1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 drbd_receiver.c 4 5 This file is part of DRBD by Philipp Reisner and Lars Ellenberg. 6 7 Copyright (C) 2001-2008, LINBIT Information Technologies GmbH. 8 Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>. 9 Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>. 10 11 */ 12 13 14 #include <linux/module.h> 15 16 #include <linux/uaccess.h> 17 #include <net/sock.h> 18 19 #include <linux/drbd.h> 20 #include <linux/fs.h> 21 #include <linux/file.h> 22 #include <linux/in.h> 23 #include <linux/mm.h> 24 #include <linux/memcontrol.h> 25 #include <linux/mm_inline.h> 26 #include <linux/slab.h> 27 #include <uapi/linux/sched/types.h> 28 #include <linux/sched/signal.h> 29 #include <linux/pkt_sched.h> 30 #define __KERNEL_SYSCALLS__ 31 #include <linux/unistd.h> 32 #include <linux/vmalloc.h> 33 #include <linux/random.h> 34 #include <linux/string.h> 35 #include <linux/scatterlist.h> 36 #include "drbd_int.h" 37 #include "drbd_protocol.h" 38 #include "drbd_req.h" 39 #include "drbd_vli.h" 40 41 #define PRO_FEATURES (DRBD_FF_TRIM|DRBD_FF_THIN_RESYNC|DRBD_FF_WSAME|DRBD_FF_WZEROES) 42 43 struct packet_info { 44 enum drbd_packet cmd; 45 unsigned int size; 46 unsigned int vnr; 47 void *data; 48 }; 49 50 enum finish_epoch { 51 FE_STILL_LIVE, 52 FE_DESTROYED, 53 FE_RECYCLED, 54 }; 55 56 static int drbd_do_features(struct drbd_connection *connection); 57 static int drbd_do_auth(struct drbd_connection *connection); 58 static int drbd_disconnected(struct drbd_peer_device *); 59 static void conn_wait_active_ee_empty(struct drbd_connection *connection); 60 static enum finish_epoch drbd_may_finish_epoch(struct drbd_connection *, struct drbd_epoch *, enum epoch_event); 61 static int e_end_block(struct drbd_work *, int); 62 63 64 #define GFP_TRY (__GFP_HIGHMEM | __GFP_NOWARN) 65 66 /* 67 * some helper functions to deal with single linked page lists, 68 * page->private being our "next" pointer. 69 */ 70 71 /* If at least n pages are linked at head, get n pages off. 72 * Otherwise, don't modify head, and return NULL. 73 * Locking is the responsibility of the caller. 74 */ 75 static struct page *page_chain_del(struct page **head, int n) 76 { 77 struct page *page; 78 struct page *tmp; 79 80 BUG_ON(!n); 81 BUG_ON(!head); 82 83 page = *head; 84 85 if (!page) 86 return NULL; 87 88 while (page) { 89 tmp = page_chain_next(page); 90 if (--n == 0) 91 break; /* found sufficient pages */ 92 if (tmp == NULL) 93 /* insufficient pages, don't use any of them. */ 94 return NULL; 95 page = tmp; 96 } 97 98 /* add end of list marker for the returned list */ 99 set_page_private(page, 0); 100 /* actual return value, and adjustment of head */ 101 page = *head; 102 *head = tmp; 103 return page; 104 } 105 106 /* may be used outside of locks to find the tail of a (usually short) 107 * "private" page chain, before adding it back to a global chain head 108 * with page_chain_add() under a spinlock. */ 109 static struct page *page_chain_tail(struct page *page, int *len) 110 { 111 struct page *tmp; 112 int i = 1; 113 while ((tmp = page_chain_next(page))) 114 ++i, page = tmp; 115 if (len) 116 *len = i; 117 return page; 118 } 119 120 static int page_chain_free(struct page *page) 121 { 122 struct page *tmp; 123 int i = 0; 124 page_chain_for_each_safe(page, tmp) { 125 put_page(page); 126 ++i; 127 } 128 return i; 129 } 130 131 static void page_chain_add(struct page **head, 132 struct page *chain_first, struct page *chain_last) 133 { 134 #if 1 135 struct page *tmp; 136 tmp = page_chain_tail(chain_first, NULL); 137 BUG_ON(tmp != chain_last); 138 #endif 139 140 /* add chain to head */ 141 set_page_private(chain_last, (unsigned long)*head); 142 *head = chain_first; 143 } 144 145 static struct page *__drbd_alloc_pages(struct drbd_device *device, 146 unsigned int number) 147 { 148 struct page *page = NULL; 149 struct page *tmp = NULL; 150 unsigned int i = 0; 151 152 /* Yes, testing drbd_pp_vacant outside the lock is racy. 153 * So what. It saves a spin_lock. */ 154 if (drbd_pp_vacant >= number) { 155 spin_lock(&drbd_pp_lock); 156 page = page_chain_del(&drbd_pp_pool, number); 157 if (page) 158 drbd_pp_vacant -= number; 159 spin_unlock(&drbd_pp_lock); 160 if (page) 161 return page; 162 } 163 164 /* GFP_TRY, because we must not cause arbitrary write-out: in a DRBD 165 * "criss-cross" setup, that might cause write-out on some other DRBD, 166 * which in turn might block on the other node at this very place. */ 167 for (i = 0; i < number; i++) { 168 tmp = alloc_page(GFP_TRY); 169 if (!tmp) 170 break; 171 set_page_private(tmp, (unsigned long)page); 172 page = tmp; 173 } 174 175 if (i == number) 176 return page; 177 178 /* Not enough pages immediately available this time. 179 * No need to jump around here, drbd_alloc_pages will retry this 180 * function "soon". */ 181 if (page) { 182 tmp = page_chain_tail(page, NULL); 183 spin_lock(&drbd_pp_lock); 184 page_chain_add(&drbd_pp_pool, page, tmp); 185 drbd_pp_vacant += i; 186 spin_unlock(&drbd_pp_lock); 187 } 188 return NULL; 189 } 190 191 static void reclaim_finished_net_peer_reqs(struct drbd_device *device, 192 struct list_head *to_be_freed) 193 { 194 struct drbd_peer_request *peer_req, *tmp; 195 196 /* The EEs are always appended to the end of the list. Since 197 they are sent in order over the wire, they have to finish 198 in order. As soon as we see the first not finished we can 199 stop to examine the list... */ 200 201 list_for_each_entry_safe(peer_req, tmp, &device->net_ee, w.list) { 202 if (drbd_peer_req_has_active_page(peer_req)) 203 break; 204 list_move(&peer_req->w.list, to_be_freed); 205 } 206 } 207 208 static void drbd_reclaim_net_peer_reqs(struct drbd_device *device) 209 { 210 LIST_HEAD(reclaimed); 211 struct drbd_peer_request *peer_req, *t; 212 213 spin_lock_irq(&device->resource->req_lock); 214 reclaim_finished_net_peer_reqs(device, &reclaimed); 215 spin_unlock_irq(&device->resource->req_lock); 216 list_for_each_entry_safe(peer_req, t, &reclaimed, w.list) 217 drbd_free_net_peer_req(device, peer_req); 218 } 219 220 static void conn_reclaim_net_peer_reqs(struct drbd_connection *connection) 221 { 222 struct drbd_peer_device *peer_device; 223 int vnr; 224 225 rcu_read_lock(); 226 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 227 struct drbd_device *device = peer_device->device; 228 if (!atomic_read(&device->pp_in_use_by_net)) 229 continue; 230 231 kref_get(&device->kref); 232 rcu_read_unlock(); 233 drbd_reclaim_net_peer_reqs(device); 234 kref_put(&device->kref, drbd_destroy_device); 235 rcu_read_lock(); 236 } 237 rcu_read_unlock(); 238 } 239 240 /** 241 * drbd_alloc_pages() - Returns @number pages, retries forever (or until signalled) 242 * @device: DRBD device. 243 * @number: number of pages requested 244 * @retry: whether to retry, if not enough pages are available right now 245 * 246 * Tries to allocate number pages, first from our own page pool, then from 247 * the kernel. 248 * Possibly retry until DRBD frees sufficient pages somewhere else. 249 * 250 * If this allocation would exceed the max_buffers setting, we throttle 251 * allocation (schedule_timeout) to give the system some room to breathe. 252 * 253 * We do not use max-buffers as hard limit, because it could lead to 254 * congestion and further to a distributed deadlock during online-verify or 255 * (checksum based) resync, if the max-buffers, socket buffer sizes and 256 * resync-rate settings are mis-configured. 257 * 258 * Returns a page chain linked via page->private. 259 */ 260 struct page *drbd_alloc_pages(struct drbd_peer_device *peer_device, unsigned int number, 261 bool retry) 262 { 263 struct drbd_device *device = peer_device->device; 264 struct page *page = NULL; 265 struct net_conf *nc; 266 DEFINE_WAIT(wait); 267 unsigned int mxb; 268 269 rcu_read_lock(); 270 nc = rcu_dereference(peer_device->connection->net_conf); 271 mxb = nc ? nc->max_buffers : 1000000; 272 rcu_read_unlock(); 273 274 if (atomic_read(&device->pp_in_use) < mxb) 275 page = __drbd_alloc_pages(device, number); 276 277 /* Try to keep the fast path fast, but occasionally we need 278 * to reclaim the pages we lended to the network stack. */ 279 if (page && atomic_read(&device->pp_in_use_by_net) > 512) 280 drbd_reclaim_net_peer_reqs(device); 281 282 while (page == NULL) { 283 prepare_to_wait(&drbd_pp_wait, &wait, TASK_INTERRUPTIBLE); 284 285 drbd_reclaim_net_peer_reqs(device); 286 287 if (atomic_read(&device->pp_in_use) < mxb) { 288 page = __drbd_alloc_pages(device, number); 289 if (page) 290 break; 291 } 292 293 if (!retry) 294 break; 295 296 if (signal_pending(current)) { 297 drbd_warn(device, "drbd_alloc_pages interrupted!\n"); 298 break; 299 } 300 301 if (schedule_timeout(HZ/10) == 0) 302 mxb = UINT_MAX; 303 } 304 finish_wait(&drbd_pp_wait, &wait); 305 306 if (page) 307 atomic_add(number, &device->pp_in_use); 308 return page; 309 } 310 311 /* Must not be used from irq, as that may deadlock: see drbd_alloc_pages. 312 * Is also used from inside an other spin_lock_irq(&resource->req_lock); 313 * Either links the page chain back to the global pool, 314 * or returns all pages to the system. */ 315 static void drbd_free_pages(struct drbd_device *device, struct page *page, int is_net) 316 { 317 atomic_t *a = is_net ? &device->pp_in_use_by_net : &device->pp_in_use; 318 int i; 319 320 if (page == NULL) 321 return; 322 323 if (drbd_pp_vacant > (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * drbd_minor_count) 324 i = page_chain_free(page); 325 else { 326 struct page *tmp; 327 tmp = page_chain_tail(page, &i); 328 spin_lock(&drbd_pp_lock); 329 page_chain_add(&drbd_pp_pool, page, tmp); 330 drbd_pp_vacant += i; 331 spin_unlock(&drbd_pp_lock); 332 } 333 i = atomic_sub_return(i, a); 334 if (i < 0) 335 drbd_warn(device, "ASSERTION FAILED: %s: %d < 0\n", 336 is_net ? "pp_in_use_by_net" : "pp_in_use", i); 337 wake_up(&drbd_pp_wait); 338 } 339 340 /* 341 You need to hold the req_lock: 342 _drbd_wait_ee_list_empty() 343 344 You must not have the req_lock: 345 drbd_free_peer_req() 346 drbd_alloc_peer_req() 347 drbd_free_peer_reqs() 348 drbd_ee_fix_bhs() 349 drbd_finish_peer_reqs() 350 drbd_clear_done_ee() 351 drbd_wait_ee_list_empty() 352 */ 353 354 /* normal: payload_size == request size (bi_size) 355 * w_same: payload_size == logical_block_size 356 * trim: payload_size == 0 */ 357 struct drbd_peer_request * 358 drbd_alloc_peer_req(struct drbd_peer_device *peer_device, u64 id, sector_t sector, 359 unsigned int request_size, unsigned int payload_size, gfp_t gfp_mask) __must_hold(local) 360 { 361 struct drbd_device *device = peer_device->device; 362 struct drbd_peer_request *peer_req; 363 struct page *page = NULL; 364 unsigned nr_pages = (payload_size + PAGE_SIZE -1) >> PAGE_SHIFT; 365 366 if (drbd_insert_fault(device, DRBD_FAULT_AL_EE)) 367 return NULL; 368 369 peer_req = mempool_alloc(&drbd_ee_mempool, gfp_mask & ~__GFP_HIGHMEM); 370 if (!peer_req) { 371 if (!(gfp_mask & __GFP_NOWARN)) 372 drbd_err(device, "%s: allocation failed\n", __func__); 373 return NULL; 374 } 375 376 if (nr_pages) { 377 page = drbd_alloc_pages(peer_device, nr_pages, 378 gfpflags_allow_blocking(gfp_mask)); 379 if (!page) 380 goto fail; 381 } 382 383 memset(peer_req, 0, sizeof(*peer_req)); 384 INIT_LIST_HEAD(&peer_req->w.list); 385 drbd_clear_interval(&peer_req->i); 386 peer_req->i.size = request_size; 387 peer_req->i.sector = sector; 388 peer_req->submit_jif = jiffies; 389 peer_req->peer_device = peer_device; 390 peer_req->pages = page; 391 /* 392 * The block_id is opaque to the receiver. It is not endianness 393 * converted, and sent back to the sender unchanged. 394 */ 395 peer_req->block_id = id; 396 397 return peer_req; 398 399 fail: 400 mempool_free(peer_req, &drbd_ee_mempool); 401 return NULL; 402 } 403 404 void __drbd_free_peer_req(struct drbd_device *device, struct drbd_peer_request *peer_req, 405 int is_net) 406 { 407 might_sleep(); 408 if (peer_req->flags & EE_HAS_DIGEST) 409 kfree(peer_req->digest); 410 drbd_free_pages(device, peer_req->pages, is_net); 411 D_ASSERT(device, atomic_read(&peer_req->pending_bios) == 0); 412 D_ASSERT(device, drbd_interval_empty(&peer_req->i)); 413 if (!expect(!(peer_req->flags & EE_CALL_AL_COMPLETE_IO))) { 414 peer_req->flags &= ~EE_CALL_AL_COMPLETE_IO; 415 drbd_al_complete_io(device, &peer_req->i); 416 } 417 mempool_free(peer_req, &drbd_ee_mempool); 418 } 419 420 int drbd_free_peer_reqs(struct drbd_device *device, struct list_head *list) 421 { 422 LIST_HEAD(work_list); 423 struct drbd_peer_request *peer_req, *t; 424 int count = 0; 425 int is_net = list == &device->net_ee; 426 427 spin_lock_irq(&device->resource->req_lock); 428 list_splice_init(list, &work_list); 429 spin_unlock_irq(&device->resource->req_lock); 430 431 list_for_each_entry_safe(peer_req, t, &work_list, w.list) { 432 __drbd_free_peer_req(device, peer_req, is_net); 433 count++; 434 } 435 return count; 436 } 437 438 /* 439 * See also comments in _req_mod(,BARRIER_ACKED) and receive_Barrier. 440 */ 441 static int drbd_finish_peer_reqs(struct drbd_device *device) 442 { 443 LIST_HEAD(work_list); 444 LIST_HEAD(reclaimed); 445 struct drbd_peer_request *peer_req, *t; 446 int err = 0; 447 448 spin_lock_irq(&device->resource->req_lock); 449 reclaim_finished_net_peer_reqs(device, &reclaimed); 450 list_splice_init(&device->done_ee, &work_list); 451 spin_unlock_irq(&device->resource->req_lock); 452 453 list_for_each_entry_safe(peer_req, t, &reclaimed, w.list) 454 drbd_free_net_peer_req(device, peer_req); 455 456 /* possible callbacks here: 457 * e_end_block, and e_end_resync_block, e_send_superseded. 458 * all ignore the last argument. 459 */ 460 list_for_each_entry_safe(peer_req, t, &work_list, w.list) { 461 int err2; 462 463 /* list_del not necessary, next/prev members not touched */ 464 err2 = peer_req->w.cb(&peer_req->w, !!err); 465 if (!err) 466 err = err2; 467 drbd_free_peer_req(device, peer_req); 468 } 469 wake_up(&device->ee_wait); 470 471 return err; 472 } 473 474 static void _drbd_wait_ee_list_empty(struct drbd_device *device, 475 struct list_head *head) 476 { 477 DEFINE_WAIT(wait); 478 479 /* avoids spin_lock/unlock 480 * and calling prepare_to_wait in the fast path */ 481 while (!list_empty(head)) { 482 prepare_to_wait(&device->ee_wait, &wait, TASK_UNINTERRUPTIBLE); 483 spin_unlock_irq(&device->resource->req_lock); 484 io_schedule(); 485 finish_wait(&device->ee_wait, &wait); 486 spin_lock_irq(&device->resource->req_lock); 487 } 488 } 489 490 static void drbd_wait_ee_list_empty(struct drbd_device *device, 491 struct list_head *head) 492 { 493 spin_lock_irq(&device->resource->req_lock); 494 _drbd_wait_ee_list_empty(device, head); 495 spin_unlock_irq(&device->resource->req_lock); 496 } 497 498 static int drbd_recv_short(struct socket *sock, void *buf, size_t size, int flags) 499 { 500 struct kvec iov = { 501 .iov_base = buf, 502 .iov_len = size, 503 }; 504 struct msghdr msg = { 505 .msg_flags = (flags ? flags : MSG_WAITALL | MSG_NOSIGNAL) 506 }; 507 iov_iter_kvec(&msg.msg_iter, READ, &iov, 1, size); 508 return sock_recvmsg(sock, &msg, msg.msg_flags); 509 } 510 511 static int drbd_recv(struct drbd_connection *connection, void *buf, size_t size) 512 { 513 int rv; 514 515 rv = drbd_recv_short(connection->data.socket, buf, size, 0); 516 517 if (rv < 0) { 518 if (rv == -ECONNRESET) 519 drbd_info(connection, "sock was reset by peer\n"); 520 else if (rv != -ERESTARTSYS) 521 drbd_err(connection, "sock_recvmsg returned %d\n", rv); 522 } else if (rv == 0) { 523 if (test_bit(DISCONNECT_SENT, &connection->flags)) { 524 long t; 525 rcu_read_lock(); 526 t = rcu_dereference(connection->net_conf)->ping_timeo * HZ/10; 527 rcu_read_unlock(); 528 529 t = wait_event_timeout(connection->ping_wait, connection->cstate < C_WF_REPORT_PARAMS, t); 530 531 if (t) 532 goto out; 533 } 534 drbd_info(connection, "sock was shut down by peer\n"); 535 } 536 537 if (rv != size) 538 conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD); 539 540 out: 541 return rv; 542 } 543 544 static int drbd_recv_all(struct drbd_connection *connection, void *buf, size_t size) 545 { 546 int err; 547 548 err = drbd_recv(connection, buf, size); 549 if (err != size) { 550 if (err >= 0) 551 err = -EIO; 552 } else 553 err = 0; 554 return err; 555 } 556 557 static int drbd_recv_all_warn(struct drbd_connection *connection, void *buf, size_t size) 558 { 559 int err; 560 561 err = drbd_recv_all(connection, buf, size); 562 if (err && !signal_pending(current)) 563 drbd_warn(connection, "short read (expected size %d)\n", (int)size); 564 return err; 565 } 566 567 /* quoting tcp(7): 568 * On individual connections, the socket buffer size must be set prior to the 569 * listen(2) or connect(2) calls in order to have it take effect. 570 * This is our wrapper to do so. 571 */ 572 static void drbd_setbufsize(struct socket *sock, unsigned int snd, 573 unsigned int rcv) 574 { 575 /* open coded SO_SNDBUF, SO_RCVBUF */ 576 if (snd) { 577 sock->sk->sk_sndbuf = snd; 578 sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 579 } 580 if (rcv) { 581 sock->sk->sk_rcvbuf = rcv; 582 sock->sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 583 } 584 } 585 586 static struct socket *drbd_try_connect(struct drbd_connection *connection) 587 { 588 const char *what; 589 struct socket *sock; 590 struct sockaddr_in6 src_in6; 591 struct sockaddr_in6 peer_in6; 592 struct net_conf *nc; 593 int err, peer_addr_len, my_addr_len; 594 int sndbuf_size, rcvbuf_size, connect_int; 595 int disconnect_on_error = 1; 596 597 rcu_read_lock(); 598 nc = rcu_dereference(connection->net_conf); 599 if (!nc) { 600 rcu_read_unlock(); 601 return NULL; 602 } 603 sndbuf_size = nc->sndbuf_size; 604 rcvbuf_size = nc->rcvbuf_size; 605 connect_int = nc->connect_int; 606 rcu_read_unlock(); 607 608 my_addr_len = min_t(int, connection->my_addr_len, sizeof(src_in6)); 609 memcpy(&src_in6, &connection->my_addr, my_addr_len); 610 611 if (((struct sockaddr *)&connection->my_addr)->sa_family == AF_INET6) 612 src_in6.sin6_port = 0; 613 else 614 ((struct sockaddr_in *)&src_in6)->sin_port = 0; /* AF_INET & AF_SCI */ 615 616 peer_addr_len = min_t(int, connection->peer_addr_len, sizeof(src_in6)); 617 memcpy(&peer_in6, &connection->peer_addr, peer_addr_len); 618 619 what = "sock_create_kern"; 620 err = sock_create_kern(&init_net, ((struct sockaddr *)&src_in6)->sa_family, 621 SOCK_STREAM, IPPROTO_TCP, &sock); 622 if (err < 0) { 623 sock = NULL; 624 goto out; 625 } 626 627 sock->sk->sk_rcvtimeo = 628 sock->sk->sk_sndtimeo = connect_int * HZ; 629 drbd_setbufsize(sock, sndbuf_size, rcvbuf_size); 630 631 /* explicitly bind to the configured IP as source IP 632 * for the outgoing connections. 633 * This is needed for multihomed hosts and to be 634 * able to use lo: interfaces for drbd. 635 * Make sure to use 0 as port number, so linux selects 636 * a free one dynamically. 637 */ 638 what = "bind before connect"; 639 err = sock->ops->bind(sock, (struct sockaddr *) &src_in6, my_addr_len); 640 if (err < 0) 641 goto out; 642 643 /* connect may fail, peer not yet available. 644 * stay C_WF_CONNECTION, don't go Disconnecting! */ 645 disconnect_on_error = 0; 646 what = "connect"; 647 err = sock->ops->connect(sock, (struct sockaddr *) &peer_in6, peer_addr_len, 0); 648 649 out: 650 if (err < 0) { 651 if (sock) { 652 sock_release(sock); 653 sock = NULL; 654 } 655 switch (-err) { 656 /* timeout, busy, signal pending */ 657 case ETIMEDOUT: case EAGAIN: case EINPROGRESS: 658 case EINTR: case ERESTARTSYS: 659 /* peer not (yet) available, network problem */ 660 case ECONNREFUSED: case ENETUNREACH: 661 case EHOSTDOWN: case EHOSTUNREACH: 662 disconnect_on_error = 0; 663 break; 664 default: 665 drbd_err(connection, "%s failed, err = %d\n", what, err); 666 } 667 if (disconnect_on_error) 668 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 669 } 670 671 return sock; 672 } 673 674 struct accept_wait_data { 675 struct drbd_connection *connection; 676 struct socket *s_listen; 677 struct completion door_bell; 678 void (*original_sk_state_change)(struct sock *sk); 679 680 }; 681 682 static void drbd_incoming_connection(struct sock *sk) 683 { 684 struct accept_wait_data *ad = sk->sk_user_data; 685 void (*state_change)(struct sock *sk); 686 687 state_change = ad->original_sk_state_change; 688 if (sk->sk_state == TCP_ESTABLISHED) 689 complete(&ad->door_bell); 690 state_change(sk); 691 } 692 693 static int prepare_listen_socket(struct drbd_connection *connection, struct accept_wait_data *ad) 694 { 695 int err, sndbuf_size, rcvbuf_size, my_addr_len; 696 struct sockaddr_in6 my_addr; 697 struct socket *s_listen; 698 struct net_conf *nc; 699 const char *what; 700 701 rcu_read_lock(); 702 nc = rcu_dereference(connection->net_conf); 703 if (!nc) { 704 rcu_read_unlock(); 705 return -EIO; 706 } 707 sndbuf_size = nc->sndbuf_size; 708 rcvbuf_size = nc->rcvbuf_size; 709 rcu_read_unlock(); 710 711 my_addr_len = min_t(int, connection->my_addr_len, sizeof(struct sockaddr_in6)); 712 memcpy(&my_addr, &connection->my_addr, my_addr_len); 713 714 what = "sock_create_kern"; 715 err = sock_create_kern(&init_net, ((struct sockaddr *)&my_addr)->sa_family, 716 SOCK_STREAM, IPPROTO_TCP, &s_listen); 717 if (err) { 718 s_listen = NULL; 719 goto out; 720 } 721 722 s_listen->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */ 723 drbd_setbufsize(s_listen, sndbuf_size, rcvbuf_size); 724 725 what = "bind before listen"; 726 err = s_listen->ops->bind(s_listen, (struct sockaddr *)&my_addr, my_addr_len); 727 if (err < 0) 728 goto out; 729 730 ad->s_listen = s_listen; 731 write_lock_bh(&s_listen->sk->sk_callback_lock); 732 ad->original_sk_state_change = s_listen->sk->sk_state_change; 733 s_listen->sk->sk_state_change = drbd_incoming_connection; 734 s_listen->sk->sk_user_data = ad; 735 write_unlock_bh(&s_listen->sk->sk_callback_lock); 736 737 what = "listen"; 738 err = s_listen->ops->listen(s_listen, 5); 739 if (err < 0) 740 goto out; 741 742 return 0; 743 out: 744 if (s_listen) 745 sock_release(s_listen); 746 if (err < 0) { 747 if (err != -EAGAIN && err != -EINTR && err != -ERESTARTSYS) { 748 drbd_err(connection, "%s failed, err = %d\n", what, err); 749 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 750 } 751 } 752 753 return -EIO; 754 } 755 756 static void unregister_state_change(struct sock *sk, struct accept_wait_data *ad) 757 { 758 write_lock_bh(&sk->sk_callback_lock); 759 sk->sk_state_change = ad->original_sk_state_change; 760 sk->sk_user_data = NULL; 761 write_unlock_bh(&sk->sk_callback_lock); 762 } 763 764 static struct socket *drbd_wait_for_connect(struct drbd_connection *connection, struct accept_wait_data *ad) 765 { 766 int timeo, connect_int, err = 0; 767 struct socket *s_estab = NULL; 768 struct net_conf *nc; 769 770 rcu_read_lock(); 771 nc = rcu_dereference(connection->net_conf); 772 if (!nc) { 773 rcu_read_unlock(); 774 return NULL; 775 } 776 connect_int = nc->connect_int; 777 rcu_read_unlock(); 778 779 timeo = connect_int * HZ; 780 /* 28.5% random jitter */ 781 timeo += (prandom_u32() & 1) ? timeo / 7 : -timeo / 7; 782 783 err = wait_for_completion_interruptible_timeout(&ad->door_bell, timeo); 784 if (err <= 0) 785 return NULL; 786 787 err = kernel_accept(ad->s_listen, &s_estab, 0); 788 if (err < 0) { 789 if (err != -EAGAIN && err != -EINTR && err != -ERESTARTSYS) { 790 drbd_err(connection, "accept failed, err = %d\n", err); 791 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 792 } 793 } 794 795 if (s_estab) 796 unregister_state_change(s_estab->sk, ad); 797 798 return s_estab; 799 } 800 801 static int decode_header(struct drbd_connection *, void *, struct packet_info *); 802 803 static int send_first_packet(struct drbd_connection *connection, struct drbd_socket *sock, 804 enum drbd_packet cmd) 805 { 806 if (!conn_prepare_command(connection, sock)) 807 return -EIO; 808 return conn_send_command(connection, sock, cmd, 0, NULL, 0); 809 } 810 811 static int receive_first_packet(struct drbd_connection *connection, struct socket *sock) 812 { 813 unsigned int header_size = drbd_header_size(connection); 814 struct packet_info pi; 815 struct net_conf *nc; 816 int err; 817 818 rcu_read_lock(); 819 nc = rcu_dereference(connection->net_conf); 820 if (!nc) { 821 rcu_read_unlock(); 822 return -EIO; 823 } 824 sock->sk->sk_rcvtimeo = nc->ping_timeo * 4 * HZ / 10; 825 rcu_read_unlock(); 826 827 err = drbd_recv_short(sock, connection->data.rbuf, header_size, 0); 828 if (err != header_size) { 829 if (err >= 0) 830 err = -EIO; 831 return err; 832 } 833 err = decode_header(connection, connection->data.rbuf, &pi); 834 if (err) 835 return err; 836 return pi.cmd; 837 } 838 839 /** 840 * drbd_socket_okay() - Free the socket if its connection is not okay 841 * @sock: pointer to the pointer to the socket. 842 */ 843 static bool drbd_socket_okay(struct socket **sock) 844 { 845 int rr; 846 char tb[4]; 847 848 if (!*sock) 849 return false; 850 851 rr = drbd_recv_short(*sock, tb, 4, MSG_DONTWAIT | MSG_PEEK); 852 853 if (rr > 0 || rr == -EAGAIN) { 854 return true; 855 } else { 856 sock_release(*sock); 857 *sock = NULL; 858 return false; 859 } 860 } 861 862 static bool connection_established(struct drbd_connection *connection, 863 struct socket **sock1, 864 struct socket **sock2) 865 { 866 struct net_conf *nc; 867 int timeout; 868 bool ok; 869 870 if (!*sock1 || !*sock2) 871 return false; 872 873 rcu_read_lock(); 874 nc = rcu_dereference(connection->net_conf); 875 timeout = (nc->sock_check_timeo ?: nc->ping_timeo) * HZ / 10; 876 rcu_read_unlock(); 877 schedule_timeout_interruptible(timeout); 878 879 ok = drbd_socket_okay(sock1); 880 ok = drbd_socket_okay(sock2) && ok; 881 882 return ok; 883 } 884 885 /* Gets called if a connection is established, or if a new minor gets created 886 in a connection */ 887 int drbd_connected(struct drbd_peer_device *peer_device) 888 { 889 struct drbd_device *device = peer_device->device; 890 int err; 891 892 atomic_set(&device->packet_seq, 0); 893 device->peer_seq = 0; 894 895 device->state_mutex = peer_device->connection->agreed_pro_version < 100 ? 896 &peer_device->connection->cstate_mutex : 897 &device->own_state_mutex; 898 899 err = drbd_send_sync_param(peer_device); 900 if (!err) 901 err = drbd_send_sizes(peer_device, 0, 0); 902 if (!err) 903 err = drbd_send_uuids(peer_device); 904 if (!err) 905 err = drbd_send_current_state(peer_device); 906 clear_bit(USE_DEGR_WFC_T, &device->flags); 907 clear_bit(RESIZE_PENDING, &device->flags); 908 atomic_set(&device->ap_in_flight, 0); 909 mod_timer(&device->request_timer, jiffies + HZ); /* just start it here. */ 910 return err; 911 } 912 913 /* 914 * return values: 915 * 1 yes, we have a valid connection 916 * 0 oops, did not work out, please try again 917 * -1 peer talks different language, 918 * no point in trying again, please go standalone. 919 * -2 We do not have a network config... 920 */ 921 static int conn_connect(struct drbd_connection *connection) 922 { 923 struct drbd_socket sock, msock; 924 struct drbd_peer_device *peer_device; 925 struct net_conf *nc; 926 int vnr, timeout, h; 927 bool discard_my_data, ok; 928 enum drbd_state_rv rv; 929 struct accept_wait_data ad = { 930 .connection = connection, 931 .door_bell = COMPLETION_INITIALIZER_ONSTACK(ad.door_bell), 932 }; 933 934 clear_bit(DISCONNECT_SENT, &connection->flags); 935 if (conn_request_state(connection, NS(conn, C_WF_CONNECTION), CS_VERBOSE) < SS_SUCCESS) 936 return -2; 937 938 mutex_init(&sock.mutex); 939 sock.sbuf = connection->data.sbuf; 940 sock.rbuf = connection->data.rbuf; 941 sock.socket = NULL; 942 mutex_init(&msock.mutex); 943 msock.sbuf = connection->meta.sbuf; 944 msock.rbuf = connection->meta.rbuf; 945 msock.socket = NULL; 946 947 /* Assume that the peer only understands protocol 80 until we know better. */ 948 connection->agreed_pro_version = 80; 949 950 if (prepare_listen_socket(connection, &ad)) 951 return 0; 952 953 do { 954 struct socket *s; 955 956 s = drbd_try_connect(connection); 957 if (s) { 958 if (!sock.socket) { 959 sock.socket = s; 960 send_first_packet(connection, &sock, P_INITIAL_DATA); 961 } else if (!msock.socket) { 962 clear_bit(RESOLVE_CONFLICTS, &connection->flags); 963 msock.socket = s; 964 send_first_packet(connection, &msock, P_INITIAL_META); 965 } else { 966 drbd_err(connection, "Logic error in conn_connect()\n"); 967 goto out_release_sockets; 968 } 969 } 970 971 if (connection_established(connection, &sock.socket, &msock.socket)) 972 break; 973 974 retry: 975 s = drbd_wait_for_connect(connection, &ad); 976 if (s) { 977 int fp = receive_first_packet(connection, s); 978 drbd_socket_okay(&sock.socket); 979 drbd_socket_okay(&msock.socket); 980 switch (fp) { 981 case P_INITIAL_DATA: 982 if (sock.socket) { 983 drbd_warn(connection, "initial packet S crossed\n"); 984 sock_release(sock.socket); 985 sock.socket = s; 986 goto randomize; 987 } 988 sock.socket = s; 989 break; 990 case P_INITIAL_META: 991 set_bit(RESOLVE_CONFLICTS, &connection->flags); 992 if (msock.socket) { 993 drbd_warn(connection, "initial packet M crossed\n"); 994 sock_release(msock.socket); 995 msock.socket = s; 996 goto randomize; 997 } 998 msock.socket = s; 999 break; 1000 default: 1001 drbd_warn(connection, "Error receiving initial packet\n"); 1002 sock_release(s); 1003 randomize: 1004 if (prandom_u32() & 1) 1005 goto retry; 1006 } 1007 } 1008 1009 if (connection->cstate <= C_DISCONNECTING) 1010 goto out_release_sockets; 1011 if (signal_pending(current)) { 1012 flush_signals(current); 1013 smp_rmb(); 1014 if (get_t_state(&connection->receiver) == EXITING) 1015 goto out_release_sockets; 1016 } 1017 1018 ok = connection_established(connection, &sock.socket, &msock.socket); 1019 } while (!ok); 1020 1021 if (ad.s_listen) 1022 sock_release(ad.s_listen); 1023 1024 sock.socket->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */ 1025 msock.socket->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */ 1026 1027 sock.socket->sk->sk_allocation = GFP_NOIO; 1028 msock.socket->sk->sk_allocation = GFP_NOIO; 1029 1030 sock.socket->sk->sk_priority = TC_PRIO_INTERACTIVE_BULK; 1031 msock.socket->sk->sk_priority = TC_PRIO_INTERACTIVE; 1032 1033 /* NOT YET ... 1034 * sock.socket->sk->sk_sndtimeo = connection->net_conf->timeout*HZ/10; 1035 * sock.socket->sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 1036 * first set it to the P_CONNECTION_FEATURES timeout, 1037 * which we set to 4x the configured ping_timeout. */ 1038 rcu_read_lock(); 1039 nc = rcu_dereference(connection->net_conf); 1040 1041 sock.socket->sk->sk_sndtimeo = 1042 sock.socket->sk->sk_rcvtimeo = nc->ping_timeo*4*HZ/10; 1043 1044 msock.socket->sk->sk_rcvtimeo = nc->ping_int*HZ; 1045 timeout = nc->timeout * HZ / 10; 1046 discard_my_data = nc->discard_my_data; 1047 rcu_read_unlock(); 1048 1049 msock.socket->sk->sk_sndtimeo = timeout; 1050 1051 /* we don't want delays. 1052 * we use TCP_CORK where appropriate, though */ 1053 drbd_tcp_nodelay(sock.socket); 1054 drbd_tcp_nodelay(msock.socket); 1055 1056 connection->data.socket = sock.socket; 1057 connection->meta.socket = msock.socket; 1058 connection->last_received = jiffies; 1059 1060 h = drbd_do_features(connection); 1061 if (h <= 0) 1062 return h; 1063 1064 if (connection->cram_hmac_tfm) { 1065 /* drbd_request_state(device, NS(conn, WFAuth)); */ 1066 switch (drbd_do_auth(connection)) { 1067 case -1: 1068 drbd_err(connection, "Authentication of peer failed\n"); 1069 return -1; 1070 case 0: 1071 drbd_err(connection, "Authentication of peer failed, trying again.\n"); 1072 return 0; 1073 } 1074 } 1075 1076 connection->data.socket->sk->sk_sndtimeo = timeout; 1077 connection->data.socket->sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 1078 1079 if (drbd_send_protocol(connection) == -EOPNOTSUPP) 1080 return -1; 1081 1082 /* Prevent a race between resync-handshake and 1083 * being promoted to Primary. 1084 * 1085 * Grab and release the state mutex, so we know that any current 1086 * drbd_set_role() is finished, and any incoming drbd_set_role 1087 * will see the STATE_SENT flag, and wait for it to be cleared. 1088 */ 1089 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) 1090 mutex_lock(peer_device->device->state_mutex); 1091 1092 /* avoid a race with conn_request_state( C_DISCONNECTING ) */ 1093 spin_lock_irq(&connection->resource->req_lock); 1094 set_bit(STATE_SENT, &connection->flags); 1095 spin_unlock_irq(&connection->resource->req_lock); 1096 1097 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) 1098 mutex_unlock(peer_device->device->state_mutex); 1099 1100 rcu_read_lock(); 1101 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 1102 struct drbd_device *device = peer_device->device; 1103 kref_get(&device->kref); 1104 rcu_read_unlock(); 1105 1106 if (discard_my_data) 1107 set_bit(DISCARD_MY_DATA, &device->flags); 1108 else 1109 clear_bit(DISCARD_MY_DATA, &device->flags); 1110 1111 drbd_connected(peer_device); 1112 kref_put(&device->kref, drbd_destroy_device); 1113 rcu_read_lock(); 1114 } 1115 rcu_read_unlock(); 1116 1117 rv = conn_request_state(connection, NS(conn, C_WF_REPORT_PARAMS), CS_VERBOSE); 1118 if (rv < SS_SUCCESS || connection->cstate != C_WF_REPORT_PARAMS) { 1119 clear_bit(STATE_SENT, &connection->flags); 1120 return 0; 1121 } 1122 1123 drbd_thread_start(&connection->ack_receiver); 1124 /* opencoded create_singlethread_workqueue(), 1125 * to be able to use format string arguments */ 1126 connection->ack_sender = 1127 alloc_ordered_workqueue("drbd_as_%s", WQ_MEM_RECLAIM, connection->resource->name); 1128 if (!connection->ack_sender) { 1129 drbd_err(connection, "Failed to create workqueue ack_sender\n"); 1130 return 0; 1131 } 1132 1133 mutex_lock(&connection->resource->conf_update); 1134 /* The discard_my_data flag is a single-shot modifier to the next 1135 * connection attempt, the handshake of which is now well underway. 1136 * No need for rcu style copying of the whole struct 1137 * just to clear a single value. */ 1138 connection->net_conf->discard_my_data = 0; 1139 mutex_unlock(&connection->resource->conf_update); 1140 1141 return h; 1142 1143 out_release_sockets: 1144 if (ad.s_listen) 1145 sock_release(ad.s_listen); 1146 if (sock.socket) 1147 sock_release(sock.socket); 1148 if (msock.socket) 1149 sock_release(msock.socket); 1150 return -1; 1151 } 1152 1153 static int decode_header(struct drbd_connection *connection, void *header, struct packet_info *pi) 1154 { 1155 unsigned int header_size = drbd_header_size(connection); 1156 1157 if (header_size == sizeof(struct p_header100) && 1158 *(__be32 *)header == cpu_to_be32(DRBD_MAGIC_100)) { 1159 struct p_header100 *h = header; 1160 if (h->pad != 0) { 1161 drbd_err(connection, "Header padding is not zero\n"); 1162 return -EINVAL; 1163 } 1164 pi->vnr = be16_to_cpu(h->volume); 1165 pi->cmd = be16_to_cpu(h->command); 1166 pi->size = be32_to_cpu(h->length); 1167 } else if (header_size == sizeof(struct p_header95) && 1168 *(__be16 *)header == cpu_to_be16(DRBD_MAGIC_BIG)) { 1169 struct p_header95 *h = header; 1170 pi->cmd = be16_to_cpu(h->command); 1171 pi->size = be32_to_cpu(h->length); 1172 pi->vnr = 0; 1173 } else if (header_size == sizeof(struct p_header80) && 1174 *(__be32 *)header == cpu_to_be32(DRBD_MAGIC)) { 1175 struct p_header80 *h = header; 1176 pi->cmd = be16_to_cpu(h->command); 1177 pi->size = be16_to_cpu(h->length); 1178 pi->vnr = 0; 1179 } else { 1180 drbd_err(connection, "Wrong magic value 0x%08x in protocol version %d\n", 1181 be32_to_cpu(*(__be32 *)header), 1182 connection->agreed_pro_version); 1183 return -EINVAL; 1184 } 1185 pi->data = header + header_size; 1186 return 0; 1187 } 1188 1189 static void drbd_unplug_all_devices(struct drbd_connection *connection) 1190 { 1191 if (current->plug == &connection->receiver_plug) { 1192 blk_finish_plug(&connection->receiver_plug); 1193 blk_start_plug(&connection->receiver_plug); 1194 } /* else: maybe just schedule() ?? */ 1195 } 1196 1197 static int drbd_recv_header(struct drbd_connection *connection, struct packet_info *pi) 1198 { 1199 void *buffer = connection->data.rbuf; 1200 int err; 1201 1202 err = drbd_recv_all_warn(connection, buffer, drbd_header_size(connection)); 1203 if (err) 1204 return err; 1205 1206 err = decode_header(connection, buffer, pi); 1207 connection->last_received = jiffies; 1208 1209 return err; 1210 } 1211 1212 static int drbd_recv_header_maybe_unplug(struct drbd_connection *connection, struct packet_info *pi) 1213 { 1214 void *buffer = connection->data.rbuf; 1215 unsigned int size = drbd_header_size(connection); 1216 int err; 1217 1218 err = drbd_recv_short(connection->data.socket, buffer, size, MSG_NOSIGNAL|MSG_DONTWAIT); 1219 if (err != size) { 1220 /* If we have nothing in the receive buffer now, to reduce 1221 * application latency, try to drain the backend queues as 1222 * quickly as possible, and let remote TCP know what we have 1223 * received so far. */ 1224 if (err == -EAGAIN) { 1225 drbd_tcp_quickack(connection->data.socket); 1226 drbd_unplug_all_devices(connection); 1227 } 1228 if (err > 0) { 1229 buffer += err; 1230 size -= err; 1231 } 1232 err = drbd_recv_all_warn(connection, buffer, size); 1233 if (err) 1234 return err; 1235 } 1236 1237 err = decode_header(connection, connection->data.rbuf, pi); 1238 connection->last_received = jiffies; 1239 1240 return err; 1241 } 1242 /* This is blkdev_issue_flush, but asynchronous. 1243 * We want to submit to all component volumes in parallel, 1244 * then wait for all completions. 1245 */ 1246 struct issue_flush_context { 1247 atomic_t pending; 1248 int error; 1249 struct completion done; 1250 }; 1251 struct one_flush_context { 1252 struct drbd_device *device; 1253 struct issue_flush_context *ctx; 1254 }; 1255 1256 static void one_flush_endio(struct bio *bio) 1257 { 1258 struct one_flush_context *octx = bio->bi_private; 1259 struct drbd_device *device = octx->device; 1260 struct issue_flush_context *ctx = octx->ctx; 1261 1262 if (bio->bi_status) { 1263 ctx->error = blk_status_to_errno(bio->bi_status); 1264 drbd_info(device, "local disk FLUSH FAILED with status %d\n", bio->bi_status); 1265 } 1266 kfree(octx); 1267 bio_put(bio); 1268 1269 clear_bit(FLUSH_PENDING, &device->flags); 1270 put_ldev(device); 1271 kref_put(&device->kref, drbd_destroy_device); 1272 1273 if (atomic_dec_and_test(&ctx->pending)) 1274 complete(&ctx->done); 1275 } 1276 1277 static void submit_one_flush(struct drbd_device *device, struct issue_flush_context *ctx) 1278 { 1279 struct bio *bio = bio_alloc(GFP_NOIO, 0); 1280 struct one_flush_context *octx = kmalloc(sizeof(*octx), GFP_NOIO); 1281 if (!bio || !octx) { 1282 drbd_warn(device, "Could not allocate a bio, CANNOT ISSUE FLUSH\n"); 1283 /* FIXME: what else can I do now? disconnecting or detaching 1284 * really does not help to improve the state of the world, either. 1285 */ 1286 kfree(octx); 1287 if (bio) 1288 bio_put(bio); 1289 1290 ctx->error = -ENOMEM; 1291 put_ldev(device); 1292 kref_put(&device->kref, drbd_destroy_device); 1293 return; 1294 } 1295 1296 octx->device = device; 1297 octx->ctx = ctx; 1298 bio_set_dev(bio, device->ldev->backing_bdev); 1299 bio->bi_private = octx; 1300 bio->bi_end_io = one_flush_endio; 1301 bio->bi_opf = REQ_OP_FLUSH | REQ_PREFLUSH; 1302 1303 device->flush_jif = jiffies; 1304 set_bit(FLUSH_PENDING, &device->flags); 1305 atomic_inc(&ctx->pending); 1306 submit_bio(bio); 1307 } 1308 1309 static void drbd_flush(struct drbd_connection *connection) 1310 { 1311 if (connection->resource->write_ordering >= WO_BDEV_FLUSH) { 1312 struct drbd_peer_device *peer_device; 1313 struct issue_flush_context ctx; 1314 int vnr; 1315 1316 atomic_set(&ctx.pending, 1); 1317 ctx.error = 0; 1318 init_completion(&ctx.done); 1319 1320 rcu_read_lock(); 1321 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 1322 struct drbd_device *device = peer_device->device; 1323 1324 if (!get_ldev(device)) 1325 continue; 1326 kref_get(&device->kref); 1327 rcu_read_unlock(); 1328 1329 submit_one_flush(device, &ctx); 1330 1331 rcu_read_lock(); 1332 } 1333 rcu_read_unlock(); 1334 1335 /* Do we want to add a timeout, 1336 * if disk-timeout is set? */ 1337 if (!atomic_dec_and_test(&ctx.pending)) 1338 wait_for_completion(&ctx.done); 1339 1340 if (ctx.error) { 1341 /* would rather check on EOPNOTSUPP, but that is not reliable. 1342 * don't try again for ANY return value != 0 1343 * if (rv == -EOPNOTSUPP) */ 1344 /* Any error is already reported by bio_endio callback. */ 1345 drbd_bump_write_ordering(connection->resource, NULL, WO_DRAIN_IO); 1346 } 1347 } 1348 } 1349 1350 /** 1351 * drbd_may_finish_epoch() - Applies an epoch_event to the epoch's state, eventually finishes it. 1352 * @device: DRBD device. 1353 * @epoch: Epoch object. 1354 * @ev: Epoch event. 1355 */ 1356 static enum finish_epoch drbd_may_finish_epoch(struct drbd_connection *connection, 1357 struct drbd_epoch *epoch, 1358 enum epoch_event ev) 1359 { 1360 int epoch_size; 1361 struct drbd_epoch *next_epoch; 1362 enum finish_epoch rv = FE_STILL_LIVE; 1363 1364 spin_lock(&connection->epoch_lock); 1365 do { 1366 next_epoch = NULL; 1367 1368 epoch_size = atomic_read(&epoch->epoch_size); 1369 1370 switch (ev & ~EV_CLEANUP) { 1371 case EV_PUT: 1372 atomic_dec(&epoch->active); 1373 break; 1374 case EV_GOT_BARRIER_NR: 1375 set_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags); 1376 break; 1377 case EV_BECAME_LAST: 1378 /* nothing to do*/ 1379 break; 1380 } 1381 1382 if (epoch_size != 0 && 1383 atomic_read(&epoch->active) == 0 && 1384 (test_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags) || ev & EV_CLEANUP)) { 1385 if (!(ev & EV_CLEANUP)) { 1386 spin_unlock(&connection->epoch_lock); 1387 drbd_send_b_ack(epoch->connection, epoch->barrier_nr, epoch_size); 1388 spin_lock(&connection->epoch_lock); 1389 } 1390 #if 0 1391 /* FIXME: dec unacked on connection, once we have 1392 * something to count pending connection packets in. */ 1393 if (test_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags)) 1394 dec_unacked(epoch->connection); 1395 #endif 1396 1397 if (connection->current_epoch != epoch) { 1398 next_epoch = list_entry(epoch->list.next, struct drbd_epoch, list); 1399 list_del(&epoch->list); 1400 ev = EV_BECAME_LAST | (ev & EV_CLEANUP); 1401 connection->epochs--; 1402 kfree(epoch); 1403 1404 if (rv == FE_STILL_LIVE) 1405 rv = FE_DESTROYED; 1406 } else { 1407 epoch->flags = 0; 1408 atomic_set(&epoch->epoch_size, 0); 1409 /* atomic_set(&epoch->active, 0); is already zero */ 1410 if (rv == FE_STILL_LIVE) 1411 rv = FE_RECYCLED; 1412 } 1413 } 1414 1415 if (!next_epoch) 1416 break; 1417 1418 epoch = next_epoch; 1419 } while (1); 1420 1421 spin_unlock(&connection->epoch_lock); 1422 1423 return rv; 1424 } 1425 1426 static enum write_ordering_e 1427 max_allowed_wo(struct drbd_backing_dev *bdev, enum write_ordering_e wo) 1428 { 1429 struct disk_conf *dc; 1430 1431 dc = rcu_dereference(bdev->disk_conf); 1432 1433 if (wo == WO_BDEV_FLUSH && !dc->disk_flushes) 1434 wo = WO_DRAIN_IO; 1435 if (wo == WO_DRAIN_IO && !dc->disk_drain) 1436 wo = WO_NONE; 1437 1438 return wo; 1439 } 1440 1441 /** 1442 * drbd_bump_write_ordering() - Fall back to an other write ordering method 1443 * @connection: DRBD connection. 1444 * @wo: Write ordering method to try. 1445 */ 1446 void drbd_bump_write_ordering(struct drbd_resource *resource, struct drbd_backing_dev *bdev, 1447 enum write_ordering_e wo) 1448 { 1449 struct drbd_device *device; 1450 enum write_ordering_e pwo; 1451 int vnr; 1452 static char *write_ordering_str[] = { 1453 [WO_NONE] = "none", 1454 [WO_DRAIN_IO] = "drain", 1455 [WO_BDEV_FLUSH] = "flush", 1456 }; 1457 1458 pwo = resource->write_ordering; 1459 if (wo != WO_BDEV_FLUSH) 1460 wo = min(pwo, wo); 1461 rcu_read_lock(); 1462 idr_for_each_entry(&resource->devices, device, vnr) { 1463 if (get_ldev(device)) { 1464 wo = max_allowed_wo(device->ldev, wo); 1465 if (device->ldev == bdev) 1466 bdev = NULL; 1467 put_ldev(device); 1468 } 1469 } 1470 1471 if (bdev) 1472 wo = max_allowed_wo(bdev, wo); 1473 1474 rcu_read_unlock(); 1475 1476 resource->write_ordering = wo; 1477 if (pwo != resource->write_ordering || wo == WO_BDEV_FLUSH) 1478 drbd_info(resource, "Method to ensure write ordering: %s\n", write_ordering_str[resource->write_ordering]); 1479 } 1480 1481 /* 1482 * Mapping "discard" to ZEROOUT with UNMAP does not work for us: 1483 * Drivers have to "announce" q->limits.max_write_zeroes_sectors, or it 1484 * will directly go to fallback mode, submitting normal writes, and 1485 * never even try to UNMAP. 1486 * 1487 * And dm-thin does not do this (yet), mostly because in general it has 1488 * to assume that "skip_block_zeroing" is set. See also: 1489 * https://www.mail-archive.com/dm-devel%40redhat.com/msg07965.html 1490 * https://www.redhat.com/archives/dm-devel/2018-January/msg00271.html 1491 * 1492 * We *may* ignore the discard-zeroes-data setting, if so configured. 1493 * 1494 * Assumption is that this "discard_zeroes_data=0" is only because the backend 1495 * may ignore partial unaligned discards. 1496 * 1497 * LVM/DM thin as of at least 1498 * LVM version: 2.02.115(2)-RHEL7 (2015-01-28) 1499 * Library version: 1.02.93-RHEL7 (2015-01-28) 1500 * Driver version: 4.29.0 1501 * still behaves this way. 1502 * 1503 * For unaligned (wrt. alignment and granularity) or too small discards, 1504 * we zero-out the initial (and/or) trailing unaligned partial chunks, 1505 * but discard all the aligned full chunks. 1506 * 1507 * At least for LVM/DM thin, with skip_block_zeroing=false, 1508 * the result is effectively "discard_zeroes_data=1". 1509 */ 1510 /* flags: EE_TRIM|EE_ZEROOUT */ 1511 int drbd_issue_discard_or_zero_out(struct drbd_device *device, sector_t start, unsigned int nr_sectors, int flags) 1512 { 1513 struct block_device *bdev = device->ldev->backing_bdev; 1514 struct request_queue *q = bdev_get_queue(bdev); 1515 sector_t tmp, nr; 1516 unsigned int max_discard_sectors, granularity; 1517 int alignment; 1518 int err = 0; 1519 1520 if ((flags & EE_ZEROOUT) || !(flags & EE_TRIM)) 1521 goto zero_out; 1522 1523 /* Zero-sector (unknown) and one-sector granularities are the same. */ 1524 granularity = max(q->limits.discard_granularity >> 9, 1U); 1525 alignment = (bdev_discard_alignment(bdev) >> 9) % granularity; 1526 1527 max_discard_sectors = min(q->limits.max_discard_sectors, (1U << 22)); 1528 max_discard_sectors -= max_discard_sectors % granularity; 1529 if (unlikely(!max_discard_sectors)) 1530 goto zero_out; 1531 1532 if (nr_sectors < granularity) 1533 goto zero_out; 1534 1535 tmp = start; 1536 if (sector_div(tmp, granularity) != alignment) { 1537 if (nr_sectors < 2*granularity) 1538 goto zero_out; 1539 /* start + gran - (start + gran - align) % gran */ 1540 tmp = start + granularity - alignment; 1541 tmp = start + granularity - sector_div(tmp, granularity); 1542 1543 nr = tmp - start; 1544 /* don't flag BLKDEV_ZERO_NOUNMAP, we don't know how many 1545 * layers are below us, some may have smaller granularity */ 1546 err |= blkdev_issue_zeroout(bdev, start, nr, GFP_NOIO, 0); 1547 nr_sectors -= nr; 1548 start = tmp; 1549 } 1550 while (nr_sectors >= max_discard_sectors) { 1551 err |= blkdev_issue_discard(bdev, start, max_discard_sectors, GFP_NOIO, 0); 1552 nr_sectors -= max_discard_sectors; 1553 start += max_discard_sectors; 1554 } 1555 if (nr_sectors) { 1556 /* max_discard_sectors is unsigned int (and a multiple of 1557 * granularity, we made sure of that above already); 1558 * nr is < max_discard_sectors; 1559 * I don't need sector_div here, even though nr is sector_t */ 1560 nr = nr_sectors; 1561 nr -= (unsigned int)nr % granularity; 1562 if (nr) { 1563 err |= blkdev_issue_discard(bdev, start, nr, GFP_NOIO, 0); 1564 nr_sectors -= nr; 1565 start += nr; 1566 } 1567 } 1568 zero_out: 1569 if (nr_sectors) { 1570 err |= blkdev_issue_zeroout(bdev, start, nr_sectors, GFP_NOIO, 1571 (flags & EE_TRIM) ? 0 : BLKDEV_ZERO_NOUNMAP); 1572 } 1573 return err != 0; 1574 } 1575 1576 static bool can_do_reliable_discards(struct drbd_device *device) 1577 { 1578 struct request_queue *q = bdev_get_queue(device->ldev->backing_bdev); 1579 struct disk_conf *dc; 1580 bool can_do; 1581 1582 if (!blk_queue_discard(q)) 1583 return false; 1584 1585 rcu_read_lock(); 1586 dc = rcu_dereference(device->ldev->disk_conf); 1587 can_do = dc->discard_zeroes_if_aligned; 1588 rcu_read_unlock(); 1589 return can_do; 1590 } 1591 1592 static void drbd_issue_peer_discard_or_zero_out(struct drbd_device *device, struct drbd_peer_request *peer_req) 1593 { 1594 /* If the backend cannot discard, or does not guarantee 1595 * read-back zeroes in discarded ranges, we fall back to 1596 * zero-out. Unless configuration specifically requested 1597 * otherwise. */ 1598 if (!can_do_reliable_discards(device)) 1599 peer_req->flags |= EE_ZEROOUT; 1600 1601 if (drbd_issue_discard_or_zero_out(device, peer_req->i.sector, 1602 peer_req->i.size >> 9, peer_req->flags & (EE_ZEROOUT|EE_TRIM))) 1603 peer_req->flags |= EE_WAS_ERROR; 1604 drbd_endio_write_sec_final(peer_req); 1605 } 1606 1607 static void drbd_issue_peer_wsame(struct drbd_device *device, 1608 struct drbd_peer_request *peer_req) 1609 { 1610 struct block_device *bdev = device->ldev->backing_bdev; 1611 sector_t s = peer_req->i.sector; 1612 sector_t nr = peer_req->i.size >> 9; 1613 if (blkdev_issue_write_same(bdev, s, nr, GFP_NOIO, peer_req->pages)) 1614 peer_req->flags |= EE_WAS_ERROR; 1615 drbd_endio_write_sec_final(peer_req); 1616 } 1617 1618 1619 /** 1620 * drbd_submit_peer_request() 1621 * @device: DRBD device. 1622 * @peer_req: peer request 1623 * @rw: flag field, see bio->bi_opf 1624 * 1625 * May spread the pages to multiple bios, 1626 * depending on bio_add_page restrictions. 1627 * 1628 * Returns 0 if all bios have been submitted, 1629 * -ENOMEM if we could not allocate enough bios, 1630 * -ENOSPC (any better suggestion?) if we have not been able to bio_add_page a 1631 * single page to an empty bio (which should never happen and likely indicates 1632 * that the lower level IO stack is in some way broken). This has been observed 1633 * on certain Xen deployments. 1634 */ 1635 /* TODO allocate from our own bio_set. */ 1636 int drbd_submit_peer_request(struct drbd_device *device, 1637 struct drbd_peer_request *peer_req, 1638 const unsigned op, const unsigned op_flags, 1639 const int fault_type) 1640 { 1641 struct bio *bios = NULL; 1642 struct bio *bio; 1643 struct page *page = peer_req->pages; 1644 sector_t sector = peer_req->i.sector; 1645 unsigned data_size = peer_req->i.size; 1646 unsigned n_bios = 0; 1647 unsigned nr_pages = (data_size + PAGE_SIZE -1) >> PAGE_SHIFT; 1648 int err = -ENOMEM; 1649 1650 /* TRIM/DISCARD: for now, always use the helper function 1651 * blkdev_issue_zeroout(..., discard=true). 1652 * It's synchronous, but it does the right thing wrt. bio splitting. 1653 * Correctness first, performance later. Next step is to code an 1654 * asynchronous variant of the same. 1655 */ 1656 if (peer_req->flags & (EE_TRIM|EE_WRITE_SAME|EE_ZEROOUT)) { 1657 /* wait for all pending IO completions, before we start 1658 * zeroing things out. */ 1659 conn_wait_active_ee_empty(peer_req->peer_device->connection); 1660 /* add it to the active list now, 1661 * so we can find it to present it in debugfs */ 1662 peer_req->submit_jif = jiffies; 1663 peer_req->flags |= EE_SUBMITTED; 1664 1665 /* If this was a resync request from receive_rs_deallocated(), 1666 * it is already on the sync_ee list */ 1667 if (list_empty(&peer_req->w.list)) { 1668 spin_lock_irq(&device->resource->req_lock); 1669 list_add_tail(&peer_req->w.list, &device->active_ee); 1670 spin_unlock_irq(&device->resource->req_lock); 1671 } 1672 1673 if (peer_req->flags & (EE_TRIM|EE_ZEROOUT)) 1674 drbd_issue_peer_discard_or_zero_out(device, peer_req); 1675 else /* EE_WRITE_SAME */ 1676 drbd_issue_peer_wsame(device, peer_req); 1677 return 0; 1678 } 1679 1680 /* In most cases, we will only need one bio. But in case the lower 1681 * level restrictions happen to be different at this offset on this 1682 * side than those of the sending peer, we may need to submit the 1683 * request in more than one bio. 1684 * 1685 * Plain bio_alloc is good enough here, this is no DRBD internally 1686 * generated bio, but a bio allocated on behalf of the peer. 1687 */ 1688 next_bio: 1689 bio = bio_alloc(GFP_NOIO, nr_pages); 1690 if (!bio) { 1691 drbd_err(device, "submit_ee: Allocation of a bio failed (nr_pages=%u)\n", nr_pages); 1692 goto fail; 1693 } 1694 /* > peer_req->i.sector, unless this is the first bio */ 1695 bio->bi_iter.bi_sector = sector; 1696 bio_set_dev(bio, device->ldev->backing_bdev); 1697 bio_set_op_attrs(bio, op, op_flags); 1698 bio->bi_private = peer_req; 1699 bio->bi_end_io = drbd_peer_request_endio; 1700 1701 bio->bi_next = bios; 1702 bios = bio; 1703 ++n_bios; 1704 1705 page_chain_for_each(page) { 1706 unsigned len = min_t(unsigned, data_size, PAGE_SIZE); 1707 if (!bio_add_page(bio, page, len, 0)) 1708 goto next_bio; 1709 data_size -= len; 1710 sector += len >> 9; 1711 --nr_pages; 1712 } 1713 D_ASSERT(device, data_size == 0); 1714 D_ASSERT(device, page == NULL); 1715 1716 atomic_set(&peer_req->pending_bios, n_bios); 1717 /* for debugfs: update timestamp, mark as submitted */ 1718 peer_req->submit_jif = jiffies; 1719 peer_req->flags |= EE_SUBMITTED; 1720 do { 1721 bio = bios; 1722 bios = bios->bi_next; 1723 bio->bi_next = NULL; 1724 1725 drbd_generic_make_request(device, fault_type, bio); 1726 } while (bios); 1727 return 0; 1728 1729 fail: 1730 while (bios) { 1731 bio = bios; 1732 bios = bios->bi_next; 1733 bio_put(bio); 1734 } 1735 return err; 1736 } 1737 1738 static void drbd_remove_epoch_entry_interval(struct drbd_device *device, 1739 struct drbd_peer_request *peer_req) 1740 { 1741 struct drbd_interval *i = &peer_req->i; 1742 1743 drbd_remove_interval(&device->write_requests, i); 1744 drbd_clear_interval(i); 1745 1746 /* Wake up any processes waiting for this peer request to complete. */ 1747 if (i->waiting) 1748 wake_up(&device->misc_wait); 1749 } 1750 1751 static void conn_wait_active_ee_empty(struct drbd_connection *connection) 1752 { 1753 struct drbd_peer_device *peer_device; 1754 int vnr; 1755 1756 rcu_read_lock(); 1757 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 1758 struct drbd_device *device = peer_device->device; 1759 1760 kref_get(&device->kref); 1761 rcu_read_unlock(); 1762 drbd_wait_ee_list_empty(device, &device->active_ee); 1763 kref_put(&device->kref, drbd_destroy_device); 1764 rcu_read_lock(); 1765 } 1766 rcu_read_unlock(); 1767 } 1768 1769 static int receive_Barrier(struct drbd_connection *connection, struct packet_info *pi) 1770 { 1771 int rv; 1772 struct p_barrier *p = pi->data; 1773 struct drbd_epoch *epoch; 1774 1775 /* FIXME these are unacked on connection, 1776 * not a specific (peer)device. 1777 */ 1778 connection->current_epoch->barrier_nr = p->barrier; 1779 connection->current_epoch->connection = connection; 1780 rv = drbd_may_finish_epoch(connection, connection->current_epoch, EV_GOT_BARRIER_NR); 1781 1782 /* P_BARRIER_ACK may imply that the corresponding extent is dropped from 1783 * the activity log, which means it would not be resynced in case the 1784 * R_PRIMARY crashes now. 1785 * Therefore we must send the barrier_ack after the barrier request was 1786 * completed. */ 1787 switch (connection->resource->write_ordering) { 1788 case WO_NONE: 1789 if (rv == FE_RECYCLED) 1790 return 0; 1791 1792 /* receiver context, in the writeout path of the other node. 1793 * avoid potential distributed deadlock */ 1794 epoch = kmalloc(sizeof(struct drbd_epoch), GFP_NOIO); 1795 if (epoch) 1796 break; 1797 else 1798 drbd_warn(connection, "Allocation of an epoch failed, slowing down\n"); 1799 /* Fall through */ 1800 1801 case WO_BDEV_FLUSH: 1802 case WO_DRAIN_IO: 1803 conn_wait_active_ee_empty(connection); 1804 drbd_flush(connection); 1805 1806 if (atomic_read(&connection->current_epoch->epoch_size)) { 1807 epoch = kmalloc(sizeof(struct drbd_epoch), GFP_NOIO); 1808 if (epoch) 1809 break; 1810 } 1811 1812 return 0; 1813 default: 1814 drbd_err(connection, "Strangeness in connection->write_ordering %d\n", 1815 connection->resource->write_ordering); 1816 return -EIO; 1817 } 1818 1819 epoch->flags = 0; 1820 atomic_set(&epoch->epoch_size, 0); 1821 atomic_set(&epoch->active, 0); 1822 1823 spin_lock(&connection->epoch_lock); 1824 if (atomic_read(&connection->current_epoch->epoch_size)) { 1825 list_add(&epoch->list, &connection->current_epoch->list); 1826 connection->current_epoch = epoch; 1827 connection->epochs++; 1828 } else { 1829 /* The current_epoch got recycled while we allocated this one... */ 1830 kfree(epoch); 1831 } 1832 spin_unlock(&connection->epoch_lock); 1833 1834 return 0; 1835 } 1836 1837 /* quick wrapper in case payload size != request_size (write same) */ 1838 static void drbd_csum_ee_size(struct crypto_shash *h, 1839 struct drbd_peer_request *r, void *d, 1840 unsigned int payload_size) 1841 { 1842 unsigned int tmp = r->i.size; 1843 r->i.size = payload_size; 1844 drbd_csum_ee(h, r, d); 1845 r->i.size = tmp; 1846 } 1847 1848 /* used from receive_RSDataReply (recv_resync_read) 1849 * and from receive_Data. 1850 * data_size: actual payload ("data in") 1851 * for normal writes that is bi_size. 1852 * for discards, that is zero. 1853 * for write same, it is logical_block_size. 1854 * both trim and write same have the bi_size ("data len to be affected") 1855 * as extra argument in the packet header. 1856 */ 1857 static struct drbd_peer_request * 1858 read_in_block(struct drbd_peer_device *peer_device, u64 id, sector_t sector, 1859 struct packet_info *pi) __must_hold(local) 1860 { 1861 struct drbd_device *device = peer_device->device; 1862 const sector_t capacity = drbd_get_capacity(device->this_bdev); 1863 struct drbd_peer_request *peer_req; 1864 struct page *page; 1865 int digest_size, err; 1866 unsigned int data_size = pi->size, ds; 1867 void *dig_in = peer_device->connection->int_dig_in; 1868 void *dig_vv = peer_device->connection->int_dig_vv; 1869 unsigned long *data; 1870 struct p_trim *trim = (pi->cmd == P_TRIM) ? pi->data : NULL; 1871 struct p_trim *zeroes = (pi->cmd == P_ZEROES) ? pi->data : NULL; 1872 struct p_trim *wsame = (pi->cmd == P_WSAME) ? pi->data : NULL; 1873 1874 digest_size = 0; 1875 if (!trim && peer_device->connection->peer_integrity_tfm) { 1876 digest_size = crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm); 1877 /* 1878 * FIXME: Receive the incoming digest into the receive buffer 1879 * here, together with its struct p_data? 1880 */ 1881 err = drbd_recv_all_warn(peer_device->connection, dig_in, digest_size); 1882 if (err) 1883 return NULL; 1884 data_size -= digest_size; 1885 } 1886 1887 /* assume request_size == data_size, but special case trim and wsame. */ 1888 ds = data_size; 1889 if (trim) { 1890 if (!expect(data_size == 0)) 1891 return NULL; 1892 ds = be32_to_cpu(trim->size); 1893 } else if (zeroes) { 1894 if (!expect(data_size == 0)) 1895 return NULL; 1896 ds = be32_to_cpu(zeroes->size); 1897 } else if (wsame) { 1898 if (data_size != queue_logical_block_size(device->rq_queue)) { 1899 drbd_err(peer_device, "data size (%u) != drbd logical block size (%u)\n", 1900 data_size, queue_logical_block_size(device->rq_queue)); 1901 return NULL; 1902 } 1903 if (data_size != bdev_logical_block_size(device->ldev->backing_bdev)) { 1904 drbd_err(peer_device, "data size (%u) != backend logical block size (%u)\n", 1905 data_size, bdev_logical_block_size(device->ldev->backing_bdev)); 1906 return NULL; 1907 } 1908 ds = be32_to_cpu(wsame->size); 1909 } 1910 1911 if (!expect(IS_ALIGNED(ds, 512))) 1912 return NULL; 1913 if (trim || wsame || zeroes) { 1914 if (!expect(ds <= (DRBD_MAX_BBIO_SECTORS << 9))) 1915 return NULL; 1916 } else if (!expect(ds <= DRBD_MAX_BIO_SIZE)) 1917 return NULL; 1918 1919 /* even though we trust out peer, 1920 * we sometimes have to double check. */ 1921 if (sector + (ds>>9) > capacity) { 1922 drbd_err(device, "request from peer beyond end of local disk: " 1923 "capacity: %llus < sector: %llus + size: %u\n", 1924 (unsigned long long)capacity, 1925 (unsigned long long)sector, ds); 1926 return NULL; 1927 } 1928 1929 /* GFP_NOIO, because we must not cause arbitrary write-out: in a DRBD 1930 * "criss-cross" setup, that might cause write-out on some other DRBD, 1931 * which in turn might block on the other node at this very place. */ 1932 peer_req = drbd_alloc_peer_req(peer_device, id, sector, ds, data_size, GFP_NOIO); 1933 if (!peer_req) 1934 return NULL; 1935 1936 peer_req->flags |= EE_WRITE; 1937 if (trim) { 1938 peer_req->flags |= EE_TRIM; 1939 return peer_req; 1940 } 1941 if (zeroes) { 1942 peer_req->flags |= EE_ZEROOUT; 1943 return peer_req; 1944 } 1945 if (wsame) 1946 peer_req->flags |= EE_WRITE_SAME; 1947 1948 /* receive payload size bytes into page chain */ 1949 ds = data_size; 1950 page = peer_req->pages; 1951 page_chain_for_each(page) { 1952 unsigned len = min_t(int, ds, PAGE_SIZE); 1953 data = kmap(page); 1954 err = drbd_recv_all_warn(peer_device->connection, data, len); 1955 if (drbd_insert_fault(device, DRBD_FAULT_RECEIVE)) { 1956 drbd_err(device, "Fault injection: Corrupting data on receive\n"); 1957 data[0] = data[0] ^ (unsigned long)-1; 1958 } 1959 kunmap(page); 1960 if (err) { 1961 drbd_free_peer_req(device, peer_req); 1962 return NULL; 1963 } 1964 ds -= len; 1965 } 1966 1967 if (digest_size) { 1968 drbd_csum_ee_size(peer_device->connection->peer_integrity_tfm, peer_req, dig_vv, data_size); 1969 if (memcmp(dig_in, dig_vv, digest_size)) { 1970 drbd_err(device, "Digest integrity check FAILED: %llus +%u\n", 1971 (unsigned long long)sector, data_size); 1972 drbd_free_peer_req(device, peer_req); 1973 return NULL; 1974 } 1975 } 1976 device->recv_cnt += data_size >> 9; 1977 return peer_req; 1978 } 1979 1980 /* drbd_drain_block() just takes a data block 1981 * out of the socket input buffer, and discards it. 1982 */ 1983 static int drbd_drain_block(struct drbd_peer_device *peer_device, int data_size) 1984 { 1985 struct page *page; 1986 int err = 0; 1987 void *data; 1988 1989 if (!data_size) 1990 return 0; 1991 1992 page = drbd_alloc_pages(peer_device, 1, 1); 1993 1994 data = kmap(page); 1995 while (data_size) { 1996 unsigned int len = min_t(int, data_size, PAGE_SIZE); 1997 1998 err = drbd_recv_all_warn(peer_device->connection, data, len); 1999 if (err) 2000 break; 2001 data_size -= len; 2002 } 2003 kunmap(page); 2004 drbd_free_pages(peer_device->device, page, 0); 2005 return err; 2006 } 2007 2008 static int recv_dless_read(struct drbd_peer_device *peer_device, struct drbd_request *req, 2009 sector_t sector, int data_size) 2010 { 2011 struct bio_vec bvec; 2012 struct bvec_iter iter; 2013 struct bio *bio; 2014 int digest_size, err, expect; 2015 void *dig_in = peer_device->connection->int_dig_in; 2016 void *dig_vv = peer_device->connection->int_dig_vv; 2017 2018 digest_size = 0; 2019 if (peer_device->connection->peer_integrity_tfm) { 2020 digest_size = crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm); 2021 err = drbd_recv_all_warn(peer_device->connection, dig_in, digest_size); 2022 if (err) 2023 return err; 2024 data_size -= digest_size; 2025 } 2026 2027 /* optimistically update recv_cnt. if receiving fails below, 2028 * we disconnect anyways, and counters will be reset. */ 2029 peer_device->device->recv_cnt += data_size>>9; 2030 2031 bio = req->master_bio; 2032 D_ASSERT(peer_device->device, sector == bio->bi_iter.bi_sector); 2033 2034 bio_for_each_segment(bvec, bio, iter) { 2035 void *mapped = kmap(bvec.bv_page) + bvec.bv_offset; 2036 expect = min_t(int, data_size, bvec.bv_len); 2037 err = drbd_recv_all_warn(peer_device->connection, mapped, expect); 2038 kunmap(bvec.bv_page); 2039 if (err) 2040 return err; 2041 data_size -= expect; 2042 } 2043 2044 if (digest_size) { 2045 drbd_csum_bio(peer_device->connection->peer_integrity_tfm, bio, dig_vv); 2046 if (memcmp(dig_in, dig_vv, digest_size)) { 2047 drbd_err(peer_device, "Digest integrity check FAILED. Broken NICs?\n"); 2048 return -EINVAL; 2049 } 2050 } 2051 2052 D_ASSERT(peer_device->device, data_size == 0); 2053 return 0; 2054 } 2055 2056 /* 2057 * e_end_resync_block() is called in ack_sender context via 2058 * drbd_finish_peer_reqs(). 2059 */ 2060 static int e_end_resync_block(struct drbd_work *w, int unused) 2061 { 2062 struct drbd_peer_request *peer_req = 2063 container_of(w, struct drbd_peer_request, w); 2064 struct drbd_peer_device *peer_device = peer_req->peer_device; 2065 struct drbd_device *device = peer_device->device; 2066 sector_t sector = peer_req->i.sector; 2067 int err; 2068 2069 D_ASSERT(device, drbd_interval_empty(&peer_req->i)); 2070 2071 if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) { 2072 drbd_set_in_sync(device, sector, peer_req->i.size); 2073 err = drbd_send_ack(peer_device, P_RS_WRITE_ACK, peer_req); 2074 } else { 2075 /* Record failure to sync */ 2076 drbd_rs_failed_io(device, sector, peer_req->i.size); 2077 2078 err = drbd_send_ack(peer_device, P_NEG_ACK, peer_req); 2079 } 2080 dec_unacked(device); 2081 2082 return err; 2083 } 2084 2085 static int recv_resync_read(struct drbd_peer_device *peer_device, sector_t sector, 2086 struct packet_info *pi) __releases(local) 2087 { 2088 struct drbd_device *device = peer_device->device; 2089 struct drbd_peer_request *peer_req; 2090 2091 peer_req = read_in_block(peer_device, ID_SYNCER, sector, pi); 2092 if (!peer_req) 2093 goto fail; 2094 2095 dec_rs_pending(device); 2096 2097 inc_unacked(device); 2098 /* corresponding dec_unacked() in e_end_resync_block() 2099 * respective _drbd_clear_done_ee */ 2100 2101 peer_req->w.cb = e_end_resync_block; 2102 peer_req->submit_jif = jiffies; 2103 2104 spin_lock_irq(&device->resource->req_lock); 2105 list_add_tail(&peer_req->w.list, &device->sync_ee); 2106 spin_unlock_irq(&device->resource->req_lock); 2107 2108 atomic_add(pi->size >> 9, &device->rs_sect_ev); 2109 if (drbd_submit_peer_request(device, peer_req, REQ_OP_WRITE, 0, 2110 DRBD_FAULT_RS_WR) == 0) 2111 return 0; 2112 2113 /* don't care for the reason here */ 2114 drbd_err(device, "submit failed, triggering re-connect\n"); 2115 spin_lock_irq(&device->resource->req_lock); 2116 list_del(&peer_req->w.list); 2117 spin_unlock_irq(&device->resource->req_lock); 2118 2119 drbd_free_peer_req(device, peer_req); 2120 fail: 2121 put_ldev(device); 2122 return -EIO; 2123 } 2124 2125 static struct drbd_request * 2126 find_request(struct drbd_device *device, struct rb_root *root, u64 id, 2127 sector_t sector, bool missing_ok, const char *func) 2128 { 2129 struct drbd_request *req; 2130 2131 /* Request object according to our peer */ 2132 req = (struct drbd_request *)(unsigned long)id; 2133 if (drbd_contains_interval(root, sector, &req->i) && req->i.local) 2134 return req; 2135 if (!missing_ok) { 2136 drbd_err(device, "%s: failed to find request 0x%lx, sector %llus\n", func, 2137 (unsigned long)id, (unsigned long long)sector); 2138 } 2139 return NULL; 2140 } 2141 2142 static int receive_DataReply(struct drbd_connection *connection, struct packet_info *pi) 2143 { 2144 struct drbd_peer_device *peer_device; 2145 struct drbd_device *device; 2146 struct drbd_request *req; 2147 sector_t sector; 2148 int err; 2149 struct p_data *p = pi->data; 2150 2151 peer_device = conn_peer_device(connection, pi->vnr); 2152 if (!peer_device) 2153 return -EIO; 2154 device = peer_device->device; 2155 2156 sector = be64_to_cpu(p->sector); 2157 2158 spin_lock_irq(&device->resource->req_lock); 2159 req = find_request(device, &device->read_requests, p->block_id, sector, false, __func__); 2160 spin_unlock_irq(&device->resource->req_lock); 2161 if (unlikely(!req)) 2162 return -EIO; 2163 2164 /* hlist_del(&req->collision) is done in _req_may_be_done, to avoid 2165 * special casing it there for the various failure cases. 2166 * still no race with drbd_fail_pending_reads */ 2167 err = recv_dless_read(peer_device, req, sector, pi->size); 2168 if (!err) 2169 req_mod(req, DATA_RECEIVED); 2170 /* else: nothing. handled from drbd_disconnect... 2171 * I don't think we may complete this just yet 2172 * in case we are "on-disconnect: freeze" */ 2173 2174 return err; 2175 } 2176 2177 static int receive_RSDataReply(struct drbd_connection *connection, struct packet_info *pi) 2178 { 2179 struct drbd_peer_device *peer_device; 2180 struct drbd_device *device; 2181 sector_t sector; 2182 int err; 2183 struct p_data *p = pi->data; 2184 2185 peer_device = conn_peer_device(connection, pi->vnr); 2186 if (!peer_device) 2187 return -EIO; 2188 device = peer_device->device; 2189 2190 sector = be64_to_cpu(p->sector); 2191 D_ASSERT(device, p->block_id == ID_SYNCER); 2192 2193 if (get_ldev(device)) { 2194 /* data is submitted to disk within recv_resync_read. 2195 * corresponding put_ldev done below on error, 2196 * or in drbd_peer_request_endio. */ 2197 err = recv_resync_read(peer_device, sector, pi); 2198 } else { 2199 if (__ratelimit(&drbd_ratelimit_state)) 2200 drbd_err(device, "Can not write resync data to local disk.\n"); 2201 2202 err = drbd_drain_block(peer_device, pi->size); 2203 2204 drbd_send_ack_dp(peer_device, P_NEG_ACK, p, pi->size); 2205 } 2206 2207 atomic_add(pi->size >> 9, &device->rs_sect_in); 2208 2209 return err; 2210 } 2211 2212 static void restart_conflicting_writes(struct drbd_device *device, 2213 sector_t sector, int size) 2214 { 2215 struct drbd_interval *i; 2216 struct drbd_request *req; 2217 2218 drbd_for_each_overlap(i, &device->write_requests, sector, size) { 2219 if (!i->local) 2220 continue; 2221 req = container_of(i, struct drbd_request, i); 2222 if (req->rq_state & RQ_LOCAL_PENDING || 2223 !(req->rq_state & RQ_POSTPONED)) 2224 continue; 2225 /* as it is RQ_POSTPONED, this will cause it to 2226 * be queued on the retry workqueue. */ 2227 __req_mod(req, CONFLICT_RESOLVED, NULL); 2228 } 2229 } 2230 2231 /* 2232 * e_end_block() is called in ack_sender context via drbd_finish_peer_reqs(). 2233 */ 2234 static int e_end_block(struct drbd_work *w, int cancel) 2235 { 2236 struct drbd_peer_request *peer_req = 2237 container_of(w, struct drbd_peer_request, w); 2238 struct drbd_peer_device *peer_device = peer_req->peer_device; 2239 struct drbd_device *device = peer_device->device; 2240 sector_t sector = peer_req->i.sector; 2241 int err = 0, pcmd; 2242 2243 if (peer_req->flags & EE_SEND_WRITE_ACK) { 2244 if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) { 2245 pcmd = (device->state.conn >= C_SYNC_SOURCE && 2246 device->state.conn <= C_PAUSED_SYNC_T && 2247 peer_req->flags & EE_MAY_SET_IN_SYNC) ? 2248 P_RS_WRITE_ACK : P_WRITE_ACK; 2249 err = drbd_send_ack(peer_device, pcmd, peer_req); 2250 if (pcmd == P_RS_WRITE_ACK) 2251 drbd_set_in_sync(device, sector, peer_req->i.size); 2252 } else { 2253 err = drbd_send_ack(peer_device, P_NEG_ACK, peer_req); 2254 /* we expect it to be marked out of sync anyways... 2255 * maybe assert this? */ 2256 } 2257 dec_unacked(device); 2258 } 2259 2260 /* we delete from the conflict detection hash _after_ we sent out the 2261 * P_WRITE_ACK / P_NEG_ACK, to get the sequence number right. */ 2262 if (peer_req->flags & EE_IN_INTERVAL_TREE) { 2263 spin_lock_irq(&device->resource->req_lock); 2264 D_ASSERT(device, !drbd_interval_empty(&peer_req->i)); 2265 drbd_remove_epoch_entry_interval(device, peer_req); 2266 if (peer_req->flags & EE_RESTART_REQUESTS) 2267 restart_conflicting_writes(device, sector, peer_req->i.size); 2268 spin_unlock_irq(&device->resource->req_lock); 2269 } else 2270 D_ASSERT(device, drbd_interval_empty(&peer_req->i)); 2271 2272 drbd_may_finish_epoch(peer_device->connection, peer_req->epoch, EV_PUT + (cancel ? EV_CLEANUP : 0)); 2273 2274 return err; 2275 } 2276 2277 static int e_send_ack(struct drbd_work *w, enum drbd_packet ack) 2278 { 2279 struct drbd_peer_request *peer_req = 2280 container_of(w, struct drbd_peer_request, w); 2281 struct drbd_peer_device *peer_device = peer_req->peer_device; 2282 int err; 2283 2284 err = drbd_send_ack(peer_device, ack, peer_req); 2285 dec_unacked(peer_device->device); 2286 2287 return err; 2288 } 2289 2290 static int e_send_superseded(struct drbd_work *w, int unused) 2291 { 2292 return e_send_ack(w, P_SUPERSEDED); 2293 } 2294 2295 static int e_send_retry_write(struct drbd_work *w, int unused) 2296 { 2297 struct drbd_peer_request *peer_req = 2298 container_of(w, struct drbd_peer_request, w); 2299 struct drbd_connection *connection = peer_req->peer_device->connection; 2300 2301 return e_send_ack(w, connection->agreed_pro_version >= 100 ? 2302 P_RETRY_WRITE : P_SUPERSEDED); 2303 } 2304 2305 static bool seq_greater(u32 a, u32 b) 2306 { 2307 /* 2308 * We assume 32-bit wrap-around here. 2309 * For 24-bit wrap-around, we would have to shift: 2310 * a <<= 8; b <<= 8; 2311 */ 2312 return (s32)a - (s32)b > 0; 2313 } 2314 2315 static u32 seq_max(u32 a, u32 b) 2316 { 2317 return seq_greater(a, b) ? a : b; 2318 } 2319 2320 static void update_peer_seq(struct drbd_peer_device *peer_device, unsigned int peer_seq) 2321 { 2322 struct drbd_device *device = peer_device->device; 2323 unsigned int newest_peer_seq; 2324 2325 if (test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags)) { 2326 spin_lock(&device->peer_seq_lock); 2327 newest_peer_seq = seq_max(device->peer_seq, peer_seq); 2328 device->peer_seq = newest_peer_seq; 2329 spin_unlock(&device->peer_seq_lock); 2330 /* wake up only if we actually changed device->peer_seq */ 2331 if (peer_seq == newest_peer_seq) 2332 wake_up(&device->seq_wait); 2333 } 2334 } 2335 2336 static inline int overlaps(sector_t s1, int l1, sector_t s2, int l2) 2337 { 2338 return !((s1 + (l1>>9) <= s2) || (s1 >= s2 + (l2>>9))); 2339 } 2340 2341 /* maybe change sync_ee into interval trees as well? */ 2342 static bool overlapping_resync_write(struct drbd_device *device, struct drbd_peer_request *peer_req) 2343 { 2344 struct drbd_peer_request *rs_req; 2345 bool rv = false; 2346 2347 spin_lock_irq(&device->resource->req_lock); 2348 list_for_each_entry(rs_req, &device->sync_ee, w.list) { 2349 if (overlaps(peer_req->i.sector, peer_req->i.size, 2350 rs_req->i.sector, rs_req->i.size)) { 2351 rv = true; 2352 break; 2353 } 2354 } 2355 spin_unlock_irq(&device->resource->req_lock); 2356 2357 return rv; 2358 } 2359 2360 /* Called from receive_Data. 2361 * Synchronize packets on sock with packets on msock. 2362 * 2363 * This is here so even when a P_DATA packet traveling via sock overtook an Ack 2364 * packet traveling on msock, they are still processed in the order they have 2365 * been sent. 2366 * 2367 * Note: we don't care for Ack packets overtaking P_DATA packets. 2368 * 2369 * In case packet_seq is larger than device->peer_seq number, there are 2370 * outstanding packets on the msock. We wait for them to arrive. 2371 * In case we are the logically next packet, we update device->peer_seq 2372 * ourselves. Correctly handles 32bit wrap around. 2373 * 2374 * Assume we have a 10 GBit connection, that is about 1<<30 byte per second, 2375 * about 1<<21 sectors per second. So "worst" case, we have 1<<3 == 8 seconds 2376 * for the 24bit wrap (historical atomic_t guarantee on some archs), and we have 2377 * 1<<9 == 512 seconds aka ages for the 32bit wrap around... 2378 * 2379 * returns 0 if we may process the packet, 2380 * -ERESTARTSYS if we were interrupted (by disconnect signal). */ 2381 static int wait_for_and_update_peer_seq(struct drbd_peer_device *peer_device, const u32 peer_seq) 2382 { 2383 struct drbd_device *device = peer_device->device; 2384 DEFINE_WAIT(wait); 2385 long timeout; 2386 int ret = 0, tp; 2387 2388 if (!test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags)) 2389 return 0; 2390 2391 spin_lock(&device->peer_seq_lock); 2392 for (;;) { 2393 if (!seq_greater(peer_seq - 1, device->peer_seq)) { 2394 device->peer_seq = seq_max(device->peer_seq, peer_seq); 2395 break; 2396 } 2397 2398 if (signal_pending(current)) { 2399 ret = -ERESTARTSYS; 2400 break; 2401 } 2402 2403 rcu_read_lock(); 2404 tp = rcu_dereference(peer_device->connection->net_conf)->two_primaries; 2405 rcu_read_unlock(); 2406 2407 if (!tp) 2408 break; 2409 2410 /* Only need to wait if two_primaries is enabled */ 2411 prepare_to_wait(&device->seq_wait, &wait, TASK_INTERRUPTIBLE); 2412 spin_unlock(&device->peer_seq_lock); 2413 rcu_read_lock(); 2414 timeout = rcu_dereference(peer_device->connection->net_conf)->ping_timeo*HZ/10; 2415 rcu_read_unlock(); 2416 timeout = schedule_timeout(timeout); 2417 spin_lock(&device->peer_seq_lock); 2418 if (!timeout) { 2419 ret = -ETIMEDOUT; 2420 drbd_err(device, "Timed out waiting for missing ack packets; disconnecting\n"); 2421 break; 2422 } 2423 } 2424 spin_unlock(&device->peer_seq_lock); 2425 finish_wait(&device->seq_wait, &wait); 2426 return ret; 2427 } 2428 2429 /* see also bio_flags_to_wire() 2430 * DRBD_REQ_*, because we need to semantically map the flags to data packet 2431 * flags and back. We may replicate to other kernel versions. */ 2432 static unsigned long wire_flags_to_bio_flags(u32 dpf) 2433 { 2434 return (dpf & DP_RW_SYNC ? REQ_SYNC : 0) | 2435 (dpf & DP_FUA ? REQ_FUA : 0) | 2436 (dpf & DP_FLUSH ? REQ_PREFLUSH : 0); 2437 } 2438 2439 static unsigned long wire_flags_to_bio_op(u32 dpf) 2440 { 2441 if (dpf & DP_ZEROES) 2442 return REQ_OP_WRITE_ZEROES; 2443 if (dpf & DP_DISCARD) 2444 return REQ_OP_DISCARD; 2445 if (dpf & DP_WSAME) 2446 return REQ_OP_WRITE_SAME; 2447 else 2448 return REQ_OP_WRITE; 2449 } 2450 2451 static void fail_postponed_requests(struct drbd_device *device, sector_t sector, 2452 unsigned int size) 2453 { 2454 struct drbd_interval *i; 2455 2456 repeat: 2457 drbd_for_each_overlap(i, &device->write_requests, sector, size) { 2458 struct drbd_request *req; 2459 struct bio_and_error m; 2460 2461 if (!i->local) 2462 continue; 2463 req = container_of(i, struct drbd_request, i); 2464 if (!(req->rq_state & RQ_POSTPONED)) 2465 continue; 2466 req->rq_state &= ~RQ_POSTPONED; 2467 __req_mod(req, NEG_ACKED, &m); 2468 spin_unlock_irq(&device->resource->req_lock); 2469 if (m.bio) 2470 complete_master_bio(device, &m); 2471 spin_lock_irq(&device->resource->req_lock); 2472 goto repeat; 2473 } 2474 } 2475 2476 static int handle_write_conflicts(struct drbd_device *device, 2477 struct drbd_peer_request *peer_req) 2478 { 2479 struct drbd_connection *connection = peer_req->peer_device->connection; 2480 bool resolve_conflicts = test_bit(RESOLVE_CONFLICTS, &connection->flags); 2481 sector_t sector = peer_req->i.sector; 2482 const unsigned int size = peer_req->i.size; 2483 struct drbd_interval *i; 2484 bool equal; 2485 int err; 2486 2487 /* 2488 * Inserting the peer request into the write_requests tree will prevent 2489 * new conflicting local requests from being added. 2490 */ 2491 drbd_insert_interval(&device->write_requests, &peer_req->i); 2492 2493 repeat: 2494 drbd_for_each_overlap(i, &device->write_requests, sector, size) { 2495 if (i == &peer_req->i) 2496 continue; 2497 if (i->completed) 2498 continue; 2499 2500 if (!i->local) { 2501 /* 2502 * Our peer has sent a conflicting remote request; this 2503 * should not happen in a two-node setup. Wait for the 2504 * earlier peer request to complete. 2505 */ 2506 err = drbd_wait_misc(device, i); 2507 if (err) 2508 goto out; 2509 goto repeat; 2510 } 2511 2512 equal = i->sector == sector && i->size == size; 2513 if (resolve_conflicts) { 2514 /* 2515 * If the peer request is fully contained within the 2516 * overlapping request, it can be considered overwritten 2517 * and thus superseded; otherwise, it will be retried 2518 * once all overlapping requests have completed. 2519 */ 2520 bool superseded = i->sector <= sector && i->sector + 2521 (i->size >> 9) >= sector + (size >> 9); 2522 2523 if (!equal) 2524 drbd_alert(device, "Concurrent writes detected: " 2525 "local=%llus +%u, remote=%llus +%u, " 2526 "assuming %s came first\n", 2527 (unsigned long long)i->sector, i->size, 2528 (unsigned long long)sector, size, 2529 superseded ? "local" : "remote"); 2530 2531 peer_req->w.cb = superseded ? e_send_superseded : 2532 e_send_retry_write; 2533 list_add_tail(&peer_req->w.list, &device->done_ee); 2534 queue_work(connection->ack_sender, &peer_req->peer_device->send_acks_work); 2535 2536 err = -ENOENT; 2537 goto out; 2538 } else { 2539 struct drbd_request *req = 2540 container_of(i, struct drbd_request, i); 2541 2542 if (!equal) 2543 drbd_alert(device, "Concurrent writes detected: " 2544 "local=%llus +%u, remote=%llus +%u\n", 2545 (unsigned long long)i->sector, i->size, 2546 (unsigned long long)sector, size); 2547 2548 if (req->rq_state & RQ_LOCAL_PENDING || 2549 !(req->rq_state & RQ_POSTPONED)) { 2550 /* 2551 * Wait for the node with the discard flag to 2552 * decide if this request has been superseded 2553 * or needs to be retried. 2554 * Requests that have been superseded will 2555 * disappear from the write_requests tree. 2556 * 2557 * In addition, wait for the conflicting 2558 * request to finish locally before submitting 2559 * the conflicting peer request. 2560 */ 2561 err = drbd_wait_misc(device, &req->i); 2562 if (err) { 2563 _conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD); 2564 fail_postponed_requests(device, sector, size); 2565 goto out; 2566 } 2567 goto repeat; 2568 } 2569 /* 2570 * Remember to restart the conflicting requests after 2571 * the new peer request has completed. 2572 */ 2573 peer_req->flags |= EE_RESTART_REQUESTS; 2574 } 2575 } 2576 err = 0; 2577 2578 out: 2579 if (err) 2580 drbd_remove_epoch_entry_interval(device, peer_req); 2581 return err; 2582 } 2583 2584 /* mirrored write */ 2585 static int receive_Data(struct drbd_connection *connection, struct packet_info *pi) 2586 { 2587 struct drbd_peer_device *peer_device; 2588 struct drbd_device *device; 2589 struct net_conf *nc; 2590 sector_t sector; 2591 struct drbd_peer_request *peer_req; 2592 struct p_data *p = pi->data; 2593 u32 peer_seq = be32_to_cpu(p->seq_num); 2594 int op, op_flags; 2595 u32 dp_flags; 2596 int err, tp; 2597 2598 peer_device = conn_peer_device(connection, pi->vnr); 2599 if (!peer_device) 2600 return -EIO; 2601 device = peer_device->device; 2602 2603 if (!get_ldev(device)) { 2604 int err2; 2605 2606 err = wait_for_and_update_peer_seq(peer_device, peer_seq); 2607 drbd_send_ack_dp(peer_device, P_NEG_ACK, p, pi->size); 2608 atomic_inc(&connection->current_epoch->epoch_size); 2609 err2 = drbd_drain_block(peer_device, pi->size); 2610 if (!err) 2611 err = err2; 2612 return err; 2613 } 2614 2615 /* 2616 * Corresponding put_ldev done either below (on various errors), or in 2617 * drbd_peer_request_endio, if we successfully submit the data at the 2618 * end of this function. 2619 */ 2620 2621 sector = be64_to_cpu(p->sector); 2622 peer_req = read_in_block(peer_device, p->block_id, sector, pi); 2623 if (!peer_req) { 2624 put_ldev(device); 2625 return -EIO; 2626 } 2627 2628 peer_req->w.cb = e_end_block; 2629 peer_req->submit_jif = jiffies; 2630 peer_req->flags |= EE_APPLICATION; 2631 2632 dp_flags = be32_to_cpu(p->dp_flags); 2633 op = wire_flags_to_bio_op(dp_flags); 2634 op_flags = wire_flags_to_bio_flags(dp_flags); 2635 if (pi->cmd == P_TRIM) { 2636 D_ASSERT(peer_device, peer_req->i.size > 0); 2637 D_ASSERT(peer_device, op == REQ_OP_DISCARD); 2638 D_ASSERT(peer_device, peer_req->pages == NULL); 2639 /* need to play safe: an older DRBD sender 2640 * may mean zero-out while sending P_TRIM. */ 2641 if (0 == (connection->agreed_features & DRBD_FF_WZEROES)) 2642 peer_req->flags |= EE_ZEROOUT; 2643 } else if (pi->cmd == P_ZEROES) { 2644 D_ASSERT(peer_device, peer_req->i.size > 0); 2645 D_ASSERT(peer_device, op == REQ_OP_WRITE_ZEROES); 2646 D_ASSERT(peer_device, peer_req->pages == NULL); 2647 /* Do (not) pass down BLKDEV_ZERO_NOUNMAP? */ 2648 if (dp_flags & DP_DISCARD) 2649 peer_req->flags |= EE_TRIM; 2650 } else if (peer_req->pages == NULL) { 2651 D_ASSERT(device, peer_req->i.size == 0); 2652 D_ASSERT(device, dp_flags & DP_FLUSH); 2653 } 2654 2655 if (dp_flags & DP_MAY_SET_IN_SYNC) 2656 peer_req->flags |= EE_MAY_SET_IN_SYNC; 2657 2658 spin_lock(&connection->epoch_lock); 2659 peer_req->epoch = connection->current_epoch; 2660 atomic_inc(&peer_req->epoch->epoch_size); 2661 atomic_inc(&peer_req->epoch->active); 2662 spin_unlock(&connection->epoch_lock); 2663 2664 rcu_read_lock(); 2665 nc = rcu_dereference(peer_device->connection->net_conf); 2666 tp = nc->two_primaries; 2667 if (peer_device->connection->agreed_pro_version < 100) { 2668 switch (nc->wire_protocol) { 2669 case DRBD_PROT_C: 2670 dp_flags |= DP_SEND_WRITE_ACK; 2671 break; 2672 case DRBD_PROT_B: 2673 dp_flags |= DP_SEND_RECEIVE_ACK; 2674 break; 2675 } 2676 } 2677 rcu_read_unlock(); 2678 2679 if (dp_flags & DP_SEND_WRITE_ACK) { 2680 peer_req->flags |= EE_SEND_WRITE_ACK; 2681 inc_unacked(device); 2682 /* corresponding dec_unacked() in e_end_block() 2683 * respective _drbd_clear_done_ee */ 2684 } 2685 2686 if (dp_flags & DP_SEND_RECEIVE_ACK) { 2687 /* I really don't like it that the receiver thread 2688 * sends on the msock, but anyways */ 2689 drbd_send_ack(peer_device, P_RECV_ACK, peer_req); 2690 } 2691 2692 if (tp) { 2693 /* two primaries implies protocol C */ 2694 D_ASSERT(device, dp_flags & DP_SEND_WRITE_ACK); 2695 peer_req->flags |= EE_IN_INTERVAL_TREE; 2696 err = wait_for_and_update_peer_seq(peer_device, peer_seq); 2697 if (err) 2698 goto out_interrupted; 2699 spin_lock_irq(&device->resource->req_lock); 2700 err = handle_write_conflicts(device, peer_req); 2701 if (err) { 2702 spin_unlock_irq(&device->resource->req_lock); 2703 if (err == -ENOENT) { 2704 put_ldev(device); 2705 return 0; 2706 } 2707 goto out_interrupted; 2708 } 2709 } else { 2710 update_peer_seq(peer_device, peer_seq); 2711 spin_lock_irq(&device->resource->req_lock); 2712 } 2713 /* TRIM and WRITE_SAME are processed synchronously, 2714 * we wait for all pending requests, respectively wait for 2715 * active_ee to become empty in drbd_submit_peer_request(); 2716 * better not add ourselves here. */ 2717 if ((peer_req->flags & (EE_TRIM|EE_WRITE_SAME|EE_ZEROOUT)) == 0) 2718 list_add_tail(&peer_req->w.list, &device->active_ee); 2719 spin_unlock_irq(&device->resource->req_lock); 2720 2721 if (device->state.conn == C_SYNC_TARGET) 2722 wait_event(device->ee_wait, !overlapping_resync_write(device, peer_req)); 2723 2724 if (device->state.pdsk < D_INCONSISTENT) { 2725 /* In case we have the only disk of the cluster, */ 2726 drbd_set_out_of_sync(device, peer_req->i.sector, peer_req->i.size); 2727 peer_req->flags &= ~EE_MAY_SET_IN_SYNC; 2728 drbd_al_begin_io(device, &peer_req->i); 2729 peer_req->flags |= EE_CALL_AL_COMPLETE_IO; 2730 } 2731 2732 err = drbd_submit_peer_request(device, peer_req, op, op_flags, 2733 DRBD_FAULT_DT_WR); 2734 if (!err) 2735 return 0; 2736 2737 /* don't care for the reason here */ 2738 drbd_err(device, "submit failed, triggering re-connect\n"); 2739 spin_lock_irq(&device->resource->req_lock); 2740 list_del(&peer_req->w.list); 2741 drbd_remove_epoch_entry_interval(device, peer_req); 2742 spin_unlock_irq(&device->resource->req_lock); 2743 if (peer_req->flags & EE_CALL_AL_COMPLETE_IO) { 2744 peer_req->flags &= ~EE_CALL_AL_COMPLETE_IO; 2745 drbd_al_complete_io(device, &peer_req->i); 2746 } 2747 2748 out_interrupted: 2749 drbd_may_finish_epoch(connection, peer_req->epoch, EV_PUT | EV_CLEANUP); 2750 put_ldev(device); 2751 drbd_free_peer_req(device, peer_req); 2752 return err; 2753 } 2754 2755 /* We may throttle resync, if the lower device seems to be busy, 2756 * and current sync rate is above c_min_rate. 2757 * 2758 * To decide whether or not the lower device is busy, we use a scheme similar 2759 * to MD RAID is_mddev_idle(): if the partition stats reveal "significant" 2760 * (more than 64 sectors) of activity we cannot account for with our own resync 2761 * activity, it obviously is "busy". 2762 * 2763 * The current sync rate used here uses only the most recent two step marks, 2764 * to have a short time average so we can react faster. 2765 */ 2766 bool drbd_rs_should_slow_down(struct drbd_device *device, sector_t sector, 2767 bool throttle_if_app_is_waiting) 2768 { 2769 struct lc_element *tmp; 2770 bool throttle = drbd_rs_c_min_rate_throttle(device); 2771 2772 if (!throttle || throttle_if_app_is_waiting) 2773 return throttle; 2774 2775 spin_lock_irq(&device->al_lock); 2776 tmp = lc_find(device->resync, BM_SECT_TO_EXT(sector)); 2777 if (tmp) { 2778 struct bm_extent *bm_ext = lc_entry(tmp, struct bm_extent, lce); 2779 if (test_bit(BME_PRIORITY, &bm_ext->flags)) 2780 throttle = false; 2781 /* Do not slow down if app IO is already waiting for this extent, 2782 * and our progress is necessary for application IO to complete. */ 2783 } 2784 spin_unlock_irq(&device->al_lock); 2785 2786 return throttle; 2787 } 2788 2789 bool drbd_rs_c_min_rate_throttle(struct drbd_device *device) 2790 { 2791 struct gendisk *disk = device->ldev->backing_bdev->bd_contains->bd_disk; 2792 unsigned long db, dt, dbdt; 2793 unsigned int c_min_rate; 2794 int curr_events; 2795 2796 rcu_read_lock(); 2797 c_min_rate = rcu_dereference(device->ldev->disk_conf)->c_min_rate; 2798 rcu_read_unlock(); 2799 2800 /* feature disabled? */ 2801 if (c_min_rate == 0) 2802 return false; 2803 2804 curr_events = (int)part_stat_read_accum(&disk->part0, sectors) - 2805 atomic_read(&device->rs_sect_ev); 2806 2807 if (atomic_read(&device->ap_actlog_cnt) 2808 || curr_events - device->rs_last_events > 64) { 2809 unsigned long rs_left; 2810 int i; 2811 2812 device->rs_last_events = curr_events; 2813 2814 /* sync speed average over the last 2*DRBD_SYNC_MARK_STEP, 2815 * approx. */ 2816 i = (device->rs_last_mark + DRBD_SYNC_MARKS-1) % DRBD_SYNC_MARKS; 2817 2818 if (device->state.conn == C_VERIFY_S || device->state.conn == C_VERIFY_T) 2819 rs_left = device->ov_left; 2820 else 2821 rs_left = drbd_bm_total_weight(device) - device->rs_failed; 2822 2823 dt = ((long)jiffies - (long)device->rs_mark_time[i]) / HZ; 2824 if (!dt) 2825 dt++; 2826 db = device->rs_mark_left[i] - rs_left; 2827 dbdt = Bit2KB(db/dt); 2828 2829 if (dbdt > c_min_rate) 2830 return true; 2831 } 2832 return false; 2833 } 2834 2835 static int receive_DataRequest(struct drbd_connection *connection, struct packet_info *pi) 2836 { 2837 struct drbd_peer_device *peer_device; 2838 struct drbd_device *device; 2839 sector_t sector; 2840 sector_t capacity; 2841 struct drbd_peer_request *peer_req; 2842 struct digest_info *di = NULL; 2843 int size, verb; 2844 unsigned int fault_type; 2845 struct p_block_req *p = pi->data; 2846 2847 peer_device = conn_peer_device(connection, pi->vnr); 2848 if (!peer_device) 2849 return -EIO; 2850 device = peer_device->device; 2851 capacity = drbd_get_capacity(device->this_bdev); 2852 2853 sector = be64_to_cpu(p->sector); 2854 size = be32_to_cpu(p->blksize); 2855 2856 if (size <= 0 || !IS_ALIGNED(size, 512) || size > DRBD_MAX_BIO_SIZE) { 2857 drbd_err(device, "%s:%d: sector: %llus, size: %u\n", __FILE__, __LINE__, 2858 (unsigned long long)sector, size); 2859 return -EINVAL; 2860 } 2861 if (sector + (size>>9) > capacity) { 2862 drbd_err(device, "%s:%d: sector: %llus, size: %u\n", __FILE__, __LINE__, 2863 (unsigned long long)sector, size); 2864 return -EINVAL; 2865 } 2866 2867 if (!get_ldev_if_state(device, D_UP_TO_DATE)) { 2868 verb = 1; 2869 switch (pi->cmd) { 2870 case P_DATA_REQUEST: 2871 drbd_send_ack_rp(peer_device, P_NEG_DREPLY, p); 2872 break; 2873 case P_RS_THIN_REQ: 2874 case P_RS_DATA_REQUEST: 2875 case P_CSUM_RS_REQUEST: 2876 case P_OV_REQUEST: 2877 drbd_send_ack_rp(peer_device, P_NEG_RS_DREPLY , p); 2878 break; 2879 case P_OV_REPLY: 2880 verb = 0; 2881 dec_rs_pending(device); 2882 drbd_send_ack_ex(peer_device, P_OV_RESULT, sector, size, ID_IN_SYNC); 2883 break; 2884 default: 2885 BUG(); 2886 } 2887 if (verb && __ratelimit(&drbd_ratelimit_state)) 2888 drbd_err(device, "Can not satisfy peer's read request, " 2889 "no local data.\n"); 2890 2891 /* drain possibly payload */ 2892 return drbd_drain_block(peer_device, pi->size); 2893 } 2894 2895 /* GFP_NOIO, because we must not cause arbitrary write-out: in a DRBD 2896 * "criss-cross" setup, that might cause write-out on some other DRBD, 2897 * which in turn might block on the other node at this very place. */ 2898 peer_req = drbd_alloc_peer_req(peer_device, p->block_id, sector, size, 2899 size, GFP_NOIO); 2900 if (!peer_req) { 2901 put_ldev(device); 2902 return -ENOMEM; 2903 } 2904 2905 switch (pi->cmd) { 2906 case P_DATA_REQUEST: 2907 peer_req->w.cb = w_e_end_data_req; 2908 fault_type = DRBD_FAULT_DT_RD; 2909 /* application IO, don't drbd_rs_begin_io */ 2910 peer_req->flags |= EE_APPLICATION; 2911 goto submit; 2912 2913 case P_RS_THIN_REQ: 2914 /* If at some point in the future we have a smart way to 2915 find out if this data block is completely deallocated, 2916 then we would do something smarter here than reading 2917 the block... */ 2918 peer_req->flags |= EE_RS_THIN_REQ; 2919 /* fall through */ 2920 case P_RS_DATA_REQUEST: 2921 peer_req->w.cb = w_e_end_rsdata_req; 2922 fault_type = DRBD_FAULT_RS_RD; 2923 /* used in the sector offset progress display */ 2924 device->bm_resync_fo = BM_SECT_TO_BIT(sector); 2925 break; 2926 2927 case P_OV_REPLY: 2928 case P_CSUM_RS_REQUEST: 2929 fault_type = DRBD_FAULT_RS_RD; 2930 di = kmalloc(sizeof(*di) + pi->size, GFP_NOIO); 2931 if (!di) 2932 goto out_free_e; 2933 2934 di->digest_size = pi->size; 2935 di->digest = (((char *)di)+sizeof(struct digest_info)); 2936 2937 peer_req->digest = di; 2938 peer_req->flags |= EE_HAS_DIGEST; 2939 2940 if (drbd_recv_all(peer_device->connection, di->digest, pi->size)) 2941 goto out_free_e; 2942 2943 if (pi->cmd == P_CSUM_RS_REQUEST) { 2944 D_ASSERT(device, peer_device->connection->agreed_pro_version >= 89); 2945 peer_req->w.cb = w_e_end_csum_rs_req; 2946 /* used in the sector offset progress display */ 2947 device->bm_resync_fo = BM_SECT_TO_BIT(sector); 2948 /* remember to report stats in drbd_resync_finished */ 2949 device->use_csums = true; 2950 } else if (pi->cmd == P_OV_REPLY) { 2951 /* track progress, we may need to throttle */ 2952 atomic_add(size >> 9, &device->rs_sect_in); 2953 peer_req->w.cb = w_e_end_ov_reply; 2954 dec_rs_pending(device); 2955 /* drbd_rs_begin_io done when we sent this request, 2956 * but accounting still needs to be done. */ 2957 goto submit_for_resync; 2958 } 2959 break; 2960 2961 case P_OV_REQUEST: 2962 if (device->ov_start_sector == ~(sector_t)0 && 2963 peer_device->connection->agreed_pro_version >= 90) { 2964 unsigned long now = jiffies; 2965 int i; 2966 device->ov_start_sector = sector; 2967 device->ov_position = sector; 2968 device->ov_left = drbd_bm_bits(device) - BM_SECT_TO_BIT(sector); 2969 device->rs_total = device->ov_left; 2970 for (i = 0; i < DRBD_SYNC_MARKS; i++) { 2971 device->rs_mark_left[i] = device->ov_left; 2972 device->rs_mark_time[i] = now; 2973 } 2974 drbd_info(device, "Online Verify start sector: %llu\n", 2975 (unsigned long long)sector); 2976 } 2977 peer_req->w.cb = w_e_end_ov_req; 2978 fault_type = DRBD_FAULT_RS_RD; 2979 break; 2980 2981 default: 2982 BUG(); 2983 } 2984 2985 /* Throttle, drbd_rs_begin_io and submit should become asynchronous 2986 * wrt the receiver, but it is not as straightforward as it may seem. 2987 * Various places in the resync start and stop logic assume resync 2988 * requests are processed in order, requeuing this on the worker thread 2989 * introduces a bunch of new code for synchronization between threads. 2990 * 2991 * Unlimited throttling before drbd_rs_begin_io may stall the resync 2992 * "forever", throttling after drbd_rs_begin_io will lock that extent 2993 * for application writes for the same time. For now, just throttle 2994 * here, where the rest of the code expects the receiver to sleep for 2995 * a while, anyways. 2996 */ 2997 2998 /* Throttle before drbd_rs_begin_io, as that locks out application IO; 2999 * this defers syncer requests for some time, before letting at least 3000 * on request through. The resync controller on the receiving side 3001 * will adapt to the incoming rate accordingly. 3002 * 3003 * We cannot throttle here if remote is Primary/SyncTarget: 3004 * we would also throttle its application reads. 3005 * In that case, throttling is done on the SyncTarget only. 3006 */ 3007 3008 /* Even though this may be a resync request, we do add to "read_ee"; 3009 * "sync_ee" is only used for resync WRITEs. 3010 * Add to list early, so debugfs can find this request 3011 * even if we have to sleep below. */ 3012 spin_lock_irq(&device->resource->req_lock); 3013 list_add_tail(&peer_req->w.list, &device->read_ee); 3014 spin_unlock_irq(&device->resource->req_lock); 3015 3016 update_receiver_timing_details(connection, drbd_rs_should_slow_down); 3017 if (device->state.peer != R_PRIMARY 3018 && drbd_rs_should_slow_down(device, sector, false)) 3019 schedule_timeout_uninterruptible(HZ/10); 3020 update_receiver_timing_details(connection, drbd_rs_begin_io); 3021 if (drbd_rs_begin_io(device, sector)) 3022 goto out_free_e; 3023 3024 submit_for_resync: 3025 atomic_add(size >> 9, &device->rs_sect_ev); 3026 3027 submit: 3028 update_receiver_timing_details(connection, drbd_submit_peer_request); 3029 inc_unacked(device); 3030 if (drbd_submit_peer_request(device, peer_req, REQ_OP_READ, 0, 3031 fault_type) == 0) 3032 return 0; 3033 3034 /* don't care for the reason here */ 3035 drbd_err(device, "submit failed, triggering re-connect\n"); 3036 3037 out_free_e: 3038 spin_lock_irq(&device->resource->req_lock); 3039 list_del(&peer_req->w.list); 3040 spin_unlock_irq(&device->resource->req_lock); 3041 /* no drbd_rs_complete_io(), we are dropping the connection anyways */ 3042 3043 put_ldev(device); 3044 drbd_free_peer_req(device, peer_req); 3045 return -EIO; 3046 } 3047 3048 /** 3049 * drbd_asb_recover_0p - Recover after split-brain with no remaining primaries 3050 */ 3051 static int drbd_asb_recover_0p(struct drbd_peer_device *peer_device) __must_hold(local) 3052 { 3053 struct drbd_device *device = peer_device->device; 3054 int self, peer, rv = -100; 3055 unsigned long ch_self, ch_peer; 3056 enum drbd_after_sb_p after_sb_0p; 3057 3058 self = device->ldev->md.uuid[UI_BITMAP] & 1; 3059 peer = device->p_uuid[UI_BITMAP] & 1; 3060 3061 ch_peer = device->p_uuid[UI_SIZE]; 3062 ch_self = device->comm_bm_set; 3063 3064 rcu_read_lock(); 3065 after_sb_0p = rcu_dereference(peer_device->connection->net_conf)->after_sb_0p; 3066 rcu_read_unlock(); 3067 switch (after_sb_0p) { 3068 case ASB_CONSENSUS: 3069 case ASB_DISCARD_SECONDARY: 3070 case ASB_CALL_HELPER: 3071 case ASB_VIOLENTLY: 3072 drbd_err(device, "Configuration error.\n"); 3073 break; 3074 case ASB_DISCONNECT: 3075 break; 3076 case ASB_DISCARD_YOUNGER_PRI: 3077 if (self == 0 && peer == 1) { 3078 rv = -1; 3079 break; 3080 } 3081 if (self == 1 && peer == 0) { 3082 rv = 1; 3083 break; 3084 } 3085 /* Else fall through - to one of the other strategies... */ 3086 case ASB_DISCARD_OLDER_PRI: 3087 if (self == 0 && peer == 1) { 3088 rv = 1; 3089 break; 3090 } 3091 if (self == 1 && peer == 0) { 3092 rv = -1; 3093 break; 3094 } 3095 /* Else fall through to one of the other strategies... */ 3096 drbd_warn(device, "Discard younger/older primary did not find a decision\n" 3097 "Using discard-least-changes instead\n"); 3098 /* fall through */ 3099 case ASB_DISCARD_ZERO_CHG: 3100 if (ch_peer == 0 && ch_self == 0) { 3101 rv = test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags) 3102 ? -1 : 1; 3103 break; 3104 } else { 3105 if (ch_peer == 0) { rv = 1; break; } 3106 if (ch_self == 0) { rv = -1; break; } 3107 } 3108 if (after_sb_0p == ASB_DISCARD_ZERO_CHG) 3109 break; 3110 /* else, fall through */ 3111 case ASB_DISCARD_LEAST_CHG: 3112 if (ch_self < ch_peer) 3113 rv = -1; 3114 else if (ch_self > ch_peer) 3115 rv = 1; 3116 else /* ( ch_self == ch_peer ) */ 3117 /* Well, then use something else. */ 3118 rv = test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags) 3119 ? -1 : 1; 3120 break; 3121 case ASB_DISCARD_LOCAL: 3122 rv = -1; 3123 break; 3124 case ASB_DISCARD_REMOTE: 3125 rv = 1; 3126 } 3127 3128 return rv; 3129 } 3130 3131 /** 3132 * drbd_asb_recover_1p - Recover after split-brain with one remaining primary 3133 */ 3134 static int drbd_asb_recover_1p(struct drbd_peer_device *peer_device) __must_hold(local) 3135 { 3136 struct drbd_device *device = peer_device->device; 3137 int hg, rv = -100; 3138 enum drbd_after_sb_p after_sb_1p; 3139 3140 rcu_read_lock(); 3141 after_sb_1p = rcu_dereference(peer_device->connection->net_conf)->after_sb_1p; 3142 rcu_read_unlock(); 3143 switch (after_sb_1p) { 3144 case ASB_DISCARD_YOUNGER_PRI: 3145 case ASB_DISCARD_OLDER_PRI: 3146 case ASB_DISCARD_LEAST_CHG: 3147 case ASB_DISCARD_LOCAL: 3148 case ASB_DISCARD_REMOTE: 3149 case ASB_DISCARD_ZERO_CHG: 3150 drbd_err(device, "Configuration error.\n"); 3151 break; 3152 case ASB_DISCONNECT: 3153 break; 3154 case ASB_CONSENSUS: 3155 hg = drbd_asb_recover_0p(peer_device); 3156 if (hg == -1 && device->state.role == R_SECONDARY) 3157 rv = hg; 3158 if (hg == 1 && device->state.role == R_PRIMARY) 3159 rv = hg; 3160 break; 3161 case ASB_VIOLENTLY: 3162 rv = drbd_asb_recover_0p(peer_device); 3163 break; 3164 case ASB_DISCARD_SECONDARY: 3165 return device->state.role == R_PRIMARY ? 1 : -1; 3166 case ASB_CALL_HELPER: 3167 hg = drbd_asb_recover_0p(peer_device); 3168 if (hg == -1 && device->state.role == R_PRIMARY) { 3169 enum drbd_state_rv rv2; 3170 3171 /* drbd_change_state() does not sleep while in SS_IN_TRANSIENT_STATE, 3172 * we might be here in C_WF_REPORT_PARAMS which is transient. 3173 * we do not need to wait for the after state change work either. */ 3174 rv2 = drbd_change_state(device, CS_VERBOSE, NS(role, R_SECONDARY)); 3175 if (rv2 != SS_SUCCESS) { 3176 drbd_khelper(device, "pri-lost-after-sb"); 3177 } else { 3178 drbd_warn(device, "Successfully gave up primary role.\n"); 3179 rv = hg; 3180 } 3181 } else 3182 rv = hg; 3183 } 3184 3185 return rv; 3186 } 3187 3188 /** 3189 * drbd_asb_recover_2p - Recover after split-brain with two remaining primaries 3190 */ 3191 static int drbd_asb_recover_2p(struct drbd_peer_device *peer_device) __must_hold(local) 3192 { 3193 struct drbd_device *device = peer_device->device; 3194 int hg, rv = -100; 3195 enum drbd_after_sb_p after_sb_2p; 3196 3197 rcu_read_lock(); 3198 after_sb_2p = rcu_dereference(peer_device->connection->net_conf)->after_sb_2p; 3199 rcu_read_unlock(); 3200 switch (after_sb_2p) { 3201 case ASB_DISCARD_YOUNGER_PRI: 3202 case ASB_DISCARD_OLDER_PRI: 3203 case ASB_DISCARD_LEAST_CHG: 3204 case ASB_DISCARD_LOCAL: 3205 case ASB_DISCARD_REMOTE: 3206 case ASB_CONSENSUS: 3207 case ASB_DISCARD_SECONDARY: 3208 case ASB_DISCARD_ZERO_CHG: 3209 drbd_err(device, "Configuration error.\n"); 3210 break; 3211 case ASB_VIOLENTLY: 3212 rv = drbd_asb_recover_0p(peer_device); 3213 break; 3214 case ASB_DISCONNECT: 3215 break; 3216 case ASB_CALL_HELPER: 3217 hg = drbd_asb_recover_0p(peer_device); 3218 if (hg == -1) { 3219 enum drbd_state_rv rv2; 3220 3221 /* drbd_change_state() does not sleep while in SS_IN_TRANSIENT_STATE, 3222 * we might be here in C_WF_REPORT_PARAMS which is transient. 3223 * we do not need to wait for the after state change work either. */ 3224 rv2 = drbd_change_state(device, CS_VERBOSE, NS(role, R_SECONDARY)); 3225 if (rv2 != SS_SUCCESS) { 3226 drbd_khelper(device, "pri-lost-after-sb"); 3227 } else { 3228 drbd_warn(device, "Successfully gave up primary role.\n"); 3229 rv = hg; 3230 } 3231 } else 3232 rv = hg; 3233 } 3234 3235 return rv; 3236 } 3237 3238 static void drbd_uuid_dump(struct drbd_device *device, char *text, u64 *uuid, 3239 u64 bits, u64 flags) 3240 { 3241 if (!uuid) { 3242 drbd_info(device, "%s uuid info vanished while I was looking!\n", text); 3243 return; 3244 } 3245 drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX bits:%llu flags:%llX\n", 3246 text, 3247 (unsigned long long)uuid[UI_CURRENT], 3248 (unsigned long long)uuid[UI_BITMAP], 3249 (unsigned long long)uuid[UI_HISTORY_START], 3250 (unsigned long long)uuid[UI_HISTORY_END], 3251 (unsigned long long)bits, 3252 (unsigned long long)flags); 3253 } 3254 3255 /* 3256 100 after split brain try auto recover 3257 2 C_SYNC_SOURCE set BitMap 3258 1 C_SYNC_SOURCE use BitMap 3259 0 no Sync 3260 -1 C_SYNC_TARGET use BitMap 3261 -2 C_SYNC_TARGET set BitMap 3262 -100 after split brain, disconnect 3263 -1000 unrelated data 3264 -1091 requires proto 91 3265 -1096 requires proto 96 3266 */ 3267 3268 static int drbd_uuid_compare(struct drbd_device *const device, enum drbd_role const peer_role, int *rule_nr) __must_hold(local) 3269 { 3270 struct drbd_peer_device *const peer_device = first_peer_device(device); 3271 struct drbd_connection *const connection = peer_device ? peer_device->connection : NULL; 3272 u64 self, peer; 3273 int i, j; 3274 3275 self = device->ldev->md.uuid[UI_CURRENT] & ~((u64)1); 3276 peer = device->p_uuid[UI_CURRENT] & ~((u64)1); 3277 3278 *rule_nr = 10; 3279 if (self == UUID_JUST_CREATED && peer == UUID_JUST_CREATED) 3280 return 0; 3281 3282 *rule_nr = 20; 3283 if ((self == UUID_JUST_CREATED || self == (u64)0) && 3284 peer != UUID_JUST_CREATED) 3285 return -2; 3286 3287 *rule_nr = 30; 3288 if (self != UUID_JUST_CREATED && 3289 (peer == UUID_JUST_CREATED || peer == (u64)0)) 3290 return 2; 3291 3292 if (self == peer) { 3293 int rct, dc; /* roles at crash time */ 3294 3295 if (device->p_uuid[UI_BITMAP] == (u64)0 && device->ldev->md.uuid[UI_BITMAP] != (u64)0) { 3296 3297 if (connection->agreed_pro_version < 91) 3298 return -1091; 3299 3300 if ((device->ldev->md.uuid[UI_BITMAP] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START] & ~((u64)1)) && 3301 (device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START + 1] & ~((u64)1))) { 3302 drbd_info(device, "was SyncSource, missed the resync finished event, corrected myself:\n"); 3303 drbd_uuid_move_history(device); 3304 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP]; 3305 device->ldev->md.uuid[UI_BITMAP] = 0; 3306 3307 drbd_uuid_dump(device, "self", device->ldev->md.uuid, 3308 device->state.disk >= D_NEGOTIATING ? drbd_bm_total_weight(device) : 0, 0); 3309 *rule_nr = 34; 3310 } else { 3311 drbd_info(device, "was SyncSource (peer failed to write sync_uuid)\n"); 3312 *rule_nr = 36; 3313 } 3314 3315 return 1; 3316 } 3317 3318 if (device->ldev->md.uuid[UI_BITMAP] == (u64)0 && device->p_uuid[UI_BITMAP] != (u64)0) { 3319 3320 if (connection->agreed_pro_version < 91) 3321 return -1091; 3322 3323 if ((device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == (device->p_uuid[UI_BITMAP] & ~((u64)1)) && 3324 (device->ldev->md.uuid[UI_HISTORY_START + 1] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START] & ~((u64)1))) { 3325 drbd_info(device, "was SyncTarget, peer missed the resync finished event, corrected peer:\n"); 3326 3327 device->p_uuid[UI_HISTORY_START + 1] = device->p_uuid[UI_HISTORY_START]; 3328 device->p_uuid[UI_HISTORY_START] = device->p_uuid[UI_BITMAP]; 3329 device->p_uuid[UI_BITMAP] = 0UL; 3330 3331 drbd_uuid_dump(device, "peer", device->p_uuid, device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]); 3332 *rule_nr = 35; 3333 } else { 3334 drbd_info(device, "was SyncTarget (failed to write sync_uuid)\n"); 3335 *rule_nr = 37; 3336 } 3337 3338 return -1; 3339 } 3340 3341 /* Common power [off|failure] */ 3342 rct = (test_bit(CRASHED_PRIMARY, &device->flags) ? 1 : 0) + 3343 (device->p_uuid[UI_FLAGS] & 2); 3344 /* lowest bit is set when we were primary, 3345 * next bit (weight 2) is set when peer was primary */ 3346 *rule_nr = 40; 3347 3348 /* Neither has the "crashed primary" flag set, 3349 * only a replication link hickup. */ 3350 if (rct == 0) 3351 return 0; 3352 3353 /* Current UUID equal and no bitmap uuid; does not necessarily 3354 * mean this was a "simultaneous hard crash", maybe IO was 3355 * frozen, so no UUID-bump happened. 3356 * This is a protocol change, overload DRBD_FF_WSAME as flag 3357 * for "new-enough" peer DRBD version. */ 3358 if (device->state.role == R_PRIMARY || peer_role == R_PRIMARY) { 3359 *rule_nr = 41; 3360 if (!(connection->agreed_features & DRBD_FF_WSAME)) { 3361 drbd_warn(peer_device, "Equivalent unrotated UUIDs, but current primary present.\n"); 3362 return -(0x10000 | PRO_VERSION_MAX | (DRBD_FF_WSAME << 8)); 3363 } 3364 if (device->state.role == R_PRIMARY && peer_role == R_PRIMARY) { 3365 /* At least one has the "crashed primary" bit set, 3366 * both are primary now, but neither has rotated its UUIDs? 3367 * "Can not happen." */ 3368 drbd_err(peer_device, "Equivalent unrotated UUIDs, but both are primary. Can not resolve this.\n"); 3369 return -100; 3370 } 3371 if (device->state.role == R_PRIMARY) 3372 return 1; 3373 return -1; 3374 } 3375 3376 /* Both are secondary. 3377 * Really looks like recovery from simultaneous hard crash. 3378 * Check which had been primary before, and arbitrate. */ 3379 switch (rct) { 3380 case 0: /* !self_pri && !peer_pri */ return 0; /* already handled */ 3381 case 1: /* self_pri && !peer_pri */ return 1; 3382 case 2: /* !self_pri && peer_pri */ return -1; 3383 case 3: /* self_pri && peer_pri */ 3384 dc = test_bit(RESOLVE_CONFLICTS, &connection->flags); 3385 return dc ? -1 : 1; 3386 } 3387 } 3388 3389 *rule_nr = 50; 3390 peer = device->p_uuid[UI_BITMAP] & ~((u64)1); 3391 if (self == peer) 3392 return -1; 3393 3394 *rule_nr = 51; 3395 peer = device->p_uuid[UI_HISTORY_START] & ~((u64)1); 3396 if (self == peer) { 3397 if (connection->agreed_pro_version < 96 ? 3398 (device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == 3399 (device->p_uuid[UI_HISTORY_START + 1] & ~((u64)1)) : 3400 peer + UUID_NEW_BM_OFFSET == (device->p_uuid[UI_BITMAP] & ~((u64)1))) { 3401 /* The last P_SYNC_UUID did not get though. Undo the last start of 3402 resync as sync source modifications of the peer's UUIDs. */ 3403 3404 if (connection->agreed_pro_version < 91) 3405 return -1091; 3406 3407 device->p_uuid[UI_BITMAP] = device->p_uuid[UI_HISTORY_START]; 3408 device->p_uuid[UI_HISTORY_START] = device->p_uuid[UI_HISTORY_START + 1]; 3409 3410 drbd_info(device, "Lost last syncUUID packet, corrected:\n"); 3411 drbd_uuid_dump(device, "peer", device->p_uuid, device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]); 3412 3413 return -1; 3414 } 3415 } 3416 3417 *rule_nr = 60; 3418 self = device->ldev->md.uuid[UI_CURRENT] & ~((u64)1); 3419 for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) { 3420 peer = device->p_uuid[i] & ~((u64)1); 3421 if (self == peer) 3422 return -2; 3423 } 3424 3425 *rule_nr = 70; 3426 self = device->ldev->md.uuid[UI_BITMAP] & ~((u64)1); 3427 peer = device->p_uuid[UI_CURRENT] & ~((u64)1); 3428 if (self == peer) 3429 return 1; 3430 3431 *rule_nr = 71; 3432 self = device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1); 3433 if (self == peer) { 3434 if (connection->agreed_pro_version < 96 ? 3435 (device->ldev->md.uuid[UI_HISTORY_START + 1] & ~((u64)1)) == 3436 (device->p_uuid[UI_HISTORY_START] & ~((u64)1)) : 3437 self + UUID_NEW_BM_OFFSET == (device->ldev->md.uuid[UI_BITMAP] & ~((u64)1))) { 3438 /* The last P_SYNC_UUID did not get though. Undo the last start of 3439 resync as sync source modifications of our UUIDs. */ 3440 3441 if (connection->agreed_pro_version < 91) 3442 return -1091; 3443 3444 __drbd_uuid_set(device, UI_BITMAP, device->ldev->md.uuid[UI_HISTORY_START]); 3445 __drbd_uuid_set(device, UI_HISTORY_START, device->ldev->md.uuid[UI_HISTORY_START + 1]); 3446 3447 drbd_info(device, "Last syncUUID did not get through, corrected:\n"); 3448 drbd_uuid_dump(device, "self", device->ldev->md.uuid, 3449 device->state.disk >= D_NEGOTIATING ? drbd_bm_total_weight(device) : 0, 0); 3450 3451 return 1; 3452 } 3453 } 3454 3455 3456 *rule_nr = 80; 3457 peer = device->p_uuid[UI_CURRENT] & ~((u64)1); 3458 for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) { 3459 self = device->ldev->md.uuid[i] & ~((u64)1); 3460 if (self == peer) 3461 return 2; 3462 } 3463 3464 *rule_nr = 90; 3465 self = device->ldev->md.uuid[UI_BITMAP] & ~((u64)1); 3466 peer = device->p_uuid[UI_BITMAP] & ~((u64)1); 3467 if (self == peer && self != ((u64)0)) 3468 return 100; 3469 3470 *rule_nr = 100; 3471 for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) { 3472 self = device->ldev->md.uuid[i] & ~((u64)1); 3473 for (j = UI_HISTORY_START; j <= UI_HISTORY_END; j++) { 3474 peer = device->p_uuid[j] & ~((u64)1); 3475 if (self == peer) 3476 return -100; 3477 } 3478 } 3479 3480 return -1000; 3481 } 3482 3483 /* drbd_sync_handshake() returns the new conn state on success, or 3484 CONN_MASK (-1) on failure. 3485 */ 3486 static enum drbd_conns drbd_sync_handshake(struct drbd_peer_device *peer_device, 3487 enum drbd_role peer_role, 3488 enum drbd_disk_state peer_disk) __must_hold(local) 3489 { 3490 struct drbd_device *device = peer_device->device; 3491 enum drbd_conns rv = C_MASK; 3492 enum drbd_disk_state mydisk; 3493 struct net_conf *nc; 3494 int hg, rule_nr, rr_conflict, tentative, always_asbp; 3495 3496 mydisk = device->state.disk; 3497 if (mydisk == D_NEGOTIATING) 3498 mydisk = device->new_state_tmp.disk; 3499 3500 drbd_info(device, "drbd_sync_handshake:\n"); 3501 3502 spin_lock_irq(&device->ldev->md.uuid_lock); 3503 drbd_uuid_dump(device, "self", device->ldev->md.uuid, device->comm_bm_set, 0); 3504 drbd_uuid_dump(device, "peer", device->p_uuid, 3505 device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]); 3506 3507 hg = drbd_uuid_compare(device, peer_role, &rule_nr); 3508 spin_unlock_irq(&device->ldev->md.uuid_lock); 3509 3510 drbd_info(device, "uuid_compare()=%d by rule %d\n", hg, rule_nr); 3511 3512 if (hg == -1000) { 3513 drbd_alert(device, "Unrelated data, aborting!\n"); 3514 return C_MASK; 3515 } 3516 if (hg < -0x10000) { 3517 int proto, fflags; 3518 hg = -hg; 3519 proto = hg & 0xff; 3520 fflags = (hg >> 8) & 0xff; 3521 drbd_alert(device, "To resolve this both sides have to support at least protocol %d and feature flags 0x%x\n", 3522 proto, fflags); 3523 return C_MASK; 3524 } 3525 if (hg < -1000) { 3526 drbd_alert(device, "To resolve this both sides have to support at least protocol %d\n", -hg - 1000); 3527 return C_MASK; 3528 } 3529 3530 if ((mydisk == D_INCONSISTENT && peer_disk > D_INCONSISTENT) || 3531 (peer_disk == D_INCONSISTENT && mydisk > D_INCONSISTENT)) { 3532 int f = (hg == -100) || abs(hg) == 2; 3533 hg = mydisk > D_INCONSISTENT ? 1 : -1; 3534 if (f) 3535 hg = hg*2; 3536 drbd_info(device, "Becoming sync %s due to disk states.\n", 3537 hg > 0 ? "source" : "target"); 3538 } 3539 3540 if (abs(hg) == 100) 3541 drbd_khelper(device, "initial-split-brain"); 3542 3543 rcu_read_lock(); 3544 nc = rcu_dereference(peer_device->connection->net_conf); 3545 always_asbp = nc->always_asbp; 3546 rr_conflict = nc->rr_conflict; 3547 tentative = nc->tentative; 3548 rcu_read_unlock(); 3549 3550 if (hg == 100 || (hg == -100 && always_asbp)) { 3551 int pcount = (device->state.role == R_PRIMARY) 3552 + (peer_role == R_PRIMARY); 3553 int forced = (hg == -100); 3554 3555 switch (pcount) { 3556 case 0: 3557 hg = drbd_asb_recover_0p(peer_device); 3558 break; 3559 case 1: 3560 hg = drbd_asb_recover_1p(peer_device); 3561 break; 3562 case 2: 3563 hg = drbd_asb_recover_2p(peer_device); 3564 break; 3565 } 3566 if (abs(hg) < 100) { 3567 drbd_warn(device, "Split-Brain detected, %d primaries, " 3568 "automatically solved. Sync from %s node\n", 3569 pcount, (hg < 0) ? "peer" : "this"); 3570 if (forced) { 3571 drbd_warn(device, "Doing a full sync, since" 3572 " UUIDs where ambiguous.\n"); 3573 hg = hg*2; 3574 } 3575 } 3576 } 3577 3578 if (hg == -100) { 3579 if (test_bit(DISCARD_MY_DATA, &device->flags) && !(device->p_uuid[UI_FLAGS]&1)) 3580 hg = -1; 3581 if (!test_bit(DISCARD_MY_DATA, &device->flags) && (device->p_uuid[UI_FLAGS]&1)) 3582 hg = 1; 3583 3584 if (abs(hg) < 100) 3585 drbd_warn(device, "Split-Brain detected, manually solved. " 3586 "Sync from %s node\n", 3587 (hg < 0) ? "peer" : "this"); 3588 } 3589 3590 if (hg == -100) { 3591 /* FIXME this log message is not correct if we end up here 3592 * after an attempted attach on a diskless node. 3593 * We just refuse to attach -- well, we drop the "connection" 3594 * to that disk, in a way... */ 3595 drbd_alert(device, "Split-Brain detected but unresolved, dropping connection!\n"); 3596 drbd_khelper(device, "split-brain"); 3597 return C_MASK; 3598 } 3599 3600 if (hg > 0 && mydisk <= D_INCONSISTENT) { 3601 drbd_err(device, "I shall become SyncSource, but I am inconsistent!\n"); 3602 return C_MASK; 3603 } 3604 3605 if (hg < 0 && /* by intention we do not use mydisk here. */ 3606 device->state.role == R_PRIMARY && device->state.disk >= D_CONSISTENT) { 3607 switch (rr_conflict) { 3608 case ASB_CALL_HELPER: 3609 drbd_khelper(device, "pri-lost"); 3610 /* fall through */ 3611 case ASB_DISCONNECT: 3612 drbd_err(device, "I shall become SyncTarget, but I am primary!\n"); 3613 return C_MASK; 3614 case ASB_VIOLENTLY: 3615 drbd_warn(device, "Becoming SyncTarget, violating the stable-data" 3616 "assumption\n"); 3617 } 3618 } 3619 3620 if (tentative || test_bit(CONN_DRY_RUN, &peer_device->connection->flags)) { 3621 if (hg == 0) 3622 drbd_info(device, "dry-run connect: No resync, would become Connected immediately.\n"); 3623 else 3624 drbd_info(device, "dry-run connect: Would become %s, doing a %s resync.", 3625 drbd_conn_str(hg > 0 ? C_SYNC_SOURCE : C_SYNC_TARGET), 3626 abs(hg) >= 2 ? "full" : "bit-map based"); 3627 return C_MASK; 3628 } 3629 3630 if (abs(hg) >= 2) { 3631 drbd_info(device, "Writing the whole bitmap, full sync required after drbd_sync_handshake.\n"); 3632 if (drbd_bitmap_io(device, &drbd_bmio_set_n_write, "set_n_write from sync_handshake", 3633 BM_LOCKED_SET_ALLOWED)) 3634 return C_MASK; 3635 } 3636 3637 if (hg > 0) { /* become sync source. */ 3638 rv = C_WF_BITMAP_S; 3639 } else if (hg < 0) { /* become sync target */ 3640 rv = C_WF_BITMAP_T; 3641 } else { 3642 rv = C_CONNECTED; 3643 if (drbd_bm_total_weight(device)) { 3644 drbd_info(device, "No resync, but %lu bits in bitmap!\n", 3645 drbd_bm_total_weight(device)); 3646 } 3647 } 3648 3649 return rv; 3650 } 3651 3652 static enum drbd_after_sb_p convert_after_sb(enum drbd_after_sb_p peer) 3653 { 3654 /* ASB_DISCARD_REMOTE - ASB_DISCARD_LOCAL is valid */ 3655 if (peer == ASB_DISCARD_REMOTE) 3656 return ASB_DISCARD_LOCAL; 3657 3658 /* any other things with ASB_DISCARD_REMOTE or ASB_DISCARD_LOCAL are invalid */ 3659 if (peer == ASB_DISCARD_LOCAL) 3660 return ASB_DISCARD_REMOTE; 3661 3662 /* everything else is valid if they are equal on both sides. */ 3663 return peer; 3664 } 3665 3666 static int receive_protocol(struct drbd_connection *connection, struct packet_info *pi) 3667 { 3668 struct p_protocol *p = pi->data; 3669 enum drbd_after_sb_p p_after_sb_0p, p_after_sb_1p, p_after_sb_2p; 3670 int p_proto, p_discard_my_data, p_two_primaries, cf; 3671 struct net_conf *nc, *old_net_conf, *new_net_conf = NULL; 3672 char integrity_alg[SHARED_SECRET_MAX] = ""; 3673 struct crypto_shash *peer_integrity_tfm = NULL; 3674 void *int_dig_in = NULL, *int_dig_vv = NULL; 3675 3676 p_proto = be32_to_cpu(p->protocol); 3677 p_after_sb_0p = be32_to_cpu(p->after_sb_0p); 3678 p_after_sb_1p = be32_to_cpu(p->after_sb_1p); 3679 p_after_sb_2p = be32_to_cpu(p->after_sb_2p); 3680 p_two_primaries = be32_to_cpu(p->two_primaries); 3681 cf = be32_to_cpu(p->conn_flags); 3682 p_discard_my_data = cf & CF_DISCARD_MY_DATA; 3683 3684 if (connection->agreed_pro_version >= 87) { 3685 int err; 3686 3687 if (pi->size > sizeof(integrity_alg)) 3688 return -EIO; 3689 err = drbd_recv_all(connection, integrity_alg, pi->size); 3690 if (err) 3691 return err; 3692 integrity_alg[SHARED_SECRET_MAX - 1] = 0; 3693 } 3694 3695 if (pi->cmd != P_PROTOCOL_UPDATE) { 3696 clear_bit(CONN_DRY_RUN, &connection->flags); 3697 3698 if (cf & CF_DRY_RUN) 3699 set_bit(CONN_DRY_RUN, &connection->flags); 3700 3701 rcu_read_lock(); 3702 nc = rcu_dereference(connection->net_conf); 3703 3704 if (p_proto != nc->wire_protocol) { 3705 drbd_err(connection, "incompatible %s settings\n", "protocol"); 3706 goto disconnect_rcu_unlock; 3707 } 3708 3709 if (convert_after_sb(p_after_sb_0p) != nc->after_sb_0p) { 3710 drbd_err(connection, "incompatible %s settings\n", "after-sb-0pri"); 3711 goto disconnect_rcu_unlock; 3712 } 3713 3714 if (convert_after_sb(p_after_sb_1p) != nc->after_sb_1p) { 3715 drbd_err(connection, "incompatible %s settings\n", "after-sb-1pri"); 3716 goto disconnect_rcu_unlock; 3717 } 3718 3719 if (convert_after_sb(p_after_sb_2p) != nc->after_sb_2p) { 3720 drbd_err(connection, "incompatible %s settings\n", "after-sb-2pri"); 3721 goto disconnect_rcu_unlock; 3722 } 3723 3724 if (p_discard_my_data && nc->discard_my_data) { 3725 drbd_err(connection, "incompatible %s settings\n", "discard-my-data"); 3726 goto disconnect_rcu_unlock; 3727 } 3728 3729 if (p_two_primaries != nc->two_primaries) { 3730 drbd_err(connection, "incompatible %s settings\n", "allow-two-primaries"); 3731 goto disconnect_rcu_unlock; 3732 } 3733 3734 if (strcmp(integrity_alg, nc->integrity_alg)) { 3735 drbd_err(connection, "incompatible %s settings\n", "data-integrity-alg"); 3736 goto disconnect_rcu_unlock; 3737 } 3738 3739 rcu_read_unlock(); 3740 } 3741 3742 if (integrity_alg[0]) { 3743 int hash_size; 3744 3745 /* 3746 * We can only change the peer data integrity algorithm 3747 * here. Changing our own data integrity algorithm 3748 * requires that we send a P_PROTOCOL_UPDATE packet at 3749 * the same time; otherwise, the peer has no way to 3750 * tell between which packets the algorithm should 3751 * change. 3752 */ 3753 3754 peer_integrity_tfm = crypto_alloc_shash(integrity_alg, 0, 0); 3755 if (IS_ERR(peer_integrity_tfm)) { 3756 peer_integrity_tfm = NULL; 3757 drbd_err(connection, "peer data-integrity-alg %s not supported\n", 3758 integrity_alg); 3759 goto disconnect; 3760 } 3761 3762 hash_size = crypto_shash_digestsize(peer_integrity_tfm); 3763 int_dig_in = kmalloc(hash_size, GFP_KERNEL); 3764 int_dig_vv = kmalloc(hash_size, GFP_KERNEL); 3765 if (!(int_dig_in && int_dig_vv)) { 3766 drbd_err(connection, "Allocation of buffers for data integrity checking failed\n"); 3767 goto disconnect; 3768 } 3769 } 3770 3771 new_net_conf = kmalloc(sizeof(struct net_conf), GFP_KERNEL); 3772 if (!new_net_conf) { 3773 drbd_err(connection, "Allocation of new net_conf failed\n"); 3774 goto disconnect; 3775 } 3776 3777 mutex_lock(&connection->data.mutex); 3778 mutex_lock(&connection->resource->conf_update); 3779 old_net_conf = connection->net_conf; 3780 *new_net_conf = *old_net_conf; 3781 3782 new_net_conf->wire_protocol = p_proto; 3783 new_net_conf->after_sb_0p = convert_after_sb(p_after_sb_0p); 3784 new_net_conf->after_sb_1p = convert_after_sb(p_after_sb_1p); 3785 new_net_conf->after_sb_2p = convert_after_sb(p_after_sb_2p); 3786 new_net_conf->two_primaries = p_two_primaries; 3787 3788 rcu_assign_pointer(connection->net_conf, new_net_conf); 3789 mutex_unlock(&connection->resource->conf_update); 3790 mutex_unlock(&connection->data.mutex); 3791 3792 crypto_free_shash(connection->peer_integrity_tfm); 3793 kfree(connection->int_dig_in); 3794 kfree(connection->int_dig_vv); 3795 connection->peer_integrity_tfm = peer_integrity_tfm; 3796 connection->int_dig_in = int_dig_in; 3797 connection->int_dig_vv = int_dig_vv; 3798 3799 if (strcmp(old_net_conf->integrity_alg, integrity_alg)) 3800 drbd_info(connection, "peer data-integrity-alg: %s\n", 3801 integrity_alg[0] ? integrity_alg : "(none)"); 3802 3803 synchronize_rcu(); 3804 kfree(old_net_conf); 3805 return 0; 3806 3807 disconnect_rcu_unlock: 3808 rcu_read_unlock(); 3809 disconnect: 3810 crypto_free_shash(peer_integrity_tfm); 3811 kfree(int_dig_in); 3812 kfree(int_dig_vv); 3813 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 3814 return -EIO; 3815 } 3816 3817 /* helper function 3818 * input: alg name, feature name 3819 * return: NULL (alg name was "") 3820 * ERR_PTR(error) if something goes wrong 3821 * or the crypto hash ptr, if it worked out ok. */ 3822 static struct crypto_shash *drbd_crypto_alloc_digest_safe( 3823 const struct drbd_device *device, 3824 const char *alg, const char *name) 3825 { 3826 struct crypto_shash *tfm; 3827 3828 if (!alg[0]) 3829 return NULL; 3830 3831 tfm = crypto_alloc_shash(alg, 0, 0); 3832 if (IS_ERR(tfm)) { 3833 drbd_err(device, "Can not allocate \"%s\" as %s (reason: %ld)\n", 3834 alg, name, PTR_ERR(tfm)); 3835 return tfm; 3836 } 3837 return tfm; 3838 } 3839 3840 static int ignore_remaining_packet(struct drbd_connection *connection, struct packet_info *pi) 3841 { 3842 void *buffer = connection->data.rbuf; 3843 int size = pi->size; 3844 3845 while (size) { 3846 int s = min_t(int, size, DRBD_SOCKET_BUFFER_SIZE); 3847 s = drbd_recv(connection, buffer, s); 3848 if (s <= 0) { 3849 if (s < 0) 3850 return s; 3851 break; 3852 } 3853 size -= s; 3854 } 3855 if (size) 3856 return -EIO; 3857 return 0; 3858 } 3859 3860 /* 3861 * config_unknown_volume - device configuration command for unknown volume 3862 * 3863 * When a device is added to an existing connection, the node on which the 3864 * device is added first will send configuration commands to its peer but the 3865 * peer will not know about the device yet. It will warn and ignore these 3866 * commands. Once the device is added on the second node, the second node will 3867 * send the same device configuration commands, but in the other direction. 3868 * 3869 * (We can also end up here if drbd is misconfigured.) 3870 */ 3871 static int config_unknown_volume(struct drbd_connection *connection, struct packet_info *pi) 3872 { 3873 drbd_warn(connection, "%s packet received for volume %u, which is not configured locally\n", 3874 cmdname(pi->cmd), pi->vnr); 3875 return ignore_remaining_packet(connection, pi); 3876 } 3877 3878 static int receive_SyncParam(struct drbd_connection *connection, struct packet_info *pi) 3879 { 3880 struct drbd_peer_device *peer_device; 3881 struct drbd_device *device; 3882 struct p_rs_param_95 *p; 3883 unsigned int header_size, data_size, exp_max_sz; 3884 struct crypto_shash *verify_tfm = NULL; 3885 struct crypto_shash *csums_tfm = NULL; 3886 struct net_conf *old_net_conf, *new_net_conf = NULL; 3887 struct disk_conf *old_disk_conf = NULL, *new_disk_conf = NULL; 3888 const int apv = connection->agreed_pro_version; 3889 struct fifo_buffer *old_plan = NULL, *new_plan = NULL; 3890 unsigned int fifo_size = 0; 3891 int err; 3892 3893 peer_device = conn_peer_device(connection, pi->vnr); 3894 if (!peer_device) 3895 return config_unknown_volume(connection, pi); 3896 device = peer_device->device; 3897 3898 exp_max_sz = apv <= 87 ? sizeof(struct p_rs_param) 3899 : apv == 88 ? sizeof(struct p_rs_param) 3900 + SHARED_SECRET_MAX 3901 : apv <= 94 ? sizeof(struct p_rs_param_89) 3902 : /* apv >= 95 */ sizeof(struct p_rs_param_95); 3903 3904 if (pi->size > exp_max_sz) { 3905 drbd_err(device, "SyncParam packet too long: received %u, expected <= %u bytes\n", 3906 pi->size, exp_max_sz); 3907 return -EIO; 3908 } 3909 3910 if (apv <= 88) { 3911 header_size = sizeof(struct p_rs_param); 3912 data_size = pi->size - header_size; 3913 } else if (apv <= 94) { 3914 header_size = sizeof(struct p_rs_param_89); 3915 data_size = pi->size - header_size; 3916 D_ASSERT(device, data_size == 0); 3917 } else { 3918 header_size = sizeof(struct p_rs_param_95); 3919 data_size = pi->size - header_size; 3920 D_ASSERT(device, data_size == 0); 3921 } 3922 3923 /* initialize verify_alg and csums_alg */ 3924 p = pi->data; 3925 memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX); 3926 3927 err = drbd_recv_all(peer_device->connection, p, header_size); 3928 if (err) 3929 return err; 3930 3931 mutex_lock(&connection->resource->conf_update); 3932 old_net_conf = peer_device->connection->net_conf; 3933 if (get_ldev(device)) { 3934 new_disk_conf = kzalloc(sizeof(struct disk_conf), GFP_KERNEL); 3935 if (!new_disk_conf) { 3936 put_ldev(device); 3937 mutex_unlock(&connection->resource->conf_update); 3938 drbd_err(device, "Allocation of new disk_conf failed\n"); 3939 return -ENOMEM; 3940 } 3941 3942 old_disk_conf = device->ldev->disk_conf; 3943 *new_disk_conf = *old_disk_conf; 3944 3945 new_disk_conf->resync_rate = be32_to_cpu(p->resync_rate); 3946 } 3947 3948 if (apv >= 88) { 3949 if (apv == 88) { 3950 if (data_size > SHARED_SECRET_MAX || data_size == 0) { 3951 drbd_err(device, "verify-alg of wrong size, " 3952 "peer wants %u, accepting only up to %u byte\n", 3953 data_size, SHARED_SECRET_MAX); 3954 err = -EIO; 3955 goto reconnect; 3956 } 3957 3958 err = drbd_recv_all(peer_device->connection, p->verify_alg, data_size); 3959 if (err) 3960 goto reconnect; 3961 /* we expect NUL terminated string */ 3962 /* but just in case someone tries to be evil */ 3963 D_ASSERT(device, p->verify_alg[data_size-1] == 0); 3964 p->verify_alg[data_size-1] = 0; 3965 3966 } else /* apv >= 89 */ { 3967 /* we still expect NUL terminated strings */ 3968 /* but just in case someone tries to be evil */ 3969 D_ASSERT(device, p->verify_alg[SHARED_SECRET_MAX-1] == 0); 3970 D_ASSERT(device, p->csums_alg[SHARED_SECRET_MAX-1] == 0); 3971 p->verify_alg[SHARED_SECRET_MAX-1] = 0; 3972 p->csums_alg[SHARED_SECRET_MAX-1] = 0; 3973 } 3974 3975 if (strcmp(old_net_conf->verify_alg, p->verify_alg)) { 3976 if (device->state.conn == C_WF_REPORT_PARAMS) { 3977 drbd_err(device, "Different verify-alg settings. me=\"%s\" peer=\"%s\"\n", 3978 old_net_conf->verify_alg, p->verify_alg); 3979 goto disconnect; 3980 } 3981 verify_tfm = drbd_crypto_alloc_digest_safe(device, 3982 p->verify_alg, "verify-alg"); 3983 if (IS_ERR(verify_tfm)) { 3984 verify_tfm = NULL; 3985 goto disconnect; 3986 } 3987 } 3988 3989 if (apv >= 89 && strcmp(old_net_conf->csums_alg, p->csums_alg)) { 3990 if (device->state.conn == C_WF_REPORT_PARAMS) { 3991 drbd_err(device, "Different csums-alg settings. me=\"%s\" peer=\"%s\"\n", 3992 old_net_conf->csums_alg, p->csums_alg); 3993 goto disconnect; 3994 } 3995 csums_tfm = drbd_crypto_alloc_digest_safe(device, 3996 p->csums_alg, "csums-alg"); 3997 if (IS_ERR(csums_tfm)) { 3998 csums_tfm = NULL; 3999 goto disconnect; 4000 } 4001 } 4002 4003 if (apv > 94 && new_disk_conf) { 4004 new_disk_conf->c_plan_ahead = be32_to_cpu(p->c_plan_ahead); 4005 new_disk_conf->c_delay_target = be32_to_cpu(p->c_delay_target); 4006 new_disk_conf->c_fill_target = be32_to_cpu(p->c_fill_target); 4007 new_disk_conf->c_max_rate = be32_to_cpu(p->c_max_rate); 4008 4009 fifo_size = (new_disk_conf->c_plan_ahead * 10 * SLEEP_TIME) / HZ; 4010 if (fifo_size != device->rs_plan_s->size) { 4011 new_plan = fifo_alloc(fifo_size); 4012 if (!new_plan) { 4013 drbd_err(device, "kmalloc of fifo_buffer failed"); 4014 put_ldev(device); 4015 goto disconnect; 4016 } 4017 } 4018 } 4019 4020 if (verify_tfm || csums_tfm) { 4021 new_net_conf = kzalloc(sizeof(struct net_conf), GFP_KERNEL); 4022 if (!new_net_conf) { 4023 drbd_err(device, "Allocation of new net_conf failed\n"); 4024 goto disconnect; 4025 } 4026 4027 *new_net_conf = *old_net_conf; 4028 4029 if (verify_tfm) { 4030 strcpy(new_net_conf->verify_alg, p->verify_alg); 4031 new_net_conf->verify_alg_len = strlen(p->verify_alg) + 1; 4032 crypto_free_shash(peer_device->connection->verify_tfm); 4033 peer_device->connection->verify_tfm = verify_tfm; 4034 drbd_info(device, "using verify-alg: \"%s\"\n", p->verify_alg); 4035 } 4036 if (csums_tfm) { 4037 strcpy(new_net_conf->csums_alg, p->csums_alg); 4038 new_net_conf->csums_alg_len = strlen(p->csums_alg) + 1; 4039 crypto_free_shash(peer_device->connection->csums_tfm); 4040 peer_device->connection->csums_tfm = csums_tfm; 4041 drbd_info(device, "using csums-alg: \"%s\"\n", p->csums_alg); 4042 } 4043 rcu_assign_pointer(connection->net_conf, new_net_conf); 4044 } 4045 } 4046 4047 if (new_disk_conf) { 4048 rcu_assign_pointer(device->ldev->disk_conf, new_disk_conf); 4049 put_ldev(device); 4050 } 4051 4052 if (new_plan) { 4053 old_plan = device->rs_plan_s; 4054 rcu_assign_pointer(device->rs_plan_s, new_plan); 4055 } 4056 4057 mutex_unlock(&connection->resource->conf_update); 4058 synchronize_rcu(); 4059 if (new_net_conf) 4060 kfree(old_net_conf); 4061 kfree(old_disk_conf); 4062 kfree(old_plan); 4063 4064 return 0; 4065 4066 reconnect: 4067 if (new_disk_conf) { 4068 put_ldev(device); 4069 kfree(new_disk_conf); 4070 } 4071 mutex_unlock(&connection->resource->conf_update); 4072 return -EIO; 4073 4074 disconnect: 4075 kfree(new_plan); 4076 if (new_disk_conf) { 4077 put_ldev(device); 4078 kfree(new_disk_conf); 4079 } 4080 mutex_unlock(&connection->resource->conf_update); 4081 /* just for completeness: actually not needed, 4082 * as this is not reached if csums_tfm was ok. */ 4083 crypto_free_shash(csums_tfm); 4084 /* but free the verify_tfm again, if csums_tfm did not work out */ 4085 crypto_free_shash(verify_tfm); 4086 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD); 4087 return -EIO; 4088 } 4089 4090 /* warn if the arguments differ by more than 12.5% */ 4091 static void warn_if_differ_considerably(struct drbd_device *device, 4092 const char *s, sector_t a, sector_t b) 4093 { 4094 sector_t d; 4095 if (a == 0 || b == 0) 4096 return; 4097 d = (a > b) ? (a - b) : (b - a); 4098 if (d > (a>>3) || d > (b>>3)) 4099 drbd_warn(device, "Considerable difference in %s: %llus vs. %llus\n", s, 4100 (unsigned long long)a, (unsigned long long)b); 4101 } 4102 4103 static int receive_sizes(struct drbd_connection *connection, struct packet_info *pi) 4104 { 4105 struct drbd_peer_device *peer_device; 4106 struct drbd_device *device; 4107 struct p_sizes *p = pi->data; 4108 struct o_qlim *o = (connection->agreed_features & DRBD_FF_WSAME) ? p->qlim : NULL; 4109 enum determine_dev_size dd = DS_UNCHANGED; 4110 sector_t p_size, p_usize, p_csize, my_usize; 4111 sector_t new_size, cur_size; 4112 int ldsc = 0; /* local disk size changed */ 4113 enum dds_flags ddsf; 4114 4115 peer_device = conn_peer_device(connection, pi->vnr); 4116 if (!peer_device) 4117 return config_unknown_volume(connection, pi); 4118 device = peer_device->device; 4119 cur_size = drbd_get_capacity(device->this_bdev); 4120 4121 p_size = be64_to_cpu(p->d_size); 4122 p_usize = be64_to_cpu(p->u_size); 4123 p_csize = be64_to_cpu(p->c_size); 4124 4125 /* just store the peer's disk size for now. 4126 * we still need to figure out whether we accept that. */ 4127 device->p_size = p_size; 4128 4129 if (get_ldev(device)) { 4130 rcu_read_lock(); 4131 my_usize = rcu_dereference(device->ldev->disk_conf)->disk_size; 4132 rcu_read_unlock(); 4133 4134 warn_if_differ_considerably(device, "lower level device sizes", 4135 p_size, drbd_get_max_capacity(device->ldev)); 4136 warn_if_differ_considerably(device, "user requested size", 4137 p_usize, my_usize); 4138 4139 /* if this is the first connect, or an otherwise expected 4140 * param exchange, choose the minimum */ 4141 if (device->state.conn == C_WF_REPORT_PARAMS) 4142 p_usize = min_not_zero(my_usize, p_usize); 4143 4144 /* Never shrink a device with usable data during connect, 4145 * or "attach" on the peer. 4146 * But allow online shrinking if we are connected. */ 4147 new_size = drbd_new_dev_size(device, device->ldev, p_usize, 0); 4148 if (new_size < cur_size && 4149 device->state.disk >= D_OUTDATED && 4150 (device->state.conn < C_CONNECTED || device->state.pdsk == D_DISKLESS)) { 4151 drbd_err(device, "The peer's disk size is too small! (%llu < %llu sectors)\n", 4152 (unsigned long long)new_size, (unsigned long long)cur_size); 4153 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD); 4154 put_ldev(device); 4155 return -EIO; 4156 } 4157 4158 if (my_usize != p_usize) { 4159 struct disk_conf *old_disk_conf, *new_disk_conf = NULL; 4160 4161 new_disk_conf = kzalloc(sizeof(struct disk_conf), GFP_KERNEL); 4162 if (!new_disk_conf) { 4163 drbd_err(device, "Allocation of new disk_conf failed\n"); 4164 put_ldev(device); 4165 return -ENOMEM; 4166 } 4167 4168 mutex_lock(&connection->resource->conf_update); 4169 old_disk_conf = device->ldev->disk_conf; 4170 *new_disk_conf = *old_disk_conf; 4171 new_disk_conf->disk_size = p_usize; 4172 4173 rcu_assign_pointer(device->ldev->disk_conf, new_disk_conf); 4174 mutex_unlock(&connection->resource->conf_update); 4175 synchronize_rcu(); 4176 kfree(old_disk_conf); 4177 4178 drbd_info(device, "Peer sets u_size to %lu sectors (old: %lu)\n", 4179 (unsigned long)p_usize, (unsigned long)my_usize); 4180 } 4181 4182 put_ldev(device); 4183 } 4184 4185 device->peer_max_bio_size = be32_to_cpu(p->max_bio_size); 4186 /* Leave drbd_reconsider_queue_parameters() before drbd_determine_dev_size(). 4187 In case we cleared the QUEUE_FLAG_DISCARD from our queue in 4188 drbd_reconsider_queue_parameters(), we can be sure that after 4189 drbd_determine_dev_size() no REQ_DISCARDs are in the queue. */ 4190 4191 ddsf = be16_to_cpu(p->dds_flags); 4192 if (get_ldev(device)) { 4193 drbd_reconsider_queue_parameters(device, device->ldev, o); 4194 dd = drbd_determine_dev_size(device, ddsf, NULL); 4195 put_ldev(device); 4196 if (dd == DS_ERROR) 4197 return -EIO; 4198 drbd_md_sync(device); 4199 } else { 4200 /* 4201 * I am diskless, need to accept the peer's *current* size. 4202 * I must NOT accept the peers backing disk size, 4203 * it may have been larger than mine all along... 4204 * 4205 * At this point, the peer knows more about my disk, or at 4206 * least about what we last agreed upon, than myself. 4207 * So if his c_size is less than his d_size, the most likely 4208 * reason is that *my* d_size was smaller last time we checked. 4209 * 4210 * However, if he sends a zero current size, 4211 * take his (user-capped or) backing disk size anyways. 4212 * 4213 * Unless of course he does not have a disk himself. 4214 * In which case we ignore this completely. 4215 */ 4216 sector_t new_size = p_csize ?: p_usize ?: p_size; 4217 drbd_reconsider_queue_parameters(device, NULL, o); 4218 if (new_size == 0) { 4219 /* Ignore, peer does not know nothing. */ 4220 } else if (new_size == cur_size) { 4221 /* nothing to do */ 4222 } else if (cur_size != 0 && p_size == 0) { 4223 drbd_warn(device, "Ignored diskless peer device size (peer:%llu != me:%llu sectors)!\n", 4224 (unsigned long long)new_size, (unsigned long long)cur_size); 4225 } else if (new_size < cur_size && device->state.role == R_PRIMARY) { 4226 drbd_err(device, "The peer's device size is too small! (%llu < %llu sectors); demote me first!\n", 4227 (unsigned long long)new_size, (unsigned long long)cur_size); 4228 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD); 4229 return -EIO; 4230 } else { 4231 /* I believe the peer, if 4232 * - I don't have a current size myself 4233 * - we agree on the size anyways 4234 * - I do have a current size, am Secondary, 4235 * and he has the only disk 4236 * - I do have a current size, am Primary, 4237 * and he has the only disk, 4238 * which is larger than my current size 4239 */ 4240 drbd_set_my_capacity(device, new_size); 4241 } 4242 } 4243 4244 if (get_ldev(device)) { 4245 if (device->ldev->known_size != drbd_get_capacity(device->ldev->backing_bdev)) { 4246 device->ldev->known_size = drbd_get_capacity(device->ldev->backing_bdev); 4247 ldsc = 1; 4248 } 4249 4250 put_ldev(device); 4251 } 4252 4253 if (device->state.conn > C_WF_REPORT_PARAMS) { 4254 if (be64_to_cpu(p->c_size) != 4255 drbd_get_capacity(device->this_bdev) || ldsc) { 4256 /* we have different sizes, probably peer 4257 * needs to know my new size... */ 4258 drbd_send_sizes(peer_device, 0, ddsf); 4259 } 4260 if (test_and_clear_bit(RESIZE_PENDING, &device->flags) || 4261 (dd == DS_GREW && device->state.conn == C_CONNECTED)) { 4262 if (device->state.pdsk >= D_INCONSISTENT && 4263 device->state.disk >= D_INCONSISTENT) { 4264 if (ddsf & DDSF_NO_RESYNC) 4265 drbd_info(device, "Resync of new storage suppressed with --assume-clean\n"); 4266 else 4267 resync_after_online_grow(device); 4268 } else 4269 set_bit(RESYNC_AFTER_NEG, &device->flags); 4270 } 4271 } 4272 4273 return 0; 4274 } 4275 4276 static int receive_uuids(struct drbd_connection *connection, struct packet_info *pi) 4277 { 4278 struct drbd_peer_device *peer_device; 4279 struct drbd_device *device; 4280 struct p_uuids *p = pi->data; 4281 u64 *p_uuid; 4282 int i, updated_uuids = 0; 4283 4284 peer_device = conn_peer_device(connection, pi->vnr); 4285 if (!peer_device) 4286 return config_unknown_volume(connection, pi); 4287 device = peer_device->device; 4288 4289 p_uuid = kmalloc_array(UI_EXTENDED_SIZE, sizeof(*p_uuid), GFP_NOIO); 4290 if (!p_uuid) { 4291 drbd_err(device, "kmalloc of p_uuid failed\n"); 4292 return false; 4293 } 4294 4295 for (i = UI_CURRENT; i < UI_EXTENDED_SIZE; i++) 4296 p_uuid[i] = be64_to_cpu(p->uuid[i]); 4297 4298 kfree(device->p_uuid); 4299 device->p_uuid = p_uuid; 4300 4301 if ((device->state.conn < C_CONNECTED || device->state.pdsk == D_DISKLESS) && 4302 device->state.disk < D_INCONSISTENT && 4303 device->state.role == R_PRIMARY && 4304 (device->ed_uuid & ~((u64)1)) != (p_uuid[UI_CURRENT] & ~((u64)1))) { 4305 drbd_err(device, "Can only connect to data with current UUID=%016llX\n", 4306 (unsigned long long)device->ed_uuid); 4307 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD); 4308 return -EIO; 4309 } 4310 4311 if (get_ldev(device)) { 4312 int skip_initial_sync = 4313 device->state.conn == C_CONNECTED && 4314 peer_device->connection->agreed_pro_version >= 90 && 4315 device->ldev->md.uuid[UI_CURRENT] == UUID_JUST_CREATED && 4316 (p_uuid[UI_FLAGS] & 8); 4317 if (skip_initial_sync) { 4318 drbd_info(device, "Accepted new current UUID, preparing to skip initial sync\n"); 4319 drbd_bitmap_io(device, &drbd_bmio_clear_n_write, 4320 "clear_n_write from receive_uuids", 4321 BM_LOCKED_TEST_ALLOWED); 4322 _drbd_uuid_set(device, UI_CURRENT, p_uuid[UI_CURRENT]); 4323 _drbd_uuid_set(device, UI_BITMAP, 0); 4324 _drbd_set_state(_NS2(device, disk, D_UP_TO_DATE, pdsk, D_UP_TO_DATE), 4325 CS_VERBOSE, NULL); 4326 drbd_md_sync(device); 4327 updated_uuids = 1; 4328 } 4329 put_ldev(device); 4330 } else if (device->state.disk < D_INCONSISTENT && 4331 device->state.role == R_PRIMARY) { 4332 /* I am a diskless primary, the peer just created a new current UUID 4333 for me. */ 4334 updated_uuids = drbd_set_ed_uuid(device, p_uuid[UI_CURRENT]); 4335 } 4336 4337 /* Before we test for the disk state, we should wait until an eventually 4338 ongoing cluster wide state change is finished. That is important if 4339 we are primary and are detaching from our disk. We need to see the 4340 new disk state... */ 4341 mutex_lock(device->state_mutex); 4342 mutex_unlock(device->state_mutex); 4343 if (device->state.conn >= C_CONNECTED && device->state.disk < D_INCONSISTENT) 4344 updated_uuids |= drbd_set_ed_uuid(device, p_uuid[UI_CURRENT]); 4345 4346 if (updated_uuids) 4347 drbd_print_uuids(device, "receiver updated UUIDs to"); 4348 4349 return 0; 4350 } 4351 4352 /** 4353 * convert_state() - Converts the peer's view of the cluster state to our point of view 4354 * @ps: The state as seen by the peer. 4355 */ 4356 static union drbd_state convert_state(union drbd_state ps) 4357 { 4358 union drbd_state ms; 4359 4360 static enum drbd_conns c_tab[] = { 4361 [C_WF_REPORT_PARAMS] = C_WF_REPORT_PARAMS, 4362 [C_CONNECTED] = C_CONNECTED, 4363 4364 [C_STARTING_SYNC_S] = C_STARTING_SYNC_T, 4365 [C_STARTING_SYNC_T] = C_STARTING_SYNC_S, 4366 [C_DISCONNECTING] = C_TEAR_DOWN, /* C_NETWORK_FAILURE, */ 4367 [C_VERIFY_S] = C_VERIFY_T, 4368 [C_MASK] = C_MASK, 4369 }; 4370 4371 ms.i = ps.i; 4372 4373 ms.conn = c_tab[ps.conn]; 4374 ms.peer = ps.role; 4375 ms.role = ps.peer; 4376 ms.pdsk = ps.disk; 4377 ms.disk = ps.pdsk; 4378 ms.peer_isp = (ps.aftr_isp | ps.user_isp); 4379 4380 return ms; 4381 } 4382 4383 static int receive_req_state(struct drbd_connection *connection, struct packet_info *pi) 4384 { 4385 struct drbd_peer_device *peer_device; 4386 struct drbd_device *device; 4387 struct p_req_state *p = pi->data; 4388 union drbd_state mask, val; 4389 enum drbd_state_rv rv; 4390 4391 peer_device = conn_peer_device(connection, pi->vnr); 4392 if (!peer_device) 4393 return -EIO; 4394 device = peer_device->device; 4395 4396 mask.i = be32_to_cpu(p->mask); 4397 val.i = be32_to_cpu(p->val); 4398 4399 if (test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags) && 4400 mutex_is_locked(device->state_mutex)) { 4401 drbd_send_sr_reply(peer_device, SS_CONCURRENT_ST_CHG); 4402 return 0; 4403 } 4404 4405 mask = convert_state(mask); 4406 val = convert_state(val); 4407 4408 rv = drbd_change_state(device, CS_VERBOSE, mask, val); 4409 drbd_send_sr_reply(peer_device, rv); 4410 4411 drbd_md_sync(device); 4412 4413 return 0; 4414 } 4415 4416 static int receive_req_conn_state(struct drbd_connection *connection, struct packet_info *pi) 4417 { 4418 struct p_req_state *p = pi->data; 4419 union drbd_state mask, val; 4420 enum drbd_state_rv rv; 4421 4422 mask.i = be32_to_cpu(p->mask); 4423 val.i = be32_to_cpu(p->val); 4424 4425 if (test_bit(RESOLVE_CONFLICTS, &connection->flags) && 4426 mutex_is_locked(&connection->cstate_mutex)) { 4427 conn_send_sr_reply(connection, SS_CONCURRENT_ST_CHG); 4428 return 0; 4429 } 4430 4431 mask = convert_state(mask); 4432 val = convert_state(val); 4433 4434 rv = conn_request_state(connection, mask, val, CS_VERBOSE | CS_LOCAL_ONLY | CS_IGN_OUTD_FAIL); 4435 conn_send_sr_reply(connection, rv); 4436 4437 return 0; 4438 } 4439 4440 static int receive_state(struct drbd_connection *connection, struct packet_info *pi) 4441 { 4442 struct drbd_peer_device *peer_device; 4443 struct drbd_device *device; 4444 struct p_state *p = pi->data; 4445 union drbd_state os, ns, peer_state; 4446 enum drbd_disk_state real_peer_disk; 4447 enum chg_state_flags cs_flags; 4448 int rv; 4449 4450 peer_device = conn_peer_device(connection, pi->vnr); 4451 if (!peer_device) 4452 return config_unknown_volume(connection, pi); 4453 device = peer_device->device; 4454 4455 peer_state.i = be32_to_cpu(p->state); 4456 4457 real_peer_disk = peer_state.disk; 4458 if (peer_state.disk == D_NEGOTIATING) { 4459 real_peer_disk = device->p_uuid[UI_FLAGS] & 4 ? D_INCONSISTENT : D_CONSISTENT; 4460 drbd_info(device, "real peer disk state = %s\n", drbd_disk_str(real_peer_disk)); 4461 } 4462 4463 spin_lock_irq(&device->resource->req_lock); 4464 retry: 4465 os = ns = drbd_read_state(device); 4466 spin_unlock_irq(&device->resource->req_lock); 4467 4468 /* If some other part of the code (ack_receiver thread, timeout) 4469 * already decided to close the connection again, 4470 * we must not "re-establish" it here. */ 4471 if (os.conn <= C_TEAR_DOWN) 4472 return -ECONNRESET; 4473 4474 /* If this is the "end of sync" confirmation, usually the peer disk 4475 * transitions from D_INCONSISTENT to D_UP_TO_DATE. For empty (0 bits 4476 * set) resync started in PausedSyncT, or if the timing of pause-/ 4477 * unpause-sync events has been "just right", the peer disk may 4478 * transition from D_CONSISTENT to D_UP_TO_DATE as well. 4479 */ 4480 if ((os.pdsk == D_INCONSISTENT || os.pdsk == D_CONSISTENT) && 4481 real_peer_disk == D_UP_TO_DATE && 4482 os.conn > C_CONNECTED && os.disk == D_UP_TO_DATE) { 4483 /* If we are (becoming) SyncSource, but peer is still in sync 4484 * preparation, ignore its uptodate-ness to avoid flapping, it 4485 * will change to inconsistent once the peer reaches active 4486 * syncing states. 4487 * It may have changed syncer-paused flags, however, so we 4488 * cannot ignore this completely. */ 4489 if (peer_state.conn > C_CONNECTED && 4490 peer_state.conn < C_SYNC_SOURCE) 4491 real_peer_disk = D_INCONSISTENT; 4492 4493 /* if peer_state changes to connected at the same time, 4494 * it explicitly notifies us that it finished resync. 4495 * Maybe we should finish it up, too? */ 4496 else if (os.conn >= C_SYNC_SOURCE && 4497 peer_state.conn == C_CONNECTED) { 4498 if (drbd_bm_total_weight(device) <= device->rs_failed) 4499 drbd_resync_finished(device); 4500 return 0; 4501 } 4502 } 4503 4504 /* explicit verify finished notification, stop sector reached. */ 4505 if (os.conn == C_VERIFY_T && os.disk == D_UP_TO_DATE && 4506 peer_state.conn == C_CONNECTED && real_peer_disk == D_UP_TO_DATE) { 4507 ov_out_of_sync_print(device); 4508 drbd_resync_finished(device); 4509 return 0; 4510 } 4511 4512 /* peer says his disk is inconsistent, while we think it is uptodate, 4513 * and this happens while the peer still thinks we have a sync going on, 4514 * but we think we are already done with the sync. 4515 * We ignore this to avoid flapping pdsk. 4516 * This should not happen, if the peer is a recent version of drbd. */ 4517 if (os.pdsk == D_UP_TO_DATE && real_peer_disk == D_INCONSISTENT && 4518 os.conn == C_CONNECTED && peer_state.conn > C_SYNC_SOURCE) 4519 real_peer_disk = D_UP_TO_DATE; 4520 4521 if (ns.conn == C_WF_REPORT_PARAMS) 4522 ns.conn = C_CONNECTED; 4523 4524 if (peer_state.conn == C_AHEAD) 4525 ns.conn = C_BEHIND; 4526 4527 /* TODO: 4528 * if (primary and diskless and peer uuid != effective uuid) 4529 * abort attach on peer; 4530 * 4531 * If this node does not have good data, was already connected, but 4532 * the peer did a late attach only now, trying to "negotiate" with me, 4533 * AND I am currently Primary, possibly frozen, with some specific 4534 * "effective" uuid, this should never be reached, really, because 4535 * we first send the uuids, then the current state. 4536 * 4537 * In this scenario, we already dropped the connection hard 4538 * when we received the unsuitable uuids (receive_uuids(). 4539 * 4540 * Should we want to change this, that is: not drop the connection in 4541 * receive_uuids() already, then we would need to add a branch here 4542 * that aborts the attach of "unsuitable uuids" on the peer in case 4543 * this node is currently Diskless Primary. 4544 */ 4545 4546 if (device->p_uuid && peer_state.disk >= D_NEGOTIATING && 4547 get_ldev_if_state(device, D_NEGOTIATING)) { 4548 int cr; /* consider resync */ 4549 4550 /* if we established a new connection */ 4551 cr = (os.conn < C_CONNECTED); 4552 /* if we had an established connection 4553 * and one of the nodes newly attaches a disk */ 4554 cr |= (os.conn == C_CONNECTED && 4555 (peer_state.disk == D_NEGOTIATING || 4556 os.disk == D_NEGOTIATING)); 4557 /* if we have both been inconsistent, and the peer has been 4558 * forced to be UpToDate with --force */ 4559 cr |= test_bit(CONSIDER_RESYNC, &device->flags); 4560 /* if we had been plain connected, and the admin requested to 4561 * start a sync by "invalidate" or "invalidate-remote" */ 4562 cr |= (os.conn == C_CONNECTED && 4563 (peer_state.conn >= C_STARTING_SYNC_S && 4564 peer_state.conn <= C_WF_BITMAP_T)); 4565 4566 if (cr) 4567 ns.conn = drbd_sync_handshake(peer_device, peer_state.role, real_peer_disk); 4568 4569 put_ldev(device); 4570 if (ns.conn == C_MASK) { 4571 ns.conn = C_CONNECTED; 4572 if (device->state.disk == D_NEGOTIATING) { 4573 drbd_force_state(device, NS(disk, D_FAILED)); 4574 } else if (peer_state.disk == D_NEGOTIATING) { 4575 drbd_err(device, "Disk attach process on the peer node was aborted.\n"); 4576 peer_state.disk = D_DISKLESS; 4577 real_peer_disk = D_DISKLESS; 4578 } else { 4579 if (test_and_clear_bit(CONN_DRY_RUN, &peer_device->connection->flags)) 4580 return -EIO; 4581 D_ASSERT(device, os.conn == C_WF_REPORT_PARAMS); 4582 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD); 4583 return -EIO; 4584 } 4585 } 4586 } 4587 4588 spin_lock_irq(&device->resource->req_lock); 4589 if (os.i != drbd_read_state(device).i) 4590 goto retry; 4591 clear_bit(CONSIDER_RESYNC, &device->flags); 4592 ns.peer = peer_state.role; 4593 ns.pdsk = real_peer_disk; 4594 ns.peer_isp = (peer_state.aftr_isp | peer_state.user_isp); 4595 if ((ns.conn == C_CONNECTED || ns.conn == C_WF_BITMAP_S) && ns.disk == D_NEGOTIATING) 4596 ns.disk = device->new_state_tmp.disk; 4597 cs_flags = CS_VERBOSE + (os.conn < C_CONNECTED && ns.conn >= C_CONNECTED ? 0 : CS_HARD); 4598 if (ns.pdsk == D_CONSISTENT && drbd_suspended(device) && ns.conn == C_CONNECTED && os.conn < C_CONNECTED && 4599 test_bit(NEW_CUR_UUID, &device->flags)) { 4600 /* Do not allow tl_restart(RESEND) for a rebooted peer. We can only allow this 4601 for temporal network outages! */ 4602 spin_unlock_irq(&device->resource->req_lock); 4603 drbd_err(device, "Aborting Connect, can not thaw IO with an only Consistent peer\n"); 4604 tl_clear(peer_device->connection); 4605 drbd_uuid_new_current(device); 4606 clear_bit(NEW_CUR_UUID, &device->flags); 4607 conn_request_state(peer_device->connection, NS2(conn, C_PROTOCOL_ERROR, susp, 0), CS_HARD); 4608 return -EIO; 4609 } 4610 rv = _drbd_set_state(device, ns, cs_flags, NULL); 4611 ns = drbd_read_state(device); 4612 spin_unlock_irq(&device->resource->req_lock); 4613 4614 if (rv < SS_SUCCESS) { 4615 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD); 4616 return -EIO; 4617 } 4618 4619 if (os.conn > C_WF_REPORT_PARAMS) { 4620 if (ns.conn > C_CONNECTED && peer_state.conn <= C_CONNECTED && 4621 peer_state.disk != D_NEGOTIATING ) { 4622 /* we want resync, peer has not yet decided to sync... */ 4623 /* Nowadays only used when forcing a node into primary role and 4624 setting its disk to UpToDate with that */ 4625 drbd_send_uuids(peer_device); 4626 drbd_send_current_state(peer_device); 4627 } 4628 } 4629 4630 clear_bit(DISCARD_MY_DATA, &device->flags); 4631 4632 drbd_md_sync(device); /* update connected indicator, la_size_sect, ... */ 4633 4634 return 0; 4635 } 4636 4637 static int receive_sync_uuid(struct drbd_connection *connection, struct packet_info *pi) 4638 { 4639 struct drbd_peer_device *peer_device; 4640 struct drbd_device *device; 4641 struct p_rs_uuid *p = pi->data; 4642 4643 peer_device = conn_peer_device(connection, pi->vnr); 4644 if (!peer_device) 4645 return -EIO; 4646 device = peer_device->device; 4647 4648 wait_event(device->misc_wait, 4649 device->state.conn == C_WF_SYNC_UUID || 4650 device->state.conn == C_BEHIND || 4651 device->state.conn < C_CONNECTED || 4652 device->state.disk < D_NEGOTIATING); 4653 4654 /* D_ASSERT(device, device->state.conn == C_WF_SYNC_UUID ); */ 4655 4656 /* Here the _drbd_uuid_ functions are right, current should 4657 _not_ be rotated into the history */ 4658 if (get_ldev_if_state(device, D_NEGOTIATING)) { 4659 _drbd_uuid_set(device, UI_CURRENT, be64_to_cpu(p->uuid)); 4660 _drbd_uuid_set(device, UI_BITMAP, 0UL); 4661 4662 drbd_print_uuids(device, "updated sync uuid"); 4663 drbd_start_resync(device, C_SYNC_TARGET); 4664 4665 put_ldev(device); 4666 } else 4667 drbd_err(device, "Ignoring SyncUUID packet!\n"); 4668 4669 return 0; 4670 } 4671 4672 /** 4673 * receive_bitmap_plain 4674 * 4675 * Return 0 when done, 1 when another iteration is needed, and a negative error 4676 * code upon failure. 4677 */ 4678 static int 4679 receive_bitmap_plain(struct drbd_peer_device *peer_device, unsigned int size, 4680 unsigned long *p, struct bm_xfer_ctx *c) 4681 { 4682 unsigned int data_size = DRBD_SOCKET_BUFFER_SIZE - 4683 drbd_header_size(peer_device->connection); 4684 unsigned int num_words = min_t(size_t, data_size / sizeof(*p), 4685 c->bm_words - c->word_offset); 4686 unsigned int want = num_words * sizeof(*p); 4687 int err; 4688 4689 if (want != size) { 4690 drbd_err(peer_device, "%s:want (%u) != size (%u)\n", __func__, want, size); 4691 return -EIO; 4692 } 4693 if (want == 0) 4694 return 0; 4695 err = drbd_recv_all(peer_device->connection, p, want); 4696 if (err) 4697 return err; 4698 4699 drbd_bm_merge_lel(peer_device->device, c->word_offset, num_words, p); 4700 4701 c->word_offset += num_words; 4702 c->bit_offset = c->word_offset * BITS_PER_LONG; 4703 if (c->bit_offset > c->bm_bits) 4704 c->bit_offset = c->bm_bits; 4705 4706 return 1; 4707 } 4708 4709 static enum drbd_bitmap_code dcbp_get_code(struct p_compressed_bm *p) 4710 { 4711 return (enum drbd_bitmap_code)(p->encoding & 0x0f); 4712 } 4713 4714 static int dcbp_get_start(struct p_compressed_bm *p) 4715 { 4716 return (p->encoding & 0x80) != 0; 4717 } 4718 4719 static int dcbp_get_pad_bits(struct p_compressed_bm *p) 4720 { 4721 return (p->encoding >> 4) & 0x7; 4722 } 4723 4724 /** 4725 * recv_bm_rle_bits 4726 * 4727 * Return 0 when done, 1 when another iteration is needed, and a negative error 4728 * code upon failure. 4729 */ 4730 static int 4731 recv_bm_rle_bits(struct drbd_peer_device *peer_device, 4732 struct p_compressed_bm *p, 4733 struct bm_xfer_ctx *c, 4734 unsigned int len) 4735 { 4736 struct bitstream bs; 4737 u64 look_ahead; 4738 u64 rl; 4739 u64 tmp; 4740 unsigned long s = c->bit_offset; 4741 unsigned long e; 4742 int toggle = dcbp_get_start(p); 4743 int have; 4744 int bits; 4745 4746 bitstream_init(&bs, p->code, len, dcbp_get_pad_bits(p)); 4747 4748 bits = bitstream_get_bits(&bs, &look_ahead, 64); 4749 if (bits < 0) 4750 return -EIO; 4751 4752 for (have = bits; have > 0; s += rl, toggle = !toggle) { 4753 bits = vli_decode_bits(&rl, look_ahead); 4754 if (bits <= 0) 4755 return -EIO; 4756 4757 if (toggle) { 4758 e = s + rl -1; 4759 if (e >= c->bm_bits) { 4760 drbd_err(peer_device, "bitmap overflow (e:%lu) while decoding bm RLE packet\n", e); 4761 return -EIO; 4762 } 4763 _drbd_bm_set_bits(peer_device->device, s, e); 4764 } 4765 4766 if (have < bits) { 4767 drbd_err(peer_device, "bitmap decoding error: h:%d b:%d la:0x%08llx l:%u/%u\n", 4768 have, bits, look_ahead, 4769 (unsigned int)(bs.cur.b - p->code), 4770 (unsigned int)bs.buf_len); 4771 return -EIO; 4772 } 4773 /* if we consumed all 64 bits, assign 0; >> 64 is "undefined"; */ 4774 if (likely(bits < 64)) 4775 look_ahead >>= bits; 4776 else 4777 look_ahead = 0; 4778 have -= bits; 4779 4780 bits = bitstream_get_bits(&bs, &tmp, 64 - have); 4781 if (bits < 0) 4782 return -EIO; 4783 look_ahead |= tmp << have; 4784 have += bits; 4785 } 4786 4787 c->bit_offset = s; 4788 bm_xfer_ctx_bit_to_word_offset(c); 4789 4790 return (s != c->bm_bits); 4791 } 4792 4793 /** 4794 * decode_bitmap_c 4795 * 4796 * Return 0 when done, 1 when another iteration is needed, and a negative error 4797 * code upon failure. 4798 */ 4799 static int 4800 decode_bitmap_c(struct drbd_peer_device *peer_device, 4801 struct p_compressed_bm *p, 4802 struct bm_xfer_ctx *c, 4803 unsigned int len) 4804 { 4805 if (dcbp_get_code(p) == RLE_VLI_Bits) 4806 return recv_bm_rle_bits(peer_device, p, c, len - sizeof(*p)); 4807 4808 /* other variants had been implemented for evaluation, 4809 * but have been dropped as this one turned out to be "best" 4810 * during all our tests. */ 4811 4812 drbd_err(peer_device, "receive_bitmap_c: unknown encoding %u\n", p->encoding); 4813 conn_request_state(peer_device->connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD); 4814 return -EIO; 4815 } 4816 4817 void INFO_bm_xfer_stats(struct drbd_device *device, 4818 const char *direction, struct bm_xfer_ctx *c) 4819 { 4820 /* what would it take to transfer it "plaintext" */ 4821 unsigned int header_size = drbd_header_size(first_peer_device(device)->connection); 4822 unsigned int data_size = DRBD_SOCKET_BUFFER_SIZE - header_size; 4823 unsigned int plain = 4824 header_size * (DIV_ROUND_UP(c->bm_words, data_size) + 1) + 4825 c->bm_words * sizeof(unsigned long); 4826 unsigned int total = c->bytes[0] + c->bytes[1]; 4827 unsigned int r; 4828 4829 /* total can not be zero. but just in case: */ 4830 if (total == 0) 4831 return; 4832 4833 /* don't report if not compressed */ 4834 if (total >= plain) 4835 return; 4836 4837 /* total < plain. check for overflow, still */ 4838 r = (total > UINT_MAX/1000) ? (total / (plain/1000)) 4839 : (1000 * total / plain); 4840 4841 if (r > 1000) 4842 r = 1000; 4843 4844 r = 1000 - r; 4845 drbd_info(device, "%s bitmap stats [Bytes(packets)]: plain %u(%u), RLE %u(%u), " 4846 "total %u; compression: %u.%u%%\n", 4847 direction, 4848 c->bytes[1], c->packets[1], 4849 c->bytes[0], c->packets[0], 4850 total, r/10, r % 10); 4851 } 4852 4853 /* Since we are processing the bitfield from lower addresses to higher, 4854 it does not matter if the process it in 32 bit chunks or 64 bit 4855 chunks as long as it is little endian. (Understand it as byte stream, 4856 beginning with the lowest byte...) If we would use big endian 4857 we would need to process it from the highest address to the lowest, 4858 in order to be agnostic to the 32 vs 64 bits issue. 4859 4860 returns 0 on failure, 1 if we successfully received it. */ 4861 static int receive_bitmap(struct drbd_connection *connection, struct packet_info *pi) 4862 { 4863 struct drbd_peer_device *peer_device; 4864 struct drbd_device *device; 4865 struct bm_xfer_ctx c; 4866 int err; 4867 4868 peer_device = conn_peer_device(connection, pi->vnr); 4869 if (!peer_device) 4870 return -EIO; 4871 device = peer_device->device; 4872 4873 drbd_bm_lock(device, "receive bitmap", BM_LOCKED_SET_ALLOWED); 4874 /* you are supposed to send additional out-of-sync information 4875 * if you actually set bits during this phase */ 4876 4877 c = (struct bm_xfer_ctx) { 4878 .bm_bits = drbd_bm_bits(device), 4879 .bm_words = drbd_bm_words(device), 4880 }; 4881 4882 for(;;) { 4883 if (pi->cmd == P_BITMAP) 4884 err = receive_bitmap_plain(peer_device, pi->size, pi->data, &c); 4885 else if (pi->cmd == P_COMPRESSED_BITMAP) { 4886 /* MAYBE: sanity check that we speak proto >= 90, 4887 * and the feature is enabled! */ 4888 struct p_compressed_bm *p = pi->data; 4889 4890 if (pi->size > DRBD_SOCKET_BUFFER_SIZE - drbd_header_size(connection)) { 4891 drbd_err(device, "ReportCBitmap packet too large\n"); 4892 err = -EIO; 4893 goto out; 4894 } 4895 if (pi->size <= sizeof(*p)) { 4896 drbd_err(device, "ReportCBitmap packet too small (l:%u)\n", pi->size); 4897 err = -EIO; 4898 goto out; 4899 } 4900 err = drbd_recv_all(peer_device->connection, p, pi->size); 4901 if (err) 4902 goto out; 4903 err = decode_bitmap_c(peer_device, p, &c, pi->size); 4904 } else { 4905 drbd_warn(device, "receive_bitmap: cmd neither ReportBitMap nor ReportCBitMap (is 0x%x)", pi->cmd); 4906 err = -EIO; 4907 goto out; 4908 } 4909 4910 c.packets[pi->cmd == P_BITMAP]++; 4911 c.bytes[pi->cmd == P_BITMAP] += drbd_header_size(connection) + pi->size; 4912 4913 if (err <= 0) { 4914 if (err < 0) 4915 goto out; 4916 break; 4917 } 4918 err = drbd_recv_header(peer_device->connection, pi); 4919 if (err) 4920 goto out; 4921 } 4922 4923 INFO_bm_xfer_stats(device, "receive", &c); 4924 4925 if (device->state.conn == C_WF_BITMAP_T) { 4926 enum drbd_state_rv rv; 4927 4928 err = drbd_send_bitmap(device); 4929 if (err) 4930 goto out; 4931 /* Omit CS_ORDERED with this state transition to avoid deadlocks. */ 4932 rv = _drbd_request_state(device, NS(conn, C_WF_SYNC_UUID), CS_VERBOSE); 4933 D_ASSERT(device, rv == SS_SUCCESS); 4934 } else if (device->state.conn != C_WF_BITMAP_S) { 4935 /* admin may have requested C_DISCONNECTING, 4936 * other threads may have noticed network errors */ 4937 drbd_info(device, "unexpected cstate (%s) in receive_bitmap\n", 4938 drbd_conn_str(device->state.conn)); 4939 } 4940 err = 0; 4941 4942 out: 4943 drbd_bm_unlock(device); 4944 if (!err && device->state.conn == C_WF_BITMAP_S) 4945 drbd_start_resync(device, C_SYNC_SOURCE); 4946 return err; 4947 } 4948 4949 static int receive_skip(struct drbd_connection *connection, struct packet_info *pi) 4950 { 4951 drbd_warn(connection, "skipping unknown optional packet type %d, l: %d!\n", 4952 pi->cmd, pi->size); 4953 4954 return ignore_remaining_packet(connection, pi); 4955 } 4956 4957 static int receive_UnplugRemote(struct drbd_connection *connection, struct packet_info *pi) 4958 { 4959 /* Make sure we've acked all the TCP data associated 4960 * with the data requests being unplugged */ 4961 drbd_tcp_quickack(connection->data.socket); 4962 4963 return 0; 4964 } 4965 4966 static int receive_out_of_sync(struct drbd_connection *connection, struct packet_info *pi) 4967 { 4968 struct drbd_peer_device *peer_device; 4969 struct drbd_device *device; 4970 struct p_block_desc *p = pi->data; 4971 4972 peer_device = conn_peer_device(connection, pi->vnr); 4973 if (!peer_device) 4974 return -EIO; 4975 device = peer_device->device; 4976 4977 switch (device->state.conn) { 4978 case C_WF_SYNC_UUID: 4979 case C_WF_BITMAP_T: 4980 case C_BEHIND: 4981 break; 4982 default: 4983 drbd_err(device, "ASSERT FAILED cstate = %s, expected: WFSyncUUID|WFBitMapT|Behind\n", 4984 drbd_conn_str(device->state.conn)); 4985 } 4986 4987 drbd_set_out_of_sync(device, be64_to_cpu(p->sector), be32_to_cpu(p->blksize)); 4988 4989 return 0; 4990 } 4991 4992 static int receive_rs_deallocated(struct drbd_connection *connection, struct packet_info *pi) 4993 { 4994 struct drbd_peer_device *peer_device; 4995 struct p_block_desc *p = pi->data; 4996 struct drbd_device *device; 4997 sector_t sector; 4998 int size, err = 0; 4999 5000 peer_device = conn_peer_device(connection, pi->vnr); 5001 if (!peer_device) 5002 return -EIO; 5003 device = peer_device->device; 5004 5005 sector = be64_to_cpu(p->sector); 5006 size = be32_to_cpu(p->blksize); 5007 5008 dec_rs_pending(device); 5009 5010 if (get_ldev(device)) { 5011 struct drbd_peer_request *peer_req; 5012 const int op = REQ_OP_WRITE_ZEROES; 5013 5014 peer_req = drbd_alloc_peer_req(peer_device, ID_SYNCER, sector, 5015 size, 0, GFP_NOIO); 5016 if (!peer_req) { 5017 put_ldev(device); 5018 return -ENOMEM; 5019 } 5020 5021 peer_req->w.cb = e_end_resync_block; 5022 peer_req->submit_jif = jiffies; 5023 peer_req->flags |= EE_TRIM; 5024 5025 spin_lock_irq(&device->resource->req_lock); 5026 list_add_tail(&peer_req->w.list, &device->sync_ee); 5027 spin_unlock_irq(&device->resource->req_lock); 5028 5029 atomic_add(pi->size >> 9, &device->rs_sect_ev); 5030 err = drbd_submit_peer_request(device, peer_req, op, 0, DRBD_FAULT_RS_WR); 5031 5032 if (err) { 5033 spin_lock_irq(&device->resource->req_lock); 5034 list_del(&peer_req->w.list); 5035 spin_unlock_irq(&device->resource->req_lock); 5036 5037 drbd_free_peer_req(device, peer_req); 5038 put_ldev(device); 5039 err = 0; 5040 goto fail; 5041 } 5042 5043 inc_unacked(device); 5044 5045 /* No put_ldev() here. Gets called in drbd_endio_write_sec_final(), 5046 as well as drbd_rs_complete_io() */ 5047 } else { 5048 fail: 5049 drbd_rs_complete_io(device, sector); 5050 drbd_send_ack_ex(peer_device, P_NEG_ACK, sector, size, ID_SYNCER); 5051 } 5052 5053 atomic_add(size >> 9, &device->rs_sect_in); 5054 5055 return err; 5056 } 5057 5058 struct data_cmd { 5059 int expect_payload; 5060 unsigned int pkt_size; 5061 int (*fn)(struct drbd_connection *, struct packet_info *); 5062 }; 5063 5064 static struct data_cmd drbd_cmd_handler[] = { 5065 [P_DATA] = { 1, sizeof(struct p_data), receive_Data }, 5066 [P_DATA_REPLY] = { 1, sizeof(struct p_data), receive_DataReply }, 5067 [P_RS_DATA_REPLY] = { 1, sizeof(struct p_data), receive_RSDataReply } , 5068 [P_BARRIER] = { 0, sizeof(struct p_barrier), receive_Barrier } , 5069 [P_BITMAP] = { 1, 0, receive_bitmap } , 5070 [P_COMPRESSED_BITMAP] = { 1, 0, receive_bitmap } , 5071 [P_UNPLUG_REMOTE] = { 0, 0, receive_UnplugRemote }, 5072 [P_DATA_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest }, 5073 [P_RS_DATA_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest }, 5074 [P_SYNC_PARAM] = { 1, 0, receive_SyncParam }, 5075 [P_SYNC_PARAM89] = { 1, 0, receive_SyncParam }, 5076 [P_PROTOCOL] = { 1, sizeof(struct p_protocol), receive_protocol }, 5077 [P_UUIDS] = { 0, sizeof(struct p_uuids), receive_uuids }, 5078 [P_SIZES] = { 0, sizeof(struct p_sizes), receive_sizes }, 5079 [P_STATE] = { 0, sizeof(struct p_state), receive_state }, 5080 [P_STATE_CHG_REQ] = { 0, sizeof(struct p_req_state), receive_req_state }, 5081 [P_SYNC_UUID] = { 0, sizeof(struct p_rs_uuid), receive_sync_uuid }, 5082 [P_OV_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest }, 5083 [P_OV_REPLY] = { 1, sizeof(struct p_block_req), receive_DataRequest }, 5084 [P_CSUM_RS_REQUEST] = { 1, sizeof(struct p_block_req), receive_DataRequest }, 5085 [P_RS_THIN_REQ] = { 0, sizeof(struct p_block_req), receive_DataRequest }, 5086 [P_DELAY_PROBE] = { 0, sizeof(struct p_delay_probe93), receive_skip }, 5087 [P_OUT_OF_SYNC] = { 0, sizeof(struct p_block_desc), receive_out_of_sync }, 5088 [P_CONN_ST_CHG_REQ] = { 0, sizeof(struct p_req_state), receive_req_conn_state }, 5089 [P_PROTOCOL_UPDATE] = { 1, sizeof(struct p_protocol), receive_protocol }, 5090 [P_TRIM] = { 0, sizeof(struct p_trim), receive_Data }, 5091 [P_ZEROES] = { 0, sizeof(struct p_trim), receive_Data }, 5092 [P_RS_DEALLOCATED] = { 0, sizeof(struct p_block_desc), receive_rs_deallocated }, 5093 [P_WSAME] = { 1, sizeof(struct p_wsame), receive_Data }, 5094 }; 5095 5096 static void drbdd(struct drbd_connection *connection) 5097 { 5098 struct packet_info pi; 5099 size_t shs; /* sub header size */ 5100 int err; 5101 5102 while (get_t_state(&connection->receiver) == RUNNING) { 5103 struct data_cmd const *cmd; 5104 5105 drbd_thread_current_set_cpu(&connection->receiver); 5106 update_receiver_timing_details(connection, drbd_recv_header_maybe_unplug); 5107 if (drbd_recv_header_maybe_unplug(connection, &pi)) 5108 goto err_out; 5109 5110 cmd = &drbd_cmd_handler[pi.cmd]; 5111 if (unlikely(pi.cmd >= ARRAY_SIZE(drbd_cmd_handler) || !cmd->fn)) { 5112 drbd_err(connection, "Unexpected data packet %s (0x%04x)", 5113 cmdname(pi.cmd), pi.cmd); 5114 goto err_out; 5115 } 5116 5117 shs = cmd->pkt_size; 5118 if (pi.cmd == P_SIZES && connection->agreed_features & DRBD_FF_WSAME) 5119 shs += sizeof(struct o_qlim); 5120 if (pi.size > shs && !cmd->expect_payload) { 5121 drbd_err(connection, "No payload expected %s l:%d\n", 5122 cmdname(pi.cmd), pi.size); 5123 goto err_out; 5124 } 5125 if (pi.size < shs) { 5126 drbd_err(connection, "%s: unexpected packet size, expected:%d received:%d\n", 5127 cmdname(pi.cmd), (int)shs, pi.size); 5128 goto err_out; 5129 } 5130 5131 if (shs) { 5132 update_receiver_timing_details(connection, drbd_recv_all_warn); 5133 err = drbd_recv_all_warn(connection, pi.data, shs); 5134 if (err) 5135 goto err_out; 5136 pi.size -= shs; 5137 } 5138 5139 update_receiver_timing_details(connection, cmd->fn); 5140 err = cmd->fn(connection, &pi); 5141 if (err) { 5142 drbd_err(connection, "error receiving %s, e: %d l: %d!\n", 5143 cmdname(pi.cmd), err, pi.size); 5144 goto err_out; 5145 } 5146 } 5147 return; 5148 5149 err_out: 5150 conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD); 5151 } 5152 5153 static void conn_disconnect(struct drbd_connection *connection) 5154 { 5155 struct drbd_peer_device *peer_device; 5156 enum drbd_conns oc; 5157 int vnr; 5158 5159 if (connection->cstate == C_STANDALONE) 5160 return; 5161 5162 /* We are about to start the cleanup after connection loss. 5163 * Make sure drbd_make_request knows about that. 5164 * Usually we should be in some network failure state already, 5165 * but just in case we are not, we fix it up here. 5166 */ 5167 conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD); 5168 5169 /* ack_receiver does not clean up anything. it must not interfere, either */ 5170 drbd_thread_stop(&connection->ack_receiver); 5171 if (connection->ack_sender) { 5172 destroy_workqueue(connection->ack_sender); 5173 connection->ack_sender = NULL; 5174 } 5175 drbd_free_sock(connection); 5176 5177 rcu_read_lock(); 5178 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 5179 struct drbd_device *device = peer_device->device; 5180 kref_get(&device->kref); 5181 rcu_read_unlock(); 5182 drbd_disconnected(peer_device); 5183 kref_put(&device->kref, drbd_destroy_device); 5184 rcu_read_lock(); 5185 } 5186 rcu_read_unlock(); 5187 5188 if (!list_empty(&connection->current_epoch->list)) 5189 drbd_err(connection, "ASSERTION FAILED: connection->current_epoch->list not empty\n"); 5190 /* ok, no more ee's on the fly, it is safe to reset the epoch_size */ 5191 atomic_set(&connection->current_epoch->epoch_size, 0); 5192 connection->send.seen_any_write_yet = false; 5193 5194 drbd_info(connection, "Connection closed\n"); 5195 5196 if (conn_highest_role(connection) == R_PRIMARY && conn_highest_pdsk(connection) >= D_UNKNOWN) 5197 conn_try_outdate_peer_async(connection); 5198 5199 spin_lock_irq(&connection->resource->req_lock); 5200 oc = connection->cstate; 5201 if (oc >= C_UNCONNECTED) 5202 _conn_request_state(connection, NS(conn, C_UNCONNECTED), CS_VERBOSE); 5203 5204 spin_unlock_irq(&connection->resource->req_lock); 5205 5206 if (oc == C_DISCONNECTING) 5207 conn_request_state(connection, NS(conn, C_STANDALONE), CS_VERBOSE | CS_HARD); 5208 } 5209 5210 static int drbd_disconnected(struct drbd_peer_device *peer_device) 5211 { 5212 struct drbd_device *device = peer_device->device; 5213 unsigned int i; 5214 5215 /* wait for current activity to cease. */ 5216 spin_lock_irq(&device->resource->req_lock); 5217 _drbd_wait_ee_list_empty(device, &device->active_ee); 5218 _drbd_wait_ee_list_empty(device, &device->sync_ee); 5219 _drbd_wait_ee_list_empty(device, &device->read_ee); 5220 spin_unlock_irq(&device->resource->req_lock); 5221 5222 /* We do not have data structures that would allow us to 5223 * get the rs_pending_cnt down to 0 again. 5224 * * On C_SYNC_TARGET we do not have any data structures describing 5225 * the pending RSDataRequest's we have sent. 5226 * * On C_SYNC_SOURCE there is no data structure that tracks 5227 * the P_RS_DATA_REPLY blocks that we sent to the SyncTarget. 5228 * And no, it is not the sum of the reference counts in the 5229 * resync_LRU. The resync_LRU tracks the whole operation including 5230 * the disk-IO, while the rs_pending_cnt only tracks the blocks 5231 * on the fly. */ 5232 drbd_rs_cancel_all(device); 5233 device->rs_total = 0; 5234 device->rs_failed = 0; 5235 atomic_set(&device->rs_pending_cnt, 0); 5236 wake_up(&device->misc_wait); 5237 5238 del_timer_sync(&device->resync_timer); 5239 resync_timer_fn(&device->resync_timer); 5240 5241 /* wait for all w_e_end_data_req, w_e_end_rsdata_req, w_send_barrier, 5242 * w_make_resync_request etc. which may still be on the worker queue 5243 * to be "canceled" */ 5244 drbd_flush_workqueue(&peer_device->connection->sender_work); 5245 5246 drbd_finish_peer_reqs(device); 5247 5248 /* This second workqueue flush is necessary, since drbd_finish_peer_reqs() 5249 might have issued a work again. The one before drbd_finish_peer_reqs() is 5250 necessary to reclain net_ee in drbd_finish_peer_reqs(). */ 5251 drbd_flush_workqueue(&peer_device->connection->sender_work); 5252 5253 /* need to do it again, drbd_finish_peer_reqs() may have populated it 5254 * again via drbd_try_clear_on_disk_bm(). */ 5255 drbd_rs_cancel_all(device); 5256 5257 kfree(device->p_uuid); 5258 device->p_uuid = NULL; 5259 5260 if (!drbd_suspended(device)) 5261 tl_clear(peer_device->connection); 5262 5263 drbd_md_sync(device); 5264 5265 if (get_ldev(device)) { 5266 drbd_bitmap_io(device, &drbd_bm_write_copy_pages, 5267 "write from disconnected", BM_LOCKED_CHANGE_ALLOWED); 5268 put_ldev(device); 5269 } 5270 5271 /* tcp_close and release of sendpage pages can be deferred. I don't 5272 * want to use SO_LINGER, because apparently it can be deferred for 5273 * more than 20 seconds (longest time I checked). 5274 * 5275 * Actually we don't care for exactly when the network stack does its 5276 * put_page(), but release our reference on these pages right here. 5277 */ 5278 i = drbd_free_peer_reqs(device, &device->net_ee); 5279 if (i) 5280 drbd_info(device, "net_ee not empty, killed %u entries\n", i); 5281 i = atomic_read(&device->pp_in_use_by_net); 5282 if (i) 5283 drbd_info(device, "pp_in_use_by_net = %d, expected 0\n", i); 5284 i = atomic_read(&device->pp_in_use); 5285 if (i) 5286 drbd_info(device, "pp_in_use = %d, expected 0\n", i); 5287 5288 D_ASSERT(device, list_empty(&device->read_ee)); 5289 D_ASSERT(device, list_empty(&device->active_ee)); 5290 D_ASSERT(device, list_empty(&device->sync_ee)); 5291 D_ASSERT(device, list_empty(&device->done_ee)); 5292 5293 return 0; 5294 } 5295 5296 /* 5297 * We support PRO_VERSION_MIN to PRO_VERSION_MAX. The protocol version 5298 * we can agree on is stored in agreed_pro_version. 5299 * 5300 * feature flags and the reserved array should be enough room for future 5301 * enhancements of the handshake protocol, and possible plugins... 5302 * 5303 * for now, they are expected to be zero, but ignored. 5304 */ 5305 static int drbd_send_features(struct drbd_connection *connection) 5306 { 5307 struct drbd_socket *sock; 5308 struct p_connection_features *p; 5309 5310 sock = &connection->data; 5311 p = conn_prepare_command(connection, sock); 5312 if (!p) 5313 return -EIO; 5314 memset(p, 0, sizeof(*p)); 5315 p->protocol_min = cpu_to_be32(PRO_VERSION_MIN); 5316 p->protocol_max = cpu_to_be32(PRO_VERSION_MAX); 5317 p->feature_flags = cpu_to_be32(PRO_FEATURES); 5318 return conn_send_command(connection, sock, P_CONNECTION_FEATURES, sizeof(*p), NULL, 0); 5319 } 5320 5321 /* 5322 * return values: 5323 * 1 yes, we have a valid connection 5324 * 0 oops, did not work out, please try again 5325 * -1 peer talks different language, 5326 * no point in trying again, please go standalone. 5327 */ 5328 static int drbd_do_features(struct drbd_connection *connection) 5329 { 5330 /* ASSERT current == connection->receiver ... */ 5331 struct p_connection_features *p; 5332 const int expect = sizeof(struct p_connection_features); 5333 struct packet_info pi; 5334 int err; 5335 5336 err = drbd_send_features(connection); 5337 if (err) 5338 return 0; 5339 5340 err = drbd_recv_header(connection, &pi); 5341 if (err) 5342 return 0; 5343 5344 if (pi.cmd != P_CONNECTION_FEATURES) { 5345 drbd_err(connection, "expected ConnectionFeatures packet, received: %s (0x%04x)\n", 5346 cmdname(pi.cmd), pi.cmd); 5347 return -1; 5348 } 5349 5350 if (pi.size != expect) { 5351 drbd_err(connection, "expected ConnectionFeatures length: %u, received: %u\n", 5352 expect, pi.size); 5353 return -1; 5354 } 5355 5356 p = pi.data; 5357 err = drbd_recv_all_warn(connection, p, expect); 5358 if (err) 5359 return 0; 5360 5361 p->protocol_min = be32_to_cpu(p->protocol_min); 5362 p->protocol_max = be32_to_cpu(p->protocol_max); 5363 if (p->protocol_max == 0) 5364 p->protocol_max = p->protocol_min; 5365 5366 if (PRO_VERSION_MAX < p->protocol_min || 5367 PRO_VERSION_MIN > p->protocol_max) 5368 goto incompat; 5369 5370 connection->agreed_pro_version = min_t(int, PRO_VERSION_MAX, p->protocol_max); 5371 connection->agreed_features = PRO_FEATURES & be32_to_cpu(p->feature_flags); 5372 5373 drbd_info(connection, "Handshake successful: " 5374 "Agreed network protocol version %d\n", connection->agreed_pro_version); 5375 5376 drbd_info(connection, "Feature flags enabled on protocol level: 0x%x%s%s%s%s.\n", 5377 connection->agreed_features, 5378 connection->agreed_features & DRBD_FF_TRIM ? " TRIM" : "", 5379 connection->agreed_features & DRBD_FF_THIN_RESYNC ? " THIN_RESYNC" : "", 5380 connection->agreed_features & DRBD_FF_WSAME ? " WRITE_SAME" : "", 5381 connection->agreed_features & DRBD_FF_WZEROES ? " WRITE_ZEROES" : 5382 connection->agreed_features ? "" : " none"); 5383 5384 return 1; 5385 5386 incompat: 5387 drbd_err(connection, "incompatible DRBD dialects: " 5388 "I support %d-%d, peer supports %d-%d\n", 5389 PRO_VERSION_MIN, PRO_VERSION_MAX, 5390 p->protocol_min, p->protocol_max); 5391 return -1; 5392 } 5393 5394 #if !defined(CONFIG_CRYPTO_HMAC) && !defined(CONFIG_CRYPTO_HMAC_MODULE) 5395 static int drbd_do_auth(struct drbd_connection *connection) 5396 { 5397 drbd_err(connection, "This kernel was build without CONFIG_CRYPTO_HMAC.\n"); 5398 drbd_err(connection, "You need to disable 'cram-hmac-alg' in drbd.conf.\n"); 5399 return -1; 5400 } 5401 #else 5402 #define CHALLENGE_LEN 64 5403 5404 /* Return value: 5405 1 - auth succeeded, 5406 0 - failed, try again (network error), 5407 -1 - auth failed, don't try again. 5408 */ 5409 5410 static int drbd_do_auth(struct drbd_connection *connection) 5411 { 5412 struct drbd_socket *sock; 5413 char my_challenge[CHALLENGE_LEN]; /* 64 Bytes... */ 5414 char *response = NULL; 5415 char *right_response = NULL; 5416 char *peers_ch = NULL; 5417 unsigned int key_len; 5418 char secret[SHARED_SECRET_MAX]; /* 64 byte */ 5419 unsigned int resp_size; 5420 struct shash_desc *desc; 5421 struct packet_info pi; 5422 struct net_conf *nc; 5423 int err, rv; 5424 5425 /* FIXME: Put the challenge/response into the preallocated socket buffer. */ 5426 5427 rcu_read_lock(); 5428 nc = rcu_dereference(connection->net_conf); 5429 key_len = strlen(nc->shared_secret); 5430 memcpy(secret, nc->shared_secret, key_len); 5431 rcu_read_unlock(); 5432 5433 desc = kmalloc(sizeof(struct shash_desc) + 5434 crypto_shash_descsize(connection->cram_hmac_tfm), 5435 GFP_KERNEL); 5436 if (!desc) { 5437 rv = -1; 5438 goto fail; 5439 } 5440 desc->tfm = connection->cram_hmac_tfm; 5441 5442 rv = crypto_shash_setkey(connection->cram_hmac_tfm, (u8 *)secret, key_len); 5443 if (rv) { 5444 drbd_err(connection, "crypto_shash_setkey() failed with %d\n", rv); 5445 rv = -1; 5446 goto fail; 5447 } 5448 5449 get_random_bytes(my_challenge, CHALLENGE_LEN); 5450 5451 sock = &connection->data; 5452 if (!conn_prepare_command(connection, sock)) { 5453 rv = 0; 5454 goto fail; 5455 } 5456 rv = !conn_send_command(connection, sock, P_AUTH_CHALLENGE, 0, 5457 my_challenge, CHALLENGE_LEN); 5458 if (!rv) 5459 goto fail; 5460 5461 err = drbd_recv_header(connection, &pi); 5462 if (err) { 5463 rv = 0; 5464 goto fail; 5465 } 5466 5467 if (pi.cmd != P_AUTH_CHALLENGE) { 5468 drbd_err(connection, "expected AuthChallenge packet, received: %s (0x%04x)\n", 5469 cmdname(pi.cmd), pi.cmd); 5470 rv = -1; 5471 goto fail; 5472 } 5473 5474 if (pi.size > CHALLENGE_LEN * 2) { 5475 drbd_err(connection, "expected AuthChallenge payload too big.\n"); 5476 rv = -1; 5477 goto fail; 5478 } 5479 5480 if (pi.size < CHALLENGE_LEN) { 5481 drbd_err(connection, "AuthChallenge payload too small.\n"); 5482 rv = -1; 5483 goto fail; 5484 } 5485 5486 peers_ch = kmalloc(pi.size, GFP_NOIO); 5487 if (peers_ch == NULL) { 5488 drbd_err(connection, "kmalloc of peers_ch failed\n"); 5489 rv = -1; 5490 goto fail; 5491 } 5492 5493 err = drbd_recv_all_warn(connection, peers_ch, pi.size); 5494 if (err) { 5495 rv = 0; 5496 goto fail; 5497 } 5498 5499 if (!memcmp(my_challenge, peers_ch, CHALLENGE_LEN)) { 5500 drbd_err(connection, "Peer presented the same challenge!\n"); 5501 rv = -1; 5502 goto fail; 5503 } 5504 5505 resp_size = crypto_shash_digestsize(connection->cram_hmac_tfm); 5506 response = kmalloc(resp_size, GFP_NOIO); 5507 if (response == NULL) { 5508 drbd_err(connection, "kmalloc of response failed\n"); 5509 rv = -1; 5510 goto fail; 5511 } 5512 5513 rv = crypto_shash_digest(desc, peers_ch, pi.size, response); 5514 if (rv) { 5515 drbd_err(connection, "crypto_hash_digest() failed with %d\n", rv); 5516 rv = -1; 5517 goto fail; 5518 } 5519 5520 if (!conn_prepare_command(connection, sock)) { 5521 rv = 0; 5522 goto fail; 5523 } 5524 rv = !conn_send_command(connection, sock, P_AUTH_RESPONSE, 0, 5525 response, resp_size); 5526 if (!rv) 5527 goto fail; 5528 5529 err = drbd_recv_header(connection, &pi); 5530 if (err) { 5531 rv = 0; 5532 goto fail; 5533 } 5534 5535 if (pi.cmd != P_AUTH_RESPONSE) { 5536 drbd_err(connection, "expected AuthResponse packet, received: %s (0x%04x)\n", 5537 cmdname(pi.cmd), pi.cmd); 5538 rv = 0; 5539 goto fail; 5540 } 5541 5542 if (pi.size != resp_size) { 5543 drbd_err(connection, "expected AuthResponse payload of wrong size\n"); 5544 rv = 0; 5545 goto fail; 5546 } 5547 5548 err = drbd_recv_all_warn(connection, response , resp_size); 5549 if (err) { 5550 rv = 0; 5551 goto fail; 5552 } 5553 5554 right_response = kmalloc(resp_size, GFP_NOIO); 5555 if (right_response == NULL) { 5556 drbd_err(connection, "kmalloc of right_response failed\n"); 5557 rv = -1; 5558 goto fail; 5559 } 5560 5561 rv = crypto_shash_digest(desc, my_challenge, CHALLENGE_LEN, 5562 right_response); 5563 if (rv) { 5564 drbd_err(connection, "crypto_hash_digest() failed with %d\n", rv); 5565 rv = -1; 5566 goto fail; 5567 } 5568 5569 rv = !memcmp(response, right_response, resp_size); 5570 5571 if (rv) 5572 drbd_info(connection, "Peer authenticated using %d bytes HMAC\n", 5573 resp_size); 5574 else 5575 rv = -1; 5576 5577 fail: 5578 kfree(peers_ch); 5579 kfree(response); 5580 kfree(right_response); 5581 if (desc) { 5582 shash_desc_zero(desc); 5583 kfree(desc); 5584 } 5585 5586 return rv; 5587 } 5588 #endif 5589 5590 int drbd_receiver(struct drbd_thread *thi) 5591 { 5592 struct drbd_connection *connection = thi->connection; 5593 int h; 5594 5595 drbd_info(connection, "receiver (re)started\n"); 5596 5597 do { 5598 h = conn_connect(connection); 5599 if (h == 0) { 5600 conn_disconnect(connection); 5601 schedule_timeout_interruptible(HZ); 5602 } 5603 if (h == -1) { 5604 drbd_warn(connection, "Discarding network configuration.\n"); 5605 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 5606 } 5607 } while (h == 0); 5608 5609 if (h > 0) { 5610 blk_start_plug(&connection->receiver_plug); 5611 drbdd(connection); 5612 blk_finish_plug(&connection->receiver_plug); 5613 } 5614 5615 conn_disconnect(connection); 5616 5617 drbd_info(connection, "receiver terminated\n"); 5618 return 0; 5619 } 5620 5621 /* ********* acknowledge sender ******** */ 5622 5623 static int got_conn_RqSReply(struct drbd_connection *connection, struct packet_info *pi) 5624 { 5625 struct p_req_state_reply *p = pi->data; 5626 int retcode = be32_to_cpu(p->retcode); 5627 5628 if (retcode >= SS_SUCCESS) { 5629 set_bit(CONN_WD_ST_CHG_OKAY, &connection->flags); 5630 } else { 5631 set_bit(CONN_WD_ST_CHG_FAIL, &connection->flags); 5632 drbd_err(connection, "Requested state change failed by peer: %s (%d)\n", 5633 drbd_set_st_err_str(retcode), retcode); 5634 } 5635 wake_up(&connection->ping_wait); 5636 5637 return 0; 5638 } 5639 5640 static int got_RqSReply(struct drbd_connection *connection, struct packet_info *pi) 5641 { 5642 struct drbd_peer_device *peer_device; 5643 struct drbd_device *device; 5644 struct p_req_state_reply *p = pi->data; 5645 int retcode = be32_to_cpu(p->retcode); 5646 5647 peer_device = conn_peer_device(connection, pi->vnr); 5648 if (!peer_device) 5649 return -EIO; 5650 device = peer_device->device; 5651 5652 if (test_bit(CONN_WD_ST_CHG_REQ, &connection->flags)) { 5653 D_ASSERT(device, connection->agreed_pro_version < 100); 5654 return got_conn_RqSReply(connection, pi); 5655 } 5656 5657 if (retcode >= SS_SUCCESS) { 5658 set_bit(CL_ST_CHG_SUCCESS, &device->flags); 5659 } else { 5660 set_bit(CL_ST_CHG_FAIL, &device->flags); 5661 drbd_err(device, "Requested state change failed by peer: %s (%d)\n", 5662 drbd_set_st_err_str(retcode), retcode); 5663 } 5664 wake_up(&device->state_wait); 5665 5666 return 0; 5667 } 5668 5669 static int got_Ping(struct drbd_connection *connection, struct packet_info *pi) 5670 { 5671 return drbd_send_ping_ack(connection); 5672 5673 } 5674 5675 static int got_PingAck(struct drbd_connection *connection, struct packet_info *pi) 5676 { 5677 /* restore idle timeout */ 5678 connection->meta.socket->sk->sk_rcvtimeo = connection->net_conf->ping_int*HZ; 5679 if (!test_and_set_bit(GOT_PING_ACK, &connection->flags)) 5680 wake_up(&connection->ping_wait); 5681 5682 return 0; 5683 } 5684 5685 static int got_IsInSync(struct drbd_connection *connection, struct packet_info *pi) 5686 { 5687 struct drbd_peer_device *peer_device; 5688 struct drbd_device *device; 5689 struct p_block_ack *p = pi->data; 5690 sector_t sector = be64_to_cpu(p->sector); 5691 int blksize = be32_to_cpu(p->blksize); 5692 5693 peer_device = conn_peer_device(connection, pi->vnr); 5694 if (!peer_device) 5695 return -EIO; 5696 device = peer_device->device; 5697 5698 D_ASSERT(device, peer_device->connection->agreed_pro_version >= 89); 5699 5700 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5701 5702 if (get_ldev(device)) { 5703 drbd_rs_complete_io(device, sector); 5704 drbd_set_in_sync(device, sector, blksize); 5705 /* rs_same_csums is supposed to count in units of BM_BLOCK_SIZE */ 5706 device->rs_same_csum += (blksize >> BM_BLOCK_SHIFT); 5707 put_ldev(device); 5708 } 5709 dec_rs_pending(device); 5710 atomic_add(blksize >> 9, &device->rs_sect_in); 5711 5712 return 0; 5713 } 5714 5715 static int 5716 validate_req_change_req_state(struct drbd_device *device, u64 id, sector_t sector, 5717 struct rb_root *root, const char *func, 5718 enum drbd_req_event what, bool missing_ok) 5719 { 5720 struct drbd_request *req; 5721 struct bio_and_error m; 5722 5723 spin_lock_irq(&device->resource->req_lock); 5724 req = find_request(device, root, id, sector, missing_ok, func); 5725 if (unlikely(!req)) { 5726 spin_unlock_irq(&device->resource->req_lock); 5727 return -EIO; 5728 } 5729 __req_mod(req, what, &m); 5730 spin_unlock_irq(&device->resource->req_lock); 5731 5732 if (m.bio) 5733 complete_master_bio(device, &m); 5734 return 0; 5735 } 5736 5737 static int got_BlockAck(struct drbd_connection *connection, struct packet_info *pi) 5738 { 5739 struct drbd_peer_device *peer_device; 5740 struct drbd_device *device; 5741 struct p_block_ack *p = pi->data; 5742 sector_t sector = be64_to_cpu(p->sector); 5743 int blksize = be32_to_cpu(p->blksize); 5744 enum drbd_req_event what; 5745 5746 peer_device = conn_peer_device(connection, pi->vnr); 5747 if (!peer_device) 5748 return -EIO; 5749 device = peer_device->device; 5750 5751 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5752 5753 if (p->block_id == ID_SYNCER) { 5754 drbd_set_in_sync(device, sector, blksize); 5755 dec_rs_pending(device); 5756 return 0; 5757 } 5758 switch (pi->cmd) { 5759 case P_RS_WRITE_ACK: 5760 what = WRITE_ACKED_BY_PEER_AND_SIS; 5761 break; 5762 case P_WRITE_ACK: 5763 what = WRITE_ACKED_BY_PEER; 5764 break; 5765 case P_RECV_ACK: 5766 what = RECV_ACKED_BY_PEER; 5767 break; 5768 case P_SUPERSEDED: 5769 what = CONFLICT_RESOLVED; 5770 break; 5771 case P_RETRY_WRITE: 5772 what = POSTPONE_WRITE; 5773 break; 5774 default: 5775 BUG(); 5776 } 5777 5778 return validate_req_change_req_state(device, p->block_id, sector, 5779 &device->write_requests, __func__, 5780 what, false); 5781 } 5782 5783 static int got_NegAck(struct drbd_connection *connection, struct packet_info *pi) 5784 { 5785 struct drbd_peer_device *peer_device; 5786 struct drbd_device *device; 5787 struct p_block_ack *p = pi->data; 5788 sector_t sector = be64_to_cpu(p->sector); 5789 int size = be32_to_cpu(p->blksize); 5790 int err; 5791 5792 peer_device = conn_peer_device(connection, pi->vnr); 5793 if (!peer_device) 5794 return -EIO; 5795 device = peer_device->device; 5796 5797 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5798 5799 if (p->block_id == ID_SYNCER) { 5800 dec_rs_pending(device); 5801 drbd_rs_failed_io(device, sector, size); 5802 return 0; 5803 } 5804 5805 err = validate_req_change_req_state(device, p->block_id, sector, 5806 &device->write_requests, __func__, 5807 NEG_ACKED, true); 5808 if (err) { 5809 /* Protocol A has no P_WRITE_ACKs, but has P_NEG_ACKs. 5810 The master bio might already be completed, therefore the 5811 request is no longer in the collision hash. */ 5812 /* In Protocol B we might already have got a P_RECV_ACK 5813 but then get a P_NEG_ACK afterwards. */ 5814 drbd_set_out_of_sync(device, sector, size); 5815 } 5816 return 0; 5817 } 5818 5819 static int got_NegDReply(struct drbd_connection *connection, struct packet_info *pi) 5820 { 5821 struct drbd_peer_device *peer_device; 5822 struct drbd_device *device; 5823 struct p_block_ack *p = pi->data; 5824 sector_t sector = be64_to_cpu(p->sector); 5825 5826 peer_device = conn_peer_device(connection, pi->vnr); 5827 if (!peer_device) 5828 return -EIO; 5829 device = peer_device->device; 5830 5831 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5832 5833 drbd_err(device, "Got NegDReply; Sector %llus, len %u.\n", 5834 (unsigned long long)sector, be32_to_cpu(p->blksize)); 5835 5836 return validate_req_change_req_state(device, p->block_id, sector, 5837 &device->read_requests, __func__, 5838 NEG_ACKED, false); 5839 } 5840 5841 static int got_NegRSDReply(struct drbd_connection *connection, struct packet_info *pi) 5842 { 5843 struct drbd_peer_device *peer_device; 5844 struct drbd_device *device; 5845 sector_t sector; 5846 int size; 5847 struct p_block_ack *p = pi->data; 5848 5849 peer_device = conn_peer_device(connection, pi->vnr); 5850 if (!peer_device) 5851 return -EIO; 5852 device = peer_device->device; 5853 5854 sector = be64_to_cpu(p->sector); 5855 size = be32_to_cpu(p->blksize); 5856 5857 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5858 5859 dec_rs_pending(device); 5860 5861 if (get_ldev_if_state(device, D_FAILED)) { 5862 drbd_rs_complete_io(device, sector); 5863 switch (pi->cmd) { 5864 case P_NEG_RS_DREPLY: 5865 drbd_rs_failed_io(device, sector, size); 5866 case P_RS_CANCEL: 5867 break; 5868 default: 5869 BUG(); 5870 } 5871 put_ldev(device); 5872 } 5873 5874 return 0; 5875 } 5876 5877 static int got_BarrierAck(struct drbd_connection *connection, struct packet_info *pi) 5878 { 5879 struct p_barrier_ack *p = pi->data; 5880 struct drbd_peer_device *peer_device; 5881 int vnr; 5882 5883 tl_release(connection, p->barrier, be32_to_cpu(p->set_size)); 5884 5885 rcu_read_lock(); 5886 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 5887 struct drbd_device *device = peer_device->device; 5888 5889 if (device->state.conn == C_AHEAD && 5890 atomic_read(&device->ap_in_flight) == 0 && 5891 !test_and_set_bit(AHEAD_TO_SYNC_SOURCE, &device->flags)) { 5892 device->start_resync_timer.expires = jiffies + HZ; 5893 add_timer(&device->start_resync_timer); 5894 } 5895 } 5896 rcu_read_unlock(); 5897 5898 return 0; 5899 } 5900 5901 static int got_OVResult(struct drbd_connection *connection, struct packet_info *pi) 5902 { 5903 struct drbd_peer_device *peer_device; 5904 struct drbd_device *device; 5905 struct p_block_ack *p = pi->data; 5906 struct drbd_device_work *dw; 5907 sector_t sector; 5908 int size; 5909 5910 peer_device = conn_peer_device(connection, pi->vnr); 5911 if (!peer_device) 5912 return -EIO; 5913 device = peer_device->device; 5914 5915 sector = be64_to_cpu(p->sector); 5916 size = be32_to_cpu(p->blksize); 5917 5918 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5919 5920 if (be64_to_cpu(p->block_id) == ID_OUT_OF_SYNC) 5921 drbd_ov_out_of_sync_found(device, sector, size); 5922 else 5923 ov_out_of_sync_print(device); 5924 5925 if (!get_ldev(device)) 5926 return 0; 5927 5928 drbd_rs_complete_io(device, sector); 5929 dec_rs_pending(device); 5930 5931 --device->ov_left; 5932 5933 /* let's advance progress step marks only for every other megabyte */ 5934 if ((device->ov_left & 0x200) == 0x200) 5935 drbd_advance_rs_marks(device, device->ov_left); 5936 5937 if (device->ov_left == 0) { 5938 dw = kmalloc(sizeof(*dw), GFP_NOIO); 5939 if (dw) { 5940 dw->w.cb = w_ov_finished; 5941 dw->device = device; 5942 drbd_queue_work(&peer_device->connection->sender_work, &dw->w); 5943 } else { 5944 drbd_err(device, "kmalloc(dw) failed."); 5945 ov_out_of_sync_print(device); 5946 drbd_resync_finished(device); 5947 } 5948 } 5949 put_ldev(device); 5950 return 0; 5951 } 5952 5953 static int got_skip(struct drbd_connection *connection, struct packet_info *pi) 5954 { 5955 return 0; 5956 } 5957 5958 struct meta_sock_cmd { 5959 size_t pkt_size; 5960 int (*fn)(struct drbd_connection *connection, struct packet_info *); 5961 }; 5962 5963 static void set_rcvtimeo(struct drbd_connection *connection, bool ping_timeout) 5964 { 5965 long t; 5966 struct net_conf *nc; 5967 5968 rcu_read_lock(); 5969 nc = rcu_dereference(connection->net_conf); 5970 t = ping_timeout ? nc->ping_timeo : nc->ping_int; 5971 rcu_read_unlock(); 5972 5973 t *= HZ; 5974 if (ping_timeout) 5975 t /= 10; 5976 5977 connection->meta.socket->sk->sk_rcvtimeo = t; 5978 } 5979 5980 static void set_ping_timeout(struct drbd_connection *connection) 5981 { 5982 set_rcvtimeo(connection, 1); 5983 } 5984 5985 static void set_idle_timeout(struct drbd_connection *connection) 5986 { 5987 set_rcvtimeo(connection, 0); 5988 } 5989 5990 static struct meta_sock_cmd ack_receiver_tbl[] = { 5991 [P_PING] = { 0, got_Ping }, 5992 [P_PING_ACK] = { 0, got_PingAck }, 5993 [P_RECV_ACK] = { sizeof(struct p_block_ack), got_BlockAck }, 5994 [P_WRITE_ACK] = { sizeof(struct p_block_ack), got_BlockAck }, 5995 [P_RS_WRITE_ACK] = { sizeof(struct p_block_ack), got_BlockAck }, 5996 [P_SUPERSEDED] = { sizeof(struct p_block_ack), got_BlockAck }, 5997 [P_NEG_ACK] = { sizeof(struct p_block_ack), got_NegAck }, 5998 [P_NEG_DREPLY] = { sizeof(struct p_block_ack), got_NegDReply }, 5999 [P_NEG_RS_DREPLY] = { sizeof(struct p_block_ack), got_NegRSDReply }, 6000 [P_OV_RESULT] = { sizeof(struct p_block_ack), got_OVResult }, 6001 [P_BARRIER_ACK] = { sizeof(struct p_barrier_ack), got_BarrierAck }, 6002 [P_STATE_CHG_REPLY] = { sizeof(struct p_req_state_reply), got_RqSReply }, 6003 [P_RS_IS_IN_SYNC] = { sizeof(struct p_block_ack), got_IsInSync }, 6004 [P_DELAY_PROBE] = { sizeof(struct p_delay_probe93), got_skip }, 6005 [P_RS_CANCEL] = { sizeof(struct p_block_ack), got_NegRSDReply }, 6006 [P_CONN_ST_CHG_REPLY]={ sizeof(struct p_req_state_reply), got_conn_RqSReply }, 6007 [P_RETRY_WRITE] = { sizeof(struct p_block_ack), got_BlockAck }, 6008 }; 6009 6010 int drbd_ack_receiver(struct drbd_thread *thi) 6011 { 6012 struct drbd_connection *connection = thi->connection; 6013 struct meta_sock_cmd *cmd = NULL; 6014 struct packet_info pi; 6015 unsigned long pre_recv_jif; 6016 int rv; 6017 void *buf = connection->meta.rbuf; 6018 int received = 0; 6019 unsigned int header_size = drbd_header_size(connection); 6020 int expect = header_size; 6021 bool ping_timeout_active = false; 6022 struct sched_param param = { .sched_priority = 2 }; 6023 6024 rv = sched_setscheduler(current, SCHED_RR, ¶m); 6025 if (rv < 0) 6026 drbd_err(connection, "drbd_ack_receiver: ERROR set priority, ret=%d\n", rv); 6027 6028 while (get_t_state(thi) == RUNNING) { 6029 drbd_thread_current_set_cpu(thi); 6030 6031 conn_reclaim_net_peer_reqs(connection); 6032 6033 if (test_and_clear_bit(SEND_PING, &connection->flags)) { 6034 if (drbd_send_ping(connection)) { 6035 drbd_err(connection, "drbd_send_ping has failed\n"); 6036 goto reconnect; 6037 } 6038 set_ping_timeout(connection); 6039 ping_timeout_active = true; 6040 } 6041 6042 pre_recv_jif = jiffies; 6043 rv = drbd_recv_short(connection->meta.socket, buf, expect-received, 0); 6044 6045 /* Note: 6046 * -EINTR (on meta) we got a signal 6047 * -EAGAIN (on meta) rcvtimeo expired 6048 * -ECONNRESET other side closed the connection 6049 * -ERESTARTSYS (on data) we got a signal 6050 * rv < 0 other than above: unexpected error! 6051 * rv == expected: full header or command 6052 * rv < expected: "woken" by signal during receive 6053 * rv == 0 : "connection shut down by peer" 6054 */ 6055 if (likely(rv > 0)) { 6056 received += rv; 6057 buf += rv; 6058 } else if (rv == 0) { 6059 if (test_bit(DISCONNECT_SENT, &connection->flags)) { 6060 long t; 6061 rcu_read_lock(); 6062 t = rcu_dereference(connection->net_conf)->ping_timeo * HZ/10; 6063 rcu_read_unlock(); 6064 6065 t = wait_event_timeout(connection->ping_wait, 6066 connection->cstate < C_WF_REPORT_PARAMS, 6067 t); 6068 if (t) 6069 break; 6070 } 6071 drbd_err(connection, "meta connection shut down by peer.\n"); 6072 goto reconnect; 6073 } else if (rv == -EAGAIN) { 6074 /* If the data socket received something meanwhile, 6075 * that is good enough: peer is still alive. */ 6076 if (time_after(connection->last_received, pre_recv_jif)) 6077 continue; 6078 if (ping_timeout_active) { 6079 drbd_err(connection, "PingAck did not arrive in time.\n"); 6080 goto reconnect; 6081 } 6082 set_bit(SEND_PING, &connection->flags); 6083 continue; 6084 } else if (rv == -EINTR) { 6085 /* maybe drbd_thread_stop(): the while condition will notice. 6086 * maybe woken for send_ping: we'll send a ping above, 6087 * and change the rcvtimeo */ 6088 flush_signals(current); 6089 continue; 6090 } else { 6091 drbd_err(connection, "sock_recvmsg returned %d\n", rv); 6092 goto reconnect; 6093 } 6094 6095 if (received == expect && cmd == NULL) { 6096 if (decode_header(connection, connection->meta.rbuf, &pi)) 6097 goto reconnect; 6098 cmd = &ack_receiver_tbl[pi.cmd]; 6099 if (pi.cmd >= ARRAY_SIZE(ack_receiver_tbl) || !cmd->fn) { 6100 drbd_err(connection, "Unexpected meta packet %s (0x%04x)\n", 6101 cmdname(pi.cmd), pi.cmd); 6102 goto disconnect; 6103 } 6104 expect = header_size + cmd->pkt_size; 6105 if (pi.size != expect - header_size) { 6106 drbd_err(connection, "Wrong packet size on meta (c: %d, l: %d)\n", 6107 pi.cmd, pi.size); 6108 goto reconnect; 6109 } 6110 } 6111 if (received == expect) { 6112 bool err; 6113 6114 err = cmd->fn(connection, &pi); 6115 if (err) { 6116 drbd_err(connection, "%ps failed\n", cmd->fn); 6117 goto reconnect; 6118 } 6119 6120 connection->last_received = jiffies; 6121 6122 if (cmd == &ack_receiver_tbl[P_PING_ACK]) { 6123 set_idle_timeout(connection); 6124 ping_timeout_active = false; 6125 } 6126 6127 buf = connection->meta.rbuf; 6128 received = 0; 6129 expect = header_size; 6130 cmd = NULL; 6131 } 6132 } 6133 6134 if (0) { 6135 reconnect: 6136 conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD); 6137 conn_md_sync(connection); 6138 } 6139 if (0) { 6140 disconnect: 6141 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 6142 } 6143 6144 drbd_info(connection, "ack_receiver terminated\n"); 6145 6146 return 0; 6147 } 6148 6149 void drbd_send_acks_wf(struct work_struct *ws) 6150 { 6151 struct drbd_peer_device *peer_device = 6152 container_of(ws, struct drbd_peer_device, send_acks_work); 6153 struct drbd_connection *connection = peer_device->connection; 6154 struct drbd_device *device = peer_device->device; 6155 struct net_conf *nc; 6156 int tcp_cork, err; 6157 6158 rcu_read_lock(); 6159 nc = rcu_dereference(connection->net_conf); 6160 tcp_cork = nc->tcp_cork; 6161 rcu_read_unlock(); 6162 6163 if (tcp_cork) 6164 drbd_tcp_cork(connection->meta.socket); 6165 6166 err = drbd_finish_peer_reqs(device); 6167 kref_put(&device->kref, drbd_destroy_device); 6168 /* get is in drbd_endio_write_sec_final(). That is necessary to keep the 6169 struct work_struct send_acks_work alive, which is in the peer_device object */ 6170 6171 if (err) { 6172 conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD); 6173 return; 6174 } 6175 6176 if (tcp_cork) 6177 drbd_tcp_uncork(connection->meta.socket); 6178 6179 return; 6180 } 6181