->peer_seq 2260 * ourselves. Correctly handles 32bit wrap around. 2261 * 2262 * Assume we have a 10 GBit connection, that is about 1<<30 byte per second, 2263 * about 1<<21 sectors per second. So "worst" case, we have 1<<3 == 8 seconds 2264 * for the 24bit wrap (historical atomic_t guarantee on some archs), and we have 2265 * 1<<9 == 512 seconds aka ages for the 32bit wrap around... 2266 * 2267 * returns 0 if we may process the packet, 2268 * -ERESTARTSYS if we were interrupted (by disconnect signal). */ 2269 static int wait_for_and_update_peer_seq(struct drbd_peer_device *peer_device, const u32 peer_seq) 2270 { 2271 struct drbd_device *device = peer_device->device; 2272 DEFINE_WAIT(wait); 2273 long timeout; 2274 int ret = 0, tp; 2275 2276 if (!test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags)) 2277 return 0; 2278 2279 spin_lock(&device->peer_seq_lock); 2280 for (;;) { 2281 if (!seq_greater(peer_seq - 1, device->peer_seq)) { 2282 device->peer_seq = seq_max(device->peer_seq, peer_seq); 2283 break; 2284 } 2285 2286 if (signal_pending(current)) { 2287 ret = -ERESTARTSYS; 2288 break; 2289 } 2290 2291 rcu_read_lock(); 2292 tp = rcu_dereference(peer_device->connection->net_conf)->two_primaries; 2293 rcu_read_unlock(); 2294 2295 if (!tp) 2296 break; 2297 2298 /* Only need to wait if two_primaries is enabled */ 2299 prepare_to_wait(&device->seq_wait, &wait, TASK_INTERRUPTIBLE); 2300 spin_unlock(&device->peer_seq_lock); 2301 rcu_read_lock(); 2302 timeout = rcu_dereference(peer_device->connection->net_conf)->ping_timeo*HZ/10; 2303 rcu_read_unlock(); 2304 timeout = schedule_timeout(timeout); 2305 spin_lock(&device->peer_seq_lock); 2306 if (!timeout) { 2307 ret = -ETIMEDOUT; 2308 drbd_err(device, "Timed out waiting for missing ack packets; disconnecting\n"); 2309 break; 2310 } 2311 } 2312 spin_unlock(&device->peer_seq_lock); 2313 finish_wait(&device->seq_wait, &wait); 2314 return ret; 2315 } 2316 2317 /* see also bio_flags_to_wire() 2318 * DRBD_REQ_*, because we need to semantically map the flags to data packet 2319 * flags and back. We may replicate to other kernel versions. */ 2320 static unsigned long wire_flags_to_bio_flags(u32 dpf) 2321 { 2322 return (dpf & DP_RW_SYNC ? REQ_SYNC : 0) | 2323 (dpf & DP_FUA ? REQ_FUA : 0) | 2324 (dpf & DP_FLUSH ? REQ_PREFLUSH : 0); 2325 } 2326 2327 static unsigned long wire_flags_to_bio_op(u32 dpf) 2328 { 2329 if (dpf & DP_DISCARD) 2330 return REQ_OP_WRITE_ZEROES; 2331 else 2332 return REQ_OP_WRITE; 2333 } 2334 2335 static void fail_postponed_requests(struct drbd_device *device, sector_t sector, 2336 unsigned int size) 2337 { 2338 struct drbd_interval *i; 2339 2340 repeat: 2341 drbd_for_each_overlap(i, &device->write_requests, sector, size) { 2342 struct drbd_request *req; 2343 struct bio_and_error m; 2344 2345 if (!i->local) 2346 continue; 2347 req = container_of(i, struct drbd_request, i); 2348 if (!(req->rq_state & RQ_POSTPONED)) 2349 continue; 2350 req->rq_state &= ~RQ_POSTPONED; 2351 __req_mod(req, NEG_ACKED, &m); 2352 spin_unlock_irq(&device->resource->req_lock); 2353 if (m.bio) 2354 complete_master_bio(device, &m); 2355 spin_lock_irq(&device->resource->req_lock); 2356 goto repeat; 2357 } 2358 } 2359 2360 static int handle_write_conflicts(struct drbd_device *device, 2361 struct drbd_peer_request *peer_req) 2362 { 2363 struct drbd_connection *connection = peer_req->peer_device->connection; 2364 bool resolve_conflicts = test_bit(RESOLVE_CONFLICTS, &connection->flags); 2365 sector_t sector = peer_req->i.sector; 2366 const unsigned int size = peer_req->i.size; 2367 struct drbd_interval *i; 2368 bool equal; 2369 int err; 2370 2371 /* 2372 * Inserting the peer request into the write_requests tree will prevent 2373 * new conflicting local requests from being added. 2374 */ 2375 drbd_insert_interval(&device->write_requests, &peer_req->i); 2376 2377 repeat: 2378 drbd_for_each_overlap(i, &device->write_requests, sector, size) { 2379 if (i == &peer_req->i) 2380 continue; 2381 if (i->completed) 2382 continue; 2383 2384 if (!i->local) { 2385 /* 2386 * Our peer has sent a conflicting remote request; this 2387 * should not happen in a two-node setup. Wait for the 2388 * earlier peer request to complete. 2389 */ 2390 err = drbd_wait_misc(device, i); 2391 if (err) 2392 goto out; 2393 goto repeat; 2394 } 2395 2396 equal = i->sector == sector && i->size == size; 2397 if (resolve_conflicts) { 2398 /* 2399 * If the peer request is fully contained within the 2400 * overlapping request, it can be considered overwritten 2401 * and thus superseded; otherwise, it will be retried 2402 * once all overlapping requests have completed. 2403 */ 2404 bool superseded = i->sector <= sector && i->sector + 2405 (i->size >> 9) >= sector + (size >> 9); 2406 2407 if (!equal) 2408 drbd_alert(device, "Concurrent writes detected: " 2409 "local=%llus +%u, remote=%llus +%u, " 2410 "assuming %s came first\n", 2411 (unsigned long long)i->sector, i->size, 2412 (unsigned long long)sector, size, 2413 superseded ? "local" : "remote"); 2414 2415 peer_req->w.cb = superseded ? e_send_superseded : 2416 e_send_retry_write; 2417 list_add_tail(&peer_req->w.list, &device->done_ee); 2418 queue_work(connection->ack_sender, &peer_req->peer_device->send_acks_work); 2419 2420 err = -ENOENT; 2421 goto out; 2422 } else { 2423 struct drbd_request *req = 2424 container_of(i, struct drbd_request, i); 2425 2426 if (!equal) 2427 drbd_alert(device, "Concurrent writes detected: " 2428 "local=%llus +%u, remote=%llus +%u\n", 2429 (unsigned long long)i->sector, i->size, 2430 (unsigned long long)sector, size); 2431 2432 if (req->rq_state & RQ_LOCAL_PENDING || 2433 !(req->rq_state & RQ_POSTPONED)) { 2434 /* 2435 * Wait for the node with the discard flag to 2436 * decide if this request has been superseded 2437 * or needs to be retried. 2438 * Requests that have been superseded will 2439 * disappear from the write_requests tree. 2440 * 2441 * In addition, wait for the conflicting 2442 * request to finish locally before submitting 2443 * the conflicting peer request. 2444 */ 2445 err = drbd_wait_misc(device, &req->i); 2446 if (err) { 2447 _conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD); 2448 fail_postponed_requests(device, sector, size); 2449 goto out; 2450 } 2451 goto repeat; 2452 } 2453 /* 2454 * Remember to restart the conflicting requests after 2455 * the new peer request has completed. 2456 */ 2457 peer_req->flags |= EE_RESTART_REQUESTS; 2458 } 2459 } 2460 err = 0; 2461 2462 out: 2463 if (err) 2464 drbd_remove_epoch_entry_interval(device, peer_req); 2465 return err; 2466 } 2467 2468 /* mirrored write */ 2469 static int receive_Data(struct drbd_connection *connection, struct packet_info *pi) 2470 { 2471 struct drbd_peer_device *peer_device; 2472 struct drbd_device *device; 2473 struct net_conf *nc; 2474 sector_t sector; 2475 struct drbd_peer_request *peer_req; 2476 struct p_data *p = pi->data; 2477 u32 peer_seq = be32_to_cpu(p->seq_num); 2478 int op, op_flags; 2479 u32 dp_flags; 2480 int err, tp; 2481 2482 peer_device = conn_peer_device(connection, pi->vnr); 2483 if (!peer_device) 2484 return -EIO; 2485 device = peer_device->device; 2486 2487 if (!get_ldev(device)) { 2488 int err2; 2489 2490 err = wait_for_and_update_peer_seq(peer_device, peer_seq); 2491 drbd_send_ack_dp(peer_device, P_NEG_ACK, p, pi->size); 2492 atomic_inc(&connection->current_epoch->epoch_size); 2493 err2 = drbd_drain_block(peer_device, pi->size); 2494 if (!err) 2495 err = err2; 2496 return err; 2497 } 2498 2499 /* 2500 * Corresponding put_ldev done either below (on various errors), or in 2501 * drbd_peer_request_endio, if we successfully submit the data at the 2502 * end of this function. 2503 */ 2504 2505 sector = be64_to_cpu(p->sector); 2506 peer_req = read_in_block(peer_device, p->block_id, sector, pi); 2507 if (!peer_req) { 2508 put_ldev(device); 2509 return -EIO; 2510 } 2511 2512 peer_req->w.cb = e_end_block; 2513 peer_req->submit_jif = jiffies; 2514 peer_req->flags |= EE_APPLICATION; 2515 2516 dp_flags = be32_to_cpu(p->dp_flags); 2517 op = wire_flags_to_bio_op(dp_flags); 2518 op_flags = wire_flags_to_bio_flags(dp_flags); 2519 if (pi->cmd == P_TRIM) { 2520 D_ASSERT(peer_device, peer_req->i.size > 0); 2521 D_ASSERT(peer_device, op == REQ_OP_WRITE_ZEROES); 2522 D_ASSERT(peer_device, peer_req->pages == NULL); 2523 } else if (peer_req->pages == NULL) { 2524 D_ASSERT(device, peer_req->i.size == 0); 2525 D_ASSERT(device, dp_flags & DP_FLUSH); 2526 } 2527 2528 if (dp_flags & DP_MAY_SET_IN_SYNC) 2529 peer_req->flags |= EE_MAY_SET_IN_SYNC; 2530 2531 spin_lock(&connection->epoch_lock); 2532 peer_req->epoch = connection->current_epoch; 2533 atomic_inc(&peer_req->epoch->epoch_size); 2534 atomic_inc(&peer_req->epoch->active); 2535 spin_unlock(&connection->epoch_lock); 2536 2537 rcu_read_lock(); 2538 nc = rcu_dereference(peer_device->connection->net_conf); 2539 tp = nc->two_primaries; 2540 if (peer_device->connection->agreed_pro_version < 100) { 2541 switch (nc->wire_protocol) { 2542 case DRBD_PROT_C: 2543 dp_flags |= DP_SEND_WRITE_ACK; 2544 break; 2545 case DRBD_PROT_B: 2546 dp_flags |= DP_SEND_RECEIVE_ACK; 2547 break; 2548 } 2549 } 2550 rcu_read_unlock(); 2551 2552 if (dp_flags & DP_SEND_WRITE_ACK) { 2553 peer_req->flags |= EE_SEND_WRITE_ACK; 2554 inc_unacked(device); 2555 /* corresponding dec_unacked() in e_end_block() 2556 * respective _drbd_clear_done_ee */ 2557 } 2558 2559 if (dp_flags & DP_SEND_RECEIVE_ACK) { 2560 /* I really don't like it that the receiver thread 2561 * sends on the msock, but anyways */ 2562 drbd_send_ack(peer_device, P_RECV_ACK, peer_req); 2563 } 2564 2565 if (tp) { 2566 /* two primaries implies protocol C */ 2567 D_ASSERT(device, dp_flags & DP_SEND_WRITE_ACK); 2568 peer_req->flags |= EE_IN_INTERVAL_TREE; 2569 err = wait_for_and_update_peer_seq(peer_device, peer_seq); 2570 if (err) 2571 goto out_interrupted; 2572 spin_lock_irq(&device->resource->req_lock); 2573 err = handle_write_conflicts(device, peer_req); 2574 if (err) { 2575 spin_unlock_irq(&device->resource->req_lock); 2576 if (err == -ENOENT) { 2577 put_ldev(device); 2578 return 0; 2579 } 2580 goto out_interrupted; 2581 } 2582 } else { 2583 update_peer_seq(peer_device, peer_seq); 2584 spin_lock_irq(&device->resource->req_lock); 2585 } 2586 /* TRIM and WRITE_SAME are processed synchronously, 2587 * we wait for all pending requests, respectively wait for 2588 * active_ee to become empty in drbd_submit_peer_request(); 2589 * better not add ourselves here. */ 2590 if ((peer_req->flags & (EE_IS_TRIM|EE_WRITE_SAME)) == 0) 2591 list_add_tail(&peer_req->w.list, &device->active_ee); 2592 spin_unlock_irq(&device->resource->req_lock); 2593 2594 if (device->state.conn == C_SYNC_TARGET) 2595 wait_event(device->ee_wait, !overlapping_resync_write(device, peer_req)); 2596 2597 if (device->state.pdsk < D_INCONSISTENT) { 2598 /* In case we have the only disk of the cluster, */ 2599 drbd_set_out_of_sync(device, peer_req->i.sector, peer_req->i.size); 2600 peer_req->flags &= ~EE_MAY_SET_IN_SYNC; 2601 drbd_al_begin_io(device, &peer_req->i); 2602 peer_req->flags |= EE_CALL_AL_COMPLETE_IO; 2603 } 2604 2605 err = drbd_submit_peer_request(device, peer_req, op, op_flags, 2606 DRBD_FAULT_DT_WR); 2607 if (!err) 2608 return 0; 2609 2610 /* don't care for the reason here */ 2611 drbd_err(device, "submit failed, triggering re-connect\n"); 2612 spin_lock_irq(&device->resource->req_lock); 2613 list_del(&peer_req->w.list); 2614 drbd_remove_epoch_entry_interval(device, peer_req); 2615 spin_unlock_irq(&device->resource->req_lock); 2616 if (peer_req->flags & EE_CALL_AL_COMPLETE_IO) { 2617 peer_req->flags &= ~EE_CALL_AL_COMPLETE_IO; 2618 drbd_al_complete_io(device, &peer_req->i); 2619 } 2620 2621 out_interrupted: 2622 drbd_may_finish_epoch(connection, peer_req->epoch, EV_PUT | EV_CLEANUP); 2623 put_ldev(device); 2624 drbd_free_peer_req(device, peer_req); 2625 return err; 2626 } 2627 2628 /* We may throttle resync, if the lower device seems to be busy, 2629 * and current sync rate is above c_min_rate. 2630 * 2631 * To decide whether or not the lower device is busy, we use a scheme similar 2632 * to MD RAID is_mddev_idle(): if the partition stats reveal "significant" 2633 * (more than 64 sectors) of activity we cannot account for with our own resync 2634 * activity, it obviously is "busy". 2635 * 2636 * The current sync rate used here uses only the most recent two step marks, 2637 * to have a short time average so we can react faster. 2638 */ 2639 bool drbd_rs_should_slow_down(struct drbd_device *device, sector_t sector, 2640 bool throttle_if_app_is_waiting) 2641 { 2642 struct lc_element *tmp; 2643 bool throttle = drbd_rs_c_min_rate_throttle(device); 2644 2645 if (!throttle || throttle_if_app_is_waiting) 2646 return throttle; 2647 2648 spin_lock_irq(&device->al_lock); 2649 tmp = lc_find(device->resync, BM_SECT_TO_EXT(sector)); 2650 if (tmp) { 2651 struct bm_extent *bm_ext = lc_entry(tmp, struct bm_extent, lce); 2652 if (test_bit(BME_PRIORITY, &bm_ext->flags)) 2653 throttle = false; 2654 /* Do not slow down if app IO is already waiting for this extent, 2655 * and our progress is necessary for application IO to complete. */ 2656 } 2657 spin_unlock_irq(&device->al_lock); 2658 2659 return throttle; 2660 } 2661 2662 bool drbd_rs_c_min_rate_throttle(struct drbd_device *device) 2663 { 2664 struct gendisk *disk = device->ldev->backing_bdev->bd_contains->bd_disk; 2665 unsigned long db, dt, dbdt; 2666 unsigned int c_min_rate; 2667 int curr_events; 2668 2669 rcu_read_lock(); 2670 c_min_rate = rcu_dereference(device->ldev->disk_conf)->c_min_rate; 2671 rcu_read_unlock(); 2672 2673 /* feature disabled? */ 2674 if (c_min_rate == 0) 2675 return false; 2676 2677 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) + 2678 (int)part_stat_read(&disk->part0, sectors[1]) - 2679 atomic_read(&device->rs_sect_ev); 2680 2681 if (atomic_read(&device->ap_actlog_cnt) 2682 || curr_events - device->rs_last_events > 64) { 2683 unsigned long rs_left; 2684 int i; 2685 2686 device->rs_last_events = curr_events; 2687 2688 /* sync speed average over the last 2*DRBD_SYNC_MARK_STEP, 2689 * approx. */ 2690 i = (device->rs_last_mark + DRBD_SYNC_MARKS-1) % DRBD_SYNC_MARKS; 2691 2692 if (device->state.conn == C_VERIFY_S || device->state.conn == C_VERIFY_T) 2693 rs_left = device->ov_left; 2694 else 2695 rs_left = drbd_bm_total_weight(device) - device->rs_failed; 2696 2697 dt = ((long)jiffies - (long)device->rs_mark_time[i]) / HZ; 2698 if (!dt) 2699 dt++; 2700 db = device->rs_mark_left[i] - rs_left; 2701 dbdt = Bit2KB(db/dt); 2702 2703 if (dbdt > c_min_rate) 2704 return true; 2705 } 2706 return false; 2707 } 2708 2709 static int receive_DataRequest(struct drbd_connection *connection, struct packet_info *pi) 2710 { 2711 struct drbd_peer_device *peer_device; 2712 struct drbd_device *device; 2713 sector_t sector; 2714 sector_t capacity; 2715 struct drbd_peer_request *peer_req; 2716 struct digest_info *di = NULL; 2717 int size, verb; 2718 unsigned int fault_type; 2719 struct p_block_req *p = pi->data; 2720 2721 peer_device = conn_peer_device(connection, pi->vnr); 2722 if (!peer_device) 2723 return -EIO; 2724 device = peer_device->device; 2725 capacity = drbd_get_capacity(device->this_bdev); 2726 2727 sector = be64_to_cpu(p->sector); 2728 size = be32_to_cpu(p->blksize); 2729 2730 if (size <= 0 || !IS_ALIGNED(size, 512) || size > DRBD_MAX_BIO_SIZE) { 2731 drbd_err(device, "%s:%d: sector: %llus, size: %u\n", __FILE__, __LINE__, 2732 (unsigned long long)sector, size); 2733 return -EINVAL; 2734 } 2735 if (sector + (size>>9) > capacity) { 2736 drbd_err(device, "%s:%d: sector: %llus, size: %u\n", __FILE__, __LINE__, 2737 (unsigned long long)sector, size); 2738 return -EINVAL; 2739 } 2740 2741 if (!get_ldev_if_state(device, D_UP_TO_DATE)) { 2742 verb = 1; 2743 switch (pi->cmd) { 2744 case P_DATA_REQUEST: 2745 drbd_send_ack_rp(peer_device, P_NEG_DREPLY, p); 2746 break; 2747 case P_RS_THIN_REQ: 2748 case P_RS_DATA_REQUEST: 2749 case P_CSUM_RS_REQUEST: 2750 case P_OV_REQUEST: 2751 drbd_send_ack_rp(peer_device, P_NEG_RS_DREPLY , p); 2752 break; 2753 case P_OV_REPLY: 2754 verb = 0; 2755 dec_rs_pending(device); 2756 drbd_send_ack_ex(peer_device, P_OV_RESULT, sector, size, ID_IN_SYNC); 2757 break; 2758 default: 2759 BUG(); 2760 } 2761 if (verb && __ratelimit(&drbd_ratelimit_state)) 2762 drbd_err(device, "Can not satisfy peer's read request, " 2763 "no local data.\n"); 2764 2765 /* drain possibly payload */ 2766 return drbd_drain_block(peer_device, pi->size); 2767 } 2768 2769 /* GFP_NOIO, because we must not cause arbitrary write-out: in a DRBD 2770 * "criss-cross" setup, that might cause write-out on some other DRBD, 2771 * which in turn might block on the other node at this very place. */ 2772 peer_req = drbd_alloc_peer_req(peer_device, p->block_id, sector, size, 2773 size, GFP_NOIO); 2774 if (!peer_req) { 2775 put_ldev(device); 2776 return -ENOMEM; 2777 } 2778 2779 switch (pi->cmd) { 2780 case P_DATA_REQUEST: 2781 peer_req->w.cb = w_e_end_data_req; 2782 fault_type = DRBD_FAULT_DT_RD; 2783 /* application IO, don't drbd_rs_begin_io */ 2784 peer_req->flags |= EE_APPLICATION; 2785 goto submit; 2786 2787 case P_RS_THIN_REQ: 2788 /* If at some point in the future we have a smart way to 2789 find out if this data block is completely deallocated, 2790 then we would do something smarter here than reading 2791 the block... */ 2792 peer_req->flags |= EE_RS_THIN_REQ; 2793 case P_RS_DATA_REQUEST: 2794 peer_req->w.cb = w_e_end_rsdata_req; 2795 fault_type = DRBD_FAULT_RS_RD; 2796 /* used in the sector offset progress display */ 2797 device->bm_resync_fo = BM_SECT_TO_BIT(sector); 2798 break; 2799 2800 case P_OV_REPLY: 2801 case P_CSUM_RS_REQUEST: 2802 fault_type = DRBD_FAULT_RS_RD; 2803 di = kmalloc(sizeof(*di) + pi->size, GFP_NOIO); 2804 if (!di) 2805 goto out_free_e; 2806 2807 di->digest_size = pi->size; 2808 di->digest = (((char *)di)+sizeof(struct digest_info)); 2809 2810 peer_req->digest = di; 2811 peer_req->flags |= EE_HAS_DIGEST; 2812 2813 if (drbd_recv_all(peer_device->connection, di->digest, pi->size)) 2814 goto out_free_e; 2815 2816 if (pi->cmd == P_CSUM_RS_REQUEST) { 2817 D_ASSERT(device, peer_device->connection->agreed_pro_version >= 89); 2818 peer_req->w.cb = w_e_end_csum_rs_req; 2819 /* used in the sector offset progress display */ 2820 device->bm_resync_fo = BM_SECT_TO_BIT(sector); 2821 /* remember to report stats in drbd_resync_finished */ 2822 device->use_csums = true; 2823 } else if (pi->cmd == P_OV_REPLY) { 2824 /* track progress, we may need to throttle */ 2825 atomic_add(size >> 9, &device->rs_sect_in); 2826 peer_req->w.cb = w_e_end_ov_reply; 2827 dec_rs_pending(device); 2828 /* drbd_rs_begin_io done when we sent this request, 2829 * but accounting still needs to be done. */ 2830 goto submit_for_resync; 2831 } 2832 break; 2833 2834 case P_OV_REQUEST: 2835 if (device->ov_start_sector == ~(sector_t)0 && 2836 peer_device->connection->agreed_pro_version >= 90) { 2837 unsigned long now = jiffies; 2838 int i; 2839 device->ov_start_sector = sector; 2840 device->ov_position = sector; 2841 device->ov_left = drbd_bm_bits(device) - BM_SECT_TO_BIT(sector); 2842 device->rs_total = device->ov_left; 2843 for (i = 0; i < DRBD_SYNC_MARKS; i++) { 2844 device->rs_mark_left[i] = device->ov_left; 2845 device->rs_mark_time[i] = now; 2846 } 2847 drbd_info(device, "Online Verify start sector: %llu\n", 2848 (unsigned long long)sector); 2849 } 2850 peer_req->w.cb = w_e_end_ov_req; 2851 fault_type = DRBD_FAULT_RS_RD; 2852 break; 2853 2854 default: 2855 BUG(); 2856 } 2857 2858 /* Throttle, drbd_rs_begin_io and submit should become asynchronous 2859 * wrt the receiver, but it is not as straightforward as it may seem. 2860 * Various places in the resync start and stop logic assume resync 2861 * requests are processed in order, requeuing this on the worker thread 2862 * introduces a bunch of new code for synchronization between threads. 2863 * 2864 * Unlimited throttling before drbd_rs_begin_io may stall the resync 2865 * "forever", throttling after drbd_rs_begin_io will lock that extent 2866 * for application writes for the same time. For now, just throttle 2867 * here, where the rest of the code expects the receiver to sleep for 2868 * a while, anyways. 2869 */ 2870 2871 /* Throttle before drbd_rs_begin_io, as that locks out application IO; 2872 * this defers syncer requests for some time, before letting at least 2873 * on request through. The resync controller on the receiving side 2874 * will adapt to the incoming rate accordingly. 2875 * 2876 * We cannot throttle here if remote is Primary/SyncTarget: 2877 * we would also throttle its application reads. 2878 * In that case, throttling is done on the SyncTarget only. 2879 */ 2880 2881 /* Even though this may be a resync request, we do add to "read_ee"; 2882 * "sync_ee" is only used for resync WRITEs. 2883 * Add to list early, so debugfs can find this request 2884 * even if we have to sleep below. */ 2885 spin_lock_irq(&device->resource->req_lock); 2886 list_add_tail(&peer_req->w.list, &device->read_ee); 2887 spin_unlock_irq(&device->resource->req_lock); 2888 2889 update_receiver_timing_details(connection, drbd_rs_should_slow_down); 2890 if (device->state.peer != R_PRIMARY 2891 && drbd_rs_should_slow_down(device, sector, false)) 2892 schedule_timeout_uninterruptible(HZ/10); 2893 update_receiver_timing_details(connection, drbd_rs_begin_io); 2894 if (drbd_rs_begin_io(device, sector)) 2895 goto out_free_e; 2896 2897 submit_for_resync: 2898 atomic_add(size >> 9, &device->rs_sect_ev); 2899 2900 submit: 2901 update_receiver_timing_details(connection, drbd_submit_peer_request); 2902 inc_unacked(device); 2903 if (drbd_submit_peer_request(device, peer_req, REQ_OP_READ, 0, 2904 fault_type) == 0) 2905 return 0; 2906 2907 /* don't care for the reason here */ 2908 drbd_err(device, "submit failed, triggering re-connect\n"); 2909 2910 out_free_e: 2911 spin_lock_irq(&device->resource->req_lock); 2912 list_del(&peer_req->w.list); 2913 spin_unlock_irq(&device->resource->req_lock); 2914 /* no drbd_rs_complete_io(), we are dropping the connection anyways */ 2915 2916 put_ldev(device); 2917 drbd_free_peer_req(device, peer_req); 2918 return -EIO; 2919 } 2920 2921 /** 2922 * drbd_asb_recover_0p - Recover after split-brain with no remaining primaries 2923 */ 2924 static int drbd_asb_recover_0p(struct drbd_peer_device *peer_device) __must_hold(local) 2925 { 2926 struct drbd_device *device = peer_device->device; 2927 int self, peer, rv = -100; 2928 unsigned long ch_self, ch_peer; 2929 enum drbd_after_sb_p after_sb_0p; 2930 2931 self = device->ldev->md.uuid[UI_BITMAP] & 1; 2932 peer = device->p_uuid[UI_BITMAP] & 1; 2933 2934 ch_peer = device->p_uuid[UI_SIZE]; 2935 ch_self = device->comm_bm_set; 2936 2937 rcu_read_lock(); 2938 after_sb_0p = rcu_dereference(peer_device->connection->net_conf)->after_sb_0p; 2939 rcu_read_unlock(); 2940 switch (after_sb_0p) { 2941 case ASB_CONSENSUS: 2942 case ASB_DISCARD_SECONDARY: 2943 case ASB_CALL_HELPER: 2944 case ASB_VIOLENTLY: 2945 drbd_err(device, "Configuration error.\n"); 2946 break; 2947 case ASB_DISCONNECT: 2948 break; 2949 case ASB_DISCARD_YOUNGER_PRI: 2950 if (self == 0 && peer == 1) { 2951 rv = -1; 2952 break; 2953 } 2954 if (self == 1 && peer == 0) { 2955 rv = 1; 2956 break; 2957 } 2958 /* Else fall through to one of the other strategies... */ 2959 case ASB_DISCARD_OLDER_PRI: 2960 if (self == 0 && peer == 1) { 2961 rv = 1; 2962 break; 2963 } 2964 if (self == 1 && peer == 0) { 2965 rv = -1; 2966 break; 2967 } 2968 /* Else fall through to one of the other strategies... */ 2969 drbd_warn(device, "Discard younger/older primary did not find a decision\n" 2970 "Using discard-least-changes instead\n"); 2971 case ASB_DISCARD_ZERO_CHG: 2972 if (ch_peer == 0 && ch_self == 0) { 2973 rv = test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags) 2974 ? -1 : 1; 2975 break; 2976 } else { 2977 if (ch_peer == 0) { rv = 1; break; } 2978 if (ch_self == 0) { rv = -1; break; } 2979 } 2980 if (after_sb_0p == ASB_DISCARD_ZERO_CHG) 2981 break; 2982 case ASB_DISCARD_LEAST_CHG: 2983 if (ch_self < ch_peer) 2984 rv = -1; 2985 else if (ch_self > ch_peer) 2986 rv = 1; 2987 else /* ( ch_self == ch_peer ) */ 2988 /* Well, then use something else. */ 2989 rv = test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags) 2990 ? -1 : 1; 2991 break; 2992 case ASB_DISCARD_LOCAL: 2993 rv = -1; 2994 break; 2995 case ASB_DISCARD_REMOTE: 2996 rv = 1; 2997 } 2998 2999 return rv; 3000 } 3001 3002 /** 3003 * drbd_asb_recover_1p - Recover after split-brain with one remaining primary 3004 */ 3005 static int drbd_asb_recover_1p(struct drbd_peer_device *peer_device) __must_hold(local) 3006 { 3007 struct drbd_device *device = peer_device->device; 3008 int hg, rv = -100; 3009 enum drbd_after_sb_p after_sb_1p; 3010 3011 rcu_read_lock(); 3012 after_sb_1p = rcu_dereference(peer_device->connection->net_conf)->after_sb_1p; 3013 rcu_read_unlock(); 3014 switch (after_sb_1p) { 3015 case ASB_DISCARD_YOUNGER_PRI: 3016 case ASB_DISCARD_OLDER_PRI: 3017 case ASB_DISCARD_LEAST_CHG: 3018 case ASB_DISCARD_LOCAL: 3019 case ASB_DISCARD_REMOTE: 3020 case ASB_DISCARD_ZERO_CHG: 3021 drbd_err(device, "Configuration error.\n"); 3022 break; 3023 case ASB_DISCONNECT: 3024 break; 3025 case ASB_CONSENSUS: 3026 hg = drbd_asb_recover_0p(peer_device); 3027 if (hg == -1 && device->state.role == R_SECONDARY) 3028 rv = hg; 3029 if (hg == 1 && device->state.role == R_PRIMARY) 3030 rv = hg; 3031 break; 3032 case ASB_VIOLENTLY: 3033 rv = drbd_asb_recover_0p(peer_device); 3034 break; 3035 case ASB_DISCARD_SECONDARY: 3036 return device->state.role == R_PRIMARY ? 1 : -1; 3037 case ASB_CALL_HELPER: 3038 hg = drbd_asb_recover_0p(peer_device); 3039 if (hg == -1 && device->state.role == R_PRIMARY) { 3040 enum drbd_state_rv rv2; 3041 3042 /* drbd_change_state() does not sleep while in SS_IN_TRANSIENT_STATE, 3043 * we might be here in C_WF_REPORT_PARAMS which is transient. 3044 * we do not need to wait for the after state change work either. */ 3045 rv2 = drbd_change_state(device, CS_VERBOSE, NS(role, R_SECONDARY)); 3046 if (rv2 != SS_SUCCESS) { 3047 drbd_khelper(device, "pri-lost-after-sb"); 3048 } else { 3049 drbd_warn(device, "Successfully gave up primary role.\n"); 3050 rv = hg; 3051 } 3052 } else 3053 rv = hg; 3054 } 3055 3056 return rv; 3057 } 3058 3059 /** 3060 * drbd_asb_recover_2p - Recover after split-brain with two remaining primaries 3061 */ 3062 static int drbd_asb_recover_2p(struct drbd_peer_device *peer_device) __must_hold(local) 3063 { 3064 struct drbd_device *device = peer_device->device; 3065 int hg, rv = -100; 3066 enum drbd_after_sb_p after_sb_2p; 3067 3068 rcu_read_lock(); 3069 after_sb_2p = rcu_dereference(peer_device->connection->net_conf)->after_sb_2p; 3070 rcu_read_unlock(); 3071 switch (after_sb_2p) { 3072 case ASB_DISCARD_YOUNGER_PRI: 3073 case ASB_DISCARD_OLDER_PRI: 3074 case ASB_DISCARD_LEAST_CHG: 3075 case ASB_DISCARD_LOCAL: 3076 case ASB_DISCARD_REMOTE: 3077 case ASB_CONSENSUS: 3078 case ASB_DISCARD_SECONDARY: 3079 case ASB_DISCARD_ZERO_CHG: 3080 drbd_err(device, "Configuration error.\n"); 3081 break; 3082 case ASB_VIOLENTLY: 3083 rv = drbd_asb_recover_0p(peer_device); 3084 break; 3085 case ASB_DISCONNECT: 3086 break; 3087 case ASB_CALL_HELPER: 3088 hg = drbd_asb_recover_0p(peer_device); 3089 if (hg == -1) { 3090 enum drbd_state_rv rv2; 3091 3092 /* drbd_change_state() does not sleep while in SS_IN_TRANSIENT_STATE, 3093 * we might be here in C_WF_REPORT_PARAMS which is transient. 3094 * we do not need to wait for the after state change work either. */ 3095 rv2 = drbd_change_state(device, CS_VERBOSE, NS(role, R_SECONDARY)); 3096 if (rv2 != SS_SUCCESS) { 3097 drbd_khelper(device, "pri-lost-after-sb"); 3098 } else { 3099 drbd_warn(device, "Successfully gave up primary role.\n"); 3100 rv = hg; 3101 } 3102 } else 3103 rv = hg; 3104 } 3105 3106 return rv; 3107 } 3108 3109 static void drbd_uuid_dump(struct drbd_device *device, char *text, u64 *uuid, 3110 u64 bits, u64 flags) 3111 { 3112 if (!uuid) { 3113 drbd_info(device, "%s uuid info vanished while I was looking!\n", text); 3114 return; 3115 } 3116 drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX bits:%llu flags:%llX\n", 3117 text, 3118 (unsigned long long)uuid[UI_CURRENT], 3119 (unsigned long long)uuid[UI_BITMAP], 3120 (unsigned long long)uuid[UI_HISTORY_START], 3121 (unsigned long long)uuid[UI_HISTORY_END], 3122 (unsigned long long)bits, 3123 (unsigned long long)flags); 3124 } 3125 3126 /* 3127 100 after split brain try auto recover 3128 2 C_SYNC_SOURCE set BitMap 3129 1 C_SYNC_SOURCE use BitMap 3130 0 no Sync 3131 -1 C_SYNC_TARGET use BitMap 3132 -2 C_SYNC_TARGET set BitMap 3133 -100 after split brain, disconnect 3134 -1000 unrelated data 3135 -1091 requires proto 91 3136 -1096 requires proto 96 3137 */ 3138 3139 static int drbd_uuid_compare(struct drbd_device *const device, enum drbd_role const peer_role, int *rule_nr) __must_hold(local) 3140 { 3141 struct drbd_peer_device *const peer_device = first_peer_device(device); 3142 struct drbd_connection *const connection = peer_device ? peer_device->connection : NULL; 3143 u64 self, peer; 3144 int i, j; 3145 3146 self = device->ldev->md.uuid[UI_CURRENT] & ~((u64)1); 3147 peer = device->p_uuid[UI_CURRENT] & ~((u64)1); 3148 3149 *rule_nr = 10; 3150 if (self == UUID_JUST_CREATED && peer == UUID_JUST_CREATED) 3151 return 0; 3152 3153 *rule_nr = 20; 3154 if ((self == UUID_JUST_CREATED || self == (u64)0) && 3155 peer != UUID_JUST_CREATED) 3156 return -2; 3157 3158 *rule_nr = 30; 3159 if (self != UUID_JUST_CREATED && 3160 (peer == UUID_JUST_CREATED || peer == (u64)0)) 3161 return 2; 3162 3163 if (self == peer) { 3164 int rct, dc; /* roles at crash time */ 3165 3166 if (device->p_uuid[UI_BITMAP] == (u64)0 && device->ldev->md.uuid[UI_BITMAP] != (u64)0) { 3167 3168 if (connection->agreed_pro_version < 91) 3169 return -1091; 3170 3171 if ((device->ldev->md.uuid[UI_BITMAP] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START] & ~((u64)1)) && 3172 (device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START + 1] & ~((u64)1))) { 3173 drbd_info(device, "was SyncSource, missed the resync finished event, corrected myself:\n"); 3174 drbd_uuid_move_history(device); 3175 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP]; 3176 device->ldev->md.uuid[UI_BITMAP] = 0; 3177 3178 drbd_uuid_dump(device, "self", device->ldev->md.uuid, 3179 device->state.disk >= D_NEGOTIATING ? drbd_bm_total_weight(device) : 0, 0); 3180 *rule_nr = 34; 3181 } else { 3182 drbd_info(device, "was SyncSource (peer failed to write sync_uuid)\n"); 3183 *rule_nr = 36; 3184 } 3185 3186 return 1; 3187 } 3188 3189 if (device->ldev->md.uuid[UI_BITMAP] == (u64)0 && device->p_uuid[UI_BITMAP] != (u64)0) { 3190 3191 if (connection->agreed_pro_version < 91) 3192 return -1091; 3193 3194 if ((device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == (device->p_uuid[UI_BITMAP] & ~((u64)1)) && 3195 (device->ldev->md.uuid[UI_HISTORY_START + 1] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START] & ~((u64)1))) { 3196 drbd_info(device, "was SyncTarget, peer missed the resync finished event, corrected peer:\n"); 3197 3198 device->p_uuid[UI_HISTORY_START + 1] = device->p_uuid[UI_HISTORY_START]; 3199 device->p_uuid[UI_HISTORY_START] = device->p_uuid[UI_BITMAP]; 3200 device->p_uuid[UI_BITMAP] = 0UL; 3201 3202 drbd_uuid_dump(device, "peer", device->p_uuid, device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]); 3203 *rule_nr = 35; 3204 } else { 3205 drbd_info(device, "was SyncTarget (failed to write sync_uuid)\n"); 3206 *rule_nr = 37; 3207 } 3208 3209 return -1; 3210 } 3211 3212 /* Common power [off|failure] */ 3213 rct = (test_bit(CRASHED_PRIMARY, &device->flags) ? 1 : 0) + 3214 (device->p_uuid[UI_FLAGS] & 2); 3215 /* lowest bit is set when we were primary, 3216 * next bit (weight 2) is set when peer was primary */ 3217 *rule_nr = 40; 3218 3219 /* Neither has the "crashed primary" flag set, 3220 * only a replication link hickup. */ 3221 if (rct == 0) 3222 return 0; 3223 3224 /* Current UUID equal and no bitmap uuid; does not necessarily 3225 * mean this was a "simultaneous hard crash", maybe IO was 3226 * frozen, so no UUID-bump happened. 3227 * This is a protocol change, overload DRBD_FF_WSAME as flag 3228 * for "new-enough" peer DRBD version. */ 3229 if (device->state.role == R_PRIMARY || peer_role == R_PRIMARY) { 3230 *rule_nr = 41; 3231 if (!(connection->agreed_features & DRBD_FF_WSAME)) { 3232 drbd_warn(peer_device, "Equivalent unrotated UUIDs, but current primary present.\n"); 3233 return -(0x10000 | PRO_VERSION_MAX | (DRBD_FF_WSAME << 8)); 3234 } 3235 if (device->state.role == R_PRIMARY && peer_role == R_PRIMARY) { 3236 /* At least one has the "crashed primary" bit set, 3237 * both are primary now, but neither has rotated its UUIDs? 3238 * "Can not happen." */ 3239 drbd_err(peer_device, "Equivalent unrotated UUIDs, but both are primary. Can not resolve this.\n"); 3240 return -100; 3241 } 3242 if (device->state.role == R_PRIMARY) 3243 return 1; 3244 return -1; 3245 } 3246 3247 /* Both are secondary. 3248 * Really looks like recovery from simultaneous hard crash. 3249 * Check which had been primary before, and arbitrate. */ 3250 switch (rct) { 3251 case 0: /* !self_pri && !peer_pri */ return 0; /* already handled */ 3252 case 1: /* self_pri && !peer_pri */ return 1; 3253 case 2: /* !self_pri && peer_pri */ return -1; 3254 case 3: /* self_pri && peer_pri */ 3255 dc = test_bit(RESOLVE_CONFLICTS, &connection->flags); 3256 return dc ? -1 : 1; 3257 } 3258 } 3259 3260 *rule_nr = 50; 3261 peer = device->p_uuid[UI_BITMAP] & ~((u64)1); 3262 if (self == peer) 3263 return -1; 3264 3265 *rule_nr = 51; 3266 peer = device->p_uuid[UI_HISTORY_START] & ~((u64)1); 3267 if (self == peer) { 3268 if (connection->agreed_pro_version < 96 ? 3269 (device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == 3270 (device->p_uuid[UI_HISTORY_START + 1] & ~((u64)1)) : 3271 peer + UUID_NEW_BM_OFFSET == (device->p_uuid[UI_BITMAP] & ~((u64)1))) { 3272 /* The last P_SYNC_UUID did not get though. Undo the last start of 3273 resync as sync source modifications of the peer's UUIDs. */ 3274 3275 if (connection->agreed_pro_version < 91) 3276 return -1091; 3277 3278 device->p_uuid[UI_BITMAP] = device->p_uuid[UI_HISTORY_START]; 3279 device->p_uuid[UI_HISTORY_START] = device->p_uuid[UI_HISTORY_START + 1]; 3280 3281 drbd_info(device, "Lost last syncUUID packet, corrected:\n"); 3282 drbd_uuid_dump(device, "peer", device->p_uuid, device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]); 3283 3284 return -1; 3285 } 3286 } 3287 3288 *rule_nr = 60; 3289 self = device->ldev->md.uuid[UI_CURRENT] & ~((u64)1); 3290 for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) { 3291 peer = device->p_uuid[i] & ~((u64)1); 3292 if (self == peer) 3293 return -2; 3294 } 3295 3296 *rule_nr = 70; 3297 self = device->ldev->md.uuid[UI_BITMAP] & ~((u64)1); 3298 peer = device->p_uuid[UI_CURRENT] & ~((u64)1); 3299 if (self == peer) 3300 return 1; 3301 3302 *rule_nr = 71; 3303 self = device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1); 3304 if (self == peer) { 3305 if (connection->agreed_pro_version < 96 ? 3306 (device->ldev->md.uuid[UI_HISTORY_START + 1] & ~((u64)1)) == 3307 (device->p_uuid[UI_HISTORY_START] & ~((u64)1)) : 3308 self + UUID_NEW_BM_OFFSET == (device->ldev->md.uuid[UI_BITMAP] & ~((u64)1))) { 3309 /* The last P_SYNC_UUID did not get though. Undo the last start of 3310 resync as sync source modifications of our UUIDs. */ 3311 3312 if (connection->agreed_pro_version < 91) 3313 return -1091; 3314 3315 __drbd_uuid_set(device, UI_BITMAP, device->ldev->md.uuid[UI_HISTORY_START]); 3316 __drbd_uuid_set(device, UI_HISTORY_START, device->ldev->md.uuid[UI_HISTORY_START + 1]); 3317 3318 drbd_info(device, "Last syncUUID did not get through, corrected:\n"); 3319 drbd_uuid_dump(device, "self", device->ldev->md.uuid, 3320 device->state.disk >= D_NEGOTIATING ? drbd_bm_total_weight(device) : 0, 0); 3321 3322 return 1; 3323 } 3324 } 3325 3326 3327 *rule_nr = 80; 3328 peer = device->p_uuid[UI_CURRENT] & ~((u64)1); 3329 for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) { 3330 self = device->ldev->md.uuid[i] & ~((u64)1); 3331 if (self == peer) 3332 return 2; 3333 } 3334 3335 *rule_nr = 90; 3336 self = device->ldev->md.uuid[UI_BITMAP] & ~((u64)1); 3337 peer = device->p_uuid[UI_BITMAP] & ~((u64)1); 3338 if (self == peer && self != ((u64)0)) 3339 return 100; 3340 3341 *rule_nr = 100; 3342 for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) { 3343 self = device->ldev->md.uuid[i] & ~((u64)1); 3344 for (j = UI_HISTORY_START; j <= UI_HISTORY_END; j++) { 3345 peer = device->p_uuid[j] & ~((u64)1); 3346 if (self == peer) 3347 return -100; 3348 } 3349 } 3350 3351 return -1000; 3352 } 3353 3354 /* drbd_sync_handshake() returns the new conn state on success, or 3355 CONN_MASK (-1) on failure. 3356 */ 3357 static enum drbd_conns drbd_sync_handshake(struct drbd_peer_device *peer_device, 3358 enum drbd_role peer_role, 3359 enum drbd_disk_state peer_disk) __must_hold(local) 3360 { 3361 struct drbd_device *device = peer_device->device; 3362 enum drbd_conns rv = C_MASK; 3363 enum drbd_disk_state mydisk; 3364 struct net_conf *nc; 3365 int hg, rule_nr, rr_conflict, tentative; 3366 3367 mydisk = device->state.disk; 3368 if (mydisk == D_NEGOTIATING) 3369 mydisk = device->new_state_tmp.disk; 3370 3371 drbd_info(device, "drbd_sync_handshake:\n"); 3372 3373 spin_lock_irq(&device->ldev->md.uuid_lock); 3374 drbd_uuid_dump(device, "self", device->ldev->md.uuid, device->comm_bm_set, 0); 3375 drbd_uuid_dump(device, "peer", device->p_uuid, 3376 device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]); 3377 3378 hg = drbd_uuid_compare(device, peer_role, &rule_nr); 3379 spin_unlock_irq(&device->ldev->md.uuid_lock); 3380 3381 drbd_info(device, "uuid_compare()=%d by rule %d\n", hg, rule_nr); 3382 3383 if (hg == -1000) { 3384 drbd_alert(device, "Unrelated data, aborting!\n"); 3385 return C_MASK; 3386 } 3387 if (hg < -0x10000) { 3388 int proto, fflags; 3389 hg = -hg; 3390 proto = hg & 0xff; 3391 fflags = (hg >> 8) & 0xff; 3392 drbd_alert(device, "To resolve this both sides have to support at least protocol %d and feature flags 0x%x\n", 3393 proto, fflags); 3394 return C_MASK; 3395 } 3396 if (hg < -1000) { 3397 drbd_alert(device, "To resolve this both sides have to support at least protocol %d\n", -hg - 1000); 3398 return C_MASK; 3399 } 3400 3401 if ((mydisk == D_INCONSISTENT && peer_disk > D_INCONSISTENT) || 3402 (peer_disk == D_INCONSISTENT && mydisk > D_INCONSISTENT)) { 3403 int f = (hg == -100) || abs(hg) == 2; 3404 hg = mydisk > D_INCONSISTENT ? 1 : -1; 3405 if (f) 3406 hg = hg*2; 3407 drbd_info(device, "Becoming sync %s due to disk states.\n", 3408 hg > 0 ? "source" : "target"); 3409 } 3410 3411 if (abs(hg) == 100) 3412 drbd_khelper(device, "initial-split-brain"); 3413 3414 rcu_read_lock(); 3415 nc = rcu_dereference(peer_device->connection->net_conf); 3416 3417 if (hg == 100 || (hg == -100 && nc->always_asbp)) { 3418 int pcount = (device->state.role == R_PRIMARY) 3419 + (peer_role == R_PRIMARY); 3420 int forced = (hg == -100); 3421 3422 switch (pcount) { 3423 case 0: 3424 hg = drbd_asb_recover_0p(peer_device); 3425 break; 3426 case 1: 3427 hg = drbd_asb_recover_1p(peer_device); 3428 break; 3429 case 2: 3430 hg = drbd_asb_recover_2p(peer_device); 3431 break; 3432 } 3433 if (abs(hg) < 100) { 3434 drbd_warn(device, "Split-Brain detected, %d primaries, " 3435 "automatically solved. Sync from %s node\n", 3436 pcount, (hg < 0) ? "peer" : "this"); 3437 if (forced) { 3438 drbd_warn(device, "Doing a full sync, since" 3439 " UUIDs where ambiguous.\n"); 3440 hg = hg*2; 3441 } 3442 } 3443 } 3444 3445 if (hg == -100) { 3446 if (test_bit(DISCARD_MY_DATA, &device->flags) && !(device->p_uuid[UI_FLAGS]&1)) 3447 hg = -1; 3448 if (!test_bit(DISCARD_MY_DATA, &device->flags) && (device->p_uuid[UI_FLAGS]&1)) 3449 hg = 1; 3450 3451 if (abs(hg) < 100) 3452 drbd_warn(device, "Split-Brain detected, manually solved. " 3453 "Sync from %s node\n", 3454 (hg < 0) ? "peer" : "this"); 3455 } 3456 rr_conflict = nc->rr_conflict; 3457 tentative = nc->tentative; 3458 rcu_read_unlock(); 3459 3460 if (hg == -100) { 3461 /* FIXME this log message is not correct if we end up here 3462 * after an attempted attach on a diskless node. 3463 * We just refuse to attach -- well, we drop the "connection" 3464 * to that disk, in a way... */ 3465 drbd_alert(device, "Split-Brain detected but unresolved, dropping connection!\n"); 3466 drbd_khelper(device, "split-brain"); 3467 return C_MASK; 3468 } 3469 3470 if (hg > 0 && mydisk <= D_INCONSISTENT) { 3471 drbd_err(device, "I shall become SyncSource, but I am inconsistent!\n"); 3472 return C_MASK; 3473 } 3474 3475 if (hg < 0 && /* by intention we do not use mydisk here. */ 3476 device->state.role == R_PRIMARY && device->state.disk >= D_CONSISTENT) { 3477 switch (rr_conflict) { 3478 case ASB_CALL_HELPER: 3479 drbd_khelper(device, "pri-lost"); 3480 /* fall through */ 3481 case ASB_DISCONNECT: 3482 drbd_err(device, "I shall become SyncTarget, but I am primary!\n"); 3483 return C_MASK; 3484 case ASB_VIOLENTLY: 3485 drbd_warn(device, "Becoming SyncTarget, violating the stable-data" 3486 "assumption\n"); 3487 } 3488 } 3489 3490 if (tentative || test_bit(CONN_DRY_RUN, &peer_device->connection->flags)) { 3491 if (hg == 0) 3492 drbd_info(device, "dry-run connect: No resync, would become Connected immediately.\n"); 3493 else 3494 drbd_info(device, "dry-run connect: Would become %s, doing a %s resync.", 3495 drbd_conn_str(hg > 0 ? C_SYNC_SOURCE : C_SYNC_TARGET), 3496 abs(hg) >= 2 ? "full" : "bit-map based"); 3497 return C_MASK; 3498 } 3499 3500 if (abs(hg) >= 2) { 3501 drbd_info(device, "Writing the whole bitmap, full sync required after drbd_sync_handshake.\n"); 3502 if (drbd_bitmap_io(device, &drbd_bmio_set_n_write, "set_n_write from sync_handshake", 3503 BM_LOCKED_SET_ALLOWED)) 3504 return C_MASK; 3505 } 3506 3507 if (hg > 0) { /* become sync source. */ 3508 rv = C_WF_BITMAP_S; 3509 } else if (hg < 0) { /* become sync target */ 3510 rv = C_WF_BITMAP_T; 3511 } else { 3512 rv = C_CONNECTED; 3513 if (drbd_bm_total_weight(device)) { 3514 drbd_info(device, "No resync, but %lu bits in bitmap!\n", 3515 drbd_bm_total_weight(device)); 3516 } 3517 } 3518 3519 return rv; 3520 } 3521 3522 static enum drbd_after_sb_p convert_after_sb(enum drbd_after_sb_p peer) 3523 { 3524 /* ASB_DISCARD_REMOTE - ASB_DISCARD_LOCAL is valid */ 3525 if (peer == ASB_DISCARD_REMOTE) 3526 return ASB_DISCARD_LOCAL; 3527 3528 /* any other things with ASB_DISCARD_REMOTE or ASB_DISCARD_LOCAL are invalid */ 3529 if (peer == ASB_DISCARD_LOCAL) 3530 return ASB_DISCARD_REMOTE; 3531 3532 /* everything else is valid if they are equal on both sides. */ 3533 return peer; 3534 } 3535 3536 static int receive_protocol(struct drbd_connection *connection, struct packet_info *pi) 3537 { 3538 struct p_protocol *p = pi->data; 3539 enum drbd_after_sb_p p_after_sb_0p, p_after_sb_1p, p_after_sb_2p; 3540 int p_proto, p_discard_my_data, p_two_primaries, cf; 3541 struct net_conf *nc, *old_net_conf, *new_net_conf = NULL; 3542 char integrity_alg[SHARED_SECRET_MAX] = ""; 3543 struct crypto_ahash *peer_integrity_tfm = NULL; 3544 void *int_dig_in = NULL, *int_dig_vv = NULL; 3545 3546 p_proto = be32_to_cpu(p->protocol); 3547 p_after_sb_0p = be32_to_cpu(p->after_sb_0p); 3548 p_after_sb_1p = be32_to_cpu(p->after_sb_1p); 3549 p_after_sb_2p = be32_to_cpu(p->after_sb_2p); 3550 p_two_primaries = be32_to_cpu(p->two_primaries); 3551 cf = be32_to_cpu(p->conn_flags); 3552 p_discard_my_data = cf & CF_DISCARD_MY_DATA; 3553 3554 if (connection->agreed_pro_version >= 87) { 3555 int err; 3556 3557 if (pi->size > sizeof(integrity_alg)) 3558 return -EIO; 3559 err = drbd_recv_all(connection, integrity_alg, pi->size); 3560 if (err) 3561 return err; 3562 integrity_alg[SHARED_SECRET_MAX - 1] = 0; 3563 } 3564 3565 if (pi->cmd != P_PROTOCOL_UPDATE) { 3566 clear_bit(CONN_DRY_RUN, &connection->flags); 3567 3568 if (cf & CF_DRY_RUN) 3569 set_bit(CONN_DRY_RUN, &connection->flags); 3570 3571 rcu_read_lock(); 3572 nc = rcu_dereference(connection->net_conf); 3573 3574 if (p_proto != nc->wire_protocol) { 3575 drbd_err(connection, "incompatible %s settings\n", "protocol"); 3576 goto disconnect_rcu_unlock; 3577 } 3578 3579 if (convert_after_sb(p_after_sb_0p) != nc->after_sb_0p) { 3580 drbd_err(connection, "incompatible %s settings\n", "after-sb-0pri"); 3581 goto disconnect_rcu_unlock; 3582 } 3583 3584 if (convert_after_sb(p_after_sb_1p) != nc->after_sb_1p) { 3585 drbd_err(connection, "incompatible %s settings\n", "after-sb-1pri"); 3586 goto disconnect_rcu_unlock; 3587 } 3588 3589 if (convert_after_sb(p_after_sb_2p) != nc->after_sb_2p) { 3590 drbd_err(connection, "incompatible %s settings\n", "after-sb-2pri"); 3591 goto disconnect_rcu_unlock; 3592 } 3593 3594 if (p_discard_my_data && nc->discard_my_data) { 3595 drbd_err(connection, "incompatible %s settings\n", "discard-my-data"); 3596 goto disconnect_rcu_unlock; 3597 } 3598 3599 if (p_two_primaries != nc->two_primaries) { 3600 drbd_err(connection, "incompatible %s settings\n", "allow-two-primaries"); 3601 goto disconnect_rcu_unlock; 3602 } 3603 3604 if (strcmp(integrity_alg, nc->integrity_alg)) { 3605 drbd_err(connection, "incompatible %s settings\n", "data-integrity-alg"); 3606 goto disconnect_rcu_unlock; 3607 } 3608 3609 rcu_read_unlock(); 3610 } 3611 3612 if (integrity_alg[0]) { 3613 int hash_size; 3614 3615 /* 3616 * We can only change the peer data integrity algorithm 3617 * here. Changing our own data integrity algorithm 3618 * requires that we send a P_PROTOCOL_UPDATE packet at 3619 * the same time; otherwise, the peer has no way to 3620 * tell between which packets the algorithm should 3621 * change. 3622 */ 3623 3624 peer_integrity_tfm = crypto_alloc_ahash(integrity_alg, 0, CRYPTO_ALG_ASYNC); 3625 if (IS_ERR(peer_integrity_tfm)) { 3626 peer_integrity_tfm = NULL; 3627 drbd_err(connection, "peer data-integrity-alg %s not supported\n", 3628 integrity_alg); 3629 goto disconnect; 3630 } 3631 3632 hash_size = crypto_ahash_digestsize(peer_integrity_tfm); 3633 int_dig_in = kmalloc(hash_size, GFP_KERNEL); 3634 int_dig_vv = kmalloc(hash_size, GFP_KERNEL); 3635 if (!(int_dig_in && int_dig_vv)) { 3636 drbd_err(connection, "Allocation of buffers for data integrity checking failed\n"); 3637 goto disconnect; 3638 } 3639 } 3640 3641 new_net_conf = kmalloc(sizeof(struct net_conf), GFP_KERNEL); 3642 if (!new_net_conf) { 3643 drbd_err(connection, "Allocation of new net_conf failed\n"); 3644 goto disconnect; 3645 } 3646 3647 mutex_lock(&connection->data.mutex); 3648 mutex_lock(&connection->resource->conf_update); 3649 old_net_conf = connection->net_conf; 3650 *new_net_conf = *old_net_conf; 3651 3652 new_net_conf->wire_protocol = p_proto; 3653 new_net_conf->after_sb_0p = convert_after_sb(p_after_sb_0p); 3654 new_net_conf->after_sb_1p = convert_after_sb(p_after_sb_1p); 3655 new_net_conf->after_sb_2p = convert_after_sb(p_after_sb_2p); 3656 new_net_conf->two_primaries = p_two_primaries; 3657 3658 rcu_assign_pointer(connection->net_conf, new_net_conf); 3659 mutex_unlock(&connection->resource->conf_update); 3660 mutex_unlock(&connection->data.mutex); 3661 3662 crypto_free_ahash(connection->peer_integrity_tfm); 3663 kfree(connection->int_dig_in); 3664 kfree(connection->int_dig_vv); 3665 connection->peer_integrity_tfm = peer_integrity_tfm; 3666 connection->int_dig_in = int_dig_in; 3667 connection->int_dig_vv = int_dig_vv; 3668 3669 if (strcmp(old_net_conf->integrity_alg, integrity_alg)) 3670 drbd_info(connection, "peer data-integrity-alg: %s\n", 3671 integrity_alg[0] ? integrity_alg : "(none)"); 3672 3673 synchronize_rcu(); 3674 kfree(old_net_conf); 3675 return 0; 3676 3677 disconnect_rcu_unlock: 3678 rcu_read_unlock(); 3679 disconnect: 3680 crypto_free_ahash(peer_integrity_tfm); 3681 kfree(int_dig_in); 3682 kfree(int_dig_vv); 3683 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 3684 return -EIO; 3685 } 3686 3687 /* helper function 3688 * input: alg name, feature name 3689 * return: NULL (alg name was "") 3690 * ERR_PTR(error) if something goes wrong 3691 * or the crypto hash ptr, if it worked out ok. */ 3692 static struct crypto_ahash *drbd_crypto_alloc_digest_safe(const struct drbd_device *device, 3693 const char *alg, const char *name) 3694 { 3695 struct crypto_ahash *tfm; 3696 3697 if (!alg[0]) 3698 return NULL; 3699 3700 tfm = crypto_alloc_ahash(alg, 0, CRYPTO_ALG_ASYNC); 3701 if (IS_ERR(tfm)) { 3702 drbd_err(device, "Can not allocate \"%s\" as %s (reason: %ld)\n", 3703 alg, name, PTR_ERR(tfm)); 3704 return tfm; 3705 } 3706 return tfm; 3707 } 3708 3709 static int ignore_remaining_packet(struct drbd_connection *connection, struct packet_info *pi) 3710 { 3711 void *buffer = connection->data.rbuf; 3712 int size = pi->size; 3713 3714 while (size) { 3715 int s = min_t(int, size, DRBD_SOCKET_BUFFER_SIZE); 3716 s = drbd_recv(connection, buffer, s); 3717 if (s <= 0) { 3718 if (s < 0) 3719 return s; 3720 break; 3721 } 3722 size -= s; 3723 } 3724 if (size) 3725 return -EIO; 3726 return 0; 3727 } 3728 3729 /* 3730 * config_unknown_volume - device configuration command for unknown volume 3731 * 3732 * When a device is added to an existing connection, the node on which the 3733 * device is added first will send configuration commands to its peer but the 3734 * peer will not know about the device yet. It will warn and ignore these 3735 * commands. Once the device is added on the second node, the second node will 3736 * send the same device configuration commands, but in the other direction. 3737 * 3738 * (We can also end up here if drbd is misconfigured.) 3739 */ 3740 static int config_unknown_volume(struct drbd_connection *connection, struct packet_info *pi) 3741 { 3742 drbd_warn(connection, "%s packet received for volume %u, which is not configured locally\n", 3743 cmdname(pi->cmd), pi->vnr); 3744 return ignore_remaining_packet(connection, pi); 3745 } 3746 3747 static int receive_SyncParam(struct drbd_connection *connection, struct packet_info *pi) 3748 { 3749 struct drbd_peer_device *peer_device; 3750 struct drbd_device *device; 3751 struct p_rs_param_95 *p; 3752 unsigned int header_size, data_size, exp_max_sz; 3753 struct crypto_ahash *verify_tfm = NULL; 3754 struct crypto_ahash *csums_tfm = NULL; 3755 struct net_conf *old_net_conf, *new_net_conf = NULL; 3756 struct disk_conf *old_disk_conf = NULL, *new_disk_conf = NULL; 3757 const int apv = connection->agreed_pro_version; 3758 struct fifo_buffer *old_plan = NULL, *new_plan = NULL; 3759 int fifo_size = 0; 3760 int err; 3761 3762 peer_device = conn_peer_device(connection, pi->vnr); 3763 if (!peer_device) 3764 return config_unknown_volume(connection, pi); 3765 device = peer_device->device; 3766 3767 exp_max_sz = apv <= 87 ? sizeof(struct p_rs_param) 3768 : apv == 88 ? sizeof(struct p_rs_param) 3769 + SHARED_SECRET_MAX 3770 : apv <= 94 ? sizeof(struct p_rs_param_89) 3771 : /* apv >= 95 */ sizeof(struct p_rs_param_95); 3772 3773 if (pi->size > exp_max_sz) { 3774 drbd_err(device, "SyncParam packet too long: received %u, expected <= %u bytes\n", 3775 pi->size, exp_max_sz); 3776 return -EIO; 3777 } 3778 3779 if (apv <= 88) { 3780 header_size = sizeof(struct p_rs_param); 3781 data_size = pi->size - header_size; 3782 } else if (apv <= 94) { 3783 header_size = sizeof(struct p_rs_param_89); 3784 data_size = pi->size - header_size; 3785 D_ASSERT(device, data_size == 0); 3786 } else { 3787 header_size = sizeof(struct p_rs_param_95); 3788 data_size = pi->size - header_size; 3789 D_ASSERT(device, data_size == 0); 3790 } 3791 3792 /* initialize verify_alg and csums_alg */ 3793 p = pi->data; 3794 memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX); 3795 3796 err = drbd_recv_all(peer_device->connection, p, header_size); 3797 if (err) 3798 return err; 3799 3800 mutex_lock(&connection->resource->conf_update); 3801 old_net_conf = peer_device->connection->net_conf; 3802 if (get_ldev(device)) { 3803 new_disk_conf = kzalloc(sizeof(struct disk_conf), GFP_KERNEL); 3804 if (!new_disk_conf) { 3805 put_ldev(device); 3806 mutex_unlock(&connection->resource->conf_update); 3807 drbd_err(device, "Allocation of new disk_conf failed\n"); 3808 return -ENOMEM; 3809 } 3810 3811 old_disk_conf = device->ldev->disk_conf; 3812 *new_disk_conf = *old_disk_conf; 3813 3814 new_disk_conf->resync_rate = be32_to_cpu(p->resync_rate); 3815 } 3816 3817 if (apv >= 88) { 3818 if (apv == 88) { 3819 if (data_size > SHARED_SECRET_MAX || data_size == 0) { 3820 drbd_err(device, "verify-alg of wrong size, " 3821 "peer wants %u, accepting only up to %u byte\n", 3822 data_size, SHARED_SECRET_MAX); 3823 err = -EIO; 3824 goto reconnect; 3825 } 3826 3827 err = drbd_recv_all(peer_device->connection, p->verify_alg, data_size); 3828 if (err) 3829 goto reconnect; 3830 /* we expect NUL terminated string */ 3831 /* but just in case someone tries to be evil */ 3832 D_ASSERT(device, p->verify_alg[data_size-1] == 0); 3833 p->verify_alg[data_size-1] = 0; 3834 3835 } else /* apv >= 89 */ { 3836 /* we still expect NUL terminated strings */ 3837 /* but just in case someone tries to be evil */ 3838 D_ASSERT(device, p->verify_alg[SHARED_SECRET_MAX-1] == 0); 3839 D_ASSERT(device, p->csums_alg[SHARED_SECRET_MAX-1] == 0); 3840 p->verify_alg[SHARED_SECRET_MAX-1] = 0; 3841 p->csums_alg[SHARED_SECRET_MAX-1] = 0; 3842 } 3843 3844 if (strcmp(old_net_conf->verify_alg, p->verify_alg)) { 3845 if (device->state.conn == C_WF_REPORT_PARAMS) { 3846 drbd_err(device, "Different verify-alg settings. me=\"%s\" peer=\"%s\"\n", 3847 old_net_conf->verify_alg, p->verify_alg); 3848 goto disconnect; 3849 } 3850 verify_tfm = drbd_crypto_alloc_digest_safe(device, 3851 p->verify_alg, "verify-alg"); 3852 if (IS_ERR(verify_tfm)) { 3853 verify_tfm = NULL; 3854 goto disconnect; 3855 } 3856 } 3857 3858 if (apv >= 89 && strcmp(old_net_conf->csums_alg, p->csums_alg)) { 3859 if (device->state.conn == C_WF_REPORT_PARAMS) { 3860 drbd_err(device, "Different csums-alg settings. me=\"%s\" peer=\"%s\"\n", 3861 old_net_conf->csums_alg, p->csums_alg); 3862 goto disconnect; 3863 } 3864 csums_tfm = drbd_crypto_alloc_digest_safe(device, 3865 p->csums_alg, "csums-alg"); 3866 if (IS_ERR(csums_tfm)) { 3867 csums_tfm = NULL; 3868 goto disconnect; 3869 } 3870 } 3871 3872 if (apv > 94 && new_disk_conf) { 3873 new_disk_conf->c_plan_ahead = be32_to_cpu(p->c_plan_ahead); 3874 new_disk_conf->c_delay_target = be32_to_cpu(p->c_delay_target); 3875 new_disk_conf->c_fill_target = be32_to_cpu(p->c_fill_target); 3876 new_disk_conf->c_max_rate = be32_to_cpu(p->c_max_rate); 3877 3878 fifo_size = (new_disk_conf->c_plan_ahead * 10 * SLEEP_TIME) / HZ; 3879 if (fifo_size != device->rs_plan_s->size) { 3880 new_plan = fifo_alloc(fifo_size); 3881 if (!new_plan) { 3882 drbd_err(device, "kmalloc of fifo_buffer failed"); 3883 put_ldev(device); 3884 goto disconnect; 3885 } 3886 } 3887 } 3888 3889 if (verify_tfm || csums_tfm) { 3890 new_net_conf = kzalloc(sizeof(struct net_conf), GFP_KERNEL); 3891 if (!new_net_conf) { 3892 drbd_err(device, "Allocation of new net_conf failed\n"); 3893 goto disconnect; 3894 } 3895 3896 *new_net_conf = *old_net_conf; 3897 3898 if (verify_tfm) { 3899 strcpy(new_net_conf->verify_alg, p->verify_alg); 3900 new_net_conf->verify_alg_len = strlen(p->verify_alg) + 1; 3901 crypto_free_ahash(peer_device->connection->verify_tfm); 3902 peer_device->connection->verify_tfm = verify_tfm; 3903 drbd_info(device, "using verify-alg: \"%s\"\n", p->verify_alg); 3904 } 3905 if (csums_tfm) { 3906 strcpy(new_net_conf->csums_alg, p->csums_alg); 3907 new_net_conf->csums_alg_len = strlen(p->csums_alg) + 1; 3908 crypto_free_ahash(peer_device->connection->csums_tfm); 3909 peer_device->connection->csums_tfm = csums_tfm; 3910 drbd_info(device, "using csums-alg: \"%s\"\n", p->csums_alg); 3911 } 3912 rcu_assign_pointer(connection->net_conf, new_net_conf); 3913 } 3914 } 3915 3916 if (new_disk_conf) { 3917 rcu_assign_pointer(device->ldev->disk_conf, new_disk_conf); 3918 put_ldev(device); 3919 } 3920 3921 if (new_plan) { 3922 old_plan = device->rs_plan_s; 3923 rcu_assign_pointer(device->rs_plan_s, new_plan); 3924 } 3925 3926 mutex_unlock(&connection->resource->conf_update); 3927 synchronize_rcu(); 3928 if (new_net_conf) 3929 kfree(old_net_conf); 3930 kfree(old_disk_conf); 3931 kfree(old_plan); 3932 3933 return 0; 3934 3935 reconnect: 3936 if (new_disk_conf) { 3937 put_ldev(device); 3938 kfree(new_disk_conf); 3939 } 3940 mutex_unlock(&connection->resource->conf_update); 3941 return -EIO; 3942 3943 disconnect: 3944 kfree(new_plan); 3945 if (new_disk_conf) { 3946 put_ldev(device); 3947 kfree(new_disk_conf); 3948 } 3949 mutex_unlock(&connection->resource->conf_update); 3950 /* just for completeness: actually not needed, 3951 * as this is not reached if csums_tfm was ok. */ 3952 crypto_free_ahash(csums_tfm); 3953 /* but free the verify_tfm again, if csums_tfm did not work out */ 3954 crypto_free_ahash(verify_tfm); 3955 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD); 3956 return -EIO; 3957 } 3958 3959 /* warn if the arguments differ by more than 12.5% */ 3960 static void warn_if_differ_considerably(struct drbd_device *device, 3961 const char *s, sector_t a, sector_t b) 3962 { 3963 sector_t d; 3964 if (a == 0 || b == 0) 3965 return; 3966 d = (a > b) ? (a - b) : (b - a); 3967 if (d > (a>>3) || d > (b>>3)) 3968 drbd_warn(device, "Considerable difference in %s: %llus vs. %llus\n", s, 3969 (unsigned long long)a, (unsigned long long)b); 3970 } 3971 3972 static int receive_sizes(struct drbd_connection *connection, struct packet_info *pi) 3973 { 3974 struct drbd_peer_device *peer_device; 3975 struct drbd_device *device; 3976 struct p_sizes *p = pi->data; 3977 struct o_qlim *o = (connection->agreed_features & DRBD_FF_WSAME) ? p->qlim : NULL; 3978 enum determine_dev_size dd = DS_UNCHANGED; 3979 sector_t p_size, p_usize, p_csize, my_usize; 3980 int ldsc = 0; /* local disk size changed */ 3981 enum dds_flags ddsf; 3982 3983 peer_device = conn_peer_device(connection, pi->vnr); 3984 if (!peer_device) 3985 return config_unknown_volume(connection, pi); 3986 device = peer_device->device; 3987 3988 p_size = be64_to_cpu(p->d_size); 3989 p_usize = be64_to_cpu(p->u_size); 3990 p_csize = be64_to_cpu(p->c_size); 3991 3992 /* just store the peer's disk size for now. 3993 * we still need to figure out whether we accept that. */ 3994 device->p_size = p_size; 3995 3996 if (get_ldev(device)) { 3997 sector_t new_size, cur_size; 3998 rcu_read_lock(); 3999 my_usize = rcu_dereference(device->ldev->disk_conf)->disk_size; 4000 rcu_read_unlock(); 4001 4002 warn_if_differ_considerably(device, "lower level device sizes", 4003 p_size, drbd_get_max_capacity(device->ldev)); 4004 warn_if_differ_considerably(device, "user requested size", 4005 p_usize, my_usize); 4006 4007 /* if this is the first connect, or an otherwise expected 4008 * param exchange, choose the minimum */ 4009 if (device->state.conn == C_WF_REPORT_PARAMS) 4010 p_usize = min_not_zero(my_usize, p_usize); 4011 4012 /* Never shrink a device with usable data during connect. 4013 But allow online shrinking if we are connected. */ 4014 new_size = drbd_new_dev_size(device, device->ldev, p_usize, 0); 4015 cur_size = drbd_get_capacity(device->this_bdev); 4016 if (new_size < cur_size && 4017 device->state.disk >= D_OUTDATED && 4018 device->state.conn < C_CONNECTED) { 4019 drbd_err(device, "The peer's disk size is too small! (%llu < %llu sectors)\n", 4020 (unsigned long long)new_size, (unsigned long long)cur_size); 4021 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD); 4022 put_ldev(device); 4023 return -EIO; 4024 } 4025 4026 if (my_usize != p_usize) { 4027 struct disk_conf *old_disk_conf, *new_disk_conf = NULL; 4028 4029 new_disk_conf = kzalloc(sizeof(struct disk_conf), GFP_KERNEL); 4030 if (!new_disk_conf) { 4031 drbd_err(device, "Allocation of new disk_conf failed\n"); 4032 put_ldev(device); 4033 return -ENOMEM; 4034 } 4035 4036 mutex_lock(&connection->resource->conf_update); 4037 old_disk_conf = device->ldev->disk_conf; 4038 *new_disk_conf = *old_disk_conf; 4039 new_disk_conf->disk_size = p_usize; 4040 4041 rcu_assign_pointer(device->ldev->disk_conf, new_disk_conf); 4042 mutex_unlock(&connection->resource->conf_update); 4043 synchronize_rcu(); 4044 kfree(old_disk_conf); 4045 4046 drbd_info(device, "Peer sets u_size to %lu sectors\n", 4047 (unsigned long)my_usize); 4048 } 4049 4050 put_ldev(device); 4051 } 4052 4053 device->peer_max_bio_size = be32_to_cpu(p->max_bio_size); 4054 /* Leave drbd_reconsider_queue_parameters() before drbd_determine_dev_size(). 4055 In case we cleared the QUEUE_FLAG_DISCARD from our queue in 4056 drbd_reconsider_queue_parameters(), we can be sure that after 4057 drbd_determine_dev_size() no REQ_DISCARDs are in the queue. */ 4058 4059 ddsf = be16_to_cpu(p->dds_flags); 4060 if (get_ldev(device)) { 4061 drbd_reconsider_queue_parameters(device, device->ldev, o); 4062 dd = drbd_determine_dev_size(device, ddsf, NULL); 4063 put_ldev(device); 4064 if (dd == DS_ERROR) 4065 return -EIO; 4066 drbd_md_sync(device); 4067 } else { 4068 /* 4069 * I am diskless, need to accept the peer's *current* size. 4070 * I must NOT accept the peers backing disk size, 4071 * it may have been larger than mine all along... 4072 * 4073 * At this point, the peer knows more about my disk, or at 4074 * least about what we last agreed upon, than myself. 4075 * So if his c_size is less than his d_size, the most likely 4076 * reason is that *my* d_size was smaller last time we checked. 4077 * 4078 * However, if he sends a zero current size, 4079 * take his (user-capped or) backing disk size anyways. 4080 */ 4081 drbd_reconsider_queue_parameters(device, NULL, o); 4082 drbd_set_my_capacity(device, p_csize ?: p_usize ?: p_size); 4083 } 4084 4085 if (get_ldev(device)) { 4086 if (device->ldev->known_size != drbd_get_capacity(device->ldev->backing_bdev)) { 4087 device->ldev->known_size = drbd_get_capacity(device->ldev->backing_bdev); 4088 ldsc = 1; 4089 } 4090 4091 put_ldev(device); 4092 } 4093 4094 if (device->state.conn > C_WF_REPORT_PARAMS) { 4095 if (be64_to_cpu(p->c_size) != 4096 drbd_get_capacity(device->this_bdev) || ldsc) { 4097 /* we have different sizes, probably peer 4098 * needs to know my new size... */ 4099 drbd_send_sizes(peer_device, 0, ddsf); 4100 } 4101 if (test_and_clear_bit(RESIZE_PENDING, &device->flags) || 4102 (dd == DS_GREW && device->state.conn == C_CONNECTED)) { 4103 if (device->state.pdsk >= D_INCONSISTENT && 4104 device->state.disk >= D_INCONSISTENT) { 4105 if (ddsf & DDSF_NO_RESYNC) 4106 drbd_info(device, "Resync of new storage suppressed with --assume-clean\n"); 4107 else 4108 resync_after_online_grow(device); 4109 } else 4110 set_bit(RESYNC_AFTER_NEG, &device->flags); 4111 } 4112 } 4113 4114 return 0; 4115 } 4116 4117 static int receive_uuids(struct drbd_connection *connection, struct packet_info *pi) 4118 { 4119 struct drbd_peer_device *peer_device; 4120 struct drbd_device *device; 4121 struct p_uuids *p = pi->data; 4122 u64 *p_uuid; 4123 int i, updated_uuids = 0; 4124 4125 peer_device = conn_peer_device(connection, pi->vnr); 4126 if (!peer_device) 4127 return config_unknown_volume(connection, pi); 4128 device = peer_device->device; 4129 4130 p_uuid = kmalloc_array(UI_EXTENDED_SIZE, sizeof(*p_uuid), GFP_NOIO); 4131 if (!p_uuid) { 4132 drbd_err(device, "kmalloc of p_uuid failed\n"); 4133 return false; 4134 } 4135 4136 for (i = UI_CURRENT; i < UI_EXTENDED_SIZE; i++) 4137 p_uuid[i] = be64_to_cpu(p->uuid[i]); 4138 4139 kfree(device->p_uuid); 4140 device->p_uuid = p_uuid; 4141 4142 if (device->state.conn < C_CONNECTED && 4143 device->state.disk < D_INCONSISTENT && 4144 device->state.role == R_PRIMARY && 4145 (device->ed_uuid & ~((u64)1)) != (p_uuid[UI_CURRENT] & ~((u64)1))) { 4146 drbd_err(device, "Can only connect to data with current UUID=%016llX\n", 4147 (unsigned long long)device->ed_uuid); 4148 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD); 4149 return -EIO; 4150 } 4151 4152 if (get_ldev(device)) { 4153 int skip_initial_sync = 4154 device->state.conn == C_CONNECTED && 4155 peer_device->connection->agreed_pro_version >= 90 && 4156 device->ldev->md.uuid[UI_CURRENT] == UUID_JUST_CREATED && 4157 (p_uuid[UI_FLAGS] & 8); 4158 if (skip_initial_sync) { 4159 drbd_info(device, "Accepted new current UUID, preparing to skip initial sync\n"); 4160 drbd_bitmap_io(device, &drbd_bmio_clear_n_write, 4161 "clear_n_write from receive_uuids", 4162 BM_LOCKED_TEST_ALLOWED); 4163 _drbd_uuid_set(device, UI_CURRENT, p_uuid[UI_CURRENT]); 4164 _drbd_uuid_set(device, UI_BITMAP, 0); 4165 _drbd_set_state(_NS2(device, disk, D_UP_TO_DATE, pdsk, D_UP_TO_DATE), 4166 CS_VERBOSE, NULL); 4167 drbd_md_sync(device); 4168 updated_uuids = 1; 4169 } 4170 put_ldev(device); 4171 } else if (device->state.disk < D_INCONSISTENT && 4172 device->state.role == R_PRIMARY) { 4173 /* I am a diskless primary, the peer just created a new current UUID 4174 for me. */ 4175 updated_uuids = drbd_set_ed_uuid(device, p_uuid[UI_CURRENT]); 4176 } 4177 4178 /* Before we test for the disk state, we should wait until an eventually 4179 ongoing cluster wide state change is finished. That is important if 4180 we are primary and are detaching from our disk. We need to see the 4181 new disk state... */ 4182 mutex_lock(device->state_mutex); 4183 mutex_unlock(device->state_mutex); 4184 if (device->state.conn >= C_CONNECTED && device->state.disk < D_INCONSISTENT) 4185 updated_uuids |= drbd_set_ed_uuid(device, p_uuid[UI_CURRENT]); 4186 4187 if (updated_uuids) 4188 drbd_print_uuids(device, "receiver updated UUIDs to"); 4189 4190 return 0; 4191 } 4192 4193 /** 4194 * convert_state() - Converts the peer's view of the cluster state to our point of view 4195 * @ps: The state as seen by the peer. 4196 */ 4197 static union drbd_state convert_state(union drbd_state ps) 4198 { 4199 union drbd_state ms; 4200 4201 static enum drbd_conns c_tab[] = { 4202 [C_WF_REPORT_PARAMS] = C_WF_REPORT_PARAMS, 4203 [C_CONNECTED] = C_CONNECTED, 4204 4205 [C_STARTING_SYNC_S] = C_STARTING_SYNC_T, 4206 [C_STARTING_SYNC_T] = C_STARTING_SYNC_S, 4207 [C_DISCONNECTING] = C_TEAR_DOWN, /* C_NETWORK_FAILURE, */ 4208 [C_VERIFY_S] = C_VERIFY_T, 4209 [C_MASK] = C_MASK, 4210 }; 4211 4212 ms.i = ps.i; 4213 4214 ms.conn = c_tab[ps.conn]; 4215 ms.peer = ps.role; 4216 ms.role = ps.peer; 4217 ms.pdsk = ps.disk; 4218 ms.disk = ps.pdsk; 4219 ms.peer_isp = (ps.aftr_isp | ps.user_isp); 4220 4221 return ms; 4222 } 4223 4224 static int receive_req_state(struct drbd_connection *connection, struct packet_info *pi) 4225 { 4226 struct drbd_peer_device *peer_device; 4227 struct drbd_device *device; 4228 struct p_req_state *p = pi->data; 4229 union drbd_state mask, val; 4230 enum drbd_state_rv rv; 4231 4232 peer_device = conn_peer_device(connection, pi->vnr); 4233 if (!peer_device) 4234 return -EIO; 4235 device = peer_device->device; 4236 4237 mask.i = be32_to_cpu(p->mask); 4238 val.i = be32_to_cpu(p->val); 4239 4240 if (test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags) && 4241 mutex_is_locked(device->state_mutex)) { 4242 drbd_send_sr_reply(peer_device, SS_CONCURRENT_ST_CHG); 4243 return 0; 4244 } 4245 4246 mask = convert_state(mask); 4247 val = convert_state(val); 4248 4249 rv = drbd_change_state(device, CS_VERBOSE, mask, val); 4250 drbd_send_sr_reply(peer_device, rv); 4251 4252 drbd_md_sync(device); 4253 4254 return 0; 4255 } 4256 4257 static int receive_req_conn_state(struct drbd_connection *connection, struct packet_info *pi) 4258 { 4259 struct p_req_state *p = pi->data; 4260 union drbd_state mask, val; 4261 enum drbd_state_rv rv; 4262 4263 mask.i = be32_to_cpu(p->mask); 4264 val.i = be32_to_cpu(p->val); 4265 4266 if (test_bit(RESOLVE_CONFLICTS, &connection->flags) && 4267 mutex_is_locked(&connection->cstate_mutex)) { 4268 conn_send_sr_reply(connection, SS_CONCURRENT_ST_CHG); 4269 return 0; 4270 } 4271 4272 mask = convert_state(mask); 4273 val = convert_state(val); 4274 4275 rv = conn_request_state(connection, mask, val, CS_VERBOSE | CS_LOCAL_ONLY | CS_IGN_OUTD_FAIL); 4276 conn_send_sr_reply(connection, rv); 4277 4278 return 0; 4279 } 4280 4281 static int receive_state(struct drbd_connection *connection, struct packet_info *pi) 4282 { 4283 struct drbd_peer_device *peer_device; 4284 struct drbd_device *device; 4285 struct p_state *p = pi->data; 4286 union drbd_state os, ns, peer_state; 4287 enum drbd_disk_state real_peer_disk; 4288 enum chg_state_flags cs_flags; 4289 int rv; 4290 4291 peer_device = conn_peer_device(connection, pi->vnr); 4292 if (!peer_device) 4293 return config_unknown_volume(connection, pi); 4294 device = peer_device->device; 4295 4296 peer_state.i = be32_to_cpu(p->state); 4297 4298 real_peer_disk = peer_state.disk; 4299 if (peer_state.disk == D_NEGOTIATING) { 4300 real_peer_disk = device->p_uuid[UI_FLAGS] & 4 ? D_INCONSISTENT : D_CONSISTENT; 4301 drbd_info(device, "real peer disk state = %s\n", drbd_disk_str(real_peer_disk)); 4302 } 4303 4304 spin_lock_irq(&device->resource->req_lock); 4305 retry: 4306 os = ns = drbd_read_state(device); 4307 spin_unlock_irq(&device->resource->req_lock); 4308 4309 /* If some other part of the code (ack_receiver thread, timeout) 4310 * already decided to close the connection again, 4311 * we must not "re-establish" it here. */ 4312 if (os.conn <= C_TEAR_DOWN) 4313 return -ECONNRESET; 4314 4315 /* If this is the "end of sync" confirmation, usually the peer disk 4316 * transitions from D_INCONSISTENT to D_UP_TO_DATE. For empty (0 bits 4317 * set) resync started in PausedSyncT, or if the timing of pause-/ 4318 * unpause-sync events has been "just right", the peer disk may 4319 * transition from D_CONSISTENT to D_UP_TO_DATE as well. 4320 */ 4321 if ((os.pdsk == D_INCONSISTENT || os.pdsk == D_CONSISTENT) && 4322 real_peer_disk == D_UP_TO_DATE && 4323 os.conn > C_CONNECTED && os.disk == D_UP_TO_DATE) { 4324 /* If we are (becoming) SyncSource, but peer is still in sync 4325 * preparation, ignore its uptodate-ness to avoid flapping, it 4326 * will change to inconsistent once the peer reaches active 4327 * syncing states. 4328 * It may have changed syncer-paused flags, however, so we 4329 * cannot ignore this completely. */ 4330 if (peer_state.conn > C_CONNECTED && 4331 peer_state.conn < C_SYNC_SOURCE) 4332 real_peer_disk = D_INCONSISTENT; 4333 4334 /* if peer_state changes to connected at the same time, 4335 * it explicitly notifies us that it finished resync. 4336 * Maybe we should finish it up, too? */ 4337 else if (os.conn >= C_SYNC_SOURCE && 4338 peer_state.conn == C_CONNECTED) { 4339 if (drbd_bm_total_weight(device) <= device->rs_failed) 4340 drbd_resync_finished(device); 4341 return 0; 4342 } 4343 } 4344 4345 /* explicit verify finished notification, stop sector reached. */ 4346 if (os.conn == C_VERIFY_T && os.disk == D_UP_TO_DATE && 4347 peer_state.conn == C_CONNECTED && real_peer_disk == D_UP_TO_DATE) { 4348 ov_out_of_sync_print(device); 4349 drbd_resync_finished(device); 4350 return 0; 4351 } 4352 4353 /* peer says his disk is inconsistent, while we think it is uptodate, 4354 * and this happens while the peer still thinks we have a sync going on, 4355 * but we think we are already done with the sync. 4356 * We ignore this to avoid flapping pdsk. 4357 * This should not happen, if the peer is a recent version of drbd. */ 4358 if (os.pdsk == D_UP_TO_DATE && real_peer_disk == D_INCONSISTENT && 4359 os.conn == C_CONNECTED && peer_state.conn > C_SYNC_SOURCE) 4360 real_peer_disk = D_UP_TO_DATE; 4361 4362 if (ns.conn == C_WF_REPORT_PARAMS) 4363 ns.conn = C_CONNECTED; 4364 4365 if (peer_state.conn == C_AHEAD) 4366 ns.conn = C_BEHIND; 4367 4368 if (device->p_uuid && peer_state.disk >= D_NEGOTIATING && 4369 get_ldev_if_state(device, D_NEGOTIATING)) { 4370 int cr; /* consider resync */ 4371 4372 /* if we established a new connection */ 4373 cr = (os.conn < C_CONNECTED); 4374 /* if we had an established connection 4375 * and one of the nodes newly attaches a disk */ 4376 cr |= (os.conn == C_CONNECTED && 4377 (peer_state.disk == D_NEGOTIATING || 4378 os.disk == D_NEGOTIATING)); 4379 /* if we have both been inconsistent, and the peer has been 4380 * forced to be UpToDate with --overwrite-data */ 4381 cr |= test_bit(CONSIDER_RESYNC, &device->flags); 4382 /* if we had been plain connected, and the admin requested to 4383 * start a sync by "invalidate" or "invalidate-remote" */ 4384 cr |= (os.conn == C_CONNECTED && 4385 (peer_state.conn >= C_STARTING_SYNC_S && 4386 peer_state.conn <= C_WF_BITMAP_T)); 4387 4388 if (cr) 4389 ns.conn = drbd_sync_handshake(peer_device, peer_state.role, real_peer_disk); 4390 4391 put_ldev(device); 4392 if (ns.conn == C_MASK) { 4393 ns.conn = C_CONNECTED; 4394 if (device->state.disk == D_NEGOTIATING) { 4395 drbd_force_state(device, NS(disk, D_FAILED)); 4396 } else if (peer_state.disk == D_NEGOTIATING) { 4397 drbd_err(device, "Disk attach process on the peer node was aborted.\n"); 4398 peer_state.disk = D_DISKLESS; 4399 real_peer_disk = D_DISKLESS; 4400 } else { 4401 if (test_and_clear_bit(CONN_DRY_RUN, &peer_device->connection->flags)) 4402 return -EIO; 4403 D_ASSERT(device, os.conn == C_WF_REPORT_PARAMS); 4404 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD); 4405 return -EIO; 4406 } 4407 } 4408 } 4409 4410 spin_lock_irq(&device->resource->req_lock); 4411 if (os.i != drbd_read_state(device).i) 4412 goto retry; 4413 clear_bit(CONSIDER_RESYNC, &device->flags); 4414 ns.peer = peer_state.role; 4415 ns.pdsk = real_peer_disk; 4416 ns.peer_isp = (peer_state.aftr_isp | peer_state.user_isp); 4417 if ((ns.conn == C_CONNECTED || ns.conn == C_WF_BITMAP_S) && ns.disk == D_NEGOTIATING) 4418 ns.disk = device->new_state_tmp.disk; 4419 cs_flags = CS_VERBOSE + (os.conn < C_CONNECTED && ns.conn >= C_CONNECTED ? 0 : CS_HARD); 4420 if (ns.pdsk == D_CONSISTENT && drbd_suspended(device) && ns.conn == C_CONNECTED && os.conn < C_CONNECTED && 4421 test_bit(NEW_CUR_UUID, &device->flags)) { 4422 /* Do not allow tl_restart(RESEND) for a rebooted peer. We can only allow this 4423 for temporal network outages! */ 4424 spin_unlock_irq(&device->resource->req_lock); 4425 drbd_err(device, "Aborting Connect, can not thaw IO with an only Consistent peer\n"); 4426 tl_clear(peer_device->connection); 4427 drbd_uuid_new_current(device); 4428 clear_bit(NEW_CUR_UUID, &device->flags); 4429 conn_request_state(peer_device->connection, NS2(conn, C_PROTOCOL_ERROR, susp, 0), CS_HARD); 4430 return -EIO; 4431 } 4432 rv = _drbd_set_state(device, ns, cs_flags, NULL); 4433 ns = drbd_read_state(device); 4434 spin_unlock_irq(&device->resource->req_lock); 4435 4436 if (rv < SS_SUCCESS) { 4437 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD); 4438 return -EIO; 4439 } 4440 4441 if (os.conn > C_WF_REPORT_PARAMS) { 4442 if (ns.conn > C_CONNECTED && peer_state.conn <= C_CONNECTED && 4443 peer_state.disk != D_NEGOTIATING ) { 4444 /* we want resync, peer has not yet decided to sync... */ 4445 /* Nowadays only used when forcing a node into primary role and 4446 setting its disk to UpToDate with that */ 4447 drbd_send_uuids(peer_device); 4448 drbd_send_current_state(peer_device); 4449 } 4450 } 4451 4452 clear_bit(DISCARD_MY_DATA, &device->flags); 4453 4454 drbd_md_sync(device); /* update connected indicator, la_size_sect, ... */ 4455 4456 return 0; 4457 } 4458 4459 static int receive_sync_uuid(struct drbd_connection *connection, struct packet_info *pi) 4460 { 4461 struct drbd_peer_device *peer_device; 4462 struct drbd_device *device; 4463 struct p_rs_uuid *p = pi->data; 4464 4465 peer_device = conn_peer_device(connection, pi->vnr); 4466 if (!peer_device) 4467 return -EIO; 4468 device = peer_device->device; 4469 4470 wait_event(device->misc_wait, 4471 device->state.conn == C_WF_SYNC_UUID || 4472 device->state.conn == C_BEHIND || 4473 device->state.conn < C_CONNECTED || 4474 device->state.disk < D_NEGOTIATING); 4475 4476 /* D_ASSERT(device, device->state.conn == C_WF_SYNC_UUID ); */ 4477 4478 /* Here the _drbd_uuid_ functions are right, current should 4479 _not_ be rotated into the history */ 4480 if (get_ldev_if_state(device, D_NEGOTIATING)) { 4481 _drbd_uuid_set(device, UI_CURRENT, be64_to_cpu(p->uuid)); 4482 _drbd_uuid_set(device, UI_BITMAP, 0UL); 4483 4484 drbd_print_uuids(device, "updated sync uuid"); 4485 drbd_start_resync(device, C_SYNC_TARGET); 4486 4487 put_ldev(device); 4488 } else 4489 drbd_err(device, "Ignoring SyncUUID packet!\n"); 4490 4491 return 0; 4492 } 4493 4494 /** 4495 * receive_bitmap_plain 4496 * 4497 * Return 0 when done, 1 when another iteration is needed, and a negative error 4498 * code upon failure. 4499 */ 4500 static int 4501 receive_bitmap_plain(struct drbd_peer_device *peer_device, unsigned int size, 4502 unsigned long *p, struct bm_xfer_ctx *c) 4503 { 4504 unsigned int data_size = DRBD_SOCKET_BUFFER_SIZE - 4505 drbd_header_size(peer_device->connection); 4506 unsigned int num_words = min_t(size_t, data_size / sizeof(*p), 4507 c->bm_words - c->word_offset); 4508 unsigned int want = num_words * sizeof(*p); 4509 int err; 4510 4511 if (want != size) { 4512 drbd_err(peer_device, "%s:want (%u) != size (%u)\n", __func__, want, size); 4513 return -EIO; 4514 } 4515 if (want == 0) 4516 return 0; 4517 err = drbd_recv_all(peer_device->connection, p, want); 4518 if (err) 4519 return err; 4520 4521 drbd_bm_merge_lel(peer_device->device, c->word_offset, num_words, p); 4522 4523 c->word_offset += num_words; 4524 c->bit_offset = c->word_offset * BITS_PER_LONG; 4525 if (c->bit_offset > c->bm_bits) 4526 c->bit_offset = c->bm_bits; 4527 4528 return 1; 4529 } 4530 4531 static enum drbd_bitmap_code dcbp_get_code(struct p_compressed_bm *p) 4532 { 4533 return (enum drbd_bitmap_code)(p->encoding & 0x0f); 4534 } 4535 4536 static int dcbp_get_start(struct p_compressed_bm *p) 4537 { 4538 return (p->encoding & 0x80) != 0; 4539 } 4540 4541 static int dcbp_get_pad_bits(struct p_compressed_bm *p) 4542 { 4543 return (p->encoding >> 4) & 0x7; 4544 } 4545 4546 /** 4547 * recv_bm_rle_bits 4548 * 4549 * Return 0 when done, 1 when another iteration is needed, and a negative error 4550 * code upon failure. 4551 */ 4552 static int 4553 recv_bm_rle_bits(struct drbd_peer_device *peer_device, 4554 struct p_compressed_bm *p, 4555 struct bm_xfer_ctx *c, 4556 unsigned int len) 4557 { 4558 struct bitstream bs; 4559 u64 look_ahead; 4560 u64 rl; 4561 u64 tmp; 4562 unsigned long s = c->bit_offset; 4563 unsigned long e; 4564 int toggle = dcbp_get_start(p); 4565 int have; 4566 int bits; 4567 4568 bitstream_init(&bs, p->code, len, dcbp_get_pad_bits(p)); 4569 4570 bits = bitstream_get_bits(&bs, &look_ahead, 64); 4571 if (bits < 0) 4572 return -EIO; 4573 4574 for (have = bits; have > 0; s += rl, toggle = !toggle) { 4575 bits = vli_decode_bits(&rl, look_ahead); 4576 if (bits <= 0) 4577 return -EIO; 4578 4579 if (toggle) { 4580 e = s + rl -1; 4581 if (e >= c->bm_bits) { 4582 drbd_err(peer_device, "bitmap overflow (e:%lu) while decoding bm RLE packet\n", e); 4583 return -EIO; 4584 } 4585 _drbd_bm_set_bits(peer_device->device, s, e); 4586 } 4587 4588 if (have < bits) { 4589 drbd_err(peer_device, "bitmap decoding error: h:%d b:%d la:0x%08llx l:%u/%u\n", 4590 have, bits, look_ahead, 4591 (unsigned int)(bs.cur.b - p->code), 4592 (unsigned int)bs.buf_len); 4593 return -EIO; 4594 } 4595 /* if we consumed all 64 bits, assign 0; >> 64 is "undefined"; */ 4596 if (likely(bits < 64)) 4597 look_ahead >>= bits; 4598 else 4599 look_ahead = 0; 4600 have -= bits; 4601 4602 bits = bitstream_get_bits(&bs, &tmp, 64 - have); 4603 if (bits < 0) 4604 return -EIO; 4605 look_ahead |= tmp << have; 4606 have += bits; 4607 } 4608 4609 c->bit_offset = s; 4610 bm_xfer_ctx_bit_to_word_offset(c); 4611 4612 return (s != c->bm_bits); 4613 } 4614 4615 /** 4616 * decode_bitmap_c 4617 * 4618 * Return 0 when done, 1 when another iteration is needed, and a negative error 4619 * code upon failure. 4620 */ 4621 static int 4622 decode_bitmap_c(struct drbd_peer_device *peer_device, 4623 struct p_compressed_bm *p, 4624 struct bm_xfer_ctx *c, 4625 unsigned int len) 4626 { 4627 if (dcbp_get_code(p) == RLE_VLI_Bits) 4628 return recv_bm_rle_bits(peer_device, p, c, len - sizeof(*p)); 4629 4630 /* other variants had been implemented for evaluation, 4631 * but have been dropped as this one turned out to be "best" 4632 * during all our tests. */ 4633 4634 drbd_err(peer_device, "receive_bitmap_c: unknown encoding %u\n", p->encoding); 4635 conn_request_state(peer_device->connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD); 4636 return -EIO; 4637 } 4638 4639 void INFO_bm_xfer_stats(struct drbd_device *device, 4640 const char *direction, struct bm_xfer_ctx *c) 4641 { 4642 /* what would it take to transfer it "plaintext" */ 4643 unsigned int header_size = drbd_header_size(first_peer_device(device)->connection); 4644 unsigned int data_size = DRBD_SOCKET_BUFFER_SIZE - header_size; 4645 unsigned int plain = 4646 header_size * (DIV_ROUND_UP(c->bm_words, data_size) + 1) + 4647 c->bm_words * sizeof(unsigned long); 4648 unsigned int total = c->bytes[0] + c->bytes[1]; 4649 unsigned int r; 4650 4651 /* total can not be zero. but just in case: */ 4652 if (total == 0) 4653 return; 4654 4655 /* don't report if not compressed */ 4656 if (total >= plain) 4657 return; 4658 4659 /* total < plain. check for overflow, still */ 4660 r = (total > UINT_MAX/1000) ? (total / (plain/1000)) 4661 : (1000 * total / plain); 4662 4663 if (r > 1000) 4664 r = 1000; 4665 4666 r = 1000 - r; 4667 drbd_info(device, "%s bitmap stats [Bytes(packets)]: plain %u(%u), RLE %u(%u), " 4668 "total %u; compression: %u.%u%%\n", 4669 direction, 4670 c->bytes[1], c->packets[1], 4671 c->bytes[0], c->packets[0], 4672 total, r/10, r % 10); 4673 } 4674 4675 /* Since we are processing the bitfield from lower addresses to higher, 4676 it does not matter if the process it in 32 bit chunks or 64 bit 4677 chunks as long as it is little endian. (Understand it as byte stream, 4678 beginning with the lowest byte...) If we would use big endian 4679 we would need to process it from the highest address to the lowest, 4680 in order to be agnostic to the 32 vs 64 bits issue. 4681 4682 returns 0 on failure, 1 if we successfully received it. */ 4683 static int receive_bitmap(struct drbd_connection *connection, struct packet_info *pi) 4684 { 4685 struct drbd_peer_device *peer_device; 4686 struct drbd_device *device; 4687 struct bm_xfer_ctx c; 4688 int err; 4689 4690 peer_device = conn_peer_device(connection, pi->vnr); 4691 if (!peer_device) 4692 return -EIO; 4693 device = peer_device->device; 4694 4695 drbd_bm_lock(device, "receive bitmap", BM_LOCKED_SET_ALLOWED); 4696 /* you are supposed to send additional out-of-sync information 4697 * if you actually set bits during this phase */ 4698 4699 c = (struct bm_xfer_ctx) { 4700 .bm_bits = drbd_bm_bits(device), 4701 .bm_words = drbd_bm_words(device), 4702 }; 4703 4704 for(;;) { 4705 if (pi->cmd == P_BITMAP) 4706 err = receive_bitmap_plain(peer_device, pi->size, pi->data, &c); 4707 else if (pi->cmd == P_COMPRESSED_BITMAP) { 4708 /* MAYBE: sanity check that we speak proto >= 90, 4709 * and the feature is enabled! */ 4710 struct p_compressed_bm *p = pi->data; 4711 4712 if (pi->size > DRBD_SOCKET_BUFFER_SIZE - drbd_header_size(connection)) { 4713 drbd_err(device, "ReportCBitmap packet too large\n"); 4714 err = -EIO; 4715 goto out; 4716 } 4717 if (pi->size <= sizeof(*p)) { 4718 drbd_err(device, "ReportCBitmap packet too small (l:%u)\n", pi->size); 4719 err = -EIO; 4720 goto out; 4721 } 4722 err = drbd_recv_all(peer_device->connection, p, pi->size); 4723 if (err) 4724 goto out; 4725 err = decode_bitmap_c(peer_device, p, &c, pi->size); 4726 } else { 4727 drbd_warn(device, "receive_bitmap: cmd neither ReportBitMap nor ReportCBitMap (is 0x%x)", pi->cmd); 4728 err = -EIO; 4729 goto out; 4730 } 4731 4732 c.packets[pi->cmd == P_BITMAP]++; 4733 c.bytes[pi->cmd == P_BITMAP] += drbd_header_size(connection) + pi->size; 4734 4735 if (err <= 0) { 4736 if (err < 0) 4737 goto out; 4738 break; 4739 } 4740 err = drbd_recv_header(peer_device->connection, pi); 4741 if (err) 4742 goto out; 4743 } 4744 4745 INFO_bm_xfer_stats(device, "receive", &c); 4746 4747 if (device->state.conn == C_WF_BITMAP_T) { 4748 enum drbd_state_rv rv; 4749 4750 err = drbd_send_bitmap(device); 4751 if (err) 4752 goto out; 4753 /* Omit CS_ORDERED with this state transition to avoid deadlocks. */ 4754 rv = _drbd_request_state(device, NS(conn, C_WF_SYNC_UUID), CS_VERBOSE); 4755 D_ASSERT(device, rv == SS_SUCCESS); 4756 } else if (device->state.conn != C_WF_BITMAP_S) { 4757 /* admin may have requested C_DISCONNECTING, 4758 * other threads may have noticed network errors */ 4759 drbd_info(device, "unexpected cstate (%s) in receive_bitmap\n", 4760 drbd_conn_str(device->state.conn)); 4761 } 4762 err = 0; 4763 4764 out: 4765 drbd_bm_unlock(device); 4766 if (!err && device->state.conn == C_WF_BITMAP_S) 4767 drbd_start_resync(device, C_SYNC_SOURCE); 4768 return err; 4769 } 4770 4771 static int receive_skip(struct drbd_connection *connection, struct packet_info *pi) 4772 { 4773 drbd_warn(connection, "skipping unknown optional packet type %d, l: %d!\n", 4774 pi->cmd, pi->size); 4775 4776 return ignore_remaining_packet(connection, pi); 4777 } 4778 4779 static int receive_UnplugRemote(struct drbd_connection *connection, struct packet_info *pi) 4780 { 4781 /* Make sure we've acked all the TCP data associated 4782 * with the data requests being unplugged */ 4783 drbd_tcp_quickack(connection->data.socket); 4784 4785 return 0; 4786 } 4787 4788 static int receive_out_of_sync(struct drbd_connection *connection, struct packet_info *pi) 4789 { 4790 struct drbd_peer_device *peer_device; 4791 struct drbd_device *device; 4792 struct p_block_desc *p = pi->data; 4793 4794 peer_device = conn_peer_device(connection, pi->vnr); 4795 if (!peer_device) 4796 return -EIO; 4797 device = peer_device->device; 4798 4799 switch (device->state.conn) { 4800 case C_WF_SYNC_UUID: 4801 case C_WF_BITMAP_T: 4802 case C_BEHIND: 4803 break; 4804 default: 4805 drbd_err(device, "ASSERT FAILED cstate = %s, expected: WFSyncUUID|WFBitMapT|Behind\n", 4806 drbd_conn_str(device->state.conn)); 4807 } 4808 4809 drbd_set_out_of_sync(device, be64_to_cpu(p->sector), be32_to_cpu(p->blksize)); 4810 4811 return 0; 4812 } 4813 4814 static int receive_rs_deallocated(struct drbd_connection *connection, struct packet_info *pi) 4815 { 4816 struct drbd_peer_device *peer_device; 4817 struct p_block_desc *p = pi->data; 4818 struct drbd_device *device; 4819 sector_t sector; 4820 int size, err = 0; 4821 4822 peer_device = conn_peer_device(connection, pi->vnr); 4823 if (!peer_device) 4824 return -EIO; 4825 device = peer_device->device; 4826 4827 sector = be64_to_cpu(p->sector); 4828 size = be32_to_cpu(p->blksize); 4829 4830 dec_rs_pending(device); 4831 4832 if (get_ldev(device)) { 4833 struct drbd_peer_request *peer_req; 4834 const int op = REQ_OP_WRITE_ZEROES; 4835 4836 peer_req = drbd_alloc_peer_req(peer_device, ID_SYNCER, sector, 4837 size, 0, GFP_NOIO); 4838 if (!peer_req) { 4839 put_ldev(device); 4840 return -ENOMEM; 4841 } 4842 4843 peer_req->w.cb = e_end_resync_block; 4844 peer_req->submit_jif = jiffies; 4845 peer_req->flags |= EE_IS_TRIM; 4846 4847 spin_lock_irq(&device->resource->req_lock); 4848 list_add_tail(&peer_req->w.list, &device->sync_ee); 4849 spin_unlock_irq(&device->resource->req_lock); 4850 4851 atomic_add(pi->size >> 9, &device->rs_sect_ev); 4852 err = drbd_submit_peer_request(device, peer_req, op, 0, DRBD_FAULT_RS_WR); 4853 4854 if (err) { 4855 spin_lock_irq(&device->resource->req_lock); 4856 list_del(&peer_req->w.list); 4857 spin_unlock_irq(&device->resource->req_lock); 4858 4859 drbd_free_peer_req(device, peer_req); 4860 put_ldev(device); 4861 err = 0; 4862 goto fail; 4863 } 4864 4865 inc_unacked(device); 4866 4867 /* No put_ldev() here. Gets called in drbd_endio_write_sec_final(), 4868 as well as drbd_rs_complete_io() */ 4869 } else { 4870 fail: 4871 drbd_rs_complete_io(device, sector); 4872 drbd_send_ack_ex(peer_device, P_NEG_ACK, sector, size, ID_SYNCER); 4873 } 4874 4875 atomic_add(size >> 9, &device->rs_sect_in); 4876 4877 return err; 4878 } 4879 4880 struct data_cmd { 4881 int expect_payload; 4882 unsigned int pkt_size; 4883 int (*fn)(struct drbd_connection *, struct packet_info *); 4884 }; 4885 4886 static struct data_cmd drbd_cmd_handler[] = { 4887 [P_DATA] = { 1, sizeof(struct p_data), receive_Data }, 4888 [P_DATA_REPLY] = { 1, sizeof(struct p_data), receive_DataReply }, 4889 [P_RS_DATA_REPLY] = { 1, sizeof(struct p_data), receive_RSDataReply } , 4890 [P_BARRIER] = { 0, sizeof(struct p_barrier), receive_Barrier } , 4891 [P_BITMAP] = { 1, 0, receive_bitmap } , 4892 [P_COMPRESSED_BITMAP] = { 1, 0, receive_bitmap } , 4893 [P_UNPLUG_REMOTE] = { 0, 0, receive_UnplugRemote }, 4894 [P_DATA_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest }, 4895 [P_RS_DATA_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest }, 4896 [P_SYNC_PARAM] = { 1, 0, receive_SyncParam }, 4897 [P_SYNC_PARAM89] = { 1, 0, receive_SyncParam }, 4898 [P_PROTOCOL] = { 1, sizeof(struct p_protocol), receive_protocol }, 4899 [P_UUIDS] = { 0, sizeof(struct p_uuids), receive_uuids }, 4900 [P_SIZES] = { 0, sizeof(struct p_sizes), receive_sizes }, 4901 [P_STATE] = { 0, sizeof(struct p_state), receive_state }, 4902 [P_STATE_CHG_REQ] = { 0, sizeof(struct p_req_state), receive_req_state }, 4903 [P_SYNC_UUID] = { 0, sizeof(struct p_rs_uuid), receive_sync_uuid }, 4904 [P_OV_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest }, 4905 [P_OV_REPLY] = { 1, sizeof(struct p_block_req), receive_DataRequest }, 4906 [P_CSUM_RS_REQUEST] = { 1, sizeof(struct p_block_req), receive_DataRequest }, 4907 [P_RS_THIN_REQ] = { 0, sizeof(struct p_block_req), receive_DataRequest }, 4908 [P_DELAY_PROBE] = { 0, sizeof(struct p_delay_probe93), receive_skip }, 4909 [P_OUT_OF_SYNC] = { 0, sizeof(struct p_block_desc), receive_out_of_sync }, 4910 [P_CONN_ST_CHG_REQ] = { 0, sizeof(struct p_req_state), receive_req_conn_state }, 4911 [P_PROTOCOL_UPDATE] = { 1, sizeof(struct p_protocol), receive_protocol }, 4912 [P_TRIM] = { 0, sizeof(struct p_trim), receive_Data }, 4913 [P_RS_DEALLOCATED] = { 0, sizeof(struct p_block_desc), receive_rs_deallocated }, 4914 [P_WSAME] = { 1, sizeof(struct p_wsame), receive_Data }, 4915 }; 4916 4917 static void drbdd(struct drbd_connection *connection) 4918 { 4919 struct packet_info pi; 4920 size_t shs; /* sub header size */ 4921 int err; 4922 4923 while (get_t_state(&connection->receiver) == RUNNING) { 4924 struct data_cmd const *cmd; 4925 4926 drbd_thread_current_set_cpu(&connection->receiver); 4927 update_receiver_timing_details(connection, drbd_recv_header_maybe_unplug); 4928 if (drbd_recv_header_maybe_unplug(connection, &pi)) 4929 goto err_out; 4930 4931 cmd = &drbd_cmd_handler[pi.cmd]; 4932 if (unlikely(pi.cmd >= ARRAY_SIZE(drbd_cmd_handler) || !cmd->fn)) { 4933 drbd_err(connection, "Unexpected data packet %s (0x%04x)", 4934 cmdname(pi.cmd), pi.cmd); 4935 goto err_out; 4936 } 4937 4938 shs = cmd->pkt_size; 4939 if (pi.cmd == P_SIZES && connection->agreed_features & DRBD_FF_WSAME) 4940 shs += sizeof(struct o_qlim); 4941 if (pi.size > shs && !cmd->expect_payload) { 4942 drbd_err(connection, "No payload expected %s l:%d\n", 4943 cmdname(pi.cmd), pi.size); 4944 goto err_out; 4945 } 4946 if (pi.size < shs) { 4947 drbd_err(connection, "%s: unexpected packet size, expected:%d received:%d\n", 4948 cmdname(pi.cmd), (int)shs, pi.size); 4949 goto err_out; 4950 } 4951 4952 if (shs) { 4953 update_receiver_timing_details(connection, drbd_recv_all_warn); 4954 err = drbd_recv_all_warn(connection, pi.data, shs); 4955 if (err) 4956 goto err_out; 4957 pi.size -= shs; 4958 } 4959 4960 update_receiver_timing_details(connection, cmd->fn); 4961 err = cmd->fn(connection, &pi); 4962 if (err) { 4963 drbd_err(connection, "error receiving %s, e: %d l: %d!\n", 4964 cmdname(pi.cmd), err, pi.size); 4965 goto err_out; 4966 } 4967 } 4968 return; 4969 4970 err_out: 4971 conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD); 4972 } 4973 4974 static void conn_disconnect(struct drbd_connection *connection) 4975 { 4976 struct drbd_peer_device *peer_device; 4977 enum drbd_conns oc; 4978 int vnr; 4979 4980 if (connection->cstate == C_STANDALONE) 4981 return; 4982 4983 /* We are about to start the cleanup after connection loss. 4984 * Make sure drbd_make_request knows about that. 4985 * Usually we should be in some network failure state already, 4986 * but just in case we are not, we fix it up here. 4987 */ 4988 conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD); 4989 4990 /* ack_receiver does not clean up anything. it must not interfere, either */ 4991 drbd_thread_stop(&connection->ack_receiver); 4992 if (connection->ack_sender) { 4993 destroy_workqueue(connection->ack_sender); 4994 connection->ack_sender = NULL; 4995 } 4996 drbd_free_sock(connection); 4997 4998 rcu_read_lock(); 4999 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 5000 struct drbd_device *device = peer_device->device; 5001 kref_get(&device->kref); 5002 rcu_read_unlock(); 5003 drbd_disconnected(peer_device); 5004 kref_put(&device->kref, drbd_destroy_device); 5005 rcu_read_lock(); 5006 } 5007 rcu_read_unlock(); 5008 5009 if (!list_empty(&connection->current_epoch->list)) 5010 drbd_err(connection, "ASSERTION FAILED: connection->current_epoch->list not empty\n"); 5011 /* ok, no more ee's on the fly, it is safe to reset the epoch_size */ 5012 atomic_set(&connection->current_epoch->epoch_size, 0); 5013 connection->send.seen_any_write_yet = false; 5014 5015 drbd_info(connection, "Connection closed\n"); 5016 5017 if (conn_highest_role(connection) == R_PRIMARY && conn_highest_pdsk(connection) >= D_UNKNOWN) 5018 conn_try_outdate_peer_async(connection); 5019 5020 spin_lock_irq(&connection->resource->req_lock); 5021 oc = connection->cstate; 5022 if (oc >= C_UNCONNECTED) 5023 _conn_request_state(connection, NS(conn, C_UNCONNECTED), CS_VERBOSE); 5024 5025 spin_unlock_irq(&connection->resource->req_lock); 5026 5027 if (oc == C_DISCONNECTING) 5028 conn_request_state(connection, NS(conn, C_STANDALONE), CS_VERBOSE | CS_HARD); 5029 } 5030 5031 static int drbd_disconnected(struct drbd_peer_device *peer_device) 5032 { 5033 struct drbd_device *device = peer_device->device; 5034 unsigned int i; 5035 5036 /* wait for current activity to cease. */ 5037 spin_lock_irq(&device->resource->req_lock); 5038 _drbd_wait_ee_list_empty(device, &device->active_ee); 5039 _drbd_wait_ee_list_empty(device, &device->sync_ee); 5040 _drbd_wait_ee_list_empty(device, &device->read_ee); 5041 spin_unlock_irq(&device->resource->req_lock); 5042 5043 /* We do not have data structures that would allow us to 5044 * get the rs_pending_cnt down to 0 again. 5045 * * On C_SYNC_TARGET we do not have any data structures describing 5046 * the pending RSDataRequest's we have sent. 5047 * * On C_SYNC_SOURCE there is no data structure that tracks 5048 * the P_RS_DATA_REPLY blocks that we sent to the SyncTarget. 5049 * And no, it is not the sum of the reference counts in the 5050 * resync_LRU. The resync_LRU tracks the whole operation including 5051 * the disk-IO, while the rs_pending_cnt only tracks the blocks 5052 * on the fly. */ 5053 drbd_rs_cancel_all(device); 5054 device->rs_total = 0; 5055 device->rs_failed = 0; 5056 atomic_set(&device->rs_pending_cnt, 0); 5057 wake_up(&device->misc_wait); 5058 5059 del_timer_sync(&device->resync_timer); 5060 resync_timer_fn(&device->resync_timer); 5061 5062 /* wait for all w_e_end_data_req, w_e_end_rsdata_req, w_send_barrier, 5063 * w_make_resync_request etc. which may still be on the worker queue 5064 * to be "canceled" */ 5065 drbd_flush_workqueue(&peer_device->connection->sender_work); 5066 5067 drbd_finish_peer_reqs(device); 5068 5069 /* This second workqueue flush is necessary, since drbd_finish_peer_reqs() 5070 might have issued a work again. The one before drbd_finish_peer_reqs() is 5071 necessary to reclain net_ee in drbd_finish_peer_reqs(). */ 5072 drbd_flush_workqueue(&peer_device->connection->sender_work); 5073 5074 /* need to do it again, drbd_finish_peer_reqs() may have populated it 5075 * again via drbd_try_clear_on_disk_bm(). */ 5076 drbd_rs_cancel_all(device); 5077 5078 kfree(device->p_uuid); 5079 device->p_uuid = NULL; 5080 5081 if (!drbd_suspended(device)) 5082 tl_clear(peer_device->connection); 5083 5084 drbd_md_sync(device); 5085 5086 if (get_ldev(device)) { 5087 drbd_bitmap_io(device, &drbd_bm_write_copy_pages, 5088 "write from disconnected", BM_LOCKED_CHANGE_ALLOWED); 5089 put_ldev(device); 5090 } 5091 5092 /* tcp_close and release of sendpage pages can be deferred. I don't 5093 * want to use SO_LINGER, because apparently it can be deferred for 5094 * more than 20 seconds (longest time I checked). 5095 * 5096 * Actually we don't care for exactly when the network stack does its 5097 * put_page(), but release our reference on these pages right here. 5098 */ 5099 i = drbd_free_peer_reqs(device, &device->net_ee); 5100 if (i) 5101 drbd_info(device, "net_ee not empty, killed %u entries\n", i); 5102 i = atomic_read(&device->pp_in_use_by_net); 5103 if (i) 5104 drbd_info(device, "pp_in_use_by_net = %d, expected 0\n", i); 5105 i = atomic_read(&device->pp_in_use); 5106 if (i) 5107 drbd_info(device, "pp_in_use = %d, expected 0\n", i); 5108 5109 D_ASSERT(device, list_empty(&device->read_ee)); 5110 D_ASSERT(device, list_empty(&device->active_ee)); 5111 D_ASSERT(device, list_empty(&device->sync_ee)); 5112 D_ASSERT(device, list_empty(&device->done_ee)); 5113 5114 return 0; 5115 } 5116 5117 /* 5118 * We support PRO_VERSION_MIN to PRO_VERSION_MAX. The protocol version 5119 * we can agree on is stored in agreed_pro_version. 5120 * 5121 * feature flags and the reserved array should be enough room for future 5122 * enhancements of the handshake protocol, and possible plugins... 5123 * 5124 * for now, they are expected to be zero, but ignored. 5125 */ 5126 static int drbd_send_features(struct drbd_connection *connection) 5127 { 5128 struct drbd_socket *sock; 5129 struct p_connection_features *p; 5130 5131 sock = &connection->data; 5132 p = conn_prepare_command(connection, sock); 5133 if (!p) 5134 return -EIO; 5135 memset(p, 0, sizeof(*p)); 5136 p->protocol_min = cpu_to_be32(PRO_VERSION_MIN); 5137 p->protocol_max = cpu_to_be32(PRO_VERSION_MAX); 5138 p->feature_flags = cpu_to_be32(PRO_FEATURES); 5139 return conn_send_command(connection, sock, P_CONNECTION_FEATURES, sizeof(*p), NULL, 0); 5140 } 5141 5142 /* 5143 * return values: 5144 * 1 yes, we have a valid connection 5145 * 0 oops, did not work out, please try again 5146 * -1 peer talks different language, 5147 * no point in trying again, please go standalone. 5148 */ 5149 static int drbd_do_features(struct drbd_connection *connection) 5150 { 5151 /* ASSERT current == connection->receiver ... */ 5152 struct p_connection_features *p; 5153 const int expect = sizeof(struct p_connection_features); 5154 struct packet_info pi; 5155 int err; 5156 5157 err = drbd_send_features(connection); 5158 if (err) 5159 return 0; 5160 5161 err = drbd_recv_header(connection, &pi); 5162 if (err) 5163 return 0; 5164 5165 if (pi.cmd != P_CONNECTION_FEATURES) { 5166 drbd_err(connection, "expected ConnectionFeatures packet, received: %s (0x%04x)\n", 5167 cmdname(pi.cmd), pi.cmd); 5168 return -1; 5169 } 5170 5171 if (pi.size != expect) { 5172 drbd_err(connection, "expected ConnectionFeatures length: %u, received: %u\n", 5173 expect, pi.size); 5174 return -1; 5175 } 5176 5177 p = pi.data; 5178 err = drbd_recv_all_warn(connection, p, expect); 5179 if (err) 5180 return 0; 5181 5182 p->protocol_min = be32_to_cpu(p->protocol_min); 5183 p->protocol_max = be32_to_cpu(p->protocol_max); 5184 if (p->protocol_max == 0) 5185 p->protocol_max = p->protocol_min; 5186 5187 if (PRO_VERSION_MAX < p->protocol_min || 5188 PRO_VERSION_MIN > p->protocol_max) 5189 goto incompat; 5190 5191 connection->agreed_pro_version = min_t(int, PRO_VERSION_MAX, p->protocol_max); 5192 connection->agreed_features = PRO_FEATURES & be32_to_cpu(p->feature_flags); 5193 5194 drbd_info(connection, "Handshake successful: " 5195 "Agreed network protocol version %d\n", connection->agreed_pro_version); 5196 5197 drbd_info(connection, "Feature flags enabled on protocol level: 0x%x%s%s%s.\n", 5198 connection->agreed_features, 5199 connection->agreed_features & DRBD_FF_TRIM ? " TRIM" : "", 5200 connection->agreed_features & DRBD_FF_THIN_RESYNC ? " THIN_RESYNC" : "", 5201 connection->agreed_features & DRBD_FF_WSAME ? " WRITE_SAME" : 5202 connection->agreed_features ? "" : " none"); 5203 5204 return 1; 5205 5206 incompat: 5207 drbd_err(connection, "incompatible DRBD dialects: " 5208 "I support %d-%d, peer supports %d-%d\n", 5209 PRO_VERSION_MIN, PRO_VERSION_MAX, 5210 p->protocol_min, p->protocol_max); 5211 return -1; 5212 } 5213 5214 #if !defined(CONFIG_CRYPTO_HMAC) && !defined(CONFIG_CRYPTO_HMAC_MODULE) 5215 static int drbd_do_auth(struct drbd_connection *connection) 5216 { 5217 drbd_err(connection, "This kernel was build without CONFIG_CRYPTO_HMAC.\n"); 5218 drbd_err(connection, "You need to disable 'cram-hmac-alg' in drbd.conf.\n"); 5219 return -1; 5220 } 5221 #else 5222 #define CHALLENGE_LEN 64 5223 5224 /* Return value: 5225 1 - auth succeeded, 5226 0 - failed, try again (network error), 5227 -1 - auth failed, don't try again. 5228 */ 5229 5230 static int drbd_do_auth(struct drbd_connection *connection) 5231 { 5232 struct drbd_socket *sock; 5233 char my_challenge[CHALLENGE_LEN]; /* 64 Bytes... */ 5234 char *response = NULL; 5235 char *right_response = NULL; 5236 char *peers_ch = NULL; 5237 unsigned int key_len; 5238 char secret[SHARED_SECRET_MAX]; /* 64 byte */ 5239 unsigned int resp_size; 5240 SHASH_DESC_ON_STACK(desc, connection->cram_hmac_tfm); 5241 struct packet_info pi; 5242 struct net_conf *nc; 5243 int err, rv; 5244 5245 /* FIXME: Put the challenge/response into the preallocated socket buffer. */ 5246 5247 rcu_read_lock(); 5248 nc = rcu_dereference(connection->net_conf); 5249 key_len = strlen(nc->shared_secret); 5250 memcpy(secret, nc->shared_secret, key_len); 5251 rcu_read_unlock(); 5252 5253 desc->tfm = connection->cram_hmac_tfm; 5254 desc->flags = 0; 5255 5256 rv = crypto_shash_setkey(connection->cram_hmac_tfm, (u8 *)secret, key_len); 5257 if (rv) { 5258 drbd_err(connection, "crypto_shash_setkey() failed with %d\n", rv); 5259 rv = -1; 5260 goto fail; 5261 } 5262 5263 get_random_bytes(my_challenge, CHALLENGE_LEN); 5264 5265 sock = &connection->data; 5266 if (!conn_prepare_command(connection, sock)) { 5267 rv = 0; 5268 goto fail; 5269 } 5270 rv = !conn_send_command(connection, sock, P_AUTH_CHALLENGE, 0, 5271 my_challenge, CHALLENGE_LEN); 5272 if (!rv) 5273 goto fail; 5274 5275 err = drbd_recv_header(connection, &pi); 5276 if (err) { 5277 rv = 0; 5278 goto fail; 5279 } 5280 5281 if (pi.cmd != P_AUTH_CHALLENGE) { 5282 drbd_err(connection, "expected AuthChallenge packet, received: %s (0x%04x)\n", 5283 cmdname(pi.cmd), pi.cmd); 5284 rv = 0; 5285 goto fail; 5286 } 5287 5288 if (pi.size > CHALLENGE_LEN * 2) { 5289 drbd_err(connection, "expected AuthChallenge payload too big.\n"); 5290 rv = -1; 5291 goto fail; 5292 } 5293 5294 if (pi.size < CHALLENGE_LEN) { 5295 drbd_err(connection, "AuthChallenge payload too small.\n"); 5296 rv = -1; 5297 goto fail; 5298 } 5299 5300 peers_ch = kmalloc(pi.size, GFP_NOIO); 5301 if (peers_ch == NULL) { 5302 drbd_err(connection, "kmalloc of peers_ch failed\n"); 5303 rv = -1; 5304 goto fail; 5305 } 5306 5307 err = drbd_recv_all_warn(connection, peers_ch, pi.size); 5308 if (err) { 5309 rv = 0; 5310 goto fail; 5311 } 5312 5313 if (!memcmp(my_challenge, peers_ch, CHALLENGE_LEN)) { 5314 drbd_err(connection, "Peer presented the same challenge!\n"); 5315 rv = -1; 5316 goto fail; 5317 } 5318 5319 resp_size = crypto_shash_digestsize(connection->cram_hmac_tfm); 5320 response = kmalloc(resp_size, GFP_NOIO); 5321 if (response == NULL) { 5322 drbd_err(connection, "kmalloc of response failed\n"); 5323 rv = -1; 5324 goto fail; 5325 } 5326 5327 rv = crypto_shash_digest(desc, peers_ch, pi.size, response); 5328 if (rv) { 5329 drbd_err(connection, "crypto_hash_digest() failed with %d\n", rv); 5330 rv = -1; 5331 goto fail; 5332 } 5333 5334 if (!conn_prepare_command(connection, sock)) { 5335 rv = 0; 5336 goto fail; 5337 } 5338 rv = !conn_send_command(connection, sock, P_AUTH_RESPONSE, 0, 5339 response, resp_size); 5340 if (!rv) 5341 goto fail; 5342 5343 err = drbd_recv_header(connection, &pi); 5344 if (err) { 5345 rv = 0; 5346 goto fail; 5347 } 5348 5349 if (pi.cmd != P_AUTH_RESPONSE) { 5350 drbd_err(connection, "expected AuthResponse packet, received: %s (0x%04x)\n", 5351 cmdname(pi.cmd), pi.cmd); 5352 rv = 0; 5353 goto fail; 5354 } 5355 5356 if (pi.size != resp_size) { 5357 drbd_err(connection, "expected AuthResponse payload of wrong size\n"); 5358 rv = 0; 5359 goto fail; 5360 } 5361 5362 err = drbd_recv_all_warn(connection, response , resp_size); 5363 if (err) { 5364 rv = 0; 5365 goto fail; 5366 } 5367 5368 right_response = kmalloc(resp_size, GFP_NOIO); 5369 if (right_response == NULL) { 5370 drbd_err(connection, "kmalloc of right_response failed\n"); 5371 rv = -1; 5372 goto fail; 5373 } 5374 5375 rv = crypto_shash_digest(desc, my_challenge, CHALLENGE_LEN, 5376 right_response); 5377 if (rv) { 5378 drbd_err(connection, "crypto_hash_digest() failed with %d\n", rv); 5379 rv = -1; 5380 goto fail; 5381 } 5382 5383 rv = !memcmp(response, right_response, resp_size); 5384 5385 if (rv) 5386 drbd_info(connection, "Peer authenticated using %d bytes HMAC\n", 5387 resp_size); 5388 else 5389 rv = -1; 5390 5391 fail: 5392 kfree(peers_ch); 5393 kfree(response); 5394 kfree(right_response); 5395 shash_desc_zero(desc); 5396 5397 return rv; 5398 } 5399 #endif 5400 5401 int drbd_receiver(struct drbd_thread *thi) 5402 { 5403 struct drbd_connection *connection = thi->connection; 5404 int h; 5405 5406 drbd_info(connection, "receiver (re)started\n"); 5407 5408 do { 5409 h = conn_connect(connection); 5410 if (h == 0) { 5411 conn_disconnect(connection); 5412 schedule_timeout_interruptible(HZ); 5413 } 5414 if (h == -1) { 5415 drbd_warn(connection, "Discarding network configuration.\n"); 5416 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 5417 } 5418 } while (h == 0); 5419 5420 if (h > 0) { 5421 blk_start_plug(&connection->receiver_plug); 5422 drbdd(connection); 5423 blk_finish_plug(&connection->receiver_plug); 5424 } 5425 5426 conn_disconnect(connection); 5427 5428 drbd_info(connection, "receiver terminated\n"); 5429 return 0; 5430 } 5431 5432 /* ********* acknowledge sender ******** */ 5433 5434 static int got_conn_RqSReply(struct drbd_connection *connection, struct packet_info *pi) 5435 { 5436 struct p_req_state_reply *p = pi->data; 5437 int retcode = be32_to_cpu(p->retcode); 5438 5439 if (retcode >= SS_SUCCESS) { 5440 set_bit(CONN_WD_ST_CHG_OKAY, &connection->flags); 5441 } else { 5442 set_bit(CONN_WD_ST_CHG_FAIL, &connection->flags); 5443 drbd_err(connection, "Requested state change failed by peer: %s (%d)\n", 5444 drbd_set_st_err_str(retcode), retcode); 5445 } 5446 wake_up(&connection->ping_wait); 5447 5448 return 0; 5449 } 5450 5451 static int got_RqSReply(struct drbd_connection *connection, struct packet_info *pi) 5452 { 5453 struct drbd_peer_device *peer_device; 5454 struct drbd_device *device; 5455 struct p_req_state_reply *p = pi->data; 5456 int retcode = be32_to_cpu(p->retcode); 5457 5458 peer_device = conn_peer_device(connection, pi->vnr); 5459 if (!peer_device) 5460 return -EIO; 5461 device = peer_device->device; 5462 5463 if (test_bit(CONN_WD_ST_CHG_REQ, &connection->flags)) { 5464 D_ASSERT(device, connection->agreed_pro_version < 100); 5465 return got_conn_RqSReply(connection, pi); 5466 } 5467 5468 if (retcode >= SS_SUCCESS) { 5469 set_bit(CL_ST_CHG_SUCCESS, &device->flags); 5470 } else { 5471 set_bit(CL_ST_CHG_FAIL, &device->flags); 5472 drbd_err(device, "Requested state change failed by peer: %s (%d)\n", 5473 drbd_set_st_err_str(retcode), retcode); 5474 } 5475 wake_up(&device->state_wait); 5476 5477 return 0; 5478 } 5479 5480 static int got_Ping(struct drbd_connection *connection, struct packet_info *pi) 5481 { 5482 return drbd_send_ping_ack(connection); 5483 5484 } 5485 5486 static int got_PingAck(struct drbd_connection *connection, struct packet_info *pi) 5487 { 5488 /* restore idle timeout */ 5489 connection->meta.socket->sk->sk_rcvtimeo = connection->net_conf->ping_int*HZ; 5490 if (!test_and_set_bit(GOT_PING_ACK, &connection->flags)) 5491 wake_up(&connection->ping_wait); 5492 5493 return 0; 5494 } 5495 5496 static int got_IsInSync(struct drbd_connection *connection, struct packet_info *pi) 5497 { 5498 struct drbd_peer_device *peer_device; 5499 struct drbd_device *device; 5500 struct p_block_ack *p = pi->data; 5501 sector_t sector = be64_to_cpu(p->sector); 5502 int blksize = be32_to_cpu(p->blksize); 5503 5504 peer_device = conn_peer_device(connection, pi->vnr); 5505 if (!peer_device) 5506 return -EIO; 5507 device = peer_device->device; 5508 5509 D_ASSERT(device, peer_device->connection->agreed_pro_version >= 89); 5510 5511 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5512 5513 if (get_ldev(device)) { 5514 drbd_rs_complete_io(device, sector); 5515 drbd_set_in_sync(device, sector, blksize); 5516 /* rs_same_csums is supposed to count in units of BM_BLOCK_SIZE */ 5517 device->rs_same_csum += (blksize >> BM_BLOCK_SHIFT); 5518 put_ldev(device); 5519 } 5520 dec_rs_pending(device); 5521 atomic_add(blksize >> 9, &device->rs_sect_in); 5522 5523 return 0; 5524 } 5525 5526 static int 5527 validate_req_change_req_state(struct drbd_device *device, u64 id, sector_t sector, 5528 struct rb_root *root, const char *func, 5529 enum drbd_req_event what, bool missing_ok) 5530 { 5531 struct drbd_request *req; 5532 struct bio_and_error m; 5533 5534 spin_lock_irq(&device->resource->req_lock); 5535 req = find_request(device, root, id, sector, missing_ok, func); 5536 if (unlikely(!req)) { 5537 spin_unlock_irq(&device->resource->req_lock); 5538 return -EIO; 5539 } 5540 __req_mod(req, what, &m); 5541 spin_unlock_irq(&device->resource->req_lock); 5542 5543 if (m.bio) 5544 complete_master_bio(device, &m); 5545 return 0; 5546 } 5547 5548 static int got_BlockAck(struct drbd_connection *connection, struct packet_info *pi) 5549 { 5550 struct drbd_peer_device *peer_device; 5551 struct drbd_device *device; 5552 struct p_block_ack *p = pi->data; 5553 sector_t sector = be64_to_cpu(p->sector); 5554 int blksize = be32_to_cpu(p->blksize); 5555 enum drbd_req_event what; 5556 5557 peer_device = conn_peer_device(connection, pi->vnr); 5558 if (!peer_device) 5559 return -EIO; 5560 device = peer_device->device; 5561 5562 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5563 5564 if (p->block_id == ID_SYNCER) { 5565 drbd_set_in_sync(device, sector, blksize); 5566 dec_rs_pending(device); 5567 return 0; 5568 } 5569 switch (pi->cmd) { 5570 case P_RS_WRITE_ACK: 5571 what = WRITE_ACKED_BY_PEER_AND_SIS; 5572 break; 5573 case P_WRITE_ACK: 5574 what = WRITE_ACKED_BY_PEER; 5575 break; 5576 case P_RECV_ACK: 5577 what = RECV_ACKED_BY_PEER; 5578 break; 5579 case P_SUPERSEDED: 5580 what = CONFLICT_RESOLVED; 5581 break; 5582 case P_RETRY_WRITE: 5583 what = POSTPONE_WRITE; 5584 break; 5585 default: 5586 BUG(); 5587 } 5588 5589 return validate_req_change_req_state(device, p->block_id, sector, 5590 &device->write_requests, __func__, 5591 what, false); 5592 } 5593 5594 static int got_NegAck(struct drbd_connection *connection, struct packet_info *pi) 5595 { 5596 struct drbd_peer_device *peer_device; 5597 struct drbd_device *device; 5598 struct p_block_ack *p = pi->data; 5599 sector_t sector = be64_to_cpu(p->sector); 5600 int size = be32_to_cpu(p->blksize); 5601 int err; 5602 5603 peer_device = conn_peer_device(connection, pi->vnr); 5604 if (!peer_device) 5605 return -EIO; 5606 device = peer_device->device; 5607 5608 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5609 5610 if (p->block_id == ID_SYNCER) { 5611 dec_rs_pending(device); 5612 drbd_rs_failed_io(device, sector, size); 5613 return 0; 5614 } 5615 5616 err = validate_req_change_req_state(device, p->block_id, sector, 5617 &device->write_requests, __func__, 5618 NEG_ACKED, true); 5619 if (err) { 5620 /* Protocol A has no P_WRITE_ACKs, but has P_NEG_ACKs. 5621 The master bio might already be completed, therefore the 5622 request is no longer in the collision hash. */ 5623 /* In Protocol B we might already have got a P_RECV_ACK 5624 but then get a P_NEG_ACK afterwards. */ 5625 drbd_set_out_of_sync(device, sector, size); 5626 } 5627 return 0; 5628 } 5629 5630 static int got_NegDReply(struct drbd_connection *connection, struct packet_info *pi) 5631 { 5632 struct drbd_peer_device *peer_device; 5633 struct drbd_device *device; 5634 struct p_block_ack *p = pi->data; 5635 sector_t sector = be64_to_cpu(p->sector); 5636 5637 peer_device = conn_peer_device(connection, pi->vnr); 5638 if (!peer_device) 5639 return -EIO; 5640 device = peer_device->device; 5641 5642 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5643 5644 drbd_err(device, "Got NegDReply; Sector %llus, len %u.\n", 5645 (unsigned long long)sector, be32_to_cpu(p->blksize)); 5646 5647 return validate_req_change_req_state(device, p->block_id, sector, 5648 &device->read_requests, __func__, 5649 NEG_ACKED, false); 5650 } 5651 5652 static int got_NegRSDReply(struct drbd_connection *connection, struct packet_info *pi) 5653 { 5654 struct drbd_peer_device *peer_device; 5655 struct drbd_device *device; 5656 sector_t sector; 5657 int size; 5658 struct p_block_ack *p = pi->data; 5659 5660 peer_device = conn_peer_device(connection, pi->vnr); 5661 if (!peer_device) 5662 return -EIO; 5663 device = peer_device->device; 5664 5665 sector = be64_to_cpu(p->sector); 5666 size = be32_to_cpu(p->blksize); 5667 5668 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5669 5670 dec_rs_pending(device); 5671 5672 if (get_ldev_if_state(device, D_FAILED)) { 5673 drbd_rs_complete_io(device, sector); 5674 switch (pi->cmd) { 5675 case P_NEG_RS_DREPLY: 5676 drbd_rs_failed_io(device, sector, size); 5677 case P_RS_CANCEL: 5678 break; 5679 default: 5680 BUG(); 5681 } 5682 put_ldev(device); 5683 } 5684 5685 return 0; 5686 } 5687 5688 static int got_BarrierAck(struct drbd_connection *connection, struct packet_info *pi) 5689 { 5690 struct p_barrier_ack *p = pi->data; 5691 struct drbd_peer_device *peer_device; 5692 int vnr; 5693 5694 tl_release(connection, p->barrier, be32_to_cpu(p->set_size)); 5695 5696 rcu_read_lock(); 5697 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 5698 struct drbd_device *device = peer_device->device; 5699 5700 if (device->state.conn == C_AHEAD && 5701 atomic_read(&device->ap_in_flight) == 0 && 5702 !test_and_set_bit(AHEAD_TO_SYNC_SOURCE, &device->flags)) { 5703 device->start_resync_timer.expires = jiffies + HZ; 5704 add_timer(&device->start_resync_timer); 5705 } 5706 } 5707 rcu_read_unlock(); 5708 5709 return 0; 5710 } 5711 5712 static int got_OVResult(struct drbd_connection *connection, struct packet_info *pi) 5713 { 5714 struct drbd_peer_device *peer_device; 5715 struct drbd_device *device; 5716 struct p_block_ack *p = pi->data; 5717 struct drbd_device_work *dw; 5718 sector_t sector; 5719 int size; 5720 5721 peer_device = conn_peer_device(connection, pi->vnr); 5722 if (!peer_device) 5723 return -EIO; 5724 device = peer_device->device; 5725 5726 sector = be64_to_cpu(p->sector); 5727 size = be32_to_cpu(p->blksize); 5728 5729 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5730 5731 if (be64_to_cpu(p->block_id) == ID_OUT_OF_SYNC) 5732 drbd_ov_out_of_sync_found(device, sector, size); 5733 else 5734 ov_out_of_sync_print(device); 5735 5736 if (!get_ldev(device)) 5737 return 0; 5738 5739 drbd_rs_complete_io(device, sector); 5740 dec_rs_pending(device); 5741 5742 --device->ov_left; 5743 5744 /* let's advance progress step marks only for every other megabyte */ 5745 if ((device->ov_left & 0x200) == 0x200) 5746 drbd_advance_rs_marks(device, device->ov_left); 5747 5748 if (device->ov_left == 0) { 5749 dw = kmalloc(sizeof(*dw), GFP_NOIO); 5750 if (dw) { 5751 dw->w.cb = w_ov_finished; 5752 dw->device = device; 5753 drbd_queue_work(&peer_device->connection->sender_work, &dw->w); 5754 } else { 5755 drbd_err(device, "kmalloc(dw) failed."); 5756 ov_out_of_sync_print(device); 5757 drbd_resync_finished(device); 5758 } 5759 } 5760 put_ldev(device); 5761 return 0; 5762 } 5763 5764 static int got_skip(struct drbd_connection *connection, struct packet_info *pi) 5765 { 5766 return 0; 5767 } 5768 5769 struct meta_sock_cmd { 5770 size_t pkt_size; 5771 int (*fn)(struct drbd_connection *connection, struct packet_info *); 5772 }; 5773 5774 static void set_rcvtimeo(struct drbd_connection *connection, bool ping_timeout) 5775 { 5776 long t; 5777 struct net_conf *nc; 5778 5779 rcu_read_lock(); 5780 nc = rcu_dereference(connection->net_conf); 5781 t = ping_timeout ? nc->ping_timeo : nc->ping_int; 5782 rcu_read_unlock(); 5783 5784 t *= HZ; 5785 if (ping_timeout) 5786 t /= 10; 5787 5788 connection->meta.socket->sk->sk_rcvtimeo = t; 5789 } 5790 5791 static void set_ping_timeout(struct drbd_connection *connection) 5792 { 5793 set_rcvtimeo(connection, 1); 5794 } 5795 5796 static void set_idle_timeout(struct drbd_connection *connection) 5797 { 5798 set_rcvtimeo(connection, 0); 5799 } 5800 5801 static struct meta_sock_cmd ack_receiver_tbl[] = { 5802 [P_PING] = { 0, got_Ping }, 5803 [P_PING_ACK] = { 0, got_PingAck }, 5804 [P_RECV_ACK] = { sizeof(struct p_block_ack), got_BlockAck }, 5805 [P_WRITE_ACK] = { sizeof(struct p_block_ack), got_BlockAck }, 5806 [P_RS_WRITE_ACK] = { sizeof(struct p_block_ack), got_BlockAck }, 5807 [P_SUPERSEDED] = { sizeof(struct p_block_ack), got_BlockAck }, 5808 [P_NEG_ACK] = { sizeof(struct p_block_ack), got_NegAck }, 5809 [P_NEG_DREPLY] = { sizeof(struct p_block_ack), got_NegDReply }, 5810 [P_NEG_RS_DREPLY] = { sizeof(struct p_block_ack), got_NegRSDReply }, 5811 [P_OV_RESULT] = { sizeof(struct p_block_ack), got_OVResult }, 5812 [P_BARRIER_ACK] = { sizeof(struct p_barrier_ack), got_BarrierAck }, 5813 [P_STATE_CHG_REPLY] = { sizeof(struct p_req_state_reply), got_RqSReply }, 5814 [P_RS_IS_IN_SYNC] = { sizeof(struct p_block_ack), got_IsInSync }, 5815 [P_DELAY_PROBE] = { sizeof(struct p_delay_probe93), got_skip }, 5816 [P_RS_CANCEL] = { sizeof(struct p_block_ack), got_NegRSDReply }, 5817 [P_CONN_ST_CHG_REPLY]={ sizeof(struct p_req_state_reply), got_conn_RqSReply }, 5818 [P_RETRY_WRITE] = { sizeof(struct p_block_ack), got_BlockAck }, 5819 }; 5820 5821 int drbd_ack_receiver(struct drbd_thread *thi) 5822 { 5823 struct drbd_connection *connection = thi->connection; 5824 struct meta_sock_cmd *cmd = NULL; 5825 struct packet_info pi; 5826 unsigned long pre_recv_jif; 5827 int rv; 5828 void *buf = connection->meta.rbuf; 5829 int received = 0; 5830 unsigned int header_size = drbd_header_size(connection); 5831 int expect = header_size; 5832 bool ping_timeout_active = false; 5833 struct sched_param param = { .sched_priority = 2 }; 5834 5835 rv = sched_setscheduler(current, SCHED_RR, ¶m); 5836 if (rv < 0) 5837 drbd_err(connection, "drbd_ack_receiver: ERROR set priority, ret=%d\n", rv); 5838 5839 while (get_t_state(thi) == RUNNING) { 5840 drbd_thread_current_set_cpu(thi); 5841 5842 conn_reclaim_net_peer_reqs(connection); 5843 5844 if (test_and_clear_bit(SEND_PING, &connection->flags)) { 5845 if (drbd_send_ping(connection)) { 5846 drbd_err(connection, "drbd_send_ping has failed\n"); 5847 goto reconnect; 5848 } 5849 set_ping_timeout(connection); 5850 ping_timeout_active = true; 5851 } 5852 5853 pre_recv_jif = jiffies; 5854 rv = drbd_recv_short(connection->meta.socket, buf, expect-received, 0); 5855 5856 /* Note: 5857 * -EINTR (on meta) we got a signal 5858 * -EAGAIN (on meta) rcvtimeo expired 5859 * -ECONNRESET other side closed the connection 5860 * -ERESTARTSYS (on data) we got a signal 5861 * rv < 0 other than above: unexpected error! 5862 * rv == expected: full header or command 5863 * rv < expected: "woken" by signal during receive 5864 * rv == 0 : "connection shut down by peer" 5865 */ 5866 if (likely(rv > 0)) { 5867 received += rv; 5868 buf += rv; 5869 } else if (rv == 0) { 5870 if (test_bit(DISCONNECT_SENT, &connection->flags)) { 5871 long t; 5872 rcu_read_lock(); 5873 t = rcu_dereference(connection->net_conf)->ping_timeo * HZ/10; 5874 rcu_read_unlock(); 5875 5876 t = wait_event_timeout(connection->ping_wait, 5877 connection->cstate < C_WF_REPORT_PARAMS, 5878 t); 5879 if (t) 5880 break; 5881 } 5882 drbd_err(connection, "meta connection shut down by peer.\n"); 5883 goto reconnect; 5884 } else if (rv == -EAGAIN) { 5885 /* If the data socket received something meanwhile, 5886 * that is good enough: peer is still alive. */ 5887 if (time_after(connection->last_received, pre_recv_jif)) 5888 continue; 5889 if (ping_timeout_active) { 5890 drbd_err(connection, "PingAck did not arrive in time.\n"); 5891 goto reconnect; 5892 } 5893 set_bit(SEND_PING, &connection->flags); 5894 continue; 5895 } else if (rv == -EINTR) { 5896 /* maybe drbd_thread_stop(): the while condition will notice. 5897 * maybe woken for send_ping: we'll send a ping above, 5898 * and change the rcvtimeo */ 5899 flush_signals(current); 5900 continue; 5901 } else { 5902 drbd_err(connection, "sock_recvmsg returned %d\n", rv); 5903 goto reconnect; 5904 } 5905 5906 if (received == expect && cmd == NULL) { 5907 if (decode_header(connection, connection->meta.rbuf, &pi)) 5908 goto reconnect; 5909 cmd = &ack_receiver_tbl[pi.cmd]; 5910 if (pi.cmd >= ARRAY_SIZE(ack_receiver_tbl) || !cmd->fn) { 5911 drbd_err(connection, "Unexpected meta packet %s (0x%04x)\n", 5912 cmdname(pi.cmd), pi.cmd); 5913 goto disconnect; 5914 } 5915 expect = header_size + cmd->pkt_size; 5916 if (pi.size != expect - header_size) { 5917 drbd_err(connection, "Wrong packet size on meta (c: %d, l: %d)\n", 5918 pi.cmd, pi.size); 5919 goto reconnect; 5920 } 5921 } 5922 if (received == expect) { 5923 bool err; 5924 5925 err = cmd->fn(connection, &pi); 5926 if (err) { 5927 drbd_err(connection, "%pf failed\n", cmd->fn); 5928 goto reconnect; 5929 } 5930 5931 connection->last_received = jiffies; 5932 5933 if (cmd == &ack_receiver_tbl[P_PING_ACK]) { 5934 set_idle_timeout(connection); 5935 ping_timeout_active = false; 5936 } 5937 5938 buf = connection->meta.rbuf; 5939 received = 0; 5940 expect = header_size; 5941 cmd = NULL; 5942 } 5943 } 5944 5945 if (0) { 5946 reconnect: 5947 conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD); 5948 conn_md_sync(connection); 5949 } 5950 if (0) { 5951 disconnect: 5952 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 5953 } 5954 5955 drbd_info(connection, "ack_receiver terminated\n"); 5956 5957 return 0; 5958 } 5959 5960 void drbd_send_acks_wf(struct work_struct *ws) 5961 { 5962 struct drbd_peer_device *peer_device = 5963 container_of(ws, struct drbd_peer_device, send_acks_work); 5964 struct drbd_connection *connection = peer_device->connection; 5965 struct drbd_device *device = peer_device->device; 5966 struct net_conf *nc; 5967 int tcp_cork, err; 5968 5969 rcu_read_lock(); 5970 nc = rcu_dereference(connection->net_conf); 5971 tcp_cork = nc->tcp_cork; 5972 rcu_read_unlock(); 5973 5974 if (tcp_cork) 5975 drbd_tcp_cork(connection->meta.socket); 5976 5977 err = drbd_finish_peer_reqs(device); 5978 kref_put(&device->kref, drbd_destroy_device); 5979 /* get is in drbd_endio_write_sec_final(). That is necessary to keep the 5980 struct work_struct send_acks_work alive, which is in the peer_device object */ 5981 5982 if (err) { 5983 conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD); 5984 return; 5985 } 5986 5987 if (tcp_cork) 5988 drbd_tcp_uncork(connection->meta.socket); 5989 5990 return; 5991 } 5992