1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 drbd_receiver.c 4 5 This file is part of DRBD by Philipp Reisner and Lars Ellenberg. 6 7 Copyright (C) 2001-2008, LINBIT Information Technologies GmbH. 8 Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>. 9 Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>. 10 11 */ 12 13 14 #include <linux/module.h> 15 16 #include <linux/uaccess.h> 17 #include <net/sock.h> 18 19 #include <linux/drbd.h> 20 #include <linux/fs.h> 21 #include <linux/file.h> 22 #include <linux/in.h> 23 #include <linux/mm.h> 24 #include <linux/memcontrol.h> 25 #include <linux/mm_inline.h> 26 #include <linux/slab.h> 27 #include <uapi/linux/sched/types.h> 28 #include <linux/sched/signal.h> 29 #include <linux/pkt_sched.h> 30 #define __KERNEL_SYSCALLS__ 31 #include <linux/unistd.h> 32 #include <linux/vmalloc.h> 33 #include <linux/random.h> 34 #include <linux/string.h> 35 #include <linux/scatterlist.h> 36 #include <linux/part_stat.h> 37 #include "drbd_int.h" 38 #include "drbd_protocol.h" 39 #include "drbd_req.h" 40 #include "drbd_vli.h" 41 42 #define PRO_FEATURES (DRBD_FF_TRIM|DRBD_FF_THIN_RESYNC|DRBD_FF_WSAME|DRBD_FF_WZEROES) 43 44 struct packet_info { 45 enum drbd_packet cmd; 46 unsigned int size; 47 unsigned int vnr; 48 void *data; 49 }; 50 51 enum finish_epoch { 52 FE_STILL_LIVE, 53 FE_DESTROYED, 54 FE_RECYCLED, 55 }; 56 57 static int drbd_do_features(struct drbd_connection *connection); 58 static int drbd_do_auth(struct drbd_connection *connection); 59 static int drbd_disconnected(struct drbd_peer_device *); 60 static void conn_wait_active_ee_empty(struct drbd_connection *connection); 61 static enum finish_epoch drbd_may_finish_epoch(struct drbd_connection *, struct drbd_epoch *, enum epoch_event); 62 static int e_end_block(struct drbd_work *, int); 63 64 65 #define GFP_TRY (__GFP_HIGHMEM | __GFP_NOWARN) 66 67 /* 68 * some helper functions to deal with single linked page lists, 69 * page->private being our "next" pointer. 70 */ 71 72 /* If at least n pages are linked at head, get n pages off. 73 * Otherwise, don't modify head, and return NULL. 74 * Locking is the responsibility of the caller. 75 */ 76 static struct page *page_chain_del(struct page **head, int n) 77 { 78 struct page *page; 79 struct page *tmp; 80 81 BUG_ON(!n); 82 BUG_ON(!head); 83 84 page = *head; 85 86 if (!page) 87 return NULL; 88 89 while (page) { 90 tmp = page_chain_next(page); 91 if (--n == 0) 92 break; /* found sufficient pages */ 93 if (tmp == NULL) 94 /* insufficient pages, don't use any of them. */ 95 return NULL; 96 page = tmp; 97 } 98 99 /* add end of list marker for the returned list */ 100 set_page_private(page, 0); 101 /* actual return value, and adjustment of head */ 102 page = *head; 103 *head = tmp; 104 return page; 105 } 106 107 /* may be used outside of locks to find the tail of a (usually short) 108 * "private" page chain, before adding it back to a global chain head 109 * with page_chain_add() under a spinlock. */ 110 static struct page *page_chain_tail(struct page *page, int *len) 111 { 112 struct page *tmp; 113 int i = 1; 114 while ((tmp = page_chain_next(page))) { 115 ++i; 116 page = tmp; 117 } 118 if (len) 119 *len = i; 120 return page; 121 } 122 123 static int page_chain_free(struct page *page) 124 { 125 struct page *tmp; 126 int i = 0; 127 page_chain_for_each_safe(page, tmp) { 128 put_page(page); 129 ++i; 130 } 131 return i; 132 } 133 134 static void page_chain_add(struct page **head, 135 struct page *chain_first, struct page *chain_last) 136 { 137 #if 1 138 struct page *tmp; 139 tmp = page_chain_tail(chain_first, NULL); 140 BUG_ON(tmp != chain_last); 141 #endif 142 143 /* add chain to head */ 144 set_page_private(chain_last, (unsigned long)*head); 145 *head = chain_first; 146 } 147 148 static struct page *__drbd_alloc_pages(struct drbd_device *device, 149 unsigned int number) 150 { 151 struct page *page = NULL; 152 struct page *tmp = NULL; 153 unsigned int i = 0; 154 155 /* Yes, testing drbd_pp_vacant outside the lock is racy. 156 * So what. It saves a spin_lock. */ 157 if (drbd_pp_vacant >= number) { 158 spin_lock(&drbd_pp_lock); 159 page = page_chain_del(&drbd_pp_pool, number); 160 if (page) 161 drbd_pp_vacant -= number; 162 spin_unlock(&drbd_pp_lock); 163 if (page) 164 return page; 165 } 166 167 /* GFP_TRY, because we must not cause arbitrary write-out: in a DRBD 168 * "criss-cross" setup, that might cause write-out on some other DRBD, 169 * which in turn might block on the other node at this very place. */ 170 for (i = 0; i < number; i++) { 171 tmp = alloc_page(GFP_TRY); 172 if (!tmp) 173 break; 174 set_page_private(tmp, (unsigned long)page); 175 page = tmp; 176 } 177 178 if (i == number) 179 return page; 180 181 /* Not enough pages immediately available this time. 182 * No need to jump around here, drbd_alloc_pages will retry this 183 * function "soon". */ 184 if (page) { 185 tmp = page_chain_tail(page, NULL); 186 spin_lock(&drbd_pp_lock); 187 page_chain_add(&drbd_pp_pool, page, tmp); 188 drbd_pp_vacant += i; 189 spin_unlock(&drbd_pp_lock); 190 } 191 return NULL; 192 } 193 194 static void reclaim_finished_net_peer_reqs(struct drbd_device *device, 195 struct list_head *to_be_freed) 196 { 197 struct drbd_peer_request *peer_req, *tmp; 198 199 /* The EEs are always appended to the end of the list. Since 200 they are sent in order over the wire, they have to finish 201 in order. As soon as we see the first not finished we can 202 stop to examine the list... */ 203 204 list_for_each_entry_safe(peer_req, tmp, &device->net_ee, w.list) { 205 if (drbd_peer_req_has_active_page(peer_req)) 206 break; 207 list_move(&peer_req->w.list, to_be_freed); 208 } 209 } 210 211 static void drbd_reclaim_net_peer_reqs(struct drbd_device *device) 212 { 213 LIST_HEAD(reclaimed); 214 struct drbd_peer_request *peer_req, *t; 215 216 spin_lock_irq(&device->resource->req_lock); 217 reclaim_finished_net_peer_reqs(device, &reclaimed); 218 spin_unlock_irq(&device->resource->req_lock); 219 list_for_each_entry_safe(peer_req, t, &reclaimed, w.list) 220 drbd_free_net_peer_req(device, peer_req); 221 } 222 223 static void conn_reclaim_net_peer_reqs(struct drbd_connection *connection) 224 { 225 struct drbd_peer_device *peer_device; 226 int vnr; 227 228 rcu_read_lock(); 229 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 230 struct drbd_device *device = peer_device->device; 231 if (!atomic_read(&device->pp_in_use_by_net)) 232 continue; 233 234 kref_get(&device->kref); 235 rcu_read_unlock(); 236 drbd_reclaim_net_peer_reqs(device); 237 kref_put(&device->kref, drbd_destroy_device); 238 rcu_read_lock(); 239 } 240 rcu_read_unlock(); 241 } 242 243 /** 244 * drbd_alloc_pages() - Returns @number pages, retries forever (or until signalled) 245 * @peer_device: DRBD device. 246 * @number: number of pages requested 247 * @retry: whether to retry, if not enough pages are available right now 248 * 249 * Tries to allocate number pages, first from our own page pool, then from 250 * the kernel. 251 * Possibly retry until DRBD frees sufficient pages somewhere else. 252 * 253 * If this allocation would exceed the max_buffers setting, we throttle 254 * allocation (schedule_timeout) to give the system some room to breathe. 255 * 256 * We do not use max-buffers as hard limit, because it could lead to 257 * congestion and further to a distributed deadlock during online-verify or 258 * (checksum based) resync, if the max-buffers, socket buffer sizes and 259 * resync-rate settings are mis-configured. 260 * 261 * Returns a page chain linked via page->private. 262 */ 263 struct page *drbd_alloc_pages(struct drbd_peer_device *peer_device, unsigned int number, 264 bool retry) 265 { 266 struct drbd_device *device = peer_device->device; 267 struct page *page = NULL; 268 struct net_conf *nc; 269 DEFINE_WAIT(wait); 270 unsigned int mxb; 271 272 rcu_read_lock(); 273 nc = rcu_dereference(peer_device->connection->net_conf); 274 mxb = nc ? nc->max_buffers : 1000000; 275 rcu_read_unlock(); 276 277 if (atomic_read(&device->pp_in_use) < mxb) 278 page = __drbd_alloc_pages(device, number); 279 280 /* Try to keep the fast path fast, but occasionally we need 281 * to reclaim the pages we lended to the network stack. */ 282 if (page && atomic_read(&device->pp_in_use_by_net) > 512) 283 drbd_reclaim_net_peer_reqs(device); 284 285 while (page == NULL) { 286 prepare_to_wait(&drbd_pp_wait, &wait, TASK_INTERRUPTIBLE); 287 288 drbd_reclaim_net_peer_reqs(device); 289 290 if (atomic_read(&device->pp_in_use) < mxb) { 291 page = __drbd_alloc_pages(device, number); 292 if (page) 293 break; 294 } 295 296 if (!retry) 297 break; 298 299 if (signal_pending(current)) { 300 drbd_warn(device, "drbd_alloc_pages interrupted!\n"); 301 break; 302 } 303 304 if (schedule_timeout(HZ/10) == 0) 305 mxb = UINT_MAX; 306 } 307 finish_wait(&drbd_pp_wait, &wait); 308 309 if (page) 310 atomic_add(number, &device->pp_in_use); 311 return page; 312 } 313 314 /* Must not be used from irq, as that may deadlock: see drbd_alloc_pages. 315 * Is also used from inside an other spin_lock_irq(&resource->req_lock); 316 * Either links the page chain back to the global pool, 317 * or returns all pages to the system. */ 318 static void drbd_free_pages(struct drbd_device *device, struct page *page, int is_net) 319 { 320 atomic_t *a = is_net ? &device->pp_in_use_by_net : &device->pp_in_use; 321 int i; 322 323 if (page == NULL) 324 return; 325 326 if (drbd_pp_vacant > (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * drbd_minor_count) 327 i = page_chain_free(page); 328 else { 329 struct page *tmp; 330 tmp = page_chain_tail(page, &i); 331 spin_lock(&drbd_pp_lock); 332 page_chain_add(&drbd_pp_pool, page, tmp); 333 drbd_pp_vacant += i; 334 spin_unlock(&drbd_pp_lock); 335 } 336 i = atomic_sub_return(i, a); 337 if (i < 0) 338 drbd_warn(device, "ASSERTION FAILED: %s: %d < 0\n", 339 is_net ? "pp_in_use_by_net" : "pp_in_use", i); 340 wake_up(&drbd_pp_wait); 341 } 342 343 /* 344 You need to hold the req_lock: 345 _drbd_wait_ee_list_empty() 346 347 You must not have the req_lock: 348 drbd_free_peer_req() 349 drbd_alloc_peer_req() 350 drbd_free_peer_reqs() 351 drbd_ee_fix_bhs() 352 drbd_finish_peer_reqs() 353 drbd_clear_done_ee() 354 drbd_wait_ee_list_empty() 355 */ 356 357 /* normal: payload_size == request size (bi_size) 358 * w_same: payload_size == logical_block_size 359 * trim: payload_size == 0 */ 360 struct drbd_peer_request * 361 drbd_alloc_peer_req(struct drbd_peer_device *peer_device, u64 id, sector_t sector, 362 unsigned int request_size, unsigned int payload_size, gfp_t gfp_mask) __must_hold(local) 363 { 364 struct drbd_device *device = peer_device->device; 365 struct drbd_peer_request *peer_req; 366 struct page *page = NULL; 367 unsigned nr_pages = (payload_size + PAGE_SIZE -1) >> PAGE_SHIFT; 368 369 if (drbd_insert_fault(device, DRBD_FAULT_AL_EE)) 370 return NULL; 371 372 peer_req = mempool_alloc(&drbd_ee_mempool, gfp_mask & ~__GFP_HIGHMEM); 373 if (!peer_req) { 374 if (!(gfp_mask & __GFP_NOWARN)) 375 drbd_err(device, "%s: allocation failed\n", __func__); 376 return NULL; 377 } 378 379 if (nr_pages) { 380 page = drbd_alloc_pages(peer_device, nr_pages, 381 gfpflags_allow_blocking(gfp_mask)); 382 if (!page) 383 goto fail; 384 } 385 386 memset(peer_req, 0, sizeof(*peer_req)); 387 INIT_LIST_HEAD(&peer_req->w.list); 388 drbd_clear_interval(&peer_req->i); 389 peer_req->i.size = request_size; 390 peer_req->i.sector = sector; 391 peer_req->submit_jif = jiffies; 392 peer_req->peer_device = peer_device; 393 peer_req->pages = page; 394 /* 395 * The block_id is opaque to the receiver. It is not endianness 396 * converted, and sent back to the sender unchanged. 397 */ 398 peer_req->block_id = id; 399 400 return peer_req; 401 402 fail: 403 mempool_free(peer_req, &drbd_ee_mempool); 404 return NULL; 405 } 406 407 void __drbd_free_peer_req(struct drbd_device *device, struct drbd_peer_request *peer_req, 408 int is_net) 409 { 410 might_sleep(); 411 if (peer_req->flags & EE_HAS_DIGEST) 412 kfree(peer_req->digest); 413 drbd_free_pages(device, peer_req->pages, is_net); 414 D_ASSERT(device, atomic_read(&peer_req->pending_bios) == 0); 415 D_ASSERT(device, drbd_interval_empty(&peer_req->i)); 416 if (!expect(!(peer_req->flags & EE_CALL_AL_COMPLETE_IO))) { 417 peer_req->flags &= ~EE_CALL_AL_COMPLETE_IO; 418 drbd_al_complete_io(device, &peer_req->i); 419 } 420 mempool_free(peer_req, &drbd_ee_mempool); 421 } 422 423 int drbd_free_peer_reqs(struct drbd_device *device, struct list_head *list) 424 { 425 LIST_HEAD(work_list); 426 struct drbd_peer_request *peer_req, *t; 427 int count = 0; 428 int is_net = list == &device->net_ee; 429 430 spin_lock_irq(&device->resource->req_lock); 431 list_splice_init(list, &work_list); 432 spin_unlock_irq(&device->resource->req_lock); 433 434 list_for_each_entry_safe(peer_req, t, &work_list, w.list) { 435 __drbd_free_peer_req(device, peer_req, is_net); 436 count++; 437 } 438 return count; 439 } 440 441 /* 442 * See also comments in _req_mod(,BARRIER_ACKED) and receive_Barrier. 443 */ 444 static int drbd_finish_peer_reqs(struct drbd_device *device) 445 { 446 LIST_HEAD(work_list); 447 LIST_HEAD(reclaimed); 448 struct drbd_peer_request *peer_req, *t; 449 int err = 0; 450 451 spin_lock_irq(&device->resource->req_lock); 452 reclaim_finished_net_peer_reqs(device, &reclaimed); 453 list_splice_init(&device->done_ee, &work_list); 454 spin_unlock_irq(&device->resource->req_lock); 455 456 list_for_each_entry_safe(peer_req, t, &reclaimed, w.list) 457 drbd_free_net_peer_req(device, peer_req); 458 459 /* possible callbacks here: 460 * e_end_block, and e_end_resync_block, e_send_superseded. 461 * all ignore the last argument. 462 */ 463 list_for_each_entry_safe(peer_req, t, &work_list, w.list) { 464 int err2; 465 466 /* list_del not necessary, next/prev members not touched */ 467 err2 = peer_req->w.cb(&peer_req->w, !!err); 468 if (!err) 469 err = err2; 470 drbd_free_peer_req(device, peer_req); 471 } 472 wake_up(&device->ee_wait); 473 474 return err; 475 } 476 477 static void _drbd_wait_ee_list_empty(struct drbd_device *device, 478 struct list_head *head) 479 { 480 DEFINE_WAIT(wait); 481 482 /* avoids spin_lock/unlock 483 * and calling prepare_to_wait in the fast path */ 484 while (!list_empty(head)) { 485 prepare_to_wait(&device->ee_wait, &wait, TASK_UNINTERRUPTIBLE); 486 spin_unlock_irq(&device->resource->req_lock); 487 io_schedule(); 488 finish_wait(&device->ee_wait, &wait); 489 spin_lock_irq(&device->resource->req_lock); 490 } 491 } 492 493 static void drbd_wait_ee_list_empty(struct drbd_device *device, 494 struct list_head *head) 495 { 496 spin_lock_irq(&device->resource->req_lock); 497 _drbd_wait_ee_list_empty(device, head); 498 spin_unlock_irq(&device->resource->req_lock); 499 } 500 501 static int drbd_recv_short(struct socket *sock, void *buf, size_t size, int flags) 502 { 503 struct kvec iov = { 504 .iov_base = buf, 505 .iov_len = size, 506 }; 507 struct msghdr msg = { 508 .msg_flags = (flags ? flags : MSG_WAITALL | MSG_NOSIGNAL) 509 }; 510 iov_iter_kvec(&msg.msg_iter, READ, &iov, 1, size); 511 return sock_recvmsg(sock, &msg, msg.msg_flags); 512 } 513 514 static int drbd_recv(struct drbd_connection *connection, void *buf, size_t size) 515 { 516 int rv; 517 518 rv = drbd_recv_short(connection->data.socket, buf, size, 0); 519 520 if (rv < 0) { 521 if (rv == -ECONNRESET) 522 drbd_info(connection, "sock was reset by peer\n"); 523 else if (rv != -ERESTARTSYS) 524 drbd_err(connection, "sock_recvmsg returned %d\n", rv); 525 } else if (rv == 0) { 526 if (test_bit(DISCONNECT_SENT, &connection->flags)) { 527 long t; 528 rcu_read_lock(); 529 t = rcu_dereference(connection->net_conf)->ping_timeo * HZ/10; 530 rcu_read_unlock(); 531 532 t = wait_event_timeout(connection->ping_wait, connection->cstate < C_WF_REPORT_PARAMS, t); 533 534 if (t) 535 goto out; 536 } 537 drbd_info(connection, "sock was shut down by peer\n"); 538 } 539 540 if (rv != size) 541 conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD); 542 543 out: 544 return rv; 545 } 546 547 static int drbd_recv_all(struct drbd_connection *connection, void *buf, size_t size) 548 { 549 int err; 550 551 err = drbd_recv(connection, buf, size); 552 if (err != size) { 553 if (err >= 0) 554 err = -EIO; 555 } else 556 err = 0; 557 return err; 558 } 559 560 static int drbd_recv_all_warn(struct drbd_connection *connection, void *buf, size_t size) 561 { 562 int err; 563 564 err = drbd_recv_all(connection, buf, size); 565 if (err && !signal_pending(current)) 566 drbd_warn(connection, "short read (expected size %d)\n", (int)size); 567 return err; 568 } 569 570 /* quoting tcp(7): 571 * On individual connections, the socket buffer size must be set prior to the 572 * listen(2) or connect(2) calls in order to have it take effect. 573 * This is our wrapper to do so. 574 */ 575 static void drbd_setbufsize(struct socket *sock, unsigned int snd, 576 unsigned int rcv) 577 { 578 /* open coded SO_SNDBUF, SO_RCVBUF */ 579 if (snd) { 580 sock->sk->sk_sndbuf = snd; 581 sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 582 } 583 if (rcv) { 584 sock->sk->sk_rcvbuf = rcv; 585 sock->sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 586 } 587 } 588 589 static struct socket *drbd_try_connect(struct drbd_connection *connection) 590 { 591 const char *what; 592 struct socket *sock; 593 struct sockaddr_in6 src_in6; 594 struct sockaddr_in6 peer_in6; 595 struct net_conf *nc; 596 int err, peer_addr_len, my_addr_len; 597 int sndbuf_size, rcvbuf_size, connect_int; 598 int disconnect_on_error = 1; 599 600 rcu_read_lock(); 601 nc = rcu_dereference(connection->net_conf); 602 if (!nc) { 603 rcu_read_unlock(); 604 return NULL; 605 } 606 sndbuf_size = nc->sndbuf_size; 607 rcvbuf_size = nc->rcvbuf_size; 608 connect_int = nc->connect_int; 609 rcu_read_unlock(); 610 611 my_addr_len = min_t(int, connection->my_addr_len, sizeof(src_in6)); 612 memcpy(&src_in6, &connection->my_addr, my_addr_len); 613 614 if (((struct sockaddr *)&connection->my_addr)->sa_family == AF_INET6) 615 src_in6.sin6_port = 0; 616 else 617 ((struct sockaddr_in *)&src_in6)->sin_port = 0; /* AF_INET & AF_SCI */ 618 619 peer_addr_len = min_t(int, connection->peer_addr_len, sizeof(src_in6)); 620 memcpy(&peer_in6, &connection->peer_addr, peer_addr_len); 621 622 what = "sock_create_kern"; 623 err = sock_create_kern(&init_net, ((struct sockaddr *)&src_in6)->sa_family, 624 SOCK_STREAM, IPPROTO_TCP, &sock); 625 if (err < 0) { 626 sock = NULL; 627 goto out; 628 } 629 630 sock->sk->sk_rcvtimeo = 631 sock->sk->sk_sndtimeo = connect_int * HZ; 632 drbd_setbufsize(sock, sndbuf_size, rcvbuf_size); 633 634 /* explicitly bind to the configured IP as source IP 635 * for the outgoing connections. 636 * This is needed for multihomed hosts and to be 637 * able to use lo: interfaces for drbd. 638 * Make sure to use 0 as port number, so linux selects 639 * a free one dynamically. 640 */ 641 what = "bind before connect"; 642 err = sock->ops->bind(sock, (struct sockaddr *) &src_in6, my_addr_len); 643 if (err < 0) 644 goto out; 645 646 /* connect may fail, peer not yet available. 647 * stay C_WF_CONNECTION, don't go Disconnecting! */ 648 disconnect_on_error = 0; 649 what = "connect"; 650 err = sock->ops->connect(sock, (struct sockaddr *) &peer_in6, peer_addr_len, 0); 651 652 out: 653 if (err < 0) { 654 if (sock) { 655 sock_release(sock); 656 sock = NULL; 657 } 658 switch (-err) { 659 /* timeout, busy, signal pending */ 660 case ETIMEDOUT: case EAGAIN: case EINPROGRESS: 661 case EINTR: case ERESTARTSYS: 662 /* peer not (yet) available, network problem */ 663 case ECONNREFUSED: case ENETUNREACH: 664 case EHOSTDOWN: case EHOSTUNREACH: 665 disconnect_on_error = 0; 666 break; 667 default: 668 drbd_err(connection, "%s failed, err = %d\n", what, err); 669 } 670 if (disconnect_on_error) 671 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 672 } 673 674 return sock; 675 } 676 677 struct accept_wait_data { 678 struct drbd_connection *connection; 679 struct socket *s_listen; 680 struct completion door_bell; 681 void (*original_sk_state_change)(struct sock *sk); 682 683 }; 684 685 static void drbd_incoming_connection(struct sock *sk) 686 { 687 struct accept_wait_data *ad = sk->sk_user_data; 688 void (*state_change)(struct sock *sk); 689 690 state_change = ad->original_sk_state_change; 691 if (sk->sk_state == TCP_ESTABLISHED) 692 complete(&ad->door_bell); 693 state_change(sk); 694 } 695 696 static int prepare_listen_socket(struct drbd_connection *connection, struct accept_wait_data *ad) 697 { 698 int err, sndbuf_size, rcvbuf_size, my_addr_len; 699 struct sockaddr_in6 my_addr; 700 struct socket *s_listen; 701 struct net_conf *nc; 702 const char *what; 703 704 rcu_read_lock(); 705 nc = rcu_dereference(connection->net_conf); 706 if (!nc) { 707 rcu_read_unlock(); 708 return -EIO; 709 } 710 sndbuf_size = nc->sndbuf_size; 711 rcvbuf_size = nc->rcvbuf_size; 712 rcu_read_unlock(); 713 714 my_addr_len = min_t(int, connection->my_addr_len, sizeof(struct sockaddr_in6)); 715 memcpy(&my_addr, &connection->my_addr, my_addr_len); 716 717 what = "sock_create_kern"; 718 err = sock_create_kern(&init_net, ((struct sockaddr *)&my_addr)->sa_family, 719 SOCK_STREAM, IPPROTO_TCP, &s_listen); 720 if (err) { 721 s_listen = NULL; 722 goto out; 723 } 724 725 s_listen->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */ 726 drbd_setbufsize(s_listen, sndbuf_size, rcvbuf_size); 727 728 what = "bind before listen"; 729 err = s_listen->ops->bind(s_listen, (struct sockaddr *)&my_addr, my_addr_len); 730 if (err < 0) 731 goto out; 732 733 ad->s_listen = s_listen; 734 write_lock_bh(&s_listen->sk->sk_callback_lock); 735 ad->original_sk_state_change = s_listen->sk->sk_state_change; 736 s_listen->sk->sk_state_change = drbd_incoming_connection; 737 s_listen->sk->sk_user_data = ad; 738 write_unlock_bh(&s_listen->sk->sk_callback_lock); 739 740 what = "listen"; 741 err = s_listen->ops->listen(s_listen, 5); 742 if (err < 0) 743 goto out; 744 745 return 0; 746 out: 747 if (s_listen) 748 sock_release(s_listen); 749 if (err < 0) { 750 if (err != -EAGAIN && err != -EINTR && err != -ERESTARTSYS) { 751 drbd_err(connection, "%s failed, err = %d\n", what, err); 752 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 753 } 754 } 755 756 return -EIO; 757 } 758 759 static void unregister_state_change(struct sock *sk, struct accept_wait_data *ad) 760 { 761 write_lock_bh(&sk->sk_callback_lock); 762 sk->sk_state_change = ad->original_sk_state_change; 763 sk->sk_user_data = NULL; 764 write_unlock_bh(&sk->sk_callback_lock); 765 } 766 767 static struct socket *drbd_wait_for_connect(struct drbd_connection *connection, struct accept_wait_data *ad) 768 { 769 int timeo, connect_int, err = 0; 770 struct socket *s_estab = NULL; 771 struct net_conf *nc; 772 773 rcu_read_lock(); 774 nc = rcu_dereference(connection->net_conf); 775 if (!nc) { 776 rcu_read_unlock(); 777 return NULL; 778 } 779 connect_int = nc->connect_int; 780 rcu_read_unlock(); 781 782 timeo = connect_int * HZ; 783 /* 28.5% random jitter */ 784 timeo += (prandom_u32() & 1) ? timeo / 7 : -timeo / 7; 785 786 err = wait_for_completion_interruptible_timeout(&ad->door_bell, timeo); 787 if (err <= 0) 788 return NULL; 789 790 err = kernel_accept(ad->s_listen, &s_estab, 0); 791 if (err < 0) { 792 if (err != -EAGAIN && err != -EINTR && err != -ERESTARTSYS) { 793 drbd_err(connection, "accept failed, err = %d\n", err); 794 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 795 } 796 } 797 798 if (s_estab) 799 unregister_state_change(s_estab->sk, ad); 800 801 return s_estab; 802 } 803 804 static int decode_header(struct drbd_connection *, void *, struct packet_info *); 805 806 static int send_first_packet(struct drbd_connection *connection, struct drbd_socket *sock, 807 enum drbd_packet cmd) 808 { 809 if (!conn_prepare_command(connection, sock)) 810 return -EIO; 811 return conn_send_command(connection, sock, cmd, 0, NULL, 0); 812 } 813 814 static int receive_first_packet(struct drbd_connection *connection, struct socket *sock) 815 { 816 unsigned int header_size = drbd_header_size(connection); 817 struct packet_info pi; 818 struct net_conf *nc; 819 int err; 820 821 rcu_read_lock(); 822 nc = rcu_dereference(connection->net_conf); 823 if (!nc) { 824 rcu_read_unlock(); 825 return -EIO; 826 } 827 sock->sk->sk_rcvtimeo = nc->ping_timeo * 4 * HZ / 10; 828 rcu_read_unlock(); 829 830 err = drbd_recv_short(sock, connection->data.rbuf, header_size, 0); 831 if (err != header_size) { 832 if (err >= 0) 833 err = -EIO; 834 return err; 835 } 836 err = decode_header(connection, connection->data.rbuf, &pi); 837 if (err) 838 return err; 839 return pi.cmd; 840 } 841 842 /** 843 * drbd_socket_okay() - Free the socket if its connection is not okay 844 * @sock: pointer to the pointer to the socket. 845 */ 846 static bool drbd_socket_okay(struct socket **sock) 847 { 848 int rr; 849 char tb[4]; 850 851 if (!*sock) 852 return false; 853 854 rr = drbd_recv_short(*sock, tb, 4, MSG_DONTWAIT | MSG_PEEK); 855 856 if (rr > 0 || rr == -EAGAIN) { 857 return true; 858 } else { 859 sock_release(*sock); 860 *sock = NULL; 861 return false; 862 } 863 } 864 865 static bool connection_established(struct drbd_connection *connection, 866 struct socket **sock1, 867 struct socket **sock2) 868 { 869 struct net_conf *nc; 870 int timeout; 871 bool ok; 872 873 if (!*sock1 || !*sock2) 874 return false; 875 876 rcu_read_lock(); 877 nc = rcu_dereference(connection->net_conf); 878 timeout = (nc->sock_check_timeo ?: nc->ping_timeo) * HZ / 10; 879 rcu_read_unlock(); 880 schedule_timeout_interruptible(timeout); 881 882 ok = drbd_socket_okay(sock1); 883 ok = drbd_socket_okay(sock2) && ok; 884 885 return ok; 886 } 887 888 /* Gets called if a connection is established, or if a new minor gets created 889 in a connection */ 890 int drbd_connected(struct drbd_peer_device *peer_device) 891 { 892 struct drbd_device *device = peer_device->device; 893 int err; 894 895 atomic_set(&device->packet_seq, 0); 896 device->peer_seq = 0; 897 898 device->state_mutex = peer_device->connection->agreed_pro_version < 100 ? 899 &peer_device->connection->cstate_mutex : 900 &device->own_state_mutex; 901 902 err = drbd_send_sync_param(peer_device); 903 if (!err) 904 err = drbd_send_sizes(peer_device, 0, 0); 905 if (!err) 906 err = drbd_send_uuids(peer_device); 907 if (!err) 908 err = drbd_send_current_state(peer_device); 909 clear_bit(USE_DEGR_WFC_T, &device->flags); 910 clear_bit(RESIZE_PENDING, &device->flags); 911 atomic_set(&device->ap_in_flight, 0); 912 mod_timer(&device->request_timer, jiffies + HZ); /* just start it here. */ 913 return err; 914 } 915 916 /* 917 * return values: 918 * 1 yes, we have a valid connection 919 * 0 oops, did not work out, please try again 920 * -1 peer talks different language, 921 * no point in trying again, please go standalone. 922 * -2 We do not have a network config... 923 */ 924 static int conn_connect(struct drbd_connection *connection) 925 { 926 struct drbd_socket sock, msock; 927 struct drbd_peer_device *peer_device; 928 struct net_conf *nc; 929 int vnr, timeout, h; 930 bool discard_my_data, ok; 931 enum drbd_state_rv rv; 932 struct accept_wait_data ad = { 933 .connection = connection, 934 .door_bell = COMPLETION_INITIALIZER_ONSTACK(ad.door_bell), 935 }; 936 937 clear_bit(DISCONNECT_SENT, &connection->flags); 938 if (conn_request_state(connection, NS(conn, C_WF_CONNECTION), CS_VERBOSE) < SS_SUCCESS) 939 return -2; 940 941 mutex_init(&sock.mutex); 942 sock.sbuf = connection->data.sbuf; 943 sock.rbuf = connection->data.rbuf; 944 sock.socket = NULL; 945 mutex_init(&msock.mutex); 946 msock.sbuf = connection->meta.sbuf; 947 msock.rbuf = connection->meta.rbuf; 948 msock.socket = NULL; 949 950 /* Assume that the peer only understands protocol 80 until we know better. */ 951 connection->agreed_pro_version = 80; 952 953 if (prepare_listen_socket(connection, &ad)) 954 return 0; 955 956 do { 957 struct socket *s; 958 959 s = drbd_try_connect(connection); 960 if (s) { 961 if (!sock.socket) { 962 sock.socket = s; 963 send_first_packet(connection, &sock, P_INITIAL_DATA); 964 } else if (!msock.socket) { 965 clear_bit(RESOLVE_CONFLICTS, &connection->flags); 966 msock.socket = s; 967 send_first_packet(connection, &msock, P_INITIAL_META); 968 } else { 969 drbd_err(connection, "Logic error in conn_connect()\n"); 970 goto out_release_sockets; 971 } 972 } 973 974 if (connection_established(connection, &sock.socket, &msock.socket)) 975 break; 976 977 retry: 978 s = drbd_wait_for_connect(connection, &ad); 979 if (s) { 980 int fp = receive_first_packet(connection, s); 981 drbd_socket_okay(&sock.socket); 982 drbd_socket_okay(&msock.socket); 983 switch (fp) { 984 case P_INITIAL_DATA: 985 if (sock.socket) { 986 drbd_warn(connection, "initial packet S crossed\n"); 987 sock_release(sock.socket); 988 sock.socket = s; 989 goto randomize; 990 } 991 sock.socket = s; 992 break; 993 case P_INITIAL_META: 994 set_bit(RESOLVE_CONFLICTS, &connection->flags); 995 if (msock.socket) { 996 drbd_warn(connection, "initial packet M crossed\n"); 997 sock_release(msock.socket); 998 msock.socket = s; 999 goto randomize; 1000 } 1001 msock.socket = s; 1002 break; 1003 default: 1004 drbd_warn(connection, "Error receiving initial packet\n"); 1005 sock_release(s); 1006 randomize: 1007 if (prandom_u32() & 1) 1008 goto retry; 1009 } 1010 } 1011 1012 if (connection->cstate <= C_DISCONNECTING) 1013 goto out_release_sockets; 1014 if (signal_pending(current)) { 1015 flush_signals(current); 1016 smp_rmb(); 1017 if (get_t_state(&connection->receiver) == EXITING) 1018 goto out_release_sockets; 1019 } 1020 1021 ok = connection_established(connection, &sock.socket, &msock.socket); 1022 } while (!ok); 1023 1024 if (ad.s_listen) 1025 sock_release(ad.s_listen); 1026 1027 sock.socket->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */ 1028 msock.socket->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */ 1029 1030 sock.socket->sk->sk_allocation = GFP_NOIO; 1031 msock.socket->sk->sk_allocation = GFP_NOIO; 1032 1033 sock.socket->sk->sk_priority = TC_PRIO_INTERACTIVE_BULK; 1034 msock.socket->sk->sk_priority = TC_PRIO_INTERACTIVE; 1035 1036 /* NOT YET ... 1037 * sock.socket->sk->sk_sndtimeo = connection->net_conf->timeout*HZ/10; 1038 * sock.socket->sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 1039 * first set it to the P_CONNECTION_FEATURES timeout, 1040 * which we set to 4x the configured ping_timeout. */ 1041 rcu_read_lock(); 1042 nc = rcu_dereference(connection->net_conf); 1043 1044 sock.socket->sk->sk_sndtimeo = 1045 sock.socket->sk->sk_rcvtimeo = nc->ping_timeo*4*HZ/10; 1046 1047 msock.socket->sk->sk_rcvtimeo = nc->ping_int*HZ; 1048 timeout = nc->timeout * HZ / 10; 1049 discard_my_data = nc->discard_my_data; 1050 rcu_read_unlock(); 1051 1052 msock.socket->sk->sk_sndtimeo = timeout; 1053 1054 /* we don't want delays. 1055 * we use TCP_CORK where appropriate, though */ 1056 tcp_sock_set_nodelay(sock.socket->sk); 1057 tcp_sock_set_nodelay(msock.socket->sk); 1058 1059 connection->data.socket = sock.socket; 1060 connection->meta.socket = msock.socket; 1061 connection->last_received = jiffies; 1062 1063 h = drbd_do_features(connection); 1064 if (h <= 0) 1065 return h; 1066 1067 if (connection->cram_hmac_tfm) { 1068 /* drbd_request_state(device, NS(conn, WFAuth)); */ 1069 switch (drbd_do_auth(connection)) { 1070 case -1: 1071 drbd_err(connection, "Authentication of peer failed\n"); 1072 return -1; 1073 case 0: 1074 drbd_err(connection, "Authentication of peer failed, trying again.\n"); 1075 return 0; 1076 } 1077 } 1078 1079 connection->data.socket->sk->sk_sndtimeo = timeout; 1080 connection->data.socket->sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 1081 1082 if (drbd_send_protocol(connection) == -EOPNOTSUPP) 1083 return -1; 1084 1085 /* Prevent a race between resync-handshake and 1086 * being promoted to Primary. 1087 * 1088 * Grab and release the state mutex, so we know that any current 1089 * drbd_set_role() is finished, and any incoming drbd_set_role 1090 * will see the STATE_SENT flag, and wait for it to be cleared. 1091 */ 1092 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) 1093 mutex_lock(peer_device->device->state_mutex); 1094 1095 /* avoid a race with conn_request_state( C_DISCONNECTING ) */ 1096 spin_lock_irq(&connection->resource->req_lock); 1097 set_bit(STATE_SENT, &connection->flags); 1098 spin_unlock_irq(&connection->resource->req_lock); 1099 1100 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) 1101 mutex_unlock(peer_device->device->state_mutex); 1102 1103 rcu_read_lock(); 1104 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 1105 struct drbd_device *device = peer_device->device; 1106 kref_get(&device->kref); 1107 rcu_read_unlock(); 1108 1109 if (discard_my_data) 1110 set_bit(DISCARD_MY_DATA, &device->flags); 1111 else 1112 clear_bit(DISCARD_MY_DATA, &device->flags); 1113 1114 drbd_connected(peer_device); 1115 kref_put(&device->kref, drbd_destroy_device); 1116 rcu_read_lock(); 1117 } 1118 rcu_read_unlock(); 1119 1120 rv = conn_request_state(connection, NS(conn, C_WF_REPORT_PARAMS), CS_VERBOSE); 1121 if (rv < SS_SUCCESS || connection->cstate != C_WF_REPORT_PARAMS) { 1122 clear_bit(STATE_SENT, &connection->flags); 1123 return 0; 1124 } 1125 1126 drbd_thread_start(&connection->ack_receiver); 1127 /* opencoded create_singlethread_workqueue(), 1128 * to be able to use format string arguments */ 1129 connection->ack_sender = 1130 alloc_ordered_workqueue("drbd_as_%s", WQ_MEM_RECLAIM, connection->resource->name); 1131 if (!connection->ack_sender) { 1132 drbd_err(connection, "Failed to create workqueue ack_sender\n"); 1133 return 0; 1134 } 1135 1136 mutex_lock(&connection->resource->conf_update); 1137 /* The discard_my_data flag is a single-shot modifier to the next 1138 * connection attempt, the handshake of which is now well underway. 1139 * No need for rcu style copying of the whole struct 1140 * just to clear a single value. */ 1141 connection->net_conf->discard_my_data = 0; 1142 mutex_unlock(&connection->resource->conf_update); 1143 1144 return h; 1145 1146 out_release_sockets: 1147 if (ad.s_listen) 1148 sock_release(ad.s_listen); 1149 if (sock.socket) 1150 sock_release(sock.socket); 1151 if (msock.socket) 1152 sock_release(msock.socket); 1153 return -1; 1154 } 1155 1156 static int decode_header(struct drbd_connection *connection, void *header, struct packet_info *pi) 1157 { 1158 unsigned int header_size = drbd_header_size(connection); 1159 1160 if (header_size == sizeof(struct p_header100) && 1161 *(__be32 *)header == cpu_to_be32(DRBD_MAGIC_100)) { 1162 struct p_header100 *h = header; 1163 if (h->pad != 0) { 1164 drbd_err(connection, "Header padding is not zero\n"); 1165 return -EINVAL; 1166 } 1167 pi->vnr = be16_to_cpu(h->volume); 1168 pi->cmd = be16_to_cpu(h->command); 1169 pi->size = be32_to_cpu(h->length); 1170 } else if (header_size == sizeof(struct p_header95) && 1171 *(__be16 *)header == cpu_to_be16(DRBD_MAGIC_BIG)) { 1172 struct p_header95 *h = header; 1173 pi->cmd = be16_to_cpu(h->command); 1174 pi->size = be32_to_cpu(h->length); 1175 pi->vnr = 0; 1176 } else if (header_size == sizeof(struct p_header80) && 1177 *(__be32 *)header == cpu_to_be32(DRBD_MAGIC)) { 1178 struct p_header80 *h = header; 1179 pi->cmd = be16_to_cpu(h->command); 1180 pi->size = be16_to_cpu(h->length); 1181 pi->vnr = 0; 1182 } else { 1183 drbd_err(connection, "Wrong magic value 0x%08x in protocol version %d\n", 1184 be32_to_cpu(*(__be32 *)header), 1185 connection->agreed_pro_version); 1186 return -EINVAL; 1187 } 1188 pi->data = header + header_size; 1189 return 0; 1190 } 1191 1192 static void drbd_unplug_all_devices(struct drbd_connection *connection) 1193 { 1194 if (current->plug == &connection->receiver_plug) { 1195 blk_finish_plug(&connection->receiver_plug); 1196 blk_start_plug(&connection->receiver_plug); 1197 } /* else: maybe just schedule() ?? */ 1198 } 1199 1200 static int drbd_recv_header(struct drbd_connection *connection, struct packet_info *pi) 1201 { 1202 void *buffer = connection->data.rbuf; 1203 int err; 1204 1205 err = drbd_recv_all_warn(connection, buffer, drbd_header_size(connection)); 1206 if (err) 1207 return err; 1208 1209 err = decode_header(connection, buffer, pi); 1210 connection->last_received = jiffies; 1211 1212 return err; 1213 } 1214 1215 static int drbd_recv_header_maybe_unplug(struct drbd_connection *connection, struct packet_info *pi) 1216 { 1217 void *buffer = connection->data.rbuf; 1218 unsigned int size = drbd_header_size(connection); 1219 int err; 1220 1221 err = drbd_recv_short(connection->data.socket, buffer, size, MSG_NOSIGNAL|MSG_DONTWAIT); 1222 if (err != size) { 1223 /* If we have nothing in the receive buffer now, to reduce 1224 * application latency, try to drain the backend queues as 1225 * quickly as possible, and let remote TCP know what we have 1226 * received so far. */ 1227 if (err == -EAGAIN) { 1228 tcp_sock_set_quickack(connection->data.socket->sk, 2); 1229 drbd_unplug_all_devices(connection); 1230 } 1231 if (err > 0) { 1232 buffer += err; 1233 size -= err; 1234 } 1235 err = drbd_recv_all_warn(connection, buffer, size); 1236 if (err) 1237 return err; 1238 } 1239 1240 err = decode_header(connection, connection->data.rbuf, pi); 1241 connection->last_received = jiffies; 1242 1243 return err; 1244 } 1245 /* This is blkdev_issue_flush, but asynchronous. 1246 * We want to submit to all component volumes in parallel, 1247 * then wait for all completions. 1248 */ 1249 struct issue_flush_context { 1250 atomic_t pending; 1251 int error; 1252 struct completion done; 1253 }; 1254 struct one_flush_context { 1255 struct drbd_device *device; 1256 struct issue_flush_context *ctx; 1257 }; 1258 1259 static void one_flush_endio(struct bio *bio) 1260 { 1261 struct one_flush_context *octx = bio->bi_private; 1262 struct drbd_device *device = octx->device; 1263 struct issue_flush_context *ctx = octx->ctx; 1264 1265 if (bio->bi_status) { 1266 ctx->error = blk_status_to_errno(bio->bi_status); 1267 drbd_info(device, "local disk FLUSH FAILED with status %d\n", bio->bi_status); 1268 } 1269 kfree(octx); 1270 bio_put(bio); 1271 1272 clear_bit(FLUSH_PENDING, &device->flags); 1273 put_ldev(device); 1274 kref_put(&device->kref, drbd_destroy_device); 1275 1276 if (atomic_dec_and_test(&ctx->pending)) 1277 complete(&ctx->done); 1278 } 1279 1280 static void submit_one_flush(struct drbd_device *device, struct issue_flush_context *ctx) 1281 { 1282 struct bio *bio = bio_alloc(device->ldev->backing_bdev, 0, 1283 REQ_OP_FLUSH | REQ_PREFLUSH, GFP_NOIO); 1284 struct one_flush_context *octx = kmalloc(sizeof(*octx), GFP_NOIO); 1285 1286 if (!octx) { 1287 drbd_warn(device, "Could not allocate a octx, CANNOT ISSUE FLUSH\n"); 1288 /* FIXME: what else can I do now? disconnecting or detaching 1289 * really does not help to improve the state of the world, either. 1290 */ 1291 bio_put(bio); 1292 1293 ctx->error = -ENOMEM; 1294 put_ldev(device); 1295 kref_put(&device->kref, drbd_destroy_device); 1296 return; 1297 } 1298 1299 octx->device = device; 1300 octx->ctx = ctx; 1301 bio->bi_private = octx; 1302 bio->bi_end_io = one_flush_endio; 1303 1304 device->flush_jif = jiffies; 1305 set_bit(FLUSH_PENDING, &device->flags); 1306 atomic_inc(&ctx->pending); 1307 submit_bio(bio); 1308 } 1309 1310 static void drbd_flush(struct drbd_connection *connection) 1311 { 1312 if (connection->resource->write_ordering >= WO_BDEV_FLUSH) { 1313 struct drbd_peer_device *peer_device; 1314 struct issue_flush_context ctx; 1315 int vnr; 1316 1317 atomic_set(&ctx.pending, 1); 1318 ctx.error = 0; 1319 init_completion(&ctx.done); 1320 1321 rcu_read_lock(); 1322 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 1323 struct drbd_device *device = peer_device->device; 1324 1325 if (!get_ldev(device)) 1326 continue; 1327 kref_get(&device->kref); 1328 rcu_read_unlock(); 1329 1330 submit_one_flush(device, &ctx); 1331 1332 rcu_read_lock(); 1333 } 1334 rcu_read_unlock(); 1335 1336 /* Do we want to add a timeout, 1337 * if disk-timeout is set? */ 1338 if (!atomic_dec_and_test(&ctx.pending)) 1339 wait_for_completion(&ctx.done); 1340 1341 if (ctx.error) { 1342 /* would rather check on EOPNOTSUPP, but that is not reliable. 1343 * don't try again for ANY return value != 0 1344 * if (rv == -EOPNOTSUPP) */ 1345 /* Any error is already reported by bio_endio callback. */ 1346 drbd_bump_write_ordering(connection->resource, NULL, WO_DRAIN_IO); 1347 } 1348 } 1349 } 1350 1351 /** 1352 * drbd_may_finish_epoch() - Applies an epoch_event to the epoch's state, eventually finishes it. 1353 * @connection: DRBD connection. 1354 * @epoch: Epoch object. 1355 * @ev: Epoch event. 1356 */ 1357 static enum finish_epoch drbd_may_finish_epoch(struct drbd_connection *connection, 1358 struct drbd_epoch *epoch, 1359 enum epoch_event ev) 1360 { 1361 int epoch_size; 1362 struct drbd_epoch *next_epoch; 1363 enum finish_epoch rv = FE_STILL_LIVE; 1364 1365 spin_lock(&connection->epoch_lock); 1366 do { 1367 next_epoch = NULL; 1368 1369 epoch_size = atomic_read(&epoch->epoch_size); 1370 1371 switch (ev & ~EV_CLEANUP) { 1372 case EV_PUT: 1373 atomic_dec(&epoch->active); 1374 break; 1375 case EV_GOT_BARRIER_NR: 1376 set_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags); 1377 break; 1378 case EV_BECAME_LAST: 1379 /* nothing to do*/ 1380 break; 1381 } 1382 1383 if (epoch_size != 0 && 1384 atomic_read(&epoch->active) == 0 && 1385 (test_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags) || ev & EV_CLEANUP)) { 1386 if (!(ev & EV_CLEANUP)) { 1387 spin_unlock(&connection->epoch_lock); 1388 drbd_send_b_ack(epoch->connection, epoch->barrier_nr, epoch_size); 1389 spin_lock(&connection->epoch_lock); 1390 } 1391 #if 0 1392 /* FIXME: dec unacked on connection, once we have 1393 * something to count pending connection packets in. */ 1394 if (test_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags)) 1395 dec_unacked(epoch->connection); 1396 #endif 1397 1398 if (connection->current_epoch != epoch) { 1399 next_epoch = list_entry(epoch->list.next, struct drbd_epoch, list); 1400 list_del(&epoch->list); 1401 ev = EV_BECAME_LAST | (ev & EV_CLEANUP); 1402 connection->epochs--; 1403 kfree(epoch); 1404 1405 if (rv == FE_STILL_LIVE) 1406 rv = FE_DESTROYED; 1407 } else { 1408 epoch->flags = 0; 1409 atomic_set(&epoch->epoch_size, 0); 1410 /* atomic_set(&epoch->active, 0); is already zero */ 1411 if (rv == FE_STILL_LIVE) 1412 rv = FE_RECYCLED; 1413 } 1414 } 1415 1416 if (!next_epoch) 1417 break; 1418 1419 epoch = next_epoch; 1420 } while (1); 1421 1422 spin_unlock(&connection->epoch_lock); 1423 1424 return rv; 1425 } 1426 1427 static enum write_ordering_e 1428 max_allowed_wo(struct drbd_backing_dev *bdev, enum write_ordering_e wo) 1429 { 1430 struct disk_conf *dc; 1431 1432 dc = rcu_dereference(bdev->disk_conf); 1433 1434 if (wo == WO_BDEV_FLUSH && !dc->disk_flushes) 1435 wo = WO_DRAIN_IO; 1436 if (wo == WO_DRAIN_IO && !dc->disk_drain) 1437 wo = WO_NONE; 1438 1439 return wo; 1440 } 1441 1442 /* 1443 * drbd_bump_write_ordering() - Fall back to an other write ordering method 1444 * @wo: Write ordering method to try. 1445 */ 1446 void drbd_bump_write_ordering(struct drbd_resource *resource, struct drbd_backing_dev *bdev, 1447 enum write_ordering_e wo) 1448 { 1449 struct drbd_device *device; 1450 enum write_ordering_e pwo; 1451 int vnr; 1452 static char *write_ordering_str[] = { 1453 [WO_NONE] = "none", 1454 [WO_DRAIN_IO] = "drain", 1455 [WO_BDEV_FLUSH] = "flush", 1456 }; 1457 1458 pwo = resource->write_ordering; 1459 if (wo != WO_BDEV_FLUSH) 1460 wo = min(pwo, wo); 1461 rcu_read_lock(); 1462 idr_for_each_entry(&resource->devices, device, vnr) { 1463 if (get_ldev(device)) { 1464 wo = max_allowed_wo(device->ldev, wo); 1465 if (device->ldev == bdev) 1466 bdev = NULL; 1467 put_ldev(device); 1468 } 1469 } 1470 1471 if (bdev) 1472 wo = max_allowed_wo(bdev, wo); 1473 1474 rcu_read_unlock(); 1475 1476 resource->write_ordering = wo; 1477 if (pwo != resource->write_ordering || wo == WO_BDEV_FLUSH) 1478 drbd_info(resource, "Method to ensure write ordering: %s\n", write_ordering_str[resource->write_ordering]); 1479 } 1480 1481 /* 1482 * Mapping "discard" to ZEROOUT with UNMAP does not work for us: 1483 * Drivers have to "announce" q->limits.max_write_zeroes_sectors, or it 1484 * will directly go to fallback mode, submitting normal writes, and 1485 * never even try to UNMAP. 1486 * 1487 * And dm-thin does not do this (yet), mostly because in general it has 1488 * to assume that "skip_block_zeroing" is set. See also: 1489 * https://www.mail-archive.com/dm-devel%40redhat.com/msg07965.html 1490 * https://www.redhat.com/archives/dm-devel/2018-January/msg00271.html 1491 * 1492 * We *may* ignore the discard-zeroes-data setting, if so configured. 1493 * 1494 * Assumption is that this "discard_zeroes_data=0" is only because the backend 1495 * may ignore partial unaligned discards. 1496 * 1497 * LVM/DM thin as of at least 1498 * LVM version: 2.02.115(2)-RHEL7 (2015-01-28) 1499 * Library version: 1.02.93-RHEL7 (2015-01-28) 1500 * Driver version: 4.29.0 1501 * still behaves this way. 1502 * 1503 * For unaligned (wrt. alignment and granularity) or too small discards, 1504 * we zero-out the initial (and/or) trailing unaligned partial chunks, 1505 * but discard all the aligned full chunks. 1506 * 1507 * At least for LVM/DM thin, with skip_block_zeroing=false, 1508 * the result is effectively "discard_zeroes_data=1". 1509 */ 1510 /* flags: EE_TRIM|EE_ZEROOUT */ 1511 int drbd_issue_discard_or_zero_out(struct drbd_device *device, sector_t start, unsigned int nr_sectors, int flags) 1512 { 1513 struct block_device *bdev = device->ldev->backing_bdev; 1514 struct request_queue *q = bdev_get_queue(bdev); 1515 sector_t tmp, nr; 1516 unsigned int max_discard_sectors, granularity; 1517 int alignment; 1518 int err = 0; 1519 1520 if ((flags & EE_ZEROOUT) || !(flags & EE_TRIM)) 1521 goto zero_out; 1522 1523 /* Zero-sector (unknown) and one-sector granularities are the same. */ 1524 granularity = max(q->limits.discard_granularity >> 9, 1U); 1525 alignment = (bdev_discard_alignment(bdev) >> 9) % granularity; 1526 1527 max_discard_sectors = min(q->limits.max_discard_sectors, (1U << 22)); 1528 max_discard_sectors -= max_discard_sectors % granularity; 1529 if (unlikely(!max_discard_sectors)) 1530 goto zero_out; 1531 1532 if (nr_sectors < granularity) 1533 goto zero_out; 1534 1535 tmp = start; 1536 if (sector_div(tmp, granularity) != alignment) { 1537 if (nr_sectors < 2*granularity) 1538 goto zero_out; 1539 /* start + gran - (start + gran - align) % gran */ 1540 tmp = start + granularity - alignment; 1541 tmp = start + granularity - sector_div(tmp, granularity); 1542 1543 nr = tmp - start; 1544 /* don't flag BLKDEV_ZERO_NOUNMAP, we don't know how many 1545 * layers are below us, some may have smaller granularity */ 1546 err |= blkdev_issue_zeroout(bdev, start, nr, GFP_NOIO, 0); 1547 nr_sectors -= nr; 1548 start = tmp; 1549 } 1550 while (nr_sectors >= max_discard_sectors) { 1551 err |= blkdev_issue_discard(bdev, start, max_discard_sectors, GFP_NOIO, 0); 1552 nr_sectors -= max_discard_sectors; 1553 start += max_discard_sectors; 1554 } 1555 if (nr_sectors) { 1556 /* max_discard_sectors is unsigned int (and a multiple of 1557 * granularity, we made sure of that above already); 1558 * nr is < max_discard_sectors; 1559 * I don't need sector_div here, even though nr is sector_t */ 1560 nr = nr_sectors; 1561 nr -= (unsigned int)nr % granularity; 1562 if (nr) { 1563 err |= blkdev_issue_discard(bdev, start, nr, GFP_NOIO, 0); 1564 nr_sectors -= nr; 1565 start += nr; 1566 } 1567 } 1568 zero_out: 1569 if (nr_sectors) { 1570 err |= blkdev_issue_zeroout(bdev, start, nr_sectors, GFP_NOIO, 1571 (flags & EE_TRIM) ? 0 : BLKDEV_ZERO_NOUNMAP); 1572 } 1573 return err != 0; 1574 } 1575 1576 static bool can_do_reliable_discards(struct drbd_device *device) 1577 { 1578 struct request_queue *q = bdev_get_queue(device->ldev->backing_bdev); 1579 struct disk_conf *dc; 1580 bool can_do; 1581 1582 if (!blk_queue_discard(q)) 1583 return false; 1584 1585 rcu_read_lock(); 1586 dc = rcu_dereference(device->ldev->disk_conf); 1587 can_do = dc->discard_zeroes_if_aligned; 1588 rcu_read_unlock(); 1589 return can_do; 1590 } 1591 1592 static void drbd_issue_peer_discard_or_zero_out(struct drbd_device *device, struct drbd_peer_request *peer_req) 1593 { 1594 /* If the backend cannot discard, or does not guarantee 1595 * read-back zeroes in discarded ranges, we fall back to 1596 * zero-out. Unless configuration specifically requested 1597 * otherwise. */ 1598 if (!can_do_reliable_discards(device)) 1599 peer_req->flags |= EE_ZEROOUT; 1600 1601 if (drbd_issue_discard_or_zero_out(device, peer_req->i.sector, 1602 peer_req->i.size >> 9, peer_req->flags & (EE_ZEROOUT|EE_TRIM))) 1603 peer_req->flags |= EE_WAS_ERROR; 1604 drbd_endio_write_sec_final(peer_req); 1605 } 1606 1607 /** 1608 * drbd_submit_peer_request() 1609 * @device: DRBD device. 1610 * @peer_req: peer request 1611 * 1612 * May spread the pages to multiple bios, 1613 * depending on bio_add_page restrictions. 1614 * 1615 * Returns 0 if all bios have been submitted, 1616 * -ENOMEM if we could not allocate enough bios, 1617 * -ENOSPC (any better suggestion?) if we have not been able to bio_add_page a 1618 * single page to an empty bio (which should never happen and likely indicates 1619 * that the lower level IO stack is in some way broken). This has been observed 1620 * on certain Xen deployments. 1621 */ 1622 /* TODO allocate from our own bio_set. */ 1623 int drbd_submit_peer_request(struct drbd_device *device, 1624 struct drbd_peer_request *peer_req, 1625 const unsigned op, const unsigned op_flags, 1626 const int fault_type) 1627 { 1628 struct bio *bios = NULL; 1629 struct bio *bio; 1630 struct page *page = peer_req->pages; 1631 sector_t sector = peer_req->i.sector; 1632 unsigned data_size = peer_req->i.size; 1633 unsigned n_bios = 0; 1634 unsigned nr_pages = (data_size + PAGE_SIZE -1) >> PAGE_SHIFT; 1635 1636 /* TRIM/DISCARD: for now, always use the helper function 1637 * blkdev_issue_zeroout(..., discard=true). 1638 * It's synchronous, but it does the right thing wrt. bio splitting. 1639 * Correctness first, performance later. Next step is to code an 1640 * asynchronous variant of the same. 1641 */ 1642 if (peer_req->flags & (EE_TRIM | EE_ZEROOUT)) { 1643 /* wait for all pending IO completions, before we start 1644 * zeroing things out. */ 1645 conn_wait_active_ee_empty(peer_req->peer_device->connection); 1646 /* add it to the active list now, 1647 * so we can find it to present it in debugfs */ 1648 peer_req->submit_jif = jiffies; 1649 peer_req->flags |= EE_SUBMITTED; 1650 1651 /* If this was a resync request from receive_rs_deallocated(), 1652 * it is already on the sync_ee list */ 1653 if (list_empty(&peer_req->w.list)) { 1654 spin_lock_irq(&device->resource->req_lock); 1655 list_add_tail(&peer_req->w.list, &device->active_ee); 1656 spin_unlock_irq(&device->resource->req_lock); 1657 } 1658 1659 drbd_issue_peer_discard_or_zero_out(device, peer_req); 1660 return 0; 1661 } 1662 1663 /* In most cases, we will only need one bio. But in case the lower 1664 * level restrictions happen to be different at this offset on this 1665 * side than those of the sending peer, we may need to submit the 1666 * request in more than one bio. 1667 * 1668 * Plain bio_alloc is good enough here, this is no DRBD internally 1669 * generated bio, but a bio allocated on behalf of the peer. 1670 */ 1671 next_bio: 1672 bio = bio_alloc(device->ldev->backing_bdev, nr_pages, op | op_flags, 1673 GFP_NOIO); 1674 /* > peer_req->i.sector, unless this is the first bio */ 1675 bio->bi_iter.bi_sector = sector; 1676 bio->bi_private = peer_req; 1677 bio->bi_end_io = drbd_peer_request_endio; 1678 1679 bio->bi_next = bios; 1680 bios = bio; 1681 ++n_bios; 1682 1683 page_chain_for_each(page) { 1684 unsigned len = min_t(unsigned, data_size, PAGE_SIZE); 1685 if (!bio_add_page(bio, page, len, 0)) 1686 goto next_bio; 1687 data_size -= len; 1688 sector += len >> 9; 1689 --nr_pages; 1690 } 1691 D_ASSERT(device, data_size == 0); 1692 D_ASSERT(device, page == NULL); 1693 1694 atomic_set(&peer_req->pending_bios, n_bios); 1695 /* for debugfs: update timestamp, mark as submitted */ 1696 peer_req->submit_jif = jiffies; 1697 peer_req->flags |= EE_SUBMITTED; 1698 do { 1699 bio = bios; 1700 bios = bios->bi_next; 1701 bio->bi_next = NULL; 1702 1703 drbd_submit_bio_noacct(device, fault_type, bio); 1704 } while (bios); 1705 return 0; 1706 } 1707 1708 static void drbd_remove_epoch_entry_interval(struct drbd_device *device, 1709 struct drbd_peer_request *peer_req) 1710 { 1711 struct drbd_interval *i = &peer_req->i; 1712 1713 drbd_remove_interval(&device->write_requests, i); 1714 drbd_clear_interval(i); 1715 1716 /* Wake up any processes waiting for this peer request to complete. */ 1717 if (i->waiting) 1718 wake_up(&device->misc_wait); 1719 } 1720 1721 static void conn_wait_active_ee_empty(struct drbd_connection *connection) 1722 { 1723 struct drbd_peer_device *peer_device; 1724 int vnr; 1725 1726 rcu_read_lock(); 1727 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 1728 struct drbd_device *device = peer_device->device; 1729 1730 kref_get(&device->kref); 1731 rcu_read_unlock(); 1732 drbd_wait_ee_list_empty(device, &device->active_ee); 1733 kref_put(&device->kref, drbd_destroy_device); 1734 rcu_read_lock(); 1735 } 1736 rcu_read_unlock(); 1737 } 1738 1739 static int receive_Barrier(struct drbd_connection *connection, struct packet_info *pi) 1740 { 1741 int rv; 1742 struct p_barrier *p = pi->data; 1743 struct drbd_epoch *epoch; 1744 1745 /* FIXME these are unacked on connection, 1746 * not a specific (peer)device. 1747 */ 1748 connection->current_epoch->barrier_nr = p->barrier; 1749 connection->current_epoch->connection = connection; 1750 rv = drbd_may_finish_epoch(connection, connection->current_epoch, EV_GOT_BARRIER_NR); 1751 1752 /* P_BARRIER_ACK may imply that the corresponding extent is dropped from 1753 * the activity log, which means it would not be resynced in case the 1754 * R_PRIMARY crashes now. 1755 * Therefore we must send the barrier_ack after the barrier request was 1756 * completed. */ 1757 switch (connection->resource->write_ordering) { 1758 case WO_NONE: 1759 if (rv == FE_RECYCLED) 1760 return 0; 1761 1762 /* receiver context, in the writeout path of the other node. 1763 * avoid potential distributed deadlock */ 1764 epoch = kmalloc(sizeof(struct drbd_epoch), GFP_NOIO); 1765 if (epoch) 1766 break; 1767 else 1768 drbd_warn(connection, "Allocation of an epoch failed, slowing down\n"); 1769 fallthrough; 1770 1771 case WO_BDEV_FLUSH: 1772 case WO_DRAIN_IO: 1773 conn_wait_active_ee_empty(connection); 1774 drbd_flush(connection); 1775 1776 if (atomic_read(&connection->current_epoch->epoch_size)) { 1777 epoch = kmalloc(sizeof(struct drbd_epoch), GFP_NOIO); 1778 if (epoch) 1779 break; 1780 } 1781 1782 return 0; 1783 default: 1784 drbd_err(connection, "Strangeness in connection->write_ordering %d\n", 1785 connection->resource->write_ordering); 1786 return -EIO; 1787 } 1788 1789 epoch->flags = 0; 1790 atomic_set(&epoch->epoch_size, 0); 1791 atomic_set(&epoch->active, 0); 1792 1793 spin_lock(&connection->epoch_lock); 1794 if (atomic_read(&connection->current_epoch->epoch_size)) { 1795 list_add(&epoch->list, &connection->current_epoch->list); 1796 connection->current_epoch = epoch; 1797 connection->epochs++; 1798 } else { 1799 /* The current_epoch got recycled while we allocated this one... */ 1800 kfree(epoch); 1801 } 1802 spin_unlock(&connection->epoch_lock); 1803 1804 return 0; 1805 } 1806 1807 /* quick wrapper in case payload size != request_size (write same) */ 1808 static void drbd_csum_ee_size(struct crypto_shash *h, 1809 struct drbd_peer_request *r, void *d, 1810 unsigned int payload_size) 1811 { 1812 unsigned int tmp = r->i.size; 1813 r->i.size = payload_size; 1814 drbd_csum_ee(h, r, d); 1815 r->i.size = tmp; 1816 } 1817 1818 /* used from receive_RSDataReply (recv_resync_read) 1819 * and from receive_Data. 1820 * data_size: actual payload ("data in") 1821 * for normal writes that is bi_size. 1822 * for discards, that is zero. 1823 * for write same, it is logical_block_size. 1824 * both trim and write same have the bi_size ("data len to be affected") 1825 * as extra argument in the packet header. 1826 */ 1827 static struct drbd_peer_request * 1828 read_in_block(struct drbd_peer_device *peer_device, u64 id, sector_t sector, 1829 struct packet_info *pi) __must_hold(local) 1830 { 1831 struct drbd_device *device = peer_device->device; 1832 const sector_t capacity = get_capacity(device->vdisk); 1833 struct drbd_peer_request *peer_req; 1834 struct page *page; 1835 int digest_size, err; 1836 unsigned int data_size = pi->size, ds; 1837 void *dig_in = peer_device->connection->int_dig_in; 1838 void *dig_vv = peer_device->connection->int_dig_vv; 1839 unsigned long *data; 1840 struct p_trim *trim = (pi->cmd == P_TRIM) ? pi->data : NULL; 1841 struct p_trim *zeroes = (pi->cmd == P_ZEROES) ? pi->data : NULL; 1842 1843 digest_size = 0; 1844 if (!trim && peer_device->connection->peer_integrity_tfm) { 1845 digest_size = crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm); 1846 /* 1847 * FIXME: Receive the incoming digest into the receive buffer 1848 * here, together with its struct p_data? 1849 */ 1850 err = drbd_recv_all_warn(peer_device->connection, dig_in, digest_size); 1851 if (err) 1852 return NULL; 1853 data_size -= digest_size; 1854 } 1855 1856 /* assume request_size == data_size, but special case trim. */ 1857 ds = data_size; 1858 if (trim) { 1859 if (!expect(data_size == 0)) 1860 return NULL; 1861 ds = be32_to_cpu(trim->size); 1862 } else if (zeroes) { 1863 if (!expect(data_size == 0)) 1864 return NULL; 1865 ds = be32_to_cpu(zeroes->size); 1866 } 1867 1868 if (!expect(IS_ALIGNED(ds, 512))) 1869 return NULL; 1870 if (trim || zeroes) { 1871 if (!expect(ds <= (DRBD_MAX_BBIO_SECTORS << 9))) 1872 return NULL; 1873 } else if (!expect(ds <= DRBD_MAX_BIO_SIZE)) 1874 return NULL; 1875 1876 /* even though we trust out peer, 1877 * we sometimes have to double check. */ 1878 if (sector + (ds>>9) > capacity) { 1879 drbd_err(device, "request from peer beyond end of local disk: " 1880 "capacity: %llus < sector: %llus + size: %u\n", 1881 (unsigned long long)capacity, 1882 (unsigned long long)sector, ds); 1883 return NULL; 1884 } 1885 1886 /* GFP_NOIO, because we must not cause arbitrary write-out: in a DRBD 1887 * "criss-cross" setup, that might cause write-out on some other DRBD, 1888 * which in turn might block on the other node at this very place. */ 1889 peer_req = drbd_alloc_peer_req(peer_device, id, sector, ds, data_size, GFP_NOIO); 1890 if (!peer_req) 1891 return NULL; 1892 1893 peer_req->flags |= EE_WRITE; 1894 if (trim) { 1895 peer_req->flags |= EE_TRIM; 1896 return peer_req; 1897 } 1898 if (zeroes) { 1899 peer_req->flags |= EE_ZEROOUT; 1900 return peer_req; 1901 } 1902 1903 /* receive payload size bytes into page chain */ 1904 ds = data_size; 1905 page = peer_req->pages; 1906 page_chain_for_each(page) { 1907 unsigned len = min_t(int, ds, PAGE_SIZE); 1908 data = kmap(page); 1909 err = drbd_recv_all_warn(peer_device->connection, data, len); 1910 if (drbd_insert_fault(device, DRBD_FAULT_RECEIVE)) { 1911 drbd_err(device, "Fault injection: Corrupting data on receive\n"); 1912 data[0] = data[0] ^ (unsigned long)-1; 1913 } 1914 kunmap(page); 1915 if (err) { 1916 drbd_free_peer_req(device, peer_req); 1917 return NULL; 1918 } 1919 ds -= len; 1920 } 1921 1922 if (digest_size) { 1923 drbd_csum_ee_size(peer_device->connection->peer_integrity_tfm, peer_req, dig_vv, data_size); 1924 if (memcmp(dig_in, dig_vv, digest_size)) { 1925 drbd_err(device, "Digest integrity check FAILED: %llus +%u\n", 1926 (unsigned long long)sector, data_size); 1927 drbd_free_peer_req(device, peer_req); 1928 return NULL; 1929 } 1930 } 1931 device->recv_cnt += data_size >> 9; 1932 return peer_req; 1933 } 1934 1935 /* drbd_drain_block() just takes a data block 1936 * out of the socket input buffer, and discards it. 1937 */ 1938 static int drbd_drain_block(struct drbd_peer_device *peer_device, int data_size) 1939 { 1940 struct page *page; 1941 int err = 0; 1942 void *data; 1943 1944 if (!data_size) 1945 return 0; 1946 1947 page = drbd_alloc_pages(peer_device, 1, 1); 1948 1949 data = kmap(page); 1950 while (data_size) { 1951 unsigned int len = min_t(int, data_size, PAGE_SIZE); 1952 1953 err = drbd_recv_all_warn(peer_device->connection, data, len); 1954 if (err) 1955 break; 1956 data_size -= len; 1957 } 1958 kunmap(page); 1959 drbd_free_pages(peer_device->device, page, 0); 1960 return err; 1961 } 1962 1963 static int recv_dless_read(struct drbd_peer_device *peer_device, struct drbd_request *req, 1964 sector_t sector, int data_size) 1965 { 1966 struct bio_vec bvec; 1967 struct bvec_iter iter; 1968 struct bio *bio; 1969 int digest_size, err, expect; 1970 void *dig_in = peer_device->connection->int_dig_in; 1971 void *dig_vv = peer_device->connection->int_dig_vv; 1972 1973 digest_size = 0; 1974 if (peer_device->connection->peer_integrity_tfm) { 1975 digest_size = crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm); 1976 err = drbd_recv_all_warn(peer_device->connection, dig_in, digest_size); 1977 if (err) 1978 return err; 1979 data_size -= digest_size; 1980 } 1981 1982 /* optimistically update recv_cnt. if receiving fails below, 1983 * we disconnect anyways, and counters will be reset. */ 1984 peer_device->device->recv_cnt += data_size>>9; 1985 1986 bio = req->master_bio; 1987 D_ASSERT(peer_device->device, sector == bio->bi_iter.bi_sector); 1988 1989 bio_for_each_segment(bvec, bio, iter) { 1990 void *mapped = bvec_kmap_local(&bvec); 1991 expect = min_t(int, data_size, bvec.bv_len); 1992 err = drbd_recv_all_warn(peer_device->connection, mapped, expect); 1993 kunmap_local(mapped); 1994 if (err) 1995 return err; 1996 data_size -= expect; 1997 } 1998 1999 if (digest_size) { 2000 drbd_csum_bio(peer_device->connection->peer_integrity_tfm, bio, dig_vv); 2001 if (memcmp(dig_in, dig_vv, digest_size)) { 2002 drbd_err(peer_device, "Digest integrity check FAILED. Broken NICs?\n"); 2003 return -EINVAL; 2004 } 2005 } 2006 2007 D_ASSERT(peer_device->device, data_size == 0); 2008 return 0; 2009 } 2010 2011 /* 2012 * e_end_resync_block() is called in ack_sender context via 2013 * drbd_finish_peer_reqs(). 2014 */ 2015 static int e_end_resync_block(struct drbd_work *w, int unused) 2016 { 2017 struct drbd_peer_request *peer_req = 2018 container_of(w, struct drbd_peer_request, w); 2019 struct drbd_peer_device *peer_device = peer_req->peer_device; 2020 struct drbd_device *device = peer_device->device; 2021 sector_t sector = peer_req->i.sector; 2022 int err; 2023 2024 D_ASSERT(device, drbd_interval_empty(&peer_req->i)); 2025 2026 if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) { 2027 drbd_set_in_sync(device, sector, peer_req->i.size); 2028 err = drbd_send_ack(peer_device, P_RS_WRITE_ACK, peer_req); 2029 } else { 2030 /* Record failure to sync */ 2031 drbd_rs_failed_io(device, sector, peer_req->i.size); 2032 2033 err = drbd_send_ack(peer_device, P_NEG_ACK, peer_req); 2034 } 2035 dec_unacked(device); 2036 2037 return err; 2038 } 2039 2040 static int recv_resync_read(struct drbd_peer_device *peer_device, sector_t sector, 2041 struct packet_info *pi) __releases(local) 2042 { 2043 struct drbd_device *device = peer_device->device; 2044 struct drbd_peer_request *peer_req; 2045 2046 peer_req = read_in_block(peer_device, ID_SYNCER, sector, pi); 2047 if (!peer_req) 2048 goto fail; 2049 2050 dec_rs_pending(device); 2051 2052 inc_unacked(device); 2053 /* corresponding dec_unacked() in e_end_resync_block() 2054 * respective _drbd_clear_done_ee */ 2055 2056 peer_req->w.cb = e_end_resync_block; 2057 peer_req->submit_jif = jiffies; 2058 2059 spin_lock_irq(&device->resource->req_lock); 2060 list_add_tail(&peer_req->w.list, &device->sync_ee); 2061 spin_unlock_irq(&device->resource->req_lock); 2062 2063 atomic_add(pi->size >> 9, &device->rs_sect_ev); 2064 if (drbd_submit_peer_request(device, peer_req, REQ_OP_WRITE, 0, 2065 DRBD_FAULT_RS_WR) == 0) 2066 return 0; 2067 2068 /* don't care for the reason here */ 2069 drbd_err(device, "submit failed, triggering re-connect\n"); 2070 spin_lock_irq(&device->resource->req_lock); 2071 list_del(&peer_req->w.list); 2072 spin_unlock_irq(&device->resource->req_lock); 2073 2074 drbd_free_peer_req(device, peer_req); 2075 fail: 2076 put_ldev(device); 2077 return -EIO; 2078 } 2079 2080 static struct drbd_request * 2081 find_request(struct drbd_device *device, struct rb_root *root, u64 id, 2082 sector_t sector, bool missing_ok, const char *func) 2083 { 2084 struct drbd_request *req; 2085 2086 /* Request object according to our peer */ 2087 req = (struct drbd_request *)(unsigned long)id; 2088 if (drbd_contains_interval(root, sector, &req->i) && req->i.local) 2089 return req; 2090 if (!missing_ok) { 2091 drbd_err(device, "%s: failed to find request 0x%lx, sector %llus\n", func, 2092 (unsigned long)id, (unsigned long long)sector); 2093 } 2094 return NULL; 2095 } 2096 2097 static int receive_DataReply(struct drbd_connection *connection, struct packet_info *pi) 2098 { 2099 struct drbd_peer_device *peer_device; 2100 struct drbd_device *device; 2101 struct drbd_request *req; 2102 sector_t sector; 2103 int err; 2104 struct p_data *p = pi->data; 2105 2106 peer_device = conn_peer_device(connection, pi->vnr); 2107 if (!peer_device) 2108 return -EIO; 2109 device = peer_device->device; 2110 2111 sector = be64_to_cpu(p->sector); 2112 2113 spin_lock_irq(&device->resource->req_lock); 2114 req = find_request(device, &device->read_requests, p->block_id, sector, false, __func__); 2115 spin_unlock_irq(&device->resource->req_lock); 2116 if (unlikely(!req)) 2117 return -EIO; 2118 2119 /* hlist_del(&req->collision) is done in _req_may_be_done, to avoid 2120 * special casing it there for the various failure cases. 2121 * still no race with drbd_fail_pending_reads */ 2122 err = recv_dless_read(peer_device, req, sector, pi->size); 2123 if (!err) 2124 req_mod(req, DATA_RECEIVED); 2125 /* else: nothing. handled from drbd_disconnect... 2126 * I don't think we may complete this just yet 2127 * in case we are "on-disconnect: freeze" */ 2128 2129 return err; 2130 } 2131 2132 static int receive_RSDataReply(struct drbd_connection *connection, struct packet_info *pi) 2133 { 2134 struct drbd_peer_device *peer_device; 2135 struct drbd_device *device; 2136 sector_t sector; 2137 int err; 2138 struct p_data *p = pi->data; 2139 2140 peer_device = conn_peer_device(connection, pi->vnr); 2141 if (!peer_device) 2142 return -EIO; 2143 device = peer_device->device; 2144 2145 sector = be64_to_cpu(p->sector); 2146 D_ASSERT(device, p->block_id == ID_SYNCER); 2147 2148 if (get_ldev(device)) { 2149 /* data is submitted to disk within recv_resync_read. 2150 * corresponding put_ldev done below on error, 2151 * or in drbd_peer_request_endio. */ 2152 err = recv_resync_read(peer_device, sector, pi); 2153 } else { 2154 if (__ratelimit(&drbd_ratelimit_state)) 2155 drbd_err(device, "Can not write resync data to local disk.\n"); 2156 2157 err = drbd_drain_block(peer_device, pi->size); 2158 2159 drbd_send_ack_dp(peer_device, P_NEG_ACK, p, pi->size); 2160 } 2161 2162 atomic_add(pi->size >> 9, &device->rs_sect_in); 2163 2164 return err; 2165 } 2166 2167 static void restart_conflicting_writes(struct drbd_device *device, 2168 sector_t sector, int size) 2169 { 2170 struct drbd_interval *i; 2171 struct drbd_request *req; 2172 2173 drbd_for_each_overlap(i, &device->write_requests, sector, size) { 2174 if (!i->local) 2175 continue; 2176 req = container_of(i, struct drbd_request, i); 2177 if (req->rq_state & RQ_LOCAL_PENDING || 2178 !(req->rq_state & RQ_POSTPONED)) 2179 continue; 2180 /* as it is RQ_POSTPONED, this will cause it to 2181 * be queued on the retry workqueue. */ 2182 __req_mod(req, CONFLICT_RESOLVED, NULL); 2183 } 2184 } 2185 2186 /* 2187 * e_end_block() is called in ack_sender context via drbd_finish_peer_reqs(). 2188 */ 2189 static int e_end_block(struct drbd_work *w, int cancel) 2190 { 2191 struct drbd_peer_request *peer_req = 2192 container_of(w, struct drbd_peer_request, w); 2193 struct drbd_peer_device *peer_device = peer_req->peer_device; 2194 struct drbd_device *device = peer_device->device; 2195 sector_t sector = peer_req->i.sector; 2196 int err = 0, pcmd; 2197 2198 if (peer_req->flags & EE_SEND_WRITE_ACK) { 2199 if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) { 2200 pcmd = (device->state.conn >= C_SYNC_SOURCE && 2201 device->state.conn <= C_PAUSED_SYNC_T && 2202 peer_req->flags & EE_MAY_SET_IN_SYNC) ? 2203 P_RS_WRITE_ACK : P_WRITE_ACK; 2204 err = drbd_send_ack(peer_device, pcmd, peer_req); 2205 if (pcmd == P_RS_WRITE_ACK) 2206 drbd_set_in_sync(device, sector, peer_req->i.size); 2207 } else { 2208 err = drbd_send_ack(peer_device, P_NEG_ACK, peer_req); 2209 /* we expect it to be marked out of sync anyways... 2210 * maybe assert this? */ 2211 } 2212 dec_unacked(device); 2213 } 2214 2215 /* we delete from the conflict detection hash _after_ we sent out the 2216 * P_WRITE_ACK / P_NEG_ACK, to get the sequence number right. */ 2217 if (peer_req->flags & EE_IN_INTERVAL_TREE) { 2218 spin_lock_irq(&device->resource->req_lock); 2219 D_ASSERT(device, !drbd_interval_empty(&peer_req->i)); 2220 drbd_remove_epoch_entry_interval(device, peer_req); 2221 if (peer_req->flags & EE_RESTART_REQUESTS) 2222 restart_conflicting_writes(device, sector, peer_req->i.size); 2223 spin_unlock_irq(&device->resource->req_lock); 2224 } else 2225 D_ASSERT(device, drbd_interval_empty(&peer_req->i)); 2226 2227 drbd_may_finish_epoch(peer_device->connection, peer_req->epoch, EV_PUT + (cancel ? EV_CLEANUP : 0)); 2228 2229 return err; 2230 } 2231 2232 static int e_send_ack(struct drbd_work *w, enum drbd_packet ack) 2233 { 2234 struct drbd_peer_request *peer_req = 2235 container_of(w, struct drbd_peer_request, w); 2236 struct drbd_peer_device *peer_device = peer_req->peer_device; 2237 int err; 2238 2239 err = drbd_send_ack(peer_device, ack, peer_req); 2240 dec_unacked(peer_device->device); 2241 2242 return err; 2243 } 2244 2245 static int e_send_superseded(struct drbd_work *w, int unused) 2246 { 2247 return e_send_ack(w, P_SUPERSEDED); 2248 } 2249 2250 static int e_send_retry_write(struct drbd_work *w, int unused) 2251 { 2252 struct drbd_peer_request *peer_req = 2253 container_of(w, struct drbd_peer_request, w); 2254 struct drbd_connection *connection = peer_req->peer_device->connection; 2255 2256 return e_send_ack(w, connection->agreed_pro_version >= 100 ? 2257 P_RETRY_WRITE : P_SUPERSEDED); 2258 } 2259 2260 static bool seq_greater(u32 a, u32 b) 2261 { 2262 /* 2263 * We assume 32-bit wrap-around here. 2264 * For 24-bit wrap-around, we would have to shift: 2265 * a <<= 8; b <<= 8; 2266 */ 2267 return (s32)a - (s32)b > 0; 2268 } 2269 2270 static u32 seq_max(u32 a, u32 b) 2271 { 2272 return seq_greater(a, b) ? a : b; 2273 } 2274 2275 static void update_peer_seq(struct drbd_peer_device *peer_device, unsigned int peer_seq) 2276 { 2277 struct drbd_device *device = peer_device->device; 2278 unsigned int newest_peer_seq; 2279 2280 if (test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags)) { 2281 spin_lock(&device->peer_seq_lock); 2282 newest_peer_seq = seq_max(device->peer_seq, peer_seq); 2283 device->peer_seq = newest_peer_seq; 2284 spin_unlock(&device->peer_seq_lock); 2285 /* wake up only if we actually changed device->peer_seq */ 2286 if (peer_seq == newest_peer_seq) 2287 wake_up(&device->seq_wait); 2288 } 2289 } 2290 2291 static inline int overlaps(sector_t s1, int l1, sector_t s2, int l2) 2292 { 2293 return !((s1 + (l1>>9) <= s2) || (s1 >= s2 + (l2>>9))); 2294 } 2295 2296 /* maybe change sync_ee into interval trees as well? */ 2297 static bool overlapping_resync_write(struct drbd_device *device, struct drbd_peer_request *peer_req) 2298 { 2299 struct drbd_peer_request *rs_req; 2300 bool rv = false; 2301 2302 spin_lock_irq(&device->resource->req_lock); 2303 list_for_each_entry(rs_req, &device->sync_ee, w.list) { 2304 if (overlaps(peer_req->i.sector, peer_req->i.size, 2305 rs_req->i.sector, rs_req->i.size)) { 2306 rv = true; 2307 break; 2308 } 2309 } 2310 spin_unlock_irq(&device->resource->req_lock); 2311 2312 return rv; 2313 } 2314 2315 /* Called from receive_Data. 2316 * Synchronize packets on sock with packets on msock. 2317 * 2318 * This is here so even when a P_DATA packet traveling via sock overtook an Ack 2319 * packet traveling on msock, they are still processed in the order they have 2320 * been sent. 2321 * 2322 * Note: we don't care for Ack packets overtaking P_DATA packets. 2323 * 2324 * In case packet_seq is larger than device->peer_seq number, there are 2325 * outstanding packets on the msock. We wait for them to arrive. 2326 * In case we are the logically next packet, we update device->peer_seq 2327 * ourselves. Correctly handles 32bit wrap around. 2328 * 2329 * Assume we have a 10 GBit connection, that is about 1<<30 byte per second, 2330 * about 1<<21 sectors per second. So "worst" case, we have 1<<3 == 8 seconds 2331 * for the 24bit wrap (historical atomic_t guarantee on some archs), and we have 2332 * 1<<9 == 512 seconds aka ages for the 32bit wrap around... 2333 * 2334 * returns 0 if we may process the packet, 2335 * -ERESTARTSYS if we were interrupted (by disconnect signal). */ 2336 static int wait_for_and_update_peer_seq(struct drbd_peer_device *peer_device, const u32 peer_seq) 2337 { 2338 struct drbd_device *device = peer_device->device; 2339 DEFINE_WAIT(wait); 2340 long timeout; 2341 int ret = 0, tp; 2342 2343 if (!test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags)) 2344 return 0; 2345 2346 spin_lock(&device->peer_seq_lock); 2347 for (;;) { 2348 if (!seq_greater(peer_seq - 1, device->peer_seq)) { 2349 device->peer_seq = seq_max(device->peer_seq, peer_seq); 2350 break; 2351 } 2352 2353 if (signal_pending(current)) { 2354 ret = -ERESTARTSYS; 2355 break; 2356 } 2357 2358 rcu_read_lock(); 2359 tp = rcu_dereference(peer_device->connection->net_conf)->two_primaries; 2360 rcu_read_unlock(); 2361 2362 if (!tp) 2363 break; 2364 2365 /* Only need to wait if two_primaries is enabled */ 2366 prepare_to_wait(&device->seq_wait, &wait, TASK_INTERRUPTIBLE); 2367 spin_unlock(&device->peer_seq_lock); 2368 rcu_read_lock(); 2369 timeout = rcu_dereference(peer_device->connection->net_conf)->ping_timeo*HZ/10; 2370 rcu_read_unlock(); 2371 timeout = schedule_timeout(timeout); 2372 spin_lock(&device->peer_seq_lock); 2373 if (!timeout) { 2374 ret = -ETIMEDOUT; 2375 drbd_err(device, "Timed out waiting for missing ack packets; disconnecting\n"); 2376 break; 2377 } 2378 } 2379 spin_unlock(&device->peer_seq_lock); 2380 finish_wait(&device->seq_wait, &wait); 2381 return ret; 2382 } 2383 2384 /* see also bio_flags_to_wire() 2385 * DRBD_REQ_*, because we need to semantically map the flags to data packet 2386 * flags and back. We may replicate to other kernel versions. */ 2387 static unsigned long wire_flags_to_bio_flags(u32 dpf) 2388 { 2389 return (dpf & DP_RW_SYNC ? REQ_SYNC : 0) | 2390 (dpf & DP_FUA ? REQ_FUA : 0) | 2391 (dpf & DP_FLUSH ? REQ_PREFLUSH : 0); 2392 } 2393 2394 static unsigned long wire_flags_to_bio_op(u32 dpf) 2395 { 2396 if (dpf & DP_ZEROES) 2397 return REQ_OP_WRITE_ZEROES; 2398 if (dpf & DP_DISCARD) 2399 return REQ_OP_DISCARD; 2400 else 2401 return REQ_OP_WRITE; 2402 } 2403 2404 static void fail_postponed_requests(struct drbd_device *device, sector_t sector, 2405 unsigned int size) 2406 { 2407 struct drbd_interval *i; 2408 2409 repeat: 2410 drbd_for_each_overlap(i, &device->write_requests, sector, size) { 2411 struct drbd_request *req; 2412 struct bio_and_error m; 2413 2414 if (!i->local) 2415 continue; 2416 req = container_of(i, struct drbd_request, i); 2417 if (!(req->rq_state & RQ_POSTPONED)) 2418 continue; 2419 req->rq_state &= ~RQ_POSTPONED; 2420 __req_mod(req, NEG_ACKED, &m); 2421 spin_unlock_irq(&device->resource->req_lock); 2422 if (m.bio) 2423 complete_master_bio(device, &m); 2424 spin_lock_irq(&device->resource->req_lock); 2425 goto repeat; 2426 } 2427 } 2428 2429 static int handle_write_conflicts(struct drbd_device *device, 2430 struct drbd_peer_request *peer_req) 2431 { 2432 struct drbd_connection *connection = peer_req->peer_device->connection; 2433 bool resolve_conflicts = test_bit(RESOLVE_CONFLICTS, &connection->flags); 2434 sector_t sector = peer_req->i.sector; 2435 const unsigned int size = peer_req->i.size; 2436 struct drbd_interval *i; 2437 bool equal; 2438 int err; 2439 2440 /* 2441 * Inserting the peer request into the write_requests tree will prevent 2442 * new conflicting local requests from being added. 2443 */ 2444 drbd_insert_interval(&device->write_requests, &peer_req->i); 2445 2446 repeat: 2447 drbd_for_each_overlap(i, &device->write_requests, sector, size) { 2448 if (i == &peer_req->i) 2449 continue; 2450 if (i->completed) 2451 continue; 2452 2453 if (!i->local) { 2454 /* 2455 * Our peer has sent a conflicting remote request; this 2456 * should not happen in a two-node setup. Wait for the 2457 * earlier peer request to complete. 2458 */ 2459 err = drbd_wait_misc(device, i); 2460 if (err) 2461 goto out; 2462 goto repeat; 2463 } 2464 2465 equal = i->sector == sector && i->size == size; 2466 if (resolve_conflicts) { 2467 /* 2468 * If the peer request is fully contained within the 2469 * overlapping request, it can be considered overwritten 2470 * and thus superseded; otherwise, it will be retried 2471 * once all overlapping requests have completed. 2472 */ 2473 bool superseded = i->sector <= sector && i->sector + 2474 (i->size >> 9) >= sector + (size >> 9); 2475 2476 if (!equal) 2477 drbd_alert(device, "Concurrent writes detected: " 2478 "local=%llus +%u, remote=%llus +%u, " 2479 "assuming %s came first\n", 2480 (unsigned long long)i->sector, i->size, 2481 (unsigned long long)sector, size, 2482 superseded ? "local" : "remote"); 2483 2484 peer_req->w.cb = superseded ? e_send_superseded : 2485 e_send_retry_write; 2486 list_add_tail(&peer_req->w.list, &device->done_ee); 2487 queue_work(connection->ack_sender, &peer_req->peer_device->send_acks_work); 2488 2489 err = -ENOENT; 2490 goto out; 2491 } else { 2492 struct drbd_request *req = 2493 container_of(i, struct drbd_request, i); 2494 2495 if (!equal) 2496 drbd_alert(device, "Concurrent writes detected: " 2497 "local=%llus +%u, remote=%llus +%u\n", 2498 (unsigned long long)i->sector, i->size, 2499 (unsigned long long)sector, size); 2500 2501 if (req->rq_state & RQ_LOCAL_PENDING || 2502 !(req->rq_state & RQ_POSTPONED)) { 2503 /* 2504 * Wait for the node with the discard flag to 2505 * decide if this request has been superseded 2506 * or needs to be retried. 2507 * Requests that have been superseded will 2508 * disappear from the write_requests tree. 2509 * 2510 * In addition, wait for the conflicting 2511 * request to finish locally before submitting 2512 * the conflicting peer request. 2513 */ 2514 err = drbd_wait_misc(device, &req->i); 2515 if (err) { 2516 _conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD); 2517 fail_postponed_requests(device, sector, size); 2518 goto out; 2519 } 2520 goto repeat; 2521 } 2522 /* 2523 * Remember to restart the conflicting requests after 2524 * the new peer request has completed. 2525 */ 2526 peer_req->flags |= EE_RESTART_REQUESTS; 2527 } 2528 } 2529 err = 0; 2530 2531 out: 2532 if (err) 2533 drbd_remove_epoch_entry_interval(device, peer_req); 2534 return err; 2535 } 2536 2537 /* mirrored write */ 2538 static int receive_Data(struct drbd_connection *connection, struct packet_info *pi) 2539 { 2540 struct drbd_peer_device *peer_device; 2541 struct drbd_device *device; 2542 struct net_conf *nc; 2543 sector_t sector; 2544 struct drbd_peer_request *peer_req; 2545 struct p_data *p = pi->data; 2546 u32 peer_seq = be32_to_cpu(p->seq_num); 2547 int op, op_flags; 2548 u32 dp_flags; 2549 int err, tp; 2550 2551 peer_device = conn_peer_device(connection, pi->vnr); 2552 if (!peer_device) 2553 return -EIO; 2554 device = peer_device->device; 2555 2556 if (!get_ldev(device)) { 2557 int err2; 2558 2559 err = wait_for_and_update_peer_seq(peer_device, peer_seq); 2560 drbd_send_ack_dp(peer_device, P_NEG_ACK, p, pi->size); 2561 atomic_inc(&connection->current_epoch->epoch_size); 2562 err2 = drbd_drain_block(peer_device, pi->size); 2563 if (!err) 2564 err = err2; 2565 return err; 2566 } 2567 2568 /* 2569 * Corresponding put_ldev done either below (on various errors), or in 2570 * drbd_peer_request_endio, if we successfully submit the data at the 2571 * end of this function. 2572 */ 2573 2574 sector = be64_to_cpu(p->sector); 2575 peer_req = read_in_block(peer_device, p->block_id, sector, pi); 2576 if (!peer_req) { 2577 put_ldev(device); 2578 return -EIO; 2579 } 2580 2581 peer_req->w.cb = e_end_block; 2582 peer_req->submit_jif = jiffies; 2583 peer_req->flags |= EE_APPLICATION; 2584 2585 dp_flags = be32_to_cpu(p->dp_flags); 2586 op = wire_flags_to_bio_op(dp_flags); 2587 op_flags = wire_flags_to_bio_flags(dp_flags); 2588 if (pi->cmd == P_TRIM) { 2589 D_ASSERT(peer_device, peer_req->i.size > 0); 2590 D_ASSERT(peer_device, op == REQ_OP_DISCARD); 2591 D_ASSERT(peer_device, peer_req->pages == NULL); 2592 /* need to play safe: an older DRBD sender 2593 * may mean zero-out while sending P_TRIM. */ 2594 if (0 == (connection->agreed_features & DRBD_FF_WZEROES)) 2595 peer_req->flags |= EE_ZEROOUT; 2596 } else if (pi->cmd == P_ZEROES) { 2597 D_ASSERT(peer_device, peer_req->i.size > 0); 2598 D_ASSERT(peer_device, op == REQ_OP_WRITE_ZEROES); 2599 D_ASSERT(peer_device, peer_req->pages == NULL); 2600 /* Do (not) pass down BLKDEV_ZERO_NOUNMAP? */ 2601 if (dp_flags & DP_DISCARD) 2602 peer_req->flags |= EE_TRIM; 2603 } else if (peer_req->pages == NULL) { 2604 D_ASSERT(device, peer_req->i.size == 0); 2605 D_ASSERT(device, dp_flags & DP_FLUSH); 2606 } 2607 2608 if (dp_flags & DP_MAY_SET_IN_SYNC) 2609 peer_req->flags |= EE_MAY_SET_IN_SYNC; 2610 2611 spin_lock(&connection->epoch_lock); 2612 peer_req->epoch = connection->current_epoch; 2613 atomic_inc(&peer_req->epoch->epoch_size); 2614 atomic_inc(&peer_req->epoch->active); 2615 spin_unlock(&connection->epoch_lock); 2616 2617 rcu_read_lock(); 2618 nc = rcu_dereference(peer_device->connection->net_conf); 2619 tp = nc->two_primaries; 2620 if (peer_device->connection->agreed_pro_version < 100) { 2621 switch (nc->wire_protocol) { 2622 case DRBD_PROT_C: 2623 dp_flags |= DP_SEND_WRITE_ACK; 2624 break; 2625 case DRBD_PROT_B: 2626 dp_flags |= DP_SEND_RECEIVE_ACK; 2627 break; 2628 } 2629 } 2630 rcu_read_unlock(); 2631 2632 if (dp_flags & DP_SEND_WRITE_ACK) { 2633 peer_req->flags |= EE_SEND_WRITE_ACK; 2634 inc_unacked(device); 2635 /* corresponding dec_unacked() in e_end_block() 2636 * respective _drbd_clear_done_ee */ 2637 } 2638 2639 if (dp_flags & DP_SEND_RECEIVE_ACK) { 2640 /* I really don't like it that the receiver thread 2641 * sends on the msock, but anyways */ 2642 drbd_send_ack(peer_device, P_RECV_ACK, peer_req); 2643 } 2644 2645 if (tp) { 2646 /* two primaries implies protocol C */ 2647 D_ASSERT(device, dp_flags & DP_SEND_WRITE_ACK); 2648 peer_req->flags |= EE_IN_INTERVAL_TREE; 2649 err = wait_for_and_update_peer_seq(peer_device, peer_seq); 2650 if (err) 2651 goto out_interrupted; 2652 spin_lock_irq(&device->resource->req_lock); 2653 err = handle_write_conflicts(device, peer_req); 2654 if (err) { 2655 spin_unlock_irq(&device->resource->req_lock); 2656 if (err == -ENOENT) { 2657 put_ldev(device); 2658 return 0; 2659 } 2660 goto out_interrupted; 2661 } 2662 } else { 2663 update_peer_seq(peer_device, peer_seq); 2664 spin_lock_irq(&device->resource->req_lock); 2665 } 2666 /* TRIM and is processed synchronously, 2667 * we wait for all pending requests, respectively wait for 2668 * active_ee to become empty in drbd_submit_peer_request(); 2669 * better not add ourselves here. */ 2670 if ((peer_req->flags & (EE_TRIM | EE_ZEROOUT)) == 0) 2671 list_add_tail(&peer_req->w.list, &device->active_ee); 2672 spin_unlock_irq(&device->resource->req_lock); 2673 2674 if (device->state.conn == C_SYNC_TARGET) 2675 wait_event(device->ee_wait, !overlapping_resync_write(device, peer_req)); 2676 2677 if (device->state.pdsk < D_INCONSISTENT) { 2678 /* In case we have the only disk of the cluster, */ 2679 drbd_set_out_of_sync(device, peer_req->i.sector, peer_req->i.size); 2680 peer_req->flags &= ~EE_MAY_SET_IN_SYNC; 2681 drbd_al_begin_io(device, &peer_req->i); 2682 peer_req->flags |= EE_CALL_AL_COMPLETE_IO; 2683 } 2684 2685 err = drbd_submit_peer_request(device, peer_req, op, op_flags, 2686 DRBD_FAULT_DT_WR); 2687 if (!err) 2688 return 0; 2689 2690 /* don't care for the reason here */ 2691 drbd_err(device, "submit failed, triggering re-connect\n"); 2692 spin_lock_irq(&device->resource->req_lock); 2693 list_del(&peer_req->w.list); 2694 drbd_remove_epoch_entry_interval(device, peer_req); 2695 spin_unlock_irq(&device->resource->req_lock); 2696 if (peer_req->flags & EE_CALL_AL_COMPLETE_IO) { 2697 peer_req->flags &= ~EE_CALL_AL_COMPLETE_IO; 2698 drbd_al_complete_io(device, &peer_req->i); 2699 } 2700 2701 out_interrupted: 2702 drbd_may_finish_epoch(connection, peer_req->epoch, EV_PUT | EV_CLEANUP); 2703 put_ldev(device); 2704 drbd_free_peer_req(device, peer_req); 2705 return err; 2706 } 2707 2708 /* We may throttle resync, if the lower device seems to be busy, 2709 * and current sync rate is above c_min_rate. 2710 * 2711 * To decide whether or not the lower device is busy, we use a scheme similar 2712 * to MD RAID is_mddev_idle(): if the partition stats reveal "significant" 2713 * (more than 64 sectors) of activity we cannot account for with our own resync 2714 * activity, it obviously is "busy". 2715 * 2716 * The current sync rate used here uses only the most recent two step marks, 2717 * to have a short time average so we can react faster. 2718 */ 2719 bool drbd_rs_should_slow_down(struct drbd_device *device, sector_t sector, 2720 bool throttle_if_app_is_waiting) 2721 { 2722 struct lc_element *tmp; 2723 bool throttle = drbd_rs_c_min_rate_throttle(device); 2724 2725 if (!throttle || throttle_if_app_is_waiting) 2726 return throttle; 2727 2728 spin_lock_irq(&device->al_lock); 2729 tmp = lc_find(device->resync, BM_SECT_TO_EXT(sector)); 2730 if (tmp) { 2731 struct bm_extent *bm_ext = lc_entry(tmp, struct bm_extent, lce); 2732 if (test_bit(BME_PRIORITY, &bm_ext->flags)) 2733 throttle = false; 2734 /* Do not slow down if app IO is already waiting for this extent, 2735 * and our progress is necessary for application IO to complete. */ 2736 } 2737 spin_unlock_irq(&device->al_lock); 2738 2739 return throttle; 2740 } 2741 2742 bool drbd_rs_c_min_rate_throttle(struct drbd_device *device) 2743 { 2744 struct gendisk *disk = device->ldev->backing_bdev->bd_disk; 2745 unsigned long db, dt, dbdt; 2746 unsigned int c_min_rate; 2747 int curr_events; 2748 2749 rcu_read_lock(); 2750 c_min_rate = rcu_dereference(device->ldev->disk_conf)->c_min_rate; 2751 rcu_read_unlock(); 2752 2753 /* feature disabled? */ 2754 if (c_min_rate == 0) 2755 return false; 2756 2757 curr_events = (int)part_stat_read_accum(disk->part0, sectors) - 2758 atomic_read(&device->rs_sect_ev); 2759 2760 if (atomic_read(&device->ap_actlog_cnt) 2761 || curr_events - device->rs_last_events > 64) { 2762 unsigned long rs_left; 2763 int i; 2764 2765 device->rs_last_events = curr_events; 2766 2767 /* sync speed average over the last 2*DRBD_SYNC_MARK_STEP, 2768 * approx. */ 2769 i = (device->rs_last_mark + DRBD_SYNC_MARKS-1) % DRBD_SYNC_MARKS; 2770 2771 if (device->state.conn == C_VERIFY_S || device->state.conn == C_VERIFY_T) 2772 rs_left = device->ov_left; 2773 else 2774 rs_left = drbd_bm_total_weight(device) - device->rs_failed; 2775 2776 dt = ((long)jiffies - (long)device->rs_mark_time[i]) / HZ; 2777 if (!dt) 2778 dt++; 2779 db = device->rs_mark_left[i] - rs_left; 2780 dbdt = Bit2KB(db/dt); 2781 2782 if (dbdt > c_min_rate) 2783 return true; 2784 } 2785 return false; 2786 } 2787 2788 static int receive_DataRequest(struct drbd_connection *connection, struct packet_info *pi) 2789 { 2790 struct drbd_peer_device *peer_device; 2791 struct drbd_device *device; 2792 sector_t sector; 2793 sector_t capacity; 2794 struct drbd_peer_request *peer_req; 2795 struct digest_info *di = NULL; 2796 int size, verb; 2797 unsigned int fault_type; 2798 struct p_block_req *p = pi->data; 2799 2800 peer_device = conn_peer_device(connection, pi->vnr); 2801 if (!peer_device) 2802 return -EIO; 2803 device = peer_device->device; 2804 capacity = get_capacity(device->vdisk); 2805 2806 sector = be64_to_cpu(p->sector); 2807 size = be32_to_cpu(p->blksize); 2808 2809 if (size <= 0 || !IS_ALIGNED(size, 512) || size > DRBD_MAX_BIO_SIZE) { 2810 drbd_err(device, "%s:%d: sector: %llus, size: %u\n", __FILE__, __LINE__, 2811 (unsigned long long)sector, size); 2812 return -EINVAL; 2813 } 2814 if (sector + (size>>9) > capacity) { 2815 drbd_err(device, "%s:%d: sector: %llus, size: %u\n", __FILE__, __LINE__, 2816 (unsigned long long)sector, size); 2817 return -EINVAL; 2818 } 2819 2820 if (!get_ldev_if_state(device, D_UP_TO_DATE)) { 2821 verb = 1; 2822 switch (pi->cmd) { 2823 case P_DATA_REQUEST: 2824 drbd_send_ack_rp(peer_device, P_NEG_DREPLY, p); 2825 break; 2826 case P_RS_THIN_REQ: 2827 case P_RS_DATA_REQUEST: 2828 case P_CSUM_RS_REQUEST: 2829 case P_OV_REQUEST: 2830 drbd_send_ack_rp(peer_device, P_NEG_RS_DREPLY , p); 2831 break; 2832 case P_OV_REPLY: 2833 verb = 0; 2834 dec_rs_pending(device); 2835 drbd_send_ack_ex(peer_device, P_OV_RESULT, sector, size, ID_IN_SYNC); 2836 break; 2837 default: 2838 BUG(); 2839 } 2840 if (verb && __ratelimit(&drbd_ratelimit_state)) 2841 drbd_err(device, "Can not satisfy peer's read request, " 2842 "no local data.\n"); 2843 2844 /* drain possibly payload */ 2845 return drbd_drain_block(peer_device, pi->size); 2846 } 2847 2848 /* GFP_NOIO, because we must not cause arbitrary write-out: in a DRBD 2849 * "criss-cross" setup, that might cause write-out on some other DRBD, 2850 * which in turn might block on the other node at this very place. */ 2851 peer_req = drbd_alloc_peer_req(peer_device, p->block_id, sector, size, 2852 size, GFP_NOIO); 2853 if (!peer_req) { 2854 put_ldev(device); 2855 return -ENOMEM; 2856 } 2857 2858 switch (pi->cmd) { 2859 case P_DATA_REQUEST: 2860 peer_req->w.cb = w_e_end_data_req; 2861 fault_type = DRBD_FAULT_DT_RD; 2862 /* application IO, don't drbd_rs_begin_io */ 2863 peer_req->flags |= EE_APPLICATION; 2864 goto submit; 2865 2866 case P_RS_THIN_REQ: 2867 /* If at some point in the future we have a smart way to 2868 find out if this data block is completely deallocated, 2869 then we would do something smarter here than reading 2870 the block... */ 2871 peer_req->flags |= EE_RS_THIN_REQ; 2872 fallthrough; 2873 case P_RS_DATA_REQUEST: 2874 peer_req->w.cb = w_e_end_rsdata_req; 2875 fault_type = DRBD_FAULT_RS_RD; 2876 /* used in the sector offset progress display */ 2877 device->bm_resync_fo = BM_SECT_TO_BIT(sector); 2878 break; 2879 2880 case P_OV_REPLY: 2881 case P_CSUM_RS_REQUEST: 2882 fault_type = DRBD_FAULT_RS_RD; 2883 di = kmalloc(sizeof(*di) + pi->size, GFP_NOIO); 2884 if (!di) 2885 goto out_free_e; 2886 2887 di->digest_size = pi->size; 2888 di->digest = (((char *)di)+sizeof(struct digest_info)); 2889 2890 peer_req->digest = di; 2891 peer_req->flags |= EE_HAS_DIGEST; 2892 2893 if (drbd_recv_all(peer_device->connection, di->digest, pi->size)) 2894 goto out_free_e; 2895 2896 if (pi->cmd == P_CSUM_RS_REQUEST) { 2897 D_ASSERT(device, peer_device->connection->agreed_pro_version >= 89); 2898 peer_req->w.cb = w_e_end_csum_rs_req; 2899 /* used in the sector offset progress display */ 2900 device->bm_resync_fo = BM_SECT_TO_BIT(sector); 2901 /* remember to report stats in drbd_resync_finished */ 2902 device->use_csums = true; 2903 } else if (pi->cmd == P_OV_REPLY) { 2904 /* track progress, we may need to throttle */ 2905 atomic_add(size >> 9, &device->rs_sect_in); 2906 peer_req->w.cb = w_e_end_ov_reply; 2907 dec_rs_pending(device); 2908 /* drbd_rs_begin_io done when we sent this request, 2909 * but accounting still needs to be done. */ 2910 goto submit_for_resync; 2911 } 2912 break; 2913 2914 case P_OV_REQUEST: 2915 if (device->ov_start_sector == ~(sector_t)0 && 2916 peer_device->connection->agreed_pro_version >= 90) { 2917 unsigned long now = jiffies; 2918 int i; 2919 device->ov_start_sector = sector; 2920 device->ov_position = sector; 2921 device->ov_left = drbd_bm_bits(device) - BM_SECT_TO_BIT(sector); 2922 device->rs_total = device->ov_left; 2923 for (i = 0; i < DRBD_SYNC_MARKS; i++) { 2924 device->rs_mark_left[i] = device->ov_left; 2925 device->rs_mark_time[i] = now; 2926 } 2927 drbd_info(device, "Online Verify start sector: %llu\n", 2928 (unsigned long long)sector); 2929 } 2930 peer_req->w.cb = w_e_end_ov_req; 2931 fault_type = DRBD_FAULT_RS_RD; 2932 break; 2933 2934 default: 2935 BUG(); 2936 } 2937 2938 /* Throttle, drbd_rs_begin_io and submit should become asynchronous 2939 * wrt the receiver, but it is not as straightforward as it may seem. 2940 * Various places in the resync start and stop logic assume resync 2941 * requests are processed in order, requeuing this on the worker thread 2942 * introduces a bunch of new code for synchronization between threads. 2943 * 2944 * Unlimited throttling before drbd_rs_begin_io may stall the resync 2945 * "forever", throttling after drbd_rs_begin_io will lock that extent 2946 * for application writes for the same time. For now, just throttle 2947 * here, where the rest of the code expects the receiver to sleep for 2948 * a while, anyways. 2949 */ 2950 2951 /* Throttle before drbd_rs_begin_io, as that locks out application IO; 2952 * this defers syncer requests for some time, before letting at least 2953 * on request through. The resync controller on the receiving side 2954 * will adapt to the incoming rate accordingly. 2955 * 2956 * We cannot throttle here if remote is Primary/SyncTarget: 2957 * we would also throttle its application reads. 2958 * In that case, throttling is done on the SyncTarget only. 2959 */ 2960 2961 /* Even though this may be a resync request, we do add to "read_ee"; 2962 * "sync_ee" is only used for resync WRITEs. 2963 * Add to list early, so debugfs can find this request 2964 * even if we have to sleep below. */ 2965 spin_lock_irq(&device->resource->req_lock); 2966 list_add_tail(&peer_req->w.list, &device->read_ee); 2967 spin_unlock_irq(&device->resource->req_lock); 2968 2969 update_receiver_timing_details(connection, drbd_rs_should_slow_down); 2970 if (device->state.peer != R_PRIMARY 2971 && drbd_rs_should_slow_down(device, sector, false)) 2972 schedule_timeout_uninterruptible(HZ/10); 2973 update_receiver_timing_details(connection, drbd_rs_begin_io); 2974 if (drbd_rs_begin_io(device, sector)) 2975 goto out_free_e; 2976 2977 submit_for_resync: 2978 atomic_add(size >> 9, &device->rs_sect_ev); 2979 2980 submit: 2981 update_receiver_timing_details(connection, drbd_submit_peer_request); 2982 inc_unacked(device); 2983 if (drbd_submit_peer_request(device, peer_req, REQ_OP_READ, 0, 2984 fault_type) == 0) 2985 return 0; 2986 2987 /* don't care for the reason here */ 2988 drbd_err(device, "submit failed, triggering re-connect\n"); 2989 2990 out_free_e: 2991 spin_lock_irq(&device->resource->req_lock); 2992 list_del(&peer_req->w.list); 2993 spin_unlock_irq(&device->resource->req_lock); 2994 /* no drbd_rs_complete_io(), we are dropping the connection anyways */ 2995 2996 put_ldev(device); 2997 drbd_free_peer_req(device, peer_req); 2998 return -EIO; 2999 } 3000 3001 /* 3002 * drbd_asb_recover_0p - Recover after split-brain with no remaining primaries 3003 */ 3004 static int drbd_asb_recover_0p(struct drbd_peer_device *peer_device) __must_hold(local) 3005 { 3006 struct drbd_device *device = peer_device->device; 3007 int self, peer, rv = -100; 3008 unsigned long ch_self, ch_peer; 3009 enum drbd_after_sb_p after_sb_0p; 3010 3011 self = device->ldev->md.uuid[UI_BITMAP] & 1; 3012 peer = device->p_uuid[UI_BITMAP] & 1; 3013 3014 ch_peer = device->p_uuid[UI_SIZE]; 3015 ch_self = device->comm_bm_set; 3016 3017 rcu_read_lock(); 3018 after_sb_0p = rcu_dereference(peer_device->connection->net_conf)->after_sb_0p; 3019 rcu_read_unlock(); 3020 switch (after_sb_0p) { 3021 case ASB_CONSENSUS: 3022 case ASB_DISCARD_SECONDARY: 3023 case ASB_CALL_HELPER: 3024 case ASB_VIOLENTLY: 3025 drbd_err(device, "Configuration error.\n"); 3026 break; 3027 case ASB_DISCONNECT: 3028 break; 3029 case ASB_DISCARD_YOUNGER_PRI: 3030 if (self == 0 && peer == 1) { 3031 rv = -1; 3032 break; 3033 } 3034 if (self == 1 && peer == 0) { 3035 rv = 1; 3036 break; 3037 } 3038 fallthrough; /* to one of the other strategies */ 3039 case ASB_DISCARD_OLDER_PRI: 3040 if (self == 0 && peer == 1) { 3041 rv = 1; 3042 break; 3043 } 3044 if (self == 1 && peer == 0) { 3045 rv = -1; 3046 break; 3047 } 3048 /* Else fall through to one of the other strategies... */ 3049 drbd_warn(device, "Discard younger/older primary did not find a decision\n" 3050 "Using discard-least-changes instead\n"); 3051 fallthrough; 3052 case ASB_DISCARD_ZERO_CHG: 3053 if (ch_peer == 0 && ch_self == 0) { 3054 rv = test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags) 3055 ? -1 : 1; 3056 break; 3057 } else { 3058 if (ch_peer == 0) { rv = 1; break; } 3059 if (ch_self == 0) { rv = -1; break; } 3060 } 3061 if (after_sb_0p == ASB_DISCARD_ZERO_CHG) 3062 break; 3063 fallthrough; 3064 case ASB_DISCARD_LEAST_CHG: 3065 if (ch_self < ch_peer) 3066 rv = -1; 3067 else if (ch_self > ch_peer) 3068 rv = 1; 3069 else /* ( ch_self == ch_peer ) */ 3070 /* Well, then use something else. */ 3071 rv = test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags) 3072 ? -1 : 1; 3073 break; 3074 case ASB_DISCARD_LOCAL: 3075 rv = -1; 3076 break; 3077 case ASB_DISCARD_REMOTE: 3078 rv = 1; 3079 } 3080 3081 return rv; 3082 } 3083 3084 /* 3085 * drbd_asb_recover_1p - Recover after split-brain with one remaining primary 3086 */ 3087 static int drbd_asb_recover_1p(struct drbd_peer_device *peer_device) __must_hold(local) 3088 { 3089 struct drbd_device *device = peer_device->device; 3090 int hg, rv = -100; 3091 enum drbd_after_sb_p after_sb_1p; 3092 3093 rcu_read_lock(); 3094 after_sb_1p = rcu_dereference(peer_device->connection->net_conf)->after_sb_1p; 3095 rcu_read_unlock(); 3096 switch (after_sb_1p) { 3097 case ASB_DISCARD_YOUNGER_PRI: 3098 case ASB_DISCARD_OLDER_PRI: 3099 case ASB_DISCARD_LEAST_CHG: 3100 case ASB_DISCARD_LOCAL: 3101 case ASB_DISCARD_REMOTE: 3102 case ASB_DISCARD_ZERO_CHG: 3103 drbd_err(device, "Configuration error.\n"); 3104 break; 3105 case ASB_DISCONNECT: 3106 break; 3107 case ASB_CONSENSUS: 3108 hg = drbd_asb_recover_0p(peer_device); 3109 if (hg == -1 && device->state.role == R_SECONDARY) 3110 rv = hg; 3111 if (hg == 1 && device->state.role == R_PRIMARY) 3112 rv = hg; 3113 break; 3114 case ASB_VIOLENTLY: 3115 rv = drbd_asb_recover_0p(peer_device); 3116 break; 3117 case ASB_DISCARD_SECONDARY: 3118 return device->state.role == R_PRIMARY ? 1 : -1; 3119 case ASB_CALL_HELPER: 3120 hg = drbd_asb_recover_0p(peer_device); 3121 if (hg == -1 && device->state.role == R_PRIMARY) { 3122 enum drbd_state_rv rv2; 3123 3124 /* drbd_change_state() does not sleep while in SS_IN_TRANSIENT_STATE, 3125 * we might be here in C_WF_REPORT_PARAMS which is transient. 3126 * we do not need to wait for the after state change work either. */ 3127 rv2 = drbd_change_state(device, CS_VERBOSE, NS(role, R_SECONDARY)); 3128 if (rv2 != SS_SUCCESS) { 3129 drbd_khelper(device, "pri-lost-after-sb"); 3130 } else { 3131 drbd_warn(device, "Successfully gave up primary role.\n"); 3132 rv = hg; 3133 } 3134 } else 3135 rv = hg; 3136 } 3137 3138 return rv; 3139 } 3140 3141 /* 3142 * drbd_asb_recover_2p - Recover after split-brain with two remaining primaries 3143 */ 3144 static int drbd_asb_recover_2p(struct drbd_peer_device *peer_device) __must_hold(local) 3145 { 3146 struct drbd_device *device = peer_device->device; 3147 int hg, rv = -100; 3148 enum drbd_after_sb_p after_sb_2p; 3149 3150 rcu_read_lock(); 3151 after_sb_2p = rcu_dereference(peer_device->connection->net_conf)->after_sb_2p; 3152 rcu_read_unlock(); 3153 switch (after_sb_2p) { 3154 case ASB_DISCARD_YOUNGER_PRI: 3155 case ASB_DISCARD_OLDER_PRI: 3156 case ASB_DISCARD_LEAST_CHG: 3157 case ASB_DISCARD_LOCAL: 3158 case ASB_DISCARD_REMOTE: 3159 case ASB_CONSENSUS: 3160 case ASB_DISCARD_SECONDARY: 3161 case ASB_DISCARD_ZERO_CHG: 3162 drbd_err(device, "Configuration error.\n"); 3163 break; 3164 case ASB_VIOLENTLY: 3165 rv = drbd_asb_recover_0p(peer_device); 3166 break; 3167 case ASB_DISCONNECT: 3168 break; 3169 case ASB_CALL_HELPER: 3170 hg = drbd_asb_recover_0p(peer_device); 3171 if (hg == -1) { 3172 enum drbd_state_rv rv2; 3173 3174 /* drbd_change_state() does not sleep while in SS_IN_TRANSIENT_STATE, 3175 * we might be here in C_WF_REPORT_PARAMS which is transient. 3176 * we do not need to wait for the after state change work either. */ 3177 rv2 = drbd_change_state(device, CS_VERBOSE, NS(role, R_SECONDARY)); 3178 if (rv2 != SS_SUCCESS) { 3179 drbd_khelper(device, "pri-lost-after-sb"); 3180 } else { 3181 drbd_warn(device, "Successfully gave up primary role.\n"); 3182 rv = hg; 3183 } 3184 } else 3185 rv = hg; 3186 } 3187 3188 return rv; 3189 } 3190 3191 static void drbd_uuid_dump(struct drbd_device *device, char *text, u64 *uuid, 3192 u64 bits, u64 flags) 3193 { 3194 if (!uuid) { 3195 drbd_info(device, "%s uuid info vanished while I was looking!\n", text); 3196 return; 3197 } 3198 drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX bits:%llu flags:%llX\n", 3199 text, 3200 (unsigned long long)uuid[UI_CURRENT], 3201 (unsigned long long)uuid[UI_BITMAP], 3202 (unsigned long long)uuid[UI_HISTORY_START], 3203 (unsigned long long)uuid[UI_HISTORY_END], 3204 (unsigned long long)bits, 3205 (unsigned long long)flags); 3206 } 3207 3208 /* 3209 100 after split brain try auto recover 3210 2 C_SYNC_SOURCE set BitMap 3211 1 C_SYNC_SOURCE use BitMap 3212 0 no Sync 3213 -1 C_SYNC_TARGET use BitMap 3214 -2 C_SYNC_TARGET set BitMap 3215 -100 after split brain, disconnect 3216 -1000 unrelated data 3217 -1091 requires proto 91 3218 -1096 requires proto 96 3219 */ 3220 3221 static int drbd_uuid_compare(struct drbd_device *const device, enum drbd_role const peer_role, int *rule_nr) __must_hold(local) 3222 { 3223 struct drbd_peer_device *const peer_device = first_peer_device(device); 3224 struct drbd_connection *const connection = peer_device ? peer_device->connection : NULL; 3225 u64 self, peer; 3226 int i, j; 3227 3228 self = device->ldev->md.uuid[UI_CURRENT] & ~((u64)1); 3229 peer = device->p_uuid[UI_CURRENT] & ~((u64)1); 3230 3231 *rule_nr = 10; 3232 if (self == UUID_JUST_CREATED && peer == UUID_JUST_CREATED) 3233 return 0; 3234 3235 *rule_nr = 20; 3236 if ((self == UUID_JUST_CREATED || self == (u64)0) && 3237 peer != UUID_JUST_CREATED) 3238 return -2; 3239 3240 *rule_nr = 30; 3241 if (self != UUID_JUST_CREATED && 3242 (peer == UUID_JUST_CREATED || peer == (u64)0)) 3243 return 2; 3244 3245 if (self == peer) { 3246 int rct, dc; /* roles at crash time */ 3247 3248 if (device->p_uuid[UI_BITMAP] == (u64)0 && device->ldev->md.uuid[UI_BITMAP] != (u64)0) { 3249 3250 if (connection->agreed_pro_version < 91) 3251 return -1091; 3252 3253 if ((device->ldev->md.uuid[UI_BITMAP] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START] & ~((u64)1)) && 3254 (device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START + 1] & ~((u64)1))) { 3255 drbd_info(device, "was SyncSource, missed the resync finished event, corrected myself:\n"); 3256 drbd_uuid_move_history(device); 3257 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP]; 3258 device->ldev->md.uuid[UI_BITMAP] = 0; 3259 3260 drbd_uuid_dump(device, "self", device->ldev->md.uuid, 3261 device->state.disk >= D_NEGOTIATING ? drbd_bm_total_weight(device) : 0, 0); 3262 *rule_nr = 34; 3263 } else { 3264 drbd_info(device, "was SyncSource (peer failed to write sync_uuid)\n"); 3265 *rule_nr = 36; 3266 } 3267 3268 return 1; 3269 } 3270 3271 if (device->ldev->md.uuid[UI_BITMAP] == (u64)0 && device->p_uuid[UI_BITMAP] != (u64)0) { 3272 3273 if (connection->agreed_pro_version < 91) 3274 return -1091; 3275 3276 if ((device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == (device->p_uuid[UI_BITMAP] & ~((u64)1)) && 3277 (device->ldev->md.uuid[UI_HISTORY_START + 1] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START] & ~((u64)1))) { 3278 drbd_info(device, "was SyncTarget, peer missed the resync finished event, corrected peer:\n"); 3279 3280 device->p_uuid[UI_HISTORY_START + 1] = device->p_uuid[UI_HISTORY_START]; 3281 device->p_uuid[UI_HISTORY_START] = device->p_uuid[UI_BITMAP]; 3282 device->p_uuid[UI_BITMAP] = 0UL; 3283 3284 drbd_uuid_dump(device, "peer", device->p_uuid, device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]); 3285 *rule_nr = 35; 3286 } else { 3287 drbd_info(device, "was SyncTarget (failed to write sync_uuid)\n"); 3288 *rule_nr = 37; 3289 } 3290 3291 return -1; 3292 } 3293 3294 /* Common power [off|failure] */ 3295 rct = (test_bit(CRASHED_PRIMARY, &device->flags) ? 1 : 0) + 3296 (device->p_uuid[UI_FLAGS] & 2); 3297 /* lowest bit is set when we were primary, 3298 * next bit (weight 2) is set when peer was primary */ 3299 *rule_nr = 40; 3300 3301 /* Neither has the "crashed primary" flag set, 3302 * only a replication link hickup. */ 3303 if (rct == 0) 3304 return 0; 3305 3306 /* Current UUID equal and no bitmap uuid; does not necessarily 3307 * mean this was a "simultaneous hard crash", maybe IO was 3308 * frozen, so no UUID-bump happened. 3309 * This is a protocol change, overload DRBD_FF_WSAME as flag 3310 * for "new-enough" peer DRBD version. */ 3311 if (device->state.role == R_PRIMARY || peer_role == R_PRIMARY) { 3312 *rule_nr = 41; 3313 if (!(connection->agreed_features & DRBD_FF_WSAME)) { 3314 drbd_warn(peer_device, "Equivalent unrotated UUIDs, but current primary present.\n"); 3315 return -(0x10000 | PRO_VERSION_MAX | (DRBD_FF_WSAME << 8)); 3316 } 3317 if (device->state.role == R_PRIMARY && peer_role == R_PRIMARY) { 3318 /* At least one has the "crashed primary" bit set, 3319 * both are primary now, but neither has rotated its UUIDs? 3320 * "Can not happen." */ 3321 drbd_err(peer_device, "Equivalent unrotated UUIDs, but both are primary. Can not resolve this.\n"); 3322 return -100; 3323 } 3324 if (device->state.role == R_PRIMARY) 3325 return 1; 3326 return -1; 3327 } 3328 3329 /* Both are secondary. 3330 * Really looks like recovery from simultaneous hard crash. 3331 * Check which had been primary before, and arbitrate. */ 3332 switch (rct) { 3333 case 0: /* !self_pri && !peer_pri */ return 0; /* already handled */ 3334 case 1: /* self_pri && !peer_pri */ return 1; 3335 case 2: /* !self_pri && peer_pri */ return -1; 3336 case 3: /* self_pri && peer_pri */ 3337 dc = test_bit(RESOLVE_CONFLICTS, &connection->flags); 3338 return dc ? -1 : 1; 3339 } 3340 } 3341 3342 *rule_nr = 50; 3343 peer = device->p_uuid[UI_BITMAP] & ~((u64)1); 3344 if (self == peer) 3345 return -1; 3346 3347 *rule_nr = 51; 3348 peer = device->p_uuid[UI_HISTORY_START] & ~((u64)1); 3349 if (self == peer) { 3350 if (connection->agreed_pro_version < 96 ? 3351 (device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == 3352 (device->p_uuid[UI_HISTORY_START + 1] & ~((u64)1)) : 3353 peer + UUID_NEW_BM_OFFSET == (device->p_uuid[UI_BITMAP] & ~((u64)1))) { 3354 /* The last P_SYNC_UUID did not get though. Undo the last start of 3355 resync as sync source modifications of the peer's UUIDs. */ 3356 3357 if (connection->agreed_pro_version < 91) 3358 return -1091; 3359 3360 device->p_uuid[UI_BITMAP] = device->p_uuid[UI_HISTORY_START]; 3361 device->p_uuid[UI_HISTORY_START] = device->p_uuid[UI_HISTORY_START + 1]; 3362 3363 drbd_info(device, "Lost last syncUUID packet, corrected:\n"); 3364 drbd_uuid_dump(device, "peer", device->p_uuid, device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]); 3365 3366 return -1; 3367 } 3368 } 3369 3370 *rule_nr = 60; 3371 self = device->ldev->md.uuid[UI_CURRENT] & ~((u64)1); 3372 for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) { 3373 peer = device->p_uuid[i] & ~((u64)1); 3374 if (self == peer) 3375 return -2; 3376 } 3377 3378 *rule_nr = 70; 3379 self = device->ldev->md.uuid[UI_BITMAP] & ~((u64)1); 3380 peer = device->p_uuid[UI_CURRENT] & ~((u64)1); 3381 if (self == peer) 3382 return 1; 3383 3384 *rule_nr = 71; 3385 self = device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1); 3386 if (self == peer) { 3387 if (connection->agreed_pro_version < 96 ? 3388 (device->ldev->md.uuid[UI_HISTORY_START + 1] & ~((u64)1)) == 3389 (device->p_uuid[UI_HISTORY_START] & ~((u64)1)) : 3390 self + UUID_NEW_BM_OFFSET == (device->ldev->md.uuid[UI_BITMAP] & ~((u64)1))) { 3391 /* The last P_SYNC_UUID did not get though. Undo the last start of 3392 resync as sync source modifications of our UUIDs. */ 3393 3394 if (connection->agreed_pro_version < 91) 3395 return -1091; 3396 3397 __drbd_uuid_set(device, UI_BITMAP, device->ldev->md.uuid[UI_HISTORY_START]); 3398 __drbd_uuid_set(device, UI_HISTORY_START, device->ldev->md.uuid[UI_HISTORY_START + 1]); 3399 3400 drbd_info(device, "Last syncUUID did not get through, corrected:\n"); 3401 drbd_uuid_dump(device, "self", device->ldev->md.uuid, 3402 device->state.disk >= D_NEGOTIATING ? drbd_bm_total_weight(device) : 0, 0); 3403 3404 return 1; 3405 } 3406 } 3407 3408 3409 *rule_nr = 80; 3410 peer = device->p_uuid[UI_CURRENT] & ~((u64)1); 3411 for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) { 3412 self = device->ldev->md.uuid[i] & ~((u64)1); 3413 if (self == peer) 3414 return 2; 3415 } 3416 3417 *rule_nr = 90; 3418 self = device->ldev->md.uuid[UI_BITMAP] & ~((u64)1); 3419 peer = device->p_uuid[UI_BITMAP] & ~((u64)1); 3420 if (self == peer && self != ((u64)0)) 3421 return 100; 3422 3423 *rule_nr = 100; 3424 for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) { 3425 self = device->ldev->md.uuid[i] & ~((u64)1); 3426 for (j = UI_HISTORY_START; j <= UI_HISTORY_END; j++) { 3427 peer = device->p_uuid[j] & ~((u64)1); 3428 if (self == peer) 3429 return -100; 3430 } 3431 } 3432 3433 return -1000; 3434 } 3435 3436 /* drbd_sync_handshake() returns the new conn state on success, or 3437 CONN_MASK (-1) on failure. 3438 */ 3439 static enum drbd_conns drbd_sync_handshake(struct drbd_peer_device *peer_device, 3440 enum drbd_role peer_role, 3441 enum drbd_disk_state peer_disk) __must_hold(local) 3442 { 3443 struct drbd_device *device = peer_device->device; 3444 enum drbd_conns rv = C_MASK; 3445 enum drbd_disk_state mydisk; 3446 struct net_conf *nc; 3447 int hg, rule_nr, rr_conflict, tentative, always_asbp; 3448 3449 mydisk = device->state.disk; 3450 if (mydisk == D_NEGOTIATING) 3451 mydisk = device->new_state_tmp.disk; 3452 3453 drbd_info(device, "drbd_sync_handshake:\n"); 3454 3455 spin_lock_irq(&device->ldev->md.uuid_lock); 3456 drbd_uuid_dump(device, "self", device->ldev->md.uuid, device->comm_bm_set, 0); 3457 drbd_uuid_dump(device, "peer", device->p_uuid, 3458 device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]); 3459 3460 hg = drbd_uuid_compare(device, peer_role, &rule_nr); 3461 spin_unlock_irq(&device->ldev->md.uuid_lock); 3462 3463 drbd_info(device, "uuid_compare()=%d by rule %d\n", hg, rule_nr); 3464 3465 if (hg == -1000) { 3466 drbd_alert(device, "Unrelated data, aborting!\n"); 3467 return C_MASK; 3468 } 3469 if (hg < -0x10000) { 3470 int proto, fflags; 3471 hg = -hg; 3472 proto = hg & 0xff; 3473 fflags = (hg >> 8) & 0xff; 3474 drbd_alert(device, "To resolve this both sides have to support at least protocol %d and feature flags 0x%x\n", 3475 proto, fflags); 3476 return C_MASK; 3477 } 3478 if (hg < -1000) { 3479 drbd_alert(device, "To resolve this both sides have to support at least protocol %d\n", -hg - 1000); 3480 return C_MASK; 3481 } 3482 3483 if ((mydisk == D_INCONSISTENT && peer_disk > D_INCONSISTENT) || 3484 (peer_disk == D_INCONSISTENT && mydisk > D_INCONSISTENT)) { 3485 int f = (hg == -100) || abs(hg) == 2; 3486 hg = mydisk > D_INCONSISTENT ? 1 : -1; 3487 if (f) 3488 hg = hg*2; 3489 drbd_info(device, "Becoming sync %s due to disk states.\n", 3490 hg > 0 ? "source" : "target"); 3491 } 3492 3493 if (abs(hg) == 100) 3494 drbd_khelper(device, "initial-split-brain"); 3495 3496 rcu_read_lock(); 3497 nc = rcu_dereference(peer_device->connection->net_conf); 3498 always_asbp = nc->always_asbp; 3499 rr_conflict = nc->rr_conflict; 3500 tentative = nc->tentative; 3501 rcu_read_unlock(); 3502 3503 if (hg == 100 || (hg == -100 && always_asbp)) { 3504 int pcount = (device->state.role == R_PRIMARY) 3505 + (peer_role == R_PRIMARY); 3506 int forced = (hg == -100); 3507 3508 switch (pcount) { 3509 case 0: 3510 hg = drbd_asb_recover_0p(peer_device); 3511 break; 3512 case 1: 3513 hg = drbd_asb_recover_1p(peer_device); 3514 break; 3515 case 2: 3516 hg = drbd_asb_recover_2p(peer_device); 3517 break; 3518 } 3519 if (abs(hg) < 100) { 3520 drbd_warn(device, "Split-Brain detected, %d primaries, " 3521 "automatically solved. Sync from %s node\n", 3522 pcount, (hg < 0) ? "peer" : "this"); 3523 if (forced) { 3524 drbd_warn(device, "Doing a full sync, since" 3525 " UUIDs where ambiguous.\n"); 3526 hg = hg*2; 3527 } 3528 } 3529 } 3530 3531 if (hg == -100) { 3532 if (test_bit(DISCARD_MY_DATA, &device->flags) && !(device->p_uuid[UI_FLAGS]&1)) 3533 hg = -1; 3534 if (!test_bit(DISCARD_MY_DATA, &device->flags) && (device->p_uuid[UI_FLAGS]&1)) 3535 hg = 1; 3536 3537 if (abs(hg) < 100) 3538 drbd_warn(device, "Split-Brain detected, manually solved. " 3539 "Sync from %s node\n", 3540 (hg < 0) ? "peer" : "this"); 3541 } 3542 3543 if (hg == -100) { 3544 /* FIXME this log message is not correct if we end up here 3545 * after an attempted attach on a diskless node. 3546 * We just refuse to attach -- well, we drop the "connection" 3547 * to that disk, in a way... */ 3548 drbd_alert(device, "Split-Brain detected but unresolved, dropping connection!\n"); 3549 drbd_khelper(device, "split-brain"); 3550 return C_MASK; 3551 } 3552 3553 if (hg > 0 && mydisk <= D_INCONSISTENT) { 3554 drbd_err(device, "I shall become SyncSource, but I am inconsistent!\n"); 3555 return C_MASK; 3556 } 3557 3558 if (hg < 0 && /* by intention we do not use mydisk here. */ 3559 device->state.role == R_PRIMARY && device->state.disk >= D_CONSISTENT) { 3560 switch (rr_conflict) { 3561 case ASB_CALL_HELPER: 3562 drbd_khelper(device, "pri-lost"); 3563 fallthrough; 3564 case ASB_DISCONNECT: 3565 drbd_err(device, "I shall become SyncTarget, but I am primary!\n"); 3566 return C_MASK; 3567 case ASB_VIOLENTLY: 3568 drbd_warn(device, "Becoming SyncTarget, violating the stable-data" 3569 "assumption\n"); 3570 } 3571 } 3572 3573 if (tentative || test_bit(CONN_DRY_RUN, &peer_device->connection->flags)) { 3574 if (hg == 0) 3575 drbd_info(device, "dry-run connect: No resync, would become Connected immediately.\n"); 3576 else 3577 drbd_info(device, "dry-run connect: Would become %s, doing a %s resync.", 3578 drbd_conn_str(hg > 0 ? C_SYNC_SOURCE : C_SYNC_TARGET), 3579 abs(hg) >= 2 ? "full" : "bit-map based"); 3580 return C_MASK; 3581 } 3582 3583 if (abs(hg) >= 2) { 3584 drbd_info(device, "Writing the whole bitmap, full sync required after drbd_sync_handshake.\n"); 3585 if (drbd_bitmap_io(device, &drbd_bmio_set_n_write, "set_n_write from sync_handshake", 3586 BM_LOCKED_SET_ALLOWED)) 3587 return C_MASK; 3588 } 3589 3590 if (hg > 0) { /* become sync source. */ 3591 rv = C_WF_BITMAP_S; 3592 } else if (hg < 0) { /* become sync target */ 3593 rv = C_WF_BITMAP_T; 3594 } else { 3595 rv = C_CONNECTED; 3596 if (drbd_bm_total_weight(device)) { 3597 drbd_info(device, "No resync, but %lu bits in bitmap!\n", 3598 drbd_bm_total_weight(device)); 3599 } 3600 } 3601 3602 return rv; 3603 } 3604 3605 static enum drbd_after_sb_p convert_after_sb(enum drbd_after_sb_p peer) 3606 { 3607 /* ASB_DISCARD_REMOTE - ASB_DISCARD_LOCAL is valid */ 3608 if (peer == ASB_DISCARD_REMOTE) 3609 return ASB_DISCARD_LOCAL; 3610 3611 /* any other things with ASB_DISCARD_REMOTE or ASB_DISCARD_LOCAL are invalid */ 3612 if (peer == ASB_DISCARD_LOCAL) 3613 return ASB_DISCARD_REMOTE; 3614 3615 /* everything else is valid if they are equal on both sides. */ 3616 return peer; 3617 } 3618 3619 static int receive_protocol(struct drbd_connection *connection, struct packet_info *pi) 3620 { 3621 struct p_protocol *p = pi->data; 3622 enum drbd_after_sb_p p_after_sb_0p, p_after_sb_1p, p_after_sb_2p; 3623 int p_proto, p_discard_my_data, p_two_primaries, cf; 3624 struct net_conf *nc, *old_net_conf, *new_net_conf = NULL; 3625 char integrity_alg[SHARED_SECRET_MAX] = ""; 3626 struct crypto_shash *peer_integrity_tfm = NULL; 3627 void *int_dig_in = NULL, *int_dig_vv = NULL; 3628 3629 p_proto = be32_to_cpu(p->protocol); 3630 p_after_sb_0p = be32_to_cpu(p->after_sb_0p); 3631 p_after_sb_1p = be32_to_cpu(p->after_sb_1p); 3632 p_after_sb_2p = be32_to_cpu(p->after_sb_2p); 3633 p_two_primaries = be32_to_cpu(p->two_primaries); 3634 cf = be32_to_cpu(p->conn_flags); 3635 p_discard_my_data = cf & CF_DISCARD_MY_DATA; 3636 3637 if (connection->agreed_pro_version >= 87) { 3638 int err; 3639 3640 if (pi->size > sizeof(integrity_alg)) 3641 return -EIO; 3642 err = drbd_recv_all(connection, integrity_alg, pi->size); 3643 if (err) 3644 return err; 3645 integrity_alg[SHARED_SECRET_MAX - 1] = 0; 3646 } 3647 3648 if (pi->cmd != P_PROTOCOL_UPDATE) { 3649 clear_bit(CONN_DRY_RUN, &connection->flags); 3650 3651 if (cf & CF_DRY_RUN) 3652 set_bit(CONN_DRY_RUN, &connection->flags); 3653 3654 rcu_read_lock(); 3655 nc = rcu_dereference(connection->net_conf); 3656 3657 if (p_proto != nc->wire_protocol) { 3658 drbd_err(connection, "incompatible %s settings\n", "protocol"); 3659 goto disconnect_rcu_unlock; 3660 } 3661 3662 if (convert_after_sb(p_after_sb_0p) != nc->after_sb_0p) { 3663 drbd_err(connection, "incompatible %s settings\n", "after-sb-0pri"); 3664 goto disconnect_rcu_unlock; 3665 } 3666 3667 if (convert_after_sb(p_after_sb_1p) != nc->after_sb_1p) { 3668 drbd_err(connection, "incompatible %s settings\n", "after-sb-1pri"); 3669 goto disconnect_rcu_unlock; 3670 } 3671 3672 if (convert_after_sb(p_after_sb_2p) != nc->after_sb_2p) { 3673 drbd_err(connection, "incompatible %s settings\n", "after-sb-2pri"); 3674 goto disconnect_rcu_unlock; 3675 } 3676 3677 if (p_discard_my_data && nc->discard_my_data) { 3678 drbd_err(connection, "incompatible %s settings\n", "discard-my-data"); 3679 goto disconnect_rcu_unlock; 3680 } 3681 3682 if (p_two_primaries != nc->two_primaries) { 3683 drbd_err(connection, "incompatible %s settings\n", "allow-two-primaries"); 3684 goto disconnect_rcu_unlock; 3685 } 3686 3687 if (strcmp(integrity_alg, nc->integrity_alg)) { 3688 drbd_err(connection, "incompatible %s settings\n", "data-integrity-alg"); 3689 goto disconnect_rcu_unlock; 3690 } 3691 3692 rcu_read_unlock(); 3693 } 3694 3695 if (integrity_alg[0]) { 3696 int hash_size; 3697 3698 /* 3699 * We can only change the peer data integrity algorithm 3700 * here. Changing our own data integrity algorithm 3701 * requires that we send a P_PROTOCOL_UPDATE packet at 3702 * the same time; otherwise, the peer has no way to 3703 * tell between which packets the algorithm should 3704 * change. 3705 */ 3706 3707 peer_integrity_tfm = crypto_alloc_shash(integrity_alg, 0, 0); 3708 if (IS_ERR(peer_integrity_tfm)) { 3709 peer_integrity_tfm = NULL; 3710 drbd_err(connection, "peer data-integrity-alg %s not supported\n", 3711 integrity_alg); 3712 goto disconnect; 3713 } 3714 3715 hash_size = crypto_shash_digestsize(peer_integrity_tfm); 3716 int_dig_in = kmalloc(hash_size, GFP_KERNEL); 3717 int_dig_vv = kmalloc(hash_size, GFP_KERNEL); 3718 if (!(int_dig_in && int_dig_vv)) { 3719 drbd_err(connection, "Allocation of buffers for data integrity checking failed\n"); 3720 goto disconnect; 3721 } 3722 } 3723 3724 new_net_conf = kmalloc(sizeof(struct net_conf), GFP_KERNEL); 3725 if (!new_net_conf) 3726 goto disconnect; 3727 3728 mutex_lock(&connection->data.mutex); 3729 mutex_lock(&connection->resource->conf_update); 3730 old_net_conf = connection->net_conf; 3731 *new_net_conf = *old_net_conf; 3732 3733 new_net_conf->wire_protocol = p_proto; 3734 new_net_conf->after_sb_0p = convert_after_sb(p_after_sb_0p); 3735 new_net_conf->after_sb_1p = convert_after_sb(p_after_sb_1p); 3736 new_net_conf->after_sb_2p = convert_after_sb(p_after_sb_2p); 3737 new_net_conf->two_primaries = p_two_primaries; 3738 3739 rcu_assign_pointer(connection->net_conf, new_net_conf); 3740 mutex_unlock(&connection->resource->conf_update); 3741 mutex_unlock(&connection->data.mutex); 3742 3743 crypto_free_shash(connection->peer_integrity_tfm); 3744 kfree(connection->int_dig_in); 3745 kfree(connection->int_dig_vv); 3746 connection->peer_integrity_tfm = peer_integrity_tfm; 3747 connection->int_dig_in = int_dig_in; 3748 connection->int_dig_vv = int_dig_vv; 3749 3750 if (strcmp(old_net_conf->integrity_alg, integrity_alg)) 3751 drbd_info(connection, "peer data-integrity-alg: %s\n", 3752 integrity_alg[0] ? integrity_alg : "(none)"); 3753 3754 synchronize_rcu(); 3755 kfree(old_net_conf); 3756 return 0; 3757 3758 disconnect_rcu_unlock: 3759 rcu_read_unlock(); 3760 disconnect: 3761 crypto_free_shash(peer_integrity_tfm); 3762 kfree(int_dig_in); 3763 kfree(int_dig_vv); 3764 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 3765 return -EIO; 3766 } 3767 3768 /* helper function 3769 * input: alg name, feature name 3770 * return: NULL (alg name was "") 3771 * ERR_PTR(error) if something goes wrong 3772 * or the crypto hash ptr, if it worked out ok. */ 3773 static struct crypto_shash *drbd_crypto_alloc_digest_safe( 3774 const struct drbd_device *device, 3775 const char *alg, const char *name) 3776 { 3777 struct crypto_shash *tfm; 3778 3779 if (!alg[0]) 3780 return NULL; 3781 3782 tfm = crypto_alloc_shash(alg, 0, 0); 3783 if (IS_ERR(tfm)) { 3784 drbd_err(device, "Can not allocate \"%s\" as %s (reason: %ld)\n", 3785 alg, name, PTR_ERR(tfm)); 3786 return tfm; 3787 } 3788 return tfm; 3789 } 3790 3791 static int ignore_remaining_packet(struct drbd_connection *connection, struct packet_info *pi) 3792 { 3793 void *buffer = connection->data.rbuf; 3794 int size = pi->size; 3795 3796 while (size) { 3797 int s = min_t(int, size, DRBD_SOCKET_BUFFER_SIZE); 3798 s = drbd_recv(connection, buffer, s); 3799 if (s <= 0) { 3800 if (s < 0) 3801 return s; 3802 break; 3803 } 3804 size -= s; 3805 } 3806 if (size) 3807 return -EIO; 3808 return 0; 3809 } 3810 3811 /* 3812 * config_unknown_volume - device configuration command for unknown volume 3813 * 3814 * When a device is added to an existing connection, the node on which the 3815 * device is added first will send configuration commands to its peer but the 3816 * peer will not know about the device yet. It will warn and ignore these 3817 * commands. Once the device is added on the second node, the second node will 3818 * send the same device configuration commands, but in the other direction. 3819 * 3820 * (We can also end up here if drbd is misconfigured.) 3821 */ 3822 static int config_unknown_volume(struct drbd_connection *connection, struct packet_info *pi) 3823 { 3824 drbd_warn(connection, "%s packet received for volume %u, which is not configured locally\n", 3825 cmdname(pi->cmd), pi->vnr); 3826 return ignore_remaining_packet(connection, pi); 3827 } 3828 3829 static int receive_SyncParam(struct drbd_connection *connection, struct packet_info *pi) 3830 { 3831 struct drbd_peer_device *peer_device; 3832 struct drbd_device *device; 3833 struct p_rs_param_95 *p; 3834 unsigned int header_size, data_size, exp_max_sz; 3835 struct crypto_shash *verify_tfm = NULL; 3836 struct crypto_shash *csums_tfm = NULL; 3837 struct net_conf *old_net_conf, *new_net_conf = NULL; 3838 struct disk_conf *old_disk_conf = NULL, *new_disk_conf = NULL; 3839 const int apv = connection->agreed_pro_version; 3840 struct fifo_buffer *old_plan = NULL, *new_plan = NULL; 3841 unsigned int fifo_size = 0; 3842 int err; 3843 3844 peer_device = conn_peer_device(connection, pi->vnr); 3845 if (!peer_device) 3846 return config_unknown_volume(connection, pi); 3847 device = peer_device->device; 3848 3849 exp_max_sz = apv <= 87 ? sizeof(struct p_rs_param) 3850 : apv == 88 ? sizeof(struct p_rs_param) 3851 + SHARED_SECRET_MAX 3852 : apv <= 94 ? sizeof(struct p_rs_param_89) 3853 : /* apv >= 95 */ sizeof(struct p_rs_param_95); 3854 3855 if (pi->size > exp_max_sz) { 3856 drbd_err(device, "SyncParam packet too long: received %u, expected <= %u bytes\n", 3857 pi->size, exp_max_sz); 3858 return -EIO; 3859 } 3860 3861 if (apv <= 88) { 3862 header_size = sizeof(struct p_rs_param); 3863 data_size = pi->size - header_size; 3864 } else if (apv <= 94) { 3865 header_size = sizeof(struct p_rs_param_89); 3866 data_size = pi->size - header_size; 3867 D_ASSERT(device, data_size == 0); 3868 } else { 3869 header_size = sizeof(struct p_rs_param_95); 3870 data_size = pi->size - header_size; 3871 D_ASSERT(device, data_size == 0); 3872 } 3873 3874 /* initialize verify_alg and csums_alg */ 3875 p = pi->data; 3876 BUILD_BUG_ON(sizeof(p->algs) != 2 * SHARED_SECRET_MAX); 3877 memset(&p->algs, 0, sizeof(p->algs)); 3878 3879 err = drbd_recv_all(peer_device->connection, p, header_size); 3880 if (err) 3881 return err; 3882 3883 mutex_lock(&connection->resource->conf_update); 3884 old_net_conf = peer_device->connection->net_conf; 3885 if (get_ldev(device)) { 3886 new_disk_conf = kzalloc(sizeof(struct disk_conf), GFP_KERNEL); 3887 if (!new_disk_conf) { 3888 put_ldev(device); 3889 mutex_unlock(&connection->resource->conf_update); 3890 drbd_err(device, "Allocation of new disk_conf failed\n"); 3891 return -ENOMEM; 3892 } 3893 3894 old_disk_conf = device->ldev->disk_conf; 3895 *new_disk_conf = *old_disk_conf; 3896 3897 new_disk_conf->resync_rate = be32_to_cpu(p->resync_rate); 3898 } 3899 3900 if (apv >= 88) { 3901 if (apv == 88) { 3902 if (data_size > SHARED_SECRET_MAX || data_size == 0) { 3903 drbd_err(device, "verify-alg of wrong size, " 3904 "peer wants %u, accepting only up to %u byte\n", 3905 data_size, SHARED_SECRET_MAX); 3906 err = -EIO; 3907 goto reconnect; 3908 } 3909 3910 err = drbd_recv_all(peer_device->connection, p->verify_alg, data_size); 3911 if (err) 3912 goto reconnect; 3913 /* we expect NUL terminated string */ 3914 /* but just in case someone tries to be evil */ 3915 D_ASSERT(device, p->verify_alg[data_size-1] == 0); 3916 p->verify_alg[data_size-1] = 0; 3917 3918 } else /* apv >= 89 */ { 3919 /* we still expect NUL terminated strings */ 3920 /* but just in case someone tries to be evil */ 3921 D_ASSERT(device, p->verify_alg[SHARED_SECRET_MAX-1] == 0); 3922 D_ASSERT(device, p->csums_alg[SHARED_SECRET_MAX-1] == 0); 3923 p->verify_alg[SHARED_SECRET_MAX-1] = 0; 3924 p->csums_alg[SHARED_SECRET_MAX-1] = 0; 3925 } 3926 3927 if (strcmp(old_net_conf->verify_alg, p->verify_alg)) { 3928 if (device->state.conn == C_WF_REPORT_PARAMS) { 3929 drbd_err(device, "Different verify-alg settings. me=\"%s\" peer=\"%s\"\n", 3930 old_net_conf->verify_alg, p->verify_alg); 3931 goto disconnect; 3932 } 3933 verify_tfm = drbd_crypto_alloc_digest_safe(device, 3934 p->verify_alg, "verify-alg"); 3935 if (IS_ERR(verify_tfm)) { 3936 verify_tfm = NULL; 3937 goto disconnect; 3938 } 3939 } 3940 3941 if (apv >= 89 && strcmp(old_net_conf->csums_alg, p->csums_alg)) { 3942 if (device->state.conn == C_WF_REPORT_PARAMS) { 3943 drbd_err(device, "Different csums-alg settings. me=\"%s\" peer=\"%s\"\n", 3944 old_net_conf->csums_alg, p->csums_alg); 3945 goto disconnect; 3946 } 3947 csums_tfm = drbd_crypto_alloc_digest_safe(device, 3948 p->csums_alg, "csums-alg"); 3949 if (IS_ERR(csums_tfm)) { 3950 csums_tfm = NULL; 3951 goto disconnect; 3952 } 3953 } 3954 3955 if (apv > 94 && new_disk_conf) { 3956 new_disk_conf->c_plan_ahead = be32_to_cpu(p->c_plan_ahead); 3957 new_disk_conf->c_delay_target = be32_to_cpu(p->c_delay_target); 3958 new_disk_conf->c_fill_target = be32_to_cpu(p->c_fill_target); 3959 new_disk_conf->c_max_rate = be32_to_cpu(p->c_max_rate); 3960 3961 fifo_size = (new_disk_conf->c_plan_ahead * 10 * SLEEP_TIME) / HZ; 3962 if (fifo_size != device->rs_plan_s->size) { 3963 new_plan = fifo_alloc(fifo_size); 3964 if (!new_plan) { 3965 drbd_err(device, "kmalloc of fifo_buffer failed"); 3966 put_ldev(device); 3967 goto disconnect; 3968 } 3969 } 3970 } 3971 3972 if (verify_tfm || csums_tfm) { 3973 new_net_conf = kzalloc(sizeof(struct net_conf), GFP_KERNEL); 3974 if (!new_net_conf) 3975 goto disconnect; 3976 3977 *new_net_conf = *old_net_conf; 3978 3979 if (verify_tfm) { 3980 strcpy(new_net_conf->verify_alg, p->verify_alg); 3981 new_net_conf->verify_alg_len = strlen(p->verify_alg) + 1; 3982 crypto_free_shash(peer_device->connection->verify_tfm); 3983 peer_device->connection->verify_tfm = verify_tfm; 3984 drbd_info(device, "using verify-alg: \"%s\"\n", p->verify_alg); 3985 } 3986 if (csums_tfm) { 3987 strcpy(new_net_conf->csums_alg, p->csums_alg); 3988 new_net_conf->csums_alg_len = strlen(p->csums_alg) + 1; 3989 crypto_free_shash(peer_device->connection->csums_tfm); 3990 peer_device->connection->csums_tfm = csums_tfm; 3991 drbd_info(device, "using csums-alg: \"%s\"\n", p->csums_alg); 3992 } 3993 rcu_assign_pointer(connection->net_conf, new_net_conf); 3994 } 3995 } 3996 3997 if (new_disk_conf) { 3998 rcu_assign_pointer(device->ldev->disk_conf, new_disk_conf); 3999 put_ldev(device); 4000 } 4001 4002 if (new_plan) { 4003 old_plan = device->rs_plan_s; 4004 rcu_assign_pointer(device->rs_plan_s, new_plan); 4005 } 4006 4007 mutex_unlock(&connection->resource->conf_update); 4008 synchronize_rcu(); 4009 if (new_net_conf) 4010 kfree(old_net_conf); 4011 kfree(old_disk_conf); 4012 kfree(old_plan); 4013 4014 return 0; 4015 4016 reconnect: 4017 if (new_disk_conf) { 4018 put_ldev(device); 4019 kfree(new_disk_conf); 4020 } 4021 mutex_unlock(&connection->resource->conf_update); 4022 return -EIO; 4023 4024 disconnect: 4025 kfree(new_plan); 4026 if (new_disk_conf) { 4027 put_ldev(device); 4028 kfree(new_disk_conf); 4029 } 4030 mutex_unlock(&connection->resource->conf_update); 4031 /* just for completeness: actually not needed, 4032 * as this is not reached if csums_tfm was ok. */ 4033 crypto_free_shash(csums_tfm); 4034 /* but free the verify_tfm again, if csums_tfm did not work out */ 4035 crypto_free_shash(verify_tfm); 4036 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD); 4037 return -EIO; 4038 } 4039 4040 /* warn if the arguments differ by more than 12.5% */ 4041 static void warn_if_differ_considerably(struct drbd_device *device, 4042 const char *s, sector_t a, sector_t b) 4043 { 4044 sector_t d; 4045 if (a == 0 || b == 0) 4046 return; 4047 d = (a > b) ? (a - b) : (b - a); 4048 if (d > (a>>3) || d > (b>>3)) 4049 drbd_warn(device, "Considerable difference in %s: %llus vs. %llus\n", s, 4050 (unsigned long long)a, (unsigned long long)b); 4051 } 4052 4053 static int receive_sizes(struct drbd_connection *connection, struct packet_info *pi) 4054 { 4055 struct drbd_peer_device *peer_device; 4056 struct drbd_device *device; 4057 struct p_sizes *p = pi->data; 4058 struct o_qlim *o = (connection->agreed_features & DRBD_FF_WSAME) ? p->qlim : NULL; 4059 enum determine_dev_size dd = DS_UNCHANGED; 4060 sector_t p_size, p_usize, p_csize, my_usize; 4061 sector_t new_size, cur_size; 4062 int ldsc = 0; /* local disk size changed */ 4063 enum dds_flags ddsf; 4064 4065 peer_device = conn_peer_device(connection, pi->vnr); 4066 if (!peer_device) 4067 return config_unknown_volume(connection, pi); 4068 device = peer_device->device; 4069 cur_size = get_capacity(device->vdisk); 4070 4071 p_size = be64_to_cpu(p->d_size); 4072 p_usize = be64_to_cpu(p->u_size); 4073 p_csize = be64_to_cpu(p->c_size); 4074 4075 /* just store the peer's disk size for now. 4076 * we still need to figure out whether we accept that. */ 4077 device->p_size = p_size; 4078 4079 if (get_ldev(device)) { 4080 rcu_read_lock(); 4081 my_usize = rcu_dereference(device->ldev->disk_conf)->disk_size; 4082 rcu_read_unlock(); 4083 4084 warn_if_differ_considerably(device, "lower level device sizes", 4085 p_size, drbd_get_max_capacity(device->ldev)); 4086 warn_if_differ_considerably(device, "user requested size", 4087 p_usize, my_usize); 4088 4089 /* if this is the first connect, or an otherwise expected 4090 * param exchange, choose the minimum */ 4091 if (device->state.conn == C_WF_REPORT_PARAMS) 4092 p_usize = min_not_zero(my_usize, p_usize); 4093 4094 /* Never shrink a device with usable data during connect, 4095 * or "attach" on the peer. 4096 * But allow online shrinking if we are connected. */ 4097 new_size = drbd_new_dev_size(device, device->ldev, p_usize, 0); 4098 if (new_size < cur_size && 4099 device->state.disk >= D_OUTDATED && 4100 (device->state.conn < C_CONNECTED || device->state.pdsk == D_DISKLESS)) { 4101 drbd_err(device, "The peer's disk size is too small! (%llu < %llu sectors)\n", 4102 (unsigned long long)new_size, (unsigned long long)cur_size); 4103 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD); 4104 put_ldev(device); 4105 return -EIO; 4106 } 4107 4108 if (my_usize != p_usize) { 4109 struct disk_conf *old_disk_conf, *new_disk_conf = NULL; 4110 4111 new_disk_conf = kzalloc(sizeof(struct disk_conf), GFP_KERNEL); 4112 if (!new_disk_conf) { 4113 put_ldev(device); 4114 return -ENOMEM; 4115 } 4116 4117 mutex_lock(&connection->resource->conf_update); 4118 old_disk_conf = device->ldev->disk_conf; 4119 *new_disk_conf = *old_disk_conf; 4120 new_disk_conf->disk_size = p_usize; 4121 4122 rcu_assign_pointer(device->ldev->disk_conf, new_disk_conf); 4123 mutex_unlock(&connection->resource->conf_update); 4124 synchronize_rcu(); 4125 kfree(old_disk_conf); 4126 4127 drbd_info(device, "Peer sets u_size to %lu sectors (old: %lu)\n", 4128 (unsigned long)p_usize, (unsigned long)my_usize); 4129 } 4130 4131 put_ldev(device); 4132 } 4133 4134 device->peer_max_bio_size = be32_to_cpu(p->max_bio_size); 4135 /* Leave drbd_reconsider_queue_parameters() before drbd_determine_dev_size(). 4136 In case we cleared the QUEUE_FLAG_DISCARD from our queue in 4137 drbd_reconsider_queue_parameters(), we can be sure that after 4138 drbd_determine_dev_size() no REQ_DISCARDs are in the queue. */ 4139 4140 ddsf = be16_to_cpu(p->dds_flags); 4141 if (get_ldev(device)) { 4142 drbd_reconsider_queue_parameters(device, device->ldev, o); 4143 dd = drbd_determine_dev_size(device, ddsf, NULL); 4144 put_ldev(device); 4145 if (dd == DS_ERROR) 4146 return -EIO; 4147 drbd_md_sync(device); 4148 } else { 4149 /* 4150 * I am diskless, need to accept the peer's *current* size. 4151 * I must NOT accept the peers backing disk size, 4152 * it may have been larger than mine all along... 4153 * 4154 * At this point, the peer knows more about my disk, or at 4155 * least about what we last agreed upon, than myself. 4156 * So if his c_size is less than his d_size, the most likely 4157 * reason is that *my* d_size was smaller last time we checked. 4158 * 4159 * However, if he sends a zero current size, 4160 * take his (user-capped or) backing disk size anyways. 4161 * 4162 * Unless of course he does not have a disk himself. 4163 * In which case we ignore this completely. 4164 */ 4165 sector_t new_size = p_csize ?: p_usize ?: p_size; 4166 drbd_reconsider_queue_parameters(device, NULL, o); 4167 if (new_size == 0) { 4168 /* Ignore, peer does not know nothing. */ 4169 } else if (new_size == cur_size) { 4170 /* nothing to do */ 4171 } else if (cur_size != 0 && p_size == 0) { 4172 drbd_warn(device, "Ignored diskless peer device size (peer:%llu != me:%llu sectors)!\n", 4173 (unsigned long long)new_size, (unsigned long long)cur_size); 4174 } else if (new_size < cur_size && device->state.role == R_PRIMARY) { 4175 drbd_err(device, "The peer's device size is too small! (%llu < %llu sectors); demote me first!\n", 4176 (unsigned long long)new_size, (unsigned long long)cur_size); 4177 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD); 4178 return -EIO; 4179 } else { 4180 /* I believe the peer, if 4181 * - I don't have a current size myself 4182 * - we agree on the size anyways 4183 * - I do have a current size, am Secondary, 4184 * and he has the only disk 4185 * - I do have a current size, am Primary, 4186 * and he has the only disk, 4187 * which is larger than my current size 4188 */ 4189 drbd_set_my_capacity(device, new_size); 4190 } 4191 } 4192 4193 if (get_ldev(device)) { 4194 if (device->ldev->known_size != drbd_get_capacity(device->ldev->backing_bdev)) { 4195 device->ldev->known_size = drbd_get_capacity(device->ldev->backing_bdev); 4196 ldsc = 1; 4197 } 4198 4199 put_ldev(device); 4200 } 4201 4202 if (device->state.conn > C_WF_REPORT_PARAMS) { 4203 if (be64_to_cpu(p->c_size) != get_capacity(device->vdisk) || 4204 ldsc) { 4205 /* we have different sizes, probably peer 4206 * needs to know my new size... */ 4207 drbd_send_sizes(peer_device, 0, ddsf); 4208 } 4209 if (test_and_clear_bit(RESIZE_PENDING, &device->flags) || 4210 (dd == DS_GREW && device->state.conn == C_CONNECTED)) { 4211 if (device->state.pdsk >= D_INCONSISTENT && 4212 device->state.disk >= D_INCONSISTENT) { 4213 if (ddsf & DDSF_NO_RESYNC) 4214 drbd_info(device, "Resync of new storage suppressed with --assume-clean\n"); 4215 else 4216 resync_after_online_grow(device); 4217 } else 4218 set_bit(RESYNC_AFTER_NEG, &device->flags); 4219 } 4220 } 4221 4222 return 0; 4223 } 4224 4225 static int receive_uuids(struct drbd_connection *connection, struct packet_info *pi) 4226 { 4227 struct drbd_peer_device *peer_device; 4228 struct drbd_device *device; 4229 struct p_uuids *p = pi->data; 4230 u64 *p_uuid; 4231 int i, updated_uuids = 0; 4232 4233 peer_device = conn_peer_device(connection, pi->vnr); 4234 if (!peer_device) 4235 return config_unknown_volume(connection, pi); 4236 device = peer_device->device; 4237 4238 p_uuid = kmalloc_array(UI_EXTENDED_SIZE, sizeof(*p_uuid), GFP_NOIO); 4239 if (!p_uuid) 4240 return false; 4241 4242 for (i = UI_CURRENT; i < UI_EXTENDED_SIZE; i++) 4243 p_uuid[i] = be64_to_cpu(p->uuid[i]); 4244 4245 kfree(device->p_uuid); 4246 device->p_uuid = p_uuid; 4247 4248 if ((device->state.conn < C_CONNECTED || device->state.pdsk == D_DISKLESS) && 4249 device->state.disk < D_INCONSISTENT && 4250 device->state.role == R_PRIMARY && 4251 (device->ed_uuid & ~((u64)1)) != (p_uuid[UI_CURRENT] & ~((u64)1))) { 4252 drbd_err(device, "Can only connect to data with current UUID=%016llX\n", 4253 (unsigned long long)device->ed_uuid); 4254 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD); 4255 return -EIO; 4256 } 4257 4258 if (get_ldev(device)) { 4259 int skip_initial_sync = 4260 device->state.conn == C_CONNECTED && 4261 peer_device->connection->agreed_pro_version >= 90 && 4262 device->ldev->md.uuid[UI_CURRENT] == UUID_JUST_CREATED && 4263 (p_uuid[UI_FLAGS] & 8); 4264 if (skip_initial_sync) { 4265 drbd_info(device, "Accepted new current UUID, preparing to skip initial sync\n"); 4266 drbd_bitmap_io(device, &drbd_bmio_clear_n_write, 4267 "clear_n_write from receive_uuids", 4268 BM_LOCKED_TEST_ALLOWED); 4269 _drbd_uuid_set(device, UI_CURRENT, p_uuid[UI_CURRENT]); 4270 _drbd_uuid_set(device, UI_BITMAP, 0); 4271 _drbd_set_state(_NS2(device, disk, D_UP_TO_DATE, pdsk, D_UP_TO_DATE), 4272 CS_VERBOSE, NULL); 4273 drbd_md_sync(device); 4274 updated_uuids = 1; 4275 } 4276 put_ldev(device); 4277 } else if (device->state.disk < D_INCONSISTENT && 4278 device->state.role == R_PRIMARY) { 4279 /* I am a diskless primary, the peer just created a new current UUID 4280 for me. */ 4281 updated_uuids = drbd_set_ed_uuid(device, p_uuid[UI_CURRENT]); 4282 } 4283 4284 /* Before we test for the disk state, we should wait until an eventually 4285 ongoing cluster wide state change is finished. That is important if 4286 we are primary and are detaching from our disk. We need to see the 4287 new disk state... */ 4288 mutex_lock(device->state_mutex); 4289 mutex_unlock(device->state_mutex); 4290 if (device->state.conn >= C_CONNECTED && device->state.disk < D_INCONSISTENT) 4291 updated_uuids |= drbd_set_ed_uuid(device, p_uuid[UI_CURRENT]); 4292 4293 if (updated_uuids) 4294 drbd_print_uuids(device, "receiver updated UUIDs to"); 4295 4296 return 0; 4297 } 4298 4299 /** 4300 * convert_state() - Converts the peer's view of the cluster state to our point of view 4301 * @ps: The state as seen by the peer. 4302 */ 4303 static union drbd_state convert_state(union drbd_state ps) 4304 { 4305 union drbd_state ms; 4306 4307 static enum drbd_conns c_tab[] = { 4308 [C_WF_REPORT_PARAMS] = C_WF_REPORT_PARAMS, 4309 [C_CONNECTED] = C_CONNECTED, 4310 4311 [C_STARTING_SYNC_S] = C_STARTING_SYNC_T, 4312 [C_STARTING_SYNC_T] = C_STARTING_SYNC_S, 4313 [C_DISCONNECTING] = C_TEAR_DOWN, /* C_NETWORK_FAILURE, */ 4314 [C_VERIFY_S] = C_VERIFY_T, 4315 [C_MASK] = C_MASK, 4316 }; 4317 4318 ms.i = ps.i; 4319 4320 ms.conn = c_tab[ps.conn]; 4321 ms.peer = ps.role; 4322 ms.role = ps.peer; 4323 ms.pdsk = ps.disk; 4324 ms.disk = ps.pdsk; 4325 ms.peer_isp = (ps.aftr_isp | ps.user_isp); 4326 4327 return ms; 4328 } 4329 4330 static int receive_req_state(struct drbd_connection *connection, struct packet_info *pi) 4331 { 4332 struct drbd_peer_device *peer_device; 4333 struct drbd_device *device; 4334 struct p_req_state *p = pi->data; 4335 union drbd_state mask, val; 4336 enum drbd_state_rv rv; 4337 4338 peer_device = conn_peer_device(connection, pi->vnr); 4339 if (!peer_device) 4340 return -EIO; 4341 device = peer_device->device; 4342 4343 mask.i = be32_to_cpu(p->mask); 4344 val.i = be32_to_cpu(p->val); 4345 4346 if (test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags) && 4347 mutex_is_locked(device->state_mutex)) { 4348 drbd_send_sr_reply(peer_device, SS_CONCURRENT_ST_CHG); 4349 return 0; 4350 } 4351 4352 mask = convert_state(mask); 4353 val = convert_state(val); 4354 4355 rv = drbd_change_state(device, CS_VERBOSE, mask, val); 4356 drbd_send_sr_reply(peer_device, rv); 4357 4358 drbd_md_sync(device); 4359 4360 return 0; 4361 } 4362 4363 static int receive_req_conn_state(struct drbd_connection *connection, struct packet_info *pi) 4364 { 4365 struct p_req_state *p = pi->data; 4366 union drbd_state mask, val; 4367 enum drbd_state_rv rv; 4368 4369 mask.i = be32_to_cpu(p->mask); 4370 val.i = be32_to_cpu(p->val); 4371 4372 if (test_bit(RESOLVE_CONFLICTS, &connection->flags) && 4373 mutex_is_locked(&connection->cstate_mutex)) { 4374 conn_send_sr_reply(connection, SS_CONCURRENT_ST_CHG); 4375 return 0; 4376 } 4377 4378 mask = convert_state(mask); 4379 val = convert_state(val); 4380 4381 rv = conn_request_state(connection, mask, val, CS_VERBOSE | CS_LOCAL_ONLY | CS_IGN_OUTD_FAIL); 4382 conn_send_sr_reply(connection, rv); 4383 4384 return 0; 4385 } 4386 4387 static int receive_state(struct drbd_connection *connection, struct packet_info *pi) 4388 { 4389 struct drbd_peer_device *peer_device; 4390 struct drbd_device *device; 4391 struct p_state *p = pi->data; 4392 union drbd_state os, ns, peer_state; 4393 enum drbd_disk_state real_peer_disk; 4394 enum chg_state_flags cs_flags; 4395 int rv; 4396 4397 peer_device = conn_peer_device(connection, pi->vnr); 4398 if (!peer_device) 4399 return config_unknown_volume(connection, pi); 4400 device = peer_device->device; 4401 4402 peer_state.i = be32_to_cpu(p->state); 4403 4404 real_peer_disk = peer_state.disk; 4405 if (peer_state.disk == D_NEGOTIATING) { 4406 real_peer_disk = device->p_uuid[UI_FLAGS] & 4 ? D_INCONSISTENT : D_CONSISTENT; 4407 drbd_info(device, "real peer disk state = %s\n", drbd_disk_str(real_peer_disk)); 4408 } 4409 4410 spin_lock_irq(&device->resource->req_lock); 4411 retry: 4412 os = ns = drbd_read_state(device); 4413 spin_unlock_irq(&device->resource->req_lock); 4414 4415 /* If some other part of the code (ack_receiver thread, timeout) 4416 * already decided to close the connection again, 4417 * we must not "re-establish" it here. */ 4418 if (os.conn <= C_TEAR_DOWN) 4419 return -ECONNRESET; 4420 4421 /* If this is the "end of sync" confirmation, usually the peer disk 4422 * transitions from D_INCONSISTENT to D_UP_TO_DATE. For empty (0 bits 4423 * set) resync started in PausedSyncT, or if the timing of pause-/ 4424 * unpause-sync events has been "just right", the peer disk may 4425 * transition from D_CONSISTENT to D_UP_TO_DATE as well. 4426 */ 4427 if ((os.pdsk == D_INCONSISTENT || os.pdsk == D_CONSISTENT) && 4428 real_peer_disk == D_UP_TO_DATE && 4429 os.conn > C_CONNECTED && os.disk == D_UP_TO_DATE) { 4430 /* If we are (becoming) SyncSource, but peer is still in sync 4431 * preparation, ignore its uptodate-ness to avoid flapping, it 4432 * will change to inconsistent once the peer reaches active 4433 * syncing states. 4434 * It may have changed syncer-paused flags, however, so we 4435 * cannot ignore this completely. */ 4436 if (peer_state.conn > C_CONNECTED && 4437 peer_state.conn < C_SYNC_SOURCE) 4438 real_peer_disk = D_INCONSISTENT; 4439 4440 /* if peer_state changes to connected at the same time, 4441 * it explicitly notifies us that it finished resync. 4442 * Maybe we should finish it up, too? */ 4443 else if (os.conn >= C_SYNC_SOURCE && 4444 peer_state.conn == C_CONNECTED) { 4445 if (drbd_bm_total_weight(device) <= device->rs_failed) 4446 drbd_resync_finished(device); 4447 return 0; 4448 } 4449 } 4450 4451 /* explicit verify finished notification, stop sector reached. */ 4452 if (os.conn == C_VERIFY_T && os.disk == D_UP_TO_DATE && 4453 peer_state.conn == C_CONNECTED && real_peer_disk == D_UP_TO_DATE) { 4454 ov_out_of_sync_print(device); 4455 drbd_resync_finished(device); 4456 return 0; 4457 } 4458 4459 /* peer says his disk is inconsistent, while we think it is uptodate, 4460 * and this happens while the peer still thinks we have a sync going on, 4461 * but we think we are already done with the sync. 4462 * We ignore this to avoid flapping pdsk. 4463 * This should not happen, if the peer is a recent version of drbd. */ 4464 if (os.pdsk == D_UP_TO_DATE && real_peer_disk == D_INCONSISTENT && 4465 os.conn == C_CONNECTED && peer_state.conn > C_SYNC_SOURCE) 4466 real_peer_disk = D_UP_TO_DATE; 4467 4468 if (ns.conn == C_WF_REPORT_PARAMS) 4469 ns.conn = C_CONNECTED; 4470 4471 if (peer_state.conn == C_AHEAD) 4472 ns.conn = C_BEHIND; 4473 4474 /* TODO: 4475 * if (primary and diskless and peer uuid != effective uuid) 4476 * abort attach on peer; 4477 * 4478 * If this node does not have good data, was already connected, but 4479 * the peer did a late attach only now, trying to "negotiate" with me, 4480 * AND I am currently Primary, possibly frozen, with some specific 4481 * "effective" uuid, this should never be reached, really, because 4482 * we first send the uuids, then the current state. 4483 * 4484 * In this scenario, we already dropped the connection hard 4485 * when we received the unsuitable uuids (receive_uuids(). 4486 * 4487 * Should we want to change this, that is: not drop the connection in 4488 * receive_uuids() already, then we would need to add a branch here 4489 * that aborts the attach of "unsuitable uuids" on the peer in case 4490 * this node is currently Diskless Primary. 4491 */ 4492 4493 if (device->p_uuid && peer_state.disk >= D_NEGOTIATING && 4494 get_ldev_if_state(device, D_NEGOTIATING)) { 4495 int cr; /* consider resync */ 4496 4497 /* if we established a new connection */ 4498 cr = (os.conn < C_CONNECTED); 4499 /* if we had an established connection 4500 * and one of the nodes newly attaches a disk */ 4501 cr |= (os.conn == C_CONNECTED && 4502 (peer_state.disk == D_NEGOTIATING || 4503 os.disk == D_NEGOTIATING)); 4504 /* if we have both been inconsistent, and the peer has been 4505 * forced to be UpToDate with --force */ 4506 cr |= test_bit(CONSIDER_RESYNC, &device->flags); 4507 /* if we had been plain connected, and the admin requested to 4508 * start a sync by "invalidate" or "invalidate-remote" */ 4509 cr |= (os.conn == C_CONNECTED && 4510 (peer_state.conn >= C_STARTING_SYNC_S && 4511 peer_state.conn <= C_WF_BITMAP_T)); 4512 4513 if (cr) 4514 ns.conn = drbd_sync_handshake(peer_device, peer_state.role, real_peer_disk); 4515 4516 put_ldev(device); 4517 if (ns.conn == C_MASK) { 4518 ns.conn = C_CONNECTED; 4519 if (device->state.disk == D_NEGOTIATING) { 4520 drbd_force_state(device, NS(disk, D_FAILED)); 4521 } else if (peer_state.disk == D_NEGOTIATING) { 4522 drbd_err(device, "Disk attach process on the peer node was aborted.\n"); 4523 peer_state.disk = D_DISKLESS; 4524 real_peer_disk = D_DISKLESS; 4525 } else { 4526 if (test_and_clear_bit(CONN_DRY_RUN, &peer_device->connection->flags)) 4527 return -EIO; 4528 D_ASSERT(device, os.conn == C_WF_REPORT_PARAMS); 4529 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD); 4530 return -EIO; 4531 } 4532 } 4533 } 4534 4535 spin_lock_irq(&device->resource->req_lock); 4536 if (os.i != drbd_read_state(device).i) 4537 goto retry; 4538 clear_bit(CONSIDER_RESYNC, &device->flags); 4539 ns.peer = peer_state.role; 4540 ns.pdsk = real_peer_disk; 4541 ns.peer_isp = (peer_state.aftr_isp | peer_state.user_isp); 4542 if ((ns.conn == C_CONNECTED || ns.conn == C_WF_BITMAP_S) && ns.disk == D_NEGOTIATING) 4543 ns.disk = device->new_state_tmp.disk; 4544 cs_flags = CS_VERBOSE + (os.conn < C_CONNECTED && ns.conn >= C_CONNECTED ? 0 : CS_HARD); 4545 if (ns.pdsk == D_CONSISTENT && drbd_suspended(device) && ns.conn == C_CONNECTED && os.conn < C_CONNECTED && 4546 test_bit(NEW_CUR_UUID, &device->flags)) { 4547 /* Do not allow tl_restart(RESEND) for a rebooted peer. We can only allow this 4548 for temporal network outages! */ 4549 spin_unlock_irq(&device->resource->req_lock); 4550 drbd_err(device, "Aborting Connect, can not thaw IO with an only Consistent peer\n"); 4551 tl_clear(peer_device->connection); 4552 drbd_uuid_new_current(device); 4553 clear_bit(NEW_CUR_UUID, &device->flags); 4554 conn_request_state(peer_device->connection, NS2(conn, C_PROTOCOL_ERROR, susp, 0), CS_HARD); 4555 return -EIO; 4556 } 4557 rv = _drbd_set_state(device, ns, cs_flags, NULL); 4558 ns = drbd_read_state(device); 4559 spin_unlock_irq(&device->resource->req_lock); 4560 4561 if (rv < SS_SUCCESS) { 4562 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD); 4563 return -EIO; 4564 } 4565 4566 if (os.conn > C_WF_REPORT_PARAMS) { 4567 if (ns.conn > C_CONNECTED && peer_state.conn <= C_CONNECTED && 4568 peer_state.disk != D_NEGOTIATING ) { 4569 /* we want resync, peer has not yet decided to sync... */ 4570 /* Nowadays only used when forcing a node into primary role and 4571 setting its disk to UpToDate with that */ 4572 drbd_send_uuids(peer_device); 4573 drbd_send_current_state(peer_device); 4574 } 4575 } 4576 4577 clear_bit(DISCARD_MY_DATA, &device->flags); 4578 4579 drbd_md_sync(device); /* update connected indicator, la_size_sect, ... */ 4580 4581 return 0; 4582 } 4583 4584 static int receive_sync_uuid(struct drbd_connection *connection, struct packet_info *pi) 4585 { 4586 struct drbd_peer_device *peer_device; 4587 struct drbd_device *device; 4588 struct p_rs_uuid *p = pi->data; 4589 4590 peer_device = conn_peer_device(connection, pi->vnr); 4591 if (!peer_device) 4592 return -EIO; 4593 device = peer_device->device; 4594 4595 wait_event(device->misc_wait, 4596 device->state.conn == C_WF_SYNC_UUID || 4597 device->state.conn == C_BEHIND || 4598 device->state.conn < C_CONNECTED || 4599 device->state.disk < D_NEGOTIATING); 4600 4601 /* D_ASSERT(device, device->state.conn == C_WF_SYNC_UUID ); */ 4602 4603 /* Here the _drbd_uuid_ functions are right, current should 4604 _not_ be rotated into the history */ 4605 if (get_ldev_if_state(device, D_NEGOTIATING)) { 4606 _drbd_uuid_set(device, UI_CURRENT, be64_to_cpu(p->uuid)); 4607 _drbd_uuid_set(device, UI_BITMAP, 0UL); 4608 4609 drbd_print_uuids(device, "updated sync uuid"); 4610 drbd_start_resync(device, C_SYNC_TARGET); 4611 4612 put_ldev(device); 4613 } else 4614 drbd_err(device, "Ignoring SyncUUID packet!\n"); 4615 4616 return 0; 4617 } 4618 4619 /* 4620 * receive_bitmap_plain 4621 * 4622 * Return 0 when done, 1 when another iteration is needed, and a negative error 4623 * code upon failure. 4624 */ 4625 static int 4626 receive_bitmap_plain(struct drbd_peer_device *peer_device, unsigned int size, 4627 unsigned long *p, struct bm_xfer_ctx *c) 4628 { 4629 unsigned int data_size = DRBD_SOCKET_BUFFER_SIZE - 4630 drbd_header_size(peer_device->connection); 4631 unsigned int num_words = min_t(size_t, data_size / sizeof(*p), 4632 c->bm_words - c->word_offset); 4633 unsigned int want = num_words * sizeof(*p); 4634 int err; 4635 4636 if (want != size) { 4637 drbd_err(peer_device, "%s:want (%u) != size (%u)\n", __func__, want, size); 4638 return -EIO; 4639 } 4640 if (want == 0) 4641 return 0; 4642 err = drbd_recv_all(peer_device->connection, p, want); 4643 if (err) 4644 return err; 4645 4646 drbd_bm_merge_lel(peer_device->device, c->word_offset, num_words, p); 4647 4648 c->word_offset += num_words; 4649 c->bit_offset = c->word_offset * BITS_PER_LONG; 4650 if (c->bit_offset > c->bm_bits) 4651 c->bit_offset = c->bm_bits; 4652 4653 return 1; 4654 } 4655 4656 static enum drbd_bitmap_code dcbp_get_code(struct p_compressed_bm *p) 4657 { 4658 return (enum drbd_bitmap_code)(p->encoding & 0x0f); 4659 } 4660 4661 static int dcbp_get_start(struct p_compressed_bm *p) 4662 { 4663 return (p->encoding & 0x80) != 0; 4664 } 4665 4666 static int dcbp_get_pad_bits(struct p_compressed_bm *p) 4667 { 4668 return (p->encoding >> 4) & 0x7; 4669 } 4670 4671 /* 4672 * recv_bm_rle_bits 4673 * 4674 * Return 0 when done, 1 when another iteration is needed, and a negative error 4675 * code upon failure. 4676 */ 4677 static int 4678 recv_bm_rle_bits(struct drbd_peer_device *peer_device, 4679 struct p_compressed_bm *p, 4680 struct bm_xfer_ctx *c, 4681 unsigned int len) 4682 { 4683 struct bitstream bs; 4684 u64 look_ahead; 4685 u64 rl; 4686 u64 tmp; 4687 unsigned long s = c->bit_offset; 4688 unsigned long e; 4689 int toggle = dcbp_get_start(p); 4690 int have; 4691 int bits; 4692 4693 bitstream_init(&bs, p->code, len, dcbp_get_pad_bits(p)); 4694 4695 bits = bitstream_get_bits(&bs, &look_ahead, 64); 4696 if (bits < 0) 4697 return -EIO; 4698 4699 for (have = bits; have > 0; s += rl, toggle = !toggle) { 4700 bits = vli_decode_bits(&rl, look_ahead); 4701 if (bits <= 0) 4702 return -EIO; 4703 4704 if (toggle) { 4705 e = s + rl -1; 4706 if (e >= c->bm_bits) { 4707 drbd_err(peer_device, "bitmap overflow (e:%lu) while decoding bm RLE packet\n", e); 4708 return -EIO; 4709 } 4710 _drbd_bm_set_bits(peer_device->device, s, e); 4711 } 4712 4713 if (have < bits) { 4714 drbd_err(peer_device, "bitmap decoding error: h:%d b:%d la:0x%08llx l:%u/%u\n", 4715 have, bits, look_ahead, 4716 (unsigned int)(bs.cur.b - p->code), 4717 (unsigned int)bs.buf_len); 4718 return -EIO; 4719 } 4720 /* if we consumed all 64 bits, assign 0; >> 64 is "undefined"; */ 4721 if (likely(bits < 64)) 4722 look_ahead >>= bits; 4723 else 4724 look_ahead = 0; 4725 have -= bits; 4726 4727 bits = bitstream_get_bits(&bs, &tmp, 64 - have); 4728 if (bits < 0) 4729 return -EIO; 4730 look_ahead |= tmp << have; 4731 have += bits; 4732 } 4733 4734 c->bit_offset = s; 4735 bm_xfer_ctx_bit_to_word_offset(c); 4736 4737 return (s != c->bm_bits); 4738 } 4739 4740 /* 4741 * decode_bitmap_c 4742 * 4743 * Return 0 when done, 1 when another iteration is needed, and a negative error 4744 * code upon failure. 4745 */ 4746 static int 4747 decode_bitmap_c(struct drbd_peer_device *peer_device, 4748 struct p_compressed_bm *p, 4749 struct bm_xfer_ctx *c, 4750 unsigned int len) 4751 { 4752 if (dcbp_get_code(p) == RLE_VLI_Bits) 4753 return recv_bm_rle_bits(peer_device, p, c, len - sizeof(*p)); 4754 4755 /* other variants had been implemented for evaluation, 4756 * but have been dropped as this one turned out to be "best" 4757 * during all our tests. */ 4758 4759 drbd_err(peer_device, "receive_bitmap_c: unknown encoding %u\n", p->encoding); 4760 conn_request_state(peer_device->connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD); 4761 return -EIO; 4762 } 4763 4764 void INFO_bm_xfer_stats(struct drbd_device *device, 4765 const char *direction, struct bm_xfer_ctx *c) 4766 { 4767 /* what would it take to transfer it "plaintext" */ 4768 unsigned int header_size = drbd_header_size(first_peer_device(device)->connection); 4769 unsigned int data_size = DRBD_SOCKET_BUFFER_SIZE - header_size; 4770 unsigned int plain = 4771 header_size * (DIV_ROUND_UP(c->bm_words, data_size) + 1) + 4772 c->bm_words * sizeof(unsigned long); 4773 unsigned int total = c->bytes[0] + c->bytes[1]; 4774 unsigned int r; 4775 4776 /* total can not be zero. but just in case: */ 4777 if (total == 0) 4778 return; 4779 4780 /* don't report if not compressed */ 4781 if (total >= plain) 4782 return; 4783 4784 /* total < plain. check for overflow, still */ 4785 r = (total > UINT_MAX/1000) ? (total / (plain/1000)) 4786 : (1000 * total / plain); 4787 4788 if (r > 1000) 4789 r = 1000; 4790 4791 r = 1000 - r; 4792 drbd_info(device, "%s bitmap stats [Bytes(packets)]: plain %u(%u), RLE %u(%u), " 4793 "total %u; compression: %u.%u%%\n", 4794 direction, 4795 c->bytes[1], c->packets[1], 4796 c->bytes[0], c->packets[0], 4797 total, r/10, r % 10); 4798 } 4799 4800 /* Since we are processing the bitfield from lower addresses to higher, 4801 it does not matter if the process it in 32 bit chunks or 64 bit 4802 chunks as long as it is little endian. (Understand it as byte stream, 4803 beginning with the lowest byte...) If we would use big endian 4804 we would need to process it from the highest address to the lowest, 4805 in order to be agnostic to the 32 vs 64 bits issue. 4806 4807 returns 0 on failure, 1 if we successfully received it. */ 4808 static int receive_bitmap(struct drbd_connection *connection, struct packet_info *pi) 4809 { 4810 struct drbd_peer_device *peer_device; 4811 struct drbd_device *device; 4812 struct bm_xfer_ctx c; 4813 int err; 4814 4815 peer_device = conn_peer_device(connection, pi->vnr); 4816 if (!peer_device) 4817 return -EIO; 4818 device = peer_device->device; 4819 4820 drbd_bm_lock(device, "receive bitmap", BM_LOCKED_SET_ALLOWED); 4821 /* you are supposed to send additional out-of-sync information 4822 * if you actually set bits during this phase */ 4823 4824 c = (struct bm_xfer_ctx) { 4825 .bm_bits = drbd_bm_bits(device), 4826 .bm_words = drbd_bm_words(device), 4827 }; 4828 4829 for(;;) { 4830 if (pi->cmd == P_BITMAP) 4831 err = receive_bitmap_plain(peer_device, pi->size, pi->data, &c); 4832 else if (pi->cmd == P_COMPRESSED_BITMAP) { 4833 /* MAYBE: sanity check that we speak proto >= 90, 4834 * and the feature is enabled! */ 4835 struct p_compressed_bm *p = pi->data; 4836 4837 if (pi->size > DRBD_SOCKET_BUFFER_SIZE - drbd_header_size(connection)) { 4838 drbd_err(device, "ReportCBitmap packet too large\n"); 4839 err = -EIO; 4840 goto out; 4841 } 4842 if (pi->size <= sizeof(*p)) { 4843 drbd_err(device, "ReportCBitmap packet too small (l:%u)\n", pi->size); 4844 err = -EIO; 4845 goto out; 4846 } 4847 err = drbd_recv_all(peer_device->connection, p, pi->size); 4848 if (err) 4849 goto out; 4850 err = decode_bitmap_c(peer_device, p, &c, pi->size); 4851 } else { 4852 drbd_warn(device, "receive_bitmap: cmd neither ReportBitMap nor ReportCBitMap (is 0x%x)", pi->cmd); 4853 err = -EIO; 4854 goto out; 4855 } 4856 4857 c.packets[pi->cmd == P_BITMAP]++; 4858 c.bytes[pi->cmd == P_BITMAP] += drbd_header_size(connection) + pi->size; 4859 4860 if (err <= 0) { 4861 if (err < 0) 4862 goto out; 4863 break; 4864 } 4865 err = drbd_recv_header(peer_device->connection, pi); 4866 if (err) 4867 goto out; 4868 } 4869 4870 INFO_bm_xfer_stats(device, "receive", &c); 4871 4872 if (device->state.conn == C_WF_BITMAP_T) { 4873 enum drbd_state_rv rv; 4874 4875 err = drbd_send_bitmap(device); 4876 if (err) 4877 goto out; 4878 /* Omit CS_ORDERED with this state transition to avoid deadlocks. */ 4879 rv = _drbd_request_state(device, NS(conn, C_WF_SYNC_UUID), CS_VERBOSE); 4880 D_ASSERT(device, rv == SS_SUCCESS); 4881 } else if (device->state.conn != C_WF_BITMAP_S) { 4882 /* admin may have requested C_DISCONNECTING, 4883 * other threads may have noticed network errors */ 4884 drbd_info(device, "unexpected cstate (%s) in receive_bitmap\n", 4885 drbd_conn_str(device->state.conn)); 4886 } 4887 err = 0; 4888 4889 out: 4890 drbd_bm_unlock(device); 4891 if (!err && device->state.conn == C_WF_BITMAP_S) 4892 drbd_start_resync(device, C_SYNC_SOURCE); 4893 return err; 4894 } 4895 4896 static int receive_skip(struct drbd_connection *connection, struct packet_info *pi) 4897 { 4898 drbd_warn(connection, "skipping unknown optional packet type %d, l: %d!\n", 4899 pi->cmd, pi->size); 4900 4901 return ignore_remaining_packet(connection, pi); 4902 } 4903 4904 static int receive_UnplugRemote(struct drbd_connection *connection, struct packet_info *pi) 4905 { 4906 /* Make sure we've acked all the TCP data associated 4907 * with the data requests being unplugged */ 4908 tcp_sock_set_quickack(connection->data.socket->sk, 2); 4909 return 0; 4910 } 4911 4912 static int receive_out_of_sync(struct drbd_connection *connection, struct packet_info *pi) 4913 { 4914 struct drbd_peer_device *peer_device; 4915 struct drbd_device *device; 4916 struct p_block_desc *p = pi->data; 4917 4918 peer_device = conn_peer_device(connection, pi->vnr); 4919 if (!peer_device) 4920 return -EIO; 4921 device = peer_device->device; 4922 4923 switch (device->state.conn) { 4924 case C_WF_SYNC_UUID: 4925 case C_WF_BITMAP_T: 4926 case C_BEHIND: 4927 break; 4928 default: 4929 drbd_err(device, "ASSERT FAILED cstate = %s, expected: WFSyncUUID|WFBitMapT|Behind\n", 4930 drbd_conn_str(device->state.conn)); 4931 } 4932 4933 drbd_set_out_of_sync(device, be64_to_cpu(p->sector), be32_to_cpu(p->blksize)); 4934 4935 return 0; 4936 } 4937 4938 static int receive_rs_deallocated(struct drbd_connection *connection, struct packet_info *pi) 4939 { 4940 struct drbd_peer_device *peer_device; 4941 struct p_block_desc *p = pi->data; 4942 struct drbd_device *device; 4943 sector_t sector; 4944 int size, err = 0; 4945 4946 peer_device = conn_peer_device(connection, pi->vnr); 4947 if (!peer_device) 4948 return -EIO; 4949 device = peer_device->device; 4950 4951 sector = be64_to_cpu(p->sector); 4952 size = be32_to_cpu(p->blksize); 4953 4954 dec_rs_pending(device); 4955 4956 if (get_ldev(device)) { 4957 struct drbd_peer_request *peer_req; 4958 const int op = REQ_OP_WRITE_ZEROES; 4959 4960 peer_req = drbd_alloc_peer_req(peer_device, ID_SYNCER, sector, 4961 size, 0, GFP_NOIO); 4962 if (!peer_req) { 4963 put_ldev(device); 4964 return -ENOMEM; 4965 } 4966 4967 peer_req->w.cb = e_end_resync_block; 4968 peer_req->submit_jif = jiffies; 4969 peer_req->flags |= EE_TRIM; 4970 4971 spin_lock_irq(&device->resource->req_lock); 4972 list_add_tail(&peer_req->w.list, &device->sync_ee); 4973 spin_unlock_irq(&device->resource->req_lock); 4974 4975 atomic_add(pi->size >> 9, &device->rs_sect_ev); 4976 err = drbd_submit_peer_request(device, peer_req, op, 0, DRBD_FAULT_RS_WR); 4977 4978 if (err) { 4979 spin_lock_irq(&device->resource->req_lock); 4980 list_del(&peer_req->w.list); 4981 spin_unlock_irq(&device->resource->req_lock); 4982 4983 drbd_free_peer_req(device, peer_req); 4984 put_ldev(device); 4985 err = 0; 4986 goto fail; 4987 } 4988 4989 inc_unacked(device); 4990 4991 /* No put_ldev() here. Gets called in drbd_endio_write_sec_final(), 4992 as well as drbd_rs_complete_io() */ 4993 } else { 4994 fail: 4995 drbd_rs_complete_io(device, sector); 4996 drbd_send_ack_ex(peer_device, P_NEG_ACK, sector, size, ID_SYNCER); 4997 } 4998 4999 atomic_add(size >> 9, &device->rs_sect_in); 5000 5001 return err; 5002 } 5003 5004 struct data_cmd { 5005 int expect_payload; 5006 unsigned int pkt_size; 5007 int (*fn)(struct drbd_connection *, struct packet_info *); 5008 }; 5009 5010 static struct data_cmd drbd_cmd_handler[] = { 5011 [P_DATA] = { 1, sizeof(struct p_data), receive_Data }, 5012 [P_DATA_REPLY] = { 1, sizeof(struct p_data), receive_DataReply }, 5013 [P_RS_DATA_REPLY] = { 1, sizeof(struct p_data), receive_RSDataReply } , 5014 [P_BARRIER] = { 0, sizeof(struct p_barrier), receive_Barrier } , 5015 [P_BITMAP] = { 1, 0, receive_bitmap } , 5016 [P_COMPRESSED_BITMAP] = { 1, 0, receive_bitmap } , 5017 [P_UNPLUG_REMOTE] = { 0, 0, receive_UnplugRemote }, 5018 [P_DATA_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest }, 5019 [P_RS_DATA_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest }, 5020 [P_SYNC_PARAM] = { 1, 0, receive_SyncParam }, 5021 [P_SYNC_PARAM89] = { 1, 0, receive_SyncParam }, 5022 [P_PROTOCOL] = { 1, sizeof(struct p_protocol), receive_protocol }, 5023 [P_UUIDS] = { 0, sizeof(struct p_uuids), receive_uuids }, 5024 [P_SIZES] = { 0, sizeof(struct p_sizes), receive_sizes }, 5025 [P_STATE] = { 0, sizeof(struct p_state), receive_state }, 5026 [P_STATE_CHG_REQ] = { 0, sizeof(struct p_req_state), receive_req_state }, 5027 [P_SYNC_UUID] = { 0, sizeof(struct p_rs_uuid), receive_sync_uuid }, 5028 [P_OV_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest }, 5029 [P_OV_REPLY] = { 1, sizeof(struct p_block_req), receive_DataRequest }, 5030 [P_CSUM_RS_REQUEST] = { 1, sizeof(struct p_block_req), receive_DataRequest }, 5031 [P_RS_THIN_REQ] = { 0, sizeof(struct p_block_req), receive_DataRequest }, 5032 [P_DELAY_PROBE] = { 0, sizeof(struct p_delay_probe93), receive_skip }, 5033 [P_OUT_OF_SYNC] = { 0, sizeof(struct p_block_desc), receive_out_of_sync }, 5034 [P_CONN_ST_CHG_REQ] = { 0, sizeof(struct p_req_state), receive_req_conn_state }, 5035 [P_PROTOCOL_UPDATE] = { 1, sizeof(struct p_protocol), receive_protocol }, 5036 [P_TRIM] = { 0, sizeof(struct p_trim), receive_Data }, 5037 [P_ZEROES] = { 0, sizeof(struct p_trim), receive_Data }, 5038 [P_RS_DEALLOCATED] = { 0, sizeof(struct p_block_desc), receive_rs_deallocated }, 5039 }; 5040 5041 static void drbdd(struct drbd_connection *connection) 5042 { 5043 struct packet_info pi; 5044 size_t shs; /* sub header size */ 5045 int err; 5046 5047 while (get_t_state(&connection->receiver) == RUNNING) { 5048 struct data_cmd const *cmd; 5049 5050 drbd_thread_current_set_cpu(&connection->receiver); 5051 update_receiver_timing_details(connection, drbd_recv_header_maybe_unplug); 5052 if (drbd_recv_header_maybe_unplug(connection, &pi)) 5053 goto err_out; 5054 5055 cmd = &drbd_cmd_handler[pi.cmd]; 5056 if (unlikely(pi.cmd >= ARRAY_SIZE(drbd_cmd_handler) || !cmd->fn)) { 5057 drbd_err(connection, "Unexpected data packet %s (0x%04x)", 5058 cmdname(pi.cmd), pi.cmd); 5059 goto err_out; 5060 } 5061 5062 shs = cmd->pkt_size; 5063 if (pi.cmd == P_SIZES && connection->agreed_features & DRBD_FF_WSAME) 5064 shs += sizeof(struct o_qlim); 5065 if (pi.size > shs && !cmd->expect_payload) { 5066 drbd_err(connection, "No payload expected %s l:%d\n", 5067 cmdname(pi.cmd), pi.size); 5068 goto err_out; 5069 } 5070 if (pi.size < shs) { 5071 drbd_err(connection, "%s: unexpected packet size, expected:%d received:%d\n", 5072 cmdname(pi.cmd), (int)shs, pi.size); 5073 goto err_out; 5074 } 5075 5076 if (shs) { 5077 update_receiver_timing_details(connection, drbd_recv_all_warn); 5078 err = drbd_recv_all_warn(connection, pi.data, shs); 5079 if (err) 5080 goto err_out; 5081 pi.size -= shs; 5082 } 5083 5084 update_receiver_timing_details(connection, cmd->fn); 5085 err = cmd->fn(connection, &pi); 5086 if (err) { 5087 drbd_err(connection, "error receiving %s, e: %d l: %d!\n", 5088 cmdname(pi.cmd), err, pi.size); 5089 goto err_out; 5090 } 5091 } 5092 return; 5093 5094 err_out: 5095 conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD); 5096 } 5097 5098 static void conn_disconnect(struct drbd_connection *connection) 5099 { 5100 struct drbd_peer_device *peer_device; 5101 enum drbd_conns oc; 5102 int vnr; 5103 5104 if (connection->cstate == C_STANDALONE) 5105 return; 5106 5107 /* We are about to start the cleanup after connection loss. 5108 * Make sure drbd_make_request knows about that. 5109 * Usually we should be in some network failure state already, 5110 * but just in case we are not, we fix it up here. 5111 */ 5112 conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD); 5113 5114 /* ack_receiver does not clean up anything. it must not interfere, either */ 5115 drbd_thread_stop(&connection->ack_receiver); 5116 if (connection->ack_sender) { 5117 destroy_workqueue(connection->ack_sender); 5118 connection->ack_sender = NULL; 5119 } 5120 drbd_free_sock(connection); 5121 5122 rcu_read_lock(); 5123 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 5124 struct drbd_device *device = peer_device->device; 5125 kref_get(&device->kref); 5126 rcu_read_unlock(); 5127 drbd_disconnected(peer_device); 5128 kref_put(&device->kref, drbd_destroy_device); 5129 rcu_read_lock(); 5130 } 5131 rcu_read_unlock(); 5132 5133 if (!list_empty(&connection->current_epoch->list)) 5134 drbd_err(connection, "ASSERTION FAILED: connection->current_epoch->list not empty\n"); 5135 /* ok, no more ee's on the fly, it is safe to reset the epoch_size */ 5136 atomic_set(&connection->current_epoch->epoch_size, 0); 5137 connection->send.seen_any_write_yet = false; 5138 5139 drbd_info(connection, "Connection closed\n"); 5140 5141 if (conn_highest_role(connection) == R_PRIMARY && conn_highest_pdsk(connection) >= D_UNKNOWN) 5142 conn_try_outdate_peer_async(connection); 5143 5144 spin_lock_irq(&connection->resource->req_lock); 5145 oc = connection->cstate; 5146 if (oc >= C_UNCONNECTED) 5147 _conn_request_state(connection, NS(conn, C_UNCONNECTED), CS_VERBOSE); 5148 5149 spin_unlock_irq(&connection->resource->req_lock); 5150 5151 if (oc == C_DISCONNECTING) 5152 conn_request_state(connection, NS(conn, C_STANDALONE), CS_VERBOSE | CS_HARD); 5153 } 5154 5155 static int drbd_disconnected(struct drbd_peer_device *peer_device) 5156 { 5157 struct drbd_device *device = peer_device->device; 5158 unsigned int i; 5159 5160 /* wait for current activity to cease. */ 5161 spin_lock_irq(&device->resource->req_lock); 5162 _drbd_wait_ee_list_empty(device, &device->active_ee); 5163 _drbd_wait_ee_list_empty(device, &device->sync_ee); 5164 _drbd_wait_ee_list_empty(device, &device->read_ee); 5165 spin_unlock_irq(&device->resource->req_lock); 5166 5167 /* We do not have data structures that would allow us to 5168 * get the rs_pending_cnt down to 0 again. 5169 * * On C_SYNC_TARGET we do not have any data structures describing 5170 * the pending RSDataRequest's we have sent. 5171 * * On C_SYNC_SOURCE there is no data structure that tracks 5172 * the P_RS_DATA_REPLY blocks that we sent to the SyncTarget. 5173 * And no, it is not the sum of the reference counts in the 5174 * resync_LRU. The resync_LRU tracks the whole operation including 5175 * the disk-IO, while the rs_pending_cnt only tracks the blocks 5176 * on the fly. */ 5177 drbd_rs_cancel_all(device); 5178 device->rs_total = 0; 5179 device->rs_failed = 0; 5180 atomic_set(&device->rs_pending_cnt, 0); 5181 wake_up(&device->misc_wait); 5182 5183 del_timer_sync(&device->resync_timer); 5184 resync_timer_fn(&device->resync_timer); 5185 5186 /* wait for all w_e_end_data_req, w_e_end_rsdata_req, w_send_barrier, 5187 * w_make_resync_request etc. which may still be on the worker queue 5188 * to be "canceled" */ 5189 drbd_flush_workqueue(&peer_device->connection->sender_work); 5190 5191 drbd_finish_peer_reqs(device); 5192 5193 /* This second workqueue flush is necessary, since drbd_finish_peer_reqs() 5194 might have issued a work again. The one before drbd_finish_peer_reqs() is 5195 necessary to reclain net_ee in drbd_finish_peer_reqs(). */ 5196 drbd_flush_workqueue(&peer_device->connection->sender_work); 5197 5198 /* need to do it again, drbd_finish_peer_reqs() may have populated it 5199 * again via drbd_try_clear_on_disk_bm(). */ 5200 drbd_rs_cancel_all(device); 5201 5202 kfree(device->p_uuid); 5203 device->p_uuid = NULL; 5204 5205 if (!drbd_suspended(device)) 5206 tl_clear(peer_device->connection); 5207 5208 drbd_md_sync(device); 5209 5210 if (get_ldev(device)) { 5211 drbd_bitmap_io(device, &drbd_bm_write_copy_pages, 5212 "write from disconnected", BM_LOCKED_CHANGE_ALLOWED); 5213 put_ldev(device); 5214 } 5215 5216 /* tcp_close and release of sendpage pages can be deferred. I don't 5217 * want to use SO_LINGER, because apparently it can be deferred for 5218 * more than 20 seconds (longest time I checked). 5219 * 5220 * Actually we don't care for exactly when the network stack does its 5221 * put_page(), but release our reference on these pages right here. 5222 */ 5223 i = drbd_free_peer_reqs(device, &device->net_ee); 5224 if (i) 5225 drbd_info(device, "net_ee not empty, killed %u entries\n", i); 5226 i = atomic_read(&device->pp_in_use_by_net); 5227 if (i) 5228 drbd_info(device, "pp_in_use_by_net = %d, expected 0\n", i); 5229 i = atomic_read(&device->pp_in_use); 5230 if (i) 5231 drbd_info(device, "pp_in_use = %d, expected 0\n", i); 5232 5233 D_ASSERT(device, list_empty(&device->read_ee)); 5234 D_ASSERT(device, list_empty(&device->active_ee)); 5235 D_ASSERT(device, list_empty(&device->sync_ee)); 5236 D_ASSERT(device, list_empty(&device->done_ee)); 5237 5238 return 0; 5239 } 5240 5241 /* 5242 * We support PRO_VERSION_MIN to PRO_VERSION_MAX. The protocol version 5243 * we can agree on is stored in agreed_pro_version. 5244 * 5245 * feature flags and the reserved array should be enough room for future 5246 * enhancements of the handshake protocol, and possible plugins... 5247 * 5248 * for now, they are expected to be zero, but ignored. 5249 */ 5250 static int drbd_send_features(struct drbd_connection *connection) 5251 { 5252 struct drbd_socket *sock; 5253 struct p_connection_features *p; 5254 5255 sock = &connection->data; 5256 p = conn_prepare_command(connection, sock); 5257 if (!p) 5258 return -EIO; 5259 memset(p, 0, sizeof(*p)); 5260 p->protocol_min = cpu_to_be32(PRO_VERSION_MIN); 5261 p->protocol_max = cpu_to_be32(PRO_VERSION_MAX); 5262 p->feature_flags = cpu_to_be32(PRO_FEATURES); 5263 return conn_send_command(connection, sock, P_CONNECTION_FEATURES, sizeof(*p), NULL, 0); 5264 } 5265 5266 /* 5267 * return values: 5268 * 1 yes, we have a valid connection 5269 * 0 oops, did not work out, please try again 5270 * -1 peer talks different language, 5271 * no point in trying again, please go standalone. 5272 */ 5273 static int drbd_do_features(struct drbd_connection *connection) 5274 { 5275 /* ASSERT current == connection->receiver ... */ 5276 struct p_connection_features *p; 5277 const int expect = sizeof(struct p_connection_features); 5278 struct packet_info pi; 5279 int err; 5280 5281 err = drbd_send_features(connection); 5282 if (err) 5283 return 0; 5284 5285 err = drbd_recv_header(connection, &pi); 5286 if (err) 5287 return 0; 5288 5289 if (pi.cmd != P_CONNECTION_FEATURES) { 5290 drbd_err(connection, "expected ConnectionFeatures packet, received: %s (0x%04x)\n", 5291 cmdname(pi.cmd), pi.cmd); 5292 return -1; 5293 } 5294 5295 if (pi.size != expect) { 5296 drbd_err(connection, "expected ConnectionFeatures length: %u, received: %u\n", 5297 expect, pi.size); 5298 return -1; 5299 } 5300 5301 p = pi.data; 5302 err = drbd_recv_all_warn(connection, p, expect); 5303 if (err) 5304 return 0; 5305 5306 p->protocol_min = be32_to_cpu(p->protocol_min); 5307 p->protocol_max = be32_to_cpu(p->protocol_max); 5308 if (p->protocol_max == 0) 5309 p->protocol_max = p->protocol_min; 5310 5311 if (PRO_VERSION_MAX < p->protocol_min || 5312 PRO_VERSION_MIN > p->protocol_max) 5313 goto incompat; 5314 5315 connection->agreed_pro_version = min_t(int, PRO_VERSION_MAX, p->protocol_max); 5316 connection->agreed_features = PRO_FEATURES & be32_to_cpu(p->feature_flags); 5317 5318 drbd_info(connection, "Handshake successful: " 5319 "Agreed network protocol version %d\n", connection->agreed_pro_version); 5320 5321 drbd_info(connection, "Feature flags enabled on protocol level: 0x%x%s%s%s%s.\n", 5322 connection->agreed_features, 5323 connection->agreed_features & DRBD_FF_TRIM ? " TRIM" : "", 5324 connection->agreed_features & DRBD_FF_THIN_RESYNC ? " THIN_RESYNC" : "", 5325 connection->agreed_features & DRBD_FF_WSAME ? " WRITE_SAME" : "", 5326 connection->agreed_features & DRBD_FF_WZEROES ? " WRITE_ZEROES" : 5327 connection->agreed_features ? "" : " none"); 5328 5329 return 1; 5330 5331 incompat: 5332 drbd_err(connection, "incompatible DRBD dialects: " 5333 "I support %d-%d, peer supports %d-%d\n", 5334 PRO_VERSION_MIN, PRO_VERSION_MAX, 5335 p->protocol_min, p->protocol_max); 5336 return -1; 5337 } 5338 5339 #if !defined(CONFIG_CRYPTO_HMAC) && !defined(CONFIG_CRYPTO_HMAC_MODULE) 5340 static int drbd_do_auth(struct drbd_connection *connection) 5341 { 5342 drbd_err(connection, "This kernel was build without CONFIG_CRYPTO_HMAC.\n"); 5343 drbd_err(connection, "You need to disable 'cram-hmac-alg' in drbd.conf.\n"); 5344 return -1; 5345 } 5346 #else 5347 #define CHALLENGE_LEN 64 5348 5349 /* Return value: 5350 1 - auth succeeded, 5351 0 - failed, try again (network error), 5352 -1 - auth failed, don't try again. 5353 */ 5354 5355 static int drbd_do_auth(struct drbd_connection *connection) 5356 { 5357 struct drbd_socket *sock; 5358 char my_challenge[CHALLENGE_LEN]; /* 64 Bytes... */ 5359 char *response = NULL; 5360 char *right_response = NULL; 5361 char *peers_ch = NULL; 5362 unsigned int key_len; 5363 char secret[SHARED_SECRET_MAX]; /* 64 byte */ 5364 unsigned int resp_size; 5365 struct shash_desc *desc; 5366 struct packet_info pi; 5367 struct net_conf *nc; 5368 int err, rv; 5369 5370 /* FIXME: Put the challenge/response into the preallocated socket buffer. */ 5371 5372 rcu_read_lock(); 5373 nc = rcu_dereference(connection->net_conf); 5374 key_len = strlen(nc->shared_secret); 5375 memcpy(secret, nc->shared_secret, key_len); 5376 rcu_read_unlock(); 5377 5378 desc = kmalloc(sizeof(struct shash_desc) + 5379 crypto_shash_descsize(connection->cram_hmac_tfm), 5380 GFP_KERNEL); 5381 if (!desc) { 5382 rv = -1; 5383 goto fail; 5384 } 5385 desc->tfm = connection->cram_hmac_tfm; 5386 5387 rv = crypto_shash_setkey(connection->cram_hmac_tfm, (u8 *)secret, key_len); 5388 if (rv) { 5389 drbd_err(connection, "crypto_shash_setkey() failed with %d\n", rv); 5390 rv = -1; 5391 goto fail; 5392 } 5393 5394 get_random_bytes(my_challenge, CHALLENGE_LEN); 5395 5396 sock = &connection->data; 5397 if (!conn_prepare_command(connection, sock)) { 5398 rv = 0; 5399 goto fail; 5400 } 5401 rv = !conn_send_command(connection, sock, P_AUTH_CHALLENGE, 0, 5402 my_challenge, CHALLENGE_LEN); 5403 if (!rv) 5404 goto fail; 5405 5406 err = drbd_recv_header(connection, &pi); 5407 if (err) { 5408 rv = 0; 5409 goto fail; 5410 } 5411 5412 if (pi.cmd != P_AUTH_CHALLENGE) { 5413 drbd_err(connection, "expected AuthChallenge packet, received: %s (0x%04x)\n", 5414 cmdname(pi.cmd), pi.cmd); 5415 rv = -1; 5416 goto fail; 5417 } 5418 5419 if (pi.size > CHALLENGE_LEN * 2) { 5420 drbd_err(connection, "expected AuthChallenge payload too big.\n"); 5421 rv = -1; 5422 goto fail; 5423 } 5424 5425 if (pi.size < CHALLENGE_LEN) { 5426 drbd_err(connection, "AuthChallenge payload too small.\n"); 5427 rv = -1; 5428 goto fail; 5429 } 5430 5431 peers_ch = kmalloc(pi.size, GFP_NOIO); 5432 if (!peers_ch) { 5433 rv = -1; 5434 goto fail; 5435 } 5436 5437 err = drbd_recv_all_warn(connection, peers_ch, pi.size); 5438 if (err) { 5439 rv = 0; 5440 goto fail; 5441 } 5442 5443 if (!memcmp(my_challenge, peers_ch, CHALLENGE_LEN)) { 5444 drbd_err(connection, "Peer presented the same challenge!\n"); 5445 rv = -1; 5446 goto fail; 5447 } 5448 5449 resp_size = crypto_shash_digestsize(connection->cram_hmac_tfm); 5450 response = kmalloc(resp_size, GFP_NOIO); 5451 if (!response) { 5452 rv = -1; 5453 goto fail; 5454 } 5455 5456 rv = crypto_shash_digest(desc, peers_ch, pi.size, response); 5457 if (rv) { 5458 drbd_err(connection, "crypto_hash_digest() failed with %d\n", rv); 5459 rv = -1; 5460 goto fail; 5461 } 5462 5463 if (!conn_prepare_command(connection, sock)) { 5464 rv = 0; 5465 goto fail; 5466 } 5467 rv = !conn_send_command(connection, sock, P_AUTH_RESPONSE, 0, 5468 response, resp_size); 5469 if (!rv) 5470 goto fail; 5471 5472 err = drbd_recv_header(connection, &pi); 5473 if (err) { 5474 rv = 0; 5475 goto fail; 5476 } 5477 5478 if (pi.cmd != P_AUTH_RESPONSE) { 5479 drbd_err(connection, "expected AuthResponse packet, received: %s (0x%04x)\n", 5480 cmdname(pi.cmd), pi.cmd); 5481 rv = 0; 5482 goto fail; 5483 } 5484 5485 if (pi.size != resp_size) { 5486 drbd_err(connection, "expected AuthResponse payload of wrong size\n"); 5487 rv = 0; 5488 goto fail; 5489 } 5490 5491 err = drbd_recv_all_warn(connection, response , resp_size); 5492 if (err) { 5493 rv = 0; 5494 goto fail; 5495 } 5496 5497 right_response = kmalloc(resp_size, GFP_NOIO); 5498 if (!right_response) { 5499 rv = -1; 5500 goto fail; 5501 } 5502 5503 rv = crypto_shash_digest(desc, my_challenge, CHALLENGE_LEN, 5504 right_response); 5505 if (rv) { 5506 drbd_err(connection, "crypto_hash_digest() failed with %d\n", rv); 5507 rv = -1; 5508 goto fail; 5509 } 5510 5511 rv = !memcmp(response, right_response, resp_size); 5512 5513 if (rv) 5514 drbd_info(connection, "Peer authenticated using %d bytes HMAC\n", 5515 resp_size); 5516 else 5517 rv = -1; 5518 5519 fail: 5520 kfree(peers_ch); 5521 kfree(response); 5522 kfree(right_response); 5523 if (desc) { 5524 shash_desc_zero(desc); 5525 kfree(desc); 5526 } 5527 5528 return rv; 5529 } 5530 #endif 5531 5532 int drbd_receiver(struct drbd_thread *thi) 5533 { 5534 struct drbd_connection *connection = thi->connection; 5535 int h; 5536 5537 drbd_info(connection, "receiver (re)started\n"); 5538 5539 do { 5540 h = conn_connect(connection); 5541 if (h == 0) { 5542 conn_disconnect(connection); 5543 schedule_timeout_interruptible(HZ); 5544 } 5545 if (h == -1) { 5546 drbd_warn(connection, "Discarding network configuration.\n"); 5547 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 5548 } 5549 } while (h == 0); 5550 5551 if (h > 0) { 5552 blk_start_plug(&connection->receiver_plug); 5553 drbdd(connection); 5554 blk_finish_plug(&connection->receiver_plug); 5555 } 5556 5557 conn_disconnect(connection); 5558 5559 drbd_info(connection, "receiver terminated\n"); 5560 return 0; 5561 } 5562 5563 /* ********* acknowledge sender ******** */ 5564 5565 static int got_conn_RqSReply(struct drbd_connection *connection, struct packet_info *pi) 5566 { 5567 struct p_req_state_reply *p = pi->data; 5568 int retcode = be32_to_cpu(p->retcode); 5569 5570 if (retcode >= SS_SUCCESS) { 5571 set_bit(CONN_WD_ST_CHG_OKAY, &connection->flags); 5572 } else { 5573 set_bit(CONN_WD_ST_CHG_FAIL, &connection->flags); 5574 drbd_err(connection, "Requested state change failed by peer: %s (%d)\n", 5575 drbd_set_st_err_str(retcode), retcode); 5576 } 5577 wake_up(&connection->ping_wait); 5578 5579 return 0; 5580 } 5581 5582 static int got_RqSReply(struct drbd_connection *connection, struct packet_info *pi) 5583 { 5584 struct drbd_peer_device *peer_device; 5585 struct drbd_device *device; 5586 struct p_req_state_reply *p = pi->data; 5587 int retcode = be32_to_cpu(p->retcode); 5588 5589 peer_device = conn_peer_device(connection, pi->vnr); 5590 if (!peer_device) 5591 return -EIO; 5592 device = peer_device->device; 5593 5594 if (test_bit(CONN_WD_ST_CHG_REQ, &connection->flags)) { 5595 D_ASSERT(device, connection->agreed_pro_version < 100); 5596 return got_conn_RqSReply(connection, pi); 5597 } 5598 5599 if (retcode >= SS_SUCCESS) { 5600 set_bit(CL_ST_CHG_SUCCESS, &device->flags); 5601 } else { 5602 set_bit(CL_ST_CHG_FAIL, &device->flags); 5603 drbd_err(device, "Requested state change failed by peer: %s (%d)\n", 5604 drbd_set_st_err_str(retcode), retcode); 5605 } 5606 wake_up(&device->state_wait); 5607 5608 return 0; 5609 } 5610 5611 static int got_Ping(struct drbd_connection *connection, struct packet_info *pi) 5612 { 5613 return drbd_send_ping_ack(connection); 5614 5615 } 5616 5617 static int got_PingAck(struct drbd_connection *connection, struct packet_info *pi) 5618 { 5619 /* restore idle timeout */ 5620 connection->meta.socket->sk->sk_rcvtimeo = connection->net_conf->ping_int*HZ; 5621 if (!test_and_set_bit(GOT_PING_ACK, &connection->flags)) 5622 wake_up(&connection->ping_wait); 5623 5624 return 0; 5625 } 5626 5627 static int got_IsInSync(struct drbd_connection *connection, struct packet_info *pi) 5628 { 5629 struct drbd_peer_device *peer_device; 5630 struct drbd_device *device; 5631 struct p_block_ack *p = pi->data; 5632 sector_t sector = be64_to_cpu(p->sector); 5633 int blksize = be32_to_cpu(p->blksize); 5634 5635 peer_device = conn_peer_device(connection, pi->vnr); 5636 if (!peer_device) 5637 return -EIO; 5638 device = peer_device->device; 5639 5640 D_ASSERT(device, peer_device->connection->agreed_pro_version >= 89); 5641 5642 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5643 5644 if (get_ldev(device)) { 5645 drbd_rs_complete_io(device, sector); 5646 drbd_set_in_sync(device, sector, blksize); 5647 /* rs_same_csums is supposed to count in units of BM_BLOCK_SIZE */ 5648 device->rs_same_csum += (blksize >> BM_BLOCK_SHIFT); 5649 put_ldev(device); 5650 } 5651 dec_rs_pending(device); 5652 atomic_add(blksize >> 9, &device->rs_sect_in); 5653 5654 return 0; 5655 } 5656 5657 static int 5658 validate_req_change_req_state(struct drbd_device *device, u64 id, sector_t sector, 5659 struct rb_root *root, const char *func, 5660 enum drbd_req_event what, bool missing_ok) 5661 { 5662 struct drbd_request *req; 5663 struct bio_and_error m; 5664 5665 spin_lock_irq(&device->resource->req_lock); 5666 req = find_request(device, root, id, sector, missing_ok, func); 5667 if (unlikely(!req)) { 5668 spin_unlock_irq(&device->resource->req_lock); 5669 return -EIO; 5670 } 5671 __req_mod(req, what, &m); 5672 spin_unlock_irq(&device->resource->req_lock); 5673 5674 if (m.bio) 5675 complete_master_bio(device, &m); 5676 return 0; 5677 } 5678 5679 static int got_BlockAck(struct drbd_connection *connection, struct packet_info *pi) 5680 { 5681 struct drbd_peer_device *peer_device; 5682 struct drbd_device *device; 5683 struct p_block_ack *p = pi->data; 5684 sector_t sector = be64_to_cpu(p->sector); 5685 int blksize = be32_to_cpu(p->blksize); 5686 enum drbd_req_event what; 5687 5688 peer_device = conn_peer_device(connection, pi->vnr); 5689 if (!peer_device) 5690 return -EIO; 5691 device = peer_device->device; 5692 5693 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5694 5695 if (p->block_id == ID_SYNCER) { 5696 drbd_set_in_sync(device, sector, blksize); 5697 dec_rs_pending(device); 5698 return 0; 5699 } 5700 switch (pi->cmd) { 5701 case P_RS_WRITE_ACK: 5702 what = WRITE_ACKED_BY_PEER_AND_SIS; 5703 break; 5704 case P_WRITE_ACK: 5705 what = WRITE_ACKED_BY_PEER; 5706 break; 5707 case P_RECV_ACK: 5708 what = RECV_ACKED_BY_PEER; 5709 break; 5710 case P_SUPERSEDED: 5711 what = CONFLICT_RESOLVED; 5712 break; 5713 case P_RETRY_WRITE: 5714 what = POSTPONE_WRITE; 5715 break; 5716 default: 5717 BUG(); 5718 } 5719 5720 return validate_req_change_req_state(device, p->block_id, sector, 5721 &device->write_requests, __func__, 5722 what, false); 5723 } 5724 5725 static int got_NegAck(struct drbd_connection *connection, struct packet_info *pi) 5726 { 5727 struct drbd_peer_device *peer_device; 5728 struct drbd_device *device; 5729 struct p_block_ack *p = pi->data; 5730 sector_t sector = be64_to_cpu(p->sector); 5731 int size = be32_to_cpu(p->blksize); 5732 int err; 5733 5734 peer_device = conn_peer_device(connection, pi->vnr); 5735 if (!peer_device) 5736 return -EIO; 5737 device = peer_device->device; 5738 5739 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5740 5741 if (p->block_id == ID_SYNCER) { 5742 dec_rs_pending(device); 5743 drbd_rs_failed_io(device, sector, size); 5744 return 0; 5745 } 5746 5747 err = validate_req_change_req_state(device, p->block_id, sector, 5748 &device->write_requests, __func__, 5749 NEG_ACKED, true); 5750 if (err) { 5751 /* Protocol A has no P_WRITE_ACKs, but has P_NEG_ACKs. 5752 The master bio might already be completed, therefore the 5753 request is no longer in the collision hash. */ 5754 /* In Protocol B we might already have got a P_RECV_ACK 5755 but then get a P_NEG_ACK afterwards. */ 5756 drbd_set_out_of_sync(device, sector, size); 5757 } 5758 return 0; 5759 } 5760 5761 static int got_NegDReply(struct drbd_connection *connection, struct packet_info *pi) 5762 { 5763 struct drbd_peer_device *peer_device; 5764 struct drbd_device *device; 5765 struct p_block_ack *p = pi->data; 5766 sector_t sector = be64_to_cpu(p->sector); 5767 5768 peer_device = conn_peer_device(connection, pi->vnr); 5769 if (!peer_device) 5770 return -EIO; 5771 device = peer_device->device; 5772 5773 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5774 5775 drbd_err(device, "Got NegDReply; Sector %llus, len %u.\n", 5776 (unsigned long long)sector, be32_to_cpu(p->blksize)); 5777 5778 return validate_req_change_req_state(device, p->block_id, sector, 5779 &device->read_requests, __func__, 5780 NEG_ACKED, false); 5781 } 5782 5783 static int got_NegRSDReply(struct drbd_connection *connection, struct packet_info *pi) 5784 { 5785 struct drbd_peer_device *peer_device; 5786 struct drbd_device *device; 5787 sector_t sector; 5788 int size; 5789 struct p_block_ack *p = pi->data; 5790 5791 peer_device = conn_peer_device(connection, pi->vnr); 5792 if (!peer_device) 5793 return -EIO; 5794 device = peer_device->device; 5795 5796 sector = be64_to_cpu(p->sector); 5797 size = be32_to_cpu(p->blksize); 5798 5799 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5800 5801 dec_rs_pending(device); 5802 5803 if (get_ldev_if_state(device, D_FAILED)) { 5804 drbd_rs_complete_io(device, sector); 5805 switch (pi->cmd) { 5806 case P_NEG_RS_DREPLY: 5807 drbd_rs_failed_io(device, sector, size); 5808 break; 5809 case P_RS_CANCEL: 5810 break; 5811 default: 5812 BUG(); 5813 } 5814 put_ldev(device); 5815 } 5816 5817 return 0; 5818 } 5819 5820 static int got_BarrierAck(struct drbd_connection *connection, struct packet_info *pi) 5821 { 5822 struct p_barrier_ack *p = pi->data; 5823 struct drbd_peer_device *peer_device; 5824 int vnr; 5825 5826 tl_release(connection, p->barrier, be32_to_cpu(p->set_size)); 5827 5828 rcu_read_lock(); 5829 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 5830 struct drbd_device *device = peer_device->device; 5831 5832 if (device->state.conn == C_AHEAD && 5833 atomic_read(&device->ap_in_flight) == 0 && 5834 !test_and_set_bit(AHEAD_TO_SYNC_SOURCE, &device->flags)) { 5835 device->start_resync_timer.expires = jiffies + HZ; 5836 add_timer(&device->start_resync_timer); 5837 } 5838 } 5839 rcu_read_unlock(); 5840 5841 return 0; 5842 } 5843 5844 static int got_OVResult(struct drbd_connection *connection, struct packet_info *pi) 5845 { 5846 struct drbd_peer_device *peer_device; 5847 struct drbd_device *device; 5848 struct p_block_ack *p = pi->data; 5849 struct drbd_device_work *dw; 5850 sector_t sector; 5851 int size; 5852 5853 peer_device = conn_peer_device(connection, pi->vnr); 5854 if (!peer_device) 5855 return -EIO; 5856 device = peer_device->device; 5857 5858 sector = be64_to_cpu(p->sector); 5859 size = be32_to_cpu(p->blksize); 5860 5861 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5862 5863 if (be64_to_cpu(p->block_id) == ID_OUT_OF_SYNC) 5864 drbd_ov_out_of_sync_found(device, sector, size); 5865 else 5866 ov_out_of_sync_print(device); 5867 5868 if (!get_ldev(device)) 5869 return 0; 5870 5871 drbd_rs_complete_io(device, sector); 5872 dec_rs_pending(device); 5873 5874 --device->ov_left; 5875 5876 /* let's advance progress step marks only for every other megabyte */ 5877 if ((device->ov_left & 0x200) == 0x200) 5878 drbd_advance_rs_marks(device, device->ov_left); 5879 5880 if (device->ov_left == 0) { 5881 dw = kmalloc(sizeof(*dw), GFP_NOIO); 5882 if (dw) { 5883 dw->w.cb = w_ov_finished; 5884 dw->device = device; 5885 drbd_queue_work(&peer_device->connection->sender_work, &dw->w); 5886 } else { 5887 drbd_err(device, "kmalloc(dw) failed."); 5888 ov_out_of_sync_print(device); 5889 drbd_resync_finished(device); 5890 } 5891 } 5892 put_ldev(device); 5893 return 0; 5894 } 5895 5896 static int got_skip(struct drbd_connection *connection, struct packet_info *pi) 5897 { 5898 return 0; 5899 } 5900 5901 struct meta_sock_cmd { 5902 size_t pkt_size; 5903 int (*fn)(struct drbd_connection *connection, struct packet_info *); 5904 }; 5905 5906 static void set_rcvtimeo(struct drbd_connection *connection, bool ping_timeout) 5907 { 5908 long t; 5909 struct net_conf *nc; 5910 5911 rcu_read_lock(); 5912 nc = rcu_dereference(connection->net_conf); 5913 t = ping_timeout ? nc->ping_timeo : nc->ping_int; 5914 rcu_read_unlock(); 5915 5916 t *= HZ; 5917 if (ping_timeout) 5918 t /= 10; 5919 5920 connection->meta.socket->sk->sk_rcvtimeo = t; 5921 } 5922 5923 static void set_ping_timeout(struct drbd_connection *connection) 5924 { 5925 set_rcvtimeo(connection, 1); 5926 } 5927 5928 static void set_idle_timeout(struct drbd_connection *connection) 5929 { 5930 set_rcvtimeo(connection, 0); 5931 } 5932 5933 static struct meta_sock_cmd ack_receiver_tbl[] = { 5934 [P_PING] = { 0, got_Ping }, 5935 [P_PING_ACK] = { 0, got_PingAck }, 5936 [P_RECV_ACK] = { sizeof(struct p_block_ack), got_BlockAck }, 5937 [P_WRITE_ACK] = { sizeof(struct p_block_ack), got_BlockAck }, 5938 [P_RS_WRITE_ACK] = { sizeof(struct p_block_ack), got_BlockAck }, 5939 [P_SUPERSEDED] = { sizeof(struct p_block_ack), got_BlockAck }, 5940 [P_NEG_ACK] = { sizeof(struct p_block_ack), got_NegAck }, 5941 [P_NEG_DREPLY] = { sizeof(struct p_block_ack), got_NegDReply }, 5942 [P_NEG_RS_DREPLY] = { sizeof(struct p_block_ack), got_NegRSDReply }, 5943 [P_OV_RESULT] = { sizeof(struct p_block_ack), got_OVResult }, 5944 [P_BARRIER_ACK] = { sizeof(struct p_barrier_ack), got_BarrierAck }, 5945 [P_STATE_CHG_REPLY] = { sizeof(struct p_req_state_reply), got_RqSReply }, 5946 [P_RS_IS_IN_SYNC] = { sizeof(struct p_block_ack), got_IsInSync }, 5947 [P_DELAY_PROBE] = { sizeof(struct p_delay_probe93), got_skip }, 5948 [P_RS_CANCEL] = { sizeof(struct p_block_ack), got_NegRSDReply }, 5949 [P_CONN_ST_CHG_REPLY]={ sizeof(struct p_req_state_reply), got_conn_RqSReply }, 5950 [P_RETRY_WRITE] = { sizeof(struct p_block_ack), got_BlockAck }, 5951 }; 5952 5953 int drbd_ack_receiver(struct drbd_thread *thi) 5954 { 5955 struct drbd_connection *connection = thi->connection; 5956 struct meta_sock_cmd *cmd = NULL; 5957 struct packet_info pi; 5958 unsigned long pre_recv_jif; 5959 int rv; 5960 void *buf = connection->meta.rbuf; 5961 int received = 0; 5962 unsigned int header_size = drbd_header_size(connection); 5963 int expect = header_size; 5964 bool ping_timeout_active = false; 5965 5966 sched_set_fifo_low(current); 5967 5968 while (get_t_state(thi) == RUNNING) { 5969 drbd_thread_current_set_cpu(thi); 5970 5971 conn_reclaim_net_peer_reqs(connection); 5972 5973 if (test_and_clear_bit(SEND_PING, &connection->flags)) { 5974 if (drbd_send_ping(connection)) { 5975 drbd_err(connection, "drbd_send_ping has failed\n"); 5976 goto reconnect; 5977 } 5978 set_ping_timeout(connection); 5979 ping_timeout_active = true; 5980 } 5981 5982 pre_recv_jif = jiffies; 5983 rv = drbd_recv_short(connection->meta.socket, buf, expect-received, 0); 5984 5985 /* Note: 5986 * -EINTR (on meta) we got a signal 5987 * -EAGAIN (on meta) rcvtimeo expired 5988 * -ECONNRESET other side closed the connection 5989 * -ERESTARTSYS (on data) we got a signal 5990 * rv < 0 other than above: unexpected error! 5991 * rv == expected: full header or command 5992 * rv < expected: "woken" by signal during receive 5993 * rv == 0 : "connection shut down by peer" 5994 */ 5995 if (likely(rv > 0)) { 5996 received += rv; 5997 buf += rv; 5998 } else if (rv == 0) { 5999 if (test_bit(DISCONNECT_SENT, &connection->flags)) { 6000 long t; 6001 rcu_read_lock(); 6002 t = rcu_dereference(connection->net_conf)->ping_timeo * HZ/10; 6003 rcu_read_unlock(); 6004 6005 t = wait_event_timeout(connection->ping_wait, 6006 connection->cstate < C_WF_REPORT_PARAMS, 6007 t); 6008 if (t) 6009 break; 6010 } 6011 drbd_err(connection, "meta connection shut down by peer.\n"); 6012 goto reconnect; 6013 } else if (rv == -EAGAIN) { 6014 /* If the data socket received something meanwhile, 6015 * that is good enough: peer is still alive. */ 6016 if (time_after(connection->last_received, pre_recv_jif)) 6017 continue; 6018 if (ping_timeout_active) { 6019 drbd_err(connection, "PingAck did not arrive in time.\n"); 6020 goto reconnect; 6021 } 6022 set_bit(SEND_PING, &connection->flags); 6023 continue; 6024 } else if (rv == -EINTR) { 6025 /* maybe drbd_thread_stop(): the while condition will notice. 6026 * maybe woken for send_ping: we'll send a ping above, 6027 * and change the rcvtimeo */ 6028 flush_signals(current); 6029 continue; 6030 } else { 6031 drbd_err(connection, "sock_recvmsg returned %d\n", rv); 6032 goto reconnect; 6033 } 6034 6035 if (received == expect && cmd == NULL) { 6036 if (decode_header(connection, connection->meta.rbuf, &pi)) 6037 goto reconnect; 6038 cmd = &ack_receiver_tbl[pi.cmd]; 6039 if (pi.cmd >= ARRAY_SIZE(ack_receiver_tbl) || !cmd->fn) { 6040 drbd_err(connection, "Unexpected meta packet %s (0x%04x)\n", 6041 cmdname(pi.cmd), pi.cmd); 6042 goto disconnect; 6043 } 6044 expect = header_size + cmd->pkt_size; 6045 if (pi.size != expect - header_size) { 6046 drbd_err(connection, "Wrong packet size on meta (c: %d, l: %d)\n", 6047 pi.cmd, pi.size); 6048 goto reconnect; 6049 } 6050 } 6051 if (received == expect) { 6052 bool err; 6053 6054 err = cmd->fn(connection, &pi); 6055 if (err) { 6056 drbd_err(connection, "%ps failed\n", cmd->fn); 6057 goto reconnect; 6058 } 6059 6060 connection->last_received = jiffies; 6061 6062 if (cmd == &ack_receiver_tbl[P_PING_ACK]) { 6063 set_idle_timeout(connection); 6064 ping_timeout_active = false; 6065 } 6066 6067 buf = connection->meta.rbuf; 6068 received = 0; 6069 expect = header_size; 6070 cmd = NULL; 6071 } 6072 } 6073 6074 if (0) { 6075 reconnect: 6076 conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD); 6077 conn_md_sync(connection); 6078 } 6079 if (0) { 6080 disconnect: 6081 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 6082 } 6083 6084 drbd_info(connection, "ack_receiver terminated\n"); 6085 6086 return 0; 6087 } 6088 6089 void drbd_send_acks_wf(struct work_struct *ws) 6090 { 6091 struct drbd_peer_device *peer_device = 6092 container_of(ws, struct drbd_peer_device, send_acks_work); 6093 struct drbd_connection *connection = peer_device->connection; 6094 struct drbd_device *device = peer_device->device; 6095 struct net_conf *nc; 6096 int tcp_cork, err; 6097 6098 rcu_read_lock(); 6099 nc = rcu_dereference(connection->net_conf); 6100 tcp_cork = nc->tcp_cork; 6101 rcu_read_unlock(); 6102 6103 if (tcp_cork) 6104 tcp_sock_set_cork(connection->meta.socket->sk, true); 6105 6106 err = drbd_finish_peer_reqs(device); 6107 kref_put(&device->kref, drbd_destroy_device); 6108 /* get is in drbd_endio_write_sec_final(). That is necessary to keep the 6109 struct work_struct send_acks_work alive, which is in the peer_device object */ 6110 6111 if (err) { 6112 conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD); 6113 return; 6114 } 6115 6116 if (tcp_cork) 6117 tcp_sock_set_cork(connection->meta.socket->sk, false); 6118 6119 return; 6120 } 6121