xref: /openbmc/linux/drivers/block/drbd/drbd_receiver.c (revision b4bc93bd76d4da32600795cd323c971f00a2e788)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3    drbd_receiver.c
4 
5    This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
6 
7    Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
8    Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
9    Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
10 
11  */
12 
13 
14 #include <linux/module.h>
15 
16 #include <linux/uaccess.h>
17 #include <net/sock.h>
18 
19 #include <linux/drbd.h>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/in.h>
23 #include <linux/mm.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/slab.h>
27 #include <uapi/linux/sched/types.h>
28 #include <linux/sched/signal.h>
29 #include <linux/pkt_sched.h>
30 #define __KERNEL_SYSCALLS__
31 #include <linux/unistd.h>
32 #include <linux/vmalloc.h>
33 #include <linux/random.h>
34 #include <linux/string.h>
35 #include <linux/scatterlist.h>
36 #include <linux/part_stat.h>
37 #include "drbd_int.h"
38 #include "drbd_protocol.h"
39 #include "drbd_req.h"
40 #include "drbd_vli.h"
41 
42 #define PRO_FEATURES (DRBD_FF_TRIM|DRBD_FF_THIN_RESYNC|DRBD_FF_WSAME|DRBD_FF_WZEROES)
43 
44 struct packet_info {
45 	enum drbd_packet cmd;
46 	unsigned int size;
47 	unsigned int vnr;
48 	void *data;
49 };
50 
51 enum finish_epoch {
52 	FE_STILL_LIVE,
53 	FE_DESTROYED,
54 	FE_RECYCLED,
55 };
56 
57 static int drbd_do_features(struct drbd_connection *connection);
58 static int drbd_do_auth(struct drbd_connection *connection);
59 static int drbd_disconnected(struct drbd_peer_device *);
60 static void conn_wait_active_ee_empty(struct drbd_connection *connection);
61 static enum finish_epoch drbd_may_finish_epoch(struct drbd_connection *, struct drbd_epoch *, enum epoch_event);
62 static int e_end_block(struct drbd_work *, int);
63 
64 
65 #define GFP_TRY	(__GFP_HIGHMEM | __GFP_NOWARN)
66 
67 /*
68  * some helper functions to deal with single linked page lists,
69  * page->private being our "next" pointer.
70  */
71 
72 /* If at least n pages are linked at head, get n pages off.
73  * Otherwise, don't modify head, and return NULL.
74  * Locking is the responsibility of the caller.
75  */
76 static struct page *page_chain_del(struct page **head, int n)
77 {
78 	struct page *page;
79 	struct page *tmp;
80 
81 	BUG_ON(!n);
82 	BUG_ON(!head);
83 
84 	page = *head;
85 
86 	if (!page)
87 		return NULL;
88 
89 	while (page) {
90 		tmp = page_chain_next(page);
91 		if (--n == 0)
92 			break; /* found sufficient pages */
93 		if (tmp == NULL)
94 			/* insufficient pages, don't use any of them. */
95 			return NULL;
96 		page = tmp;
97 	}
98 
99 	/* add end of list marker for the returned list */
100 	set_page_private(page, 0);
101 	/* actual return value, and adjustment of head */
102 	page = *head;
103 	*head = tmp;
104 	return page;
105 }
106 
107 /* may be used outside of locks to find the tail of a (usually short)
108  * "private" page chain, before adding it back to a global chain head
109  * with page_chain_add() under a spinlock. */
110 static struct page *page_chain_tail(struct page *page, int *len)
111 {
112 	struct page *tmp;
113 	int i = 1;
114 	while ((tmp = page_chain_next(page))) {
115 		++i;
116 		page = tmp;
117 	}
118 	if (len)
119 		*len = i;
120 	return page;
121 }
122 
123 static int page_chain_free(struct page *page)
124 {
125 	struct page *tmp;
126 	int i = 0;
127 	page_chain_for_each_safe(page, tmp) {
128 		put_page(page);
129 		++i;
130 	}
131 	return i;
132 }
133 
134 static void page_chain_add(struct page **head,
135 		struct page *chain_first, struct page *chain_last)
136 {
137 #if 1
138 	struct page *tmp;
139 	tmp = page_chain_tail(chain_first, NULL);
140 	BUG_ON(tmp != chain_last);
141 #endif
142 
143 	/* add chain to head */
144 	set_page_private(chain_last, (unsigned long)*head);
145 	*head = chain_first;
146 }
147 
148 static struct page *__drbd_alloc_pages(struct drbd_device *device,
149 				       unsigned int number)
150 {
151 	struct page *page = NULL;
152 	struct page *tmp = NULL;
153 	unsigned int i = 0;
154 
155 	/* Yes, testing drbd_pp_vacant outside the lock is racy.
156 	 * So what. It saves a spin_lock. */
157 	if (drbd_pp_vacant >= number) {
158 		spin_lock(&drbd_pp_lock);
159 		page = page_chain_del(&drbd_pp_pool, number);
160 		if (page)
161 			drbd_pp_vacant -= number;
162 		spin_unlock(&drbd_pp_lock);
163 		if (page)
164 			return page;
165 	}
166 
167 	/* GFP_TRY, because we must not cause arbitrary write-out: in a DRBD
168 	 * "criss-cross" setup, that might cause write-out on some other DRBD,
169 	 * which in turn might block on the other node at this very place.  */
170 	for (i = 0; i < number; i++) {
171 		tmp = alloc_page(GFP_TRY);
172 		if (!tmp)
173 			break;
174 		set_page_private(tmp, (unsigned long)page);
175 		page = tmp;
176 	}
177 
178 	if (i == number)
179 		return page;
180 
181 	/* Not enough pages immediately available this time.
182 	 * No need to jump around here, drbd_alloc_pages will retry this
183 	 * function "soon". */
184 	if (page) {
185 		tmp = page_chain_tail(page, NULL);
186 		spin_lock(&drbd_pp_lock);
187 		page_chain_add(&drbd_pp_pool, page, tmp);
188 		drbd_pp_vacant += i;
189 		spin_unlock(&drbd_pp_lock);
190 	}
191 	return NULL;
192 }
193 
194 static void reclaim_finished_net_peer_reqs(struct drbd_device *device,
195 					   struct list_head *to_be_freed)
196 {
197 	struct drbd_peer_request *peer_req, *tmp;
198 
199 	/* The EEs are always appended to the end of the list. Since
200 	   they are sent in order over the wire, they have to finish
201 	   in order. As soon as we see the first not finished we can
202 	   stop to examine the list... */
203 
204 	list_for_each_entry_safe(peer_req, tmp, &device->net_ee, w.list) {
205 		if (drbd_peer_req_has_active_page(peer_req))
206 			break;
207 		list_move(&peer_req->w.list, to_be_freed);
208 	}
209 }
210 
211 static void drbd_reclaim_net_peer_reqs(struct drbd_device *device)
212 {
213 	LIST_HEAD(reclaimed);
214 	struct drbd_peer_request *peer_req, *t;
215 
216 	spin_lock_irq(&device->resource->req_lock);
217 	reclaim_finished_net_peer_reqs(device, &reclaimed);
218 	spin_unlock_irq(&device->resource->req_lock);
219 	list_for_each_entry_safe(peer_req, t, &reclaimed, w.list)
220 		drbd_free_net_peer_req(device, peer_req);
221 }
222 
223 static void conn_reclaim_net_peer_reqs(struct drbd_connection *connection)
224 {
225 	struct drbd_peer_device *peer_device;
226 	int vnr;
227 
228 	rcu_read_lock();
229 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
230 		struct drbd_device *device = peer_device->device;
231 		if (!atomic_read(&device->pp_in_use_by_net))
232 			continue;
233 
234 		kref_get(&device->kref);
235 		rcu_read_unlock();
236 		drbd_reclaim_net_peer_reqs(device);
237 		kref_put(&device->kref, drbd_destroy_device);
238 		rcu_read_lock();
239 	}
240 	rcu_read_unlock();
241 }
242 
243 /**
244  * drbd_alloc_pages() - Returns @number pages, retries forever (or until signalled)
245  * @peer_device:	DRBD device.
246  * @number:		number of pages requested
247  * @retry:		whether to retry, if not enough pages are available right now
248  *
249  * Tries to allocate number pages, first from our own page pool, then from
250  * the kernel.
251  * Possibly retry until DRBD frees sufficient pages somewhere else.
252  *
253  * If this allocation would exceed the max_buffers setting, we throttle
254  * allocation (schedule_timeout) to give the system some room to breathe.
255  *
256  * We do not use max-buffers as hard limit, because it could lead to
257  * congestion and further to a distributed deadlock during online-verify or
258  * (checksum based) resync, if the max-buffers, socket buffer sizes and
259  * resync-rate settings are mis-configured.
260  *
261  * Returns a page chain linked via page->private.
262  */
263 struct page *drbd_alloc_pages(struct drbd_peer_device *peer_device, unsigned int number,
264 			      bool retry)
265 {
266 	struct drbd_device *device = peer_device->device;
267 	struct page *page = NULL;
268 	struct net_conf *nc;
269 	DEFINE_WAIT(wait);
270 	unsigned int mxb;
271 
272 	rcu_read_lock();
273 	nc = rcu_dereference(peer_device->connection->net_conf);
274 	mxb = nc ? nc->max_buffers : 1000000;
275 	rcu_read_unlock();
276 
277 	if (atomic_read(&device->pp_in_use) < mxb)
278 		page = __drbd_alloc_pages(device, number);
279 
280 	/* Try to keep the fast path fast, but occasionally we need
281 	 * to reclaim the pages we lended to the network stack. */
282 	if (page && atomic_read(&device->pp_in_use_by_net) > 512)
283 		drbd_reclaim_net_peer_reqs(device);
284 
285 	while (page == NULL) {
286 		prepare_to_wait(&drbd_pp_wait, &wait, TASK_INTERRUPTIBLE);
287 
288 		drbd_reclaim_net_peer_reqs(device);
289 
290 		if (atomic_read(&device->pp_in_use) < mxb) {
291 			page = __drbd_alloc_pages(device, number);
292 			if (page)
293 				break;
294 		}
295 
296 		if (!retry)
297 			break;
298 
299 		if (signal_pending(current)) {
300 			drbd_warn(device, "drbd_alloc_pages interrupted!\n");
301 			break;
302 		}
303 
304 		if (schedule_timeout(HZ/10) == 0)
305 			mxb = UINT_MAX;
306 	}
307 	finish_wait(&drbd_pp_wait, &wait);
308 
309 	if (page)
310 		atomic_add(number, &device->pp_in_use);
311 	return page;
312 }
313 
314 /* Must not be used from irq, as that may deadlock: see drbd_alloc_pages.
315  * Is also used from inside an other spin_lock_irq(&resource->req_lock);
316  * Either links the page chain back to the global pool,
317  * or returns all pages to the system. */
318 static void drbd_free_pages(struct drbd_device *device, struct page *page, int is_net)
319 {
320 	atomic_t *a = is_net ? &device->pp_in_use_by_net : &device->pp_in_use;
321 	int i;
322 
323 	if (page == NULL)
324 		return;
325 
326 	if (drbd_pp_vacant > (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * drbd_minor_count)
327 		i = page_chain_free(page);
328 	else {
329 		struct page *tmp;
330 		tmp = page_chain_tail(page, &i);
331 		spin_lock(&drbd_pp_lock);
332 		page_chain_add(&drbd_pp_pool, page, tmp);
333 		drbd_pp_vacant += i;
334 		spin_unlock(&drbd_pp_lock);
335 	}
336 	i = atomic_sub_return(i, a);
337 	if (i < 0)
338 		drbd_warn(device, "ASSERTION FAILED: %s: %d < 0\n",
339 			is_net ? "pp_in_use_by_net" : "pp_in_use", i);
340 	wake_up(&drbd_pp_wait);
341 }
342 
343 /*
344 You need to hold the req_lock:
345  _drbd_wait_ee_list_empty()
346 
347 You must not have the req_lock:
348  drbd_free_peer_req()
349  drbd_alloc_peer_req()
350  drbd_free_peer_reqs()
351  drbd_ee_fix_bhs()
352  drbd_finish_peer_reqs()
353  drbd_clear_done_ee()
354  drbd_wait_ee_list_empty()
355 */
356 
357 /* normal: payload_size == request size (bi_size)
358  * w_same: payload_size == logical_block_size
359  * trim: payload_size == 0 */
360 struct drbd_peer_request *
361 drbd_alloc_peer_req(struct drbd_peer_device *peer_device, u64 id, sector_t sector,
362 		    unsigned int request_size, unsigned int payload_size, gfp_t gfp_mask) __must_hold(local)
363 {
364 	struct drbd_device *device = peer_device->device;
365 	struct drbd_peer_request *peer_req;
366 	struct page *page = NULL;
367 	unsigned nr_pages = (payload_size + PAGE_SIZE -1) >> PAGE_SHIFT;
368 
369 	if (drbd_insert_fault(device, DRBD_FAULT_AL_EE))
370 		return NULL;
371 
372 	peer_req = mempool_alloc(&drbd_ee_mempool, gfp_mask & ~__GFP_HIGHMEM);
373 	if (!peer_req) {
374 		if (!(gfp_mask & __GFP_NOWARN))
375 			drbd_err(device, "%s: allocation failed\n", __func__);
376 		return NULL;
377 	}
378 
379 	if (nr_pages) {
380 		page = drbd_alloc_pages(peer_device, nr_pages,
381 					gfpflags_allow_blocking(gfp_mask));
382 		if (!page)
383 			goto fail;
384 	}
385 
386 	memset(peer_req, 0, sizeof(*peer_req));
387 	INIT_LIST_HEAD(&peer_req->w.list);
388 	drbd_clear_interval(&peer_req->i);
389 	peer_req->i.size = request_size;
390 	peer_req->i.sector = sector;
391 	peer_req->submit_jif = jiffies;
392 	peer_req->peer_device = peer_device;
393 	peer_req->pages = page;
394 	/*
395 	 * The block_id is opaque to the receiver.  It is not endianness
396 	 * converted, and sent back to the sender unchanged.
397 	 */
398 	peer_req->block_id = id;
399 
400 	return peer_req;
401 
402  fail:
403 	mempool_free(peer_req, &drbd_ee_mempool);
404 	return NULL;
405 }
406 
407 void __drbd_free_peer_req(struct drbd_device *device, struct drbd_peer_request *peer_req,
408 		       int is_net)
409 {
410 	might_sleep();
411 	if (peer_req->flags & EE_HAS_DIGEST)
412 		kfree(peer_req->digest);
413 	drbd_free_pages(device, peer_req->pages, is_net);
414 	D_ASSERT(device, atomic_read(&peer_req->pending_bios) == 0);
415 	D_ASSERT(device, drbd_interval_empty(&peer_req->i));
416 	if (!expect(!(peer_req->flags & EE_CALL_AL_COMPLETE_IO))) {
417 		peer_req->flags &= ~EE_CALL_AL_COMPLETE_IO;
418 		drbd_al_complete_io(device, &peer_req->i);
419 	}
420 	mempool_free(peer_req, &drbd_ee_mempool);
421 }
422 
423 int drbd_free_peer_reqs(struct drbd_device *device, struct list_head *list)
424 {
425 	LIST_HEAD(work_list);
426 	struct drbd_peer_request *peer_req, *t;
427 	int count = 0;
428 	int is_net = list == &device->net_ee;
429 
430 	spin_lock_irq(&device->resource->req_lock);
431 	list_splice_init(list, &work_list);
432 	spin_unlock_irq(&device->resource->req_lock);
433 
434 	list_for_each_entry_safe(peer_req, t, &work_list, w.list) {
435 		__drbd_free_peer_req(device, peer_req, is_net);
436 		count++;
437 	}
438 	return count;
439 }
440 
441 /*
442  * See also comments in _req_mod(,BARRIER_ACKED) and receive_Barrier.
443  */
444 static int drbd_finish_peer_reqs(struct drbd_device *device)
445 {
446 	LIST_HEAD(work_list);
447 	LIST_HEAD(reclaimed);
448 	struct drbd_peer_request *peer_req, *t;
449 	int err = 0;
450 
451 	spin_lock_irq(&device->resource->req_lock);
452 	reclaim_finished_net_peer_reqs(device, &reclaimed);
453 	list_splice_init(&device->done_ee, &work_list);
454 	spin_unlock_irq(&device->resource->req_lock);
455 
456 	list_for_each_entry_safe(peer_req, t, &reclaimed, w.list)
457 		drbd_free_net_peer_req(device, peer_req);
458 
459 	/* possible callbacks here:
460 	 * e_end_block, and e_end_resync_block, e_send_superseded.
461 	 * all ignore the last argument.
462 	 */
463 	list_for_each_entry_safe(peer_req, t, &work_list, w.list) {
464 		int err2;
465 
466 		/* list_del not necessary, next/prev members not touched */
467 		err2 = peer_req->w.cb(&peer_req->w, !!err);
468 		if (!err)
469 			err = err2;
470 		drbd_free_peer_req(device, peer_req);
471 	}
472 	wake_up(&device->ee_wait);
473 
474 	return err;
475 }
476 
477 static void _drbd_wait_ee_list_empty(struct drbd_device *device,
478 				     struct list_head *head)
479 {
480 	DEFINE_WAIT(wait);
481 
482 	/* avoids spin_lock/unlock
483 	 * and calling prepare_to_wait in the fast path */
484 	while (!list_empty(head)) {
485 		prepare_to_wait(&device->ee_wait, &wait, TASK_UNINTERRUPTIBLE);
486 		spin_unlock_irq(&device->resource->req_lock);
487 		io_schedule();
488 		finish_wait(&device->ee_wait, &wait);
489 		spin_lock_irq(&device->resource->req_lock);
490 	}
491 }
492 
493 static void drbd_wait_ee_list_empty(struct drbd_device *device,
494 				    struct list_head *head)
495 {
496 	spin_lock_irq(&device->resource->req_lock);
497 	_drbd_wait_ee_list_empty(device, head);
498 	spin_unlock_irq(&device->resource->req_lock);
499 }
500 
501 static int drbd_recv_short(struct socket *sock, void *buf, size_t size, int flags)
502 {
503 	struct kvec iov = {
504 		.iov_base = buf,
505 		.iov_len = size,
506 	};
507 	struct msghdr msg = {
508 		.msg_flags = (flags ? flags : MSG_WAITALL | MSG_NOSIGNAL)
509 	};
510 	iov_iter_kvec(&msg.msg_iter, READ, &iov, 1, size);
511 	return sock_recvmsg(sock, &msg, msg.msg_flags);
512 }
513 
514 static int drbd_recv(struct drbd_connection *connection, void *buf, size_t size)
515 {
516 	int rv;
517 
518 	rv = drbd_recv_short(connection->data.socket, buf, size, 0);
519 
520 	if (rv < 0) {
521 		if (rv == -ECONNRESET)
522 			drbd_info(connection, "sock was reset by peer\n");
523 		else if (rv != -ERESTARTSYS)
524 			drbd_err(connection, "sock_recvmsg returned %d\n", rv);
525 	} else if (rv == 0) {
526 		if (test_bit(DISCONNECT_SENT, &connection->flags)) {
527 			long t;
528 			rcu_read_lock();
529 			t = rcu_dereference(connection->net_conf)->ping_timeo * HZ/10;
530 			rcu_read_unlock();
531 
532 			t = wait_event_timeout(connection->ping_wait, connection->cstate < C_WF_REPORT_PARAMS, t);
533 
534 			if (t)
535 				goto out;
536 		}
537 		drbd_info(connection, "sock was shut down by peer\n");
538 	}
539 
540 	if (rv != size)
541 		conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD);
542 
543 out:
544 	return rv;
545 }
546 
547 static int drbd_recv_all(struct drbd_connection *connection, void *buf, size_t size)
548 {
549 	int err;
550 
551 	err = drbd_recv(connection, buf, size);
552 	if (err != size) {
553 		if (err >= 0)
554 			err = -EIO;
555 	} else
556 		err = 0;
557 	return err;
558 }
559 
560 static int drbd_recv_all_warn(struct drbd_connection *connection, void *buf, size_t size)
561 {
562 	int err;
563 
564 	err = drbd_recv_all(connection, buf, size);
565 	if (err && !signal_pending(current))
566 		drbd_warn(connection, "short read (expected size %d)\n", (int)size);
567 	return err;
568 }
569 
570 /* quoting tcp(7):
571  *   On individual connections, the socket buffer size must be set prior to the
572  *   listen(2) or connect(2) calls in order to have it take effect.
573  * This is our wrapper to do so.
574  */
575 static void drbd_setbufsize(struct socket *sock, unsigned int snd,
576 		unsigned int rcv)
577 {
578 	/* open coded SO_SNDBUF, SO_RCVBUF */
579 	if (snd) {
580 		sock->sk->sk_sndbuf = snd;
581 		sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
582 	}
583 	if (rcv) {
584 		sock->sk->sk_rcvbuf = rcv;
585 		sock->sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
586 	}
587 }
588 
589 static struct socket *drbd_try_connect(struct drbd_connection *connection)
590 {
591 	const char *what;
592 	struct socket *sock;
593 	struct sockaddr_in6 src_in6;
594 	struct sockaddr_in6 peer_in6;
595 	struct net_conf *nc;
596 	int err, peer_addr_len, my_addr_len;
597 	int sndbuf_size, rcvbuf_size, connect_int;
598 	int disconnect_on_error = 1;
599 
600 	rcu_read_lock();
601 	nc = rcu_dereference(connection->net_conf);
602 	if (!nc) {
603 		rcu_read_unlock();
604 		return NULL;
605 	}
606 	sndbuf_size = nc->sndbuf_size;
607 	rcvbuf_size = nc->rcvbuf_size;
608 	connect_int = nc->connect_int;
609 	rcu_read_unlock();
610 
611 	my_addr_len = min_t(int, connection->my_addr_len, sizeof(src_in6));
612 	memcpy(&src_in6, &connection->my_addr, my_addr_len);
613 
614 	if (((struct sockaddr *)&connection->my_addr)->sa_family == AF_INET6)
615 		src_in6.sin6_port = 0;
616 	else
617 		((struct sockaddr_in *)&src_in6)->sin_port = 0; /* AF_INET & AF_SCI */
618 
619 	peer_addr_len = min_t(int, connection->peer_addr_len, sizeof(src_in6));
620 	memcpy(&peer_in6, &connection->peer_addr, peer_addr_len);
621 
622 	what = "sock_create_kern";
623 	err = sock_create_kern(&init_net, ((struct sockaddr *)&src_in6)->sa_family,
624 			       SOCK_STREAM, IPPROTO_TCP, &sock);
625 	if (err < 0) {
626 		sock = NULL;
627 		goto out;
628 	}
629 
630 	sock->sk->sk_rcvtimeo =
631 	sock->sk->sk_sndtimeo = connect_int * HZ;
632 	drbd_setbufsize(sock, sndbuf_size, rcvbuf_size);
633 
634        /* explicitly bind to the configured IP as source IP
635 	*  for the outgoing connections.
636 	*  This is needed for multihomed hosts and to be
637 	*  able to use lo: interfaces for drbd.
638 	* Make sure to use 0 as port number, so linux selects
639 	*  a free one dynamically.
640 	*/
641 	what = "bind before connect";
642 	err = sock->ops->bind(sock, (struct sockaddr *) &src_in6, my_addr_len);
643 	if (err < 0)
644 		goto out;
645 
646 	/* connect may fail, peer not yet available.
647 	 * stay C_WF_CONNECTION, don't go Disconnecting! */
648 	disconnect_on_error = 0;
649 	what = "connect";
650 	err = sock->ops->connect(sock, (struct sockaddr *) &peer_in6, peer_addr_len, 0);
651 
652 out:
653 	if (err < 0) {
654 		if (sock) {
655 			sock_release(sock);
656 			sock = NULL;
657 		}
658 		switch (-err) {
659 			/* timeout, busy, signal pending */
660 		case ETIMEDOUT: case EAGAIN: case EINPROGRESS:
661 		case EINTR: case ERESTARTSYS:
662 			/* peer not (yet) available, network problem */
663 		case ECONNREFUSED: case ENETUNREACH:
664 		case EHOSTDOWN:    case EHOSTUNREACH:
665 			disconnect_on_error = 0;
666 			break;
667 		default:
668 			drbd_err(connection, "%s failed, err = %d\n", what, err);
669 		}
670 		if (disconnect_on_error)
671 			conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
672 	}
673 
674 	return sock;
675 }
676 
677 struct accept_wait_data {
678 	struct drbd_connection *connection;
679 	struct socket *s_listen;
680 	struct completion door_bell;
681 	void (*original_sk_state_change)(struct sock *sk);
682 
683 };
684 
685 static void drbd_incoming_connection(struct sock *sk)
686 {
687 	struct accept_wait_data *ad = sk->sk_user_data;
688 	void (*state_change)(struct sock *sk);
689 
690 	state_change = ad->original_sk_state_change;
691 	if (sk->sk_state == TCP_ESTABLISHED)
692 		complete(&ad->door_bell);
693 	state_change(sk);
694 }
695 
696 static int prepare_listen_socket(struct drbd_connection *connection, struct accept_wait_data *ad)
697 {
698 	int err, sndbuf_size, rcvbuf_size, my_addr_len;
699 	struct sockaddr_in6 my_addr;
700 	struct socket *s_listen;
701 	struct net_conf *nc;
702 	const char *what;
703 
704 	rcu_read_lock();
705 	nc = rcu_dereference(connection->net_conf);
706 	if (!nc) {
707 		rcu_read_unlock();
708 		return -EIO;
709 	}
710 	sndbuf_size = nc->sndbuf_size;
711 	rcvbuf_size = nc->rcvbuf_size;
712 	rcu_read_unlock();
713 
714 	my_addr_len = min_t(int, connection->my_addr_len, sizeof(struct sockaddr_in6));
715 	memcpy(&my_addr, &connection->my_addr, my_addr_len);
716 
717 	what = "sock_create_kern";
718 	err = sock_create_kern(&init_net, ((struct sockaddr *)&my_addr)->sa_family,
719 			       SOCK_STREAM, IPPROTO_TCP, &s_listen);
720 	if (err) {
721 		s_listen = NULL;
722 		goto out;
723 	}
724 
725 	s_listen->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */
726 	drbd_setbufsize(s_listen, sndbuf_size, rcvbuf_size);
727 
728 	what = "bind before listen";
729 	err = s_listen->ops->bind(s_listen, (struct sockaddr *)&my_addr, my_addr_len);
730 	if (err < 0)
731 		goto out;
732 
733 	ad->s_listen = s_listen;
734 	write_lock_bh(&s_listen->sk->sk_callback_lock);
735 	ad->original_sk_state_change = s_listen->sk->sk_state_change;
736 	s_listen->sk->sk_state_change = drbd_incoming_connection;
737 	s_listen->sk->sk_user_data = ad;
738 	write_unlock_bh(&s_listen->sk->sk_callback_lock);
739 
740 	what = "listen";
741 	err = s_listen->ops->listen(s_listen, 5);
742 	if (err < 0)
743 		goto out;
744 
745 	return 0;
746 out:
747 	if (s_listen)
748 		sock_release(s_listen);
749 	if (err < 0) {
750 		if (err != -EAGAIN && err != -EINTR && err != -ERESTARTSYS) {
751 			drbd_err(connection, "%s failed, err = %d\n", what, err);
752 			conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
753 		}
754 	}
755 
756 	return -EIO;
757 }
758 
759 static void unregister_state_change(struct sock *sk, struct accept_wait_data *ad)
760 {
761 	write_lock_bh(&sk->sk_callback_lock);
762 	sk->sk_state_change = ad->original_sk_state_change;
763 	sk->sk_user_data = NULL;
764 	write_unlock_bh(&sk->sk_callback_lock);
765 }
766 
767 static struct socket *drbd_wait_for_connect(struct drbd_connection *connection, struct accept_wait_data *ad)
768 {
769 	int timeo, connect_int, err = 0;
770 	struct socket *s_estab = NULL;
771 	struct net_conf *nc;
772 
773 	rcu_read_lock();
774 	nc = rcu_dereference(connection->net_conf);
775 	if (!nc) {
776 		rcu_read_unlock();
777 		return NULL;
778 	}
779 	connect_int = nc->connect_int;
780 	rcu_read_unlock();
781 
782 	timeo = connect_int * HZ;
783 	/* 28.5% random jitter */
784 	timeo += (prandom_u32() & 1) ? timeo / 7 : -timeo / 7;
785 
786 	err = wait_for_completion_interruptible_timeout(&ad->door_bell, timeo);
787 	if (err <= 0)
788 		return NULL;
789 
790 	err = kernel_accept(ad->s_listen, &s_estab, 0);
791 	if (err < 0) {
792 		if (err != -EAGAIN && err != -EINTR && err != -ERESTARTSYS) {
793 			drbd_err(connection, "accept failed, err = %d\n", err);
794 			conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
795 		}
796 	}
797 
798 	if (s_estab)
799 		unregister_state_change(s_estab->sk, ad);
800 
801 	return s_estab;
802 }
803 
804 static int decode_header(struct drbd_connection *, void *, struct packet_info *);
805 
806 static int send_first_packet(struct drbd_connection *connection, struct drbd_socket *sock,
807 			     enum drbd_packet cmd)
808 {
809 	if (!conn_prepare_command(connection, sock))
810 		return -EIO;
811 	return conn_send_command(connection, sock, cmd, 0, NULL, 0);
812 }
813 
814 static int receive_first_packet(struct drbd_connection *connection, struct socket *sock)
815 {
816 	unsigned int header_size = drbd_header_size(connection);
817 	struct packet_info pi;
818 	struct net_conf *nc;
819 	int err;
820 
821 	rcu_read_lock();
822 	nc = rcu_dereference(connection->net_conf);
823 	if (!nc) {
824 		rcu_read_unlock();
825 		return -EIO;
826 	}
827 	sock->sk->sk_rcvtimeo = nc->ping_timeo * 4 * HZ / 10;
828 	rcu_read_unlock();
829 
830 	err = drbd_recv_short(sock, connection->data.rbuf, header_size, 0);
831 	if (err != header_size) {
832 		if (err >= 0)
833 			err = -EIO;
834 		return err;
835 	}
836 	err = decode_header(connection, connection->data.rbuf, &pi);
837 	if (err)
838 		return err;
839 	return pi.cmd;
840 }
841 
842 /**
843  * drbd_socket_okay() - Free the socket if its connection is not okay
844  * @sock:	pointer to the pointer to the socket.
845  */
846 static bool drbd_socket_okay(struct socket **sock)
847 {
848 	int rr;
849 	char tb[4];
850 
851 	if (!*sock)
852 		return false;
853 
854 	rr = drbd_recv_short(*sock, tb, 4, MSG_DONTWAIT | MSG_PEEK);
855 
856 	if (rr > 0 || rr == -EAGAIN) {
857 		return true;
858 	} else {
859 		sock_release(*sock);
860 		*sock = NULL;
861 		return false;
862 	}
863 }
864 
865 static bool connection_established(struct drbd_connection *connection,
866 				   struct socket **sock1,
867 				   struct socket **sock2)
868 {
869 	struct net_conf *nc;
870 	int timeout;
871 	bool ok;
872 
873 	if (!*sock1 || !*sock2)
874 		return false;
875 
876 	rcu_read_lock();
877 	nc = rcu_dereference(connection->net_conf);
878 	timeout = (nc->sock_check_timeo ?: nc->ping_timeo) * HZ / 10;
879 	rcu_read_unlock();
880 	schedule_timeout_interruptible(timeout);
881 
882 	ok = drbd_socket_okay(sock1);
883 	ok = drbd_socket_okay(sock2) && ok;
884 
885 	return ok;
886 }
887 
888 /* Gets called if a connection is established, or if a new minor gets created
889    in a connection */
890 int drbd_connected(struct drbd_peer_device *peer_device)
891 {
892 	struct drbd_device *device = peer_device->device;
893 	int err;
894 
895 	atomic_set(&device->packet_seq, 0);
896 	device->peer_seq = 0;
897 
898 	device->state_mutex = peer_device->connection->agreed_pro_version < 100 ?
899 		&peer_device->connection->cstate_mutex :
900 		&device->own_state_mutex;
901 
902 	err = drbd_send_sync_param(peer_device);
903 	if (!err)
904 		err = drbd_send_sizes(peer_device, 0, 0);
905 	if (!err)
906 		err = drbd_send_uuids(peer_device);
907 	if (!err)
908 		err = drbd_send_current_state(peer_device);
909 	clear_bit(USE_DEGR_WFC_T, &device->flags);
910 	clear_bit(RESIZE_PENDING, &device->flags);
911 	atomic_set(&device->ap_in_flight, 0);
912 	mod_timer(&device->request_timer, jiffies + HZ); /* just start it here. */
913 	return err;
914 }
915 
916 /*
917  * return values:
918  *   1 yes, we have a valid connection
919  *   0 oops, did not work out, please try again
920  *  -1 peer talks different language,
921  *     no point in trying again, please go standalone.
922  *  -2 We do not have a network config...
923  */
924 static int conn_connect(struct drbd_connection *connection)
925 {
926 	struct drbd_socket sock, msock;
927 	struct drbd_peer_device *peer_device;
928 	struct net_conf *nc;
929 	int vnr, timeout, h;
930 	bool discard_my_data, ok;
931 	enum drbd_state_rv rv;
932 	struct accept_wait_data ad = {
933 		.connection = connection,
934 		.door_bell = COMPLETION_INITIALIZER_ONSTACK(ad.door_bell),
935 	};
936 
937 	clear_bit(DISCONNECT_SENT, &connection->flags);
938 	if (conn_request_state(connection, NS(conn, C_WF_CONNECTION), CS_VERBOSE) < SS_SUCCESS)
939 		return -2;
940 
941 	mutex_init(&sock.mutex);
942 	sock.sbuf = connection->data.sbuf;
943 	sock.rbuf = connection->data.rbuf;
944 	sock.socket = NULL;
945 	mutex_init(&msock.mutex);
946 	msock.sbuf = connection->meta.sbuf;
947 	msock.rbuf = connection->meta.rbuf;
948 	msock.socket = NULL;
949 
950 	/* Assume that the peer only understands protocol 80 until we know better.  */
951 	connection->agreed_pro_version = 80;
952 
953 	if (prepare_listen_socket(connection, &ad))
954 		return 0;
955 
956 	do {
957 		struct socket *s;
958 
959 		s = drbd_try_connect(connection);
960 		if (s) {
961 			if (!sock.socket) {
962 				sock.socket = s;
963 				send_first_packet(connection, &sock, P_INITIAL_DATA);
964 			} else if (!msock.socket) {
965 				clear_bit(RESOLVE_CONFLICTS, &connection->flags);
966 				msock.socket = s;
967 				send_first_packet(connection, &msock, P_INITIAL_META);
968 			} else {
969 				drbd_err(connection, "Logic error in conn_connect()\n");
970 				goto out_release_sockets;
971 			}
972 		}
973 
974 		if (connection_established(connection, &sock.socket, &msock.socket))
975 			break;
976 
977 retry:
978 		s = drbd_wait_for_connect(connection, &ad);
979 		if (s) {
980 			int fp = receive_first_packet(connection, s);
981 			drbd_socket_okay(&sock.socket);
982 			drbd_socket_okay(&msock.socket);
983 			switch (fp) {
984 			case P_INITIAL_DATA:
985 				if (sock.socket) {
986 					drbd_warn(connection, "initial packet S crossed\n");
987 					sock_release(sock.socket);
988 					sock.socket = s;
989 					goto randomize;
990 				}
991 				sock.socket = s;
992 				break;
993 			case P_INITIAL_META:
994 				set_bit(RESOLVE_CONFLICTS, &connection->flags);
995 				if (msock.socket) {
996 					drbd_warn(connection, "initial packet M crossed\n");
997 					sock_release(msock.socket);
998 					msock.socket = s;
999 					goto randomize;
1000 				}
1001 				msock.socket = s;
1002 				break;
1003 			default:
1004 				drbd_warn(connection, "Error receiving initial packet\n");
1005 				sock_release(s);
1006 randomize:
1007 				if (prandom_u32() & 1)
1008 					goto retry;
1009 			}
1010 		}
1011 
1012 		if (connection->cstate <= C_DISCONNECTING)
1013 			goto out_release_sockets;
1014 		if (signal_pending(current)) {
1015 			flush_signals(current);
1016 			smp_rmb();
1017 			if (get_t_state(&connection->receiver) == EXITING)
1018 				goto out_release_sockets;
1019 		}
1020 
1021 		ok = connection_established(connection, &sock.socket, &msock.socket);
1022 	} while (!ok);
1023 
1024 	if (ad.s_listen)
1025 		sock_release(ad.s_listen);
1026 
1027 	sock.socket->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */
1028 	msock.socket->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */
1029 
1030 	sock.socket->sk->sk_allocation = GFP_NOIO;
1031 	msock.socket->sk->sk_allocation = GFP_NOIO;
1032 
1033 	sock.socket->sk->sk_priority = TC_PRIO_INTERACTIVE_BULK;
1034 	msock.socket->sk->sk_priority = TC_PRIO_INTERACTIVE;
1035 
1036 	/* NOT YET ...
1037 	 * sock.socket->sk->sk_sndtimeo = connection->net_conf->timeout*HZ/10;
1038 	 * sock.socket->sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
1039 	 * first set it to the P_CONNECTION_FEATURES timeout,
1040 	 * which we set to 4x the configured ping_timeout. */
1041 	rcu_read_lock();
1042 	nc = rcu_dereference(connection->net_conf);
1043 
1044 	sock.socket->sk->sk_sndtimeo =
1045 	sock.socket->sk->sk_rcvtimeo = nc->ping_timeo*4*HZ/10;
1046 
1047 	msock.socket->sk->sk_rcvtimeo = nc->ping_int*HZ;
1048 	timeout = nc->timeout * HZ / 10;
1049 	discard_my_data = nc->discard_my_data;
1050 	rcu_read_unlock();
1051 
1052 	msock.socket->sk->sk_sndtimeo = timeout;
1053 
1054 	/* we don't want delays.
1055 	 * we use TCP_CORK where appropriate, though */
1056 	tcp_sock_set_nodelay(sock.socket->sk);
1057 	tcp_sock_set_nodelay(msock.socket->sk);
1058 
1059 	connection->data.socket = sock.socket;
1060 	connection->meta.socket = msock.socket;
1061 	connection->last_received = jiffies;
1062 
1063 	h = drbd_do_features(connection);
1064 	if (h <= 0)
1065 		return h;
1066 
1067 	if (connection->cram_hmac_tfm) {
1068 		/* drbd_request_state(device, NS(conn, WFAuth)); */
1069 		switch (drbd_do_auth(connection)) {
1070 		case -1:
1071 			drbd_err(connection, "Authentication of peer failed\n");
1072 			return -1;
1073 		case 0:
1074 			drbd_err(connection, "Authentication of peer failed, trying again.\n");
1075 			return 0;
1076 		}
1077 	}
1078 
1079 	connection->data.socket->sk->sk_sndtimeo = timeout;
1080 	connection->data.socket->sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
1081 
1082 	if (drbd_send_protocol(connection) == -EOPNOTSUPP)
1083 		return -1;
1084 
1085 	/* Prevent a race between resync-handshake and
1086 	 * being promoted to Primary.
1087 	 *
1088 	 * Grab and release the state mutex, so we know that any current
1089 	 * drbd_set_role() is finished, and any incoming drbd_set_role
1090 	 * will see the STATE_SENT flag, and wait for it to be cleared.
1091 	 */
1092 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr)
1093 		mutex_lock(peer_device->device->state_mutex);
1094 
1095 	/* avoid a race with conn_request_state( C_DISCONNECTING ) */
1096 	spin_lock_irq(&connection->resource->req_lock);
1097 	set_bit(STATE_SENT, &connection->flags);
1098 	spin_unlock_irq(&connection->resource->req_lock);
1099 
1100 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr)
1101 		mutex_unlock(peer_device->device->state_mutex);
1102 
1103 	rcu_read_lock();
1104 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
1105 		struct drbd_device *device = peer_device->device;
1106 		kref_get(&device->kref);
1107 		rcu_read_unlock();
1108 
1109 		if (discard_my_data)
1110 			set_bit(DISCARD_MY_DATA, &device->flags);
1111 		else
1112 			clear_bit(DISCARD_MY_DATA, &device->flags);
1113 
1114 		drbd_connected(peer_device);
1115 		kref_put(&device->kref, drbd_destroy_device);
1116 		rcu_read_lock();
1117 	}
1118 	rcu_read_unlock();
1119 
1120 	rv = conn_request_state(connection, NS(conn, C_WF_REPORT_PARAMS), CS_VERBOSE);
1121 	if (rv < SS_SUCCESS || connection->cstate != C_WF_REPORT_PARAMS) {
1122 		clear_bit(STATE_SENT, &connection->flags);
1123 		return 0;
1124 	}
1125 
1126 	drbd_thread_start(&connection->ack_receiver);
1127 	/* opencoded create_singlethread_workqueue(),
1128 	 * to be able to use format string arguments */
1129 	connection->ack_sender =
1130 		alloc_ordered_workqueue("drbd_as_%s", WQ_MEM_RECLAIM, connection->resource->name);
1131 	if (!connection->ack_sender) {
1132 		drbd_err(connection, "Failed to create workqueue ack_sender\n");
1133 		return 0;
1134 	}
1135 
1136 	mutex_lock(&connection->resource->conf_update);
1137 	/* The discard_my_data flag is a single-shot modifier to the next
1138 	 * connection attempt, the handshake of which is now well underway.
1139 	 * No need for rcu style copying of the whole struct
1140 	 * just to clear a single value. */
1141 	connection->net_conf->discard_my_data = 0;
1142 	mutex_unlock(&connection->resource->conf_update);
1143 
1144 	return h;
1145 
1146 out_release_sockets:
1147 	if (ad.s_listen)
1148 		sock_release(ad.s_listen);
1149 	if (sock.socket)
1150 		sock_release(sock.socket);
1151 	if (msock.socket)
1152 		sock_release(msock.socket);
1153 	return -1;
1154 }
1155 
1156 static int decode_header(struct drbd_connection *connection, void *header, struct packet_info *pi)
1157 {
1158 	unsigned int header_size = drbd_header_size(connection);
1159 
1160 	if (header_size == sizeof(struct p_header100) &&
1161 	    *(__be32 *)header == cpu_to_be32(DRBD_MAGIC_100)) {
1162 		struct p_header100 *h = header;
1163 		if (h->pad != 0) {
1164 			drbd_err(connection, "Header padding is not zero\n");
1165 			return -EINVAL;
1166 		}
1167 		pi->vnr = be16_to_cpu(h->volume);
1168 		pi->cmd = be16_to_cpu(h->command);
1169 		pi->size = be32_to_cpu(h->length);
1170 	} else if (header_size == sizeof(struct p_header95) &&
1171 		   *(__be16 *)header == cpu_to_be16(DRBD_MAGIC_BIG)) {
1172 		struct p_header95 *h = header;
1173 		pi->cmd = be16_to_cpu(h->command);
1174 		pi->size = be32_to_cpu(h->length);
1175 		pi->vnr = 0;
1176 	} else if (header_size == sizeof(struct p_header80) &&
1177 		   *(__be32 *)header == cpu_to_be32(DRBD_MAGIC)) {
1178 		struct p_header80 *h = header;
1179 		pi->cmd = be16_to_cpu(h->command);
1180 		pi->size = be16_to_cpu(h->length);
1181 		pi->vnr = 0;
1182 	} else {
1183 		drbd_err(connection, "Wrong magic value 0x%08x in protocol version %d\n",
1184 			 be32_to_cpu(*(__be32 *)header),
1185 			 connection->agreed_pro_version);
1186 		return -EINVAL;
1187 	}
1188 	pi->data = header + header_size;
1189 	return 0;
1190 }
1191 
1192 static void drbd_unplug_all_devices(struct drbd_connection *connection)
1193 {
1194 	if (current->plug == &connection->receiver_plug) {
1195 		blk_finish_plug(&connection->receiver_plug);
1196 		blk_start_plug(&connection->receiver_plug);
1197 	} /* else: maybe just schedule() ?? */
1198 }
1199 
1200 static int drbd_recv_header(struct drbd_connection *connection, struct packet_info *pi)
1201 {
1202 	void *buffer = connection->data.rbuf;
1203 	int err;
1204 
1205 	err = drbd_recv_all_warn(connection, buffer, drbd_header_size(connection));
1206 	if (err)
1207 		return err;
1208 
1209 	err = decode_header(connection, buffer, pi);
1210 	connection->last_received = jiffies;
1211 
1212 	return err;
1213 }
1214 
1215 static int drbd_recv_header_maybe_unplug(struct drbd_connection *connection, struct packet_info *pi)
1216 {
1217 	void *buffer = connection->data.rbuf;
1218 	unsigned int size = drbd_header_size(connection);
1219 	int err;
1220 
1221 	err = drbd_recv_short(connection->data.socket, buffer, size, MSG_NOSIGNAL|MSG_DONTWAIT);
1222 	if (err != size) {
1223 		/* If we have nothing in the receive buffer now, to reduce
1224 		 * application latency, try to drain the backend queues as
1225 		 * quickly as possible, and let remote TCP know what we have
1226 		 * received so far. */
1227 		if (err == -EAGAIN) {
1228 			tcp_sock_set_quickack(connection->data.socket->sk, 2);
1229 			drbd_unplug_all_devices(connection);
1230 		}
1231 		if (err > 0) {
1232 			buffer += err;
1233 			size -= err;
1234 		}
1235 		err = drbd_recv_all_warn(connection, buffer, size);
1236 		if (err)
1237 			return err;
1238 	}
1239 
1240 	err = decode_header(connection, connection->data.rbuf, pi);
1241 	connection->last_received = jiffies;
1242 
1243 	return err;
1244 }
1245 /* This is blkdev_issue_flush, but asynchronous.
1246  * We want to submit to all component volumes in parallel,
1247  * then wait for all completions.
1248  */
1249 struct issue_flush_context {
1250 	atomic_t pending;
1251 	int error;
1252 	struct completion done;
1253 };
1254 struct one_flush_context {
1255 	struct drbd_device *device;
1256 	struct issue_flush_context *ctx;
1257 };
1258 
1259 static void one_flush_endio(struct bio *bio)
1260 {
1261 	struct one_flush_context *octx = bio->bi_private;
1262 	struct drbd_device *device = octx->device;
1263 	struct issue_flush_context *ctx = octx->ctx;
1264 
1265 	if (bio->bi_status) {
1266 		ctx->error = blk_status_to_errno(bio->bi_status);
1267 		drbd_info(device, "local disk FLUSH FAILED with status %d\n", bio->bi_status);
1268 	}
1269 	kfree(octx);
1270 	bio_put(bio);
1271 
1272 	clear_bit(FLUSH_PENDING, &device->flags);
1273 	put_ldev(device);
1274 	kref_put(&device->kref, drbd_destroy_device);
1275 
1276 	if (atomic_dec_and_test(&ctx->pending))
1277 		complete(&ctx->done);
1278 }
1279 
1280 static void submit_one_flush(struct drbd_device *device, struct issue_flush_context *ctx)
1281 {
1282 	struct bio *bio = bio_alloc(device->ldev->backing_bdev, 0,
1283 				    REQ_OP_FLUSH | REQ_PREFLUSH, GFP_NOIO);
1284 	struct one_flush_context *octx = kmalloc(sizeof(*octx), GFP_NOIO);
1285 
1286 	if (!octx) {
1287 		drbd_warn(device, "Could not allocate a octx, CANNOT ISSUE FLUSH\n");
1288 		/* FIXME: what else can I do now?  disconnecting or detaching
1289 		 * really does not help to improve the state of the world, either.
1290 		 */
1291 		bio_put(bio);
1292 
1293 		ctx->error = -ENOMEM;
1294 		put_ldev(device);
1295 		kref_put(&device->kref, drbd_destroy_device);
1296 		return;
1297 	}
1298 
1299 	octx->device = device;
1300 	octx->ctx = ctx;
1301 	bio->bi_private = octx;
1302 	bio->bi_end_io = one_flush_endio;
1303 
1304 	device->flush_jif = jiffies;
1305 	set_bit(FLUSH_PENDING, &device->flags);
1306 	atomic_inc(&ctx->pending);
1307 	submit_bio(bio);
1308 }
1309 
1310 static void drbd_flush(struct drbd_connection *connection)
1311 {
1312 	if (connection->resource->write_ordering >= WO_BDEV_FLUSH) {
1313 		struct drbd_peer_device *peer_device;
1314 		struct issue_flush_context ctx;
1315 		int vnr;
1316 
1317 		atomic_set(&ctx.pending, 1);
1318 		ctx.error = 0;
1319 		init_completion(&ctx.done);
1320 
1321 		rcu_read_lock();
1322 		idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
1323 			struct drbd_device *device = peer_device->device;
1324 
1325 			if (!get_ldev(device))
1326 				continue;
1327 			kref_get(&device->kref);
1328 			rcu_read_unlock();
1329 
1330 			submit_one_flush(device, &ctx);
1331 
1332 			rcu_read_lock();
1333 		}
1334 		rcu_read_unlock();
1335 
1336 		/* Do we want to add a timeout,
1337 		 * if disk-timeout is set? */
1338 		if (!atomic_dec_and_test(&ctx.pending))
1339 			wait_for_completion(&ctx.done);
1340 
1341 		if (ctx.error) {
1342 			/* would rather check on EOPNOTSUPP, but that is not reliable.
1343 			 * don't try again for ANY return value != 0
1344 			 * if (rv == -EOPNOTSUPP) */
1345 			/* Any error is already reported by bio_endio callback. */
1346 			drbd_bump_write_ordering(connection->resource, NULL, WO_DRAIN_IO);
1347 		}
1348 	}
1349 }
1350 
1351 /**
1352  * drbd_may_finish_epoch() - Applies an epoch_event to the epoch's state, eventually finishes it.
1353  * @connection:	DRBD connection.
1354  * @epoch:	Epoch object.
1355  * @ev:		Epoch event.
1356  */
1357 static enum finish_epoch drbd_may_finish_epoch(struct drbd_connection *connection,
1358 					       struct drbd_epoch *epoch,
1359 					       enum epoch_event ev)
1360 {
1361 	int epoch_size;
1362 	struct drbd_epoch *next_epoch;
1363 	enum finish_epoch rv = FE_STILL_LIVE;
1364 
1365 	spin_lock(&connection->epoch_lock);
1366 	do {
1367 		next_epoch = NULL;
1368 
1369 		epoch_size = atomic_read(&epoch->epoch_size);
1370 
1371 		switch (ev & ~EV_CLEANUP) {
1372 		case EV_PUT:
1373 			atomic_dec(&epoch->active);
1374 			break;
1375 		case EV_GOT_BARRIER_NR:
1376 			set_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags);
1377 			break;
1378 		case EV_BECAME_LAST:
1379 			/* nothing to do*/
1380 			break;
1381 		}
1382 
1383 		if (epoch_size != 0 &&
1384 		    atomic_read(&epoch->active) == 0 &&
1385 		    (test_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags) || ev & EV_CLEANUP)) {
1386 			if (!(ev & EV_CLEANUP)) {
1387 				spin_unlock(&connection->epoch_lock);
1388 				drbd_send_b_ack(epoch->connection, epoch->barrier_nr, epoch_size);
1389 				spin_lock(&connection->epoch_lock);
1390 			}
1391 #if 0
1392 			/* FIXME: dec unacked on connection, once we have
1393 			 * something to count pending connection packets in. */
1394 			if (test_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags))
1395 				dec_unacked(epoch->connection);
1396 #endif
1397 
1398 			if (connection->current_epoch != epoch) {
1399 				next_epoch = list_entry(epoch->list.next, struct drbd_epoch, list);
1400 				list_del(&epoch->list);
1401 				ev = EV_BECAME_LAST | (ev & EV_CLEANUP);
1402 				connection->epochs--;
1403 				kfree(epoch);
1404 
1405 				if (rv == FE_STILL_LIVE)
1406 					rv = FE_DESTROYED;
1407 			} else {
1408 				epoch->flags = 0;
1409 				atomic_set(&epoch->epoch_size, 0);
1410 				/* atomic_set(&epoch->active, 0); is already zero */
1411 				if (rv == FE_STILL_LIVE)
1412 					rv = FE_RECYCLED;
1413 			}
1414 		}
1415 
1416 		if (!next_epoch)
1417 			break;
1418 
1419 		epoch = next_epoch;
1420 	} while (1);
1421 
1422 	spin_unlock(&connection->epoch_lock);
1423 
1424 	return rv;
1425 }
1426 
1427 static enum write_ordering_e
1428 max_allowed_wo(struct drbd_backing_dev *bdev, enum write_ordering_e wo)
1429 {
1430 	struct disk_conf *dc;
1431 
1432 	dc = rcu_dereference(bdev->disk_conf);
1433 
1434 	if (wo == WO_BDEV_FLUSH && !dc->disk_flushes)
1435 		wo = WO_DRAIN_IO;
1436 	if (wo == WO_DRAIN_IO && !dc->disk_drain)
1437 		wo = WO_NONE;
1438 
1439 	return wo;
1440 }
1441 
1442 /*
1443  * drbd_bump_write_ordering() - Fall back to an other write ordering method
1444  * @wo:		Write ordering method to try.
1445  */
1446 void drbd_bump_write_ordering(struct drbd_resource *resource, struct drbd_backing_dev *bdev,
1447 			      enum write_ordering_e wo)
1448 {
1449 	struct drbd_device *device;
1450 	enum write_ordering_e pwo;
1451 	int vnr;
1452 	static char *write_ordering_str[] = {
1453 		[WO_NONE] = "none",
1454 		[WO_DRAIN_IO] = "drain",
1455 		[WO_BDEV_FLUSH] = "flush",
1456 	};
1457 
1458 	pwo = resource->write_ordering;
1459 	if (wo != WO_BDEV_FLUSH)
1460 		wo = min(pwo, wo);
1461 	rcu_read_lock();
1462 	idr_for_each_entry(&resource->devices, device, vnr) {
1463 		if (get_ldev(device)) {
1464 			wo = max_allowed_wo(device->ldev, wo);
1465 			if (device->ldev == bdev)
1466 				bdev = NULL;
1467 			put_ldev(device);
1468 		}
1469 	}
1470 
1471 	if (bdev)
1472 		wo = max_allowed_wo(bdev, wo);
1473 
1474 	rcu_read_unlock();
1475 
1476 	resource->write_ordering = wo;
1477 	if (pwo != resource->write_ordering || wo == WO_BDEV_FLUSH)
1478 		drbd_info(resource, "Method to ensure write ordering: %s\n", write_ordering_str[resource->write_ordering]);
1479 }
1480 
1481 /*
1482  * Mapping "discard" to ZEROOUT with UNMAP does not work for us:
1483  * Drivers have to "announce" q->limits.max_write_zeroes_sectors, or it
1484  * will directly go to fallback mode, submitting normal writes, and
1485  * never even try to UNMAP.
1486  *
1487  * And dm-thin does not do this (yet), mostly because in general it has
1488  * to assume that "skip_block_zeroing" is set.  See also:
1489  * https://www.mail-archive.com/dm-devel%40redhat.com/msg07965.html
1490  * https://www.redhat.com/archives/dm-devel/2018-January/msg00271.html
1491  *
1492  * We *may* ignore the discard-zeroes-data setting, if so configured.
1493  *
1494  * Assumption is that this "discard_zeroes_data=0" is only because the backend
1495  * may ignore partial unaligned discards.
1496  *
1497  * LVM/DM thin as of at least
1498  *   LVM version:     2.02.115(2)-RHEL7 (2015-01-28)
1499  *   Library version: 1.02.93-RHEL7 (2015-01-28)
1500  *   Driver version:  4.29.0
1501  * still behaves this way.
1502  *
1503  * For unaligned (wrt. alignment and granularity) or too small discards,
1504  * we zero-out the initial (and/or) trailing unaligned partial chunks,
1505  * but discard all the aligned full chunks.
1506  *
1507  * At least for LVM/DM thin, with skip_block_zeroing=false,
1508  * the result is effectively "discard_zeroes_data=1".
1509  */
1510 /* flags: EE_TRIM|EE_ZEROOUT */
1511 int drbd_issue_discard_or_zero_out(struct drbd_device *device, sector_t start, unsigned int nr_sectors, int flags)
1512 {
1513 	struct block_device *bdev = device->ldev->backing_bdev;
1514 	struct request_queue *q = bdev_get_queue(bdev);
1515 	sector_t tmp, nr;
1516 	unsigned int max_discard_sectors, granularity;
1517 	int alignment;
1518 	int err = 0;
1519 
1520 	if ((flags & EE_ZEROOUT) || !(flags & EE_TRIM))
1521 		goto zero_out;
1522 
1523 	/* Zero-sector (unknown) and one-sector granularities are the same.  */
1524 	granularity = max(q->limits.discard_granularity >> 9, 1U);
1525 	alignment = (bdev_discard_alignment(bdev) >> 9) % granularity;
1526 
1527 	max_discard_sectors = min(q->limits.max_discard_sectors, (1U << 22));
1528 	max_discard_sectors -= max_discard_sectors % granularity;
1529 	if (unlikely(!max_discard_sectors))
1530 		goto zero_out;
1531 
1532 	if (nr_sectors < granularity)
1533 		goto zero_out;
1534 
1535 	tmp = start;
1536 	if (sector_div(tmp, granularity) != alignment) {
1537 		if (nr_sectors < 2*granularity)
1538 			goto zero_out;
1539 		/* start + gran - (start + gran - align) % gran */
1540 		tmp = start + granularity - alignment;
1541 		tmp = start + granularity - sector_div(tmp, granularity);
1542 
1543 		nr = tmp - start;
1544 		/* don't flag BLKDEV_ZERO_NOUNMAP, we don't know how many
1545 		 * layers are below us, some may have smaller granularity */
1546 		err |= blkdev_issue_zeroout(bdev, start, nr, GFP_NOIO, 0);
1547 		nr_sectors -= nr;
1548 		start = tmp;
1549 	}
1550 	while (nr_sectors >= max_discard_sectors) {
1551 		err |= blkdev_issue_discard(bdev, start, max_discard_sectors, GFP_NOIO, 0);
1552 		nr_sectors -= max_discard_sectors;
1553 		start += max_discard_sectors;
1554 	}
1555 	if (nr_sectors) {
1556 		/* max_discard_sectors is unsigned int (and a multiple of
1557 		 * granularity, we made sure of that above already);
1558 		 * nr is < max_discard_sectors;
1559 		 * I don't need sector_div here, even though nr is sector_t */
1560 		nr = nr_sectors;
1561 		nr -= (unsigned int)nr % granularity;
1562 		if (nr) {
1563 			err |= blkdev_issue_discard(bdev, start, nr, GFP_NOIO, 0);
1564 			nr_sectors -= nr;
1565 			start += nr;
1566 		}
1567 	}
1568  zero_out:
1569 	if (nr_sectors) {
1570 		err |= blkdev_issue_zeroout(bdev, start, nr_sectors, GFP_NOIO,
1571 				(flags & EE_TRIM) ? 0 : BLKDEV_ZERO_NOUNMAP);
1572 	}
1573 	return err != 0;
1574 }
1575 
1576 static bool can_do_reliable_discards(struct drbd_device *device)
1577 {
1578 	struct request_queue *q = bdev_get_queue(device->ldev->backing_bdev);
1579 	struct disk_conf *dc;
1580 	bool can_do;
1581 
1582 	if (!blk_queue_discard(q))
1583 		return false;
1584 
1585 	rcu_read_lock();
1586 	dc = rcu_dereference(device->ldev->disk_conf);
1587 	can_do = dc->discard_zeroes_if_aligned;
1588 	rcu_read_unlock();
1589 	return can_do;
1590 }
1591 
1592 static void drbd_issue_peer_discard_or_zero_out(struct drbd_device *device, struct drbd_peer_request *peer_req)
1593 {
1594 	/* If the backend cannot discard, or does not guarantee
1595 	 * read-back zeroes in discarded ranges, we fall back to
1596 	 * zero-out.  Unless configuration specifically requested
1597 	 * otherwise. */
1598 	if (!can_do_reliable_discards(device))
1599 		peer_req->flags |= EE_ZEROOUT;
1600 
1601 	if (drbd_issue_discard_or_zero_out(device, peer_req->i.sector,
1602 	    peer_req->i.size >> 9, peer_req->flags & (EE_ZEROOUT|EE_TRIM)))
1603 		peer_req->flags |= EE_WAS_ERROR;
1604 	drbd_endio_write_sec_final(peer_req);
1605 }
1606 
1607 static void drbd_issue_peer_wsame(struct drbd_device *device,
1608 				  struct drbd_peer_request *peer_req)
1609 {
1610 	struct block_device *bdev = device->ldev->backing_bdev;
1611 	sector_t s = peer_req->i.sector;
1612 	sector_t nr = peer_req->i.size >> 9;
1613 	if (blkdev_issue_write_same(bdev, s, nr, GFP_NOIO, peer_req->pages))
1614 		peer_req->flags |= EE_WAS_ERROR;
1615 	drbd_endio_write_sec_final(peer_req);
1616 }
1617 
1618 
1619 /*
1620  * drbd_submit_peer_request()
1621  * @device:	DRBD device.
1622  * @peer_req:	peer request
1623  *
1624  * May spread the pages to multiple bios,
1625  * depending on bio_add_page restrictions.
1626  *
1627  * Returns 0 if all bios have been submitted,
1628  * -ENOMEM if we could not allocate enough bios,
1629  * -ENOSPC (any better suggestion?) if we have not been able to bio_add_page a
1630  *  single page to an empty bio (which should never happen and likely indicates
1631  *  that the lower level IO stack is in some way broken). This has been observed
1632  *  on certain Xen deployments.
1633  */
1634 /* TODO allocate from our own bio_set. */
1635 int drbd_submit_peer_request(struct drbd_device *device,
1636 			     struct drbd_peer_request *peer_req,
1637 			     const unsigned op, const unsigned op_flags,
1638 			     const int fault_type)
1639 {
1640 	struct bio *bios = NULL;
1641 	struct bio *bio;
1642 	struct page *page = peer_req->pages;
1643 	sector_t sector = peer_req->i.sector;
1644 	unsigned data_size = peer_req->i.size;
1645 	unsigned n_bios = 0;
1646 	unsigned nr_pages = (data_size + PAGE_SIZE -1) >> PAGE_SHIFT;
1647 
1648 	/* TRIM/DISCARD: for now, always use the helper function
1649 	 * blkdev_issue_zeroout(..., discard=true).
1650 	 * It's synchronous, but it does the right thing wrt. bio splitting.
1651 	 * Correctness first, performance later.  Next step is to code an
1652 	 * asynchronous variant of the same.
1653 	 */
1654 	if (peer_req->flags & (EE_TRIM|EE_WRITE_SAME|EE_ZEROOUT)) {
1655 		/* wait for all pending IO completions, before we start
1656 		 * zeroing things out. */
1657 		conn_wait_active_ee_empty(peer_req->peer_device->connection);
1658 		/* add it to the active list now,
1659 		 * so we can find it to present it in debugfs */
1660 		peer_req->submit_jif = jiffies;
1661 		peer_req->flags |= EE_SUBMITTED;
1662 
1663 		/* If this was a resync request from receive_rs_deallocated(),
1664 		 * it is already on the sync_ee list */
1665 		if (list_empty(&peer_req->w.list)) {
1666 			spin_lock_irq(&device->resource->req_lock);
1667 			list_add_tail(&peer_req->w.list, &device->active_ee);
1668 			spin_unlock_irq(&device->resource->req_lock);
1669 		}
1670 
1671 		if (peer_req->flags & (EE_TRIM|EE_ZEROOUT))
1672 			drbd_issue_peer_discard_or_zero_out(device, peer_req);
1673 		else /* EE_WRITE_SAME */
1674 			drbd_issue_peer_wsame(device, peer_req);
1675 		return 0;
1676 	}
1677 
1678 	/* In most cases, we will only need one bio.  But in case the lower
1679 	 * level restrictions happen to be different at this offset on this
1680 	 * side than those of the sending peer, we may need to submit the
1681 	 * request in more than one bio.
1682 	 *
1683 	 * Plain bio_alloc is good enough here, this is no DRBD internally
1684 	 * generated bio, but a bio allocated on behalf of the peer.
1685 	 */
1686 next_bio:
1687 	bio = bio_alloc(device->ldev->backing_bdev, nr_pages, op | op_flags,
1688 			GFP_NOIO);
1689 	/* > peer_req->i.sector, unless this is the first bio */
1690 	bio->bi_iter.bi_sector = sector;
1691 	bio->bi_private = peer_req;
1692 	bio->bi_end_io = drbd_peer_request_endio;
1693 
1694 	bio->bi_next = bios;
1695 	bios = bio;
1696 	++n_bios;
1697 
1698 	page_chain_for_each(page) {
1699 		unsigned len = min_t(unsigned, data_size, PAGE_SIZE);
1700 		if (!bio_add_page(bio, page, len, 0))
1701 			goto next_bio;
1702 		data_size -= len;
1703 		sector += len >> 9;
1704 		--nr_pages;
1705 	}
1706 	D_ASSERT(device, data_size == 0);
1707 	D_ASSERT(device, page == NULL);
1708 
1709 	atomic_set(&peer_req->pending_bios, n_bios);
1710 	/* for debugfs: update timestamp, mark as submitted */
1711 	peer_req->submit_jif = jiffies;
1712 	peer_req->flags |= EE_SUBMITTED;
1713 	do {
1714 		bio = bios;
1715 		bios = bios->bi_next;
1716 		bio->bi_next = NULL;
1717 
1718 		drbd_submit_bio_noacct(device, fault_type, bio);
1719 	} while (bios);
1720 	return 0;
1721 }
1722 
1723 static void drbd_remove_epoch_entry_interval(struct drbd_device *device,
1724 					     struct drbd_peer_request *peer_req)
1725 {
1726 	struct drbd_interval *i = &peer_req->i;
1727 
1728 	drbd_remove_interval(&device->write_requests, i);
1729 	drbd_clear_interval(i);
1730 
1731 	/* Wake up any processes waiting for this peer request to complete.  */
1732 	if (i->waiting)
1733 		wake_up(&device->misc_wait);
1734 }
1735 
1736 static void conn_wait_active_ee_empty(struct drbd_connection *connection)
1737 {
1738 	struct drbd_peer_device *peer_device;
1739 	int vnr;
1740 
1741 	rcu_read_lock();
1742 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
1743 		struct drbd_device *device = peer_device->device;
1744 
1745 		kref_get(&device->kref);
1746 		rcu_read_unlock();
1747 		drbd_wait_ee_list_empty(device, &device->active_ee);
1748 		kref_put(&device->kref, drbd_destroy_device);
1749 		rcu_read_lock();
1750 	}
1751 	rcu_read_unlock();
1752 }
1753 
1754 static int receive_Barrier(struct drbd_connection *connection, struct packet_info *pi)
1755 {
1756 	int rv;
1757 	struct p_barrier *p = pi->data;
1758 	struct drbd_epoch *epoch;
1759 
1760 	/* FIXME these are unacked on connection,
1761 	 * not a specific (peer)device.
1762 	 */
1763 	connection->current_epoch->barrier_nr = p->barrier;
1764 	connection->current_epoch->connection = connection;
1765 	rv = drbd_may_finish_epoch(connection, connection->current_epoch, EV_GOT_BARRIER_NR);
1766 
1767 	/* P_BARRIER_ACK may imply that the corresponding extent is dropped from
1768 	 * the activity log, which means it would not be resynced in case the
1769 	 * R_PRIMARY crashes now.
1770 	 * Therefore we must send the barrier_ack after the barrier request was
1771 	 * completed. */
1772 	switch (connection->resource->write_ordering) {
1773 	case WO_NONE:
1774 		if (rv == FE_RECYCLED)
1775 			return 0;
1776 
1777 		/* receiver context, in the writeout path of the other node.
1778 		 * avoid potential distributed deadlock */
1779 		epoch = kmalloc(sizeof(struct drbd_epoch), GFP_NOIO);
1780 		if (epoch)
1781 			break;
1782 		else
1783 			drbd_warn(connection, "Allocation of an epoch failed, slowing down\n");
1784 		fallthrough;
1785 
1786 	case WO_BDEV_FLUSH:
1787 	case WO_DRAIN_IO:
1788 		conn_wait_active_ee_empty(connection);
1789 		drbd_flush(connection);
1790 
1791 		if (atomic_read(&connection->current_epoch->epoch_size)) {
1792 			epoch = kmalloc(sizeof(struct drbd_epoch), GFP_NOIO);
1793 			if (epoch)
1794 				break;
1795 		}
1796 
1797 		return 0;
1798 	default:
1799 		drbd_err(connection, "Strangeness in connection->write_ordering %d\n",
1800 			 connection->resource->write_ordering);
1801 		return -EIO;
1802 	}
1803 
1804 	epoch->flags = 0;
1805 	atomic_set(&epoch->epoch_size, 0);
1806 	atomic_set(&epoch->active, 0);
1807 
1808 	spin_lock(&connection->epoch_lock);
1809 	if (atomic_read(&connection->current_epoch->epoch_size)) {
1810 		list_add(&epoch->list, &connection->current_epoch->list);
1811 		connection->current_epoch = epoch;
1812 		connection->epochs++;
1813 	} else {
1814 		/* The current_epoch got recycled while we allocated this one... */
1815 		kfree(epoch);
1816 	}
1817 	spin_unlock(&connection->epoch_lock);
1818 
1819 	return 0;
1820 }
1821 
1822 /* quick wrapper in case payload size != request_size (write same) */
1823 static void drbd_csum_ee_size(struct crypto_shash *h,
1824 			      struct drbd_peer_request *r, void *d,
1825 			      unsigned int payload_size)
1826 {
1827 	unsigned int tmp = r->i.size;
1828 	r->i.size = payload_size;
1829 	drbd_csum_ee(h, r, d);
1830 	r->i.size = tmp;
1831 }
1832 
1833 /* used from receive_RSDataReply (recv_resync_read)
1834  * and from receive_Data.
1835  * data_size: actual payload ("data in")
1836  * 	for normal writes that is bi_size.
1837  * 	for discards, that is zero.
1838  * 	for write same, it is logical_block_size.
1839  * both trim and write same have the bi_size ("data len to be affected")
1840  * as extra argument in the packet header.
1841  */
1842 static struct drbd_peer_request *
1843 read_in_block(struct drbd_peer_device *peer_device, u64 id, sector_t sector,
1844 	      struct packet_info *pi) __must_hold(local)
1845 {
1846 	struct drbd_device *device = peer_device->device;
1847 	const sector_t capacity = get_capacity(device->vdisk);
1848 	struct drbd_peer_request *peer_req;
1849 	struct page *page;
1850 	int digest_size, err;
1851 	unsigned int data_size = pi->size, ds;
1852 	void *dig_in = peer_device->connection->int_dig_in;
1853 	void *dig_vv = peer_device->connection->int_dig_vv;
1854 	unsigned long *data;
1855 	struct p_trim *trim = (pi->cmd == P_TRIM) ? pi->data : NULL;
1856 	struct p_trim *zeroes = (pi->cmd == P_ZEROES) ? pi->data : NULL;
1857 	struct p_trim *wsame = (pi->cmd == P_WSAME) ? pi->data : NULL;
1858 
1859 	digest_size = 0;
1860 	if (!trim && peer_device->connection->peer_integrity_tfm) {
1861 		digest_size = crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm);
1862 		/*
1863 		 * FIXME: Receive the incoming digest into the receive buffer
1864 		 *	  here, together with its struct p_data?
1865 		 */
1866 		err = drbd_recv_all_warn(peer_device->connection, dig_in, digest_size);
1867 		if (err)
1868 			return NULL;
1869 		data_size -= digest_size;
1870 	}
1871 
1872 	/* assume request_size == data_size, but special case trim and wsame. */
1873 	ds = data_size;
1874 	if (trim) {
1875 		if (!expect(data_size == 0))
1876 			return NULL;
1877 		ds = be32_to_cpu(trim->size);
1878 	} else if (zeroes) {
1879 		if (!expect(data_size == 0))
1880 			return NULL;
1881 		ds = be32_to_cpu(zeroes->size);
1882 	} else if (wsame) {
1883 		if (data_size != queue_logical_block_size(device->rq_queue)) {
1884 			drbd_err(peer_device, "data size (%u) != drbd logical block size (%u)\n",
1885 				data_size, queue_logical_block_size(device->rq_queue));
1886 			return NULL;
1887 		}
1888 		if (data_size != bdev_logical_block_size(device->ldev->backing_bdev)) {
1889 			drbd_err(peer_device, "data size (%u) != backend logical block size (%u)\n",
1890 				data_size, bdev_logical_block_size(device->ldev->backing_bdev));
1891 			return NULL;
1892 		}
1893 		ds = be32_to_cpu(wsame->size);
1894 	}
1895 
1896 	if (!expect(IS_ALIGNED(ds, 512)))
1897 		return NULL;
1898 	if (trim || wsame || zeroes) {
1899 		if (!expect(ds <= (DRBD_MAX_BBIO_SECTORS << 9)))
1900 			return NULL;
1901 	} else if (!expect(ds <= DRBD_MAX_BIO_SIZE))
1902 		return NULL;
1903 
1904 	/* even though we trust out peer,
1905 	 * we sometimes have to double check. */
1906 	if (sector + (ds>>9) > capacity) {
1907 		drbd_err(device, "request from peer beyond end of local disk: "
1908 			"capacity: %llus < sector: %llus + size: %u\n",
1909 			(unsigned long long)capacity,
1910 			(unsigned long long)sector, ds);
1911 		return NULL;
1912 	}
1913 
1914 	/* GFP_NOIO, because we must not cause arbitrary write-out: in a DRBD
1915 	 * "criss-cross" setup, that might cause write-out on some other DRBD,
1916 	 * which in turn might block on the other node at this very place.  */
1917 	peer_req = drbd_alloc_peer_req(peer_device, id, sector, ds, data_size, GFP_NOIO);
1918 	if (!peer_req)
1919 		return NULL;
1920 
1921 	peer_req->flags |= EE_WRITE;
1922 	if (trim) {
1923 		peer_req->flags |= EE_TRIM;
1924 		return peer_req;
1925 	}
1926 	if (zeroes) {
1927 		peer_req->flags |= EE_ZEROOUT;
1928 		return peer_req;
1929 	}
1930 	if (wsame)
1931 		peer_req->flags |= EE_WRITE_SAME;
1932 
1933 	/* receive payload size bytes into page chain */
1934 	ds = data_size;
1935 	page = peer_req->pages;
1936 	page_chain_for_each(page) {
1937 		unsigned len = min_t(int, ds, PAGE_SIZE);
1938 		data = kmap(page);
1939 		err = drbd_recv_all_warn(peer_device->connection, data, len);
1940 		if (drbd_insert_fault(device, DRBD_FAULT_RECEIVE)) {
1941 			drbd_err(device, "Fault injection: Corrupting data on receive\n");
1942 			data[0] = data[0] ^ (unsigned long)-1;
1943 		}
1944 		kunmap(page);
1945 		if (err) {
1946 			drbd_free_peer_req(device, peer_req);
1947 			return NULL;
1948 		}
1949 		ds -= len;
1950 	}
1951 
1952 	if (digest_size) {
1953 		drbd_csum_ee_size(peer_device->connection->peer_integrity_tfm, peer_req, dig_vv, data_size);
1954 		if (memcmp(dig_in, dig_vv, digest_size)) {
1955 			drbd_err(device, "Digest integrity check FAILED: %llus +%u\n",
1956 				(unsigned long long)sector, data_size);
1957 			drbd_free_peer_req(device, peer_req);
1958 			return NULL;
1959 		}
1960 	}
1961 	device->recv_cnt += data_size >> 9;
1962 	return peer_req;
1963 }
1964 
1965 /* drbd_drain_block() just takes a data block
1966  * out of the socket input buffer, and discards it.
1967  */
1968 static int drbd_drain_block(struct drbd_peer_device *peer_device, int data_size)
1969 {
1970 	struct page *page;
1971 	int err = 0;
1972 	void *data;
1973 
1974 	if (!data_size)
1975 		return 0;
1976 
1977 	page = drbd_alloc_pages(peer_device, 1, 1);
1978 
1979 	data = kmap(page);
1980 	while (data_size) {
1981 		unsigned int len = min_t(int, data_size, PAGE_SIZE);
1982 
1983 		err = drbd_recv_all_warn(peer_device->connection, data, len);
1984 		if (err)
1985 			break;
1986 		data_size -= len;
1987 	}
1988 	kunmap(page);
1989 	drbd_free_pages(peer_device->device, page, 0);
1990 	return err;
1991 }
1992 
1993 static int recv_dless_read(struct drbd_peer_device *peer_device, struct drbd_request *req,
1994 			   sector_t sector, int data_size)
1995 {
1996 	struct bio_vec bvec;
1997 	struct bvec_iter iter;
1998 	struct bio *bio;
1999 	int digest_size, err, expect;
2000 	void *dig_in = peer_device->connection->int_dig_in;
2001 	void *dig_vv = peer_device->connection->int_dig_vv;
2002 
2003 	digest_size = 0;
2004 	if (peer_device->connection->peer_integrity_tfm) {
2005 		digest_size = crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm);
2006 		err = drbd_recv_all_warn(peer_device->connection, dig_in, digest_size);
2007 		if (err)
2008 			return err;
2009 		data_size -= digest_size;
2010 	}
2011 
2012 	/* optimistically update recv_cnt.  if receiving fails below,
2013 	 * we disconnect anyways, and counters will be reset. */
2014 	peer_device->device->recv_cnt += data_size>>9;
2015 
2016 	bio = req->master_bio;
2017 	D_ASSERT(peer_device->device, sector == bio->bi_iter.bi_sector);
2018 
2019 	bio_for_each_segment(bvec, bio, iter) {
2020 		void *mapped = bvec_kmap_local(&bvec);
2021 		expect = min_t(int, data_size, bvec.bv_len);
2022 		err = drbd_recv_all_warn(peer_device->connection, mapped, expect);
2023 		kunmap_local(mapped);
2024 		if (err)
2025 			return err;
2026 		data_size -= expect;
2027 	}
2028 
2029 	if (digest_size) {
2030 		drbd_csum_bio(peer_device->connection->peer_integrity_tfm, bio, dig_vv);
2031 		if (memcmp(dig_in, dig_vv, digest_size)) {
2032 			drbd_err(peer_device, "Digest integrity check FAILED. Broken NICs?\n");
2033 			return -EINVAL;
2034 		}
2035 	}
2036 
2037 	D_ASSERT(peer_device->device, data_size == 0);
2038 	return 0;
2039 }
2040 
2041 /*
2042  * e_end_resync_block() is called in ack_sender context via
2043  * drbd_finish_peer_reqs().
2044  */
2045 static int e_end_resync_block(struct drbd_work *w, int unused)
2046 {
2047 	struct drbd_peer_request *peer_req =
2048 		container_of(w, struct drbd_peer_request, w);
2049 	struct drbd_peer_device *peer_device = peer_req->peer_device;
2050 	struct drbd_device *device = peer_device->device;
2051 	sector_t sector = peer_req->i.sector;
2052 	int err;
2053 
2054 	D_ASSERT(device, drbd_interval_empty(&peer_req->i));
2055 
2056 	if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) {
2057 		drbd_set_in_sync(device, sector, peer_req->i.size);
2058 		err = drbd_send_ack(peer_device, P_RS_WRITE_ACK, peer_req);
2059 	} else {
2060 		/* Record failure to sync */
2061 		drbd_rs_failed_io(device, sector, peer_req->i.size);
2062 
2063 		err  = drbd_send_ack(peer_device, P_NEG_ACK, peer_req);
2064 	}
2065 	dec_unacked(device);
2066 
2067 	return err;
2068 }
2069 
2070 static int recv_resync_read(struct drbd_peer_device *peer_device, sector_t sector,
2071 			    struct packet_info *pi) __releases(local)
2072 {
2073 	struct drbd_device *device = peer_device->device;
2074 	struct drbd_peer_request *peer_req;
2075 
2076 	peer_req = read_in_block(peer_device, ID_SYNCER, sector, pi);
2077 	if (!peer_req)
2078 		goto fail;
2079 
2080 	dec_rs_pending(device);
2081 
2082 	inc_unacked(device);
2083 	/* corresponding dec_unacked() in e_end_resync_block()
2084 	 * respective _drbd_clear_done_ee */
2085 
2086 	peer_req->w.cb = e_end_resync_block;
2087 	peer_req->submit_jif = jiffies;
2088 
2089 	spin_lock_irq(&device->resource->req_lock);
2090 	list_add_tail(&peer_req->w.list, &device->sync_ee);
2091 	spin_unlock_irq(&device->resource->req_lock);
2092 
2093 	atomic_add(pi->size >> 9, &device->rs_sect_ev);
2094 	if (drbd_submit_peer_request(device, peer_req, REQ_OP_WRITE, 0,
2095 				     DRBD_FAULT_RS_WR) == 0)
2096 		return 0;
2097 
2098 	/* don't care for the reason here */
2099 	drbd_err(device, "submit failed, triggering re-connect\n");
2100 	spin_lock_irq(&device->resource->req_lock);
2101 	list_del(&peer_req->w.list);
2102 	spin_unlock_irq(&device->resource->req_lock);
2103 
2104 	drbd_free_peer_req(device, peer_req);
2105 fail:
2106 	put_ldev(device);
2107 	return -EIO;
2108 }
2109 
2110 static struct drbd_request *
2111 find_request(struct drbd_device *device, struct rb_root *root, u64 id,
2112 	     sector_t sector, bool missing_ok, const char *func)
2113 {
2114 	struct drbd_request *req;
2115 
2116 	/* Request object according to our peer */
2117 	req = (struct drbd_request *)(unsigned long)id;
2118 	if (drbd_contains_interval(root, sector, &req->i) && req->i.local)
2119 		return req;
2120 	if (!missing_ok) {
2121 		drbd_err(device, "%s: failed to find request 0x%lx, sector %llus\n", func,
2122 			(unsigned long)id, (unsigned long long)sector);
2123 	}
2124 	return NULL;
2125 }
2126 
2127 static int receive_DataReply(struct drbd_connection *connection, struct packet_info *pi)
2128 {
2129 	struct drbd_peer_device *peer_device;
2130 	struct drbd_device *device;
2131 	struct drbd_request *req;
2132 	sector_t sector;
2133 	int err;
2134 	struct p_data *p = pi->data;
2135 
2136 	peer_device = conn_peer_device(connection, pi->vnr);
2137 	if (!peer_device)
2138 		return -EIO;
2139 	device = peer_device->device;
2140 
2141 	sector = be64_to_cpu(p->sector);
2142 
2143 	spin_lock_irq(&device->resource->req_lock);
2144 	req = find_request(device, &device->read_requests, p->block_id, sector, false, __func__);
2145 	spin_unlock_irq(&device->resource->req_lock);
2146 	if (unlikely(!req))
2147 		return -EIO;
2148 
2149 	/* hlist_del(&req->collision) is done in _req_may_be_done, to avoid
2150 	 * special casing it there for the various failure cases.
2151 	 * still no race with drbd_fail_pending_reads */
2152 	err = recv_dless_read(peer_device, req, sector, pi->size);
2153 	if (!err)
2154 		req_mod(req, DATA_RECEIVED);
2155 	/* else: nothing. handled from drbd_disconnect...
2156 	 * I don't think we may complete this just yet
2157 	 * in case we are "on-disconnect: freeze" */
2158 
2159 	return err;
2160 }
2161 
2162 static int receive_RSDataReply(struct drbd_connection *connection, struct packet_info *pi)
2163 {
2164 	struct drbd_peer_device *peer_device;
2165 	struct drbd_device *device;
2166 	sector_t sector;
2167 	int err;
2168 	struct p_data *p = pi->data;
2169 
2170 	peer_device = conn_peer_device(connection, pi->vnr);
2171 	if (!peer_device)
2172 		return -EIO;
2173 	device = peer_device->device;
2174 
2175 	sector = be64_to_cpu(p->sector);
2176 	D_ASSERT(device, p->block_id == ID_SYNCER);
2177 
2178 	if (get_ldev(device)) {
2179 		/* data is submitted to disk within recv_resync_read.
2180 		 * corresponding put_ldev done below on error,
2181 		 * or in drbd_peer_request_endio. */
2182 		err = recv_resync_read(peer_device, sector, pi);
2183 	} else {
2184 		if (__ratelimit(&drbd_ratelimit_state))
2185 			drbd_err(device, "Can not write resync data to local disk.\n");
2186 
2187 		err = drbd_drain_block(peer_device, pi->size);
2188 
2189 		drbd_send_ack_dp(peer_device, P_NEG_ACK, p, pi->size);
2190 	}
2191 
2192 	atomic_add(pi->size >> 9, &device->rs_sect_in);
2193 
2194 	return err;
2195 }
2196 
2197 static void restart_conflicting_writes(struct drbd_device *device,
2198 				       sector_t sector, int size)
2199 {
2200 	struct drbd_interval *i;
2201 	struct drbd_request *req;
2202 
2203 	drbd_for_each_overlap(i, &device->write_requests, sector, size) {
2204 		if (!i->local)
2205 			continue;
2206 		req = container_of(i, struct drbd_request, i);
2207 		if (req->rq_state & RQ_LOCAL_PENDING ||
2208 		    !(req->rq_state & RQ_POSTPONED))
2209 			continue;
2210 		/* as it is RQ_POSTPONED, this will cause it to
2211 		 * be queued on the retry workqueue. */
2212 		__req_mod(req, CONFLICT_RESOLVED, NULL);
2213 	}
2214 }
2215 
2216 /*
2217  * e_end_block() is called in ack_sender context via drbd_finish_peer_reqs().
2218  */
2219 static int e_end_block(struct drbd_work *w, int cancel)
2220 {
2221 	struct drbd_peer_request *peer_req =
2222 		container_of(w, struct drbd_peer_request, w);
2223 	struct drbd_peer_device *peer_device = peer_req->peer_device;
2224 	struct drbd_device *device = peer_device->device;
2225 	sector_t sector = peer_req->i.sector;
2226 	int err = 0, pcmd;
2227 
2228 	if (peer_req->flags & EE_SEND_WRITE_ACK) {
2229 		if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) {
2230 			pcmd = (device->state.conn >= C_SYNC_SOURCE &&
2231 				device->state.conn <= C_PAUSED_SYNC_T &&
2232 				peer_req->flags & EE_MAY_SET_IN_SYNC) ?
2233 				P_RS_WRITE_ACK : P_WRITE_ACK;
2234 			err = drbd_send_ack(peer_device, pcmd, peer_req);
2235 			if (pcmd == P_RS_WRITE_ACK)
2236 				drbd_set_in_sync(device, sector, peer_req->i.size);
2237 		} else {
2238 			err = drbd_send_ack(peer_device, P_NEG_ACK, peer_req);
2239 			/* we expect it to be marked out of sync anyways...
2240 			 * maybe assert this?  */
2241 		}
2242 		dec_unacked(device);
2243 	}
2244 
2245 	/* we delete from the conflict detection hash _after_ we sent out the
2246 	 * P_WRITE_ACK / P_NEG_ACK, to get the sequence number right.  */
2247 	if (peer_req->flags & EE_IN_INTERVAL_TREE) {
2248 		spin_lock_irq(&device->resource->req_lock);
2249 		D_ASSERT(device, !drbd_interval_empty(&peer_req->i));
2250 		drbd_remove_epoch_entry_interval(device, peer_req);
2251 		if (peer_req->flags & EE_RESTART_REQUESTS)
2252 			restart_conflicting_writes(device, sector, peer_req->i.size);
2253 		spin_unlock_irq(&device->resource->req_lock);
2254 	} else
2255 		D_ASSERT(device, drbd_interval_empty(&peer_req->i));
2256 
2257 	drbd_may_finish_epoch(peer_device->connection, peer_req->epoch, EV_PUT + (cancel ? EV_CLEANUP : 0));
2258 
2259 	return err;
2260 }
2261 
2262 static int e_send_ack(struct drbd_work *w, enum drbd_packet ack)
2263 {
2264 	struct drbd_peer_request *peer_req =
2265 		container_of(w, struct drbd_peer_request, w);
2266 	struct drbd_peer_device *peer_device = peer_req->peer_device;
2267 	int err;
2268 
2269 	err = drbd_send_ack(peer_device, ack, peer_req);
2270 	dec_unacked(peer_device->device);
2271 
2272 	return err;
2273 }
2274 
2275 static int e_send_superseded(struct drbd_work *w, int unused)
2276 {
2277 	return e_send_ack(w, P_SUPERSEDED);
2278 }
2279 
2280 static int e_send_retry_write(struct drbd_work *w, int unused)
2281 {
2282 	struct drbd_peer_request *peer_req =
2283 		container_of(w, struct drbd_peer_request, w);
2284 	struct drbd_connection *connection = peer_req->peer_device->connection;
2285 
2286 	return e_send_ack(w, connection->agreed_pro_version >= 100 ?
2287 			     P_RETRY_WRITE : P_SUPERSEDED);
2288 }
2289 
2290 static bool seq_greater(u32 a, u32 b)
2291 {
2292 	/*
2293 	 * We assume 32-bit wrap-around here.
2294 	 * For 24-bit wrap-around, we would have to shift:
2295 	 *  a <<= 8; b <<= 8;
2296 	 */
2297 	return (s32)a - (s32)b > 0;
2298 }
2299 
2300 static u32 seq_max(u32 a, u32 b)
2301 {
2302 	return seq_greater(a, b) ? a : b;
2303 }
2304 
2305 static void update_peer_seq(struct drbd_peer_device *peer_device, unsigned int peer_seq)
2306 {
2307 	struct drbd_device *device = peer_device->device;
2308 	unsigned int newest_peer_seq;
2309 
2310 	if (test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags)) {
2311 		spin_lock(&device->peer_seq_lock);
2312 		newest_peer_seq = seq_max(device->peer_seq, peer_seq);
2313 		device->peer_seq = newest_peer_seq;
2314 		spin_unlock(&device->peer_seq_lock);
2315 		/* wake up only if we actually changed device->peer_seq */
2316 		if (peer_seq == newest_peer_seq)
2317 			wake_up(&device->seq_wait);
2318 	}
2319 }
2320 
2321 static inline int overlaps(sector_t s1, int l1, sector_t s2, int l2)
2322 {
2323 	return !((s1 + (l1>>9) <= s2) || (s1 >= s2 + (l2>>9)));
2324 }
2325 
2326 /* maybe change sync_ee into interval trees as well? */
2327 static bool overlapping_resync_write(struct drbd_device *device, struct drbd_peer_request *peer_req)
2328 {
2329 	struct drbd_peer_request *rs_req;
2330 	bool rv = false;
2331 
2332 	spin_lock_irq(&device->resource->req_lock);
2333 	list_for_each_entry(rs_req, &device->sync_ee, w.list) {
2334 		if (overlaps(peer_req->i.sector, peer_req->i.size,
2335 			     rs_req->i.sector, rs_req->i.size)) {
2336 			rv = true;
2337 			break;
2338 		}
2339 	}
2340 	spin_unlock_irq(&device->resource->req_lock);
2341 
2342 	return rv;
2343 }
2344 
2345 /* Called from receive_Data.
2346  * Synchronize packets on sock with packets on msock.
2347  *
2348  * This is here so even when a P_DATA packet traveling via sock overtook an Ack
2349  * packet traveling on msock, they are still processed in the order they have
2350  * been sent.
2351  *
2352  * Note: we don't care for Ack packets overtaking P_DATA packets.
2353  *
2354  * In case packet_seq is larger than device->peer_seq number, there are
2355  * outstanding packets on the msock. We wait for them to arrive.
2356  * In case we are the logically next packet, we update device->peer_seq
2357  * ourselves. Correctly handles 32bit wrap around.
2358  *
2359  * Assume we have a 10 GBit connection, that is about 1<<30 byte per second,
2360  * about 1<<21 sectors per second. So "worst" case, we have 1<<3 == 8 seconds
2361  * for the 24bit wrap (historical atomic_t guarantee on some archs), and we have
2362  * 1<<9 == 512 seconds aka ages for the 32bit wrap around...
2363  *
2364  * returns 0 if we may process the packet,
2365  * -ERESTARTSYS if we were interrupted (by disconnect signal). */
2366 static int wait_for_and_update_peer_seq(struct drbd_peer_device *peer_device, const u32 peer_seq)
2367 {
2368 	struct drbd_device *device = peer_device->device;
2369 	DEFINE_WAIT(wait);
2370 	long timeout;
2371 	int ret = 0, tp;
2372 
2373 	if (!test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags))
2374 		return 0;
2375 
2376 	spin_lock(&device->peer_seq_lock);
2377 	for (;;) {
2378 		if (!seq_greater(peer_seq - 1, device->peer_seq)) {
2379 			device->peer_seq = seq_max(device->peer_seq, peer_seq);
2380 			break;
2381 		}
2382 
2383 		if (signal_pending(current)) {
2384 			ret = -ERESTARTSYS;
2385 			break;
2386 		}
2387 
2388 		rcu_read_lock();
2389 		tp = rcu_dereference(peer_device->connection->net_conf)->two_primaries;
2390 		rcu_read_unlock();
2391 
2392 		if (!tp)
2393 			break;
2394 
2395 		/* Only need to wait if two_primaries is enabled */
2396 		prepare_to_wait(&device->seq_wait, &wait, TASK_INTERRUPTIBLE);
2397 		spin_unlock(&device->peer_seq_lock);
2398 		rcu_read_lock();
2399 		timeout = rcu_dereference(peer_device->connection->net_conf)->ping_timeo*HZ/10;
2400 		rcu_read_unlock();
2401 		timeout = schedule_timeout(timeout);
2402 		spin_lock(&device->peer_seq_lock);
2403 		if (!timeout) {
2404 			ret = -ETIMEDOUT;
2405 			drbd_err(device, "Timed out waiting for missing ack packets; disconnecting\n");
2406 			break;
2407 		}
2408 	}
2409 	spin_unlock(&device->peer_seq_lock);
2410 	finish_wait(&device->seq_wait, &wait);
2411 	return ret;
2412 }
2413 
2414 /* see also bio_flags_to_wire()
2415  * DRBD_REQ_*, because we need to semantically map the flags to data packet
2416  * flags and back. We may replicate to other kernel versions. */
2417 static unsigned long wire_flags_to_bio_flags(u32 dpf)
2418 {
2419 	return  (dpf & DP_RW_SYNC ? REQ_SYNC : 0) |
2420 		(dpf & DP_FUA ? REQ_FUA : 0) |
2421 		(dpf & DP_FLUSH ? REQ_PREFLUSH : 0);
2422 }
2423 
2424 static unsigned long wire_flags_to_bio_op(u32 dpf)
2425 {
2426 	if (dpf & DP_ZEROES)
2427 		return REQ_OP_WRITE_ZEROES;
2428 	if (dpf & DP_DISCARD)
2429 		return REQ_OP_DISCARD;
2430 	if (dpf & DP_WSAME)
2431 		return REQ_OP_WRITE_SAME;
2432 	else
2433 		return REQ_OP_WRITE;
2434 }
2435 
2436 static void fail_postponed_requests(struct drbd_device *device, sector_t sector,
2437 				    unsigned int size)
2438 {
2439 	struct drbd_interval *i;
2440 
2441     repeat:
2442 	drbd_for_each_overlap(i, &device->write_requests, sector, size) {
2443 		struct drbd_request *req;
2444 		struct bio_and_error m;
2445 
2446 		if (!i->local)
2447 			continue;
2448 		req = container_of(i, struct drbd_request, i);
2449 		if (!(req->rq_state & RQ_POSTPONED))
2450 			continue;
2451 		req->rq_state &= ~RQ_POSTPONED;
2452 		__req_mod(req, NEG_ACKED, &m);
2453 		spin_unlock_irq(&device->resource->req_lock);
2454 		if (m.bio)
2455 			complete_master_bio(device, &m);
2456 		spin_lock_irq(&device->resource->req_lock);
2457 		goto repeat;
2458 	}
2459 }
2460 
2461 static int handle_write_conflicts(struct drbd_device *device,
2462 				  struct drbd_peer_request *peer_req)
2463 {
2464 	struct drbd_connection *connection = peer_req->peer_device->connection;
2465 	bool resolve_conflicts = test_bit(RESOLVE_CONFLICTS, &connection->flags);
2466 	sector_t sector = peer_req->i.sector;
2467 	const unsigned int size = peer_req->i.size;
2468 	struct drbd_interval *i;
2469 	bool equal;
2470 	int err;
2471 
2472 	/*
2473 	 * Inserting the peer request into the write_requests tree will prevent
2474 	 * new conflicting local requests from being added.
2475 	 */
2476 	drbd_insert_interval(&device->write_requests, &peer_req->i);
2477 
2478     repeat:
2479 	drbd_for_each_overlap(i, &device->write_requests, sector, size) {
2480 		if (i == &peer_req->i)
2481 			continue;
2482 		if (i->completed)
2483 			continue;
2484 
2485 		if (!i->local) {
2486 			/*
2487 			 * Our peer has sent a conflicting remote request; this
2488 			 * should not happen in a two-node setup.  Wait for the
2489 			 * earlier peer request to complete.
2490 			 */
2491 			err = drbd_wait_misc(device, i);
2492 			if (err)
2493 				goto out;
2494 			goto repeat;
2495 		}
2496 
2497 		equal = i->sector == sector && i->size == size;
2498 		if (resolve_conflicts) {
2499 			/*
2500 			 * If the peer request is fully contained within the
2501 			 * overlapping request, it can be considered overwritten
2502 			 * and thus superseded; otherwise, it will be retried
2503 			 * once all overlapping requests have completed.
2504 			 */
2505 			bool superseded = i->sector <= sector && i->sector +
2506 				       (i->size >> 9) >= sector + (size >> 9);
2507 
2508 			if (!equal)
2509 				drbd_alert(device, "Concurrent writes detected: "
2510 					       "local=%llus +%u, remote=%llus +%u, "
2511 					       "assuming %s came first\n",
2512 					  (unsigned long long)i->sector, i->size,
2513 					  (unsigned long long)sector, size,
2514 					  superseded ? "local" : "remote");
2515 
2516 			peer_req->w.cb = superseded ? e_send_superseded :
2517 						   e_send_retry_write;
2518 			list_add_tail(&peer_req->w.list, &device->done_ee);
2519 			queue_work(connection->ack_sender, &peer_req->peer_device->send_acks_work);
2520 
2521 			err = -ENOENT;
2522 			goto out;
2523 		} else {
2524 			struct drbd_request *req =
2525 				container_of(i, struct drbd_request, i);
2526 
2527 			if (!equal)
2528 				drbd_alert(device, "Concurrent writes detected: "
2529 					       "local=%llus +%u, remote=%llus +%u\n",
2530 					  (unsigned long long)i->sector, i->size,
2531 					  (unsigned long long)sector, size);
2532 
2533 			if (req->rq_state & RQ_LOCAL_PENDING ||
2534 			    !(req->rq_state & RQ_POSTPONED)) {
2535 				/*
2536 				 * Wait for the node with the discard flag to
2537 				 * decide if this request has been superseded
2538 				 * or needs to be retried.
2539 				 * Requests that have been superseded will
2540 				 * disappear from the write_requests tree.
2541 				 *
2542 				 * In addition, wait for the conflicting
2543 				 * request to finish locally before submitting
2544 				 * the conflicting peer request.
2545 				 */
2546 				err = drbd_wait_misc(device, &req->i);
2547 				if (err) {
2548 					_conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD);
2549 					fail_postponed_requests(device, sector, size);
2550 					goto out;
2551 				}
2552 				goto repeat;
2553 			}
2554 			/*
2555 			 * Remember to restart the conflicting requests after
2556 			 * the new peer request has completed.
2557 			 */
2558 			peer_req->flags |= EE_RESTART_REQUESTS;
2559 		}
2560 	}
2561 	err = 0;
2562 
2563     out:
2564 	if (err)
2565 		drbd_remove_epoch_entry_interval(device, peer_req);
2566 	return err;
2567 }
2568 
2569 /* mirrored write */
2570 static int receive_Data(struct drbd_connection *connection, struct packet_info *pi)
2571 {
2572 	struct drbd_peer_device *peer_device;
2573 	struct drbd_device *device;
2574 	struct net_conf *nc;
2575 	sector_t sector;
2576 	struct drbd_peer_request *peer_req;
2577 	struct p_data *p = pi->data;
2578 	u32 peer_seq = be32_to_cpu(p->seq_num);
2579 	int op, op_flags;
2580 	u32 dp_flags;
2581 	int err, tp;
2582 
2583 	peer_device = conn_peer_device(connection, pi->vnr);
2584 	if (!peer_device)
2585 		return -EIO;
2586 	device = peer_device->device;
2587 
2588 	if (!get_ldev(device)) {
2589 		int err2;
2590 
2591 		err = wait_for_and_update_peer_seq(peer_device, peer_seq);
2592 		drbd_send_ack_dp(peer_device, P_NEG_ACK, p, pi->size);
2593 		atomic_inc(&connection->current_epoch->epoch_size);
2594 		err2 = drbd_drain_block(peer_device, pi->size);
2595 		if (!err)
2596 			err = err2;
2597 		return err;
2598 	}
2599 
2600 	/*
2601 	 * Corresponding put_ldev done either below (on various errors), or in
2602 	 * drbd_peer_request_endio, if we successfully submit the data at the
2603 	 * end of this function.
2604 	 */
2605 
2606 	sector = be64_to_cpu(p->sector);
2607 	peer_req = read_in_block(peer_device, p->block_id, sector, pi);
2608 	if (!peer_req) {
2609 		put_ldev(device);
2610 		return -EIO;
2611 	}
2612 
2613 	peer_req->w.cb = e_end_block;
2614 	peer_req->submit_jif = jiffies;
2615 	peer_req->flags |= EE_APPLICATION;
2616 
2617 	dp_flags = be32_to_cpu(p->dp_flags);
2618 	op = wire_flags_to_bio_op(dp_flags);
2619 	op_flags = wire_flags_to_bio_flags(dp_flags);
2620 	if (pi->cmd == P_TRIM) {
2621 		D_ASSERT(peer_device, peer_req->i.size > 0);
2622 		D_ASSERT(peer_device, op == REQ_OP_DISCARD);
2623 		D_ASSERT(peer_device, peer_req->pages == NULL);
2624 		/* need to play safe: an older DRBD sender
2625 		 * may mean zero-out while sending P_TRIM. */
2626 		if (0 == (connection->agreed_features & DRBD_FF_WZEROES))
2627 			peer_req->flags |= EE_ZEROOUT;
2628 	} else if (pi->cmd == P_ZEROES) {
2629 		D_ASSERT(peer_device, peer_req->i.size > 0);
2630 		D_ASSERT(peer_device, op == REQ_OP_WRITE_ZEROES);
2631 		D_ASSERT(peer_device, peer_req->pages == NULL);
2632 		/* Do (not) pass down BLKDEV_ZERO_NOUNMAP? */
2633 		if (dp_flags & DP_DISCARD)
2634 			peer_req->flags |= EE_TRIM;
2635 	} else if (peer_req->pages == NULL) {
2636 		D_ASSERT(device, peer_req->i.size == 0);
2637 		D_ASSERT(device, dp_flags & DP_FLUSH);
2638 	}
2639 
2640 	if (dp_flags & DP_MAY_SET_IN_SYNC)
2641 		peer_req->flags |= EE_MAY_SET_IN_SYNC;
2642 
2643 	spin_lock(&connection->epoch_lock);
2644 	peer_req->epoch = connection->current_epoch;
2645 	atomic_inc(&peer_req->epoch->epoch_size);
2646 	atomic_inc(&peer_req->epoch->active);
2647 	spin_unlock(&connection->epoch_lock);
2648 
2649 	rcu_read_lock();
2650 	nc = rcu_dereference(peer_device->connection->net_conf);
2651 	tp = nc->two_primaries;
2652 	if (peer_device->connection->agreed_pro_version < 100) {
2653 		switch (nc->wire_protocol) {
2654 		case DRBD_PROT_C:
2655 			dp_flags |= DP_SEND_WRITE_ACK;
2656 			break;
2657 		case DRBD_PROT_B:
2658 			dp_flags |= DP_SEND_RECEIVE_ACK;
2659 			break;
2660 		}
2661 	}
2662 	rcu_read_unlock();
2663 
2664 	if (dp_flags & DP_SEND_WRITE_ACK) {
2665 		peer_req->flags |= EE_SEND_WRITE_ACK;
2666 		inc_unacked(device);
2667 		/* corresponding dec_unacked() in e_end_block()
2668 		 * respective _drbd_clear_done_ee */
2669 	}
2670 
2671 	if (dp_flags & DP_SEND_RECEIVE_ACK) {
2672 		/* I really don't like it that the receiver thread
2673 		 * sends on the msock, but anyways */
2674 		drbd_send_ack(peer_device, P_RECV_ACK, peer_req);
2675 	}
2676 
2677 	if (tp) {
2678 		/* two primaries implies protocol C */
2679 		D_ASSERT(device, dp_flags & DP_SEND_WRITE_ACK);
2680 		peer_req->flags |= EE_IN_INTERVAL_TREE;
2681 		err = wait_for_and_update_peer_seq(peer_device, peer_seq);
2682 		if (err)
2683 			goto out_interrupted;
2684 		spin_lock_irq(&device->resource->req_lock);
2685 		err = handle_write_conflicts(device, peer_req);
2686 		if (err) {
2687 			spin_unlock_irq(&device->resource->req_lock);
2688 			if (err == -ENOENT) {
2689 				put_ldev(device);
2690 				return 0;
2691 			}
2692 			goto out_interrupted;
2693 		}
2694 	} else {
2695 		update_peer_seq(peer_device, peer_seq);
2696 		spin_lock_irq(&device->resource->req_lock);
2697 	}
2698 	/* TRIM and WRITE_SAME are processed synchronously,
2699 	 * we wait for all pending requests, respectively wait for
2700 	 * active_ee to become empty in drbd_submit_peer_request();
2701 	 * better not add ourselves here. */
2702 	if ((peer_req->flags & (EE_TRIM|EE_WRITE_SAME|EE_ZEROOUT)) == 0)
2703 		list_add_tail(&peer_req->w.list, &device->active_ee);
2704 	spin_unlock_irq(&device->resource->req_lock);
2705 
2706 	if (device->state.conn == C_SYNC_TARGET)
2707 		wait_event(device->ee_wait, !overlapping_resync_write(device, peer_req));
2708 
2709 	if (device->state.pdsk < D_INCONSISTENT) {
2710 		/* In case we have the only disk of the cluster, */
2711 		drbd_set_out_of_sync(device, peer_req->i.sector, peer_req->i.size);
2712 		peer_req->flags &= ~EE_MAY_SET_IN_SYNC;
2713 		drbd_al_begin_io(device, &peer_req->i);
2714 		peer_req->flags |= EE_CALL_AL_COMPLETE_IO;
2715 	}
2716 
2717 	err = drbd_submit_peer_request(device, peer_req, op, op_flags,
2718 				       DRBD_FAULT_DT_WR);
2719 	if (!err)
2720 		return 0;
2721 
2722 	/* don't care for the reason here */
2723 	drbd_err(device, "submit failed, triggering re-connect\n");
2724 	spin_lock_irq(&device->resource->req_lock);
2725 	list_del(&peer_req->w.list);
2726 	drbd_remove_epoch_entry_interval(device, peer_req);
2727 	spin_unlock_irq(&device->resource->req_lock);
2728 	if (peer_req->flags & EE_CALL_AL_COMPLETE_IO) {
2729 		peer_req->flags &= ~EE_CALL_AL_COMPLETE_IO;
2730 		drbd_al_complete_io(device, &peer_req->i);
2731 	}
2732 
2733 out_interrupted:
2734 	drbd_may_finish_epoch(connection, peer_req->epoch, EV_PUT | EV_CLEANUP);
2735 	put_ldev(device);
2736 	drbd_free_peer_req(device, peer_req);
2737 	return err;
2738 }
2739 
2740 /* We may throttle resync, if the lower device seems to be busy,
2741  * and current sync rate is above c_min_rate.
2742  *
2743  * To decide whether or not the lower device is busy, we use a scheme similar
2744  * to MD RAID is_mddev_idle(): if the partition stats reveal "significant"
2745  * (more than 64 sectors) of activity we cannot account for with our own resync
2746  * activity, it obviously is "busy".
2747  *
2748  * The current sync rate used here uses only the most recent two step marks,
2749  * to have a short time average so we can react faster.
2750  */
2751 bool drbd_rs_should_slow_down(struct drbd_device *device, sector_t sector,
2752 		bool throttle_if_app_is_waiting)
2753 {
2754 	struct lc_element *tmp;
2755 	bool throttle = drbd_rs_c_min_rate_throttle(device);
2756 
2757 	if (!throttle || throttle_if_app_is_waiting)
2758 		return throttle;
2759 
2760 	spin_lock_irq(&device->al_lock);
2761 	tmp = lc_find(device->resync, BM_SECT_TO_EXT(sector));
2762 	if (tmp) {
2763 		struct bm_extent *bm_ext = lc_entry(tmp, struct bm_extent, lce);
2764 		if (test_bit(BME_PRIORITY, &bm_ext->flags))
2765 			throttle = false;
2766 		/* Do not slow down if app IO is already waiting for this extent,
2767 		 * and our progress is necessary for application IO to complete. */
2768 	}
2769 	spin_unlock_irq(&device->al_lock);
2770 
2771 	return throttle;
2772 }
2773 
2774 bool drbd_rs_c_min_rate_throttle(struct drbd_device *device)
2775 {
2776 	struct gendisk *disk = device->ldev->backing_bdev->bd_disk;
2777 	unsigned long db, dt, dbdt;
2778 	unsigned int c_min_rate;
2779 	int curr_events;
2780 
2781 	rcu_read_lock();
2782 	c_min_rate = rcu_dereference(device->ldev->disk_conf)->c_min_rate;
2783 	rcu_read_unlock();
2784 
2785 	/* feature disabled? */
2786 	if (c_min_rate == 0)
2787 		return false;
2788 
2789 	curr_events = (int)part_stat_read_accum(disk->part0, sectors) -
2790 			atomic_read(&device->rs_sect_ev);
2791 
2792 	if (atomic_read(&device->ap_actlog_cnt)
2793 	    || curr_events - device->rs_last_events > 64) {
2794 		unsigned long rs_left;
2795 		int i;
2796 
2797 		device->rs_last_events = curr_events;
2798 
2799 		/* sync speed average over the last 2*DRBD_SYNC_MARK_STEP,
2800 		 * approx. */
2801 		i = (device->rs_last_mark + DRBD_SYNC_MARKS-1) % DRBD_SYNC_MARKS;
2802 
2803 		if (device->state.conn == C_VERIFY_S || device->state.conn == C_VERIFY_T)
2804 			rs_left = device->ov_left;
2805 		else
2806 			rs_left = drbd_bm_total_weight(device) - device->rs_failed;
2807 
2808 		dt = ((long)jiffies - (long)device->rs_mark_time[i]) / HZ;
2809 		if (!dt)
2810 			dt++;
2811 		db = device->rs_mark_left[i] - rs_left;
2812 		dbdt = Bit2KB(db/dt);
2813 
2814 		if (dbdt > c_min_rate)
2815 			return true;
2816 	}
2817 	return false;
2818 }
2819 
2820 static int receive_DataRequest(struct drbd_connection *connection, struct packet_info *pi)
2821 {
2822 	struct drbd_peer_device *peer_device;
2823 	struct drbd_device *device;
2824 	sector_t sector;
2825 	sector_t capacity;
2826 	struct drbd_peer_request *peer_req;
2827 	struct digest_info *di = NULL;
2828 	int size, verb;
2829 	unsigned int fault_type;
2830 	struct p_block_req *p =	pi->data;
2831 
2832 	peer_device = conn_peer_device(connection, pi->vnr);
2833 	if (!peer_device)
2834 		return -EIO;
2835 	device = peer_device->device;
2836 	capacity = get_capacity(device->vdisk);
2837 
2838 	sector = be64_to_cpu(p->sector);
2839 	size   = be32_to_cpu(p->blksize);
2840 
2841 	if (size <= 0 || !IS_ALIGNED(size, 512) || size > DRBD_MAX_BIO_SIZE) {
2842 		drbd_err(device, "%s:%d: sector: %llus, size: %u\n", __FILE__, __LINE__,
2843 				(unsigned long long)sector, size);
2844 		return -EINVAL;
2845 	}
2846 	if (sector + (size>>9) > capacity) {
2847 		drbd_err(device, "%s:%d: sector: %llus, size: %u\n", __FILE__, __LINE__,
2848 				(unsigned long long)sector, size);
2849 		return -EINVAL;
2850 	}
2851 
2852 	if (!get_ldev_if_state(device, D_UP_TO_DATE)) {
2853 		verb = 1;
2854 		switch (pi->cmd) {
2855 		case P_DATA_REQUEST:
2856 			drbd_send_ack_rp(peer_device, P_NEG_DREPLY, p);
2857 			break;
2858 		case P_RS_THIN_REQ:
2859 		case P_RS_DATA_REQUEST:
2860 		case P_CSUM_RS_REQUEST:
2861 		case P_OV_REQUEST:
2862 			drbd_send_ack_rp(peer_device, P_NEG_RS_DREPLY , p);
2863 			break;
2864 		case P_OV_REPLY:
2865 			verb = 0;
2866 			dec_rs_pending(device);
2867 			drbd_send_ack_ex(peer_device, P_OV_RESULT, sector, size, ID_IN_SYNC);
2868 			break;
2869 		default:
2870 			BUG();
2871 		}
2872 		if (verb && __ratelimit(&drbd_ratelimit_state))
2873 			drbd_err(device, "Can not satisfy peer's read request, "
2874 			    "no local data.\n");
2875 
2876 		/* drain possibly payload */
2877 		return drbd_drain_block(peer_device, pi->size);
2878 	}
2879 
2880 	/* GFP_NOIO, because we must not cause arbitrary write-out: in a DRBD
2881 	 * "criss-cross" setup, that might cause write-out on some other DRBD,
2882 	 * which in turn might block on the other node at this very place.  */
2883 	peer_req = drbd_alloc_peer_req(peer_device, p->block_id, sector, size,
2884 			size, GFP_NOIO);
2885 	if (!peer_req) {
2886 		put_ldev(device);
2887 		return -ENOMEM;
2888 	}
2889 
2890 	switch (pi->cmd) {
2891 	case P_DATA_REQUEST:
2892 		peer_req->w.cb = w_e_end_data_req;
2893 		fault_type = DRBD_FAULT_DT_RD;
2894 		/* application IO, don't drbd_rs_begin_io */
2895 		peer_req->flags |= EE_APPLICATION;
2896 		goto submit;
2897 
2898 	case P_RS_THIN_REQ:
2899 		/* If at some point in the future we have a smart way to
2900 		   find out if this data block is completely deallocated,
2901 		   then we would do something smarter here than reading
2902 		   the block... */
2903 		peer_req->flags |= EE_RS_THIN_REQ;
2904 		fallthrough;
2905 	case P_RS_DATA_REQUEST:
2906 		peer_req->w.cb = w_e_end_rsdata_req;
2907 		fault_type = DRBD_FAULT_RS_RD;
2908 		/* used in the sector offset progress display */
2909 		device->bm_resync_fo = BM_SECT_TO_BIT(sector);
2910 		break;
2911 
2912 	case P_OV_REPLY:
2913 	case P_CSUM_RS_REQUEST:
2914 		fault_type = DRBD_FAULT_RS_RD;
2915 		di = kmalloc(sizeof(*di) + pi->size, GFP_NOIO);
2916 		if (!di)
2917 			goto out_free_e;
2918 
2919 		di->digest_size = pi->size;
2920 		di->digest = (((char *)di)+sizeof(struct digest_info));
2921 
2922 		peer_req->digest = di;
2923 		peer_req->flags |= EE_HAS_DIGEST;
2924 
2925 		if (drbd_recv_all(peer_device->connection, di->digest, pi->size))
2926 			goto out_free_e;
2927 
2928 		if (pi->cmd == P_CSUM_RS_REQUEST) {
2929 			D_ASSERT(device, peer_device->connection->agreed_pro_version >= 89);
2930 			peer_req->w.cb = w_e_end_csum_rs_req;
2931 			/* used in the sector offset progress display */
2932 			device->bm_resync_fo = BM_SECT_TO_BIT(sector);
2933 			/* remember to report stats in drbd_resync_finished */
2934 			device->use_csums = true;
2935 		} else if (pi->cmd == P_OV_REPLY) {
2936 			/* track progress, we may need to throttle */
2937 			atomic_add(size >> 9, &device->rs_sect_in);
2938 			peer_req->w.cb = w_e_end_ov_reply;
2939 			dec_rs_pending(device);
2940 			/* drbd_rs_begin_io done when we sent this request,
2941 			 * but accounting still needs to be done. */
2942 			goto submit_for_resync;
2943 		}
2944 		break;
2945 
2946 	case P_OV_REQUEST:
2947 		if (device->ov_start_sector == ~(sector_t)0 &&
2948 		    peer_device->connection->agreed_pro_version >= 90) {
2949 			unsigned long now = jiffies;
2950 			int i;
2951 			device->ov_start_sector = sector;
2952 			device->ov_position = sector;
2953 			device->ov_left = drbd_bm_bits(device) - BM_SECT_TO_BIT(sector);
2954 			device->rs_total = device->ov_left;
2955 			for (i = 0; i < DRBD_SYNC_MARKS; i++) {
2956 				device->rs_mark_left[i] = device->ov_left;
2957 				device->rs_mark_time[i] = now;
2958 			}
2959 			drbd_info(device, "Online Verify start sector: %llu\n",
2960 					(unsigned long long)sector);
2961 		}
2962 		peer_req->w.cb = w_e_end_ov_req;
2963 		fault_type = DRBD_FAULT_RS_RD;
2964 		break;
2965 
2966 	default:
2967 		BUG();
2968 	}
2969 
2970 	/* Throttle, drbd_rs_begin_io and submit should become asynchronous
2971 	 * wrt the receiver, but it is not as straightforward as it may seem.
2972 	 * Various places in the resync start and stop logic assume resync
2973 	 * requests are processed in order, requeuing this on the worker thread
2974 	 * introduces a bunch of new code for synchronization between threads.
2975 	 *
2976 	 * Unlimited throttling before drbd_rs_begin_io may stall the resync
2977 	 * "forever", throttling after drbd_rs_begin_io will lock that extent
2978 	 * for application writes for the same time.  For now, just throttle
2979 	 * here, where the rest of the code expects the receiver to sleep for
2980 	 * a while, anyways.
2981 	 */
2982 
2983 	/* Throttle before drbd_rs_begin_io, as that locks out application IO;
2984 	 * this defers syncer requests for some time, before letting at least
2985 	 * on request through.  The resync controller on the receiving side
2986 	 * will adapt to the incoming rate accordingly.
2987 	 *
2988 	 * We cannot throttle here if remote is Primary/SyncTarget:
2989 	 * we would also throttle its application reads.
2990 	 * In that case, throttling is done on the SyncTarget only.
2991 	 */
2992 
2993 	/* Even though this may be a resync request, we do add to "read_ee";
2994 	 * "sync_ee" is only used for resync WRITEs.
2995 	 * Add to list early, so debugfs can find this request
2996 	 * even if we have to sleep below. */
2997 	spin_lock_irq(&device->resource->req_lock);
2998 	list_add_tail(&peer_req->w.list, &device->read_ee);
2999 	spin_unlock_irq(&device->resource->req_lock);
3000 
3001 	update_receiver_timing_details(connection, drbd_rs_should_slow_down);
3002 	if (device->state.peer != R_PRIMARY
3003 	&& drbd_rs_should_slow_down(device, sector, false))
3004 		schedule_timeout_uninterruptible(HZ/10);
3005 	update_receiver_timing_details(connection, drbd_rs_begin_io);
3006 	if (drbd_rs_begin_io(device, sector))
3007 		goto out_free_e;
3008 
3009 submit_for_resync:
3010 	atomic_add(size >> 9, &device->rs_sect_ev);
3011 
3012 submit:
3013 	update_receiver_timing_details(connection, drbd_submit_peer_request);
3014 	inc_unacked(device);
3015 	if (drbd_submit_peer_request(device, peer_req, REQ_OP_READ, 0,
3016 				     fault_type) == 0)
3017 		return 0;
3018 
3019 	/* don't care for the reason here */
3020 	drbd_err(device, "submit failed, triggering re-connect\n");
3021 
3022 out_free_e:
3023 	spin_lock_irq(&device->resource->req_lock);
3024 	list_del(&peer_req->w.list);
3025 	spin_unlock_irq(&device->resource->req_lock);
3026 	/* no drbd_rs_complete_io(), we are dropping the connection anyways */
3027 
3028 	put_ldev(device);
3029 	drbd_free_peer_req(device, peer_req);
3030 	return -EIO;
3031 }
3032 
3033 /*
3034  * drbd_asb_recover_0p  -  Recover after split-brain with no remaining primaries
3035  */
3036 static int drbd_asb_recover_0p(struct drbd_peer_device *peer_device) __must_hold(local)
3037 {
3038 	struct drbd_device *device = peer_device->device;
3039 	int self, peer, rv = -100;
3040 	unsigned long ch_self, ch_peer;
3041 	enum drbd_after_sb_p after_sb_0p;
3042 
3043 	self = device->ldev->md.uuid[UI_BITMAP] & 1;
3044 	peer = device->p_uuid[UI_BITMAP] & 1;
3045 
3046 	ch_peer = device->p_uuid[UI_SIZE];
3047 	ch_self = device->comm_bm_set;
3048 
3049 	rcu_read_lock();
3050 	after_sb_0p = rcu_dereference(peer_device->connection->net_conf)->after_sb_0p;
3051 	rcu_read_unlock();
3052 	switch (after_sb_0p) {
3053 	case ASB_CONSENSUS:
3054 	case ASB_DISCARD_SECONDARY:
3055 	case ASB_CALL_HELPER:
3056 	case ASB_VIOLENTLY:
3057 		drbd_err(device, "Configuration error.\n");
3058 		break;
3059 	case ASB_DISCONNECT:
3060 		break;
3061 	case ASB_DISCARD_YOUNGER_PRI:
3062 		if (self == 0 && peer == 1) {
3063 			rv = -1;
3064 			break;
3065 		}
3066 		if (self == 1 && peer == 0) {
3067 			rv =  1;
3068 			break;
3069 		}
3070 		fallthrough;	/* to one of the other strategies */
3071 	case ASB_DISCARD_OLDER_PRI:
3072 		if (self == 0 && peer == 1) {
3073 			rv = 1;
3074 			break;
3075 		}
3076 		if (self == 1 && peer == 0) {
3077 			rv = -1;
3078 			break;
3079 		}
3080 		/* Else fall through to one of the other strategies... */
3081 		drbd_warn(device, "Discard younger/older primary did not find a decision\n"
3082 		     "Using discard-least-changes instead\n");
3083 		fallthrough;
3084 	case ASB_DISCARD_ZERO_CHG:
3085 		if (ch_peer == 0 && ch_self == 0) {
3086 			rv = test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags)
3087 				? -1 : 1;
3088 			break;
3089 		} else {
3090 			if (ch_peer == 0) { rv =  1; break; }
3091 			if (ch_self == 0) { rv = -1; break; }
3092 		}
3093 		if (after_sb_0p == ASB_DISCARD_ZERO_CHG)
3094 			break;
3095 		fallthrough;
3096 	case ASB_DISCARD_LEAST_CHG:
3097 		if	(ch_self < ch_peer)
3098 			rv = -1;
3099 		else if (ch_self > ch_peer)
3100 			rv =  1;
3101 		else /* ( ch_self == ch_peer ) */
3102 		     /* Well, then use something else. */
3103 			rv = test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags)
3104 				? -1 : 1;
3105 		break;
3106 	case ASB_DISCARD_LOCAL:
3107 		rv = -1;
3108 		break;
3109 	case ASB_DISCARD_REMOTE:
3110 		rv =  1;
3111 	}
3112 
3113 	return rv;
3114 }
3115 
3116 /*
3117  * drbd_asb_recover_1p  -  Recover after split-brain with one remaining primary
3118  */
3119 static int drbd_asb_recover_1p(struct drbd_peer_device *peer_device) __must_hold(local)
3120 {
3121 	struct drbd_device *device = peer_device->device;
3122 	int hg, rv = -100;
3123 	enum drbd_after_sb_p after_sb_1p;
3124 
3125 	rcu_read_lock();
3126 	after_sb_1p = rcu_dereference(peer_device->connection->net_conf)->after_sb_1p;
3127 	rcu_read_unlock();
3128 	switch (after_sb_1p) {
3129 	case ASB_DISCARD_YOUNGER_PRI:
3130 	case ASB_DISCARD_OLDER_PRI:
3131 	case ASB_DISCARD_LEAST_CHG:
3132 	case ASB_DISCARD_LOCAL:
3133 	case ASB_DISCARD_REMOTE:
3134 	case ASB_DISCARD_ZERO_CHG:
3135 		drbd_err(device, "Configuration error.\n");
3136 		break;
3137 	case ASB_DISCONNECT:
3138 		break;
3139 	case ASB_CONSENSUS:
3140 		hg = drbd_asb_recover_0p(peer_device);
3141 		if (hg == -1 && device->state.role == R_SECONDARY)
3142 			rv = hg;
3143 		if (hg == 1  && device->state.role == R_PRIMARY)
3144 			rv = hg;
3145 		break;
3146 	case ASB_VIOLENTLY:
3147 		rv = drbd_asb_recover_0p(peer_device);
3148 		break;
3149 	case ASB_DISCARD_SECONDARY:
3150 		return device->state.role == R_PRIMARY ? 1 : -1;
3151 	case ASB_CALL_HELPER:
3152 		hg = drbd_asb_recover_0p(peer_device);
3153 		if (hg == -1 && device->state.role == R_PRIMARY) {
3154 			enum drbd_state_rv rv2;
3155 
3156 			 /* drbd_change_state() does not sleep while in SS_IN_TRANSIENT_STATE,
3157 			  * we might be here in C_WF_REPORT_PARAMS which is transient.
3158 			  * we do not need to wait for the after state change work either. */
3159 			rv2 = drbd_change_state(device, CS_VERBOSE, NS(role, R_SECONDARY));
3160 			if (rv2 != SS_SUCCESS) {
3161 				drbd_khelper(device, "pri-lost-after-sb");
3162 			} else {
3163 				drbd_warn(device, "Successfully gave up primary role.\n");
3164 				rv = hg;
3165 			}
3166 		} else
3167 			rv = hg;
3168 	}
3169 
3170 	return rv;
3171 }
3172 
3173 /*
3174  * drbd_asb_recover_2p  -  Recover after split-brain with two remaining primaries
3175  */
3176 static int drbd_asb_recover_2p(struct drbd_peer_device *peer_device) __must_hold(local)
3177 {
3178 	struct drbd_device *device = peer_device->device;
3179 	int hg, rv = -100;
3180 	enum drbd_after_sb_p after_sb_2p;
3181 
3182 	rcu_read_lock();
3183 	after_sb_2p = rcu_dereference(peer_device->connection->net_conf)->after_sb_2p;
3184 	rcu_read_unlock();
3185 	switch (after_sb_2p) {
3186 	case ASB_DISCARD_YOUNGER_PRI:
3187 	case ASB_DISCARD_OLDER_PRI:
3188 	case ASB_DISCARD_LEAST_CHG:
3189 	case ASB_DISCARD_LOCAL:
3190 	case ASB_DISCARD_REMOTE:
3191 	case ASB_CONSENSUS:
3192 	case ASB_DISCARD_SECONDARY:
3193 	case ASB_DISCARD_ZERO_CHG:
3194 		drbd_err(device, "Configuration error.\n");
3195 		break;
3196 	case ASB_VIOLENTLY:
3197 		rv = drbd_asb_recover_0p(peer_device);
3198 		break;
3199 	case ASB_DISCONNECT:
3200 		break;
3201 	case ASB_CALL_HELPER:
3202 		hg = drbd_asb_recover_0p(peer_device);
3203 		if (hg == -1) {
3204 			enum drbd_state_rv rv2;
3205 
3206 			 /* drbd_change_state() does not sleep while in SS_IN_TRANSIENT_STATE,
3207 			  * we might be here in C_WF_REPORT_PARAMS which is transient.
3208 			  * we do not need to wait for the after state change work either. */
3209 			rv2 = drbd_change_state(device, CS_VERBOSE, NS(role, R_SECONDARY));
3210 			if (rv2 != SS_SUCCESS) {
3211 				drbd_khelper(device, "pri-lost-after-sb");
3212 			} else {
3213 				drbd_warn(device, "Successfully gave up primary role.\n");
3214 				rv = hg;
3215 			}
3216 		} else
3217 			rv = hg;
3218 	}
3219 
3220 	return rv;
3221 }
3222 
3223 static void drbd_uuid_dump(struct drbd_device *device, char *text, u64 *uuid,
3224 			   u64 bits, u64 flags)
3225 {
3226 	if (!uuid) {
3227 		drbd_info(device, "%s uuid info vanished while I was looking!\n", text);
3228 		return;
3229 	}
3230 	drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX bits:%llu flags:%llX\n",
3231 	     text,
3232 	     (unsigned long long)uuid[UI_CURRENT],
3233 	     (unsigned long long)uuid[UI_BITMAP],
3234 	     (unsigned long long)uuid[UI_HISTORY_START],
3235 	     (unsigned long long)uuid[UI_HISTORY_END],
3236 	     (unsigned long long)bits,
3237 	     (unsigned long long)flags);
3238 }
3239 
3240 /*
3241   100	after split brain try auto recover
3242     2	C_SYNC_SOURCE set BitMap
3243     1	C_SYNC_SOURCE use BitMap
3244     0	no Sync
3245    -1	C_SYNC_TARGET use BitMap
3246    -2	C_SYNC_TARGET set BitMap
3247  -100	after split brain, disconnect
3248 -1000	unrelated data
3249 -1091   requires proto 91
3250 -1096   requires proto 96
3251  */
3252 
3253 static int drbd_uuid_compare(struct drbd_device *const device, enum drbd_role const peer_role, int *rule_nr) __must_hold(local)
3254 {
3255 	struct drbd_peer_device *const peer_device = first_peer_device(device);
3256 	struct drbd_connection *const connection = peer_device ? peer_device->connection : NULL;
3257 	u64 self, peer;
3258 	int i, j;
3259 
3260 	self = device->ldev->md.uuid[UI_CURRENT] & ~((u64)1);
3261 	peer = device->p_uuid[UI_CURRENT] & ~((u64)1);
3262 
3263 	*rule_nr = 10;
3264 	if (self == UUID_JUST_CREATED && peer == UUID_JUST_CREATED)
3265 		return 0;
3266 
3267 	*rule_nr = 20;
3268 	if ((self == UUID_JUST_CREATED || self == (u64)0) &&
3269 	     peer != UUID_JUST_CREATED)
3270 		return -2;
3271 
3272 	*rule_nr = 30;
3273 	if (self != UUID_JUST_CREATED &&
3274 	    (peer == UUID_JUST_CREATED || peer == (u64)0))
3275 		return 2;
3276 
3277 	if (self == peer) {
3278 		int rct, dc; /* roles at crash time */
3279 
3280 		if (device->p_uuid[UI_BITMAP] == (u64)0 && device->ldev->md.uuid[UI_BITMAP] != (u64)0) {
3281 
3282 			if (connection->agreed_pro_version < 91)
3283 				return -1091;
3284 
3285 			if ((device->ldev->md.uuid[UI_BITMAP] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START] & ~((u64)1)) &&
3286 			    (device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START + 1] & ~((u64)1))) {
3287 				drbd_info(device, "was SyncSource, missed the resync finished event, corrected myself:\n");
3288 				drbd_uuid_move_history(device);
3289 				device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP];
3290 				device->ldev->md.uuid[UI_BITMAP] = 0;
3291 
3292 				drbd_uuid_dump(device, "self", device->ldev->md.uuid,
3293 					       device->state.disk >= D_NEGOTIATING ? drbd_bm_total_weight(device) : 0, 0);
3294 				*rule_nr = 34;
3295 			} else {
3296 				drbd_info(device, "was SyncSource (peer failed to write sync_uuid)\n");
3297 				*rule_nr = 36;
3298 			}
3299 
3300 			return 1;
3301 		}
3302 
3303 		if (device->ldev->md.uuid[UI_BITMAP] == (u64)0 && device->p_uuid[UI_BITMAP] != (u64)0) {
3304 
3305 			if (connection->agreed_pro_version < 91)
3306 				return -1091;
3307 
3308 			if ((device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == (device->p_uuid[UI_BITMAP] & ~((u64)1)) &&
3309 			    (device->ldev->md.uuid[UI_HISTORY_START + 1] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START] & ~((u64)1))) {
3310 				drbd_info(device, "was SyncTarget, peer missed the resync finished event, corrected peer:\n");
3311 
3312 				device->p_uuid[UI_HISTORY_START + 1] = device->p_uuid[UI_HISTORY_START];
3313 				device->p_uuid[UI_HISTORY_START] = device->p_uuid[UI_BITMAP];
3314 				device->p_uuid[UI_BITMAP] = 0UL;
3315 
3316 				drbd_uuid_dump(device, "peer", device->p_uuid, device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]);
3317 				*rule_nr = 35;
3318 			} else {
3319 				drbd_info(device, "was SyncTarget (failed to write sync_uuid)\n");
3320 				*rule_nr = 37;
3321 			}
3322 
3323 			return -1;
3324 		}
3325 
3326 		/* Common power [off|failure] */
3327 		rct = (test_bit(CRASHED_PRIMARY, &device->flags) ? 1 : 0) +
3328 			(device->p_uuid[UI_FLAGS] & 2);
3329 		/* lowest bit is set when we were primary,
3330 		 * next bit (weight 2) is set when peer was primary */
3331 		*rule_nr = 40;
3332 
3333 		/* Neither has the "crashed primary" flag set,
3334 		 * only a replication link hickup. */
3335 		if (rct == 0)
3336 			return 0;
3337 
3338 		/* Current UUID equal and no bitmap uuid; does not necessarily
3339 		 * mean this was a "simultaneous hard crash", maybe IO was
3340 		 * frozen, so no UUID-bump happened.
3341 		 * This is a protocol change, overload DRBD_FF_WSAME as flag
3342 		 * for "new-enough" peer DRBD version. */
3343 		if (device->state.role == R_PRIMARY || peer_role == R_PRIMARY) {
3344 			*rule_nr = 41;
3345 			if (!(connection->agreed_features & DRBD_FF_WSAME)) {
3346 				drbd_warn(peer_device, "Equivalent unrotated UUIDs, but current primary present.\n");
3347 				return -(0x10000 | PRO_VERSION_MAX | (DRBD_FF_WSAME << 8));
3348 			}
3349 			if (device->state.role == R_PRIMARY && peer_role == R_PRIMARY) {
3350 				/* At least one has the "crashed primary" bit set,
3351 				 * both are primary now, but neither has rotated its UUIDs?
3352 				 * "Can not happen." */
3353 				drbd_err(peer_device, "Equivalent unrotated UUIDs, but both are primary. Can not resolve this.\n");
3354 				return -100;
3355 			}
3356 			if (device->state.role == R_PRIMARY)
3357 				return 1;
3358 			return -1;
3359 		}
3360 
3361 		/* Both are secondary.
3362 		 * Really looks like recovery from simultaneous hard crash.
3363 		 * Check which had been primary before, and arbitrate. */
3364 		switch (rct) {
3365 		case 0: /* !self_pri && !peer_pri */ return 0; /* already handled */
3366 		case 1: /*  self_pri && !peer_pri */ return 1;
3367 		case 2: /* !self_pri &&  peer_pri */ return -1;
3368 		case 3: /*  self_pri &&  peer_pri */
3369 			dc = test_bit(RESOLVE_CONFLICTS, &connection->flags);
3370 			return dc ? -1 : 1;
3371 		}
3372 	}
3373 
3374 	*rule_nr = 50;
3375 	peer = device->p_uuid[UI_BITMAP] & ~((u64)1);
3376 	if (self == peer)
3377 		return -1;
3378 
3379 	*rule_nr = 51;
3380 	peer = device->p_uuid[UI_HISTORY_START] & ~((u64)1);
3381 	if (self == peer) {
3382 		if (connection->agreed_pro_version < 96 ?
3383 		    (device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) ==
3384 		    (device->p_uuid[UI_HISTORY_START + 1] & ~((u64)1)) :
3385 		    peer + UUID_NEW_BM_OFFSET == (device->p_uuid[UI_BITMAP] & ~((u64)1))) {
3386 			/* The last P_SYNC_UUID did not get though. Undo the last start of
3387 			   resync as sync source modifications of the peer's UUIDs. */
3388 
3389 			if (connection->agreed_pro_version < 91)
3390 				return -1091;
3391 
3392 			device->p_uuid[UI_BITMAP] = device->p_uuid[UI_HISTORY_START];
3393 			device->p_uuid[UI_HISTORY_START] = device->p_uuid[UI_HISTORY_START + 1];
3394 
3395 			drbd_info(device, "Lost last syncUUID packet, corrected:\n");
3396 			drbd_uuid_dump(device, "peer", device->p_uuid, device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]);
3397 
3398 			return -1;
3399 		}
3400 	}
3401 
3402 	*rule_nr = 60;
3403 	self = device->ldev->md.uuid[UI_CURRENT] & ~((u64)1);
3404 	for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) {
3405 		peer = device->p_uuid[i] & ~((u64)1);
3406 		if (self == peer)
3407 			return -2;
3408 	}
3409 
3410 	*rule_nr = 70;
3411 	self = device->ldev->md.uuid[UI_BITMAP] & ~((u64)1);
3412 	peer = device->p_uuid[UI_CURRENT] & ~((u64)1);
3413 	if (self == peer)
3414 		return 1;
3415 
3416 	*rule_nr = 71;
3417 	self = device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1);
3418 	if (self == peer) {
3419 		if (connection->agreed_pro_version < 96 ?
3420 		    (device->ldev->md.uuid[UI_HISTORY_START + 1] & ~((u64)1)) ==
3421 		    (device->p_uuid[UI_HISTORY_START] & ~((u64)1)) :
3422 		    self + UUID_NEW_BM_OFFSET == (device->ldev->md.uuid[UI_BITMAP] & ~((u64)1))) {
3423 			/* The last P_SYNC_UUID did not get though. Undo the last start of
3424 			   resync as sync source modifications of our UUIDs. */
3425 
3426 			if (connection->agreed_pro_version < 91)
3427 				return -1091;
3428 
3429 			__drbd_uuid_set(device, UI_BITMAP, device->ldev->md.uuid[UI_HISTORY_START]);
3430 			__drbd_uuid_set(device, UI_HISTORY_START, device->ldev->md.uuid[UI_HISTORY_START + 1]);
3431 
3432 			drbd_info(device, "Last syncUUID did not get through, corrected:\n");
3433 			drbd_uuid_dump(device, "self", device->ldev->md.uuid,
3434 				       device->state.disk >= D_NEGOTIATING ? drbd_bm_total_weight(device) : 0, 0);
3435 
3436 			return 1;
3437 		}
3438 	}
3439 
3440 
3441 	*rule_nr = 80;
3442 	peer = device->p_uuid[UI_CURRENT] & ~((u64)1);
3443 	for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) {
3444 		self = device->ldev->md.uuid[i] & ~((u64)1);
3445 		if (self == peer)
3446 			return 2;
3447 	}
3448 
3449 	*rule_nr = 90;
3450 	self = device->ldev->md.uuid[UI_BITMAP] & ~((u64)1);
3451 	peer = device->p_uuid[UI_BITMAP] & ~((u64)1);
3452 	if (self == peer && self != ((u64)0))
3453 		return 100;
3454 
3455 	*rule_nr = 100;
3456 	for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) {
3457 		self = device->ldev->md.uuid[i] & ~((u64)1);
3458 		for (j = UI_HISTORY_START; j <= UI_HISTORY_END; j++) {
3459 			peer = device->p_uuid[j] & ~((u64)1);
3460 			if (self == peer)
3461 				return -100;
3462 		}
3463 	}
3464 
3465 	return -1000;
3466 }
3467 
3468 /* drbd_sync_handshake() returns the new conn state on success, or
3469    CONN_MASK (-1) on failure.
3470  */
3471 static enum drbd_conns drbd_sync_handshake(struct drbd_peer_device *peer_device,
3472 					   enum drbd_role peer_role,
3473 					   enum drbd_disk_state peer_disk) __must_hold(local)
3474 {
3475 	struct drbd_device *device = peer_device->device;
3476 	enum drbd_conns rv = C_MASK;
3477 	enum drbd_disk_state mydisk;
3478 	struct net_conf *nc;
3479 	int hg, rule_nr, rr_conflict, tentative, always_asbp;
3480 
3481 	mydisk = device->state.disk;
3482 	if (mydisk == D_NEGOTIATING)
3483 		mydisk = device->new_state_tmp.disk;
3484 
3485 	drbd_info(device, "drbd_sync_handshake:\n");
3486 
3487 	spin_lock_irq(&device->ldev->md.uuid_lock);
3488 	drbd_uuid_dump(device, "self", device->ldev->md.uuid, device->comm_bm_set, 0);
3489 	drbd_uuid_dump(device, "peer", device->p_uuid,
3490 		       device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]);
3491 
3492 	hg = drbd_uuid_compare(device, peer_role, &rule_nr);
3493 	spin_unlock_irq(&device->ldev->md.uuid_lock);
3494 
3495 	drbd_info(device, "uuid_compare()=%d by rule %d\n", hg, rule_nr);
3496 
3497 	if (hg == -1000) {
3498 		drbd_alert(device, "Unrelated data, aborting!\n");
3499 		return C_MASK;
3500 	}
3501 	if (hg < -0x10000) {
3502 		int proto, fflags;
3503 		hg = -hg;
3504 		proto = hg & 0xff;
3505 		fflags = (hg >> 8) & 0xff;
3506 		drbd_alert(device, "To resolve this both sides have to support at least protocol %d and feature flags 0x%x\n",
3507 					proto, fflags);
3508 		return C_MASK;
3509 	}
3510 	if (hg < -1000) {
3511 		drbd_alert(device, "To resolve this both sides have to support at least protocol %d\n", -hg - 1000);
3512 		return C_MASK;
3513 	}
3514 
3515 	if    ((mydisk == D_INCONSISTENT && peer_disk > D_INCONSISTENT) ||
3516 	    (peer_disk == D_INCONSISTENT && mydisk    > D_INCONSISTENT)) {
3517 		int f = (hg == -100) || abs(hg) == 2;
3518 		hg = mydisk > D_INCONSISTENT ? 1 : -1;
3519 		if (f)
3520 			hg = hg*2;
3521 		drbd_info(device, "Becoming sync %s due to disk states.\n",
3522 		     hg > 0 ? "source" : "target");
3523 	}
3524 
3525 	if (abs(hg) == 100)
3526 		drbd_khelper(device, "initial-split-brain");
3527 
3528 	rcu_read_lock();
3529 	nc = rcu_dereference(peer_device->connection->net_conf);
3530 	always_asbp = nc->always_asbp;
3531 	rr_conflict = nc->rr_conflict;
3532 	tentative = nc->tentative;
3533 	rcu_read_unlock();
3534 
3535 	if (hg == 100 || (hg == -100 && always_asbp)) {
3536 		int pcount = (device->state.role == R_PRIMARY)
3537 			   + (peer_role == R_PRIMARY);
3538 		int forced = (hg == -100);
3539 
3540 		switch (pcount) {
3541 		case 0:
3542 			hg = drbd_asb_recover_0p(peer_device);
3543 			break;
3544 		case 1:
3545 			hg = drbd_asb_recover_1p(peer_device);
3546 			break;
3547 		case 2:
3548 			hg = drbd_asb_recover_2p(peer_device);
3549 			break;
3550 		}
3551 		if (abs(hg) < 100) {
3552 			drbd_warn(device, "Split-Brain detected, %d primaries, "
3553 			     "automatically solved. Sync from %s node\n",
3554 			     pcount, (hg < 0) ? "peer" : "this");
3555 			if (forced) {
3556 				drbd_warn(device, "Doing a full sync, since"
3557 				     " UUIDs where ambiguous.\n");
3558 				hg = hg*2;
3559 			}
3560 		}
3561 	}
3562 
3563 	if (hg == -100) {
3564 		if (test_bit(DISCARD_MY_DATA, &device->flags) && !(device->p_uuid[UI_FLAGS]&1))
3565 			hg = -1;
3566 		if (!test_bit(DISCARD_MY_DATA, &device->flags) && (device->p_uuid[UI_FLAGS]&1))
3567 			hg = 1;
3568 
3569 		if (abs(hg) < 100)
3570 			drbd_warn(device, "Split-Brain detected, manually solved. "
3571 			     "Sync from %s node\n",
3572 			     (hg < 0) ? "peer" : "this");
3573 	}
3574 
3575 	if (hg == -100) {
3576 		/* FIXME this log message is not correct if we end up here
3577 		 * after an attempted attach on a diskless node.
3578 		 * We just refuse to attach -- well, we drop the "connection"
3579 		 * to that disk, in a way... */
3580 		drbd_alert(device, "Split-Brain detected but unresolved, dropping connection!\n");
3581 		drbd_khelper(device, "split-brain");
3582 		return C_MASK;
3583 	}
3584 
3585 	if (hg > 0 && mydisk <= D_INCONSISTENT) {
3586 		drbd_err(device, "I shall become SyncSource, but I am inconsistent!\n");
3587 		return C_MASK;
3588 	}
3589 
3590 	if (hg < 0 && /* by intention we do not use mydisk here. */
3591 	    device->state.role == R_PRIMARY && device->state.disk >= D_CONSISTENT) {
3592 		switch (rr_conflict) {
3593 		case ASB_CALL_HELPER:
3594 			drbd_khelper(device, "pri-lost");
3595 			fallthrough;
3596 		case ASB_DISCONNECT:
3597 			drbd_err(device, "I shall become SyncTarget, but I am primary!\n");
3598 			return C_MASK;
3599 		case ASB_VIOLENTLY:
3600 			drbd_warn(device, "Becoming SyncTarget, violating the stable-data"
3601 			     "assumption\n");
3602 		}
3603 	}
3604 
3605 	if (tentative || test_bit(CONN_DRY_RUN, &peer_device->connection->flags)) {
3606 		if (hg == 0)
3607 			drbd_info(device, "dry-run connect: No resync, would become Connected immediately.\n");
3608 		else
3609 			drbd_info(device, "dry-run connect: Would become %s, doing a %s resync.",
3610 				 drbd_conn_str(hg > 0 ? C_SYNC_SOURCE : C_SYNC_TARGET),
3611 				 abs(hg) >= 2 ? "full" : "bit-map based");
3612 		return C_MASK;
3613 	}
3614 
3615 	if (abs(hg) >= 2) {
3616 		drbd_info(device, "Writing the whole bitmap, full sync required after drbd_sync_handshake.\n");
3617 		if (drbd_bitmap_io(device, &drbd_bmio_set_n_write, "set_n_write from sync_handshake",
3618 					BM_LOCKED_SET_ALLOWED))
3619 			return C_MASK;
3620 	}
3621 
3622 	if (hg > 0) { /* become sync source. */
3623 		rv = C_WF_BITMAP_S;
3624 	} else if (hg < 0) { /* become sync target */
3625 		rv = C_WF_BITMAP_T;
3626 	} else {
3627 		rv = C_CONNECTED;
3628 		if (drbd_bm_total_weight(device)) {
3629 			drbd_info(device, "No resync, but %lu bits in bitmap!\n",
3630 			     drbd_bm_total_weight(device));
3631 		}
3632 	}
3633 
3634 	return rv;
3635 }
3636 
3637 static enum drbd_after_sb_p convert_after_sb(enum drbd_after_sb_p peer)
3638 {
3639 	/* ASB_DISCARD_REMOTE - ASB_DISCARD_LOCAL is valid */
3640 	if (peer == ASB_DISCARD_REMOTE)
3641 		return ASB_DISCARD_LOCAL;
3642 
3643 	/* any other things with ASB_DISCARD_REMOTE or ASB_DISCARD_LOCAL are invalid */
3644 	if (peer == ASB_DISCARD_LOCAL)
3645 		return ASB_DISCARD_REMOTE;
3646 
3647 	/* everything else is valid if they are equal on both sides. */
3648 	return peer;
3649 }
3650 
3651 static int receive_protocol(struct drbd_connection *connection, struct packet_info *pi)
3652 {
3653 	struct p_protocol *p = pi->data;
3654 	enum drbd_after_sb_p p_after_sb_0p, p_after_sb_1p, p_after_sb_2p;
3655 	int p_proto, p_discard_my_data, p_two_primaries, cf;
3656 	struct net_conf *nc, *old_net_conf, *new_net_conf = NULL;
3657 	char integrity_alg[SHARED_SECRET_MAX] = "";
3658 	struct crypto_shash *peer_integrity_tfm = NULL;
3659 	void *int_dig_in = NULL, *int_dig_vv = NULL;
3660 
3661 	p_proto		= be32_to_cpu(p->protocol);
3662 	p_after_sb_0p	= be32_to_cpu(p->after_sb_0p);
3663 	p_after_sb_1p	= be32_to_cpu(p->after_sb_1p);
3664 	p_after_sb_2p	= be32_to_cpu(p->after_sb_2p);
3665 	p_two_primaries = be32_to_cpu(p->two_primaries);
3666 	cf		= be32_to_cpu(p->conn_flags);
3667 	p_discard_my_data = cf & CF_DISCARD_MY_DATA;
3668 
3669 	if (connection->agreed_pro_version >= 87) {
3670 		int err;
3671 
3672 		if (pi->size > sizeof(integrity_alg))
3673 			return -EIO;
3674 		err = drbd_recv_all(connection, integrity_alg, pi->size);
3675 		if (err)
3676 			return err;
3677 		integrity_alg[SHARED_SECRET_MAX - 1] = 0;
3678 	}
3679 
3680 	if (pi->cmd != P_PROTOCOL_UPDATE) {
3681 		clear_bit(CONN_DRY_RUN, &connection->flags);
3682 
3683 		if (cf & CF_DRY_RUN)
3684 			set_bit(CONN_DRY_RUN, &connection->flags);
3685 
3686 		rcu_read_lock();
3687 		nc = rcu_dereference(connection->net_conf);
3688 
3689 		if (p_proto != nc->wire_protocol) {
3690 			drbd_err(connection, "incompatible %s settings\n", "protocol");
3691 			goto disconnect_rcu_unlock;
3692 		}
3693 
3694 		if (convert_after_sb(p_after_sb_0p) != nc->after_sb_0p) {
3695 			drbd_err(connection, "incompatible %s settings\n", "after-sb-0pri");
3696 			goto disconnect_rcu_unlock;
3697 		}
3698 
3699 		if (convert_after_sb(p_after_sb_1p) != nc->after_sb_1p) {
3700 			drbd_err(connection, "incompatible %s settings\n", "after-sb-1pri");
3701 			goto disconnect_rcu_unlock;
3702 		}
3703 
3704 		if (convert_after_sb(p_after_sb_2p) != nc->after_sb_2p) {
3705 			drbd_err(connection, "incompatible %s settings\n", "after-sb-2pri");
3706 			goto disconnect_rcu_unlock;
3707 		}
3708 
3709 		if (p_discard_my_data && nc->discard_my_data) {
3710 			drbd_err(connection, "incompatible %s settings\n", "discard-my-data");
3711 			goto disconnect_rcu_unlock;
3712 		}
3713 
3714 		if (p_two_primaries != nc->two_primaries) {
3715 			drbd_err(connection, "incompatible %s settings\n", "allow-two-primaries");
3716 			goto disconnect_rcu_unlock;
3717 		}
3718 
3719 		if (strcmp(integrity_alg, nc->integrity_alg)) {
3720 			drbd_err(connection, "incompatible %s settings\n", "data-integrity-alg");
3721 			goto disconnect_rcu_unlock;
3722 		}
3723 
3724 		rcu_read_unlock();
3725 	}
3726 
3727 	if (integrity_alg[0]) {
3728 		int hash_size;
3729 
3730 		/*
3731 		 * We can only change the peer data integrity algorithm
3732 		 * here.  Changing our own data integrity algorithm
3733 		 * requires that we send a P_PROTOCOL_UPDATE packet at
3734 		 * the same time; otherwise, the peer has no way to
3735 		 * tell between which packets the algorithm should
3736 		 * change.
3737 		 */
3738 
3739 		peer_integrity_tfm = crypto_alloc_shash(integrity_alg, 0, 0);
3740 		if (IS_ERR(peer_integrity_tfm)) {
3741 			peer_integrity_tfm = NULL;
3742 			drbd_err(connection, "peer data-integrity-alg %s not supported\n",
3743 				 integrity_alg);
3744 			goto disconnect;
3745 		}
3746 
3747 		hash_size = crypto_shash_digestsize(peer_integrity_tfm);
3748 		int_dig_in = kmalloc(hash_size, GFP_KERNEL);
3749 		int_dig_vv = kmalloc(hash_size, GFP_KERNEL);
3750 		if (!(int_dig_in && int_dig_vv)) {
3751 			drbd_err(connection, "Allocation of buffers for data integrity checking failed\n");
3752 			goto disconnect;
3753 		}
3754 	}
3755 
3756 	new_net_conf = kmalloc(sizeof(struct net_conf), GFP_KERNEL);
3757 	if (!new_net_conf)
3758 		goto disconnect;
3759 
3760 	mutex_lock(&connection->data.mutex);
3761 	mutex_lock(&connection->resource->conf_update);
3762 	old_net_conf = connection->net_conf;
3763 	*new_net_conf = *old_net_conf;
3764 
3765 	new_net_conf->wire_protocol = p_proto;
3766 	new_net_conf->after_sb_0p = convert_after_sb(p_after_sb_0p);
3767 	new_net_conf->after_sb_1p = convert_after_sb(p_after_sb_1p);
3768 	new_net_conf->after_sb_2p = convert_after_sb(p_after_sb_2p);
3769 	new_net_conf->two_primaries = p_two_primaries;
3770 
3771 	rcu_assign_pointer(connection->net_conf, new_net_conf);
3772 	mutex_unlock(&connection->resource->conf_update);
3773 	mutex_unlock(&connection->data.mutex);
3774 
3775 	crypto_free_shash(connection->peer_integrity_tfm);
3776 	kfree(connection->int_dig_in);
3777 	kfree(connection->int_dig_vv);
3778 	connection->peer_integrity_tfm = peer_integrity_tfm;
3779 	connection->int_dig_in = int_dig_in;
3780 	connection->int_dig_vv = int_dig_vv;
3781 
3782 	if (strcmp(old_net_conf->integrity_alg, integrity_alg))
3783 		drbd_info(connection, "peer data-integrity-alg: %s\n",
3784 			  integrity_alg[0] ? integrity_alg : "(none)");
3785 
3786 	synchronize_rcu();
3787 	kfree(old_net_conf);
3788 	return 0;
3789 
3790 disconnect_rcu_unlock:
3791 	rcu_read_unlock();
3792 disconnect:
3793 	crypto_free_shash(peer_integrity_tfm);
3794 	kfree(int_dig_in);
3795 	kfree(int_dig_vv);
3796 	conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
3797 	return -EIO;
3798 }
3799 
3800 /* helper function
3801  * input: alg name, feature name
3802  * return: NULL (alg name was "")
3803  *         ERR_PTR(error) if something goes wrong
3804  *         or the crypto hash ptr, if it worked out ok. */
3805 static struct crypto_shash *drbd_crypto_alloc_digest_safe(
3806 		const struct drbd_device *device,
3807 		const char *alg, const char *name)
3808 {
3809 	struct crypto_shash *tfm;
3810 
3811 	if (!alg[0])
3812 		return NULL;
3813 
3814 	tfm = crypto_alloc_shash(alg, 0, 0);
3815 	if (IS_ERR(tfm)) {
3816 		drbd_err(device, "Can not allocate \"%s\" as %s (reason: %ld)\n",
3817 			alg, name, PTR_ERR(tfm));
3818 		return tfm;
3819 	}
3820 	return tfm;
3821 }
3822 
3823 static int ignore_remaining_packet(struct drbd_connection *connection, struct packet_info *pi)
3824 {
3825 	void *buffer = connection->data.rbuf;
3826 	int size = pi->size;
3827 
3828 	while (size) {
3829 		int s = min_t(int, size, DRBD_SOCKET_BUFFER_SIZE);
3830 		s = drbd_recv(connection, buffer, s);
3831 		if (s <= 0) {
3832 			if (s < 0)
3833 				return s;
3834 			break;
3835 		}
3836 		size -= s;
3837 	}
3838 	if (size)
3839 		return -EIO;
3840 	return 0;
3841 }
3842 
3843 /*
3844  * config_unknown_volume  -  device configuration command for unknown volume
3845  *
3846  * When a device is added to an existing connection, the node on which the
3847  * device is added first will send configuration commands to its peer but the
3848  * peer will not know about the device yet.  It will warn and ignore these
3849  * commands.  Once the device is added on the second node, the second node will
3850  * send the same device configuration commands, but in the other direction.
3851  *
3852  * (We can also end up here if drbd is misconfigured.)
3853  */
3854 static int config_unknown_volume(struct drbd_connection *connection, struct packet_info *pi)
3855 {
3856 	drbd_warn(connection, "%s packet received for volume %u, which is not configured locally\n",
3857 		  cmdname(pi->cmd), pi->vnr);
3858 	return ignore_remaining_packet(connection, pi);
3859 }
3860 
3861 static int receive_SyncParam(struct drbd_connection *connection, struct packet_info *pi)
3862 {
3863 	struct drbd_peer_device *peer_device;
3864 	struct drbd_device *device;
3865 	struct p_rs_param_95 *p;
3866 	unsigned int header_size, data_size, exp_max_sz;
3867 	struct crypto_shash *verify_tfm = NULL;
3868 	struct crypto_shash *csums_tfm = NULL;
3869 	struct net_conf *old_net_conf, *new_net_conf = NULL;
3870 	struct disk_conf *old_disk_conf = NULL, *new_disk_conf = NULL;
3871 	const int apv = connection->agreed_pro_version;
3872 	struct fifo_buffer *old_plan = NULL, *new_plan = NULL;
3873 	unsigned int fifo_size = 0;
3874 	int err;
3875 
3876 	peer_device = conn_peer_device(connection, pi->vnr);
3877 	if (!peer_device)
3878 		return config_unknown_volume(connection, pi);
3879 	device = peer_device->device;
3880 
3881 	exp_max_sz  = apv <= 87 ? sizeof(struct p_rs_param)
3882 		    : apv == 88 ? sizeof(struct p_rs_param)
3883 					+ SHARED_SECRET_MAX
3884 		    : apv <= 94 ? sizeof(struct p_rs_param_89)
3885 		    : /* apv >= 95 */ sizeof(struct p_rs_param_95);
3886 
3887 	if (pi->size > exp_max_sz) {
3888 		drbd_err(device, "SyncParam packet too long: received %u, expected <= %u bytes\n",
3889 		    pi->size, exp_max_sz);
3890 		return -EIO;
3891 	}
3892 
3893 	if (apv <= 88) {
3894 		header_size = sizeof(struct p_rs_param);
3895 		data_size = pi->size - header_size;
3896 	} else if (apv <= 94) {
3897 		header_size = sizeof(struct p_rs_param_89);
3898 		data_size = pi->size - header_size;
3899 		D_ASSERT(device, data_size == 0);
3900 	} else {
3901 		header_size = sizeof(struct p_rs_param_95);
3902 		data_size = pi->size - header_size;
3903 		D_ASSERT(device, data_size == 0);
3904 	}
3905 
3906 	/* initialize verify_alg and csums_alg */
3907 	p = pi->data;
3908 	BUILD_BUG_ON(sizeof(p->algs) != 2 * SHARED_SECRET_MAX);
3909 	memset(&p->algs, 0, sizeof(p->algs));
3910 
3911 	err = drbd_recv_all(peer_device->connection, p, header_size);
3912 	if (err)
3913 		return err;
3914 
3915 	mutex_lock(&connection->resource->conf_update);
3916 	old_net_conf = peer_device->connection->net_conf;
3917 	if (get_ldev(device)) {
3918 		new_disk_conf = kzalloc(sizeof(struct disk_conf), GFP_KERNEL);
3919 		if (!new_disk_conf) {
3920 			put_ldev(device);
3921 			mutex_unlock(&connection->resource->conf_update);
3922 			drbd_err(device, "Allocation of new disk_conf failed\n");
3923 			return -ENOMEM;
3924 		}
3925 
3926 		old_disk_conf = device->ldev->disk_conf;
3927 		*new_disk_conf = *old_disk_conf;
3928 
3929 		new_disk_conf->resync_rate = be32_to_cpu(p->resync_rate);
3930 	}
3931 
3932 	if (apv >= 88) {
3933 		if (apv == 88) {
3934 			if (data_size > SHARED_SECRET_MAX || data_size == 0) {
3935 				drbd_err(device, "verify-alg of wrong size, "
3936 					"peer wants %u, accepting only up to %u byte\n",
3937 					data_size, SHARED_SECRET_MAX);
3938 				err = -EIO;
3939 				goto reconnect;
3940 			}
3941 
3942 			err = drbd_recv_all(peer_device->connection, p->verify_alg, data_size);
3943 			if (err)
3944 				goto reconnect;
3945 			/* we expect NUL terminated string */
3946 			/* but just in case someone tries to be evil */
3947 			D_ASSERT(device, p->verify_alg[data_size-1] == 0);
3948 			p->verify_alg[data_size-1] = 0;
3949 
3950 		} else /* apv >= 89 */ {
3951 			/* we still expect NUL terminated strings */
3952 			/* but just in case someone tries to be evil */
3953 			D_ASSERT(device, p->verify_alg[SHARED_SECRET_MAX-1] == 0);
3954 			D_ASSERT(device, p->csums_alg[SHARED_SECRET_MAX-1] == 0);
3955 			p->verify_alg[SHARED_SECRET_MAX-1] = 0;
3956 			p->csums_alg[SHARED_SECRET_MAX-1] = 0;
3957 		}
3958 
3959 		if (strcmp(old_net_conf->verify_alg, p->verify_alg)) {
3960 			if (device->state.conn == C_WF_REPORT_PARAMS) {
3961 				drbd_err(device, "Different verify-alg settings. me=\"%s\" peer=\"%s\"\n",
3962 				    old_net_conf->verify_alg, p->verify_alg);
3963 				goto disconnect;
3964 			}
3965 			verify_tfm = drbd_crypto_alloc_digest_safe(device,
3966 					p->verify_alg, "verify-alg");
3967 			if (IS_ERR(verify_tfm)) {
3968 				verify_tfm = NULL;
3969 				goto disconnect;
3970 			}
3971 		}
3972 
3973 		if (apv >= 89 && strcmp(old_net_conf->csums_alg, p->csums_alg)) {
3974 			if (device->state.conn == C_WF_REPORT_PARAMS) {
3975 				drbd_err(device, "Different csums-alg settings. me=\"%s\" peer=\"%s\"\n",
3976 				    old_net_conf->csums_alg, p->csums_alg);
3977 				goto disconnect;
3978 			}
3979 			csums_tfm = drbd_crypto_alloc_digest_safe(device,
3980 					p->csums_alg, "csums-alg");
3981 			if (IS_ERR(csums_tfm)) {
3982 				csums_tfm = NULL;
3983 				goto disconnect;
3984 			}
3985 		}
3986 
3987 		if (apv > 94 && new_disk_conf) {
3988 			new_disk_conf->c_plan_ahead = be32_to_cpu(p->c_plan_ahead);
3989 			new_disk_conf->c_delay_target = be32_to_cpu(p->c_delay_target);
3990 			new_disk_conf->c_fill_target = be32_to_cpu(p->c_fill_target);
3991 			new_disk_conf->c_max_rate = be32_to_cpu(p->c_max_rate);
3992 
3993 			fifo_size = (new_disk_conf->c_plan_ahead * 10 * SLEEP_TIME) / HZ;
3994 			if (fifo_size != device->rs_plan_s->size) {
3995 				new_plan = fifo_alloc(fifo_size);
3996 				if (!new_plan) {
3997 					drbd_err(device, "kmalloc of fifo_buffer failed");
3998 					put_ldev(device);
3999 					goto disconnect;
4000 				}
4001 			}
4002 		}
4003 
4004 		if (verify_tfm || csums_tfm) {
4005 			new_net_conf = kzalloc(sizeof(struct net_conf), GFP_KERNEL);
4006 			if (!new_net_conf)
4007 				goto disconnect;
4008 
4009 			*new_net_conf = *old_net_conf;
4010 
4011 			if (verify_tfm) {
4012 				strcpy(new_net_conf->verify_alg, p->verify_alg);
4013 				new_net_conf->verify_alg_len = strlen(p->verify_alg) + 1;
4014 				crypto_free_shash(peer_device->connection->verify_tfm);
4015 				peer_device->connection->verify_tfm = verify_tfm;
4016 				drbd_info(device, "using verify-alg: \"%s\"\n", p->verify_alg);
4017 			}
4018 			if (csums_tfm) {
4019 				strcpy(new_net_conf->csums_alg, p->csums_alg);
4020 				new_net_conf->csums_alg_len = strlen(p->csums_alg) + 1;
4021 				crypto_free_shash(peer_device->connection->csums_tfm);
4022 				peer_device->connection->csums_tfm = csums_tfm;
4023 				drbd_info(device, "using csums-alg: \"%s\"\n", p->csums_alg);
4024 			}
4025 			rcu_assign_pointer(connection->net_conf, new_net_conf);
4026 		}
4027 	}
4028 
4029 	if (new_disk_conf) {
4030 		rcu_assign_pointer(device->ldev->disk_conf, new_disk_conf);
4031 		put_ldev(device);
4032 	}
4033 
4034 	if (new_plan) {
4035 		old_plan = device->rs_plan_s;
4036 		rcu_assign_pointer(device->rs_plan_s, new_plan);
4037 	}
4038 
4039 	mutex_unlock(&connection->resource->conf_update);
4040 	synchronize_rcu();
4041 	if (new_net_conf)
4042 		kfree(old_net_conf);
4043 	kfree(old_disk_conf);
4044 	kfree(old_plan);
4045 
4046 	return 0;
4047 
4048 reconnect:
4049 	if (new_disk_conf) {
4050 		put_ldev(device);
4051 		kfree(new_disk_conf);
4052 	}
4053 	mutex_unlock(&connection->resource->conf_update);
4054 	return -EIO;
4055 
4056 disconnect:
4057 	kfree(new_plan);
4058 	if (new_disk_conf) {
4059 		put_ldev(device);
4060 		kfree(new_disk_conf);
4061 	}
4062 	mutex_unlock(&connection->resource->conf_update);
4063 	/* just for completeness: actually not needed,
4064 	 * as this is not reached if csums_tfm was ok. */
4065 	crypto_free_shash(csums_tfm);
4066 	/* but free the verify_tfm again, if csums_tfm did not work out */
4067 	crypto_free_shash(verify_tfm);
4068 	conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4069 	return -EIO;
4070 }
4071 
4072 /* warn if the arguments differ by more than 12.5% */
4073 static void warn_if_differ_considerably(struct drbd_device *device,
4074 	const char *s, sector_t a, sector_t b)
4075 {
4076 	sector_t d;
4077 	if (a == 0 || b == 0)
4078 		return;
4079 	d = (a > b) ? (a - b) : (b - a);
4080 	if (d > (a>>3) || d > (b>>3))
4081 		drbd_warn(device, "Considerable difference in %s: %llus vs. %llus\n", s,
4082 		     (unsigned long long)a, (unsigned long long)b);
4083 }
4084 
4085 static int receive_sizes(struct drbd_connection *connection, struct packet_info *pi)
4086 {
4087 	struct drbd_peer_device *peer_device;
4088 	struct drbd_device *device;
4089 	struct p_sizes *p = pi->data;
4090 	struct o_qlim *o = (connection->agreed_features & DRBD_FF_WSAME) ? p->qlim : NULL;
4091 	enum determine_dev_size dd = DS_UNCHANGED;
4092 	sector_t p_size, p_usize, p_csize, my_usize;
4093 	sector_t new_size, cur_size;
4094 	int ldsc = 0; /* local disk size changed */
4095 	enum dds_flags ddsf;
4096 
4097 	peer_device = conn_peer_device(connection, pi->vnr);
4098 	if (!peer_device)
4099 		return config_unknown_volume(connection, pi);
4100 	device = peer_device->device;
4101 	cur_size = get_capacity(device->vdisk);
4102 
4103 	p_size = be64_to_cpu(p->d_size);
4104 	p_usize = be64_to_cpu(p->u_size);
4105 	p_csize = be64_to_cpu(p->c_size);
4106 
4107 	/* just store the peer's disk size for now.
4108 	 * we still need to figure out whether we accept that. */
4109 	device->p_size = p_size;
4110 
4111 	if (get_ldev(device)) {
4112 		rcu_read_lock();
4113 		my_usize = rcu_dereference(device->ldev->disk_conf)->disk_size;
4114 		rcu_read_unlock();
4115 
4116 		warn_if_differ_considerably(device, "lower level device sizes",
4117 			   p_size, drbd_get_max_capacity(device->ldev));
4118 		warn_if_differ_considerably(device, "user requested size",
4119 					    p_usize, my_usize);
4120 
4121 		/* if this is the first connect, or an otherwise expected
4122 		 * param exchange, choose the minimum */
4123 		if (device->state.conn == C_WF_REPORT_PARAMS)
4124 			p_usize = min_not_zero(my_usize, p_usize);
4125 
4126 		/* Never shrink a device with usable data during connect,
4127 		 * or "attach" on the peer.
4128 		 * But allow online shrinking if we are connected. */
4129 		new_size = drbd_new_dev_size(device, device->ldev, p_usize, 0);
4130 		if (new_size < cur_size &&
4131 		    device->state.disk >= D_OUTDATED &&
4132 		    (device->state.conn < C_CONNECTED || device->state.pdsk == D_DISKLESS)) {
4133 			drbd_err(device, "The peer's disk size is too small! (%llu < %llu sectors)\n",
4134 					(unsigned long long)new_size, (unsigned long long)cur_size);
4135 			conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4136 			put_ldev(device);
4137 			return -EIO;
4138 		}
4139 
4140 		if (my_usize != p_usize) {
4141 			struct disk_conf *old_disk_conf, *new_disk_conf = NULL;
4142 
4143 			new_disk_conf = kzalloc(sizeof(struct disk_conf), GFP_KERNEL);
4144 			if (!new_disk_conf) {
4145 				put_ldev(device);
4146 				return -ENOMEM;
4147 			}
4148 
4149 			mutex_lock(&connection->resource->conf_update);
4150 			old_disk_conf = device->ldev->disk_conf;
4151 			*new_disk_conf = *old_disk_conf;
4152 			new_disk_conf->disk_size = p_usize;
4153 
4154 			rcu_assign_pointer(device->ldev->disk_conf, new_disk_conf);
4155 			mutex_unlock(&connection->resource->conf_update);
4156 			synchronize_rcu();
4157 			kfree(old_disk_conf);
4158 
4159 			drbd_info(device, "Peer sets u_size to %lu sectors (old: %lu)\n",
4160 				 (unsigned long)p_usize, (unsigned long)my_usize);
4161 		}
4162 
4163 		put_ldev(device);
4164 	}
4165 
4166 	device->peer_max_bio_size = be32_to_cpu(p->max_bio_size);
4167 	/* Leave drbd_reconsider_queue_parameters() before drbd_determine_dev_size().
4168 	   In case we cleared the QUEUE_FLAG_DISCARD from our queue in
4169 	   drbd_reconsider_queue_parameters(), we can be sure that after
4170 	   drbd_determine_dev_size() no REQ_DISCARDs are in the queue. */
4171 
4172 	ddsf = be16_to_cpu(p->dds_flags);
4173 	if (get_ldev(device)) {
4174 		drbd_reconsider_queue_parameters(device, device->ldev, o);
4175 		dd = drbd_determine_dev_size(device, ddsf, NULL);
4176 		put_ldev(device);
4177 		if (dd == DS_ERROR)
4178 			return -EIO;
4179 		drbd_md_sync(device);
4180 	} else {
4181 		/*
4182 		 * I am diskless, need to accept the peer's *current* size.
4183 		 * I must NOT accept the peers backing disk size,
4184 		 * it may have been larger than mine all along...
4185 		 *
4186 		 * At this point, the peer knows more about my disk, or at
4187 		 * least about what we last agreed upon, than myself.
4188 		 * So if his c_size is less than his d_size, the most likely
4189 		 * reason is that *my* d_size was smaller last time we checked.
4190 		 *
4191 		 * However, if he sends a zero current size,
4192 		 * take his (user-capped or) backing disk size anyways.
4193 		 *
4194 		 * Unless of course he does not have a disk himself.
4195 		 * In which case we ignore this completely.
4196 		 */
4197 		sector_t new_size = p_csize ?: p_usize ?: p_size;
4198 		drbd_reconsider_queue_parameters(device, NULL, o);
4199 		if (new_size == 0) {
4200 			/* Ignore, peer does not know nothing. */
4201 		} else if (new_size == cur_size) {
4202 			/* nothing to do */
4203 		} else if (cur_size != 0 && p_size == 0) {
4204 			drbd_warn(device, "Ignored diskless peer device size (peer:%llu != me:%llu sectors)!\n",
4205 					(unsigned long long)new_size, (unsigned long long)cur_size);
4206 		} else if (new_size < cur_size && device->state.role == R_PRIMARY) {
4207 			drbd_err(device, "The peer's device size is too small! (%llu < %llu sectors); demote me first!\n",
4208 					(unsigned long long)new_size, (unsigned long long)cur_size);
4209 			conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4210 			return -EIO;
4211 		} else {
4212 			/* I believe the peer, if
4213 			 *  - I don't have a current size myself
4214 			 *  - we agree on the size anyways
4215 			 *  - I do have a current size, am Secondary,
4216 			 *    and he has the only disk
4217 			 *  - I do have a current size, am Primary,
4218 			 *    and he has the only disk,
4219 			 *    which is larger than my current size
4220 			 */
4221 			drbd_set_my_capacity(device, new_size);
4222 		}
4223 	}
4224 
4225 	if (get_ldev(device)) {
4226 		if (device->ldev->known_size != drbd_get_capacity(device->ldev->backing_bdev)) {
4227 			device->ldev->known_size = drbd_get_capacity(device->ldev->backing_bdev);
4228 			ldsc = 1;
4229 		}
4230 
4231 		put_ldev(device);
4232 	}
4233 
4234 	if (device->state.conn > C_WF_REPORT_PARAMS) {
4235 		if (be64_to_cpu(p->c_size) != get_capacity(device->vdisk) ||
4236 		    ldsc) {
4237 			/* we have different sizes, probably peer
4238 			 * needs to know my new size... */
4239 			drbd_send_sizes(peer_device, 0, ddsf);
4240 		}
4241 		if (test_and_clear_bit(RESIZE_PENDING, &device->flags) ||
4242 		    (dd == DS_GREW && device->state.conn == C_CONNECTED)) {
4243 			if (device->state.pdsk >= D_INCONSISTENT &&
4244 			    device->state.disk >= D_INCONSISTENT) {
4245 				if (ddsf & DDSF_NO_RESYNC)
4246 					drbd_info(device, "Resync of new storage suppressed with --assume-clean\n");
4247 				else
4248 					resync_after_online_grow(device);
4249 			} else
4250 				set_bit(RESYNC_AFTER_NEG, &device->flags);
4251 		}
4252 	}
4253 
4254 	return 0;
4255 }
4256 
4257 static int receive_uuids(struct drbd_connection *connection, struct packet_info *pi)
4258 {
4259 	struct drbd_peer_device *peer_device;
4260 	struct drbd_device *device;
4261 	struct p_uuids *p = pi->data;
4262 	u64 *p_uuid;
4263 	int i, updated_uuids = 0;
4264 
4265 	peer_device = conn_peer_device(connection, pi->vnr);
4266 	if (!peer_device)
4267 		return config_unknown_volume(connection, pi);
4268 	device = peer_device->device;
4269 
4270 	p_uuid = kmalloc_array(UI_EXTENDED_SIZE, sizeof(*p_uuid), GFP_NOIO);
4271 	if (!p_uuid)
4272 		return false;
4273 
4274 	for (i = UI_CURRENT; i < UI_EXTENDED_SIZE; i++)
4275 		p_uuid[i] = be64_to_cpu(p->uuid[i]);
4276 
4277 	kfree(device->p_uuid);
4278 	device->p_uuid = p_uuid;
4279 
4280 	if ((device->state.conn < C_CONNECTED || device->state.pdsk == D_DISKLESS) &&
4281 	    device->state.disk < D_INCONSISTENT &&
4282 	    device->state.role == R_PRIMARY &&
4283 	    (device->ed_uuid & ~((u64)1)) != (p_uuid[UI_CURRENT] & ~((u64)1))) {
4284 		drbd_err(device, "Can only connect to data with current UUID=%016llX\n",
4285 		    (unsigned long long)device->ed_uuid);
4286 		conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4287 		return -EIO;
4288 	}
4289 
4290 	if (get_ldev(device)) {
4291 		int skip_initial_sync =
4292 			device->state.conn == C_CONNECTED &&
4293 			peer_device->connection->agreed_pro_version >= 90 &&
4294 			device->ldev->md.uuid[UI_CURRENT] == UUID_JUST_CREATED &&
4295 			(p_uuid[UI_FLAGS] & 8);
4296 		if (skip_initial_sync) {
4297 			drbd_info(device, "Accepted new current UUID, preparing to skip initial sync\n");
4298 			drbd_bitmap_io(device, &drbd_bmio_clear_n_write,
4299 					"clear_n_write from receive_uuids",
4300 					BM_LOCKED_TEST_ALLOWED);
4301 			_drbd_uuid_set(device, UI_CURRENT, p_uuid[UI_CURRENT]);
4302 			_drbd_uuid_set(device, UI_BITMAP, 0);
4303 			_drbd_set_state(_NS2(device, disk, D_UP_TO_DATE, pdsk, D_UP_TO_DATE),
4304 					CS_VERBOSE, NULL);
4305 			drbd_md_sync(device);
4306 			updated_uuids = 1;
4307 		}
4308 		put_ldev(device);
4309 	} else if (device->state.disk < D_INCONSISTENT &&
4310 		   device->state.role == R_PRIMARY) {
4311 		/* I am a diskless primary, the peer just created a new current UUID
4312 		   for me. */
4313 		updated_uuids = drbd_set_ed_uuid(device, p_uuid[UI_CURRENT]);
4314 	}
4315 
4316 	/* Before we test for the disk state, we should wait until an eventually
4317 	   ongoing cluster wide state change is finished. That is important if
4318 	   we are primary and are detaching from our disk. We need to see the
4319 	   new disk state... */
4320 	mutex_lock(device->state_mutex);
4321 	mutex_unlock(device->state_mutex);
4322 	if (device->state.conn >= C_CONNECTED && device->state.disk < D_INCONSISTENT)
4323 		updated_uuids |= drbd_set_ed_uuid(device, p_uuid[UI_CURRENT]);
4324 
4325 	if (updated_uuids)
4326 		drbd_print_uuids(device, "receiver updated UUIDs to");
4327 
4328 	return 0;
4329 }
4330 
4331 /**
4332  * convert_state() - Converts the peer's view of the cluster state to our point of view
4333  * @ps:		The state as seen by the peer.
4334  */
4335 static union drbd_state convert_state(union drbd_state ps)
4336 {
4337 	union drbd_state ms;
4338 
4339 	static enum drbd_conns c_tab[] = {
4340 		[C_WF_REPORT_PARAMS] = C_WF_REPORT_PARAMS,
4341 		[C_CONNECTED] = C_CONNECTED,
4342 
4343 		[C_STARTING_SYNC_S] = C_STARTING_SYNC_T,
4344 		[C_STARTING_SYNC_T] = C_STARTING_SYNC_S,
4345 		[C_DISCONNECTING] = C_TEAR_DOWN, /* C_NETWORK_FAILURE, */
4346 		[C_VERIFY_S]       = C_VERIFY_T,
4347 		[C_MASK]   = C_MASK,
4348 	};
4349 
4350 	ms.i = ps.i;
4351 
4352 	ms.conn = c_tab[ps.conn];
4353 	ms.peer = ps.role;
4354 	ms.role = ps.peer;
4355 	ms.pdsk = ps.disk;
4356 	ms.disk = ps.pdsk;
4357 	ms.peer_isp = (ps.aftr_isp | ps.user_isp);
4358 
4359 	return ms;
4360 }
4361 
4362 static int receive_req_state(struct drbd_connection *connection, struct packet_info *pi)
4363 {
4364 	struct drbd_peer_device *peer_device;
4365 	struct drbd_device *device;
4366 	struct p_req_state *p = pi->data;
4367 	union drbd_state mask, val;
4368 	enum drbd_state_rv rv;
4369 
4370 	peer_device = conn_peer_device(connection, pi->vnr);
4371 	if (!peer_device)
4372 		return -EIO;
4373 	device = peer_device->device;
4374 
4375 	mask.i = be32_to_cpu(p->mask);
4376 	val.i = be32_to_cpu(p->val);
4377 
4378 	if (test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags) &&
4379 	    mutex_is_locked(device->state_mutex)) {
4380 		drbd_send_sr_reply(peer_device, SS_CONCURRENT_ST_CHG);
4381 		return 0;
4382 	}
4383 
4384 	mask = convert_state(mask);
4385 	val = convert_state(val);
4386 
4387 	rv = drbd_change_state(device, CS_VERBOSE, mask, val);
4388 	drbd_send_sr_reply(peer_device, rv);
4389 
4390 	drbd_md_sync(device);
4391 
4392 	return 0;
4393 }
4394 
4395 static int receive_req_conn_state(struct drbd_connection *connection, struct packet_info *pi)
4396 {
4397 	struct p_req_state *p = pi->data;
4398 	union drbd_state mask, val;
4399 	enum drbd_state_rv rv;
4400 
4401 	mask.i = be32_to_cpu(p->mask);
4402 	val.i = be32_to_cpu(p->val);
4403 
4404 	if (test_bit(RESOLVE_CONFLICTS, &connection->flags) &&
4405 	    mutex_is_locked(&connection->cstate_mutex)) {
4406 		conn_send_sr_reply(connection, SS_CONCURRENT_ST_CHG);
4407 		return 0;
4408 	}
4409 
4410 	mask = convert_state(mask);
4411 	val = convert_state(val);
4412 
4413 	rv = conn_request_state(connection, mask, val, CS_VERBOSE | CS_LOCAL_ONLY | CS_IGN_OUTD_FAIL);
4414 	conn_send_sr_reply(connection, rv);
4415 
4416 	return 0;
4417 }
4418 
4419 static int receive_state(struct drbd_connection *connection, struct packet_info *pi)
4420 {
4421 	struct drbd_peer_device *peer_device;
4422 	struct drbd_device *device;
4423 	struct p_state *p = pi->data;
4424 	union drbd_state os, ns, peer_state;
4425 	enum drbd_disk_state real_peer_disk;
4426 	enum chg_state_flags cs_flags;
4427 	int rv;
4428 
4429 	peer_device = conn_peer_device(connection, pi->vnr);
4430 	if (!peer_device)
4431 		return config_unknown_volume(connection, pi);
4432 	device = peer_device->device;
4433 
4434 	peer_state.i = be32_to_cpu(p->state);
4435 
4436 	real_peer_disk = peer_state.disk;
4437 	if (peer_state.disk == D_NEGOTIATING) {
4438 		real_peer_disk = device->p_uuid[UI_FLAGS] & 4 ? D_INCONSISTENT : D_CONSISTENT;
4439 		drbd_info(device, "real peer disk state = %s\n", drbd_disk_str(real_peer_disk));
4440 	}
4441 
4442 	spin_lock_irq(&device->resource->req_lock);
4443  retry:
4444 	os = ns = drbd_read_state(device);
4445 	spin_unlock_irq(&device->resource->req_lock);
4446 
4447 	/* If some other part of the code (ack_receiver thread, timeout)
4448 	 * already decided to close the connection again,
4449 	 * we must not "re-establish" it here. */
4450 	if (os.conn <= C_TEAR_DOWN)
4451 		return -ECONNRESET;
4452 
4453 	/* If this is the "end of sync" confirmation, usually the peer disk
4454 	 * transitions from D_INCONSISTENT to D_UP_TO_DATE. For empty (0 bits
4455 	 * set) resync started in PausedSyncT, or if the timing of pause-/
4456 	 * unpause-sync events has been "just right", the peer disk may
4457 	 * transition from D_CONSISTENT to D_UP_TO_DATE as well.
4458 	 */
4459 	if ((os.pdsk == D_INCONSISTENT || os.pdsk == D_CONSISTENT) &&
4460 	    real_peer_disk == D_UP_TO_DATE &&
4461 	    os.conn > C_CONNECTED && os.disk == D_UP_TO_DATE) {
4462 		/* If we are (becoming) SyncSource, but peer is still in sync
4463 		 * preparation, ignore its uptodate-ness to avoid flapping, it
4464 		 * will change to inconsistent once the peer reaches active
4465 		 * syncing states.
4466 		 * It may have changed syncer-paused flags, however, so we
4467 		 * cannot ignore this completely. */
4468 		if (peer_state.conn > C_CONNECTED &&
4469 		    peer_state.conn < C_SYNC_SOURCE)
4470 			real_peer_disk = D_INCONSISTENT;
4471 
4472 		/* if peer_state changes to connected at the same time,
4473 		 * it explicitly notifies us that it finished resync.
4474 		 * Maybe we should finish it up, too? */
4475 		else if (os.conn >= C_SYNC_SOURCE &&
4476 			 peer_state.conn == C_CONNECTED) {
4477 			if (drbd_bm_total_weight(device) <= device->rs_failed)
4478 				drbd_resync_finished(device);
4479 			return 0;
4480 		}
4481 	}
4482 
4483 	/* explicit verify finished notification, stop sector reached. */
4484 	if (os.conn == C_VERIFY_T && os.disk == D_UP_TO_DATE &&
4485 	    peer_state.conn == C_CONNECTED && real_peer_disk == D_UP_TO_DATE) {
4486 		ov_out_of_sync_print(device);
4487 		drbd_resync_finished(device);
4488 		return 0;
4489 	}
4490 
4491 	/* peer says his disk is inconsistent, while we think it is uptodate,
4492 	 * and this happens while the peer still thinks we have a sync going on,
4493 	 * but we think we are already done with the sync.
4494 	 * We ignore this to avoid flapping pdsk.
4495 	 * This should not happen, if the peer is a recent version of drbd. */
4496 	if (os.pdsk == D_UP_TO_DATE && real_peer_disk == D_INCONSISTENT &&
4497 	    os.conn == C_CONNECTED && peer_state.conn > C_SYNC_SOURCE)
4498 		real_peer_disk = D_UP_TO_DATE;
4499 
4500 	if (ns.conn == C_WF_REPORT_PARAMS)
4501 		ns.conn = C_CONNECTED;
4502 
4503 	if (peer_state.conn == C_AHEAD)
4504 		ns.conn = C_BEHIND;
4505 
4506 	/* TODO:
4507 	 * if (primary and diskless and peer uuid != effective uuid)
4508 	 *     abort attach on peer;
4509 	 *
4510 	 * If this node does not have good data, was already connected, but
4511 	 * the peer did a late attach only now, trying to "negotiate" with me,
4512 	 * AND I am currently Primary, possibly frozen, with some specific
4513 	 * "effective" uuid, this should never be reached, really, because
4514 	 * we first send the uuids, then the current state.
4515 	 *
4516 	 * In this scenario, we already dropped the connection hard
4517 	 * when we received the unsuitable uuids (receive_uuids().
4518 	 *
4519 	 * Should we want to change this, that is: not drop the connection in
4520 	 * receive_uuids() already, then we would need to add a branch here
4521 	 * that aborts the attach of "unsuitable uuids" on the peer in case
4522 	 * this node is currently Diskless Primary.
4523 	 */
4524 
4525 	if (device->p_uuid && peer_state.disk >= D_NEGOTIATING &&
4526 	    get_ldev_if_state(device, D_NEGOTIATING)) {
4527 		int cr; /* consider resync */
4528 
4529 		/* if we established a new connection */
4530 		cr  = (os.conn < C_CONNECTED);
4531 		/* if we had an established connection
4532 		 * and one of the nodes newly attaches a disk */
4533 		cr |= (os.conn == C_CONNECTED &&
4534 		       (peer_state.disk == D_NEGOTIATING ||
4535 			os.disk == D_NEGOTIATING));
4536 		/* if we have both been inconsistent, and the peer has been
4537 		 * forced to be UpToDate with --force */
4538 		cr |= test_bit(CONSIDER_RESYNC, &device->flags);
4539 		/* if we had been plain connected, and the admin requested to
4540 		 * start a sync by "invalidate" or "invalidate-remote" */
4541 		cr |= (os.conn == C_CONNECTED &&
4542 				(peer_state.conn >= C_STARTING_SYNC_S &&
4543 				 peer_state.conn <= C_WF_BITMAP_T));
4544 
4545 		if (cr)
4546 			ns.conn = drbd_sync_handshake(peer_device, peer_state.role, real_peer_disk);
4547 
4548 		put_ldev(device);
4549 		if (ns.conn == C_MASK) {
4550 			ns.conn = C_CONNECTED;
4551 			if (device->state.disk == D_NEGOTIATING) {
4552 				drbd_force_state(device, NS(disk, D_FAILED));
4553 			} else if (peer_state.disk == D_NEGOTIATING) {
4554 				drbd_err(device, "Disk attach process on the peer node was aborted.\n");
4555 				peer_state.disk = D_DISKLESS;
4556 				real_peer_disk = D_DISKLESS;
4557 			} else {
4558 				if (test_and_clear_bit(CONN_DRY_RUN, &peer_device->connection->flags))
4559 					return -EIO;
4560 				D_ASSERT(device, os.conn == C_WF_REPORT_PARAMS);
4561 				conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4562 				return -EIO;
4563 			}
4564 		}
4565 	}
4566 
4567 	spin_lock_irq(&device->resource->req_lock);
4568 	if (os.i != drbd_read_state(device).i)
4569 		goto retry;
4570 	clear_bit(CONSIDER_RESYNC, &device->flags);
4571 	ns.peer = peer_state.role;
4572 	ns.pdsk = real_peer_disk;
4573 	ns.peer_isp = (peer_state.aftr_isp | peer_state.user_isp);
4574 	if ((ns.conn == C_CONNECTED || ns.conn == C_WF_BITMAP_S) && ns.disk == D_NEGOTIATING)
4575 		ns.disk = device->new_state_tmp.disk;
4576 	cs_flags = CS_VERBOSE + (os.conn < C_CONNECTED && ns.conn >= C_CONNECTED ? 0 : CS_HARD);
4577 	if (ns.pdsk == D_CONSISTENT && drbd_suspended(device) && ns.conn == C_CONNECTED && os.conn < C_CONNECTED &&
4578 	    test_bit(NEW_CUR_UUID, &device->flags)) {
4579 		/* Do not allow tl_restart(RESEND) for a rebooted peer. We can only allow this
4580 		   for temporal network outages! */
4581 		spin_unlock_irq(&device->resource->req_lock);
4582 		drbd_err(device, "Aborting Connect, can not thaw IO with an only Consistent peer\n");
4583 		tl_clear(peer_device->connection);
4584 		drbd_uuid_new_current(device);
4585 		clear_bit(NEW_CUR_UUID, &device->flags);
4586 		conn_request_state(peer_device->connection, NS2(conn, C_PROTOCOL_ERROR, susp, 0), CS_HARD);
4587 		return -EIO;
4588 	}
4589 	rv = _drbd_set_state(device, ns, cs_flags, NULL);
4590 	ns = drbd_read_state(device);
4591 	spin_unlock_irq(&device->resource->req_lock);
4592 
4593 	if (rv < SS_SUCCESS) {
4594 		conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4595 		return -EIO;
4596 	}
4597 
4598 	if (os.conn > C_WF_REPORT_PARAMS) {
4599 		if (ns.conn > C_CONNECTED && peer_state.conn <= C_CONNECTED &&
4600 		    peer_state.disk != D_NEGOTIATING ) {
4601 			/* we want resync, peer has not yet decided to sync... */
4602 			/* Nowadays only used when forcing a node into primary role and
4603 			   setting its disk to UpToDate with that */
4604 			drbd_send_uuids(peer_device);
4605 			drbd_send_current_state(peer_device);
4606 		}
4607 	}
4608 
4609 	clear_bit(DISCARD_MY_DATA, &device->flags);
4610 
4611 	drbd_md_sync(device); /* update connected indicator, la_size_sect, ... */
4612 
4613 	return 0;
4614 }
4615 
4616 static int receive_sync_uuid(struct drbd_connection *connection, struct packet_info *pi)
4617 {
4618 	struct drbd_peer_device *peer_device;
4619 	struct drbd_device *device;
4620 	struct p_rs_uuid *p = pi->data;
4621 
4622 	peer_device = conn_peer_device(connection, pi->vnr);
4623 	if (!peer_device)
4624 		return -EIO;
4625 	device = peer_device->device;
4626 
4627 	wait_event(device->misc_wait,
4628 		   device->state.conn == C_WF_SYNC_UUID ||
4629 		   device->state.conn == C_BEHIND ||
4630 		   device->state.conn < C_CONNECTED ||
4631 		   device->state.disk < D_NEGOTIATING);
4632 
4633 	/* D_ASSERT(device,  device->state.conn == C_WF_SYNC_UUID ); */
4634 
4635 	/* Here the _drbd_uuid_ functions are right, current should
4636 	   _not_ be rotated into the history */
4637 	if (get_ldev_if_state(device, D_NEGOTIATING)) {
4638 		_drbd_uuid_set(device, UI_CURRENT, be64_to_cpu(p->uuid));
4639 		_drbd_uuid_set(device, UI_BITMAP, 0UL);
4640 
4641 		drbd_print_uuids(device, "updated sync uuid");
4642 		drbd_start_resync(device, C_SYNC_TARGET);
4643 
4644 		put_ldev(device);
4645 	} else
4646 		drbd_err(device, "Ignoring SyncUUID packet!\n");
4647 
4648 	return 0;
4649 }
4650 
4651 /*
4652  * receive_bitmap_plain
4653  *
4654  * Return 0 when done, 1 when another iteration is needed, and a negative error
4655  * code upon failure.
4656  */
4657 static int
4658 receive_bitmap_plain(struct drbd_peer_device *peer_device, unsigned int size,
4659 		     unsigned long *p, struct bm_xfer_ctx *c)
4660 {
4661 	unsigned int data_size = DRBD_SOCKET_BUFFER_SIZE -
4662 				 drbd_header_size(peer_device->connection);
4663 	unsigned int num_words = min_t(size_t, data_size / sizeof(*p),
4664 				       c->bm_words - c->word_offset);
4665 	unsigned int want = num_words * sizeof(*p);
4666 	int err;
4667 
4668 	if (want != size) {
4669 		drbd_err(peer_device, "%s:want (%u) != size (%u)\n", __func__, want, size);
4670 		return -EIO;
4671 	}
4672 	if (want == 0)
4673 		return 0;
4674 	err = drbd_recv_all(peer_device->connection, p, want);
4675 	if (err)
4676 		return err;
4677 
4678 	drbd_bm_merge_lel(peer_device->device, c->word_offset, num_words, p);
4679 
4680 	c->word_offset += num_words;
4681 	c->bit_offset = c->word_offset * BITS_PER_LONG;
4682 	if (c->bit_offset > c->bm_bits)
4683 		c->bit_offset = c->bm_bits;
4684 
4685 	return 1;
4686 }
4687 
4688 static enum drbd_bitmap_code dcbp_get_code(struct p_compressed_bm *p)
4689 {
4690 	return (enum drbd_bitmap_code)(p->encoding & 0x0f);
4691 }
4692 
4693 static int dcbp_get_start(struct p_compressed_bm *p)
4694 {
4695 	return (p->encoding & 0x80) != 0;
4696 }
4697 
4698 static int dcbp_get_pad_bits(struct p_compressed_bm *p)
4699 {
4700 	return (p->encoding >> 4) & 0x7;
4701 }
4702 
4703 /*
4704  * recv_bm_rle_bits
4705  *
4706  * Return 0 when done, 1 when another iteration is needed, and a negative error
4707  * code upon failure.
4708  */
4709 static int
4710 recv_bm_rle_bits(struct drbd_peer_device *peer_device,
4711 		struct p_compressed_bm *p,
4712 		 struct bm_xfer_ctx *c,
4713 		 unsigned int len)
4714 {
4715 	struct bitstream bs;
4716 	u64 look_ahead;
4717 	u64 rl;
4718 	u64 tmp;
4719 	unsigned long s = c->bit_offset;
4720 	unsigned long e;
4721 	int toggle = dcbp_get_start(p);
4722 	int have;
4723 	int bits;
4724 
4725 	bitstream_init(&bs, p->code, len, dcbp_get_pad_bits(p));
4726 
4727 	bits = bitstream_get_bits(&bs, &look_ahead, 64);
4728 	if (bits < 0)
4729 		return -EIO;
4730 
4731 	for (have = bits; have > 0; s += rl, toggle = !toggle) {
4732 		bits = vli_decode_bits(&rl, look_ahead);
4733 		if (bits <= 0)
4734 			return -EIO;
4735 
4736 		if (toggle) {
4737 			e = s + rl -1;
4738 			if (e >= c->bm_bits) {
4739 				drbd_err(peer_device, "bitmap overflow (e:%lu) while decoding bm RLE packet\n", e);
4740 				return -EIO;
4741 			}
4742 			_drbd_bm_set_bits(peer_device->device, s, e);
4743 		}
4744 
4745 		if (have < bits) {
4746 			drbd_err(peer_device, "bitmap decoding error: h:%d b:%d la:0x%08llx l:%u/%u\n",
4747 				have, bits, look_ahead,
4748 				(unsigned int)(bs.cur.b - p->code),
4749 				(unsigned int)bs.buf_len);
4750 			return -EIO;
4751 		}
4752 		/* if we consumed all 64 bits, assign 0; >> 64 is "undefined"; */
4753 		if (likely(bits < 64))
4754 			look_ahead >>= bits;
4755 		else
4756 			look_ahead = 0;
4757 		have -= bits;
4758 
4759 		bits = bitstream_get_bits(&bs, &tmp, 64 - have);
4760 		if (bits < 0)
4761 			return -EIO;
4762 		look_ahead |= tmp << have;
4763 		have += bits;
4764 	}
4765 
4766 	c->bit_offset = s;
4767 	bm_xfer_ctx_bit_to_word_offset(c);
4768 
4769 	return (s != c->bm_bits);
4770 }
4771 
4772 /*
4773  * decode_bitmap_c
4774  *
4775  * Return 0 when done, 1 when another iteration is needed, and a negative error
4776  * code upon failure.
4777  */
4778 static int
4779 decode_bitmap_c(struct drbd_peer_device *peer_device,
4780 		struct p_compressed_bm *p,
4781 		struct bm_xfer_ctx *c,
4782 		unsigned int len)
4783 {
4784 	if (dcbp_get_code(p) == RLE_VLI_Bits)
4785 		return recv_bm_rle_bits(peer_device, p, c, len - sizeof(*p));
4786 
4787 	/* other variants had been implemented for evaluation,
4788 	 * but have been dropped as this one turned out to be "best"
4789 	 * during all our tests. */
4790 
4791 	drbd_err(peer_device, "receive_bitmap_c: unknown encoding %u\n", p->encoding);
4792 	conn_request_state(peer_device->connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
4793 	return -EIO;
4794 }
4795 
4796 void INFO_bm_xfer_stats(struct drbd_device *device,
4797 		const char *direction, struct bm_xfer_ctx *c)
4798 {
4799 	/* what would it take to transfer it "plaintext" */
4800 	unsigned int header_size = drbd_header_size(first_peer_device(device)->connection);
4801 	unsigned int data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
4802 	unsigned int plain =
4803 		header_size * (DIV_ROUND_UP(c->bm_words, data_size) + 1) +
4804 		c->bm_words * sizeof(unsigned long);
4805 	unsigned int total = c->bytes[0] + c->bytes[1];
4806 	unsigned int r;
4807 
4808 	/* total can not be zero. but just in case: */
4809 	if (total == 0)
4810 		return;
4811 
4812 	/* don't report if not compressed */
4813 	if (total >= plain)
4814 		return;
4815 
4816 	/* total < plain. check for overflow, still */
4817 	r = (total > UINT_MAX/1000) ? (total / (plain/1000))
4818 		                    : (1000 * total / plain);
4819 
4820 	if (r > 1000)
4821 		r = 1000;
4822 
4823 	r = 1000 - r;
4824 	drbd_info(device, "%s bitmap stats [Bytes(packets)]: plain %u(%u), RLE %u(%u), "
4825 	     "total %u; compression: %u.%u%%\n",
4826 			direction,
4827 			c->bytes[1], c->packets[1],
4828 			c->bytes[0], c->packets[0],
4829 			total, r/10, r % 10);
4830 }
4831 
4832 /* Since we are processing the bitfield from lower addresses to higher,
4833    it does not matter if the process it in 32 bit chunks or 64 bit
4834    chunks as long as it is little endian. (Understand it as byte stream,
4835    beginning with the lowest byte...) If we would use big endian
4836    we would need to process it from the highest address to the lowest,
4837    in order to be agnostic to the 32 vs 64 bits issue.
4838 
4839    returns 0 on failure, 1 if we successfully received it. */
4840 static int receive_bitmap(struct drbd_connection *connection, struct packet_info *pi)
4841 {
4842 	struct drbd_peer_device *peer_device;
4843 	struct drbd_device *device;
4844 	struct bm_xfer_ctx c;
4845 	int err;
4846 
4847 	peer_device = conn_peer_device(connection, pi->vnr);
4848 	if (!peer_device)
4849 		return -EIO;
4850 	device = peer_device->device;
4851 
4852 	drbd_bm_lock(device, "receive bitmap", BM_LOCKED_SET_ALLOWED);
4853 	/* you are supposed to send additional out-of-sync information
4854 	 * if you actually set bits during this phase */
4855 
4856 	c = (struct bm_xfer_ctx) {
4857 		.bm_bits = drbd_bm_bits(device),
4858 		.bm_words = drbd_bm_words(device),
4859 	};
4860 
4861 	for(;;) {
4862 		if (pi->cmd == P_BITMAP)
4863 			err = receive_bitmap_plain(peer_device, pi->size, pi->data, &c);
4864 		else if (pi->cmd == P_COMPRESSED_BITMAP) {
4865 			/* MAYBE: sanity check that we speak proto >= 90,
4866 			 * and the feature is enabled! */
4867 			struct p_compressed_bm *p = pi->data;
4868 
4869 			if (pi->size > DRBD_SOCKET_BUFFER_SIZE - drbd_header_size(connection)) {
4870 				drbd_err(device, "ReportCBitmap packet too large\n");
4871 				err = -EIO;
4872 				goto out;
4873 			}
4874 			if (pi->size <= sizeof(*p)) {
4875 				drbd_err(device, "ReportCBitmap packet too small (l:%u)\n", pi->size);
4876 				err = -EIO;
4877 				goto out;
4878 			}
4879 			err = drbd_recv_all(peer_device->connection, p, pi->size);
4880 			if (err)
4881 			       goto out;
4882 			err = decode_bitmap_c(peer_device, p, &c, pi->size);
4883 		} else {
4884 			drbd_warn(device, "receive_bitmap: cmd neither ReportBitMap nor ReportCBitMap (is 0x%x)", pi->cmd);
4885 			err = -EIO;
4886 			goto out;
4887 		}
4888 
4889 		c.packets[pi->cmd == P_BITMAP]++;
4890 		c.bytes[pi->cmd == P_BITMAP] += drbd_header_size(connection) + pi->size;
4891 
4892 		if (err <= 0) {
4893 			if (err < 0)
4894 				goto out;
4895 			break;
4896 		}
4897 		err = drbd_recv_header(peer_device->connection, pi);
4898 		if (err)
4899 			goto out;
4900 	}
4901 
4902 	INFO_bm_xfer_stats(device, "receive", &c);
4903 
4904 	if (device->state.conn == C_WF_BITMAP_T) {
4905 		enum drbd_state_rv rv;
4906 
4907 		err = drbd_send_bitmap(device);
4908 		if (err)
4909 			goto out;
4910 		/* Omit CS_ORDERED with this state transition to avoid deadlocks. */
4911 		rv = _drbd_request_state(device, NS(conn, C_WF_SYNC_UUID), CS_VERBOSE);
4912 		D_ASSERT(device, rv == SS_SUCCESS);
4913 	} else if (device->state.conn != C_WF_BITMAP_S) {
4914 		/* admin may have requested C_DISCONNECTING,
4915 		 * other threads may have noticed network errors */
4916 		drbd_info(device, "unexpected cstate (%s) in receive_bitmap\n",
4917 		    drbd_conn_str(device->state.conn));
4918 	}
4919 	err = 0;
4920 
4921  out:
4922 	drbd_bm_unlock(device);
4923 	if (!err && device->state.conn == C_WF_BITMAP_S)
4924 		drbd_start_resync(device, C_SYNC_SOURCE);
4925 	return err;
4926 }
4927 
4928 static int receive_skip(struct drbd_connection *connection, struct packet_info *pi)
4929 {
4930 	drbd_warn(connection, "skipping unknown optional packet type %d, l: %d!\n",
4931 		 pi->cmd, pi->size);
4932 
4933 	return ignore_remaining_packet(connection, pi);
4934 }
4935 
4936 static int receive_UnplugRemote(struct drbd_connection *connection, struct packet_info *pi)
4937 {
4938 	/* Make sure we've acked all the TCP data associated
4939 	 * with the data requests being unplugged */
4940 	tcp_sock_set_quickack(connection->data.socket->sk, 2);
4941 	return 0;
4942 }
4943 
4944 static int receive_out_of_sync(struct drbd_connection *connection, struct packet_info *pi)
4945 {
4946 	struct drbd_peer_device *peer_device;
4947 	struct drbd_device *device;
4948 	struct p_block_desc *p = pi->data;
4949 
4950 	peer_device = conn_peer_device(connection, pi->vnr);
4951 	if (!peer_device)
4952 		return -EIO;
4953 	device = peer_device->device;
4954 
4955 	switch (device->state.conn) {
4956 	case C_WF_SYNC_UUID:
4957 	case C_WF_BITMAP_T:
4958 	case C_BEHIND:
4959 			break;
4960 	default:
4961 		drbd_err(device, "ASSERT FAILED cstate = %s, expected: WFSyncUUID|WFBitMapT|Behind\n",
4962 				drbd_conn_str(device->state.conn));
4963 	}
4964 
4965 	drbd_set_out_of_sync(device, be64_to_cpu(p->sector), be32_to_cpu(p->blksize));
4966 
4967 	return 0;
4968 }
4969 
4970 static int receive_rs_deallocated(struct drbd_connection *connection, struct packet_info *pi)
4971 {
4972 	struct drbd_peer_device *peer_device;
4973 	struct p_block_desc *p = pi->data;
4974 	struct drbd_device *device;
4975 	sector_t sector;
4976 	int size, err = 0;
4977 
4978 	peer_device = conn_peer_device(connection, pi->vnr);
4979 	if (!peer_device)
4980 		return -EIO;
4981 	device = peer_device->device;
4982 
4983 	sector = be64_to_cpu(p->sector);
4984 	size = be32_to_cpu(p->blksize);
4985 
4986 	dec_rs_pending(device);
4987 
4988 	if (get_ldev(device)) {
4989 		struct drbd_peer_request *peer_req;
4990 		const int op = REQ_OP_WRITE_ZEROES;
4991 
4992 		peer_req = drbd_alloc_peer_req(peer_device, ID_SYNCER, sector,
4993 					       size, 0, GFP_NOIO);
4994 		if (!peer_req) {
4995 			put_ldev(device);
4996 			return -ENOMEM;
4997 		}
4998 
4999 		peer_req->w.cb = e_end_resync_block;
5000 		peer_req->submit_jif = jiffies;
5001 		peer_req->flags |= EE_TRIM;
5002 
5003 		spin_lock_irq(&device->resource->req_lock);
5004 		list_add_tail(&peer_req->w.list, &device->sync_ee);
5005 		spin_unlock_irq(&device->resource->req_lock);
5006 
5007 		atomic_add(pi->size >> 9, &device->rs_sect_ev);
5008 		err = drbd_submit_peer_request(device, peer_req, op, 0, DRBD_FAULT_RS_WR);
5009 
5010 		if (err) {
5011 			spin_lock_irq(&device->resource->req_lock);
5012 			list_del(&peer_req->w.list);
5013 			spin_unlock_irq(&device->resource->req_lock);
5014 
5015 			drbd_free_peer_req(device, peer_req);
5016 			put_ldev(device);
5017 			err = 0;
5018 			goto fail;
5019 		}
5020 
5021 		inc_unacked(device);
5022 
5023 		/* No put_ldev() here. Gets called in drbd_endio_write_sec_final(),
5024 		   as well as drbd_rs_complete_io() */
5025 	} else {
5026 	fail:
5027 		drbd_rs_complete_io(device, sector);
5028 		drbd_send_ack_ex(peer_device, P_NEG_ACK, sector, size, ID_SYNCER);
5029 	}
5030 
5031 	atomic_add(size >> 9, &device->rs_sect_in);
5032 
5033 	return err;
5034 }
5035 
5036 struct data_cmd {
5037 	int expect_payload;
5038 	unsigned int pkt_size;
5039 	int (*fn)(struct drbd_connection *, struct packet_info *);
5040 };
5041 
5042 static struct data_cmd drbd_cmd_handler[] = {
5043 	[P_DATA]	    = { 1, sizeof(struct p_data), receive_Data },
5044 	[P_DATA_REPLY]	    = { 1, sizeof(struct p_data), receive_DataReply },
5045 	[P_RS_DATA_REPLY]   = { 1, sizeof(struct p_data), receive_RSDataReply } ,
5046 	[P_BARRIER]	    = { 0, sizeof(struct p_barrier), receive_Barrier } ,
5047 	[P_BITMAP]	    = { 1, 0, receive_bitmap } ,
5048 	[P_COMPRESSED_BITMAP] = { 1, 0, receive_bitmap } ,
5049 	[P_UNPLUG_REMOTE]   = { 0, 0, receive_UnplugRemote },
5050 	[P_DATA_REQUEST]    = { 0, sizeof(struct p_block_req), receive_DataRequest },
5051 	[P_RS_DATA_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest },
5052 	[P_SYNC_PARAM]	    = { 1, 0, receive_SyncParam },
5053 	[P_SYNC_PARAM89]    = { 1, 0, receive_SyncParam },
5054 	[P_PROTOCOL]        = { 1, sizeof(struct p_protocol), receive_protocol },
5055 	[P_UUIDS]	    = { 0, sizeof(struct p_uuids), receive_uuids },
5056 	[P_SIZES]	    = { 0, sizeof(struct p_sizes), receive_sizes },
5057 	[P_STATE]	    = { 0, sizeof(struct p_state), receive_state },
5058 	[P_STATE_CHG_REQ]   = { 0, sizeof(struct p_req_state), receive_req_state },
5059 	[P_SYNC_UUID]       = { 0, sizeof(struct p_rs_uuid), receive_sync_uuid },
5060 	[P_OV_REQUEST]      = { 0, sizeof(struct p_block_req), receive_DataRequest },
5061 	[P_OV_REPLY]        = { 1, sizeof(struct p_block_req), receive_DataRequest },
5062 	[P_CSUM_RS_REQUEST] = { 1, sizeof(struct p_block_req), receive_DataRequest },
5063 	[P_RS_THIN_REQ]     = { 0, sizeof(struct p_block_req), receive_DataRequest },
5064 	[P_DELAY_PROBE]     = { 0, sizeof(struct p_delay_probe93), receive_skip },
5065 	[P_OUT_OF_SYNC]     = { 0, sizeof(struct p_block_desc), receive_out_of_sync },
5066 	[P_CONN_ST_CHG_REQ] = { 0, sizeof(struct p_req_state), receive_req_conn_state },
5067 	[P_PROTOCOL_UPDATE] = { 1, sizeof(struct p_protocol), receive_protocol },
5068 	[P_TRIM]	    = { 0, sizeof(struct p_trim), receive_Data },
5069 	[P_ZEROES]	    = { 0, sizeof(struct p_trim), receive_Data },
5070 	[P_RS_DEALLOCATED]  = { 0, sizeof(struct p_block_desc), receive_rs_deallocated },
5071 	[P_WSAME]	    = { 1, sizeof(struct p_wsame), receive_Data },
5072 };
5073 
5074 static void drbdd(struct drbd_connection *connection)
5075 {
5076 	struct packet_info pi;
5077 	size_t shs; /* sub header size */
5078 	int err;
5079 
5080 	while (get_t_state(&connection->receiver) == RUNNING) {
5081 		struct data_cmd const *cmd;
5082 
5083 		drbd_thread_current_set_cpu(&connection->receiver);
5084 		update_receiver_timing_details(connection, drbd_recv_header_maybe_unplug);
5085 		if (drbd_recv_header_maybe_unplug(connection, &pi))
5086 			goto err_out;
5087 
5088 		cmd = &drbd_cmd_handler[pi.cmd];
5089 		if (unlikely(pi.cmd >= ARRAY_SIZE(drbd_cmd_handler) || !cmd->fn)) {
5090 			drbd_err(connection, "Unexpected data packet %s (0x%04x)",
5091 				 cmdname(pi.cmd), pi.cmd);
5092 			goto err_out;
5093 		}
5094 
5095 		shs = cmd->pkt_size;
5096 		if (pi.cmd == P_SIZES && connection->agreed_features & DRBD_FF_WSAME)
5097 			shs += sizeof(struct o_qlim);
5098 		if (pi.size > shs && !cmd->expect_payload) {
5099 			drbd_err(connection, "No payload expected %s l:%d\n",
5100 				 cmdname(pi.cmd), pi.size);
5101 			goto err_out;
5102 		}
5103 		if (pi.size < shs) {
5104 			drbd_err(connection, "%s: unexpected packet size, expected:%d received:%d\n",
5105 				 cmdname(pi.cmd), (int)shs, pi.size);
5106 			goto err_out;
5107 		}
5108 
5109 		if (shs) {
5110 			update_receiver_timing_details(connection, drbd_recv_all_warn);
5111 			err = drbd_recv_all_warn(connection, pi.data, shs);
5112 			if (err)
5113 				goto err_out;
5114 			pi.size -= shs;
5115 		}
5116 
5117 		update_receiver_timing_details(connection, cmd->fn);
5118 		err = cmd->fn(connection, &pi);
5119 		if (err) {
5120 			drbd_err(connection, "error receiving %s, e: %d l: %d!\n",
5121 				 cmdname(pi.cmd), err, pi.size);
5122 			goto err_out;
5123 		}
5124 	}
5125 	return;
5126 
5127     err_out:
5128 	conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
5129 }
5130 
5131 static void conn_disconnect(struct drbd_connection *connection)
5132 {
5133 	struct drbd_peer_device *peer_device;
5134 	enum drbd_conns oc;
5135 	int vnr;
5136 
5137 	if (connection->cstate == C_STANDALONE)
5138 		return;
5139 
5140 	/* We are about to start the cleanup after connection loss.
5141 	 * Make sure drbd_make_request knows about that.
5142 	 * Usually we should be in some network failure state already,
5143 	 * but just in case we are not, we fix it up here.
5144 	 */
5145 	conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD);
5146 
5147 	/* ack_receiver does not clean up anything. it must not interfere, either */
5148 	drbd_thread_stop(&connection->ack_receiver);
5149 	if (connection->ack_sender) {
5150 		destroy_workqueue(connection->ack_sender);
5151 		connection->ack_sender = NULL;
5152 	}
5153 	drbd_free_sock(connection);
5154 
5155 	rcu_read_lock();
5156 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
5157 		struct drbd_device *device = peer_device->device;
5158 		kref_get(&device->kref);
5159 		rcu_read_unlock();
5160 		drbd_disconnected(peer_device);
5161 		kref_put(&device->kref, drbd_destroy_device);
5162 		rcu_read_lock();
5163 	}
5164 	rcu_read_unlock();
5165 
5166 	if (!list_empty(&connection->current_epoch->list))
5167 		drbd_err(connection, "ASSERTION FAILED: connection->current_epoch->list not empty\n");
5168 	/* ok, no more ee's on the fly, it is safe to reset the epoch_size */
5169 	atomic_set(&connection->current_epoch->epoch_size, 0);
5170 	connection->send.seen_any_write_yet = false;
5171 
5172 	drbd_info(connection, "Connection closed\n");
5173 
5174 	if (conn_highest_role(connection) == R_PRIMARY && conn_highest_pdsk(connection) >= D_UNKNOWN)
5175 		conn_try_outdate_peer_async(connection);
5176 
5177 	spin_lock_irq(&connection->resource->req_lock);
5178 	oc = connection->cstate;
5179 	if (oc >= C_UNCONNECTED)
5180 		_conn_request_state(connection, NS(conn, C_UNCONNECTED), CS_VERBOSE);
5181 
5182 	spin_unlock_irq(&connection->resource->req_lock);
5183 
5184 	if (oc == C_DISCONNECTING)
5185 		conn_request_state(connection, NS(conn, C_STANDALONE), CS_VERBOSE | CS_HARD);
5186 }
5187 
5188 static int drbd_disconnected(struct drbd_peer_device *peer_device)
5189 {
5190 	struct drbd_device *device = peer_device->device;
5191 	unsigned int i;
5192 
5193 	/* wait for current activity to cease. */
5194 	spin_lock_irq(&device->resource->req_lock);
5195 	_drbd_wait_ee_list_empty(device, &device->active_ee);
5196 	_drbd_wait_ee_list_empty(device, &device->sync_ee);
5197 	_drbd_wait_ee_list_empty(device, &device->read_ee);
5198 	spin_unlock_irq(&device->resource->req_lock);
5199 
5200 	/* We do not have data structures that would allow us to
5201 	 * get the rs_pending_cnt down to 0 again.
5202 	 *  * On C_SYNC_TARGET we do not have any data structures describing
5203 	 *    the pending RSDataRequest's we have sent.
5204 	 *  * On C_SYNC_SOURCE there is no data structure that tracks
5205 	 *    the P_RS_DATA_REPLY blocks that we sent to the SyncTarget.
5206 	 *  And no, it is not the sum of the reference counts in the
5207 	 *  resync_LRU. The resync_LRU tracks the whole operation including
5208 	 *  the disk-IO, while the rs_pending_cnt only tracks the blocks
5209 	 *  on the fly. */
5210 	drbd_rs_cancel_all(device);
5211 	device->rs_total = 0;
5212 	device->rs_failed = 0;
5213 	atomic_set(&device->rs_pending_cnt, 0);
5214 	wake_up(&device->misc_wait);
5215 
5216 	del_timer_sync(&device->resync_timer);
5217 	resync_timer_fn(&device->resync_timer);
5218 
5219 	/* wait for all w_e_end_data_req, w_e_end_rsdata_req, w_send_barrier,
5220 	 * w_make_resync_request etc. which may still be on the worker queue
5221 	 * to be "canceled" */
5222 	drbd_flush_workqueue(&peer_device->connection->sender_work);
5223 
5224 	drbd_finish_peer_reqs(device);
5225 
5226 	/* This second workqueue flush is necessary, since drbd_finish_peer_reqs()
5227 	   might have issued a work again. The one before drbd_finish_peer_reqs() is
5228 	   necessary to reclain net_ee in drbd_finish_peer_reqs(). */
5229 	drbd_flush_workqueue(&peer_device->connection->sender_work);
5230 
5231 	/* need to do it again, drbd_finish_peer_reqs() may have populated it
5232 	 * again via drbd_try_clear_on_disk_bm(). */
5233 	drbd_rs_cancel_all(device);
5234 
5235 	kfree(device->p_uuid);
5236 	device->p_uuid = NULL;
5237 
5238 	if (!drbd_suspended(device))
5239 		tl_clear(peer_device->connection);
5240 
5241 	drbd_md_sync(device);
5242 
5243 	if (get_ldev(device)) {
5244 		drbd_bitmap_io(device, &drbd_bm_write_copy_pages,
5245 				"write from disconnected", BM_LOCKED_CHANGE_ALLOWED);
5246 		put_ldev(device);
5247 	}
5248 
5249 	/* tcp_close and release of sendpage pages can be deferred.  I don't
5250 	 * want to use SO_LINGER, because apparently it can be deferred for
5251 	 * more than 20 seconds (longest time I checked).
5252 	 *
5253 	 * Actually we don't care for exactly when the network stack does its
5254 	 * put_page(), but release our reference on these pages right here.
5255 	 */
5256 	i = drbd_free_peer_reqs(device, &device->net_ee);
5257 	if (i)
5258 		drbd_info(device, "net_ee not empty, killed %u entries\n", i);
5259 	i = atomic_read(&device->pp_in_use_by_net);
5260 	if (i)
5261 		drbd_info(device, "pp_in_use_by_net = %d, expected 0\n", i);
5262 	i = atomic_read(&device->pp_in_use);
5263 	if (i)
5264 		drbd_info(device, "pp_in_use = %d, expected 0\n", i);
5265 
5266 	D_ASSERT(device, list_empty(&device->read_ee));
5267 	D_ASSERT(device, list_empty(&device->active_ee));
5268 	D_ASSERT(device, list_empty(&device->sync_ee));
5269 	D_ASSERT(device, list_empty(&device->done_ee));
5270 
5271 	return 0;
5272 }
5273 
5274 /*
5275  * We support PRO_VERSION_MIN to PRO_VERSION_MAX. The protocol version
5276  * we can agree on is stored in agreed_pro_version.
5277  *
5278  * feature flags and the reserved array should be enough room for future
5279  * enhancements of the handshake protocol, and possible plugins...
5280  *
5281  * for now, they are expected to be zero, but ignored.
5282  */
5283 static int drbd_send_features(struct drbd_connection *connection)
5284 {
5285 	struct drbd_socket *sock;
5286 	struct p_connection_features *p;
5287 
5288 	sock = &connection->data;
5289 	p = conn_prepare_command(connection, sock);
5290 	if (!p)
5291 		return -EIO;
5292 	memset(p, 0, sizeof(*p));
5293 	p->protocol_min = cpu_to_be32(PRO_VERSION_MIN);
5294 	p->protocol_max = cpu_to_be32(PRO_VERSION_MAX);
5295 	p->feature_flags = cpu_to_be32(PRO_FEATURES);
5296 	return conn_send_command(connection, sock, P_CONNECTION_FEATURES, sizeof(*p), NULL, 0);
5297 }
5298 
5299 /*
5300  * return values:
5301  *   1 yes, we have a valid connection
5302  *   0 oops, did not work out, please try again
5303  *  -1 peer talks different language,
5304  *     no point in trying again, please go standalone.
5305  */
5306 static int drbd_do_features(struct drbd_connection *connection)
5307 {
5308 	/* ASSERT current == connection->receiver ... */
5309 	struct p_connection_features *p;
5310 	const int expect = sizeof(struct p_connection_features);
5311 	struct packet_info pi;
5312 	int err;
5313 
5314 	err = drbd_send_features(connection);
5315 	if (err)
5316 		return 0;
5317 
5318 	err = drbd_recv_header(connection, &pi);
5319 	if (err)
5320 		return 0;
5321 
5322 	if (pi.cmd != P_CONNECTION_FEATURES) {
5323 		drbd_err(connection, "expected ConnectionFeatures packet, received: %s (0x%04x)\n",
5324 			 cmdname(pi.cmd), pi.cmd);
5325 		return -1;
5326 	}
5327 
5328 	if (pi.size != expect) {
5329 		drbd_err(connection, "expected ConnectionFeatures length: %u, received: %u\n",
5330 		     expect, pi.size);
5331 		return -1;
5332 	}
5333 
5334 	p = pi.data;
5335 	err = drbd_recv_all_warn(connection, p, expect);
5336 	if (err)
5337 		return 0;
5338 
5339 	p->protocol_min = be32_to_cpu(p->protocol_min);
5340 	p->protocol_max = be32_to_cpu(p->protocol_max);
5341 	if (p->protocol_max == 0)
5342 		p->protocol_max = p->protocol_min;
5343 
5344 	if (PRO_VERSION_MAX < p->protocol_min ||
5345 	    PRO_VERSION_MIN > p->protocol_max)
5346 		goto incompat;
5347 
5348 	connection->agreed_pro_version = min_t(int, PRO_VERSION_MAX, p->protocol_max);
5349 	connection->agreed_features = PRO_FEATURES & be32_to_cpu(p->feature_flags);
5350 
5351 	drbd_info(connection, "Handshake successful: "
5352 	     "Agreed network protocol version %d\n", connection->agreed_pro_version);
5353 
5354 	drbd_info(connection, "Feature flags enabled on protocol level: 0x%x%s%s%s%s.\n",
5355 		  connection->agreed_features,
5356 		  connection->agreed_features & DRBD_FF_TRIM ? " TRIM" : "",
5357 		  connection->agreed_features & DRBD_FF_THIN_RESYNC ? " THIN_RESYNC" : "",
5358 		  connection->agreed_features & DRBD_FF_WSAME ? " WRITE_SAME" : "",
5359 		  connection->agreed_features & DRBD_FF_WZEROES ? " WRITE_ZEROES" :
5360 		  connection->agreed_features ? "" : " none");
5361 
5362 	return 1;
5363 
5364  incompat:
5365 	drbd_err(connection, "incompatible DRBD dialects: "
5366 	    "I support %d-%d, peer supports %d-%d\n",
5367 	    PRO_VERSION_MIN, PRO_VERSION_MAX,
5368 	    p->protocol_min, p->protocol_max);
5369 	return -1;
5370 }
5371 
5372 #if !defined(CONFIG_CRYPTO_HMAC) && !defined(CONFIG_CRYPTO_HMAC_MODULE)
5373 static int drbd_do_auth(struct drbd_connection *connection)
5374 {
5375 	drbd_err(connection, "This kernel was build without CONFIG_CRYPTO_HMAC.\n");
5376 	drbd_err(connection, "You need to disable 'cram-hmac-alg' in drbd.conf.\n");
5377 	return -1;
5378 }
5379 #else
5380 #define CHALLENGE_LEN 64
5381 
5382 /* Return value:
5383 	1 - auth succeeded,
5384 	0 - failed, try again (network error),
5385 	-1 - auth failed, don't try again.
5386 */
5387 
5388 static int drbd_do_auth(struct drbd_connection *connection)
5389 {
5390 	struct drbd_socket *sock;
5391 	char my_challenge[CHALLENGE_LEN];  /* 64 Bytes... */
5392 	char *response = NULL;
5393 	char *right_response = NULL;
5394 	char *peers_ch = NULL;
5395 	unsigned int key_len;
5396 	char secret[SHARED_SECRET_MAX]; /* 64 byte */
5397 	unsigned int resp_size;
5398 	struct shash_desc *desc;
5399 	struct packet_info pi;
5400 	struct net_conf *nc;
5401 	int err, rv;
5402 
5403 	/* FIXME: Put the challenge/response into the preallocated socket buffer.  */
5404 
5405 	rcu_read_lock();
5406 	nc = rcu_dereference(connection->net_conf);
5407 	key_len = strlen(nc->shared_secret);
5408 	memcpy(secret, nc->shared_secret, key_len);
5409 	rcu_read_unlock();
5410 
5411 	desc = kmalloc(sizeof(struct shash_desc) +
5412 		       crypto_shash_descsize(connection->cram_hmac_tfm),
5413 		       GFP_KERNEL);
5414 	if (!desc) {
5415 		rv = -1;
5416 		goto fail;
5417 	}
5418 	desc->tfm = connection->cram_hmac_tfm;
5419 
5420 	rv = crypto_shash_setkey(connection->cram_hmac_tfm, (u8 *)secret, key_len);
5421 	if (rv) {
5422 		drbd_err(connection, "crypto_shash_setkey() failed with %d\n", rv);
5423 		rv = -1;
5424 		goto fail;
5425 	}
5426 
5427 	get_random_bytes(my_challenge, CHALLENGE_LEN);
5428 
5429 	sock = &connection->data;
5430 	if (!conn_prepare_command(connection, sock)) {
5431 		rv = 0;
5432 		goto fail;
5433 	}
5434 	rv = !conn_send_command(connection, sock, P_AUTH_CHALLENGE, 0,
5435 				my_challenge, CHALLENGE_LEN);
5436 	if (!rv)
5437 		goto fail;
5438 
5439 	err = drbd_recv_header(connection, &pi);
5440 	if (err) {
5441 		rv = 0;
5442 		goto fail;
5443 	}
5444 
5445 	if (pi.cmd != P_AUTH_CHALLENGE) {
5446 		drbd_err(connection, "expected AuthChallenge packet, received: %s (0x%04x)\n",
5447 			 cmdname(pi.cmd), pi.cmd);
5448 		rv = -1;
5449 		goto fail;
5450 	}
5451 
5452 	if (pi.size > CHALLENGE_LEN * 2) {
5453 		drbd_err(connection, "expected AuthChallenge payload too big.\n");
5454 		rv = -1;
5455 		goto fail;
5456 	}
5457 
5458 	if (pi.size < CHALLENGE_LEN) {
5459 		drbd_err(connection, "AuthChallenge payload too small.\n");
5460 		rv = -1;
5461 		goto fail;
5462 	}
5463 
5464 	peers_ch = kmalloc(pi.size, GFP_NOIO);
5465 	if (!peers_ch) {
5466 		rv = -1;
5467 		goto fail;
5468 	}
5469 
5470 	err = drbd_recv_all_warn(connection, peers_ch, pi.size);
5471 	if (err) {
5472 		rv = 0;
5473 		goto fail;
5474 	}
5475 
5476 	if (!memcmp(my_challenge, peers_ch, CHALLENGE_LEN)) {
5477 		drbd_err(connection, "Peer presented the same challenge!\n");
5478 		rv = -1;
5479 		goto fail;
5480 	}
5481 
5482 	resp_size = crypto_shash_digestsize(connection->cram_hmac_tfm);
5483 	response = kmalloc(resp_size, GFP_NOIO);
5484 	if (!response) {
5485 		rv = -1;
5486 		goto fail;
5487 	}
5488 
5489 	rv = crypto_shash_digest(desc, peers_ch, pi.size, response);
5490 	if (rv) {
5491 		drbd_err(connection, "crypto_hash_digest() failed with %d\n", rv);
5492 		rv = -1;
5493 		goto fail;
5494 	}
5495 
5496 	if (!conn_prepare_command(connection, sock)) {
5497 		rv = 0;
5498 		goto fail;
5499 	}
5500 	rv = !conn_send_command(connection, sock, P_AUTH_RESPONSE, 0,
5501 				response, resp_size);
5502 	if (!rv)
5503 		goto fail;
5504 
5505 	err = drbd_recv_header(connection, &pi);
5506 	if (err) {
5507 		rv = 0;
5508 		goto fail;
5509 	}
5510 
5511 	if (pi.cmd != P_AUTH_RESPONSE) {
5512 		drbd_err(connection, "expected AuthResponse packet, received: %s (0x%04x)\n",
5513 			 cmdname(pi.cmd), pi.cmd);
5514 		rv = 0;
5515 		goto fail;
5516 	}
5517 
5518 	if (pi.size != resp_size) {
5519 		drbd_err(connection, "expected AuthResponse payload of wrong size\n");
5520 		rv = 0;
5521 		goto fail;
5522 	}
5523 
5524 	err = drbd_recv_all_warn(connection, response , resp_size);
5525 	if (err) {
5526 		rv = 0;
5527 		goto fail;
5528 	}
5529 
5530 	right_response = kmalloc(resp_size, GFP_NOIO);
5531 	if (!right_response) {
5532 		rv = -1;
5533 		goto fail;
5534 	}
5535 
5536 	rv = crypto_shash_digest(desc, my_challenge, CHALLENGE_LEN,
5537 				 right_response);
5538 	if (rv) {
5539 		drbd_err(connection, "crypto_hash_digest() failed with %d\n", rv);
5540 		rv = -1;
5541 		goto fail;
5542 	}
5543 
5544 	rv = !memcmp(response, right_response, resp_size);
5545 
5546 	if (rv)
5547 		drbd_info(connection, "Peer authenticated using %d bytes HMAC\n",
5548 		     resp_size);
5549 	else
5550 		rv = -1;
5551 
5552  fail:
5553 	kfree(peers_ch);
5554 	kfree(response);
5555 	kfree(right_response);
5556 	if (desc) {
5557 		shash_desc_zero(desc);
5558 		kfree(desc);
5559 	}
5560 
5561 	return rv;
5562 }
5563 #endif
5564 
5565 int drbd_receiver(struct drbd_thread *thi)
5566 {
5567 	struct drbd_connection *connection = thi->connection;
5568 	int h;
5569 
5570 	drbd_info(connection, "receiver (re)started\n");
5571 
5572 	do {
5573 		h = conn_connect(connection);
5574 		if (h == 0) {
5575 			conn_disconnect(connection);
5576 			schedule_timeout_interruptible(HZ);
5577 		}
5578 		if (h == -1) {
5579 			drbd_warn(connection, "Discarding network configuration.\n");
5580 			conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
5581 		}
5582 	} while (h == 0);
5583 
5584 	if (h > 0) {
5585 		blk_start_plug(&connection->receiver_plug);
5586 		drbdd(connection);
5587 		blk_finish_plug(&connection->receiver_plug);
5588 	}
5589 
5590 	conn_disconnect(connection);
5591 
5592 	drbd_info(connection, "receiver terminated\n");
5593 	return 0;
5594 }
5595 
5596 /* ********* acknowledge sender ******** */
5597 
5598 static int got_conn_RqSReply(struct drbd_connection *connection, struct packet_info *pi)
5599 {
5600 	struct p_req_state_reply *p = pi->data;
5601 	int retcode = be32_to_cpu(p->retcode);
5602 
5603 	if (retcode >= SS_SUCCESS) {
5604 		set_bit(CONN_WD_ST_CHG_OKAY, &connection->flags);
5605 	} else {
5606 		set_bit(CONN_WD_ST_CHG_FAIL, &connection->flags);
5607 		drbd_err(connection, "Requested state change failed by peer: %s (%d)\n",
5608 			 drbd_set_st_err_str(retcode), retcode);
5609 	}
5610 	wake_up(&connection->ping_wait);
5611 
5612 	return 0;
5613 }
5614 
5615 static int got_RqSReply(struct drbd_connection *connection, struct packet_info *pi)
5616 {
5617 	struct drbd_peer_device *peer_device;
5618 	struct drbd_device *device;
5619 	struct p_req_state_reply *p = pi->data;
5620 	int retcode = be32_to_cpu(p->retcode);
5621 
5622 	peer_device = conn_peer_device(connection, pi->vnr);
5623 	if (!peer_device)
5624 		return -EIO;
5625 	device = peer_device->device;
5626 
5627 	if (test_bit(CONN_WD_ST_CHG_REQ, &connection->flags)) {
5628 		D_ASSERT(device, connection->agreed_pro_version < 100);
5629 		return got_conn_RqSReply(connection, pi);
5630 	}
5631 
5632 	if (retcode >= SS_SUCCESS) {
5633 		set_bit(CL_ST_CHG_SUCCESS, &device->flags);
5634 	} else {
5635 		set_bit(CL_ST_CHG_FAIL, &device->flags);
5636 		drbd_err(device, "Requested state change failed by peer: %s (%d)\n",
5637 			drbd_set_st_err_str(retcode), retcode);
5638 	}
5639 	wake_up(&device->state_wait);
5640 
5641 	return 0;
5642 }
5643 
5644 static int got_Ping(struct drbd_connection *connection, struct packet_info *pi)
5645 {
5646 	return drbd_send_ping_ack(connection);
5647 
5648 }
5649 
5650 static int got_PingAck(struct drbd_connection *connection, struct packet_info *pi)
5651 {
5652 	/* restore idle timeout */
5653 	connection->meta.socket->sk->sk_rcvtimeo = connection->net_conf->ping_int*HZ;
5654 	if (!test_and_set_bit(GOT_PING_ACK, &connection->flags))
5655 		wake_up(&connection->ping_wait);
5656 
5657 	return 0;
5658 }
5659 
5660 static int got_IsInSync(struct drbd_connection *connection, struct packet_info *pi)
5661 {
5662 	struct drbd_peer_device *peer_device;
5663 	struct drbd_device *device;
5664 	struct p_block_ack *p = pi->data;
5665 	sector_t sector = be64_to_cpu(p->sector);
5666 	int blksize = be32_to_cpu(p->blksize);
5667 
5668 	peer_device = conn_peer_device(connection, pi->vnr);
5669 	if (!peer_device)
5670 		return -EIO;
5671 	device = peer_device->device;
5672 
5673 	D_ASSERT(device, peer_device->connection->agreed_pro_version >= 89);
5674 
5675 	update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5676 
5677 	if (get_ldev(device)) {
5678 		drbd_rs_complete_io(device, sector);
5679 		drbd_set_in_sync(device, sector, blksize);
5680 		/* rs_same_csums is supposed to count in units of BM_BLOCK_SIZE */
5681 		device->rs_same_csum += (blksize >> BM_BLOCK_SHIFT);
5682 		put_ldev(device);
5683 	}
5684 	dec_rs_pending(device);
5685 	atomic_add(blksize >> 9, &device->rs_sect_in);
5686 
5687 	return 0;
5688 }
5689 
5690 static int
5691 validate_req_change_req_state(struct drbd_device *device, u64 id, sector_t sector,
5692 			      struct rb_root *root, const char *func,
5693 			      enum drbd_req_event what, bool missing_ok)
5694 {
5695 	struct drbd_request *req;
5696 	struct bio_and_error m;
5697 
5698 	spin_lock_irq(&device->resource->req_lock);
5699 	req = find_request(device, root, id, sector, missing_ok, func);
5700 	if (unlikely(!req)) {
5701 		spin_unlock_irq(&device->resource->req_lock);
5702 		return -EIO;
5703 	}
5704 	__req_mod(req, what, &m);
5705 	spin_unlock_irq(&device->resource->req_lock);
5706 
5707 	if (m.bio)
5708 		complete_master_bio(device, &m);
5709 	return 0;
5710 }
5711 
5712 static int got_BlockAck(struct drbd_connection *connection, struct packet_info *pi)
5713 {
5714 	struct drbd_peer_device *peer_device;
5715 	struct drbd_device *device;
5716 	struct p_block_ack *p = pi->data;
5717 	sector_t sector = be64_to_cpu(p->sector);
5718 	int blksize = be32_to_cpu(p->blksize);
5719 	enum drbd_req_event what;
5720 
5721 	peer_device = conn_peer_device(connection, pi->vnr);
5722 	if (!peer_device)
5723 		return -EIO;
5724 	device = peer_device->device;
5725 
5726 	update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5727 
5728 	if (p->block_id == ID_SYNCER) {
5729 		drbd_set_in_sync(device, sector, blksize);
5730 		dec_rs_pending(device);
5731 		return 0;
5732 	}
5733 	switch (pi->cmd) {
5734 	case P_RS_WRITE_ACK:
5735 		what = WRITE_ACKED_BY_PEER_AND_SIS;
5736 		break;
5737 	case P_WRITE_ACK:
5738 		what = WRITE_ACKED_BY_PEER;
5739 		break;
5740 	case P_RECV_ACK:
5741 		what = RECV_ACKED_BY_PEER;
5742 		break;
5743 	case P_SUPERSEDED:
5744 		what = CONFLICT_RESOLVED;
5745 		break;
5746 	case P_RETRY_WRITE:
5747 		what = POSTPONE_WRITE;
5748 		break;
5749 	default:
5750 		BUG();
5751 	}
5752 
5753 	return validate_req_change_req_state(device, p->block_id, sector,
5754 					     &device->write_requests, __func__,
5755 					     what, false);
5756 }
5757 
5758 static int got_NegAck(struct drbd_connection *connection, struct packet_info *pi)
5759 {
5760 	struct drbd_peer_device *peer_device;
5761 	struct drbd_device *device;
5762 	struct p_block_ack *p = pi->data;
5763 	sector_t sector = be64_to_cpu(p->sector);
5764 	int size = be32_to_cpu(p->blksize);
5765 	int err;
5766 
5767 	peer_device = conn_peer_device(connection, pi->vnr);
5768 	if (!peer_device)
5769 		return -EIO;
5770 	device = peer_device->device;
5771 
5772 	update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5773 
5774 	if (p->block_id == ID_SYNCER) {
5775 		dec_rs_pending(device);
5776 		drbd_rs_failed_io(device, sector, size);
5777 		return 0;
5778 	}
5779 
5780 	err = validate_req_change_req_state(device, p->block_id, sector,
5781 					    &device->write_requests, __func__,
5782 					    NEG_ACKED, true);
5783 	if (err) {
5784 		/* Protocol A has no P_WRITE_ACKs, but has P_NEG_ACKs.
5785 		   The master bio might already be completed, therefore the
5786 		   request is no longer in the collision hash. */
5787 		/* In Protocol B we might already have got a P_RECV_ACK
5788 		   but then get a P_NEG_ACK afterwards. */
5789 		drbd_set_out_of_sync(device, sector, size);
5790 	}
5791 	return 0;
5792 }
5793 
5794 static int got_NegDReply(struct drbd_connection *connection, struct packet_info *pi)
5795 {
5796 	struct drbd_peer_device *peer_device;
5797 	struct drbd_device *device;
5798 	struct p_block_ack *p = pi->data;
5799 	sector_t sector = be64_to_cpu(p->sector);
5800 
5801 	peer_device = conn_peer_device(connection, pi->vnr);
5802 	if (!peer_device)
5803 		return -EIO;
5804 	device = peer_device->device;
5805 
5806 	update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5807 
5808 	drbd_err(device, "Got NegDReply; Sector %llus, len %u.\n",
5809 	    (unsigned long long)sector, be32_to_cpu(p->blksize));
5810 
5811 	return validate_req_change_req_state(device, p->block_id, sector,
5812 					     &device->read_requests, __func__,
5813 					     NEG_ACKED, false);
5814 }
5815 
5816 static int got_NegRSDReply(struct drbd_connection *connection, struct packet_info *pi)
5817 {
5818 	struct drbd_peer_device *peer_device;
5819 	struct drbd_device *device;
5820 	sector_t sector;
5821 	int size;
5822 	struct p_block_ack *p = pi->data;
5823 
5824 	peer_device = conn_peer_device(connection, pi->vnr);
5825 	if (!peer_device)
5826 		return -EIO;
5827 	device = peer_device->device;
5828 
5829 	sector = be64_to_cpu(p->sector);
5830 	size = be32_to_cpu(p->blksize);
5831 
5832 	update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5833 
5834 	dec_rs_pending(device);
5835 
5836 	if (get_ldev_if_state(device, D_FAILED)) {
5837 		drbd_rs_complete_io(device, sector);
5838 		switch (pi->cmd) {
5839 		case P_NEG_RS_DREPLY:
5840 			drbd_rs_failed_io(device, sector, size);
5841 			break;
5842 		case P_RS_CANCEL:
5843 			break;
5844 		default:
5845 			BUG();
5846 		}
5847 		put_ldev(device);
5848 	}
5849 
5850 	return 0;
5851 }
5852 
5853 static int got_BarrierAck(struct drbd_connection *connection, struct packet_info *pi)
5854 {
5855 	struct p_barrier_ack *p = pi->data;
5856 	struct drbd_peer_device *peer_device;
5857 	int vnr;
5858 
5859 	tl_release(connection, p->barrier, be32_to_cpu(p->set_size));
5860 
5861 	rcu_read_lock();
5862 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
5863 		struct drbd_device *device = peer_device->device;
5864 
5865 		if (device->state.conn == C_AHEAD &&
5866 		    atomic_read(&device->ap_in_flight) == 0 &&
5867 		    !test_and_set_bit(AHEAD_TO_SYNC_SOURCE, &device->flags)) {
5868 			device->start_resync_timer.expires = jiffies + HZ;
5869 			add_timer(&device->start_resync_timer);
5870 		}
5871 	}
5872 	rcu_read_unlock();
5873 
5874 	return 0;
5875 }
5876 
5877 static int got_OVResult(struct drbd_connection *connection, struct packet_info *pi)
5878 {
5879 	struct drbd_peer_device *peer_device;
5880 	struct drbd_device *device;
5881 	struct p_block_ack *p = pi->data;
5882 	struct drbd_device_work *dw;
5883 	sector_t sector;
5884 	int size;
5885 
5886 	peer_device = conn_peer_device(connection, pi->vnr);
5887 	if (!peer_device)
5888 		return -EIO;
5889 	device = peer_device->device;
5890 
5891 	sector = be64_to_cpu(p->sector);
5892 	size = be32_to_cpu(p->blksize);
5893 
5894 	update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5895 
5896 	if (be64_to_cpu(p->block_id) == ID_OUT_OF_SYNC)
5897 		drbd_ov_out_of_sync_found(device, sector, size);
5898 	else
5899 		ov_out_of_sync_print(device);
5900 
5901 	if (!get_ldev(device))
5902 		return 0;
5903 
5904 	drbd_rs_complete_io(device, sector);
5905 	dec_rs_pending(device);
5906 
5907 	--device->ov_left;
5908 
5909 	/* let's advance progress step marks only for every other megabyte */
5910 	if ((device->ov_left & 0x200) == 0x200)
5911 		drbd_advance_rs_marks(device, device->ov_left);
5912 
5913 	if (device->ov_left == 0) {
5914 		dw = kmalloc(sizeof(*dw), GFP_NOIO);
5915 		if (dw) {
5916 			dw->w.cb = w_ov_finished;
5917 			dw->device = device;
5918 			drbd_queue_work(&peer_device->connection->sender_work, &dw->w);
5919 		} else {
5920 			drbd_err(device, "kmalloc(dw) failed.");
5921 			ov_out_of_sync_print(device);
5922 			drbd_resync_finished(device);
5923 		}
5924 	}
5925 	put_ldev(device);
5926 	return 0;
5927 }
5928 
5929 static int got_skip(struct drbd_connection *connection, struct packet_info *pi)
5930 {
5931 	return 0;
5932 }
5933 
5934 struct meta_sock_cmd {
5935 	size_t pkt_size;
5936 	int (*fn)(struct drbd_connection *connection, struct packet_info *);
5937 };
5938 
5939 static void set_rcvtimeo(struct drbd_connection *connection, bool ping_timeout)
5940 {
5941 	long t;
5942 	struct net_conf *nc;
5943 
5944 	rcu_read_lock();
5945 	nc = rcu_dereference(connection->net_conf);
5946 	t = ping_timeout ? nc->ping_timeo : nc->ping_int;
5947 	rcu_read_unlock();
5948 
5949 	t *= HZ;
5950 	if (ping_timeout)
5951 		t /= 10;
5952 
5953 	connection->meta.socket->sk->sk_rcvtimeo = t;
5954 }
5955 
5956 static void set_ping_timeout(struct drbd_connection *connection)
5957 {
5958 	set_rcvtimeo(connection, 1);
5959 }
5960 
5961 static void set_idle_timeout(struct drbd_connection *connection)
5962 {
5963 	set_rcvtimeo(connection, 0);
5964 }
5965 
5966 static struct meta_sock_cmd ack_receiver_tbl[] = {
5967 	[P_PING]	    = { 0, got_Ping },
5968 	[P_PING_ACK]	    = { 0, got_PingAck },
5969 	[P_RECV_ACK]	    = { sizeof(struct p_block_ack), got_BlockAck },
5970 	[P_WRITE_ACK]	    = { sizeof(struct p_block_ack), got_BlockAck },
5971 	[P_RS_WRITE_ACK]    = { sizeof(struct p_block_ack), got_BlockAck },
5972 	[P_SUPERSEDED]   = { sizeof(struct p_block_ack), got_BlockAck },
5973 	[P_NEG_ACK]	    = { sizeof(struct p_block_ack), got_NegAck },
5974 	[P_NEG_DREPLY]	    = { sizeof(struct p_block_ack), got_NegDReply },
5975 	[P_NEG_RS_DREPLY]   = { sizeof(struct p_block_ack), got_NegRSDReply },
5976 	[P_OV_RESULT]	    = { sizeof(struct p_block_ack), got_OVResult },
5977 	[P_BARRIER_ACK]	    = { sizeof(struct p_barrier_ack), got_BarrierAck },
5978 	[P_STATE_CHG_REPLY] = { sizeof(struct p_req_state_reply), got_RqSReply },
5979 	[P_RS_IS_IN_SYNC]   = { sizeof(struct p_block_ack), got_IsInSync },
5980 	[P_DELAY_PROBE]     = { sizeof(struct p_delay_probe93), got_skip },
5981 	[P_RS_CANCEL]       = { sizeof(struct p_block_ack), got_NegRSDReply },
5982 	[P_CONN_ST_CHG_REPLY]={ sizeof(struct p_req_state_reply), got_conn_RqSReply },
5983 	[P_RETRY_WRITE]	    = { sizeof(struct p_block_ack), got_BlockAck },
5984 };
5985 
5986 int drbd_ack_receiver(struct drbd_thread *thi)
5987 {
5988 	struct drbd_connection *connection = thi->connection;
5989 	struct meta_sock_cmd *cmd = NULL;
5990 	struct packet_info pi;
5991 	unsigned long pre_recv_jif;
5992 	int rv;
5993 	void *buf    = connection->meta.rbuf;
5994 	int received = 0;
5995 	unsigned int header_size = drbd_header_size(connection);
5996 	int expect   = header_size;
5997 	bool ping_timeout_active = false;
5998 
5999 	sched_set_fifo_low(current);
6000 
6001 	while (get_t_state(thi) == RUNNING) {
6002 		drbd_thread_current_set_cpu(thi);
6003 
6004 		conn_reclaim_net_peer_reqs(connection);
6005 
6006 		if (test_and_clear_bit(SEND_PING, &connection->flags)) {
6007 			if (drbd_send_ping(connection)) {
6008 				drbd_err(connection, "drbd_send_ping has failed\n");
6009 				goto reconnect;
6010 			}
6011 			set_ping_timeout(connection);
6012 			ping_timeout_active = true;
6013 		}
6014 
6015 		pre_recv_jif = jiffies;
6016 		rv = drbd_recv_short(connection->meta.socket, buf, expect-received, 0);
6017 
6018 		/* Note:
6019 		 * -EINTR	 (on meta) we got a signal
6020 		 * -EAGAIN	 (on meta) rcvtimeo expired
6021 		 * -ECONNRESET	 other side closed the connection
6022 		 * -ERESTARTSYS  (on data) we got a signal
6023 		 * rv <  0	 other than above: unexpected error!
6024 		 * rv == expected: full header or command
6025 		 * rv <  expected: "woken" by signal during receive
6026 		 * rv == 0	 : "connection shut down by peer"
6027 		 */
6028 		if (likely(rv > 0)) {
6029 			received += rv;
6030 			buf	 += rv;
6031 		} else if (rv == 0) {
6032 			if (test_bit(DISCONNECT_SENT, &connection->flags)) {
6033 				long t;
6034 				rcu_read_lock();
6035 				t = rcu_dereference(connection->net_conf)->ping_timeo * HZ/10;
6036 				rcu_read_unlock();
6037 
6038 				t = wait_event_timeout(connection->ping_wait,
6039 						       connection->cstate < C_WF_REPORT_PARAMS,
6040 						       t);
6041 				if (t)
6042 					break;
6043 			}
6044 			drbd_err(connection, "meta connection shut down by peer.\n");
6045 			goto reconnect;
6046 		} else if (rv == -EAGAIN) {
6047 			/* If the data socket received something meanwhile,
6048 			 * that is good enough: peer is still alive. */
6049 			if (time_after(connection->last_received, pre_recv_jif))
6050 				continue;
6051 			if (ping_timeout_active) {
6052 				drbd_err(connection, "PingAck did not arrive in time.\n");
6053 				goto reconnect;
6054 			}
6055 			set_bit(SEND_PING, &connection->flags);
6056 			continue;
6057 		} else if (rv == -EINTR) {
6058 			/* maybe drbd_thread_stop(): the while condition will notice.
6059 			 * maybe woken for send_ping: we'll send a ping above,
6060 			 * and change the rcvtimeo */
6061 			flush_signals(current);
6062 			continue;
6063 		} else {
6064 			drbd_err(connection, "sock_recvmsg returned %d\n", rv);
6065 			goto reconnect;
6066 		}
6067 
6068 		if (received == expect && cmd == NULL) {
6069 			if (decode_header(connection, connection->meta.rbuf, &pi))
6070 				goto reconnect;
6071 			cmd = &ack_receiver_tbl[pi.cmd];
6072 			if (pi.cmd >= ARRAY_SIZE(ack_receiver_tbl) || !cmd->fn) {
6073 				drbd_err(connection, "Unexpected meta packet %s (0x%04x)\n",
6074 					 cmdname(pi.cmd), pi.cmd);
6075 				goto disconnect;
6076 			}
6077 			expect = header_size + cmd->pkt_size;
6078 			if (pi.size != expect - header_size) {
6079 				drbd_err(connection, "Wrong packet size on meta (c: %d, l: %d)\n",
6080 					pi.cmd, pi.size);
6081 				goto reconnect;
6082 			}
6083 		}
6084 		if (received == expect) {
6085 			bool err;
6086 
6087 			err = cmd->fn(connection, &pi);
6088 			if (err) {
6089 				drbd_err(connection, "%ps failed\n", cmd->fn);
6090 				goto reconnect;
6091 			}
6092 
6093 			connection->last_received = jiffies;
6094 
6095 			if (cmd == &ack_receiver_tbl[P_PING_ACK]) {
6096 				set_idle_timeout(connection);
6097 				ping_timeout_active = false;
6098 			}
6099 
6100 			buf	 = connection->meta.rbuf;
6101 			received = 0;
6102 			expect	 = header_size;
6103 			cmd	 = NULL;
6104 		}
6105 	}
6106 
6107 	if (0) {
6108 reconnect:
6109 		conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD);
6110 		conn_md_sync(connection);
6111 	}
6112 	if (0) {
6113 disconnect:
6114 		conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
6115 	}
6116 
6117 	drbd_info(connection, "ack_receiver terminated\n");
6118 
6119 	return 0;
6120 }
6121 
6122 void drbd_send_acks_wf(struct work_struct *ws)
6123 {
6124 	struct drbd_peer_device *peer_device =
6125 		container_of(ws, struct drbd_peer_device, send_acks_work);
6126 	struct drbd_connection *connection = peer_device->connection;
6127 	struct drbd_device *device = peer_device->device;
6128 	struct net_conf *nc;
6129 	int tcp_cork, err;
6130 
6131 	rcu_read_lock();
6132 	nc = rcu_dereference(connection->net_conf);
6133 	tcp_cork = nc->tcp_cork;
6134 	rcu_read_unlock();
6135 
6136 	if (tcp_cork)
6137 		tcp_sock_set_cork(connection->meta.socket->sk, true);
6138 
6139 	err = drbd_finish_peer_reqs(device);
6140 	kref_put(&device->kref, drbd_destroy_device);
6141 	/* get is in drbd_endio_write_sec_final(). That is necessary to keep the
6142 	   struct work_struct send_acks_work alive, which is in the peer_device object */
6143 
6144 	if (err) {
6145 		conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD);
6146 		return;
6147 	}
6148 
6149 	if (tcp_cork)
6150 		tcp_sock_set_cork(connection->meta.socket->sk, false);
6151 
6152 	return;
6153 }
6154