1 /*
2    drbd_receiver.c
3 
4    This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
5 
6    Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
7    Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
8    Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
9 
10    drbd is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation; either version 2, or (at your option)
13    any later version.
14 
15    drbd is distributed in the hope that it will be useful,
16    but WITHOUT ANY WARRANTY; without even the implied warranty of
17    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18    GNU General Public License for more details.
19 
20    You should have received a copy of the GNU General Public License
21    along with drbd; see the file COPYING.  If not, write to
22    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24 
25 
26 #include <linux/module.h>
27 
28 #include <linux/uaccess.h>
29 #include <net/sock.h>
30 
31 #include <linux/drbd.h>
32 #include <linux/fs.h>
33 #include <linux/file.h>
34 #include <linux/in.h>
35 #include <linux/mm.h>
36 #include <linux/memcontrol.h>
37 #include <linux/mm_inline.h>
38 #include <linux/slab.h>
39 #include <uapi/linux/sched/types.h>
40 #include <linux/sched/signal.h>
41 #include <linux/pkt_sched.h>
42 #define __KERNEL_SYSCALLS__
43 #include <linux/unistd.h>
44 #include <linux/vmalloc.h>
45 #include <linux/random.h>
46 #include <linux/string.h>
47 #include <linux/scatterlist.h>
48 #include "drbd_int.h"
49 #include "drbd_protocol.h"
50 #include "drbd_req.h"
51 #include "drbd_vli.h"
52 
53 #define PRO_FEATURES (DRBD_FF_TRIM|DRBD_FF_THIN_RESYNC|DRBD_FF_WSAME)
54 
55 struct packet_info {
56 	enum drbd_packet cmd;
57 	unsigned int size;
58 	unsigned int vnr;
59 	void *data;
60 };
61 
62 enum finish_epoch {
63 	FE_STILL_LIVE,
64 	FE_DESTROYED,
65 	FE_RECYCLED,
66 };
67 
68 static int drbd_do_features(struct drbd_connection *connection);
69 static int drbd_do_auth(struct drbd_connection *connection);
70 static int drbd_disconnected(struct drbd_peer_device *);
71 static void conn_wait_active_ee_empty(struct drbd_connection *connection);
72 static enum finish_epoch drbd_may_finish_epoch(struct drbd_connection *, struct drbd_epoch *, enum epoch_event);
73 static int e_end_block(struct drbd_work *, int);
74 
75 
76 #define GFP_TRY	(__GFP_HIGHMEM | __GFP_NOWARN)
77 
78 /*
79  * some helper functions to deal with single linked page lists,
80  * page->private being our "next" pointer.
81  */
82 
83 /* If at least n pages are linked at head, get n pages off.
84  * Otherwise, don't modify head, and return NULL.
85  * Locking is the responsibility of the caller.
86  */
87 static struct page *page_chain_del(struct page **head, int n)
88 {
89 	struct page *page;
90 	struct page *tmp;
91 
92 	BUG_ON(!n);
93 	BUG_ON(!head);
94 
95 	page = *head;
96 
97 	if (!page)
98 		return NULL;
99 
100 	while (page) {
101 		tmp = page_chain_next(page);
102 		if (--n == 0)
103 			break; /* found sufficient pages */
104 		if (tmp == NULL)
105 			/* insufficient pages, don't use any of them. */
106 			return NULL;
107 		page = tmp;
108 	}
109 
110 	/* add end of list marker for the returned list */
111 	set_page_private(page, 0);
112 	/* actual return value, and adjustment of head */
113 	page = *head;
114 	*head = tmp;
115 	return page;
116 }
117 
118 /* may be used outside of locks to find the tail of a (usually short)
119  * "private" page chain, before adding it back to a global chain head
120  * with page_chain_add() under a spinlock. */
121 static struct page *page_chain_tail(struct page *page, int *len)
122 {
123 	struct page *tmp;
124 	int i = 1;
125 	while ((tmp = page_chain_next(page)))
126 		++i, page = tmp;
127 	if (len)
128 		*len = i;
129 	return page;
130 }
131 
132 static int page_chain_free(struct page *page)
133 {
134 	struct page *tmp;
135 	int i = 0;
136 	page_chain_for_each_safe(page, tmp) {
137 		put_page(page);
138 		++i;
139 	}
140 	return i;
141 }
142 
143 static void page_chain_add(struct page **head,
144 		struct page *chain_first, struct page *chain_last)
145 {
146 #if 1
147 	struct page *tmp;
148 	tmp = page_chain_tail(chain_first, NULL);
149 	BUG_ON(tmp != chain_last);
150 #endif
151 
152 	/* add chain to head */
153 	set_page_private(chain_last, (unsigned long)*head);
154 	*head = chain_first;
155 }
156 
157 static struct page *__drbd_alloc_pages(struct drbd_device *device,
158 				       unsigned int number)
159 {
160 	struct page *page = NULL;
161 	struct page *tmp = NULL;
162 	unsigned int i = 0;
163 
164 	/* Yes, testing drbd_pp_vacant outside the lock is racy.
165 	 * So what. It saves a spin_lock. */
166 	if (drbd_pp_vacant >= number) {
167 		spin_lock(&drbd_pp_lock);
168 		page = page_chain_del(&drbd_pp_pool, number);
169 		if (page)
170 			drbd_pp_vacant -= number;
171 		spin_unlock(&drbd_pp_lock);
172 		if (page)
173 			return page;
174 	}
175 
176 	/* GFP_TRY, because we must not cause arbitrary write-out: in a DRBD
177 	 * "criss-cross" setup, that might cause write-out on some other DRBD,
178 	 * which in turn might block on the other node at this very place.  */
179 	for (i = 0; i < number; i++) {
180 		tmp = alloc_page(GFP_TRY);
181 		if (!tmp)
182 			break;
183 		set_page_private(tmp, (unsigned long)page);
184 		page = tmp;
185 	}
186 
187 	if (i == number)
188 		return page;
189 
190 	/* Not enough pages immediately available this time.
191 	 * No need to jump around here, drbd_alloc_pages will retry this
192 	 * function "soon". */
193 	if (page) {
194 		tmp = page_chain_tail(page, NULL);
195 		spin_lock(&drbd_pp_lock);
196 		page_chain_add(&drbd_pp_pool, page, tmp);
197 		drbd_pp_vacant += i;
198 		spin_unlock(&drbd_pp_lock);
199 	}
200 	return NULL;
201 }
202 
203 static void reclaim_finished_net_peer_reqs(struct drbd_device *device,
204 					   struct list_head *to_be_freed)
205 {
206 	struct drbd_peer_request *peer_req, *tmp;
207 
208 	/* The EEs are always appended to the end of the list. Since
209 	   they are sent in order over the wire, they have to finish
210 	   in order. As soon as we see the first not finished we can
211 	   stop to examine the list... */
212 
213 	list_for_each_entry_safe(peer_req, tmp, &device->net_ee, w.list) {
214 		if (drbd_peer_req_has_active_page(peer_req))
215 			break;
216 		list_move(&peer_req->w.list, to_be_freed);
217 	}
218 }
219 
220 static void drbd_reclaim_net_peer_reqs(struct drbd_device *device)
221 {
222 	LIST_HEAD(reclaimed);
223 	struct drbd_peer_request *peer_req, *t;
224 
225 	spin_lock_irq(&device->resource->req_lock);
226 	reclaim_finished_net_peer_reqs(device, &reclaimed);
227 	spin_unlock_irq(&device->resource->req_lock);
228 	list_for_each_entry_safe(peer_req, t, &reclaimed, w.list)
229 		drbd_free_net_peer_req(device, peer_req);
230 }
231 
232 static void conn_reclaim_net_peer_reqs(struct drbd_connection *connection)
233 {
234 	struct drbd_peer_device *peer_device;
235 	int vnr;
236 
237 	rcu_read_lock();
238 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
239 		struct drbd_device *device = peer_device->device;
240 		if (!atomic_read(&device->pp_in_use_by_net))
241 			continue;
242 
243 		kref_get(&device->kref);
244 		rcu_read_unlock();
245 		drbd_reclaim_net_peer_reqs(device);
246 		kref_put(&device->kref, drbd_destroy_device);
247 		rcu_read_lock();
248 	}
249 	rcu_read_unlock();
250 }
251 
252 /**
253  * drbd_alloc_pages() - Returns @number pages, retries forever (or until signalled)
254  * @device:	DRBD device.
255  * @number:	number of pages requested
256  * @retry:	whether to retry, if not enough pages are available right now
257  *
258  * Tries to allocate number pages, first from our own page pool, then from
259  * the kernel.
260  * Possibly retry until DRBD frees sufficient pages somewhere else.
261  *
262  * If this allocation would exceed the max_buffers setting, we throttle
263  * allocation (schedule_timeout) to give the system some room to breathe.
264  *
265  * We do not use max-buffers as hard limit, because it could lead to
266  * congestion and further to a distributed deadlock during online-verify or
267  * (checksum based) resync, if the max-buffers, socket buffer sizes and
268  * resync-rate settings are mis-configured.
269  *
270  * Returns a page chain linked via page->private.
271  */
272 struct page *drbd_alloc_pages(struct drbd_peer_device *peer_device, unsigned int number,
273 			      bool retry)
274 {
275 	struct drbd_device *device = peer_device->device;
276 	struct page *page = NULL;
277 	struct net_conf *nc;
278 	DEFINE_WAIT(wait);
279 	unsigned int mxb;
280 
281 	rcu_read_lock();
282 	nc = rcu_dereference(peer_device->connection->net_conf);
283 	mxb = nc ? nc->max_buffers : 1000000;
284 	rcu_read_unlock();
285 
286 	if (atomic_read(&device->pp_in_use) < mxb)
287 		page = __drbd_alloc_pages(device, number);
288 
289 	/* Try to keep the fast path fast, but occasionally we need
290 	 * to reclaim the pages we lended to the network stack. */
291 	if (page && atomic_read(&device->pp_in_use_by_net) > 512)
292 		drbd_reclaim_net_peer_reqs(device);
293 
294 	while (page == NULL) {
295 		prepare_to_wait(&drbd_pp_wait, &wait, TASK_INTERRUPTIBLE);
296 
297 		drbd_reclaim_net_peer_reqs(device);
298 
299 		if (atomic_read(&device->pp_in_use) < mxb) {
300 			page = __drbd_alloc_pages(device, number);
301 			if (page)
302 				break;
303 		}
304 
305 		if (!retry)
306 			break;
307 
308 		if (signal_pending(current)) {
309 			drbd_warn(device, "drbd_alloc_pages interrupted!\n");
310 			break;
311 		}
312 
313 		if (schedule_timeout(HZ/10) == 0)
314 			mxb = UINT_MAX;
315 	}
316 	finish_wait(&drbd_pp_wait, &wait);
317 
318 	if (page)
319 		atomic_add(number, &device->pp_in_use);
320 	return page;
321 }
322 
323 /* Must not be used from irq, as that may deadlock: see drbd_alloc_pages.
324  * Is also used from inside an other spin_lock_irq(&resource->req_lock);
325  * Either links the page chain back to the global pool,
326  * or returns all pages to the system. */
327 static void drbd_free_pages(struct drbd_device *device, struct page *page, int is_net)
328 {
329 	atomic_t *a = is_net ? &device->pp_in_use_by_net : &device->pp_in_use;
330 	int i;
331 
332 	if (page == NULL)
333 		return;
334 
335 	if (drbd_pp_vacant > (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * drbd_minor_count)
336 		i = page_chain_free(page);
337 	else {
338 		struct page *tmp;
339 		tmp = page_chain_tail(page, &i);
340 		spin_lock(&drbd_pp_lock);
341 		page_chain_add(&drbd_pp_pool, page, tmp);
342 		drbd_pp_vacant += i;
343 		spin_unlock(&drbd_pp_lock);
344 	}
345 	i = atomic_sub_return(i, a);
346 	if (i < 0)
347 		drbd_warn(device, "ASSERTION FAILED: %s: %d < 0\n",
348 			is_net ? "pp_in_use_by_net" : "pp_in_use", i);
349 	wake_up(&drbd_pp_wait);
350 }
351 
352 /*
353 You need to hold the req_lock:
354  _drbd_wait_ee_list_empty()
355 
356 You must not have the req_lock:
357  drbd_free_peer_req()
358  drbd_alloc_peer_req()
359  drbd_free_peer_reqs()
360  drbd_ee_fix_bhs()
361  drbd_finish_peer_reqs()
362  drbd_clear_done_ee()
363  drbd_wait_ee_list_empty()
364 */
365 
366 /* normal: payload_size == request size (bi_size)
367  * w_same: payload_size == logical_block_size
368  * trim: payload_size == 0 */
369 struct drbd_peer_request *
370 drbd_alloc_peer_req(struct drbd_peer_device *peer_device, u64 id, sector_t sector,
371 		    unsigned int request_size, unsigned int payload_size, gfp_t gfp_mask) __must_hold(local)
372 {
373 	struct drbd_device *device = peer_device->device;
374 	struct drbd_peer_request *peer_req;
375 	struct page *page = NULL;
376 	unsigned nr_pages = (payload_size + PAGE_SIZE -1) >> PAGE_SHIFT;
377 
378 	if (drbd_insert_fault(device, DRBD_FAULT_AL_EE))
379 		return NULL;
380 
381 	peer_req = mempool_alloc(&drbd_ee_mempool, gfp_mask & ~__GFP_HIGHMEM);
382 	if (!peer_req) {
383 		if (!(gfp_mask & __GFP_NOWARN))
384 			drbd_err(device, "%s: allocation failed\n", __func__);
385 		return NULL;
386 	}
387 
388 	if (nr_pages) {
389 		page = drbd_alloc_pages(peer_device, nr_pages,
390 					gfpflags_allow_blocking(gfp_mask));
391 		if (!page)
392 			goto fail;
393 	}
394 
395 	memset(peer_req, 0, sizeof(*peer_req));
396 	INIT_LIST_HEAD(&peer_req->w.list);
397 	drbd_clear_interval(&peer_req->i);
398 	peer_req->i.size = request_size;
399 	peer_req->i.sector = sector;
400 	peer_req->submit_jif = jiffies;
401 	peer_req->peer_device = peer_device;
402 	peer_req->pages = page;
403 	/*
404 	 * The block_id is opaque to the receiver.  It is not endianness
405 	 * converted, and sent back to the sender unchanged.
406 	 */
407 	peer_req->block_id = id;
408 
409 	return peer_req;
410 
411  fail:
412 	mempool_free(peer_req, &drbd_ee_mempool);
413 	return NULL;
414 }
415 
416 void __drbd_free_peer_req(struct drbd_device *device, struct drbd_peer_request *peer_req,
417 		       int is_net)
418 {
419 	might_sleep();
420 	if (peer_req->flags & EE_HAS_DIGEST)
421 		kfree(peer_req->digest);
422 	drbd_free_pages(device, peer_req->pages, is_net);
423 	D_ASSERT(device, atomic_read(&peer_req->pending_bios) == 0);
424 	D_ASSERT(device, drbd_interval_empty(&peer_req->i));
425 	if (!expect(!(peer_req->flags & EE_CALL_AL_COMPLETE_IO))) {
426 		peer_req->flags &= ~EE_CALL_AL_COMPLETE_IO;
427 		drbd_al_complete_io(device, &peer_req->i);
428 	}
429 	mempool_free(peer_req, &drbd_ee_mempool);
430 }
431 
432 int drbd_free_peer_reqs(struct drbd_device *device, struct list_head *list)
433 {
434 	LIST_HEAD(work_list);
435 	struct drbd_peer_request *peer_req, *t;
436 	int count = 0;
437 	int is_net = list == &device->net_ee;
438 
439 	spin_lock_irq(&device->resource->req_lock);
440 	list_splice_init(list, &work_list);
441 	spin_unlock_irq(&device->resource->req_lock);
442 
443 	list_for_each_entry_safe(peer_req, t, &work_list, w.list) {
444 		__drbd_free_peer_req(device, peer_req, is_net);
445 		count++;
446 	}
447 	return count;
448 }
449 
450 /*
451  * See also comments in _req_mod(,BARRIER_ACKED) and receive_Barrier.
452  */
453 static int drbd_finish_peer_reqs(struct drbd_device *device)
454 {
455 	LIST_HEAD(work_list);
456 	LIST_HEAD(reclaimed);
457 	struct drbd_peer_request *peer_req, *t;
458 	int err = 0;
459 
460 	spin_lock_irq(&device->resource->req_lock);
461 	reclaim_finished_net_peer_reqs(device, &reclaimed);
462 	list_splice_init(&device->done_ee, &work_list);
463 	spin_unlock_irq(&device->resource->req_lock);
464 
465 	list_for_each_entry_safe(peer_req, t, &reclaimed, w.list)
466 		drbd_free_net_peer_req(device, peer_req);
467 
468 	/* possible callbacks here:
469 	 * e_end_block, and e_end_resync_block, e_send_superseded.
470 	 * all ignore the last argument.
471 	 */
472 	list_for_each_entry_safe(peer_req, t, &work_list, w.list) {
473 		int err2;
474 
475 		/* list_del not necessary, next/prev members not touched */
476 		err2 = peer_req->w.cb(&peer_req->w, !!err);
477 		if (!err)
478 			err = err2;
479 		drbd_free_peer_req(device, peer_req);
480 	}
481 	wake_up(&device->ee_wait);
482 
483 	return err;
484 }
485 
486 static void _drbd_wait_ee_list_empty(struct drbd_device *device,
487 				     struct list_head *head)
488 {
489 	DEFINE_WAIT(wait);
490 
491 	/* avoids spin_lock/unlock
492 	 * and calling prepare_to_wait in the fast path */
493 	while (!list_empty(head)) {
494 		prepare_to_wait(&device->ee_wait, &wait, TASK_UNINTERRUPTIBLE);
495 		spin_unlock_irq(&device->resource->req_lock);
496 		io_schedule();
497 		finish_wait(&device->ee_wait, &wait);
498 		spin_lock_irq(&device->resource->req_lock);
499 	}
500 }
501 
502 static void drbd_wait_ee_list_empty(struct drbd_device *device,
503 				    struct list_head *head)
504 {
505 	spin_lock_irq(&device->resource->req_lock);
506 	_drbd_wait_ee_list_empty(device, head);
507 	spin_unlock_irq(&device->resource->req_lock);
508 }
509 
510 static int drbd_recv_short(struct socket *sock, void *buf, size_t size, int flags)
511 {
512 	struct kvec iov = {
513 		.iov_base = buf,
514 		.iov_len = size,
515 	};
516 	struct msghdr msg = {
517 		.msg_flags = (flags ? flags : MSG_WAITALL | MSG_NOSIGNAL)
518 	};
519 	iov_iter_kvec(&msg.msg_iter, READ | ITER_KVEC, &iov, 1, size);
520 	return sock_recvmsg(sock, &msg, msg.msg_flags);
521 }
522 
523 static int drbd_recv(struct drbd_connection *connection, void *buf, size_t size)
524 {
525 	int rv;
526 
527 	rv = drbd_recv_short(connection->data.socket, buf, size, 0);
528 
529 	if (rv < 0) {
530 		if (rv == -ECONNRESET)
531 			drbd_info(connection, "sock was reset by peer\n");
532 		else if (rv != -ERESTARTSYS)
533 			drbd_err(connection, "sock_recvmsg returned %d\n", rv);
534 	} else if (rv == 0) {
535 		if (test_bit(DISCONNECT_SENT, &connection->flags)) {
536 			long t;
537 			rcu_read_lock();
538 			t = rcu_dereference(connection->net_conf)->ping_timeo * HZ/10;
539 			rcu_read_unlock();
540 
541 			t = wait_event_timeout(connection->ping_wait, connection->cstate < C_WF_REPORT_PARAMS, t);
542 
543 			if (t)
544 				goto out;
545 		}
546 		drbd_info(connection, "sock was shut down by peer\n");
547 	}
548 
549 	if (rv != size)
550 		conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD);
551 
552 out:
553 	return rv;
554 }
555 
556 static int drbd_recv_all(struct drbd_connection *connection, void *buf, size_t size)
557 {
558 	int err;
559 
560 	err = drbd_recv(connection, buf, size);
561 	if (err != size) {
562 		if (err >= 0)
563 			err = -EIO;
564 	} else
565 		err = 0;
566 	return err;
567 }
568 
569 static int drbd_recv_all_warn(struct drbd_connection *connection, void *buf, size_t size)
570 {
571 	int err;
572 
573 	err = drbd_recv_all(connection, buf, size);
574 	if (err && !signal_pending(current))
575 		drbd_warn(connection, "short read (expected size %d)\n", (int)size);
576 	return err;
577 }
578 
579 /* quoting tcp(7):
580  *   On individual connections, the socket buffer size must be set prior to the
581  *   listen(2) or connect(2) calls in order to have it take effect.
582  * This is our wrapper to do so.
583  */
584 static void drbd_setbufsize(struct socket *sock, unsigned int snd,
585 		unsigned int rcv)
586 {
587 	/* open coded SO_SNDBUF, SO_RCVBUF */
588 	if (snd) {
589 		sock->sk->sk_sndbuf = snd;
590 		sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
591 	}
592 	if (rcv) {
593 		sock->sk->sk_rcvbuf = rcv;
594 		sock->sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
595 	}
596 }
597 
598 static struct socket *drbd_try_connect(struct drbd_connection *connection)
599 {
600 	const char *what;
601 	struct socket *sock;
602 	struct sockaddr_in6 src_in6;
603 	struct sockaddr_in6 peer_in6;
604 	struct net_conf *nc;
605 	int err, peer_addr_len, my_addr_len;
606 	int sndbuf_size, rcvbuf_size, connect_int;
607 	int disconnect_on_error = 1;
608 
609 	rcu_read_lock();
610 	nc = rcu_dereference(connection->net_conf);
611 	if (!nc) {
612 		rcu_read_unlock();
613 		return NULL;
614 	}
615 	sndbuf_size = nc->sndbuf_size;
616 	rcvbuf_size = nc->rcvbuf_size;
617 	connect_int = nc->connect_int;
618 	rcu_read_unlock();
619 
620 	my_addr_len = min_t(int, connection->my_addr_len, sizeof(src_in6));
621 	memcpy(&src_in6, &connection->my_addr, my_addr_len);
622 
623 	if (((struct sockaddr *)&connection->my_addr)->sa_family == AF_INET6)
624 		src_in6.sin6_port = 0;
625 	else
626 		((struct sockaddr_in *)&src_in6)->sin_port = 0; /* AF_INET & AF_SCI */
627 
628 	peer_addr_len = min_t(int, connection->peer_addr_len, sizeof(src_in6));
629 	memcpy(&peer_in6, &connection->peer_addr, peer_addr_len);
630 
631 	what = "sock_create_kern";
632 	err = sock_create_kern(&init_net, ((struct sockaddr *)&src_in6)->sa_family,
633 			       SOCK_STREAM, IPPROTO_TCP, &sock);
634 	if (err < 0) {
635 		sock = NULL;
636 		goto out;
637 	}
638 
639 	sock->sk->sk_rcvtimeo =
640 	sock->sk->sk_sndtimeo = connect_int * HZ;
641 	drbd_setbufsize(sock, sndbuf_size, rcvbuf_size);
642 
643        /* explicitly bind to the configured IP as source IP
644 	*  for the outgoing connections.
645 	*  This is needed for multihomed hosts and to be
646 	*  able to use lo: interfaces for drbd.
647 	* Make sure to use 0 as port number, so linux selects
648 	*  a free one dynamically.
649 	*/
650 	what = "bind before connect";
651 	err = sock->ops->bind(sock, (struct sockaddr *) &src_in6, my_addr_len);
652 	if (err < 0)
653 		goto out;
654 
655 	/* connect may fail, peer not yet available.
656 	 * stay C_WF_CONNECTION, don't go Disconnecting! */
657 	disconnect_on_error = 0;
658 	what = "connect";
659 	err = sock->ops->connect(sock, (struct sockaddr *) &peer_in6, peer_addr_len, 0);
660 
661 out:
662 	if (err < 0) {
663 		if (sock) {
664 			sock_release(sock);
665 			sock = NULL;
666 		}
667 		switch (-err) {
668 			/* timeout, busy, signal pending */
669 		case ETIMEDOUT: case EAGAIN: case EINPROGRESS:
670 		case EINTR: case ERESTARTSYS:
671 			/* peer not (yet) available, network problem */
672 		case ECONNREFUSED: case ENETUNREACH:
673 		case EHOSTDOWN:    case EHOSTUNREACH:
674 			disconnect_on_error = 0;
675 			break;
676 		default:
677 			drbd_err(connection, "%s failed, err = %d\n", what, err);
678 		}
679 		if (disconnect_on_error)
680 			conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
681 	}
682 
683 	return sock;
684 }
685 
686 struct accept_wait_data {
687 	struct drbd_connection *connection;
688 	struct socket *s_listen;
689 	struct completion door_bell;
690 	void (*original_sk_state_change)(struct sock *sk);
691 
692 };
693 
694 static void drbd_incoming_connection(struct sock *sk)
695 {
696 	struct accept_wait_data *ad = sk->sk_user_data;
697 	void (*state_change)(struct sock *sk);
698 
699 	state_change = ad->original_sk_state_change;
700 	if (sk->sk_state == TCP_ESTABLISHED)
701 		complete(&ad->door_bell);
702 	state_change(sk);
703 }
704 
705 static int prepare_listen_socket(struct drbd_connection *connection, struct accept_wait_data *ad)
706 {
707 	int err, sndbuf_size, rcvbuf_size, my_addr_len;
708 	struct sockaddr_in6 my_addr;
709 	struct socket *s_listen;
710 	struct net_conf *nc;
711 	const char *what;
712 
713 	rcu_read_lock();
714 	nc = rcu_dereference(connection->net_conf);
715 	if (!nc) {
716 		rcu_read_unlock();
717 		return -EIO;
718 	}
719 	sndbuf_size = nc->sndbuf_size;
720 	rcvbuf_size = nc->rcvbuf_size;
721 	rcu_read_unlock();
722 
723 	my_addr_len = min_t(int, connection->my_addr_len, sizeof(struct sockaddr_in6));
724 	memcpy(&my_addr, &connection->my_addr, my_addr_len);
725 
726 	what = "sock_create_kern";
727 	err = sock_create_kern(&init_net, ((struct sockaddr *)&my_addr)->sa_family,
728 			       SOCK_STREAM, IPPROTO_TCP, &s_listen);
729 	if (err) {
730 		s_listen = NULL;
731 		goto out;
732 	}
733 
734 	s_listen->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */
735 	drbd_setbufsize(s_listen, sndbuf_size, rcvbuf_size);
736 
737 	what = "bind before listen";
738 	err = s_listen->ops->bind(s_listen, (struct sockaddr *)&my_addr, my_addr_len);
739 	if (err < 0)
740 		goto out;
741 
742 	ad->s_listen = s_listen;
743 	write_lock_bh(&s_listen->sk->sk_callback_lock);
744 	ad->original_sk_state_change = s_listen->sk->sk_state_change;
745 	s_listen->sk->sk_state_change = drbd_incoming_connection;
746 	s_listen->sk->sk_user_data = ad;
747 	write_unlock_bh(&s_listen->sk->sk_callback_lock);
748 
749 	what = "listen";
750 	err = s_listen->ops->listen(s_listen, 5);
751 	if (err < 0)
752 		goto out;
753 
754 	return 0;
755 out:
756 	if (s_listen)
757 		sock_release(s_listen);
758 	if (err < 0) {
759 		if (err != -EAGAIN && err != -EINTR && err != -ERESTARTSYS) {
760 			drbd_err(connection, "%s failed, err = %d\n", what, err);
761 			conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
762 		}
763 	}
764 
765 	return -EIO;
766 }
767 
768 static void unregister_state_change(struct sock *sk, struct accept_wait_data *ad)
769 {
770 	write_lock_bh(&sk->sk_callback_lock);
771 	sk->sk_state_change = ad->original_sk_state_change;
772 	sk->sk_user_data = NULL;
773 	write_unlock_bh(&sk->sk_callback_lock);
774 }
775 
776 static struct socket *drbd_wait_for_connect(struct drbd_connection *connection, struct accept_wait_data *ad)
777 {
778 	int timeo, connect_int, err = 0;
779 	struct socket *s_estab = NULL;
780 	struct net_conf *nc;
781 
782 	rcu_read_lock();
783 	nc = rcu_dereference(connection->net_conf);
784 	if (!nc) {
785 		rcu_read_unlock();
786 		return NULL;
787 	}
788 	connect_int = nc->connect_int;
789 	rcu_read_unlock();
790 
791 	timeo = connect_int * HZ;
792 	/* 28.5% random jitter */
793 	timeo += (prandom_u32() & 1) ? timeo / 7 : -timeo / 7;
794 
795 	err = wait_for_completion_interruptible_timeout(&ad->door_bell, timeo);
796 	if (err <= 0)
797 		return NULL;
798 
799 	err = kernel_accept(ad->s_listen, &s_estab, 0);
800 	if (err < 0) {
801 		if (err != -EAGAIN && err != -EINTR && err != -ERESTARTSYS) {
802 			drbd_err(connection, "accept failed, err = %d\n", err);
803 			conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
804 		}
805 	}
806 
807 	if (s_estab)
808 		unregister_state_change(s_estab->sk, ad);
809 
810 	return s_estab;
811 }
812 
813 static int decode_header(struct drbd_connection *, void *, struct packet_info *);
814 
815 static int send_first_packet(struct drbd_connection *connection, struct drbd_socket *sock,
816 			     enum drbd_packet cmd)
817 {
818 	if (!conn_prepare_command(connection, sock))
819 		return -EIO;
820 	return conn_send_command(connection, sock, cmd, 0, NULL, 0);
821 }
822 
823 static int receive_first_packet(struct drbd_connection *connection, struct socket *sock)
824 {
825 	unsigned int header_size = drbd_header_size(connection);
826 	struct packet_info pi;
827 	struct net_conf *nc;
828 	int err;
829 
830 	rcu_read_lock();
831 	nc = rcu_dereference(connection->net_conf);
832 	if (!nc) {
833 		rcu_read_unlock();
834 		return -EIO;
835 	}
836 	sock->sk->sk_rcvtimeo = nc->ping_timeo * 4 * HZ / 10;
837 	rcu_read_unlock();
838 
839 	err = drbd_recv_short(sock, connection->data.rbuf, header_size, 0);
840 	if (err != header_size) {
841 		if (err >= 0)
842 			err = -EIO;
843 		return err;
844 	}
845 	err = decode_header(connection, connection->data.rbuf, &pi);
846 	if (err)
847 		return err;
848 	return pi.cmd;
849 }
850 
851 /**
852  * drbd_socket_okay() - Free the socket if its connection is not okay
853  * @sock:	pointer to the pointer to the socket.
854  */
855 static bool drbd_socket_okay(struct socket **sock)
856 {
857 	int rr;
858 	char tb[4];
859 
860 	if (!*sock)
861 		return false;
862 
863 	rr = drbd_recv_short(*sock, tb, 4, MSG_DONTWAIT | MSG_PEEK);
864 
865 	if (rr > 0 || rr == -EAGAIN) {
866 		return true;
867 	} else {
868 		sock_release(*sock);
869 		*sock = NULL;
870 		return false;
871 	}
872 }
873 
874 static bool connection_established(struct drbd_connection *connection,
875 				   struct socket **sock1,
876 				   struct socket **sock2)
877 {
878 	struct net_conf *nc;
879 	int timeout;
880 	bool ok;
881 
882 	if (!*sock1 || !*sock2)
883 		return false;
884 
885 	rcu_read_lock();
886 	nc = rcu_dereference(connection->net_conf);
887 	timeout = (nc->sock_check_timeo ?: nc->ping_timeo) * HZ / 10;
888 	rcu_read_unlock();
889 	schedule_timeout_interruptible(timeout);
890 
891 	ok = drbd_socket_okay(sock1);
892 	ok = drbd_socket_okay(sock2) && ok;
893 
894 	return ok;
895 }
896 
897 /* Gets called if a connection is established, or if a new minor gets created
898    in a connection */
899 int drbd_connected(struct drbd_peer_device *peer_device)
900 {
901 	struct drbd_device *device = peer_device->device;
902 	int err;
903 
904 	atomic_set(&device->packet_seq, 0);
905 	device->peer_seq = 0;
906 
907 	device->state_mutex = peer_device->connection->agreed_pro_version < 100 ?
908 		&peer_device->connection->cstate_mutex :
909 		&device->own_state_mutex;
910 
911 	err = drbd_send_sync_param(peer_device);
912 	if (!err)
913 		err = drbd_send_sizes(peer_device, 0, 0);
914 	if (!err)
915 		err = drbd_send_uuids(peer_device);
916 	if (!err)
917 		err = drbd_send_current_state(peer_device);
918 	clear_bit(USE_DEGR_WFC_T, &device->flags);
919 	clear_bit(RESIZE_PENDING, &device->flags);
920 	atomic_set(&device->ap_in_flight, 0);
921 	mod_timer(&device->request_timer, jiffies + HZ); /* just start it here. */
922 	return err;
923 }
924 
925 /*
926  * return values:
927  *   1 yes, we have a valid connection
928  *   0 oops, did not work out, please try again
929  *  -1 peer talks different language,
930  *     no point in trying again, please go standalone.
931  *  -2 We do not have a network config...
932  */
933 static int conn_connect(struct drbd_connection *connection)
934 {
935 	struct drbd_socket sock, msock;
936 	struct drbd_peer_device *peer_device;
937 	struct net_conf *nc;
938 	int vnr, timeout, h;
939 	bool discard_my_data, ok;
940 	enum drbd_state_rv rv;
941 	struct accept_wait_data ad = {
942 		.connection = connection,
943 		.door_bell = COMPLETION_INITIALIZER_ONSTACK(ad.door_bell),
944 	};
945 
946 	clear_bit(DISCONNECT_SENT, &connection->flags);
947 	if (conn_request_state(connection, NS(conn, C_WF_CONNECTION), CS_VERBOSE) < SS_SUCCESS)
948 		return -2;
949 
950 	mutex_init(&sock.mutex);
951 	sock.sbuf = connection->data.sbuf;
952 	sock.rbuf = connection->data.rbuf;
953 	sock.socket = NULL;
954 	mutex_init(&msock.mutex);
955 	msock.sbuf = connection->meta.sbuf;
956 	msock.rbuf = connection->meta.rbuf;
957 	msock.socket = NULL;
958 
959 	/* Assume that the peer only understands protocol 80 until we know better.  */
960 	connection->agreed_pro_version = 80;
961 
962 	if (prepare_listen_socket(connection, &ad))
963 		return 0;
964 
965 	do {
966 		struct socket *s;
967 
968 		s = drbd_try_connect(connection);
969 		if (s) {
970 			if (!sock.socket) {
971 				sock.socket = s;
972 				send_first_packet(connection, &sock, P_INITIAL_DATA);
973 			} else if (!msock.socket) {
974 				clear_bit(RESOLVE_CONFLICTS, &connection->flags);
975 				msock.socket = s;
976 				send_first_packet(connection, &msock, P_INITIAL_META);
977 			} else {
978 				drbd_err(connection, "Logic error in conn_connect()\n");
979 				goto out_release_sockets;
980 			}
981 		}
982 
983 		if (connection_established(connection, &sock.socket, &msock.socket))
984 			break;
985 
986 retry:
987 		s = drbd_wait_for_connect(connection, &ad);
988 		if (s) {
989 			int fp = receive_first_packet(connection, s);
990 			drbd_socket_okay(&sock.socket);
991 			drbd_socket_okay(&msock.socket);
992 			switch (fp) {
993 			case P_INITIAL_DATA:
994 				if (sock.socket) {
995 					drbd_warn(connection, "initial packet S crossed\n");
996 					sock_release(sock.socket);
997 					sock.socket = s;
998 					goto randomize;
999 				}
1000 				sock.socket = s;
1001 				break;
1002 			case P_INITIAL_META:
1003 				set_bit(RESOLVE_CONFLICTS, &connection->flags);
1004 				if (msock.socket) {
1005 					drbd_warn(connection, "initial packet M crossed\n");
1006 					sock_release(msock.socket);
1007 					msock.socket = s;
1008 					goto randomize;
1009 				}
1010 				msock.socket = s;
1011 				break;
1012 			default:
1013 				drbd_warn(connection, "Error receiving initial packet\n");
1014 				sock_release(s);
1015 randomize:
1016 				if (prandom_u32() & 1)
1017 					goto retry;
1018 			}
1019 		}
1020 
1021 		if (connection->cstate <= C_DISCONNECTING)
1022 			goto out_release_sockets;
1023 		if (signal_pending(current)) {
1024 			flush_signals(current);
1025 			smp_rmb();
1026 			if (get_t_state(&connection->receiver) == EXITING)
1027 				goto out_release_sockets;
1028 		}
1029 
1030 		ok = connection_established(connection, &sock.socket, &msock.socket);
1031 	} while (!ok);
1032 
1033 	if (ad.s_listen)
1034 		sock_release(ad.s_listen);
1035 
1036 	sock.socket->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */
1037 	msock.socket->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */
1038 
1039 	sock.socket->sk->sk_allocation = GFP_NOIO;
1040 	msock.socket->sk->sk_allocation = GFP_NOIO;
1041 
1042 	sock.socket->sk->sk_priority = TC_PRIO_INTERACTIVE_BULK;
1043 	msock.socket->sk->sk_priority = TC_PRIO_INTERACTIVE;
1044 
1045 	/* NOT YET ...
1046 	 * sock.socket->sk->sk_sndtimeo = connection->net_conf->timeout*HZ/10;
1047 	 * sock.socket->sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
1048 	 * first set it to the P_CONNECTION_FEATURES timeout,
1049 	 * which we set to 4x the configured ping_timeout. */
1050 	rcu_read_lock();
1051 	nc = rcu_dereference(connection->net_conf);
1052 
1053 	sock.socket->sk->sk_sndtimeo =
1054 	sock.socket->sk->sk_rcvtimeo = nc->ping_timeo*4*HZ/10;
1055 
1056 	msock.socket->sk->sk_rcvtimeo = nc->ping_int*HZ;
1057 	timeout = nc->timeout * HZ / 10;
1058 	discard_my_data = nc->discard_my_data;
1059 	rcu_read_unlock();
1060 
1061 	msock.socket->sk->sk_sndtimeo = timeout;
1062 
1063 	/* we don't want delays.
1064 	 * we use TCP_CORK where appropriate, though */
1065 	drbd_tcp_nodelay(sock.socket);
1066 	drbd_tcp_nodelay(msock.socket);
1067 
1068 	connection->data.socket = sock.socket;
1069 	connection->meta.socket = msock.socket;
1070 	connection->last_received = jiffies;
1071 
1072 	h = drbd_do_features(connection);
1073 	if (h <= 0)
1074 		return h;
1075 
1076 	if (connection->cram_hmac_tfm) {
1077 		/* drbd_request_state(device, NS(conn, WFAuth)); */
1078 		switch (drbd_do_auth(connection)) {
1079 		case -1:
1080 			drbd_err(connection, "Authentication of peer failed\n");
1081 			return -1;
1082 		case 0:
1083 			drbd_err(connection, "Authentication of peer failed, trying again.\n");
1084 			return 0;
1085 		}
1086 	}
1087 
1088 	connection->data.socket->sk->sk_sndtimeo = timeout;
1089 	connection->data.socket->sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
1090 
1091 	if (drbd_send_protocol(connection) == -EOPNOTSUPP)
1092 		return -1;
1093 
1094 	/* Prevent a race between resync-handshake and
1095 	 * being promoted to Primary.
1096 	 *
1097 	 * Grab and release the state mutex, so we know that any current
1098 	 * drbd_set_role() is finished, and any incoming drbd_set_role
1099 	 * will see the STATE_SENT flag, and wait for it to be cleared.
1100 	 */
1101 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr)
1102 		mutex_lock(peer_device->device->state_mutex);
1103 
1104 	/* avoid a race with conn_request_state( C_DISCONNECTING ) */
1105 	spin_lock_irq(&connection->resource->req_lock);
1106 	set_bit(STATE_SENT, &connection->flags);
1107 	spin_unlock_irq(&connection->resource->req_lock);
1108 
1109 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr)
1110 		mutex_unlock(peer_device->device->state_mutex);
1111 
1112 	rcu_read_lock();
1113 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
1114 		struct drbd_device *device = peer_device->device;
1115 		kref_get(&device->kref);
1116 		rcu_read_unlock();
1117 
1118 		if (discard_my_data)
1119 			set_bit(DISCARD_MY_DATA, &device->flags);
1120 		else
1121 			clear_bit(DISCARD_MY_DATA, &device->flags);
1122 
1123 		drbd_connected(peer_device);
1124 		kref_put(&device->kref, drbd_destroy_device);
1125 		rcu_read_lock();
1126 	}
1127 	rcu_read_unlock();
1128 
1129 	rv = conn_request_state(connection, NS(conn, C_WF_REPORT_PARAMS), CS_VERBOSE);
1130 	if (rv < SS_SUCCESS || connection->cstate != C_WF_REPORT_PARAMS) {
1131 		clear_bit(STATE_SENT, &connection->flags);
1132 		return 0;
1133 	}
1134 
1135 	drbd_thread_start(&connection->ack_receiver);
1136 	/* opencoded create_singlethread_workqueue(),
1137 	 * to be able to use format string arguments */
1138 	connection->ack_sender =
1139 		alloc_ordered_workqueue("drbd_as_%s", WQ_MEM_RECLAIM, connection->resource->name);
1140 	if (!connection->ack_sender) {
1141 		drbd_err(connection, "Failed to create workqueue ack_sender\n");
1142 		return 0;
1143 	}
1144 
1145 	mutex_lock(&connection->resource->conf_update);
1146 	/* The discard_my_data flag is a single-shot modifier to the next
1147 	 * connection attempt, the handshake of which is now well underway.
1148 	 * No need for rcu style copying of the whole struct
1149 	 * just to clear a single value. */
1150 	connection->net_conf->discard_my_data = 0;
1151 	mutex_unlock(&connection->resource->conf_update);
1152 
1153 	return h;
1154 
1155 out_release_sockets:
1156 	if (ad.s_listen)
1157 		sock_release(ad.s_listen);
1158 	if (sock.socket)
1159 		sock_release(sock.socket);
1160 	if (msock.socket)
1161 		sock_release(msock.socket);
1162 	return -1;
1163 }
1164 
1165 static int decode_header(struct drbd_connection *connection, void *header, struct packet_info *pi)
1166 {
1167 	unsigned int header_size = drbd_header_size(connection);
1168 
1169 	if (header_size == sizeof(struct p_header100) &&
1170 	    *(__be32 *)header == cpu_to_be32(DRBD_MAGIC_100)) {
1171 		struct p_header100 *h = header;
1172 		if (h->pad != 0) {
1173 			drbd_err(connection, "Header padding is not zero\n");
1174 			return -EINVAL;
1175 		}
1176 		pi->vnr = be16_to_cpu(h->volume);
1177 		pi->cmd = be16_to_cpu(h->command);
1178 		pi->size = be32_to_cpu(h->length);
1179 	} else if (header_size == sizeof(struct p_header95) &&
1180 		   *(__be16 *)header == cpu_to_be16(DRBD_MAGIC_BIG)) {
1181 		struct p_header95 *h = header;
1182 		pi->cmd = be16_to_cpu(h->command);
1183 		pi->size = be32_to_cpu(h->length);
1184 		pi->vnr = 0;
1185 	} else if (header_size == sizeof(struct p_header80) &&
1186 		   *(__be32 *)header == cpu_to_be32(DRBD_MAGIC)) {
1187 		struct p_header80 *h = header;
1188 		pi->cmd = be16_to_cpu(h->command);
1189 		pi->size = be16_to_cpu(h->length);
1190 		pi->vnr = 0;
1191 	} else {
1192 		drbd_err(connection, "Wrong magic value 0x%08x in protocol version %d\n",
1193 			 be32_to_cpu(*(__be32 *)header),
1194 			 connection->agreed_pro_version);
1195 		return -EINVAL;
1196 	}
1197 	pi->data = header + header_size;
1198 	return 0;
1199 }
1200 
1201 static void drbd_unplug_all_devices(struct drbd_connection *connection)
1202 {
1203 	if (current->plug == &connection->receiver_plug) {
1204 		blk_finish_plug(&connection->receiver_plug);
1205 		blk_start_plug(&connection->receiver_plug);
1206 	} /* else: maybe just schedule() ?? */
1207 }
1208 
1209 static int drbd_recv_header(struct drbd_connection *connection, struct packet_info *pi)
1210 {
1211 	void *buffer = connection->data.rbuf;
1212 	int err;
1213 
1214 	err = drbd_recv_all_warn(connection, buffer, drbd_header_size(connection));
1215 	if (err)
1216 		return err;
1217 
1218 	err = decode_header(connection, buffer, pi);
1219 	connection->last_received = jiffies;
1220 
1221 	return err;
1222 }
1223 
1224 static int drbd_recv_header_maybe_unplug(struct drbd_connection *connection, struct packet_info *pi)
1225 {
1226 	void *buffer = connection->data.rbuf;
1227 	unsigned int size = drbd_header_size(connection);
1228 	int err;
1229 
1230 	err = drbd_recv_short(connection->data.socket, buffer, size, MSG_NOSIGNAL|MSG_DONTWAIT);
1231 	if (err != size) {
1232 		/* If we have nothing in the receive buffer now, to reduce
1233 		 * application latency, try to drain the backend queues as
1234 		 * quickly as possible, and let remote TCP know what we have
1235 		 * received so far. */
1236 		if (err == -EAGAIN) {
1237 			drbd_tcp_quickack(connection->data.socket);
1238 			drbd_unplug_all_devices(connection);
1239 		}
1240 		if (err > 0) {
1241 			buffer += err;
1242 			size -= err;
1243 		}
1244 		err = drbd_recv_all_warn(connection, buffer, size);
1245 		if (err)
1246 			return err;
1247 	}
1248 
1249 	err = decode_header(connection, connection->data.rbuf, pi);
1250 	connection->last_received = jiffies;
1251 
1252 	return err;
1253 }
1254 /* This is blkdev_issue_flush, but asynchronous.
1255  * We want to submit to all component volumes in parallel,
1256  * then wait for all completions.
1257  */
1258 struct issue_flush_context {
1259 	atomic_t pending;
1260 	int error;
1261 	struct completion done;
1262 };
1263 struct one_flush_context {
1264 	struct drbd_device *device;
1265 	struct issue_flush_context *ctx;
1266 };
1267 
1268 static void one_flush_endio(struct bio *bio)
1269 {
1270 	struct one_flush_context *octx = bio->bi_private;
1271 	struct drbd_device *device = octx->device;
1272 	struct issue_flush_context *ctx = octx->ctx;
1273 
1274 	if (bio->bi_status) {
1275 		ctx->error = blk_status_to_errno(bio->bi_status);
1276 		drbd_info(device, "local disk FLUSH FAILED with status %d\n", bio->bi_status);
1277 	}
1278 	kfree(octx);
1279 	bio_put(bio);
1280 
1281 	clear_bit(FLUSH_PENDING, &device->flags);
1282 	put_ldev(device);
1283 	kref_put(&device->kref, drbd_destroy_device);
1284 
1285 	if (atomic_dec_and_test(&ctx->pending))
1286 		complete(&ctx->done);
1287 }
1288 
1289 static void submit_one_flush(struct drbd_device *device, struct issue_flush_context *ctx)
1290 {
1291 	struct bio *bio = bio_alloc(GFP_NOIO, 0);
1292 	struct one_flush_context *octx = kmalloc(sizeof(*octx), GFP_NOIO);
1293 	if (!bio || !octx) {
1294 		drbd_warn(device, "Could not allocate a bio, CANNOT ISSUE FLUSH\n");
1295 		/* FIXME: what else can I do now?  disconnecting or detaching
1296 		 * really does not help to improve the state of the world, either.
1297 		 */
1298 		kfree(octx);
1299 		if (bio)
1300 			bio_put(bio);
1301 
1302 		ctx->error = -ENOMEM;
1303 		put_ldev(device);
1304 		kref_put(&device->kref, drbd_destroy_device);
1305 		return;
1306 	}
1307 
1308 	octx->device = device;
1309 	octx->ctx = ctx;
1310 	bio_set_dev(bio, device->ldev->backing_bdev);
1311 	bio->bi_private = octx;
1312 	bio->bi_end_io = one_flush_endio;
1313 	bio->bi_opf = REQ_OP_FLUSH | REQ_PREFLUSH;
1314 
1315 	device->flush_jif = jiffies;
1316 	set_bit(FLUSH_PENDING, &device->flags);
1317 	atomic_inc(&ctx->pending);
1318 	submit_bio(bio);
1319 }
1320 
1321 static void drbd_flush(struct drbd_connection *connection)
1322 {
1323 	if (connection->resource->write_ordering >= WO_BDEV_FLUSH) {
1324 		struct drbd_peer_device *peer_device;
1325 		struct issue_flush_context ctx;
1326 		int vnr;
1327 
1328 		atomic_set(&ctx.pending, 1);
1329 		ctx.error = 0;
1330 		init_completion(&ctx.done);
1331 
1332 		rcu_read_lock();
1333 		idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
1334 			struct drbd_device *device = peer_device->device;
1335 
1336 			if (!get_ldev(device))
1337 				continue;
1338 			kref_get(&device->kref);
1339 			rcu_read_unlock();
1340 
1341 			submit_one_flush(device, &ctx);
1342 
1343 			rcu_read_lock();
1344 		}
1345 		rcu_read_unlock();
1346 
1347 		/* Do we want to add a timeout,
1348 		 * if disk-timeout is set? */
1349 		if (!atomic_dec_and_test(&ctx.pending))
1350 			wait_for_completion(&ctx.done);
1351 
1352 		if (ctx.error) {
1353 			/* would rather check on EOPNOTSUPP, but that is not reliable.
1354 			 * don't try again for ANY return value != 0
1355 			 * if (rv == -EOPNOTSUPP) */
1356 			/* Any error is already reported by bio_endio callback. */
1357 			drbd_bump_write_ordering(connection->resource, NULL, WO_DRAIN_IO);
1358 		}
1359 	}
1360 }
1361 
1362 /**
1363  * drbd_may_finish_epoch() - Applies an epoch_event to the epoch's state, eventually finishes it.
1364  * @device:	DRBD device.
1365  * @epoch:	Epoch object.
1366  * @ev:		Epoch event.
1367  */
1368 static enum finish_epoch drbd_may_finish_epoch(struct drbd_connection *connection,
1369 					       struct drbd_epoch *epoch,
1370 					       enum epoch_event ev)
1371 {
1372 	int epoch_size;
1373 	struct drbd_epoch *next_epoch;
1374 	enum finish_epoch rv = FE_STILL_LIVE;
1375 
1376 	spin_lock(&connection->epoch_lock);
1377 	do {
1378 		next_epoch = NULL;
1379 
1380 		epoch_size = atomic_read(&epoch->epoch_size);
1381 
1382 		switch (ev & ~EV_CLEANUP) {
1383 		case EV_PUT:
1384 			atomic_dec(&epoch->active);
1385 			break;
1386 		case EV_GOT_BARRIER_NR:
1387 			set_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags);
1388 			break;
1389 		case EV_BECAME_LAST:
1390 			/* nothing to do*/
1391 			break;
1392 		}
1393 
1394 		if (epoch_size != 0 &&
1395 		    atomic_read(&epoch->active) == 0 &&
1396 		    (test_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags) || ev & EV_CLEANUP)) {
1397 			if (!(ev & EV_CLEANUP)) {
1398 				spin_unlock(&connection->epoch_lock);
1399 				drbd_send_b_ack(epoch->connection, epoch->barrier_nr, epoch_size);
1400 				spin_lock(&connection->epoch_lock);
1401 			}
1402 #if 0
1403 			/* FIXME: dec unacked on connection, once we have
1404 			 * something to count pending connection packets in. */
1405 			if (test_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags))
1406 				dec_unacked(epoch->connection);
1407 #endif
1408 
1409 			if (connection->current_epoch != epoch) {
1410 				next_epoch = list_entry(epoch->list.next, struct drbd_epoch, list);
1411 				list_del(&epoch->list);
1412 				ev = EV_BECAME_LAST | (ev & EV_CLEANUP);
1413 				connection->epochs--;
1414 				kfree(epoch);
1415 
1416 				if (rv == FE_STILL_LIVE)
1417 					rv = FE_DESTROYED;
1418 			} else {
1419 				epoch->flags = 0;
1420 				atomic_set(&epoch->epoch_size, 0);
1421 				/* atomic_set(&epoch->active, 0); is already zero */
1422 				if (rv == FE_STILL_LIVE)
1423 					rv = FE_RECYCLED;
1424 			}
1425 		}
1426 
1427 		if (!next_epoch)
1428 			break;
1429 
1430 		epoch = next_epoch;
1431 	} while (1);
1432 
1433 	spin_unlock(&connection->epoch_lock);
1434 
1435 	return rv;
1436 }
1437 
1438 static enum write_ordering_e
1439 max_allowed_wo(struct drbd_backing_dev *bdev, enum write_ordering_e wo)
1440 {
1441 	struct disk_conf *dc;
1442 
1443 	dc = rcu_dereference(bdev->disk_conf);
1444 
1445 	if (wo == WO_BDEV_FLUSH && !dc->disk_flushes)
1446 		wo = WO_DRAIN_IO;
1447 	if (wo == WO_DRAIN_IO && !dc->disk_drain)
1448 		wo = WO_NONE;
1449 
1450 	return wo;
1451 }
1452 
1453 /**
1454  * drbd_bump_write_ordering() - Fall back to an other write ordering method
1455  * @connection:	DRBD connection.
1456  * @wo:		Write ordering method to try.
1457  */
1458 void drbd_bump_write_ordering(struct drbd_resource *resource, struct drbd_backing_dev *bdev,
1459 			      enum write_ordering_e wo)
1460 {
1461 	struct drbd_device *device;
1462 	enum write_ordering_e pwo;
1463 	int vnr;
1464 	static char *write_ordering_str[] = {
1465 		[WO_NONE] = "none",
1466 		[WO_DRAIN_IO] = "drain",
1467 		[WO_BDEV_FLUSH] = "flush",
1468 	};
1469 
1470 	pwo = resource->write_ordering;
1471 	if (wo != WO_BDEV_FLUSH)
1472 		wo = min(pwo, wo);
1473 	rcu_read_lock();
1474 	idr_for_each_entry(&resource->devices, device, vnr) {
1475 		if (get_ldev(device)) {
1476 			wo = max_allowed_wo(device->ldev, wo);
1477 			if (device->ldev == bdev)
1478 				bdev = NULL;
1479 			put_ldev(device);
1480 		}
1481 	}
1482 
1483 	if (bdev)
1484 		wo = max_allowed_wo(bdev, wo);
1485 
1486 	rcu_read_unlock();
1487 
1488 	resource->write_ordering = wo;
1489 	if (pwo != resource->write_ordering || wo == WO_BDEV_FLUSH)
1490 		drbd_info(resource, "Method to ensure write ordering: %s\n", write_ordering_str[resource->write_ordering]);
1491 }
1492 
1493 static void drbd_issue_peer_discard(struct drbd_device *device, struct drbd_peer_request *peer_req)
1494 {
1495 	struct block_device *bdev = device->ldev->backing_bdev;
1496 
1497 	if (blkdev_issue_zeroout(bdev, peer_req->i.sector, peer_req->i.size >> 9,
1498 			GFP_NOIO, 0))
1499 		peer_req->flags |= EE_WAS_ERROR;
1500 
1501 	drbd_endio_write_sec_final(peer_req);
1502 }
1503 
1504 static void drbd_issue_peer_wsame(struct drbd_device *device,
1505 				  struct drbd_peer_request *peer_req)
1506 {
1507 	struct block_device *bdev = device->ldev->backing_bdev;
1508 	sector_t s = peer_req->i.sector;
1509 	sector_t nr = peer_req->i.size >> 9;
1510 	if (blkdev_issue_write_same(bdev, s, nr, GFP_NOIO, peer_req->pages))
1511 		peer_req->flags |= EE_WAS_ERROR;
1512 	drbd_endio_write_sec_final(peer_req);
1513 }
1514 
1515 
1516 /**
1517  * drbd_submit_peer_request()
1518  * @device:	DRBD device.
1519  * @peer_req:	peer request
1520  * @rw:		flag field, see bio->bi_opf
1521  *
1522  * May spread the pages to multiple bios,
1523  * depending on bio_add_page restrictions.
1524  *
1525  * Returns 0 if all bios have been submitted,
1526  * -ENOMEM if we could not allocate enough bios,
1527  * -ENOSPC (any better suggestion?) if we have not been able to bio_add_page a
1528  *  single page to an empty bio (which should never happen and likely indicates
1529  *  that the lower level IO stack is in some way broken). This has been observed
1530  *  on certain Xen deployments.
1531  */
1532 /* TODO allocate from our own bio_set. */
1533 int drbd_submit_peer_request(struct drbd_device *device,
1534 			     struct drbd_peer_request *peer_req,
1535 			     const unsigned op, const unsigned op_flags,
1536 			     const int fault_type)
1537 {
1538 	struct bio *bios = NULL;
1539 	struct bio *bio;
1540 	struct page *page = peer_req->pages;
1541 	sector_t sector = peer_req->i.sector;
1542 	unsigned data_size = peer_req->i.size;
1543 	unsigned n_bios = 0;
1544 	unsigned nr_pages = (data_size + PAGE_SIZE -1) >> PAGE_SHIFT;
1545 	int err = -ENOMEM;
1546 
1547 	/* TRIM/DISCARD: for now, always use the helper function
1548 	 * blkdev_issue_zeroout(..., discard=true).
1549 	 * It's synchronous, but it does the right thing wrt. bio splitting.
1550 	 * Correctness first, performance later.  Next step is to code an
1551 	 * asynchronous variant of the same.
1552 	 */
1553 	if (peer_req->flags & (EE_IS_TRIM|EE_WRITE_SAME)) {
1554 		/* wait for all pending IO completions, before we start
1555 		 * zeroing things out. */
1556 		conn_wait_active_ee_empty(peer_req->peer_device->connection);
1557 		/* add it to the active list now,
1558 		 * so we can find it to present it in debugfs */
1559 		peer_req->submit_jif = jiffies;
1560 		peer_req->flags |= EE_SUBMITTED;
1561 
1562 		/* If this was a resync request from receive_rs_deallocated(),
1563 		 * it is already on the sync_ee list */
1564 		if (list_empty(&peer_req->w.list)) {
1565 			spin_lock_irq(&device->resource->req_lock);
1566 			list_add_tail(&peer_req->w.list, &device->active_ee);
1567 			spin_unlock_irq(&device->resource->req_lock);
1568 		}
1569 
1570 		if (peer_req->flags & EE_IS_TRIM)
1571 			drbd_issue_peer_discard(device, peer_req);
1572 		else /* EE_WRITE_SAME */
1573 			drbd_issue_peer_wsame(device, peer_req);
1574 		return 0;
1575 	}
1576 
1577 	/* In most cases, we will only need one bio.  But in case the lower
1578 	 * level restrictions happen to be different at this offset on this
1579 	 * side than those of the sending peer, we may need to submit the
1580 	 * request in more than one bio.
1581 	 *
1582 	 * Plain bio_alloc is good enough here, this is no DRBD internally
1583 	 * generated bio, but a bio allocated on behalf of the peer.
1584 	 */
1585 next_bio:
1586 	bio = bio_alloc(GFP_NOIO, nr_pages);
1587 	if (!bio) {
1588 		drbd_err(device, "submit_ee: Allocation of a bio failed (nr_pages=%u)\n", nr_pages);
1589 		goto fail;
1590 	}
1591 	/* > peer_req->i.sector, unless this is the first bio */
1592 	bio->bi_iter.bi_sector = sector;
1593 	bio_set_dev(bio, device->ldev->backing_bdev);
1594 	bio_set_op_attrs(bio, op, op_flags);
1595 	bio->bi_private = peer_req;
1596 	bio->bi_end_io = drbd_peer_request_endio;
1597 
1598 	bio->bi_next = bios;
1599 	bios = bio;
1600 	++n_bios;
1601 
1602 	page_chain_for_each(page) {
1603 		unsigned len = min_t(unsigned, data_size, PAGE_SIZE);
1604 		if (!bio_add_page(bio, page, len, 0))
1605 			goto next_bio;
1606 		data_size -= len;
1607 		sector += len >> 9;
1608 		--nr_pages;
1609 	}
1610 	D_ASSERT(device, data_size == 0);
1611 	D_ASSERT(device, page == NULL);
1612 
1613 	atomic_set(&peer_req->pending_bios, n_bios);
1614 	/* for debugfs: update timestamp, mark as submitted */
1615 	peer_req->submit_jif = jiffies;
1616 	peer_req->flags |= EE_SUBMITTED;
1617 	do {
1618 		bio = bios;
1619 		bios = bios->bi_next;
1620 		bio->bi_next = NULL;
1621 
1622 		drbd_generic_make_request(device, fault_type, bio);
1623 	} while (bios);
1624 	return 0;
1625 
1626 fail:
1627 	while (bios) {
1628 		bio = bios;
1629 		bios = bios->bi_next;
1630 		bio_put(bio);
1631 	}
1632 	return err;
1633 }
1634 
1635 static void drbd_remove_epoch_entry_interval(struct drbd_device *device,
1636 					     struct drbd_peer_request *peer_req)
1637 {
1638 	struct drbd_interval *i = &peer_req->i;
1639 
1640 	drbd_remove_interval(&device->write_requests, i);
1641 	drbd_clear_interval(i);
1642 
1643 	/* Wake up any processes waiting for this peer request to complete.  */
1644 	if (i->waiting)
1645 		wake_up(&device->misc_wait);
1646 }
1647 
1648 static void conn_wait_active_ee_empty(struct drbd_connection *connection)
1649 {
1650 	struct drbd_peer_device *peer_device;
1651 	int vnr;
1652 
1653 	rcu_read_lock();
1654 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
1655 		struct drbd_device *device = peer_device->device;
1656 
1657 		kref_get(&device->kref);
1658 		rcu_read_unlock();
1659 		drbd_wait_ee_list_empty(device, &device->active_ee);
1660 		kref_put(&device->kref, drbd_destroy_device);
1661 		rcu_read_lock();
1662 	}
1663 	rcu_read_unlock();
1664 }
1665 
1666 static int receive_Barrier(struct drbd_connection *connection, struct packet_info *pi)
1667 {
1668 	int rv;
1669 	struct p_barrier *p = pi->data;
1670 	struct drbd_epoch *epoch;
1671 
1672 	/* FIXME these are unacked on connection,
1673 	 * not a specific (peer)device.
1674 	 */
1675 	connection->current_epoch->barrier_nr = p->barrier;
1676 	connection->current_epoch->connection = connection;
1677 	rv = drbd_may_finish_epoch(connection, connection->current_epoch, EV_GOT_BARRIER_NR);
1678 
1679 	/* P_BARRIER_ACK may imply that the corresponding extent is dropped from
1680 	 * the activity log, which means it would not be resynced in case the
1681 	 * R_PRIMARY crashes now.
1682 	 * Therefore we must send the barrier_ack after the barrier request was
1683 	 * completed. */
1684 	switch (connection->resource->write_ordering) {
1685 	case WO_NONE:
1686 		if (rv == FE_RECYCLED)
1687 			return 0;
1688 
1689 		/* receiver context, in the writeout path of the other node.
1690 		 * avoid potential distributed deadlock */
1691 		epoch = kmalloc(sizeof(struct drbd_epoch), GFP_NOIO);
1692 		if (epoch)
1693 			break;
1694 		else
1695 			drbd_warn(connection, "Allocation of an epoch failed, slowing down\n");
1696 			/* Fall through */
1697 
1698 	case WO_BDEV_FLUSH:
1699 	case WO_DRAIN_IO:
1700 		conn_wait_active_ee_empty(connection);
1701 		drbd_flush(connection);
1702 
1703 		if (atomic_read(&connection->current_epoch->epoch_size)) {
1704 			epoch = kmalloc(sizeof(struct drbd_epoch), GFP_NOIO);
1705 			if (epoch)
1706 				break;
1707 		}
1708 
1709 		return 0;
1710 	default:
1711 		drbd_err(connection, "Strangeness in connection->write_ordering %d\n",
1712 			 connection->resource->write_ordering);
1713 		return -EIO;
1714 	}
1715 
1716 	epoch->flags = 0;
1717 	atomic_set(&epoch->epoch_size, 0);
1718 	atomic_set(&epoch->active, 0);
1719 
1720 	spin_lock(&connection->epoch_lock);
1721 	if (atomic_read(&connection->current_epoch->epoch_size)) {
1722 		list_add(&epoch->list, &connection->current_epoch->list);
1723 		connection->current_epoch = epoch;
1724 		connection->epochs++;
1725 	} else {
1726 		/* The current_epoch got recycled while we allocated this one... */
1727 		kfree(epoch);
1728 	}
1729 	spin_unlock(&connection->epoch_lock);
1730 
1731 	return 0;
1732 }
1733 
1734 /* quick wrapper in case payload size != request_size (write same) */
1735 static void drbd_csum_ee_size(struct crypto_ahash *h,
1736 			      struct drbd_peer_request *r, void *d,
1737 			      unsigned int payload_size)
1738 {
1739 	unsigned int tmp = r->i.size;
1740 	r->i.size = payload_size;
1741 	drbd_csum_ee(h, r, d);
1742 	r->i.size = tmp;
1743 }
1744 
1745 /* used from receive_RSDataReply (recv_resync_read)
1746  * and from receive_Data.
1747  * data_size: actual payload ("data in")
1748  * 	for normal writes that is bi_size.
1749  * 	for discards, that is zero.
1750  * 	for write same, it is logical_block_size.
1751  * both trim and write same have the bi_size ("data len to be affected")
1752  * as extra argument in the packet header.
1753  */
1754 static struct drbd_peer_request *
1755 read_in_block(struct drbd_peer_device *peer_device, u64 id, sector_t sector,
1756 	      struct packet_info *pi) __must_hold(local)
1757 {
1758 	struct drbd_device *device = peer_device->device;
1759 	const sector_t capacity = drbd_get_capacity(device->this_bdev);
1760 	struct drbd_peer_request *peer_req;
1761 	struct page *page;
1762 	int digest_size, err;
1763 	unsigned int data_size = pi->size, ds;
1764 	void *dig_in = peer_device->connection->int_dig_in;
1765 	void *dig_vv = peer_device->connection->int_dig_vv;
1766 	unsigned long *data;
1767 	struct p_trim *trim = (pi->cmd == P_TRIM) ? pi->data : NULL;
1768 	struct p_trim *wsame = (pi->cmd == P_WSAME) ? pi->data : NULL;
1769 
1770 	digest_size = 0;
1771 	if (!trim && peer_device->connection->peer_integrity_tfm) {
1772 		digest_size = crypto_ahash_digestsize(peer_device->connection->peer_integrity_tfm);
1773 		/*
1774 		 * FIXME: Receive the incoming digest into the receive buffer
1775 		 *	  here, together with its struct p_data?
1776 		 */
1777 		err = drbd_recv_all_warn(peer_device->connection, dig_in, digest_size);
1778 		if (err)
1779 			return NULL;
1780 		data_size -= digest_size;
1781 	}
1782 
1783 	/* assume request_size == data_size, but special case trim and wsame. */
1784 	ds = data_size;
1785 	if (trim) {
1786 		if (!expect(data_size == 0))
1787 			return NULL;
1788 		ds = be32_to_cpu(trim->size);
1789 	} else if (wsame) {
1790 		if (data_size != queue_logical_block_size(device->rq_queue)) {
1791 			drbd_err(peer_device, "data size (%u) != drbd logical block size (%u)\n",
1792 				data_size, queue_logical_block_size(device->rq_queue));
1793 			return NULL;
1794 		}
1795 		if (data_size != bdev_logical_block_size(device->ldev->backing_bdev)) {
1796 			drbd_err(peer_device, "data size (%u) != backend logical block size (%u)\n",
1797 				data_size, bdev_logical_block_size(device->ldev->backing_bdev));
1798 			return NULL;
1799 		}
1800 		ds = be32_to_cpu(wsame->size);
1801 	}
1802 
1803 	if (!expect(IS_ALIGNED(ds, 512)))
1804 		return NULL;
1805 	if (trim || wsame) {
1806 		if (!expect(ds <= (DRBD_MAX_BBIO_SECTORS << 9)))
1807 			return NULL;
1808 	} else if (!expect(ds <= DRBD_MAX_BIO_SIZE))
1809 		return NULL;
1810 
1811 	/* even though we trust out peer,
1812 	 * we sometimes have to double check. */
1813 	if (sector + (ds>>9) > capacity) {
1814 		drbd_err(device, "request from peer beyond end of local disk: "
1815 			"capacity: %llus < sector: %llus + size: %u\n",
1816 			(unsigned long long)capacity,
1817 			(unsigned long long)sector, ds);
1818 		return NULL;
1819 	}
1820 
1821 	/* GFP_NOIO, because we must not cause arbitrary write-out: in a DRBD
1822 	 * "criss-cross" setup, that might cause write-out on some other DRBD,
1823 	 * which in turn might block on the other node at this very place.  */
1824 	peer_req = drbd_alloc_peer_req(peer_device, id, sector, ds, data_size, GFP_NOIO);
1825 	if (!peer_req)
1826 		return NULL;
1827 
1828 	peer_req->flags |= EE_WRITE;
1829 	if (trim) {
1830 		peer_req->flags |= EE_IS_TRIM;
1831 		return peer_req;
1832 	}
1833 	if (wsame)
1834 		peer_req->flags |= EE_WRITE_SAME;
1835 
1836 	/* receive payload size bytes into page chain */
1837 	ds = data_size;
1838 	page = peer_req->pages;
1839 	page_chain_for_each(page) {
1840 		unsigned len = min_t(int, ds, PAGE_SIZE);
1841 		data = kmap(page);
1842 		err = drbd_recv_all_warn(peer_device->connection, data, len);
1843 		if (drbd_insert_fault(device, DRBD_FAULT_RECEIVE)) {
1844 			drbd_err(device, "Fault injection: Corrupting data on receive\n");
1845 			data[0] = data[0] ^ (unsigned long)-1;
1846 		}
1847 		kunmap(page);
1848 		if (err) {
1849 			drbd_free_peer_req(device, peer_req);
1850 			return NULL;
1851 		}
1852 		ds -= len;
1853 	}
1854 
1855 	if (digest_size) {
1856 		drbd_csum_ee_size(peer_device->connection->peer_integrity_tfm, peer_req, dig_vv, data_size);
1857 		if (memcmp(dig_in, dig_vv, digest_size)) {
1858 			drbd_err(device, "Digest integrity check FAILED: %llus +%u\n",
1859 				(unsigned long long)sector, data_size);
1860 			drbd_free_peer_req(device, peer_req);
1861 			return NULL;
1862 		}
1863 	}
1864 	device->recv_cnt += data_size >> 9;
1865 	return peer_req;
1866 }
1867 
1868 /* drbd_drain_block() just takes a data block
1869  * out of the socket input buffer, and discards it.
1870  */
1871 static int drbd_drain_block(struct drbd_peer_device *peer_device, int data_size)
1872 {
1873 	struct page *page;
1874 	int err = 0;
1875 	void *data;
1876 
1877 	if (!data_size)
1878 		return 0;
1879 
1880 	page = drbd_alloc_pages(peer_device, 1, 1);
1881 
1882 	data = kmap(page);
1883 	while (data_size) {
1884 		unsigned int len = min_t(int, data_size, PAGE_SIZE);
1885 
1886 		err = drbd_recv_all_warn(peer_device->connection, data, len);
1887 		if (err)
1888 			break;
1889 		data_size -= len;
1890 	}
1891 	kunmap(page);
1892 	drbd_free_pages(peer_device->device, page, 0);
1893 	return err;
1894 }
1895 
1896 static int recv_dless_read(struct drbd_peer_device *peer_device, struct drbd_request *req,
1897 			   sector_t sector, int data_size)
1898 {
1899 	struct bio_vec bvec;
1900 	struct bvec_iter iter;
1901 	struct bio *bio;
1902 	int digest_size, err, expect;
1903 	void *dig_in = peer_device->connection->int_dig_in;
1904 	void *dig_vv = peer_device->connection->int_dig_vv;
1905 
1906 	digest_size = 0;
1907 	if (peer_device->connection->peer_integrity_tfm) {
1908 		digest_size = crypto_ahash_digestsize(peer_device->connection->peer_integrity_tfm);
1909 		err = drbd_recv_all_warn(peer_device->connection, dig_in, digest_size);
1910 		if (err)
1911 			return err;
1912 		data_size -= digest_size;
1913 	}
1914 
1915 	/* optimistically update recv_cnt.  if receiving fails below,
1916 	 * we disconnect anyways, and counters will be reset. */
1917 	peer_device->device->recv_cnt += data_size>>9;
1918 
1919 	bio = req->master_bio;
1920 	D_ASSERT(peer_device->device, sector == bio->bi_iter.bi_sector);
1921 
1922 	bio_for_each_segment(bvec, bio, iter) {
1923 		void *mapped = kmap(bvec.bv_page) + bvec.bv_offset;
1924 		expect = min_t(int, data_size, bvec.bv_len);
1925 		err = drbd_recv_all_warn(peer_device->connection, mapped, expect);
1926 		kunmap(bvec.bv_page);
1927 		if (err)
1928 			return err;
1929 		data_size -= expect;
1930 	}
1931 
1932 	if (digest_size) {
1933 		drbd_csum_bio(peer_device->connection->peer_integrity_tfm, bio, dig_vv);
1934 		if (memcmp(dig_in, dig_vv, digest_size)) {
1935 			drbd_err(peer_device, "Digest integrity check FAILED. Broken NICs?\n");
1936 			return -EINVAL;
1937 		}
1938 	}
1939 
1940 	D_ASSERT(peer_device->device, data_size == 0);
1941 	return 0;
1942 }
1943 
1944 /*
1945  * e_end_resync_block() is called in ack_sender context via
1946  * drbd_finish_peer_reqs().
1947  */
1948 static int e_end_resync_block(struct drbd_work *w, int unused)
1949 {
1950 	struct drbd_peer_request *peer_req =
1951 		container_of(w, struct drbd_peer_request, w);
1952 	struct drbd_peer_device *peer_device = peer_req->peer_device;
1953 	struct drbd_device *device = peer_device->device;
1954 	sector_t sector = peer_req->i.sector;
1955 	int err;
1956 
1957 	D_ASSERT(device, drbd_interval_empty(&peer_req->i));
1958 
1959 	if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) {
1960 		drbd_set_in_sync(device, sector, peer_req->i.size);
1961 		err = drbd_send_ack(peer_device, P_RS_WRITE_ACK, peer_req);
1962 	} else {
1963 		/* Record failure to sync */
1964 		drbd_rs_failed_io(device, sector, peer_req->i.size);
1965 
1966 		err  = drbd_send_ack(peer_device, P_NEG_ACK, peer_req);
1967 	}
1968 	dec_unacked(device);
1969 
1970 	return err;
1971 }
1972 
1973 static int recv_resync_read(struct drbd_peer_device *peer_device, sector_t sector,
1974 			    struct packet_info *pi) __releases(local)
1975 {
1976 	struct drbd_device *device = peer_device->device;
1977 	struct drbd_peer_request *peer_req;
1978 
1979 	peer_req = read_in_block(peer_device, ID_SYNCER, sector, pi);
1980 	if (!peer_req)
1981 		goto fail;
1982 
1983 	dec_rs_pending(device);
1984 
1985 	inc_unacked(device);
1986 	/* corresponding dec_unacked() in e_end_resync_block()
1987 	 * respective _drbd_clear_done_ee */
1988 
1989 	peer_req->w.cb = e_end_resync_block;
1990 	peer_req->submit_jif = jiffies;
1991 
1992 	spin_lock_irq(&device->resource->req_lock);
1993 	list_add_tail(&peer_req->w.list, &device->sync_ee);
1994 	spin_unlock_irq(&device->resource->req_lock);
1995 
1996 	atomic_add(pi->size >> 9, &device->rs_sect_ev);
1997 	if (drbd_submit_peer_request(device, peer_req, REQ_OP_WRITE, 0,
1998 				     DRBD_FAULT_RS_WR) == 0)
1999 		return 0;
2000 
2001 	/* don't care for the reason here */
2002 	drbd_err(device, "submit failed, triggering re-connect\n");
2003 	spin_lock_irq(&device->resource->req_lock);
2004 	list_del(&peer_req->w.list);
2005 	spin_unlock_irq(&device->resource->req_lock);
2006 
2007 	drbd_free_peer_req(device, peer_req);
2008 fail:
2009 	put_ldev(device);
2010 	return -EIO;
2011 }
2012 
2013 static struct drbd_request *
2014 find_request(struct drbd_device *device, struct rb_root *root, u64 id,
2015 	     sector_t sector, bool missing_ok, const char *func)
2016 {
2017 	struct drbd_request *req;
2018 
2019 	/* Request object according to our peer */
2020 	req = (struct drbd_request *)(unsigned long)id;
2021 	if (drbd_contains_interval(root, sector, &req->i) && req->i.local)
2022 		return req;
2023 	if (!missing_ok) {
2024 		drbd_err(device, "%s: failed to find request 0x%lx, sector %llus\n", func,
2025 			(unsigned long)id, (unsigned long long)sector);
2026 	}
2027 	return NULL;
2028 }
2029 
2030 static int receive_DataReply(struct drbd_connection *connection, struct packet_info *pi)
2031 {
2032 	struct drbd_peer_device *peer_device;
2033 	struct drbd_device *device;
2034 	struct drbd_request *req;
2035 	sector_t sector;
2036 	int err;
2037 	struct p_data *p = pi->data;
2038 
2039 	peer_device = conn_peer_device(connection, pi->vnr);
2040 	if (!peer_device)
2041 		return -EIO;
2042 	device = peer_device->device;
2043 
2044 	sector = be64_to_cpu(p->sector);
2045 
2046 	spin_lock_irq(&device->resource->req_lock);
2047 	req = find_request(device, &device->read_requests, p->block_id, sector, false, __func__);
2048 	spin_unlock_irq(&device->resource->req_lock);
2049 	if (unlikely(!req))
2050 		return -EIO;
2051 
2052 	/* hlist_del(&req->collision) is done in _req_may_be_done, to avoid
2053 	 * special casing it there for the various failure cases.
2054 	 * still no race with drbd_fail_pending_reads */
2055 	err = recv_dless_read(peer_device, req, sector, pi->size);
2056 	if (!err)
2057 		req_mod(req, DATA_RECEIVED);
2058 	/* else: nothing. handled from drbd_disconnect...
2059 	 * I don't think we may complete this just yet
2060 	 * in case we are "on-disconnect: freeze" */
2061 
2062 	return err;
2063 }
2064 
2065 static int receive_RSDataReply(struct drbd_connection *connection, struct packet_info *pi)
2066 {
2067 	struct drbd_peer_device *peer_device;
2068 	struct drbd_device *device;
2069 	sector_t sector;
2070 	int err;
2071 	struct p_data *p = pi->data;
2072 
2073 	peer_device = conn_peer_device(connection, pi->vnr);
2074 	if (!peer_device)
2075 		return -EIO;
2076 	device = peer_device->device;
2077 
2078 	sector = be64_to_cpu(p->sector);
2079 	D_ASSERT(device, p->block_id == ID_SYNCER);
2080 
2081 	if (get_ldev(device)) {
2082 		/* data is submitted to disk within recv_resync_read.
2083 		 * corresponding put_ldev done below on error,
2084 		 * or in drbd_peer_request_endio. */
2085 		err = recv_resync_read(peer_device, sector, pi);
2086 	} else {
2087 		if (__ratelimit(&drbd_ratelimit_state))
2088 			drbd_err(device, "Can not write resync data to local disk.\n");
2089 
2090 		err = drbd_drain_block(peer_device, pi->size);
2091 
2092 		drbd_send_ack_dp(peer_device, P_NEG_ACK, p, pi->size);
2093 	}
2094 
2095 	atomic_add(pi->size >> 9, &device->rs_sect_in);
2096 
2097 	return err;
2098 }
2099 
2100 static void restart_conflicting_writes(struct drbd_device *device,
2101 				       sector_t sector, int size)
2102 {
2103 	struct drbd_interval *i;
2104 	struct drbd_request *req;
2105 
2106 	drbd_for_each_overlap(i, &device->write_requests, sector, size) {
2107 		if (!i->local)
2108 			continue;
2109 		req = container_of(i, struct drbd_request, i);
2110 		if (req->rq_state & RQ_LOCAL_PENDING ||
2111 		    !(req->rq_state & RQ_POSTPONED))
2112 			continue;
2113 		/* as it is RQ_POSTPONED, this will cause it to
2114 		 * be queued on the retry workqueue. */
2115 		__req_mod(req, CONFLICT_RESOLVED, NULL);
2116 	}
2117 }
2118 
2119 /*
2120  * e_end_block() is called in ack_sender context via drbd_finish_peer_reqs().
2121  */
2122 static int e_end_block(struct drbd_work *w, int cancel)
2123 {
2124 	struct drbd_peer_request *peer_req =
2125 		container_of(w, struct drbd_peer_request, w);
2126 	struct drbd_peer_device *peer_device = peer_req->peer_device;
2127 	struct drbd_device *device = peer_device->device;
2128 	sector_t sector = peer_req->i.sector;
2129 	int err = 0, pcmd;
2130 
2131 	if (peer_req->flags & EE_SEND_WRITE_ACK) {
2132 		if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) {
2133 			pcmd = (device->state.conn >= C_SYNC_SOURCE &&
2134 				device->state.conn <= C_PAUSED_SYNC_T &&
2135 				peer_req->flags & EE_MAY_SET_IN_SYNC) ?
2136 				P_RS_WRITE_ACK : P_WRITE_ACK;
2137 			err = drbd_send_ack(peer_device, pcmd, peer_req);
2138 			if (pcmd == P_RS_WRITE_ACK)
2139 				drbd_set_in_sync(device, sector, peer_req->i.size);
2140 		} else {
2141 			err = drbd_send_ack(peer_device, P_NEG_ACK, peer_req);
2142 			/* we expect it to be marked out of sync anyways...
2143 			 * maybe assert this?  */
2144 		}
2145 		dec_unacked(device);
2146 	}
2147 
2148 	/* we delete from the conflict detection hash _after_ we sent out the
2149 	 * P_WRITE_ACK / P_NEG_ACK, to get the sequence number right.  */
2150 	if (peer_req->flags & EE_IN_INTERVAL_TREE) {
2151 		spin_lock_irq(&device->resource->req_lock);
2152 		D_ASSERT(device, !drbd_interval_empty(&peer_req->i));
2153 		drbd_remove_epoch_entry_interval(device, peer_req);
2154 		if (peer_req->flags & EE_RESTART_REQUESTS)
2155 			restart_conflicting_writes(device, sector, peer_req->i.size);
2156 		spin_unlock_irq(&device->resource->req_lock);
2157 	} else
2158 		D_ASSERT(device, drbd_interval_empty(&peer_req->i));
2159 
2160 	drbd_may_finish_epoch(peer_device->connection, peer_req->epoch, EV_PUT + (cancel ? EV_CLEANUP : 0));
2161 
2162 	return err;
2163 }
2164 
2165 static int e_send_ack(struct drbd_work *w, enum drbd_packet ack)
2166 {
2167 	struct drbd_peer_request *peer_req =
2168 		container_of(w, struct drbd_peer_request, w);
2169 	struct drbd_peer_device *peer_device = peer_req->peer_device;
2170 	int err;
2171 
2172 	err = drbd_send_ack(peer_device, ack, peer_req);
2173 	dec_unacked(peer_device->device);
2174 
2175 	return err;
2176 }
2177 
2178 static int e_send_superseded(struct drbd_work *w, int unused)
2179 {
2180 	return e_send_ack(w, P_SUPERSEDED);
2181 }
2182 
2183 static int e_send_retry_write(struct drbd_work *w, int unused)
2184 {
2185 	struct drbd_peer_request *peer_req =
2186 		container_of(w, struct drbd_peer_request, w);
2187 	struct drbd_connection *connection = peer_req->peer_device->connection;
2188 
2189 	return e_send_ack(w, connection->agreed_pro_version >= 100 ?
2190 			     P_RETRY_WRITE : P_SUPERSEDED);
2191 }
2192 
2193 static bool seq_greater(u32 a, u32 b)
2194 {
2195 	/*
2196 	 * We assume 32-bit wrap-around here.
2197 	 * For 24-bit wrap-around, we would have to shift:
2198 	 *  a <<= 8; b <<= 8;
2199 	 */
2200 	return (s32)a - (s32)b > 0;
2201 }
2202 
2203 static u32 seq_max(u32 a, u32 b)
2204 {
2205 	return seq_greater(a, b) ? a : b;
2206 }
2207 
2208 static void update_peer_seq(struct drbd_peer_device *peer_device, unsigned int peer_seq)
2209 {
2210 	struct drbd_device *device = peer_device->device;
2211 	unsigned int newest_peer_seq;
2212 
2213 	if (test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags)) {
2214 		spin_lock(&device->peer_seq_lock);
2215 		newest_peer_seq = seq_max(device->peer_seq, peer_seq);
2216 		device->peer_seq = newest_peer_seq;
2217 		spin_unlock(&device->peer_seq_lock);
2218 		/* wake up only if we actually changed device->peer_seq */
2219 		if (peer_seq == newest_peer_seq)
2220 			wake_up(&device->seq_wait);
2221 	}
2222 }
2223 
2224 static inline int overlaps(sector_t s1, int l1, sector_t s2, int l2)
2225 {
2226 	return !((s1 + (l1>>9) <= s2) || (s1 >= s2 + (l2>>9)));
2227 }
2228 
2229 /* maybe change sync_ee into interval trees as well? */
2230 static bool overlapping_resync_write(struct drbd_device *device, struct drbd_peer_request *peer_req)
2231 {
2232 	struct drbd_peer_request *rs_req;
2233 	bool rv = false;
2234 
2235 	spin_lock_irq(&device->resource->req_lock);
2236 	list_for_each_entry(rs_req, &device->sync_ee, w.list) {
2237 		if (overlaps(peer_req->i.sector, peer_req->i.size,
2238 			     rs_req->i.sector, rs_req->i.size)) {
2239 			rv = true;
2240 			break;
2241 		}
2242 	}
2243 	spin_unlock_irq(&device->resource->req_lock);
2244 
2245 	return rv;
2246 }
2247 
2248 /* Called from receive_Data.
2249  * Synchronize packets on sock with packets on msock.
2250  *
2251  * This is here so even when a P_DATA packet traveling via sock overtook an Ack
2252  * packet traveling on msock, they are still processed in the order they have
2253  * been sent.
2254  *
2255  * Note: we don't care for Ack packets overtaking P_DATA packets.
2256  *
2257  * In case packet_seq is larger than device->peer_seq number, there are
2258  * outstanding packets on the msock. We wait for them to arrive.
2259  * In case we are the logically next packet, we update device->peer_seq
2260  * ourselves. Correctly handles 32bit wrap around.
2261  *
2262  * Assume we have a 10 GBit connection, that is about 1<<30 byte per second,
2263  * about 1<<21 sectors per second. So "worst" case, we have 1<<3 == 8 seconds
2264  * for the 24bit wrap (historical atomic_t guarantee on some archs), and we have
2265  * 1<<9 == 512 seconds aka ages for the 32bit wrap around...
2266  *
2267  * returns 0 if we may process the packet,
2268  * -ERESTARTSYS if we were interrupted (by disconnect signal). */
2269 static int wait_for_and_update_peer_seq(struct drbd_peer_device *peer_device, const u32 peer_seq)
2270 {
2271 	struct drbd_device *device = peer_device->device;
2272 	DEFINE_WAIT(wait);
2273 	long timeout;
2274 	int ret = 0, tp;
2275 
2276 	if (!test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags))
2277 		return 0;
2278 
2279 	spin_lock(&device->peer_seq_lock);
2280 	for (;;) {
2281 		if (!seq_greater(peer_seq - 1, device->peer_seq)) {
2282 			device->peer_seq = seq_max(device->peer_seq, peer_seq);
2283 			break;
2284 		}
2285 
2286 		if (signal_pending(current)) {
2287 			ret = -ERESTARTSYS;
2288 			break;
2289 		}
2290 
2291 		rcu_read_lock();
2292 		tp = rcu_dereference(peer_device->connection->net_conf)->two_primaries;
2293 		rcu_read_unlock();
2294 
2295 		if (!tp)
2296 			break;
2297 
2298 		/* Only need to wait if two_primaries is enabled */
2299 		prepare_to_wait(&device->seq_wait, &wait, TASK_INTERRUPTIBLE);
2300 		spin_unlock(&device->peer_seq_lock);
2301 		rcu_read_lock();
2302 		timeout = rcu_dereference(peer_device->connection->net_conf)->ping_timeo*HZ/10;
2303 		rcu_read_unlock();
2304 		timeout = schedule_timeout(timeout);
2305 		spin_lock(&device->peer_seq_lock);
2306 		if (!timeout) {
2307 			ret = -ETIMEDOUT;
2308 			drbd_err(device, "Timed out waiting for missing ack packets; disconnecting\n");
2309 			break;
2310 		}
2311 	}
2312 	spin_unlock(&device->peer_seq_lock);
2313 	finish_wait(&device->seq_wait, &wait);
2314 	return ret;
2315 }
2316 
2317 /* see also bio_flags_to_wire()
2318  * DRBD_REQ_*, because we need to semantically map the flags to data packet
2319  * flags and back. We may replicate to other kernel versions. */
2320 static unsigned long wire_flags_to_bio_flags(u32 dpf)
2321 {
2322 	return  (dpf & DP_RW_SYNC ? REQ_SYNC : 0) |
2323 		(dpf & DP_FUA ? REQ_FUA : 0) |
2324 		(dpf & DP_FLUSH ? REQ_PREFLUSH : 0);
2325 }
2326 
2327 static unsigned long wire_flags_to_bio_op(u32 dpf)
2328 {
2329 	if (dpf & DP_DISCARD)
2330 		return REQ_OP_WRITE_ZEROES;
2331 	else
2332 		return REQ_OP_WRITE;
2333 }
2334 
2335 static void fail_postponed_requests(struct drbd_device *device, sector_t sector,
2336 				    unsigned int size)
2337 {
2338 	struct drbd_interval *i;
2339 
2340     repeat:
2341 	drbd_for_each_overlap(i, &device->write_requests, sector, size) {
2342 		struct drbd_request *req;
2343 		struct bio_and_error m;
2344 
2345 		if (!i->local)
2346 			continue;
2347 		req = container_of(i, struct drbd_request, i);
2348 		if (!(req->rq_state & RQ_POSTPONED))
2349 			continue;
2350 		req->rq_state &= ~RQ_POSTPONED;
2351 		__req_mod(req, NEG_ACKED, &m);
2352 		spin_unlock_irq(&device->resource->req_lock);
2353 		if (m.bio)
2354 			complete_master_bio(device, &m);
2355 		spin_lock_irq(&device->resource->req_lock);
2356 		goto repeat;
2357 	}
2358 }
2359 
2360 static int handle_write_conflicts(struct drbd_device *device,
2361 				  struct drbd_peer_request *peer_req)
2362 {
2363 	struct drbd_connection *connection = peer_req->peer_device->connection;
2364 	bool resolve_conflicts = test_bit(RESOLVE_CONFLICTS, &connection->flags);
2365 	sector_t sector = peer_req->i.sector;
2366 	const unsigned int size = peer_req->i.size;
2367 	struct drbd_interval *i;
2368 	bool equal;
2369 	int err;
2370 
2371 	/*
2372 	 * Inserting the peer request into the write_requests tree will prevent
2373 	 * new conflicting local requests from being added.
2374 	 */
2375 	drbd_insert_interval(&device->write_requests, &peer_req->i);
2376 
2377     repeat:
2378 	drbd_for_each_overlap(i, &device->write_requests, sector, size) {
2379 		if (i == &peer_req->i)
2380 			continue;
2381 		if (i->completed)
2382 			continue;
2383 
2384 		if (!i->local) {
2385 			/*
2386 			 * Our peer has sent a conflicting remote request; this
2387 			 * should not happen in a two-node setup.  Wait for the
2388 			 * earlier peer request to complete.
2389 			 */
2390 			err = drbd_wait_misc(device, i);
2391 			if (err)
2392 				goto out;
2393 			goto repeat;
2394 		}
2395 
2396 		equal = i->sector == sector && i->size == size;
2397 		if (resolve_conflicts) {
2398 			/*
2399 			 * If the peer request is fully contained within the
2400 			 * overlapping request, it can be considered overwritten
2401 			 * and thus superseded; otherwise, it will be retried
2402 			 * once all overlapping requests have completed.
2403 			 */
2404 			bool superseded = i->sector <= sector && i->sector +
2405 				       (i->size >> 9) >= sector + (size >> 9);
2406 
2407 			if (!equal)
2408 				drbd_alert(device, "Concurrent writes detected: "
2409 					       "local=%llus +%u, remote=%llus +%u, "
2410 					       "assuming %s came first\n",
2411 					  (unsigned long long)i->sector, i->size,
2412 					  (unsigned long long)sector, size,
2413 					  superseded ? "local" : "remote");
2414 
2415 			peer_req->w.cb = superseded ? e_send_superseded :
2416 						   e_send_retry_write;
2417 			list_add_tail(&peer_req->w.list, &device->done_ee);
2418 			queue_work(connection->ack_sender, &peer_req->peer_device->send_acks_work);
2419 
2420 			err = -ENOENT;
2421 			goto out;
2422 		} else {
2423 			struct drbd_request *req =
2424 				container_of(i, struct drbd_request, i);
2425 
2426 			if (!equal)
2427 				drbd_alert(device, "Concurrent writes detected: "
2428 					       "local=%llus +%u, remote=%llus +%u\n",
2429 					  (unsigned long long)i->sector, i->size,
2430 					  (unsigned long long)sector, size);
2431 
2432 			if (req->rq_state & RQ_LOCAL_PENDING ||
2433 			    !(req->rq_state & RQ_POSTPONED)) {
2434 				/*
2435 				 * Wait for the node with the discard flag to
2436 				 * decide if this request has been superseded
2437 				 * or needs to be retried.
2438 				 * Requests that have been superseded will
2439 				 * disappear from the write_requests tree.
2440 				 *
2441 				 * In addition, wait for the conflicting
2442 				 * request to finish locally before submitting
2443 				 * the conflicting peer request.
2444 				 */
2445 				err = drbd_wait_misc(device, &req->i);
2446 				if (err) {
2447 					_conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD);
2448 					fail_postponed_requests(device, sector, size);
2449 					goto out;
2450 				}
2451 				goto repeat;
2452 			}
2453 			/*
2454 			 * Remember to restart the conflicting requests after
2455 			 * the new peer request has completed.
2456 			 */
2457 			peer_req->flags |= EE_RESTART_REQUESTS;
2458 		}
2459 	}
2460 	err = 0;
2461 
2462     out:
2463 	if (err)
2464 		drbd_remove_epoch_entry_interval(device, peer_req);
2465 	return err;
2466 }
2467 
2468 /* mirrored write */
2469 static int receive_Data(struct drbd_connection *connection, struct packet_info *pi)
2470 {
2471 	struct drbd_peer_device *peer_device;
2472 	struct drbd_device *device;
2473 	struct net_conf *nc;
2474 	sector_t sector;
2475 	struct drbd_peer_request *peer_req;
2476 	struct p_data *p = pi->data;
2477 	u32 peer_seq = be32_to_cpu(p->seq_num);
2478 	int op, op_flags;
2479 	u32 dp_flags;
2480 	int err, tp;
2481 
2482 	peer_device = conn_peer_device(connection, pi->vnr);
2483 	if (!peer_device)
2484 		return -EIO;
2485 	device = peer_device->device;
2486 
2487 	if (!get_ldev(device)) {
2488 		int err2;
2489 
2490 		err = wait_for_and_update_peer_seq(peer_device, peer_seq);
2491 		drbd_send_ack_dp(peer_device, P_NEG_ACK, p, pi->size);
2492 		atomic_inc(&connection->current_epoch->epoch_size);
2493 		err2 = drbd_drain_block(peer_device, pi->size);
2494 		if (!err)
2495 			err = err2;
2496 		return err;
2497 	}
2498 
2499 	/*
2500 	 * Corresponding put_ldev done either below (on various errors), or in
2501 	 * drbd_peer_request_endio, if we successfully submit the data at the
2502 	 * end of this function.
2503 	 */
2504 
2505 	sector = be64_to_cpu(p->sector);
2506 	peer_req = read_in_block(peer_device, p->block_id, sector, pi);
2507 	if (!peer_req) {
2508 		put_ldev(device);
2509 		return -EIO;
2510 	}
2511 
2512 	peer_req->w.cb = e_end_block;
2513 	peer_req->submit_jif = jiffies;
2514 	peer_req->flags |= EE_APPLICATION;
2515 
2516 	dp_flags = be32_to_cpu(p->dp_flags);
2517 	op = wire_flags_to_bio_op(dp_flags);
2518 	op_flags = wire_flags_to_bio_flags(dp_flags);
2519 	if (pi->cmd == P_TRIM) {
2520 		D_ASSERT(peer_device, peer_req->i.size > 0);
2521 		D_ASSERT(peer_device, op == REQ_OP_WRITE_ZEROES);
2522 		D_ASSERT(peer_device, peer_req->pages == NULL);
2523 	} else if (peer_req->pages == NULL) {
2524 		D_ASSERT(device, peer_req->i.size == 0);
2525 		D_ASSERT(device, dp_flags & DP_FLUSH);
2526 	}
2527 
2528 	if (dp_flags & DP_MAY_SET_IN_SYNC)
2529 		peer_req->flags |= EE_MAY_SET_IN_SYNC;
2530 
2531 	spin_lock(&connection->epoch_lock);
2532 	peer_req->epoch = connection->current_epoch;
2533 	atomic_inc(&peer_req->epoch->epoch_size);
2534 	atomic_inc(&peer_req->epoch->active);
2535 	spin_unlock(&connection->epoch_lock);
2536 
2537 	rcu_read_lock();
2538 	nc = rcu_dereference(peer_device->connection->net_conf);
2539 	tp = nc->two_primaries;
2540 	if (peer_device->connection->agreed_pro_version < 100) {
2541 		switch (nc->wire_protocol) {
2542 		case DRBD_PROT_C:
2543 			dp_flags |= DP_SEND_WRITE_ACK;
2544 			break;
2545 		case DRBD_PROT_B:
2546 			dp_flags |= DP_SEND_RECEIVE_ACK;
2547 			break;
2548 		}
2549 	}
2550 	rcu_read_unlock();
2551 
2552 	if (dp_flags & DP_SEND_WRITE_ACK) {
2553 		peer_req->flags |= EE_SEND_WRITE_ACK;
2554 		inc_unacked(device);
2555 		/* corresponding dec_unacked() in e_end_block()
2556 		 * respective _drbd_clear_done_ee */
2557 	}
2558 
2559 	if (dp_flags & DP_SEND_RECEIVE_ACK) {
2560 		/* I really don't like it that the receiver thread
2561 		 * sends on the msock, but anyways */
2562 		drbd_send_ack(peer_device, P_RECV_ACK, peer_req);
2563 	}
2564 
2565 	if (tp) {
2566 		/* two primaries implies protocol C */
2567 		D_ASSERT(device, dp_flags & DP_SEND_WRITE_ACK);
2568 		peer_req->flags |= EE_IN_INTERVAL_TREE;
2569 		err = wait_for_and_update_peer_seq(peer_device, peer_seq);
2570 		if (err)
2571 			goto out_interrupted;
2572 		spin_lock_irq(&device->resource->req_lock);
2573 		err = handle_write_conflicts(device, peer_req);
2574 		if (err) {
2575 			spin_unlock_irq(&device->resource->req_lock);
2576 			if (err == -ENOENT) {
2577 				put_ldev(device);
2578 				return 0;
2579 			}
2580 			goto out_interrupted;
2581 		}
2582 	} else {
2583 		update_peer_seq(peer_device, peer_seq);
2584 		spin_lock_irq(&device->resource->req_lock);
2585 	}
2586 	/* TRIM and WRITE_SAME are processed synchronously,
2587 	 * we wait for all pending requests, respectively wait for
2588 	 * active_ee to become empty in drbd_submit_peer_request();
2589 	 * better not add ourselves here. */
2590 	if ((peer_req->flags & (EE_IS_TRIM|EE_WRITE_SAME)) == 0)
2591 		list_add_tail(&peer_req->w.list, &device->active_ee);
2592 	spin_unlock_irq(&device->resource->req_lock);
2593 
2594 	if (device->state.conn == C_SYNC_TARGET)
2595 		wait_event(device->ee_wait, !overlapping_resync_write(device, peer_req));
2596 
2597 	if (device->state.pdsk < D_INCONSISTENT) {
2598 		/* In case we have the only disk of the cluster, */
2599 		drbd_set_out_of_sync(device, peer_req->i.sector, peer_req->i.size);
2600 		peer_req->flags &= ~EE_MAY_SET_IN_SYNC;
2601 		drbd_al_begin_io(device, &peer_req->i);
2602 		peer_req->flags |= EE_CALL_AL_COMPLETE_IO;
2603 	}
2604 
2605 	err = drbd_submit_peer_request(device, peer_req, op, op_flags,
2606 				       DRBD_FAULT_DT_WR);
2607 	if (!err)
2608 		return 0;
2609 
2610 	/* don't care for the reason here */
2611 	drbd_err(device, "submit failed, triggering re-connect\n");
2612 	spin_lock_irq(&device->resource->req_lock);
2613 	list_del(&peer_req->w.list);
2614 	drbd_remove_epoch_entry_interval(device, peer_req);
2615 	spin_unlock_irq(&device->resource->req_lock);
2616 	if (peer_req->flags & EE_CALL_AL_COMPLETE_IO) {
2617 		peer_req->flags &= ~EE_CALL_AL_COMPLETE_IO;
2618 		drbd_al_complete_io(device, &peer_req->i);
2619 	}
2620 
2621 out_interrupted:
2622 	drbd_may_finish_epoch(connection, peer_req->epoch, EV_PUT | EV_CLEANUP);
2623 	put_ldev(device);
2624 	drbd_free_peer_req(device, peer_req);
2625 	return err;
2626 }
2627 
2628 /* We may throttle resync, if the lower device seems to be busy,
2629  * and current sync rate is above c_min_rate.
2630  *
2631  * To decide whether or not the lower device is busy, we use a scheme similar
2632  * to MD RAID is_mddev_idle(): if the partition stats reveal "significant"
2633  * (more than 64 sectors) of activity we cannot account for with our own resync
2634  * activity, it obviously is "busy".
2635  *
2636  * The current sync rate used here uses only the most recent two step marks,
2637  * to have a short time average so we can react faster.
2638  */
2639 bool drbd_rs_should_slow_down(struct drbd_device *device, sector_t sector,
2640 		bool throttle_if_app_is_waiting)
2641 {
2642 	struct lc_element *tmp;
2643 	bool throttle = drbd_rs_c_min_rate_throttle(device);
2644 
2645 	if (!throttle || throttle_if_app_is_waiting)
2646 		return throttle;
2647 
2648 	spin_lock_irq(&device->al_lock);
2649 	tmp = lc_find(device->resync, BM_SECT_TO_EXT(sector));
2650 	if (tmp) {
2651 		struct bm_extent *bm_ext = lc_entry(tmp, struct bm_extent, lce);
2652 		if (test_bit(BME_PRIORITY, &bm_ext->flags))
2653 			throttle = false;
2654 		/* Do not slow down if app IO is already waiting for this extent,
2655 		 * and our progress is necessary for application IO to complete. */
2656 	}
2657 	spin_unlock_irq(&device->al_lock);
2658 
2659 	return throttle;
2660 }
2661 
2662 bool drbd_rs_c_min_rate_throttle(struct drbd_device *device)
2663 {
2664 	struct gendisk *disk = device->ldev->backing_bdev->bd_contains->bd_disk;
2665 	unsigned long db, dt, dbdt;
2666 	unsigned int c_min_rate;
2667 	int curr_events;
2668 
2669 	rcu_read_lock();
2670 	c_min_rate = rcu_dereference(device->ldev->disk_conf)->c_min_rate;
2671 	rcu_read_unlock();
2672 
2673 	/* feature disabled? */
2674 	if (c_min_rate == 0)
2675 		return false;
2676 
2677 	curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
2678 		      (int)part_stat_read(&disk->part0, sectors[1]) -
2679 			atomic_read(&device->rs_sect_ev);
2680 
2681 	if (atomic_read(&device->ap_actlog_cnt)
2682 	    || curr_events - device->rs_last_events > 64) {
2683 		unsigned long rs_left;
2684 		int i;
2685 
2686 		device->rs_last_events = curr_events;
2687 
2688 		/* sync speed average over the last 2*DRBD_SYNC_MARK_STEP,
2689 		 * approx. */
2690 		i = (device->rs_last_mark + DRBD_SYNC_MARKS-1) % DRBD_SYNC_MARKS;
2691 
2692 		if (device->state.conn == C_VERIFY_S || device->state.conn == C_VERIFY_T)
2693 			rs_left = device->ov_left;
2694 		else
2695 			rs_left = drbd_bm_total_weight(device) - device->rs_failed;
2696 
2697 		dt = ((long)jiffies - (long)device->rs_mark_time[i]) / HZ;
2698 		if (!dt)
2699 			dt++;
2700 		db = device->rs_mark_left[i] - rs_left;
2701 		dbdt = Bit2KB(db/dt);
2702 
2703 		if (dbdt > c_min_rate)
2704 			return true;
2705 	}
2706 	return false;
2707 }
2708 
2709 static int receive_DataRequest(struct drbd_connection *connection, struct packet_info *pi)
2710 {
2711 	struct drbd_peer_device *peer_device;
2712 	struct drbd_device *device;
2713 	sector_t sector;
2714 	sector_t capacity;
2715 	struct drbd_peer_request *peer_req;
2716 	struct digest_info *di = NULL;
2717 	int size, verb;
2718 	unsigned int fault_type;
2719 	struct p_block_req *p =	pi->data;
2720 
2721 	peer_device = conn_peer_device(connection, pi->vnr);
2722 	if (!peer_device)
2723 		return -EIO;
2724 	device = peer_device->device;
2725 	capacity = drbd_get_capacity(device->this_bdev);
2726 
2727 	sector = be64_to_cpu(p->sector);
2728 	size   = be32_to_cpu(p->blksize);
2729 
2730 	if (size <= 0 || !IS_ALIGNED(size, 512) || size > DRBD_MAX_BIO_SIZE) {
2731 		drbd_err(device, "%s:%d: sector: %llus, size: %u\n", __FILE__, __LINE__,
2732 				(unsigned long long)sector, size);
2733 		return -EINVAL;
2734 	}
2735 	if (sector + (size>>9) > capacity) {
2736 		drbd_err(device, "%s:%d: sector: %llus, size: %u\n", __FILE__, __LINE__,
2737 				(unsigned long long)sector, size);
2738 		return -EINVAL;
2739 	}
2740 
2741 	if (!get_ldev_if_state(device, D_UP_TO_DATE)) {
2742 		verb = 1;
2743 		switch (pi->cmd) {
2744 		case P_DATA_REQUEST:
2745 			drbd_send_ack_rp(peer_device, P_NEG_DREPLY, p);
2746 			break;
2747 		case P_RS_THIN_REQ:
2748 		case P_RS_DATA_REQUEST:
2749 		case P_CSUM_RS_REQUEST:
2750 		case P_OV_REQUEST:
2751 			drbd_send_ack_rp(peer_device, P_NEG_RS_DREPLY , p);
2752 			break;
2753 		case P_OV_REPLY:
2754 			verb = 0;
2755 			dec_rs_pending(device);
2756 			drbd_send_ack_ex(peer_device, P_OV_RESULT, sector, size, ID_IN_SYNC);
2757 			break;
2758 		default:
2759 			BUG();
2760 		}
2761 		if (verb && __ratelimit(&drbd_ratelimit_state))
2762 			drbd_err(device, "Can not satisfy peer's read request, "
2763 			    "no local data.\n");
2764 
2765 		/* drain possibly payload */
2766 		return drbd_drain_block(peer_device, pi->size);
2767 	}
2768 
2769 	/* GFP_NOIO, because we must not cause arbitrary write-out: in a DRBD
2770 	 * "criss-cross" setup, that might cause write-out on some other DRBD,
2771 	 * which in turn might block on the other node at this very place.  */
2772 	peer_req = drbd_alloc_peer_req(peer_device, p->block_id, sector, size,
2773 			size, GFP_NOIO);
2774 	if (!peer_req) {
2775 		put_ldev(device);
2776 		return -ENOMEM;
2777 	}
2778 
2779 	switch (pi->cmd) {
2780 	case P_DATA_REQUEST:
2781 		peer_req->w.cb = w_e_end_data_req;
2782 		fault_type = DRBD_FAULT_DT_RD;
2783 		/* application IO, don't drbd_rs_begin_io */
2784 		peer_req->flags |= EE_APPLICATION;
2785 		goto submit;
2786 
2787 	case P_RS_THIN_REQ:
2788 		/* If at some point in the future we have a smart way to
2789 		   find out if this data block is completely deallocated,
2790 		   then we would do something smarter here than reading
2791 		   the block... */
2792 		peer_req->flags |= EE_RS_THIN_REQ;
2793 	case P_RS_DATA_REQUEST:
2794 		peer_req->w.cb = w_e_end_rsdata_req;
2795 		fault_type = DRBD_FAULT_RS_RD;
2796 		/* used in the sector offset progress display */
2797 		device->bm_resync_fo = BM_SECT_TO_BIT(sector);
2798 		break;
2799 
2800 	case P_OV_REPLY:
2801 	case P_CSUM_RS_REQUEST:
2802 		fault_type = DRBD_FAULT_RS_RD;
2803 		di = kmalloc(sizeof(*di) + pi->size, GFP_NOIO);
2804 		if (!di)
2805 			goto out_free_e;
2806 
2807 		di->digest_size = pi->size;
2808 		di->digest = (((char *)di)+sizeof(struct digest_info));
2809 
2810 		peer_req->digest = di;
2811 		peer_req->flags |= EE_HAS_DIGEST;
2812 
2813 		if (drbd_recv_all(peer_device->connection, di->digest, pi->size))
2814 			goto out_free_e;
2815 
2816 		if (pi->cmd == P_CSUM_RS_REQUEST) {
2817 			D_ASSERT(device, peer_device->connection->agreed_pro_version >= 89);
2818 			peer_req->w.cb = w_e_end_csum_rs_req;
2819 			/* used in the sector offset progress display */
2820 			device->bm_resync_fo = BM_SECT_TO_BIT(sector);
2821 			/* remember to report stats in drbd_resync_finished */
2822 			device->use_csums = true;
2823 		} else if (pi->cmd == P_OV_REPLY) {
2824 			/* track progress, we may need to throttle */
2825 			atomic_add(size >> 9, &device->rs_sect_in);
2826 			peer_req->w.cb = w_e_end_ov_reply;
2827 			dec_rs_pending(device);
2828 			/* drbd_rs_begin_io done when we sent this request,
2829 			 * but accounting still needs to be done. */
2830 			goto submit_for_resync;
2831 		}
2832 		break;
2833 
2834 	case P_OV_REQUEST:
2835 		if (device->ov_start_sector == ~(sector_t)0 &&
2836 		    peer_device->connection->agreed_pro_version >= 90) {
2837 			unsigned long now = jiffies;
2838 			int i;
2839 			device->ov_start_sector = sector;
2840 			device->ov_position = sector;
2841 			device->ov_left = drbd_bm_bits(device) - BM_SECT_TO_BIT(sector);
2842 			device->rs_total = device->ov_left;
2843 			for (i = 0; i < DRBD_SYNC_MARKS; i++) {
2844 				device->rs_mark_left[i] = device->ov_left;
2845 				device->rs_mark_time[i] = now;
2846 			}
2847 			drbd_info(device, "Online Verify start sector: %llu\n",
2848 					(unsigned long long)sector);
2849 		}
2850 		peer_req->w.cb = w_e_end_ov_req;
2851 		fault_type = DRBD_FAULT_RS_RD;
2852 		break;
2853 
2854 	default:
2855 		BUG();
2856 	}
2857 
2858 	/* Throttle, drbd_rs_begin_io and submit should become asynchronous
2859 	 * wrt the receiver, but it is not as straightforward as it may seem.
2860 	 * Various places in the resync start and stop logic assume resync
2861 	 * requests are processed in order, requeuing this on the worker thread
2862 	 * introduces a bunch of new code for synchronization between threads.
2863 	 *
2864 	 * Unlimited throttling before drbd_rs_begin_io may stall the resync
2865 	 * "forever", throttling after drbd_rs_begin_io will lock that extent
2866 	 * for application writes for the same time.  For now, just throttle
2867 	 * here, where the rest of the code expects the receiver to sleep for
2868 	 * a while, anyways.
2869 	 */
2870 
2871 	/* Throttle before drbd_rs_begin_io, as that locks out application IO;
2872 	 * this defers syncer requests for some time, before letting at least
2873 	 * on request through.  The resync controller on the receiving side
2874 	 * will adapt to the incoming rate accordingly.
2875 	 *
2876 	 * We cannot throttle here if remote is Primary/SyncTarget:
2877 	 * we would also throttle its application reads.
2878 	 * In that case, throttling is done on the SyncTarget only.
2879 	 */
2880 
2881 	/* Even though this may be a resync request, we do add to "read_ee";
2882 	 * "sync_ee" is only used for resync WRITEs.
2883 	 * Add to list early, so debugfs can find this request
2884 	 * even if we have to sleep below. */
2885 	spin_lock_irq(&device->resource->req_lock);
2886 	list_add_tail(&peer_req->w.list, &device->read_ee);
2887 	spin_unlock_irq(&device->resource->req_lock);
2888 
2889 	update_receiver_timing_details(connection, drbd_rs_should_slow_down);
2890 	if (device->state.peer != R_PRIMARY
2891 	&& drbd_rs_should_slow_down(device, sector, false))
2892 		schedule_timeout_uninterruptible(HZ/10);
2893 	update_receiver_timing_details(connection, drbd_rs_begin_io);
2894 	if (drbd_rs_begin_io(device, sector))
2895 		goto out_free_e;
2896 
2897 submit_for_resync:
2898 	atomic_add(size >> 9, &device->rs_sect_ev);
2899 
2900 submit:
2901 	update_receiver_timing_details(connection, drbd_submit_peer_request);
2902 	inc_unacked(device);
2903 	if (drbd_submit_peer_request(device, peer_req, REQ_OP_READ, 0,
2904 				     fault_type) == 0)
2905 		return 0;
2906 
2907 	/* don't care for the reason here */
2908 	drbd_err(device, "submit failed, triggering re-connect\n");
2909 
2910 out_free_e:
2911 	spin_lock_irq(&device->resource->req_lock);
2912 	list_del(&peer_req->w.list);
2913 	spin_unlock_irq(&device->resource->req_lock);
2914 	/* no drbd_rs_complete_io(), we are dropping the connection anyways */
2915 
2916 	put_ldev(device);
2917 	drbd_free_peer_req(device, peer_req);
2918 	return -EIO;
2919 }
2920 
2921 /**
2922  * drbd_asb_recover_0p  -  Recover after split-brain with no remaining primaries
2923  */
2924 static int drbd_asb_recover_0p(struct drbd_peer_device *peer_device) __must_hold(local)
2925 {
2926 	struct drbd_device *device = peer_device->device;
2927 	int self, peer, rv = -100;
2928 	unsigned long ch_self, ch_peer;
2929 	enum drbd_after_sb_p after_sb_0p;
2930 
2931 	self = device->ldev->md.uuid[UI_BITMAP] & 1;
2932 	peer = device->p_uuid[UI_BITMAP] & 1;
2933 
2934 	ch_peer = device->p_uuid[UI_SIZE];
2935 	ch_self = device->comm_bm_set;
2936 
2937 	rcu_read_lock();
2938 	after_sb_0p = rcu_dereference(peer_device->connection->net_conf)->after_sb_0p;
2939 	rcu_read_unlock();
2940 	switch (after_sb_0p) {
2941 	case ASB_CONSENSUS:
2942 	case ASB_DISCARD_SECONDARY:
2943 	case ASB_CALL_HELPER:
2944 	case ASB_VIOLENTLY:
2945 		drbd_err(device, "Configuration error.\n");
2946 		break;
2947 	case ASB_DISCONNECT:
2948 		break;
2949 	case ASB_DISCARD_YOUNGER_PRI:
2950 		if (self == 0 && peer == 1) {
2951 			rv = -1;
2952 			break;
2953 		}
2954 		if (self == 1 && peer == 0) {
2955 			rv =  1;
2956 			break;
2957 		}
2958 		/* Else fall through to one of the other strategies... */
2959 	case ASB_DISCARD_OLDER_PRI:
2960 		if (self == 0 && peer == 1) {
2961 			rv = 1;
2962 			break;
2963 		}
2964 		if (self == 1 && peer == 0) {
2965 			rv = -1;
2966 			break;
2967 		}
2968 		/* Else fall through to one of the other strategies... */
2969 		drbd_warn(device, "Discard younger/older primary did not find a decision\n"
2970 		     "Using discard-least-changes instead\n");
2971 	case ASB_DISCARD_ZERO_CHG:
2972 		if (ch_peer == 0 && ch_self == 0) {
2973 			rv = test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags)
2974 				? -1 : 1;
2975 			break;
2976 		} else {
2977 			if (ch_peer == 0) { rv =  1; break; }
2978 			if (ch_self == 0) { rv = -1; break; }
2979 		}
2980 		if (after_sb_0p == ASB_DISCARD_ZERO_CHG)
2981 			break;
2982 	case ASB_DISCARD_LEAST_CHG:
2983 		if	(ch_self < ch_peer)
2984 			rv = -1;
2985 		else if (ch_self > ch_peer)
2986 			rv =  1;
2987 		else /* ( ch_self == ch_peer ) */
2988 		     /* Well, then use something else. */
2989 			rv = test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags)
2990 				? -1 : 1;
2991 		break;
2992 	case ASB_DISCARD_LOCAL:
2993 		rv = -1;
2994 		break;
2995 	case ASB_DISCARD_REMOTE:
2996 		rv =  1;
2997 	}
2998 
2999 	return rv;
3000 }
3001 
3002 /**
3003  * drbd_asb_recover_1p  -  Recover after split-brain with one remaining primary
3004  */
3005 static int drbd_asb_recover_1p(struct drbd_peer_device *peer_device) __must_hold(local)
3006 {
3007 	struct drbd_device *device = peer_device->device;
3008 	int hg, rv = -100;
3009 	enum drbd_after_sb_p after_sb_1p;
3010 
3011 	rcu_read_lock();
3012 	after_sb_1p = rcu_dereference(peer_device->connection->net_conf)->after_sb_1p;
3013 	rcu_read_unlock();
3014 	switch (after_sb_1p) {
3015 	case ASB_DISCARD_YOUNGER_PRI:
3016 	case ASB_DISCARD_OLDER_PRI:
3017 	case ASB_DISCARD_LEAST_CHG:
3018 	case ASB_DISCARD_LOCAL:
3019 	case ASB_DISCARD_REMOTE:
3020 	case ASB_DISCARD_ZERO_CHG:
3021 		drbd_err(device, "Configuration error.\n");
3022 		break;
3023 	case ASB_DISCONNECT:
3024 		break;
3025 	case ASB_CONSENSUS:
3026 		hg = drbd_asb_recover_0p(peer_device);
3027 		if (hg == -1 && device->state.role == R_SECONDARY)
3028 			rv = hg;
3029 		if (hg == 1  && device->state.role == R_PRIMARY)
3030 			rv = hg;
3031 		break;
3032 	case ASB_VIOLENTLY:
3033 		rv = drbd_asb_recover_0p(peer_device);
3034 		break;
3035 	case ASB_DISCARD_SECONDARY:
3036 		return device->state.role == R_PRIMARY ? 1 : -1;
3037 	case ASB_CALL_HELPER:
3038 		hg = drbd_asb_recover_0p(peer_device);
3039 		if (hg == -1 && device->state.role == R_PRIMARY) {
3040 			enum drbd_state_rv rv2;
3041 
3042 			 /* drbd_change_state() does not sleep while in SS_IN_TRANSIENT_STATE,
3043 			  * we might be here in C_WF_REPORT_PARAMS which is transient.
3044 			  * we do not need to wait for the after state change work either. */
3045 			rv2 = drbd_change_state(device, CS_VERBOSE, NS(role, R_SECONDARY));
3046 			if (rv2 != SS_SUCCESS) {
3047 				drbd_khelper(device, "pri-lost-after-sb");
3048 			} else {
3049 				drbd_warn(device, "Successfully gave up primary role.\n");
3050 				rv = hg;
3051 			}
3052 		} else
3053 			rv = hg;
3054 	}
3055 
3056 	return rv;
3057 }
3058 
3059 /**
3060  * drbd_asb_recover_2p  -  Recover after split-brain with two remaining primaries
3061  */
3062 static int drbd_asb_recover_2p(struct drbd_peer_device *peer_device) __must_hold(local)
3063 {
3064 	struct drbd_device *device = peer_device->device;
3065 	int hg, rv = -100;
3066 	enum drbd_after_sb_p after_sb_2p;
3067 
3068 	rcu_read_lock();
3069 	after_sb_2p = rcu_dereference(peer_device->connection->net_conf)->after_sb_2p;
3070 	rcu_read_unlock();
3071 	switch (after_sb_2p) {
3072 	case ASB_DISCARD_YOUNGER_PRI:
3073 	case ASB_DISCARD_OLDER_PRI:
3074 	case ASB_DISCARD_LEAST_CHG:
3075 	case ASB_DISCARD_LOCAL:
3076 	case ASB_DISCARD_REMOTE:
3077 	case ASB_CONSENSUS:
3078 	case ASB_DISCARD_SECONDARY:
3079 	case ASB_DISCARD_ZERO_CHG:
3080 		drbd_err(device, "Configuration error.\n");
3081 		break;
3082 	case ASB_VIOLENTLY:
3083 		rv = drbd_asb_recover_0p(peer_device);
3084 		break;
3085 	case ASB_DISCONNECT:
3086 		break;
3087 	case ASB_CALL_HELPER:
3088 		hg = drbd_asb_recover_0p(peer_device);
3089 		if (hg == -1) {
3090 			enum drbd_state_rv rv2;
3091 
3092 			 /* drbd_change_state() does not sleep while in SS_IN_TRANSIENT_STATE,
3093 			  * we might be here in C_WF_REPORT_PARAMS which is transient.
3094 			  * we do not need to wait for the after state change work either. */
3095 			rv2 = drbd_change_state(device, CS_VERBOSE, NS(role, R_SECONDARY));
3096 			if (rv2 != SS_SUCCESS) {
3097 				drbd_khelper(device, "pri-lost-after-sb");
3098 			} else {
3099 				drbd_warn(device, "Successfully gave up primary role.\n");
3100 				rv = hg;
3101 			}
3102 		} else
3103 			rv = hg;
3104 	}
3105 
3106 	return rv;
3107 }
3108 
3109 static void drbd_uuid_dump(struct drbd_device *device, char *text, u64 *uuid,
3110 			   u64 bits, u64 flags)
3111 {
3112 	if (!uuid) {
3113 		drbd_info(device, "%s uuid info vanished while I was looking!\n", text);
3114 		return;
3115 	}
3116 	drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX bits:%llu flags:%llX\n",
3117 	     text,
3118 	     (unsigned long long)uuid[UI_CURRENT],
3119 	     (unsigned long long)uuid[UI_BITMAP],
3120 	     (unsigned long long)uuid[UI_HISTORY_START],
3121 	     (unsigned long long)uuid[UI_HISTORY_END],
3122 	     (unsigned long long)bits,
3123 	     (unsigned long long)flags);
3124 }
3125 
3126 /*
3127   100	after split brain try auto recover
3128     2	C_SYNC_SOURCE set BitMap
3129     1	C_SYNC_SOURCE use BitMap
3130     0	no Sync
3131    -1	C_SYNC_TARGET use BitMap
3132    -2	C_SYNC_TARGET set BitMap
3133  -100	after split brain, disconnect
3134 -1000	unrelated data
3135 -1091   requires proto 91
3136 -1096   requires proto 96
3137  */
3138 
3139 static int drbd_uuid_compare(struct drbd_device *const device, enum drbd_role const peer_role, int *rule_nr) __must_hold(local)
3140 {
3141 	struct drbd_peer_device *const peer_device = first_peer_device(device);
3142 	struct drbd_connection *const connection = peer_device ? peer_device->connection : NULL;
3143 	u64 self, peer;
3144 	int i, j;
3145 
3146 	self = device->ldev->md.uuid[UI_CURRENT] & ~((u64)1);
3147 	peer = device->p_uuid[UI_CURRENT] & ~((u64)1);
3148 
3149 	*rule_nr = 10;
3150 	if (self == UUID_JUST_CREATED && peer == UUID_JUST_CREATED)
3151 		return 0;
3152 
3153 	*rule_nr = 20;
3154 	if ((self == UUID_JUST_CREATED || self == (u64)0) &&
3155 	     peer != UUID_JUST_CREATED)
3156 		return -2;
3157 
3158 	*rule_nr = 30;
3159 	if (self != UUID_JUST_CREATED &&
3160 	    (peer == UUID_JUST_CREATED || peer == (u64)0))
3161 		return 2;
3162 
3163 	if (self == peer) {
3164 		int rct, dc; /* roles at crash time */
3165 
3166 		if (device->p_uuid[UI_BITMAP] == (u64)0 && device->ldev->md.uuid[UI_BITMAP] != (u64)0) {
3167 
3168 			if (connection->agreed_pro_version < 91)
3169 				return -1091;
3170 
3171 			if ((device->ldev->md.uuid[UI_BITMAP] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START] & ~((u64)1)) &&
3172 			    (device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START + 1] & ~((u64)1))) {
3173 				drbd_info(device, "was SyncSource, missed the resync finished event, corrected myself:\n");
3174 				drbd_uuid_move_history(device);
3175 				device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP];
3176 				device->ldev->md.uuid[UI_BITMAP] = 0;
3177 
3178 				drbd_uuid_dump(device, "self", device->ldev->md.uuid,
3179 					       device->state.disk >= D_NEGOTIATING ? drbd_bm_total_weight(device) : 0, 0);
3180 				*rule_nr = 34;
3181 			} else {
3182 				drbd_info(device, "was SyncSource (peer failed to write sync_uuid)\n");
3183 				*rule_nr = 36;
3184 			}
3185 
3186 			return 1;
3187 		}
3188 
3189 		if (device->ldev->md.uuid[UI_BITMAP] == (u64)0 && device->p_uuid[UI_BITMAP] != (u64)0) {
3190 
3191 			if (connection->agreed_pro_version < 91)
3192 				return -1091;
3193 
3194 			if ((device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == (device->p_uuid[UI_BITMAP] & ~((u64)1)) &&
3195 			    (device->ldev->md.uuid[UI_HISTORY_START + 1] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START] & ~((u64)1))) {
3196 				drbd_info(device, "was SyncTarget, peer missed the resync finished event, corrected peer:\n");
3197 
3198 				device->p_uuid[UI_HISTORY_START + 1] = device->p_uuid[UI_HISTORY_START];
3199 				device->p_uuid[UI_HISTORY_START] = device->p_uuid[UI_BITMAP];
3200 				device->p_uuid[UI_BITMAP] = 0UL;
3201 
3202 				drbd_uuid_dump(device, "peer", device->p_uuid, device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]);
3203 				*rule_nr = 35;
3204 			} else {
3205 				drbd_info(device, "was SyncTarget (failed to write sync_uuid)\n");
3206 				*rule_nr = 37;
3207 			}
3208 
3209 			return -1;
3210 		}
3211 
3212 		/* Common power [off|failure] */
3213 		rct = (test_bit(CRASHED_PRIMARY, &device->flags) ? 1 : 0) +
3214 			(device->p_uuid[UI_FLAGS] & 2);
3215 		/* lowest bit is set when we were primary,
3216 		 * next bit (weight 2) is set when peer was primary */
3217 		*rule_nr = 40;
3218 
3219 		/* Neither has the "crashed primary" flag set,
3220 		 * only a replication link hickup. */
3221 		if (rct == 0)
3222 			return 0;
3223 
3224 		/* Current UUID equal and no bitmap uuid; does not necessarily
3225 		 * mean this was a "simultaneous hard crash", maybe IO was
3226 		 * frozen, so no UUID-bump happened.
3227 		 * This is a protocol change, overload DRBD_FF_WSAME as flag
3228 		 * for "new-enough" peer DRBD version. */
3229 		if (device->state.role == R_PRIMARY || peer_role == R_PRIMARY) {
3230 			*rule_nr = 41;
3231 			if (!(connection->agreed_features & DRBD_FF_WSAME)) {
3232 				drbd_warn(peer_device, "Equivalent unrotated UUIDs, but current primary present.\n");
3233 				return -(0x10000 | PRO_VERSION_MAX | (DRBD_FF_WSAME << 8));
3234 			}
3235 			if (device->state.role == R_PRIMARY && peer_role == R_PRIMARY) {
3236 				/* At least one has the "crashed primary" bit set,
3237 				 * both are primary now, but neither has rotated its UUIDs?
3238 				 * "Can not happen." */
3239 				drbd_err(peer_device, "Equivalent unrotated UUIDs, but both are primary. Can not resolve this.\n");
3240 				return -100;
3241 			}
3242 			if (device->state.role == R_PRIMARY)
3243 				return 1;
3244 			return -1;
3245 		}
3246 
3247 		/* Both are secondary.
3248 		 * Really looks like recovery from simultaneous hard crash.
3249 		 * Check which had been primary before, and arbitrate. */
3250 		switch (rct) {
3251 		case 0: /* !self_pri && !peer_pri */ return 0; /* already handled */
3252 		case 1: /*  self_pri && !peer_pri */ return 1;
3253 		case 2: /* !self_pri &&  peer_pri */ return -1;
3254 		case 3: /*  self_pri &&  peer_pri */
3255 			dc = test_bit(RESOLVE_CONFLICTS, &connection->flags);
3256 			return dc ? -1 : 1;
3257 		}
3258 	}
3259 
3260 	*rule_nr = 50;
3261 	peer = device->p_uuid[UI_BITMAP] & ~((u64)1);
3262 	if (self == peer)
3263 		return -1;
3264 
3265 	*rule_nr = 51;
3266 	peer = device->p_uuid[UI_HISTORY_START] & ~((u64)1);
3267 	if (self == peer) {
3268 		if (connection->agreed_pro_version < 96 ?
3269 		    (device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) ==
3270 		    (device->p_uuid[UI_HISTORY_START + 1] & ~((u64)1)) :
3271 		    peer + UUID_NEW_BM_OFFSET == (device->p_uuid[UI_BITMAP] & ~((u64)1))) {
3272 			/* The last P_SYNC_UUID did not get though. Undo the last start of
3273 			   resync as sync source modifications of the peer's UUIDs. */
3274 
3275 			if (connection->agreed_pro_version < 91)
3276 				return -1091;
3277 
3278 			device->p_uuid[UI_BITMAP] = device->p_uuid[UI_HISTORY_START];
3279 			device->p_uuid[UI_HISTORY_START] = device->p_uuid[UI_HISTORY_START + 1];
3280 
3281 			drbd_info(device, "Lost last syncUUID packet, corrected:\n");
3282 			drbd_uuid_dump(device, "peer", device->p_uuid, device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]);
3283 
3284 			return -1;
3285 		}
3286 	}
3287 
3288 	*rule_nr = 60;
3289 	self = device->ldev->md.uuid[UI_CURRENT] & ~((u64)1);
3290 	for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) {
3291 		peer = device->p_uuid[i] & ~((u64)1);
3292 		if (self == peer)
3293 			return -2;
3294 	}
3295 
3296 	*rule_nr = 70;
3297 	self = device->ldev->md.uuid[UI_BITMAP] & ~((u64)1);
3298 	peer = device->p_uuid[UI_CURRENT] & ~((u64)1);
3299 	if (self == peer)
3300 		return 1;
3301 
3302 	*rule_nr = 71;
3303 	self = device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1);
3304 	if (self == peer) {
3305 		if (connection->agreed_pro_version < 96 ?
3306 		    (device->ldev->md.uuid[UI_HISTORY_START + 1] & ~((u64)1)) ==
3307 		    (device->p_uuid[UI_HISTORY_START] & ~((u64)1)) :
3308 		    self + UUID_NEW_BM_OFFSET == (device->ldev->md.uuid[UI_BITMAP] & ~((u64)1))) {
3309 			/* The last P_SYNC_UUID did not get though. Undo the last start of
3310 			   resync as sync source modifications of our UUIDs. */
3311 
3312 			if (connection->agreed_pro_version < 91)
3313 				return -1091;
3314 
3315 			__drbd_uuid_set(device, UI_BITMAP, device->ldev->md.uuid[UI_HISTORY_START]);
3316 			__drbd_uuid_set(device, UI_HISTORY_START, device->ldev->md.uuid[UI_HISTORY_START + 1]);
3317 
3318 			drbd_info(device, "Last syncUUID did not get through, corrected:\n");
3319 			drbd_uuid_dump(device, "self", device->ldev->md.uuid,
3320 				       device->state.disk >= D_NEGOTIATING ? drbd_bm_total_weight(device) : 0, 0);
3321 
3322 			return 1;
3323 		}
3324 	}
3325 
3326 
3327 	*rule_nr = 80;
3328 	peer = device->p_uuid[UI_CURRENT] & ~((u64)1);
3329 	for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) {
3330 		self = device->ldev->md.uuid[i] & ~((u64)1);
3331 		if (self == peer)
3332 			return 2;
3333 	}
3334 
3335 	*rule_nr = 90;
3336 	self = device->ldev->md.uuid[UI_BITMAP] & ~((u64)1);
3337 	peer = device->p_uuid[UI_BITMAP] & ~((u64)1);
3338 	if (self == peer && self != ((u64)0))
3339 		return 100;
3340 
3341 	*rule_nr = 100;
3342 	for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) {
3343 		self = device->ldev->md.uuid[i] & ~((u64)1);
3344 		for (j = UI_HISTORY_START; j <= UI_HISTORY_END; j++) {
3345 			peer = device->p_uuid[j] & ~((u64)1);
3346 			if (self == peer)
3347 				return -100;
3348 		}
3349 	}
3350 
3351 	return -1000;
3352 }
3353 
3354 /* drbd_sync_handshake() returns the new conn state on success, or
3355    CONN_MASK (-1) on failure.
3356  */
3357 static enum drbd_conns drbd_sync_handshake(struct drbd_peer_device *peer_device,
3358 					   enum drbd_role peer_role,
3359 					   enum drbd_disk_state peer_disk) __must_hold(local)
3360 {
3361 	struct drbd_device *device = peer_device->device;
3362 	enum drbd_conns rv = C_MASK;
3363 	enum drbd_disk_state mydisk;
3364 	struct net_conf *nc;
3365 	int hg, rule_nr, rr_conflict, tentative;
3366 
3367 	mydisk = device->state.disk;
3368 	if (mydisk == D_NEGOTIATING)
3369 		mydisk = device->new_state_tmp.disk;
3370 
3371 	drbd_info(device, "drbd_sync_handshake:\n");
3372 
3373 	spin_lock_irq(&device->ldev->md.uuid_lock);
3374 	drbd_uuid_dump(device, "self", device->ldev->md.uuid, device->comm_bm_set, 0);
3375 	drbd_uuid_dump(device, "peer", device->p_uuid,
3376 		       device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]);
3377 
3378 	hg = drbd_uuid_compare(device, peer_role, &rule_nr);
3379 	spin_unlock_irq(&device->ldev->md.uuid_lock);
3380 
3381 	drbd_info(device, "uuid_compare()=%d by rule %d\n", hg, rule_nr);
3382 
3383 	if (hg == -1000) {
3384 		drbd_alert(device, "Unrelated data, aborting!\n");
3385 		return C_MASK;
3386 	}
3387 	if (hg < -0x10000) {
3388 		int proto, fflags;
3389 		hg = -hg;
3390 		proto = hg & 0xff;
3391 		fflags = (hg >> 8) & 0xff;
3392 		drbd_alert(device, "To resolve this both sides have to support at least protocol %d and feature flags 0x%x\n",
3393 					proto, fflags);
3394 		return C_MASK;
3395 	}
3396 	if (hg < -1000) {
3397 		drbd_alert(device, "To resolve this both sides have to support at least protocol %d\n", -hg - 1000);
3398 		return C_MASK;
3399 	}
3400 
3401 	if    ((mydisk == D_INCONSISTENT && peer_disk > D_INCONSISTENT) ||
3402 	    (peer_disk == D_INCONSISTENT && mydisk    > D_INCONSISTENT)) {
3403 		int f = (hg == -100) || abs(hg) == 2;
3404 		hg = mydisk > D_INCONSISTENT ? 1 : -1;
3405 		if (f)
3406 			hg = hg*2;
3407 		drbd_info(device, "Becoming sync %s due to disk states.\n",
3408 		     hg > 0 ? "source" : "target");
3409 	}
3410 
3411 	if (abs(hg) == 100)
3412 		drbd_khelper(device, "initial-split-brain");
3413 
3414 	rcu_read_lock();
3415 	nc = rcu_dereference(peer_device->connection->net_conf);
3416 
3417 	if (hg == 100 || (hg == -100 && nc->always_asbp)) {
3418 		int pcount = (device->state.role == R_PRIMARY)
3419 			   + (peer_role == R_PRIMARY);
3420 		int forced = (hg == -100);
3421 
3422 		switch (pcount) {
3423 		case 0:
3424 			hg = drbd_asb_recover_0p(peer_device);
3425 			break;
3426 		case 1:
3427 			hg = drbd_asb_recover_1p(peer_device);
3428 			break;
3429 		case 2:
3430 			hg = drbd_asb_recover_2p(peer_device);
3431 			break;
3432 		}
3433 		if (abs(hg) < 100) {
3434 			drbd_warn(device, "Split-Brain detected, %d primaries, "
3435 			     "automatically solved. Sync from %s node\n",
3436 			     pcount, (hg < 0) ? "peer" : "this");
3437 			if (forced) {
3438 				drbd_warn(device, "Doing a full sync, since"
3439 				     " UUIDs where ambiguous.\n");
3440 				hg = hg*2;
3441 			}
3442 		}
3443 	}
3444 
3445 	if (hg == -100) {
3446 		if (test_bit(DISCARD_MY_DATA, &device->flags) && !(device->p_uuid[UI_FLAGS]&1))
3447 			hg = -1;
3448 		if (!test_bit(DISCARD_MY_DATA, &device->flags) && (device->p_uuid[UI_FLAGS]&1))
3449 			hg = 1;
3450 
3451 		if (abs(hg) < 100)
3452 			drbd_warn(device, "Split-Brain detected, manually solved. "
3453 			     "Sync from %s node\n",
3454 			     (hg < 0) ? "peer" : "this");
3455 	}
3456 	rr_conflict = nc->rr_conflict;
3457 	tentative = nc->tentative;
3458 	rcu_read_unlock();
3459 
3460 	if (hg == -100) {
3461 		/* FIXME this log message is not correct if we end up here
3462 		 * after an attempted attach on a diskless node.
3463 		 * We just refuse to attach -- well, we drop the "connection"
3464 		 * to that disk, in a way... */
3465 		drbd_alert(device, "Split-Brain detected but unresolved, dropping connection!\n");
3466 		drbd_khelper(device, "split-brain");
3467 		return C_MASK;
3468 	}
3469 
3470 	if (hg > 0 && mydisk <= D_INCONSISTENT) {
3471 		drbd_err(device, "I shall become SyncSource, but I am inconsistent!\n");
3472 		return C_MASK;
3473 	}
3474 
3475 	if (hg < 0 && /* by intention we do not use mydisk here. */
3476 	    device->state.role == R_PRIMARY && device->state.disk >= D_CONSISTENT) {
3477 		switch (rr_conflict) {
3478 		case ASB_CALL_HELPER:
3479 			drbd_khelper(device, "pri-lost");
3480 			/* fall through */
3481 		case ASB_DISCONNECT:
3482 			drbd_err(device, "I shall become SyncTarget, but I am primary!\n");
3483 			return C_MASK;
3484 		case ASB_VIOLENTLY:
3485 			drbd_warn(device, "Becoming SyncTarget, violating the stable-data"
3486 			     "assumption\n");
3487 		}
3488 	}
3489 
3490 	if (tentative || test_bit(CONN_DRY_RUN, &peer_device->connection->flags)) {
3491 		if (hg == 0)
3492 			drbd_info(device, "dry-run connect: No resync, would become Connected immediately.\n");
3493 		else
3494 			drbd_info(device, "dry-run connect: Would become %s, doing a %s resync.",
3495 				 drbd_conn_str(hg > 0 ? C_SYNC_SOURCE : C_SYNC_TARGET),
3496 				 abs(hg) >= 2 ? "full" : "bit-map based");
3497 		return C_MASK;
3498 	}
3499 
3500 	if (abs(hg) >= 2) {
3501 		drbd_info(device, "Writing the whole bitmap, full sync required after drbd_sync_handshake.\n");
3502 		if (drbd_bitmap_io(device, &drbd_bmio_set_n_write, "set_n_write from sync_handshake",
3503 					BM_LOCKED_SET_ALLOWED))
3504 			return C_MASK;
3505 	}
3506 
3507 	if (hg > 0) { /* become sync source. */
3508 		rv = C_WF_BITMAP_S;
3509 	} else if (hg < 0) { /* become sync target */
3510 		rv = C_WF_BITMAP_T;
3511 	} else {
3512 		rv = C_CONNECTED;
3513 		if (drbd_bm_total_weight(device)) {
3514 			drbd_info(device, "No resync, but %lu bits in bitmap!\n",
3515 			     drbd_bm_total_weight(device));
3516 		}
3517 	}
3518 
3519 	return rv;
3520 }
3521 
3522 static enum drbd_after_sb_p convert_after_sb(enum drbd_after_sb_p peer)
3523 {
3524 	/* ASB_DISCARD_REMOTE - ASB_DISCARD_LOCAL is valid */
3525 	if (peer == ASB_DISCARD_REMOTE)
3526 		return ASB_DISCARD_LOCAL;
3527 
3528 	/* any other things with ASB_DISCARD_REMOTE or ASB_DISCARD_LOCAL are invalid */
3529 	if (peer == ASB_DISCARD_LOCAL)
3530 		return ASB_DISCARD_REMOTE;
3531 
3532 	/* everything else is valid if they are equal on both sides. */
3533 	return peer;
3534 }
3535 
3536 static int receive_protocol(struct drbd_connection *connection, struct packet_info *pi)
3537 {
3538 	struct p_protocol *p = pi->data;
3539 	enum drbd_after_sb_p p_after_sb_0p, p_after_sb_1p, p_after_sb_2p;
3540 	int p_proto, p_discard_my_data, p_two_primaries, cf;
3541 	struct net_conf *nc, *old_net_conf, *new_net_conf = NULL;
3542 	char integrity_alg[SHARED_SECRET_MAX] = "";
3543 	struct crypto_ahash *peer_integrity_tfm = NULL;
3544 	void *int_dig_in = NULL, *int_dig_vv = NULL;
3545 
3546 	p_proto		= be32_to_cpu(p->protocol);
3547 	p_after_sb_0p	= be32_to_cpu(p->after_sb_0p);
3548 	p_after_sb_1p	= be32_to_cpu(p->after_sb_1p);
3549 	p_after_sb_2p	= be32_to_cpu(p->after_sb_2p);
3550 	p_two_primaries = be32_to_cpu(p->two_primaries);
3551 	cf		= be32_to_cpu(p->conn_flags);
3552 	p_discard_my_data = cf & CF_DISCARD_MY_DATA;
3553 
3554 	if (connection->agreed_pro_version >= 87) {
3555 		int err;
3556 
3557 		if (pi->size > sizeof(integrity_alg))
3558 			return -EIO;
3559 		err = drbd_recv_all(connection, integrity_alg, pi->size);
3560 		if (err)
3561 			return err;
3562 		integrity_alg[SHARED_SECRET_MAX - 1] = 0;
3563 	}
3564 
3565 	if (pi->cmd != P_PROTOCOL_UPDATE) {
3566 		clear_bit(CONN_DRY_RUN, &connection->flags);
3567 
3568 		if (cf & CF_DRY_RUN)
3569 			set_bit(CONN_DRY_RUN, &connection->flags);
3570 
3571 		rcu_read_lock();
3572 		nc = rcu_dereference(connection->net_conf);
3573 
3574 		if (p_proto != nc->wire_protocol) {
3575 			drbd_err(connection, "incompatible %s settings\n", "protocol");
3576 			goto disconnect_rcu_unlock;
3577 		}
3578 
3579 		if (convert_after_sb(p_after_sb_0p) != nc->after_sb_0p) {
3580 			drbd_err(connection, "incompatible %s settings\n", "after-sb-0pri");
3581 			goto disconnect_rcu_unlock;
3582 		}
3583 
3584 		if (convert_after_sb(p_after_sb_1p) != nc->after_sb_1p) {
3585 			drbd_err(connection, "incompatible %s settings\n", "after-sb-1pri");
3586 			goto disconnect_rcu_unlock;
3587 		}
3588 
3589 		if (convert_after_sb(p_after_sb_2p) != nc->after_sb_2p) {
3590 			drbd_err(connection, "incompatible %s settings\n", "after-sb-2pri");
3591 			goto disconnect_rcu_unlock;
3592 		}
3593 
3594 		if (p_discard_my_data && nc->discard_my_data) {
3595 			drbd_err(connection, "incompatible %s settings\n", "discard-my-data");
3596 			goto disconnect_rcu_unlock;
3597 		}
3598 
3599 		if (p_two_primaries != nc->two_primaries) {
3600 			drbd_err(connection, "incompatible %s settings\n", "allow-two-primaries");
3601 			goto disconnect_rcu_unlock;
3602 		}
3603 
3604 		if (strcmp(integrity_alg, nc->integrity_alg)) {
3605 			drbd_err(connection, "incompatible %s settings\n", "data-integrity-alg");
3606 			goto disconnect_rcu_unlock;
3607 		}
3608 
3609 		rcu_read_unlock();
3610 	}
3611 
3612 	if (integrity_alg[0]) {
3613 		int hash_size;
3614 
3615 		/*
3616 		 * We can only change the peer data integrity algorithm
3617 		 * here.  Changing our own data integrity algorithm
3618 		 * requires that we send a P_PROTOCOL_UPDATE packet at
3619 		 * the same time; otherwise, the peer has no way to
3620 		 * tell between which packets the algorithm should
3621 		 * change.
3622 		 */
3623 
3624 		peer_integrity_tfm = crypto_alloc_ahash(integrity_alg, 0, CRYPTO_ALG_ASYNC);
3625 		if (IS_ERR(peer_integrity_tfm)) {
3626 			peer_integrity_tfm = NULL;
3627 			drbd_err(connection, "peer data-integrity-alg %s not supported\n",
3628 				 integrity_alg);
3629 			goto disconnect;
3630 		}
3631 
3632 		hash_size = crypto_ahash_digestsize(peer_integrity_tfm);
3633 		int_dig_in = kmalloc(hash_size, GFP_KERNEL);
3634 		int_dig_vv = kmalloc(hash_size, GFP_KERNEL);
3635 		if (!(int_dig_in && int_dig_vv)) {
3636 			drbd_err(connection, "Allocation of buffers for data integrity checking failed\n");
3637 			goto disconnect;
3638 		}
3639 	}
3640 
3641 	new_net_conf = kmalloc(sizeof(struct net_conf), GFP_KERNEL);
3642 	if (!new_net_conf) {
3643 		drbd_err(connection, "Allocation of new net_conf failed\n");
3644 		goto disconnect;
3645 	}
3646 
3647 	mutex_lock(&connection->data.mutex);
3648 	mutex_lock(&connection->resource->conf_update);
3649 	old_net_conf = connection->net_conf;
3650 	*new_net_conf = *old_net_conf;
3651 
3652 	new_net_conf->wire_protocol = p_proto;
3653 	new_net_conf->after_sb_0p = convert_after_sb(p_after_sb_0p);
3654 	new_net_conf->after_sb_1p = convert_after_sb(p_after_sb_1p);
3655 	new_net_conf->after_sb_2p = convert_after_sb(p_after_sb_2p);
3656 	new_net_conf->two_primaries = p_two_primaries;
3657 
3658 	rcu_assign_pointer(connection->net_conf, new_net_conf);
3659 	mutex_unlock(&connection->resource->conf_update);
3660 	mutex_unlock(&connection->data.mutex);
3661 
3662 	crypto_free_ahash(connection->peer_integrity_tfm);
3663 	kfree(connection->int_dig_in);
3664 	kfree(connection->int_dig_vv);
3665 	connection->peer_integrity_tfm = peer_integrity_tfm;
3666 	connection->int_dig_in = int_dig_in;
3667 	connection->int_dig_vv = int_dig_vv;
3668 
3669 	if (strcmp(old_net_conf->integrity_alg, integrity_alg))
3670 		drbd_info(connection, "peer data-integrity-alg: %s\n",
3671 			  integrity_alg[0] ? integrity_alg : "(none)");
3672 
3673 	synchronize_rcu();
3674 	kfree(old_net_conf);
3675 	return 0;
3676 
3677 disconnect_rcu_unlock:
3678 	rcu_read_unlock();
3679 disconnect:
3680 	crypto_free_ahash(peer_integrity_tfm);
3681 	kfree(int_dig_in);
3682 	kfree(int_dig_vv);
3683 	conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
3684 	return -EIO;
3685 }
3686 
3687 /* helper function
3688  * input: alg name, feature name
3689  * return: NULL (alg name was "")
3690  *         ERR_PTR(error) if something goes wrong
3691  *         or the crypto hash ptr, if it worked out ok. */
3692 static struct crypto_ahash *drbd_crypto_alloc_digest_safe(const struct drbd_device *device,
3693 		const char *alg, const char *name)
3694 {
3695 	struct crypto_ahash *tfm;
3696 
3697 	if (!alg[0])
3698 		return NULL;
3699 
3700 	tfm = crypto_alloc_ahash(alg, 0, CRYPTO_ALG_ASYNC);
3701 	if (IS_ERR(tfm)) {
3702 		drbd_err(device, "Can not allocate \"%s\" as %s (reason: %ld)\n",
3703 			alg, name, PTR_ERR(tfm));
3704 		return tfm;
3705 	}
3706 	return tfm;
3707 }
3708 
3709 static int ignore_remaining_packet(struct drbd_connection *connection, struct packet_info *pi)
3710 {
3711 	void *buffer = connection->data.rbuf;
3712 	int size = pi->size;
3713 
3714 	while (size) {
3715 		int s = min_t(int, size, DRBD_SOCKET_BUFFER_SIZE);
3716 		s = drbd_recv(connection, buffer, s);
3717 		if (s <= 0) {
3718 			if (s < 0)
3719 				return s;
3720 			break;
3721 		}
3722 		size -= s;
3723 	}
3724 	if (size)
3725 		return -EIO;
3726 	return 0;
3727 }
3728 
3729 /*
3730  * config_unknown_volume  -  device configuration command for unknown volume
3731  *
3732  * When a device is added to an existing connection, the node on which the
3733  * device is added first will send configuration commands to its peer but the
3734  * peer will not know about the device yet.  It will warn and ignore these
3735  * commands.  Once the device is added on the second node, the second node will
3736  * send the same device configuration commands, but in the other direction.
3737  *
3738  * (We can also end up here if drbd is misconfigured.)
3739  */
3740 static int config_unknown_volume(struct drbd_connection *connection, struct packet_info *pi)
3741 {
3742 	drbd_warn(connection, "%s packet received for volume %u, which is not configured locally\n",
3743 		  cmdname(pi->cmd), pi->vnr);
3744 	return ignore_remaining_packet(connection, pi);
3745 }
3746 
3747 static int receive_SyncParam(struct drbd_connection *connection, struct packet_info *pi)
3748 {
3749 	struct drbd_peer_device *peer_device;
3750 	struct drbd_device *device;
3751 	struct p_rs_param_95 *p;
3752 	unsigned int header_size, data_size, exp_max_sz;
3753 	struct crypto_ahash *verify_tfm = NULL;
3754 	struct crypto_ahash *csums_tfm = NULL;
3755 	struct net_conf *old_net_conf, *new_net_conf = NULL;
3756 	struct disk_conf *old_disk_conf = NULL, *new_disk_conf = NULL;
3757 	const int apv = connection->agreed_pro_version;
3758 	struct fifo_buffer *old_plan = NULL, *new_plan = NULL;
3759 	int fifo_size = 0;
3760 	int err;
3761 
3762 	peer_device = conn_peer_device(connection, pi->vnr);
3763 	if (!peer_device)
3764 		return config_unknown_volume(connection, pi);
3765 	device = peer_device->device;
3766 
3767 	exp_max_sz  = apv <= 87 ? sizeof(struct p_rs_param)
3768 		    : apv == 88 ? sizeof(struct p_rs_param)
3769 					+ SHARED_SECRET_MAX
3770 		    : apv <= 94 ? sizeof(struct p_rs_param_89)
3771 		    : /* apv >= 95 */ sizeof(struct p_rs_param_95);
3772 
3773 	if (pi->size > exp_max_sz) {
3774 		drbd_err(device, "SyncParam packet too long: received %u, expected <= %u bytes\n",
3775 		    pi->size, exp_max_sz);
3776 		return -EIO;
3777 	}
3778 
3779 	if (apv <= 88) {
3780 		header_size = sizeof(struct p_rs_param);
3781 		data_size = pi->size - header_size;
3782 	} else if (apv <= 94) {
3783 		header_size = sizeof(struct p_rs_param_89);
3784 		data_size = pi->size - header_size;
3785 		D_ASSERT(device, data_size == 0);
3786 	} else {
3787 		header_size = sizeof(struct p_rs_param_95);
3788 		data_size = pi->size - header_size;
3789 		D_ASSERT(device, data_size == 0);
3790 	}
3791 
3792 	/* initialize verify_alg and csums_alg */
3793 	p = pi->data;
3794 	memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX);
3795 
3796 	err = drbd_recv_all(peer_device->connection, p, header_size);
3797 	if (err)
3798 		return err;
3799 
3800 	mutex_lock(&connection->resource->conf_update);
3801 	old_net_conf = peer_device->connection->net_conf;
3802 	if (get_ldev(device)) {
3803 		new_disk_conf = kzalloc(sizeof(struct disk_conf), GFP_KERNEL);
3804 		if (!new_disk_conf) {
3805 			put_ldev(device);
3806 			mutex_unlock(&connection->resource->conf_update);
3807 			drbd_err(device, "Allocation of new disk_conf failed\n");
3808 			return -ENOMEM;
3809 		}
3810 
3811 		old_disk_conf = device->ldev->disk_conf;
3812 		*new_disk_conf = *old_disk_conf;
3813 
3814 		new_disk_conf->resync_rate = be32_to_cpu(p->resync_rate);
3815 	}
3816 
3817 	if (apv >= 88) {
3818 		if (apv == 88) {
3819 			if (data_size > SHARED_SECRET_MAX || data_size == 0) {
3820 				drbd_err(device, "verify-alg of wrong size, "
3821 					"peer wants %u, accepting only up to %u byte\n",
3822 					data_size, SHARED_SECRET_MAX);
3823 				err = -EIO;
3824 				goto reconnect;
3825 			}
3826 
3827 			err = drbd_recv_all(peer_device->connection, p->verify_alg, data_size);
3828 			if (err)
3829 				goto reconnect;
3830 			/* we expect NUL terminated string */
3831 			/* but just in case someone tries to be evil */
3832 			D_ASSERT(device, p->verify_alg[data_size-1] == 0);
3833 			p->verify_alg[data_size-1] = 0;
3834 
3835 		} else /* apv >= 89 */ {
3836 			/* we still expect NUL terminated strings */
3837 			/* but just in case someone tries to be evil */
3838 			D_ASSERT(device, p->verify_alg[SHARED_SECRET_MAX-1] == 0);
3839 			D_ASSERT(device, p->csums_alg[SHARED_SECRET_MAX-1] == 0);
3840 			p->verify_alg[SHARED_SECRET_MAX-1] = 0;
3841 			p->csums_alg[SHARED_SECRET_MAX-1] = 0;
3842 		}
3843 
3844 		if (strcmp(old_net_conf->verify_alg, p->verify_alg)) {
3845 			if (device->state.conn == C_WF_REPORT_PARAMS) {
3846 				drbd_err(device, "Different verify-alg settings. me=\"%s\" peer=\"%s\"\n",
3847 				    old_net_conf->verify_alg, p->verify_alg);
3848 				goto disconnect;
3849 			}
3850 			verify_tfm = drbd_crypto_alloc_digest_safe(device,
3851 					p->verify_alg, "verify-alg");
3852 			if (IS_ERR(verify_tfm)) {
3853 				verify_tfm = NULL;
3854 				goto disconnect;
3855 			}
3856 		}
3857 
3858 		if (apv >= 89 && strcmp(old_net_conf->csums_alg, p->csums_alg)) {
3859 			if (device->state.conn == C_WF_REPORT_PARAMS) {
3860 				drbd_err(device, "Different csums-alg settings. me=\"%s\" peer=\"%s\"\n",
3861 				    old_net_conf->csums_alg, p->csums_alg);
3862 				goto disconnect;
3863 			}
3864 			csums_tfm = drbd_crypto_alloc_digest_safe(device,
3865 					p->csums_alg, "csums-alg");
3866 			if (IS_ERR(csums_tfm)) {
3867 				csums_tfm = NULL;
3868 				goto disconnect;
3869 			}
3870 		}
3871 
3872 		if (apv > 94 && new_disk_conf) {
3873 			new_disk_conf->c_plan_ahead = be32_to_cpu(p->c_plan_ahead);
3874 			new_disk_conf->c_delay_target = be32_to_cpu(p->c_delay_target);
3875 			new_disk_conf->c_fill_target = be32_to_cpu(p->c_fill_target);
3876 			new_disk_conf->c_max_rate = be32_to_cpu(p->c_max_rate);
3877 
3878 			fifo_size = (new_disk_conf->c_plan_ahead * 10 * SLEEP_TIME) / HZ;
3879 			if (fifo_size != device->rs_plan_s->size) {
3880 				new_plan = fifo_alloc(fifo_size);
3881 				if (!new_plan) {
3882 					drbd_err(device, "kmalloc of fifo_buffer failed");
3883 					put_ldev(device);
3884 					goto disconnect;
3885 				}
3886 			}
3887 		}
3888 
3889 		if (verify_tfm || csums_tfm) {
3890 			new_net_conf = kzalloc(sizeof(struct net_conf), GFP_KERNEL);
3891 			if (!new_net_conf) {
3892 				drbd_err(device, "Allocation of new net_conf failed\n");
3893 				goto disconnect;
3894 			}
3895 
3896 			*new_net_conf = *old_net_conf;
3897 
3898 			if (verify_tfm) {
3899 				strcpy(new_net_conf->verify_alg, p->verify_alg);
3900 				new_net_conf->verify_alg_len = strlen(p->verify_alg) + 1;
3901 				crypto_free_ahash(peer_device->connection->verify_tfm);
3902 				peer_device->connection->verify_tfm = verify_tfm;
3903 				drbd_info(device, "using verify-alg: \"%s\"\n", p->verify_alg);
3904 			}
3905 			if (csums_tfm) {
3906 				strcpy(new_net_conf->csums_alg, p->csums_alg);
3907 				new_net_conf->csums_alg_len = strlen(p->csums_alg) + 1;
3908 				crypto_free_ahash(peer_device->connection->csums_tfm);
3909 				peer_device->connection->csums_tfm = csums_tfm;
3910 				drbd_info(device, "using csums-alg: \"%s\"\n", p->csums_alg);
3911 			}
3912 			rcu_assign_pointer(connection->net_conf, new_net_conf);
3913 		}
3914 	}
3915 
3916 	if (new_disk_conf) {
3917 		rcu_assign_pointer(device->ldev->disk_conf, new_disk_conf);
3918 		put_ldev(device);
3919 	}
3920 
3921 	if (new_plan) {
3922 		old_plan = device->rs_plan_s;
3923 		rcu_assign_pointer(device->rs_plan_s, new_plan);
3924 	}
3925 
3926 	mutex_unlock(&connection->resource->conf_update);
3927 	synchronize_rcu();
3928 	if (new_net_conf)
3929 		kfree(old_net_conf);
3930 	kfree(old_disk_conf);
3931 	kfree(old_plan);
3932 
3933 	return 0;
3934 
3935 reconnect:
3936 	if (new_disk_conf) {
3937 		put_ldev(device);
3938 		kfree(new_disk_conf);
3939 	}
3940 	mutex_unlock(&connection->resource->conf_update);
3941 	return -EIO;
3942 
3943 disconnect:
3944 	kfree(new_plan);
3945 	if (new_disk_conf) {
3946 		put_ldev(device);
3947 		kfree(new_disk_conf);
3948 	}
3949 	mutex_unlock(&connection->resource->conf_update);
3950 	/* just for completeness: actually not needed,
3951 	 * as this is not reached if csums_tfm was ok. */
3952 	crypto_free_ahash(csums_tfm);
3953 	/* but free the verify_tfm again, if csums_tfm did not work out */
3954 	crypto_free_ahash(verify_tfm);
3955 	conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
3956 	return -EIO;
3957 }
3958 
3959 /* warn if the arguments differ by more than 12.5% */
3960 static void warn_if_differ_considerably(struct drbd_device *device,
3961 	const char *s, sector_t a, sector_t b)
3962 {
3963 	sector_t d;
3964 	if (a == 0 || b == 0)
3965 		return;
3966 	d = (a > b) ? (a - b) : (b - a);
3967 	if (d > (a>>3) || d > (b>>3))
3968 		drbd_warn(device, "Considerable difference in %s: %llus vs. %llus\n", s,
3969 		     (unsigned long long)a, (unsigned long long)b);
3970 }
3971 
3972 static int receive_sizes(struct drbd_connection *connection, struct packet_info *pi)
3973 {
3974 	struct drbd_peer_device *peer_device;
3975 	struct drbd_device *device;
3976 	struct p_sizes *p = pi->data;
3977 	struct o_qlim *o = (connection->agreed_features & DRBD_FF_WSAME) ? p->qlim : NULL;
3978 	enum determine_dev_size dd = DS_UNCHANGED;
3979 	sector_t p_size, p_usize, p_csize, my_usize;
3980 	int ldsc = 0; /* local disk size changed */
3981 	enum dds_flags ddsf;
3982 
3983 	peer_device = conn_peer_device(connection, pi->vnr);
3984 	if (!peer_device)
3985 		return config_unknown_volume(connection, pi);
3986 	device = peer_device->device;
3987 
3988 	p_size = be64_to_cpu(p->d_size);
3989 	p_usize = be64_to_cpu(p->u_size);
3990 	p_csize = be64_to_cpu(p->c_size);
3991 
3992 	/* just store the peer's disk size for now.
3993 	 * we still need to figure out whether we accept that. */
3994 	device->p_size = p_size;
3995 
3996 	if (get_ldev(device)) {
3997 		sector_t new_size, cur_size;
3998 		rcu_read_lock();
3999 		my_usize = rcu_dereference(device->ldev->disk_conf)->disk_size;
4000 		rcu_read_unlock();
4001 
4002 		warn_if_differ_considerably(device, "lower level device sizes",
4003 			   p_size, drbd_get_max_capacity(device->ldev));
4004 		warn_if_differ_considerably(device, "user requested size",
4005 					    p_usize, my_usize);
4006 
4007 		/* if this is the first connect, or an otherwise expected
4008 		 * param exchange, choose the minimum */
4009 		if (device->state.conn == C_WF_REPORT_PARAMS)
4010 			p_usize = min_not_zero(my_usize, p_usize);
4011 
4012 		/* Never shrink a device with usable data during connect.
4013 		   But allow online shrinking if we are connected. */
4014 		new_size = drbd_new_dev_size(device, device->ldev, p_usize, 0);
4015 		cur_size = drbd_get_capacity(device->this_bdev);
4016 		if (new_size < cur_size &&
4017 		    device->state.disk >= D_OUTDATED &&
4018 		    device->state.conn < C_CONNECTED) {
4019 			drbd_err(device, "The peer's disk size is too small! (%llu < %llu sectors)\n",
4020 					(unsigned long long)new_size, (unsigned long long)cur_size);
4021 			conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4022 			put_ldev(device);
4023 			return -EIO;
4024 		}
4025 
4026 		if (my_usize != p_usize) {
4027 			struct disk_conf *old_disk_conf, *new_disk_conf = NULL;
4028 
4029 			new_disk_conf = kzalloc(sizeof(struct disk_conf), GFP_KERNEL);
4030 			if (!new_disk_conf) {
4031 				drbd_err(device, "Allocation of new disk_conf failed\n");
4032 				put_ldev(device);
4033 				return -ENOMEM;
4034 			}
4035 
4036 			mutex_lock(&connection->resource->conf_update);
4037 			old_disk_conf = device->ldev->disk_conf;
4038 			*new_disk_conf = *old_disk_conf;
4039 			new_disk_conf->disk_size = p_usize;
4040 
4041 			rcu_assign_pointer(device->ldev->disk_conf, new_disk_conf);
4042 			mutex_unlock(&connection->resource->conf_update);
4043 			synchronize_rcu();
4044 			kfree(old_disk_conf);
4045 
4046 			drbd_info(device, "Peer sets u_size to %lu sectors\n",
4047 				 (unsigned long)my_usize);
4048 		}
4049 
4050 		put_ldev(device);
4051 	}
4052 
4053 	device->peer_max_bio_size = be32_to_cpu(p->max_bio_size);
4054 	/* Leave drbd_reconsider_queue_parameters() before drbd_determine_dev_size().
4055 	   In case we cleared the QUEUE_FLAG_DISCARD from our queue in
4056 	   drbd_reconsider_queue_parameters(), we can be sure that after
4057 	   drbd_determine_dev_size() no REQ_DISCARDs are in the queue. */
4058 
4059 	ddsf = be16_to_cpu(p->dds_flags);
4060 	if (get_ldev(device)) {
4061 		drbd_reconsider_queue_parameters(device, device->ldev, o);
4062 		dd = drbd_determine_dev_size(device, ddsf, NULL);
4063 		put_ldev(device);
4064 		if (dd == DS_ERROR)
4065 			return -EIO;
4066 		drbd_md_sync(device);
4067 	} else {
4068 		/*
4069 		 * I am diskless, need to accept the peer's *current* size.
4070 		 * I must NOT accept the peers backing disk size,
4071 		 * it may have been larger than mine all along...
4072 		 *
4073 		 * At this point, the peer knows more about my disk, or at
4074 		 * least about what we last agreed upon, than myself.
4075 		 * So if his c_size is less than his d_size, the most likely
4076 		 * reason is that *my* d_size was smaller last time we checked.
4077 		 *
4078 		 * However, if he sends a zero current size,
4079 		 * take his (user-capped or) backing disk size anyways.
4080 		 */
4081 		drbd_reconsider_queue_parameters(device, NULL, o);
4082 		drbd_set_my_capacity(device, p_csize ?: p_usize ?: p_size);
4083 	}
4084 
4085 	if (get_ldev(device)) {
4086 		if (device->ldev->known_size != drbd_get_capacity(device->ldev->backing_bdev)) {
4087 			device->ldev->known_size = drbd_get_capacity(device->ldev->backing_bdev);
4088 			ldsc = 1;
4089 		}
4090 
4091 		put_ldev(device);
4092 	}
4093 
4094 	if (device->state.conn > C_WF_REPORT_PARAMS) {
4095 		if (be64_to_cpu(p->c_size) !=
4096 		    drbd_get_capacity(device->this_bdev) || ldsc) {
4097 			/* we have different sizes, probably peer
4098 			 * needs to know my new size... */
4099 			drbd_send_sizes(peer_device, 0, ddsf);
4100 		}
4101 		if (test_and_clear_bit(RESIZE_PENDING, &device->flags) ||
4102 		    (dd == DS_GREW && device->state.conn == C_CONNECTED)) {
4103 			if (device->state.pdsk >= D_INCONSISTENT &&
4104 			    device->state.disk >= D_INCONSISTENT) {
4105 				if (ddsf & DDSF_NO_RESYNC)
4106 					drbd_info(device, "Resync of new storage suppressed with --assume-clean\n");
4107 				else
4108 					resync_after_online_grow(device);
4109 			} else
4110 				set_bit(RESYNC_AFTER_NEG, &device->flags);
4111 		}
4112 	}
4113 
4114 	return 0;
4115 }
4116 
4117 static int receive_uuids(struct drbd_connection *connection, struct packet_info *pi)
4118 {
4119 	struct drbd_peer_device *peer_device;
4120 	struct drbd_device *device;
4121 	struct p_uuids *p = pi->data;
4122 	u64 *p_uuid;
4123 	int i, updated_uuids = 0;
4124 
4125 	peer_device = conn_peer_device(connection, pi->vnr);
4126 	if (!peer_device)
4127 		return config_unknown_volume(connection, pi);
4128 	device = peer_device->device;
4129 
4130 	p_uuid = kmalloc_array(UI_EXTENDED_SIZE, sizeof(*p_uuid), GFP_NOIO);
4131 	if (!p_uuid) {
4132 		drbd_err(device, "kmalloc of p_uuid failed\n");
4133 		return false;
4134 	}
4135 
4136 	for (i = UI_CURRENT; i < UI_EXTENDED_SIZE; i++)
4137 		p_uuid[i] = be64_to_cpu(p->uuid[i]);
4138 
4139 	kfree(device->p_uuid);
4140 	device->p_uuid = p_uuid;
4141 
4142 	if (device->state.conn < C_CONNECTED &&
4143 	    device->state.disk < D_INCONSISTENT &&
4144 	    device->state.role == R_PRIMARY &&
4145 	    (device->ed_uuid & ~((u64)1)) != (p_uuid[UI_CURRENT] & ~((u64)1))) {
4146 		drbd_err(device, "Can only connect to data with current UUID=%016llX\n",
4147 		    (unsigned long long)device->ed_uuid);
4148 		conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4149 		return -EIO;
4150 	}
4151 
4152 	if (get_ldev(device)) {
4153 		int skip_initial_sync =
4154 			device->state.conn == C_CONNECTED &&
4155 			peer_device->connection->agreed_pro_version >= 90 &&
4156 			device->ldev->md.uuid[UI_CURRENT] == UUID_JUST_CREATED &&
4157 			(p_uuid[UI_FLAGS] & 8);
4158 		if (skip_initial_sync) {
4159 			drbd_info(device, "Accepted new current UUID, preparing to skip initial sync\n");
4160 			drbd_bitmap_io(device, &drbd_bmio_clear_n_write,
4161 					"clear_n_write from receive_uuids",
4162 					BM_LOCKED_TEST_ALLOWED);
4163 			_drbd_uuid_set(device, UI_CURRENT, p_uuid[UI_CURRENT]);
4164 			_drbd_uuid_set(device, UI_BITMAP, 0);
4165 			_drbd_set_state(_NS2(device, disk, D_UP_TO_DATE, pdsk, D_UP_TO_DATE),
4166 					CS_VERBOSE, NULL);
4167 			drbd_md_sync(device);
4168 			updated_uuids = 1;
4169 		}
4170 		put_ldev(device);
4171 	} else if (device->state.disk < D_INCONSISTENT &&
4172 		   device->state.role == R_PRIMARY) {
4173 		/* I am a diskless primary, the peer just created a new current UUID
4174 		   for me. */
4175 		updated_uuids = drbd_set_ed_uuid(device, p_uuid[UI_CURRENT]);
4176 	}
4177 
4178 	/* Before we test for the disk state, we should wait until an eventually
4179 	   ongoing cluster wide state change is finished. That is important if
4180 	   we are primary and are detaching from our disk. We need to see the
4181 	   new disk state... */
4182 	mutex_lock(device->state_mutex);
4183 	mutex_unlock(device->state_mutex);
4184 	if (device->state.conn >= C_CONNECTED && device->state.disk < D_INCONSISTENT)
4185 		updated_uuids |= drbd_set_ed_uuid(device, p_uuid[UI_CURRENT]);
4186 
4187 	if (updated_uuids)
4188 		drbd_print_uuids(device, "receiver updated UUIDs to");
4189 
4190 	return 0;
4191 }
4192 
4193 /**
4194  * convert_state() - Converts the peer's view of the cluster state to our point of view
4195  * @ps:		The state as seen by the peer.
4196  */
4197 static union drbd_state convert_state(union drbd_state ps)
4198 {
4199 	union drbd_state ms;
4200 
4201 	static enum drbd_conns c_tab[] = {
4202 		[C_WF_REPORT_PARAMS] = C_WF_REPORT_PARAMS,
4203 		[C_CONNECTED] = C_CONNECTED,
4204 
4205 		[C_STARTING_SYNC_S] = C_STARTING_SYNC_T,
4206 		[C_STARTING_SYNC_T] = C_STARTING_SYNC_S,
4207 		[C_DISCONNECTING] = C_TEAR_DOWN, /* C_NETWORK_FAILURE, */
4208 		[C_VERIFY_S]       = C_VERIFY_T,
4209 		[C_MASK]   = C_MASK,
4210 	};
4211 
4212 	ms.i = ps.i;
4213 
4214 	ms.conn = c_tab[ps.conn];
4215 	ms.peer = ps.role;
4216 	ms.role = ps.peer;
4217 	ms.pdsk = ps.disk;
4218 	ms.disk = ps.pdsk;
4219 	ms.peer_isp = (ps.aftr_isp | ps.user_isp);
4220 
4221 	return ms;
4222 }
4223 
4224 static int receive_req_state(struct drbd_connection *connection, struct packet_info *pi)
4225 {
4226 	struct drbd_peer_device *peer_device;
4227 	struct drbd_device *device;
4228 	struct p_req_state *p = pi->data;
4229 	union drbd_state mask, val;
4230 	enum drbd_state_rv rv;
4231 
4232 	peer_device = conn_peer_device(connection, pi->vnr);
4233 	if (!peer_device)
4234 		return -EIO;
4235 	device = peer_device->device;
4236 
4237 	mask.i = be32_to_cpu(p->mask);
4238 	val.i = be32_to_cpu(p->val);
4239 
4240 	if (test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags) &&
4241 	    mutex_is_locked(device->state_mutex)) {
4242 		drbd_send_sr_reply(peer_device, SS_CONCURRENT_ST_CHG);
4243 		return 0;
4244 	}
4245 
4246 	mask = convert_state(mask);
4247 	val = convert_state(val);
4248 
4249 	rv = drbd_change_state(device, CS_VERBOSE, mask, val);
4250 	drbd_send_sr_reply(peer_device, rv);
4251 
4252 	drbd_md_sync(device);
4253 
4254 	return 0;
4255 }
4256 
4257 static int receive_req_conn_state(struct drbd_connection *connection, struct packet_info *pi)
4258 {
4259 	struct p_req_state *p = pi->data;
4260 	union drbd_state mask, val;
4261 	enum drbd_state_rv rv;
4262 
4263 	mask.i = be32_to_cpu(p->mask);
4264 	val.i = be32_to_cpu(p->val);
4265 
4266 	if (test_bit(RESOLVE_CONFLICTS, &connection->flags) &&
4267 	    mutex_is_locked(&connection->cstate_mutex)) {
4268 		conn_send_sr_reply(connection, SS_CONCURRENT_ST_CHG);
4269 		return 0;
4270 	}
4271 
4272 	mask = convert_state(mask);
4273 	val = convert_state(val);
4274 
4275 	rv = conn_request_state(connection, mask, val, CS_VERBOSE | CS_LOCAL_ONLY | CS_IGN_OUTD_FAIL);
4276 	conn_send_sr_reply(connection, rv);
4277 
4278 	return 0;
4279 }
4280 
4281 static int receive_state(struct drbd_connection *connection, struct packet_info *pi)
4282 {
4283 	struct drbd_peer_device *peer_device;
4284 	struct drbd_device *device;
4285 	struct p_state *p = pi->data;
4286 	union drbd_state os, ns, peer_state;
4287 	enum drbd_disk_state real_peer_disk;
4288 	enum chg_state_flags cs_flags;
4289 	int rv;
4290 
4291 	peer_device = conn_peer_device(connection, pi->vnr);
4292 	if (!peer_device)
4293 		return config_unknown_volume(connection, pi);
4294 	device = peer_device->device;
4295 
4296 	peer_state.i = be32_to_cpu(p->state);
4297 
4298 	real_peer_disk = peer_state.disk;
4299 	if (peer_state.disk == D_NEGOTIATING) {
4300 		real_peer_disk = device->p_uuid[UI_FLAGS] & 4 ? D_INCONSISTENT : D_CONSISTENT;
4301 		drbd_info(device, "real peer disk state = %s\n", drbd_disk_str(real_peer_disk));
4302 	}
4303 
4304 	spin_lock_irq(&device->resource->req_lock);
4305  retry:
4306 	os = ns = drbd_read_state(device);
4307 	spin_unlock_irq(&device->resource->req_lock);
4308 
4309 	/* If some other part of the code (ack_receiver thread, timeout)
4310 	 * already decided to close the connection again,
4311 	 * we must not "re-establish" it here. */
4312 	if (os.conn <= C_TEAR_DOWN)
4313 		return -ECONNRESET;
4314 
4315 	/* If this is the "end of sync" confirmation, usually the peer disk
4316 	 * transitions from D_INCONSISTENT to D_UP_TO_DATE. For empty (0 bits
4317 	 * set) resync started in PausedSyncT, or if the timing of pause-/
4318 	 * unpause-sync events has been "just right", the peer disk may
4319 	 * transition from D_CONSISTENT to D_UP_TO_DATE as well.
4320 	 */
4321 	if ((os.pdsk == D_INCONSISTENT || os.pdsk == D_CONSISTENT) &&
4322 	    real_peer_disk == D_UP_TO_DATE &&
4323 	    os.conn > C_CONNECTED && os.disk == D_UP_TO_DATE) {
4324 		/* If we are (becoming) SyncSource, but peer is still in sync
4325 		 * preparation, ignore its uptodate-ness to avoid flapping, it
4326 		 * will change to inconsistent once the peer reaches active
4327 		 * syncing states.
4328 		 * It may have changed syncer-paused flags, however, so we
4329 		 * cannot ignore this completely. */
4330 		if (peer_state.conn > C_CONNECTED &&
4331 		    peer_state.conn < C_SYNC_SOURCE)
4332 			real_peer_disk = D_INCONSISTENT;
4333 
4334 		/* if peer_state changes to connected at the same time,
4335 		 * it explicitly notifies us that it finished resync.
4336 		 * Maybe we should finish it up, too? */
4337 		else if (os.conn >= C_SYNC_SOURCE &&
4338 			 peer_state.conn == C_CONNECTED) {
4339 			if (drbd_bm_total_weight(device) <= device->rs_failed)
4340 				drbd_resync_finished(device);
4341 			return 0;
4342 		}
4343 	}
4344 
4345 	/* explicit verify finished notification, stop sector reached. */
4346 	if (os.conn == C_VERIFY_T && os.disk == D_UP_TO_DATE &&
4347 	    peer_state.conn == C_CONNECTED && real_peer_disk == D_UP_TO_DATE) {
4348 		ov_out_of_sync_print(device);
4349 		drbd_resync_finished(device);
4350 		return 0;
4351 	}
4352 
4353 	/* peer says his disk is inconsistent, while we think it is uptodate,
4354 	 * and this happens while the peer still thinks we have a sync going on,
4355 	 * but we think we are already done with the sync.
4356 	 * We ignore this to avoid flapping pdsk.
4357 	 * This should not happen, if the peer is a recent version of drbd. */
4358 	if (os.pdsk == D_UP_TO_DATE && real_peer_disk == D_INCONSISTENT &&
4359 	    os.conn == C_CONNECTED && peer_state.conn > C_SYNC_SOURCE)
4360 		real_peer_disk = D_UP_TO_DATE;
4361 
4362 	if (ns.conn == C_WF_REPORT_PARAMS)
4363 		ns.conn = C_CONNECTED;
4364 
4365 	if (peer_state.conn == C_AHEAD)
4366 		ns.conn = C_BEHIND;
4367 
4368 	if (device->p_uuid && peer_state.disk >= D_NEGOTIATING &&
4369 	    get_ldev_if_state(device, D_NEGOTIATING)) {
4370 		int cr; /* consider resync */
4371 
4372 		/* if we established a new connection */
4373 		cr  = (os.conn < C_CONNECTED);
4374 		/* if we had an established connection
4375 		 * and one of the nodes newly attaches a disk */
4376 		cr |= (os.conn == C_CONNECTED &&
4377 		       (peer_state.disk == D_NEGOTIATING ||
4378 			os.disk == D_NEGOTIATING));
4379 		/* if we have both been inconsistent, and the peer has been
4380 		 * forced to be UpToDate with --overwrite-data */
4381 		cr |= test_bit(CONSIDER_RESYNC, &device->flags);
4382 		/* if we had been plain connected, and the admin requested to
4383 		 * start a sync by "invalidate" or "invalidate-remote" */
4384 		cr |= (os.conn == C_CONNECTED &&
4385 				(peer_state.conn >= C_STARTING_SYNC_S &&
4386 				 peer_state.conn <= C_WF_BITMAP_T));
4387 
4388 		if (cr)
4389 			ns.conn = drbd_sync_handshake(peer_device, peer_state.role, real_peer_disk);
4390 
4391 		put_ldev(device);
4392 		if (ns.conn == C_MASK) {
4393 			ns.conn = C_CONNECTED;
4394 			if (device->state.disk == D_NEGOTIATING) {
4395 				drbd_force_state(device, NS(disk, D_FAILED));
4396 			} else if (peer_state.disk == D_NEGOTIATING) {
4397 				drbd_err(device, "Disk attach process on the peer node was aborted.\n");
4398 				peer_state.disk = D_DISKLESS;
4399 				real_peer_disk = D_DISKLESS;
4400 			} else {
4401 				if (test_and_clear_bit(CONN_DRY_RUN, &peer_device->connection->flags))
4402 					return -EIO;
4403 				D_ASSERT(device, os.conn == C_WF_REPORT_PARAMS);
4404 				conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4405 				return -EIO;
4406 			}
4407 		}
4408 	}
4409 
4410 	spin_lock_irq(&device->resource->req_lock);
4411 	if (os.i != drbd_read_state(device).i)
4412 		goto retry;
4413 	clear_bit(CONSIDER_RESYNC, &device->flags);
4414 	ns.peer = peer_state.role;
4415 	ns.pdsk = real_peer_disk;
4416 	ns.peer_isp = (peer_state.aftr_isp | peer_state.user_isp);
4417 	if ((ns.conn == C_CONNECTED || ns.conn == C_WF_BITMAP_S) && ns.disk == D_NEGOTIATING)
4418 		ns.disk = device->new_state_tmp.disk;
4419 	cs_flags = CS_VERBOSE + (os.conn < C_CONNECTED && ns.conn >= C_CONNECTED ? 0 : CS_HARD);
4420 	if (ns.pdsk == D_CONSISTENT && drbd_suspended(device) && ns.conn == C_CONNECTED && os.conn < C_CONNECTED &&
4421 	    test_bit(NEW_CUR_UUID, &device->flags)) {
4422 		/* Do not allow tl_restart(RESEND) for a rebooted peer. We can only allow this
4423 		   for temporal network outages! */
4424 		spin_unlock_irq(&device->resource->req_lock);
4425 		drbd_err(device, "Aborting Connect, can not thaw IO with an only Consistent peer\n");
4426 		tl_clear(peer_device->connection);
4427 		drbd_uuid_new_current(device);
4428 		clear_bit(NEW_CUR_UUID, &device->flags);
4429 		conn_request_state(peer_device->connection, NS2(conn, C_PROTOCOL_ERROR, susp, 0), CS_HARD);
4430 		return -EIO;
4431 	}
4432 	rv = _drbd_set_state(device, ns, cs_flags, NULL);
4433 	ns = drbd_read_state(device);
4434 	spin_unlock_irq(&device->resource->req_lock);
4435 
4436 	if (rv < SS_SUCCESS) {
4437 		conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4438 		return -EIO;
4439 	}
4440 
4441 	if (os.conn > C_WF_REPORT_PARAMS) {
4442 		if (ns.conn > C_CONNECTED && peer_state.conn <= C_CONNECTED &&
4443 		    peer_state.disk != D_NEGOTIATING ) {
4444 			/* we want resync, peer has not yet decided to sync... */
4445 			/* Nowadays only used when forcing a node into primary role and
4446 			   setting its disk to UpToDate with that */
4447 			drbd_send_uuids(peer_device);
4448 			drbd_send_current_state(peer_device);
4449 		}
4450 	}
4451 
4452 	clear_bit(DISCARD_MY_DATA, &device->flags);
4453 
4454 	drbd_md_sync(device); /* update connected indicator, la_size_sect, ... */
4455 
4456 	return 0;
4457 }
4458 
4459 static int receive_sync_uuid(struct drbd_connection *connection, struct packet_info *pi)
4460 {
4461 	struct drbd_peer_device *peer_device;
4462 	struct drbd_device *device;
4463 	struct p_rs_uuid *p = pi->data;
4464 
4465 	peer_device = conn_peer_device(connection, pi->vnr);
4466 	if (!peer_device)
4467 		return -EIO;
4468 	device = peer_device->device;
4469 
4470 	wait_event(device->misc_wait,
4471 		   device->state.conn == C_WF_SYNC_UUID ||
4472 		   device->state.conn == C_BEHIND ||
4473 		   device->state.conn < C_CONNECTED ||
4474 		   device->state.disk < D_NEGOTIATING);
4475 
4476 	/* D_ASSERT(device,  device->state.conn == C_WF_SYNC_UUID ); */
4477 
4478 	/* Here the _drbd_uuid_ functions are right, current should
4479 	   _not_ be rotated into the history */
4480 	if (get_ldev_if_state(device, D_NEGOTIATING)) {
4481 		_drbd_uuid_set(device, UI_CURRENT, be64_to_cpu(p->uuid));
4482 		_drbd_uuid_set(device, UI_BITMAP, 0UL);
4483 
4484 		drbd_print_uuids(device, "updated sync uuid");
4485 		drbd_start_resync(device, C_SYNC_TARGET);
4486 
4487 		put_ldev(device);
4488 	} else
4489 		drbd_err(device, "Ignoring SyncUUID packet!\n");
4490 
4491 	return 0;
4492 }
4493 
4494 /**
4495  * receive_bitmap_plain
4496  *
4497  * Return 0 when done, 1 when another iteration is needed, and a negative error
4498  * code upon failure.
4499  */
4500 static int
4501 receive_bitmap_plain(struct drbd_peer_device *peer_device, unsigned int size,
4502 		     unsigned long *p, struct bm_xfer_ctx *c)
4503 {
4504 	unsigned int data_size = DRBD_SOCKET_BUFFER_SIZE -
4505 				 drbd_header_size(peer_device->connection);
4506 	unsigned int num_words = min_t(size_t, data_size / sizeof(*p),
4507 				       c->bm_words - c->word_offset);
4508 	unsigned int want = num_words * sizeof(*p);
4509 	int err;
4510 
4511 	if (want != size) {
4512 		drbd_err(peer_device, "%s:want (%u) != size (%u)\n", __func__, want, size);
4513 		return -EIO;
4514 	}
4515 	if (want == 0)
4516 		return 0;
4517 	err = drbd_recv_all(peer_device->connection, p, want);
4518 	if (err)
4519 		return err;
4520 
4521 	drbd_bm_merge_lel(peer_device->device, c->word_offset, num_words, p);
4522 
4523 	c->word_offset += num_words;
4524 	c->bit_offset = c->word_offset * BITS_PER_LONG;
4525 	if (c->bit_offset > c->bm_bits)
4526 		c->bit_offset = c->bm_bits;
4527 
4528 	return 1;
4529 }
4530 
4531 static enum drbd_bitmap_code dcbp_get_code(struct p_compressed_bm *p)
4532 {
4533 	return (enum drbd_bitmap_code)(p->encoding & 0x0f);
4534 }
4535 
4536 static int dcbp_get_start(struct p_compressed_bm *p)
4537 {
4538 	return (p->encoding & 0x80) != 0;
4539 }
4540 
4541 static int dcbp_get_pad_bits(struct p_compressed_bm *p)
4542 {
4543 	return (p->encoding >> 4) & 0x7;
4544 }
4545 
4546 /**
4547  * recv_bm_rle_bits
4548  *
4549  * Return 0 when done, 1 when another iteration is needed, and a negative error
4550  * code upon failure.
4551  */
4552 static int
4553 recv_bm_rle_bits(struct drbd_peer_device *peer_device,
4554 		struct p_compressed_bm *p,
4555 		 struct bm_xfer_ctx *c,
4556 		 unsigned int len)
4557 {
4558 	struct bitstream bs;
4559 	u64 look_ahead;
4560 	u64 rl;
4561 	u64 tmp;
4562 	unsigned long s = c->bit_offset;
4563 	unsigned long e;
4564 	int toggle = dcbp_get_start(p);
4565 	int have;
4566 	int bits;
4567 
4568 	bitstream_init(&bs, p->code, len, dcbp_get_pad_bits(p));
4569 
4570 	bits = bitstream_get_bits(&bs, &look_ahead, 64);
4571 	if (bits < 0)
4572 		return -EIO;
4573 
4574 	for (have = bits; have > 0; s += rl, toggle = !toggle) {
4575 		bits = vli_decode_bits(&rl, look_ahead);
4576 		if (bits <= 0)
4577 			return -EIO;
4578 
4579 		if (toggle) {
4580 			e = s + rl -1;
4581 			if (e >= c->bm_bits) {
4582 				drbd_err(peer_device, "bitmap overflow (e:%lu) while decoding bm RLE packet\n", e);
4583 				return -EIO;
4584 			}
4585 			_drbd_bm_set_bits(peer_device->device, s, e);
4586 		}
4587 
4588 		if (have < bits) {
4589 			drbd_err(peer_device, "bitmap decoding error: h:%d b:%d la:0x%08llx l:%u/%u\n",
4590 				have, bits, look_ahead,
4591 				(unsigned int)(bs.cur.b - p->code),
4592 				(unsigned int)bs.buf_len);
4593 			return -EIO;
4594 		}
4595 		/* if we consumed all 64 bits, assign 0; >> 64 is "undefined"; */
4596 		if (likely(bits < 64))
4597 			look_ahead >>= bits;
4598 		else
4599 			look_ahead = 0;
4600 		have -= bits;
4601 
4602 		bits = bitstream_get_bits(&bs, &tmp, 64 - have);
4603 		if (bits < 0)
4604 			return -EIO;
4605 		look_ahead |= tmp << have;
4606 		have += bits;
4607 	}
4608 
4609 	c->bit_offset = s;
4610 	bm_xfer_ctx_bit_to_word_offset(c);
4611 
4612 	return (s != c->bm_bits);
4613 }
4614 
4615 /**
4616  * decode_bitmap_c
4617  *
4618  * Return 0 when done, 1 when another iteration is needed, and a negative error
4619  * code upon failure.
4620  */
4621 static int
4622 decode_bitmap_c(struct drbd_peer_device *peer_device,
4623 		struct p_compressed_bm *p,
4624 		struct bm_xfer_ctx *c,
4625 		unsigned int len)
4626 {
4627 	if (dcbp_get_code(p) == RLE_VLI_Bits)
4628 		return recv_bm_rle_bits(peer_device, p, c, len - sizeof(*p));
4629 
4630 	/* other variants had been implemented for evaluation,
4631 	 * but have been dropped as this one turned out to be "best"
4632 	 * during all our tests. */
4633 
4634 	drbd_err(peer_device, "receive_bitmap_c: unknown encoding %u\n", p->encoding);
4635 	conn_request_state(peer_device->connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
4636 	return -EIO;
4637 }
4638 
4639 void INFO_bm_xfer_stats(struct drbd_device *device,
4640 		const char *direction, struct bm_xfer_ctx *c)
4641 {
4642 	/* what would it take to transfer it "plaintext" */
4643 	unsigned int header_size = drbd_header_size(first_peer_device(device)->connection);
4644 	unsigned int data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
4645 	unsigned int plain =
4646 		header_size * (DIV_ROUND_UP(c->bm_words, data_size) + 1) +
4647 		c->bm_words * sizeof(unsigned long);
4648 	unsigned int total = c->bytes[0] + c->bytes[1];
4649 	unsigned int r;
4650 
4651 	/* total can not be zero. but just in case: */
4652 	if (total == 0)
4653 		return;
4654 
4655 	/* don't report if not compressed */
4656 	if (total >= plain)
4657 		return;
4658 
4659 	/* total < plain. check for overflow, still */
4660 	r = (total > UINT_MAX/1000) ? (total / (plain/1000))
4661 		                    : (1000 * total / plain);
4662 
4663 	if (r > 1000)
4664 		r = 1000;
4665 
4666 	r = 1000 - r;
4667 	drbd_info(device, "%s bitmap stats [Bytes(packets)]: plain %u(%u), RLE %u(%u), "
4668 	     "total %u; compression: %u.%u%%\n",
4669 			direction,
4670 			c->bytes[1], c->packets[1],
4671 			c->bytes[0], c->packets[0],
4672 			total, r/10, r % 10);
4673 }
4674 
4675 /* Since we are processing the bitfield from lower addresses to higher,
4676    it does not matter if the process it in 32 bit chunks or 64 bit
4677    chunks as long as it is little endian. (Understand it as byte stream,
4678    beginning with the lowest byte...) If we would use big endian
4679    we would need to process it from the highest address to the lowest,
4680    in order to be agnostic to the 32 vs 64 bits issue.
4681 
4682    returns 0 on failure, 1 if we successfully received it. */
4683 static int receive_bitmap(struct drbd_connection *connection, struct packet_info *pi)
4684 {
4685 	struct drbd_peer_device *peer_device;
4686 	struct drbd_device *device;
4687 	struct bm_xfer_ctx c;
4688 	int err;
4689 
4690 	peer_device = conn_peer_device(connection, pi->vnr);
4691 	if (!peer_device)
4692 		return -EIO;
4693 	device = peer_device->device;
4694 
4695 	drbd_bm_lock(device, "receive bitmap", BM_LOCKED_SET_ALLOWED);
4696 	/* you are supposed to send additional out-of-sync information
4697 	 * if you actually set bits during this phase */
4698 
4699 	c = (struct bm_xfer_ctx) {
4700 		.bm_bits = drbd_bm_bits(device),
4701 		.bm_words = drbd_bm_words(device),
4702 	};
4703 
4704 	for(;;) {
4705 		if (pi->cmd == P_BITMAP)
4706 			err = receive_bitmap_plain(peer_device, pi->size, pi->data, &c);
4707 		else if (pi->cmd == P_COMPRESSED_BITMAP) {
4708 			/* MAYBE: sanity check that we speak proto >= 90,
4709 			 * and the feature is enabled! */
4710 			struct p_compressed_bm *p = pi->data;
4711 
4712 			if (pi->size > DRBD_SOCKET_BUFFER_SIZE - drbd_header_size(connection)) {
4713 				drbd_err(device, "ReportCBitmap packet too large\n");
4714 				err = -EIO;
4715 				goto out;
4716 			}
4717 			if (pi->size <= sizeof(*p)) {
4718 				drbd_err(device, "ReportCBitmap packet too small (l:%u)\n", pi->size);
4719 				err = -EIO;
4720 				goto out;
4721 			}
4722 			err = drbd_recv_all(peer_device->connection, p, pi->size);
4723 			if (err)
4724 			       goto out;
4725 			err = decode_bitmap_c(peer_device, p, &c, pi->size);
4726 		} else {
4727 			drbd_warn(device, "receive_bitmap: cmd neither ReportBitMap nor ReportCBitMap (is 0x%x)", pi->cmd);
4728 			err = -EIO;
4729 			goto out;
4730 		}
4731 
4732 		c.packets[pi->cmd == P_BITMAP]++;
4733 		c.bytes[pi->cmd == P_BITMAP] += drbd_header_size(connection) + pi->size;
4734 
4735 		if (err <= 0) {
4736 			if (err < 0)
4737 				goto out;
4738 			break;
4739 		}
4740 		err = drbd_recv_header(peer_device->connection, pi);
4741 		if (err)
4742 			goto out;
4743 	}
4744 
4745 	INFO_bm_xfer_stats(device, "receive", &c);
4746 
4747 	if (device->state.conn == C_WF_BITMAP_T) {
4748 		enum drbd_state_rv rv;
4749 
4750 		err = drbd_send_bitmap(device);
4751 		if (err)
4752 			goto out;
4753 		/* Omit CS_ORDERED with this state transition to avoid deadlocks. */
4754 		rv = _drbd_request_state(device, NS(conn, C_WF_SYNC_UUID), CS_VERBOSE);
4755 		D_ASSERT(device, rv == SS_SUCCESS);
4756 	} else if (device->state.conn != C_WF_BITMAP_S) {
4757 		/* admin may have requested C_DISCONNECTING,
4758 		 * other threads may have noticed network errors */
4759 		drbd_info(device, "unexpected cstate (%s) in receive_bitmap\n",
4760 		    drbd_conn_str(device->state.conn));
4761 	}
4762 	err = 0;
4763 
4764  out:
4765 	drbd_bm_unlock(device);
4766 	if (!err && device->state.conn == C_WF_BITMAP_S)
4767 		drbd_start_resync(device, C_SYNC_SOURCE);
4768 	return err;
4769 }
4770 
4771 static int receive_skip(struct drbd_connection *connection, struct packet_info *pi)
4772 {
4773 	drbd_warn(connection, "skipping unknown optional packet type %d, l: %d!\n",
4774 		 pi->cmd, pi->size);
4775 
4776 	return ignore_remaining_packet(connection, pi);
4777 }
4778 
4779 static int receive_UnplugRemote(struct drbd_connection *connection, struct packet_info *pi)
4780 {
4781 	/* Make sure we've acked all the TCP data associated
4782 	 * with the data requests being unplugged */
4783 	drbd_tcp_quickack(connection->data.socket);
4784 
4785 	return 0;
4786 }
4787 
4788 static int receive_out_of_sync(struct drbd_connection *connection, struct packet_info *pi)
4789 {
4790 	struct drbd_peer_device *peer_device;
4791 	struct drbd_device *device;
4792 	struct p_block_desc *p = pi->data;
4793 
4794 	peer_device = conn_peer_device(connection, pi->vnr);
4795 	if (!peer_device)
4796 		return -EIO;
4797 	device = peer_device->device;
4798 
4799 	switch (device->state.conn) {
4800 	case C_WF_SYNC_UUID:
4801 	case C_WF_BITMAP_T:
4802 	case C_BEHIND:
4803 			break;
4804 	default:
4805 		drbd_err(device, "ASSERT FAILED cstate = %s, expected: WFSyncUUID|WFBitMapT|Behind\n",
4806 				drbd_conn_str(device->state.conn));
4807 	}
4808 
4809 	drbd_set_out_of_sync(device, be64_to_cpu(p->sector), be32_to_cpu(p->blksize));
4810 
4811 	return 0;
4812 }
4813 
4814 static int receive_rs_deallocated(struct drbd_connection *connection, struct packet_info *pi)
4815 {
4816 	struct drbd_peer_device *peer_device;
4817 	struct p_block_desc *p = pi->data;
4818 	struct drbd_device *device;
4819 	sector_t sector;
4820 	int size, err = 0;
4821 
4822 	peer_device = conn_peer_device(connection, pi->vnr);
4823 	if (!peer_device)
4824 		return -EIO;
4825 	device = peer_device->device;
4826 
4827 	sector = be64_to_cpu(p->sector);
4828 	size = be32_to_cpu(p->blksize);
4829 
4830 	dec_rs_pending(device);
4831 
4832 	if (get_ldev(device)) {
4833 		struct drbd_peer_request *peer_req;
4834 		const int op = REQ_OP_WRITE_ZEROES;
4835 
4836 		peer_req = drbd_alloc_peer_req(peer_device, ID_SYNCER, sector,
4837 					       size, 0, GFP_NOIO);
4838 		if (!peer_req) {
4839 			put_ldev(device);
4840 			return -ENOMEM;
4841 		}
4842 
4843 		peer_req->w.cb = e_end_resync_block;
4844 		peer_req->submit_jif = jiffies;
4845 		peer_req->flags |= EE_IS_TRIM;
4846 
4847 		spin_lock_irq(&device->resource->req_lock);
4848 		list_add_tail(&peer_req->w.list, &device->sync_ee);
4849 		spin_unlock_irq(&device->resource->req_lock);
4850 
4851 		atomic_add(pi->size >> 9, &device->rs_sect_ev);
4852 		err = drbd_submit_peer_request(device, peer_req, op, 0, DRBD_FAULT_RS_WR);
4853 
4854 		if (err) {
4855 			spin_lock_irq(&device->resource->req_lock);
4856 			list_del(&peer_req->w.list);
4857 			spin_unlock_irq(&device->resource->req_lock);
4858 
4859 			drbd_free_peer_req(device, peer_req);
4860 			put_ldev(device);
4861 			err = 0;
4862 			goto fail;
4863 		}
4864 
4865 		inc_unacked(device);
4866 
4867 		/* No put_ldev() here. Gets called in drbd_endio_write_sec_final(),
4868 		   as well as drbd_rs_complete_io() */
4869 	} else {
4870 	fail:
4871 		drbd_rs_complete_io(device, sector);
4872 		drbd_send_ack_ex(peer_device, P_NEG_ACK, sector, size, ID_SYNCER);
4873 	}
4874 
4875 	atomic_add(size >> 9, &device->rs_sect_in);
4876 
4877 	return err;
4878 }
4879 
4880 struct data_cmd {
4881 	int expect_payload;
4882 	unsigned int pkt_size;
4883 	int (*fn)(struct drbd_connection *, struct packet_info *);
4884 };
4885 
4886 static struct data_cmd drbd_cmd_handler[] = {
4887 	[P_DATA]	    = { 1, sizeof(struct p_data), receive_Data },
4888 	[P_DATA_REPLY]	    = { 1, sizeof(struct p_data), receive_DataReply },
4889 	[P_RS_DATA_REPLY]   = { 1, sizeof(struct p_data), receive_RSDataReply } ,
4890 	[P_BARRIER]	    = { 0, sizeof(struct p_barrier), receive_Barrier } ,
4891 	[P_BITMAP]	    = { 1, 0, receive_bitmap } ,
4892 	[P_COMPRESSED_BITMAP] = { 1, 0, receive_bitmap } ,
4893 	[P_UNPLUG_REMOTE]   = { 0, 0, receive_UnplugRemote },
4894 	[P_DATA_REQUEST]    = { 0, sizeof(struct p_block_req), receive_DataRequest },
4895 	[P_RS_DATA_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest },
4896 	[P_SYNC_PARAM]	    = { 1, 0, receive_SyncParam },
4897 	[P_SYNC_PARAM89]    = { 1, 0, receive_SyncParam },
4898 	[P_PROTOCOL]        = { 1, sizeof(struct p_protocol), receive_protocol },
4899 	[P_UUIDS]	    = { 0, sizeof(struct p_uuids), receive_uuids },
4900 	[P_SIZES]	    = { 0, sizeof(struct p_sizes), receive_sizes },
4901 	[P_STATE]	    = { 0, sizeof(struct p_state), receive_state },
4902 	[P_STATE_CHG_REQ]   = { 0, sizeof(struct p_req_state), receive_req_state },
4903 	[P_SYNC_UUID]       = { 0, sizeof(struct p_rs_uuid), receive_sync_uuid },
4904 	[P_OV_REQUEST]      = { 0, sizeof(struct p_block_req), receive_DataRequest },
4905 	[P_OV_REPLY]        = { 1, sizeof(struct p_block_req), receive_DataRequest },
4906 	[P_CSUM_RS_REQUEST] = { 1, sizeof(struct p_block_req), receive_DataRequest },
4907 	[P_RS_THIN_REQ]     = { 0, sizeof(struct p_block_req), receive_DataRequest },
4908 	[P_DELAY_PROBE]     = { 0, sizeof(struct p_delay_probe93), receive_skip },
4909 	[P_OUT_OF_SYNC]     = { 0, sizeof(struct p_block_desc), receive_out_of_sync },
4910 	[P_CONN_ST_CHG_REQ] = { 0, sizeof(struct p_req_state), receive_req_conn_state },
4911 	[P_PROTOCOL_UPDATE] = { 1, sizeof(struct p_protocol), receive_protocol },
4912 	[P_TRIM]	    = { 0, sizeof(struct p_trim), receive_Data },
4913 	[P_RS_DEALLOCATED]  = { 0, sizeof(struct p_block_desc), receive_rs_deallocated },
4914 	[P_WSAME]	    = { 1, sizeof(struct p_wsame), receive_Data },
4915 };
4916 
4917 static void drbdd(struct drbd_connection *connection)
4918 {
4919 	struct packet_info pi;
4920 	size_t shs; /* sub header size */
4921 	int err;
4922 
4923 	while (get_t_state(&connection->receiver) == RUNNING) {
4924 		struct data_cmd const *cmd;
4925 
4926 		drbd_thread_current_set_cpu(&connection->receiver);
4927 		update_receiver_timing_details(connection, drbd_recv_header_maybe_unplug);
4928 		if (drbd_recv_header_maybe_unplug(connection, &pi))
4929 			goto err_out;
4930 
4931 		cmd = &drbd_cmd_handler[pi.cmd];
4932 		if (unlikely(pi.cmd >= ARRAY_SIZE(drbd_cmd_handler) || !cmd->fn)) {
4933 			drbd_err(connection, "Unexpected data packet %s (0x%04x)",
4934 				 cmdname(pi.cmd), pi.cmd);
4935 			goto err_out;
4936 		}
4937 
4938 		shs = cmd->pkt_size;
4939 		if (pi.cmd == P_SIZES && connection->agreed_features & DRBD_FF_WSAME)
4940 			shs += sizeof(struct o_qlim);
4941 		if (pi.size > shs && !cmd->expect_payload) {
4942 			drbd_err(connection, "No payload expected %s l:%d\n",
4943 				 cmdname(pi.cmd), pi.size);
4944 			goto err_out;
4945 		}
4946 		if (pi.size < shs) {
4947 			drbd_err(connection, "%s: unexpected packet size, expected:%d received:%d\n",
4948 				 cmdname(pi.cmd), (int)shs, pi.size);
4949 			goto err_out;
4950 		}
4951 
4952 		if (shs) {
4953 			update_receiver_timing_details(connection, drbd_recv_all_warn);
4954 			err = drbd_recv_all_warn(connection, pi.data, shs);
4955 			if (err)
4956 				goto err_out;
4957 			pi.size -= shs;
4958 		}
4959 
4960 		update_receiver_timing_details(connection, cmd->fn);
4961 		err = cmd->fn(connection, &pi);
4962 		if (err) {
4963 			drbd_err(connection, "error receiving %s, e: %d l: %d!\n",
4964 				 cmdname(pi.cmd), err, pi.size);
4965 			goto err_out;
4966 		}
4967 	}
4968 	return;
4969 
4970     err_out:
4971 	conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
4972 }
4973 
4974 static void conn_disconnect(struct drbd_connection *connection)
4975 {
4976 	struct drbd_peer_device *peer_device;
4977 	enum drbd_conns oc;
4978 	int vnr;
4979 
4980 	if (connection->cstate == C_STANDALONE)
4981 		return;
4982 
4983 	/* We are about to start the cleanup after connection loss.
4984 	 * Make sure drbd_make_request knows about that.
4985 	 * Usually we should be in some network failure state already,
4986 	 * but just in case we are not, we fix it up here.
4987 	 */
4988 	conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD);
4989 
4990 	/* ack_receiver does not clean up anything. it must not interfere, either */
4991 	drbd_thread_stop(&connection->ack_receiver);
4992 	if (connection->ack_sender) {
4993 		destroy_workqueue(connection->ack_sender);
4994 		connection->ack_sender = NULL;
4995 	}
4996 	drbd_free_sock(connection);
4997 
4998 	rcu_read_lock();
4999 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
5000 		struct drbd_device *device = peer_device->device;
5001 		kref_get(&device->kref);
5002 		rcu_read_unlock();
5003 		drbd_disconnected(peer_device);
5004 		kref_put(&device->kref, drbd_destroy_device);
5005 		rcu_read_lock();
5006 	}
5007 	rcu_read_unlock();
5008 
5009 	if (!list_empty(&connection->current_epoch->list))
5010 		drbd_err(connection, "ASSERTION FAILED: connection->current_epoch->list not empty\n");
5011 	/* ok, no more ee's on the fly, it is safe to reset the epoch_size */
5012 	atomic_set(&connection->current_epoch->epoch_size, 0);
5013 	connection->send.seen_any_write_yet = false;
5014 
5015 	drbd_info(connection, "Connection closed\n");
5016 
5017 	if (conn_highest_role(connection) == R_PRIMARY && conn_highest_pdsk(connection) >= D_UNKNOWN)
5018 		conn_try_outdate_peer_async(connection);
5019 
5020 	spin_lock_irq(&connection->resource->req_lock);
5021 	oc = connection->cstate;
5022 	if (oc >= C_UNCONNECTED)
5023 		_conn_request_state(connection, NS(conn, C_UNCONNECTED), CS_VERBOSE);
5024 
5025 	spin_unlock_irq(&connection->resource->req_lock);
5026 
5027 	if (oc == C_DISCONNECTING)
5028 		conn_request_state(connection, NS(conn, C_STANDALONE), CS_VERBOSE | CS_HARD);
5029 }
5030 
5031 static int drbd_disconnected(struct drbd_peer_device *peer_device)
5032 {
5033 	struct drbd_device *device = peer_device->device;
5034 	unsigned int i;
5035 
5036 	/* wait for current activity to cease. */
5037 	spin_lock_irq(&device->resource->req_lock);
5038 	_drbd_wait_ee_list_empty(device, &device->active_ee);
5039 	_drbd_wait_ee_list_empty(device, &device->sync_ee);
5040 	_drbd_wait_ee_list_empty(device, &device->read_ee);
5041 	spin_unlock_irq(&device->resource->req_lock);
5042 
5043 	/* We do not have data structures that would allow us to
5044 	 * get the rs_pending_cnt down to 0 again.
5045 	 *  * On C_SYNC_TARGET we do not have any data structures describing
5046 	 *    the pending RSDataRequest's we have sent.
5047 	 *  * On C_SYNC_SOURCE there is no data structure that tracks
5048 	 *    the P_RS_DATA_REPLY blocks that we sent to the SyncTarget.
5049 	 *  And no, it is not the sum of the reference counts in the
5050 	 *  resync_LRU. The resync_LRU tracks the whole operation including
5051 	 *  the disk-IO, while the rs_pending_cnt only tracks the blocks
5052 	 *  on the fly. */
5053 	drbd_rs_cancel_all(device);
5054 	device->rs_total = 0;
5055 	device->rs_failed = 0;
5056 	atomic_set(&device->rs_pending_cnt, 0);
5057 	wake_up(&device->misc_wait);
5058 
5059 	del_timer_sync(&device->resync_timer);
5060 	resync_timer_fn(&device->resync_timer);
5061 
5062 	/* wait for all w_e_end_data_req, w_e_end_rsdata_req, w_send_barrier,
5063 	 * w_make_resync_request etc. which may still be on the worker queue
5064 	 * to be "canceled" */
5065 	drbd_flush_workqueue(&peer_device->connection->sender_work);
5066 
5067 	drbd_finish_peer_reqs(device);
5068 
5069 	/* This second workqueue flush is necessary, since drbd_finish_peer_reqs()
5070 	   might have issued a work again. The one before drbd_finish_peer_reqs() is
5071 	   necessary to reclain net_ee in drbd_finish_peer_reqs(). */
5072 	drbd_flush_workqueue(&peer_device->connection->sender_work);
5073 
5074 	/* need to do it again, drbd_finish_peer_reqs() may have populated it
5075 	 * again via drbd_try_clear_on_disk_bm(). */
5076 	drbd_rs_cancel_all(device);
5077 
5078 	kfree(device->p_uuid);
5079 	device->p_uuid = NULL;
5080 
5081 	if (!drbd_suspended(device))
5082 		tl_clear(peer_device->connection);
5083 
5084 	drbd_md_sync(device);
5085 
5086 	if (get_ldev(device)) {
5087 		drbd_bitmap_io(device, &drbd_bm_write_copy_pages,
5088 				"write from disconnected", BM_LOCKED_CHANGE_ALLOWED);
5089 		put_ldev(device);
5090 	}
5091 
5092 	/* tcp_close and release of sendpage pages can be deferred.  I don't
5093 	 * want to use SO_LINGER, because apparently it can be deferred for
5094 	 * more than 20 seconds (longest time I checked).
5095 	 *
5096 	 * Actually we don't care for exactly when the network stack does its
5097 	 * put_page(), but release our reference on these pages right here.
5098 	 */
5099 	i = drbd_free_peer_reqs(device, &device->net_ee);
5100 	if (i)
5101 		drbd_info(device, "net_ee not empty, killed %u entries\n", i);
5102 	i = atomic_read(&device->pp_in_use_by_net);
5103 	if (i)
5104 		drbd_info(device, "pp_in_use_by_net = %d, expected 0\n", i);
5105 	i = atomic_read(&device->pp_in_use);
5106 	if (i)
5107 		drbd_info(device, "pp_in_use = %d, expected 0\n", i);
5108 
5109 	D_ASSERT(device, list_empty(&device->read_ee));
5110 	D_ASSERT(device, list_empty(&device->active_ee));
5111 	D_ASSERT(device, list_empty(&device->sync_ee));
5112 	D_ASSERT(device, list_empty(&device->done_ee));
5113 
5114 	return 0;
5115 }
5116 
5117 /*
5118  * We support PRO_VERSION_MIN to PRO_VERSION_MAX. The protocol version
5119  * we can agree on is stored in agreed_pro_version.
5120  *
5121  * feature flags and the reserved array should be enough room for future
5122  * enhancements of the handshake protocol, and possible plugins...
5123  *
5124  * for now, they are expected to be zero, but ignored.
5125  */
5126 static int drbd_send_features(struct drbd_connection *connection)
5127 {
5128 	struct drbd_socket *sock;
5129 	struct p_connection_features *p;
5130 
5131 	sock = &connection->data;
5132 	p = conn_prepare_command(connection, sock);
5133 	if (!p)
5134 		return -EIO;
5135 	memset(p, 0, sizeof(*p));
5136 	p->protocol_min = cpu_to_be32(PRO_VERSION_MIN);
5137 	p->protocol_max = cpu_to_be32(PRO_VERSION_MAX);
5138 	p->feature_flags = cpu_to_be32(PRO_FEATURES);
5139 	return conn_send_command(connection, sock, P_CONNECTION_FEATURES, sizeof(*p), NULL, 0);
5140 }
5141 
5142 /*
5143  * return values:
5144  *   1 yes, we have a valid connection
5145  *   0 oops, did not work out, please try again
5146  *  -1 peer talks different language,
5147  *     no point in trying again, please go standalone.
5148  */
5149 static int drbd_do_features(struct drbd_connection *connection)
5150 {
5151 	/* ASSERT current == connection->receiver ... */
5152 	struct p_connection_features *p;
5153 	const int expect = sizeof(struct p_connection_features);
5154 	struct packet_info pi;
5155 	int err;
5156 
5157 	err = drbd_send_features(connection);
5158 	if (err)
5159 		return 0;
5160 
5161 	err = drbd_recv_header(connection, &pi);
5162 	if (err)
5163 		return 0;
5164 
5165 	if (pi.cmd != P_CONNECTION_FEATURES) {
5166 		drbd_err(connection, "expected ConnectionFeatures packet, received: %s (0x%04x)\n",
5167 			 cmdname(pi.cmd), pi.cmd);
5168 		return -1;
5169 	}
5170 
5171 	if (pi.size != expect) {
5172 		drbd_err(connection, "expected ConnectionFeatures length: %u, received: %u\n",
5173 		     expect, pi.size);
5174 		return -1;
5175 	}
5176 
5177 	p = pi.data;
5178 	err = drbd_recv_all_warn(connection, p, expect);
5179 	if (err)
5180 		return 0;
5181 
5182 	p->protocol_min = be32_to_cpu(p->protocol_min);
5183 	p->protocol_max = be32_to_cpu(p->protocol_max);
5184 	if (p->protocol_max == 0)
5185 		p->protocol_max = p->protocol_min;
5186 
5187 	if (PRO_VERSION_MAX < p->protocol_min ||
5188 	    PRO_VERSION_MIN > p->protocol_max)
5189 		goto incompat;
5190 
5191 	connection->agreed_pro_version = min_t(int, PRO_VERSION_MAX, p->protocol_max);
5192 	connection->agreed_features = PRO_FEATURES & be32_to_cpu(p->feature_flags);
5193 
5194 	drbd_info(connection, "Handshake successful: "
5195 	     "Agreed network protocol version %d\n", connection->agreed_pro_version);
5196 
5197 	drbd_info(connection, "Feature flags enabled on protocol level: 0x%x%s%s%s.\n",
5198 		  connection->agreed_features,
5199 		  connection->agreed_features & DRBD_FF_TRIM ? " TRIM" : "",
5200 		  connection->agreed_features & DRBD_FF_THIN_RESYNC ? " THIN_RESYNC" : "",
5201 		  connection->agreed_features & DRBD_FF_WSAME ? " WRITE_SAME" :
5202 		  connection->agreed_features ? "" : " none");
5203 
5204 	return 1;
5205 
5206  incompat:
5207 	drbd_err(connection, "incompatible DRBD dialects: "
5208 	    "I support %d-%d, peer supports %d-%d\n",
5209 	    PRO_VERSION_MIN, PRO_VERSION_MAX,
5210 	    p->protocol_min, p->protocol_max);
5211 	return -1;
5212 }
5213 
5214 #if !defined(CONFIG_CRYPTO_HMAC) && !defined(CONFIG_CRYPTO_HMAC_MODULE)
5215 static int drbd_do_auth(struct drbd_connection *connection)
5216 {
5217 	drbd_err(connection, "This kernel was build without CONFIG_CRYPTO_HMAC.\n");
5218 	drbd_err(connection, "You need to disable 'cram-hmac-alg' in drbd.conf.\n");
5219 	return -1;
5220 }
5221 #else
5222 #define CHALLENGE_LEN 64
5223 
5224 /* Return value:
5225 	1 - auth succeeded,
5226 	0 - failed, try again (network error),
5227 	-1 - auth failed, don't try again.
5228 */
5229 
5230 static int drbd_do_auth(struct drbd_connection *connection)
5231 {
5232 	struct drbd_socket *sock;
5233 	char my_challenge[CHALLENGE_LEN];  /* 64 Bytes... */
5234 	char *response = NULL;
5235 	char *right_response = NULL;
5236 	char *peers_ch = NULL;
5237 	unsigned int key_len;
5238 	char secret[SHARED_SECRET_MAX]; /* 64 byte */
5239 	unsigned int resp_size;
5240 	SHASH_DESC_ON_STACK(desc, connection->cram_hmac_tfm);
5241 	struct packet_info pi;
5242 	struct net_conf *nc;
5243 	int err, rv;
5244 
5245 	/* FIXME: Put the challenge/response into the preallocated socket buffer.  */
5246 
5247 	rcu_read_lock();
5248 	nc = rcu_dereference(connection->net_conf);
5249 	key_len = strlen(nc->shared_secret);
5250 	memcpy(secret, nc->shared_secret, key_len);
5251 	rcu_read_unlock();
5252 
5253 	desc->tfm = connection->cram_hmac_tfm;
5254 	desc->flags = 0;
5255 
5256 	rv = crypto_shash_setkey(connection->cram_hmac_tfm, (u8 *)secret, key_len);
5257 	if (rv) {
5258 		drbd_err(connection, "crypto_shash_setkey() failed with %d\n", rv);
5259 		rv = -1;
5260 		goto fail;
5261 	}
5262 
5263 	get_random_bytes(my_challenge, CHALLENGE_LEN);
5264 
5265 	sock = &connection->data;
5266 	if (!conn_prepare_command(connection, sock)) {
5267 		rv = 0;
5268 		goto fail;
5269 	}
5270 	rv = !conn_send_command(connection, sock, P_AUTH_CHALLENGE, 0,
5271 				my_challenge, CHALLENGE_LEN);
5272 	if (!rv)
5273 		goto fail;
5274 
5275 	err = drbd_recv_header(connection, &pi);
5276 	if (err) {
5277 		rv = 0;
5278 		goto fail;
5279 	}
5280 
5281 	if (pi.cmd != P_AUTH_CHALLENGE) {
5282 		drbd_err(connection, "expected AuthChallenge packet, received: %s (0x%04x)\n",
5283 			 cmdname(pi.cmd), pi.cmd);
5284 		rv = 0;
5285 		goto fail;
5286 	}
5287 
5288 	if (pi.size > CHALLENGE_LEN * 2) {
5289 		drbd_err(connection, "expected AuthChallenge payload too big.\n");
5290 		rv = -1;
5291 		goto fail;
5292 	}
5293 
5294 	if (pi.size < CHALLENGE_LEN) {
5295 		drbd_err(connection, "AuthChallenge payload too small.\n");
5296 		rv = -1;
5297 		goto fail;
5298 	}
5299 
5300 	peers_ch = kmalloc(pi.size, GFP_NOIO);
5301 	if (peers_ch == NULL) {
5302 		drbd_err(connection, "kmalloc of peers_ch failed\n");
5303 		rv = -1;
5304 		goto fail;
5305 	}
5306 
5307 	err = drbd_recv_all_warn(connection, peers_ch, pi.size);
5308 	if (err) {
5309 		rv = 0;
5310 		goto fail;
5311 	}
5312 
5313 	if (!memcmp(my_challenge, peers_ch, CHALLENGE_LEN)) {
5314 		drbd_err(connection, "Peer presented the same challenge!\n");
5315 		rv = -1;
5316 		goto fail;
5317 	}
5318 
5319 	resp_size = crypto_shash_digestsize(connection->cram_hmac_tfm);
5320 	response = kmalloc(resp_size, GFP_NOIO);
5321 	if (response == NULL) {
5322 		drbd_err(connection, "kmalloc of response failed\n");
5323 		rv = -1;
5324 		goto fail;
5325 	}
5326 
5327 	rv = crypto_shash_digest(desc, peers_ch, pi.size, response);
5328 	if (rv) {
5329 		drbd_err(connection, "crypto_hash_digest() failed with %d\n", rv);
5330 		rv = -1;
5331 		goto fail;
5332 	}
5333 
5334 	if (!conn_prepare_command(connection, sock)) {
5335 		rv = 0;
5336 		goto fail;
5337 	}
5338 	rv = !conn_send_command(connection, sock, P_AUTH_RESPONSE, 0,
5339 				response, resp_size);
5340 	if (!rv)
5341 		goto fail;
5342 
5343 	err = drbd_recv_header(connection, &pi);
5344 	if (err) {
5345 		rv = 0;
5346 		goto fail;
5347 	}
5348 
5349 	if (pi.cmd != P_AUTH_RESPONSE) {
5350 		drbd_err(connection, "expected AuthResponse packet, received: %s (0x%04x)\n",
5351 			 cmdname(pi.cmd), pi.cmd);
5352 		rv = 0;
5353 		goto fail;
5354 	}
5355 
5356 	if (pi.size != resp_size) {
5357 		drbd_err(connection, "expected AuthResponse payload of wrong size\n");
5358 		rv = 0;
5359 		goto fail;
5360 	}
5361 
5362 	err = drbd_recv_all_warn(connection, response , resp_size);
5363 	if (err) {
5364 		rv = 0;
5365 		goto fail;
5366 	}
5367 
5368 	right_response = kmalloc(resp_size, GFP_NOIO);
5369 	if (right_response == NULL) {
5370 		drbd_err(connection, "kmalloc of right_response failed\n");
5371 		rv = -1;
5372 		goto fail;
5373 	}
5374 
5375 	rv = crypto_shash_digest(desc, my_challenge, CHALLENGE_LEN,
5376 				 right_response);
5377 	if (rv) {
5378 		drbd_err(connection, "crypto_hash_digest() failed with %d\n", rv);
5379 		rv = -1;
5380 		goto fail;
5381 	}
5382 
5383 	rv = !memcmp(response, right_response, resp_size);
5384 
5385 	if (rv)
5386 		drbd_info(connection, "Peer authenticated using %d bytes HMAC\n",
5387 		     resp_size);
5388 	else
5389 		rv = -1;
5390 
5391  fail:
5392 	kfree(peers_ch);
5393 	kfree(response);
5394 	kfree(right_response);
5395 	shash_desc_zero(desc);
5396 
5397 	return rv;
5398 }
5399 #endif
5400 
5401 int drbd_receiver(struct drbd_thread *thi)
5402 {
5403 	struct drbd_connection *connection = thi->connection;
5404 	int h;
5405 
5406 	drbd_info(connection, "receiver (re)started\n");
5407 
5408 	do {
5409 		h = conn_connect(connection);
5410 		if (h == 0) {
5411 			conn_disconnect(connection);
5412 			schedule_timeout_interruptible(HZ);
5413 		}
5414 		if (h == -1) {
5415 			drbd_warn(connection, "Discarding network configuration.\n");
5416 			conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
5417 		}
5418 	} while (h == 0);
5419 
5420 	if (h > 0) {
5421 		blk_start_plug(&connection->receiver_plug);
5422 		drbdd(connection);
5423 		blk_finish_plug(&connection->receiver_plug);
5424 	}
5425 
5426 	conn_disconnect(connection);
5427 
5428 	drbd_info(connection, "receiver terminated\n");
5429 	return 0;
5430 }
5431 
5432 /* ********* acknowledge sender ******** */
5433 
5434 static int got_conn_RqSReply(struct drbd_connection *connection, struct packet_info *pi)
5435 {
5436 	struct p_req_state_reply *p = pi->data;
5437 	int retcode = be32_to_cpu(p->retcode);
5438 
5439 	if (retcode >= SS_SUCCESS) {
5440 		set_bit(CONN_WD_ST_CHG_OKAY, &connection->flags);
5441 	} else {
5442 		set_bit(CONN_WD_ST_CHG_FAIL, &connection->flags);
5443 		drbd_err(connection, "Requested state change failed by peer: %s (%d)\n",
5444 			 drbd_set_st_err_str(retcode), retcode);
5445 	}
5446 	wake_up(&connection->ping_wait);
5447 
5448 	return 0;
5449 }
5450 
5451 static int got_RqSReply(struct drbd_connection *connection, struct packet_info *pi)
5452 {
5453 	struct drbd_peer_device *peer_device;
5454 	struct drbd_device *device;
5455 	struct p_req_state_reply *p = pi->data;
5456 	int retcode = be32_to_cpu(p->retcode);
5457 
5458 	peer_device = conn_peer_device(connection, pi->vnr);
5459 	if (!peer_device)
5460 		return -EIO;
5461 	device = peer_device->device;
5462 
5463 	if (test_bit(CONN_WD_ST_CHG_REQ, &connection->flags)) {
5464 		D_ASSERT(device, connection->agreed_pro_version < 100);
5465 		return got_conn_RqSReply(connection, pi);
5466 	}
5467 
5468 	if (retcode >= SS_SUCCESS) {
5469 		set_bit(CL_ST_CHG_SUCCESS, &device->flags);
5470 	} else {
5471 		set_bit(CL_ST_CHG_FAIL, &device->flags);
5472 		drbd_err(device, "Requested state change failed by peer: %s (%d)\n",
5473 			drbd_set_st_err_str(retcode), retcode);
5474 	}
5475 	wake_up(&device->state_wait);
5476 
5477 	return 0;
5478 }
5479 
5480 static int got_Ping(struct drbd_connection *connection, struct packet_info *pi)
5481 {
5482 	return drbd_send_ping_ack(connection);
5483 
5484 }
5485 
5486 static int got_PingAck(struct drbd_connection *connection, struct packet_info *pi)
5487 {
5488 	/* restore idle timeout */
5489 	connection->meta.socket->sk->sk_rcvtimeo = connection->net_conf->ping_int*HZ;
5490 	if (!test_and_set_bit(GOT_PING_ACK, &connection->flags))
5491 		wake_up(&connection->ping_wait);
5492 
5493 	return 0;
5494 }
5495 
5496 static int got_IsInSync(struct drbd_connection *connection, struct packet_info *pi)
5497 {
5498 	struct drbd_peer_device *peer_device;
5499 	struct drbd_device *device;
5500 	struct p_block_ack *p = pi->data;
5501 	sector_t sector = be64_to_cpu(p->sector);
5502 	int blksize = be32_to_cpu(p->blksize);
5503 
5504 	peer_device = conn_peer_device(connection, pi->vnr);
5505 	if (!peer_device)
5506 		return -EIO;
5507 	device = peer_device->device;
5508 
5509 	D_ASSERT(device, peer_device->connection->agreed_pro_version >= 89);
5510 
5511 	update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5512 
5513 	if (get_ldev(device)) {
5514 		drbd_rs_complete_io(device, sector);
5515 		drbd_set_in_sync(device, sector, blksize);
5516 		/* rs_same_csums is supposed to count in units of BM_BLOCK_SIZE */
5517 		device->rs_same_csum += (blksize >> BM_BLOCK_SHIFT);
5518 		put_ldev(device);
5519 	}
5520 	dec_rs_pending(device);
5521 	atomic_add(blksize >> 9, &device->rs_sect_in);
5522 
5523 	return 0;
5524 }
5525 
5526 static int
5527 validate_req_change_req_state(struct drbd_device *device, u64 id, sector_t sector,
5528 			      struct rb_root *root, const char *func,
5529 			      enum drbd_req_event what, bool missing_ok)
5530 {
5531 	struct drbd_request *req;
5532 	struct bio_and_error m;
5533 
5534 	spin_lock_irq(&device->resource->req_lock);
5535 	req = find_request(device, root, id, sector, missing_ok, func);
5536 	if (unlikely(!req)) {
5537 		spin_unlock_irq(&device->resource->req_lock);
5538 		return -EIO;
5539 	}
5540 	__req_mod(req, what, &m);
5541 	spin_unlock_irq(&device->resource->req_lock);
5542 
5543 	if (m.bio)
5544 		complete_master_bio(device, &m);
5545 	return 0;
5546 }
5547 
5548 static int got_BlockAck(struct drbd_connection *connection, struct packet_info *pi)
5549 {
5550 	struct drbd_peer_device *peer_device;
5551 	struct drbd_device *device;
5552 	struct p_block_ack *p = pi->data;
5553 	sector_t sector = be64_to_cpu(p->sector);
5554 	int blksize = be32_to_cpu(p->blksize);
5555 	enum drbd_req_event what;
5556 
5557 	peer_device = conn_peer_device(connection, pi->vnr);
5558 	if (!peer_device)
5559 		return -EIO;
5560 	device = peer_device->device;
5561 
5562 	update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5563 
5564 	if (p->block_id == ID_SYNCER) {
5565 		drbd_set_in_sync(device, sector, blksize);
5566 		dec_rs_pending(device);
5567 		return 0;
5568 	}
5569 	switch (pi->cmd) {
5570 	case P_RS_WRITE_ACK:
5571 		what = WRITE_ACKED_BY_PEER_AND_SIS;
5572 		break;
5573 	case P_WRITE_ACK:
5574 		what = WRITE_ACKED_BY_PEER;
5575 		break;
5576 	case P_RECV_ACK:
5577 		what = RECV_ACKED_BY_PEER;
5578 		break;
5579 	case P_SUPERSEDED:
5580 		what = CONFLICT_RESOLVED;
5581 		break;
5582 	case P_RETRY_WRITE:
5583 		what = POSTPONE_WRITE;
5584 		break;
5585 	default:
5586 		BUG();
5587 	}
5588 
5589 	return validate_req_change_req_state(device, p->block_id, sector,
5590 					     &device->write_requests, __func__,
5591 					     what, false);
5592 }
5593 
5594 static int got_NegAck(struct drbd_connection *connection, struct packet_info *pi)
5595 {
5596 	struct drbd_peer_device *peer_device;
5597 	struct drbd_device *device;
5598 	struct p_block_ack *p = pi->data;
5599 	sector_t sector = be64_to_cpu(p->sector);
5600 	int size = be32_to_cpu(p->blksize);
5601 	int err;
5602 
5603 	peer_device = conn_peer_device(connection, pi->vnr);
5604 	if (!peer_device)
5605 		return -EIO;
5606 	device = peer_device->device;
5607 
5608 	update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5609 
5610 	if (p->block_id == ID_SYNCER) {
5611 		dec_rs_pending(device);
5612 		drbd_rs_failed_io(device, sector, size);
5613 		return 0;
5614 	}
5615 
5616 	err = validate_req_change_req_state(device, p->block_id, sector,
5617 					    &device->write_requests, __func__,
5618 					    NEG_ACKED, true);
5619 	if (err) {
5620 		/* Protocol A has no P_WRITE_ACKs, but has P_NEG_ACKs.
5621 		   The master bio might already be completed, therefore the
5622 		   request is no longer in the collision hash. */
5623 		/* In Protocol B we might already have got a P_RECV_ACK
5624 		   but then get a P_NEG_ACK afterwards. */
5625 		drbd_set_out_of_sync(device, sector, size);
5626 	}
5627 	return 0;
5628 }
5629 
5630 static int got_NegDReply(struct drbd_connection *connection, struct packet_info *pi)
5631 {
5632 	struct drbd_peer_device *peer_device;
5633 	struct drbd_device *device;
5634 	struct p_block_ack *p = pi->data;
5635 	sector_t sector = be64_to_cpu(p->sector);
5636 
5637 	peer_device = conn_peer_device(connection, pi->vnr);
5638 	if (!peer_device)
5639 		return -EIO;
5640 	device = peer_device->device;
5641 
5642 	update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5643 
5644 	drbd_err(device, "Got NegDReply; Sector %llus, len %u.\n",
5645 	    (unsigned long long)sector, be32_to_cpu(p->blksize));
5646 
5647 	return validate_req_change_req_state(device, p->block_id, sector,
5648 					     &device->read_requests, __func__,
5649 					     NEG_ACKED, false);
5650 }
5651 
5652 static int got_NegRSDReply(struct drbd_connection *connection, struct packet_info *pi)
5653 {
5654 	struct drbd_peer_device *peer_device;
5655 	struct drbd_device *device;
5656 	sector_t sector;
5657 	int size;
5658 	struct p_block_ack *p = pi->data;
5659 
5660 	peer_device = conn_peer_device(connection, pi->vnr);
5661 	if (!peer_device)
5662 		return -EIO;
5663 	device = peer_device->device;
5664 
5665 	sector = be64_to_cpu(p->sector);
5666 	size = be32_to_cpu(p->blksize);
5667 
5668 	update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5669 
5670 	dec_rs_pending(device);
5671 
5672 	if (get_ldev_if_state(device, D_FAILED)) {
5673 		drbd_rs_complete_io(device, sector);
5674 		switch (pi->cmd) {
5675 		case P_NEG_RS_DREPLY:
5676 			drbd_rs_failed_io(device, sector, size);
5677 		case P_RS_CANCEL:
5678 			break;
5679 		default:
5680 			BUG();
5681 		}
5682 		put_ldev(device);
5683 	}
5684 
5685 	return 0;
5686 }
5687 
5688 static int got_BarrierAck(struct drbd_connection *connection, struct packet_info *pi)
5689 {
5690 	struct p_barrier_ack *p = pi->data;
5691 	struct drbd_peer_device *peer_device;
5692 	int vnr;
5693 
5694 	tl_release(connection, p->barrier, be32_to_cpu(p->set_size));
5695 
5696 	rcu_read_lock();
5697 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
5698 		struct drbd_device *device = peer_device->device;
5699 
5700 		if (device->state.conn == C_AHEAD &&
5701 		    atomic_read(&device->ap_in_flight) == 0 &&
5702 		    !test_and_set_bit(AHEAD_TO_SYNC_SOURCE, &device->flags)) {
5703 			device->start_resync_timer.expires = jiffies + HZ;
5704 			add_timer(&device->start_resync_timer);
5705 		}
5706 	}
5707 	rcu_read_unlock();
5708 
5709 	return 0;
5710 }
5711 
5712 static int got_OVResult(struct drbd_connection *connection, struct packet_info *pi)
5713 {
5714 	struct drbd_peer_device *peer_device;
5715 	struct drbd_device *device;
5716 	struct p_block_ack *p = pi->data;
5717 	struct drbd_device_work *dw;
5718 	sector_t sector;
5719 	int size;
5720 
5721 	peer_device = conn_peer_device(connection, pi->vnr);
5722 	if (!peer_device)
5723 		return -EIO;
5724 	device = peer_device->device;
5725 
5726 	sector = be64_to_cpu(p->sector);
5727 	size = be32_to_cpu(p->blksize);
5728 
5729 	update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5730 
5731 	if (be64_to_cpu(p->block_id) == ID_OUT_OF_SYNC)
5732 		drbd_ov_out_of_sync_found(device, sector, size);
5733 	else
5734 		ov_out_of_sync_print(device);
5735 
5736 	if (!get_ldev(device))
5737 		return 0;
5738 
5739 	drbd_rs_complete_io(device, sector);
5740 	dec_rs_pending(device);
5741 
5742 	--device->ov_left;
5743 
5744 	/* let's advance progress step marks only for every other megabyte */
5745 	if ((device->ov_left & 0x200) == 0x200)
5746 		drbd_advance_rs_marks(device, device->ov_left);
5747 
5748 	if (device->ov_left == 0) {
5749 		dw = kmalloc(sizeof(*dw), GFP_NOIO);
5750 		if (dw) {
5751 			dw->w.cb = w_ov_finished;
5752 			dw->device = device;
5753 			drbd_queue_work(&peer_device->connection->sender_work, &dw->w);
5754 		} else {
5755 			drbd_err(device, "kmalloc(dw) failed.");
5756 			ov_out_of_sync_print(device);
5757 			drbd_resync_finished(device);
5758 		}
5759 	}
5760 	put_ldev(device);
5761 	return 0;
5762 }
5763 
5764 static int got_skip(struct drbd_connection *connection, struct packet_info *pi)
5765 {
5766 	return 0;
5767 }
5768 
5769 struct meta_sock_cmd {
5770 	size_t pkt_size;
5771 	int (*fn)(struct drbd_connection *connection, struct packet_info *);
5772 };
5773 
5774 static void set_rcvtimeo(struct drbd_connection *connection, bool ping_timeout)
5775 {
5776 	long t;
5777 	struct net_conf *nc;
5778 
5779 	rcu_read_lock();
5780 	nc = rcu_dereference(connection->net_conf);
5781 	t = ping_timeout ? nc->ping_timeo : nc->ping_int;
5782 	rcu_read_unlock();
5783 
5784 	t *= HZ;
5785 	if (ping_timeout)
5786 		t /= 10;
5787 
5788 	connection->meta.socket->sk->sk_rcvtimeo = t;
5789 }
5790 
5791 static void set_ping_timeout(struct drbd_connection *connection)
5792 {
5793 	set_rcvtimeo(connection, 1);
5794 }
5795 
5796 static void set_idle_timeout(struct drbd_connection *connection)
5797 {
5798 	set_rcvtimeo(connection, 0);
5799 }
5800 
5801 static struct meta_sock_cmd ack_receiver_tbl[] = {
5802 	[P_PING]	    = { 0, got_Ping },
5803 	[P_PING_ACK]	    = { 0, got_PingAck },
5804 	[P_RECV_ACK]	    = { sizeof(struct p_block_ack), got_BlockAck },
5805 	[P_WRITE_ACK]	    = { sizeof(struct p_block_ack), got_BlockAck },
5806 	[P_RS_WRITE_ACK]    = { sizeof(struct p_block_ack), got_BlockAck },
5807 	[P_SUPERSEDED]   = { sizeof(struct p_block_ack), got_BlockAck },
5808 	[P_NEG_ACK]	    = { sizeof(struct p_block_ack), got_NegAck },
5809 	[P_NEG_DREPLY]	    = { sizeof(struct p_block_ack), got_NegDReply },
5810 	[P_NEG_RS_DREPLY]   = { sizeof(struct p_block_ack), got_NegRSDReply },
5811 	[P_OV_RESULT]	    = { sizeof(struct p_block_ack), got_OVResult },
5812 	[P_BARRIER_ACK]	    = { sizeof(struct p_barrier_ack), got_BarrierAck },
5813 	[P_STATE_CHG_REPLY] = { sizeof(struct p_req_state_reply), got_RqSReply },
5814 	[P_RS_IS_IN_SYNC]   = { sizeof(struct p_block_ack), got_IsInSync },
5815 	[P_DELAY_PROBE]     = { sizeof(struct p_delay_probe93), got_skip },
5816 	[P_RS_CANCEL]       = { sizeof(struct p_block_ack), got_NegRSDReply },
5817 	[P_CONN_ST_CHG_REPLY]={ sizeof(struct p_req_state_reply), got_conn_RqSReply },
5818 	[P_RETRY_WRITE]	    = { sizeof(struct p_block_ack), got_BlockAck },
5819 };
5820 
5821 int drbd_ack_receiver(struct drbd_thread *thi)
5822 {
5823 	struct drbd_connection *connection = thi->connection;
5824 	struct meta_sock_cmd *cmd = NULL;
5825 	struct packet_info pi;
5826 	unsigned long pre_recv_jif;
5827 	int rv;
5828 	void *buf    = connection->meta.rbuf;
5829 	int received = 0;
5830 	unsigned int header_size = drbd_header_size(connection);
5831 	int expect   = header_size;
5832 	bool ping_timeout_active = false;
5833 	struct sched_param param = { .sched_priority = 2 };
5834 
5835 	rv = sched_setscheduler(current, SCHED_RR, &param);
5836 	if (rv < 0)
5837 		drbd_err(connection, "drbd_ack_receiver: ERROR set priority, ret=%d\n", rv);
5838 
5839 	while (get_t_state(thi) == RUNNING) {
5840 		drbd_thread_current_set_cpu(thi);
5841 
5842 		conn_reclaim_net_peer_reqs(connection);
5843 
5844 		if (test_and_clear_bit(SEND_PING, &connection->flags)) {
5845 			if (drbd_send_ping(connection)) {
5846 				drbd_err(connection, "drbd_send_ping has failed\n");
5847 				goto reconnect;
5848 			}
5849 			set_ping_timeout(connection);
5850 			ping_timeout_active = true;
5851 		}
5852 
5853 		pre_recv_jif = jiffies;
5854 		rv = drbd_recv_short(connection->meta.socket, buf, expect-received, 0);
5855 
5856 		/* Note:
5857 		 * -EINTR	 (on meta) we got a signal
5858 		 * -EAGAIN	 (on meta) rcvtimeo expired
5859 		 * -ECONNRESET	 other side closed the connection
5860 		 * -ERESTARTSYS  (on data) we got a signal
5861 		 * rv <  0	 other than above: unexpected error!
5862 		 * rv == expected: full header or command
5863 		 * rv <  expected: "woken" by signal during receive
5864 		 * rv == 0	 : "connection shut down by peer"
5865 		 */
5866 		if (likely(rv > 0)) {
5867 			received += rv;
5868 			buf	 += rv;
5869 		} else if (rv == 0) {
5870 			if (test_bit(DISCONNECT_SENT, &connection->flags)) {
5871 				long t;
5872 				rcu_read_lock();
5873 				t = rcu_dereference(connection->net_conf)->ping_timeo * HZ/10;
5874 				rcu_read_unlock();
5875 
5876 				t = wait_event_timeout(connection->ping_wait,
5877 						       connection->cstate < C_WF_REPORT_PARAMS,
5878 						       t);
5879 				if (t)
5880 					break;
5881 			}
5882 			drbd_err(connection, "meta connection shut down by peer.\n");
5883 			goto reconnect;
5884 		} else if (rv == -EAGAIN) {
5885 			/* If the data socket received something meanwhile,
5886 			 * that is good enough: peer is still alive. */
5887 			if (time_after(connection->last_received, pre_recv_jif))
5888 				continue;
5889 			if (ping_timeout_active) {
5890 				drbd_err(connection, "PingAck did not arrive in time.\n");
5891 				goto reconnect;
5892 			}
5893 			set_bit(SEND_PING, &connection->flags);
5894 			continue;
5895 		} else if (rv == -EINTR) {
5896 			/* maybe drbd_thread_stop(): the while condition will notice.
5897 			 * maybe woken for send_ping: we'll send a ping above,
5898 			 * and change the rcvtimeo */
5899 			flush_signals(current);
5900 			continue;
5901 		} else {
5902 			drbd_err(connection, "sock_recvmsg returned %d\n", rv);
5903 			goto reconnect;
5904 		}
5905 
5906 		if (received == expect && cmd == NULL) {
5907 			if (decode_header(connection, connection->meta.rbuf, &pi))
5908 				goto reconnect;
5909 			cmd = &ack_receiver_tbl[pi.cmd];
5910 			if (pi.cmd >= ARRAY_SIZE(ack_receiver_tbl) || !cmd->fn) {
5911 				drbd_err(connection, "Unexpected meta packet %s (0x%04x)\n",
5912 					 cmdname(pi.cmd), pi.cmd);
5913 				goto disconnect;
5914 			}
5915 			expect = header_size + cmd->pkt_size;
5916 			if (pi.size != expect - header_size) {
5917 				drbd_err(connection, "Wrong packet size on meta (c: %d, l: %d)\n",
5918 					pi.cmd, pi.size);
5919 				goto reconnect;
5920 			}
5921 		}
5922 		if (received == expect) {
5923 			bool err;
5924 
5925 			err = cmd->fn(connection, &pi);
5926 			if (err) {
5927 				drbd_err(connection, "%pf failed\n", cmd->fn);
5928 				goto reconnect;
5929 			}
5930 
5931 			connection->last_received = jiffies;
5932 
5933 			if (cmd == &ack_receiver_tbl[P_PING_ACK]) {
5934 				set_idle_timeout(connection);
5935 				ping_timeout_active = false;
5936 			}
5937 
5938 			buf	 = connection->meta.rbuf;
5939 			received = 0;
5940 			expect	 = header_size;
5941 			cmd	 = NULL;
5942 		}
5943 	}
5944 
5945 	if (0) {
5946 reconnect:
5947 		conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD);
5948 		conn_md_sync(connection);
5949 	}
5950 	if (0) {
5951 disconnect:
5952 		conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
5953 	}
5954 
5955 	drbd_info(connection, "ack_receiver terminated\n");
5956 
5957 	return 0;
5958 }
5959 
5960 void drbd_send_acks_wf(struct work_struct *ws)
5961 {
5962 	struct drbd_peer_device *peer_device =
5963 		container_of(ws, struct drbd_peer_device, send_acks_work);
5964 	struct drbd_connection *connection = peer_device->connection;
5965 	struct drbd_device *device = peer_device->device;
5966 	struct net_conf *nc;
5967 	int tcp_cork, err;
5968 
5969 	rcu_read_lock();
5970 	nc = rcu_dereference(connection->net_conf);
5971 	tcp_cork = nc->tcp_cork;
5972 	rcu_read_unlock();
5973 
5974 	if (tcp_cork)
5975 		drbd_tcp_cork(connection->meta.socket);
5976 
5977 	err = drbd_finish_peer_reqs(device);
5978 	kref_put(&device->kref, drbd_destroy_device);
5979 	/* get is in drbd_endio_write_sec_final(). That is necessary to keep the
5980 	   struct work_struct send_acks_work alive, which is in the peer_device object */
5981 
5982 	if (err) {
5983 		conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD);
5984 		return;
5985 	}
5986 
5987 	if (tcp_cork)
5988 		drbd_tcp_uncork(connection->meta.socket);
5989 
5990 	return;
5991 }
5992