1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 drbd_receiver.c 4 5 This file is part of DRBD by Philipp Reisner and Lars Ellenberg. 6 7 Copyright (C) 2001-2008, LINBIT Information Technologies GmbH. 8 Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>. 9 Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>. 10 11 */ 12 13 14 #include <linux/module.h> 15 16 #include <linux/uaccess.h> 17 #include <net/sock.h> 18 19 #include <linux/drbd.h> 20 #include <linux/fs.h> 21 #include <linux/file.h> 22 #include <linux/in.h> 23 #include <linux/mm.h> 24 #include <linux/memcontrol.h> 25 #include <linux/mm_inline.h> 26 #include <linux/slab.h> 27 #include <uapi/linux/sched/types.h> 28 #include <linux/sched/signal.h> 29 #include <linux/pkt_sched.h> 30 #define __KERNEL_SYSCALLS__ 31 #include <linux/unistd.h> 32 #include <linux/vmalloc.h> 33 #include <linux/random.h> 34 #include <linux/string.h> 35 #include <linux/scatterlist.h> 36 #include <linux/part_stat.h> 37 #include "drbd_int.h" 38 #include "drbd_protocol.h" 39 #include "drbd_req.h" 40 #include "drbd_vli.h" 41 42 #define PRO_FEATURES (DRBD_FF_TRIM|DRBD_FF_THIN_RESYNC|DRBD_FF_WSAME|DRBD_FF_WZEROES) 43 44 struct packet_info { 45 enum drbd_packet cmd; 46 unsigned int size; 47 unsigned int vnr; 48 void *data; 49 }; 50 51 enum finish_epoch { 52 FE_STILL_LIVE, 53 FE_DESTROYED, 54 FE_RECYCLED, 55 }; 56 57 static int drbd_do_features(struct drbd_connection *connection); 58 static int drbd_do_auth(struct drbd_connection *connection); 59 static int drbd_disconnected(struct drbd_peer_device *); 60 static void conn_wait_active_ee_empty(struct drbd_connection *connection); 61 static enum finish_epoch drbd_may_finish_epoch(struct drbd_connection *, struct drbd_epoch *, enum epoch_event); 62 static int e_end_block(struct drbd_work *, int); 63 64 65 #define GFP_TRY (__GFP_HIGHMEM | __GFP_NOWARN) 66 67 /* 68 * some helper functions to deal with single linked page lists, 69 * page->private being our "next" pointer. 70 */ 71 72 /* If at least n pages are linked at head, get n pages off. 73 * Otherwise, don't modify head, and return NULL. 74 * Locking is the responsibility of the caller. 75 */ 76 static struct page *page_chain_del(struct page **head, int n) 77 { 78 struct page *page; 79 struct page *tmp; 80 81 BUG_ON(!n); 82 BUG_ON(!head); 83 84 page = *head; 85 86 if (!page) 87 return NULL; 88 89 while (page) { 90 tmp = page_chain_next(page); 91 if (--n == 0) 92 break; /* found sufficient pages */ 93 if (tmp == NULL) 94 /* insufficient pages, don't use any of them. */ 95 return NULL; 96 page = tmp; 97 } 98 99 /* add end of list marker for the returned list */ 100 set_page_private(page, 0); 101 /* actual return value, and adjustment of head */ 102 page = *head; 103 *head = tmp; 104 return page; 105 } 106 107 /* may be used outside of locks to find the tail of a (usually short) 108 * "private" page chain, before adding it back to a global chain head 109 * with page_chain_add() under a spinlock. */ 110 static struct page *page_chain_tail(struct page *page, int *len) 111 { 112 struct page *tmp; 113 int i = 1; 114 while ((tmp = page_chain_next(page))) { 115 ++i; 116 page = tmp; 117 } 118 if (len) 119 *len = i; 120 return page; 121 } 122 123 static int page_chain_free(struct page *page) 124 { 125 struct page *tmp; 126 int i = 0; 127 page_chain_for_each_safe(page, tmp) { 128 put_page(page); 129 ++i; 130 } 131 return i; 132 } 133 134 static void page_chain_add(struct page **head, 135 struct page *chain_first, struct page *chain_last) 136 { 137 #if 1 138 struct page *tmp; 139 tmp = page_chain_tail(chain_first, NULL); 140 BUG_ON(tmp != chain_last); 141 #endif 142 143 /* add chain to head */ 144 set_page_private(chain_last, (unsigned long)*head); 145 *head = chain_first; 146 } 147 148 static struct page *__drbd_alloc_pages(struct drbd_device *device, 149 unsigned int number) 150 { 151 struct page *page = NULL; 152 struct page *tmp = NULL; 153 unsigned int i = 0; 154 155 /* Yes, testing drbd_pp_vacant outside the lock is racy. 156 * So what. It saves a spin_lock. */ 157 if (drbd_pp_vacant >= number) { 158 spin_lock(&drbd_pp_lock); 159 page = page_chain_del(&drbd_pp_pool, number); 160 if (page) 161 drbd_pp_vacant -= number; 162 spin_unlock(&drbd_pp_lock); 163 if (page) 164 return page; 165 } 166 167 /* GFP_TRY, because we must not cause arbitrary write-out: in a DRBD 168 * "criss-cross" setup, that might cause write-out on some other DRBD, 169 * which in turn might block on the other node at this very place. */ 170 for (i = 0; i < number; i++) { 171 tmp = alloc_page(GFP_TRY); 172 if (!tmp) 173 break; 174 set_page_private(tmp, (unsigned long)page); 175 page = tmp; 176 } 177 178 if (i == number) 179 return page; 180 181 /* Not enough pages immediately available this time. 182 * No need to jump around here, drbd_alloc_pages will retry this 183 * function "soon". */ 184 if (page) { 185 tmp = page_chain_tail(page, NULL); 186 spin_lock(&drbd_pp_lock); 187 page_chain_add(&drbd_pp_pool, page, tmp); 188 drbd_pp_vacant += i; 189 spin_unlock(&drbd_pp_lock); 190 } 191 return NULL; 192 } 193 194 static void reclaim_finished_net_peer_reqs(struct drbd_device *device, 195 struct list_head *to_be_freed) 196 { 197 struct drbd_peer_request *peer_req, *tmp; 198 199 /* The EEs are always appended to the end of the list. Since 200 they are sent in order over the wire, they have to finish 201 in order. As soon as we see the first not finished we can 202 stop to examine the list... */ 203 204 list_for_each_entry_safe(peer_req, tmp, &device->net_ee, w.list) { 205 if (drbd_peer_req_has_active_page(peer_req)) 206 break; 207 list_move(&peer_req->w.list, to_be_freed); 208 } 209 } 210 211 static void drbd_reclaim_net_peer_reqs(struct drbd_device *device) 212 { 213 LIST_HEAD(reclaimed); 214 struct drbd_peer_request *peer_req, *t; 215 216 spin_lock_irq(&device->resource->req_lock); 217 reclaim_finished_net_peer_reqs(device, &reclaimed); 218 spin_unlock_irq(&device->resource->req_lock); 219 list_for_each_entry_safe(peer_req, t, &reclaimed, w.list) 220 drbd_free_net_peer_req(device, peer_req); 221 } 222 223 static void conn_reclaim_net_peer_reqs(struct drbd_connection *connection) 224 { 225 struct drbd_peer_device *peer_device; 226 int vnr; 227 228 rcu_read_lock(); 229 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 230 struct drbd_device *device = peer_device->device; 231 if (!atomic_read(&device->pp_in_use_by_net)) 232 continue; 233 234 kref_get(&device->kref); 235 rcu_read_unlock(); 236 drbd_reclaim_net_peer_reqs(device); 237 kref_put(&device->kref, drbd_destroy_device); 238 rcu_read_lock(); 239 } 240 rcu_read_unlock(); 241 } 242 243 /** 244 * drbd_alloc_pages() - Returns @number pages, retries forever (or until signalled) 245 * @peer_device: DRBD device. 246 * @number: number of pages requested 247 * @retry: whether to retry, if not enough pages are available right now 248 * 249 * Tries to allocate number pages, first from our own page pool, then from 250 * the kernel. 251 * Possibly retry until DRBD frees sufficient pages somewhere else. 252 * 253 * If this allocation would exceed the max_buffers setting, we throttle 254 * allocation (schedule_timeout) to give the system some room to breathe. 255 * 256 * We do not use max-buffers as hard limit, because it could lead to 257 * congestion and further to a distributed deadlock during online-verify or 258 * (checksum based) resync, if the max-buffers, socket buffer sizes and 259 * resync-rate settings are mis-configured. 260 * 261 * Returns a page chain linked via page->private. 262 */ 263 struct page *drbd_alloc_pages(struct drbd_peer_device *peer_device, unsigned int number, 264 bool retry) 265 { 266 struct drbd_device *device = peer_device->device; 267 struct page *page = NULL; 268 struct net_conf *nc; 269 DEFINE_WAIT(wait); 270 unsigned int mxb; 271 272 rcu_read_lock(); 273 nc = rcu_dereference(peer_device->connection->net_conf); 274 mxb = nc ? nc->max_buffers : 1000000; 275 rcu_read_unlock(); 276 277 if (atomic_read(&device->pp_in_use) < mxb) 278 page = __drbd_alloc_pages(device, number); 279 280 /* Try to keep the fast path fast, but occasionally we need 281 * to reclaim the pages we lended to the network stack. */ 282 if (page && atomic_read(&device->pp_in_use_by_net) > 512) 283 drbd_reclaim_net_peer_reqs(device); 284 285 while (page == NULL) { 286 prepare_to_wait(&drbd_pp_wait, &wait, TASK_INTERRUPTIBLE); 287 288 drbd_reclaim_net_peer_reqs(device); 289 290 if (atomic_read(&device->pp_in_use) < mxb) { 291 page = __drbd_alloc_pages(device, number); 292 if (page) 293 break; 294 } 295 296 if (!retry) 297 break; 298 299 if (signal_pending(current)) { 300 drbd_warn(device, "drbd_alloc_pages interrupted!\n"); 301 break; 302 } 303 304 if (schedule_timeout(HZ/10) == 0) 305 mxb = UINT_MAX; 306 } 307 finish_wait(&drbd_pp_wait, &wait); 308 309 if (page) 310 atomic_add(number, &device->pp_in_use); 311 return page; 312 } 313 314 /* Must not be used from irq, as that may deadlock: see drbd_alloc_pages. 315 * Is also used from inside an other spin_lock_irq(&resource->req_lock); 316 * Either links the page chain back to the global pool, 317 * or returns all pages to the system. */ 318 static void drbd_free_pages(struct drbd_device *device, struct page *page, int is_net) 319 { 320 atomic_t *a = is_net ? &device->pp_in_use_by_net : &device->pp_in_use; 321 int i; 322 323 if (page == NULL) 324 return; 325 326 if (drbd_pp_vacant > (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * drbd_minor_count) 327 i = page_chain_free(page); 328 else { 329 struct page *tmp; 330 tmp = page_chain_tail(page, &i); 331 spin_lock(&drbd_pp_lock); 332 page_chain_add(&drbd_pp_pool, page, tmp); 333 drbd_pp_vacant += i; 334 spin_unlock(&drbd_pp_lock); 335 } 336 i = atomic_sub_return(i, a); 337 if (i < 0) 338 drbd_warn(device, "ASSERTION FAILED: %s: %d < 0\n", 339 is_net ? "pp_in_use_by_net" : "pp_in_use", i); 340 wake_up(&drbd_pp_wait); 341 } 342 343 /* 344 You need to hold the req_lock: 345 _drbd_wait_ee_list_empty() 346 347 You must not have the req_lock: 348 drbd_free_peer_req() 349 drbd_alloc_peer_req() 350 drbd_free_peer_reqs() 351 drbd_ee_fix_bhs() 352 drbd_finish_peer_reqs() 353 drbd_clear_done_ee() 354 drbd_wait_ee_list_empty() 355 */ 356 357 /* normal: payload_size == request size (bi_size) 358 * w_same: payload_size == logical_block_size 359 * trim: payload_size == 0 */ 360 struct drbd_peer_request * 361 drbd_alloc_peer_req(struct drbd_peer_device *peer_device, u64 id, sector_t sector, 362 unsigned int request_size, unsigned int payload_size, gfp_t gfp_mask) __must_hold(local) 363 { 364 struct drbd_device *device = peer_device->device; 365 struct drbd_peer_request *peer_req; 366 struct page *page = NULL; 367 unsigned nr_pages = (payload_size + PAGE_SIZE -1) >> PAGE_SHIFT; 368 369 if (drbd_insert_fault(device, DRBD_FAULT_AL_EE)) 370 return NULL; 371 372 peer_req = mempool_alloc(&drbd_ee_mempool, gfp_mask & ~__GFP_HIGHMEM); 373 if (!peer_req) { 374 if (!(gfp_mask & __GFP_NOWARN)) 375 drbd_err(device, "%s: allocation failed\n", __func__); 376 return NULL; 377 } 378 379 if (nr_pages) { 380 page = drbd_alloc_pages(peer_device, nr_pages, 381 gfpflags_allow_blocking(gfp_mask)); 382 if (!page) 383 goto fail; 384 } 385 386 memset(peer_req, 0, sizeof(*peer_req)); 387 INIT_LIST_HEAD(&peer_req->w.list); 388 drbd_clear_interval(&peer_req->i); 389 peer_req->i.size = request_size; 390 peer_req->i.sector = sector; 391 peer_req->submit_jif = jiffies; 392 peer_req->peer_device = peer_device; 393 peer_req->pages = page; 394 /* 395 * The block_id is opaque to the receiver. It is not endianness 396 * converted, and sent back to the sender unchanged. 397 */ 398 peer_req->block_id = id; 399 400 return peer_req; 401 402 fail: 403 mempool_free(peer_req, &drbd_ee_mempool); 404 return NULL; 405 } 406 407 void __drbd_free_peer_req(struct drbd_device *device, struct drbd_peer_request *peer_req, 408 int is_net) 409 { 410 might_sleep(); 411 if (peer_req->flags & EE_HAS_DIGEST) 412 kfree(peer_req->digest); 413 drbd_free_pages(device, peer_req->pages, is_net); 414 D_ASSERT(device, atomic_read(&peer_req->pending_bios) == 0); 415 D_ASSERT(device, drbd_interval_empty(&peer_req->i)); 416 if (!expect(!(peer_req->flags & EE_CALL_AL_COMPLETE_IO))) { 417 peer_req->flags &= ~EE_CALL_AL_COMPLETE_IO; 418 drbd_al_complete_io(device, &peer_req->i); 419 } 420 mempool_free(peer_req, &drbd_ee_mempool); 421 } 422 423 int drbd_free_peer_reqs(struct drbd_device *device, struct list_head *list) 424 { 425 LIST_HEAD(work_list); 426 struct drbd_peer_request *peer_req, *t; 427 int count = 0; 428 int is_net = list == &device->net_ee; 429 430 spin_lock_irq(&device->resource->req_lock); 431 list_splice_init(list, &work_list); 432 spin_unlock_irq(&device->resource->req_lock); 433 434 list_for_each_entry_safe(peer_req, t, &work_list, w.list) { 435 __drbd_free_peer_req(device, peer_req, is_net); 436 count++; 437 } 438 return count; 439 } 440 441 /* 442 * See also comments in _req_mod(,BARRIER_ACKED) and receive_Barrier. 443 */ 444 static int drbd_finish_peer_reqs(struct drbd_device *device) 445 { 446 LIST_HEAD(work_list); 447 LIST_HEAD(reclaimed); 448 struct drbd_peer_request *peer_req, *t; 449 int err = 0; 450 451 spin_lock_irq(&device->resource->req_lock); 452 reclaim_finished_net_peer_reqs(device, &reclaimed); 453 list_splice_init(&device->done_ee, &work_list); 454 spin_unlock_irq(&device->resource->req_lock); 455 456 list_for_each_entry_safe(peer_req, t, &reclaimed, w.list) 457 drbd_free_net_peer_req(device, peer_req); 458 459 /* possible callbacks here: 460 * e_end_block, and e_end_resync_block, e_send_superseded. 461 * all ignore the last argument. 462 */ 463 list_for_each_entry_safe(peer_req, t, &work_list, w.list) { 464 int err2; 465 466 /* list_del not necessary, next/prev members not touched */ 467 err2 = peer_req->w.cb(&peer_req->w, !!err); 468 if (!err) 469 err = err2; 470 drbd_free_peer_req(device, peer_req); 471 } 472 wake_up(&device->ee_wait); 473 474 return err; 475 } 476 477 static void _drbd_wait_ee_list_empty(struct drbd_device *device, 478 struct list_head *head) 479 { 480 DEFINE_WAIT(wait); 481 482 /* avoids spin_lock/unlock 483 * and calling prepare_to_wait in the fast path */ 484 while (!list_empty(head)) { 485 prepare_to_wait(&device->ee_wait, &wait, TASK_UNINTERRUPTIBLE); 486 spin_unlock_irq(&device->resource->req_lock); 487 io_schedule(); 488 finish_wait(&device->ee_wait, &wait); 489 spin_lock_irq(&device->resource->req_lock); 490 } 491 } 492 493 static void drbd_wait_ee_list_empty(struct drbd_device *device, 494 struct list_head *head) 495 { 496 spin_lock_irq(&device->resource->req_lock); 497 _drbd_wait_ee_list_empty(device, head); 498 spin_unlock_irq(&device->resource->req_lock); 499 } 500 501 static int drbd_recv_short(struct socket *sock, void *buf, size_t size, int flags) 502 { 503 struct kvec iov = { 504 .iov_base = buf, 505 .iov_len = size, 506 }; 507 struct msghdr msg = { 508 .msg_flags = (flags ? flags : MSG_WAITALL | MSG_NOSIGNAL) 509 }; 510 iov_iter_kvec(&msg.msg_iter, READ, &iov, 1, size); 511 return sock_recvmsg(sock, &msg, msg.msg_flags); 512 } 513 514 static int drbd_recv(struct drbd_connection *connection, void *buf, size_t size) 515 { 516 int rv; 517 518 rv = drbd_recv_short(connection->data.socket, buf, size, 0); 519 520 if (rv < 0) { 521 if (rv == -ECONNRESET) 522 drbd_info(connection, "sock was reset by peer\n"); 523 else if (rv != -ERESTARTSYS) 524 drbd_err(connection, "sock_recvmsg returned %d\n", rv); 525 } else if (rv == 0) { 526 if (test_bit(DISCONNECT_SENT, &connection->flags)) { 527 long t; 528 rcu_read_lock(); 529 t = rcu_dereference(connection->net_conf)->ping_timeo * HZ/10; 530 rcu_read_unlock(); 531 532 t = wait_event_timeout(connection->ping_wait, connection->cstate < C_WF_REPORT_PARAMS, t); 533 534 if (t) 535 goto out; 536 } 537 drbd_info(connection, "sock was shut down by peer\n"); 538 } 539 540 if (rv != size) 541 conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD); 542 543 out: 544 return rv; 545 } 546 547 static int drbd_recv_all(struct drbd_connection *connection, void *buf, size_t size) 548 { 549 int err; 550 551 err = drbd_recv(connection, buf, size); 552 if (err != size) { 553 if (err >= 0) 554 err = -EIO; 555 } else 556 err = 0; 557 return err; 558 } 559 560 static int drbd_recv_all_warn(struct drbd_connection *connection, void *buf, size_t size) 561 { 562 int err; 563 564 err = drbd_recv_all(connection, buf, size); 565 if (err && !signal_pending(current)) 566 drbd_warn(connection, "short read (expected size %d)\n", (int)size); 567 return err; 568 } 569 570 /* quoting tcp(7): 571 * On individual connections, the socket buffer size must be set prior to the 572 * listen(2) or connect(2) calls in order to have it take effect. 573 * This is our wrapper to do so. 574 */ 575 static void drbd_setbufsize(struct socket *sock, unsigned int snd, 576 unsigned int rcv) 577 { 578 /* open coded SO_SNDBUF, SO_RCVBUF */ 579 if (snd) { 580 sock->sk->sk_sndbuf = snd; 581 sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 582 } 583 if (rcv) { 584 sock->sk->sk_rcvbuf = rcv; 585 sock->sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 586 } 587 } 588 589 static struct socket *drbd_try_connect(struct drbd_connection *connection) 590 { 591 const char *what; 592 struct socket *sock; 593 struct sockaddr_in6 src_in6; 594 struct sockaddr_in6 peer_in6; 595 struct net_conf *nc; 596 int err, peer_addr_len, my_addr_len; 597 int sndbuf_size, rcvbuf_size, connect_int; 598 int disconnect_on_error = 1; 599 600 rcu_read_lock(); 601 nc = rcu_dereference(connection->net_conf); 602 if (!nc) { 603 rcu_read_unlock(); 604 return NULL; 605 } 606 sndbuf_size = nc->sndbuf_size; 607 rcvbuf_size = nc->rcvbuf_size; 608 connect_int = nc->connect_int; 609 rcu_read_unlock(); 610 611 my_addr_len = min_t(int, connection->my_addr_len, sizeof(src_in6)); 612 memcpy(&src_in6, &connection->my_addr, my_addr_len); 613 614 if (((struct sockaddr *)&connection->my_addr)->sa_family == AF_INET6) 615 src_in6.sin6_port = 0; 616 else 617 ((struct sockaddr_in *)&src_in6)->sin_port = 0; /* AF_INET & AF_SCI */ 618 619 peer_addr_len = min_t(int, connection->peer_addr_len, sizeof(src_in6)); 620 memcpy(&peer_in6, &connection->peer_addr, peer_addr_len); 621 622 what = "sock_create_kern"; 623 err = sock_create_kern(&init_net, ((struct sockaddr *)&src_in6)->sa_family, 624 SOCK_STREAM, IPPROTO_TCP, &sock); 625 if (err < 0) { 626 sock = NULL; 627 goto out; 628 } 629 630 sock->sk->sk_rcvtimeo = 631 sock->sk->sk_sndtimeo = connect_int * HZ; 632 drbd_setbufsize(sock, sndbuf_size, rcvbuf_size); 633 634 /* explicitly bind to the configured IP as source IP 635 * for the outgoing connections. 636 * This is needed for multihomed hosts and to be 637 * able to use lo: interfaces for drbd. 638 * Make sure to use 0 as port number, so linux selects 639 * a free one dynamically. 640 */ 641 what = "bind before connect"; 642 err = sock->ops->bind(sock, (struct sockaddr *) &src_in6, my_addr_len); 643 if (err < 0) 644 goto out; 645 646 /* connect may fail, peer not yet available. 647 * stay C_WF_CONNECTION, don't go Disconnecting! */ 648 disconnect_on_error = 0; 649 what = "connect"; 650 err = sock->ops->connect(sock, (struct sockaddr *) &peer_in6, peer_addr_len, 0); 651 652 out: 653 if (err < 0) { 654 if (sock) { 655 sock_release(sock); 656 sock = NULL; 657 } 658 switch (-err) { 659 /* timeout, busy, signal pending */ 660 case ETIMEDOUT: case EAGAIN: case EINPROGRESS: 661 case EINTR: case ERESTARTSYS: 662 /* peer not (yet) available, network problem */ 663 case ECONNREFUSED: case ENETUNREACH: 664 case EHOSTDOWN: case EHOSTUNREACH: 665 disconnect_on_error = 0; 666 break; 667 default: 668 drbd_err(connection, "%s failed, err = %d\n", what, err); 669 } 670 if (disconnect_on_error) 671 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 672 } 673 674 return sock; 675 } 676 677 struct accept_wait_data { 678 struct drbd_connection *connection; 679 struct socket *s_listen; 680 struct completion door_bell; 681 void (*original_sk_state_change)(struct sock *sk); 682 683 }; 684 685 static void drbd_incoming_connection(struct sock *sk) 686 { 687 struct accept_wait_data *ad = sk->sk_user_data; 688 void (*state_change)(struct sock *sk); 689 690 state_change = ad->original_sk_state_change; 691 if (sk->sk_state == TCP_ESTABLISHED) 692 complete(&ad->door_bell); 693 state_change(sk); 694 } 695 696 static int prepare_listen_socket(struct drbd_connection *connection, struct accept_wait_data *ad) 697 { 698 int err, sndbuf_size, rcvbuf_size, my_addr_len; 699 struct sockaddr_in6 my_addr; 700 struct socket *s_listen; 701 struct net_conf *nc; 702 const char *what; 703 704 rcu_read_lock(); 705 nc = rcu_dereference(connection->net_conf); 706 if (!nc) { 707 rcu_read_unlock(); 708 return -EIO; 709 } 710 sndbuf_size = nc->sndbuf_size; 711 rcvbuf_size = nc->rcvbuf_size; 712 rcu_read_unlock(); 713 714 my_addr_len = min_t(int, connection->my_addr_len, sizeof(struct sockaddr_in6)); 715 memcpy(&my_addr, &connection->my_addr, my_addr_len); 716 717 what = "sock_create_kern"; 718 err = sock_create_kern(&init_net, ((struct sockaddr *)&my_addr)->sa_family, 719 SOCK_STREAM, IPPROTO_TCP, &s_listen); 720 if (err) { 721 s_listen = NULL; 722 goto out; 723 } 724 725 s_listen->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */ 726 drbd_setbufsize(s_listen, sndbuf_size, rcvbuf_size); 727 728 what = "bind before listen"; 729 err = s_listen->ops->bind(s_listen, (struct sockaddr *)&my_addr, my_addr_len); 730 if (err < 0) 731 goto out; 732 733 ad->s_listen = s_listen; 734 write_lock_bh(&s_listen->sk->sk_callback_lock); 735 ad->original_sk_state_change = s_listen->sk->sk_state_change; 736 s_listen->sk->sk_state_change = drbd_incoming_connection; 737 s_listen->sk->sk_user_data = ad; 738 write_unlock_bh(&s_listen->sk->sk_callback_lock); 739 740 what = "listen"; 741 err = s_listen->ops->listen(s_listen, 5); 742 if (err < 0) 743 goto out; 744 745 return 0; 746 out: 747 if (s_listen) 748 sock_release(s_listen); 749 if (err < 0) { 750 if (err != -EAGAIN && err != -EINTR && err != -ERESTARTSYS) { 751 drbd_err(connection, "%s failed, err = %d\n", what, err); 752 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 753 } 754 } 755 756 return -EIO; 757 } 758 759 static void unregister_state_change(struct sock *sk, struct accept_wait_data *ad) 760 { 761 write_lock_bh(&sk->sk_callback_lock); 762 sk->sk_state_change = ad->original_sk_state_change; 763 sk->sk_user_data = NULL; 764 write_unlock_bh(&sk->sk_callback_lock); 765 } 766 767 static struct socket *drbd_wait_for_connect(struct drbd_connection *connection, struct accept_wait_data *ad) 768 { 769 int timeo, connect_int, err = 0; 770 struct socket *s_estab = NULL; 771 struct net_conf *nc; 772 773 rcu_read_lock(); 774 nc = rcu_dereference(connection->net_conf); 775 if (!nc) { 776 rcu_read_unlock(); 777 return NULL; 778 } 779 connect_int = nc->connect_int; 780 rcu_read_unlock(); 781 782 timeo = connect_int * HZ; 783 /* 28.5% random jitter */ 784 timeo += (prandom_u32() & 1) ? timeo / 7 : -timeo / 7; 785 786 err = wait_for_completion_interruptible_timeout(&ad->door_bell, timeo); 787 if (err <= 0) 788 return NULL; 789 790 err = kernel_accept(ad->s_listen, &s_estab, 0); 791 if (err < 0) { 792 if (err != -EAGAIN && err != -EINTR && err != -ERESTARTSYS) { 793 drbd_err(connection, "accept failed, err = %d\n", err); 794 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 795 } 796 } 797 798 if (s_estab) 799 unregister_state_change(s_estab->sk, ad); 800 801 return s_estab; 802 } 803 804 static int decode_header(struct drbd_connection *, void *, struct packet_info *); 805 806 static int send_first_packet(struct drbd_connection *connection, struct drbd_socket *sock, 807 enum drbd_packet cmd) 808 { 809 if (!conn_prepare_command(connection, sock)) 810 return -EIO; 811 return conn_send_command(connection, sock, cmd, 0, NULL, 0); 812 } 813 814 static int receive_first_packet(struct drbd_connection *connection, struct socket *sock) 815 { 816 unsigned int header_size = drbd_header_size(connection); 817 struct packet_info pi; 818 struct net_conf *nc; 819 int err; 820 821 rcu_read_lock(); 822 nc = rcu_dereference(connection->net_conf); 823 if (!nc) { 824 rcu_read_unlock(); 825 return -EIO; 826 } 827 sock->sk->sk_rcvtimeo = nc->ping_timeo * 4 * HZ / 10; 828 rcu_read_unlock(); 829 830 err = drbd_recv_short(sock, connection->data.rbuf, header_size, 0); 831 if (err != header_size) { 832 if (err >= 0) 833 err = -EIO; 834 return err; 835 } 836 err = decode_header(connection, connection->data.rbuf, &pi); 837 if (err) 838 return err; 839 return pi.cmd; 840 } 841 842 /** 843 * drbd_socket_okay() - Free the socket if its connection is not okay 844 * @sock: pointer to the pointer to the socket. 845 */ 846 static bool drbd_socket_okay(struct socket **sock) 847 { 848 int rr; 849 char tb[4]; 850 851 if (!*sock) 852 return false; 853 854 rr = drbd_recv_short(*sock, tb, 4, MSG_DONTWAIT | MSG_PEEK); 855 856 if (rr > 0 || rr == -EAGAIN) { 857 return true; 858 } else { 859 sock_release(*sock); 860 *sock = NULL; 861 return false; 862 } 863 } 864 865 static bool connection_established(struct drbd_connection *connection, 866 struct socket **sock1, 867 struct socket **sock2) 868 { 869 struct net_conf *nc; 870 int timeout; 871 bool ok; 872 873 if (!*sock1 || !*sock2) 874 return false; 875 876 rcu_read_lock(); 877 nc = rcu_dereference(connection->net_conf); 878 timeout = (nc->sock_check_timeo ?: nc->ping_timeo) * HZ / 10; 879 rcu_read_unlock(); 880 schedule_timeout_interruptible(timeout); 881 882 ok = drbd_socket_okay(sock1); 883 ok = drbd_socket_okay(sock2) && ok; 884 885 return ok; 886 } 887 888 /* Gets called if a connection is established, or if a new minor gets created 889 in a connection */ 890 int drbd_connected(struct drbd_peer_device *peer_device) 891 { 892 struct drbd_device *device = peer_device->device; 893 int err; 894 895 atomic_set(&device->packet_seq, 0); 896 device->peer_seq = 0; 897 898 device->state_mutex = peer_device->connection->agreed_pro_version < 100 ? 899 &peer_device->connection->cstate_mutex : 900 &device->own_state_mutex; 901 902 err = drbd_send_sync_param(peer_device); 903 if (!err) 904 err = drbd_send_sizes(peer_device, 0, 0); 905 if (!err) 906 err = drbd_send_uuids(peer_device); 907 if (!err) 908 err = drbd_send_current_state(peer_device); 909 clear_bit(USE_DEGR_WFC_T, &device->flags); 910 clear_bit(RESIZE_PENDING, &device->flags); 911 atomic_set(&device->ap_in_flight, 0); 912 mod_timer(&device->request_timer, jiffies + HZ); /* just start it here. */ 913 return err; 914 } 915 916 /* 917 * return values: 918 * 1 yes, we have a valid connection 919 * 0 oops, did not work out, please try again 920 * -1 peer talks different language, 921 * no point in trying again, please go standalone. 922 * -2 We do not have a network config... 923 */ 924 static int conn_connect(struct drbd_connection *connection) 925 { 926 struct drbd_socket sock, msock; 927 struct drbd_peer_device *peer_device; 928 struct net_conf *nc; 929 int vnr, timeout, h; 930 bool discard_my_data, ok; 931 enum drbd_state_rv rv; 932 struct accept_wait_data ad = { 933 .connection = connection, 934 .door_bell = COMPLETION_INITIALIZER_ONSTACK(ad.door_bell), 935 }; 936 937 clear_bit(DISCONNECT_SENT, &connection->flags); 938 if (conn_request_state(connection, NS(conn, C_WF_CONNECTION), CS_VERBOSE) < SS_SUCCESS) 939 return -2; 940 941 mutex_init(&sock.mutex); 942 sock.sbuf = connection->data.sbuf; 943 sock.rbuf = connection->data.rbuf; 944 sock.socket = NULL; 945 mutex_init(&msock.mutex); 946 msock.sbuf = connection->meta.sbuf; 947 msock.rbuf = connection->meta.rbuf; 948 msock.socket = NULL; 949 950 /* Assume that the peer only understands protocol 80 until we know better. */ 951 connection->agreed_pro_version = 80; 952 953 if (prepare_listen_socket(connection, &ad)) 954 return 0; 955 956 do { 957 struct socket *s; 958 959 s = drbd_try_connect(connection); 960 if (s) { 961 if (!sock.socket) { 962 sock.socket = s; 963 send_first_packet(connection, &sock, P_INITIAL_DATA); 964 } else if (!msock.socket) { 965 clear_bit(RESOLVE_CONFLICTS, &connection->flags); 966 msock.socket = s; 967 send_first_packet(connection, &msock, P_INITIAL_META); 968 } else { 969 drbd_err(connection, "Logic error in conn_connect()\n"); 970 goto out_release_sockets; 971 } 972 } 973 974 if (connection_established(connection, &sock.socket, &msock.socket)) 975 break; 976 977 retry: 978 s = drbd_wait_for_connect(connection, &ad); 979 if (s) { 980 int fp = receive_first_packet(connection, s); 981 drbd_socket_okay(&sock.socket); 982 drbd_socket_okay(&msock.socket); 983 switch (fp) { 984 case P_INITIAL_DATA: 985 if (sock.socket) { 986 drbd_warn(connection, "initial packet S crossed\n"); 987 sock_release(sock.socket); 988 sock.socket = s; 989 goto randomize; 990 } 991 sock.socket = s; 992 break; 993 case P_INITIAL_META: 994 set_bit(RESOLVE_CONFLICTS, &connection->flags); 995 if (msock.socket) { 996 drbd_warn(connection, "initial packet M crossed\n"); 997 sock_release(msock.socket); 998 msock.socket = s; 999 goto randomize; 1000 } 1001 msock.socket = s; 1002 break; 1003 default: 1004 drbd_warn(connection, "Error receiving initial packet\n"); 1005 sock_release(s); 1006 randomize: 1007 if (prandom_u32() & 1) 1008 goto retry; 1009 } 1010 } 1011 1012 if (connection->cstate <= C_DISCONNECTING) 1013 goto out_release_sockets; 1014 if (signal_pending(current)) { 1015 flush_signals(current); 1016 smp_rmb(); 1017 if (get_t_state(&connection->receiver) == EXITING) 1018 goto out_release_sockets; 1019 } 1020 1021 ok = connection_established(connection, &sock.socket, &msock.socket); 1022 } while (!ok); 1023 1024 if (ad.s_listen) 1025 sock_release(ad.s_listen); 1026 1027 sock.socket->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */ 1028 msock.socket->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */ 1029 1030 sock.socket->sk->sk_allocation = GFP_NOIO; 1031 msock.socket->sk->sk_allocation = GFP_NOIO; 1032 1033 sock.socket->sk->sk_priority = TC_PRIO_INTERACTIVE_BULK; 1034 msock.socket->sk->sk_priority = TC_PRIO_INTERACTIVE; 1035 1036 /* NOT YET ... 1037 * sock.socket->sk->sk_sndtimeo = connection->net_conf->timeout*HZ/10; 1038 * sock.socket->sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 1039 * first set it to the P_CONNECTION_FEATURES timeout, 1040 * which we set to 4x the configured ping_timeout. */ 1041 rcu_read_lock(); 1042 nc = rcu_dereference(connection->net_conf); 1043 1044 sock.socket->sk->sk_sndtimeo = 1045 sock.socket->sk->sk_rcvtimeo = nc->ping_timeo*4*HZ/10; 1046 1047 msock.socket->sk->sk_rcvtimeo = nc->ping_int*HZ; 1048 timeout = nc->timeout * HZ / 10; 1049 discard_my_data = nc->discard_my_data; 1050 rcu_read_unlock(); 1051 1052 msock.socket->sk->sk_sndtimeo = timeout; 1053 1054 /* we don't want delays. 1055 * we use TCP_CORK where appropriate, though */ 1056 tcp_sock_set_nodelay(sock.socket->sk); 1057 tcp_sock_set_nodelay(msock.socket->sk); 1058 1059 connection->data.socket = sock.socket; 1060 connection->meta.socket = msock.socket; 1061 connection->last_received = jiffies; 1062 1063 h = drbd_do_features(connection); 1064 if (h <= 0) 1065 return h; 1066 1067 if (connection->cram_hmac_tfm) { 1068 /* drbd_request_state(device, NS(conn, WFAuth)); */ 1069 switch (drbd_do_auth(connection)) { 1070 case -1: 1071 drbd_err(connection, "Authentication of peer failed\n"); 1072 return -1; 1073 case 0: 1074 drbd_err(connection, "Authentication of peer failed, trying again.\n"); 1075 return 0; 1076 } 1077 } 1078 1079 connection->data.socket->sk->sk_sndtimeo = timeout; 1080 connection->data.socket->sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 1081 1082 if (drbd_send_protocol(connection) == -EOPNOTSUPP) 1083 return -1; 1084 1085 /* Prevent a race between resync-handshake and 1086 * being promoted to Primary. 1087 * 1088 * Grab and release the state mutex, so we know that any current 1089 * drbd_set_role() is finished, and any incoming drbd_set_role 1090 * will see the STATE_SENT flag, and wait for it to be cleared. 1091 */ 1092 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) 1093 mutex_lock(peer_device->device->state_mutex); 1094 1095 /* avoid a race with conn_request_state( C_DISCONNECTING ) */ 1096 spin_lock_irq(&connection->resource->req_lock); 1097 set_bit(STATE_SENT, &connection->flags); 1098 spin_unlock_irq(&connection->resource->req_lock); 1099 1100 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) 1101 mutex_unlock(peer_device->device->state_mutex); 1102 1103 rcu_read_lock(); 1104 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 1105 struct drbd_device *device = peer_device->device; 1106 kref_get(&device->kref); 1107 rcu_read_unlock(); 1108 1109 if (discard_my_data) 1110 set_bit(DISCARD_MY_DATA, &device->flags); 1111 else 1112 clear_bit(DISCARD_MY_DATA, &device->flags); 1113 1114 drbd_connected(peer_device); 1115 kref_put(&device->kref, drbd_destroy_device); 1116 rcu_read_lock(); 1117 } 1118 rcu_read_unlock(); 1119 1120 rv = conn_request_state(connection, NS(conn, C_WF_REPORT_PARAMS), CS_VERBOSE); 1121 if (rv < SS_SUCCESS || connection->cstate != C_WF_REPORT_PARAMS) { 1122 clear_bit(STATE_SENT, &connection->flags); 1123 return 0; 1124 } 1125 1126 drbd_thread_start(&connection->ack_receiver); 1127 /* opencoded create_singlethread_workqueue(), 1128 * to be able to use format string arguments */ 1129 connection->ack_sender = 1130 alloc_ordered_workqueue("drbd_as_%s", WQ_MEM_RECLAIM, connection->resource->name); 1131 if (!connection->ack_sender) { 1132 drbd_err(connection, "Failed to create workqueue ack_sender\n"); 1133 return 0; 1134 } 1135 1136 mutex_lock(&connection->resource->conf_update); 1137 /* The discard_my_data flag is a single-shot modifier to the next 1138 * connection attempt, the handshake of which is now well underway. 1139 * No need for rcu style copying of the whole struct 1140 * just to clear a single value. */ 1141 connection->net_conf->discard_my_data = 0; 1142 mutex_unlock(&connection->resource->conf_update); 1143 1144 return h; 1145 1146 out_release_sockets: 1147 if (ad.s_listen) 1148 sock_release(ad.s_listen); 1149 if (sock.socket) 1150 sock_release(sock.socket); 1151 if (msock.socket) 1152 sock_release(msock.socket); 1153 return -1; 1154 } 1155 1156 static int decode_header(struct drbd_connection *connection, void *header, struct packet_info *pi) 1157 { 1158 unsigned int header_size = drbd_header_size(connection); 1159 1160 if (header_size == sizeof(struct p_header100) && 1161 *(__be32 *)header == cpu_to_be32(DRBD_MAGIC_100)) { 1162 struct p_header100 *h = header; 1163 if (h->pad != 0) { 1164 drbd_err(connection, "Header padding is not zero\n"); 1165 return -EINVAL; 1166 } 1167 pi->vnr = be16_to_cpu(h->volume); 1168 pi->cmd = be16_to_cpu(h->command); 1169 pi->size = be32_to_cpu(h->length); 1170 } else if (header_size == sizeof(struct p_header95) && 1171 *(__be16 *)header == cpu_to_be16(DRBD_MAGIC_BIG)) { 1172 struct p_header95 *h = header; 1173 pi->cmd = be16_to_cpu(h->command); 1174 pi->size = be32_to_cpu(h->length); 1175 pi->vnr = 0; 1176 } else if (header_size == sizeof(struct p_header80) && 1177 *(__be32 *)header == cpu_to_be32(DRBD_MAGIC)) { 1178 struct p_header80 *h = header; 1179 pi->cmd = be16_to_cpu(h->command); 1180 pi->size = be16_to_cpu(h->length); 1181 pi->vnr = 0; 1182 } else { 1183 drbd_err(connection, "Wrong magic value 0x%08x in protocol version %d\n", 1184 be32_to_cpu(*(__be32 *)header), 1185 connection->agreed_pro_version); 1186 return -EINVAL; 1187 } 1188 pi->data = header + header_size; 1189 return 0; 1190 } 1191 1192 static void drbd_unplug_all_devices(struct drbd_connection *connection) 1193 { 1194 if (current->plug == &connection->receiver_plug) { 1195 blk_finish_plug(&connection->receiver_plug); 1196 blk_start_plug(&connection->receiver_plug); 1197 } /* else: maybe just schedule() ?? */ 1198 } 1199 1200 static int drbd_recv_header(struct drbd_connection *connection, struct packet_info *pi) 1201 { 1202 void *buffer = connection->data.rbuf; 1203 int err; 1204 1205 err = drbd_recv_all_warn(connection, buffer, drbd_header_size(connection)); 1206 if (err) 1207 return err; 1208 1209 err = decode_header(connection, buffer, pi); 1210 connection->last_received = jiffies; 1211 1212 return err; 1213 } 1214 1215 static int drbd_recv_header_maybe_unplug(struct drbd_connection *connection, struct packet_info *pi) 1216 { 1217 void *buffer = connection->data.rbuf; 1218 unsigned int size = drbd_header_size(connection); 1219 int err; 1220 1221 err = drbd_recv_short(connection->data.socket, buffer, size, MSG_NOSIGNAL|MSG_DONTWAIT); 1222 if (err != size) { 1223 /* If we have nothing in the receive buffer now, to reduce 1224 * application latency, try to drain the backend queues as 1225 * quickly as possible, and let remote TCP know what we have 1226 * received so far. */ 1227 if (err == -EAGAIN) { 1228 tcp_sock_set_quickack(connection->data.socket->sk, 2); 1229 drbd_unplug_all_devices(connection); 1230 } 1231 if (err > 0) { 1232 buffer += err; 1233 size -= err; 1234 } 1235 err = drbd_recv_all_warn(connection, buffer, size); 1236 if (err) 1237 return err; 1238 } 1239 1240 err = decode_header(connection, connection->data.rbuf, pi); 1241 connection->last_received = jiffies; 1242 1243 return err; 1244 } 1245 /* This is blkdev_issue_flush, but asynchronous. 1246 * We want to submit to all component volumes in parallel, 1247 * then wait for all completions. 1248 */ 1249 struct issue_flush_context { 1250 atomic_t pending; 1251 int error; 1252 struct completion done; 1253 }; 1254 struct one_flush_context { 1255 struct drbd_device *device; 1256 struct issue_flush_context *ctx; 1257 }; 1258 1259 static void one_flush_endio(struct bio *bio) 1260 { 1261 struct one_flush_context *octx = bio->bi_private; 1262 struct drbd_device *device = octx->device; 1263 struct issue_flush_context *ctx = octx->ctx; 1264 1265 if (bio->bi_status) { 1266 ctx->error = blk_status_to_errno(bio->bi_status); 1267 drbd_info(device, "local disk FLUSH FAILED with status %d\n", bio->bi_status); 1268 } 1269 kfree(octx); 1270 bio_put(bio); 1271 1272 clear_bit(FLUSH_PENDING, &device->flags); 1273 put_ldev(device); 1274 kref_put(&device->kref, drbd_destroy_device); 1275 1276 if (atomic_dec_and_test(&ctx->pending)) 1277 complete(&ctx->done); 1278 } 1279 1280 static void submit_one_flush(struct drbd_device *device, struct issue_flush_context *ctx) 1281 { 1282 struct bio *bio = bio_alloc(GFP_NOIO, 0); 1283 struct one_flush_context *octx = kmalloc(sizeof(*octx), GFP_NOIO); 1284 if (!bio || !octx) { 1285 drbd_warn(device, "Could not allocate a bio, CANNOT ISSUE FLUSH\n"); 1286 /* FIXME: what else can I do now? disconnecting or detaching 1287 * really does not help to improve the state of the world, either. 1288 */ 1289 kfree(octx); 1290 if (bio) 1291 bio_put(bio); 1292 1293 ctx->error = -ENOMEM; 1294 put_ldev(device); 1295 kref_put(&device->kref, drbd_destroy_device); 1296 return; 1297 } 1298 1299 octx->device = device; 1300 octx->ctx = ctx; 1301 bio_set_dev(bio, device->ldev->backing_bdev); 1302 bio->bi_private = octx; 1303 bio->bi_end_io = one_flush_endio; 1304 bio->bi_opf = REQ_OP_FLUSH | REQ_PREFLUSH; 1305 1306 device->flush_jif = jiffies; 1307 set_bit(FLUSH_PENDING, &device->flags); 1308 atomic_inc(&ctx->pending); 1309 submit_bio(bio); 1310 } 1311 1312 static void drbd_flush(struct drbd_connection *connection) 1313 { 1314 if (connection->resource->write_ordering >= WO_BDEV_FLUSH) { 1315 struct drbd_peer_device *peer_device; 1316 struct issue_flush_context ctx; 1317 int vnr; 1318 1319 atomic_set(&ctx.pending, 1); 1320 ctx.error = 0; 1321 init_completion(&ctx.done); 1322 1323 rcu_read_lock(); 1324 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 1325 struct drbd_device *device = peer_device->device; 1326 1327 if (!get_ldev(device)) 1328 continue; 1329 kref_get(&device->kref); 1330 rcu_read_unlock(); 1331 1332 submit_one_flush(device, &ctx); 1333 1334 rcu_read_lock(); 1335 } 1336 rcu_read_unlock(); 1337 1338 /* Do we want to add a timeout, 1339 * if disk-timeout is set? */ 1340 if (!atomic_dec_and_test(&ctx.pending)) 1341 wait_for_completion(&ctx.done); 1342 1343 if (ctx.error) { 1344 /* would rather check on EOPNOTSUPP, but that is not reliable. 1345 * don't try again for ANY return value != 0 1346 * if (rv == -EOPNOTSUPP) */ 1347 /* Any error is already reported by bio_endio callback. */ 1348 drbd_bump_write_ordering(connection->resource, NULL, WO_DRAIN_IO); 1349 } 1350 } 1351 } 1352 1353 /** 1354 * drbd_may_finish_epoch() - Applies an epoch_event to the epoch's state, eventually finishes it. 1355 * @connection: DRBD connection. 1356 * @epoch: Epoch object. 1357 * @ev: Epoch event. 1358 */ 1359 static enum finish_epoch drbd_may_finish_epoch(struct drbd_connection *connection, 1360 struct drbd_epoch *epoch, 1361 enum epoch_event ev) 1362 { 1363 int epoch_size; 1364 struct drbd_epoch *next_epoch; 1365 enum finish_epoch rv = FE_STILL_LIVE; 1366 1367 spin_lock(&connection->epoch_lock); 1368 do { 1369 next_epoch = NULL; 1370 1371 epoch_size = atomic_read(&epoch->epoch_size); 1372 1373 switch (ev & ~EV_CLEANUP) { 1374 case EV_PUT: 1375 atomic_dec(&epoch->active); 1376 break; 1377 case EV_GOT_BARRIER_NR: 1378 set_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags); 1379 break; 1380 case EV_BECAME_LAST: 1381 /* nothing to do*/ 1382 break; 1383 } 1384 1385 if (epoch_size != 0 && 1386 atomic_read(&epoch->active) == 0 && 1387 (test_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags) || ev & EV_CLEANUP)) { 1388 if (!(ev & EV_CLEANUP)) { 1389 spin_unlock(&connection->epoch_lock); 1390 drbd_send_b_ack(epoch->connection, epoch->barrier_nr, epoch_size); 1391 spin_lock(&connection->epoch_lock); 1392 } 1393 #if 0 1394 /* FIXME: dec unacked on connection, once we have 1395 * something to count pending connection packets in. */ 1396 if (test_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags)) 1397 dec_unacked(epoch->connection); 1398 #endif 1399 1400 if (connection->current_epoch != epoch) { 1401 next_epoch = list_entry(epoch->list.next, struct drbd_epoch, list); 1402 list_del(&epoch->list); 1403 ev = EV_BECAME_LAST | (ev & EV_CLEANUP); 1404 connection->epochs--; 1405 kfree(epoch); 1406 1407 if (rv == FE_STILL_LIVE) 1408 rv = FE_DESTROYED; 1409 } else { 1410 epoch->flags = 0; 1411 atomic_set(&epoch->epoch_size, 0); 1412 /* atomic_set(&epoch->active, 0); is already zero */ 1413 if (rv == FE_STILL_LIVE) 1414 rv = FE_RECYCLED; 1415 } 1416 } 1417 1418 if (!next_epoch) 1419 break; 1420 1421 epoch = next_epoch; 1422 } while (1); 1423 1424 spin_unlock(&connection->epoch_lock); 1425 1426 return rv; 1427 } 1428 1429 static enum write_ordering_e 1430 max_allowed_wo(struct drbd_backing_dev *bdev, enum write_ordering_e wo) 1431 { 1432 struct disk_conf *dc; 1433 1434 dc = rcu_dereference(bdev->disk_conf); 1435 1436 if (wo == WO_BDEV_FLUSH && !dc->disk_flushes) 1437 wo = WO_DRAIN_IO; 1438 if (wo == WO_DRAIN_IO && !dc->disk_drain) 1439 wo = WO_NONE; 1440 1441 return wo; 1442 } 1443 1444 /* 1445 * drbd_bump_write_ordering() - Fall back to an other write ordering method 1446 * @wo: Write ordering method to try. 1447 */ 1448 void drbd_bump_write_ordering(struct drbd_resource *resource, struct drbd_backing_dev *bdev, 1449 enum write_ordering_e wo) 1450 { 1451 struct drbd_device *device; 1452 enum write_ordering_e pwo; 1453 int vnr; 1454 static char *write_ordering_str[] = { 1455 [WO_NONE] = "none", 1456 [WO_DRAIN_IO] = "drain", 1457 [WO_BDEV_FLUSH] = "flush", 1458 }; 1459 1460 pwo = resource->write_ordering; 1461 if (wo != WO_BDEV_FLUSH) 1462 wo = min(pwo, wo); 1463 rcu_read_lock(); 1464 idr_for_each_entry(&resource->devices, device, vnr) { 1465 if (get_ldev(device)) { 1466 wo = max_allowed_wo(device->ldev, wo); 1467 if (device->ldev == bdev) 1468 bdev = NULL; 1469 put_ldev(device); 1470 } 1471 } 1472 1473 if (bdev) 1474 wo = max_allowed_wo(bdev, wo); 1475 1476 rcu_read_unlock(); 1477 1478 resource->write_ordering = wo; 1479 if (pwo != resource->write_ordering || wo == WO_BDEV_FLUSH) 1480 drbd_info(resource, "Method to ensure write ordering: %s\n", write_ordering_str[resource->write_ordering]); 1481 } 1482 1483 /* 1484 * Mapping "discard" to ZEROOUT with UNMAP does not work for us: 1485 * Drivers have to "announce" q->limits.max_write_zeroes_sectors, or it 1486 * will directly go to fallback mode, submitting normal writes, and 1487 * never even try to UNMAP. 1488 * 1489 * And dm-thin does not do this (yet), mostly because in general it has 1490 * to assume that "skip_block_zeroing" is set. See also: 1491 * https://www.mail-archive.com/dm-devel%40redhat.com/msg07965.html 1492 * https://www.redhat.com/archives/dm-devel/2018-January/msg00271.html 1493 * 1494 * We *may* ignore the discard-zeroes-data setting, if so configured. 1495 * 1496 * Assumption is that this "discard_zeroes_data=0" is only because the backend 1497 * may ignore partial unaligned discards. 1498 * 1499 * LVM/DM thin as of at least 1500 * LVM version: 2.02.115(2)-RHEL7 (2015-01-28) 1501 * Library version: 1.02.93-RHEL7 (2015-01-28) 1502 * Driver version: 4.29.0 1503 * still behaves this way. 1504 * 1505 * For unaligned (wrt. alignment and granularity) or too small discards, 1506 * we zero-out the initial (and/or) trailing unaligned partial chunks, 1507 * but discard all the aligned full chunks. 1508 * 1509 * At least for LVM/DM thin, with skip_block_zeroing=false, 1510 * the result is effectively "discard_zeroes_data=1". 1511 */ 1512 /* flags: EE_TRIM|EE_ZEROOUT */ 1513 int drbd_issue_discard_or_zero_out(struct drbd_device *device, sector_t start, unsigned int nr_sectors, int flags) 1514 { 1515 struct block_device *bdev = device->ldev->backing_bdev; 1516 struct request_queue *q = bdev_get_queue(bdev); 1517 sector_t tmp, nr; 1518 unsigned int max_discard_sectors, granularity; 1519 int alignment; 1520 int err = 0; 1521 1522 if ((flags & EE_ZEROOUT) || !(flags & EE_TRIM)) 1523 goto zero_out; 1524 1525 /* Zero-sector (unknown) and one-sector granularities are the same. */ 1526 granularity = max(q->limits.discard_granularity >> 9, 1U); 1527 alignment = (bdev_discard_alignment(bdev) >> 9) % granularity; 1528 1529 max_discard_sectors = min(q->limits.max_discard_sectors, (1U << 22)); 1530 max_discard_sectors -= max_discard_sectors % granularity; 1531 if (unlikely(!max_discard_sectors)) 1532 goto zero_out; 1533 1534 if (nr_sectors < granularity) 1535 goto zero_out; 1536 1537 tmp = start; 1538 if (sector_div(tmp, granularity) != alignment) { 1539 if (nr_sectors < 2*granularity) 1540 goto zero_out; 1541 /* start + gran - (start + gran - align) % gran */ 1542 tmp = start + granularity - alignment; 1543 tmp = start + granularity - sector_div(tmp, granularity); 1544 1545 nr = tmp - start; 1546 /* don't flag BLKDEV_ZERO_NOUNMAP, we don't know how many 1547 * layers are below us, some may have smaller granularity */ 1548 err |= blkdev_issue_zeroout(bdev, start, nr, GFP_NOIO, 0); 1549 nr_sectors -= nr; 1550 start = tmp; 1551 } 1552 while (nr_sectors >= max_discard_sectors) { 1553 err |= blkdev_issue_discard(bdev, start, max_discard_sectors, GFP_NOIO, 0); 1554 nr_sectors -= max_discard_sectors; 1555 start += max_discard_sectors; 1556 } 1557 if (nr_sectors) { 1558 /* max_discard_sectors is unsigned int (and a multiple of 1559 * granularity, we made sure of that above already); 1560 * nr is < max_discard_sectors; 1561 * I don't need sector_div here, even though nr is sector_t */ 1562 nr = nr_sectors; 1563 nr -= (unsigned int)nr % granularity; 1564 if (nr) { 1565 err |= blkdev_issue_discard(bdev, start, nr, GFP_NOIO, 0); 1566 nr_sectors -= nr; 1567 start += nr; 1568 } 1569 } 1570 zero_out: 1571 if (nr_sectors) { 1572 err |= blkdev_issue_zeroout(bdev, start, nr_sectors, GFP_NOIO, 1573 (flags & EE_TRIM) ? 0 : BLKDEV_ZERO_NOUNMAP); 1574 } 1575 return err != 0; 1576 } 1577 1578 static bool can_do_reliable_discards(struct drbd_device *device) 1579 { 1580 struct request_queue *q = bdev_get_queue(device->ldev->backing_bdev); 1581 struct disk_conf *dc; 1582 bool can_do; 1583 1584 if (!blk_queue_discard(q)) 1585 return false; 1586 1587 rcu_read_lock(); 1588 dc = rcu_dereference(device->ldev->disk_conf); 1589 can_do = dc->discard_zeroes_if_aligned; 1590 rcu_read_unlock(); 1591 return can_do; 1592 } 1593 1594 static void drbd_issue_peer_discard_or_zero_out(struct drbd_device *device, struct drbd_peer_request *peer_req) 1595 { 1596 /* If the backend cannot discard, or does not guarantee 1597 * read-back zeroes in discarded ranges, we fall back to 1598 * zero-out. Unless configuration specifically requested 1599 * otherwise. */ 1600 if (!can_do_reliable_discards(device)) 1601 peer_req->flags |= EE_ZEROOUT; 1602 1603 if (drbd_issue_discard_or_zero_out(device, peer_req->i.sector, 1604 peer_req->i.size >> 9, peer_req->flags & (EE_ZEROOUT|EE_TRIM))) 1605 peer_req->flags |= EE_WAS_ERROR; 1606 drbd_endio_write_sec_final(peer_req); 1607 } 1608 1609 static void drbd_issue_peer_wsame(struct drbd_device *device, 1610 struct drbd_peer_request *peer_req) 1611 { 1612 struct block_device *bdev = device->ldev->backing_bdev; 1613 sector_t s = peer_req->i.sector; 1614 sector_t nr = peer_req->i.size >> 9; 1615 if (blkdev_issue_write_same(bdev, s, nr, GFP_NOIO, peer_req->pages)) 1616 peer_req->flags |= EE_WAS_ERROR; 1617 drbd_endio_write_sec_final(peer_req); 1618 } 1619 1620 1621 /* 1622 * drbd_submit_peer_request() 1623 * @device: DRBD device. 1624 * @peer_req: peer request 1625 * 1626 * May spread the pages to multiple bios, 1627 * depending on bio_add_page restrictions. 1628 * 1629 * Returns 0 if all bios have been submitted, 1630 * -ENOMEM if we could not allocate enough bios, 1631 * -ENOSPC (any better suggestion?) if we have not been able to bio_add_page a 1632 * single page to an empty bio (which should never happen and likely indicates 1633 * that the lower level IO stack is in some way broken). This has been observed 1634 * on certain Xen deployments. 1635 */ 1636 /* TODO allocate from our own bio_set. */ 1637 int drbd_submit_peer_request(struct drbd_device *device, 1638 struct drbd_peer_request *peer_req, 1639 const unsigned op, const unsigned op_flags, 1640 const int fault_type) 1641 { 1642 struct bio *bios = NULL; 1643 struct bio *bio; 1644 struct page *page = peer_req->pages; 1645 sector_t sector = peer_req->i.sector; 1646 unsigned data_size = peer_req->i.size; 1647 unsigned n_bios = 0; 1648 unsigned nr_pages = (data_size + PAGE_SIZE -1) >> PAGE_SHIFT; 1649 int err = -ENOMEM; 1650 1651 /* TRIM/DISCARD: for now, always use the helper function 1652 * blkdev_issue_zeroout(..., discard=true). 1653 * It's synchronous, but it does the right thing wrt. bio splitting. 1654 * Correctness first, performance later. Next step is to code an 1655 * asynchronous variant of the same. 1656 */ 1657 if (peer_req->flags & (EE_TRIM|EE_WRITE_SAME|EE_ZEROOUT)) { 1658 /* wait for all pending IO completions, before we start 1659 * zeroing things out. */ 1660 conn_wait_active_ee_empty(peer_req->peer_device->connection); 1661 /* add it to the active list now, 1662 * so we can find it to present it in debugfs */ 1663 peer_req->submit_jif = jiffies; 1664 peer_req->flags |= EE_SUBMITTED; 1665 1666 /* If this was a resync request from receive_rs_deallocated(), 1667 * it is already on the sync_ee list */ 1668 if (list_empty(&peer_req->w.list)) { 1669 spin_lock_irq(&device->resource->req_lock); 1670 list_add_tail(&peer_req->w.list, &device->active_ee); 1671 spin_unlock_irq(&device->resource->req_lock); 1672 } 1673 1674 if (peer_req->flags & (EE_TRIM|EE_ZEROOUT)) 1675 drbd_issue_peer_discard_or_zero_out(device, peer_req); 1676 else /* EE_WRITE_SAME */ 1677 drbd_issue_peer_wsame(device, peer_req); 1678 return 0; 1679 } 1680 1681 /* In most cases, we will only need one bio. But in case the lower 1682 * level restrictions happen to be different at this offset on this 1683 * side than those of the sending peer, we may need to submit the 1684 * request in more than one bio. 1685 * 1686 * Plain bio_alloc is good enough here, this is no DRBD internally 1687 * generated bio, but a bio allocated on behalf of the peer. 1688 */ 1689 next_bio: 1690 bio = bio_alloc(GFP_NOIO, nr_pages); 1691 if (!bio) { 1692 drbd_err(device, "submit_ee: Allocation of a bio failed (nr_pages=%u)\n", nr_pages); 1693 goto fail; 1694 } 1695 /* > peer_req->i.sector, unless this is the first bio */ 1696 bio->bi_iter.bi_sector = sector; 1697 bio_set_dev(bio, device->ldev->backing_bdev); 1698 bio_set_op_attrs(bio, op, op_flags); 1699 bio->bi_private = peer_req; 1700 bio->bi_end_io = drbd_peer_request_endio; 1701 1702 bio->bi_next = bios; 1703 bios = bio; 1704 ++n_bios; 1705 1706 page_chain_for_each(page) { 1707 unsigned len = min_t(unsigned, data_size, PAGE_SIZE); 1708 if (!bio_add_page(bio, page, len, 0)) 1709 goto next_bio; 1710 data_size -= len; 1711 sector += len >> 9; 1712 --nr_pages; 1713 } 1714 D_ASSERT(device, data_size == 0); 1715 D_ASSERT(device, page == NULL); 1716 1717 atomic_set(&peer_req->pending_bios, n_bios); 1718 /* for debugfs: update timestamp, mark as submitted */ 1719 peer_req->submit_jif = jiffies; 1720 peer_req->flags |= EE_SUBMITTED; 1721 do { 1722 bio = bios; 1723 bios = bios->bi_next; 1724 bio->bi_next = NULL; 1725 1726 drbd_submit_bio_noacct(device, fault_type, bio); 1727 } while (bios); 1728 return 0; 1729 1730 fail: 1731 while (bios) { 1732 bio = bios; 1733 bios = bios->bi_next; 1734 bio_put(bio); 1735 } 1736 return err; 1737 } 1738 1739 static void drbd_remove_epoch_entry_interval(struct drbd_device *device, 1740 struct drbd_peer_request *peer_req) 1741 { 1742 struct drbd_interval *i = &peer_req->i; 1743 1744 drbd_remove_interval(&device->write_requests, i); 1745 drbd_clear_interval(i); 1746 1747 /* Wake up any processes waiting for this peer request to complete. */ 1748 if (i->waiting) 1749 wake_up(&device->misc_wait); 1750 } 1751 1752 static void conn_wait_active_ee_empty(struct drbd_connection *connection) 1753 { 1754 struct drbd_peer_device *peer_device; 1755 int vnr; 1756 1757 rcu_read_lock(); 1758 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 1759 struct drbd_device *device = peer_device->device; 1760 1761 kref_get(&device->kref); 1762 rcu_read_unlock(); 1763 drbd_wait_ee_list_empty(device, &device->active_ee); 1764 kref_put(&device->kref, drbd_destroy_device); 1765 rcu_read_lock(); 1766 } 1767 rcu_read_unlock(); 1768 } 1769 1770 static int receive_Barrier(struct drbd_connection *connection, struct packet_info *pi) 1771 { 1772 int rv; 1773 struct p_barrier *p = pi->data; 1774 struct drbd_epoch *epoch; 1775 1776 /* FIXME these are unacked on connection, 1777 * not a specific (peer)device. 1778 */ 1779 connection->current_epoch->barrier_nr = p->barrier; 1780 connection->current_epoch->connection = connection; 1781 rv = drbd_may_finish_epoch(connection, connection->current_epoch, EV_GOT_BARRIER_NR); 1782 1783 /* P_BARRIER_ACK may imply that the corresponding extent is dropped from 1784 * the activity log, which means it would not be resynced in case the 1785 * R_PRIMARY crashes now. 1786 * Therefore we must send the barrier_ack after the barrier request was 1787 * completed. */ 1788 switch (connection->resource->write_ordering) { 1789 case WO_NONE: 1790 if (rv == FE_RECYCLED) 1791 return 0; 1792 1793 /* receiver context, in the writeout path of the other node. 1794 * avoid potential distributed deadlock */ 1795 epoch = kmalloc(sizeof(struct drbd_epoch), GFP_NOIO); 1796 if (epoch) 1797 break; 1798 else 1799 drbd_warn(connection, "Allocation of an epoch failed, slowing down\n"); 1800 fallthrough; 1801 1802 case WO_BDEV_FLUSH: 1803 case WO_DRAIN_IO: 1804 conn_wait_active_ee_empty(connection); 1805 drbd_flush(connection); 1806 1807 if (atomic_read(&connection->current_epoch->epoch_size)) { 1808 epoch = kmalloc(sizeof(struct drbd_epoch), GFP_NOIO); 1809 if (epoch) 1810 break; 1811 } 1812 1813 return 0; 1814 default: 1815 drbd_err(connection, "Strangeness in connection->write_ordering %d\n", 1816 connection->resource->write_ordering); 1817 return -EIO; 1818 } 1819 1820 epoch->flags = 0; 1821 atomic_set(&epoch->epoch_size, 0); 1822 atomic_set(&epoch->active, 0); 1823 1824 spin_lock(&connection->epoch_lock); 1825 if (atomic_read(&connection->current_epoch->epoch_size)) { 1826 list_add(&epoch->list, &connection->current_epoch->list); 1827 connection->current_epoch = epoch; 1828 connection->epochs++; 1829 } else { 1830 /* The current_epoch got recycled while we allocated this one... */ 1831 kfree(epoch); 1832 } 1833 spin_unlock(&connection->epoch_lock); 1834 1835 return 0; 1836 } 1837 1838 /* quick wrapper in case payload size != request_size (write same) */ 1839 static void drbd_csum_ee_size(struct crypto_shash *h, 1840 struct drbd_peer_request *r, void *d, 1841 unsigned int payload_size) 1842 { 1843 unsigned int tmp = r->i.size; 1844 r->i.size = payload_size; 1845 drbd_csum_ee(h, r, d); 1846 r->i.size = tmp; 1847 } 1848 1849 /* used from receive_RSDataReply (recv_resync_read) 1850 * and from receive_Data. 1851 * data_size: actual payload ("data in") 1852 * for normal writes that is bi_size. 1853 * for discards, that is zero. 1854 * for write same, it is logical_block_size. 1855 * both trim and write same have the bi_size ("data len to be affected") 1856 * as extra argument in the packet header. 1857 */ 1858 static struct drbd_peer_request * 1859 read_in_block(struct drbd_peer_device *peer_device, u64 id, sector_t sector, 1860 struct packet_info *pi) __must_hold(local) 1861 { 1862 struct drbd_device *device = peer_device->device; 1863 const sector_t capacity = get_capacity(device->vdisk); 1864 struct drbd_peer_request *peer_req; 1865 struct page *page; 1866 int digest_size, err; 1867 unsigned int data_size = pi->size, ds; 1868 void *dig_in = peer_device->connection->int_dig_in; 1869 void *dig_vv = peer_device->connection->int_dig_vv; 1870 unsigned long *data; 1871 struct p_trim *trim = (pi->cmd == P_TRIM) ? pi->data : NULL; 1872 struct p_trim *zeroes = (pi->cmd == P_ZEROES) ? pi->data : NULL; 1873 struct p_trim *wsame = (pi->cmd == P_WSAME) ? pi->data : NULL; 1874 1875 digest_size = 0; 1876 if (!trim && peer_device->connection->peer_integrity_tfm) { 1877 digest_size = crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm); 1878 /* 1879 * FIXME: Receive the incoming digest into the receive buffer 1880 * here, together with its struct p_data? 1881 */ 1882 err = drbd_recv_all_warn(peer_device->connection, dig_in, digest_size); 1883 if (err) 1884 return NULL; 1885 data_size -= digest_size; 1886 } 1887 1888 /* assume request_size == data_size, but special case trim and wsame. */ 1889 ds = data_size; 1890 if (trim) { 1891 if (!expect(data_size == 0)) 1892 return NULL; 1893 ds = be32_to_cpu(trim->size); 1894 } else if (zeroes) { 1895 if (!expect(data_size == 0)) 1896 return NULL; 1897 ds = be32_to_cpu(zeroes->size); 1898 } else if (wsame) { 1899 if (data_size != queue_logical_block_size(device->rq_queue)) { 1900 drbd_err(peer_device, "data size (%u) != drbd logical block size (%u)\n", 1901 data_size, queue_logical_block_size(device->rq_queue)); 1902 return NULL; 1903 } 1904 if (data_size != bdev_logical_block_size(device->ldev->backing_bdev)) { 1905 drbd_err(peer_device, "data size (%u) != backend logical block size (%u)\n", 1906 data_size, bdev_logical_block_size(device->ldev->backing_bdev)); 1907 return NULL; 1908 } 1909 ds = be32_to_cpu(wsame->size); 1910 } 1911 1912 if (!expect(IS_ALIGNED(ds, 512))) 1913 return NULL; 1914 if (trim || wsame || zeroes) { 1915 if (!expect(ds <= (DRBD_MAX_BBIO_SECTORS << 9))) 1916 return NULL; 1917 } else if (!expect(ds <= DRBD_MAX_BIO_SIZE)) 1918 return NULL; 1919 1920 /* even though we trust out peer, 1921 * we sometimes have to double check. */ 1922 if (sector + (ds>>9) > capacity) { 1923 drbd_err(device, "request from peer beyond end of local disk: " 1924 "capacity: %llus < sector: %llus + size: %u\n", 1925 (unsigned long long)capacity, 1926 (unsigned long long)sector, ds); 1927 return NULL; 1928 } 1929 1930 /* GFP_NOIO, because we must not cause arbitrary write-out: in a DRBD 1931 * "criss-cross" setup, that might cause write-out on some other DRBD, 1932 * which in turn might block on the other node at this very place. */ 1933 peer_req = drbd_alloc_peer_req(peer_device, id, sector, ds, data_size, GFP_NOIO); 1934 if (!peer_req) 1935 return NULL; 1936 1937 peer_req->flags |= EE_WRITE; 1938 if (trim) { 1939 peer_req->flags |= EE_TRIM; 1940 return peer_req; 1941 } 1942 if (zeroes) { 1943 peer_req->flags |= EE_ZEROOUT; 1944 return peer_req; 1945 } 1946 if (wsame) 1947 peer_req->flags |= EE_WRITE_SAME; 1948 1949 /* receive payload size bytes into page chain */ 1950 ds = data_size; 1951 page = peer_req->pages; 1952 page_chain_for_each(page) { 1953 unsigned len = min_t(int, ds, PAGE_SIZE); 1954 data = kmap(page); 1955 err = drbd_recv_all_warn(peer_device->connection, data, len); 1956 if (drbd_insert_fault(device, DRBD_FAULT_RECEIVE)) { 1957 drbd_err(device, "Fault injection: Corrupting data on receive\n"); 1958 data[0] = data[0] ^ (unsigned long)-1; 1959 } 1960 kunmap(page); 1961 if (err) { 1962 drbd_free_peer_req(device, peer_req); 1963 return NULL; 1964 } 1965 ds -= len; 1966 } 1967 1968 if (digest_size) { 1969 drbd_csum_ee_size(peer_device->connection->peer_integrity_tfm, peer_req, dig_vv, data_size); 1970 if (memcmp(dig_in, dig_vv, digest_size)) { 1971 drbd_err(device, "Digest integrity check FAILED: %llus +%u\n", 1972 (unsigned long long)sector, data_size); 1973 drbd_free_peer_req(device, peer_req); 1974 return NULL; 1975 } 1976 } 1977 device->recv_cnt += data_size >> 9; 1978 return peer_req; 1979 } 1980 1981 /* drbd_drain_block() just takes a data block 1982 * out of the socket input buffer, and discards it. 1983 */ 1984 static int drbd_drain_block(struct drbd_peer_device *peer_device, int data_size) 1985 { 1986 struct page *page; 1987 int err = 0; 1988 void *data; 1989 1990 if (!data_size) 1991 return 0; 1992 1993 page = drbd_alloc_pages(peer_device, 1, 1); 1994 1995 data = kmap(page); 1996 while (data_size) { 1997 unsigned int len = min_t(int, data_size, PAGE_SIZE); 1998 1999 err = drbd_recv_all_warn(peer_device->connection, data, len); 2000 if (err) 2001 break; 2002 data_size -= len; 2003 } 2004 kunmap(page); 2005 drbd_free_pages(peer_device->device, page, 0); 2006 return err; 2007 } 2008 2009 static int recv_dless_read(struct drbd_peer_device *peer_device, struct drbd_request *req, 2010 sector_t sector, int data_size) 2011 { 2012 struct bio_vec bvec; 2013 struct bvec_iter iter; 2014 struct bio *bio; 2015 int digest_size, err, expect; 2016 void *dig_in = peer_device->connection->int_dig_in; 2017 void *dig_vv = peer_device->connection->int_dig_vv; 2018 2019 digest_size = 0; 2020 if (peer_device->connection->peer_integrity_tfm) { 2021 digest_size = crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm); 2022 err = drbd_recv_all_warn(peer_device->connection, dig_in, digest_size); 2023 if (err) 2024 return err; 2025 data_size -= digest_size; 2026 } 2027 2028 /* optimistically update recv_cnt. if receiving fails below, 2029 * we disconnect anyways, and counters will be reset. */ 2030 peer_device->device->recv_cnt += data_size>>9; 2031 2032 bio = req->master_bio; 2033 D_ASSERT(peer_device->device, sector == bio->bi_iter.bi_sector); 2034 2035 bio_for_each_segment(bvec, bio, iter) { 2036 void *mapped = kmap(bvec.bv_page) + bvec.bv_offset; 2037 expect = min_t(int, data_size, bvec.bv_len); 2038 err = drbd_recv_all_warn(peer_device->connection, mapped, expect); 2039 kunmap(bvec.bv_page); 2040 if (err) 2041 return err; 2042 data_size -= expect; 2043 } 2044 2045 if (digest_size) { 2046 drbd_csum_bio(peer_device->connection->peer_integrity_tfm, bio, dig_vv); 2047 if (memcmp(dig_in, dig_vv, digest_size)) { 2048 drbd_err(peer_device, "Digest integrity check FAILED. Broken NICs?\n"); 2049 return -EINVAL; 2050 } 2051 } 2052 2053 D_ASSERT(peer_device->device, data_size == 0); 2054 return 0; 2055 } 2056 2057 /* 2058 * e_end_resync_block() is called in ack_sender context via 2059 * drbd_finish_peer_reqs(). 2060 */ 2061 static int e_end_resync_block(struct drbd_work *w, int unused) 2062 { 2063 struct drbd_peer_request *peer_req = 2064 container_of(w, struct drbd_peer_request, w); 2065 struct drbd_peer_device *peer_device = peer_req->peer_device; 2066 struct drbd_device *device = peer_device->device; 2067 sector_t sector = peer_req->i.sector; 2068 int err; 2069 2070 D_ASSERT(device, drbd_interval_empty(&peer_req->i)); 2071 2072 if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) { 2073 drbd_set_in_sync(device, sector, peer_req->i.size); 2074 err = drbd_send_ack(peer_device, P_RS_WRITE_ACK, peer_req); 2075 } else { 2076 /* Record failure to sync */ 2077 drbd_rs_failed_io(device, sector, peer_req->i.size); 2078 2079 err = drbd_send_ack(peer_device, P_NEG_ACK, peer_req); 2080 } 2081 dec_unacked(device); 2082 2083 return err; 2084 } 2085 2086 static int recv_resync_read(struct drbd_peer_device *peer_device, sector_t sector, 2087 struct packet_info *pi) __releases(local) 2088 { 2089 struct drbd_device *device = peer_device->device; 2090 struct drbd_peer_request *peer_req; 2091 2092 peer_req = read_in_block(peer_device, ID_SYNCER, sector, pi); 2093 if (!peer_req) 2094 goto fail; 2095 2096 dec_rs_pending(device); 2097 2098 inc_unacked(device); 2099 /* corresponding dec_unacked() in e_end_resync_block() 2100 * respective _drbd_clear_done_ee */ 2101 2102 peer_req->w.cb = e_end_resync_block; 2103 peer_req->submit_jif = jiffies; 2104 2105 spin_lock_irq(&device->resource->req_lock); 2106 list_add_tail(&peer_req->w.list, &device->sync_ee); 2107 spin_unlock_irq(&device->resource->req_lock); 2108 2109 atomic_add(pi->size >> 9, &device->rs_sect_ev); 2110 if (drbd_submit_peer_request(device, peer_req, REQ_OP_WRITE, 0, 2111 DRBD_FAULT_RS_WR) == 0) 2112 return 0; 2113 2114 /* don't care for the reason here */ 2115 drbd_err(device, "submit failed, triggering re-connect\n"); 2116 spin_lock_irq(&device->resource->req_lock); 2117 list_del(&peer_req->w.list); 2118 spin_unlock_irq(&device->resource->req_lock); 2119 2120 drbd_free_peer_req(device, peer_req); 2121 fail: 2122 put_ldev(device); 2123 return -EIO; 2124 } 2125 2126 static struct drbd_request * 2127 find_request(struct drbd_device *device, struct rb_root *root, u64 id, 2128 sector_t sector, bool missing_ok, const char *func) 2129 { 2130 struct drbd_request *req; 2131 2132 /* Request object according to our peer */ 2133 req = (struct drbd_request *)(unsigned long)id; 2134 if (drbd_contains_interval(root, sector, &req->i) && req->i.local) 2135 return req; 2136 if (!missing_ok) { 2137 drbd_err(device, "%s: failed to find request 0x%lx, sector %llus\n", func, 2138 (unsigned long)id, (unsigned long long)sector); 2139 } 2140 return NULL; 2141 } 2142 2143 static int receive_DataReply(struct drbd_connection *connection, struct packet_info *pi) 2144 { 2145 struct drbd_peer_device *peer_device; 2146 struct drbd_device *device; 2147 struct drbd_request *req; 2148 sector_t sector; 2149 int err; 2150 struct p_data *p = pi->data; 2151 2152 peer_device = conn_peer_device(connection, pi->vnr); 2153 if (!peer_device) 2154 return -EIO; 2155 device = peer_device->device; 2156 2157 sector = be64_to_cpu(p->sector); 2158 2159 spin_lock_irq(&device->resource->req_lock); 2160 req = find_request(device, &device->read_requests, p->block_id, sector, false, __func__); 2161 spin_unlock_irq(&device->resource->req_lock); 2162 if (unlikely(!req)) 2163 return -EIO; 2164 2165 /* hlist_del(&req->collision) is done in _req_may_be_done, to avoid 2166 * special casing it there for the various failure cases. 2167 * still no race with drbd_fail_pending_reads */ 2168 err = recv_dless_read(peer_device, req, sector, pi->size); 2169 if (!err) 2170 req_mod(req, DATA_RECEIVED); 2171 /* else: nothing. handled from drbd_disconnect... 2172 * I don't think we may complete this just yet 2173 * in case we are "on-disconnect: freeze" */ 2174 2175 return err; 2176 } 2177 2178 static int receive_RSDataReply(struct drbd_connection *connection, struct packet_info *pi) 2179 { 2180 struct drbd_peer_device *peer_device; 2181 struct drbd_device *device; 2182 sector_t sector; 2183 int err; 2184 struct p_data *p = pi->data; 2185 2186 peer_device = conn_peer_device(connection, pi->vnr); 2187 if (!peer_device) 2188 return -EIO; 2189 device = peer_device->device; 2190 2191 sector = be64_to_cpu(p->sector); 2192 D_ASSERT(device, p->block_id == ID_SYNCER); 2193 2194 if (get_ldev(device)) { 2195 /* data is submitted to disk within recv_resync_read. 2196 * corresponding put_ldev done below on error, 2197 * or in drbd_peer_request_endio. */ 2198 err = recv_resync_read(peer_device, sector, pi); 2199 } else { 2200 if (__ratelimit(&drbd_ratelimit_state)) 2201 drbd_err(device, "Can not write resync data to local disk.\n"); 2202 2203 err = drbd_drain_block(peer_device, pi->size); 2204 2205 drbd_send_ack_dp(peer_device, P_NEG_ACK, p, pi->size); 2206 } 2207 2208 atomic_add(pi->size >> 9, &device->rs_sect_in); 2209 2210 return err; 2211 } 2212 2213 static void restart_conflicting_writes(struct drbd_device *device, 2214 sector_t sector, int size) 2215 { 2216 struct drbd_interval *i; 2217 struct drbd_request *req; 2218 2219 drbd_for_each_overlap(i, &device->write_requests, sector, size) { 2220 if (!i->local) 2221 continue; 2222 req = container_of(i, struct drbd_request, i); 2223 if (req->rq_state & RQ_LOCAL_PENDING || 2224 !(req->rq_state & RQ_POSTPONED)) 2225 continue; 2226 /* as it is RQ_POSTPONED, this will cause it to 2227 * be queued on the retry workqueue. */ 2228 __req_mod(req, CONFLICT_RESOLVED, NULL); 2229 } 2230 } 2231 2232 /* 2233 * e_end_block() is called in ack_sender context via drbd_finish_peer_reqs(). 2234 */ 2235 static int e_end_block(struct drbd_work *w, int cancel) 2236 { 2237 struct drbd_peer_request *peer_req = 2238 container_of(w, struct drbd_peer_request, w); 2239 struct drbd_peer_device *peer_device = peer_req->peer_device; 2240 struct drbd_device *device = peer_device->device; 2241 sector_t sector = peer_req->i.sector; 2242 int err = 0, pcmd; 2243 2244 if (peer_req->flags & EE_SEND_WRITE_ACK) { 2245 if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) { 2246 pcmd = (device->state.conn >= C_SYNC_SOURCE && 2247 device->state.conn <= C_PAUSED_SYNC_T && 2248 peer_req->flags & EE_MAY_SET_IN_SYNC) ? 2249 P_RS_WRITE_ACK : P_WRITE_ACK; 2250 err = drbd_send_ack(peer_device, pcmd, peer_req); 2251 if (pcmd == P_RS_WRITE_ACK) 2252 drbd_set_in_sync(device, sector, peer_req->i.size); 2253 } else { 2254 err = drbd_send_ack(peer_device, P_NEG_ACK, peer_req); 2255 /* we expect it to be marked out of sync anyways... 2256 * maybe assert this? */ 2257 } 2258 dec_unacked(device); 2259 } 2260 2261 /* we delete from the conflict detection hash _after_ we sent out the 2262 * P_WRITE_ACK / P_NEG_ACK, to get the sequence number right. */ 2263 if (peer_req->flags & EE_IN_INTERVAL_TREE) { 2264 spin_lock_irq(&device->resource->req_lock); 2265 D_ASSERT(device, !drbd_interval_empty(&peer_req->i)); 2266 drbd_remove_epoch_entry_interval(device, peer_req); 2267 if (peer_req->flags & EE_RESTART_REQUESTS) 2268 restart_conflicting_writes(device, sector, peer_req->i.size); 2269 spin_unlock_irq(&device->resource->req_lock); 2270 } else 2271 D_ASSERT(device, drbd_interval_empty(&peer_req->i)); 2272 2273 drbd_may_finish_epoch(peer_device->connection, peer_req->epoch, EV_PUT + (cancel ? EV_CLEANUP : 0)); 2274 2275 return err; 2276 } 2277 2278 static int e_send_ack(struct drbd_work *w, enum drbd_packet ack) 2279 { 2280 struct drbd_peer_request *peer_req = 2281 container_of(w, struct drbd_peer_request, w); 2282 struct drbd_peer_device *peer_device = peer_req->peer_device; 2283 int err; 2284 2285 err = drbd_send_ack(peer_device, ack, peer_req); 2286 dec_unacked(peer_device->device); 2287 2288 return err; 2289 } 2290 2291 static int e_send_superseded(struct drbd_work *w, int unused) 2292 { 2293 return e_send_ack(w, P_SUPERSEDED); 2294 } 2295 2296 static int e_send_retry_write(struct drbd_work *w, int unused) 2297 { 2298 struct drbd_peer_request *peer_req = 2299 container_of(w, struct drbd_peer_request, w); 2300 struct drbd_connection *connection = peer_req->peer_device->connection; 2301 2302 return e_send_ack(w, connection->agreed_pro_version >= 100 ? 2303 P_RETRY_WRITE : P_SUPERSEDED); 2304 } 2305 2306 static bool seq_greater(u32 a, u32 b) 2307 { 2308 /* 2309 * We assume 32-bit wrap-around here. 2310 * For 24-bit wrap-around, we would have to shift: 2311 * a <<= 8; b <<= 8; 2312 */ 2313 return (s32)a - (s32)b > 0; 2314 } 2315 2316 static u32 seq_max(u32 a, u32 b) 2317 { 2318 return seq_greater(a, b) ? a : b; 2319 } 2320 2321 static void update_peer_seq(struct drbd_peer_device *peer_device, unsigned int peer_seq) 2322 { 2323 struct drbd_device *device = peer_device->device; 2324 unsigned int newest_peer_seq; 2325 2326 if (test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags)) { 2327 spin_lock(&device->peer_seq_lock); 2328 newest_peer_seq = seq_max(device->peer_seq, peer_seq); 2329 device->peer_seq = newest_peer_seq; 2330 spin_unlock(&device->peer_seq_lock); 2331 /* wake up only if we actually changed device->peer_seq */ 2332 if (peer_seq == newest_peer_seq) 2333 wake_up(&device->seq_wait); 2334 } 2335 } 2336 2337 static inline int overlaps(sector_t s1, int l1, sector_t s2, int l2) 2338 { 2339 return !((s1 + (l1>>9) <= s2) || (s1 >= s2 + (l2>>9))); 2340 } 2341 2342 /* maybe change sync_ee into interval trees as well? */ 2343 static bool overlapping_resync_write(struct drbd_device *device, struct drbd_peer_request *peer_req) 2344 { 2345 struct drbd_peer_request *rs_req; 2346 bool rv = false; 2347 2348 spin_lock_irq(&device->resource->req_lock); 2349 list_for_each_entry(rs_req, &device->sync_ee, w.list) { 2350 if (overlaps(peer_req->i.sector, peer_req->i.size, 2351 rs_req->i.sector, rs_req->i.size)) { 2352 rv = true; 2353 break; 2354 } 2355 } 2356 spin_unlock_irq(&device->resource->req_lock); 2357 2358 return rv; 2359 } 2360 2361 /* Called from receive_Data. 2362 * Synchronize packets on sock with packets on msock. 2363 * 2364 * This is here so even when a P_DATA packet traveling via sock overtook an Ack 2365 * packet traveling on msock, they are still processed in the order they have 2366 * been sent. 2367 * 2368 * Note: we don't care for Ack packets overtaking P_DATA packets. 2369 * 2370 * In case packet_seq is larger than device->peer_seq number, there are 2371 * outstanding packets on the msock. We wait for them to arrive. 2372 * In case we are the logically next packet, we update device->peer_seq 2373 * ourselves. Correctly handles 32bit wrap around. 2374 * 2375 * Assume we have a 10 GBit connection, that is about 1<<30 byte per second, 2376 * about 1<<21 sectors per second. So "worst" case, we have 1<<3 == 8 seconds 2377 * for the 24bit wrap (historical atomic_t guarantee on some archs), and we have 2378 * 1<<9 == 512 seconds aka ages for the 32bit wrap around... 2379 * 2380 * returns 0 if we may process the packet, 2381 * -ERESTARTSYS if we were interrupted (by disconnect signal). */ 2382 static int wait_for_and_update_peer_seq(struct drbd_peer_device *peer_device, const u32 peer_seq) 2383 { 2384 struct drbd_device *device = peer_device->device; 2385 DEFINE_WAIT(wait); 2386 long timeout; 2387 int ret = 0, tp; 2388 2389 if (!test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags)) 2390 return 0; 2391 2392 spin_lock(&device->peer_seq_lock); 2393 for (;;) { 2394 if (!seq_greater(peer_seq - 1, device->peer_seq)) { 2395 device->peer_seq = seq_max(device->peer_seq, peer_seq); 2396 break; 2397 } 2398 2399 if (signal_pending(current)) { 2400 ret = -ERESTARTSYS; 2401 break; 2402 } 2403 2404 rcu_read_lock(); 2405 tp = rcu_dereference(peer_device->connection->net_conf)->two_primaries; 2406 rcu_read_unlock(); 2407 2408 if (!tp) 2409 break; 2410 2411 /* Only need to wait if two_primaries is enabled */ 2412 prepare_to_wait(&device->seq_wait, &wait, TASK_INTERRUPTIBLE); 2413 spin_unlock(&device->peer_seq_lock); 2414 rcu_read_lock(); 2415 timeout = rcu_dereference(peer_device->connection->net_conf)->ping_timeo*HZ/10; 2416 rcu_read_unlock(); 2417 timeout = schedule_timeout(timeout); 2418 spin_lock(&device->peer_seq_lock); 2419 if (!timeout) { 2420 ret = -ETIMEDOUT; 2421 drbd_err(device, "Timed out waiting for missing ack packets; disconnecting\n"); 2422 break; 2423 } 2424 } 2425 spin_unlock(&device->peer_seq_lock); 2426 finish_wait(&device->seq_wait, &wait); 2427 return ret; 2428 } 2429 2430 /* see also bio_flags_to_wire() 2431 * DRBD_REQ_*, because we need to semantically map the flags to data packet 2432 * flags and back. We may replicate to other kernel versions. */ 2433 static unsigned long wire_flags_to_bio_flags(u32 dpf) 2434 { 2435 return (dpf & DP_RW_SYNC ? REQ_SYNC : 0) | 2436 (dpf & DP_FUA ? REQ_FUA : 0) | 2437 (dpf & DP_FLUSH ? REQ_PREFLUSH : 0); 2438 } 2439 2440 static unsigned long wire_flags_to_bio_op(u32 dpf) 2441 { 2442 if (dpf & DP_ZEROES) 2443 return REQ_OP_WRITE_ZEROES; 2444 if (dpf & DP_DISCARD) 2445 return REQ_OP_DISCARD; 2446 if (dpf & DP_WSAME) 2447 return REQ_OP_WRITE_SAME; 2448 else 2449 return REQ_OP_WRITE; 2450 } 2451 2452 static void fail_postponed_requests(struct drbd_device *device, sector_t sector, 2453 unsigned int size) 2454 { 2455 struct drbd_interval *i; 2456 2457 repeat: 2458 drbd_for_each_overlap(i, &device->write_requests, sector, size) { 2459 struct drbd_request *req; 2460 struct bio_and_error m; 2461 2462 if (!i->local) 2463 continue; 2464 req = container_of(i, struct drbd_request, i); 2465 if (!(req->rq_state & RQ_POSTPONED)) 2466 continue; 2467 req->rq_state &= ~RQ_POSTPONED; 2468 __req_mod(req, NEG_ACKED, &m); 2469 spin_unlock_irq(&device->resource->req_lock); 2470 if (m.bio) 2471 complete_master_bio(device, &m); 2472 spin_lock_irq(&device->resource->req_lock); 2473 goto repeat; 2474 } 2475 } 2476 2477 static int handle_write_conflicts(struct drbd_device *device, 2478 struct drbd_peer_request *peer_req) 2479 { 2480 struct drbd_connection *connection = peer_req->peer_device->connection; 2481 bool resolve_conflicts = test_bit(RESOLVE_CONFLICTS, &connection->flags); 2482 sector_t sector = peer_req->i.sector; 2483 const unsigned int size = peer_req->i.size; 2484 struct drbd_interval *i; 2485 bool equal; 2486 int err; 2487 2488 /* 2489 * Inserting the peer request into the write_requests tree will prevent 2490 * new conflicting local requests from being added. 2491 */ 2492 drbd_insert_interval(&device->write_requests, &peer_req->i); 2493 2494 repeat: 2495 drbd_for_each_overlap(i, &device->write_requests, sector, size) { 2496 if (i == &peer_req->i) 2497 continue; 2498 if (i->completed) 2499 continue; 2500 2501 if (!i->local) { 2502 /* 2503 * Our peer has sent a conflicting remote request; this 2504 * should not happen in a two-node setup. Wait for the 2505 * earlier peer request to complete. 2506 */ 2507 err = drbd_wait_misc(device, i); 2508 if (err) 2509 goto out; 2510 goto repeat; 2511 } 2512 2513 equal = i->sector == sector && i->size == size; 2514 if (resolve_conflicts) { 2515 /* 2516 * If the peer request is fully contained within the 2517 * overlapping request, it can be considered overwritten 2518 * and thus superseded; otherwise, it will be retried 2519 * once all overlapping requests have completed. 2520 */ 2521 bool superseded = i->sector <= sector && i->sector + 2522 (i->size >> 9) >= sector + (size >> 9); 2523 2524 if (!equal) 2525 drbd_alert(device, "Concurrent writes detected: " 2526 "local=%llus +%u, remote=%llus +%u, " 2527 "assuming %s came first\n", 2528 (unsigned long long)i->sector, i->size, 2529 (unsigned long long)sector, size, 2530 superseded ? "local" : "remote"); 2531 2532 peer_req->w.cb = superseded ? e_send_superseded : 2533 e_send_retry_write; 2534 list_add_tail(&peer_req->w.list, &device->done_ee); 2535 queue_work(connection->ack_sender, &peer_req->peer_device->send_acks_work); 2536 2537 err = -ENOENT; 2538 goto out; 2539 } else { 2540 struct drbd_request *req = 2541 container_of(i, struct drbd_request, i); 2542 2543 if (!equal) 2544 drbd_alert(device, "Concurrent writes detected: " 2545 "local=%llus +%u, remote=%llus +%u\n", 2546 (unsigned long long)i->sector, i->size, 2547 (unsigned long long)sector, size); 2548 2549 if (req->rq_state & RQ_LOCAL_PENDING || 2550 !(req->rq_state & RQ_POSTPONED)) { 2551 /* 2552 * Wait for the node with the discard flag to 2553 * decide if this request has been superseded 2554 * or needs to be retried. 2555 * Requests that have been superseded will 2556 * disappear from the write_requests tree. 2557 * 2558 * In addition, wait for the conflicting 2559 * request to finish locally before submitting 2560 * the conflicting peer request. 2561 */ 2562 err = drbd_wait_misc(device, &req->i); 2563 if (err) { 2564 _conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD); 2565 fail_postponed_requests(device, sector, size); 2566 goto out; 2567 } 2568 goto repeat; 2569 } 2570 /* 2571 * Remember to restart the conflicting requests after 2572 * the new peer request has completed. 2573 */ 2574 peer_req->flags |= EE_RESTART_REQUESTS; 2575 } 2576 } 2577 err = 0; 2578 2579 out: 2580 if (err) 2581 drbd_remove_epoch_entry_interval(device, peer_req); 2582 return err; 2583 } 2584 2585 /* mirrored write */ 2586 static int receive_Data(struct drbd_connection *connection, struct packet_info *pi) 2587 { 2588 struct drbd_peer_device *peer_device; 2589 struct drbd_device *device; 2590 struct net_conf *nc; 2591 sector_t sector; 2592 struct drbd_peer_request *peer_req; 2593 struct p_data *p = pi->data; 2594 u32 peer_seq = be32_to_cpu(p->seq_num); 2595 int op, op_flags; 2596 u32 dp_flags; 2597 int err, tp; 2598 2599 peer_device = conn_peer_device(connection, pi->vnr); 2600 if (!peer_device) 2601 return -EIO; 2602 device = peer_device->device; 2603 2604 if (!get_ldev(device)) { 2605 int err2; 2606 2607 err = wait_for_and_update_peer_seq(peer_device, peer_seq); 2608 drbd_send_ack_dp(peer_device, P_NEG_ACK, p, pi->size); 2609 atomic_inc(&connection->current_epoch->epoch_size); 2610 err2 = drbd_drain_block(peer_device, pi->size); 2611 if (!err) 2612 err = err2; 2613 return err; 2614 } 2615 2616 /* 2617 * Corresponding put_ldev done either below (on various errors), or in 2618 * drbd_peer_request_endio, if we successfully submit the data at the 2619 * end of this function. 2620 */ 2621 2622 sector = be64_to_cpu(p->sector); 2623 peer_req = read_in_block(peer_device, p->block_id, sector, pi); 2624 if (!peer_req) { 2625 put_ldev(device); 2626 return -EIO; 2627 } 2628 2629 peer_req->w.cb = e_end_block; 2630 peer_req->submit_jif = jiffies; 2631 peer_req->flags |= EE_APPLICATION; 2632 2633 dp_flags = be32_to_cpu(p->dp_flags); 2634 op = wire_flags_to_bio_op(dp_flags); 2635 op_flags = wire_flags_to_bio_flags(dp_flags); 2636 if (pi->cmd == P_TRIM) { 2637 D_ASSERT(peer_device, peer_req->i.size > 0); 2638 D_ASSERT(peer_device, op == REQ_OP_DISCARD); 2639 D_ASSERT(peer_device, peer_req->pages == NULL); 2640 /* need to play safe: an older DRBD sender 2641 * may mean zero-out while sending P_TRIM. */ 2642 if (0 == (connection->agreed_features & DRBD_FF_WZEROES)) 2643 peer_req->flags |= EE_ZEROOUT; 2644 } else if (pi->cmd == P_ZEROES) { 2645 D_ASSERT(peer_device, peer_req->i.size > 0); 2646 D_ASSERT(peer_device, op == REQ_OP_WRITE_ZEROES); 2647 D_ASSERT(peer_device, peer_req->pages == NULL); 2648 /* Do (not) pass down BLKDEV_ZERO_NOUNMAP? */ 2649 if (dp_flags & DP_DISCARD) 2650 peer_req->flags |= EE_TRIM; 2651 } else if (peer_req->pages == NULL) { 2652 D_ASSERT(device, peer_req->i.size == 0); 2653 D_ASSERT(device, dp_flags & DP_FLUSH); 2654 } 2655 2656 if (dp_flags & DP_MAY_SET_IN_SYNC) 2657 peer_req->flags |= EE_MAY_SET_IN_SYNC; 2658 2659 spin_lock(&connection->epoch_lock); 2660 peer_req->epoch = connection->current_epoch; 2661 atomic_inc(&peer_req->epoch->epoch_size); 2662 atomic_inc(&peer_req->epoch->active); 2663 spin_unlock(&connection->epoch_lock); 2664 2665 rcu_read_lock(); 2666 nc = rcu_dereference(peer_device->connection->net_conf); 2667 tp = nc->two_primaries; 2668 if (peer_device->connection->agreed_pro_version < 100) { 2669 switch (nc->wire_protocol) { 2670 case DRBD_PROT_C: 2671 dp_flags |= DP_SEND_WRITE_ACK; 2672 break; 2673 case DRBD_PROT_B: 2674 dp_flags |= DP_SEND_RECEIVE_ACK; 2675 break; 2676 } 2677 } 2678 rcu_read_unlock(); 2679 2680 if (dp_flags & DP_SEND_WRITE_ACK) { 2681 peer_req->flags |= EE_SEND_WRITE_ACK; 2682 inc_unacked(device); 2683 /* corresponding dec_unacked() in e_end_block() 2684 * respective _drbd_clear_done_ee */ 2685 } 2686 2687 if (dp_flags & DP_SEND_RECEIVE_ACK) { 2688 /* I really don't like it that the receiver thread 2689 * sends on the msock, but anyways */ 2690 drbd_send_ack(peer_device, P_RECV_ACK, peer_req); 2691 } 2692 2693 if (tp) { 2694 /* two primaries implies protocol C */ 2695 D_ASSERT(device, dp_flags & DP_SEND_WRITE_ACK); 2696 peer_req->flags |= EE_IN_INTERVAL_TREE; 2697 err = wait_for_and_update_peer_seq(peer_device, peer_seq); 2698 if (err) 2699 goto out_interrupted; 2700 spin_lock_irq(&device->resource->req_lock); 2701 err = handle_write_conflicts(device, peer_req); 2702 if (err) { 2703 spin_unlock_irq(&device->resource->req_lock); 2704 if (err == -ENOENT) { 2705 put_ldev(device); 2706 return 0; 2707 } 2708 goto out_interrupted; 2709 } 2710 } else { 2711 update_peer_seq(peer_device, peer_seq); 2712 spin_lock_irq(&device->resource->req_lock); 2713 } 2714 /* TRIM and WRITE_SAME are processed synchronously, 2715 * we wait for all pending requests, respectively wait for 2716 * active_ee to become empty in drbd_submit_peer_request(); 2717 * better not add ourselves here. */ 2718 if ((peer_req->flags & (EE_TRIM|EE_WRITE_SAME|EE_ZEROOUT)) == 0) 2719 list_add_tail(&peer_req->w.list, &device->active_ee); 2720 spin_unlock_irq(&device->resource->req_lock); 2721 2722 if (device->state.conn == C_SYNC_TARGET) 2723 wait_event(device->ee_wait, !overlapping_resync_write(device, peer_req)); 2724 2725 if (device->state.pdsk < D_INCONSISTENT) { 2726 /* In case we have the only disk of the cluster, */ 2727 drbd_set_out_of_sync(device, peer_req->i.sector, peer_req->i.size); 2728 peer_req->flags &= ~EE_MAY_SET_IN_SYNC; 2729 drbd_al_begin_io(device, &peer_req->i); 2730 peer_req->flags |= EE_CALL_AL_COMPLETE_IO; 2731 } 2732 2733 err = drbd_submit_peer_request(device, peer_req, op, op_flags, 2734 DRBD_FAULT_DT_WR); 2735 if (!err) 2736 return 0; 2737 2738 /* don't care for the reason here */ 2739 drbd_err(device, "submit failed, triggering re-connect\n"); 2740 spin_lock_irq(&device->resource->req_lock); 2741 list_del(&peer_req->w.list); 2742 drbd_remove_epoch_entry_interval(device, peer_req); 2743 spin_unlock_irq(&device->resource->req_lock); 2744 if (peer_req->flags & EE_CALL_AL_COMPLETE_IO) { 2745 peer_req->flags &= ~EE_CALL_AL_COMPLETE_IO; 2746 drbd_al_complete_io(device, &peer_req->i); 2747 } 2748 2749 out_interrupted: 2750 drbd_may_finish_epoch(connection, peer_req->epoch, EV_PUT | EV_CLEANUP); 2751 put_ldev(device); 2752 drbd_free_peer_req(device, peer_req); 2753 return err; 2754 } 2755 2756 /* We may throttle resync, if the lower device seems to be busy, 2757 * and current sync rate is above c_min_rate. 2758 * 2759 * To decide whether or not the lower device is busy, we use a scheme similar 2760 * to MD RAID is_mddev_idle(): if the partition stats reveal "significant" 2761 * (more than 64 sectors) of activity we cannot account for with our own resync 2762 * activity, it obviously is "busy". 2763 * 2764 * The current sync rate used here uses only the most recent two step marks, 2765 * to have a short time average so we can react faster. 2766 */ 2767 bool drbd_rs_should_slow_down(struct drbd_device *device, sector_t sector, 2768 bool throttle_if_app_is_waiting) 2769 { 2770 struct lc_element *tmp; 2771 bool throttle = drbd_rs_c_min_rate_throttle(device); 2772 2773 if (!throttle || throttle_if_app_is_waiting) 2774 return throttle; 2775 2776 spin_lock_irq(&device->al_lock); 2777 tmp = lc_find(device->resync, BM_SECT_TO_EXT(sector)); 2778 if (tmp) { 2779 struct bm_extent *bm_ext = lc_entry(tmp, struct bm_extent, lce); 2780 if (test_bit(BME_PRIORITY, &bm_ext->flags)) 2781 throttle = false; 2782 /* Do not slow down if app IO is already waiting for this extent, 2783 * and our progress is necessary for application IO to complete. */ 2784 } 2785 spin_unlock_irq(&device->al_lock); 2786 2787 return throttle; 2788 } 2789 2790 bool drbd_rs_c_min_rate_throttle(struct drbd_device *device) 2791 { 2792 struct gendisk *disk = device->ldev->backing_bdev->bd_disk; 2793 unsigned long db, dt, dbdt; 2794 unsigned int c_min_rate; 2795 int curr_events; 2796 2797 rcu_read_lock(); 2798 c_min_rate = rcu_dereference(device->ldev->disk_conf)->c_min_rate; 2799 rcu_read_unlock(); 2800 2801 /* feature disabled? */ 2802 if (c_min_rate == 0) 2803 return false; 2804 2805 curr_events = (int)part_stat_read_accum(disk->part0, sectors) - 2806 atomic_read(&device->rs_sect_ev); 2807 2808 if (atomic_read(&device->ap_actlog_cnt) 2809 || curr_events - device->rs_last_events > 64) { 2810 unsigned long rs_left; 2811 int i; 2812 2813 device->rs_last_events = curr_events; 2814 2815 /* sync speed average over the last 2*DRBD_SYNC_MARK_STEP, 2816 * approx. */ 2817 i = (device->rs_last_mark + DRBD_SYNC_MARKS-1) % DRBD_SYNC_MARKS; 2818 2819 if (device->state.conn == C_VERIFY_S || device->state.conn == C_VERIFY_T) 2820 rs_left = device->ov_left; 2821 else 2822 rs_left = drbd_bm_total_weight(device) - device->rs_failed; 2823 2824 dt = ((long)jiffies - (long)device->rs_mark_time[i]) / HZ; 2825 if (!dt) 2826 dt++; 2827 db = device->rs_mark_left[i] - rs_left; 2828 dbdt = Bit2KB(db/dt); 2829 2830 if (dbdt > c_min_rate) 2831 return true; 2832 } 2833 return false; 2834 } 2835 2836 static int receive_DataRequest(struct drbd_connection *connection, struct packet_info *pi) 2837 { 2838 struct drbd_peer_device *peer_device; 2839 struct drbd_device *device; 2840 sector_t sector; 2841 sector_t capacity; 2842 struct drbd_peer_request *peer_req; 2843 struct digest_info *di = NULL; 2844 int size, verb; 2845 unsigned int fault_type; 2846 struct p_block_req *p = pi->data; 2847 2848 peer_device = conn_peer_device(connection, pi->vnr); 2849 if (!peer_device) 2850 return -EIO; 2851 device = peer_device->device; 2852 capacity = get_capacity(device->vdisk); 2853 2854 sector = be64_to_cpu(p->sector); 2855 size = be32_to_cpu(p->blksize); 2856 2857 if (size <= 0 || !IS_ALIGNED(size, 512) || size > DRBD_MAX_BIO_SIZE) { 2858 drbd_err(device, "%s:%d: sector: %llus, size: %u\n", __FILE__, __LINE__, 2859 (unsigned long long)sector, size); 2860 return -EINVAL; 2861 } 2862 if (sector + (size>>9) > capacity) { 2863 drbd_err(device, "%s:%d: sector: %llus, size: %u\n", __FILE__, __LINE__, 2864 (unsigned long long)sector, size); 2865 return -EINVAL; 2866 } 2867 2868 if (!get_ldev_if_state(device, D_UP_TO_DATE)) { 2869 verb = 1; 2870 switch (pi->cmd) { 2871 case P_DATA_REQUEST: 2872 drbd_send_ack_rp(peer_device, P_NEG_DREPLY, p); 2873 break; 2874 case P_RS_THIN_REQ: 2875 case P_RS_DATA_REQUEST: 2876 case P_CSUM_RS_REQUEST: 2877 case P_OV_REQUEST: 2878 drbd_send_ack_rp(peer_device, P_NEG_RS_DREPLY , p); 2879 break; 2880 case P_OV_REPLY: 2881 verb = 0; 2882 dec_rs_pending(device); 2883 drbd_send_ack_ex(peer_device, P_OV_RESULT, sector, size, ID_IN_SYNC); 2884 break; 2885 default: 2886 BUG(); 2887 } 2888 if (verb && __ratelimit(&drbd_ratelimit_state)) 2889 drbd_err(device, "Can not satisfy peer's read request, " 2890 "no local data.\n"); 2891 2892 /* drain possibly payload */ 2893 return drbd_drain_block(peer_device, pi->size); 2894 } 2895 2896 /* GFP_NOIO, because we must not cause arbitrary write-out: in a DRBD 2897 * "criss-cross" setup, that might cause write-out on some other DRBD, 2898 * which in turn might block on the other node at this very place. */ 2899 peer_req = drbd_alloc_peer_req(peer_device, p->block_id, sector, size, 2900 size, GFP_NOIO); 2901 if (!peer_req) { 2902 put_ldev(device); 2903 return -ENOMEM; 2904 } 2905 2906 switch (pi->cmd) { 2907 case P_DATA_REQUEST: 2908 peer_req->w.cb = w_e_end_data_req; 2909 fault_type = DRBD_FAULT_DT_RD; 2910 /* application IO, don't drbd_rs_begin_io */ 2911 peer_req->flags |= EE_APPLICATION; 2912 goto submit; 2913 2914 case P_RS_THIN_REQ: 2915 /* If at some point in the future we have a smart way to 2916 find out if this data block is completely deallocated, 2917 then we would do something smarter here than reading 2918 the block... */ 2919 peer_req->flags |= EE_RS_THIN_REQ; 2920 fallthrough; 2921 case P_RS_DATA_REQUEST: 2922 peer_req->w.cb = w_e_end_rsdata_req; 2923 fault_type = DRBD_FAULT_RS_RD; 2924 /* used in the sector offset progress display */ 2925 device->bm_resync_fo = BM_SECT_TO_BIT(sector); 2926 break; 2927 2928 case P_OV_REPLY: 2929 case P_CSUM_RS_REQUEST: 2930 fault_type = DRBD_FAULT_RS_RD; 2931 di = kmalloc(sizeof(*di) + pi->size, GFP_NOIO); 2932 if (!di) 2933 goto out_free_e; 2934 2935 di->digest_size = pi->size; 2936 di->digest = (((char *)di)+sizeof(struct digest_info)); 2937 2938 peer_req->digest = di; 2939 peer_req->flags |= EE_HAS_DIGEST; 2940 2941 if (drbd_recv_all(peer_device->connection, di->digest, pi->size)) 2942 goto out_free_e; 2943 2944 if (pi->cmd == P_CSUM_RS_REQUEST) { 2945 D_ASSERT(device, peer_device->connection->agreed_pro_version >= 89); 2946 peer_req->w.cb = w_e_end_csum_rs_req; 2947 /* used in the sector offset progress display */ 2948 device->bm_resync_fo = BM_SECT_TO_BIT(sector); 2949 /* remember to report stats in drbd_resync_finished */ 2950 device->use_csums = true; 2951 } else if (pi->cmd == P_OV_REPLY) { 2952 /* track progress, we may need to throttle */ 2953 atomic_add(size >> 9, &device->rs_sect_in); 2954 peer_req->w.cb = w_e_end_ov_reply; 2955 dec_rs_pending(device); 2956 /* drbd_rs_begin_io done when we sent this request, 2957 * but accounting still needs to be done. */ 2958 goto submit_for_resync; 2959 } 2960 break; 2961 2962 case P_OV_REQUEST: 2963 if (device->ov_start_sector == ~(sector_t)0 && 2964 peer_device->connection->agreed_pro_version >= 90) { 2965 unsigned long now = jiffies; 2966 int i; 2967 device->ov_start_sector = sector; 2968 device->ov_position = sector; 2969 device->ov_left = drbd_bm_bits(device) - BM_SECT_TO_BIT(sector); 2970 device->rs_total = device->ov_left; 2971 for (i = 0; i < DRBD_SYNC_MARKS; i++) { 2972 device->rs_mark_left[i] = device->ov_left; 2973 device->rs_mark_time[i] = now; 2974 } 2975 drbd_info(device, "Online Verify start sector: %llu\n", 2976 (unsigned long long)sector); 2977 } 2978 peer_req->w.cb = w_e_end_ov_req; 2979 fault_type = DRBD_FAULT_RS_RD; 2980 break; 2981 2982 default: 2983 BUG(); 2984 } 2985 2986 /* Throttle, drbd_rs_begin_io and submit should become asynchronous 2987 * wrt the receiver, but it is not as straightforward as it may seem. 2988 * Various places in the resync start and stop logic assume resync 2989 * requests are processed in order, requeuing this on the worker thread 2990 * introduces a bunch of new code for synchronization between threads. 2991 * 2992 * Unlimited throttling before drbd_rs_begin_io may stall the resync 2993 * "forever", throttling after drbd_rs_begin_io will lock that extent 2994 * for application writes for the same time. For now, just throttle 2995 * here, where the rest of the code expects the receiver to sleep for 2996 * a while, anyways. 2997 */ 2998 2999 /* Throttle before drbd_rs_begin_io, as that locks out application IO; 3000 * this defers syncer requests for some time, before letting at least 3001 * on request through. The resync controller on the receiving side 3002 * will adapt to the incoming rate accordingly. 3003 * 3004 * We cannot throttle here if remote is Primary/SyncTarget: 3005 * we would also throttle its application reads. 3006 * In that case, throttling is done on the SyncTarget only. 3007 */ 3008 3009 /* Even though this may be a resync request, we do add to "read_ee"; 3010 * "sync_ee" is only used for resync WRITEs. 3011 * Add to list early, so debugfs can find this request 3012 * even if we have to sleep below. */ 3013 spin_lock_irq(&device->resource->req_lock); 3014 list_add_tail(&peer_req->w.list, &device->read_ee); 3015 spin_unlock_irq(&device->resource->req_lock); 3016 3017 update_receiver_timing_details(connection, drbd_rs_should_slow_down); 3018 if (device->state.peer != R_PRIMARY 3019 && drbd_rs_should_slow_down(device, sector, false)) 3020 schedule_timeout_uninterruptible(HZ/10); 3021 update_receiver_timing_details(connection, drbd_rs_begin_io); 3022 if (drbd_rs_begin_io(device, sector)) 3023 goto out_free_e; 3024 3025 submit_for_resync: 3026 atomic_add(size >> 9, &device->rs_sect_ev); 3027 3028 submit: 3029 update_receiver_timing_details(connection, drbd_submit_peer_request); 3030 inc_unacked(device); 3031 if (drbd_submit_peer_request(device, peer_req, REQ_OP_READ, 0, 3032 fault_type) == 0) 3033 return 0; 3034 3035 /* don't care for the reason here */ 3036 drbd_err(device, "submit failed, triggering re-connect\n"); 3037 3038 out_free_e: 3039 spin_lock_irq(&device->resource->req_lock); 3040 list_del(&peer_req->w.list); 3041 spin_unlock_irq(&device->resource->req_lock); 3042 /* no drbd_rs_complete_io(), we are dropping the connection anyways */ 3043 3044 put_ldev(device); 3045 drbd_free_peer_req(device, peer_req); 3046 return -EIO; 3047 } 3048 3049 /* 3050 * drbd_asb_recover_0p - Recover after split-brain with no remaining primaries 3051 */ 3052 static int drbd_asb_recover_0p(struct drbd_peer_device *peer_device) __must_hold(local) 3053 { 3054 struct drbd_device *device = peer_device->device; 3055 int self, peer, rv = -100; 3056 unsigned long ch_self, ch_peer; 3057 enum drbd_after_sb_p after_sb_0p; 3058 3059 self = device->ldev->md.uuid[UI_BITMAP] & 1; 3060 peer = device->p_uuid[UI_BITMAP] & 1; 3061 3062 ch_peer = device->p_uuid[UI_SIZE]; 3063 ch_self = device->comm_bm_set; 3064 3065 rcu_read_lock(); 3066 after_sb_0p = rcu_dereference(peer_device->connection->net_conf)->after_sb_0p; 3067 rcu_read_unlock(); 3068 switch (after_sb_0p) { 3069 case ASB_CONSENSUS: 3070 case ASB_DISCARD_SECONDARY: 3071 case ASB_CALL_HELPER: 3072 case ASB_VIOLENTLY: 3073 drbd_err(device, "Configuration error.\n"); 3074 break; 3075 case ASB_DISCONNECT: 3076 break; 3077 case ASB_DISCARD_YOUNGER_PRI: 3078 if (self == 0 && peer == 1) { 3079 rv = -1; 3080 break; 3081 } 3082 if (self == 1 && peer == 0) { 3083 rv = 1; 3084 break; 3085 } 3086 fallthrough; /* to one of the other strategies */ 3087 case ASB_DISCARD_OLDER_PRI: 3088 if (self == 0 && peer == 1) { 3089 rv = 1; 3090 break; 3091 } 3092 if (self == 1 && peer == 0) { 3093 rv = -1; 3094 break; 3095 } 3096 /* Else fall through to one of the other strategies... */ 3097 drbd_warn(device, "Discard younger/older primary did not find a decision\n" 3098 "Using discard-least-changes instead\n"); 3099 fallthrough; 3100 case ASB_DISCARD_ZERO_CHG: 3101 if (ch_peer == 0 && ch_self == 0) { 3102 rv = test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags) 3103 ? -1 : 1; 3104 break; 3105 } else { 3106 if (ch_peer == 0) { rv = 1; break; } 3107 if (ch_self == 0) { rv = -1; break; } 3108 } 3109 if (after_sb_0p == ASB_DISCARD_ZERO_CHG) 3110 break; 3111 fallthrough; 3112 case ASB_DISCARD_LEAST_CHG: 3113 if (ch_self < ch_peer) 3114 rv = -1; 3115 else if (ch_self > ch_peer) 3116 rv = 1; 3117 else /* ( ch_self == ch_peer ) */ 3118 /* Well, then use something else. */ 3119 rv = test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags) 3120 ? -1 : 1; 3121 break; 3122 case ASB_DISCARD_LOCAL: 3123 rv = -1; 3124 break; 3125 case ASB_DISCARD_REMOTE: 3126 rv = 1; 3127 } 3128 3129 return rv; 3130 } 3131 3132 /* 3133 * drbd_asb_recover_1p - Recover after split-brain with one remaining primary 3134 */ 3135 static int drbd_asb_recover_1p(struct drbd_peer_device *peer_device) __must_hold(local) 3136 { 3137 struct drbd_device *device = peer_device->device; 3138 int hg, rv = -100; 3139 enum drbd_after_sb_p after_sb_1p; 3140 3141 rcu_read_lock(); 3142 after_sb_1p = rcu_dereference(peer_device->connection->net_conf)->after_sb_1p; 3143 rcu_read_unlock(); 3144 switch (after_sb_1p) { 3145 case ASB_DISCARD_YOUNGER_PRI: 3146 case ASB_DISCARD_OLDER_PRI: 3147 case ASB_DISCARD_LEAST_CHG: 3148 case ASB_DISCARD_LOCAL: 3149 case ASB_DISCARD_REMOTE: 3150 case ASB_DISCARD_ZERO_CHG: 3151 drbd_err(device, "Configuration error.\n"); 3152 break; 3153 case ASB_DISCONNECT: 3154 break; 3155 case ASB_CONSENSUS: 3156 hg = drbd_asb_recover_0p(peer_device); 3157 if (hg == -1 && device->state.role == R_SECONDARY) 3158 rv = hg; 3159 if (hg == 1 && device->state.role == R_PRIMARY) 3160 rv = hg; 3161 break; 3162 case ASB_VIOLENTLY: 3163 rv = drbd_asb_recover_0p(peer_device); 3164 break; 3165 case ASB_DISCARD_SECONDARY: 3166 return device->state.role == R_PRIMARY ? 1 : -1; 3167 case ASB_CALL_HELPER: 3168 hg = drbd_asb_recover_0p(peer_device); 3169 if (hg == -1 && device->state.role == R_PRIMARY) { 3170 enum drbd_state_rv rv2; 3171 3172 /* drbd_change_state() does not sleep while in SS_IN_TRANSIENT_STATE, 3173 * we might be here in C_WF_REPORT_PARAMS which is transient. 3174 * we do not need to wait for the after state change work either. */ 3175 rv2 = drbd_change_state(device, CS_VERBOSE, NS(role, R_SECONDARY)); 3176 if (rv2 != SS_SUCCESS) { 3177 drbd_khelper(device, "pri-lost-after-sb"); 3178 } else { 3179 drbd_warn(device, "Successfully gave up primary role.\n"); 3180 rv = hg; 3181 } 3182 } else 3183 rv = hg; 3184 } 3185 3186 return rv; 3187 } 3188 3189 /* 3190 * drbd_asb_recover_2p - Recover after split-brain with two remaining primaries 3191 */ 3192 static int drbd_asb_recover_2p(struct drbd_peer_device *peer_device) __must_hold(local) 3193 { 3194 struct drbd_device *device = peer_device->device; 3195 int hg, rv = -100; 3196 enum drbd_after_sb_p after_sb_2p; 3197 3198 rcu_read_lock(); 3199 after_sb_2p = rcu_dereference(peer_device->connection->net_conf)->after_sb_2p; 3200 rcu_read_unlock(); 3201 switch (after_sb_2p) { 3202 case ASB_DISCARD_YOUNGER_PRI: 3203 case ASB_DISCARD_OLDER_PRI: 3204 case ASB_DISCARD_LEAST_CHG: 3205 case ASB_DISCARD_LOCAL: 3206 case ASB_DISCARD_REMOTE: 3207 case ASB_CONSENSUS: 3208 case ASB_DISCARD_SECONDARY: 3209 case ASB_DISCARD_ZERO_CHG: 3210 drbd_err(device, "Configuration error.\n"); 3211 break; 3212 case ASB_VIOLENTLY: 3213 rv = drbd_asb_recover_0p(peer_device); 3214 break; 3215 case ASB_DISCONNECT: 3216 break; 3217 case ASB_CALL_HELPER: 3218 hg = drbd_asb_recover_0p(peer_device); 3219 if (hg == -1) { 3220 enum drbd_state_rv rv2; 3221 3222 /* drbd_change_state() does not sleep while in SS_IN_TRANSIENT_STATE, 3223 * we might be here in C_WF_REPORT_PARAMS which is transient. 3224 * we do not need to wait for the after state change work either. */ 3225 rv2 = drbd_change_state(device, CS_VERBOSE, NS(role, R_SECONDARY)); 3226 if (rv2 != SS_SUCCESS) { 3227 drbd_khelper(device, "pri-lost-after-sb"); 3228 } else { 3229 drbd_warn(device, "Successfully gave up primary role.\n"); 3230 rv = hg; 3231 } 3232 } else 3233 rv = hg; 3234 } 3235 3236 return rv; 3237 } 3238 3239 static void drbd_uuid_dump(struct drbd_device *device, char *text, u64 *uuid, 3240 u64 bits, u64 flags) 3241 { 3242 if (!uuid) { 3243 drbd_info(device, "%s uuid info vanished while I was looking!\n", text); 3244 return; 3245 } 3246 drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX bits:%llu flags:%llX\n", 3247 text, 3248 (unsigned long long)uuid[UI_CURRENT], 3249 (unsigned long long)uuid[UI_BITMAP], 3250 (unsigned long long)uuid[UI_HISTORY_START], 3251 (unsigned long long)uuid[UI_HISTORY_END], 3252 (unsigned long long)bits, 3253 (unsigned long long)flags); 3254 } 3255 3256 /* 3257 100 after split brain try auto recover 3258 2 C_SYNC_SOURCE set BitMap 3259 1 C_SYNC_SOURCE use BitMap 3260 0 no Sync 3261 -1 C_SYNC_TARGET use BitMap 3262 -2 C_SYNC_TARGET set BitMap 3263 -100 after split brain, disconnect 3264 -1000 unrelated data 3265 -1091 requires proto 91 3266 -1096 requires proto 96 3267 */ 3268 3269 static int drbd_uuid_compare(struct drbd_device *const device, enum drbd_role const peer_role, int *rule_nr) __must_hold(local) 3270 { 3271 struct drbd_peer_device *const peer_device = first_peer_device(device); 3272 struct drbd_connection *const connection = peer_device ? peer_device->connection : NULL; 3273 u64 self, peer; 3274 int i, j; 3275 3276 self = device->ldev->md.uuid[UI_CURRENT] & ~((u64)1); 3277 peer = device->p_uuid[UI_CURRENT] & ~((u64)1); 3278 3279 *rule_nr = 10; 3280 if (self == UUID_JUST_CREATED && peer == UUID_JUST_CREATED) 3281 return 0; 3282 3283 *rule_nr = 20; 3284 if ((self == UUID_JUST_CREATED || self == (u64)0) && 3285 peer != UUID_JUST_CREATED) 3286 return -2; 3287 3288 *rule_nr = 30; 3289 if (self != UUID_JUST_CREATED && 3290 (peer == UUID_JUST_CREATED || peer == (u64)0)) 3291 return 2; 3292 3293 if (self == peer) { 3294 int rct, dc; /* roles at crash time */ 3295 3296 if (device->p_uuid[UI_BITMAP] == (u64)0 && device->ldev->md.uuid[UI_BITMAP] != (u64)0) { 3297 3298 if (connection->agreed_pro_version < 91) 3299 return -1091; 3300 3301 if ((device->ldev->md.uuid[UI_BITMAP] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START] & ~((u64)1)) && 3302 (device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START + 1] & ~((u64)1))) { 3303 drbd_info(device, "was SyncSource, missed the resync finished event, corrected myself:\n"); 3304 drbd_uuid_move_history(device); 3305 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP]; 3306 device->ldev->md.uuid[UI_BITMAP] = 0; 3307 3308 drbd_uuid_dump(device, "self", device->ldev->md.uuid, 3309 device->state.disk >= D_NEGOTIATING ? drbd_bm_total_weight(device) : 0, 0); 3310 *rule_nr = 34; 3311 } else { 3312 drbd_info(device, "was SyncSource (peer failed to write sync_uuid)\n"); 3313 *rule_nr = 36; 3314 } 3315 3316 return 1; 3317 } 3318 3319 if (device->ldev->md.uuid[UI_BITMAP] == (u64)0 && device->p_uuid[UI_BITMAP] != (u64)0) { 3320 3321 if (connection->agreed_pro_version < 91) 3322 return -1091; 3323 3324 if ((device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == (device->p_uuid[UI_BITMAP] & ~((u64)1)) && 3325 (device->ldev->md.uuid[UI_HISTORY_START + 1] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START] & ~((u64)1))) { 3326 drbd_info(device, "was SyncTarget, peer missed the resync finished event, corrected peer:\n"); 3327 3328 device->p_uuid[UI_HISTORY_START + 1] = device->p_uuid[UI_HISTORY_START]; 3329 device->p_uuid[UI_HISTORY_START] = device->p_uuid[UI_BITMAP]; 3330 device->p_uuid[UI_BITMAP] = 0UL; 3331 3332 drbd_uuid_dump(device, "peer", device->p_uuid, device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]); 3333 *rule_nr = 35; 3334 } else { 3335 drbd_info(device, "was SyncTarget (failed to write sync_uuid)\n"); 3336 *rule_nr = 37; 3337 } 3338 3339 return -1; 3340 } 3341 3342 /* Common power [off|failure] */ 3343 rct = (test_bit(CRASHED_PRIMARY, &device->flags) ? 1 : 0) + 3344 (device->p_uuid[UI_FLAGS] & 2); 3345 /* lowest bit is set when we were primary, 3346 * next bit (weight 2) is set when peer was primary */ 3347 *rule_nr = 40; 3348 3349 /* Neither has the "crashed primary" flag set, 3350 * only a replication link hickup. */ 3351 if (rct == 0) 3352 return 0; 3353 3354 /* Current UUID equal and no bitmap uuid; does not necessarily 3355 * mean this was a "simultaneous hard crash", maybe IO was 3356 * frozen, so no UUID-bump happened. 3357 * This is a protocol change, overload DRBD_FF_WSAME as flag 3358 * for "new-enough" peer DRBD version. */ 3359 if (device->state.role == R_PRIMARY || peer_role == R_PRIMARY) { 3360 *rule_nr = 41; 3361 if (!(connection->agreed_features & DRBD_FF_WSAME)) { 3362 drbd_warn(peer_device, "Equivalent unrotated UUIDs, but current primary present.\n"); 3363 return -(0x10000 | PRO_VERSION_MAX | (DRBD_FF_WSAME << 8)); 3364 } 3365 if (device->state.role == R_PRIMARY && peer_role == R_PRIMARY) { 3366 /* At least one has the "crashed primary" bit set, 3367 * both are primary now, but neither has rotated its UUIDs? 3368 * "Can not happen." */ 3369 drbd_err(peer_device, "Equivalent unrotated UUIDs, but both are primary. Can not resolve this.\n"); 3370 return -100; 3371 } 3372 if (device->state.role == R_PRIMARY) 3373 return 1; 3374 return -1; 3375 } 3376 3377 /* Both are secondary. 3378 * Really looks like recovery from simultaneous hard crash. 3379 * Check which had been primary before, and arbitrate. */ 3380 switch (rct) { 3381 case 0: /* !self_pri && !peer_pri */ return 0; /* already handled */ 3382 case 1: /* self_pri && !peer_pri */ return 1; 3383 case 2: /* !self_pri && peer_pri */ return -1; 3384 case 3: /* self_pri && peer_pri */ 3385 dc = test_bit(RESOLVE_CONFLICTS, &connection->flags); 3386 return dc ? -1 : 1; 3387 } 3388 } 3389 3390 *rule_nr = 50; 3391 peer = device->p_uuid[UI_BITMAP] & ~((u64)1); 3392 if (self == peer) 3393 return -1; 3394 3395 *rule_nr = 51; 3396 peer = device->p_uuid[UI_HISTORY_START] & ~((u64)1); 3397 if (self == peer) { 3398 if (connection->agreed_pro_version < 96 ? 3399 (device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == 3400 (device->p_uuid[UI_HISTORY_START + 1] & ~((u64)1)) : 3401 peer + UUID_NEW_BM_OFFSET == (device->p_uuid[UI_BITMAP] & ~((u64)1))) { 3402 /* The last P_SYNC_UUID did not get though. Undo the last start of 3403 resync as sync source modifications of the peer's UUIDs. */ 3404 3405 if (connection->agreed_pro_version < 91) 3406 return -1091; 3407 3408 device->p_uuid[UI_BITMAP] = device->p_uuid[UI_HISTORY_START]; 3409 device->p_uuid[UI_HISTORY_START] = device->p_uuid[UI_HISTORY_START + 1]; 3410 3411 drbd_info(device, "Lost last syncUUID packet, corrected:\n"); 3412 drbd_uuid_dump(device, "peer", device->p_uuid, device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]); 3413 3414 return -1; 3415 } 3416 } 3417 3418 *rule_nr = 60; 3419 self = device->ldev->md.uuid[UI_CURRENT] & ~((u64)1); 3420 for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) { 3421 peer = device->p_uuid[i] & ~((u64)1); 3422 if (self == peer) 3423 return -2; 3424 } 3425 3426 *rule_nr = 70; 3427 self = device->ldev->md.uuid[UI_BITMAP] & ~((u64)1); 3428 peer = device->p_uuid[UI_CURRENT] & ~((u64)1); 3429 if (self == peer) 3430 return 1; 3431 3432 *rule_nr = 71; 3433 self = device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1); 3434 if (self == peer) { 3435 if (connection->agreed_pro_version < 96 ? 3436 (device->ldev->md.uuid[UI_HISTORY_START + 1] & ~((u64)1)) == 3437 (device->p_uuid[UI_HISTORY_START] & ~((u64)1)) : 3438 self + UUID_NEW_BM_OFFSET == (device->ldev->md.uuid[UI_BITMAP] & ~((u64)1))) { 3439 /* The last P_SYNC_UUID did not get though. Undo the last start of 3440 resync as sync source modifications of our UUIDs. */ 3441 3442 if (connection->agreed_pro_version < 91) 3443 return -1091; 3444 3445 __drbd_uuid_set(device, UI_BITMAP, device->ldev->md.uuid[UI_HISTORY_START]); 3446 __drbd_uuid_set(device, UI_HISTORY_START, device->ldev->md.uuid[UI_HISTORY_START + 1]); 3447 3448 drbd_info(device, "Last syncUUID did not get through, corrected:\n"); 3449 drbd_uuid_dump(device, "self", device->ldev->md.uuid, 3450 device->state.disk >= D_NEGOTIATING ? drbd_bm_total_weight(device) : 0, 0); 3451 3452 return 1; 3453 } 3454 } 3455 3456 3457 *rule_nr = 80; 3458 peer = device->p_uuid[UI_CURRENT] & ~((u64)1); 3459 for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) { 3460 self = device->ldev->md.uuid[i] & ~((u64)1); 3461 if (self == peer) 3462 return 2; 3463 } 3464 3465 *rule_nr = 90; 3466 self = device->ldev->md.uuid[UI_BITMAP] & ~((u64)1); 3467 peer = device->p_uuid[UI_BITMAP] & ~((u64)1); 3468 if (self == peer && self != ((u64)0)) 3469 return 100; 3470 3471 *rule_nr = 100; 3472 for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) { 3473 self = device->ldev->md.uuid[i] & ~((u64)1); 3474 for (j = UI_HISTORY_START; j <= UI_HISTORY_END; j++) { 3475 peer = device->p_uuid[j] & ~((u64)1); 3476 if (self == peer) 3477 return -100; 3478 } 3479 } 3480 3481 return -1000; 3482 } 3483 3484 /* drbd_sync_handshake() returns the new conn state on success, or 3485 CONN_MASK (-1) on failure. 3486 */ 3487 static enum drbd_conns drbd_sync_handshake(struct drbd_peer_device *peer_device, 3488 enum drbd_role peer_role, 3489 enum drbd_disk_state peer_disk) __must_hold(local) 3490 { 3491 struct drbd_device *device = peer_device->device; 3492 enum drbd_conns rv = C_MASK; 3493 enum drbd_disk_state mydisk; 3494 struct net_conf *nc; 3495 int hg, rule_nr, rr_conflict, tentative, always_asbp; 3496 3497 mydisk = device->state.disk; 3498 if (mydisk == D_NEGOTIATING) 3499 mydisk = device->new_state_tmp.disk; 3500 3501 drbd_info(device, "drbd_sync_handshake:\n"); 3502 3503 spin_lock_irq(&device->ldev->md.uuid_lock); 3504 drbd_uuid_dump(device, "self", device->ldev->md.uuid, device->comm_bm_set, 0); 3505 drbd_uuid_dump(device, "peer", device->p_uuid, 3506 device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]); 3507 3508 hg = drbd_uuid_compare(device, peer_role, &rule_nr); 3509 spin_unlock_irq(&device->ldev->md.uuid_lock); 3510 3511 drbd_info(device, "uuid_compare()=%d by rule %d\n", hg, rule_nr); 3512 3513 if (hg == -1000) { 3514 drbd_alert(device, "Unrelated data, aborting!\n"); 3515 return C_MASK; 3516 } 3517 if (hg < -0x10000) { 3518 int proto, fflags; 3519 hg = -hg; 3520 proto = hg & 0xff; 3521 fflags = (hg >> 8) & 0xff; 3522 drbd_alert(device, "To resolve this both sides have to support at least protocol %d and feature flags 0x%x\n", 3523 proto, fflags); 3524 return C_MASK; 3525 } 3526 if (hg < -1000) { 3527 drbd_alert(device, "To resolve this both sides have to support at least protocol %d\n", -hg - 1000); 3528 return C_MASK; 3529 } 3530 3531 if ((mydisk == D_INCONSISTENT && peer_disk > D_INCONSISTENT) || 3532 (peer_disk == D_INCONSISTENT && mydisk > D_INCONSISTENT)) { 3533 int f = (hg == -100) || abs(hg) == 2; 3534 hg = mydisk > D_INCONSISTENT ? 1 : -1; 3535 if (f) 3536 hg = hg*2; 3537 drbd_info(device, "Becoming sync %s due to disk states.\n", 3538 hg > 0 ? "source" : "target"); 3539 } 3540 3541 if (abs(hg) == 100) 3542 drbd_khelper(device, "initial-split-brain"); 3543 3544 rcu_read_lock(); 3545 nc = rcu_dereference(peer_device->connection->net_conf); 3546 always_asbp = nc->always_asbp; 3547 rr_conflict = nc->rr_conflict; 3548 tentative = nc->tentative; 3549 rcu_read_unlock(); 3550 3551 if (hg == 100 || (hg == -100 && always_asbp)) { 3552 int pcount = (device->state.role == R_PRIMARY) 3553 + (peer_role == R_PRIMARY); 3554 int forced = (hg == -100); 3555 3556 switch (pcount) { 3557 case 0: 3558 hg = drbd_asb_recover_0p(peer_device); 3559 break; 3560 case 1: 3561 hg = drbd_asb_recover_1p(peer_device); 3562 break; 3563 case 2: 3564 hg = drbd_asb_recover_2p(peer_device); 3565 break; 3566 } 3567 if (abs(hg) < 100) { 3568 drbd_warn(device, "Split-Brain detected, %d primaries, " 3569 "automatically solved. Sync from %s node\n", 3570 pcount, (hg < 0) ? "peer" : "this"); 3571 if (forced) { 3572 drbd_warn(device, "Doing a full sync, since" 3573 " UUIDs where ambiguous.\n"); 3574 hg = hg*2; 3575 } 3576 } 3577 } 3578 3579 if (hg == -100) { 3580 if (test_bit(DISCARD_MY_DATA, &device->flags) && !(device->p_uuid[UI_FLAGS]&1)) 3581 hg = -1; 3582 if (!test_bit(DISCARD_MY_DATA, &device->flags) && (device->p_uuid[UI_FLAGS]&1)) 3583 hg = 1; 3584 3585 if (abs(hg) < 100) 3586 drbd_warn(device, "Split-Brain detected, manually solved. " 3587 "Sync from %s node\n", 3588 (hg < 0) ? "peer" : "this"); 3589 } 3590 3591 if (hg == -100) { 3592 /* FIXME this log message is not correct if we end up here 3593 * after an attempted attach on a diskless node. 3594 * We just refuse to attach -- well, we drop the "connection" 3595 * to that disk, in a way... */ 3596 drbd_alert(device, "Split-Brain detected but unresolved, dropping connection!\n"); 3597 drbd_khelper(device, "split-brain"); 3598 return C_MASK; 3599 } 3600 3601 if (hg > 0 && mydisk <= D_INCONSISTENT) { 3602 drbd_err(device, "I shall become SyncSource, but I am inconsistent!\n"); 3603 return C_MASK; 3604 } 3605 3606 if (hg < 0 && /* by intention we do not use mydisk here. */ 3607 device->state.role == R_PRIMARY && device->state.disk >= D_CONSISTENT) { 3608 switch (rr_conflict) { 3609 case ASB_CALL_HELPER: 3610 drbd_khelper(device, "pri-lost"); 3611 fallthrough; 3612 case ASB_DISCONNECT: 3613 drbd_err(device, "I shall become SyncTarget, but I am primary!\n"); 3614 return C_MASK; 3615 case ASB_VIOLENTLY: 3616 drbd_warn(device, "Becoming SyncTarget, violating the stable-data" 3617 "assumption\n"); 3618 } 3619 } 3620 3621 if (tentative || test_bit(CONN_DRY_RUN, &peer_device->connection->flags)) { 3622 if (hg == 0) 3623 drbd_info(device, "dry-run connect: No resync, would become Connected immediately.\n"); 3624 else 3625 drbd_info(device, "dry-run connect: Would become %s, doing a %s resync.", 3626 drbd_conn_str(hg > 0 ? C_SYNC_SOURCE : C_SYNC_TARGET), 3627 abs(hg) >= 2 ? "full" : "bit-map based"); 3628 return C_MASK; 3629 } 3630 3631 if (abs(hg) >= 2) { 3632 drbd_info(device, "Writing the whole bitmap, full sync required after drbd_sync_handshake.\n"); 3633 if (drbd_bitmap_io(device, &drbd_bmio_set_n_write, "set_n_write from sync_handshake", 3634 BM_LOCKED_SET_ALLOWED)) 3635 return C_MASK; 3636 } 3637 3638 if (hg > 0) { /* become sync source. */ 3639 rv = C_WF_BITMAP_S; 3640 } else if (hg < 0) { /* become sync target */ 3641 rv = C_WF_BITMAP_T; 3642 } else { 3643 rv = C_CONNECTED; 3644 if (drbd_bm_total_weight(device)) { 3645 drbd_info(device, "No resync, but %lu bits in bitmap!\n", 3646 drbd_bm_total_weight(device)); 3647 } 3648 } 3649 3650 return rv; 3651 } 3652 3653 static enum drbd_after_sb_p convert_after_sb(enum drbd_after_sb_p peer) 3654 { 3655 /* ASB_DISCARD_REMOTE - ASB_DISCARD_LOCAL is valid */ 3656 if (peer == ASB_DISCARD_REMOTE) 3657 return ASB_DISCARD_LOCAL; 3658 3659 /* any other things with ASB_DISCARD_REMOTE or ASB_DISCARD_LOCAL are invalid */ 3660 if (peer == ASB_DISCARD_LOCAL) 3661 return ASB_DISCARD_REMOTE; 3662 3663 /* everything else is valid if they are equal on both sides. */ 3664 return peer; 3665 } 3666 3667 static int receive_protocol(struct drbd_connection *connection, struct packet_info *pi) 3668 { 3669 struct p_protocol *p = pi->data; 3670 enum drbd_after_sb_p p_after_sb_0p, p_after_sb_1p, p_after_sb_2p; 3671 int p_proto, p_discard_my_data, p_two_primaries, cf; 3672 struct net_conf *nc, *old_net_conf, *new_net_conf = NULL; 3673 char integrity_alg[SHARED_SECRET_MAX] = ""; 3674 struct crypto_shash *peer_integrity_tfm = NULL; 3675 void *int_dig_in = NULL, *int_dig_vv = NULL; 3676 3677 p_proto = be32_to_cpu(p->protocol); 3678 p_after_sb_0p = be32_to_cpu(p->after_sb_0p); 3679 p_after_sb_1p = be32_to_cpu(p->after_sb_1p); 3680 p_after_sb_2p = be32_to_cpu(p->after_sb_2p); 3681 p_two_primaries = be32_to_cpu(p->two_primaries); 3682 cf = be32_to_cpu(p->conn_flags); 3683 p_discard_my_data = cf & CF_DISCARD_MY_DATA; 3684 3685 if (connection->agreed_pro_version >= 87) { 3686 int err; 3687 3688 if (pi->size > sizeof(integrity_alg)) 3689 return -EIO; 3690 err = drbd_recv_all(connection, integrity_alg, pi->size); 3691 if (err) 3692 return err; 3693 integrity_alg[SHARED_SECRET_MAX - 1] = 0; 3694 } 3695 3696 if (pi->cmd != P_PROTOCOL_UPDATE) { 3697 clear_bit(CONN_DRY_RUN, &connection->flags); 3698 3699 if (cf & CF_DRY_RUN) 3700 set_bit(CONN_DRY_RUN, &connection->flags); 3701 3702 rcu_read_lock(); 3703 nc = rcu_dereference(connection->net_conf); 3704 3705 if (p_proto != nc->wire_protocol) { 3706 drbd_err(connection, "incompatible %s settings\n", "protocol"); 3707 goto disconnect_rcu_unlock; 3708 } 3709 3710 if (convert_after_sb(p_after_sb_0p) != nc->after_sb_0p) { 3711 drbd_err(connection, "incompatible %s settings\n", "after-sb-0pri"); 3712 goto disconnect_rcu_unlock; 3713 } 3714 3715 if (convert_after_sb(p_after_sb_1p) != nc->after_sb_1p) { 3716 drbd_err(connection, "incompatible %s settings\n", "after-sb-1pri"); 3717 goto disconnect_rcu_unlock; 3718 } 3719 3720 if (convert_after_sb(p_after_sb_2p) != nc->after_sb_2p) { 3721 drbd_err(connection, "incompatible %s settings\n", "after-sb-2pri"); 3722 goto disconnect_rcu_unlock; 3723 } 3724 3725 if (p_discard_my_data && nc->discard_my_data) { 3726 drbd_err(connection, "incompatible %s settings\n", "discard-my-data"); 3727 goto disconnect_rcu_unlock; 3728 } 3729 3730 if (p_two_primaries != nc->two_primaries) { 3731 drbd_err(connection, "incompatible %s settings\n", "allow-two-primaries"); 3732 goto disconnect_rcu_unlock; 3733 } 3734 3735 if (strcmp(integrity_alg, nc->integrity_alg)) { 3736 drbd_err(connection, "incompatible %s settings\n", "data-integrity-alg"); 3737 goto disconnect_rcu_unlock; 3738 } 3739 3740 rcu_read_unlock(); 3741 } 3742 3743 if (integrity_alg[0]) { 3744 int hash_size; 3745 3746 /* 3747 * We can only change the peer data integrity algorithm 3748 * here. Changing our own data integrity algorithm 3749 * requires that we send a P_PROTOCOL_UPDATE packet at 3750 * the same time; otherwise, the peer has no way to 3751 * tell between which packets the algorithm should 3752 * change. 3753 */ 3754 3755 peer_integrity_tfm = crypto_alloc_shash(integrity_alg, 0, 0); 3756 if (IS_ERR(peer_integrity_tfm)) { 3757 peer_integrity_tfm = NULL; 3758 drbd_err(connection, "peer data-integrity-alg %s not supported\n", 3759 integrity_alg); 3760 goto disconnect; 3761 } 3762 3763 hash_size = crypto_shash_digestsize(peer_integrity_tfm); 3764 int_dig_in = kmalloc(hash_size, GFP_KERNEL); 3765 int_dig_vv = kmalloc(hash_size, GFP_KERNEL); 3766 if (!(int_dig_in && int_dig_vv)) { 3767 drbd_err(connection, "Allocation of buffers for data integrity checking failed\n"); 3768 goto disconnect; 3769 } 3770 } 3771 3772 new_net_conf = kmalloc(sizeof(struct net_conf), GFP_KERNEL); 3773 if (!new_net_conf) 3774 goto disconnect; 3775 3776 mutex_lock(&connection->data.mutex); 3777 mutex_lock(&connection->resource->conf_update); 3778 old_net_conf = connection->net_conf; 3779 *new_net_conf = *old_net_conf; 3780 3781 new_net_conf->wire_protocol = p_proto; 3782 new_net_conf->after_sb_0p = convert_after_sb(p_after_sb_0p); 3783 new_net_conf->after_sb_1p = convert_after_sb(p_after_sb_1p); 3784 new_net_conf->after_sb_2p = convert_after_sb(p_after_sb_2p); 3785 new_net_conf->two_primaries = p_two_primaries; 3786 3787 rcu_assign_pointer(connection->net_conf, new_net_conf); 3788 mutex_unlock(&connection->resource->conf_update); 3789 mutex_unlock(&connection->data.mutex); 3790 3791 crypto_free_shash(connection->peer_integrity_tfm); 3792 kfree(connection->int_dig_in); 3793 kfree(connection->int_dig_vv); 3794 connection->peer_integrity_tfm = peer_integrity_tfm; 3795 connection->int_dig_in = int_dig_in; 3796 connection->int_dig_vv = int_dig_vv; 3797 3798 if (strcmp(old_net_conf->integrity_alg, integrity_alg)) 3799 drbd_info(connection, "peer data-integrity-alg: %s\n", 3800 integrity_alg[0] ? integrity_alg : "(none)"); 3801 3802 synchronize_rcu(); 3803 kfree(old_net_conf); 3804 return 0; 3805 3806 disconnect_rcu_unlock: 3807 rcu_read_unlock(); 3808 disconnect: 3809 crypto_free_shash(peer_integrity_tfm); 3810 kfree(int_dig_in); 3811 kfree(int_dig_vv); 3812 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 3813 return -EIO; 3814 } 3815 3816 /* helper function 3817 * input: alg name, feature name 3818 * return: NULL (alg name was "") 3819 * ERR_PTR(error) if something goes wrong 3820 * or the crypto hash ptr, if it worked out ok. */ 3821 static struct crypto_shash *drbd_crypto_alloc_digest_safe( 3822 const struct drbd_device *device, 3823 const char *alg, const char *name) 3824 { 3825 struct crypto_shash *tfm; 3826 3827 if (!alg[0]) 3828 return NULL; 3829 3830 tfm = crypto_alloc_shash(alg, 0, 0); 3831 if (IS_ERR(tfm)) { 3832 drbd_err(device, "Can not allocate \"%s\" as %s (reason: %ld)\n", 3833 alg, name, PTR_ERR(tfm)); 3834 return tfm; 3835 } 3836 return tfm; 3837 } 3838 3839 static int ignore_remaining_packet(struct drbd_connection *connection, struct packet_info *pi) 3840 { 3841 void *buffer = connection->data.rbuf; 3842 int size = pi->size; 3843 3844 while (size) { 3845 int s = min_t(int, size, DRBD_SOCKET_BUFFER_SIZE); 3846 s = drbd_recv(connection, buffer, s); 3847 if (s <= 0) { 3848 if (s < 0) 3849 return s; 3850 break; 3851 } 3852 size -= s; 3853 } 3854 if (size) 3855 return -EIO; 3856 return 0; 3857 } 3858 3859 /* 3860 * config_unknown_volume - device configuration command for unknown volume 3861 * 3862 * When a device is added to an existing connection, the node on which the 3863 * device is added first will send configuration commands to its peer but the 3864 * peer will not know about the device yet. It will warn and ignore these 3865 * commands. Once the device is added on the second node, the second node will 3866 * send the same device configuration commands, but in the other direction. 3867 * 3868 * (We can also end up here if drbd is misconfigured.) 3869 */ 3870 static int config_unknown_volume(struct drbd_connection *connection, struct packet_info *pi) 3871 { 3872 drbd_warn(connection, "%s packet received for volume %u, which is not configured locally\n", 3873 cmdname(pi->cmd), pi->vnr); 3874 return ignore_remaining_packet(connection, pi); 3875 } 3876 3877 static int receive_SyncParam(struct drbd_connection *connection, struct packet_info *pi) 3878 { 3879 struct drbd_peer_device *peer_device; 3880 struct drbd_device *device; 3881 struct p_rs_param_95 *p; 3882 unsigned int header_size, data_size, exp_max_sz; 3883 struct crypto_shash *verify_tfm = NULL; 3884 struct crypto_shash *csums_tfm = NULL; 3885 struct net_conf *old_net_conf, *new_net_conf = NULL; 3886 struct disk_conf *old_disk_conf = NULL, *new_disk_conf = NULL; 3887 const int apv = connection->agreed_pro_version; 3888 struct fifo_buffer *old_plan = NULL, *new_plan = NULL; 3889 unsigned int fifo_size = 0; 3890 int err; 3891 3892 peer_device = conn_peer_device(connection, pi->vnr); 3893 if (!peer_device) 3894 return config_unknown_volume(connection, pi); 3895 device = peer_device->device; 3896 3897 exp_max_sz = apv <= 87 ? sizeof(struct p_rs_param) 3898 : apv == 88 ? sizeof(struct p_rs_param) 3899 + SHARED_SECRET_MAX 3900 : apv <= 94 ? sizeof(struct p_rs_param_89) 3901 : /* apv >= 95 */ sizeof(struct p_rs_param_95); 3902 3903 if (pi->size > exp_max_sz) { 3904 drbd_err(device, "SyncParam packet too long: received %u, expected <= %u bytes\n", 3905 pi->size, exp_max_sz); 3906 return -EIO; 3907 } 3908 3909 if (apv <= 88) { 3910 header_size = sizeof(struct p_rs_param); 3911 data_size = pi->size - header_size; 3912 } else if (apv <= 94) { 3913 header_size = sizeof(struct p_rs_param_89); 3914 data_size = pi->size - header_size; 3915 D_ASSERT(device, data_size == 0); 3916 } else { 3917 header_size = sizeof(struct p_rs_param_95); 3918 data_size = pi->size - header_size; 3919 D_ASSERT(device, data_size == 0); 3920 } 3921 3922 /* initialize verify_alg and csums_alg */ 3923 p = pi->data; 3924 BUILD_BUG_ON(sizeof(p->algs) != 2 * SHARED_SECRET_MAX); 3925 memset(&p->algs, 0, sizeof(p->algs)); 3926 3927 err = drbd_recv_all(peer_device->connection, p, header_size); 3928 if (err) 3929 return err; 3930 3931 mutex_lock(&connection->resource->conf_update); 3932 old_net_conf = peer_device->connection->net_conf; 3933 if (get_ldev(device)) { 3934 new_disk_conf = kzalloc(sizeof(struct disk_conf), GFP_KERNEL); 3935 if (!new_disk_conf) { 3936 put_ldev(device); 3937 mutex_unlock(&connection->resource->conf_update); 3938 drbd_err(device, "Allocation of new disk_conf failed\n"); 3939 return -ENOMEM; 3940 } 3941 3942 old_disk_conf = device->ldev->disk_conf; 3943 *new_disk_conf = *old_disk_conf; 3944 3945 new_disk_conf->resync_rate = be32_to_cpu(p->resync_rate); 3946 } 3947 3948 if (apv >= 88) { 3949 if (apv == 88) { 3950 if (data_size > SHARED_SECRET_MAX || data_size == 0) { 3951 drbd_err(device, "verify-alg of wrong size, " 3952 "peer wants %u, accepting only up to %u byte\n", 3953 data_size, SHARED_SECRET_MAX); 3954 err = -EIO; 3955 goto reconnect; 3956 } 3957 3958 err = drbd_recv_all(peer_device->connection, p->verify_alg, data_size); 3959 if (err) 3960 goto reconnect; 3961 /* we expect NUL terminated string */ 3962 /* but just in case someone tries to be evil */ 3963 D_ASSERT(device, p->verify_alg[data_size-1] == 0); 3964 p->verify_alg[data_size-1] = 0; 3965 3966 } else /* apv >= 89 */ { 3967 /* we still expect NUL terminated strings */ 3968 /* but just in case someone tries to be evil */ 3969 D_ASSERT(device, p->verify_alg[SHARED_SECRET_MAX-1] == 0); 3970 D_ASSERT(device, p->csums_alg[SHARED_SECRET_MAX-1] == 0); 3971 p->verify_alg[SHARED_SECRET_MAX-1] = 0; 3972 p->csums_alg[SHARED_SECRET_MAX-1] = 0; 3973 } 3974 3975 if (strcmp(old_net_conf->verify_alg, p->verify_alg)) { 3976 if (device->state.conn == C_WF_REPORT_PARAMS) { 3977 drbd_err(device, "Different verify-alg settings. me=\"%s\" peer=\"%s\"\n", 3978 old_net_conf->verify_alg, p->verify_alg); 3979 goto disconnect; 3980 } 3981 verify_tfm = drbd_crypto_alloc_digest_safe(device, 3982 p->verify_alg, "verify-alg"); 3983 if (IS_ERR(verify_tfm)) { 3984 verify_tfm = NULL; 3985 goto disconnect; 3986 } 3987 } 3988 3989 if (apv >= 89 && strcmp(old_net_conf->csums_alg, p->csums_alg)) { 3990 if (device->state.conn == C_WF_REPORT_PARAMS) { 3991 drbd_err(device, "Different csums-alg settings. me=\"%s\" peer=\"%s\"\n", 3992 old_net_conf->csums_alg, p->csums_alg); 3993 goto disconnect; 3994 } 3995 csums_tfm = drbd_crypto_alloc_digest_safe(device, 3996 p->csums_alg, "csums-alg"); 3997 if (IS_ERR(csums_tfm)) { 3998 csums_tfm = NULL; 3999 goto disconnect; 4000 } 4001 } 4002 4003 if (apv > 94 && new_disk_conf) { 4004 new_disk_conf->c_plan_ahead = be32_to_cpu(p->c_plan_ahead); 4005 new_disk_conf->c_delay_target = be32_to_cpu(p->c_delay_target); 4006 new_disk_conf->c_fill_target = be32_to_cpu(p->c_fill_target); 4007 new_disk_conf->c_max_rate = be32_to_cpu(p->c_max_rate); 4008 4009 fifo_size = (new_disk_conf->c_plan_ahead * 10 * SLEEP_TIME) / HZ; 4010 if (fifo_size != device->rs_plan_s->size) { 4011 new_plan = fifo_alloc(fifo_size); 4012 if (!new_plan) { 4013 drbd_err(device, "kmalloc of fifo_buffer failed"); 4014 put_ldev(device); 4015 goto disconnect; 4016 } 4017 } 4018 } 4019 4020 if (verify_tfm || csums_tfm) { 4021 new_net_conf = kzalloc(sizeof(struct net_conf), GFP_KERNEL); 4022 if (!new_net_conf) 4023 goto disconnect; 4024 4025 *new_net_conf = *old_net_conf; 4026 4027 if (verify_tfm) { 4028 strcpy(new_net_conf->verify_alg, p->verify_alg); 4029 new_net_conf->verify_alg_len = strlen(p->verify_alg) + 1; 4030 crypto_free_shash(peer_device->connection->verify_tfm); 4031 peer_device->connection->verify_tfm = verify_tfm; 4032 drbd_info(device, "using verify-alg: \"%s\"\n", p->verify_alg); 4033 } 4034 if (csums_tfm) { 4035 strcpy(new_net_conf->csums_alg, p->csums_alg); 4036 new_net_conf->csums_alg_len = strlen(p->csums_alg) + 1; 4037 crypto_free_shash(peer_device->connection->csums_tfm); 4038 peer_device->connection->csums_tfm = csums_tfm; 4039 drbd_info(device, "using csums-alg: \"%s\"\n", p->csums_alg); 4040 } 4041 rcu_assign_pointer(connection->net_conf, new_net_conf); 4042 } 4043 } 4044 4045 if (new_disk_conf) { 4046 rcu_assign_pointer(device->ldev->disk_conf, new_disk_conf); 4047 put_ldev(device); 4048 } 4049 4050 if (new_plan) { 4051 old_plan = device->rs_plan_s; 4052 rcu_assign_pointer(device->rs_plan_s, new_plan); 4053 } 4054 4055 mutex_unlock(&connection->resource->conf_update); 4056 synchronize_rcu(); 4057 if (new_net_conf) 4058 kfree(old_net_conf); 4059 kfree(old_disk_conf); 4060 kfree(old_plan); 4061 4062 return 0; 4063 4064 reconnect: 4065 if (new_disk_conf) { 4066 put_ldev(device); 4067 kfree(new_disk_conf); 4068 } 4069 mutex_unlock(&connection->resource->conf_update); 4070 return -EIO; 4071 4072 disconnect: 4073 kfree(new_plan); 4074 if (new_disk_conf) { 4075 put_ldev(device); 4076 kfree(new_disk_conf); 4077 } 4078 mutex_unlock(&connection->resource->conf_update); 4079 /* just for completeness: actually not needed, 4080 * as this is not reached if csums_tfm was ok. */ 4081 crypto_free_shash(csums_tfm); 4082 /* but free the verify_tfm again, if csums_tfm did not work out */ 4083 crypto_free_shash(verify_tfm); 4084 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD); 4085 return -EIO; 4086 } 4087 4088 /* warn if the arguments differ by more than 12.5% */ 4089 static void warn_if_differ_considerably(struct drbd_device *device, 4090 const char *s, sector_t a, sector_t b) 4091 { 4092 sector_t d; 4093 if (a == 0 || b == 0) 4094 return; 4095 d = (a > b) ? (a - b) : (b - a); 4096 if (d > (a>>3) || d > (b>>3)) 4097 drbd_warn(device, "Considerable difference in %s: %llus vs. %llus\n", s, 4098 (unsigned long long)a, (unsigned long long)b); 4099 } 4100 4101 static int receive_sizes(struct drbd_connection *connection, struct packet_info *pi) 4102 { 4103 struct drbd_peer_device *peer_device; 4104 struct drbd_device *device; 4105 struct p_sizes *p = pi->data; 4106 struct o_qlim *o = (connection->agreed_features & DRBD_FF_WSAME) ? p->qlim : NULL; 4107 enum determine_dev_size dd = DS_UNCHANGED; 4108 sector_t p_size, p_usize, p_csize, my_usize; 4109 sector_t new_size, cur_size; 4110 int ldsc = 0; /* local disk size changed */ 4111 enum dds_flags ddsf; 4112 4113 peer_device = conn_peer_device(connection, pi->vnr); 4114 if (!peer_device) 4115 return config_unknown_volume(connection, pi); 4116 device = peer_device->device; 4117 cur_size = get_capacity(device->vdisk); 4118 4119 p_size = be64_to_cpu(p->d_size); 4120 p_usize = be64_to_cpu(p->u_size); 4121 p_csize = be64_to_cpu(p->c_size); 4122 4123 /* just store the peer's disk size for now. 4124 * we still need to figure out whether we accept that. */ 4125 device->p_size = p_size; 4126 4127 if (get_ldev(device)) { 4128 rcu_read_lock(); 4129 my_usize = rcu_dereference(device->ldev->disk_conf)->disk_size; 4130 rcu_read_unlock(); 4131 4132 warn_if_differ_considerably(device, "lower level device sizes", 4133 p_size, drbd_get_max_capacity(device->ldev)); 4134 warn_if_differ_considerably(device, "user requested size", 4135 p_usize, my_usize); 4136 4137 /* if this is the first connect, or an otherwise expected 4138 * param exchange, choose the minimum */ 4139 if (device->state.conn == C_WF_REPORT_PARAMS) 4140 p_usize = min_not_zero(my_usize, p_usize); 4141 4142 /* Never shrink a device with usable data during connect, 4143 * or "attach" on the peer. 4144 * But allow online shrinking if we are connected. */ 4145 new_size = drbd_new_dev_size(device, device->ldev, p_usize, 0); 4146 if (new_size < cur_size && 4147 device->state.disk >= D_OUTDATED && 4148 (device->state.conn < C_CONNECTED || device->state.pdsk == D_DISKLESS)) { 4149 drbd_err(device, "The peer's disk size is too small! (%llu < %llu sectors)\n", 4150 (unsigned long long)new_size, (unsigned long long)cur_size); 4151 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD); 4152 put_ldev(device); 4153 return -EIO; 4154 } 4155 4156 if (my_usize != p_usize) { 4157 struct disk_conf *old_disk_conf, *new_disk_conf = NULL; 4158 4159 new_disk_conf = kzalloc(sizeof(struct disk_conf), GFP_KERNEL); 4160 if (!new_disk_conf) { 4161 put_ldev(device); 4162 return -ENOMEM; 4163 } 4164 4165 mutex_lock(&connection->resource->conf_update); 4166 old_disk_conf = device->ldev->disk_conf; 4167 *new_disk_conf = *old_disk_conf; 4168 new_disk_conf->disk_size = p_usize; 4169 4170 rcu_assign_pointer(device->ldev->disk_conf, new_disk_conf); 4171 mutex_unlock(&connection->resource->conf_update); 4172 synchronize_rcu(); 4173 kfree(old_disk_conf); 4174 4175 drbd_info(device, "Peer sets u_size to %lu sectors (old: %lu)\n", 4176 (unsigned long)p_usize, (unsigned long)my_usize); 4177 } 4178 4179 put_ldev(device); 4180 } 4181 4182 device->peer_max_bio_size = be32_to_cpu(p->max_bio_size); 4183 /* Leave drbd_reconsider_queue_parameters() before drbd_determine_dev_size(). 4184 In case we cleared the QUEUE_FLAG_DISCARD from our queue in 4185 drbd_reconsider_queue_parameters(), we can be sure that after 4186 drbd_determine_dev_size() no REQ_DISCARDs are in the queue. */ 4187 4188 ddsf = be16_to_cpu(p->dds_flags); 4189 if (get_ldev(device)) { 4190 drbd_reconsider_queue_parameters(device, device->ldev, o); 4191 dd = drbd_determine_dev_size(device, ddsf, NULL); 4192 put_ldev(device); 4193 if (dd == DS_ERROR) 4194 return -EIO; 4195 drbd_md_sync(device); 4196 } else { 4197 /* 4198 * I am diskless, need to accept the peer's *current* size. 4199 * I must NOT accept the peers backing disk size, 4200 * it may have been larger than mine all along... 4201 * 4202 * At this point, the peer knows more about my disk, or at 4203 * least about what we last agreed upon, than myself. 4204 * So if his c_size is less than his d_size, the most likely 4205 * reason is that *my* d_size was smaller last time we checked. 4206 * 4207 * However, if he sends a zero current size, 4208 * take his (user-capped or) backing disk size anyways. 4209 * 4210 * Unless of course he does not have a disk himself. 4211 * In which case we ignore this completely. 4212 */ 4213 sector_t new_size = p_csize ?: p_usize ?: p_size; 4214 drbd_reconsider_queue_parameters(device, NULL, o); 4215 if (new_size == 0) { 4216 /* Ignore, peer does not know nothing. */ 4217 } else if (new_size == cur_size) { 4218 /* nothing to do */ 4219 } else if (cur_size != 0 && p_size == 0) { 4220 drbd_warn(device, "Ignored diskless peer device size (peer:%llu != me:%llu sectors)!\n", 4221 (unsigned long long)new_size, (unsigned long long)cur_size); 4222 } else if (new_size < cur_size && device->state.role == R_PRIMARY) { 4223 drbd_err(device, "The peer's device size is too small! (%llu < %llu sectors); demote me first!\n", 4224 (unsigned long long)new_size, (unsigned long long)cur_size); 4225 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD); 4226 return -EIO; 4227 } else { 4228 /* I believe the peer, if 4229 * - I don't have a current size myself 4230 * - we agree on the size anyways 4231 * - I do have a current size, am Secondary, 4232 * and he has the only disk 4233 * - I do have a current size, am Primary, 4234 * and he has the only disk, 4235 * which is larger than my current size 4236 */ 4237 drbd_set_my_capacity(device, new_size); 4238 } 4239 } 4240 4241 if (get_ldev(device)) { 4242 if (device->ldev->known_size != drbd_get_capacity(device->ldev->backing_bdev)) { 4243 device->ldev->known_size = drbd_get_capacity(device->ldev->backing_bdev); 4244 ldsc = 1; 4245 } 4246 4247 put_ldev(device); 4248 } 4249 4250 if (device->state.conn > C_WF_REPORT_PARAMS) { 4251 if (be64_to_cpu(p->c_size) != get_capacity(device->vdisk) || 4252 ldsc) { 4253 /* we have different sizes, probably peer 4254 * needs to know my new size... */ 4255 drbd_send_sizes(peer_device, 0, ddsf); 4256 } 4257 if (test_and_clear_bit(RESIZE_PENDING, &device->flags) || 4258 (dd == DS_GREW && device->state.conn == C_CONNECTED)) { 4259 if (device->state.pdsk >= D_INCONSISTENT && 4260 device->state.disk >= D_INCONSISTENT) { 4261 if (ddsf & DDSF_NO_RESYNC) 4262 drbd_info(device, "Resync of new storage suppressed with --assume-clean\n"); 4263 else 4264 resync_after_online_grow(device); 4265 } else 4266 set_bit(RESYNC_AFTER_NEG, &device->flags); 4267 } 4268 } 4269 4270 return 0; 4271 } 4272 4273 static int receive_uuids(struct drbd_connection *connection, struct packet_info *pi) 4274 { 4275 struct drbd_peer_device *peer_device; 4276 struct drbd_device *device; 4277 struct p_uuids *p = pi->data; 4278 u64 *p_uuid; 4279 int i, updated_uuids = 0; 4280 4281 peer_device = conn_peer_device(connection, pi->vnr); 4282 if (!peer_device) 4283 return config_unknown_volume(connection, pi); 4284 device = peer_device->device; 4285 4286 p_uuid = kmalloc_array(UI_EXTENDED_SIZE, sizeof(*p_uuid), GFP_NOIO); 4287 if (!p_uuid) 4288 return false; 4289 4290 for (i = UI_CURRENT; i < UI_EXTENDED_SIZE; i++) 4291 p_uuid[i] = be64_to_cpu(p->uuid[i]); 4292 4293 kfree(device->p_uuid); 4294 device->p_uuid = p_uuid; 4295 4296 if ((device->state.conn < C_CONNECTED || device->state.pdsk == D_DISKLESS) && 4297 device->state.disk < D_INCONSISTENT && 4298 device->state.role == R_PRIMARY && 4299 (device->ed_uuid & ~((u64)1)) != (p_uuid[UI_CURRENT] & ~((u64)1))) { 4300 drbd_err(device, "Can only connect to data with current UUID=%016llX\n", 4301 (unsigned long long)device->ed_uuid); 4302 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD); 4303 return -EIO; 4304 } 4305 4306 if (get_ldev(device)) { 4307 int skip_initial_sync = 4308 device->state.conn == C_CONNECTED && 4309 peer_device->connection->agreed_pro_version >= 90 && 4310 device->ldev->md.uuid[UI_CURRENT] == UUID_JUST_CREATED && 4311 (p_uuid[UI_FLAGS] & 8); 4312 if (skip_initial_sync) { 4313 drbd_info(device, "Accepted new current UUID, preparing to skip initial sync\n"); 4314 drbd_bitmap_io(device, &drbd_bmio_clear_n_write, 4315 "clear_n_write from receive_uuids", 4316 BM_LOCKED_TEST_ALLOWED); 4317 _drbd_uuid_set(device, UI_CURRENT, p_uuid[UI_CURRENT]); 4318 _drbd_uuid_set(device, UI_BITMAP, 0); 4319 _drbd_set_state(_NS2(device, disk, D_UP_TO_DATE, pdsk, D_UP_TO_DATE), 4320 CS_VERBOSE, NULL); 4321 drbd_md_sync(device); 4322 updated_uuids = 1; 4323 } 4324 put_ldev(device); 4325 } else if (device->state.disk < D_INCONSISTENT && 4326 device->state.role == R_PRIMARY) { 4327 /* I am a diskless primary, the peer just created a new current UUID 4328 for me. */ 4329 updated_uuids = drbd_set_ed_uuid(device, p_uuid[UI_CURRENT]); 4330 } 4331 4332 /* Before we test for the disk state, we should wait until an eventually 4333 ongoing cluster wide state change is finished. That is important if 4334 we are primary and are detaching from our disk. We need to see the 4335 new disk state... */ 4336 mutex_lock(device->state_mutex); 4337 mutex_unlock(device->state_mutex); 4338 if (device->state.conn >= C_CONNECTED && device->state.disk < D_INCONSISTENT) 4339 updated_uuids |= drbd_set_ed_uuid(device, p_uuid[UI_CURRENT]); 4340 4341 if (updated_uuids) 4342 drbd_print_uuids(device, "receiver updated UUIDs to"); 4343 4344 return 0; 4345 } 4346 4347 /** 4348 * convert_state() - Converts the peer's view of the cluster state to our point of view 4349 * @ps: The state as seen by the peer. 4350 */ 4351 static union drbd_state convert_state(union drbd_state ps) 4352 { 4353 union drbd_state ms; 4354 4355 static enum drbd_conns c_tab[] = { 4356 [C_WF_REPORT_PARAMS] = C_WF_REPORT_PARAMS, 4357 [C_CONNECTED] = C_CONNECTED, 4358 4359 [C_STARTING_SYNC_S] = C_STARTING_SYNC_T, 4360 [C_STARTING_SYNC_T] = C_STARTING_SYNC_S, 4361 [C_DISCONNECTING] = C_TEAR_DOWN, /* C_NETWORK_FAILURE, */ 4362 [C_VERIFY_S] = C_VERIFY_T, 4363 [C_MASK] = C_MASK, 4364 }; 4365 4366 ms.i = ps.i; 4367 4368 ms.conn = c_tab[ps.conn]; 4369 ms.peer = ps.role; 4370 ms.role = ps.peer; 4371 ms.pdsk = ps.disk; 4372 ms.disk = ps.pdsk; 4373 ms.peer_isp = (ps.aftr_isp | ps.user_isp); 4374 4375 return ms; 4376 } 4377 4378 static int receive_req_state(struct drbd_connection *connection, struct packet_info *pi) 4379 { 4380 struct drbd_peer_device *peer_device; 4381 struct drbd_device *device; 4382 struct p_req_state *p = pi->data; 4383 union drbd_state mask, val; 4384 enum drbd_state_rv rv; 4385 4386 peer_device = conn_peer_device(connection, pi->vnr); 4387 if (!peer_device) 4388 return -EIO; 4389 device = peer_device->device; 4390 4391 mask.i = be32_to_cpu(p->mask); 4392 val.i = be32_to_cpu(p->val); 4393 4394 if (test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags) && 4395 mutex_is_locked(device->state_mutex)) { 4396 drbd_send_sr_reply(peer_device, SS_CONCURRENT_ST_CHG); 4397 return 0; 4398 } 4399 4400 mask = convert_state(mask); 4401 val = convert_state(val); 4402 4403 rv = drbd_change_state(device, CS_VERBOSE, mask, val); 4404 drbd_send_sr_reply(peer_device, rv); 4405 4406 drbd_md_sync(device); 4407 4408 return 0; 4409 } 4410 4411 static int receive_req_conn_state(struct drbd_connection *connection, struct packet_info *pi) 4412 { 4413 struct p_req_state *p = pi->data; 4414 union drbd_state mask, val; 4415 enum drbd_state_rv rv; 4416 4417 mask.i = be32_to_cpu(p->mask); 4418 val.i = be32_to_cpu(p->val); 4419 4420 if (test_bit(RESOLVE_CONFLICTS, &connection->flags) && 4421 mutex_is_locked(&connection->cstate_mutex)) { 4422 conn_send_sr_reply(connection, SS_CONCURRENT_ST_CHG); 4423 return 0; 4424 } 4425 4426 mask = convert_state(mask); 4427 val = convert_state(val); 4428 4429 rv = conn_request_state(connection, mask, val, CS_VERBOSE | CS_LOCAL_ONLY | CS_IGN_OUTD_FAIL); 4430 conn_send_sr_reply(connection, rv); 4431 4432 return 0; 4433 } 4434 4435 static int receive_state(struct drbd_connection *connection, struct packet_info *pi) 4436 { 4437 struct drbd_peer_device *peer_device; 4438 struct drbd_device *device; 4439 struct p_state *p = pi->data; 4440 union drbd_state os, ns, peer_state; 4441 enum drbd_disk_state real_peer_disk; 4442 enum chg_state_flags cs_flags; 4443 int rv; 4444 4445 peer_device = conn_peer_device(connection, pi->vnr); 4446 if (!peer_device) 4447 return config_unknown_volume(connection, pi); 4448 device = peer_device->device; 4449 4450 peer_state.i = be32_to_cpu(p->state); 4451 4452 real_peer_disk = peer_state.disk; 4453 if (peer_state.disk == D_NEGOTIATING) { 4454 real_peer_disk = device->p_uuid[UI_FLAGS] & 4 ? D_INCONSISTENT : D_CONSISTENT; 4455 drbd_info(device, "real peer disk state = %s\n", drbd_disk_str(real_peer_disk)); 4456 } 4457 4458 spin_lock_irq(&device->resource->req_lock); 4459 retry: 4460 os = ns = drbd_read_state(device); 4461 spin_unlock_irq(&device->resource->req_lock); 4462 4463 /* If some other part of the code (ack_receiver thread, timeout) 4464 * already decided to close the connection again, 4465 * we must not "re-establish" it here. */ 4466 if (os.conn <= C_TEAR_DOWN) 4467 return -ECONNRESET; 4468 4469 /* If this is the "end of sync" confirmation, usually the peer disk 4470 * transitions from D_INCONSISTENT to D_UP_TO_DATE. For empty (0 bits 4471 * set) resync started in PausedSyncT, or if the timing of pause-/ 4472 * unpause-sync events has been "just right", the peer disk may 4473 * transition from D_CONSISTENT to D_UP_TO_DATE as well. 4474 */ 4475 if ((os.pdsk == D_INCONSISTENT || os.pdsk == D_CONSISTENT) && 4476 real_peer_disk == D_UP_TO_DATE && 4477 os.conn > C_CONNECTED && os.disk == D_UP_TO_DATE) { 4478 /* If we are (becoming) SyncSource, but peer is still in sync 4479 * preparation, ignore its uptodate-ness to avoid flapping, it 4480 * will change to inconsistent once the peer reaches active 4481 * syncing states. 4482 * It may have changed syncer-paused flags, however, so we 4483 * cannot ignore this completely. */ 4484 if (peer_state.conn > C_CONNECTED && 4485 peer_state.conn < C_SYNC_SOURCE) 4486 real_peer_disk = D_INCONSISTENT; 4487 4488 /* if peer_state changes to connected at the same time, 4489 * it explicitly notifies us that it finished resync. 4490 * Maybe we should finish it up, too? */ 4491 else if (os.conn >= C_SYNC_SOURCE && 4492 peer_state.conn == C_CONNECTED) { 4493 if (drbd_bm_total_weight(device) <= device->rs_failed) 4494 drbd_resync_finished(device); 4495 return 0; 4496 } 4497 } 4498 4499 /* explicit verify finished notification, stop sector reached. */ 4500 if (os.conn == C_VERIFY_T && os.disk == D_UP_TO_DATE && 4501 peer_state.conn == C_CONNECTED && real_peer_disk == D_UP_TO_DATE) { 4502 ov_out_of_sync_print(device); 4503 drbd_resync_finished(device); 4504 return 0; 4505 } 4506 4507 /* peer says his disk is inconsistent, while we think it is uptodate, 4508 * and this happens while the peer still thinks we have a sync going on, 4509 * but we think we are already done with the sync. 4510 * We ignore this to avoid flapping pdsk. 4511 * This should not happen, if the peer is a recent version of drbd. */ 4512 if (os.pdsk == D_UP_TO_DATE && real_peer_disk == D_INCONSISTENT && 4513 os.conn == C_CONNECTED && peer_state.conn > C_SYNC_SOURCE) 4514 real_peer_disk = D_UP_TO_DATE; 4515 4516 if (ns.conn == C_WF_REPORT_PARAMS) 4517 ns.conn = C_CONNECTED; 4518 4519 if (peer_state.conn == C_AHEAD) 4520 ns.conn = C_BEHIND; 4521 4522 /* TODO: 4523 * if (primary and diskless and peer uuid != effective uuid) 4524 * abort attach on peer; 4525 * 4526 * If this node does not have good data, was already connected, but 4527 * the peer did a late attach only now, trying to "negotiate" with me, 4528 * AND I am currently Primary, possibly frozen, with some specific 4529 * "effective" uuid, this should never be reached, really, because 4530 * we first send the uuids, then the current state. 4531 * 4532 * In this scenario, we already dropped the connection hard 4533 * when we received the unsuitable uuids (receive_uuids(). 4534 * 4535 * Should we want to change this, that is: not drop the connection in 4536 * receive_uuids() already, then we would need to add a branch here 4537 * that aborts the attach of "unsuitable uuids" on the peer in case 4538 * this node is currently Diskless Primary. 4539 */ 4540 4541 if (device->p_uuid && peer_state.disk >= D_NEGOTIATING && 4542 get_ldev_if_state(device, D_NEGOTIATING)) { 4543 int cr; /* consider resync */ 4544 4545 /* if we established a new connection */ 4546 cr = (os.conn < C_CONNECTED); 4547 /* if we had an established connection 4548 * and one of the nodes newly attaches a disk */ 4549 cr |= (os.conn == C_CONNECTED && 4550 (peer_state.disk == D_NEGOTIATING || 4551 os.disk == D_NEGOTIATING)); 4552 /* if we have both been inconsistent, and the peer has been 4553 * forced to be UpToDate with --force */ 4554 cr |= test_bit(CONSIDER_RESYNC, &device->flags); 4555 /* if we had been plain connected, and the admin requested to 4556 * start a sync by "invalidate" or "invalidate-remote" */ 4557 cr |= (os.conn == C_CONNECTED && 4558 (peer_state.conn >= C_STARTING_SYNC_S && 4559 peer_state.conn <= C_WF_BITMAP_T)); 4560 4561 if (cr) 4562 ns.conn = drbd_sync_handshake(peer_device, peer_state.role, real_peer_disk); 4563 4564 put_ldev(device); 4565 if (ns.conn == C_MASK) { 4566 ns.conn = C_CONNECTED; 4567 if (device->state.disk == D_NEGOTIATING) { 4568 drbd_force_state(device, NS(disk, D_FAILED)); 4569 } else if (peer_state.disk == D_NEGOTIATING) { 4570 drbd_err(device, "Disk attach process on the peer node was aborted.\n"); 4571 peer_state.disk = D_DISKLESS; 4572 real_peer_disk = D_DISKLESS; 4573 } else { 4574 if (test_and_clear_bit(CONN_DRY_RUN, &peer_device->connection->flags)) 4575 return -EIO; 4576 D_ASSERT(device, os.conn == C_WF_REPORT_PARAMS); 4577 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD); 4578 return -EIO; 4579 } 4580 } 4581 } 4582 4583 spin_lock_irq(&device->resource->req_lock); 4584 if (os.i != drbd_read_state(device).i) 4585 goto retry; 4586 clear_bit(CONSIDER_RESYNC, &device->flags); 4587 ns.peer = peer_state.role; 4588 ns.pdsk = real_peer_disk; 4589 ns.peer_isp = (peer_state.aftr_isp | peer_state.user_isp); 4590 if ((ns.conn == C_CONNECTED || ns.conn == C_WF_BITMAP_S) && ns.disk == D_NEGOTIATING) 4591 ns.disk = device->new_state_tmp.disk; 4592 cs_flags = CS_VERBOSE + (os.conn < C_CONNECTED && ns.conn >= C_CONNECTED ? 0 : CS_HARD); 4593 if (ns.pdsk == D_CONSISTENT && drbd_suspended(device) && ns.conn == C_CONNECTED && os.conn < C_CONNECTED && 4594 test_bit(NEW_CUR_UUID, &device->flags)) { 4595 /* Do not allow tl_restart(RESEND) for a rebooted peer. We can only allow this 4596 for temporal network outages! */ 4597 spin_unlock_irq(&device->resource->req_lock); 4598 drbd_err(device, "Aborting Connect, can not thaw IO with an only Consistent peer\n"); 4599 tl_clear(peer_device->connection); 4600 drbd_uuid_new_current(device); 4601 clear_bit(NEW_CUR_UUID, &device->flags); 4602 conn_request_state(peer_device->connection, NS2(conn, C_PROTOCOL_ERROR, susp, 0), CS_HARD); 4603 return -EIO; 4604 } 4605 rv = _drbd_set_state(device, ns, cs_flags, NULL); 4606 ns = drbd_read_state(device); 4607 spin_unlock_irq(&device->resource->req_lock); 4608 4609 if (rv < SS_SUCCESS) { 4610 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD); 4611 return -EIO; 4612 } 4613 4614 if (os.conn > C_WF_REPORT_PARAMS) { 4615 if (ns.conn > C_CONNECTED && peer_state.conn <= C_CONNECTED && 4616 peer_state.disk != D_NEGOTIATING ) { 4617 /* we want resync, peer has not yet decided to sync... */ 4618 /* Nowadays only used when forcing a node into primary role and 4619 setting its disk to UpToDate with that */ 4620 drbd_send_uuids(peer_device); 4621 drbd_send_current_state(peer_device); 4622 } 4623 } 4624 4625 clear_bit(DISCARD_MY_DATA, &device->flags); 4626 4627 drbd_md_sync(device); /* update connected indicator, la_size_sect, ... */ 4628 4629 return 0; 4630 } 4631 4632 static int receive_sync_uuid(struct drbd_connection *connection, struct packet_info *pi) 4633 { 4634 struct drbd_peer_device *peer_device; 4635 struct drbd_device *device; 4636 struct p_rs_uuid *p = pi->data; 4637 4638 peer_device = conn_peer_device(connection, pi->vnr); 4639 if (!peer_device) 4640 return -EIO; 4641 device = peer_device->device; 4642 4643 wait_event(device->misc_wait, 4644 device->state.conn == C_WF_SYNC_UUID || 4645 device->state.conn == C_BEHIND || 4646 device->state.conn < C_CONNECTED || 4647 device->state.disk < D_NEGOTIATING); 4648 4649 /* D_ASSERT(device, device->state.conn == C_WF_SYNC_UUID ); */ 4650 4651 /* Here the _drbd_uuid_ functions are right, current should 4652 _not_ be rotated into the history */ 4653 if (get_ldev_if_state(device, D_NEGOTIATING)) { 4654 _drbd_uuid_set(device, UI_CURRENT, be64_to_cpu(p->uuid)); 4655 _drbd_uuid_set(device, UI_BITMAP, 0UL); 4656 4657 drbd_print_uuids(device, "updated sync uuid"); 4658 drbd_start_resync(device, C_SYNC_TARGET); 4659 4660 put_ldev(device); 4661 } else 4662 drbd_err(device, "Ignoring SyncUUID packet!\n"); 4663 4664 return 0; 4665 } 4666 4667 /* 4668 * receive_bitmap_plain 4669 * 4670 * Return 0 when done, 1 when another iteration is needed, and a negative error 4671 * code upon failure. 4672 */ 4673 static int 4674 receive_bitmap_plain(struct drbd_peer_device *peer_device, unsigned int size, 4675 unsigned long *p, struct bm_xfer_ctx *c) 4676 { 4677 unsigned int data_size = DRBD_SOCKET_BUFFER_SIZE - 4678 drbd_header_size(peer_device->connection); 4679 unsigned int num_words = min_t(size_t, data_size / sizeof(*p), 4680 c->bm_words - c->word_offset); 4681 unsigned int want = num_words * sizeof(*p); 4682 int err; 4683 4684 if (want != size) { 4685 drbd_err(peer_device, "%s:want (%u) != size (%u)\n", __func__, want, size); 4686 return -EIO; 4687 } 4688 if (want == 0) 4689 return 0; 4690 err = drbd_recv_all(peer_device->connection, p, want); 4691 if (err) 4692 return err; 4693 4694 drbd_bm_merge_lel(peer_device->device, c->word_offset, num_words, p); 4695 4696 c->word_offset += num_words; 4697 c->bit_offset = c->word_offset * BITS_PER_LONG; 4698 if (c->bit_offset > c->bm_bits) 4699 c->bit_offset = c->bm_bits; 4700 4701 return 1; 4702 } 4703 4704 static enum drbd_bitmap_code dcbp_get_code(struct p_compressed_bm *p) 4705 { 4706 return (enum drbd_bitmap_code)(p->encoding & 0x0f); 4707 } 4708 4709 static int dcbp_get_start(struct p_compressed_bm *p) 4710 { 4711 return (p->encoding & 0x80) != 0; 4712 } 4713 4714 static int dcbp_get_pad_bits(struct p_compressed_bm *p) 4715 { 4716 return (p->encoding >> 4) & 0x7; 4717 } 4718 4719 /* 4720 * recv_bm_rle_bits 4721 * 4722 * Return 0 when done, 1 when another iteration is needed, and a negative error 4723 * code upon failure. 4724 */ 4725 static int 4726 recv_bm_rle_bits(struct drbd_peer_device *peer_device, 4727 struct p_compressed_bm *p, 4728 struct bm_xfer_ctx *c, 4729 unsigned int len) 4730 { 4731 struct bitstream bs; 4732 u64 look_ahead; 4733 u64 rl; 4734 u64 tmp; 4735 unsigned long s = c->bit_offset; 4736 unsigned long e; 4737 int toggle = dcbp_get_start(p); 4738 int have; 4739 int bits; 4740 4741 bitstream_init(&bs, p->code, len, dcbp_get_pad_bits(p)); 4742 4743 bits = bitstream_get_bits(&bs, &look_ahead, 64); 4744 if (bits < 0) 4745 return -EIO; 4746 4747 for (have = bits; have > 0; s += rl, toggle = !toggle) { 4748 bits = vli_decode_bits(&rl, look_ahead); 4749 if (bits <= 0) 4750 return -EIO; 4751 4752 if (toggle) { 4753 e = s + rl -1; 4754 if (e >= c->bm_bits) { 4755 drbd_err(peer_device, "bitmap overflow (e:%lu) while decoding bm RLE packet\n", e); 4756 return -EIO; 4757 } 4758 _drbd_bm_set_bits(peer_device->device, s, e); 4759 } 4760 4761 if (have < bits) { 4762 drbd_err(peer_device, "bitmap decoding error: h:%d b:%d la:0x%08llx l:%u/%u\n", 4763 have, bits, look_ahead, 4764 (unsigned int)(bs.cur.b - p->code), 4765 (unsigned int)bs.buf_len); 4766 return -EIO; 4767 } 4768 /* if we consumed all 64 bits, assign 0; >> 64 is "undefined"; */ 4769 if (likely(bits < 64)) 4770 look_ahead >>= bits; 4771 else 4772 look_ahead = 0; 4773 have -= bits; 4774 4775 bits = bitstream_get_bits(&bs, &tmp, 64 - have); 4776 if (bits < 0) 4777 return -EIO; 4778 look_ahead |= tmp << have; 4779 have += bits; 4780 } 4781 4782 c->bit_offset = s; 4783 bm_xfer_ctx_bit_to_word_offset(c); 4784 4785 return (s != c->bm_bits); 4786 } 4787 4788 /* 4789 * decode_bitmap_c 4790 * 4791 * Return 0 when done, 1 when another iteration is needed, and a negative error 4792 * code upon failure. 4793 */ 4794 static int 4795 decode_bitmap_c(struct drbd_peer_device *peer_device, 4796 struct p_compressed_bm *p, 4797 struct bm_xfer_ctx *c, 4798 unsigned int len) 4799 { 4800 if (dcbp_get_code(p) == RLE_VLI_Bits) 4801 return recv_bm_rle_bits(peer_device, p, c, len - sizeof(*p)); 4802 4803 /* other variants had been implemented for evaluation, 4804 * but have been dropped as this one turned out to be "best" 4805 * during all our tests. */ 4806 4807 drbd_err(peer_device, "receive_bitmap_c: unknown encoding %u\n", p->encoding); 4808 conn_request_state(peer_device->connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD); 4809 return -EIO; 4810 } 4811 4812 void INFO_bm_xfer_stats(struct drbd_device *device, 4813 const char *direction, struct bm_xfer_ctx *c) 4814 { 4815 /* what would it take to transfer it "plaintext" */ 4816 unsigned int header_size = drbd_header_size(first_peer_device(device)->connection); 4817 unsigned int data_size = DRBD_SOCKET_BUFFER_SIZE - header_size; 4818 unsigned int plain = 4819 header_size * (DIV_ROUND_UP(c->bm_words, data_size) + 1) + 4820 c->bm_words * sizeof(unsigned long); 4821 unsigned int total = c->bytes[0] + c->bytes[1]; 4822 unsigned int r; 4823 4824 /* total can not be zero. but just in case: */ 4825 if (total == 0) 4826 return; 4827 4828 /* don't report if not compressed */ 4829 if (total >= plain) 4830 return; 4831 4832 /* total < plain. check for overflow, still */ 4833 r = (total > UINT_MAX/1000) ? (total / (plain/1000)) 4834 : (1000 * total / plain); 4835 4836 if (r > 1000) 4837 r = 1000; 4838 4839 r = 1000 - r; 4840 drbd_info(device, "%s bitmap stats [Bytes(packets)]: plain %u(%u), RLE %u(%u), " 4841 "total %u; compression: %u.%u%%\n", 4842 direction, 4843 c->bytes[1], c->packets[1], 4844 c->bytes[0], c->packets[0], 4845 total, r/10, r % 10); 4846 } 4847 4848 /* Since we are processing the bitfield from lower addresses to higher, 4849 it does not matter if the process it in 32 bit chunks or 64 bit 4850 chunks as long as it is little endian. (Understand it as byte stream, 4851 beginning with the lowest byte...) If we would use big endian 4852 we would need to process it from the highest address to the lowest, 4853 in order to be agnostic to the 32 vs 64 bits issue. 4854 4855 returns 0 on failure, 1 if we successfully received it. */ 4856 static int receive_bitmap(struct drbd_connection *connection, struct packet_info *pi) 4857 { 4858 struct drbd_peer_device *peer_device; 4859 struct drbd_device *device; 4860 struct bm_xfer_ctx c; 4861 int err; 4862 4863 peer_device = conn_peer_device(connection, pi->vnr); 4864 if (!peer_device) 4865 return -EIO; 4866 device = peer_device->device; 4867 4868 drbd_bm_lock(device, "receive bitmap", BM_LOCKED_SET_ALLOWED); 4869 /* you are supposed to send additional out-of-sync information 4870 * if you actually set bits during this phase */ 4871 4872 c = (struct bm_xfer_ctx) { 4873 .bm_bits = drbd_bm_bits(device), 4874 .bm_words = drbd_bm_words(device), 4875 }; 4876 4877 for(;;) { 4878 if (pi->cmd == P_BITMAP) 4879 err = receive_bitmap_plain(peer_device, pi->size, pi->data, &c); 4880 else if (pi->cmd == P_COMPRESSED_BITMAP) { 4881 /* MAYBE: sanity check that we speak proto >= 90, 4882 * and the feature is enabled! */ 4883 struct p_compressed_bm *p = pi->data; 4884 4885 if (pi->size > DRBD_SOCKET_BUFFER_SIZE - drbd_header_size(connection)) { 4886 drbd_err(device, "ReportCBitmap packet too large\n"); 4887 err = -EIO; 4888 goto out; 4889 } 4890 if (pi->size <= sizeof(*p)) { 4891 drbd_err(device, "ReportCBitmap packet too small (l:%u)\n", pi->size); 4892 err = -EIO; 4893 goto out; 4894 } 4895 err = drbd_recv_all(peer_device->connection, p, pi->size); 4896 if (err) 4897 goto out; 4898 err = decode_bitmap_c(peer_device, p, &c, pi->size); 4899 } else { 4900 drbd_warn(device, "receive_bitmap: cmd neither ReportBitMap nor ReportCBitMap (is 0x%x)", pi->cmd); 4901 err = -EIO; 4902 goto out; 4903 } 4904 4905 c.packets[pi->cmd == P_BITMAP]++; 4906 c.bytes[pi->cmd == P_BITMAP] += drbd_header_size(connection) + pi->size; 4907 4908 if (err <= 0) { 4909 if (err < 0) 4910 goto out; 4911 break; 4912 } 4913 err = drbd_recv_header(peer_device->connection, pi); 4914 if (err) 4915 goto out; 4916 } 4917 4918 INFO_bm_xfer_stats(device, "receive", &c); 4919 4920 if (device->state.conn == C_WF_BITMAP_T) { 4921 enum drbd_state_rv rv; 4922 4923 err = drbd_send_bitmap(device); 4924 if (err) 4925 goto out; 4926 /* Omit CS_ORDERED with this state transition to avoid deadlocks. */ 4927 rv = _drbd_request_state(device, NS(conn, C_WF_SYNC_UUID), CS_VERBOSE); 4928 D_ASSERT(device, rv == SS_SUCCESS); 4929 } else if (device->state.conn != C_WF_BITMAP_S) { 4930 /* admin may have requested C_DISCONNECTING, 4931 * other threads may have noticed network errors */ 4932 drbd_info(device, "unexpected cstate (%s) in receive_bitmap\n", 4933 drbd_conn_str(device->state.conn)); 4934 } 4935 err = 0; 4936 4937 out: 4938 drbd_bm_unlock(device); 4939 if (!err && device->state.conn == C_WF_BITMAP_S) 4940 drbd_start_resync(device, C_SYNC_SOURCE); 4941 return err; 4942 } 4943 4944 static int receive_skip(struct drbd_connection *connection, struct packet_info *pi) 4945 { 4946 drbd_warn(connection, "skipping unknown optional packet type %d, l: %d!\n", 4947 pi->cmd, pi->size); 4948 4949 return ignore_remaining_packet(connection, pi); 4950 } 4951 4952 static int receive_UnplugRemote(struct drbd_connection *connection, struct packet_info *pi) 4953 { 4954 /* Make sure we've acked all the TCP data associated 4955 * with the data requests being unplugged */ 4956 tcp_sock_set_quickack(connection->data.socket->sk, 2); 4957 return 0; 4958 } 4959 4960 static int receive_out_of_sync(struct drbd_connection *connection, struct packet_info *pi) 4961 { 4962 struct drbd_peer_device *peer_device; 4963 struct drbd_device *device; 4964 struct p_block_desc *p = pi->data; 4965 4966 peer_device = conn_peer_device(connection, pi->vnr); 4967 if (!peer_device) 4968 return -EIO; 4969 device = peer_device->device; 4970 4971 switch (device->state.conn) { 4972 case C_WF_SYNC_UUID: 4973 case C_WF_BITMAP_T: 4974 case C_BEHIND: 4975 break; 4976 default: 4977 drbd_err(device, "ASSERT FAILED cstate = %s, expected: WFSyncUUID|WFBitMapT|Behind\n", 4978 drbd_conn_str(device->state.conn)); 4979 } 4980 4981 drbd_set_out_of_sync(device, be64_to_cpu(p->sector), be32_to_cpu(p->blksize)); 4982 4983 return 0; 4984 } 4985 4986 static int receive_rs_deallocated(struct drbd_connection *connection, struct packet_info *pi) 4987 { 4988 struct drbd_peer_device *peer_device; 4989 struct p_block_desc *p = pi->data; 4990 struct drbd_device *device; 4991 sector_t sector; 4992 int size, err = 0; 4993 4994 peer_device = conn_peer_device(connection, pi->vnr); 4995 if (!peer_device) 4996 return -EIO; 4997 device = peer_device->device; 4998 4999 sector = be64_to_cpu(p->sector); 5000 size = be32_to_cpu(p->blksize); 5001 5002 dec_rs_pending(device); 5003 5004 if (get_ldev(device)) { 5005 struct drbd_peer_request *peer_req; 5006 const int op = REQ_OP_WRITE_ZEROES; 5007 5008 peer_req = drbd_alloc_peer_req(peer_device, ID_SYNCER, sector, 5009 size, 0, GFP_NOIO); 5010 if (!peer_req) { 5011 put_ldev(device); 5012 return -ENOMEM; 5013 } 5014 5015 peer_req->w.cb = e_end_resync_block; 5016 peer_req->submit_jif = jiffies; 5017 peer_req->flags |= EE_TRIM; 5018 5019 spin_lock_irq(&device->resource->req_lock); 5020 list_add_tail(&peer_req->w.list, &device->sync_ee); 5021 spin_unlock_irq(&device->resource->req_lock); 5022 5023 atomic_add(pi->size >> 9, &device->rs_sect_ev); 5024 err = drbd_submit_peer_request(device, peer_req, op, 0, DRBD_FAULT_RS_WR); 5025 5026 if (err) { 5027 spin_lock_irq(&device->resource->req_lock); 5028 list_del(&peer_req->w.list); 5029 spin_unlock_irq(&device->resource->req_lock); 5030 5031 drbd_free_peer_req(device, peer_req); 5032 put_ldev(device); 5033 err = 0; 5034 goto fail; 5035 } 5036 5037 inc_unacked(device); 5038 5039 /* No put_ldev() here. Gets called in drbd_endio_write_sec_final(), 5040 as well as drbd_rs_complete_io() */ 5041 } else { 5042 fail: 5043 drbd_rs_complete_io(device, sector); 5044 drbd_send_ack_ex(peer_device, P_NEG_ACK, sector, size, ID_SYNCER); 5045 } 5046 5047 atomic_add(size >> 9, &device->rs_sect_in); 5048 5049 return err; 5050 } 5051 5052 struct data_cmd { 5053 int expect_payload; 5054 unsigned int pkt_size; 5055 int (*fn)(struct drbd_connection *, struct packet_info *); 5056 }; 5057 5058 static struct data_cmd drbd_cmd_handler[] = { 5059 [P_DATA] = { 1, sizeof(struct p_data), receive_Data }, 5060 [P_DATA_REPLY] = { 1, sizeof(struct p_data), receive_DataReply }, 5061 [P_RS_DATA_REPLY] = { 1, sizeof(struct p_data), receive_RSDataReply } , 5062 [P_BARRIER] = { 0, sizeof(struct p_barrier), receive_Barrier } , 5063 [P_BITMAP] = { 1, 0, receive_bitmap } , 5064 [P_COMPRESSED_BITMAP] = { 1, 0, receive_bitmap } , 5065 [P_UNPLUG_REMOTE] = { 0, 0, receive_UnplugRemote }, 5066 [P_DATA_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest }, 5067 [P_RS_DATA_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest }, 5068 [P_SYNC_PARAM] = { 1, 0, receive_SyncParam }, 5069 [P_SYNC_PARAM89] = { 1, 0, receive_SyncParam }, 5070 [P_PROTOCOL] = { 1, sizeof(struct p_protocol), receive_protocol }, 5071 [P_UUIDS] = { 0, sizeof(struct p_uuids), receive_uuids }, 5072 [P_SIZES] = { 0, sizeof(struct p_sizes), receive_sizes }, 5073 [P_STATE] = { 0, sizeof(struct p_state), receive_state }, 5074 [P_STATE_CHG_REQ] = { 0, sizeof(struct p_req_state), receive_req_state }, 5075 [P_SYNC_UUID] = { 0, sizeof(struct p_rs_uuid), receive_sync_uuid }, 5076 [P_OV_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest }, 5077 [P_OV_REPLY] = { 1, sizeof(struct p_block_req), receive_DataRequest }, 5078 [P_CSUM_RS_REQUEST] = { 1, sizeof(struct p_block_req), receive_DataRequest }, 5079 [P_RS_THIN_REQ] = { 0, sizeof(struct p_block_req), receive_DataRequest }, 5080 [P_DELAY_PROBE] = { 0, sizeof(struct p_delay_probe93), receive_skip }, 5081 [P_OUT_OF_SYNC] = { 0, sizeof(struct p_block_desc), receive_out_of_sync }, 5082 [P_CONN_ST_CHG_REQ] = { 0, sizeof(struct p_req_state), receive_req_conn_state }, 5083 [P_PROTOCOL_UPDATE] = { 1, sizeof(struct p_protocol), receive_protocol }, 5084 [P_TRIM] = { 0, sizeof(struct p_trim), receive_Data }, 5085 [P_ZEROES] = { 0, sizeof(struct p_trim), receive_Data }, 5086 [P_RS_DEALLOCATED] = { 0, sizeof(struct p_block_desc), receive_rs_deallocated }, 5087 [P_WSAME] = { 1, sizeof(struct p_wsame), receive_Data }, 5088 }; 5089 5090 static void drbdd(struct drbd_connection *connection) 5091 { 5092 struct packet_info pi; 5093 size_t shs; /* sub header size */ 5094 int err; 5095 5096 while (get_t_state(&connection->receiver) == RUNNING) { 5097 struct data_cmd const *cmd; 5098 5099 drbd_thread_current_set_cpu(&connection->receiver); 5100 update_receiver_timing_details(connection, drbd_recv_header_maybe_unplug); 5101 if (drbd_recv_header_maybe_unplug(connection, &pi)) 5102 goto err_out; 5103 5104 cmd = &drbd_cmd_handler[pi.cmd]; 5105 if (unlikely(pi.cmd >= ARRAY_SIZE(drbd_cmd_handler) || !cmd->fn)) { 5106 drbd_err(connection, "Unexpected data packet %s (0x%04x)", 5107 cmdname(pi.cmd), pi.cmd); 5108 goto err_out; 5109 } 5110 5111 shs = cmd->pkt_size; 5112 if (pi.cmd == P_SIZES && connection->agreed_features & DRBD_FF_WSAME) 5113 shs += sizeof(struct o_qlim); 5114 if (pi.size > shs && !cmd->expect_payload) { 5115 drbd_err(connection, "No payload expected %s l:%d\n", 5116 cmdname(pi.cmd), pi.size); 5117 goto err_out; 5118 } 5119 if (pi.size < shs) { 5120 drbd_err(connection, "%s: unexpected packet size, expected:%d received:%d\n", 5121 cmdname(pi.cmd), (int)shs, pi.size); 5122 goto err_out; 5123 } 5124 5125 if (shs) { 5126 update_receiver_timing_details(connection, drbd_recv_all_warn); 5127 err = drbd_recv_all_warn(connection, pi.data, shs); 5128 if (err) 5129 goto err_out; 5130 pi.size -= shs; 5131 } 5132 5133 update_receiver_timing_details(connection, cmd->fn); 5134 err = cmd->fn(connection, &pi); 5135 if (err) { 5136 drbd_err(connection, "error receiving %s, e: %d l: %d!\n", 5137 cmdname(pi.cmd), err, pi.size); 5138 goto err_out; 5139 } 5140 } 5141 return; 5142 5143 err_out: 5144 conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD); 5145 } 5146 5147 static void conn_disconnect(struct drbd_connection *connection) 5148 { 5149 struct drbd_peer_device *peer_device; 5150 enum drbd_conns oc; 5151 int vnr; 5152 5153 if (connection->cstate == C_STANDALONE) 5154 return; 5155 5156 /* We are about to start the cleanup after connection loss. 5157 * Make sure drbd_make_request knows about that. 5158 * Usually we should be in some network failure state already, 5159 * but just in case we are not, we fix it up here. 5160 */ 5161 conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD); 5162 5163 /* ack_receiver does not clean up anything. it must not interfere, either */ 5164 drbd_thread_stop(&connection->ack_receiver); 5165 if (connection->ack_sender) { 5166 destroy_workqueue(connection->ack_sender); 5167 connection->ack_sender = NULL; 5168 } 5169 drbd_free_sock(connection); 5170 5171 rcu_read_lock(); 5172 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 5173 struct drbd_device *device = peer_device->device; 5174 kref_get(&device->kref); 5175 rcu_read_unlock(); 5176 drbd_disconnected(peer_device); 5177 kref_put(&device->kref, drbd_destroy_device); 5178 rcu_read_lock(); 5179 } 5180 rcu_read_unlock(); 5181 5182 if (!list_empty(&connection->current_epoch->list)) 5183 drbd_err(connection, "ASSERTION FAILED: connection->current_epoch->list not empty\n"); 5184 /* ok, no more ee's on the fly, it is safe to reset the epoch_size */ 5185 atomic_set(&connection->current_epoch->epoch_size, 0); 5186 connection->send.seen_any_write_yet = false; 5187 5188 drbd_info(connection, "Connection closed\n"); 5189 5190 if (conn_highest_role(connection) == R_PRIMARY && conn_highest_pdsk(connection) >= D_UNKNOWN) 5191 conn_try_outdate_peer_async(connection); 5192 5193 spin_lock_irq(&connection->resource->req_lock); 5194 oc = connection->cstate; 5195 if (oc >= C_UNCONNECTED) 5196 _conn_request_state(connection, NS(conn, C_UNCONNECTED), CS_VERBOSE); 5197 5198 spin_unlock_irq(&connection->resource->req_lock); 5199 5200 if (oc == C_DISCONNECTING) 5201 conn_request_state(connection, NS(conn, C_STANDALONE), CS_VERBOSE | CS_HARD); 5202 } 5203 5204 static int drbd_disconnected(struct drbd_peer_device *peer_device) 5205 { 5206 struct drbd_device *device = peer_device->device; 5207 unsigned int i; 5208 5209 /* wait for current activity to cease. */ 5210 spin_lock_irq(&device->resource->req_lock); 5211 _drbd_wait_ee_list_empty(device, &device->active_ee); 5212 _drbd_wait_ee_list_empty(device, &device->sync_ee); 5213 _drbd_wait_ee_list_empty(device, &device->read_ee); 5214 spin_unlock_irq(&device->resource->req_lock); 5215 5216 /* We do not have data structures that would allow us to 5217 * get the rs_pending_cnt down to 0 again. 5218 * * On C_SYNC_TARGET we do not have any data structures describing 5219 * the pending RSDataRequest's we have sent. 5220 * * On C_SYNC_SOURCE there is no data structure that tracks 5221 * the P_RS_DATA_REPLY blocks that we sent to the SyncTarget. 5222 * And no, it is not the sum of the reference counts in the 5223 * resync_LRU. The resync_LRU tracks the whole operation including 5224 * the disk-IO, while the rs_pending_cnt only tracks the blocks 5225 * on the fly. */ 5226 drbd_rs_cancel_all(device); 5227 device->rs_total = 0; 5228 device->rs_failed = 0; 5229 atomic_set(&device->rs_pending_cnt, 0); 5230 wake_up(&device->misc_wait); 5231 5232 del_timer_sync(&device->resync_timer); 5233 resync_timer_fn(&device->resync_timer); 5234 5235 /* wait for all w_e_end_data_req, w_e_end_rsdata_req, w_send_barrier, 5236 * w_make_resync_request etc. which may still be on the worker queue 5237 * to be "canceled" */ 5238 drbd_flush_workqueue(&peer_device->connection->sender_work); 5239 5240 drbd_finish_peer_reqs(device); 5241 5242 /* This second workqueue flush is necessary, since drbd_finish_peer_reqs() 5243 might have issued a work again. The one before drbd_finish_peer_reqs() is 5244 necessary to reclain net_ee in drbd_finish_peer_reqs(). */ 5245 drbd_flush_workqueue(&peer_device->connection->sender_work); 5246 5247 /* need to do it again, drbd_finish_peer_reqs() may have populated it 5248 * again via drbd_try_clear_on_disk_bm(). */ 5249 drbd_rs_cancel_all(device); 5250 5251 kfree(device->p_uuid); 5252 device->p_uuid = NULL; 5253 5254 if (!drbd_suspended(device)) 5255 tl_clear(peer_device->connection); 5256 5257 drbd_md_sync(device); 5258 5259 if (get_ldev(device)) { 5260 drbd_bitmap_io(device, &drbd_bm_write_copy_pages, 5261 "write from disconnected", BM_LOCKED_CHANGE_ALLOWED); 5262 put_ldev(device); 5263 } 5264 5265 /* tcp_close and release of sendpage pages can be deferred. I don't 5266 * want to use SO_LINGER, because apparently it can be deferred for 5267 * more than 20 seconds (longest time I checked). 5268 * 5269 * Actually we don't care for exactly when the network stack does its 5270 * put_page(), but release our reference on these pages right here. 5271 */ 5272 i = drbd_free_peer_reqs(device, &device->net_ee); 5273 if (i) 5274 drbd_info(device, "net_ee not empty, killed %u entries\n", i); 5275 i = atomic_read(&device->pp_in_use_by_net); 5276 if (i) 5277 drbd_info(device, "pp_in_use_by_net = %d, expected 0\n", i); 5278 i = atomic_read(&device->pp_in_use); 5279 if (i) 5280 drbd_info(device, "pp_in_use = %d, expected 0\n", i); 5281 5282 D_ASSERT(device, list_empty(&device->read_ee)); 5283 D_ASSERT(device, list_empty(&device->active_ee)); 5284 D_ASSERT(device, list_empty(&device->sync_ee)); 5285 D_ASSERT(device, list_empty(&device->done_ee)); 5286 5287 return 0; 5288 } 5289 5290 /* 5291 * We support PRO_VERSION_MIN to PRO_VERSION_MAX. The protocol version 5292 * we can agree on is stored in agreed_pro_version. 5293 * 5294 * feature flags and the reserved array should be enough room for future 5295 * enhancements of the handshake protocol, and possible plugins... 5296 * 5297 * for now, they are expected to be zero, but ignored. 5298 */ 5299 static int drbd_send_features(struct drbd_connection *connection) 5300 { 5301 struct drbd_socket *sock; 5302 struct p_connection_features *p; 5303 5304 sock = &connection->data; 5305 p = conn_prepare_command(connection, sock); 5306 if (!p) 5307 return -EIO; 5308 memset(p, 0, sizeof(*p)); 5309 p->protocol_min = cpu_to_be32(PRO_VERSION_MIN); 5310 p->protocol_max = cpu_to_be32(PRO_VERSION_MAX); 5311 p->feature_flags = cpu_to_be32(PRO_FEATURES); 5312 return conn_send_command(connection, sock, P_CONNECTION_FEATURES, sizeof(*p), NULL, 0); 5313 } 5314 5315 /* 5316 * return values: 5317 * 1 yes, we have a valid connection 5318 * 0 oops, did not work out, please try again 5319 * -1 peer talks different language, 5320 * no point in trying again, please go standalone. 5321 */ 5322 static int drbd_do_features(struct drbd_connection *connection) 5323 { 5324 /* ASSERT current == connection->receiver ... */ 5325 struct p_connection_features *p; 5326 const int expect = sizeof(struct p_connection_features); 5327 struct packet_info pi; 5328 int err; 5329 5330 err = drbd_send_features(connection); 5331 if (err) 5332 return 0; 5333 5334 err = drbd_recv_header(connection, &pi); 5335 if (err) 5336 return 0; 5337 5338 if (pi.cmd != P_CONNECTION_FEATURES) { 5339 drbd_err(connection, "expected ConnectionFeatures packet, received: %s (0x%04x)\n", 5340 cmdname(pi.cmd), pi.cmd); 5341 return -1; 5342 } 5343 5344 if (pi.size != expect) { 5345 drbd_err(connection, "expected ConnectionFeatures length: %u, received: %u\n", 5346 expect, pi.size); 5347 return -1; 5348 } 5349 5350 p = pi.data; 5351 err = drbd_recv_all_warn(connection, p, expect); 5352 if (err) 5353 return 0; 5354 5355 p->protocol_min = be32_to_cpu(p->protocol_min); 5356 p->protocol_max = be32_to_cpu(p->protocol_max); 5357 if (p->protocol_max == 0) 5358 p->protocol_max = p->protocol_min; 5359 5360 if (PRO_VERSION_MAX < p->protocol_min || 5361 PRO_VERSION_MIN > p->protocol_max) 5362 goto incompat; 5363 5364 connection->agreed_pro_version = min_t(int, PRO_VERSION_MAX, p->protocol_max); 5365 connection->agreed_features = PRO_FEATURES & be32_to_cpu(p->feature_flags); 5366 5367 drbd_info(connection, "Handshake successful: " 5368 "Agreed network protocol version %d\n", connection->agreed_pro_version); 5369 5370 drbd_info(connection, "Feature flags enabled on protocol level: 0x%x%s%s%s%s.\n", 5371 connection->agreed_features, 5372 connection->agreed_features & DRBD_FF_TRIM ? " TRIM" : "", 5373 connection->agreed_features & DRBD_FF_THIN_RESYNC ? " THIN_RESYNC" : "", 5374 connection->agreed_features & DRBD_FF_WSAME ? " WRITE_SAME" : "", 5375 connection->agreed_features & DRBD_FF_WZEROES ? " WRITE_ZEROES" : 5376 connection->agreed_features ? "" : " none"); 5377 5378 return 1; 5379 5380 incompat: 5381 drbd_err(connection, "incompatible DRBD dialects: " 5382 "I support %d-%d, peer supports %d-%d\n", 5383 PRO_VERSION_MIN, PRO_VERSION_MAX, 5384 p->protocol_min, p->protocol_max); 5385 return -1; 5386 } 5387 5388 #if !defined(CONFIG_CRYPTO_HMAC) && !defined(CONFIG_CRYPTO_HMAC_MODULE) 5389 static int drbd_do_auth(struct drbd_connection *connection) 5390 { 5391 drbd_err(connection, "This kernel was build without CONFIG_CRYPTO_HMAC.\n"); 5392 drbd_err(connection, "You need to disable 'cram-hmac-alg' in drbd.conf.\n"); 5393 return -1; 5394 } 5395 #else 5396 #define CHALLENGE_LEN 64 5397 5398 /* Return value: 5399 1 - auth succeeded, 5400 0 - failed, try again (network error), 5401 -1 - auth failed, don't try again. 5402 */ 5403 5404 static int drbd_do_auth(struct drbd_connection *connection) 5405 { 5406 struct drbd_socket *sock; 5407 char my_challenge[CHALLENGE_LEN]; /* 64 Bytes... */ 5408 char *response = NULL; 5409 char *right_response = NULL; 5410 char *peers_ch = NULL; 5411 unsigned int key_len; 5412 char secret[SHARED_SECRET_MAX]; /* 64 byte */ 5413 unsigned int resp_size; 5414 struct shash_desc *desc; 5415 struct packet_info pi; 5416 struct net_conf *nc; 5417 int err, rv; 5418 5419 /* FIXME: Put the challenge/response into the preallocated socket buffer. */ 5420 5421 rcu_read_lock(); 5422 nc = rcu_dereference(connection->net_conf); 5423 key_len = strlen(nc->shared_secret); 5424 memcpy(secret, nc->shared_secret, key_len); 5425 rcu_read_unlock(); 5426 5427 desc = kmalloc(sizeof(struct shash_desc) + 5428 crypto_shash_descsize(connection->cram_hmac_tfm), 5429 GFP_KERNEL); 5430 if (!desc) { 5431 rv = -1; 5432 goto fail; 5433 } 5434 desc->tfm = connection->cram_hmac_tfm; 5435 5436 rv = crypto_shash_setkey(connection->cram_hmac_tfm, (u8 *)secret, key_len); 5437 if (rv) { 5438 drbd_err(connection, "crypto_shash_setkey() failed with %d\n", rv); 5439 rv = -1; 5440 goto fail; 5441 } 5442 5443 get_random_bytes(my_challenge, CHALLENGE_LEN); 5444 5445 sock = &connection->data; 5446 if (!conn_prepare_command(connection, sock)) { 5447 rv = 0; 5448 goto fail; 5449 } 5450 rv = !conn_send_command(connection, sock, P_AUTH_CHALLENGE, 0, 5451 my_challenge, CHALLENGE_LEN); 5452 if (!rv) 5453 goto fail; 5454 5455 err = drbd_recv_header(connection, &pi); 5456 if (err) { 5457 rv = 0; 5458 goto fail; 5459 } 5460 5461 if (pi.cmd != P_AUTH_CHALLENGE) { 5462 drbd_err(connection, "expected AuthChallenge packet, received: %s (0x%04x)\n", 5463 cmdname(pi.cmd), pi.cmd); 5464 rv = -1; 5465 goto fail; 5466 } 5467 5468 if (pi.size > CHALLENGE_LEN * 2) { 5469 drbd_err(connection, "expected AuthChallenge payload too big.\n"); 5470 rv = -1; 5471 goto fail; 5472 } 5473 5474 if (pi.size < CHALLENGE_LEN) { 5475 drbd_err(connection, "AuthChallenge payload too small.\n"); 5476 rv = -1; 5477 goto fail; 5478 } 5479 5480 peers_ch = kmalloc(pi.size, GFP_NOIO); 5481 if (!peers_ch) { 5482 rv = -1; 5483 goto fail; 5484 } 5485 5486 err = drbd_recv_all_warn(connection, peers_ch, pi.size); 5487 if (err) { 5488 rv = 0; 5489 goto fail; 5490 } 5491 5492 if (!memcmp(my_challenge, peers_ch, CHALLENGE_LEN)) { 5493 drbd_err(connection, "Peer presented the same challenge!\n"); 5494 rv = -1; 5495 goto fail; 5496 } 5497 5498 resp_size = crypto_shash_digestsize(connection->cram_hmac_tfm); 5499 response = kmalloc(resp_size, GFP_NOIO); 5500 if (!response) { 5501 rv = -1; 5502 goto fail; 5503 } 5504 5505 rv = crypto_shash_digest(desc, peers_ch, pi.size, response); 5506 if (rv) { 5507 drbd_err(connection, "crypto_hash_digest() failed with %d\n", rv); 5508 rv = -1; 5509 goto fail; 5510 } 5511 5512 if (!conn_prepare_command(connection, sock)) { 5513 rv = 0; 5514 goto fail; 5515 } 5516 rv = !conn_send_command(connection, sock, P_AUTH_RESPONSE, 0, 5517 response, resp_size); 5518 if (!rv) 5519 goto fail; 5520 5521 err = drbd_recv_header(connection, &pi); 5522 if (err) { 5523 rv = 0; 5524 goto fail; 5525 } 5526 5527 if (pi.cmd != P_AUTH_RESPONSE) { 5528 drbd_err(connection, "expected AuthResponse packet, received: %s (0x%04x)\n", 5529 cmdname(pi.cmd), pi.cmd); 5530 rv = 0; 5531 goto fail; 5532 } 5533 5534 if (pi.size != resp_size) { 5535 drbd_err(connection, "expected AuthResponse payload of wrong size\n"); 5536 rv = 0; 5537 goto fail; 5538 } 5539 5540 err = drbd_recv_all_warn(connection, response , resp_size); 5541 if (err) { 5542 rv = 0; 5543 goto fail; 5544 } 5545 5546 right_response = kmalloc(resp_size, GFP_NOIO); 5547 if (!right_response) { 5548 rv = -1; 5549 goto fail; 5550 } 5551 5552 rv = crypto_shash_digest(desc, my_challenge, CHALLENGE_LEN, 5553 right_response); 5554 if (rv) { 5555 drbd_err(connection, "crypto_hash_digest() failed with %d\n", rv); 5556 rv = -1; 5557 goto fail; 5558 } 5559 5560 rv = !memcmp(response, right_response, resp_size); 5561 5562 if (rv) 5563 drbd_info(connection, "Peer authenticated using %d bytes HMAC\n", 5564 resp_size); 5565 else 5566 rv = -1; 5567 5568 fail: 5569 kfree(peers_ch); 5570 kfree(response); 5571 kfree(right_response); 5572 if (desc) { 5573 shash_desc_zero(desc); 5574 kfree(desc); 5575 } 5576 5577 return rv; 5578 } 5579 #endif 5580 5581 int drbd_receiver(struct drbd_thread *thi) 5582 { 5583 struct drbd_connection *connection = thi->connection; 5584 int h; 5585 5586 drbd_info(connection, "receiver (re)started\n"); 5587 5588 do { 5589 h = conn_connect(connection); 5590 if (h == 0) { 5591 conn_disconnect(connection); 5592 schedule_timeout_interruptible(HZ); 5593 } 5594 if (h == -1) { 5595 drbd_warn(connection, "Discarding network configuration.\n"); 5596 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 5597 } 5598 } while (h == 0); 5599 5600 if (h > 0) { 5601 blk_start_plug(&connection->receiver_plug); 5602 drbdd(connection); 5603 blk_finish_plug(&connection->receiver_plug); 5604 } 5605 5606 conn_disconnect(connection); 5607 5608 drbd_info(connection, "receiver terminated\n"); 5609 return 0; 5610 } 5611 5612 /* ********* acknowledge sender ******** */ 5613 5614 static int got_conn_RqSReply(struct drbd_connection *connection, struct packet_info *pi) 5615 { 5616 struct p_req_state_reply *p = pi->data; 5617 int retcode = be32_to_cpu(p->retcode); 5618 5619 if (retcode >= SS_SUCCESS) { 5620 set_bit(CONN_WD_ST_CHG_OKAY, &connection->flags); 5621 } else { 5622 set_bit(CONN_WD_ST_CHG_FAIL, &connection->flags); 5623 drbd_err(connection, "Requested state change failed by peer: %s (%d)\n", 5624 drbd_set_st_err_str(retcode), retcode); 5625 } 5626 wake_up(&connection->ping_wait); 5627 5628 return 0; 5629 } 5630 5631 static int got_RqSReply(struct drbd_connection *connection, struct packet_info *pi) 5632 { 5633 struct drbd_peer_device *peer_device; 5634 struct drbd_device *device; 5635 struct p_req_state_reply *p = pi->data; 5636 int retcode = be32_to_cpu(p->retcode); 5637 5638 peer_device = conn_peer_device(connection, pi->vnr); 5639 if (!peer_device) 5640 return -EIO; 5641 device = peer_device->device; 5642 5643 if (test_bit(CONN_WD_ST_CHG_REQ, &connection->flags)) { 5644 D_ASSERT(device, connection->agreed_pro_version < 100); 5645 return got_conn_RqSReply(connection, pi); 5646 } 5647 5648 if (retcode >= SS_SUCCESS) { 5649 set_bit(CL_ST_CHG_SUCCESS, &device->flags); 5650 } else { 5651 set_bit(CL_ST_CHG_FAIL, &device->flags); 5652 drbd_err(device, "Requested state change failed by peer: %s (%d)\n", 5653 drbd_set_st_err_str(retcode), retcode); 5654 } 5655 wake_up(&device->state_wait); 5656 5657 return 0; 5658 } 5659 5660 static int got_Ping(struct drbd_connection *connection, struct packet_info *pi) 5661 { 5662 return drbd_send_ping_ack(connection); 5663 5664 } 5665 5666 static int got_PingAck(struct drbd_connection *connection, struct packet_info *pi) 5667 { 5668 /* restore idle timeout */ 5669 connection->meta.socket->sk->sk_rcvtimeo = connection->net_conf->ping_int*HZ; 5670 if (!test_and_set_bit(GOT_PING_ACK, &connection->flags)) 5671 wake_up(&connection->ping_wait); 5672 5673 return 0; 5674 } 5675 5676 static int got_IsInSync(struct drbd_connection *connection, struct packet_info *pi) 5677 { 5678 struct drbd_peer_device *peer_device; 5679 struct drbd_device *device; 5680 struct p_block_ack *p = pi->data; 5681 sector_t sector = be64_to_cpu(p->sector); 5682 int blksize = be32_to_cpu(p->blksize); 5683 5684 peer_device = conn_peer_device(connection, pi->vnr); 5685 if (!peer_device) 5686 return -EIO; 5687 device = peer_device->device; 5688 5689 D_ASSERT(device, peer_device->connection->agreed_pro_version >= 89); 5690 5691 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5692 5693 if (get_ldev(device)) { 5694 drbd_rs_complete_io(device, sector); 5695 drbd_set_in_sync(device, sector, blksize); 5696 /* rs_same_csums is supposed to count in units of BM_BLOCK_SIZE */ 5697 device->rs_same_csum += (blksize >> BM_BLOCK_SHIFT); 5698 put_ldev(device); 5699 } 5700 dec_rs_pending(device); 5701 atomic_add(blksize >> 9, &device->rs_sect_in); 5702 5703 return 0; 5704 } 5705 5706 static int 5707 validate_req_change_req_state(struct drbd_device *device, u64 id, sector_t sector, 5708 struct rb_root *root, const char *func, 5709 enum drbd_req_event what, bool missing_ok) 5710 { 5711 struct drbd_request *req; 5712 struct bio_and_error m; 5713 5714 spin_lock_irq(&device->resource->req_lock); 5715 req = find_request(device, root, id, sector, missing_ok, func); 5716 if (unlikely(!req)) { 5717 spin_unlock_irq(&device->resource->req_lock); 5718 return -EIO; 5719 } 5720 __req_mod(req, what, &m); 5721 spin_unlock_irq(&device->resource->req_lock); 5722 5723 if (m.bio) 5724 complete_master_bio(device, &m); 5725 return 0; 5726 } 5727 5728 static int got_BlockAck(struct drbd_connection *connection, struct packet_info *pi) 5729 { 5730 struct drbd_peer_device *peer_device; 5731 struct drbd_device *device; 5732 struct p_block_ack *p = pi->data; 5733 sector_t sector = be64_to_cpu(p->sector); 5734 int blksize = be32_to_cpu(p->blksize); 5735 enum drbd_req_event what; 5736 5737 peer_device = conn_peer_device(connection, pi->vnr); 5738 if (!peer_device) 5739 return -EIO; 5740 device = peer_device->device; 5741 5742 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5743 5744 if (p->block_id == ID_SYNCER) { 5745 drbd_set_in_sync(device, sector, blksize); 5746 dec_rs_pending(device); 5747 return 0; 5748 } 5749 switch (pi->cmd) { 5750 case P_RS_WRITE_ACK: 5751 what = WRITE_ACKED_BY_PEER_AND_SIS; 5752 break; 5753 case P_WRITE_ACK: 5754 what = WRITE_ACKED_BY_PEER; 5755 break; 5756 case P_RECV_ACK: 5757 what = RECV_ACKED_BY_PEER; 5758 break; 5759 case P_SUPERSEDED: 5760 what = CONFLICT_RESOLVED; 5761 break; 5762 case P_RETRY_WRITE: 5763 what = POSTPONE_WRITE; 5764 break; 5765 default: 5766 BUG(); 5767 } 5768 5769 return validate_req_change_req_state(device, p->block_id, sector, 5770 &device->write_requests, __func__, 5771 what, false); 5772 } 5773 5774 static int got_NegAck(struct drbd_connection *connection, struct packet_info *pi) 5775 { 5776 struct drbd_peer_device *peer_device; 5777 struct drbd_device *device; 5778 struct p_block_ack *p = pi->data; 5779 sector_t sector = be64_to_cpu(p->sector); 5780 int size = be32_to_cpu(p->blksize); 5781 int err; 5782 5783 peer_device = conn_peer_device(connection, pi->vnr); 5784 if (!peer_device) 5785 return -EIO; 5786 device = peer_device->device; 5787 5788 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5789 5790 if (p->block_id == ID_SYNCER) { 5791 dec_rs_pending(device); 5792 drbd_rs_failed_io(device, sector, size); 5793 return 0; 5794 } 5795 5796 err = validate_req_change_req_state(device, p->block_id, sector, 5797 &device->write_requests, __func__, 5798 NEG_ACKED, true); 5799 if (err) { 5800 /* Protocol A has no P_WRITE_ACKs, but has P_NEG_ACKs. 5801 The master bio might already be completed, therefore the 5802 request is no longer in the collision hash. */ 5803 /* In Protocol B we might already have got a P_RECV_ACK 5804 but then get a P_NEG_ACK afterwards. */ 5805 drbd_set_out_of_sync(device, sector, size); 5806 } 5807 return 0; 5808 } 5809 5810 static int got_NegDReply(struct drbd_connection *connection, struct packet_info *pi) 5811 { 5812 struct drbd_peer_device *peer_device; 5813 struct drbd_device *device; 5814 struct p_block_ack *p = pi->data; 5815 sector_t sector = be64_to_cpu(p->sector); 5816 5817 peer_device = conn_peer_device(connection, pi->vnr); 5818 if (!peer_device) 5819 return -EIO; 5820 device = peer_device->device; 5821 5822 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5823 5824 drbd_err(device, "Got NegDReply; Sector %llus, len %u.\n", 5825 (unsigned long long)sector, be32_to_cpu(p->blksize)); 5826 5827 return validate_req_change_req_state(device, p->block_id, sector, 5828 &device->read_requests, __func__, 5829 NEG_ACKED, false); 5830 } 5831 5832 static int got_NegRSDReply(struct drbd_connection *connection, struct packet_info *pi) 5833 { 5834 struct drbd_peer_device *peer_device; 5835 struct drbd_device *device; 5836 sector_t sector; 5837 int size; 5838 struct p_block_ack *p = pi->data; 5839 5840 peer_device = conn_peer_device(connection, pi->vnr); 5841 if (!peer_device) 5842 return -EIO; 5843 device = peer_device->device; 5844 5845 sector = be64_to_cpu(p->sector); 5846 size = be32_to_cpu(p->blksize); 5847 5848 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5849 5850 dec_rs_pending(device); 5851 5852 if (get_ldev_if_state(device, D_FAILED)) { 5853 drbd_rs_complete_io(device, sector); 5854 switch (pi->cmd) { 5855 case P_NEG_RS_DREPLY: 5856 drbd_rs_failed_io(device, sector, size); 5857 break; 5858 case P_RS_CANCEL: 5859 break; 5860 default: 5861 BUG(); 5862 } 5863 put_ldev(device); 5864 } 5865 5866 return 0; 5867 } 5868 5869 static int got_BarrierAck(struct drbd_connection *connection, struct packet_info *pi) 5870 { 5871 struct p_barrier_ack *p = pi->data; 5872 struct drbd_peer_device *peer_device; 5873 int vnr; 5874 5875 tl_release(connection, p->barrier, be32_to_cpu(p->set_size)); 5876 5877 rcu_read_lock(); 5878 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 5879 struct drbd_device *device = peer_device->device; 5880 5881 if (device->state.conn == C_AHEAD && 5882 atomic_read(&device->ap_in_flight) == 0 && 5883 !test_and_set_bit(AHEAD_TO_SYNC_SOURCE, &device->flags)) { 5884 device->start_resync_timer.expires = jiffies + HZ; 5885 add_timer(&device->start_resync_timer); 5886 } 5887 } 5888 rcu_read_unlock(); 5889 5890 return 0; 5891 } 5892 5893 static int got_OVResult(struct drbd_connection *connection, struct packet_info *pi) 5894 { 5895 struct drbd_peer_device *peer_device; 5896 struct drbd_device *device; 5897 struct p_block_ack *p = pi->data; 5898 struct drbd_device_work *dw; 5899 sector_t sector; 5900 int size; 5901 5902 peer_device = conn_peer_device(connection, pi->vnr); 5903 if (!peer_device) 5904 return -EIO; 5905 device = peer_device->device; 5906 5907 sector = be64_to_cpu(p->sector); 5908 size = be32_to_cpu(p->blksize); 5909 5910 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5911 5912 if (be64_to_cpu(p->block_id) == ID_OUT_OF_SYNC) 5913 drbd_ov_out_of_sync_found(device, sector, size); 5914 else 5915 ov_out_of_sync_print(device); 5916 5917 if (!get_ldev(device)) 5918 return 0; 5919 5920 drbd_rs_complete_io(device, sector); 5921 dec_rs_pending(device); 5922 5923 --device->ov_left; 5924 5925 /* let's advance progress step marks only for every other megabyte */ 5926 if ((device->ov_left & 0x200) == 0x200) 5927 drbd_advance_rs_marks(device, device->ov_left); 5928 5929 if (device->ov_left == 0) { 5930 dw = kmalloc(sizeof(*dw), GFP_NOIO); 5931 if (dw) { 5932 dw->w.cb = w_ov_finished; 5933 dw->device = device; 5934 drbd_queue_work(&peer_device->connection->sender_work, &dw->w); 5935 } else { 5936 drbd_err(device, "kmalloc(dw) failed."); 5937 ov_out_of_sync_print(device); 5938 drbd_resync_finished(device); 5939 } 5940 } 5941 put_ldev(device); 5942 return 0; 5943 } 5944 5945 static int got_skip(struct drbd_connection *connection, struct packet_info *pi) 5946 { 5947 return 0; 5948 } 5949 5950 struct meta_sock_cmd { 5951 size_t pkt_size; 5952 int (*fn)(struct drbd_connection *connection, struct packet_info *); 5953 }; 5954 5955 static void set_rcvtimeo(struct drbd_connection *connection, bool ping_timeout) 5956 { 5957 long t; 5958 struct net_conf *nc; 5959 5960 rcu_read_lock(); 5961 nc = rcu_dereference(connection->net_conf); 5962 t = ping_timeout ? nc->ping_timeo : nc->ping_int; 5963 rcu_read_unlock(); 5964 5965 t *= HZ; 5966 if (ping_timeout) 5967 t /= 10; 5968 5969 connection->meta.socket->sk->sk_rcvtimeo = t; 5970 } 5971 5972 static void set_ping_timeout(struct drbd_connection *connection) 5973 { 5974 set_rcvtimeo(connection, 1); 5975 } 5976 5977 static void set_idle_timeout(struct drbd_connection *connection) 5978 { 5979 set_rcvtimeo(connection, 0); 5980 } 5981 5982 static struct meta_sock_cmd ack_receiver_tbl[] = { 5983 [P_PING] = { 0, got_Ping }, 5984 [P_PING_ACK] = { 0, got_PingAck }, 5985 [P_RECV_ACK] = { sizeof(struct p_block_ack), got_BlockAck }, 5986 [P_WRITE_ACK] = { sizeof(struct p_block_ack), got_BlockAck }, 5987 [P_RS_WRITE_ACK] = { sizeof(struct p_block_ack), got_BlockAck }, 5988 [P_SUPERSEDED] = { sizeof(struct p_block_ack), got_BlockAck }, 5989 [P_NEG_ACK] = { sizeof(struct p_block_ack), got_NegAck }, 5990 [P_NEG_DREPLY] = { sizeof(struct p_block_ack), got_NegDReply }, 5991 [P_NEG_RS_DREPLY] = { sizeof(struct p_block_ack), got_NegRSDReply }, 5992 [P_OV_RESULT] = { sizeof(struct p_block_ack), got_OVResult }, 5993 [P_BARRIER_ACK] = { sizeof(struct p_barrier_ack), got_BarrierAck }, 5994 [P_STATE_CHG_REPLY] = { sizeof(struct p_req_state_reply), got_RqSReply }, 5995 [P_RS_IS_IN_SYNC] = { sizeof(struct p_block_ack), got_IsInSync }, 5996 [P_DELAY_PROBE] = { sizeof(struct p_delay_probe93), got_skip }, 5997 [P_RS_CANCEL] = { sizeof(struct p_block_ack), got_NegRSDReply }, 5998 [P_CONN_ST_CHG_REPLY]={ sizeof(struct p_req_state_reply), got_conn_RqSReply }, 5999 [P_RETRY_WRITE] = { sizeof(struct p_block_ack), got_BlockAck }, 6000 }; 6001 6002 int drbd_ack_receiver(struct drbd_thread *thi) 6003 { 6004 struct drbd_connection *connection = thi->connection; 6005 struct meta_sock_cmd *cmd = NULL; 6006 struct packet_info pi; 6007 unsigned long pre_recv_jif; 6008 int rv; 6009 void *buf = connection->meta.rbuf; 6010 int received = 0; 6011 unsigned int header_size = drbd_header_size(connection); 6012 int expect = header_size; 6013 bool ping_timeout_active = false; 6014 6015 sched_set_fifo_low(current); 6016 6017 while (get_t_state(thi) == RUNNING) { 6018 drbd_thread_current_set_cpu(thi); 6019 6020 conn_reclaim_net_peer_reqs(connection); 6021 6022 if (test_and_clear_bit(SEND_PING, &connection->flags)) { 6023 if (drbd_send_ping(connection)) { 6024 drbd_err(connection, "drbd_send_ping has failed\n"); 6025 goto reconnect; 6026 } 6027 set_ping_timeout(connection); 6028 ping_timeout_active = true; 6029 } 6030 6031 pre_recv_jif = jiffies; 6032 rv = drbd_recv_short(connection->meta.socket, buf, expect-received, 0); 6033 6034 /* Note: 6035 * -EINTR (on meta) we got a signal 6036 * -EAGAIN (on meta) rcvtimeo expired 6037 * -ECONNRESET other side closed the connection 6038 * -ERESTARTSYS (on data) we got a signal 6039 * rv < 0 other than above: unexpected error! 6040 * rv == expected: full header or command 6041 * rv < expected: "woken" by signal during receive 6042 * rv == 0 : "connection shut down by peer" 6043 */ 6044 if (likely(rv > 0)) { 6045 received += rv; 6046 buf += rv; 6047 } else if (rv == 0) { 6048 if (test_bit(DISCONNECT_SENT, &connection->flags)) { 6049 long t; 6050 rcu_read_lock(); 6051 t = rcu_dereference(connection->net_conf)->ping_timeo * HZ/10; 6052 rcu_read_unlock(); 6053 6054 t = wait_event_timeout(connection->ping_wait, 6055 connection->cstate < C_WF_REPORT_PARAMS, 6056 t); 6057 if (t) 6058 break; 6059 } 6060 drbd_err(connection, "meta connection shut down by peer.\n"); 6061 goto reconnect; 6062 } else if (rv == -EAGAIN) { 6063 /* If the data socket received something meanwhile, 6064 * that is good enough: peer is still alive. */ 6065 if (time_after(connection->last_received, pre_recv_jif)) 6066 continue; 6067 if (ping_timeout_active) { 6068 drbd_err(connection, "PingAck did not arrive in time.\n"); 6069 goto reconnect; 6070 } 6071 set_bit(SEND_PING, &connection->flags); 6072 continue; 6073 } else if (rv == -EINTR) { 6074 /* maybe drbd_thread_stop(): the while condition will notice. 6075 * maybe woken for send_ping: we'll send a ping above, 6076 * and change the rcvtimeo */ 6077 flush_signals(current); 6078 continue; 6079 } else { 6080 drbd_err(connection, "sock_recvmsg returned %d\n", rv); 6081 goto reconnect; 6082 } 6083 6084 if (received == expect && cmd == NULL) { 6085 if (decode_header(connection, connection->meta.rbuf, &pi)) 6086 goto reconnect; 6087 cmd = &ack_receiver_tbl[pi.cmd]; 6088 if (pi.cmd >= ARRAY_SIZE(ack_receiver_tbl) || !cmd->fn) { 6089 drbd_err(connection, "Unexpected meta packet %s (0x%04x)\n", 6090 cmdname(pi.cmd), pi.cmd); 6091 goto disconnect; 6092 } 6093 expect = header_size + cmd->pkt_size; 6094 if (pi.size != expect - header_size) { 6095 drbd_err(connection, "Wrong packet size on meta (c: %d, l: %d)\n", 6096 pi.cmd, pi.size); 6097 goto reconnect; 6098 } 6099 } 6100 if (received == expect) { 6101 bool err; 6102 6103 err = cmd->fn(connection, &pi); 6104 if (err) { 6105 drbd_err(connection, "%ps failed\n", cmd->fn); 6106 goto reconnect; 6107 } 6108 6109 connection->last_received = jiffies; 6110 6111 if (cmd == &ack_receiver_tbl[P_PING_ACK]) { 6112 set_idle_timeout(connection); 6113 ping_timeout_active = false; 6114 } 6115 6116 buf = connection->meta.rbuf; 6117 received = 0; 6118 expect = header_size; 6119 cmd = NULL; 6120 } 6121 } 6122 6123 if (0) { 6124 reconnect: 6125 conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD); 6126 conn_md_sync(connection); 6127 } 6128 if (0) { 6129 disconnect: 6130 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 6131 } 6132 6133 drbd_info(connection, "ack_receiver terminated\n"); 6134 6135 return 0; 6136 } 6137 6138 void drbd_send_acks_wf(struct work_struct *ws) 6139 { 6140 struct drbd_peer_device *peer_device = 6141 container_of(ws, struct drbd_peer_device, send_acks_work); 6142 struct drbd_connection *connection = peer_device->connection; 6143 struct drbd_device *device = peer_device->device; 6144 struct net_conf *nc; 6145 int tcp_cork, err; 6146 6147 rcu_read_lock(); 6148 nc = rcu_dereference(connection->net_conf); 6149 tcp_cork = nc->tcp_cork; 6150 rcu_read_unlock(); 6151 6152 if (tcp_cork) 6153 tcp_sock_set_cork(connection->meta.socket->sk, true); 6154 6155 err = drbd_finish_peer_reqs(device); 6156 kref_put(&device->kref, drbd_destroy_device); 6157 /* get is in drbd_endio_write_sec_final(). That is necessary to keep the 6158 struct work_struct send_acks_work alive, which is in the peer_device object */ 6159 6160 if (err) { 6161 conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD); 6162 return; 6163 } 6164 6165 if (tcp_cork) 6166 tcp_sock_set_cork(connection->meta.socket->sk, false); 6167 6168 return; 6169 } 6170