1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 drbd_receiver.c 4 5 This file is part of DRBD by Philipp Reisner and Lars Ellenberg. 6 7 Copyright (C) 2001-2008, LINBIT Information Technologies GmbH. 8 Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>. 9 Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>. 10 11 */ 12 13 14 #include <linux/module.h> 15 16 #include <linux/uaccess.h> 17 #include <net/sock.h> 18 19 #include <linux/drbd.h> 20 #include <linux/fs.h> 21 #include <linux/file.h> 22 #include <linux/in.h> 23 #include <linux/mm.h> 24 #include <linux/memcontrol.h> 25 #include <linux/mm_inline.h> 26 #include <linux/slab.h> 27 #include <uapi/linux/sched/types.h> 28 #include <linux/sched/signal.h> 29 #include <linux/pkt_sched.h> 30 #define __KERNEL_SYSCALLS__ 31 #include <linux/unistd.h> 32 #include <linux/vmalloc.h> 33 #include <linux/random.h> 34 #include <linux/string.h> 35 #include <linux/scatterlist.h> 36 #include <linux/part_stat.h> 37 #include "drbd_int.h" 38 #include "drbd_protocol.h" 39 #include "drbd_req.h" 40 #include "drbd_vli.h" 41 42 #define PRO_FEATURES (DRBD_FF_TRIM|DRBD_FF_THIN_RESYNC|DRBD_FF_WSAME|DRBD_FF_WZEROES) 43 44 struct packet_info { 45 enum drbd_packet cmd; 46 unsigned int size; 47 unsigned int vnr; 48 void *data; 49 }; 50 51 enum finish_epoch { 52 FE_STILL_LIVE, 53 FE_DESTROYED, 54 FE_RECYCLED, 55 }; 56 57 static int drbd_do_features(struct drbd_connection *connection); 58 static int drbd_do_auth(struct drbd_connection *connection); 59 static int drbd_disconnected(struct drbd_peer_device *); 60 static void conn_wait_active_ee_empty(struct drbd_connection *connection); 61 static enum finish_epoch drbd_may_finish_epoch(struct drbd_connection *, struct drbd_epoch *, enum epoch_event); 62 static int e_end_block(struct drbd_work *, int); 63 64 65 #define GFP_TRY (__GFP_HIGHMEM | __GFP_NOWARN) 66 67 /* 68 * some helper functions to deal with single linked page lists, 69 * page->private being our "next" pointer. 70 */ 71 72 /* If at least n pages are linked at head, get n pages off. 73 * Otherwise, don't modify head, and return NULL. 74 * Locking is the responsibility of the caller. 75 */ 76 static struct page *page_chain_del(struct page **head, int n) 77 { 78 struct page *page; 79 struct page *tmp; 80 81 BUG_ON(!n); 82 BUG_ON(!head); 83 84 page = *head; 85 86 if (!page) 87 return NULL; 88 89 while (page) { 90 tmp = page_chain_next(page); 91 if (--n == 0) 92 break; /* found sufficient pages */ 93 if (tmp == NULL) 94 /* insufficient pages, don't use any of them. */ 95 return NULL; 96 page = tmp; 97 } 98 99 /* add end of list marker for the returned list */ 100 set_page_private(page, 0); 101 /* actual return value, and adjustment of head */ 102 page = *head; 103 *head = tmp; 104 return page; 105 } 106 107 /* may be used outside of locks to find the tail of a (usually short) 108 * "private" page chain, before adding it back to a global chain head 109 * with page_chain_add() under a spinlock. */ 110 static struct page *page_chain_tail(struct page *page, int *len) 111 { 112 struct page *tmp; 113 int i = 1; 114 while ((tmp = page_chain_next(page))) { 115 ++i; 116 page = tmp; 117 } 118 if (len) 119 *len = i; 120 return page; 121 } 122 123 static int page_chain_free(struct page *page) 124 { 125 struct page *tmp; 126 int i = 0; 127 page_chain_for_each_safe(page, tmp) { 128 put_page(page); 129 ++i; 130 } 131 return i; 132 } 133 134 static void page_chain_add(struct page **head, 135 struct page *chain_first, struct page *chain_last) 136 { 137 #if 1 138 struct page *tmp; 139 tmp = page_chain_tail(chain_first, NULL); 140 BUG_ON(tmp != chain_last); 141 #endif 142 143 /* add chain to head */ 144 set_page_private(chain_last, (unsigned long)*head); 145 *head = chain_first; 146 } 147 148 static struct page *__drbd_alloc_pages(struct drbd_device *device, 149 unsigned int number) 150 { 151 struct page *page = NULL; 152 struct page *tmp = NULL; 153 unsigned int i = 0; 154 155 /* Yes, testing drbd_pp_vacant outside the lock is racy. 156 * So what. It saves a spin_lock. */ 157 if (drbd_pp_vacant >= number) { 158 spin_lock(&drbd_pp_lock); 159 page = page_chain_del(&drbd_pp_pool, number); 160 if (page) 161 drbd_pp_vacant -= number; 162 spin_unlock(&drbd_pp_lock); 163 if (page) 164 return page; 165 } 166 167 /* GFP_TRY, because we must not cause arbitrary write-out: in a DRBD 168 * "criss-cross" setup, that might cause write-out on some other DRBD, 169 * which in turn might block on the other node at this very place. */ 170 for (i = 0; i < number; i++) { 171 tmp = alloc_page(GFP_TRY); 172 if (!tmp) 173 break; 174 set_page_private(tmp, (unsigned long)page); 175 page = tmp; 176 } 177 178 if (i == number) 179 return page; 180 181 /* Not enough pages immediately available this time. 182 * No need to jump around here, drbd_alloc_pages will retry this 183 * function "soon". */ 184 if (page) { 185 tmp = page_chain_tail(page, NULL); 186 spin_lock(&drbd_pp_lock); 187 page_chain_add(&drbd_pp_pool, page, tmp); 188 drbd_pp_vacant += i; 189 spin_unlock(&drbd_pp_lock); 190 } 191 return NULL; 192 } 193 194 static void reclaim_finished_net_peer_reqs(struct drbd_device *device, 195 struct list_head *to_be_freed) 196 { 197 struct drbd_peer_request *peer_req, *tmp; 198 199 /* The EEs are always appended to the end of the list. Since 200 they are sent in order over the wire, they have to finish 201 in order. As soon as we see the first not finished we can 202 stop to examine the list... */ 203 204 list_for_each_entry_safe(peer_req, tmp, &device->net_ee, w.list) { 205 if (drbd_peer_req_has_active_page(peer_req)) 206 break; 207 list_move(&peer_req->w.list, to_be_freed); 208 } 209 } 210 211 static void drbd_reclaim_net_peer_reqs(struct drbd_device *device) 212 { 213 LIST_HEAD(reclaimed); 214 struct drbd_peer_request *peer_req, *t; 215 216 spin_lock_irq(&device->resource->req_lock); 217 reclaim_finished_net_peer_reqs(device, &reclaimed); 218 spin_unlock_irq(&device->resource->req_lock); 219 list_for_each_entry_safe(peer_req, t, &reclaimed, w.list) 220 drbd_free_net_peer_req(device, peer_req); 221 } 222 223 static void conn_reclaim_net_peer_reqs(struct drbd_connection *connection) 224 { 225 struct drbd_peer_device *peer_device; 226 int vnr; 227 228 rcu_read_lock(); 229 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 230 struct drbd_device *device = peer_device->device; 231 if (!atomic_read(&device->pp_in_use_by_net)) 232 continue; 233 234 kref_get(&device->kref); 235 rcu_read_unlock(); 236 drbd_reclaim_net_peer_reqs(device); 237 kref_put(&device->kref, drbd_destroy_device); 238 rcu_read_lock(); 239 } 240 rcu_read_unlock(); 241 } 242 243 /** 244 * drbd_alloc_pages() - Returns @number pages, retries forever (or until signalled) 245 * @peer_device: DRBD device. 246 * @number: number of pages requested 247 * @retry: whether to retry, if not enough pages are available right now 248 * 249 * Tries to allocate number pages, first from our own page pool, then from 250 * the kernel. 251 * Possibly retry until DRBD frees sufficient pages somewhere else. 252 * 253 * If this allocation would exceed the max_buffers setting, we throttle 254 * allocation (schedule_timeout) to give the system some room to breathe. 255 * 256 * We do not use max-buffers as hard limit, because it could lead to 257 * congestion and further to a distributed deadlock during online-verify or 258 * (checksum based) resync, if the max-buffers, socket buffer sizes and 259 * resync-rate settings are mis-configured. 260 * 261 * Returns a page chain linked via page->private. 262 */ 263 struct page *drbd_alloc_pages(struct drbd_peer_device *peer_device, unsigned int number, 264 bool retry) 265 { 266 struct drbd_device *device = peer_device->device; 267 struct page *page = NULL; 268 struct net_conf *nc; 269 DEFINE_WAIT(wait); 270 unsigned int mxb; 271 272 rcu_read_lock(); 273 nc = rcu_dereference(peer_device->connection->net_conf); 274 mxb = nc ? nc->max_buffers : 1000000; 275 rcu_read_unlock(); 276 277 if (atomic_read(&device->pp_in_use) < mxb) 278 page = __drbd_alloc_pages(device, number); 279 280 /* Try to keep the fast path fast, but occasionally we need 281 * to reclaim the pages we lended to the network stack. */ 282 if (page && atomic_read(&device->pp_in_use_by_net) > 512) 283 drbd_reclaim_net_peer_reqs(device); 284 285 while (page == NULL) { 286 prepare_to_wait(&drbd_pp_wait, &wait, TASK_INTERRUPTIBLE); 287 288 drbd_reclaim_net_peer_reqs(device); 289 290 if (atomic_read(&device->pp_in_use) < mxb) { 291 page = __drbd_alloc_pages(device, number); 292 if (page) 293 break; 294 } 295 296 if (!retry) 297 break; 298 299 if (signal_pending(current)) { 300 drbd_warn(device, "drbd_alloc_pages interrupted!\n"); 301 break; 302 } 303 304 if (schedule_timeout(HZ/10) == 0) 305 mxb = UINT_MAX; 306 } 307 finish_wait(&drbd_pp_wait, &wait); 308 309 if (page) 310 atomic_add(number, &device->pp_in_use); 311 return page; 312 } 313 314 /* Must not be used from irq, as that may deadlock: see drbd_alloc_pages. 315 * Is also used from inside an other spin_lock_irq(&resource->req_lock); 316 * Either links the page chain back to the global pool, 317 * or returns all pages to the system. */ 318 static void drbd_free_pages(struct drbd_device *device, struct page *page, int is_net) 319 { 320 atomic_t *a = is_net ? &device->pp_in_use_by_net : &device->pp_in_use; 321 int i; 322 323 if (page == NULL) 324 return; 325 326 if (drbd_pp_vacant > (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * drbd_minor_count) 327 i = page_chain_free(page); 328 else { 329 struct page *tmp; 330 tmp = page_chain_tail(page, &i); 331 spin_lock(&drbd_pp_lock); 332 page_chain_add(&drbd_pp_pool, page, tmp); 333 drbd_pp_vacant += i; 334 spin_unlock(&drbd_pp_lock); 335 } 336 i = atomic_sub_return(i, a); 337 if (i < 0) 338 drbd_warn(device, "ASSERTION FAILED: %s: %d < 0\n", 339 is_net ? "pp_in_use_by_net" : "pp_in_use", i); 340 wake_up(&drbd_pp_wait); 341 } 342 343 /* 344 You need to hold the req_lock: 345 _drbd_wait_ee_list_empty() 346 347 You must not have the req_lock: 348 drbd_free_peer_req() 349 drbd_alloc_peer_req() 350 drbd_free_peer_reqs() 351 drbd_ee_fix_bhs() 352 drbd_finish_peer_reqs() 353 drbd_clear_done_ee() 354 drbd_wait_ee_list_empty() 355 */ 356 357 /* normal: payload_size == request size (bi_size) 358 * w_same: payload_size == logical_block_size 359 * trim: payload_size == 0 */ 360 struct drbd_peer_request * 361 drbd_alloc_peer_req(struct drbd_peer_device *peer_device, u64 id, sector_t sector, 362 unsigned int request_size, unsigned int payload_size, gfp_t gfp_mask) __must_hold(local) 363 { 364 struct drbd_device *device = peer_device->device; 365 struct drbd_peer_request *peer_req; 366 struct page *page = NULL; 367 unsigned nr_pages = (payload_size + PAGE_SIZE -1) >> PAGE_SHIFT; 368 369 if (drbd_insert_fault(device, DRBD_FAULT_AL_EE)) 370 return NULL; 371 372 peer_req = mempool_alloc(&drbd_ee_mempool, gfp_mask & ~__GFP_HIGHMEM); 373 if (!peer_req) { 374 if (!(gfp_mask & __GFP_NOWARN)) 375 drbd_err(device, "%s: allocation failed\n", __func__); 376 return NULL; 377 } 378 379 if (nr_pages) { 380 page = drbd_alloc_pages(peer_device, nr_pages, 381 gfpflags_allow_blocking(gfp_mask)); 382 if (!page) 383 goto fail; 384 } 385 386 memset(peer_req, 0, sizeof(*peer_req)); 387 INIT_LIST_HEAD(&peer_req->w.list); 388 drbd_clear_interval(&peer_req->i); 389 peer_req->i.size = request_size; 390 peer_req->i.sector = sector; 391 peer_req->submit_jif = jiffies; 392 peer_req->peer_device = peer_device; 393 peer_req->pages = page; 394 /* 395 * The block_id is opaque to the receiver. It is not endianness 396 * converted, and sent back to the sender unchanged. 397 */ 398 peer_req->block_id = id; 399 400 return peer_req; 401 402 fail: 403 mempool_free(peer_req, &drbd_ee_mempool); 404 return NULL; 405 } 406 407 void __drbd_free_peer_req(struct drbd_device *device, struct drbd_peer_request *peer_req, 408 int is_net) 409 { 410 might_sleep(); 411 if (peer_req->flags & EE_HAS_DIGEST) 412 kfree(peer_req->digest); 413 drbd_free_pages(device, peer_req->pages, is_net); 414 D_ASSERT(device, atomic_read(&peer_req->pending_bios) == 0); 415 D_ASSERT(device, drbd_interval_empty(&peer_req->i)); 416 if (!expect(!(peer_req->flags & EE_CALL_AL_COMPLETE_IO))) { 417 peer_req->flags &= ~EE_CALL_AL_COMPLETE_IO; 418 drbd_al_complete_io(device, &peer_req->i); 419 } 420 mempool_free(peer_req, &drbd_ee_mempool); 421 } 422 423 int drbd_free_peer_reqs(struct drbd_device *device, struct list_head *list) 424 { 425 LIST_HEAD(work_list); 426 struct drbd_peer_request *peer_req, *t; 427 int count = 0; 428 int is_net = list == &device->net_ee; 429 430 spin_lock_irq(&device->resource->req_lock); 431 list_splice_init(list, &work_list); 432 spin_unlock_irq(&device->resource->req_lock); 433 434 list_for_each_entry_safe(peer_req, t, &work_list, w.list) { 435 __drbd_free_peer_req(device, peer_req, is_net); 436 count++; 437 } 438 return count; 439 } 440 441 /* 442 * See also comments in _req_mod(,BARRIER_ACKED) and receive_Barrier. 443 */ 444 static int drbd_finish_peer_reqs(struct drbd_device *device) 445 { 446 LIST_HEAD(work_list); 447 LIST_HEAD(reclaimed); 448 struct drbd_peer_request *peer_req, *t; 449 int err = 0; 450 451 spin_lock_irq(&device->resource->req_lock); 452 reclaim_finished_net_peer_reqs(device, &reclaimed); 453 list_splice_init(&device->done_ee, &work_list); 454 spin_unlock_irq(&device->resource->req_lock); 455 456 list_for_each_entry_safe(peer_req, t, &reclaimed, w.list) 457 drbd_free_net_peer_req(device, peer_req); 458 459 /* possible callbacks here: 460 * e_end_block, and e_end_resync_block, e_send_superseded. 461 * all ignore the last argument. 462 */ 463 list_for_each_entry_safe(peer_req, t, &work_list, w.list) { 464 int err2; 465 466 /* list_del not necessary, next/prev members not touched */ 467 err2 = peer_req->w.cb(&peer_req->w, !!err); 468 if (!err) 469 err = err2; 470 drbd_free_peer_req(device, peer_req); 471 } 472 wake_up(&device->ee_wait); 473 474 return err; 475 } 476 477 static void _drbd_wait_ee_list_empty(struct drbd_device *device, 478 struct list_head *head) 479 { 480 DEFINE_WAIT(wait); 481 482 /* avoids spin_lock/unlock 483 * and calling prepare_to_wait in the fast path */ 484 while (!list_empty(head)) { 485 prepare_to_wait(&device->ee_wait, &wait, TASK_UNINTERRUPTIBLE); 486 spin_unlock_irq(&device->resource->req_lock); 487 io_schedule(); 488 finish_wait(&device->ee_wait, &wait); 489 spin_lock_irq(&device->resource->req_lock); 490 } 491 } 492 493 static void drbd_wait_ee_list_empty(struct drbd_device *device, 494 struct list_head *head) 495 { 496 spin_lock_irq(&device->resource->req_lock); 497 _drbd_wait_ee_list_empty(device, head); 498 spin_unlock_irq(&device->resource->req_lock); 499 } 500 501 static int drbd_recv_short(struct socket *sock, void *buf, size_t size, int flags) 502 { 503 struct kvec iov = { 504 .iov_base = buf, 505 .iov_len = size, 506 }; 507 struct msghdr msg = { 508 .msg_flags = (flags ? flags : MSG_WAITALL | MSG_NOSIGNAL) 509 }; 510 iov_iter_kvec(&msg.msg_iter, READ, &iov, 1, size); 511 return sock_recvmsg(sock, &msg, msg.msg_flags); 512 } 513 514 static int drbd_recv(struct drbd_connection *connection, void *buf, size_t size) 515 { 516 int rv; 517 518 rv = drbd_recv_short(connection->data.socket, buf, size, 0); 519 520 if (rv < 0) { 521 if (rv == -ECONNRESET) 522 drbd_info(connection, "sock was reset by peer\n"); 523 else if (rv != -ERESTARTSYS) 524 drbd_err(connection, "sock_recvmsg returned %d\n", rv); 525 } else if (rv == 0) { 526 if (test_bit(DISCONNECT_SENT, &connection->flags)) { 527 long t; 528 rcu_read_lock(); 529 t = rcu_dereference(connection->net_conf)->ping_timeo * HZ/10; 530 rcu_read_unlock(); 531 532 t = wait_event_timeout(connection->ping_wait, connection->cstate < C_WF_REPORT_PARAMS, t); 533 534 if (t) 535 goto out; 536 } 537 drbd_info(connection, "sock was shut down by peer\n"); 538 } 539 540 if (rv != size) 541 conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD); 542 543 out: 544 return rv; 545 } 546 547 static int drbd_recv_all(struct drbd_connection *connection, void *buf, size_t size) 548 { 549 int err; 550 551 err = drbd_recv(connection, buf, size); 552 if (err != size) { 553 if (err >= 0) 554 err = -EIO; 555 } else 556 err = 0; 557 return err; 558 } 559 560 static int drbd_recv_all_warn(struct drbd_connection *connection, void *buf, size_t size) 561 { 562 int err; 563 564 err = drbd_recv_all(connection, buf, size); 565 if (err && !signal_pending(current)) 566 drbd_warn(connection, "short read (expected size %d)\n", (int)size); 567 return err; 568 } 569 570 /* quoting tcp(7): 571 * On individual connections, the socket buffer size must be set prior to the 572 * listen(2) or connect(2) calls in order to have it take effect. 573 * This is our wrapper to do so. 574 */ 575 static void drbd_setbufsize(struct socket *sock, unsigned int snd, 576 unsigned int rcv) 577 { 578 /* open coded SO_SNDBUF, SO_RCVBUF */ 579 if (snd) { 580 sock->sk->sk_sndbuf = snd; 581 sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 582 } 583 if (rcv) { 584 sock->sk->sk_rcvbuf = rcv; 585 sock->sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 586 } 587 } 588 589 static struct socket *drbd_try_connect(struct drbd_connection *connection) 590 { 591 const char *what; 592 struct socket *sock; 593 struct sockaddr_in6 src_in6; 594 struct sockaddr_in6 peer_in6; 595 struct net_conf *nc; 596 int err, peer_addr_len, my_addr_len; 597 int sndbuf_size, rcvbuf_size, connect_int; 598 int disconnect_on_error = 1; 599 600 rcu_read_lock(); 601 nc = rcu_dereference(connection->net_conf); 602 if (!nc) { 603 rcu_read_unlock(); 604 return NULL; 605 } 606 sndbuf_size = nc->sndbuf_size; 607 rcvbuf_size = nc->rcvbuf_size; 608 connect_int = nc->connect_int; 609 rcu_read_unlock(); 610 611 my_addr_len = min_t(int, connection->my_addr_len, sizeof(src_in6)); 612 memcpy(&src_in6, &connection->my_addr, my_addr_len); 613 614 if (((struct sockaddr *)&connection->my_addr)->sa_family == AF_INET6) 615 src_in6.sin6_port = 0; 616 else 617 ((struct sockaddr_in *)&src_in6)->sin_port = 0; /* AF_INET & AF_SCI */ 618 619 peer_addr_len = min_t(int, connection->peer_addr_len, sizeof(src_in6)); 620 memcpy(&peer_in6, &connection->peer_addr, peer_addr_len); 621 622 what = "sock_create_kern"; 623 err = sock_create_kern(&init_net, ((struct sockaddr *)&src_in6)->sa_family, 624 SOCK_STREAM, IPPROTO_TCP, &sock); 625 if (err < 0) { 626 sock = NULL; 627 goto out; 628 } 629 630 sock->sk->sk_rcvtimeo = 631 sock->sk->sk_sndtimeo = connect_int * HZ; 632 drbd_setbufsize(sock, sndbuf_size, rcvbuf_size); 633 634 /* explicitly bind to the configured IP as source IP 635 * for the outgoing connections. 636 * This is needed for multihomed hosts and to be 637 * able to use lo: interfaces for drbd. 638 * Make sure to use 0 as port number, so linux selects 639 * a free one dynamically. 640 */ 641 what = "bind before connect"; 642 err = sock->ops->bind(sock, (struct sockaddr *) &src_in6, my_addr_len); 643 if (err < 0) 644 goto out; 645 646 /* connect may fail, peer not yet available. 647 * stay C_WF_CONNECTION, don't go Disconnecting! */ 648 disconnect_on_error = 0; 649 what = "connect"; 650 err = sock->ops->connect(sock, (struct sockaddr *) &peer_in6, peer_addr_len, 0); 651 652 out: 653 if (err < 0) { 654 if (sock) { 655 sock_release(sock); 656 sock = NULL; 657 } 658 switch (-err) { 659 /* timeout, busy, signal pending */ 660 case ETIMEDOUT: case EAGAIN: case EINPROGRESS: 661 case EINTR: case ERESTARTSYS: 662 /* peer not (yet) available, network problem */ 663 case ECONNREFUSED: case ENETUNREACH: 664 case EHOSTDOWN: case EHOSTUNREACH: 665 disconnect_on_error = 0; 666 break; 667 default: 668 drbd_err(connection, "%s failed, err = %d\n", what, err); 669 } 670 if (disconnect_on_error) 671 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 672 } 673 674 return sock; 675 } 676 677 struct accept_wait_data { 678 struct drbd_connection *connection; 679 struct socket *s_listen; 680 struct completion door_bell; 681 void (*original_sk_state_change)(struct sock *sk); 682 683 }; 684 685 static void drbd_incoming_connection(struct sock *sk) 686 { 687 struct accept_wait_data *ad = sk->sk_user_data; 688 void (*state_change)(struct sock *sk); 689 690 state_change = ad->original_sk_state_change; 691 if (sk->sk_state == TCP_ESTABLISHED) 692 complete(&ad->door_bell); 693 state_change(sk); 694 } 695 696 static int prepare_listen_socket(struct drbd_connection *connection, struct accept_wait_data *ad) 697 { 698 int err, sndbuf_size, rcvbuf_size, my_addr_len; 699 struct sockaddr_in6 my_addr; 700 struct socket *s_listen; 701 struct net_conf *nc; 702 const char *what; 703 704 rcu_read_lock(); 705 nc = rcu_dereference(connection->net_conf); 706 if (!nc) { 707 rcu_read_unlock(); 708 return -EIO; 709 } 710 sndbuf_size = nc->sndbuf_size; 711 rcvbuf_size = nc->rcvbuf_size; 712 rcu_read_unlock(); 713 714 my_addr_len = min_t(int, connection->my_addr_len, sizeof(struct sockaddr_in6)); 715 memcpy(&my_addr, &connection->my_addr, my_addr_len); 716 717 what = "sock_create_kern"; 718 err = sock_create_kern(&init_net, ((struct sockaddr *)&my_addr)->sa_family, 719 SOCK_STREAM, IPPROTO_TCP, &s_listen); 720 if (err) { 721 s_listen = NULL; 722 goto out; 723 } 724 725 s_listen->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */ 726 drbd_setbufsize(s_listen, sndbuf_size, rcvbuf_size); 727 728 what = "bind before listen"; 729 err = s_listen->ops->bind(s_listen, (struct sockaddr *)&my_addr, my_addr_len); 730 if (err < 0) 731 goto out; 732 733 ad->s_listen = s_listen; 734 write_lock_bh(&s_listen->sk->sk_callback_lock); 735 ad->original_sk_state_change = s_listen->sk->sk_state_change; 736 s_listen->sk->sk_state_change = drbd_incoming_connection; 737 s_listen->sk->sk_user_data = ad; 738 write_unlock_bh(&s_listen->sk->sk_callback_lock); 739 740 what = "listen"; 741 err = s_listen->ops->listen(s_listen, 5); 742 if (err < 0) 743 goto out; 744 745 return 0; 746 out: 747 if (s_listen) 748 sock_release(s_listen); 749 if (err < 0) { 750 if (err != -EAGAIN && err != -EINTR && err != -ERESTARTSYS) { 751 drbd_err(connection, "%s failed, err = %d\n", what, err); 752 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 753 } 754 } 755 756 return -EIO; 757 } 758 759 static void unregister_state_change(struct sock *sk, struct accept_wait_data *ad) 760 { 761 write_lock_bh(&sk->sk_callback_lock); 762 sk->sk_state_change = ad->original_sk_state_change; 763 sk->sk_user_data = NULL; 764 write_unlock_bh(&sk->sk_callback_lock); 765 } 766 767 static struct socket *drbd_wait_for_connect(struct drbd_connection *connection, struct accept_wait_data *ad) 768 { 769 int timeo, connect_int, err = 0; 770 struct socket *s_estab = NULL; 771 struct net_conf *nc; 772 773 rcu_read_lock(); 774 nc = rcu_dereference(connection->net_conf); 775 if (!nc) { 776 rcu_read_unlock(); 777 return NULL; 778 } 779 connect_int = nc->connect_int; 780 rcu_read_unlock(); 781 782 timeo = connect_int * HZ; 783 /* 28.5% random jitter */ 784 timeo += (prandom_u32() & 1) ? timeo / 7 : -timeo / 7; 785 786 err = wait_for_completion_interruptible_timeout(&ad->door_bell, timeo); 787 if (err <= 0) 788 return NULL; 789 790 err = kernel_accept(ad->s_listen, &s_estab, 0); 791 if (err < 0) { 792 if (err != -EAGAIN && err != -EINTR && err != -ERESTARTSYS) { 793 drbd_err(connection, "accept failed, err = %d\n", err); 794 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 795 } 796 } 797 798 if (s_estab) 799 unregister_state_change(s_estab->sk, ad); 800 801 return s_estab; 802 } 803 804 static int decode_header(struct drbd_connection *, void *, struct packet_info *); 805 806 static int send_first_packet(struct drbd_connection *connection, struct drbd_socket *sock, 807 enum drbd_packet cmd) 808 { 809 if (!conn_prepare_command(connection, sock)) 810 return -EIO; 811 return conn_send_command(connection, sock, cmd, 0, NULL, 0); 812 } 813 814 static int receive_first_packet(struct drbd_connection *connection, struct socket *sock) 815 { 816 unsigned int header_size = drbd_header_size(connection); 817 struct packet_info pi; 818 struct net_conf *nc; 819 int err; 820 821 rcu_read_lock(); 822 nc = rcu_dereference(connection->net_conf); 823 if (!nc) { 824 rcu_read_unlock(); 825 return -EIO; 826 } 827 sock->sk->sk_rcvtimeo = nc->ping_timeo * 4 * HZ / 10; 828 rcu_read_unlock(); 829 830 err = drbd_recv_short(sock, connection->data.rbuf, header_size, 0); 831 if (err != header_size) { 832 if (err >= 0) 833 err = -EIO; 834 return err; 835 } 836 err = decode_header(connection, connection->data.rbuf, &pi); 837 if (err) 838 return err; 839 return pi.cmd; 840 } 841 842 /** 843 * drbd_socket_okay() - Free the socket if its connection is not okay 844 * @sock: pointer to the pointer to the socket. 845 */ 846 static bool drbd_socket_okay(struct socket **sock) 847 { 848 int rr; 849 char tb[4]; 850 851 if (!*sock) 852 return false; 853 854 rr = drbd_recv_short(*sock, tb, 4, MSG_DONTWAIT | MSG_PEEK); 855 856 if (rr > 0 || rr == -EAGAIN) { 857 return true; 858 } else { 859 sock_release(*sock); 860 *sock = NULL; 861 return false; 862 } 863 } 864 865 static bool connection_established(struct drbd_connection *connection, 866 struct socket **sock1, 867 struct socket **sock2) 868 { 869 struct net_conf *nc; 870 int timeout; 871 bool ok; 872 873 if (!*sock1 || !*sock2) 874 return false; 875 876 rcu_read_lock(); 877 nc = rcu_dereference(connection->net_conf); 878 timeout = (nc->sock_check_timeo ?: nc->ping_timeo) * HZ / 10; 879 rcu_read_unlock(); 880 schedule_timeout_interruptible(timeout); 881 882 ok = drbd_socket_okay(sock1); 883 ok = drbd_socket_okay(sock2) && ok; 884 885 return ok; 886 } 887 888 /* Gets called if a connection is established, or if a new minor gets created 889 in a connection */ 890 int drbd_connected(struct drbd_peer_device *peer_device) 891 { 892 struct drbd_device *device = peer_device->device; 893 int err; 894 895 atomic_set(&device->packet_seq, 0); 896 device->peer_seq = 0; 897 898 device->state_mutex = peer_device->connection->agreed_pro_version < 100 ? 899 &peer_device->connection->cstate_mutex : 900 &device->own_state_mutex; 901 902 err = drbd_send_sync_param(peer_device); 903 if (!err) 904 err = drbd_send_sizes(peer_device, 0, 0); 905 if (!err) 906 err = drbd_send_uuids(peer_device); 907 if (!err) 908 err = drbd_send_current_state(peer_device); 909 clear_bit(USE_DEGR_WFC_T, &device->flags); 910 clear_bit(RESIZE_PENDING, &device->flags); 911 atomic_set(&device->ap_in_flight, 0); 912 mod_timer(&device->request_timer, jiffies + HZ); /* just start it here. */ 913 return err; 914 } 915 916 /* 917 * return values: 918 * 1 yes, we have a valid connection 919 * 0 oops, did not work out, please try again 920 * -1 peer talks different language, 921 * no point in trying again, please go standalone. 922 * -2 We do not have a network config... 923 */ 924 static int conn_connect(struct drbd_connection *connection) 925 { 926 struct drbd_socket sock, msock; 927 struct drbd_peer_device *peer_device; 928 struct net_conf *nc; 929 int vnr, timeout, h; 930 bool discard_my_data, ok; 931 enum drbd_state_rv rv; 932 struct accept_wait_data ad = { 933 .connection = connection, 934 .door_bell = COMPLETION_INITIALIZER_ONSTACK(ad.door_bell), 935 }; 936 937 clear_bit(DISCONNECT_SENT, &connection->flags); 938 if (conn_request_state(connection, NS(conn, C_WF_CONNECTION), CS_VERBOSE) < SS_SUCCESS) 939 return -2; 940 941 mutex_init(&sock.mutex); 942 sock.sbuf = connection->data.sbuf; 943 sock.rbuf = connection->data.rbuf; 944 sock.socket = NULL; 945 mutex_init(&msock.mutex); 946 msock.sbuf = connection->meta.sbuf; 947 msock.rbuf = connection->meta.rbuf; 948 msock.socket = NULL; 949 950 /* Assume that the peer only understands protocol 80 until we know better. */ 951 connection->agreed_pro_version = 80; 952 953 if (prepare_listen_socket(connection, &ad)) 954 return 0; 955 956 do { 957 struct socket *s; 958 959 s = drbd_try_connect(connection); 960 if (s) { 961 if (!sock.socket) { 962 sock.socket = s; 963 send_first_packet(connection, &sock, P_INITIAL_DATA); 964 } else if (!msock.socket) { 965 clear_bit(RESOLVE_CONFLICTS, &connection->flags); 966 msock.socket = s; 967 send_first_packet(connection, &msock, P_INITIAL_META); 968 } else { 969 drbd_err(connection, "Logic error in conn_connect()\n"); 970 goto out_release_sockets; 971 } 972 } 973 974 if (connection_established(connection, &sock.socket, &msock.socket)) 975 break; 976 977 retry: 978 s = drbd_wait_for_connect(connection, &ad); 979 if (s) { 980 int fp = receive_first_packet(connection, s); 981 drbd_socket_okay(&sock.socket); 982 drbd_socket_okay(&msock.socket); 983 switch (fp) { 984 case P_INITIAL_DATA: 985 if (sock.socket) { 986 drbd_warn(connection, "initial packet S crossed\n"); 987 sock_release(sock.socket); 988 sock.socket = s; 989 goto randomize; 990 } 991 sock.socket = s; 992 break; 993 case P_INITIAL_META: 994 set_bit(RESOLVE_CONFLICTS, &connection->flags); 995 if (msock.socket) { 996 drbd_warn(connection, "initial packet M crossed\n"); 997 sock_release(msock.socket); 998 msock.socket = s; 999 goto randomize; 1000 } 1001 msock.socket = s; 1002 break; 1003 default: 1004 drbd_warn(connection, "Error receiving initial packet\n"); 1005 sock_release(s); 1006 randomize: 1007 if (prandom_u32() & 1) 1008 goto retry; 1009 } 1010 } 1011 1012 if (connection->cstate <= C_DISCONNECTING) 1013 goto out_release_sockets; 1014 if (signal_pending(current)) { 1015 flush_signals(current); 1016 smp_rmb(); 1017 if (get_t_state(&connection->receiver) == EXITING) 1018 goto out_release_sockets; 1019 } 1020 1021 ok = connection_established(connection, &sock.socket, &msock.socket); 1022 } while (!ok); 1023 1024 if (ad.s_listen) 1025 sock_release(ad.s_listen); 1026 1027 sock.socket->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */ 1028 msock.socket->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */ 1029 1030 sock.socket->sk->sk_allocation = GFP_NOIO; 1031 msock.socket->sk->sk_allocation = GFP_NOIO; 1032 1033 sock.socket->sk->sk_priority = TC_PRIO_INTERACTIVE_BULK; 1034 msock.socket->sk->sk_priority = TC_PRIO_INTERACTIVE; 1035 1036 /* NOT YET ... 1037 * sock.socket->sk->sk_sndtimeo = connection->net_conf->timeout*HZ/10; 1038 * sock.socket->sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 1039 * first set it to the P_CONNECTION_FEATURES timeout, 1040 * which we set to 4x the configured ping_timeout. */ 1041 rcu_read_lock(); 1042 nc = rcu_dereference(connection->net_conf); 1043 1044 sock.socket->sk->sk_sndtimeo = 1045 sock.socket->sk->sk_rcvtimeo = nc->ping_timeo*4*HZ/10; 1046 1047 msock.socket->sk->sk_rcvtimeo = nc->ping_int*HZ; 1048 timeout = nc->timeout * HZ / 10; 1049 discard_my_data = nc->discard_my_data; 1050 rcu_read_unlock(); 1051 1052 msock.socket->sk->sk_sndtimeo = timeout; 1053 1054 /* we don't want delays. 1055 * we use TCP_CORK where appropriate, though */ 1056 tcp_sock_set_nodelay(sock.socket->sk); 1057 tcp_sock_set_nodelay(msock.socket->sk); 1058 1059 connection->data.socket = sock.socket; 1060 connection->meta.socket = msock.socket; 1061 connection->last_received = jiffies; 1062 1063 h = drbd_do_features(connection); 1064 if (h <= 0) 1065 return h; 1066 1067 if (connection->cram_hmac_tfm) { 1068 /* drbd_request_state(device, NS(conn, WFAuth)); */ 1069 switch (drbd_do_auth(connection)) { 1070 case -1: 1071 drbd_err(connection, "Authentication of peer failed\n"); 1072 return -1; 1073 case 0: 1074 drbd_err(connection, "Authentication of peer failed, trying again.\n"); 1075 return 0; 1076 } 1077 } 1078 1079 connection->data.socket->sk->sk_sndtimeo = timeout; 1080 connection->data.socket->sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 1081 1082 if (drbd_send_protocol(connection) == -EOPNOTSUPP) 1083 return -1; 1084 1085 /* Prevent a race between resync-handshake and 1086 * being promoted to Primary. 1087 * 1088 * Grab and release the state mutex, so we know that any current 1089 * drbd_set_role() is finished, and any incoming drbd_set_role 1090 * will see the STATE_SENT flag, and wait for it to be cleared. 1091 */ 1092 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) 1093 mutex_lock(peer_device->device->state_mutex); 1094 1095 /* avoid a race with conn_request_state( C_DISCONNECTING ) */ 1096 spin_lock_irq(&connection->resource->req_lock); 1097 set_bit(STATE_SENT, &connection->flags); 1098 spin_unlock_irq(&connection->resource->req_lock); 1099 1100 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) 1101 mutex_unlock(peer_device->device->state_mutex); 1102 1103 rcu_read_lock(); 1104 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 1105 struct drbd_device *device = peer_device->device; 1106 kref_get(&device->kref); 1107 rcu_read_unlock(); 1108 1109 if (discard_my_data) 1110 set_bit(DISCARD_MY_DATA, &device->flags); 1111 else 1112 clear_bit(DISCARD_MY_DATA, &device->flags); 1113 1114 drbd_connected(peer_device); 1115 kref_put(&device->kref, drbd_destroy_device); 1116 rcu_read_lock(); 1117 } 1118 rcu_read_unlock(); 1119 1120 rv = conn_request_state(connection, NS(conn, C_WF_REPORT_PARAMS), CS_VERBOSE); 1121 if (rv < SS_SUCCESS || connection->cstate != C_WF_REPORT_PARAMS) { 1122 clear_bit(STATE_SENT, &connection->flags); 1123 return 0; 1124 } 1125 1126 drbd_thread_start(&connection->ack_receiver); 1127 /* opencoded create_singlethread_workqueue(), 1128 * to be able to use format string arguments */ 1129 connection->ack_sender = 1130 alloc_ordered_workqueue("drbd_as_%s", WQ_MEM_RECLAIM, connection->resource->name); 1131 if (!connection->ack_sender) { 1132 drbd_err(connection, "Failed to create workqueue ack_sender\n"); 1133 return 0; 1134 } 1135 1136 mutex_lock(&connection->resource->conf_update); 1137 /* The discard_my_data flag is a single-shot modifier to the next 1138 * connection attempt, the handshake of which is now well underway. 1139 * No need for rcu style copying of the whole struct 1140 * just to clear a single value. */ 1141 connection->net_conf->discard_my_data = 0; 1142 mutex_unlock(&connection->resource->conf_update); 1143 1144 return h; 1145 1146 out_release_sockets: 1147 if (ad.s_listen) 1148 sock_release(ad.s_listen); 1149 if (sock.socket) 1150 sock_release(sock.socket); 1151 if (msock.socket) 1152 sock_release(msock.socket); 1153 return -1; 1154 } 1155 1156 static int decode_header(struct drbd_connection *connection, void *header, struct packet_info *pi) 1157 { 1158 unsigned int header_size = drbd_header_size(connection); 1159 1160 if (header_size == sizeof(struct p_header100) && 1161 *(__be32 *)header == cpu_to_be32(DRBD_MAGIC_100)) { 1162 struct p_header100 *h = header; 1163 if (h->pad != 0) { 1164 drbd_err(connection, "Header padding is not zero\n"); 1165 return -EINVAL; 1166 } 1167 pi->vnr = be16_to_cpu(h->volume); 1168 pi->cmd = be16_to_cpu(h->command); 1169 pi->size = be32_to_cpu(h->length); 1170 } else if (header_size == sizeof(struct p_header95) && 1171 *(__be16 *)header == cpu_to_be16(DRBD_MAGIC_BIG)) { 1172 struct p_header95 *h = header; 1173 pi->cmd = be16_to_cpu(h->command); 1174 pi->size = be32_to_cpu(h->length); 1175 pi->vnr = 0; 1176 } else if (header_size == sizeof(struct p_header80) && 1177 *(__be32 *)header == cpu_to_be32(DRBD_MAGIC)) { 1178 struct p_header80 *h = header; 1179 pi->cmd = be16_to_cpu(h->command); 1180 pi->size = be16_to_cpu(h->length); 1181 pi->vnr = 0; 1182 } else { 1183 drbd_err(connection, "Wrong magic value 0x%08x in protocol version %d\n", 1184 be32_to_cpu(*(__be32 *)header), 1185 connection->agreed_pro_version); 1186 return -EINVAL; 1187 } 1188 pi->data = header + header_size; 1189 return 0; 1190 } 1191 1192 static void drbd_unplug_all_devices(struct drbd_connection *connection) 1193 { 1194 if (current->plug == &connection->receiver_plug) { 1195 blk_finish_plug(&connection->receiver_plug); 1196 blk_start_plug(&connection->receiver_plug); 1197 } /* else: maybe just schedule() ?? */ 1198 } 1199 1200 static int drbd_recv_header(struct drbd_connection *connection, struct packet_info *pi) 1201 { 1202 void *buffer = connection->data.rbuf; 1203 int err; 1204 1205 err = drbd_recv_all_warn(connection, buffer, drbd_header_size(connection)); 1206 if (err) 1207 return err; 1208 1209 err = decode_header(connection, buffer, pi); 1210 connection->last_received = jiffies; 1211 1212 return err; 1213 } 1214 1215 static int drbd_recv_header_maybe_unplug(struct drbd_connection *connection, struct packet_info *pi) 1216 { 1217 void *buffer = connection->data.rbuf; 1218 unsigned int size = drbd_header_size(connection); 1219 int err; 1220 1221 err = drbd_recv_short(connection->data.socket, buffer, size, MSG_NOSIGNAL|MSG_DONTWAIT); 1222 if (err != size) { 1223 /* If we have nothing in the receive buffer now, to reduce 1224 * application latency, try to drain the backend queues as 1225 * quickly as possible, and let remote TCP know what we have 1226 * received so far. */ 1227 if (err == -EAGAIN) { 1228 tcp_sock_set_quickack(connection->data.socket->sk, 2); 1229 drbd_unplug_all_devices(connection); 1230 } 1231 if (err > 0) { 1232 buffer += err; 1233 size -= err; 1234 } 1235 err = drbd_recv_all_warn(connection, buffer, size); 1236 if (err) 1237 return err; 1238 } 1239 1240 err = decode_header(connection, connection->data.rbuf, pi); 1241 connection->last_received = jiffies; 1242 1243 return err; 1244 } 1245 /* This is blkdev_issue_flush, but asynchronous. 1246 * We want to submit to all component volumes in parallel, 1247 * then wait for all completions. 1248 */ 1249 struct issue_flush_context { 1250 atomic_t pending; 1251 int error; 1252 struct completion done; 1253 }; 1254 struct one_flush_context { 1255 struct drbd_device *device; 1256 struct issue_flush_context *ctx; 1257 }; 1258 1259 static void one_flush_endio(struct bio *bio) 1260 { 1261 struct one_flush_context *octx = bio->bi_private; 1262 struct drbd_device *device = octx->device; 1263 struct issue_flush_context *ctx = octx->ctx; 1264 1265 if (bio->bi_status) { 1266 ctx->error = blk_status_to_errno(bio->bi_status); 1267 drbd_info(device, "local disk FLUSH FAILED with status %d\n", bio->bi_status); 1268 } 1269 kfree(octx); 1270 bio_put(bio); 1271 1272 clear_bit(FLUSH_PENDING, &device->flags); 1273 put_ldev(device); 1274 kref_put(&device->kref, drbd_destroy_device); 1275 1276 if (atomic_dec_and_test(&ctx->pending)) 1277 complete(&ctx->done); 1278 } 1279 1280 static void submit_one_flush(struct drbd_device *device, struct issue_flush_context *ctx) 1281 { 1282 struct bio *bio = bio_alloc(device->ldev->backing_bdev, 0, 1283 REQ_OP_FLUSH | REQ_PREFLUSH, GFP_NOIO); 1284 struct one_flush_context *octx = kmalloc(sizeof(*octx), GFP_NOIO); 1285 1286 if (!octx) { 1287 drbd_warn(device, "Could not allocate a octx, CANNOT ISSUE FLUSH\n"); 1288 /* FIXME: what else can I do now? disconnecting or detaching 1289 * really does not help to improve the state of the world, either. 1290 */ 1291 bio_put(bio); 1292 1293 ctx->error = -ENOMEM; 1294 put_ldev(device); 1295 kref_put(&device->kref, drbd_destroy_device); 1296 return; 1297 } 1298 1299 octx->device = device; 1300 octx->ctx = ctx; 1301 bio->bi_private = octx; 1302 bio->bi_end_io = one_flush_endio; 1303 1304 device->flush_jif = jiffies; 1305 set_bit(FLUSH_PENDING, &device->flags); 1306 atomic_inc(&ctx->pending); 1307 submit_bio(bio); 1308 } 1309 1310 static void drbd_flush(struct drbd_connection *connection) 1311 { 1312 if (connection->resource->write_ordering >= WO_BDEV_FLUSH) { 1313 struct drbd_peer_device *peer_device; 1314 struct issue_flush_context ctx; 1315 int vnr; 1316 1317 atomic_set(&ctx.pending, 1); 1318 ctx.error = 0; 1319 init_completion(&ctx.done); 1320 1321 rcu_read_lock(); 1322 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 1323 struct drbd_device *device = peer_device->device; 1324 1325 if (!get_ldev(device)) 1326 continue; 1327 kref_get(&device->kref); 1328 rcu_read_unlock(); 1329 1330 submit_one_flush(device, &ctx); 1331 1332 rcu_read_lock(); 1333 } 1334 rcu_read_unlock(); 1335 1336 /* Do we want to add a timeout, 1337 * if disk-timeout is set? */ 1338 if (!atomic_dec_and_test(&ctx.pending)) 1339 wait_for_completion(&ctx.done); 1340 1341 if (ctx.error) { 1342 /* would rather check on EOPNOTSUPP, but that is not reliable. 1343 * don't try again for ANY return value != 0 1344 * if (rv == -EOPNOTSUPP) */ 1345 /* Any error is already reported by bio_endio callback. */ 1346 drbd_bump_write_ordering(connection->resource, NULL, WO_DRAIN_IO); 1347 } 1348 } 1349 } 1350 1351 /** 1352 * drbd_may_finish_epoch() - Applies an epoch_event to the epoch's state, eventually finishes it. 1353 * @connection: DRBD connection. 1354 * @epoch: Epoch object. 1355 * @ev: Epoch event. 1356 */ 1357 static enum finish_epoch drbd_may_finish_epoch(struct drbd_connection *connection, 1358 struct drbd_epoch *epoch, 1359 enum epoch_event ev) 1360 { 1361 int epoch_size; 1362 struct drbd_epoch *next_epoch; 1363 enum finish_epoch rv = FE_STILL_LIVE; 1364 1365 spin_lock(&connection->epoch_lock); 1366 do { 1367 next_epoch = NULL; 1368 1369 epoch_size = atomic_read(&epoch->epoch_size); 1370 1371 switch (ev & ~EV_CLEANUP) { 1372 case EV_PUT: 1373 atomic_dec(&epoch->active); 1374 break; 1375 case EV_GOT_BARRIER_NR: 1376 set_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags); 1377 break; 1378 case EV_BECAME_LAST: 1379 /* nothing to do*/ 1380 break; 1381 } 1382 1383 if (epoch_size != 0 && 1384 atomic_read(&epoch->active) == 0 && 1385 (test_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags) || ev & EV_CLEANUP)) { 1386 if (!(ev & EV_CLEANUP)) { 1387 spin_unlock(&connection->epoch_lock); 1388 drbd_send_b_ack(epoch->connection, epoch->barrier_nr, epoch_size); 1389 spin_lock(&connection->epoch_lock); 1390 } 1391 #if 0 1392 /* FIXME: dec unacked on connection, once we have 1393 * something to count pending connection packets in. */ 1394 if (test_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags)) 1395 dec_unacked(epoch->connection); 1396 #endif 1397 1398 if (connection->current_epoch != epoch) { 1399 next_epoch = list_entry(epoch->list.next, struct drbd_epoch, list); 1400 list_del(&epoch->list); 1401 ev = EV_BECAME_LAST | (ev & EV_CLEANUP); 1402 connection->epochs--; 1403 kfree(epoch); 1404 1405 if (rv == FE_STILL_LIVE) 1406 rv = FE_DESTROYED; 1407 } else { 1408 epoch->flags = 0; 1409 atomic_set(&epoch->epoch_size, 0); 1410 /* atomic_set(&epoch->active, 0); is already zero */ 1411 if (rv == FE_STILL_LIVE) 1412 rv = FE_RECYCLED; 1413 } 1414 } 1415 1416 if (!next_epoch) 1417 break; 1418 1419 epoch = next_epoch; 1420 } while (1); 1421 1422 spin_unlock(&connection->epoch_lock); 1423 1424 return rv; 1425 } 1426 1427 static enum write_ordering_e 1428 max_allowed_wo(struct drbd_backing_dev *bdev, enum write_ordering_e wo) 1429 { 1430 struct disk_conf *dc; 1431 1432 dc = rcu_dereference(bdev->disk_conf); 1433 1434 if (wo == WO_BDEV_FLUSH && !dc->disk_flushes) 1435 wo = WO_DRAIN_IO; 1436 if (wo == WO_DRAIN_IO && !dc->disk_drain) 1437 wo = WO_NONE; 1438 1439 return wo; 1440 } 1441 1442 /* 1443 * drbd_bump_write_ordering() - Fall back to an other write ordering method 1444 * @wo: Write ordering method to try. 1445 */ 1446 void drbd_bump_write_ordering(struct drbd_resource *resource, struct drbd_backing_dev *bdev, 1447 enum write_ordering_e wo) 1448 { 1449 struct drbd_device *device; 1450 enum write_ordering_e pwo; 1451 int vnr; 1452 static char *write_ordering_str[] = { 1453 [WO_NONE] = "none", 1454 [WO_DRAIN_IO] = "drain", 1455 [WO_BDEV_FLUSH] = "flush", 1456 }; 1457 1458 pwo = resource->write_ordering; 1459 if (wo != WO_BDEV_FLUSH) 1460 wo = min(pwo, wo); 1461 rcu_read_lock(); 1462 idr_for_each_entry(&resource->devices, device, vnr) { 1463 if (get_ldev(device)) { 1464 wo = max_allowed_wo(device->ldev, wo); 1465 if (device->ldev == bdev) 1466 bdev = NULL; 1467 put_ldev(device); 1468 } 1469 } 1470 1471 if (bdev) 1472 wo = max_allowed_wo(bdev, wo); 1473 1474 rcu_read_unlock(); 1475 1476 resource->write_ordering = wo; 1477 if (pwo != resource->write_ordering || wo == WO_BDEV_FLUSH) 1478 drbd_info(resource, "Method to ensure write ordering: %s\n", write_ordering_str[resource->write_ordering]); 1479 } 1480 1481 /* 1482 * Mapping "discard" to ZEROOUT with UNMAP does not work for us: 1483 * Drivers have to "announce" q->limits.max_write_zeroes_sectors, or it 1484 * will directly go to fallback mode, submitting normal writes, and 1485 * never even try to UNMAP. 1486 * 1487 * And dm-thin does not do this (yet), mostly because in general it has 1488 * to assume that "skip_block_zeroing" is set. See also: 1489 * https://www.mail-archive.com/dm-devel%40redhat.com/msg07965.html 1490 * https://www.redhat.com/archives/dm-devel/2018-January/msg00271.html 1491 * 1492 * We *may* ignore the discard-zeroes-data setting, if so configured. 1493 * 1494 * Assumption is that this "discard_zeroes_data=0" is only because the backend 1495 * may ignore partial unaligned discards. 1496 * 1497 * LVM/DM thin as of at least 1498 * LVM version: 2.02.115(2)-RHEL7 (2015-01-28) 1499 * Library version: 1.02.93-RHEL7 (2015-01-28) 1500 * Driver version: 4.29.0 1501 * still behaves this way. 1502 * 1503 * For unaligned (wrt. alignment and granularity) or too small discards, 1504 * we zero-out the initial (and/or) trailing unaligned partial chunks, 1505 * but discard all the aligned full chunks. 1506 * 1507 * At least for LVM/DM thin, with skip_block_zeroing=false, 1508 * the result is effectively "discard_zeroes_data=1". 1509 */ 1510 /* flags: EE_TRIM|EE_ZEROOUT */ 1511 int drbd_issue_discard_or_zero_out(struct drbd_device *device, sector_t start, unsigned int nr_sectors, int flags) 1512 { 1513 struct block_device *bdev = device->ldev->backing_bdev; 1514 struct request_queue *q = bdev_get_queue(bdev); 1515 sector_t tmp, nr; 1516 unsigned int max_discard_sectors, granularity; 1517 int alignment; 1518 int err = 0; 1519 1520 if ((flags & EE_ZEROOUT) || !(flags & EE_TRIM)) 1521 goto zero_out; 1522 1523 /* Zero-sector (unknown) and one-sector granularities are the same. */ 1524 granularity = max(q->limits.discard_granularity >> 9, 1U); 1525 alignment = (bdev_discard_alignment(bdev) >> 9) % granularity; 1526 1527 max_discard_sectors = min(q->limits.max_discard_sectors, (1U << 22)); 1528 max_discard_sectors -= max_discard_sectors % granularity; 1529 if (unlikely(!max_discard_sectors)) 1530 goto zero_out; 1531 1532 if (nr_sectors < granularity) 1533 goto zero_out; 1534 1535 tmp = start; 1536 if (sector_div(tmp, granularity) != alignment) { 1537 if (nr_sectors < 2*granularity) 1538 goto zero_out; 1539 /* start + gran - (start + gran - align) % gran */ 1540 tmp = start + granularity - alignment; 1541 tmp = start + granularity - sector_div(tmp, granularity); 1542 1543 nr = tmp - start; 1544 /* don't flag BLKDEV_ZERO_NOUNMAP, we don't know how many 1545 * layers are below us, some may have smaller granularity */ 1546 err |= blkdev_issue_zeroout(bdev, start, nr, GFP_NOIO, 0); 1547 nr_sectors -= nr; 1548 start = tmp; 1549 } 1550 while (nr_sectors >= max_discard_sectors) { 1551 err |= blkdev_issue_discard(bdev, start, max_discard_sectors, GFP_NOIO, 0); 1552 nr_sectors -= max_discard_sectors; 1553 start += max_discard_sectors; 1554 } 1555 if (nr_sectors) { 1556 /* max_discard_sectors is unsigned int (and a multiple of 1557 * granularity, we made sure of that above already); 1558 * nr is < max_discard_sectors; 1559 * I don't need sector_div here, even though nr is sector_t */ 1560 nr = nr_sectors; 1561 nr -= (unsigned int)nr % granularity; 1562 if (nr) { 1563 err |= blkdev_issue_discard(bdev, start, nr, GFP_NOIO, 0); 1564 nr_sectors -= nr; 1565 start += nr; 1566 } 1567 } 1568 zero_out: 1569 if (nr_sectors) { 1570 err |= blkdev_issue_zeroout(bdev, start, nr_sectors, GFP_NOIO, 1571 (flags & EE_TRIM) ? 0 : BLKDEV_ZERO_NOUNMAP); 1572 } 1573 return err != 0; 1574 } 1575 1576 static bool can_do_reliable_discards(struct drbd_device *device) 1577 { 1578 struct request_queue *q = bdev_get_queue(device->ldev->backing_bdev); 1579 struct disk_conf *dc; 1580 bool can_do; 1581 1582 if (!blk_queue_discard(q)) 1583 return false; 1584 1585 rcu_read_lock(); 1586 dc = rcu_dereference(device->ldev->disk_conf); 1587 can_do = dc->discard_zeroes_if_aligned; 1588 rcu_read_unlock(); 1589 return can_do; 1590 } 1591 1592 static void drbd_issue_peer_discard_or_zero_out(struct drbd_device *device, struct drbd_peer_request *peer_req) 1593 { 1594 /* If the backend cannot discard, or does not guarantee 1595 * read-back zeroes in discarded ranges, we fall back to 1596 * zero-out. Unless configuration specifically requested 1597 * otherwise. */ 1598 if (!can_do_reliable_discards(device)) 1599 peer_req->flags |= EE_ZEROOUT; 1600 1601 if (drbd_issue_discard_or_zero_out(device, peer_req->i.sector, 1602 peer_req->i.size >> 9, peer_req->flags & (EE_ZEROOUT|EE_TRIM))) 1603 peer_req->flags |= EE_WAS_ERROR; 1604 drbd_endio_write_sec_final(peer_req); 1605 } 1606 1607 static void drbd_issue_peer_wsame(struct drbd_device *device, 1608 struct drbd_peer_request *peer_req) 1609 { 1610 struct block_device *bdev = device->ldev->backing_bdev; 1611 sector_t s = peer_req->i.sector; 1612 sector_t nr = peer_req->i.size >> 9; 1613 if (blkdev_issue_write_same(bdev, s, nr, GFP_NOIO, peer_req->pages)) 1614 peer_req->flags |= EE_WAS_ERROR; 1615 drbd_endio_write_sec_final(peer_req); 1616 } 1617 1618 1619 /* 1620 * drbd_submit_peer_request() 1621 * @device: DRBD device. 1622 * @peer_req: peer request 1623 * 1624 * May spread the pages to multiple bios, 1625 * depending on bio_add_page restrictions. 1626 * 1627 * Returns 0 if all bios have been submitted, 1628 * -ENOMEM if we could not allocate enough bios, 1629 * -ENOSPC (any better suggestion?) if we have not been able to bio_add_page a 1630 * single page to an empty bio (which should never happen and likely indicates 1631 * that the lower level IO stack is in some way broken). This has been observed 1632 * on certain Xen deployments. 1633 */ 1634 /* TODO allocate from our own bio_set. */ 1635 int drbd_submit_peer_request(struct drbd_device *device, 1636 struct drbd_peer_request *peer_req, 1637 const unsigned op, const unsigned op_flags, 1638 const int fault_type) 1639 { 1640 struct bio *bios = NULL; 1641 struct bio *bio; 1642 struct page *page = peer_req->pages; 1643 sector_t sector = peer_req->i.sector; 1644 unsigned data_size = peer_req->i.size; 1645 unsigned n_bios = 0; 1646 unsigned nr_pages = (data_size + PAGE_SIZE -1) >> PAGE_SHIFT; 1647 1648 /* TRIM/DISCARD: for now, always use the helper function 1649 * blkdev_issue_zeroout(..., discard=true). 1650 * It's synchronous, but it does the right thing wrt. bio splitting. 1651 * Correctness first, performance later. Next step is to code an 1652 * asynchronous variant of the same. 1653 */ 1654 if (peer_req->flags & (EE_TRIM|EE_WRITE_SAME|EE_ZEROOUT)) { 1655 /* wait for all pending IO completions, before we start 1656 * zeroing things out. */ 1657 conn_wait_active_ee_empty(peer_req->peer_device->connection); 1658 /* add it to the active list now, 1659 * so we can find it to present it in debugfs */ 1660 peer_req->submit_jif = jiffies; 1661 peer_req->flags |= EE_SUBMITTED; 1662 1663 /* If this was a resync request from receive_rs_deallocated(), 1664 * it is already on the sync_ee list */ 1665 if (list_empty(&peer_req->w.list)) { 1666 spin_lock_irq(&device->resource->req_lock); 1667 list_add_tail(&peer_req->w.list, &device->active_ee); 1668 spin_unlock_irq(&device->resource->req_lock); 1669 } 1670 1671 if (peer_req->flags & (EE_TRIM|EE_ZEROOUT)) 1672 drbd_issue_peer_discard_or_zero_out(device, peer_req); 1673 else /* EE_WRITE_SAME */ 1674 drbd_issue_peer_wsame(device, peer_req); 1675 return 0; 1676 } 1677 1678 /* In most cases, we will only need one bio. But in case the lower 1679 * level restrictions happen to be different at this offset on this 1680 * side than those of the sending peer, we may need to submit the 1681 * request in more than one bio. 1682 * 1683 * Plain bio_alloc is good enough here, this is no DRBD internally 1684 * generated bio, but a bio allocated on behalf of the peer. 1685 */ 1686 next_bio: 1687 bio = bio_alloc(device->ldev->backing_bdev, nr_pages, op | op_flags, 1688 GFP_NOIO); 1689 /* > peer_req->i.sector, unless this is the first bio */ 1690 bio->bi_iter.bi_sector = sector; 1691 bio->bi_private = peer_req; 1692 bio->bi_end_io = drbd_peer_request_endio; 1693 1694 bio->bi_next = bios; 1695 bios = bio; 1696 ++n_bios; 1697 1698 page_chain_for_each(page) { 1699 unsigned len = min_t(unsigned, data_size, PAGE_SIZE); 1700 if (!bio_add_page(bio, page, len, 0)) 1701 goto next_bio; 1702 data_size -= len; 1703 sector += len >> 9; 1704 --nr_pages; 1705 } 1706 D_ASSERT(device, data_size == 0); 1707 D_ASSERT(device, page == NULL); 1708 1709 atomic_set(&peer_req->pending_bios, n_bios); 1710 /* for debugfs: update timestamp, mark as submitted */ 1711 peer_req->submit_jif = jiffies; 1712 peer_req->flags |= EE_SUBMITTED; 1713 do { 1714 bio = bios; 1715 bios = bios->bi_next; 1716 bio->bi_next = NULL; 1717 1718 drbd_submit_bio_noacct(device, fault_type, bio); 1719 } while (bios); 1720 return 0; 1721 } 1722 1723 static void drbd_remove_epoch_entry_interval(struct drbd_device *device, 1724 struct drbd_peer_request *peer_req) 1725 { 1726 struct drbd_interval *i = &peer_req->i; 1727 1728 drbd_remove_interval(&device->write_requests, i); 1729 drbd_clear_interval(i); 1730 1731 /* Wake up any processes waiting for this peer request to complete. */ 1732 if (i->waiting) 1733 wake_up(&device->misc_wait); 1734 } 1735 1736 static void conn_wait_active_ee_empty(struct drbd_connection *connection) 1737 { 1738 struct drbd_peer_device *peer_device; 1739 int vnr; 1740 1741 rcu_read_lock(); 1742 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 1743 struct drbd_device *device = peer_device->device; 1744 1745 kref_get(&device->kref); 1746 rcu_read_unlock(); 1747 drbd_wait_ee_list_empty(device, &device->active_ee); 1748 kref_put(&device->kref, drbd_destroy_device); 1749 rcu_read_lock(); 1750 } 1751 rcu_read_unlock(); 1752 } 1753 1754 static int receive_Barrier(struct drbd_connection *connection, struct packet_info *pi) 1755 { 1756 int rv; 1757 struct p_barrier *p = pi->data; 1758 struct drbd_epoch *epoch; 1759 1760 /* FIXME these are unacked on connection, 1761 * not a specific (peer)device. 1762 */ 1763 connection->current_epoch->barrier_nr = p->barrier; 1764 connection->current_epoch->connection = connection; 1765 rv = drbd_may_finish_epoch(connection, connection->current_epoch, EV_GOT_BARRIER_NR); 1766 1767 /* P_BARRIER_ACK may imply that the corresponding extent is dropped from 1768 * the activity log, which means it would not be resynced in case the 1769 * R_PRIMARY crashes now. 1770 * Therefore we must send the barrier_ack after the barrier request was 1771 * completed. */ 1772 switch (connection->resource->write_ordering) { 1773 case WO_NONE: 1774 if (rv == FE_RECYCLED) 1775 return 0; 1776 1777 /* receiver context, in the writeout path of the other node. 1778 * avoid potential distributed deadlock */ 1779 epoch = kmalloc(sizeof(struct drbd_epoch), GFP_NOIO); 1780 if (epoch) 1781 break; 1782 else 1783 drbd_warn(connection, "Allocation of an epoch failed, slowing down\n"); 1784 fallthrough; 1785 1786 case WO_BDEV_FLUSH: 1787 case WO_DRAIN_IO: 1788 conn_wait_active_ee_empty(connection); 1789 drbd_flush(connection); 1790 1791 if (atomic_read(&connection->current_epoch->epoch_size)) { 1792 epoch = kmalloc(sizeof(struct drbd_epoch), GFP_NOIO); 1793 if (epoch) 1794 break; 1795 } 1796 1797 return 0; 1798 default: 1799 drbd_err(connection, "Strangeness in connection->write_ordering %d\n", 1800 connection->resource->write_ordering); 1801 return -EIO; 1802 } 1803 1804 epoch->flags = 0; 1805 atomic_set(&epoch->epoch_size, 0); 1806 atomic_set(&epoch->active, 0); 1807 1808 spin_lock(&connection->epoch_lock); 1809 if (atomic_read(&connection->current_epoch->epoch_size)) { 1810 list_add(&epoch->list, &connection->current_epoch->list); 1811 connection->current_epoch = epoch; 1812 connection->epochs++; 1813 } else { 1814 /* The current_epoch got recycled while we allocated this one... */ 1815 kfree(epoch); 1816 } 1817 spin_unlock(&connection->epoch_lock); 1818 1819 return 0; 1820 } 1821 1822 /* quick wrapper in case payload size != request_size (write same) */ 1823 static void drbd_csum_ee_size(struct crypto_shash *h, 1824 struct drbd_peer_request *r, void *d, 1825 unsigned int payload_size) 1826 { 1827 unsigned int tmp = r->i.size; 1828 r->i.size = payload_size; 1829 drbd_csum_ee(h, r, d); 1830 r->i.size = tmp; 1831 } 1832 1833 /* used from receive_RSDataReply (recv_resync_read) 1834 * and from receive_Data. 1835 * data_size: actual payload ("data in") 1836 * for normal writes that is bi_size. 1837 * for discards, that is zero. 1838 * for write same, it is logical_block_size. 1839 * both trim and write same have the bi_size ("data len to be affected") 1840 * as extra argument in the packet header. 1841 */ 1842 static struct drbd_peer_request * 1843 read_in_block(struct drbd_peer_device *peer_device, u64 id, sector_t sector, 1844 struct packet_info *pi) __must_hold(local) 1845 { 1846 struct drbd_device *device = peer_device->device; 1847 const sector_t capacity = get_capacity(device->vdisk); 1848 struct drbd_peer_request *peer_req; 1849 struct page *page; 1850 int digest_size, err; 1851 unsigned int data_size = pi->size, ds; 1852 void *dig_in = peer_device->connection->int_dig_in; 1853 void *dig_vv = peer_device->connection->int_dig_vv; 1854 unsigned long *data; 1855 struct p_trim *trim = (pi->cmd == P_TRIM) ? pi->data : NULL; 1856 struct p_trim *zeroes = (pi->cmd == P_ZEROES) ? pi->data : NULL; 1857 struct p_trim *wsame = (pi->cmd == P_WSAME) ? pi->data : NULL; 1858 1859 digest_size = 0; 1860 if (!trim && peer_device->connection->peer_integrity_tfm) { 1861 digest_size = crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm); 1862 /* 1863 * FIXME: Receive the incoming digest into the receive buffer 1864 * here, together with its struct p_data? 1865 */ 1866 err = drbd_recv_all_warn(peer_device->connection, dig_in, digest_size); 1867 if (err) 1868 return NULL; 1869 data_size -= digest_size; 1870 } 1871 1872 /* assume request_size == data_size, but special case trim and wsame. */ 1873 ds = data_size; 1874 if (trim) { 1875 if (!expect(data_size == 0)) 1876 return NULL; 1877 ds = be32_to_cpu(trim->size); 1878 } else if (zeroes) { 1879 if (!expect(data_size == 0)) 1880 return NULL; 1881 ds = be32_to_cpu(zeroes->size); 1882 } else if (wsame) { 1883 if (data_size != queue_logical_block_size(device->rq_queue)) { 1884 drbd_err(peer_device, "data size (%u) != drbd logical block size (%u)\n", 1885 data_size, queue_logical_block_size(device->rq_queue)); 1886 return NULL; 1887 } 1888 if (data_size != bdev_logical_block_size(device->ldev->backing_bdev)) { 1889 drbd_err(peer_device, "data size (%u) != backend logical block size (%u)\n", 1890 data_size, bdev_logical_block_size(device->ldev->backing_bdev)); 1891 return NULL; 1892 } 1893 ds = be32_to_cpu(wsame->size); 1894 } 1895 1896 if (!expect(IS_ALIGNED(ds, 512))) 1897 return NULL; 1898 if (trim || wsame || zeroes) { 1899 if (!expect(ds <= (DRBD_MAX_BBIO_SECTORS << 9))) 1900 return NULL; 1901 } else if (!expect(ds <= DRBD_MAX_BIO_SIZE)) 1902 return NULL; 1903 1904 /* even though we trust out peer, 1905 * we sometimes have to double check. */ 1906 if (sector + (ds>>9) > capacity) { 1907 drbd_err(device, "request from peer beyond end of local disk: " 1908 "capacity: %llus < sector: %llus + size: %u\n", 1909 (unsigned long long)capacity, 1910 (unsigned long long)sector, ds); 1911 return NULL; 1912 } 1913 1914 /* GFP_NOIO, because we must not cause arbitrary write-out: in a DRBD 1915 * "criss-cross" setup, that might cause write-out on some other DRBD, 1916 * which in turn might block on the other node at this very place. */ 1917 peer_req = drbd_alloc_peer_req(peer_device, id, sector, ds, data_size, GFP_NOIO); 1918 if (!peer_req) 1919 return NULL; 1920 1921 peer_req->flags |= EE_WRITE; 1922 if (trim) { 1923 peer_req->flags |= EE_TRIM; 1924 return peer_req; 1925 } 1926 if (zeroes) { 1927 peer_req->flags |= EE_ZEROOUT; 1928 return peer_req; 1929 } 1930 if (wsame) 1931 peer_req->flags |= EE_WRITE_SAME; 1932 1933 /* receive payload size bytes into page chain */ 1934 ds = data_size; 1935 page = peer_req->pages; 1936 page_chain_for_each(page) { 1937 unsigned len = min_t(int, ds, PAGE_SIZE); 1938 data = kmap(page); 1939 err = drbd_recv_all_warn(peer_device->connection, data, len); 1940 if (drbd_insert_fault(device, DRBD_FAULT_RECEIVE)) { 1941 drbd_err(device, "Fault injection: Corrupting data on receive\n"); 1942 data[0] = data[0] ^ (unsigned long)-1; 1943 } 1944 kunmap(page); 1945 if (err) { 1946 drbd_free_peer_req(device, peer_req); 1947 return NULL; 1948 } 1949 ds -= len; 1950 } 1951 1952 if (digest_size) { 1953 drbd_csum_ee_size(peer_device->connection->peer_integrity_tfm, peer_req, dig_vv, data_size); 1954 if (memcmp(dig_in, dig_vv, digest_size)) { 1955 drbd_err(device, "Digest integrity check FAILED: %llus +%u\n", 1956 (unsigned long long)sector, data_size); 1957 drbd_free_peer_req(device, peer_req); 1958 return NULL; 1959 } 1960 } 1961 device->recv_cnt += data_size >> 9; 1962 return peer_req; 1963 } 1964 1965 /* drbd_drain_block() just takes a data block 1966 * out of the socket input buffer, and discards it. 1967 */ 1968 static int drbd_drain_block(struct drbd_peer_device *peer_device, int data_size) 1969 { 1970 struct page *page; 1971 int err = 0; 1972 void *data; 1973 1974 if (!data_size) 1975 return 0; 1976 1977 page = drbd_alloc_pages(peer_device, 1, 1); 1978 1979 data = kmap(page); 1980 while (data_size) { 1981 unsigned int len = min_t(int, data_size, PAGE_SIZE); 1982 1983 err = drbd_recv_all_warn(peer_device->connection, data, len); 1984 if (err) 1985 break; 1986 data_size -= len; 1987 } 1988 kunmap(page); 1989 drbd_free_pages(peer_device->device, page, 0); 1990 return err; 1991 } 1992 1993 static int recv_dless_read(struct drbd_peer_device *peer_device, struct drbd_request *req, 1994 sector_t sector, int data_size) 1995 { 1996 struct bio_vec bvec; 1997 struct bvec_iter iter; 1998 struct bio *bio; 1999 int digest_size, err, expect; 2000 void *dig_in = peer_device->connection->int_dig_in; 2001 void *dig_vv = peer_device->connection->int_dig_vv; 2002 2003 digest_size = 0; 2004 if (peer_device->connection->peer_integrity_tfm) { 2005 digest_size = crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm); 2006 err = drbd_recv_all_warn(peer_device->connection, dig_in, digest_size); 2007 if (err) 2008 return err; 2009 data_size -= digest_size; 2010 } 2011 2012 /* optimistically update recv_cnt. if receiving fails below, 2013 * we disconnect anyways, and counters will be reset. */ 2014 peer_device->device->recv_cnt += data_size>>9; 2015 2016 bio = req->master_bio; 2017 D_ASSERT(peer_device->device, sector == bio->bi_iter.bi_sector); 2018 2019 bio_for_each_segment(bvec, bio, iter) { 2020 void *mapped = bvec_kmap_local(&bvec); 2021 expect = min_t(int, data_size, bvec.bv_len); 2022 err = drbd_recv_all_warn(peer_device->connection, mapped, expect); 2023 kunmap_local(mapped); 2024 if (err) 2025 return err; 2026 data_size -= expect; 2027 } 2028 2029 if (digest_size) { 2030 drbd_csum_bio(peer_device->connection->peer_integrity_tfm, bio, dig_vv); 2031 if (memcmp(dig_in, dig_vv, digest_size)) { 2032 drbd_err(peer_device, "Digest integrity check FAILED. Broken NICs?\n"); 2033 return -EINVAL; 2034 } 2035 } 2036 2037 D_ASSERT(peer_device->device, data_size == 0); 2038 return 0; 2039 } 2040 2041 /* 2042 * e_end_resync_block() is called in ack_sender context via 2043 * drbd_finish_peer_reqs(). 2044 */ 2045 static int e_end_resync_block(struct drbd_work *w, int unused) 2046 { 2047 struct drbd_peer_request *peer_req = 2048 container_of(w, struct drbd_peer_request, w); 2049 struct drbd_peer_device *peer_device = peer_req->peer_device; 2050 struct drbd_device *device = peer_device->device; 2051 sector_t sector = peer_req->i.sector; 2052 int err; 2053 2054 D_ASSERT(device, drbd_interval_empty(&peer_req->i)); 2055 2056 if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) { 2057 drbd_set_in_sync(device, sector, peer_req->i.size); 2058 err = drbd_send_ack(peer_device, P_RS_WRITE_ACK, peer_req); 2059 } else { 2060 /* Record failure to sync */ 2061 drbd_rs_failed_io(device, sector, peer_req->i.size); 2062 2063 err = drbd_send_ack(peer_device, P_NEG_ACK, peer_req); 2064 } 2065 dec_unacked(device); 2066 2067 return err; 2068 } 2069 2070 static int recv_resync_read(struct drbd_peer_device *peer_device, sector_t sector, 2071 struct packet_info *pi) __releases(local) 2072 { 2073 struct drbd_device *device = peer_device->device; 2074 struct drbd_peer_request *peer_req; 2075 2076 peer_req = read_in_block(peer_device, ID_SYNCER, sector, pi); 2077 if (!peer_req) 2078 goto fail; 2079 2080 dec_rs_pending(device); 2081 2082 inc_unacked(device); 2083 /* corresponding dec_unacked() in e_end_resync_block() 2084 * respective _drbd_clear_done_ee */ 2085 2086 peer_req->w.cb = e_end_resync_block; 2087 peer_req->submit_jif = jiffies; 2088 2089 spin_lock_irq(&device->resource->req_lock); 2090 list_add_tail(&peer_req->w.list, &device->sync_ee); 2091 spin_unlock_irq(&device->resource->req_lock); 2092 2093 atomic_add(pi->size >> 9, &device->rs_sect_ev); 2094 if (drbd_submit_peer_request(device, peer_req, REQ_OP_WRITE, 0, 2095 DRBD_FAULT_RS_WR) == 0) 2096 return 0; 2097 2098 /* don't care for the reason here */ 2099 drbd_err(device, "submit failed, triggering re-connect\n"); 2100 spin_lock_irq(&device->resource->req_lock); 2101 list_del(&peer_req->w.list); 2102 spin_unlock_irq(&device->resource->req_lock); 2103 2104 drbd_free_peer_req(device, peer_req); 2105 fail: 2106 put_ldev(device); 2107 return -EIO; 2108 } 2109 2110 static struct drbd_request * 2111 find_request(struct drbd_device *device, struct rb_root *root, u64 id, 2112 sector_t sector, bool missing_ok, const char *func) 2113 { 2114 struct drbd_request *req; 2115 2116 /* Request object according to our peer */ 2117 req = (struct drbd_request *)(unsigned long)id; 2118 if (drbd_contains_interval(root, sector, &req->i) && req->i.local) 2119 return req; 2120 if (!missing_ok) { 2121 drbd_err(device, "%s: failed to find request 0x%lx, sector %llus\n", func, 2122 (unsigned long)id, (unsigned long long)sector); 2123 } 2124 return NULL; 2125 } 2126 2127 static int receive_DataReply(struct drbd_connection *connection, struct packet_info *pi) 2128 { 2129 struct drbd_peer_device *peer_device; 2130 struct drbd_device *device; 2131 struct drbd_request *req; 2132 sector_t sector; 2133 int err; 2134 struct p_data *p = pi->data; 2135 2136 peer_device = conn_peer_device(connection, pi->vnr); 2137 if (!peer_device) 2138 return -EIO; 2139 device = peer_device->device; 2140 2141 sector = be64_to_cpu(p->sector); 2142 2143 spin_lock_irq(&device->resource->req_lock); 2144 req = find_request(device, &device->read_requests, p->block_id, sector, false, __func__); 2145 spin_unlock_irq(&device->resource->req_lock); 2146 if (unlikely(!req)) 2147 return -EIO; 2148 2149 /* hlist_del(&req->collision) is done in _req_may_be_done, to avoid 2150 * special casing it there for the various failure cases. 2151 * still no race with drbd_fail_pending_reads */ 2152 err = recv_dless_read(peer_device, req, sector, pi->size); 2153 if (!err) 2154 req_mod(req, DATA_RECEIVED); 2155 /* else: nothing. handled from drbd_disconnect... 2156 * I don't think we may complete this just yet 2157 * in case we are "on-disconnect: freeze" */ 2158 2159 return err; 2160 } 2161 2162 static int receive_RSDataReply(struct drbd_connection *connection, struct packet_info *pi) 2163 { 2164 struct drbd_peer_device *peer_device; 2165 struct drbd_device *device; 2166 sector_t sector; 2167 int err; 2168 struct p_data *p = pi->data; 2169 2170 peer_device = conn_peer_device(connection, pi->vnr); 2171 if (!peer_device) 2172 return -EIO; 2173 device = peer_device->device; 2174 2175 sector = be64_to_cpu(p->sector); 2176 D_ASSERT(device, p->block_id == ID_SYNCER); 2177 2178 if (get_ldev(device)) { 2179 /* data is submitted to disk within recv_resync_read. 2180 * corresponding put_ldev done below on error, 2181 * or in drbd_peer_request_endio. */ 2182 err = recv_resync_read(peer_device, sector, pi); 2183 } else { 2184 if (__ratelimit(&drbd_ratelimit_state)) 2185 drbd_err(device, "Can not write resync data to local disk.\n"); 2186 2187 err = drbd_drain_block(peer_device, pi->size); 2188 2189 drbd_send_ack_dp(peer_device, P_NEG_ACK, p, pi->size); 2190 } 2191 2192 atomic_add(pi->size >> 9, &device->rs_sect_in); 2193 2194 return err; 2195 } 2196 2197 static void restart_conflicting_writes(struct drbd_device *device, 2198 sector_t sector, int size) 2199 { 2200 struct drbd_interval *i; 2201 struct drbd_request *req; 2202 2203 drbd_for_each_overlap(i, &device->write_requests, sector, size) { 2204 if (!i->local) 2205 continue; 2206 req = container_of(i, struct drbd_request, i); 2207 if (req->rq_state & RQ_LOCAL_PENDING || 2208 !(req->rq_state & RQ_POSTPONED)) 2209 continue; 2210 /* as it is RQ_POSTPONED, this will cause it to 2211 * be queued on the retry workqueue. */ 2212 __req_mod(req, CONFLICT_RESOLVED, NULL); 2213 } 2214 } 2215 2216 /* 2217 * e_end_block() is called in ack_sender context via drbd_finish_peer_reqs(). 2218 */ 2219 static int e_end_block(struct drbd_work *w, int cancel) 2220 { 2221 struct drbd_peer_request *peer_req = 2222 container_of(w, struct drbd_peer_request, w); 2223 struct drbd_peer_device *peer_device = peer_req->peer_device; 2224 struct drbd_device *device = peer_device->device; 2225 sector_t sector = peer_req->i.sector; 2226 int err = 0, pcmd; 2227 2228 if (peer_req->flags & EE_SEND_WRITE_ACK) { 2229 if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) { 2230 pcmd = (device->state.conn >= C_SYNC_SOURCE && 2231 device->state.conn <= C_PAUSED_SYNC_T && 2232 peer_req->flags & EE_MAY_SET_IN_SYNC) ? 2233 P_RS_WRITE_ACK : P_WRITE_ACK; 2234 err = drbd_send_ack(peer_device, pcmd, peer_req); 2235 if (pcmd == P_RS_WRITE_ACK) 2236 drbd_set_in_sync(device, sector, peer_req->i.size); 2237 } else { 2238 err = drbd_send_ack(peer_device, P_NEG_ACK, peer_req); 2239 /* we expect it to be marked out of sync anyways... 2240 * maybe assert this? */ 2241 } 2242 dec_unacked(device); 2243 } 2244 2245 /* we delete from the conflict detection hash _after_ we sent out the 2246 * P_WRITE_ACK / P_NEG_ACK, to get the sequence number right. */ 2247 if (peer_req->flags & EE_IN_INTERVAL_TREE) { 2248 spin_lock_irq(&device->resource->req_lock); 2249 D_ASSERT(device, !drbd_interval_empty(&peer_req->i)); 2250 drbd_remove_epoch_entry_interval(device, peer_req); 2251 if (peer_req->flags & EE_RESTART_REQUESTS) 2252 restart_conflicting_writes(device, sector, peer_req->i.size); 2253 spin_unlock_irq(&device->resource->req_lock); 2254 } else 2255 D_ASSERT(device, drbd_interval_empty(&peer_req->i)); 2256 2257 drbd_may_finish_epoch(peer_device->connection, peer_req->epoch, EV_PUT + (cancel ? EV_CLEANUP : 0)); 2258 2259 return err; 2260 } 2261 2262 static int e_send_ack(struct drbd_work *w, enum drbd_packet ack) 2263 { 2264 struct drbd_peer_request *peer_req = 2265 container_of(w, struct drbd_peer_request, w); 2266 struct drbd_peer_device *peer_device = peer_req->peer_device; 2267 int err; 2268 2269 err = drbd_send_ack(peer_device, ack, peer_req); 2270 dec_unacked(peer_device->device); 2271 2272 return err; 2273 } 2274 2275 static int e_send_superseded(struct drbd_work *w, int unused) 2276 { 2277 return e_send_ack(w, P_SUPERSEDED); 2278 } 2279 2280 static int e_send_retry_write(struct drbd_work *w, int unused) 2281 { 2282 struct drbd_peer_request *peer_req = 2283 container_of(w, struct drbd_peer_request, w); 2284 struct drbd_connection *connection = peer_req->peer_device->connection; 2285 2286 return e_send_ack(w, connection->agreed_pro_version >= 100 ? 2287 P_RETRY_WRITE : P_SUPERSEDED); 2288 } 2289 2290 static bool seq_greater(u32 a, u32 b) 2291 { 2292 /* 2293 * We assume 32-bit wrap-around here. 2294 * For 24-bit wrap-around, we would have to shift: 2295 * a <<= 8; b <<= 8; 2296 */ 2297 return (s32)a - (s32)b > 0; 2298 } 2299 2300 static u32 seq_max(u32 a, u32 b) 2301 { 2302 return seq_greater(a, b) ? a : b; 2303 } 2304 2305 static void update_peer_seq(struct drbd_peer_device *peer_device, unsigned int peer_seq) 2306 { 2307 struct drbd_device *device = peer_device->device; 2308 unsigned int newest_peer_seq; 2309 2310 if (test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags)) { 2311 spin_lock(&device->peer_seq_lock); 2312 newest_peer_seq = seq_max(device->peer_seq, peer_seq); 2313 device->peer_seq = newest_peer_seq; 2314 spin_unlock(&device->peer_seq_lock); 2315 /* wake up only if we actually changed device->peer_seq */ 2316 if (peer_seq == newest_peer_seq) 2317 wake_up(&device->seq_wait); 2318 } 2319 } 2320 2321 static inline int overlaps(sector_t s1, int l1, sector_t s2, int l2) 2322 { 2323 return !((s1 + (l1>>9) <= s2) || (s1 >= s2 + (l2>>9))); 2324 } 2325 2326 /* maybe change sync_ee into interval trees as well? */ 2327 static bool overlapping_resync_write(struct drbd_device *device, struct drbd_peer_request *peer_req) 2328 { 2329 struct drbd_peer_request *rs_req; 2330 bool rv = false; 2331 2332 spin_lock_irq(&device->resource->req_lock); 2333 list_for_each_entry(rs_req, &device->sync_ee, w.list) { 2334 if (overlaps(peer_req->i.sector, peer_req->i.size, 2335 rs_req->i.sector, rs_req->i.size)) { 2336 rv = true; 2337 break; 2338 } 2339 } 2340 spin_unlock_irq(&device->resource->req_lock); 2341 2342 return rv; 2343 } 2344 2345 /* Called from receive_Data. 2346 * Synchronize packets on sock with packets on msock. 2347 * 2348 * This is here so even when a P_DATA packet traveling via sock overtook an Ack 2349 * packet traveling on msock, they are still processed in the order they have 2350 * been sent. 2351 * 2352 * Note: we don't care for Ack packets overtaking P_DATA packets. 2353 * 2354 * In case packet_seq is larger than device->peer_seq number, there are 2355 * outstanding packets on the msock. We wait for them to arrive. 2356 * In case we are the logically next packet, we update device->peer_seq 2357 * ourselves. Correctly handles 32bit wrap around. 2358 * 2359 * Assume we have a 10 GBit connection, that is about 1<<30 byte per second, 2360 * about 1<<21 sectors per second. So "worst" case, we have 1<<3 == 8 seconds 2361 * for the 24bit wrap (historical atomic_t guarantee on some archs), and we have 2362 * 1<<9 == 512 seconds aka ages for the 32bit wrap around... 2363 * 2364 * returns 0 if we may process the packet, 2365 * -ERESTARTSYS if we were interrupted (by disconnect signal). */ 2366 static int wait_for_and_update_peer_seq(struct drbd_peer_device *peer_device, const u32 peer_seq) 2367 { 2368 struct drbd_device *device = peer_device->device; 2369 DEFINE_WAIT(wait); 2370 long timeout; 2371 int ret = 0, tp; 2372 2373 if (!test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags)) 2374 return 0; 2375 2376 spin_lock(&device->peer_seq_lock); 2377 for (;;) { 2378 if (!seq_greater(peer_seq - 1, device->peer_seq)) { 2379 device->peer_seq = seq_max(device->peer_seq, peer_seq); 2380 break; 2381 } 2382 2383 if (signal_pending(current)) { 2384 ret = -ERESTARTSYS; 2385 break; 2386 } 2387 2388 rcu_read_lock(); 2389 tp = rcu_dereference(peer_device->connection->net_conf)->two_primaries; 2390 rcu_read_unlock(); 2391 2392 if (!tp) 2393 break; 2394 2395 /* Only need to wait if two_primaries is enabled */ 2396 prepare_to_wait(&device->seq_wait, &wait, TASK_INTERRUPTIBLE); 2397 spin_unlock(&device->peer_seq_lock); 2398 rcu_read_lock(); 2399 timeout = rcu_dereference(peer_device->connection->net_conf)->ping_timeo*HZ/10; 2400 rcu_read_unlock(); 2401 timeout = schedule_timeout(timeout); 2402 spin_lock(&device->peer_seq_lock); 2403 if (!timeout) { 2404 ret = -ETIMEDOUT; 2405 drbd_err(device, "Timed out waiting for missing ack packets; disconnecting\n"); 2406 break; 2407 } 2408 } 2409 spin_unlock(&device->peer_seq_lock); 2410 finish_wait(&device->seq_wait, &wait); 2411 return ret; 2412 } 2413 2414 /* see also bio_flags_to_wire() 2415 * DRBD_REQ_*, because we need to semantically map the flags to data packet 2416 * flags and back. We may replicate to other kernel versions. */ 2417 static unsigned long wire_flags_to_bio_flags(u32 dpf) 2418 { 2419 return (dpf & DP_RW_SYNC ? REQ_SYNC : 0) | 2420 (dpf & DP_FUA ? REQ_FUA : 0) | 2421 (dpf & DP_FLUSH ? REQ_PREFLUSH : 0); 2422 } 2423 2424 static unsigned long wire_flags_to_bio_op(u32 dpf) 2425 { 2426 if (dpf & DP_ZEROES) 2427 return REQ_OP_WRITE_ZEROES; 2428 if (dpf & DP_DISCARD) 2429 return REQ_OP_DISCARD; 2430 if (dpf & DP_WSAME) 2431 return REQ_OP_WRITE_SAME; 2432 else 2433 return REQ_OP_WRITE; 2434 } 2435 2436 static void fail_postponed_requests(struct drbd_device *device, sector_t sector, 2437 unsigned int size) 2438 { 2439 struct drbd_interval *i; 2440 2441 repeat: 2442 drbd_for_each_overlap(i, &device->write_requests, sector, size) { 2443 struct drbd_request *req; 2444 struct bio_and_error m; 2445 2446 if (!i->local) 2447 continue; 2448 req = container_of(i, struct drbd_request, i); 2449 if (!(req->rq_state & RQ_POSTPONED)) 2450 continue; 2451 req->rq_state &= ~RQ_POSTPONED; 2452 __req_mod(req, NEG_ACKED, &m); 2453 spin_unlock_irq(&device->resource->req_lock); 2454 if (m.bio) 2455 complete_master_bio(device, &m); 2456 spin_lock_irq(&device->resource->req_lock); 2457 goto repeat; 2458 } 2459 } 2460 2461 static int handle_write_conflicts(struct drbd_device *device, 2462 struct drbd_peer_request *peer_req) 2463 { 2464 struct drbd_connection *connection = peer_req->peer_device->connection; 2465 bool resolve_conflicts = test_bit(RESOLVE_CONFLICTS, &connection->flags); 2466 sector_t sector = peer_req->i.sector; 2467 const unsigned int size = peer_req->i.size; 2468 struct drbd_interval *i; 2469 bool equal; 2470 int err; 2471 2472 /* 2473 * Inserting the peer request into the write_requests tree will prevent 2474 * new conflicting local requests from being added. 2475 */ 2476 drbd_insert_interval(&device->write_requests, &peer_req->i); 2477 2478 repeat: 2479 drbd_for_each_overlap(i, &device->write_requests, sector, size) { 2480 if (i == &peer_req->i) 2481 continue; 2482 if (i->completed) 2483 continue; 2484 2485 if (!i->local) { 2486 /* 2487 * Our peer has sent a conflicting remote request; this 2488 * should not happen in a two-node setup. Wait for the 2489 * earlier peer request to complete. 2490 */ 2491 err = drbd_wait_misc(device, i); 2492 if (err) 2493 goto out; 2494 goto repeat; 2495 } 2496 2497 equal = i->sector == sector && i->size == size; 2498 if (resolve_conflicts) { 2499 /* 2500 * If the peer request is fully contained within the 2501 * overlapping request, it can be considered overwritten 2502 * and thus superseded; otherwise, it will be retried 2503 * once all overlapping requests have completed. 2504 */ 2505 bool superseded = i->sector <= sector && i->sector + 2506 (i->size >> 9) >= sector + (size >> 9); 2507 2508 if (!equal) 2509 drbd_alert(device, "Concurrent writes detected: " 2510 "local=%llus +%u, remote=%llus +%u, " 2511 "assuming %s came first\n", 2512 (unsigned long long)i->sector, i->size, 2513 (unsigned long long)sector, size, 2514 superseded ? "local" : "remote"); 2515 2516 peer_req->w.cb = superseded ? e_send_superseded : 2517 e_send_retry_write; 2518 list_add_tail(&peer_req->w.list, &device->done_ee); 2519 queue_work(connection->ack_sender, &peer_req->peer_device->send_acks_work); 2520 2521 err = -ENOENT; 2522 goto out; 2523 } else { 2524 struct drbd_request *req = 2525 container_of(i, struct drbd_request, i); 2526 2527 if (!equal) 2528 drbd_alert(device, "Concurrent writes detected: " 2529 "local=%llus +%u, remote=%llus +%u\n", 2530 (unsigned long long)i->sector, i->size, 2531 (unsigned long long)sector, size); 2532 2533 if (req->rq_state & RQ_LOCAL_PENDING || 2534 !(req->rq_state & RQ_POSTPONED)) { 2535 /* 2536 * Wait for the node with the discard flag to 2537 * decide if this request has been superseded 2538 * or needs to be retried. 2539 * Requests that have been superseded will 2540 * disappear from the write_requests tree. 2541 * 2542 * In addition, wait for the conflicting 2543 * request to finish locally before submitting 2544 * the conflicting peer request. 2545 */ 2546 err = drbd_wait_misc(device, &req->i); 2547 if (err) { 2548 _conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD); 2549 fail_postponed_requests(device, sector, size); 2550 goto out; 2551 } 2552 goto repeat; 2553 } 2554 /* 2555 * Remember to restart the conflicting requests after 2556 * the new peer request has completed. 2557 */ 2558 peer_req->flags |= EE_RESTART_REQUESTS; 2559 } 2560 } 2561 err = 0; 2562 2563 out: 2564 if (err) 2565 drbd_remove_epoch_entry_interval(device, peer_req); 2566 return err; 2567 } 2568 2569 /* mirrored write */ 2570 static int receive_Data(struct drbd_connection *connection, struct packet_info *pi) 2571 { 2572 struct drbd_peer_device *peer_device; 2573 struct drbd_device *device; 2574 struct net_conf *nc; 2575 sector_t sector; 2576 struct drbd_peer_request *peer_req; 2577 struct p_data *p = pi->data; 2578 u32 peer_seq = be32_to_cpu(p->seq_num); 2579 int op, op_flags; 2580 u32 dp_flags; 2581 int err, tp; 2582 2583 peer_device = conn_peer_device(connection, pi->vnr); 2584 if (!peer_device) 2585 return -EIO; 2586 device = peer_device->device; 2587 2588 if (!get_ldev(device)) { 2589 int err2; 2590 2591 err = wait_for_and_update_peer_seq(peer_device, peer_seq); 2592 drbd_send_ack_dp(peer_device, P_NEG_ACK, p, pi->size); 2593 atomic_inc(&connection->current_epoch->epoch_size); 2594 err2 = drbd_drain_block(peer_device, pi->size); 2595 if (!err) 2596 err = err2; 2597 return err; 2598 } 2599 2600 /* 2601 * Corresponding put_ldev done either below (on various errors), or in 2602 * drbd_peer_request_endio, if we successfully submit the data at the 2603 * end of this function. 2604 */ 2605 2606 sector = be64_to_cpu(p->sector); 2607 peer_req = read_in_block(peer_device, p->block_id, sector, pi); 2608 if (!peer_req) { 2609 put_ldev(device); 2610 return -EIO; 2611 } 2612 2613 peer_req->w.cb = e_end_block; 2614 peer_req->submit_jif = jiffies; 2615 peer_req->flags |= EE_APPLICATION; 2616 2617 dp_flags = be32_to_cpu(p->dp_flags); 2618 op = wire_flags_to_bio_op(dp_flags); 2619 op_flags = wire_flags_to_bio_flags(dp_flags); 2620 if (pi->cmd == P_TRIM) { 2621 D_ASSERT(peer_device, peer_req->i.size > 0); 2622 D_ASSERT(peer_device, op == REQ_OP_DISCARD); 2623 D_ASSERT(peer_device, peer_req->pages == NULL); 2624 /* need to play safe: an older DRBD sender 2625 * may mean zero-out while sending P_TRIM. */ 2626 if (0 == (connection->agreed_features & DRBD_FF_WZEROES)) 2627 peer_req->flags |= EE_ZEROOUT; 2628 } else if (pi->cmd == P_ZEROES) { 2629 D_ASSERT(peer_device, peer_req->i.size > 0); 2630 D_ASSERT(peer_device, op == REQ_OP_WRITE_ZEROES); 2631 D_ASSERT(peer_device, peer_req->pages == NULL); 2632 /* Do (not) pass down BLKDEV_ZERO_NOUNMAP? */ 2633 if (dp_flags & DP_DISCARD) 2634 peer_req->flags |= EE_TRIM; 2635 } else if (peer_req->pages == NULL) { 2636 D_ASSERT(device, peer_req->i.size == 0); 2637 D_ASSERT(device, dp_flags & DP_FLUSH); 2638 } 2639 2640 if (dp_flags & DP_MAY_SET_IN_SYNC) 2641 peer_req->flags |= EE_MAY_SET_IN_SYNC; 2642 2643 spin_lock(&connection->epoch_lock); 2644 peer_req->epoch = connection->current_epoch; 2645 atomic_inc(&peer_req->epoch->epoch_size); 2646 atomic_inc(&peer_req->epoch->active); 2647 spin_unlock(&connection->epoch_lock); 2648 2649 rcu_read_lock(); 2650 nc = rcu_dereference(peer_device->connection->net_conf); 2651 tp = nc->two_primaries; 2652 if (peer_device->connection->agreed_pro_version < 100) { 2653 switch (nc->wire_protocol) { 2654 case DRBD_PROT_C: 2655 dp_flags |= DP_SEND_WRITE_ACK; 2656 break; 2657 case DRBD_PROT_B: 2658 dp_flags |= DP_SEND_RECEIVE_ACK; 2659 break; 2660 } 2661 } 2662 rcu_read_unlock(); 2663 2664 if (dp_flags & DP_SEND_WRITE_ACK) { 2665 peer_req->flags |= EE_SEND_WRITE_ACK; 2666 inc_unacked(device); 2667 /* corresponding dec_unacked() in e_end_block() 2668 * respective _drbd_clear_done_ee */ 2669 } 2670 2671 if (dp_flags & DP_SEND_RECEIVE_ACK) { 2672 /* I really don't like it that the receiver thread 2673 * sends on the msock, but anyways */ 2674 drbd_send_ack(peer_device, P_RECV_ACK, peer_req); 2675 } 2676 2677 if (tp) { 2678 /* two primaries implies protocol C */ 2679 D_ASSERT(device, dp_flags & DP_SEND_WRITE_ACK); 2680 peer_req->flags |= EE_IN_INTERVAL_TREE; 2681 err = wait_for_and_update_peer_seq(peer_device, peer_seq); 2682 if (err) 2683 goto out_interrupted; 2684 spin_lock_irq(&device->resource->req_lock); 2685 err = handle_write_conflicts(device, peer_req); 2686 if (err) { 2687 spin_unlock_irq(&device->resource->req_lock); 2688 if (err == -ENOENT) { 2689 put_ldev(device); 2690 return 0; 2691 } 2692 goto out_interrupted; 2693 } 2694 } else { 2695 update_peer_seq(peer_device, peer_seq); 2696 spin_lock_irq(&device->resource->req_lock); 2697 } 2698 /* TRIM and WRITE_SAME are processed synchronously, 2699 * we wait for all pending requests, respectively wait for 2700 * active_ee to become empty in drbd_submit_peer_request(); 2701 * better not add ourselves here. */ 2702 if ((peer_req->flags & (EE_TRIM|EE_WRITE_SAME|EE_ZEROOUT)) == 0) 2703 list_add_tail(&peer_req->w.list, &device->active_ee); 2704 spin_unlock_irq(&device->resource->req_lock); 2705 2706 if (device->state.conn == C_SYNC_TARGET) 2707 wait_event(device->ee_wait, !overlapping_resync_write(device, peer_req)); 2708 2709 if (device->state.pdsk < D_INCONSISTENT) { 2710 /* In case we have the only disk of the cluster, */ 2711 drbd_set_out_of_sync(device, peer_req->i.sector, peer_req->i.size); 2712 peer_req->flags &= ~EE_MAY_SET_IN_SYNC; 2713 drbd_al_begin_io(device, &peer_req->i); 2714 peer_req->flags |= EE_CALL_AL_COMPLETE_IO; 2715 } 2716 2717 err = drbd_submit_peer_request(device, peer_req, op, op_flags, 2718 DRBD_FAULT_DT_WR); 2719 if (!err) 2720 return 0; 2721 2722 /* don't care for the reason here */ 2723 drbd_err(device, "submit failed, triggering re-connect\n"); 2724 spin_lock_irq(&device->resource->req_lock); 2725 list_del(&peer_req->w.list); 2726 drbd_remove_epoch_entry_interval(device, peer_req); 2727 spin_unlock_irq(&device->resource->req_lock); 2728 if (peer_req->flags & EE_CALL_AL_COMPLETE_IO) { 2729 peer_req->flags &= ~EE_CALL_AL_COMPLETE_IO; 2730 drbd_al_complete_io(device, &peer_req->i); 2731 } 2732 2733 out_interrupted: 2734 drbd_may_finish_epoch(connection, peer_req->epoch, EV_PUT | EV_CLEANUP); 2735 put_ldev(device); 2736 drbd_free_peer_req(device, peer_req); 2737 return err; 2738 } 2739 2740 /* We may throttle resync, if the lower device seems to be busy, 2741 * and current sync rate is above c_min_rate. 2742 * 2743 * To decide whether or not the lower device is busy, we use a scheme similar 2744 * to MD RAID is_mddev_idle(): if the partition stats reveal "significant" 2745 * (more than 64 sectors) of activity we cannot account for with our own resync 2746 * activity, it obviously is "busy". 2747 * 2748 * The current sync rate used here uses only the most recent two step marks, 2749 * to have a short time average so we can react faster. 2750 */ 2751 bool drbd_rs_should_slow_down(struct drbd_device *device, sector_t sector, 2752 bool throttle_if_app_is_waiting) 2753 { 2754 struct lc_element *tmp; 2755 bool throttle = drbd_rs_c_min_rate_throttle(device); 2756 2757 if (!throttle || throttle_if_app_is_waiting) 2758 return throttle; 2759 2760 spin_lock_irq(&device->al_lock); 2761 tmp = lc_find(device->resync, BM_SECT_TO_EXT(sector)); 2762 if (tmp) { 2763 struct bm_extent *bm_ext = lc_entry(tmp, struct bm_extent, lce); 2764 if (test_bit(BME_PRIORITY, &bm_ext->flags)) 2765 throttle = false; 2766 /* Do not slow down if app IO is already waiting for this extent, 2767 * and our progress is necessary for application IO to complete. */ 2768 } 2769 spin_unlock_irq(&device->al_lock); 2770 2771 return throttle; 2772 } 2773 2774 bool drbd_rs_c_min_rate_throttle(struct drbd_device *device) 2775 { 2776 struct gendisk *disk = device->ldev->backing_bdev->bd_disk; 2777 unsigned long db, dt, dbdt; 2778 unsigned int c_min_rate; 2779 int curr_events; 2780 2781 rcu_read_lock(); 2782 c_min_rate = rcu_dereference(device->ldev->disk_conf)->c_min_rate; 2783 rcu_read_unlock(); 2784 2785 /* feature disabled? */ 2786 if (c_min_rate == 0) 2787 return false; 2788 2789 curr_events = (int)part_stat_read_accum(disk->part0, sectors) - 2790 atomic_read(&device->rs_sect_ev); 2791 2792 if (atomic_read(&device->ap_actlog_cnt) 2793 || curr_events - device->rs_last_events > 64) { 2794 unsigned long rs_left; 2795 int i; 2796 2797 device->rs_last_events = curr_events; 2798 2799 /* sync speed average over the last 2*DRBD_SYNC_MARK_STEP, 2800 * approx. */ 2801 i = (device->rs_last_mark + DRBD_SYNC_MARKS-1) % DRBD_SYNC_MARKS; 2802 2803 if (device->state.conn == C_VERIFY_S || device->state.conn == C_VERIFY_T) 2804 rs_left = device->ov_left; 2805 else 2806 rs_left = drbd_bm_total_weight(device) - device->rs_failed; 2807 2808 dt = ((long)jiffies - (long)device->rs_mark_time[i]) / HZ; 2809 if (!dt) 2810 dt++; 2811 db = device->rs_mark_left[i] - rs_left; 2812 dbdt = Bit2KB(db/dt); 2813 2814 if (dbdt > c_min_rate) 2815 return true; 2816 } 2817 return false; 2818 } 2819 2820 static int receive_DataRequest(struct drbd_connection *connection, struct packet_info *pi) 2821 { 2822 struct drbd_peer_device *peer_device; 2823 struct drbd_device *device; 2824 sector_t sector; 2825 sector_t capacity; 2826 struct drbd_peer_request *peer_req; 2827 struct digest_info *di = NULL; 2828 int size, verb; 2829 unsigned int fault_type; 2830 struct p_block_req *p = pi->data; 2831 2832 peer_device = conn_peer_device(connection, pi->vnr); 2833 if (!peer_device) 2834 return -EIO; 2835 device = peer_device->device; 2836 capacity = get_capacity(device->vdisk); 2837 2838 sector = be64_to_cpu(p->sector); 2839 size = be32_to_cpu(p->blksize); 2840 2841 if (size <= 0 || !IS_ALIGNED(size, 512) || size > DRBD_MAX_BIO_SIZE) { 2842 drbd_err(device, "%s:%d: sector: %llus, size: %u\n", __FILE__, __LINE__, 2843 (unsigned long long)sector, size); 2844 return -EINVAL; 2845 } 2846 if (sector + (size>>9) > capacity) { 2847 drbd_err(device, "%s:%d: sector: %llus, size: %u\n", __FILE__, __LINE__, 2848 (unsigned long long)sector, size); 2849 return -EINVAL; 2850 } 2851 2852 if (!get_ldev_if_state(device, D_UP_TO_DATE)) { 2853 verb = 1; 2854 switch (pi->cmd) { 2855 case P_DATA_REQUEST: 2856 drbd_send_ack_rp(peer_device, P_NEG_DREPLY, p); 2857 break; 2858 case P_RS_THIN_REQ: 2859 case P_RS_DATA_REQUEST: 2860 case P_CSUM_RS_REQUEST: 2861 case P_OV_REQUEST: 2862 drbd_send_ack_rp(peer_device, P_NEG_RS_DREPLY , p); 2863 break; 2864 case P_OV_REPLY: 2865 verb = 0; 2866 dec_rs_pending(device); 2867 drbd_send_ack_ex(peer_device, P_OV_RESULT, sector, size, ID_IN_SYNC); 2868 break; 2869 default: 2870 BUG(); 2871 } 2872 if (verb && __ratelimit(&drbd_ratelimit_state)) 2873 drbd_err(device, "Can not satisfy peer's read request, " 2874 "no local data.\n"); 2875 2876 /* drain possibly payload */ 2877 return drbd_drain_block(peer_device, pi->size); 2878 } 2879 2880 /* GFP_NOIO, because we must not cause arbitrary write-out: in a DRBD 2881 * "criss-cross" setup, that might cause write-out on some other DRBD, 2882 * which in turn might block on the other node at this very place. */ 2883 peer_req = drbd_alloc_peer_req(peer_device, p->block_id, sector, size, 2884 size, GFP_NOIO); 2885 if (!peer_req) { 2886 put_ldev(device); 2887 return -ENOMEM; 2888 } 2889 2890 switch (pi->cmd) { 2891 case P_DATA_REQUEST: 2892 peer_req->w.cb = w_e_end_data_req; 2893 fault_type = DRBD_FAULT_DT_RD; 2894 /* application IO, don't drbd_rs_begin_io */ 2895 peer_req->flags |= EE_APPLICATION; 2896 goto submit; 2897 2898 case P_RS_THIN_REQ: 2899 /* If at some point in the future we have a smart way to 2900 find out if this data block is completely deallocated, 2901 then we would do something smarter here than reading 2902 the block... */ 2903 peer_req->flags |= EE_RS_THIN_REQ; 2904 fallthrough; 2905 case P_RS_DATA_REQUEST: 2906 peer_req->w.cb = w_e_end_rsdata_req; 2907 fault_type = DRBD_FAULT_RS_RD; 2908 /* used in the sector offset progress display */ 2909 device->bm_resync_fo = BM_SECT_TO_BIT(sector); 2910 break; 2911 2912 case P_OV_REPLY: 2913 case P_CSUM_RS_REQUEST: 2914 fault_type = DRBD_FAULT_RS_RD; 2915 di = kmalloc(sizeof(*di) + pi->size, GFP_NOIO); 2916 if (!di) 2917 goto out_free_e; 2918 2919 di->digest_size = pi->size; 2920 di->digest = (((char *)di)+sizeof(struct digest_info)); 2921 2922 peer_req->digest = di; 2923 peer_req->flags |= EE_HAS_DIGEST; 2924 2925 if (drbd_recv_all(peer_device->connection, di->digest, pi->size)) 2926 goto out_free_e; 2927 2928 if (pi->cmd == P_CSUM_RS_REQUEST) { 2929 D_ASSERT(device, peer_device->connection->agreed_pro_version >= 89); 2930 peer_req->w.cb = w_e_end_csum_rs_req; 2931 /* used in the sector offset progress display */ 2932 device->bm_resync_fo = BM_SECT_TO_BIT(sector); 2933 /* remember to report stats in drbd_resync_finished */ 2934 device->use_csums = true; 2935 } else if (pi->cmd == P_OV_REPLY) { 2936 /* track progress, we may need to throttle */ 2937 atomic_add(size >> 9, &device->rs_sect_in); 2938 peer_req->w.cb = w_e_end_ov_reply; 2939 dec_rs_pending(device); 2940 /* drbd_rs_begin_io done when we sent this request, 2941 * but accounting still needs to be done. */ 2942 goto submit_for_resync; 2943 } 2944 break; 2945 2946 case P_OV_REQUEST: 2947 if (device->ov_start_sector == ~(sector_t)0 && 2948 peer_device->connection->agreed_pro_version >= 90) { 2949 unsigned long now = jiffies; 2950 int i; 2951 device->ov_start_sector = sector; 2952 device->ov_position = sector; 2953 device->ov_left = drbd_bm_bits(device) - BM_SECT_TO_BIT(sector); 2954 device->rs_total = device->ov_left; 2955 for (i = 0; i < DRBD_SYNC_MARKS; i++) { 2956 device->rs_mark_left[i] = device->ov_left; 2957 device->rs_mark_time[i] = now; 2958 } 2959 drbd_info(device, "Online Verify start sector: %llu\n", 2960 (unsigned long long)sector); 2961 } 2962 peer_req->w.cb = w_e_end_ov_req; 2963 fault_type = DRBD_FAULT_RS_RD; 2964 break; 2965 2966 default: 2967 BUG(); 2968 } 2969 2970 /* Throttle, drbd_rs_begin_io and submit should become asynchronous 2971 * wrt the receiver, but it is not as straightforward as it may seem. 2972 * Various places in the resync start and stop logic assume resync 2973 * requests are processed in order, requeuing this on the worker thread 2974 * introduces a bunch of new code for synchronization between threads. 2975 * 2976 * Unlimited throttling before drbd_rs_begin_io may stall the resync 2977 * "forever", throttling after drbd_rs_begin_io will lock that extent 2978 * for application writes for the same time. For now, just throttle 2979 * here, where the rest of the code expects the receiver to sleep for 2980 * a while, anyways. 2981 */ 2982 2983 /* Throttle before drbd_rs_begin_io, as that locks out application IO; 2984 * this defers syncer requests for some time, before letting at least 2985 * on request through. The resync controller on the receiving side 2986 * will adapt to the incoming rate accordingly. 2987 * 2988 * We cannot throttle here if remote is Primary/SyncTarget: 2989 * we would also throttle its application reads. 2990 * In that case, throttling is done on the SyncTarget only. 2991 */ 2992 2993 /* Even though this may be a resync request, we do add to "read_ee"; 2994 * "sync_ee" is only used for resync WRITEs. 2995 * Add to list early, so debugfs can find this request 2996 * even if we have to sleep below. */ 2997 spin_lock_irq(&device->resource->req_lock); 2998 list_add_tail(&peer_req->w.list, &device->read_ee); 2999 spin_unlock_irq(&device->resource->req_lock); 3000 3001 update_receiver_timing_details(connection, drbd_rs_should_slow_down); 3002 if (device->state.peer != R_PRIMARY 3003 && drbd_rs_should_slow_down(device, sector, false)) 3004 schedule_timeout_uninterruptible(HZ/10); 3005 update_receiver_timing_details(connection, drbd_rs_begin_io); 3006 if (drbd_rs_begin_io(device, sector)) 3007 goto out_free_e; 3008 3009 submit_for_resync: 3010 atomic_add(size >> 9, &device->rs_sect_ev); 3011 3012 submit: 3013 update_receiver_timing_details(connection, drbd_submit_peer_request); 3014 inc_unacked(device); 3015 if (drbd_submit_peer_request(device, peer_req, REQ_OP_READ, 0, 3016 fault_type) == 0) 3017 return 0; 3018 3019 /* don't care for the reason here */ 3020 drbd_err(device, "submit failed, triggering re-connect\n"); 3021 3022 out_free_e: 3023 spin_lock_irq(&device->resource->req_lock); 3024 list_del(&peer_req->w.list); 3025 spin_unlock_irq(&device->resource->req_lock); 3026 /* no drbd_rs_complete_io(), we are dropping the connection anyways */ 3027 3028 put_ldev(device); 3029 drbd_free_peer_req(device, peer_req); 3030 return -EIO; 3031 } 3032 3033 /* 3034 * drbd_asb_recover_0p - Recover after split-brain with no remaining primaries 3035 */ 3036 static int drbd_asb_recover_0p(struct drbd_peer_device *peer_device) __must_hold(local) 3037 { 3038 struct drbd_device *device = peer_device->device; 3039 int self, peer, rv = -100; 3040 unsigned long ch_self, ch_peer; 3041 enum drbd_after_sb_p after_sb_0p; 3042 3043 self = device->ldev->md.uuid[UI_BITMAP] & 1; 3044 peer = device->p_uuid[UI_BITMAP] & 1; 3045 3046 ch_peer = device->p_uuid[UI_SIZE]; 3047 ch_self = device->comm_bm_set; 3048 3049 rcu_read_lock(); 3050 after_sb_0p = rcu_dereference(peer_device->connection->net_conf)->after_sb_0p; 3051 rcu_read_unlock(); 3052 switch (after_sb_0p) { 3053 case ASB_CONSENSUS: 3054 case ASB_DISCARD_SECONDARY: 3055 case ASB_CALL_HELPER: 3056 case ASB_VIOLENTLY: 3057 drbd_err(device, "Configuration error.\n"); 3058 break; 3059 case ASB_DISCONNECT: 3060 break; 3061 case ASB_DISCARD_YOUNGER_PRI: 3062 if (self == 0 && peer == 1) { 3063 rv = -1; 3064 break; 3065 } 3066 if (self == 1 && peer == 0) { 3067 rv = 1; 3068 break; 3069 } 3070 fallthrough; /* to one of the other strategies */ 3071 case ASB_DISCARD_OLDER_PRI: 3072 if (self == 0 && peer == 1) { 3073 rv = 1; 3074 break; 3075 } 3076 if (self == 1 && peer == 0) { 3077 rv = -1; 3078 break; 3079 } 3080 /* Else fall through to one of the other strategies... */ 3081 drbd_warn(device, "Discard younger/older primary did not find a decision\n" 3082 "Using discard-least-changes instead\n"); 3083 fallthrough; 3084 case ASB_DISCARD_ZERO_CHG: 3085 if (ch_peer == 0 && ch_self == 0) { 3086 rv = test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags) 3087 ? -1 : 1; 3088 break; 3089 } else { 3090 if (ch_peer == 0) { rv = 1; break; } 3091 if (ch_self == 0) { rv = -1; break; } 3092 } 3093 if (after_sb_0p == ASB_DISCARD_ZERO_CHG) 3094 break; 3095 fallthrough; 3096 case ASB_DISCARD_LEAST_CHG: 3097 if (ch_self < ch_peer) 3098 rv = -1; 3099 else if (ch_self > ch_peer) 3100 rv = 1; 3101 else /* ( ch_self == ch_peer ) */ 3102 /* Well, then use something else. */ 3103 rv = test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags) 3104 ? -1 : 1; 3105 break; 3106 case ASB_DISCARD_LOCAL: 3107 rv = -1; 3108 break; 3109 case ASB_DISCARD_REMOTE: 3110 rv = 1; 3111 } 3112 3113 return rv; 3114 } 3115 3116 /* 3117 * drbd_asb_recover_1p - Recover after split-brain with one remaining primary 3118 */ 3119 static int drbd_asb_recover_1p(struct drbd_peer_device *peer_device) __must_hold(local) 3120 { 3121 struct drbd_device *device = peer_device->device; 3122 int hg, rv = -100; 3123 enum drbd_after_sb_p after_sb_1p; 3124 3125 rcu_read_lock(); 3126 after_sb_1p = rcu_dereference(peer_device->connection->net_conf)->after_sb_1p; 3127 rcu_read_unlock(); 3128 switch (after_sb_1p) { 3129 case ASB_DISCARD_YOUNGER_PRI: 3130 case ASB_DISCARD_OLDER_PRI: 3131 case ASB_DISCARD_LEAST_CHG: 3132 case ASB_DISCARD_LOCAL: 3133 case ASB_DISCARD_REMOTE: 3134 case ASB_DISCARD_ZERO_CHG: 3135 drbd_err(device, "Configuration error.\n"); 3136 break; 3137 case ASB_DISCONNECT: 3138 break; 3139 case ASB_CONSENSUS: 3140 hg = drbd_asb_recover_0p(peer_device); 3141 if (hg == -1 && device->state.role == R_SECONDARY) 3142 rv = hg; 3143 if (hg == 1 && device->state.role == R_PRIMARY) 3144 rv = hg; 3145 break; 3146 case ASB_VIOLENTLY: 3147 rv = drbd_asb_recover_0p(peer_device); 3148 break; 3149 case ASB_DISCARD_SECONDARY: 3150 return device->state.role == R_PRIMARY ? 1 : -1; 3151 case ASB_CALL_HELPER: 3152 hg = drbd_asb_recover_0p(peer_device); 3153 if (hg == -1 && device->state.role == R_PRIMARY) { 3154 enum drbd_state_rv rv2; 3155 3156 /* drbd_change_state() does not sleep while in SS_IN_TRANSIENT_STATE, 3157 * we might be here in C_WF_REPORT_PARAMS which is transient. 3158 * we do not need to wait for the after state change work either. */ 3159 rv2 = drbd_change_state(device, CS_VERBOSE, NS(role, R_SECONDARY)); 3160 if (rv2 != SS_SUCCESS) { 3161 drbd_khelper(device, "pri-lost-after-sb"); 3162 } else { 3163 drbd_warn(device, "Successfully gave up primary role.\n"); 3164 rv = hg; 3165 } 3166 } else 3167 rv = hg; 3168 } 3169 3170 return rv; 3171 } 3172 3173 /* 3174 * drbd_asb_recover_2p - Recover after split-brain with two remaining primaries 3175 */ 3176 static int drbd_asb_recover_2p(struct drbd_peer_device *peer_device) __must_hold(local) 3177 { 3178 struct drbd_device *device = peer_device->device; 3179 int hg, rv = -100; 3180 enum drbd_after_sb_p after_sb_2p; 3181 3182 rcu_read_lock(); 3183 after_sb_2p = rcu_dereference(peer_device->connection->net_conf)->after_sb_2p; 3184 rcu_read_unlock(); 3185 switch (after_sb_2p) { 3186 case ASB_DISCARD_YOUNGER_PRI: 3187 case ASB_DISCARD_OLDER_PRI: 3188 case ASB_DISCARD_LEAST_CHG: 3189 case ASB_DISCARD_LOCAL: 3190 case ASB_DISCARD_REMOTE: 3191 case ASB_CONSENSUS: 3192 case ASB_DISCARD_SECONDARY: 3193 case ASB_DISCARD_ZERO_CHG: 3194 drbd_err(device, "Configuration error.\n"); 3195 break; 3196 case ASB_VIOLENTLY: 3197 rv = drbd_asb_recover_0p(peer_device); 3198 break; 3199 case ASB_DISCONNECT: 3200 break; 3201 case ASB_CALL_HELPER: 3202 hg = drbd_asb_recover_0p(peer_device); 3203 if (hg == -1) { 3204 enum drbd_state_rv rv2; 3205 3206 /* drbd_change_state() does not sleep while in SS_IN_TRANSIENT_STATE, 3207 * we might be here in C_WF_REPORT_PARAMS which is transient. 3208 * we do not need to wait for the after state change work either. */ 3209 rv2 = drbd_change_state(device, CS_VERBOSE, NS(role, R_SECONDARY)); 3210 if (rv2 != SS_SUCCESS) { 3211 drbd_khelper(device, "pri-lost-after-sb"); 3212 } else { 3213 drbd_warn(device, "Successfully gave up primary role.\n"); 3214 rv = hg; 3215 } 3216 } else 3217 rv = hg; 3218 } 3219 3220 return rv; 3221 } 3222 3223 static void drbd_uuid_dump(struct drbd_device *device, char *text, u64 *uuid, 3224 u64 bits, u64 flags) 3225 { 3226 if (!uuid) { 3227 drbd_info(device, "%s uuid info vanished while I was looking!\n", text); 3228 return; 3229 } 3230 drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX bits:%llu flags:%llX\n", 3231 text, 3232 (unsigned long long)uuid[UI_CURRENT], 3233 (unsigned long long)uuid[UI_BITMAP], 3234 (unsigned long long)uuid[UI_HISTORY_START], 3235 (unsigned long long)uuid[UI_HISTORY_END], 3236 (unsigned long long)bits, 3237 (unsigned long long)flags); 3238 } 3239 3240 /* 3241 100 after split brain try auto recover 3242 2 C_SYNC_SOURCE set BitMap 3243 1 C_SYNC_SOURCE use BitMap 3244 0 no Sync 3245 -1 C_SYNC_TARGET use BitMap 3246 -2 C_SYNC_TARGET set BitMap 3247 -100 after split brain, disconnect 3248 -1000 unrelated data 3249 -1091 requires proto 91 3250 -1096 requires proto 96 3251 */ 3252 3253 static int drbd_uuid_compare(struct drbd_device *const device, enum drbd_role const peer_role, int *rule_nr) __must_hold(local) 3254 { 3255 struct drbd_peer_device *const peer_device = first_peer_device(device); 3256 struct drbd_connection *const connection = peer_device ? peer_device->connection : NULL; 3257 u64 self, peer; 3258 int i, j; 3259 3260 self = device->ldev->md.uuid[UI_CURRENT] & ~((u64)1); 3261 peer = device->p_uuid[UI_CURRENT] & ~((u64)1); 3262 3263 *rule_nr = 10; 3264 if (self == UUID_JUST_CREATED && peer == UUID_JUST_CREATED) 3265 return 0; 3266 3267 *rule_nr = 20; 3268 if ((self == UUID_JUST_CREATED || self == (u64)0) && 3269 peer != UUID_JUST_CREATED) 3270 return -2; 3271 3272 *rule_nr = 30; 3273 if (self != UUID_JUST_CREATED && 3274 (peer == UUID_JUST_CREATED || peer == (u64)0)) 3275 return 2; 3276 3277 if (self == peer) { 3278 int rct, dc; /* roles at crash time */ 3279 3280 if (device->p_uuid[UI_BITMAP] == (u64)0 && device->ldev->md.uuid[UI_BITMAP] != (u64)0) { 3281 3282 if (connection->agreed_pro_version < 91) 3283 return -1091; 3284 3285 if ((device->ldev->md.uuid[UI_BITMAP] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START] & ~((u64)1)) && 3286 (device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START + 1] & ~((u64)1))) { 3287 drbd_info(device, "was SyncSource, missed the resync finished event, corrected myself:\n"); 3288 drbd_uuid_move_history(device); 3289 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP]; 3290 device->ldev->md.uuid[UI_BITMAP] = 0; 3291 3292 drbd_uuid_dump(device, "self", device->ldev->md.uuid, 3293 device->state.disk >= D_NEGOTIATING ? drbd_bm_total_weight(device) : 0, 0); 3294 *rule_nr = 34; 3295 } else { 3296 drbd_info(device, "was SyncSource (peer failed to write sync_uuid)\n"); 3297 *rule_nr = 36; 3298 } 3299 3300 return 1; 3301 } 3302 3303 if (device->ldev->md.uuid[UI_BITMAP] == (u64)0 && device->p_uuid[UI_BITMAP] != (u64)0) { 3304 3305 if (connection->agreed_pro_version < 91) 3306 return -1091; 3307 3308 if ((device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == (device->p_uuid[UI_BITMAP] & ~((u64)1)) && 3309 (device->ldev->md.uuid[UI_HISTORY_START + 1] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START] & ~((u64)1))) { 3310 drbd_info(device, "was SyncTarget, peer missed the resync finished event, corrected peer:\n"); 3311 3312 device->p_uuid[UI_HISTORY_START + 1] = device->p_uuid[UI_HISTORY_START]; 3313 device->p_uuid[UI_HISTORY_START] = device->p_uuid[UI_BITMAP]; 3314 device->p_uuid[UI_BITMAP] = 0UL; 3315 3316 drbd_uuid_dump(device, "peer", device->p_uuid, device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]); 3317 *rule_nr = 35; 3318 } else { 3319 drbd_info(device, "was SyncTarget (failed to write sync_uuid)\n"); 3320 *rule_nr = 37; 3321 } 3322 3323 return -1; 3324 } 3325 3326 /* Common power [off|failure] */ 3327 rct = (test_bit(CRASHED_PRIMARY, &device->flags) ? 1 : 0) + 3328 (device->p_uuid[UI_FLAGS] & 2); 3329 /* lowest bit is set when we were primary, 3330 * next bit (weight 2) is set when peer was primary */ 3331 *rule_nr = 40; 3332 3333 /* Neither has the "crashed primary" flag set, 3334 * only a replication link hickup. */ 3335 if (rct == 0) 3336 return 0; 3337 3338 /* Current UUID equal and no bitmap uuid; does not necessarily 3339 * mean this was a "simultaneous hard crash", maybe IO was 3340 * frozen, so no UUID-bump happened. 3341 * This is a protocol change, overload DRBD_FF_WSAME as flag 3342 * for "new-enough" peer DRBD version. */ 3343 if (device->state.role == R_PRIMARY || peer_role == R_PRIMARY) { 3344 *rule_nr = 41; 3345 if (!(connection->agreed_features & DRBD_FF_WSAME)) { 3346 drbd_warn(peer_device, "Equivalent unrotated UUIDs, but current primary present.\n"); 3347 return -(0x10000 | PRO_VERSION_MAX | (DRBD_FF_WSAME << 8)); 3348 } 3349 if (device->state.role == R_PRIMARY && peer_role == R_PRIMARY) { 3350 /* At least one has the "crashed primary" bit set, 3351 * both are primary now, but neither has rotated its UUIDs? 3352 * "Can not happen." */ 3353 drbd_err(peer_device, "Equivalent unrotated UUIDs, but both are primary. Can not resolve this.\n"); 3354 return -100; 3355 } 3356 if (device->state.role == R_PRIMARY) 3357 return 1; 3358 return -1; 3359 } 3360 3361 /* Both are secondary. 3362 * Really looks like recovery from simultaneous hard crash. 3363 * Check which had been primary before, and arbitrate. */ 3364 switch (rct) { 3365 case 0: /* !self_pri && !peer_pri */ return 0; /* already handled */ 3366 case 1: /* self_pri && !peer_pri */ return 1; 3367 case 2: /* !self_pri && peer_pri */ return -1; 3368 case 3: /* self_pri && peer_pri */ 3369 dc = test_bit(RESOLVE_CONFLICTS, &connection->flags); 3370 return dc ? -1 : 1; 3371 } 3372 } 3373 3374 *rule_nr = 50; 3375 peer = device->p_uuid[UI_BITMAP] & ~((u64)1); 3376 if (self == peer) 3377 return -1; 3378 3379 *rule_nr = 51; 3380 peer = device->p_uuid[UI_HISTORY_START] & ~((u64)1); 3381 if (self == peer) { 3382 if (connection->agreed_pro_version < 96 ? 3383 (device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == 3384 (device->p_uuid[UI_HISTORY_START + 1] & ~((u64)1)) : 3385 peer + UUID_NEW_BM_OFFSET == (device->p_uuid[UI_BITMAP] & ~((u64)1))) { 3386 /* The last P_SYNC_UUID did not get though. Undo the last start of 3387 resync as sync source modifications of the peer's UUIDs. */ 3388 3389 if (connection->agreed_pro_version < 91) 3390 return -1091; 3391 3392 device->p_uuid[UI_BITMAP] = device->p_uuid[UI_HISTORY_START]; 3393 device->p_uuid[UI_HISTORY_START] = device->p_uuid[UI_HISTORY_START + 1]; 3394 3395 drbd_info(device, "Lost last syncUUID packet, corrected:\n"); 3396 drbd_uuid_dump(device, "peer", device->p_uuid, device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]); 3397 3398 return -1; 3399 } 3400 } 3401 3402 *rule_nr = 60; 3403 self = device->ldev->md.uuid[UI_CURRENT] & ~((u64)1); 3404 for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) { 3405 peer = device->p_uuid[i] & ~((u64)1); 3406 if (self == peer) 3407 return -2; 3408 } 3409 3410 *rule_nr = 70; 3411 self = device->ldev->md.uuid[UI_BITMAP] & ~((u64)1); 3412 peer = device->p_uuid[UI_CURRENT] & ~((u64)1); 3413 if (self == peer) 3414 return 1; 3415 3416 *rule_nr = 71; 3417 self = device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1); 3418 if (self == peer) { 3419 if (connection->agreed_pro_version < 96 ? 3420 (device->ldev->md.uuid[UI_HISTORY_START + 1] & ~((u64)1)) == 3421 (device->p_uuid[UI_HISTORY_START] & ~((u64)1)) : 3422 self + UUID_NEW_BM_OFFSET == (device->ldev->md.uuid[UI_BITMAP] & ~((u64)1))) { 3423 /* The last P_SYNC_UUID did not get though. Undo the last start of 3424 resync as sync source modifications of our UUIDs. */ 3425 3426 if (connection->agreed_pro_version < 91) 3427 return -1091; 3428 3429 __drbd_uuid_set(device, UI_BITMAP, device->ldev->md.uuid[UI_HISTORY_START]); 3430 __drbd_uuid_set(device, UI_HISTORY_START, device->ldev->md.uuid[UI_HISTORY_START + 1]); 3431 3432 drbd_info(device, "Last syncUUID did not get through, corrected:\n"); 3433 drbd_uuid_dump(device, "self", device->ldev->md.uuid, 3434 device->state.disk >= D_NEGOTIATING ? drbd_bm_total_weight(device) : 0, 0); 3435 3436 return 1; 3437 } 3438 } 3439 3440 3441 *rule_nr = 80; 3442 peer = device->p_uuid[UI_CURRENT] & ~((u64)1); 3443 for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) { 3444 self = device->ldev->md.uuid[i] & ~((u64)1); 3445 if (self == peer) 3446 return 2; 3447 } 3448 3449 *rule_nr = 90; 3450 self = device->ldev->md.uuid[UI_BITMAP] & ~((u64)1); 3451 peer = device->p_uuid[UI_BITMAP] & ~((u64)1); 3452 if (self == peer && self != ((u64)0)) 3453 return 100; 3454 3455 *rule_nr = 100; 3456 for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) { 3457 self = device->ldev->md.uuid[i] & ~((u64)1); 3458 for (j = UI_HISTORY_START; j <= UI_HISTORY_END; j++) { 3459 peer = device->p_uuid[j] & ~((u64)1); 3460 if (self == peer) 3461 return -100; 3462 } 3463 } 3464 3465 return -1000; 3466 } 3467 3468 /* drbd_sync_handshake() returns the new conn state on success, or 3469 CONN_MASK (-1) on failure. 3470 */ 3471 static enum drbd_conns drbd_sync_handshake(struct drbd_peer_device *peer_device, 3472 enum drbd_role peer_role, 3473 enum drbd_disk_state peer_disk) __must_hold(local) 3474 { 3475 struct drbd_device *device = peer_device->device; 3476 enum drbd_conns rv = C_MASK; 3477 enum drbd_disk_state mydisk; 3478 struct net_conf *nc; 3479 int hg, rule_nr, rr_conflict, tentative, always_asbp; 3480 3481 mydisk = device->state.disk; 3482 if (mydisk == D_NEGOTIATING) 3483 mydisk = device->new_state_tmp.disk; 3484 3485 drbd_info(device, "drbd_sync_handshake:\n"); 3486 3487 spin_lock_irq(&device->ldev->md.uuid_lock); 3488 drbd_uuid_dump(device, "self", device->ldev->md.uuid, device->comm_bm_set, 0); 3489 drbd_uuid_dump(device, "peer", device->p_uuid, 3490 device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]); 3491 3492 hg = drbd_uuid_compare(device, peer_role, &rule_nr); 3493 spin_unlock_irq(&device->ldev->md.uuid_lock); 3494 3495 drbd_info(device, "uuid_compare()=%d by rule %d\n", hg, rule_nr); 3496 3497 if (hg == -1000) { 3498 drbd_alert(device, "Unrelated data, aborting!\n"); 3499 return C_MASK; 3500 } 3501 if (hg < -0x10000) { 3502 int proto, fflags; 3503 hg = -hg; 3504 proto = hg & 0xff; 3505 fflags = (hg >> 8) & 0xff; 3506 drbd_alert(device, "To resolve this both sides have to support at least protocol %d and feature flags 0x%x\n", 3507 proto, fflags); 3508 return C_MASK; 3509 } 3510 if (hg < -1000) { 3511 drbd_alert(device, "To resolve this both sides have to support at least protocol %d\n", -hg - 1000); 3512 return C_MASK; 3513 } 3514 3515 if ((mydisk == D_INCONSISTENT && peer_disk > D_INCONSISTENT) || 3516 (peer_disk == D_INCONSISTENT && mydisk > D_INCONSISTENT)) { 3517 int f = (hg == -100) || abs(hg) == 2; 3518 hg = mydisk > D_INCONSISTENT ? 1 : -1; 3519 if (f) 3520 hg = hg*2; 3521 drbd_info(device, "Becoming sync %s due to disk states.\n", 3522 hg > 0 ? "source" : "target"); 3523 } 3524 3525 if (abs(hg) == 100) 3526 drbd_khelper(device, "initial-split-brain"); 3527 3528 rcu_read_lock(); 3529 nc = rcu_dereference(peer_device->connection->net_conf); 3530 always_asbp = nc->always_asbp; 3531 rr_conflict = nc->rr_conflict; 3532 tentative = nc->tentative; 3533 rcu_read_unlock(); 3534 3535 if (hg == 100 || (hg == -100 && always_asbp)) { 3536 int pcount = (device->state.role == R_PRIMARY) 3537 + (peer_role == R_PRIMARY); 3538 int forced = (hg == -100); 3539 3540 switch (pcount) { 3541 case 0: 3542 hg = drbd_asb_recover_0p(peer_device); 3543 break; 3544 case 1: 3545 hg = drbd_asb_recover_1p(peer_device); 3546 break; 3547 case 2: 3548 hg = drbd_asb_recover_2p(peer_device); 3549 break; 3550 } 3551 if (abs(hg) < 100) { 3552 drbd_warn(device, "Split-Brain detected, %d primaries, " 3553 "automatically solved. Sync from %s node\n", 3554 pcount, (hg < 0) ? "peer" : "this"); 3555 if (forced) { 3556 drbd_warn(device, "Doing a full sync, since" 3557 " UUIDs where ambiguous.\n"); 3558 hg = hg*2; 3559 } 3560 } 3561 } 3562 3563 if (hg == -100) { 3564 if (test_bit(DISCARD_MY_DATA, &device->flags) && !(device->p_uuid[UI_FLAGS]&1)) 3565 hg = -1; 3566 if (!test_bit(DISCARD_MY_DATA, &device->flags) && (device->p_uuid[UI_FLAGS]&1)) 3567 hg = 1; 3568 3569 if (abs(hg) < 100) 3570 drbd_warn(device, "Split-Brain detected, manually solved. " 3571 "Sync from %s node\n", 3572 (hg < 0) ? "peer" : "this"); 3573 } 3574 3575 if (hg == -100) { 3576 /* FIXME this log message is not correct if we end up here 3577 * after an attempted attach on a diskless node. 3578 * We just refuse to attach -- well, we drop the "connection" 3579 * to that disk, in a way... */ 3580 drbd_alert(device, "Split-Brain detected but unresolved, dropping connection!\n"); 3581 drbd_khelper(device, "split-brain"); 3582 return C_MASK; 3583 } 3584 3585 if (hg > 0 && mydisk <= D_INCONSISTENT) { 3586 drbd_err(device, "I shall become SyncSource, but I am inconsistent!\n"); 3587 return C_MASK; 3588 } 3589 3590 if (hg < 0 && /* by intention we do not use mydisk here. */ 3591 device->state.role == R_PRIMARY && device->state.disk >= D_CONSISTENT) { 3592 switch (rr_conflict) { 3593 case ASB_CALL_HELPER: 3594 drbd_khelper(device, "pri-lost"); 3595 fallthrough; 3596 case ASB_DISCONNECT: 3597 drbd_err(device, "I shall become SyncTarget, but I am primary!\n"); 3598 return C_MASK; 3599 case ASB_VIOLENTLY: 3600 drbd_warn(device, "Becoming SyncTarget, violating the stable-data" 3601 "assumption\n"); 3602 } 3603 } 3604 3605 if (tentative || test_bit(CONN_DRY_RUN, &peer_device->connection->flags)) { 3606 if (hg == 0) 3607 drbd_info(device, "dry-run connect: No resync, would become Connected immediately.\n"); 3608 else 3609 drbd_info(device, "dry-run connect: Would become %s, doing a %s resync.", 3610 drbd_conn_str(hg > 0 ? C_SYNC_SOURCE : C_SYNC_TARGET), 3611 abs(hg) >= 2 ? "full" : "bit-map based"); 3612 return C_MASK; 3613 } 3614 3615 if (abs(hg) >= 2) { 3616 drbd_info(device, "Writing the whole bitmap, full sync required after drbd_sync_handshake.\n"); 3617 if (drbd_bitmap_io(device, &drbd_bmio_set_n_write, "set_n_write from sync_handshake", 3618 BM_LOCKED_SET_ALLOWED)) 3619 return C_MASK; 3620 } 3621 3622 if (hg > 0) { /* become sync source. */ 3623 rv = C_WF_BITMAP_S; 3624 } else if (hg < 0) { /* become sync target */ 3625 rv = C_WF_BITMAP_T; 3626 } else { 3627 rv = C_CONNECTED; 3628 if (drbd_bm_total_weight(device)) { 3629 drbd_info(device, "No resync, but %lu bits in bitmap!\n", 3630 drbd_bm_total_weight(device)); 3631 } 3632 } 3633 3634 return rv; 3635 } 3636 3637 static enum drbd_after_sb_p convert_after_sb(enum drbd_after_sb_p peer) 3638 { 3639 /* ASB_DISCARD_REMOTE - ASB_DISCARD_LOCAL is valid */ 3640 if (peer == ASB_DISCARD_REMOTE) 3641 return ASB_DISCARD_LOCAL; 3642 3643 /* any other things with ASB_DISCARD_REMOTE or ASB_DISCARD_LOCAL are invalid */ 3644 if (peer == ASB_DISCARD_LOCAL) 3645 return ASB_DISCARD_REMOTE; 3646 3647 /* everything else is valid if they are equal on both sides. */ 3648 return peer; 3649 } 3650 3651 static int receive_protocol(struct drbd_connection *connection, struct packet_info *pi) 3652 { 3653 struct p_protocol *p = pi->data; 3654 enum drbd_after_sb_p p_after_sb_0p, p_after_sb_1p, p_after_sb_2p; 3655 int p_proto, p_discard_my_data, p_two_primaries, cf; 3656 struct net_conf *nc, *old_net_conf, *new_net_conf = NULL; 3657 char integrity_alg[SHARED_SECRET_MAX] = ""; 3658 struct crypto_shash *peer_integrity_tfm = NULL; 3659 void *int_dig_in = NULL, *int_dig_vv = NULL; 3660 3661 p_proto = be32_to_cpu(p->protocol); 3662 p_after_sb_0p = be32_to_cpu(p->after_sb_0p); 3663 p_after_sb_1p = be32_to_cpu(p->after_sb_1p); 3664 p_after_sb_2p = be32_to_cpu(p->after_sb_2p); 3665 p_two_primaries = be32_to_cpu(p->two_primaries); 3666 cf = be32_to_cpu(p->conn_flags); 3667 p_discard_my_data = cf & CF_DISCARD_MY_DATA; 3668 3669 if (connection->agreed_pro_version >= 87) { 3670 int err; 3671 3672 if (pi->size > sizeof(integrity_alg)) 3673 return -EIO; 3674 err = drbd_recv_all(connection, integrity_alg, pi->size); 3675 if (err) 3676 return err; 3677 integrity_alg[SHARED_SECRET_MAX - 1] = 0; 3678 } 3679 3680 if (pi->cmd != P_PROTOCOL_UPDATE) { 3681 clear_bit(CONN_DRY_RUN, &connection->flags); 3682 3683 if (cf & CF_DRY_RUN) 3684 set_bit(CONN_DRY_RUN, &connection->flags); 3685 3686 rcu_read_lock(); 3687 nc = rcu_dereference(connection->net_conf); 3688 3689 if (p_proto != nc->wire_protocol) { 3690 drbd_err(connection, "incompatible %s settings\n", "protocol"); 3691 goto disconnect_rcu_unlock; 3692 } 3693 3694 if (convert_after_sb(p_after_sb_0p) != nc->after_sb_0p) { 3695 drbd_err(connection, "incompatible %s settings\n", "after-sb-0pri"); 3696 goto disconnect_rcu_unlock; 3697 } 3698 3699 if (convert_after_sb(p_after_sb_1p) != nc->after_sb_1p) { 3700 drbd_err(connection, "incompatible %s settings\n", "after-sb-1pri"); 3701 goto disconnect_rcu_unlock; 3702 } 3703 3704 if (convert_after_sb(p_after_sb_2p) != nc->after_sb_2p) { 3705 drbd_err(connection, "incompatible %s settings\n", "after-sb-2pri"); 3706 goto disconnect_rcu_unlock; 3707 } 3708 3709 if (p_discard_my_data && nc->discard_my_data) { 3710 drbd_err(connection, "incompatible %s settings\n", "discard-my-data"); 3711 goto disconnect_rcu_unlock; 3712 } 3713 3714 if (p_two_primaries != nc->two_primaries) { 3715 drbd_err(connection, "incompatible %s settings\n", "allow-two-primaries"); 3716 goto disconnect_rcu_unlock; 3717 } 3718 3719 if (strcmp(integrity_alg, nc->integrity_alg)) { 3720 drbd_err(connection, "incompatible %s settings\n", "data-integrity-alg"); 3721 goto disconnect_rcu_unlock; 3722 } 3723 3724 rcu_read_unlock(); 3725 } 3726 3727 if (integrity_alg[0]) { 3728 int hash_size; 3729 3730 /* 3731 * We can only change the peer data integrity algorithm 3732 * here. Changing our own data integrity algorithm 3733 * requires that we send a P_PROTOCOL_UPDATE packet at 3734 * the same time; otherwise, the peer has no way to 3735 * tell between which packets the algorithm should 3736 * change. 3737 */ 3738 3739 peer_integrity_tfm = crypto_alloc_shash(integrity_alg, 0, 0); 3740 if (IS_ERR(peer_integrity_tfm)) { 3741 peer_integrity_tfm = NULL; 3742 drbd_err(connection, "peer data-integrity-alg %s not supported\n", 3743 integrity_alg); 3744 goto disconnect; 3745 } 3746 3747 hash_size = crypto_shash_digestsize(peer_integrity_tfm); 3748 int_dig_in = kmalloc(hash_size, GFP_KERNEL); 3749 int_dig_vv = kmalloc(hash_size, GFP_KERNEL); 3750 if (!(int_dig_in && int_dig_vv)) { 3751 drbd_err(connection, "Allocation of buffers for data integrity checking failed\n"); 3752 goto disconnect; 3753 } 3754 } 3755 3756 new_net_conf = kmalloc(sizeof(struct net_conf), GFP_KERNEL); 3757 if (!new_net_conf) 3758 goto disconnect; 3759 3760 mutex_lock(&connection->data.mutex); 3761 mutex_lock(&connection->resource->conf_update); 3762 old_net_conf = connection->net_conf; 3763 *new_net_conf = *old_net_conf; 3764 3765 new_net_conf->wire_protocol = p_proto; 3766 new_net_conf->after_sb_0p = convert_after_sb(p_after_sb_0p); 3767 new_net_conf->after_sb_1p = convert_after_sb(p_after_sb_1p); 3768 new_net_conf->after_sb_2p = convert_after_sb(p_after_sb_2p); 3769 new_net_conf->two_primaries = p_two_primaries; 3770 3771 rcu_assign_pointer(connection->net_conf, new_net_conf); 3772 mutex_unlock(&connection->resource->conf_update); 3773 mutex_unlock(&connection->data.mutex); 3774 3775 crypto_free_shash(connection->peer_integrity_tfm); 3776 kfree(connection->int_dig_in); 3777 kfree(connection->int_dig_vv); 3778 connection->peer_integrity_tfm = peer_integrity_tfm; 3779 connection->int_dig_in = int_dig_in; 3780 connection->int_dig_vv = int_dig_vv; 3781 3782 if (strcmp(old_net_conf->integrity_alg, integrity_alg)) 3783 drbd_info(connection, "peer data-integrity-alg: %s\n", 3784 integrity_alg[0] ? integrity_alg : "(none)"); 3785 3786 synchronize_rcu(); 3787 kfree(old_net_conf); 3788 return 0; 3789 3790 disconnect_rcu_unlock: 3791 rcu_read_unlock(); 3792 disconnect: 3793 crypto_free_shash(peer_integrity_tfm); 3794 kfree(int_dig_in); 3795 kfree(int_dig_vv); 3796 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 3797 return -EIO; 3798 } 3799 3800 /* helper function 3801 * input: alg name, feature name 3802 * return: NULL (alg name was "") 3803 * ERR_PTR(error) if something goes wrong 3804 * or the crypto hash ptr, if it worked out ok. */ 3805 static struct crypto_shash *drbd_crypto_alloc_digest_safe( 3806 const struct drbd_device *device, 3807 const char *alg, const char *name) 3808 { 3809 struct crypto_shash *tfm; 3810 3811 if (!alg[0]) 3812 return NULL; 3813 3814 tfm = crypto_alloc_shash(alg, 0, 0); 3815 if (IS_ERR(tfm)) { 3816 drbd_err(device, "Can not allocate \"%s\" as %s (reason: %ld)\n", 3817 alg, name, PTR_ERR(tfm)); 3818 return tfm; 3819 } 3820 return tfm; 3821 } 3822 3823 static int ignore_remaining_packet(struct drbd_connection *connection, struct packet_info *pi) 3824 { 3825 void *buffer = connection->data.rbuf; 3826 int size = pi->size; 3827 3828 while (size) { 3829 int s = min_t(int, size, DRBD_SOCKET_BUFFER_SIZE); 3830 s = drbd_recv(connection, buffer, s); 3831 if (s <= 0) { 3832 if (s < 0) 3833 return s; 3834 break; 3835 } 3836 size -= s; 3837 } 3838 if (size) 3839 return -EIO; 3840 return 0; 3841 } 3842 3843 /* 3844 * config_unknown_volume - device configuration command for unknown volume 3845 * 3846 * When a device is added to an existing connection, the node on which the 3847 * device is added first will send configuration commands to its peer but the 3848 * peer will not know about the device yet. It will warn and ignore these 3849 * commands. Once the device is added on the second node, the second node will 3850 * send the same device configuration commands, but in the other direction. 3851 * 3852 * (We can also end up here if drbd is misconfigured.) 3853 */ 3854 static int config_unknown_volume(struct drbd_connection *connection, struct packet_info *pi) 3855 { 3856 drbd_warn(connection, "%s packet received for volume %u, which is not configured locally\n", 3857 cmdname(pi->cmd), pi->vnr); 3858 return ignore_remaining_packet(connection, pi); 3859 } 3860 3861 static int receive_SyncParam(struct drbd_connection *connection, struct packet_info *pi) 3862 { 3863 struct drbd_peer_device *peer_device; 3864 struct drbd_device *device; 3865 struct p_rs_param_95 *p; 3866 unsigned int header_size, data_size, exp_max_sz; 3867 struct crypto_shash *verify_tfm = NULL; 3868 struct crypto_shash *csums_tfm = NULL; 3869 struct net_conf *old_net_conf, *new_net_conf = NULL; 3870 struct disk_conf *old_disk_conf = NULL, *new_disk_conf = NULL; 3871 const int apv = connection->agreed_pro_version; 3872 struct fifo_buffer *old_plan = NULL, *new_plan = NULL; 3873 unsigned int fifo_size = 0; 3874 int err; 3875 3876 peer_device = conn_peer_device(connection, pi->vnr); 3877 if (!peer_device) 3878 return config_unknown_volume(connection, pi); 3879 device = peer_device->device; 3880 3881 exp_max_sz = apv <= 87 ? sizeof(struct p_rs_param) 3882 : apv == 88 ? sizeof(struct p_rs_param) 3883 + SHARED_SECRET_MAX 3884 : apv <= 94 ? sizeof(struct p_rs_param_89) 3885 : /* apv >= 95 */ sizeof(struct p_rs_param_95); 3886 3887 if (pi->size > exp_max_sz) { 3888 drbd_err(device, "SyncParam packet too long: received %u, expected <= %u bytes\n", 3889 pi->size, exp_max_sz); 3890 return -EIO; 3891 } 3892 3893 if (apv <= 88) { 3894 header_size = sizeof(struct p_rs_param); 3895 data_size = pi->size - header_size; 3896 } else if (apv <= 94) { 3897 header_size = sizeof(struct p_rs_param_89); 3898 data_size = pi->size - header_size; 3899 D_ASSERT(device, data_size == 0); 3900 } else { 3901 header_size = sizeof(struct p_rs_param_95); 3902 data_size = pi->size - header_size; 3903 D_ASSERT(device, data_size == 0); 3904 } 3905 3906 /* initialize verify_alg and csums_alg */ 3907 p = pi->data; 3908 BUILD_BUG_ON(sizeof(p->algs) != 2 * SHARED_SECRET_MAX); 3909 memset(&p->algs, 0, sizeof(p->algs)); 3910 3911 err = drbd_recv_all(peer_device->connection, p, header_size); 3912 if (err) 3913 return err; 3914 3915 mutex_lock(&connection->resource->conf_update); 3916 old_net_conf = peer_device->connection->net_conf; 3917 if (get_ldev(device)) { 3918 new_disk_conf = kzalloc(sizeof(struct disk_conf), GFP_KERNEL); 3919 if (!new_disk_conf) { 3920 put_ldev(device); 3921 mutex_unlock(&connection->resource->conf_update); 3922 drbd_err(device, "Allocation of new disk_conf failed\n"); 3923 return -ENOMEM; 3924 } 3925 3926 old_disk_conf = device->ldev->disk_conf; 3927 *new_disk_conf = *old_disk_conf; 3928 3929 new_disk_conf->resync_rate = be32_to_cpu(p->resync_rate); 3930 } 3931 3932 if (apv >= 88) { 3933 if (apv == 88) { 3934 if (data_size > SHARED_SECRET_MAX || data_size == 0) { 3935 drbd_err(device, "verify-alg of wrong size, " 3936 "peer wants %u, accepting only up to %u byte\n", 3937 data_size, SHARED_SECRET_MAX); 3938 err = -EIO; 3939 goto reconnect; 3940 } 3941 3942 err = drbd_recv_all(peer_device->connection, p->verify_alg, data_size); 3943 if (err) 3944 goto reconnect; 3945 /* we expect NUL terminated string */ 3946 /* but just in case someone tries to be evil */ 3947 D_ASSERT(device, p->verify_alg[data_size-1] == 0); 3948 p->verify_alg[data_size-1] = 0; 3949 3950 } else /* apv >= 89 */ { 3951 /* we still expect NUL terminated strings */ 3952 /* but just in case someone tries to be evil */ 3953 D_ASSERT(device, p->verify_alg[SHARED_SECRET_MAX-1] == 0); 3954 D_ASSERT(device, p->csums_alg[SHARED_SECRET_MAX-1] == 0); 3955 p->verify_alg[SHARED_SECRET_MAX-1] = 0; 3956 p->csums_alg[SHARED_SECRET_MAX-1] = 0; 3957 } 3958 3959 if (strcmp(old_net_conf->verify_alg, p->verify_alg)) { 3960 if (device->state.conn == C_WF_REPORT_PARAMS) { 3961 drbd_err(device, "Different verify-alg settings. me=\"%s\" peer=\"%s\"\n", 3962 old_net_conf->verify_alg, p->verify_alg); 3963 goto disconnect; 3964 } 3965 verify_tfm = drbd_crypto_alloc_digest_safe(device, 3966 p->verify_alg, "verify-alg"); 3967 if (IS_ERR(verify_tfm)) { 3968 verify_tfm = NULL; 3969 goto disconnect; 3970 } 3971 } 3972 3973 if (apv >= 89 && strcmp(old_net_conf->csums_alg, p->csums_alg)) { 3974 if (device->state.conn == C_WF_REPORT_PARAMS) { 3975 drbd_err(device, "Different csums-alg settings. me=\"%s\" peer=\"%s\"\n", 3976 old_net_conf->csums_alg, p->csums_alg); 3977 goto disconnect; 3978 } 3979 csums_tfm = drbd_crypto_alloc_digest_safe(device, 3980 p->csums_alg, "csums-alg"); 3981 if (IS_ERR(csums_tfm)) { 3982 csums_tfm = NULL; 3983 goto disconnect; 3984 } 3985 } 3986 3987 if (apv > 94 && new_disk_conf) { 3988 new_disk_conf->c_plan_ahead = be32_to_cpu(p->c_plan_ahead); 3989 new_disk_conf->c_delay_target = be32_to_cpu(p->c_delay_target); 3990 new_disk_conf->c_fill_target = be32_to_cpu(p->c_fill_target); 3991 new_disk_conf->c_max_rate = be32_to_cpu(p->c_max_rate); 3992 3993 fifo_size = (new_disk_conf->c_plan_ahead * 10 * SLEEP_TIME) / HZ; 3994 if (fifo_size != device->rs_plan_s->size) { 3995 new_plan = fifo_alloc(fifo_size); 3996 if (!new_plan) { 3997 drbd_err(device, "kmalloc of fifo_buffer failed"); 3998 put_ldev(device); 3999 goto disconnect; 4000 } 4001 } 4002 } 4003 4004 if (verify_tfm || csums_tfm) { 4005 new_net_conf = kzalloc(sizeof(struct net_conf), GFP_KERNEL); 4006 if (!new_net_conf) 4007 goto disconnect; 4008 4009 *new_net_conf = *old_net_conf; 4010 4011 if (verify_tfm) { 4012 strcpy(new_net_conf->verify_alg, p->verify_alg); 4013 new_net_conf->verify_alg_len = strlen(p->verify_alg) + 1; 4014 crypto_free_shash(peer_device->connection->verify_tfm); 4015 peer_device->connection->verify_tfm = verify_tfm; 4016 drbd_info(device, "using verify-alg: \"%s\"\n", p->verify_alg); 4017 } 4018 if (csums_tfm) { 4019 strcpy(new_net_conf->csums_alg, p->csums_alg); 4020 new_net_conf->csums_alg_len = strlen(p->csums_alg) + 1; 4021 crypto_free_shash(peer_device->connection->csums_tfm); 4022 peer_device->connection->csums_tfm = csums_tfm; 4023 drbd_info(device, "using csums-alg: \"%s\"\n", p->csums_alg); 4024 } 4025 rcu_assign_pointer(connection->net_conf, new_net_conf); 4026 } 4027 } 4028 4029 if (new_disk_conf) { 4030 rcu_assign_pointer(device->ldev->disk_conf, new_disk_conf); 4031 put_ldev(device); 4032 } 4033 4034 if (new_plan) { 4035 old_plan = device->rs_plan_s; 4036 rcu_assign_pointer(device->rs_plan_s, new_plan); 4037 } 4038 4039 mutex_unlock(&connection->resource->conf_update); 4040 synchronize_rcu(); 4041 if (new_net_conf) 4042 kfree(old_net_conf); 4043 kfree(old_disk_conf); 4044 kfree(old_plan); 4045 4046 return 0; 4047 4048 reconnect: 4049 if (new_disk_conf) { 4050 put_ldev(device); 4051 kfree(new_disk_conf); 4052 } 4053 mutex_unlock(&connection->resource->conf_update); 4054 return -EIO; 4055 4056 disconnect: 4057 kfree(new_plan); 4058 if (new_disk_conf) { 4059 put_ldev(device); 4060 kfree(new_disk_conf); 4061 } 4062 mutex_unlock(&connection->resource->conf_update); 4063 /* just for completeness: actually not needed, 4064 * as this is not reached if csums_tfm was ok. */ 4065 crypto_free_shash(csums_tfm); 4066 /* but free the verify_tfm again, if csums_tfm did not work out */ 4067 crypto_free_shash(verify_tfm); 4068 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD); 4069 return -EIO; 4070 } 4071 4072 /* warn if the arguments differ by more than 12.5% */ 4073 static void warn_if_differ_considerably(struct drbd_device *device, 4074 const char *s, sector_t a, sector_t b) 4075 { 4076 sector_t d; 4077 if (a == 0 || b == 0) 4078 return; 4079 d = (a > b) ? (a - b) : (b - a); 4080 if (d > (a>>3) || d > (b>>3)) 4081 drbd_warn(device, "Considerable difference in %s: %llus vs. %llus\n", s, 4082 (unsigned long long)a, (unsigned long long)b); 4083 } 4084 4085 static int receive_sizes(struct drbd_connection *connection, struct packet_info *pi) 4086 { 4087 struct drbd_peer_device *peer_device; 4088 struct drbd_device *device; 4089 struct p_sizes *p = pi->data; 4090 struct o_qlim *o = (connection->agreed_features & DRBD_FF_WSAME) ? p->qlim : NULL; 4091 enum determine_dev_size dd = DS_UNCHANGED; 4092 sector_t p_size, p_usize, p_csize, my_usize; 4093 sector_t new_size, cur_size; 4094 int ldsc = 0; /* local disk size changed */ 4095 enum dds_flags ddsf; 4096 4097 peer_device = conn_peer_device(connection, pi->vnr); 4098 if (!peer_device) 4099 return config_unknown_volume(connection, pi); 4100 device = peer_device->device; 4101 cur_size = get_capacity(device->vdisk); 4102 4103 p_size = be64_to_cpu(p->d_size); 4104 p_usize = be64_to_cpu(p->u_size); 4105 p_csize = be64_to_cpu(p->c_size); 4106 4107 /* just store the peer's disk size for now. 4108 * we still need to figure out whether we accept that. */ 4109 device->p_size = p_size; 4110 4111 if (get_ldev(device)) { 4112 rcu_read_lock(); 4113 my_usize = rcu_dereference(device->ldev->disk_conf)->disk_size; 4114 rcu_read_unlock(); 4115 4116 warn_if_differ_considerably(device, "lower level device sizes", 4117 p_size, drbd_get_max_capacity(device->ldev)); 4118 warn_if_differ_considerably(device, "user requested size", 4119 p_usize, my_usize); 4120 4121 /* if this is the first connect, or an otherwise expected 4122 * param exchange, choose the minimum */ 4123 if (device->state.conn == C_WF_REPORT_PARAMS) 4124 p_usize = min_not_zero(my_usize, p_usize); 4125 4126 /* Never shrink a device with usable data during connect, 4127 * or "attach" on the peer. 4128 * But allow online shrinking if we are connected. */ 4129 new_size = drbd_new_dev_size(device, device->ldev, p_usize, 0); 4130 if (new_size < cur_size && 4131 device->state.disk >= D_OUTDATED && 4132 (device->state.conn < C_CONNECTED || device->state.pdsk == D_DISKLESS)) { 4133 drbd_err(device, "The peer's disk size is too small! (%llu < %llu sectors)\n", 4134 (unsigned long long)new_size, (unsigned long long)cur_size); 4135 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD); 4136 put_ldev(device); 4137 return -EIO; 4138 } 4139 4140 if (my_usize != p_usize) { 4141 struct disk_conf *old_disk_conf, *new_disk_conf = NULL; 4142 4143 new_disk_conf = kzalloc(sizeof(struct disk_conf), GFP_KERNEL); 4144 if (!new_disk_conf) { 4145 put_ldev(device); 4146 return -ENOMEM; 4147 } 4148 4149 mutex_lock(&connection->resource->conf_update); 4150 old_disk_conf = device->ldev->disk_conf; 4151 *new_disk_conf = *old_disk_conf; 4152 new_disk_conf->disk_size = p_usize; 4153 4154 rcu_assign_pointer(device->ldev->disk_conf, new_disk_conf); 4155 mutex_unlock(&connection->resource->conf_update); 4156 synchronize_rcu(); 4157 kfree(old_disk_conf); 4158 4159 drbd_info(device, "Peer sets u_size to %lu sectors (old: %lu)\n", 4160 (unsigned long)p_usize, (unsigned long)my_usize); 4161 } 4162 4163 put_ldev(device); 4164 } 4165 4166 device->peer_max_bio_size = be32_to_cpu(p->max_bio_size); 4167 /* Leave drbd_reconsider_queue_parameters() before drbd_determine_dev_size(). 4168 In case we cleared the QUEUE_FLAG_DISCARD from our queue in 4169 drbd_reconsider_queue_parameters(), we can be sure that after 4170 drbd_determine_dev_size() no REQ_DISCARDs are in the queue. */ 4171 4172 ddsf = be16_to_cpu(p->dds_flags); 4173 if (get_ldev(device)) { 4174 drbd_reconsider_queue_parameters(device, device->ldev, o); 4175 dd = drbd_determine_dev_size(device, ddsf, NULL); 4176 put_ldev(device); 4177 if (dd == DS_ERROR) 4178 return -EIO; 4179 drbd_md_sync(device); 4180 } else { 4181 /* 4182 * I am diskless, need to accept the peer's *current* size. 4183 * I must NOT accept the peers backing disk size, 4184 * it may have been larger than mine all along... 4185 * 4186 * At this point, the peer knows more about my disk, or at 4187 * least about what we last agreed upon, than myself. 4188 * So if his c_size is less than his d_size, the most likely 4189 * reason is that *my* d_size was smaller last time we checked. 4190 * 4191 * However, if he sends a zero current size, 4192 * take his (user-capped or) backing disk size anyways. 4193 * 4194 * Unless of course he does not have a disk himself. 4195 * In which case we ignore this completely. 4196 */ 4197 sector_t new_size = p_csize ?: p_usize ?: p_size; 4198 drbd_reconsider_queue_parameters(device, NULL, o); 4199 if (new_size == 0) { 4200 /* Ignore, peer does not know nothing. */ 4201 } else if (new_size == cur_size) { 4202 /* nothing to do */ 4203 } else if (cur_size != 0 && p_size == 0) { 4204 drbd_warn(device, "Ignored diskless peer device size (peer:%llu != me:%llu sectors)!\n", 4205 (unsigned long long)new_size, (unsigned long long)cur_size); 4206 } else if (new_size < cur_size && device->state.role == R_PRIMARY) { 4207 drbd_err(device, "The peer's device size is too small! (%llu < %llu sectors); demote me first!\n", 4208 (unsigned long long)new_size, (unsigned long long)cur_size); 4209 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD); 4210 return -EIO; 4211 } else { 4212 /* I believe the peer, if 4213 * - I don't have a current size myself 4214 * - we agree on the size anyways 4215 * - I do have a current size, am Secondary, 4216 * and he has the only disk 4217 * - I do have a current size, am Primary, 4218 * and he has the only disk, 4219 * which is larger than my current size 4220 */ 4221 drbd_set_my_capacity(device, new_size); 4222 } 4223 } 4224 4225 if (get_ldev(device)) { 4226 if (device->ldev->known_size != drbd_get_capacity(device->ldev->backing_bdev)) { 4227 device->ldev->known_size = drbd_get_capacity(device->ldev->backing_bdev); 4228 ldsc = 1; 4229 } 4230 4231 put_ldev(device); 4232 } 4233 4234 if (device->state.conn > C_WF_REPORT_PARAMS) { 4235 if (be64_to_cpu(p->c_size) != get_capacity(device->vdisk) || 4236 ldsc) { 4237 /* we have different sizes, probably peer 4238 * needs to know my new size... */ 4239 drbd_send_sizes(peer_device, 0, ddsf); 4240 } 4241 if (test_and_clear_bit(RESIZE_PENDING, &device->flags) || 4242 (dd == DS_GREW && device->state.conn == C_CONNECTED)) { 4243 if (device->state.pdsk >= D_INCONSISTENT && 4244 device->state.disk >= D_INCONSISTENT) { 4245 if (ddsf & DDSF_NO_RESYNC) 4246 drbd_info(device, "Resync of new storage suppressed with --assume-clean\n"); 4247 else 4248 resync_after_online_grow(device); 4249 } else 4250 set_bit(RESYNC_AFTER_NEG, &device->flags); 4251 } 4252 } 4253 4254 return 0; 4255 } 4256 4257 static int receive_uuids(struct drbd_connection *connection, struct packet_info *pi) 4258 { 4259 struct drbd_peer_device *peer_device; 4260 struct drbd_device *device; 4261 struct p_uuids *p = pi->data; 4262 u64 *p_uuid; 4263 int i, updated_uuids = 0; 4264 4265 peer_device = conn_peer_device(connection, pi->vnr); 4266 if (!peer_device) 4267 return config_unknown_volume(connection, pi); 4268 device = peer_device->device; 4269 4270 p_uuid = kmalloc_array(UI_EXTENDED_SIZE, sizeof(*p_uuid), GFP_NOIO); 4271 if (!p_uuid) 4272 return false; 4273 4274 for (i = UI_CURRENT; i < UI_EXTENDED_SIZE; i++) 4275 p_uuid[i] = be64_to_cpu(p->uuid[i]); 4276 4277 kfree(device->p_uuid); 4278 device->p_uuid = p_uuid; 4279 4280 if ((device->state.conn < C_CONNECTED || device->state.pdsk == D_DISKLESS) && 4281 device->state.disk < D_INCONSISTENT && 4282 device->state.role == R_PRIMARY && 4283 (device->ed_uuid & ~((u64)1)) != (p_uuid[UI_CURRENT] & ~((u64)1))) { 4284 drbd_err(device, "Can only connect to data with current UUID=%016llX\n", 4285 (unsigned long long)device->ed_uuid); 4286 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD); 4287 return -EIO; 4288 } 4289 4290 if (get_ldev(device)) { 4291 int skip_initial_sync = 4292 device->state.conn == C_CONNECTED && 4293 peer_device->connection->agreed_pro_version >= 90 && 4294 device->ldev->md.uuid[UI_CURRENT] == UUID_JUST_CREATED && 4295 (p_uuid[UI_FLAGS] & 8); 4296 if (skip_initial_sync) { 4297 drbd_info(device, "Accepted new current UUID, preparing to skip initial sync\n"); 4298 drbd_bitmap_io(device, &drbd_bmio_clear_n_write, 4299 "clear_n_write from receive_uuids", 4300 BM_LOCKED_TEST_ALLOWED); 4301 _drbd_uuid_set(device, UI_CURRENT, p_uuid[UI_CURRENT]); 4302 _drbd_uuid_set(device, UI_BITMAP, 0); 4303 _drbd_set_state(_NS2(device, disk, D_UP_TO_DATE, pdsk, D_UP_TO_DATE), 4304 CS_VERBOSE, NULL); 4305 drbd_md_sync(device); 4306 updated_uuids = 1; 4307 } 4308 put_ldev(device); 4309 } else if (device->state.disk < D_INCONSISTENT && 4310 device->state.role == R_PRIMARY) { 4311 /* I am a diskless primary, the peer just created a new current UUID 4312 for me. */ 4313 updated_uuids = drbd_set_ed_uuid(device, p_uuid[UI_CURRENT]); 4314 } 4315 4316 /* Before we test for the disk state, we should wait until an eventually 4317 ongoing cluster wide state change is finished. That is important if 4318 we are primary and are detaching from our disk. We need to see the 4319 new disk state... */ 4320 mutex_lock(device->state_mutex); 4321 mutex_unlock(device->state_mutex); 4322 if (device->state.conn >= C_CONNECTED && device->state.disk < D_INCONSISTENT) 4323 updated_uuids |= drbd_set_ed_uuid(device, p_uuid[UI_CURRENT]); 4324 4325 if (updated_uuids) 4326 drbd_print_uuids(device, "receiver updated UUIDs to"); 4327 4328 return 0; 4329 } 4330 4331 /** 4332 * convert_state() - Converts the peer's view of the cluster state to our point of view 4333 * @ps: The state as seen by the peer. 4334 */ 4335 static union drbd_state convert_state(union drbd_state ps) 4336 { 4337 union drbd_state ms; 4338 4339 static enum drbd_conns c_tab[] = { 4340 [C_WF_REPORT_PARAMS] = C_WF_REPORT_PARAMS, 4341 [C_CONNECTED] = C_CONNECTED, 4342 4343 [C_STARTING_SYNC_S] = C_STARTING_SYNC_T, 4344 [C_STARTING_SYNC_T] = C_STARTING_SYNC_S, 4345 [C_DISCONNECTING] = C_TEAR_DOWN, /* C_NETWORK_FAILURE, */ 4346 [C_VERIFY_S] = C_VERIFY_T, 4347 [C_MASK] = C_MASK, 4348 }; 4349 4350 ms.i = ps.i; 4351 4352 ms.conn = c_tab[ps.conn]; 4353 ms.peer = ps.role; 4354 ms.role = ps.peer; 4355 ms.pdsk = ps.disk; 4356 ms.disk = ps.pdsk; 4357 ms.peer_isp = (ps.aftr_isp | ps.user_isp); 4358 4359 return ms; 4360 } 4361 4362 static int receive_req_state(struct drbd_connection *connection, struct packet_info *pi) 4363 { 4364 struct drbd_peer_device *peer_device; 4365 struct drbd_device *device; 4366 struct p_req_state *p = pi->data; 4367 union drbd_state mask, val; 4368 enum drbd_state_rv rv; 4369 4370 peer_device = conn_peer_device(connection, pi->vnr); 4371 if (!peer_device) 4372 return -EIO; 4373 device = peer_device->device; 4374 4375 mask.i = be32_to_cpu(p->mask); 4376 val.i = be32_to_cpu(p->val); 4377 4378 if (test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags) && 4379 mutex_is_locked(device->state_mutex)) { 4380 drbd_send_sr_reply(peer_device, SS_CONCURRENT_ST_CHG); 4381 return 0; 4382 } 4383 4384 mask = convert_state(mask); 4385 val = convert_state(val); 4386 4387 rv = drbd_change_state(device, CS_VERBOSE, mask, val); 4388 drbd_send_sr_reply(peer_device, rv); 4389 4390 drbd_md_sync(device); 4391 4392 return 0; 4393 } 4394 4395 static int receive_req_conn_state(struct drbd_connection *connection, struct packet_info *pi) 4396 { 4397 struct p_req_state *p = pi->data; 4398 union drbd_state mask, val; 4399 enum drbd_state_rv rv; 4400 4401 mask.i = be32_to_cpu(p->mask); 4402 val.i = be32_to_cpu(p->val); 4403 4404 if (test_bit(RESOLVE_CONFLICTS, &connection->flags) && 4405 mutex_is_locked(&connection->cstate_mutex)) { 4406 conn_send_sr_reply(connection, SS_CONCURRENT_ST_CHG); 4407 return 0; 4408 } 4409 4410 mask = convert_state(mask); 4411 val = convert_state(val); 4412 4413 rv = conn_request_state(connection, mask, val, CS_VERBOSE | CS_LOCAL_ONLY | CS_IGN_OUTD_FAIL); 4414 conn_send_sr_reply(connection, rv); 4415 4416 return 0; 4417 } 4418 4419 static int receive_state(struct drbd_connection *connection, struct packet_info *pi) 4420 { 4421 struct drbd_peer_device *peer_device; 4422 struct drbd_device *device; 4423 struct p_state *p = pi->data; 4424 union drbd_state os, ns, peer_state; 4425 enum drbd_disk_state real_peer_disk; 4426 enum chg_state_flags cs_flags; 4427 int rv; 4428 4429 peer_device = conn_peer_device(connection, pi->vnr); 4430 if (!peer_device) 4431 return config_unknown_volume(connection, pi); 4432 device = peer_device->device; 4433 4434 peer_state.i = be32_to_cpu(p->state); 4435 4436 real_peer_disk = peer_state.disk; 4437 if (peer_state.disk == D_NEGOTIATING) { 4438 real_peer_disk = device->p_uuid[UI_FLAGS] & 4 ? D_INCONSISTENT : D_CONSISTENT; 4439 drbd_info(device, "real peer disk state = %s\n", drbd_disk_str(real_peer_disk)); 4440 } 4441 4442 spin_lock_irq(&device->resource->req_lock); 4443 retry: 4444 os = ns = drbd_read_state(device); 4445 spin_unlock_irq(&device->resource->req_lock); 4446 4447 /* If some other part of the code (ack_receiver thread, timeout) 4448 * already decided to close the connection again, 4449 * we must not "re-establish" it here. */ 4450 if (os.conn <= C_TEAR_DOWN) 4451 return -ECONNRESET; 4452 4453 /* If this is the "end of sync" confirmation, usually the peer disk 4454 * transitions from D_INCONSISTENT to D_UP_TO_DATE. For empty (0 bits 4455 * set) resync started in PausedSyncT, or if the timing of pause-/ 4456 * unpause-sync events has been "just right", the peer disk may 4457 * transition from D_CONSISTENT to D_UP_TO_DATE as well. 4458 */ 4459 if ((os.pdsk == D_INCONSISTENT || os.pdsk == D_CONSISTENT) && 4460 real_peer_disk == D_UP_TO_DATE && 4461 os.conn > C_CONNECTED && os.disk == D_UP_TO_DATE) { 4462 /* If we are (becoming) SyncSource, but peer is still in sync 4463 * preparation, ignore its uptodate-ness to avoid flapping, it 4464 * will change to inconsistent once the peer reaches active 4465 * syncing states. 4466 * It may have changed syncer-paused flags, however, so we 4467 * cannot ignore this completely. */ 4468 if (peer_state.conn > C_CONNECTED && 4469 peer_state.conn < C_SYNC_SOURCE) 4470 real_peer_disk = D_INCONSISTENT; 4471 4472 /* if peer_state changes to connected at the same time, 4473 * it explicitly notifies us that it finished resync. 4474 * Maybe we should finish it up, too? */ 4475 else if (os.conn >= C_SYNC_SOURCE && 4476 peer_state.conn == C_CONNECTED) { 4477 if (drbd_bm_total_weight(device) <= device->rs_failed) 4478 drbd_resync_finished(device); 4479 return 0; 4480 } 4481 } 4482 4483 /* explicit verify finished notification, stop sector reached. */ 4484 if (os.conn == C_VERIFY_T && os.disk == D_UP_TO_DATE && 4485 peer_state.conn == C_CONNECTED && real_peer_disk == D_UP_TO_DATE) { 4486 ov_out_of_sync_print(device); 4487 drbd_resync_finished(device); 4488 return 0; 4489 } 4490 4491 /* peer says his disk is inconsistent, while we think it is uptodate, 4492 * and this happens while the peer still thinks we have a sync going on, 4493 * but we think we are already done with the sync. 4494 * We ignore this to avoid flapping pdsk. 4495 * This should not happen, if the peer is a recent version of drbd. */ 4496 if (os.pdsk == D_UP_TO_DATE && real_peer_disk == D_INCONSISTENT && 4497 os.conn == C_CONNECTED && peer_state.conn > C_SYNC_SOURCE) 4498 real_peer_disk = D_UP_TO_DATE; 4499 4500 if (ns.conn == C_WF_REPORT_PARAMS) 4501 ns.conn = C_CONNECTED; 4502 4503 if (peer_state.conn == C_AHEAD) 4504 ns.conn = C_BEHIND; 4505 4506 /* TODO: 4507 * if (primary and diskless and peer uuid != effective uuid) 4508 * abort attach on peer; 4509 * 4510 * If this node does not have good data, was already connected, but 4511 * the peer did a late attach only now, trying to "negotiate" with me, 4512 * AND I am currently Primary, possibly frozen, with some specific 4513 * "effective" uuid, this should never be reached, really, because 4514 * we first send the uuids, then the current state. 4515 * 4516 * In this scenario, we already dropped the connection hard 4517 * when we received the unsuitable uuids (receive_uuids(). 4518 * 4519 * Should we want to change this, that is: not drop the connection in 4520 * receive_uuids() already, then we would need to add a branch here 4521 * that aborts the attach of "unsuitable uuids" on the peer in case 4522 * this node is currently Diskless Primary. 4523 */ 4524 4525 if (device->p_uuid && peer_state.disk >= D_NEGOTIATING && 4526 get_ldev_if_state(device, D_NEGOTIATING)) { 4527 int cr; /* consider resync */ 4528 4529 /* if we established a new connection */ 4530 cr = (os.conn < C_CONNECTED); 4531 /* if we had an established connection 4532 * and one of the nodes newly attaches a disk */ 4533 cr |= (os.conn == C_CONNECTED && 4534 (peer_state.disk == D_NEGOTIATING || 4535 os.disk == D_NEGOTIATING)); 4536 /* if we have both been inconsistent, and the peer has been 4537 * forced to be UpToDate with --force */ 4538 cr |= test_bit(CONSIDER_RESYNC, &device->flags); 4539 /* if we had been plain connected, and the admin requested to 4540 * start a sync by "invalidate" or "invalidate-remote" */ 4541 cr |= (os.conn == C_CONNECTED && 4542 (peer_state.conn >= C_STARTING_SYNC_S && 4543 peer_state.conn <= C_WF_BITMAP_T)); 4544 4545 if (cr) 4546 ns.conn = drbd_sync_handshake(peer_device, peer_state.role, real_peer_disk); 4547 4548 put_ldev(device); 4549 if (ns.conn == C_MASK) { 4550 ns.conn = C_CONNECTED; 4551 if (device->state.disk == D_NEGOTIATING) { 4552 drbd_force_state(device, NS(disk, D_FAILED)); 4553 } else if (peer_state.disk == D_NEGOTIATING) { 4554 drbd_err(device, "Disk attach process on the peer node was aborted.\n"); 4555 peer_state.disk = D_DISKLESS; 4556 real_peer_disk = D_DISKLESS; 4557 } else { 4558 if (test_and_clear_bit(CONN_DRY_RUN, &peer_device->connection->flags)) 4559 return -EIO; 4560 D_ASSERT(device, os.conn == C_WF_REPORT_PARAMS); 4561 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD); 4562 return -EIO; 4563 } 4564 } 4565 } 4566 4567 spin_lock_irq(&device->resource->req_lock); 4568 if (os.i != drbd_read_state(device).i) 4569 goto retry; 4570 clear_bit(CONSIDER_RESYNC, &device->flags); 4571 ns.peer = peer_state.role; 4572 ns.pdsk = real_peer_disk; 4573 ns.peer_isp = (peer_state.aftr_isp | peer_state.user_isp); 4574 if ((ns.conn == C_CONNECTED || ns.conn == C_WF_BITMAP_S) && ns.disk == D_NEGOTIATING) 4575 ns.disk = device->new_state_tmp.disk; 4576 cs_flags = CS_VERBOSE + (os.conn < C_CONNECTED && ns.conn >= C_CONNECTED ? 0 : CS_HARD); 4577 if (ns.pdsk == D_CONSISTENT && drbd_suspended(device) && ns.conn == C_CONNECTED && os.conn < C_CONNECTED && 4578 test_bit(NEW_CUR_UUID, &device->flags)) { 4579 /* Do not allow tl_restart(RESEND) for a rebooted peer. We can only allow this 4580 for temporal network outages! */ 4581 spin_unlock_irq(&device->resource->req_lock); 4582 drbd_err(device, "Aborting Connect, can not thaw IO with an only Consistent peer\n"); 4583 tl_clear(peer_device->connection); 4584 drbd_uuid_new_current(device); 4585 clear_bit(NEW_CUR_UUID, &device->flags); 4586 conn_request_state(peer_device->connection, NS2(conn, C_PROTOCOL_ERROR, susp, 0), CS_HARD); 4587 return -EIO; 4588 } 4589 rv = _drbd_set_state(device, ns, cs_flags, NULL); 4590 ns = drbd_read_state(device); 4591 spin_unlock_irq(&device->resource->req_lock); 4592 4593 if (rv < SS_SUCCESS) { 4594 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD); 4595 return -EIO; 4596 } 4597 4598 if (os.conn > C_WF_REPORT_PARAMS) { 4599 if (ns.conn > C_CONNECTED && peer_state.conn <= C_CONNECTED && 4600 peer_state.disk != D_NEGOTIATING ) { 4601 /* we want resync, peer has not yet decided to sync... */ 4602 /* Nowadays only used when forcing a node into primary role and 4603 setting its disk to UpToDate with that */ 4604 drbd_send_uuids(peer_device); 4605 drbd_send_current_state(peer_device); 4606 } 4607 } 4608 4609 clear_bit(DISCARD_MY_DATA, &device->flags); 4610 4611 drbd_md_sync(device); /* update connected indicator, la_size_sect, ... */ 4612 4613 return 0; 4614 } 4615 4616 static int receive_sync_uuid(struct drbd_connection *connection, struct packet_info *pi) 4617 { 4618 struct drbd_peer_device *peer_device; 4619 struct drbd_device *device; 4620 struct p_rs_uuid *p = pi->data; 4621 4622 peer_device = conn_peer_device(connection, pi->vnr); 4623 if (!peer_device) 4624 return -EIO; 4625 device = peer_device->device; 4626 4627 wait_event(device->misc_wait, 4628 device->state.conn == C_WF_SYNC_UUID || 4629 device->state.conn == C_BEHIND || 4630 device->state.conn < C_CONNECTED || 4631 device->state.disk < D_NEGOTIATING); 4632 4633 /* D_ASSERT(device, device->state.conn == C_WF_SYNC_UUID ); */ 4634 4635 /* Here the _drbd_uuid_ functions are right, current should 4636 _not_ be rotated into the history */ 4637 if (get_ldev_if_state(device, D_NEGOTIATING)) { 4638 _drbd_uuid_set(device, UI_CURRENT, be64_to_cpu(p->uuid)); 4639 _drbd_uuid_set(device, UI_BITMAP, 0UL); 4640 4641 drbd_print_uuids(device, "updated sync uuid"); 4642 drbd_start_resync(device, C_SYNC_TARGET); 4643 4644 put_ldev(device); 4645 } else 4646 drbd_err(device, "Ignoring SyncUUID packet!\n"); 4647 4648 return 0; 4649 } 4650 4651 /* 4652 * receive_bitmap_plain 4653 * 4654 * Return 0 when done, 1 when another iteration is needed, and a negative error 4655 * code upon failure. 4656 */ 4657 static int 4658 receive_bitmap_plain(struct drbd_peer_device *peer_device, unsigned int size, 4659 unsigned long *p, struct bm_xfer_ctx *c) 4660 { 4661 unsigned int data_size = DRBD_SOCKET_BUFFER_SIZE - 4662 drbd_header_size(peer_device->connection); 4663 unsigned int num_words = min_t(size_t, data_size / sizeof(*p), 4664 c->bm_words - c->word_offset); 4665 unsigned int want = num_words * sizeof(*p); 4666 int err; 4667 4668 if (want != size) { 4669 drbd_err(peer_device, "%s:want (%u) != size (%u)\n", __func__, want, size); 4670 return -EIO; 4671 } 4672 if (want == 0) 4673 return 0; 4674 err = drbd_recv_all(peer_device->connection, p, want); 4675 if (err) 4676 return err; 4677 4678 drbd_bm_merge_lel(peer_device->device, c->word_offset, num_words, p); 4679 4680 c->word_offset += num_words; 4681 c->bit_offset = c->word_offset * BITS_PER_LONG; 4682 if (c->bit_offset > c->bm_bits) 4683 c->bit_offset = c->bm_bits; 4684 4685 return 1; 4686 } 4687 4688 static enum drbd_bitmap_code dcbp_get_code(struct p_compressed_bm *p) 4689 { 4690 return (enum drbd_bitmap_code)(p->encoding & 0x0f); 4691 } 4692 4693 static int dcbp_get_start(struct p_compressed_bm *p) 4694 { 4695 return (p->encoding & 0x80) != 0; 4696 } 4697 4698 static int dcbp_get_pad_bits(struct p_compressed_bm *p) 4699 { 4700 return (p->encoding >> 4) & 0x7; 4701 } 4702 4703 /* 4704 * recv_bm_rle_bits 4705 * 4706 * Return 0 when done, 1 when another iteration is needed, and a negative error 4707 * code upon failure. 4708 */ 4709 static int 4710 recv_bm_rle_bits(struct drbd_peer_device *peer_device, 4711 struct p_compressed_bm *p, 4712 struct bm_xfer_ctx *c, 4713 unsigned int len) 4714 { 4715 struct bitstream bs; 4716 u64 look_ahead; 4717 u64 rl; 4718 u64 tmp; 4719 unsigned long s = c->bit_offset; 4720 unsigned long e; 4721 int toggle = dcbp_get_start(p); 4722 int have; 4723 int bits; 4724 4725 bitstream_init(&bs, p->code, len, dcbp_get_pad_bits(p)); 4726 4727 bits = bitstream_get_bits(&bs, &look_ahead, 64); 4728 if (bits < 0) 4729 return -EIO; 4730 4731 for (have = bits; have > 0; s += rl, toggle = !toggle) { 4732 bits = vli_decode_bits(&rl, look_ahead); 4733 if (bits <= 0) 4734 return -EIO; 4735 4736 if (toggle) { 4737 e = s + rl -1; 4738 if (e >= c->bm_bits) { 4739 drbd_err(peer_device, "bitmap overflow (e:%lu) while decoding bm RLE packet\n", e); 4740 return -EIO; 4741 } 4742 _drbd_bm_set_bits(peer_device->device, s, e); 4743 } 4744 4745 if (have < bits) { 4746 drbd_err(peer_device, "bitmap decoding error: h:%d b:%d la:0x%08llx l:%u/%u\n", 4747 have, bits, look_ahead, 4748 (unsigned int)(bs.cur.b - p->code), 4749 (unsigned int)bs.buf_len); 4750 return -EIO; 4751 } 4752 /* if we consumed all 64 bits, assign 0; >> 64 is "undefined"; */ 4753 if (likely(bits < 64)) 4754 look_ahead >>= bits; 4755 else 4756 look_ahead = 0; 4757 have -= bits; 4758 4759 bits = bitstream_get_bits(&bs, &tmp, 64 - have); 4760 if (bits < 0) 4761 return -EIO; 4762 look_ahead |= tmp << have; 4763 have += bits; 4764 } 4765 4766 c->bit_offset = s; 4767 bm_xfer_ctx_bit_to_word_offset(c); 4768 4769 return (s != c->bm_bits); 4770 } 4771 4772 /* 4773 * decode_bitmap_c 4774 * 4775 * Return 0 when done, 1 when another iteration is needed, and a negative error 4776 * code upon failure. 4777 */ 4778 static int 4779 decode_bitmap_c(struct drbd_peer_device *peer_device, 4780 struct p_compressed_bm *p, 4781 struct bm_xfer_ctx *c, 4782 unsigned int len) 4783 { 4784 if (dcbp_get_code(p) == RLE_VLI_Bits) 4785 return recv_bm_rle_bits(peer_device, p, c, len - sizeof(*p)); 4786 4787 /* other variants had been implemented for evaluation, 4788 * but have been dropped as this one turned out to be "best" 4789 * during all our tests. */ 4790 4791 drbd_err(peer_device, "receive_bitmap_c: unknown encoding %u\n", p->encoding); 4792 conn_request_state(peer_device->connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD); 4793 return -EIO; 4794 } 4795 4796 void INFO_bm_xfer_stats(struct drbd_device *device, 4797 const char *direction, struct bm_xfer_ctx *c) 4798 { 4799 /* what would it take to transfer it "plaintext" */ 4800 unsigned int header_size = drbd_header_size(first_peer_device(device)->connection); 4801 unsigned int data_size = DRBD_SOCKET_BUFFER_SIZE - header_size; 4802 unsigned int plain = 4803 header_size * (DIV_ROUND_UP(c->bm_words, data_size) + 1) + 4804 c->bm_words * sizeof(unsigned long); 4805 unsigned int total = c->bytes[0] + c->bytes[1]; 4806 unsigned int r; 4807 4808 /* total can not be zero. but just in case: */ 4809 if (total == 0) 4810 return; 4811 4812 /* don't report if not compressed */ 4813 if (total >= plain) 4814 return; 4815 4816 /* total < plain. check for overflow, still */ 4817 r = (total > UINT_MAX/1000) ? (total / (plain/1000)) 4818 : (1000 * total / plain); 4819 4820 if (r > 1000) 4821 r = 1000; 4822 4823 r = 1000 - r; 4824 drbd_info(device, "%s bitmap stats [Bytes(packets)]: plain %u(%u), RLE %u(%u), " 4825 "total %u; compression: %u.%u%%\n", 4826 direction, 4827 c->bytes[1], c->packets[1], 4828 c->bytes[0], c->packets[0], 4829 total, r/10, r % 10); 4830 } 4831 4832 /* Since we are processing the bitfield from lower addresses to higher, 4833 it does not matter if the process it in 32 bit chunks or 64 bit 4834 chunks as long as it is little endian. (Understand it as byte stream, 4835 beginning with the lowest byte...) If we would use big endian 4836 we would need to process it from the highest address to the lowest, 4837 in order to be agnostic to the 32 vs 64 bits issue. 4838 4839 returns 0 on failure, 1 if we successfully received it. */ 4840 static int receive_bitmap(struct drbd_connection *connection, struct packet_info *pi) 4841 { 4842 struct drbd_peer_device *peer_device; 4843 struct drbd_device *device; 4844 struct bm_xfer_ctx c; 4845 int err; 4846 4847 peer_device = conn_peer_device(connection, pi->vnr); 4848 if (!peer_device) 4849 return -EIO; 4850 device = peer_device->device; 4851 4852 drbd_bm_lock(device, "receive bitmap", BM_LOCKED_SET_ALLOWED); 4853 /* you are supposed to send additional out-of-sync information 4854 * if you actually set bits during this phase */ 4855 4856 c = (struct bm_xfer_ctx) { 4857 .bm_bits = drbd_bm_bits(device), 4858 .bm_words = drbd_bm_words(device), 4859 }; 4860 4861 for(;;) { 4862 if (pi->cmd == P_BITMAP) 4863 err = receive_bitmap_plain(peer_device, pi->size, pi->data, &c); 4864 else if (pi->cmd == P_COMPRESSED_BITMAP) { 4865 /* MAYBE: sanity check that we speak proto >= 90, 4866 * and the feature is enabled! */ 4867 struct p_compressed_bm *p = pi->data; 4868 4869 if (pi->size > DRBD_SOCKET_BUFFER_SIZE - drbd_header_size(connection)) { 4870 drbd_err(device, "ReportCBitmap packet too large\n"); 4871 err = -EIO; 4872 goto out; 4873 } 4874 if (pi->size <= sizeof(*p)) { 4875 drbd_err(device, "ReportCBitmap packet too small (l:%u)\n", pi->size); 4876 err = -EIO; 4877 goto out; 4878 } 4879 err = drbd_recv_all(peer_device->connection, p, pi->size); 4880 if (err) 4881 goto out; 4882 err = decode_bitmap_c(peer_device, p, &c, pi->size); 4883 } else { 4884 drbd_warn(device, "receive_bitmap: cmd neither ReportBitMap nor ReportCBitMap (is 0x%x)", pi->cmd); 4885 err = -EIO; 4886 goto out; 4887 } 4888 4889 c.packets[pi->cmd == P_BITMAP]++; 4890 c.bytes[pi->cmd == P_BITMAP] += drbd_header_size(connection) + pi->size; 4891 4892 if (err <= 0) { 4893 if (err < 0) 4894 goto out; 4895 break; 4896 } 4897 err = drbd_recv_header(peer_device->connection, pi); 4898 if (err) 4899 goto out; 4900 } 4901 4902 INFO_bm_xfer_stats(device, "receive", &c); 4903 4904 if (device->state.conn == C_WF_BITMAP_T) { 4905 enum drbd_state_rv rv; 4906 4907 err = drbd_send_bitmap(device); 4908 if (err) 4909 goto out; 4910 /* Omit CS_ORDERED with this state transition to avoid deadlocks. */ 4911 rv = _drbd_request_state(device, NS(conn, C_WF_SYNC_UUID), CS_VERBOSE); 4912 D_ASSERT(device, rv == SS_SUCCESS); 4913 } else if (device->state.conn != C_WF_BITMAP_S) { 4914 /* admin may have requested C_DISCONNECTING, 4915 * other threads may have noticed network errors */ 4916 drbd_info(device, "unexpected cstate (%s) in receive_bitmap\n", 4917 drbd_conn_str(device->state.conn)); 4918 } 4919 err = 0; 4920 4921 out: 4922 drbd_bm_unlock(device); 4923 if (!err && device->state.conn == C_WF_BITMAP_S) 4924 drbd_start_resync(device, C_SYNC_SOURCE); 4925 return err; 4926 } 4927 4928 static int receive_skip(struct drbd_connection *connection, struct packet_info *pi) 4929 { 4930 drbd_warn(connection, "skipping unknown optional packet type %d, l: %d!\n", 4931 pi->cmd, pi->size); 4932 4933 return ignore_remaining_packet(connection, pi); 4934 } 4935 4936 static int receive_UnplugRemote(struct drbd_connection *connection, struct packet_info *pi) 4937 { 4938 /* Make sure we've acked all the TCP data associated 4939 * with the data requests being unplugged */ 4940 tcp_sock_set_quickack(connection->data.socket->sk, 2); 4941 return 0; 4942 } 4943 4944 static int receive_out_of_sync(struct drbd_connection *connection, struct packet_info *pi) 4945 { 4946 struct drbd_peer_device *peer_device; 4947 struct drbd_device *device; 4948 struct p_block_desc *p = pi->data; 4949 4950 peer_device = conn_peer_device(connection, pi->vnr); 4951 if (!peer_device) 4952 return -EIO; 4953 device = peer_device->device; 4954 4955 switch (device->state.conn) { 4956 case C_WF_SYNC_UUID: 4957 case C_WF_BITMAP_T: 4958 case C_BEHIND: 4959 break; 4960 default: 4961 drbd_err(device, "ASSERT FAILED cstate = %s, expected: WFSyncUUID|WFBitMapT|Behind\n", 4962 drbd_conn_str(device->state.conn)); 4963 } 4964 4965 drbd_set_out_of_sync(device, be64_to_cpu(p->sector), be32_to_cpu(p->blksize)); 4966 4967 return 0; 4968 } 4969 4970 static int receive_rs_deallocated(struct drbd_connection *connection, struct packet_info *pi) 4971 { 4972 struct drbd_peer_device *peer_device; 4973 struct p_block_desc *p = pi->data; 4974 struct drbd_device *device; 4975 sector_t sector; 4976 int size, err = 0; 4977 4978 peer_device = conn_peer_device(connection, pi->vnr); 4979 if (!peer_device) 4980 return -EIO; 4981 device = peer_device->device; 4982 4983 sector = be64_to_cpu(p->sector); 4984 size = be32_to_cpu(p->blksize); 4985 4986 dec_rs_pending(device); 4987 4988 if (get_ldev(device)) { 4989 struct drbd_peer_request *peer_req; 4990 const int op = REQ_OP_WRITE_ZEROES; 4991 4992 peer_req = drbd_alloc_peer_req(peer_device, ID_SYNCER, sector, 4993 size, 0, GFP_NOIO); 4994 if (!peer_req) { 4995 put_ldev(device); 4996 return -ENOMEM; 4997 } 4998 4999 peer_req->w.cb = e_end_resync_block; 5000 peer_req->submit_jif = jiffies; 5001 peer_req->flags |= EE_TRIM; 5002 5003 spin_lock_irq(&device->resource->req_lock); 5004 list_add_tail(&peer_req->w.list, &device->sync_ee); 5005 spin_unlock_irq(&device->resource->req_lock); 5006 5007 atomic_add(pi->size >> 9, &device->rs_sect_ev); 5008 err = drbd_submit_peer_request(device, peer_req, op, 0, DRBD_FAULT_RS_WR); 5009 5010 if (err) { 5011 spin_lock_irq(&device->resource->req_lock); 5012 list_del(&peer_req->w.list); 5013 spin_unlock_irq(&device->resource->req_lock); 5014 5015 drbd_free_peer_req(device, peer_req); 5016 put_ldev(device); 5017 err = 0; 5018 goto fail; 5019 } 5020 5021 inc_unacked(device); 5022 5023 /* No put_ldev() here. Gets called in drbd_endio_write_sec_final(), 5024 as well as drbd_rs_complete_io() */ 5025 } else { 5026 fail: 5027 drbd_rs_complete_io(device, sector); 5028 drbd_send_ack_ex(peer_device, P_NEG_ACK, sector, size, ID_SYNCER); 5029 } 5030 5031 atomic_add(size >> 9, &device->rs_sect_in); 5032 5033 return err; 5034 } 5035 5036 struct data_cmd { 5037 int expect_payload; 5038 unsigned int pkt_size; 5039 int (*fn)(struct drbd_connection *, struct packet_info *); 5040 }; 5041 5042 static struct data_cmd drbd_cmd_handler[] = { 5043 [P_DATA] = { 1, sizeof(struct p_data), receive_Data }, 5044 [P_DATA_REPLY] = { 1, sizeof(struct p_data), receive_DataReply }, 5045 [P_RS_DATA_REPLY] = { 1, sizeof(struct p_data), receive_RSDataReply } , 5046 [P_BARRIER] = { 0, sizeof(struct p_barrier), receive_Barrier } , 5047 [P_BITMAP] = { 1, 0, receive_bitmap } , 5048 [P_COMPRESSED_BITMAP] = { 1, 0, receive_bitmap } , 5049 [P_UNPLUG_REMOTE] = { 0, 0, receive_UnplugRemote }, 5050 [P_DATA_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest }, 5051 [P_RS_DATA_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest }, 5052 [P_SYNC_PARAM] = { 1, 0, receive_SyncParam }, 5053 [P_SYNC_PARAM89] = { 1, 0, receive_SyncParam }, 5054 [P_PROTOCOL] = { 1, sizeof(struct p_protocol), receive_protocol }, 5055 [P_UUIDS] = { 0, sizeof(struct p_uuids), receive_uuids }, 5056 [P_SIZES] = { 0, sizeof(struct p_sizes), receive_sizes }, 5057 [P_STATE] = { 0, sizeof(struct p_state), receive_state }, 5058 [P_STATE_CHG_REQ] = { 0, sizeof(struct p_req_state), receive_req_state }, 5059 [P_SYNC_UUID] = { 0, sizeof(struct p_rs_uuid), receive_sync_uuid }, 5060 [P_OV_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest }, 5061 [P_OV_REPLY] = { 1, sizeof(struct p_block_req), receive_DataRequest }, 5062 [P_CSUM_RS_REQUEST] = { 1, sizeof(struct p_block_req), receive_DataRequest }, 5063 [P_RS_THIN_REQ] = { 0, sizeof(struct p_block_req), receive_DataRequest }, 5064 [P_DELAY_PROBE] = { 0, sizeof(struct p_delay_probe93), receive_skip }, 5065 [P_OUT_OF_SYNC] = { 0, sizeof(struct p_block_desc), receive_out_of_sync }, 5066 [P_CONN_ST_CHG_REQ] = { 0, sizeof(struct p_req_state), receive_req_conn_state }, 5067 [P_PROTOCOL_UPDATE] = { 1, sizeof(struct p_protocol), receive_protocol }, 5068 [P_TRIM] = { 0, sizeof(struct p_trim), receive_Data }, 5069 [P_ZEROES] = { 0, sizeof(struct p_trim), receive_Data }, 5070 [P_RS_DEALLOCATED] = { 0, sizeof(struct p_block_desc), receive_rs_deallocated }, 5071 [P_WSAME] = { 1, sizeof(struct p_wsame), receive_Data }, 5072 }; 5073 5074 static void drbdd(struct drbd_connection *connection) 5075 { 5076 struct packet_info pi; 5077 size_t shs; /* sub header size */ 5078 int err; 5079 5080 while (get_t_state(&connection->receiver) == RUNNING) { 5081 struct data_cmd const *cmd; 5082 5083 drbd_thread_current_set_cpu(&connection->receiver); 5084 update_receiver_timing_details(connection, drbd_recv_header_maybe_unplug); 5085 if (drbd_recv_header_maybe_unplug(connection, &pi)) 5086 goto err_out; 5087 5088 cmd = &drbd_cmd_handler[pi.cmd]; 5089 if (unlikely(pi.cmd >= ARRAY_SIZE(drbd_cmd_handler) || !cmd->fn)) { 5090 drbd_err(connection, "Unexpected data packet %s (0x%04x)", 5091 cmdname(pi.cmd), pi.cmd); 5092 goto err_out; 5093 } 5094 5095 shs = cmd->pkt_size; 5096 if (pi.cmd == P_SIZES && connection->agreed_features & DRBD_FF_WSAME) 5097 shs += sizeof(struct o_qlim); 5098 if (pi.size > shs && !cmd->expect_payload) { 5099 drbd_err(connection, "No payload expected %s l:%d\n", 5100 cmdname(pi.cmd), pi.size); 5101 goto err_out; 5102 } 5103 if (pi.size < shs) { 5104 drbd_err(connection, "%s: unexpected packet size, expected:%d received:%d\n", 5105 cmdname(pi.cmd), (int)shs, pi.size); 5106 goto err_out; 5107 } 5108 5109 if (shs) { 5110 update_receiver_timing_details(connection, drbd_recv_all_warn); 5111 err = drbd_recv_all_warn(connection, pi.data, shs); 5112 if (err) 5113 goto err_out; 5114 pi.size -= shs; 5115 } 5116 5117 update_receiver_timing_details(connection, cmd->fn); 5118 err = cmd->fn(connection, &pi); 5119 if (err) { 5120 drbd_err(connection, "error receiving %s, e: %d l: %d!\n", 5121 cmdname(pi.cmd), err, pi.size); 5122 goto err_out; 5123 } 5124 } 5125 return; 5126 5127 err_out: 5128 conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD); 5129 } 5130 5131 static void conn_disconnect(struct drbd_connection *connection) 5132 { 5133 struct drbd_peer_device *peer_device; 5134 enum drbd_conns oc; 5135 int vnr; 5136 5137 if (connection->cstate == C_STANDALONE) 5138 return; 5139 5140 /* We are about to start the cleanup after connection loss. 5141 * Make sure drbd_make_request knows about that. 5142 * Usually we should be in some network failure state already, 5143 * but just in case we are not, we fix it up here. 5144 */ 5145 conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD); 5146 5147 /* ack_receiver does not clean up anything. it must not interfere, either */ 5148 drbd_thread_stop(&connection->ack_receiver); 5149 if (connection->ack_sender) { 5150 destroy_workqueue(connection->ack_sender); 5151 connection->ack_sender = NULL; 5152 } 5153 drbd_free_sock(connection); 5154 5155 rcu_read_lock(); 5156 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 5157 struct drbd_device *device = peer_device->device; 5158 kref_get(&device->kref); 5159 rcu_read_unlock(); 5160 drbd_disconnected(peer_device); 5161 kref_put(&device->kref, drbd_destroy_device); 5162 rcu_read_lock(); 5163 } 5164 rcu_read_unlock(); 5165 5166 if (!list_empty(&connection->current_epoch->list)) 5167 drbd_err(connection, "ASSERTION FAILED: connection->current_epoch->list not empty\n"); 5168 /* ok, no more ee's on the fly, it is safe to reset the epoch_size */ 5169 atomic_set(&connection->current_epoch->epoch_size, 0); 5170 connection->send.seen_any_write_yet = false; 5171 5172 drbd_info(connection, "Connection closed\n"); 5173 5174 if (conn_highest_role(connection) == R_PRIMARY && conn_highest_pdsk(connection) >= D_UNKNOWN) 5175 conn_try_outdate_peer_async(connection); 5176 5177 spin_lock_irq(&connection->resource->req_lock); 5178 oc = connection->cstate; 5179 if (oc >= C_UNCONNECTED) 5180 _conn_request_state(connection, NS(conn, C_UNCONNECTED), CS_VERBOSE); 5181 5182 spin_unlock_irq(&connection->resource->req_lock); 5183 5184 if (oc == C_DISCONNECTING) 5185 conn_request_state(connection, NS(conn, C_STANDALONE), CS_VERBOSE | CS_HARD); 5186 } 5187 5188 static int drbd_disconnected(struct drbd_peer_device *peer_device) 5189 { 5190 struct drbd_device *device = peer_device->device; 5191 unsigned int i; 5192 5193 /* wait for current activity to cease. */ 5194 spin_lock_irq(&device->resource->req_lock); 5195 _drbd_wait_ee_list_empty(device, &device->active_ee); 5196 _drbd_wait_ee_list_empty(device, &device->sync_ee); 5197 _drbd_wait_ee_list_empty(device, &device->read_ee); 5198 spin_unlock_irq(&device->resource->req_lock); 5199 5200 /* We do not have data structures that would allow us to 5201 * get the rs_pending_cnt down to 0 again. 5202 * * On C_SYNC_TARGET we do not have any data structures describing 5203 * the pending RSDataRequest's we have sent. 5204 * * On C_SYNC_SOURCE there is no data structure that tracks 5205 * the P_RS_DATA_REPLY blocks that we sent to the SyncTarget. 5206 * And no, it is not the sum of the reference counts in the 5207 * resync_LRU. The resync_LRU tracks the whole operation including 5208 * the disk-IO, while the rs_pending_cnt only tracks the blocks 5209 * on the fly. */ 5210 drbd_rs_cancel_all(device); 5211 device->rs_total = 0; 5212 device->rs_failed = 0; 5213 atomic_set(&device->rs_pending_cnt, 0); 5214 wake_up(&device->misc_wait); 5215 5216 del_timer_sync(&device->resync_timer); 5217 resync_timer_fn(&device->resync_timer); 5218 5219 /* wait for all w_e_end_data_req, w_e_end_rsdata_req, w_send_barrier, 5220 * w_make_resync_request etc. which may still be on the worker queue 5221 * to be "canceled" */ 5222 drbd_flush_workqueue(&peer_device->connection->sender_work); 5223 5224 drbd_finish_peer_reqs(device); 5225 5226 /* This second workqueue flush is necessary, since drbd_finish_peer_reqs() 5227 might have issued a work again. The one before drbd_finish_peer_reqs() is 5228 necessary to reclain net_ee in drbd_finish_peer_reqs(). */ 5229 drbd_flush_workqueue(&peer_device->connection->sender_work); 5230 5231 /* need to do it again, drbd_finish_peer_reqs() may have populated it 5232 * again via drbd_try_clear_on_disk_bm(). */ 5233 drbd_rs_cancel_all(device); 5234 5235 kfree(device->p_uuid); 5236 device->p_uuid = NULL; 5237 5238 if (!drbd_suspended(device)) 5239 tl_clear(peer_device->connection); 5240 5241 drbd_md_sync(device); 5242 5243 if (get_ldev(device)) { 5244 drbd_bitmap_io(device, &drbd_bm_write_copy_pages, 5245 "write from disconnected", BM_LOCKED_CHANGE_ALLOWED); 5246 put_ldev(device); 5247 } 5248 5249 /* tcp_close and release of sendpage pages can be deferred. I don't 5250 * want to use SO_LINGER, because apparently it can be deferred for 5251 * more than 20 seconds (longest time I checked). 5252 * 5253 * Actually we don't care for exactly when the network stack does its 5254 * put_page(), but release our reference on these pages right here. 5255 */ 5256 i = drbd_free_peer_reqs(device, &device->net_ee); 5257 if (i) 5258 drbd_info(device, "net_ee not empty, killed %u entries\n", i); 5259 i = atomic_read(&device->pp_in_use_by_net); 5260 if (i) 5261 drbd_info(device, "pp_in_use_by_net = %d, expected 0\n", i); 5262 i = atomic_read(&device->pp_in_use); 5263 if (i) 5264 drbd_info(device, "pp_in_use = %d, expected 0\n", i); 5265 5266 D_ASSERT(device, list_empty(&device->read_ee)); 5267 D_ASSERT(device, list_empty(&device->active_ee)); 5268 D_ASSERT(device, list_empty(&device->sync_ee)); 5269 D_ASSERT(device, list_empty(&device->done_ee)); 5270 5271 return 0; 5272 } 5273 5274 /* 5275 * We support PRO_VERSION_MIN to PRO_VERSION_MAX. The protocol version 5276 * we can agree on is stored in agreed_pro_version. 5277 * 5278 * feature flags and the reserved array should be enough room for future 5279 * enhancements of the handshake protocol, and possible plugins... 5280 * 5281 * for now, they are expected to be zero, but ignored. 5282 */ 5283 static int drbd_send_features(struct drbd_connection *connection) 5284 { 5285 struct drbd_socket *sock; 5286 struct p_connection_features *p; 5287 5288 sock = &connection->data; 5289 p = conn_prepare_command(connection, sock); 5290 if (!p) 5291 return -EIO; 5292 memset(p, 0, sizeof(*p)); 5293 p->protocol_min = cpu_to_be32(PRO_VERSION_MIN); 5294 p->protocol_max = cpu_to_be32(PRO_VERSION_MAX); 5295 p->feature_flags = cpu_to_be32(PRO_FEATURES); 5296 return conn_send_command(connection, sock, P_CONNECTION_FEATURES, sizeof(*p), NULL, 0); 5297 } 5298 5299 /* 5300 * return values: 5301 * 1 yes, we have a valid connection 5302 * 0 oops, did not work out, please try again 5303 * -1 peer talks different language, 5304 * no point in trying again, please go standalone. 5305 */ 5306 static int drbd_do_features(struct drbd_connection *connection) 5307 { 5308 /* ASSERT current == connection->receiver ... */ 5309 struct p_connection_features *p; 5310 const int expect = sizeof(struct p_connection_features); 5311 struct packet_info pi; 5312 int err; 5313 5314 err = drbd_send_features(connection); 5315 if (err) 5316 return 0; 5317 5318 err = drbd_recv_header(connection, &pi); 5319 if (err) 5320 return 0; 5321 5322 if (pi.cmd != P_CONNECTION_FEATURES) { 5323 drbd_err(connection, "expected ConnectionFeatures packet, received: %s (0x%04x)\n", 5324 cmdname(pi.cmd), pi.cmd); 5325 return -1; 5326 } 5327 5328 if (pi.size != expect) { 5329 drbd_err(connection, "expected ConnectionFeatures length: %u, received: %u\n", 5330 expect, pi.size); 5331 return -1; 5332 } 5333 5334 p = pi.data; 5335 err = drbd_recv_all_warn(connection, p, expect); 5336 if (err) 5337 return 0; 5338 5339 p->protocol_min = be32_to_cpu(p->protocol_min); 5340 p->protocol_max = be32_to_cpu(p->protocol_max); 5341 if (p->protocol_max == 0) 5342 p->protocol_max = p->protocol_min; 5343 5344 if (PRO_VERSION_MAX < p->protocol_min || 5345 PRO_VERSION_MIN > p->protocol_max) 5346 goto incompat; 5347 5348 connection->agreed_pro_version = min_t(int, PRO_VERSION_MAX, p->protocol_max); 5349 connection->agreed_features = PRO_FEATURES & be32_to_cpu(p->feature_flags); 5350 5351 drbd_info(connection, "Handshake successful: " 5352 "Agreed network protocol version %d\n", connection->agreed_pro_version); 5353 5354 drbd_info(connection, "Feature flags enabled on protocol level: 0x%x%s%s%s%s.\n", 5355 connection->agreed_features, 5356 connection->agreed_features & DRBD_FF_TRIM ? " TRIM" : "", 5357 connection->agreed_features & DRBD_FF_THIN_RESYNC ? " THIN_RESYNC" : "", 5358 connection->agreed_features & DRBD_FF_WSAME ? " WRITE_SAME" : "", 5359 connection->agreed_features & DRBD_FF_WZEROES ? " WRITE_ZEROES" : 5360 connection->agreed_features ? "" : " none"); 5361 5362 return 1; 5363 5364 incompat: 5365 drbd_err(connection, "incompatible DRBD dialects: " 5366 "I support %d-%d, peer supports %d-%d\n", 5367 PRO_VERSION_MIN, PRO_VERSION_MAX, 5368 p->protocol_min, p->protocol_max); 5369 return -1; 5370 } 5371 5372 #if !defined(CONFIG_CRYPTO_HMAC) && !defined(CONFIG_CRYPTO_HMAC_MODULE) 5373 static int drbd_do_auth(struct drbd_connection *connection) 5374 { 5375 drbd_err(connection, "This kernel was build without CONFIG_CRYPTO_HMAC.\n"); 5376 drbd_err(connection, "You need to disable 'cram-hmac-alg' in drbd.conf.\n"); 5377 return -1; 5378 } 5379 #else 5380 #define CHALLENGE_LEN 64 5381 5382 /* Return value: 5383 1 - auth succeeded, 5384 0 - failed, try again (network error), 5385 -1 - auth failed, don't try again. 5386 */ 5387 5388 static int drbd_do_auth(struct drbd_connection *connection) 5389 { 5390 struct drbd_socket *sock; 5391 char my_challenge[CHALLENGE_LEN]; /* 64 Bytes... */ 5392 char *response = NULL; 5393 char *right_response = NULL; 5394 char *peers_ch = NULL; 5395 unsigned int key_len; 5396 char secret[SHARED_SECRET_MAX]; /* 64 byte */ 5397 unsigned int resp_size; 5398 struct shash_desc *desc; 5399 struct packet_info pi; 5400 struct net_conf *nc; 5401 int err, rv; 5402 5403 /* FIXME: Put the challenge/response into the preallocated socket buffer. */ 5404 5405 rcu_read_lock(); 5406 nc = rcu_dereference(connection->net_conf); 5407 key_len = strlen(nc->shared_secret); 5408 memcpy(secret, nc->shared_secret, key_len); 5409 rcu_read_unlock(); 5410 5411 desc = kmalloc(sizeof(struct shash_desc) + 5412 crypto_shash_descsize(connection->cram_hmac_tfm), 5413 GFP_KERNEL); 5414 if (!desc) { 5415 rv = -1; 5416 goto fail; 5417 } 5418 desc->tfm = connection->cram_hmac_tfm; 5419 5420 rv = crypto_shash_setkey(connection->cram_hmac_tfm, (u8 *)secret, key_len); 5421 if (rv) { 5422 drbd_err(connection, "crypto_shash_setkey() failed with %d\n", rv); 5423 rv = -1; 5424 goto fail; 5425 } 5426 5427 get_random_bytes(my_challenge, CHALLENGE_LEN); 5428 5429 sock = &connection->data; 5430 if (!conn_prepare_command(connection, sock)) { 5431 rv = 0; 5432 goto fail; 5433 } 5434 rv = !conn_send_command(connection, sock, P_AUTH_CHALLENGE, 0, 5435 my_challenge, CHALLENGE_LEN); 5436 if (!rv) 5437 goto fail; 5438 5439 err = drbd_recv_header(connection, &pi); 5440 if (err) { 5441 rv = 0; 5442 goto fail; 5443 } 5444 5445 if (pi.cmd != P_AUTH_CHALLENGE) { 5446 drbd_err(connection, "expected AuthChallenge packet, received: %s (0x%04x)\n", 5447 cmdname(pi.cmd), pi.cmd); 5448 rv = -1; 5449 goto fail; 5450 } 5451 5452 if (pi.size > CHALLENGE_LEN * 2) { 5453 drbd_err(connection, "expected AuthChallenge payload too big.\n"); 5454 rv = -1; 5455 goto fail; 5456 } 5457 5458 if (pi.size < CHALLENGE_LEN) { 5459 drbd_err(connection, "AuthChallenge payload too small.\n"); 5460 rv = -1; 5461 goto fail; 5462 } 5463 5464 peers_ch = kmalloc(pi.size, GFP_NOIO); 5465 if (!peers_ch) { 5466 rv = -1; 5467 goto fail; 5468 } 5469 5470 err = drbd_recv_all_warn(connection, peers_ch, pi.size); 5471 if (err) { 5472 rv = 0; 5473 goto fail; 5474 } 5475 5476 if (!memcmp(my_challenge, peers_ch, CHALLENGE_LEN)) { 5477 drbd_err(connection, "Peer presented the same challenge!\n"); 5478 rv = -1; 5479 goto fail; 5480 } 5481 5482 resp_size = crypto_shash_digestsize(connection->cram_hmac_tfm); 5483 response = kmalloc(resp_size, GFP_NOIO); 5484 if (!response) { 5485 rv = -1; 5486 goto fail; 5487 } 5488 5489 rv = crypto_shash_digest(desc, peers_ch, pi.size, response); 5490 if (rv) { 5491 drbd_err(connection, "crypto_hash_digest() failed with %d\n", rv); 5492 rv = -1; 5493 goto fail; 5494 } 5495 5496 if (!conn_prepare_command(connection, sock)) { 5497 rv = 0; 5498 goto fail; 5499 } 5500 rv = !conn_send_command(connection, sock, P_AUTH_RESPONSE, 0, 5501 response, resp_size); 5502 if (!rv) 5503 goto fail; 5504 5505 err = drbd_recv_header(connection, &pi); 5506 if (err) { 5507 rv = 0; 5508 goto fail; 5509 } 5510 5511 if (pi.cmd != P_AUTH_RESPONSE) { 5512 drbd_err(connection, "expected AuthResponse packet, received: %s (0x%04x)\n", 5513 cmdname(pi.cmd), pi.cmd); 5514 rv = 0; 5515 goto fail; 5516 } 5517 5518 if (pi.size != resp_size) { 5519 drbd_err(connection, "expected AuthResponse payload of wrong size\n"); 5520 rv = 0; 5521 goto fail; 5522 } 5523 5524 err = drbd_recv_all_warn(connection, response , resp_size); 5525 if (err) { 5526 rv = 0; 5527 goto fail; 5528 } 5529 5530 right_response = kmalloc(resp_size, GFP_NOIO); 5531 if (!right_response) { 5532 rv = -1; 5533 goto fail; 5534 } 5535 5536 rv = crypto_shash_digest(desc, my_challenge, CHALLENGE_LEN, 5537 right_response); 5538 if (rv) { 5539 drbd_err(connection, "crypto_hash_digest() failed with %d\n", rv); 5540 rv = -1; 5541 goto fail; 5542 } 5543 5544 rv = !memcmp(response, right_response, resp_size); 5545 5546 if (rv) 5547 drbd_info(connection, "Peer authenticated using %d bytes HMAC\n", 5548 resp_size); 5549 else 5550 rv = -1; 5551 5552 fail: 5553 kfree(peers_ch); 5554 kfree(response); 5555 kfree(right_response); 5556 if (desc) { 5557 shash_desc_zero(desc); 5558 kfree(desc); 5559 } 5560 5561 return rv; 5562 } 5563 #endif 5564 5565 int drbd_receiver(struct drbd_thread *thi) 5566 { 5567 struct drbd_connection *connection = thi->connection; 5568 int h; 5569 5570 drbd_info(connection, "receiver (re)started\n"); 5571 5572 do { 5573 h = conn_connect(connection); 5574 if (h == 0) { 5575 conn_disconnect(connection); 5576 schedule_timeout_interruptible(HZ); 5577 } 5578 if (h == -1) { 5579 drbd_warn(connection, "Discarding network configuration.\n"); 5580 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 5581 } 5582 } while (h == 0); 5583 5584 if (h > 0) { 5585 blk_start_plug(&connection->receiver_plug); 5586 drbdd(connection); 5587 blk_finish_plug(&connection->receiver_plug); 5588 } 5589 5590 conn_disconnect(connection); 5591 5592 drbd_info(connection, "receiver terminated\n"); 5593 return 0; 5594 } 5595 5596 /* ********* acknowledge sender ******** */ 5597 5598 static int got_conn_RqSReply(struct drbd_connection *connection, struct packet_info *pi) 5599 { 5600 struct p_req_state_reply *p = pi->data; 5601 int retcode = be32_to_cpu(p->retcode); 5602 5603 if (retcode >= SS_SUCCESS) { 5604 set_bit(CONN_WD_ST_CHG_OKAY, &connection->flags); 5605 } else { 5606 set_bit(CONN_WD_ST_CHG_FAIL, &connection->flags); 5607 drbd_err(connection, "Requested state change failed by peer: %s (%d)\n", 5608 drbd_set_st_err_str(retcode), retcode); 5609 } 5610 wake_up(&connection->ping_wait); 5611 5612 return 0; 5613 } 5614 5615 static int got_RqSReply(struct drbd_connection *connection, struct packet_info *pi) 5616 { 5617 struct drbd_peer_device *peer_device; 5618 struct drbd_device *device; 5619 struct p_req_state_reply *p = pi->data; 5620 int retcode = be32_to_cpu(p->retcode); 5621 5622 peer_device = conn_peer_device(connection, pi->vnr); 5623 if (!peer_device) 5624 return -EIO; 5625 device = peer_device->device; 5626 5627 if (test_bit(CONN_WD_ST_CHG_REQ, &connection->flags)) { 5628 D_ASSERT(device, connection->agreed_pro_version < 100); 5629 return got_conn_RqSReply(connection, pi); 5630 } 5631 5632 if (retcode >= SS_SUCCESS) { 5633 set_bit(CL_ST_CHG_SUCCESS, &device->flags); 5634 } else { 5635 set_bit(CL_ST_CHG_FAIL, &device->flags); 5636 drbd_err(device, "Requested state change failed by peer: %s (%d)\n", 5637 drbd_set_st_err_str(retcode), retcode); 5638 } 5639 wake_up(&device->state_wait); 5640 5641 return 0; 5642 } 5643 5644 static int got_Ping(struct drbd_connection *connection, struct packet_info *pi) 5645 { 5646 return drbd_send_ping_ack(connection); 5647 5648 } 5649 5650 static int got_PingAck(struct drbd_connection *connection, struct packet_info *pi) 5651 { 5652 /* restore idle timeout */ 5653 connection->meta.socket->sk->sk_rcvtimeo = connection->net_conf->ping_int*HZ; 5654 if (!test_and_set_bit(GOT_PING_ACK, &connection->flags)) 5655 wake_up(&connection->ping_wait); 5656 5657 return 0; 5658 } 5659 5660 static int got_IsInSync(struct drbd_connection *connection, struct packet_info *pi) 5661 { 5662 struct drbd_peer_device *peer_device; 5663 struct drbd_device *device; 5664 struct p_block_ack *p = pi->data; 5665 sector_t sector = be64_to_cpu(p->sector); 5666 int blksize = be32_to_cpu(p->blksize); 5667 5668 peer_device = conn_peer_device(connection, pi->vnr); 5669 if (!peer_device) 5670 return -EIO; 5671 device = peer_device->device; 5672 5673 D_ASSERT(device, peer_device->connection->agreed_pro_version >= 89); 5674 5675 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5676 5677 if (get_ldev(device)) { 5678 drbd_rs_complete_io(device, sector); 5679 drbd_set_in_sync(device, sector, blksize); 5680 /* rs_same_csums is supposed to count in units of BM_BLOCK_SIZE */ 5681 device->rs_same_csum += (blksize >> BM_BLOCK_SHIFT); 5682 put_ldev(device); 5683 } 5684 dec_rs_pending(device); 5685 atomic_add(blksize >> 9, &device->rs_sect_in); 5686 5687 return 0; 5688 } 5689 5690 static int 5691 validate_req_change_req_state(struct drbd_device *device, u64 id, sector_t sector, 5692 struct rb_root *root, const char *func, 5693 enum drbd_req_event what, bool missing_ok) 5694 { 5695 struct drbd_request *req; 5696 struct bio_and_error m; 5697 5698 spin_lock_irq(&device->resource->req_lock); 5699 req = find_request(device, root, id, sector, missing_ok, func); 5700 if (unlikely(!req)) { 5701 spin_unlock_irq(&device->resource->req_lock); 5702 return -EIO; 5703 } 5704 __req_mod(req, what, &m); 5705 spin_unlock_irq(&device->resource->req_lock); 5706 5707 if (m.bio) 5708 complete_master_bio(device, &m); 5709 return 0; 5710 } 5711 5712 static int got_BlockAck(struct drbd_connection *connection, struct packet_info *pi) 5713 { 5714 struct drbd_peer_device *peer_device; 5715 struct drbd_device *device; 5716 struct p_block_ack *p = pi->data; 5717 sector_t sector = be64_to_cpu(p->sector); 5718 int blksize = be32_to_cpu(p->blksize); 5719 enum drbd_req_event what; 5720 5721 peer_device = conn_peer_device(connection, pi->vnr); 5722 if (!peer_device) 5723 return -EIO; 5724 device = peer_device->device; 5725 5726 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5727 5728 if (p->block_id == ID_SYNCER) { 5729 drbd_set_in_sync(device, sector, blksize); 5730 dec_rs_pending(device); 5731 return 0; 5732 } 5733 switch (pi->cmd) { 5734 case P_RS_WRITE_ACK: 5735 what = WRITE_ACKED_BY_PEER_AND_SIS; 5736 break; 5737 case P_WRITE_ACK: 5738 what = WRITE_ACKED_BY_PEER; 5739 break; 5740 case P_RECV_ACK: 5741 what = RECV_ACKED_BY_PEER; 5742 break; 5743 case P_SUPERSEDED: 5744 what = CONFLICT_RESOLVED; 5745 break; 5746 case P_RETRY_WRITE: 5747 what = POSTPONE_WRITE; 5748 break; 5749 default: 5750 BUG(); 5751 } 5752 5753 return validate_req_change_req_state(device, p->block_id, sector, 5754 &device->write_requests, __func__, 5755 what, false); 5756 } 5757 5758 static int got_NegAck(struct drbd_connection *connection, struct packet_info *pi) 5759 { 5760 struct drbd_peer_device *peer_device; 5761 struct drbd_device *device; 5762 struct p_block_ack *p = pi->data; 5763 sector_t sector = be64_to_cpu(p->sector); 5764 int size = be32_to_cpu(p->blksize); 5765 int err; 5766 5767 peer_device = conn_peer_device(connection, pi->vnr); 5768 if (!peer_device) 5769 return -EIO; 5770 device = peer_device->device; 5771 5772 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5773 5774 if (p->block_id == ID_SYNCER) { 5775 dec_rs_pending(device); 5776 drbd_rs_failed_io(device, sector, size); 5777 return 0; 5778 } 5779 5780 err = validate_req_change_req_state(device, p->block_id, sector, 5781 &device->write_requests, __func__, 5782 NEG_ACKED, true); 5783 if (err) { 5784 /* Protocol A has no P_WRITE_ACKs, but has P_NEG_ACKs. 5785 The master bio might already be completed, therefore the 5786 request is no longer in the collision hash. */ 5787 /* In Protocol B we might already have got a P_RECV_ACK 5788 but then get a P_NEG_ACK afterwards. */ 5789 drbd_set_out_of_sync(device, sector, size); 5790 } 5791 return 0; 5792 } 5793 5794 static int got_NegDReply(struct drbd_connection *connection, struct packet_info *pi) 5795 { 5796 struct drbd_peer_device *peer_device; 5797 struct drbd_device *device; 5798 struct p_block_ack *p = pi->data; 5799 sector_t sector = be64_to_cpu(p->sector); 5800 5801 peer_device = conn_peer_device(connection, pi->vnr); 5802 if (!peer_device) 5803 return -EIO; 5804 device = peer_device->device; 5805 5806 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5807 5808 drbd_err(device, "Got NegDReply; Sector %llus, len %u.\n", 5809 (unsigned long long)sector, be32_to_cpu(p->blksize)); 5810 5811 return validate_req_change_req_state(device, p->block_id, sector, 5812 &device->read_requests, __func__, 5813 NEG_ACKED, false); 5814 } 5815 5816 static int got_NegRSDReply(struct drbd_connection *connection, struct packet_info *pi) 5817 { 5818 struct drbd_peer_device *peer_device; 5819 struct drbd_device *device; 5820 sector_t sector; 5821 int size; 5822 struct p_block_ack *p = pi->data; 5823 5824 peer_device = conn_peer_device(connection, pi->vnr); 5825 if (!peer_device) 5826 return -EIO; 5827 device = peer_device->device; 5828 5829 sector = be64_to_cpu(p->sector); 5830 size = be32_to_cpu(p->blksize); 5831 5832 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5833 5834 dec_rs_pending(device); 5835 5836 if (get_ldev_if_state(device, D_FAILED)) { 5837 drbd_rs_complete_io(device, sector); 5838 switch (pi->cmd) { 5839 case P_NEG_RS_DREPLY: 5840 drbd_rs_failed_io(device, sector, size); 5841 break; 5842 case P_RS_CANCEL: 5843 break; 5844 default: 5845 BUG(); 5846 } 5847 put_ldev(device); 5848 } 5849 5850 return 0; 5851 } 5852 5853 static int got_BarrierAck(struct drbd_connection *connection, struct packet_info *pi) 5854 { 5855 struct p_barrier_ack *p = pi->data; 5856 struct drbd_peer_device *peer_device; 5857 int vnr; 5858 5859 tl_release(connection, p->barrier, be32_to_cpu(p->set_size)); 5860 5861 rcu_read_lock(); 5862 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 5863 struct drbd_device *device = peer_device->device; 5864 5865 if (device->state.conn == C_AHEAD && 5866 atomic_read(&device->ap_in_flight) == 0 && 5867 !test_and_set_bit(AHEAD_TO_SYNC_SOURCE, &device->flags)) { 5868 device->start_resync_timer.expires = jiffies + HZ; 5869 add_timer(&device->start_resync_timer); 5870 } 5871 } 5872 rcu_read_unlock(); 5873 5874 return 0; 5875 } 5876 5877 static int got_OVResult(struct drbd_connection *connection, struct packet_info *pi) 5878 { 5879 struct drbd_peer_device *peer_device; 5880 struct drbd_device *device; 5881 struct p_block_ack *p = pi->data; 5882 struct drbd_device_work *dw; 5883 sector_t sector; 5884 int size; 5885 5886 peer_device = conn_peer_device(connection, pi->vnr); 5887 if (!peer_device) 5888 return -EIO; 5889 device = peer_device->device; 5890 5891 sector = be64_to_cpu(p->sector); 5892 size = be32_to_cpu(p->blksize); 5893 5894 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5895 5896 if (be64_to_cpu(p->block_id) == ID_OUT_OF_SYNC) 5897 drbd_ov_out_of_sync_found(device, sector, size); 5898 else 5899 ov_out_of_sync_print(device); 5900 5901 if (!get_ldev(device)) 5902 return 0; 5903 5904 drbd_rs_complete_io(device, sector); 5905 dec_rs_pending(device); 5906 5907 --device->ov_left; 5908 5909 /* let's advance progress step marks only for every other megabyte */ 5910 if ((device->ov_left & 0x200) == 0x200) 5911 drbd_advance_rs_marks(device, device->ov_left); 5912 5913 if (device->ov_left == 0) { 5914 dw = kmalloc(sizeof(*dw), GFP_NOIO); 5915 if (dw) { 5916 dw->w.cb = w_ov_finished; 5917 dw->device = device; 5918 drbd_queue_work(&peer_device->connection->sender_work, &dw->w); 5919 } else { 5920 drbd_err(device, "kmalloc(dw) failed."); 5921 ov_out_of_sync_print(device); 5922 drbd_resync_finished(device); 5923 } 5924 } 5925 put_ldev(device); 5926 return 0; 5927 } 5928 5929 static int got_skip(struct drbd_connection *connection, struct packet_info *pi) 5930 { 5931 return 0; 5932 } 5933 5934 struct meta_sock_cmd { 5935 size_t pkt_size; 5936 int (*fn)(struct drbd_connection *connection, struct packet_info *); 5937 }; 5938 5939 static void set_rcvtimeo(struct drbd_connection *connection, bool ping_timeout) 5940 { 5941 long t; 5942 struct net_conf *nc; 5943 5944 rcu_read_lock(); 5945 nc = rcu_dereference(connection->net_conf); 5946 t = ping_timeout ? nc->ping_timeo : nc->ping_int; 5947 rcu_read_unlock(); 5948 5949 t *= HZ; 5950 if (ping_timeout) 5951 t /= 10; 5952 5953 connection->meta.socket->sk->sk_rcvtimeo = t; 5954 } 5955 5956 static void set_ping_timeout(struct drbd_connection *connection) 5957 { 5958 set_rcvtimeo(connection, 1); 5959 } 5960 5961 static void set_idle_timeout(struct drbd_connection *connection) 5962 { 5963 set_rcvtimeo(connection, 0); 5964 } 5965 5966 static struct meta_sock_cmd ack_receiver_tbl[] = { 5967 [P_PING] = { 0, got_Ping }, 5968 [P_PING_ACK] = { 0, got_PingAck }, 5969 [P_RECV_ACK] = { sizeof(struct p_block_ack), got_BlockAck }, 5970 [P_WRITE_ACK] = { sizeof(struct p_block_ack), got_BlockAck }, 5971 [P_RS_WRITE_ACK] = { sizeof(struct p_block_ack), got_BlockAck }, 5972 [P_SUPERSEDED] = { sizeof(struct p_block_ack), got_BlockAck }, 5973 [P_NEG_ACK] = { sizeof(struct p_block_ack), got_NegAck }, 5974 [P_NEG_DREPLY] = { sizeof(struct p_block_ack), got_NegDReply }, 5975 [P_NEG_RS_DREPLY] = { sizeof(struct p_block_ack), got_NegRSDReply }, 5976 [P_OV_RESULT] = { sizeof(struct p_block_ack), got_OVResult }, 5977 [P_BARRIER_ACK] = { sizeof(struct p_barrier_ack), got_BarrierAck }, 5978 [P_STATE_CHG_REPLY] = { sizeof(struct p_req_state_reply), got_RqSReply }, 5979 [P_RS_IS_IN_SYNC] = { sizeof(struct p_block_ack), got_IsInSync }, 5980 [P_DELAY_PROBE] = { sizeof(struct p_delay_probe93), got_skip }, 5981 [P_RS_CANCEL] = { sizeof(struct p_block_ack), got_NegRSDReply }, 5982 [P_CONN_ST_CHG_REPLY]={ sizeof(struct p_req_state_reply), got_conn_RqSReply }, 5983 [P_RETRY_WRITE] = { sizeof(struct p_block_ack), got_BlockAck }, 5984 }; 5985 5986 int drbd_ack_receiver(struct drbd_thread *thi) 5987 { 5988 struct drbd_connection *connection = thi->connection; 5989 struct meta_sock_cmd *cmd = NULL; 5990 struct packet_info pi; 5991 unsigned long pre_recv_jif; 5992 int rv; 5993 void *buf = connection->meta.rbuf; 5994 int received = 0; 5995 unsigned int header_size = drbd_header_size(connection); 5996 int expect = header_size; 5997 bool ping_timeout_active = false; 5998 5999 sched_set_fifo_low(current); 6000 6001 while (get_t_state(thi) == RUNNING) { 6002 drbd_thread_current_set_cpu(thi); 6003 6004 conn_reclaim_net_peer_reqs(connection); 6005 6006 if (test_and_clear_bit(SEND_PING, &connection->flags)) { 6007 if (drbd_send_ping(connection)) { 6008 drbd_err(connection, "drbd_send_ping has failed\n"); 6009 goto reconnect; 6010 } 6011 set_ping_timeout(connection); 6012 ping_timeout_active = true; 6013 } 6014 6015 pre_recv_jif = jiffies; 6016 rv = drbd_recv_short(connection->meta.socket, buf, expect-received, 0); 6017 6018 /* Note: 6019 * -EINTR (on meta) we got a signal 6020 * -EAGAIN (on meta) rcvtimeo expired 6021 * -ECONNRESET other side closed the connection 6022 * -ERESTARTSYS (on data) we got a signal 6023 * rv < 0 other than above: unexpected error! 6024 * rv == expected: full header or command 6025 * rv < expected: "woken" by signal during receive 6026 * rv == 0 : "connection shut down by peer" 6027 */ 6028 if (likely(rv > 0)) { 6029 received += rv; 6030 buf += rv; 6031 } else if (rv == 0) { 6032 if (test_bit(DISCONNECT_SENT, &connection->flags)) { 6033 long t; 6034 rcu_read_lock(); 6035 t = rcu_dereference(connection->net_conf)->ping_timeo * HZ/10; 6036 rcu_read_unlock(); 6037 6038 t = wait_event_timeout(connection->ping_wait, 6039 connection->cstate < C_WF_REPORT_PARAMS, 6040 t); 6041 if (t) 6042 break; 6043 } 6044 drbd_err(connection, "meta connection shut down by peer.\n"); 6045 goto reconnect; 6046 } else if (rv == -EAGAIN) { 6047 /* If the data socket received something meanwhile, 6048 * that is good enough: peer is still alive. */ 6049 if (time_after(connection->last_received, pre_recv_jif)) 6050 continue; 6051 if (ping_timeout_active) { 6052 drbd_err(connection, "PingAck did not arrive in time.\n"); 6053 goto reconnect; 6054 } 6055 set_bit(SEND_PING, &connection->flags); 6056 continue; 6057 } else if (rv == -EINTR) { 6058 /* maybe drbd_thread_stop(): the while condition will notice. 6059 * maybe woken for send_ping: we'll send a ping above, 6060 * and change the rcvtimeo */ 6061 flush_signals(current); 6062 continue; 6063 } else { 6064 drbd_err(connection, "sock_recvmsg returned %d\n", rv); 6065 goto reconnect; 6066 } 6067 6068 if (received == expect && cmd == NULL) { 6069 if (decode_header(connection, connection->meta.rbuf, &pi)) 6070 goto reconnect; 6071 cmd = &ack_receiver_tbl[pi.cmd]; 6072 if (pi.cmd >= ARRAY_SIZE(ack_receiver_tbl) || !cmd->fn) { 6073 drbd_err(connection, "Unexpected meta packet %s (0x%04x)\n", 6074 cmdname(pi.cmd), pi.cmd); 6075 goto disconnect; 6076 } 6077 expect = header_size + cmd->pkt_size; 6078 if (pi.size != expect - header_size) { 6079 drbd_err(connection, "Wrong packet size on meta (c: %d, l: %d)\n", 6080 pi.cmd, pi.size); 6081 goto reconnect; 6082 } 6083 } 6084 if (received == expect) { 6085 bool err; 6086 6087 err = cmd->fn(connection, &pi); 6088 if (err) { 6089 drbd_err(connection, "%ps failed\n", cmd->fn); 6090 goto reconnect; 6091 } 6092 6093 connection->last_received = jiffies; 6094 6095 if (cmd == &ack_receiver_tbl[P_PING_ACK]) { 6096 set_idle_timeout(connection); 6097 ping_timeout_active = false; 6098 } 6099 6100 buf = connection->meta.rbuf; 6101 received = 0; 6102 expect = header_size; 6103 cmd = NULL; 6104 } 6105 } 6106 6107 if (0) { 6108 reconnect: 6109 conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD); 6110 conn_md_sync(connection); 6111 } 6112 if (0) { 6113 disconnect: 6114 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 6115 } 6116 6117 drbd_info(connection, "ack_receiver terminated\n"); 6118 6119 return 0; 6120 } 6121 6122 void drbd_send_acks_wf(struct work_struct *ws) 6123 { 6124 struct drbd_peer_device *peer_device = 6125 container_of(ws, struct drbd_peer_device, send_acks_work); 6126 struct drbd_connection *connection = peer_device->connection; 6127 struct drbd_device *device = peer_device->device; 6128 struct net_conf *nc; 6129 int tcp_cork, err; 6130 6131 rcu_read_lock(); 6132 nc = rcu_dereference(connection->net_conf); 6133 tcp_cork = nc->tcp_cork; 6134 rcu_read_unlock(); 6135 6136 if (tcp_cork) 6137 tcp_sock_set_cork(connection->meta.socket->sk, true); 6138 6139 err = drbd_finish_peer_reqs(device); 6140 kref_put(&device->kref, drbd_destroy_device); 6141 /* get is in drbd_endio_write_sec_final(). That is necessary to keep the 6142 struct work_struct send_acks_work alive, which is in the peer_device object */ 6143 6144 if (err) { 6145 conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD); 6146 return; 6147 } 6148 6149 if (tcp_cork) 6150 tcp_sock_set_cork(connection->meta.socket->sk, false); 6151 6152 return; 6153 } 6154