1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 drbd_receiver.c 4 5 This file is part of DRBD by Philipp Reisner and Lars Ellenberg. 6 7 Copyright (C) 2001-2008, LINBIT Information Technologies GmbH. 8 Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>. 9 Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>. 10 11 */ 12 13 14 #include <linux/module.h> 15 16 #include <linux/uaccess.h> 17 #include <net/sock.h> 18 19 #include <linux/drbd.h> 20 #include <linux/fs.h> 21 #include <linux/file.h> 22 #include <linux/in.h> 23 #include <linux/mm.h> 24 #include <linux/memcontrol.h> 25 #include <linux/mm_inline.h> 26 #include <linux/slab.h> 27 #include <uapi/linux/sched/types.h> 28 #include <linux/sched/signal.h> 29 #include <linux/pkt_sched.h> 30 #define __KERNEL_SYSCALLS__ 31 #include <linux/unistd.h> 32 #include <linux/vmalloc.h> 33 #include <linux/random.h> 34 #include <linux/string.h> 35 #include <linux/scatterlist.h> 36 #include <linux/part_stat.h> 37 #include "drbd_int.h" 38 #include "drbd_protocol.h" 39 #include "drbd_req.h" 40 #include "drbd_vli.h" 41 42 #define PRO_FEATURES (DRBD_FF_TRIM|DRBD_FF_THIN_RESYNC|DRBD_FF_WSAME|DRBD_FF_WZEROES) 43 44 struct packet_info { 45 enum drbd_packet cmd; 46 unsigned int size; 47 unsigned int vnr; 48 void *data; 49 }; 50 51 enum finish_epoch { 52 FE_STILL_LIVE, 53 FE_DESTROYED, 54 FE_RECYCLED, 55 }; 56 57 static int drbd_do_features(struct drbd_connection *connection); 58 static int drbd_do_auth(struct drbd_connection *connection); 59 static int drbd_disconnected(struct drbd_peer_device *); 60 static void conn_wait_active_ee_empty(struct drbd_connection *connection); 61 static enum finish_epoch drbd_may_finish_epoch(struct drbd_connection *, struct drbd_epoch *, enum epoch_event); 62 static int e_end_block(struct drbd_work *, int); 63 64 65 #define GFP_TRY (__GFP_HIGHMEM | __GFP_NOWARN) 66 67 /* 68 * some helper functions to deal with single linked page lists, 69 * page->private being our "next" pointer. 70 */ 71 72 /* If at least n pages are linked at head, get n pages off. 73 * Otherwise, don't modify head, and return NULL. 74 * Locking is the responsibility of the caller. 75 */ 76 static struct page *page_chain_del(struct page **head, int n) 77 { 78 struct page *page; 79 struct page *tmp; 80 81 BUG_ON(!n); 82 BUG_ON(!head); 83 84 page = *head; 85 86 if (!page) 87 return NULL; 88 89 while (page) { 90 tmp = page_chain_next(page); 91 if (--n == 0) 92 break; /* found sufficient pages */ 93 if (tmp == NULL) 94 /* insufficient pages, don't use any of them. */ 95 return NULL; 96 page = tmp; 97 } 98 99 /* add end of list marker for the returned list */ 100 set_page_private(page, 0); 101 /* actual return value, and adjustment of head */ 102 page = *head; 103 *head = tmp; 104 return page; 105 } 106 107 /* may be used outside of locks to find the tail of a (usually short) 108 * "private" page chain, before adding it back to a global chain head 109 * with page_chain_add() under a spinlock. */ 110 static struct page *page_chain_tail(struct page *page, int *len) 111 { 112 struct page *tmp; 113 int i = 1; 114 while ((tmp = page_chain_next(page))) { 115 ++i; 116 page = tmp; 117 } 118 if (len) 119 *len = i; 120 return page; 121 } 122 123 static int page_chain_free(struct page *page) 124 { 125 struct page *tmp; 126 int i = 0; 127 page_chain_for_each_safe(page, tmp) { 128 put_page(page); 129 ++i; 130 } 131 return i; 132 } 133 134 static void page_chain_add(struct page **head, 135 struct page *chain_first, struct page *chain_last) 136 { 137 #if 1 138 struct page *tmp; 139 tmp = page_chain_tail(chain_first, NULL); 140 BUG_ON(tmp != chain_last); 141 #endif 142 143 /* add chain to head */ 144 set_page_private(chain_last, (unsigned long)*head); 145 *head = chain_first; 146 } 147 148 static struct page *__drbd_alloc_pages(struct drbd_device *device, 149 unsigned int number) 150 { 151 struct page *page = NULL; 152 struct page *tmp = NULL; 153 unsigned int i = 0; 154 155 /* Yes, testing drbd_pp_vacant outside the lock is racy. 156 * So what. It saves a spin_lock. */ 157 if (drbd_pp_vacant >= number) { 158 spin_lock(&drbd_pp_lock); 159 page = page_chain_del(&drbd_pp_pool, number); 160 if (page) 161 drbd_pp_vacant -= number; 162 spin_unlock(&drbd_pp_lock); 163 if (page) 164 return page; 165 } 166 167 /* GFP_TRY, because we must not cause arbitrary write-out: in a DRBD 168 * "criss-cross" setup, that might cause write-out on some other DRBD, 169 * which in turn might block on the other node at this very place. */ 170 for (i = 0; i < number; i++) { 171 tmp = alloc_page(GFP_TRY); 172 if (!tmp) 173 break; 174 set_page_private(tmp, (unsigned long)page); 175 page = tmp; 176 } 177 178 if (i == number) 179 return page; 180 181 /* Not enough pages immediately available this time. 182 * No need to jump around here, drbd_alloc_pages will retry this 183 * function "soon". */ 184 if (page) { 185 tmp = page_chain_tail(page, NULL); 186 spin_lock(&drbd_pp_lock); 187 page_chain_add(&drbd_pp_pool, page, tmp); 188 drbd_pp_vacant += i; 189 spin_unlock(&drbd_pp_lock); 190 } 191 return NULL; 192 } 193 194 static void reclaim_finished_net_peer_reqs(struct drbd_device *device, 195 struct list_head *to_be_freed) 196 { 197 struct drbd_peer_request *peer_req, *tmp; 198 199 /* The EEs are always appended to the end of the list. Since 200 they are sent in order over the wire, they have to finish 201 in order. As soon as we see the first not finished we can 202 stop to examine the list... */ 203 204 list_for_each_entry_safe(peer_req, tmp, &device->net_ee, w.list) { 205 if (drbd_peer_req_has_active_page(peer_req)) 206 break; 207 list_move(&peer_req->w.list, to_be_freed); 208 } 209 } 210 211 static void drbd_reclaim_net_peer_reqs(struct drbd_device *device) 212 { 213 LIST_HEAD(reclaimed); 214 struct drbd_peer_request *peer_req, *t; 215 216 spin_lock_irq(&device->resource->req_lock); 217 reclaim_finished_net_peer_reqs(device, &reclaimed); 218 spin_unlock_irq(&device->resource->req_lock); 219 list_for_each_entry_safe(peer_req, t, &reclaimed, w.list) 220 drbd_free_net_peer_req(device, peer_req); 221 } 222 223 static void conn_reclaim_net_peer_reqs(struct drbd_connection *connection) 224 { 225 struct drbd_peer_device *peer_device; 226 int vnr; 227 228 rcu_read_lock(); 229 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 230 struct drbd_device *device = peer_device->device; 231 if (!atomic_read(&device->pp_in_use_by_net)) 232 continue; 233 234 kref_get(&device->kref); 235 rcu_read_unlock(); 236 drbd_reclaim_net_peer_reqs(device); 237 kref_put(&device->kref, drbd_destroy_device); 238 rcu_read_lock(); 239 } 240 rcu_read_unlock(); 241 } 242 243 /** 244 * drbd_alloc_pages() - Returns @number pages, retries forever (or until signalled) 245 * @peer_device: DRBD device. 246 * @number: number of pages requested 247 * @retry: whether to retry, if not enough pages are available right now 248 * 249 * Tries to allocate number pages, first from our own page pool, then from 250 * the kernel. 251 * Possibly retry until DRBD frees sufficient pages somewhere else. 252 * 253 * If this allocation would exceed the max_buffers setting, we throttle 254 * allocation (schedule_timeout) to give the system some room to breathe. 255 * 256 * We do not use max-buffers as hard limit, because it could lead to 257 * congestion and further to a distributed deadlock during online-verify or 258 * (checksum based) resync, if the max-buffers, socket buffer sizes and 259 * resync-rate settings are mis-configured. 260 * 261 * Returns a page chain linked via page->private. 262 */ 263 struct page *drbd_alloc_pages(struct drbd_peer_device *peer_device, unsigned int number, 264 bool retry) 265 { 266 struct drbd_device *device = peer_device->device; 267 struct page *page = NULL; 268 struct net_conf *nc; 269 DEFINE_WAIT(wait); 270 unsigned int mxb; 271 272 rcu_read_lock(); 273 nc = rcu_dereference(peer_device->connection->net_conf); 274 mxb = nc ? nc->max_buffers : 1000000; 275 rcu_read_unlock(); 276 277 if (atomic_read(&device->pp_in_use) < mxb) 278 page = __drbd_alloc_pages(device, number); 279 280 /* Try to keep the fast path fast, but occasionally we need 281 * to reclaim the pages we lended to the network stack. */ 282 if (page && atomic_read(&device->pp_in_use_by_net) > 512) 283 drbd_reclaim_net_peer_reqs(device); 284 285 while (page == NULL) { 286 prepare_to_wait(&drbd_pp_wait, &wait, TASK_INTERRUPTIBLE); 287 288 drbd_reclaim_net_peer_reqs(device); 289 290 if (atomic_read(&device->pp_in_use) < mxb) { 291 page = __drbd_alloc_pages(device, number); 292 if (page) 293 break; 294 } 295 296 if (!retry) 297 break; 298 299 if (signal_pending(current)) { 300 drbd_warn(device, "drbd_alloc_pages interrupted!\n"); 301 break; 302 } 303 304 if (schedule_timeout(HZ/10) == 0) 305 mxb = UINT_MAX; 306 } 307 finish_wait(&drbd_pp_wait, &wait); 308 309 if (page) 310 atomic_add(number, &device->pp_in_use); 311 return page; 312 } 313 314 /* Must not be used from irq, as that may deadlock: see drbd_alloc_pages. 315 * Is also used from inside an other spin_lock_irq(&resource->req_lock); 316 * Either links the page chain back to the global pool, 317 * or returns all pages to the system. */ 318 static void drbd_free_pages(struct drbd_device *device, struct page *page, int is_net) 319 { 320 atomic_t *a = is_net ? &device->pp_in_use_by_net : &device->pp_in_use; 321 int i; 322 323 if (page == NULL) 324 return; 325 326 if (drbd_pp_vacant > (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * drbd_minor_count) 327 i = page_chain_free(page); 328 else { 329 struct page *tmp; 330 tmp = page_chain_tail(page, &i); 331 spin_lock(&drbd_pp_lock); 332 page_chain_add(&drbd_pp_pool, page, tmp); 333 drbd_pp_vacant += i; 334 spin_unlock(&drbd_pp_lock); 335 } 336 i = atomic_sub_return(i, a); 337 if (i < 0) 338 drbd_warn(device, "ASSERTION FAILED: %s: %d < 0\n", 339 is_net ? "pp_in_use_by_net" : "pp_in_use", i); 340 wake_up(&drbd_pp_wait); 341 } 342 343 /* 344 You need to hold the req_lock: 345 _drbd_wait_ee_list_empty() 346 347 You must not have the req_lock: 348 drbd_free_peer_req() 349 drbd_alloc_peer_req() 350 drbd_free_peer_reqs() 351 drbd_ee_fix_bhs() 352 drbd_finish_peer_reqs() 353 drbd_clear_done_ee() 354 drbd_wait_ee_list_empty() 355 */ 356 357 /* normal: payload_size == request size (bi_size) 358 * w_same: payload_size == logical_block_size 359 * trim: payload_size == 0 */ 360 struct drbd_peer_request * 361 drbd_alloc_peer_req(struct drbd_peer_device *peer_device, u64 id, sector_t sector, 362 unsigned int request_size, unsigned int payload_size, gfp_t gfp_mask) __must_hold(local) 363 { 364 struct drbd_device *device = peer_device->device; 365 struct drbd_peer_request *peer_req; 366 struct page *page = NULL; 367 unsigned int nr_pages = PFN_UP(payload_size); 368 369 if (drbd_insert_fault(device, DRBD_FAULT_AL_EE)) 370 return NULL; 371 372 peer_req = mempool_alloc(&drbd_ee_mempool, gfp_mask & ~__GFP_HIGHMEM); 373 if (!peer_req) { 374 if (!(gfp_mask & __GFP_NOWARN)) 375 drbd_err(device, "%s: allocation failed\n", __func__); 376 return NULL; 377 } 378 379 if (nr_pages) { 380 page = drbd_alloc_pages(peer_device, nr_pages, 381 gfpflags_allow_blocking(gfp_mask)); 382 if (!page) 383 goto fail; 384 } 385 386 memset(peer_req, 0, sizeof(*peer_req)); 387 INIT_LIST_HEAD(&peer_req->w.list); 388 drbd_clear_interval(&peer_req->i); 389 peer_req->i.size = request_size; 390 peer_req->i.sector = sector; 391 peer_req->submit_jif = jiffies; 392 peer_req->peer_device = peer_device; 393 peer_req->pages = page; 394 /* 395 * The block_id is opaque to the receiver. It is not endianness 396 * converted, and sent back to the sender unchanged. 397 */ 398 peer_req->block_id = id; 399 400 return peer_req; 401 402 fail: 403 mempool_free(peer_req, &drbd_ee_mempool); 404 return NULL; 405 } 406 407 void __drbd_free_peer_req(struct drbd_device *device, struct drbd_peer_request *peer_req, 408 int is_net) 409 { 410 might_sleep(); 411 if (peer_req->flags & EE_HAS_DIGEST) 412 kfree(peer_req->digest); 413 drbd_free_pages(device, peer_req->pages, is_net); 414 D_ASSERT(device, atomic_read(&peer_req->pending_bios) == 0); 415 D_ASSERT(device, drbd_interval_empty(&peer_req->i)); 416 if (!expect(!(peer_req->flags & EE_CALL_AL_COMPLETE_IO))) { 417 peer_req->flags &= ~EE_CALL_AL_COMPLETE_IO; 418 drbd_al_complete_io(device, &peer_req->i); 419 } 420 mempool_free(peer_req, &drbd_ee_mempool); 421 } 422 423 int drbd_free_peer_reqs(struct drbd_device *device, struct list_head *list) 424 { 425 LIST_HEAD(work_list); 426 struct drbd_peer_request *peer_req, *t; 427 int count = 0; 428 int is_net = list == &device->net_ee; 429 430 spin_lock_irq(&device->resource->req_lock); 431 list_splice_init(list, &work_list); 432 spin_unlock_irq(&device->resource->req_lock); 433 434 list_for_each_entry_safe(peer_req, t, &work_list, w.list) { 435 __drbd_free_peer_req(device, peer_req, is_net); 436 count++; 437 } 438 return count; 439 } 440 441 /* 442 * See also comments in _req_mod(,BARRIER_ACKED) and receive_Barrier. 443 */ 444 static int drbd_finish_peer_reqs(struct drbd_device *device) 445 { 446 LIST_HEAD(work_list); 447 LIST_HEAD(reclaimed); 448 struct drbd_peer_request *peer_req, *t; 449 int err = 0; 450 451 spin_lock_irq(&device->resource->req_lock); 452 reclaim_finished_net_peer_reqs(device, &reclaimed); 453 list_splice_init(&device->done_ee, &work_list); 454 spin_unlock_irq(&device->resource->req_lock); 455 456 list_for_each_entry_safe(peer_req, t, &reclaimed, w.list) 457 drbd_free_net_peer_req(device, peer_req); 458 459 /* possible callbacks here: 460 * e_end_block, and e_end_resync_block, e_send_superseded. 461 * all ignore the last argument. 462 */ 463 list_for_each_entry_safe(peer_req, t, &work_list, w.list) { 464 int err2; 465 466 /* list_del not necessary, next/prev members not touched */ 467 err2 = peer_req->w.cb(&peer_req->w, !!err); 468 if (!err) 469 err = err2; 470 drbd_free_peer_req(device, peer_req); 471 } 472 wake_up(&device->ee_wait); 473 474 return err; 475 } 476 477 static void _drbd_wait_ee_list_empty(struct drbd_device *device, 478 struct list_head *head) 479 { 480 DEFINE_WAIT(wait); 481 482 /* avoids spin_lock/unlock 483 * and calling prepare_to_wait in the fast path */ 484 while (!list_empty(head)) { 485 prepare_to_wait(&device->ee_wait, &wait, TASK_UNINTERRUPTIBLE); 486 spin_unlock_irq(&device->resource->req_lock); 487 io_schedule(); 488 finish_wait(&device->ee_wait, &wait); 489 spin_lock_irq(&device->resource->req_lock); 490 } 491 } 492 493 static void drbd_wait_ee_list_empty(struct drbd_device *device, 494 struct list_head *head) 495 { 496 spin_lock_irq(&device->resource->req_lock); 497 _drbd_wait_ee_list_empty(device, head); 498 spin_unlock_irq(&device->resource->req_lock); 499 } 500 501 static int drbd_recv_short(struct socket *sock, void *buf, size_t size, int flags) 502 { 503 struct kvec iov = { 504 .iov_base = buf, 505 .iov_len = size, 506 }; 507 struct msghdr msg = { 508 .msg_flags = (flags ? flags : MSG_WAITALL | MSG_NOSIGNAL) 509 }; 510 iov_iter_kvec(&msg.msg_iter, READ, &iov, 1, size); 511 return sock_recvmsg(sock, &msg, msg.msg_flags); 512 } 513 514 static int drbd_recv(struct drbd_connection *connection, void *buf, size_t size) 515 { 516 int rv; 517 518 rv = drbd_recv_short(connection->data.socket, buf, size, 0); 519 520 if (rv < 0) { 521 if (rv == -ECONNRESET) 522 drbd_info(connection, "sock was reset by peer\n"); 523 else if (rv != -ERESTARTSYS) 524 drbd_err(connection, "sock_recvmsg returned %d\n", rv); 525 } else if (rv == 0) { 526 if (test_bit(DISCONNECT_SENT, &connection->flags)) { 527 long t; 528 rcu_read_lock(); 529 t = rcu_dereference(connection->net_conf)->ping_timeo * HZ/10; 530 rcu_read_unlock(); 531 532 t = wait_event_timeout(connection->ping_wait, connection->cstate < C_WF_REPORT_PARAMS, t); 533 534 if (t) 535 goto out; 536 } 537 drbd_info(connection, "sock was shut down by peer\n"); 538 } 539 540 if (rv != size) 541 conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD); 542 543 out: 544 return rv; 545 } 546 547 static int drbd_recv_all(struct drbd_connection *connection, void *buf, size_t size) 548 { 549 int err; 550 551 err = drbd_recv(connection, buf, size); 552 if (err != size) { 553 if (err >= 0) 554 err = -EIO; 555 } else 556 err = 0; 557 return err; 558 } 559 560 static int drbd_recv_all_warn(struct drbd_connection *connection, void *buf, size_t size) 561 { 562 int err; 563 564 err = drbd_recv_all(connection, buf, size); 565 if (err && !signal_pending(current)) 566 drbd_warn(connection, "short read (expected size %d)\n", (int)size); 567 return err; 568 } 569 570 /* quoting tcp(7): 571 * On individual connections, the socket buffer size must be set prior to the 572 * listen(2) or connect(2) calls in order to have it take effect. 573 * This is our wrapper to do so. 574 */ 575 static void drbd_setbufsize(struct socket *sock, unsigned int snd, 576 unsigned int rcv) 577 { 578 /* open coded SO_SNDBUF, SO_RCVBUF */ 579 if (snd) { 580 sock->sk->sk_sndbuf = snd; 581 sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 582 } 583 if (rcv) { 584 sock->sk->sk_rcvbuf = rcv; 585 sock->sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 586 } 587 } 588 589 static struct socket *drbd_try_connect(struct drbd_connection *connection) 590 { 591 const char *what; 592 struct socket *sock; 593 struct sockaddr_in6 src_in6; 594 struct sockaddr_in6 peer_in6; 595 struct net_conf *nc; 596 int err, peer_addr_len, my_addr_len; 597 int sndbuf_size, rcvbuf_size, connect_int; 598 int disconnect_on_error = 1; 599 600 rcu_read_lock(); 601 nc = rcu_dereference(connection->net_conf); 602 if (!nc) { 603 rcu_read_unlock(); 604 return NULL; 605 } 606 sndbuf_size = nc->sndbuf_size; 607 rcvbuf_size = nc->rcvbuf_size; 608 connect_int = nc->connect_int; 609 rcu_read_unlock(); 610 611 my_addr_len = min_t(int, connection->my_addr_len, sizeof(src_in6)); 612 memcpy(&src_in6, &connection->my_addr, my_addr_len); 613 614 if (((struct sockaddr *)&connection->my_addr)->sa_family == AF_INET6) 615 src_in6.sin6_port = 0; 616 else 617 ((struct sockaddr_in *)&src_in6)->sin_port = 0; /* AF_INET & AF_SCI */ 618 619 peer_addr_len = min_t(int, connection->peer_addr_len, sizeof(src_in6)); 620 memcpy(&peer_in6, &connection->peer_addr, peer_addr_len); 621 622 what = "sock_create_kern"; 623 err = sock_create_kern(&init_net, ((struct sockaddr *)&src_in6)->sa_family, 624 SOCK_STREAM, IPPROTO_TCP, &sock); 625 if (err < 0) { 626 sock = NULL; 627 goto out; 628 } 629 630 sock->sk->sk_rcvtimeo = 631 sock->sk->sk_sndtimeo = connect_int * HZ; 632 drbd_setbufsize(sock, sndbuf_size, rcvbuf_size); 633 634 /* explicitly bind to the configured IP as source IP 635 * for the outgoing connections. 636 * This is needed for multihomed hosts and to be 637 * able to use lo: interfaces for drbd. 638 * Make sure to use 0 as port number, so linux selects 639 * a free one dynamically. 640 */ 641 what = "bind before connect"; 642 err = sock->ops->bind(sock, (struct sockaddr *) &src_in6, my_addr_len); 643 if (err < 0) 644 goto out; 645 646 /* connect may fail, peer not yet available. 647 * stay C_WF_CONNECTION, don't go Disconnecting! */ 648 disconnect_on_error = 0; 649 what = "connect"; 650 err = sock->ops->connect(sock, (struct sockaddr *) &peer_in6, peer_addr_len, 0); 651 652 out: 653 if (err < 0) { 654 if (sock) { 655 sock_release(sock); 656 sock = NULL; 657 } 658 switch (-err) { 659 /* timeout, busy, signal pending */ 660 case ETIMEDOUT: case EAGAIN: case EINPROGRESS: 661 case EINTR: case ERESTARTSYS: 662 /* peer not (yet) available, network problem */ 663 case ECONNREFUSED: case ENETUNREACH: 664 case EHOSTDOWN: case EHOSTUNREACH: 665 disconnect_on_error = 0; 666 break; 667 default: 668 drbd_err(connection, "%s failed, err = %d\n", what, err); 669 } 670 if (disconnect_on_error) 671 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 672 } 673 674 return sock; 675 } 676 677 struct accept_wait_data { 678 struct drbd_connection *connection; 679 struct socket *s_listen; 680 struct completion door_bell; 681 void (*original_sk_state_change)(struct sock *sk); 682 683 }; 684 685 static void drbd_incoming_connection(struct sock *sk) 686 { 687 struct accept_wait_data *ad = sk->sk_user_data; 688 void (*state_change)(struct sock *sk); 689 690 state_change = ad->original_sk_state_change; 691 if (sk->sk_state == TCP_ESTABLISHED) 692 complete(&ad->door_bell); 693 state_change(sk); 694 } 695 696 static int prepare_listen_socket(struct drbd_connection *connection, struct accept_wait_data *ad) 697 { 698 int err, sndbuf_size, rcvbuf_size, my_addr_len; 699 struct sockaddr_in6 my_addr; 700 struct socket *s_listen; 701 struct net_conf *nc; 702 const char *what; 703 704 rcu_read_lock(); 705 nc = rcu_dereference(connection->net_conf); 706 if (!nc) { 707 rcu_read_unlock(); 708 return -EIO; 709 } 710 sndbuf_size = nc->sndbuf_size; 711 rcvbuf_size = nc->rcvbuf_size; 712 rcu_read_unlock(); 713 714 my_addr_len = min_t(int, connection->my_addr_len, sizeof(struct sockaddr_in6)); 715 memcpy(&my_addr, &connection->my_addr, my_addr_len); 716 717 what = "sock_create_kern"; 718 err = sock_create_kern(&init_net, ((struct sockaddr *)&my_addr)->sa_family, 719 SOCK_STREAM, IPPROTO_TCP, &s_listen); 720 if (err) { 721 s_listen = NULL; 722 goto out; 723 } 724 725 s_listen->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */ 726 drbd_setbufsize(s_listen, sndbuf_size, rcvbuf_size); 727 728 what = "bind before listen"; 729 err = s_listen->ops->bind(s_listen, (struct sockaddr *)&my_addr, my_addr_len); 730 if (err < 0) 731 goto out; 732 733 ad->s_listen = s_listen; 734 write_lock_bh(&s_listen->sk->sk_callback_lock); 735 ad->original_sk_state_change = s_listen->sk->sk_state_change; 736 s_listen->sk->sk_state_change = drbd_incoming_connection; 737 s_listen->sk->sk_user_data = ad; 738 write_unlock_bh(&s_listen->sk->sk_callback_lock); 739 740 what = "listen"; 741 err = s_listen->ops->listen(s_listen, 5); 742 if (err < 0) 743 goto out; 744 745 return 0; 746 out: 747 if (s_listen) 748 sock_release(s_listen); 749 if (err < 0) { 750 if (err != -EAGAIN && err != -EINTR && err != -ERESTARTSYS) { 751 drbd_err(connection, "%s failed, err = %d\n", what, err); 752 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 753 } 754 } 755 756 return -EIO; 757 } 758 759 static void unregister_state_change(struct sock *sk, struct accept_wait_data *ad) 760 { 761 write_lock_bh(&sk->sk_callback_lock); 762 sk->sk_state_change = ad->original_sk_state_change; 763 sk->sk_user_data = NULL; 764 write_unlock_bh(&sk->sk_callback_lock); 765 } 766 767 static struct socket *drbd_wait_for_connect(struct drbd_connection *connection, struct accept_wait_data *ad) 768 { 769 int timeo, connect_int, err = 0; 770 struct socket *s_estab = NULL; 771 struct net_conf *nc; 772 773 rcu_read_lock(); 774 nc = rcu_dereference(connection->net_conf); 775 if (!nc) { 776 rcu_read_unlock(); 777 return NULL; 778 } 779 connect_int = nc->connect_int; 780 rcu_read_unlock(); 781 782 timeo = connect_int * HZ; 783 /* 28.5% random jitter */ 784 timeo += (prandom_u32() & 1) ? timeo / 7 : -timeo / 7; 785 786 err = wait_for_completion_interruptible_timeout(&ad->door_bell, timeo); 787 if (err <= 0) 788 return NULL; 789 790 err = kernel_accept(ad->s_listen, &s_estab, 0); 791 if (err < 0) { 792 if (err != -EAGAIN && err != -EINTR && err != -ERESTARTSYS) { 793 drbd_err(connection, "accept failed, err = %d\n", err); 794 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 795 } 796 } 797 798 if (s_estab) 799 unregister_state_change(s_estab->sk, ad); 800 801 return s_estab; 802 } 803 804 static int decode_header(struct drbd_connection *, void *, struct packet_info *); 805 806 static int send_first_packet(struct drbd_connection *connection, struct drbd_socket *sock, 807 enum drbd_packet cmd) 808 { 809 if (!conn_prepare_command(connection, sock)) 810 return -EIO; 811 return conn_send_command(connection, sock, cmd, 0, NULL, 0); 812 } 813 814 static int receive_first_packet(struct drbd_connection *connection, struct socket *sock) 815 { 816 unsigned int header_size = drbd_header_size(connection); 817 struct packet_info pi; 818 struct net_conf *nc; 819 int err; 820 821 rcu_read_lock(); 822 nc = rcu_dereference(connection->net_conf); 823 if (!nc) { 824 rcu_read_unlock(); 825 return -EIO; 826 } 827 sock->sk->sk_rcvtimeo = nc->ping_timeo * 4 * HZ / 10; 828 rcu_read_unlock(); 829 830 err = drbd_recv_short(sock, connection->data.rbuf, header_size, 0); 831 if (err != header_size) { 832 if (err >= 0) 833 err = -EIO; 834 return err; 835 } 836 err = decode_header(connection, connection->data.rbuf, &pi); 837 if (err) 838 return err; 839 return pi.cmd; 840 } 841 842 /** 843 * drbd_socket_okay() - Free the socket if its connection is not okay 844 * @sock: pointer to the pointer to the socket. 845 */ 846 static bool drbd_socket_okay(struct socket **sock) 847 { 848 int rr; 849 char tb[4]; 850 851 if (!*sock) 852 return false; 853 854 rr = drbd_recv_short(*sock, tb, 4, MSG_DONTWAIT | MSG_PEEK); 855 856 if (rr > 0 || rr == -EAGAIN) { 857 return true; 858 } else { 859 sock_release(*sock); 860 *sock = NULL; 861 return false; 862 } 863 } 864 865 static bool connection_established(struct drbd_connection *connection, 866 struct socket **sock1, 867 struct socket **sock2) 868 { 869 struct net_conf *nc; 870 int timeout; 871 bool ok; 872 873 if (!*sock1 || !*sock2) 874 return false; 875 876 rcu_read_lock(); 877 nc = rcu_dereference(connection->net_conf); 878 timeout = (nc->sock_check_timeo ?: nc->ping_timeo) * HZ / 10; 879 rcu_read_unlock(); 880 schedule_timeout_interruptible(timeout); 881 882 ok = drbd_socket_okay(sock1); 883 ok = drbd_socket_okay(sock2) && ok; 884 885 return ok; 886 } 887 888 /* Gets called if a connection is established, or if a new minor gets created 889 in a connection */ 890 int drbd_connected(struct drbd_peer_device *peer_device) 891 { 892 struct drbd_device *device = peer_device->device; 893 int err; 894 895 atomic_set(&device->packet_seq, 0); 896 device->peer_seq = 0; 897 898 device->state_mutex = peer_device->connection->agreed_pro_version < 100 ? 899 &peer_device->connection->cstate_mutex : 900 &device->own_state_mutex; 901 902 err = drbd_send_sync_param(peer_device); 903 if (!err) 904 err = drbd_send_sizes(peer_device, 0, 0); 905 if (!err) 906 err = drbd_send_uuids(peer_device); 907 if (!err) 908 err = drbd_send_current_state(peer_device); 909 clear_bit(USE_DEGR_WFC_T, &device->flags); 910 clear_bit(RESIZE_PENDING, &device->flags); 911 atomic_set(&device->ap_in_flight, 0); 912 mod_timer(&device->request_timer, jiffies + HZ); /* just start it here. */ 913 return err; 914 } 915 916 /* 917 * return values: 918 * 1 yes, we have a valid connection 919 * 0 oops, did not work out, please try again 920 * -1 peer talks different language, 921 * no point in trying again, please go standalone. 922 * -2 We do not have a network config... 923 */ 924 static int conn_connect(struct drbd_connection *connection) 925 { 926 struct drbd_socket sock, msock; 927 struct drbd_peer_device *peer_device; 928 struct net_conf *nc; 929 int vnr, timeout, h; 930 bool discard_my_data, ok; 931 enum drbd_state_rv rv; 932 struct accept_wait_data ad = { 933 .connection = connection, 934 .door_bell = COMPLETION_INITIALIZER_ONSTACK(ad.door_bell), 935 }; 936 937 clear_bit(DISCONNECT_SENT, &connection->flags); 938 if (conn_request_state(connection, NS(conn, C_WF_CONNECTION), CS_VERBOSE) < SS_SUCCESS) 939 return -2; 940 941 mutex_init(&sock.mutex); 942 sock.sbuf = connection->data.sbuf; 943 sock.rbuf = connection->data.rbuf; 944 sock.socket = NULL; 945 mutex_init(&msock.mutex); 946 msock.sbuf = connection->meta.sbuf; 947 msock.rbuf = connection->meta.rbuf; 948 msock.socket = NULL; 949 950 /* Assume that the peer only understands protocol 80 until we know better. */ 951 connection->agreed_pro_version = 80; 952 953 if (prepare_listen_socket(connection, &ad)) 954 return 0; 955 956 do { 957 struct socket *s; 958 959 s = drbd_try_connect(connection); 960 if (s) { 961 if (!sock.socket) { 962 sock.socket = s; 963 send_first_packet(connection, &sock, P_INITIAL_DATA); 964 } else if (!msock.socket) { 965 clear_bit(RESOLVE_CONFLICTS, &connection->flags); 966 msock.socket = s; 967 send_first_packet(connection, &msock, P_INITIAL_META); 968 } else { 969 drbd_err(connection, "Logic error in conn_connect()\n"); 970 goto out_release_sockets; 971 } 972 } 973 974 if (connection_established(connection, &sock.socket, &msock.socket)) 975 break; 976 977 retry: 978 s = drbd_wait_for_connect(connection, &ad); 979 if (s) { 980 int fp = receive_first_packet(connection, s); 981 drbd_socket_okay(&sock.socket); 982 drbd_socket_okay(&msock.socket); 983 switch (fp) { 984 case P_INITIAL_DATA: 985 if (sock.socket) { 986 drbd_warn(connection, "initial packet S crossed\n"); 987 sock_release(sock.socket); 988 sock.socket = s; 989 goto randomize; 990 } 991 sock.socket = s; 992 break; 993 case P_INITIAL_META: 994 set_bit(RESOLVE_CONFLICTS, &connection->flags); 995 if (msock.socket) { 996 drbd_warn(connection, "initial packet M crossed\n"); 997 sock_release(msock.socket); 998 msock.socket = s; 999 goto randomize; 1000 } 1001 msock.socket = s; 1002 break; 1003 default: 1004 drbd_warn(connection, "Error receiving initial packet\n"); 1005 sock_release(s); 1006 randomize: 1007 if (prandom_u32() & 1) 1008 goto retry; 1009 } 1010 } 1011 1012 if (connection->cstate <= C_DISCONNECTING) 1013 goto out_release_sockets; 1014 if (signal_pending(current)) { 1015 flush_signals(current); 1016 smp_rmb(); 1017 if (get_t_state(&connection->receiver) == EXITING) 1018 goto out_release_sockets; 1019 } 1020 1021 ok = connection_established(connection, &sock.socket, &msock.socket); 1022 } while (!ok); 1023 1024 if (ad.s_listen) 1025 sock_release(ad.s_listen); 1026 1027 sock.socket->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */ 1028 msock.socket->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */ 1029 1030 sock.socket->sk->sk_allocation = GFP_NOIO; 1031 msock.socket->sk->sk_allocation = GFP_NOIO; 1032 1033 sock.socket->sk->sk_priority = TC_PRIO_INTERACTIVE_BULK; 1034 msock.socket->sk->sk_priority = TC_PRIO_INTERACTIVE; 1035 1036 /* NOT YET ... 1037 * sock.socket->sk->sk_sndtimeo = connection->net_conf->timeout*HZ/10; 1038 * sock.socket->sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 1039 * first set it to the P_CONNECTION_FEATURES timeout, 1040 * which we set to 4x the configured ping_timeout. */ 1041 rcu_read_lock(); 1042 nc = rcu_dereference(connection->net_conf); 1043 1044 sock.socket->sk->sk_sndtimeo = 1045 sock.socket->sk->sk_rcvtimeo = nc->ping_timeo*4*HZ/10; 1046 1047 msock.socket->sk->sk_rcvtimeo = nc->ping_int*HZ; 1048 timeout = nc->timeout * HZ / 10; 1049 discard_my_data = nc->discard_my_data; 1050 rcu_read_unlock(); 1051 1052 msock.socket->sk->sk_sndtimeo = timeout; 1053 1054 /* we don't want delays. 1055 * we use TCP_CORK where appropriate, though */ 1056 tcp_sock_set_nodelay(sock.socket->sk); 1057 tcp_sock_set_nodelay(msock.socket->sk); 1058 1059 connection->data.socket = sock.socket; 1060 connection->meta.socket = msock.socket; 1061 connection->last_received = jiffies; 1062 1063 h = drbd_do_features(connection); 1064 if (h <= 0) 1065 return h; 1066 1067 if (connection->cram_hmac_tfm) { 1068 /* drbd_request_state(device, NS(conn, WFAuth)); */ 1069 switch (drbd_do_auth(connection)) { 1070 case -1: 1071 drbd_err(connection, "Authentication of peer failed\n"); 1072 return -1; 1073 case 0: 1074 drbd_err(connection, "Authentication of peer failed, trying again.\n"); 1075 return 0; 1076 } 1077 } 1078 1079 connection->data.socket->sk->sk_sndtimeo = timeout; 1080 connection->data.socket->sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 1081 1082 if (drbd_send_protocol(connection) == -EOPNOTSUPP) 1083 return -1; 1084 1085 /* Prevent a race between resync-handshake and 1086 * being promoted to Primary. 1087 * 1088 * Grab and release the state mutex, so we know that any current 1089 * drbd_set_role() is finished, and any incoming drbd_set_role 1090 * will see the STATE_SENT flag, and wait for it to be cleared. 1091 */ 1092 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) 1093 mutex_lock(peer_device->device->state_mutex); 1094 1095 /* avoid a race with conn_request_state( C_DISCONNECTING ) */ 1096 spin_lock_irq(&connection->resource->req_lock); 1097 set_bit(STATE_SENT, &connection->flags); 1098 spin_unlock_irq(&connection->resource->req_lock); 1099 1100 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) 1101 mutex_unlock(peer_device->device->state_mutex); 1102 1103 rcu_read_lock(); 1104 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 1105 struct drbd_device *device = peer_device->device; 1106 kref_get(&device->kref); 1107 rcu_read_unlock(); 1108 1109 if (discard_my_data) 1110 set_bit(DISCARD_MY_DATA, &device->flags); 1111 else 1112 clear_bit(DISCARD_MY_DATA, &device->flags); 1113 1114 drbd_connected(peer_device); 1115 kref_put(&device->kref, drbd_destroy_device); 1116 rcu_read_lock(); 1117 } 1118 rcu_read_unlock(); 1119 1120 rv = conn_request_state(connection, NS(conn, C_WF_REPORT_PARAMS), CS_VERBOSE); 1121 if (rv < SS_SUCCESS || connection->cstate != C_WF_REPORT_PARAMS) { 1122 clear_bit(STATE_SENT, &connection->flags); 1123 return 0; 1124 } 1125 1126 drbd_thread_start(&connection->ack_receiver); 1127 /* opencoded create_singlethread_workqueue(), 1128 * to be able to use format string arguments */ 1129 connection->ack_sender = 1130 alloc_ordered_workqueue("drbd_as_%s", WQ_MEM_RECLAIM, connection->resource->name); 1131 if (!connection->ack_sender) { 1132 drbd_err(connection, "Failed to create workqueue ack_sender\n"); 1133 return 0; 1134 } 1135 1136 mutex_lock(&connection->resource->conf_update); 1137 /* The discard_my_data flag is a single-shot modifier to the next 1138 * connection attempt, the handshake of which is now well underway. 1139 * No need for rcu style copying of the whole struct 1140 * just to clear a single value. */ 1141 connection->net_conf->discard_my_data = 0; 1142 mutex_unlock(&connection->resource->conf_update); 1143 1144 return h; 1145 1146 out_release_sockets: 1147 if (ad.s_listen) 1148 sock_release(ad.s_listen); 1149 if (sock.socket) 1150 sock_release(sock.socket); 1151 if (msock.socket) 1152 sock_release(msock.socket); 1153 return -1; 1154 } 1155 1156 static int decode_header(struct drbd_connection *connection, void *header, struct packet_info *pi) 1157 { 1158 unsigned int header_size = drbd_header_size(connection); 1159 1160 if (header_size == sizeof(struct p_header100) && 1161 *(__be32 *)header == cpu_to_be32(DRBD_MAGIC_100)) { 1162 struct p_header100 *h = header; 1163 if (h->pad != 0) { 1164 drbd_err(connection, "Header padding is not zero\n"); 1165 return -EINVAL; 1166 } 1167 pi->vnr = be16_to_cpu(h->volume); 1168 pi->cmd = be16_to_cpu(h->command); 1169 pi->size = be32_to_cpu(h->length); 1170 } else if (header_size == sizeof(struct p_header95) && 1171 *(__be16 *)header == cpu_to_be16(DRBD_MAGIC_BIG)) { 1172 struct p_header95 *h = header; 1173 pi->cmd = be16_to_cpu(h->command); 1174 pi->size = be32_to_cpu(h->length); 1175 pi->vnr = 0; 1176 } else if (header_size == sizeof(struct p_header80) && 1177 *(__be32 *)header == cpu_to_be32(DRBD_MAGIC)) { 1178 struct p_header80 *h = header; 1179 pi->cmd = be16_to_cpu(h->command); 1180 pi->size = be16_to_cpu(h->length); 1181 pi->vnr = 0; 1182 } else { 1183 drbd_err(connection, "Wrong magic value 0x%08x in protocol version %d\n", 1184 be32_to_cpu(*(__be32 *)header), 1185 connection->agreed_pro_version); 1186 return -EINVAL; 1187 } 1188 pi->data = header + header_size; 1189 return 0; 1190 } 1191 1192 static void drbd_unplug_all_devices(struct drbd_connection *connection) 1193 { 1194 if (current->plug == &connection->receiver_plug) { 1195 blk_finish_plug(&connection->receiver_plug); 1196 blk_start_plug(&connection->receiver_plug); 1197 } /* else: maybe just schedule() ?? */ 1198 } 1199 1200 static int drbd_recv_header(struct drbd_connection *connection, struct packet_info *pi) 1201 { 1202 void *buffer = connection->data.rbuf; 1203 int err; 1204 1205 err = drbd_recv_all_warn(connection, buffer, drbd_header_size(connection)); 1206 if (err) 1207 return err; 1208 1209 err = decode_header(connection, buffer, pi); 1210 connection->last_received = jiffies; 1211 1212 return err; 1213 } 1214 1215 static int drbd_recv_header_maybe_unplug(struct drbd_connection *connection, struct packet_info *pi) 1216 { 1217 void *buffer = connection->data.rbuf; 1218 unsigned int size = drbd_header_size(connection); 1219 int err; 1220 1221 err = drbd_recv_short(connection->data.socket, buffer, size, MSG_NOSIGNAL|MSG_DONTWAIT); 1222 if (err != size) { 1223 /* If we have nothing in the receive buffer now, to reduce 1224 * application latency, try to drain the backend queues as 1225 * quickly as possible, and let remote TCP know what we have 1226 * received so far. */ 1227 if (err == -EAGAIN) { 1228 tcp_sock_set_quickack(connection->data.socket->sk, 2); 1229 drbd_unplug_all_devices(connection); 1230 } 1231 if (err > 0) { 1232 buffer += err; 1233 size -= err; 1234 } 1235 err = drbd_recv_all_warn(connection, buffer, size); 1236 if (err) 1237 return err; 1238 } 1239 1240 err = decode_header(connection, connection->data.rbuf, pi); 1241 connection->last_received = jiffies; 1242 1243 return err; 1244 } 1245 /* This is blkdev_issue_flush, but asynchronous. 1246 * We want to submit to all component volumes in parallel, 1247 * then wait for all completions. 1248 */ 1249 struct issue_flush_context { 1250 atomic_t pending; 1251 int error; 1252 struct completion done; 1253 }; 1254 struct one_flush_context { 1255 struct drbd_device *device; 1256 struct issue_flush_context *ctx; 1257 }; 1258 1259 static void one_flush_endio(struct bio *bio) 1260 { 1261 struct one_flush_context *octx = bio->bi_private; 1262 struct drbd_device *device = octx->device; 1263 struct issue_flush_context *ctx = octx->ctx; 1264 1265 if (bio->bi_status) { 1266 ctx->error = blk_status_to_errno(bio->bi_status); 1267 drbd_info(device, "local disk FLUSH FAILED with status %d\n", bio->bi_status); 1268 } 1269 kfree(octx); 1270 bio_put(bio); 1271 1272 clear_bit(FLUSH_PENDING, &device->flags); 1273 put_ldev(device); 1274 kref_put(&device->kref, drbd_destroy_device); 1275 1276 if (atomic_dec_and_test(&ctx->pending)) 1277 complete(&ctx->done); 1278 } 1279 1280 static void submit_one_flush(struct drbd_device *device, struct issue_flush_context *ctx) 1281 { 1282 struct bio *bio = bio_alloc(device->ldev->backing_bdev, 0, 1283 REQ_OP_FLUSH | REQ_PREFLUSH, GFP_NOIO); 1284 struct one_flush_context *octx = kmalloc(sizeof(*octx), GFP_NOIO); 1285 1286 if (!octx) { 1287 drbd_warn(device, "Could not allocate a octx, CANNOT ISSUE FLUSH\n"); 1288 /* FIXME: what else can I do now? disconnecting or detaching 1289 * really does not help to improve the state of the world, either. 1290 */ 1291 bio_put(bio); 1292 1293 ctx->error = -ENOMEM; 1294 put_ldev(device); 1295 kref_put(&device->kref, drbd_destroy_device); 1296 return; 1297 } 1298 1299 octx->device = device; 1300 octx->ctx = ctx; 1301 bio->bi_private = octx; 1302 bio->bi_end_io = one_flush_endio; 1303 1304 device->flush_jif = jiffies; 1305 set_bit(FLUSH_PENDING, &device->flags); 1306 atomic_inc(&ctx->pending); 1307 submit_bio(bio); 1308 } 1309 1310 static void drbd_flush(struct drbd_connection *connection) 1311 { 1312 if (connection->resource->write_ordering >= WO_BDEV_FLUSH) { 1313 struct drbd_peer_device *peer_device; 1314 struct issue_flush_context ctx; 1315 int vnr; 1316 1317 atomic_set(&ctx.pending, 1); 1318 ctx.error = 0; 1319 init_completion(&ctx.done); 1320 1321 rcu_read_lock(); 1322 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 1323 struct drbd_device *device = peer_device->device; 1324 1325 if (!get_ldev(device)) 1326 continue; 1327 kref_get(&device->kref); 1328 rcu_read_unlock(); 1329 1330 submit_one_flush(device, &ctx); 1331 1332 rcu_read_lock(); 1333 } 1334 rcu_read_unlock(); 1335 1336 /* Do we want to add a timeout, 1337 * if disk-timeout is set? */ 1338 if (!atomic_dec_and_test(&ctx.pending)) 1339 wait_for_completion(&ctx.done); 1340 1341 if (ctx.error) { 1342 /* would rather check on EOPNOTSUPP, but that is not reliable. 1343 * don't try again for ANY return value != 0 1344 * if (rv == -EOPNOTSUPP) */ 1345 /* Any error is already reported by bio_endio callback. */ 1346 drbd_bump_write_ordering(connection->resource, NULL, WO_DRAIN_IO); 1347 } 1348 } 1349 } 1350 1351 /** 1352 * drbd_may_finish_epoch() - Applies an epoch_event to the epoch's state, eventually finishes it. 1353 * @connection: DRBD connection. 1354 * @epoch: Epoch object. 1355 * @ev: Epoch event. 1356 */ 1357 static enum finish_epoch drbd_may_finish_epoch(struct drbd_connection *connection, 1358 struct drbd_epoch *epoch, 1359 enum epoch_event ev) 1360 { 1361 int epoch_size; 1362 struct drbd_epoch *next_epoch; 1363 enum finish_epoch rv = FE_STILL_LIVE; 1364 1365 spin_lock(&connection->epoch_lock); 1366 do { 1367 next_epoch = NULL; 1368 1369 epoch_size = atomic_read(&epoch->epoch_size); 1370 1371 switch (ev & ~EV_CLEANUP) { 1372 case EV_PUT: 1373 atomic_dec(&epoch->active); 1374 break; 1375 case EV_GOT_BARRIER_NR: 1376 set_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags); 1377 break; 1378 case EV_BECAME_LAST: 1379 /* nothing to do*/ 1380 break; 1381 } 1382 1383 if (epoch_size != 0 && 1384 atomic_read(&epoch->active) == 0 && 1385 (test_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags) || ev & EV_CLEANUP)) { 1386 if (!(ev & EV_CLEANUP)) { 1387 spin_unlock(&connection->epoch_lock); 1388 drbd_send_b_ack(epoch->connection, epoch->barrier_nr, epoch_size); 1389 spin_lock(&connection->epoch_lock); 1390 } 1391 #if 0 1392 /* FIXME: dec unacked on connection, once we have 1393 * something to count pending connection packets in. */ 1394 if (test_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags)) 1395 dec_unacked(epoch->connection); 1396 #endif 1397 1398 if (connection->current_epoch != epoch) { 1399 next_epoch = list_entry(epoch->list.next, struct drbd_epoch, list); 1400 list_del(&epoch->list); 1401 ev = EV_BECAME_LAST | (ev & EV_CLEANUP); 1402 connection->epochs--; 1403 kfree(epoch); 1404 1405 if (rv == FE_STILL_LIVE) 1406 rv = FE_DESTROYED; 1407 } else { 1408 epoch->flags = 0; 1409 atomic_set(&epoch->epoch_size, 0); 1410 /* atomic_set(&epoch->active, 0); is already zero */ 1411 if (rv == FE_STILL_LIVE) 1412 rv = FE_RECYCLED; 1413 } 1414 } 1415 1416 if (!next_epoch) 1417 break; 1418 1419 epoch = next_epoch; 1420 } while (1); 1421 1422 spin_unlock(&connection->epoch_lock); 1423 1424 return rv; 1425 } 1426 1427 static enum write_ordering_e 1428 max_allowed_wo(struct drbd_backing_dev *bdev, enum write_ordering_e wo) 1429 { 1430 struct disk_conf *dc; 1431 1432 dc = rcu_dereference(bdev->disk_conf); 1433 1434 if (wo == WO_BDEV_FLUSH && !dc->disk_flushes) 1435 wo = WO_DRAIN_IO; 1436 if (wo == WO_DRAIN_IO && !dc->disk_drain) 1437 wo = WO_NONE; 1438 1439 return wo; 1440 } 1441 1442 /* 1443 * drbd_bump_write_ordering() - Fall back to an other write ordering method 1444 * @wo: Write ordering method to try. 1445 */ 1446 void drbd_bump_write_ordering(struct drbd_resource *resource, struct drbd_backing_dev *bdev, 1447 enum write_ordering_e wo) 1448 { 1449 struct drbd_device *device; 1450 enum write_ordering_e pwo; 1451 int vnr; 1452 static char *write_ordering_str[] = { 1453 [WO_NONE] = "none", 1454 [WO_DRAIN_IO] = "drain", 1455 [WO_BDEV_FLUSH] = "flush", 1456 }; 1457 1458 pwo = resource->write_ordering; 1459 if (wo != WO_BDEV_FLUSH) 1460 wo = min(pwo, wo); 1461 rcu_read_lock(); 1462 idr_for_each_entry(&resource->devices, device, vnr) { 1463 if (get_ldev(device)) { 1464 wo = max_allowed_wo(device->ldev, wo); 1465 if (device->ldev == bdev) 1466 bdev = NULL; 1467 put_ldev(device); 1468 } 1469 } 1470 1471 if (bdev) 1472 wo = max_allowed_wo(bdev, wo); 1473 1474 rcu_read_unlock(); 1475 1476 resource->write_ordering = wo; 1477 if (pwo != resource->write_ordering || wo == WO_BDEV_FLUSH) 1478 drbd_info(resource, "Method to ensure write ordering: %s\n", write_ordering_str[resource->write_ordering]); 1479 } 1480 1481 /* 1482 * Mapping "discard" to ZEROOUT with UNMAP does not work for us: 1483 * Drivers have to "announce" q->limits.max_write_zeroes_sectors, or it 1484 * will directly go to fallback mode, submitting normal writes, and 1485 * never even try to UNMAP. 1486 * 1487 * And dm-thin does not do this (yet), mostly because in general it has 1488 * to assume that "skip_block_zeroing" is set. See also: 1489 * https://www.mail-archive.com/dm-devel%40redhat.com/msg07965.html 1490 * https://www.redhat.com/archives/dm-devel/2018-January/msg00271.html 1491 * 1492 * We *may* ignore the discard-zeroes-data setting, if so configured. 1493 * 1494 * Assumption is that this "discard_zeroes_data=0" is only because the backend 1495 * may ignore partial unaligned discards. 1496 * 1497 * LVM/DM thin as of at least 1498 * LVM version: 2.02.115(2)-RHEL7 (2015-01-28) 1499 * Library version: 1.02.93-RHEL7 (2015-01-28) 1500 * Driver version: 4.29.0 1501 * still behaves this way. 1502 * 1503 * For unaligned (wrt. alignment and granularity) or too small discards, 1504 * we zero-out the initial (and/or) trailing unaligned partial chunks, 1505 * but discard all the aligned full chunks. 1506 * 1507 * At least for LVM/DM thin, with skip_block_zeroing=false, 1508 * the result is effectively "discard_zeroes_data=1". 1509 */ 1510 /* flags: EE_TRIM|EE_ZEROOUT */ 1511 int drbd_issue_discard_or_zero_out(struct drbd_device *device, sector_t start, unsigned int nr_sectors, int flags) 1512 { 1513 struct block_device *bdev = device->ldev->backing_bdev; 1514 sector_t tmp, nr; 1515 unsigned int max_discard_sectors, granularity; 1516 int alignment; 1517 int err = 0; 1518 1519 if ((flags & EE_ZEROOUT) || !(flags & EE_TRIM)) 1520 goto zero_out; 1521 1522 /* Zero-sector (unknown) and one-sector granularities are the same. */ 1523 granularity = max(bdev_discard_granularity(bdev) >> 9, 1U); 1524 alignment = (bdev_discard_alignment(bdev) >> 9) % granularity; 1525 1526 max_discard_sectors = min(bdev_max_discard_sectors(bdev), (1U << 22)); 1527 max_discard_sectors -= max_discard_sectors % granularity; 1528 if (unlikely(!max_discard_sectors)) 1529 goto zero_out; 1530 1531 if (nr_sectors < granularity) 1532 goto zero_out; 1533 1534 tmp = start; 1535 if (sector_div(tmp, granularity) != alignment) { 1536 if (nr_sectors < 2*granularity) 1537 goto zero_out; 1538 /* start + gran - (start + gran - align) % gran */ 1539 tmp = start + granularity - alignment; 1540 tmp = start + granularity - sector_div(tmp, granularity); 1541 1542 nr = tmp - start; 1543 /* don't flag BLKDEV_ZERO_NOUNMAP, we don't know how many 1544 * layers are below us, some may have smaller granularity */ 1545 err |= blkdev_issue_zeroout(bdev, start, nr, GFP_NOIO, 0); 1546 nr_sectors -= nr; 1547 start = tmp; 1548 } 1549 while (nr_sectors >= max_discard_sectors) { 1550 err |= blkdev_issue_discard(bdev, start, max_discard_sectors, 1551 GFP_NOIO); 1552 nr_sectors -= max_discard_sectors; 1553 start += max_discard_sectors; 1554 } 1555 if (nr_sectors) { 1556 /* max_discard_sectors is unsigned int (and a multiple of 1557 * granularity, we made sure of that above already); 1558 * nr is < max_discard_sectors; 1559 * I don't need sector_div here, even though nr is sector_t */ 1560 nr = nr_sectors; 1561 nr -= (unsigned int)nr % granularity; 1562 if (nr) { 1563 err |= blkdev_issue_discard(bdev, start, nr, GFP_NOIO); 1564 nr_sectors -= nr; 1565 start += nr; 1566 } 1567 } 1568 zero_out: 1569 if (nr_sectors) { 1570 err |= blkdev_issue_zeroout(bdev, start, nr_sectors, GFP_NOIO, 1571 (flags & EE_TRIM) ? 0 : BLKDEV_ZERO_NOUNMAP); 1572 } 1573 return err != 0; 1574 } 1575 1576 static bool can_do_reliable_discards(struct drbd_device *device) 1577 { 1578 struct disk_conf *dc; 1579 bool can_do; 1580 1581 if (!bdev_max_discard_sectors(device->ldev->backing_bdev)) 1582 return false; 1583 1584 rcu_read_lock(); 1585 dc = rcu_dereference(device->ldev->disk_conf); 1586 can_do = dc->discard_zeroes_if_aligned; 1587 rcu_read_unlock(); 1588 return can_do; 1589 } 1590 1591 static void drbd_issue_peer_discard_or_zero_out(struct drbd_device *device, struct drbd_peer_request *peer_req) 1592 { 1593 /* If the backend cannot discard, or does not guarantee 1594 * read-back zeroes in discarded ranges, we fall back to 1595 * zero-out. Unless configuration specifically requested 1596 * otherwise. */ 1597 if (!can_do_reliable_discards(device)) 1598 peer_req->flags |= EE_ZEROOUT; 1599 1600 if (drbd_issue_discard_or_zero_out(device, peer_req->i.sector, 1601 peer_req->i.size >> 9, peer_req->flags & (EE_ZEROOUT|EE_TRIM))) 1602 peer_req->flags |= EE_WAS_ERROR; 1603 drbd_endio_write_sec_final(peer_req); 1604 } 1605 1606 /** 1607 * drbd_submit_peer_request() 1608 * @device: DRBD device. 1609 * @peer_req: peer request 1610 * 1611 * May spread the pages to multiple bios, 1612 * depending on bio_add_page restrictions. 1613 * 1614 * Returns 0 if all bios have been submitted, 1615 * -ENOMEM if we could not allocate enough bios, 1616 * -ENOSPC (any better suggestion?) if we have not been able to bio_add_page a 1617 * single page to an empty bio (which should never happen and likely indicates 1618 * that the lower level IO stack is in some way broken). This has been observed 1619 * on certain Xen deployments. 1620 */ 1621 /* TODO allocate from our own bio_set. */ 1622 int drbd_submit_peer_request(struct drbd_device *device, 1623 struct drbd_peer_request *peer_req, 1624 const unsigned op, const unsigned op_flags, 1625 const int fault_type) 1626 { 1627 struct bio *bios = NULL; 1628 struct bio *bio; 1629 struct page *page = peer_req->pages; 1630 sector_t sector = peer_req->i.sector; 1631 unsigned int data_size = peer_req->i.size; 1632 unsigned int n_bios = 0; 1633 unsigned int nr_pages = PFN_UP(data_size); 1634 1635 /* TRIM/DISCARD: for now, always use the helper function 1636 * blkdev_issue_zeroout(..., discard=true). 1637 * It's synchronous, but it does the right thing wrt. bio splitting. 1638 * Correctness first, performance later. Next step is to code an 1639 * asynchronous variant of the same. 1640 */ 1641 if (peer_req->flags & (EE_TRIM | EE_ZEROOUT)) { 1642 /* wait for all pending IO completions, before we start 1643 * zeroing things out. */ 1644 conn_wait_active_ee_empty(peer_req->peer_device->connection); 1645 /* add it to the active list now, 1646 * so we can find it to present it in debugfs */ 1647 peer_req->submit_jif = jiffies; 1648 peer_req->flags |= EE_SUBMITTED; 1649 1650 /* If this was a resync request from receive_rs_deallocated(), 1651 * it is already on the sync_ee list */ 1652 if (list_empty(&peer_req->w.list)) { 1653 spin_lock_irq(&device->resource->req_lock); 1654 list_add_tail(&peer_req->w.list, &device->active_ee); 1655 spin_unlock_irq(&device->resource->req_lock); 1656 } 1657 1658 drbd_issue_peer_discard_or_zero_out(device, peer_req); 1659 return 0; 1660 } 1661 1662 /* In most cases, we will only need one bio. But in case the lower 1663 * level restrictions happen to be different at this offset on this 1664 * side than those of the sending peer, we may need to submit the 1665 * request in more than one bio. 1666 * 1667 * Plain bio_alloc is good enough here, this is no DRBD internally 1668 * generated bio, but a bio allocated on behalf of the peer. 1669 */ 1670 next_bio: 1671 bio = bio_alloc(device->ldev->backing_bdev, nr_pages, op | op_flags, 1672 GFP_NOIO); 1673 /* > peer_req->i.sector, unless this is the first bio */ 1674 bio->bi_iter.bi_sector = sector; 1675 bio->bi_private = peer_req; 1676 bio->bi_end_io = drbd_peer_request_endio; 1677 1678 bio->bi_next = bios; 1679 bios = bio; 1680 ++n_bios; 1681 1682 page_chain_for_each(page) { 1683 unsigned len = min_t(unsigned, data_size, PAGE_SIZE); 1684 if (!bio_add_page(bio, page, len, 0)) 1685 goto next_bio; 1686 data_size -= len; 1687 sector += len >> 9; 1688 --nr_pages; 1689 } 1690 D_ASSERT(device, data_size == 0); 1691 D_ASSERT(device, page == NULL); 1692 1693 atomic_set(&peer_req->pending_bios, n_bios); 1694 /* for debugfs: update timestamp, mark as submitted */ 1695 peer_req->submit_jif = jiffies; 1696 peer_req->flags |= EE_SUBMITTED; 1697 do { 1698 bio = bios; 1699 bios = bios->bi_next; 1700 bio->bi_next = NULL; 1701 1702 drbd_submit_bio_noacct(device, fault_type, bio); 1703 } while (bios); 1704 return 0; 1705 } 1706 1707 static void drbd_remove_epoch_entry_interval(struct drbd_device *device, 1708 struct drbd_peer_request *peer_req) 1709 { 1710 struct drbd_interval *i = &peer_req->i; 1711 1712 drbd_remove_interval(&device->write_requests, i); 1713 drbd_clear_interval(i); 1714 1715 /* Wake up any processes waiting for this peer request to complete. */ 1716 if (i->waiting) 1717 wake_up(&device->misc_wait); 1718 } 1719 1720 static void conn_wait_active_ee_empty(struct drbd_connection *connection) 1721 { 1722 struct drbd_peer_device *peer_device; 1723 int vnr; 1724 1725 rcu_read_lock(); 1726 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 1727 struct drbd_device *device = peer_device->device; 1728 1729 kref_get(&device->kref); 1730 rcu_read_unlock(); 1731 drbd_wait_ee_list_empty(device, &device->active_ee); 1732 kref_put(&device->kref, drbd_destroy_device); 1733 rcu_read_lock(); 1734 } 1735 rcu_read_unlock(); 1736 } 1737 1738 static int receive_Barrier(struct drbd_connection *connection, struct packet_info *pi) 1739 { 1740 int rv; 1741 struct p_barrier *p = pi->data; 1742 struct drbd_epoch *epoch; 1743 1744 /* FIXME these are unacked on connection, 1745 * not a specific (peer)device. 1746 */ 1747 connection->current_epoch->barrier_nr = p->barrier; 1748 connection->current_epoch->connection = connection; 1749 rv = drbd_may_finish_epoch(connection, connection->current_epoch, EV_GOT_BARRIER_NR); 1750 1751 /* P_BARRIER_ACK may imply that the corresponding extent is dropped from 1752 * the activity log, which means it would not be resynced in case the 1753 * R_PRIMARY crashes now. 1754 * Therefore we must send the barrier_ack after the barrier request was 1755 * completed. */ 1756 switch (connection->resource->write_ordering) { 1757 case WO_NONE: 1758 if (rv == FE_RECYCLED) 1759 return 0; 1760 1761 /* receiver context, in the writeout path of the other node. 1762 * avoid potential distributed deadlock */ 1763 epoch = kmalloc(sizeof(struct drbd_epoch), GFP_NOIO); 1764 if (epoch) 1765 break; 1766 else 1767 drbd_warn(connection, "Allocation of an epoch failed, slowing down\n"); 1768 fallthrough; 1769 1770 case WO_BDEV_FLUSH: 1771 case WO_DRAIN_IO: 1772 conn_wait_active_ee_empty(connection); 1773 drbd_flush(connection); 1774 1775 if (atomic_read(&connection->current_epoch->epoch_size)) { 1776 epoch = kmalloc(sizeof(struct drbd_epoch), GFP_NOIO); 1777 if (epoch) 1778 break; 1779 } 1780 1781 return 0; 1782 default: 1783 drbd_err(connection, "Strangeness in connection->write_ordering %d\n", 1784 connection->resource->write_ordering); 1785 return -EIO; 1786 } 1787 1788 epoch->flags = 0; 1789 atomic_set(&epoch->epoch_size, 0); 1790 atomic_set(&epoch->active, 0); 1791 1792 spin_lock(&connection->epoch_lock); 1793 if (atomic_read(&connection->current_epoch->epoch_size)) { 1794 list_add(&epoch->list, &connection->current_epoch->list); 1795 connection->current_epoch = epoch; 1796 connection->epochs++; 1797 } else { 1798 /* The current_epoch got recycled while we allocated this one... */ 1799 kfree(epoch); 1800 } 1801 spin_unlock(&connection->epoch_lock); 1802 1803 return 0; 1804 } 1805 1806 /* quick wrapper in case payload size != request_size (write same) */ 1807 static void drbd_csum_ee_size(struct crypto_shash *h, 1808 struct drbd_peer_request *r, void *d, 1809 unsigned int payload_size) 1810 { 1811 unsigned int tmp = r->i.size; 1812 r->i.size = payload_size; 1813 drbd_csum_ee(h, r, d); 1814 r->i.size = tmp; 1815 } 1816 1817 /* used from receive_RSDataReply (recv_resync_read) 1818 * and from receive_Data. 1819 * data_size: actual payload ("data in") 1820 * for normal writes that is bi_size. 1821 * for discards, that is zero. 1822 * for write same, it is logical_block_size. 1823 * both trim and write same have the bi_size ("data len to be affected") 1824 * as extra argument in the packet header. 1825 */ 1826 static struct drbd_peer_request * 1827 read_in_block(struct drbd_peer_device *peer_device, u64 id, sector_t sector, 1828 struct packet_info *pi) __must_hold(local) 1829 { 1830 struct drbd_device *device = peer_device->device; 1831 const sector_t capacity = get_capacity(device->vdisk); 1832 struct drbd_peer_request *peer_req; 1833 struct page *page; 1834 int digest_size, err; 1835 unsigned int data_size = pi->size, ds; 1836 void *dig_in = peer_device->connection->int_dig_in; 1837 void *dig_vv = peer_device->connection->int_dig_vv; 1838 unsigned long *data; 1839 struct p_trim *trim = (pi->cmd == P_TRIM) ? pi->data : NULL; 1840 struct p_trim *zeroes = (pi->cmd == P_ZEROES) ? pi->data : NULL; 1841 1842 digest_size = 0; 1843 if (!trim && peer_device->connection->peer_integrity_tfm) { 1844 digest_size = crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm); 1845 /* 1846 * FIXME: Receive the incoming digest into the receive buffer 1847 * here, together with its struct p_data? 1848 */ 1849 err = drbd_recv_all_warn(peer_device->connection, dig_in, digest_size); 1850 if (err) 1851 return NULL; 1852 data_size -= digest_size; 1853 } 1854 1855 /* assume request_size == data_size, but special case trim. */ 1856 ds = data_size; 1857 if (trim) { 1858 if (!expect(data_size == 0)) 1859 return NULL; 1860 ds = be32_to_cpu(trim->size); 1861 } else if (zeroes) { 1862 if (!expect(data_size == 0)) 1863 return NULL; 1864 ds = be32_to_cpu(zeroes->size); 1865 } 1866 1867 if (!expect(IS_ALIGNED(ds, 512))) 1868 return NULL; 1869 if (trim || zeroes) { 1870 if (!expect(ds <= (DRBD_MAX_BBIO_SECTORS << 9))) 1871 return NULL; 1872 } else if (!expect(ds <= DRBD_MAX_BIO_SIZE)) 1873 return NULL; 1874 1875 /* even though we trust out peer, 1876 * we sometimes have to double check. */ 1877 if (sector + (ds>>9) > capacity) { 1878 drbd_err(device, "request from peer beyond end of local disk: " 1879 "capacity: %llus < sector: %llus + size: %u\n", 1880 (unsigned long long)capacity, 1881 (unsigned long long)sector, ds); 1882 return NULL; 1883 } 1884 1885 /* GFP_NOIO, because we must not cause arbitrary write-out: in a DRBD 1886 * "criss-cross" setup, that might cause write-out on some other DRBD, 1887 * which in turn might block on the other node at this very place. */ 1888 peer_req = drbd_alloc_peer_req(peer_device, id, sector, ds, data_size, GFP_NOIO); 1889 if (!peer_req) 1890 return NULL; 1891 1892 peer_req->flags |= EE_WRITE; 1893 if (trim) { 1894 peer_req->flags |= EE_TRIM; 1895 return peer_req; 1896 } 1897 if (zeroes) { 1898 peer_req->flags |= EE_ZEROOUT; 1899 return peer_req; 1900 } 1901 1902 /* receive payload size bytes into page chain */ 1903 ds = data_size; 1904 page = peer_req->pages; 1905 page_chain_for_each(page) { 1906 unsigned len = min_t(int, ds, PAGE_SIZE); 1907 data = kmap(page); 1908 err = drbd_recv_all_warn(peer_device->connection, data, len); 1909 if (drbd_insert_fault(device, DRBD_FAULT_RECEIVE)) { 1910 drbd_err(device, "Fault injection: Corrupting data on receive\n"); 1911 data[0] = data[0] ^ (unsigned long)-1; 1912 } 1913 kunmap(page); 1914 if (err) { 1915 drbd_free_peer_req(device, peer_req); 1916 return NULL; 1917 } 1918 ds -= len; 1919 } 1920 1921 if (digest_size) { 1922 drbd_csum_ee_size(peer_device->connection->peer_integrity_tfm, peer_req, dig_vv, data_size); 1923 if (memcmp(dig_in, dig_vv, digest_size)) { 1924 drbd_err(device, "Digest integrity check FAILED: %llus +%u\n", 1925 (unsigned long long)sector, data_size); 1926 drbd_free_peer_req(device, peer_req); 1927 return NULL; 1928 } 1929 } 1930 device->recv_cnt += data_size >> 9; 1931 return peer_req; 1932 } 1933 1934 /* drbd_drain_block() just takes a data block 1935 * out of the socket input buffer, and discards it. 1936 */ 1937 static int drbd_drain_block(struct drbd_peer_device *peer_device, int data_size) 1938 { 1939 struct page *page; 1940 int err = 0; 1941 void *data; 1942 1943 if (!data_size) 1944 return 0; 1945 1946 page = drbd_alloc_pages(peer_device, 1, 1); 1947 1948 data = kmap(page); 1949 while (data_size) { 1950 unsigned int len = min_t(int, data_size, PAGE_SIZE); 1951 1952 err = drbd_recv_all_warn(peer_device->connection, data, len); 1953 if (err) 1954 break; 1955 data_size -= len; 1956 } 1957 kunmap(page); 1958 drbd_free_pages(peer_device->device, page, 0); 1959 return err; 1960 } 1961 1962 static int recv_dless_read(struct drbd_peer_device *peer_device, struct drbd_request *req, 1963 sector_t sector, int data_size) 1964 { 1965 struct bio_vec bvec; 1966 struct bvec_iter iter; 1967 struct bio *bio; 1968 int digest_size, err, expect; 1969 void *dig_in = peer_device->connection->int_dig_in; 1970 void *dig_vv = peer_device->connection->int_dig_vv; 1971 1972 digest_size = 0; 1973 if (peer_device->connection->peer_integrity_tfm) { 1974 digest_size = crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm); 1975 err = drbd_recv_all_warn(peer_device->connection, dig_in, digest_size); 1976 if (err) 1977 return err; 1978 data_size -= digest_size; 1979 } 1980 1981 /* optimistically update recv_cnt. if receiving fails below, 1982 * we disconnect anyways, and counters will be reset. */ 1983 peer_device->device->recv_cnt += data_size>>9; 1984 1985 bio = req->master_bio; 1986 D_ASSERT(peer_device->device, sector == bio->bi_iter.bi_sector); 1987 1988 bio_for_each_segment(bvec, bio, iter) { 1989 void *mapped = bvec_kmap_local(&bvec); 1990 expect = min_t(int, data_size, bvec.bv_len); 1991 err = drbd_recv_all_warn(peer_device->connection, mapped, expect); 1992 kunmap_local(mapped); 1993 if (err) 1994 return err; 1995 data_size -= expect; 1996 } 1997 1998 if (digest_size) { 1999 drbd_csum_bio(peer_device->connection->peer_integrity_tfm, bio, dig_vv); 2000 if (memcmp(dig_in, dig_vv, digest_size)) { 2001 drbd_err(peer_device, "Digest integrity check FAILED. Broken NICs?\n"); 2002 return -EINVAL; 2003 } 2004 } 2005 2006 D_ASSERT(peer_device->device, data_size == 0); 2007 return 0; 2008 } 2009 2010 /* 2011 * e_end_resync_block() is called in ack_sender context via 2012 * drbd_finish_peer_reqs(). 2013 */ 2014 static int e_end_resync_block(struct drbd_work *w, int unused) 2015 { 2016 struct drbd_peer_request *peer_req = 2017 container_of(w, struct drbd_peer_request, w); 2018 struct drbd_peer_device *peer_device = peer_req->peer_device; 2019 struct drbd_device *device = peer_device->device; 2020 sector_t sector = peer_req->i.sector; 2021 int err; 2022 2023 D_ASSERT(device, drbd_interval_empty(&peer_req->i)); 2024 2025 if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) { 2026 drbd_set_in_sync(device, sector, peer_req->i.size); 2027 err = drbd_send_ack(peer_device, P_RS_WRITE_ACK, peer_req); 2028 } else { 2029 /* Record failure to sync */ 2030 drbd_rs_failed_io(device, sector, peer_req->i.size); 2031 2032 err = drbd_send_ack(peer_device, P_NEG_ACK, peer_req); 2033 } 2034 dec_unacked(device); 2035 2036 return err; 2037 } 2038 2039 static int recv_resync_read(struct drbd_peer_device *peer_device, sector_t sector, 2040 struct packet_info *pi) __releases(local) 2041 { 2042 struct drbd_device *device = peer_device->device; 2043 struct drbd_peer_request *peer_req; 2044 2045 peer_req = read_in_block(peer_device, ID_SYNCER, sector, pi); 2046 if (!peer_req) 2047 goto fail; 2048 2049 dec_rs_pending(device); 2050 2051 inc_unacked(device); 2052 /* corresponding dec_unacked() in e_end_resync_block() 2053 * respective _drbd_clear_done_ee */ 2054 2055 peer_req->w.cb = e_end_resync_block; 2056 peer_req->submit_jif = jiffies; 2057 2058 spin_lock_irq(&device->resource->req_lock); 2059 list_add_tail(&peer_req->w.list, &device->sync_ee); 2060 spin_unlock_irq(&device->resource->req_lock); 2061 2062 atomic_add(pi->size >> 9, &device->rs_sect_ev); 2063 if (drbd_submit_peer_request(device, peer_req, REQ_OP_WRITE, 0, 2064 DRBD_FAULT_RS_WR) == 0) 2065 return 0; 2066 2067 /* don't care for the reason here */ 2068 drbd_err(device, "submit failed, triggering re-connect\n"); 2069 spin_lock_irq(&device->resource->req_lock); 2070 list_del(&peer_req->w.list); 2071 spin_unlock_irq(&device->resource->req_lock); 2072 2073 drbd_free_peer_req(device, peer_req); 2074 fail: 2075 put_ldev(device); 2076 return -EIO; 2077 } 2078 2079 static struct drbd_request * 2080 find_request(struct drbd_device *device, struct rb_root *root, u64 id, 2081 sector_t sector, bool missing_ok, const char *func) 2082 { 2083 struct drbd_request *req; 2084 2085 /* Request object according to our peer */ 2086 req = (struct drbd_request *)(unsigned long)id; 2087 if (drbd_contains_interval(root, sector, &req->i) && req->i.local) 2088 return req; 2089 if (!missing_ok) { 2090 drbd_err(device, "%s: failed to find request 0x%lx, sector %llus\n", func, 2091 (unsigned long)id, (unsigned long long)sector); 2092 } 2093 return NULL; 2094 } 2095 2096 static int receive_DataReply(struct drbd_connection *connection, struct packet_info *pi) 2097 { 2098 struct drbd_peer_device *peer_device; 2099 struct drbd_device *device; 2100 struct drbd_request *req; 2101 sector_t sector; 2102 int err; 2103 struct p_data *p = pi->data; 2104 2105 peer_device = conn_peer_device(connection, pi->vnr); 2106 if (!peer_device) 2107 return -EIO; 2108 device = peer_device->device; 2109 2110 sector = be64_to_cpu(p->sector); 2111 2112 spin_lock_irq(&device->resource->req_lock); 2113 req = find_request(device, &device->read_requests, p->block_id, sector, false, __func__); 2114 spin_unlock_irq(&device->resource->req_lock); 2115 if (unlikely(!req)) 2116 return -EIO; 2117 2118 /* hlist_del(&req->collision) is done in _req_may_be_done, to avoid 2119 * special casing it there for the various failure cases. 2120 * still no race with drbd_fail_pending_reads */ 2121 err = recv_dless_read(peer_device, req, sector, pi->size); 2122 if (!err) 2123 req_mod(req, DATA_RECEIVED); 2124 /* else: nothing. handled from drbd_disconnect... 2125 * I don't think we may complete this just yet 2126 * in case we are "on-disconnect: freeze" */ 2127 2128 return err; 2129 } 2130 2131 static int receive_RSDataReply(struct drbd_connection *connection, struct packet_info *pi) 2132 { 2133 struct drbd_peer_device *peer_device; 2134 struct drbd_device *device; 2135 sector_t sector; 2136 int err; 2137 struct p_data *p = pi->data; 2138 2139 peer_device = conn_peer_device(connection, pi->vnr); 2140 if (!peer_device) 2141 return -EIO; 2142 device = peer_device->device; 2143 2144 sector = be64_to_cpu(p->sector); 2145 D_ASSERT(device, p->block_id == ID_SYNCER); 2146 2147 if (get_ldev(device)) { 2148 /* data is submitted to disk within recv_resync_read. 2149 * corresponding put_ldev done below on error, 2150 * or in drbd_peer_request_endio. */ 2151 err = recv_resync_read(peer_device, sector, pi); 2152 } else { 2153 if (__ratelimit(&drbd_ratelimit_state)) 2154 drbd_err(device, "Can not write resync data to local disk.\n"); 2155 2156 err = drbd_drain_block(peer_device, pi->size); 2157 2158 drbd_send_ack_dp(peer_device, P_NEG_ACK, p, pi->size); 2159 } 2160 2161 atomic_add(pi->size >> 9, &device->rs_sect_in); 2162 2163 return err; 2164 } 2165 2166 static void restart_conflicting_writes(struct drbd_device *device, 2167 sector_t sector, int size) 2168 { 2169 struct drbd_interval *i; 2170 struct drbd_request *req; 2171 2172 drbd_for_each_overlap(i, &device->write_requests, sector, size) { 2173 if (!i->local) 2174 continue; 2175 req = container_of(i, struct drbd_request, i); 2176 if (req->rq_state & RQ_LOCAL_PENDING || 2177 !(req->rq_state & RQ_POSTPONED)) 2178 continue; 2179 /* as it is RQ_POSTPONED, this will cause it to 2180 * be queued on the retry workqueue. */ 2181 __req_mod(req, CONFLICT_RESOLVED, NULL); 2182 } 2183 } 2184 2185 /* 2186 * e_end_block() is called in ack_sender context via drbd_finish_peer_reqs(). 2187 */ 2188 static int e_end_block(struct drbd_work *w, int cancel) 2189 { 2190 struct drbd_peer_request *peer_req = 2191 container_of(w, struct drbd_peer_request, w); 2192 struct drbd_peer_device *peer_device = peer_req->peer_device; 2193 struct drbd_device *device = peer_device->device; 2194 sector_t sector = peer_req->i.sector; 2195 int err = 0, pcmd; 2196 2197 if (peer_req->flags & EE_SEND_WRITE_ACK) { 2198 if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) { 2199 pcmd = (device->state.conn >= C_SYNC_SOURCE && 2200 device->state.conn <= C_PAUSED_SYNC_T && 2201 peer_req->flags & EE_MAY_SET_IN_SYNC) ? 2202 P_RS_WRITE_ACK : P_WRITE_ACK; 2203 err = drbd_send_ack(peer_device, pcmd, peer_req); 2204 if (pcmd == P_RS_WRITE_ACK) 2205 drbd_set_in_sync(device, sector, peer_req->i.size); 2206 } else { 2207 err = drbd_send_ack(peer_device, P_NEG_ACK, peer_req); 2208 /* we expect it to be marked out of sync anyways... 2209 * maybe assert this? */ 2210 } 2211 dec_unacked(device); 2212 } 2213 2214 /* we delete from the conflict detection hash _after_ we sent out the 2215 * P_WRITE_ACK / P_NEG_ACK, to get the sequence number right. */ 2216 if (peer_req->flags & EE_IN_INTERVAL_TREE) { 2217 spin_lock_irq(&device->resource->req_lock); 2218 D_ASSERT(device, !drbd_interval_empty(&peer_req->i)); 2219 drbd_remove_epoch_entry_interval(device, peer_req); 2220 if (peer_req->flags & EE_RESTART_REQUESTS) 2221 restart_conflicting_writes(device, sector, peer_req->i.size); 2222 spin_unlock_irq(&device->resource->req_lock); 2223 } else 2224 D_ASSERT(device, drbd_interval_empty(&peer_req->i)); 2225 2226 drbd_may_finish_epoch(peer_device->connection, peer_req->epoch, EV_PUT + (cancel ? EV_CLEANUP : 0)); 2227 2228 return err; 2229 } 2230 2231 static int e_send_ack(struct drbd_work *w, enum drbd_packet ack) 2232 { 2233 struct drbd_peer_request *peer_req = 2234 container_of(w, struct drbd_peer_request, w); 2235 struct drbd_peer_device *peer_device = peer_req->peer_device; 2236 int err; 2237 2238 err = drbd_send_ack(peer_device, ack, peer_req); 2239 dec_unacked(peer_device->device); 2240 2241 return err; 2242 } 2243 2244 static int e_send_superseded(struct drbd_work *w, int unused) 2245 { 2246 return e_send_ack(w, P_SUPERSEDED); 2247 } 2248 2249 static int e_send_retry_write(struct drbd_work *w, int unused) 2250 { 2251 struct drbd_peer_request *peer_req = 2252 container_of(w, struct drbd_peer_request, w); 2253 struct drbd_connection *connection = peer_req->peer_device->connection; 2254 2255 return e_send_ack(w, connection->agreed_pro_version >= 100 ? 2256 P_RETRY_WRITE : P_SUPERSEDED); 2257 } 2258 2259 static bool seq_greater(u32 a, u32 b) 2260 { 2261 /* 2262 * We assume 32-bit wrap-around here. 2263 * For 24-bit wrap-around, we would have to shift: 2264 * a <<= 8; b <<= 8; 2265 */ 2266 return (s32)a - (s32)b > 0; 2267 } 2268 2269 static u32 seq_max(u32 a, u32 b) 2270 { 2271 return seq_greater(a, b) ? a : b; 2272 } 2273 2274 static void update_peer_seq(struct drbd_peer_device *peer_device, unsigned int peer_seq) 2275 { 2276 struct drbd_device *device = peer_device->device; 2277 unsigned int newest_peer_seq; 2278 2279 if (test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags)) { 2280 spin_lock(&device->peer_seq_lock); 2281 newest_peer_seq = seq_max(device->peer_seq, peer_seq); 2282 device->peer_seq = newest_peer_seq; 2283 spin_unlock(&device->peer_seq_lock); 2284 /* wake up only if we actually changed device->peer_seq */ 2285 if (peer_seq == newest_peer_seq) 2286 wake_up(&device->seq_wait); 2287 } 2288 } 2289 2290 static inline int overlaps(sector_t s1, int l1, sector_t s2, int l2) 2291 { 2292 return !((s1 + (l1>>9) <= s2) || (s1 >= s2 + (l2>>9))); 2293 } 2294 2295 /* maybe change sync_ee into interval trees as well? */ 2296 static bool overlapping_resync_write(struct drbd_device *device, struct drbd_peer_request *peer_req) 2297 { 2298 struct drbd_peer_request *rs_req; 2299 bool rv = false; 2300 2301 spin_lock_irq(&device->resource->req_lock); 2302 list_for_each_entry(rs_req, &device->sync_ee, w.list) { 2303 if (overlaps(peer_req->i.sector, peer_req->i.size, 2304 rs_req->i.sector, rs_req->i.size)) { 2305 rv = true; 2306 break; 2307 } 2308 } 2309 spin_unlock_irq(&device->resource->req_lock); 2310 2311 return rv; 2312 } 2313 2314 /* Called from receive_Data. 2315 * Synchronize packets on sock with packets on msock. 2316 * 2317 * This is here so even when a P_DATA packet traveling via sock overtook an Ack 2318 * packet traveling on msock, they are still processed in the order they have 2319 * been sent. 2320 * 2321 * Note: we don't care for Ack packets overtaking P_DATA packets. 2322 * 2323 * In case packet_seq is larger than device->peer_seq number, there are 2324 * outstanding packets on the msock. We wait for them to arrive. 2325 * In case we are the logically next packet, we update device->peer_seq 2326 * ourselves. Correctly handles 32bit wrap around. 2327 * 2328 * Assume we have a 10 GBit connection, that is about 1<<30 byte per second, 2329 * about 1<<21 sectors per second. So "worst" case, we have 1<<3 == 8 seconds 2330 * for the 24bit wrap (historical atomic_t guarantee on some archs), and we have 2331 * 1<<9 == 512 seconds aka ages for the 32bit wrap around... 2332 * 2333 * returns 0 if we may process the packet, 2334 * -ERESTARTSYS if we were interrupted (by disconnect signal). */ 2335 static int wait_for_and_update_peer_seq(struct drbd_peer_device *peer_device, const u32 peer_seq) 2336 { 2337 struct drbd_device *device = peer_device->device; 2338 DEFINE_WAIT(wait); 2339 long timeout; 2340 int ret = 0, tp; 2341 2342 if (!test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags)) 2343 return 0; 2344 2345 spin_lock(&device->peer_seq_lock); 2346 for (;;) { 2347 if (!seq_greater(peer_seq - 1, device->peer_seq)) { 2348 device->peer_seq = seq_max(device->peer_seq, peer_seq); 2349 break; 2350 } 2351 2352 if (signal_pending(current)) { 2353 ret = -ERESTARTSYS; 2354 break; 2355 } 2356 2357 rcu_read_lock(); 2358 tp = rcu_dereference(peer_device->connection->net_conf)->two_primaries; 2359 rcu_read_unlock(); 2360 2361 if (!tp) 2362 break; 2363 2364 /* Only need to wait if two_primaries is enabled */ 2365 prepare_to_wait(&device->seq_wait, &wait, TASK_INTERRUPTIBLE); 2366 spin_unlock(&device->peer_seq_lock); 2367 rcu_read_lock(); 2368 timeout = rcu_dereference(peer_device->connection->net_conf)->ping_timeo*HZ/10; 2369 rcu_read_unlock(); 2370 timeout = schedule_timeout(timeout); 2371 spin_lock(&device->peer_seq_lock); 2372 if (!timeout) { 2373 ret = -ETIMEDOUT; 2374 drbd_err(device, "Timed out waiting for missing ack packets; disconnecting\n"); 2375 break; 2376 } 2377 } 2378 spin_unlock(&device->peer_seq_lock); 2379 finish_wait(&device->seq_wait, &wait); 2380 return ret; 2381 } 2382 2383 /* see also bio_flags_to_wire() 2384 * DRBD_REQ_*, because we need to semantically map the flags to data packet 2385 * flags and back. We may replicate to other kernel versions. */ 2386 static unsigned long wire_flags_to_bio_flags(u32 dpf) 2387 { 2388 return (dpf & DP_RW_SYNC ? REQ_SYNC : 0) | 2389 (dpf & DP_FUA ? REQ_FUA : 0) | 2390 (dpf & DP_FLUSH ? REQ_PREFLUSH : 0); 2391 } 2392 2393 static unsigned long wire_flags_to_bio_op(u32 dpf) 2394 { 2395 if (dpf & DP_ZEROES) 2396 return REQ_OP_WRITE_ZEROES; 2397 if (dpf & DP_DISCARD) 2398 return REQ_OP_DISCARD; 2399 else 2400 return REQ_OP_WRITE; 2401 } 2402 2403 static void fail_postponed_requests(struct drbd_device *device, sector_t sector, 2404 unsigned int size) 2405 { 2406 struct drbd_interval *i; 2407 2408 repeat: 2409 drbd_for_each_overlap(i, &device->write_requests, sector, size) { 2410 struct drbd_request *req; 2411 struct bio_and_error m; 2412 2413 if (!i->local) 2414 continue; 2415 req = container_of(i, struct drbd_request, i); 2416 if (!(req->rq_state & RQ_POSTPONED)) 2417 continue; 2418 req->rq_state &= ~RQ_POSTPONED; 2419 __req_mod(req, NEG_ACKED, &m); 2420 spin_unlock_irq(&device->resource->req_lock); 2421 if (m.bio) 2422 complete_master_bio(device, &m); 2423 spin_lock_irq(&device->resource->req_lock); 2424 goto repeat; 2425 } 2426 } 2427 2428 static int handle_write_conflicts(struct drbd_device *device, 2429 struct drbd_peer_request *peer_req) 2430 { 2431 struct drbd_connection *connection = peer_req->peer_device->connection; 2432 bool resolve_conflicts = test_bit(RESOLVE_CONFLICTS, &connection->flags); 2433 sector_t sector = peer_req->i.sector; 2434 const unsigned int size = peer_req->i.size; 2435 struct drbd_interval *i; 2436 bool equal; 2437 int err; 2438 2439 /* 2440 * Inserting the peer request into the write_requests tree will prevent 2441 * new conflicting local requests from being added. 2442 */ 2443 drbd_insert_interval(&device->write_requests, &peer_req->i); 2444 2445 repeat: 2446 drbd_for_each_overlap(i, &device->write_requests, sector, size) { 2447 if (i == &peer_req->i) 2448 continue; 2449 if (i->completed) 2450 continue; 2451 2452 if (!i->local) { 2453 /* 2454 * Our peer has sent a conflicting remote request; this 2455 * should not happen in a two-node setup. Wait for the 2456 * earlier peer request to complete. 2457 */ 2458 err = drbd_wait_misc(device, i); 2459 if (err) 2460 goto out; 2461 goto repeat; 2462 } 2463 2464 equal = i->sector == sector && i->size == size; 2465 if (resolve_conflicts) { 2466 /* 2467 * If the peer request is fully contained within the 2468 * overlapping request, it can be considered overwritten 2469 * and thus superseded; otherwise, it will be retried 2470 * once all overlapping requests have completed. 2471 */ 2472 bool superseded = i->sector <= sector && i->sector + 2473 (i->size >> 9) >= sector + (size >> 9); 2474 2475 if (!equal) 2476 drbd_alert(device, "Concurrent writes detected: " 2477 "local=%llus +%u, remote=%llus +%u, " 2478 "assuming %s came first\n", 2479 (unsigned long long)i->sector, i->size, 2480 (unsigned long long)sector, size, 2481 superseded ? "local" : "remote"); 2482 2483 peer_req->w.cb = superseded ? e_send_superseded : 2484 e_send_retry_write; 2485 list_add_tail(&peer_req->w.list, &device->done_ee); 2486 queue_work(connection->ack_sender, &peer_req->peer_device->send_acks_work); 2487 2488 err = -ENOENT; 2489 goto out; 2490 } else { 2491 struct drbd_request *req = 2492 container_of(i, struct drbd_request, i); 2493 2494 if (!equal) 2495 drbd_alert(device, "Concurrent writes detected: " 2496 "local=%llus +%u, remote=%llus +%u\n", 2497 (unsigned long long)i->sector, i->size, 2498 (unsigned long long)sector, size); 2499 2500 if (req->rq_state & RQ_LOCAL_PENDING || 2501 !(req->rq_state & RQ_POSTPONED)) { 2502 /* 2503 * Wait for the node with the discard flag to 2504 * decide if this request has been superseded 2505 * or needs to be retried. 2506 * Requests that have been superseded will 2507 * disappear from the write_requests tree. 2508 * 2509 * In addition, wait for the conflicting 2510 * request to finish locally before submitting 2511 * the conflicting peer request. 2512 */ 2513 err = drbd_wait_misc(device, &req->i); 2514 if (err) { 2515 _conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD); 2516 fail_postponed_requests(device, sector, size); 2517 goto out; 2518 } 2519 goto repeat; 2520 } 2521 /* 2522 * Remember to restart the conflicting requests after 2523 * the new peer request has completed. 2524 */ 2525 peer_req->flags |= EE_RESTART_REQUESTS; 2526 } 2527 } 2528 err = 0; 2529 2530 out: 2531 if (err) 2532 drbd_remove_epoch_entry_interval(device, peer_req); 2533 return err; 2534 } 2535 2536 /* mirrored write */ 2537 static int receive_Data(struct drbd_connection *connection, struct packet_info *pi) 2538 { 2539 struct drbd_peer_device *peer_device; 2540 struct drbd_device *device; 2541 struct net_conf *nc; 2542 sector_t sector; 2543 struct drbd_peer_request *peer_req; 2544 struct p_data *p = pi->data; 2545 u32 peer_seq = be32_to_cpu(p->seq_num); 2546 int op, op_flags; 2547 u32 dp_flags; 2548 int err, tp; 2549 2550 peer_device = conn_peer_device(connection, pi->vnr); 2551 if (!peer_device) 2552 return -EIO; 2553 device = peer_device->device; 2554 2555 if (!get_ldev(device)) { 2556 int err2; 2557 2558 err = wait_for_and_update_peer_seq(peer_device, peer_seq); 2559 drbd_send_ack_dp(peer_device, P_NEG_ACK, p, pi->size); 2560 atomic_inc(&connection->current_epoch->epoch_size); 2561 err2 = drbd_drain_block(peer_device, pi->size); 2562 if (!err) 2563 err = err2; 2564 return err; 2565 } 2566 2567 /* 2568 * Corresponding put_ldev done either below (on various errors), or in 2569 * drbd_peer_request_endio, if we successfully submit the data at the 2570 * end of this function. 2571 */ 2572 2573 sector = be64_to_cpu(p->sector); 2574 peer_req = read_in_block(peer_device, p->block_id, sector, pi); 2575 if (!peer_req) { 2576 put_ldev(device); 2577 return -EIO; 2578 } 2579 2580 peer_req->w.cb = e_end_block; 2581 peer_req->submit_jif = jiffies; 2582 peer_req->flags |= EE_APPLICATION; 2583 2584 dp_flags = be32_to_cpu(p->dp_flags); 2585 op = wire_flags_to_bio_op(dp_flags); 2586 op_flags = wire_flags_to_bio_flags(dp_flags); 2587 if (pi->cmd == P_TRIM) { 2588 D_ASSERT(peer_device, peer_req->i.size > 0); 2589 D_ASSERT(peer_device, op == REQ_OP_DISCARD); 2590 D_ASSERT(peer_device, peer_req->pages == NULL); 2591 /* need to play safe: an older DRBD sender 2592 * may mean zero-out while sending P_TRIM. */ 2593 if (0 == (connection->agreed_features & DRBD_FF_WZEROES)) 2594 peer_req->flags |= EE_ZEROOUT; 2595 } else if (pi->cmd == P_ZEROES) { 2596 D_ASSERT(peer_device, peer_req->i.size > 0); 2597 D_ASSERT(peer_device, op == REQ_OP_WRITE_ZEROES); 2598 D_ASSERT(peer_device, peer_req->pages == NULL); 2599 /* Do (not) pass down BLKDEV_ZERO_NOUNMAP? */ 2600 if (dp_flags & DP_DISCARD) 2601 peer_req->flags |= EE_TRIM; 2602 } else if (peer_req->pages == NULL) { 2603 D_ASSERT(device, peer_req->i.size == 0); 2604 D_ASSERT(device, dp_flags & DP_FLUSH); 2605 } 2606 2607 if (dp_flags & DP_MAY_SET_IN_SYNC) 2608 peer_req->flags |= EE_MAY_SET_IN_SYNC; 2609 2610 spin_lock(&connection->epoch_lock); 2611 peer_req->epoch = connection->current_epoch; 2612 atomic_inc(&peer_req->epoch->epoch_size); 2613 atomic_inc(&peer_req->epoch->active); 2614 spin_unlock(&connection->epoch_lock); 2615 2616 rcu_read_lock(); 2617 nc = rcu_dereference(peer_device->connection->net_conf); 2618 tp = nc->two_primaries; 2619 if (peer_device->connection->agreed_pro_version < 100) { 2620 switch (nc->wire_protocol) { 2621 case DRBD_PROT_C: 2622 dp_flags |= DP_SEND_WRITE_ACK; 2623 break; 2624 case DRBD_PROT_B: 2625 dp_flags |= DP_SEND_RECEIVE_ACK; 2626 break; 2627 } 2628 } 2629 rcu_read_unlock(); 2630 2631 if (dp_flags & DP_SEND_WRITE_ACK) { 2632 peer_req->flags |= EE_SEND_WRITE_ACK; 2633 inc_unacked(device); 2634 /* corresponding dec_unacked() in e_end_block() 2635 * respective _drbd_clear_done_ee */ 2636 } 2637 2638 if (dp_flags & DP_SEND_RECEIVE_ACK) { 2639 /* I really don't like it that the receiver thread 2640 * sends on the msock, but anyways */ 2641 drbd_send_ack(peer_device, P_RECV_ACK, peer_req); 2642 } 2643 2644 if (tp) { 2645 /* two primaries implies protocol C */ 2646 D_ASSERT(device, dp_flags & DP_SEND_WRITE_ACK); 2647 peer_req->flags |= EE_IN_INTERVAL_TREE; 2648 err = wait_for_and_update_peer_seq(peer_device, peer_seq); 2649 if (err) 2650 goto out_interrupted; 2651 spin_lock_irq(&device->resource->req_lock); 2652 err = handle_write_conflicts(device, peer_req); 2653 if (err) { 2654 spin_unlock_irq(&device->resource->req_lock); 2655 if (err == -ENOENT) { 2656 put_ldev(device); 2657 return 0; 2658 } 2659 goto out_interrupted; 2660 } 2661 } else { 2662 update_peer_seq(peer_device, peer_seq); 2663 spin_lock_irq(&device->resource->req_lock); 2664 } 2665 /* TRIM and is processed synchronously, 2666 * we wait for all pending requests, respectively wait for 2667 * active_ee to become empty in drbd_submit_peer_request(); 2668 * better not add ourselves here. */ 2669 if ((peer_req->flags & (EE_TRIM | EE_ZEROOUT)) == 0) 2670 list_add_tail(&peer_req->w.list, &device->active_ee); 2671 spin_unlock_irq(&device->resource->req_lock); 2672 2673 if (device->state.conn == C_SYNC_TARGET) 2674 wait_event(device->ee_wait, !overlapping_resync_write(device, peer_req)); 2675 2676 if (device->state.pdsk < D_INCONSISTENT) { 2677 /* In case we have the only disk of the cluster, */ 2678 drbd_set_out_of_sync(device, peer_req->i.sector, peer_req->i.size); 2679 peer_req->flags &= ~EE_MAY_SET_IN_SYNC; 2680 drbd_al_begin_io(device, &peer_req->i); 2681 peer_req->flags |= EE_CALL_AL_COMPLETE_IO; 2682 } 2683 2684 err = drbd_submit_peer_request(device, peer_req, op, op_flags, 2685 DRBD_FAULT_DT_WR); 2686 if (!err) 2687 return 0; 2688 2689 /* don't care for the reason here */ 2690 drbd_err(device, "submit failed, triggering re-connect\n"); 2691 spin_lock_irq(&device->resource->req_lock); 2692 list_del(&peer_req->w.list); 2693 drbd_remove_epoch_entry_interval(device, peer_req); 2694 spin_unlock_irq(&device->resource->req_lock); 2695 if (peer_req->flags & EE_CALL_AL_COMPLETE_IO) { 2696 peer_req->flags &= ~EE_CALL_AL_COMPLETE_IO; 2697 drbd_al_complete_io(device, &peer_req->i); 2698 } 2699 2700 out_interrupted: 2701 drbd_may_finish_epoch(connection, peer_req->epoch, EV_PUT | EV_CLEANUP); 2702 put_ldev(device); 2703 drbd_free_peer_req(device, peer_req); 2704 return err; 2705 } 2706 2707 /* We may throttle resync, if the lower device seems to be busy, 2708 * and current sync rate is above c_min_rate. 2709 * 2710 * To decide whether or not the lower device is busy, we use a scheme similar 2711 * to MD RAID is_mddev_idle(): if the partition stats reveal "significant" 2712 * (more than 64 sectors) of activity we cannot account for with our own resync 2713 * activity, it obviously is "busy". 2714 * 2715 * The current sync rate used here uses only the most recent two step marks, 2716 * to have a short time average so we can react faster. 2717 */ 2718 bool drbd_rs_should_slow_down(struct drbd_device *device, sector_t sector, 2719 bool throttle_if_app_is_waiting) 2720 { 2721 struct lc_element *tmp; 2722 bool throttle = drbd_rs_c_min_rate_throttle(device); 2723 2724 if (!throttle || throttle_if_app_is_waiting) 2725 return throttle; 2726 2727 spin_lock_irq(&device->al_lock); 2728 tmp = lc_find(device->resync, BM_SECT_TO_EXT(sector)); 2729 if (tmp) { 2730 struct bm_extent *bm_ext = lc_entry(tmp, struct bm_extent, lce); 2731 if (test_bit(BME_PRIORITY, &bm_ext->flags)) 2732 throttle = false; 2733 /* Do not slow down if app IO is already waiting for this extent, 2734 * and our progress is necessary for application IO to complete. */ 2735 } 2736 spin_unlock_irq(&device->al_lock); 2737 2738 return throttle; 2739 } 2740 2741 bool drbd_rs_c_min_rate_throttle(struct drbd_device *device) 2742 { 2743 struct gendisk *disk = device->ldev->backing_bdev->bd_disk; 2744 unsigned long db, dt, dbdt; 2745 unsigned int c_min_rate; 2746 int curr_events; 2747 2748 rcu_read_lock(); 2749 c_min_rate = rcu_dereference(device->ldev->disk_conf)->c_min_rate; 2750 rcu_read_unlock(); 2751 2752 /* feature disabled? */ 2753 if (c_min_rate == 0) 2754 return false; 2755 2756 curr_events = (int)part_stat_read_accum(disk->part0, sectors) - 2757 atomic_read(&device->rs_sect_ev); 2758 2759 if (atomic_read(&device->ap_actlog_cnt) 2760 || curr_events - device->rs_last_events > 64) { 2761 unsigned long rs_left; 2762 int i; 2763 2764 device->rs_last_events = curr_events; 2765 2766 /* sync speed average over the last 2*DRBD_SYNC_MARK_STEP, 2767 * approx. */ 2768 i = (device->rs_last_mark + DRBD_SYNC_MARKS-1) % DRBD_SYNC_MARKS; 2769 2770 if (device->state.conn == C_VERIFY_S || device->state.conn == C_VERIFY_T) 2771 rs_left = device->ov_left; 2772 else 2773 rs_left = drbd_bm_total_weight(device) - device->rs_failed; 2774 2775 dt = ((long)jiffies - (long)device->rs_mark_time[i]) / HZ; 2776 if (!dt) 2777 dt++; 2778 db = device->rs_mark_left[i] - rs_left; 2779 dbdt = Bit2KB(db/dt); 2780 2781 if (dbdt > c_min_rate) 2782 return true; 2783 } 2784 return false; 2785 } 2786 2787 static int receive_DataRequest(struct drbd_connection *connection, struct packet_info *pi) 2788 { 2789 struct drbd_peer_device *peer_device; 2790 struct drbd_device *device; 2791 sector_t sector; 2792 sector_t capacity; 2793 struct drbd_peer_request *peer_req; 2794 struct digest_info *di = NULL; 2795 int size, verb; 2796 unsigned int fault_type; 2797 struct p_block_req *p = pi->data; 2798 2799 peer_device = conn_peer_device(connection, pi->vnr); 2800 if (!peer_device) 2801 return -EIO; 2802 device = peer_device->device; 2803 capacity = get_capacity(device->vdisk); 2804 2805 sector = be64_to_cpu(p->sector); 2806 size = be32_to_cpu(p->blksize); 2807 2808 if (size <= 0 || !IS_ALIGNED(size, 512) || size > DRBD_MAX_BIO_SIZE) { 2809 drbd_err(device, "%s:%d: sector: %llus, size: %u\n", __FILE__, __LINE__, 2810 (unsigned long long)sector, size); 2811 return -EINVAL; 2812 } 2813 if (sector + (size>>9) > capacity) { 2814 drbd_err(device, "%s:%d: sector: %llus, size: %u\n", __FILE__, __LINE__, 2815 (unsigned long long)sector, size); 2816 return -EINVAL; 2817 } 2818 2819 if (!get_ldev_if_state(device, D_UP_TO_DATE)) { 2820 verb = 1; 2821 switch (pi->cmd) { 2822 case P_DATA_REQUEST: 2823 drbd_send_ack_rp(peer_device, P_NEG_DREPLY, p); 2824 break; 2825 case P_RS_THIN_REQ: 2826 case P_RS_DATA_REQUEST: 2827 case P_CSUM_RS_REQUEST: 2828 case P_OV_REQUEST: 2829 drbd_send_ack_rp(peer_device, P_NEG_RS_DREPLY , p); 2830 break; 2831 case P_OV_REPLY: 2832 verb = 0; 2833 dec_rs_pending(device); 2834 drbd_send_ack_ex(peer_device, P_OV_RESULT, sector, size, ID_IN_SYNC); 2835 break; 2836 default: 2837 BUG(); 2838 } 2839 if (verb && __ratelimit(&drbd_ratelimit_state)) 2840 drbd_err(device, "Can not satisfy peer's read request, " 2841 "no local data.\n"); 2842 2843 /* drain possibly payload */ 2844 return drbd_drain_block(peer_device, pi->size); 2845 } 2846 2847 /* GFP_NOIO, because we must not cause arbitrary write-out: in a DRBD 2848 * "criss-cross" setup, that might cause write-out on some other DRBD, 2849 * which in turn might block on the other node at this very place. */ 2850 peer_req = drbd_alloc_peer_req(peer_device, p->block_id, sector, size, 2851 size, GFP_NOIO); 2852 if (!peer_req) { 2853 put_ldev(device); 2854 return -ENOMEM; 2855 } 2856 2857 switch (pi->cmd) { 2858 case P_DATA_REQUEST: 2859 peer_req->w.cb = w_e_end_data_req; 2860 fault_type = DRBD_FAULT_DT_RD; 2861 /* application IO, don't drbd_rs_begin_io */ 2862 peer_req->flags |= EE_APPLICATION; 2863 goto submit; 2864 2865 case P_RS_THIN_REQ: 2866 /* If at some point in the future we have a smart way to 2867 find out if this data block is completely deallocated, 2868 then we would do something smarter here than reading 2869 the block... */ 2870 peer_req->flags |= EE_RS_THIN_REQ; 2871 fallthrough; 2872 case P_RS_DATA_REQUEST: 2873 peer_req->w.cb = w_e_end_rsdata_req; 2874 fault_type = DRBD_FAULT_RS_RD; 2875 /* used in the sector offset progress display */ 2876 device->bm_resync_fo = BM_SECT_TO_BIT(sector); 2877 break; 2878 2879 case P_OV_REPLY: 2880 case P_CSUM_RS_REQUEST: 2881 fault_type = DRBD_FAULT_RS_RD; 2882 di = kmalloc(sizeof(*di) + pi->size, GFP_NOIO); 2883 if (!di) 2884 goto out_free_e; 2885 2886 di->digest_size = pi->size; 2887 di->digest = (((char *)di)+sizeof(struct digest_info)); 2888 2889 peer_req->digest = di; 2890 peer_req->flags |= EE_HAS_DIGEST; 2891 2892 if (drbd_recv_all(peer_device->connection, di->digest, pi->size)) 2893 goto out_free_e; 2894 2895 if (pi->cmd == P_CSUM_RS_REQUEST) { 2896 D_ASSERT(device, peer_device->connection->agreed_pro_version >= 89); 2897 peer_req->w.cb = w_e_end_csum_rs_req; 2898 /* used in the sector offset progress display */ 2899 device->bm_resync_fo = BM_SECT_TO_BIT(sector); 2900 /* remember to report stats in drbd_resync_finished */ 2901 device->use_csums = true; 2902 } else if (pi->cmd == P_OV_REPLY) { 2903 /* track progress, we may need to throttle */ 2904 atomic_add(size >> 9, &device->rs_sect_in); 2905 peer_req->w.cb = w_e_end_ov_reply; 2906 dec_rs_pending(device); 2907 /* drbd_rs_begin_io done when we sent this request, 2908 * but accounting still needs to be done. */ 2909 goto submit_for_resync; 2910 } 2911 break; 2912 2913 case P_OV_REQUEST: 2914 if (device->ov_start_sector == ~(sector_t)0 && 2915 peer_device->connection->agreed_pro_version >= 90) { 2916 unsigned long now = jiffies; 2917 int i; 2918 device->ov_start_sector = sector; 2919 device->ov_position = sector; 2920 device->ov_left = drbd_bm_bits(device) - BM_SECT_TO_BIT(sector); 2921 device->rs_total = device->ov_left; 2922 for (i = 0; i < DRBD_SYNC_MARKS; i++) { 2923 device->rs_mark_left[i] = device->ov_left; 2924 device->rs_mark_time[i] = now; 2925 } 2926 drbd_info(device, "Online Verify start sector: %llu\n", 2927 (unsigned long long)sector); 2928 } 2929 peer_req->w.cb = w_e_end_ov_req; 2930 fault_type = DRBD_FAULT_RS_RD; 2931 break; 2932 2933 default: 2934 BUG(); 2935 } 2936 2937 /* Throttle, drbd_rs_begin_io and submit should become asynchronous 2938 * wrt the receiver, but it is not as straightforward as it may seem. 2939 * Various places in the resync start and stop logic assume resync 2940 * requests are processed in order, requeuing this on the worker thread 2941 * introduces a bunch of new code for synchronization between threads. 2942 * 2943 * Unlimited throttling before drbd_rs_begin_io may stall the resync 2944 * "forever", throttling after drbd_rs_begin_io will lock that extent 2945 * for application writes for the same time. For now, just throttle 2946 * here, where the rest of the code expects the receiver to sleep for 2947 * a while, anyways. 2948 */ 2949 2950 /* Throttle before drbd_rs_begin_io, as that locks out application IO; 2951 * this defers syncer requests for some time, before letting at least 2952 * on request through. The resync controller on the receiving side 2953 * will adapt to the incoming rate accordingly. 2954 * 2955 * We cannot throttle here if remote is Primary/SyncTarget: 2956 * we would also throttle its application reads. 2957 * In that case, throttling is done on the SyncTarget only. 2958 */ 2959 2960 /* Even though this may be a resync request, we do add to "read_ee"; 2961 * "sync_ee" is only used for resync WRITEs. 2962 * Add to list early, so debugfs can find this request 2963 * even if we have to sleep below. */ 2964 spin_lock_irq(&device->resource->req_lock); 2965 list_add_tail(&peer_req->w.list, &device->read_ee); 2966 spin_unlock_irq(&device->resource->req_lock); 2967 2968 update_receiver_timing_details(connection, drbd_rs_should_slow_down); 2969 if (device->state.peer != R_PRIMARY 2970 && drbd_rs_should_slow_down(device, sector, false)) 2971 schedule_timeout_uninterruptible(HZ/10); 2972 update_receiver_timing_details(connection, drbd_rs_begin_io); 2973 if (drbd_rs_begin_io(device, sector)) 2974 goto out_free_e; 2975 2976 submit_for_resync: 2977 atomic_add(size >> 9, &device->rs_sect_ev); 2978 2979 submit: 2980 update_receiver_timing_details(connection, drbd_submit_peer_request); 2981 inc_unacked(device); 2982 if (drbd_submit_peer_request(device, peer_req, REQ_OP_READ, 0, 2983 fault_type) == 0) 2984 return 0; 2985 2986 /* don't care for the reason here */ 2987 drbd_err(device, "submit failed, triggering re-connect\n"); 2988 2989 out_free_e: 2990 spin_lock_irq(&device->resource->req_lock); 2991 list_del(&peer_req->w.list); 2992 spin_unlock_irq(&device->resource->req_lock); 2993 /* no drbd_rs_complete_io(), we are dropping the connection anyways */ 2994 2995 put_ldev(device); 2996 drbd_free_peer_req(device, peer_req); 2997 return -EIO; 2998 } 2999 3000 /* 3001 * drbd_asb_recover_0p - Recover after split-brain with no remaining primaries 3002 */ 3003 static int drbd_asb_recover_0p(struct drbd_peer_device *peer_device) __must_hold(local) 3004 { 3005 struct drbd_device *device = peer_device->device; 3006 int self, peer, rv = -100; 3007 unsigned long ch_self, ch_peer; 3008 enum drbd_after_sb_p after_sb_0p; 3009 3010 self = device->ldev->md.uuid[UI_BITMAP] & 1; 3011 peer = device->p_uuid[UI_BITMAP] & 1; 3012 3013 ch_peer = device->p_uuid[UI_SIZE]; 3014 ch_self = device->comm_bm_set; 3015 3016 rcu_read_lock(); 3017 after_sb_0p = rcu_dereference(peer_device->connection->net_conf)->after_sb_0p; 3018 rcu_read_unlock(); 3019 switch (after_sb_0p) { 3020 case ASB_CONSENSUS: 3021 case ASB_DISCARD_SECONDARY: 3022 case ASB_CALL_HELPER: 3023 case ASB_VIOLENTLY: 3024 drbd_err(device, "Configuration error.\n"); 3025 break; 3026 case ASB_DISCONNECT: 3027 break; 3028 case ASB_DISCARD_YOUNGER_PRI: 3029 if (self == 0 && peer == 1) { 3030 rv = -1; 3031 break; 3032 } 3033 if (self == 1 && peer == 0) { 3034 rv = 1; 3035 break; 3036 } 3037 fallthrough; /* to one of the other strategies */ 3038 case ASB_DISCARD_OLDER_PRI: 3039 if (self == 0 && peer == 1) { 3040 rv = 1; 3041 break; 3042 } 3043 if (self == 1 && peer == 0) { 3044 rv = -1; 3045 break; 3046 } 3047 /* Else fall through to one of the other strategies... */ 3048 drbd_warn(device, "Discard younger/older primary did not find a decision\n" 3049 "Using discard-least-changes instead\n"); 3050 fallthrough; 3051 case ASB_DISCARD_ZERO_CHG: 3052 if (ch_peer == 0 && ch_self == 0) { 3053 rv = test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags) 3054 ? -1 : 1; 3055 break; 3056 } else { 3057 if (ch_peer == 0) { rv = 1; break; } 3058 if (ch_self == 0) { rv = -1; break; } 3059 } 3060 if (after_sb_0p == ASB_DISCARD_ZERO_CHG) 3061 break; 3062 fallthrough; 3063 case ASB_DISCARD_LEAST_CHG: 3064 if (ch_self < ch_peer) 3065 rv = -1; 3066 else if (ch_self > ch_peer) 3067 rv = 1; 3068 else /* ( ch_self == ch_peer ) */ 3069 /* Well, then use something else. */ 3070 rv = test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags) 3071 ? -1 : 1; 3072 break; 3073 case ASB_DISCARD_LOCAL: 3074 rv = -1; 3075 break; 3076 case ASB_DISCARD_REMOTE: 3077 rv = 1; 3078 } 3079 3080 return rv; 3081 } 3082 3083 /* 3084 * drbd_asb_recover_1p - Recover after split-brain with one remaining primary 3085 */ 3086 static int drbd_asb_recover_1p(struct drbd_peer_device *peer_device) __must_hold(local) 3087 { 3088 struct drbd_device *device = peer_device->device; 3089 int hg, rv = -100; 3090 enum drbd_after_sb_p after_sb_1p; 3091 3092 rcu_read_lock(); 3093 after_sb_1p = rcu_dereference(peer_device->connection->net_conf)->after_sb_1p; 3094 rcu_read_unlock(); 3095 switch (after_sb_1p) { 3096 case ASB_DISCARD_YOUNGER_PRI: 3097 case ASB_DISCARD_OLDER_PRI: 3098 case ASB_DISCARD_LEAST_CHG: 3099 case ASB_DISCARD_LOCAL: 3100 case ASB_DISCARD_REMOTE: 3101 case ASB_DISCARD_ZERO_CHG: 3102 drbd_err(device, "Configuration error.\n"); 3103 break; 3104 case ASB_DISCONNECT: 3105 break; 3106 case ASB_CONSENSUS: 3107 hg = drbd_asb_recover_0p(peer_device); 3108 if (hg == -1 && device->state.role == R_SECONDARY) 3109 rv = hg; 3110 if (hg == 1 && device->state.role == R_PRIMARY) 3111 rv = hg; 3112 break; 3113 case ASB_VIOLENTLY: 3114 rv = drbd_asb_recover_0p(peer_device); 3115 break; 3116 case ASB_DISCARD_SECONDARY: 3117 return device->state.role == R_PRIMARY ? 1 : -1; 3118 case ASB_CALL_HELPER: 3119 hg = drbd_asb_recover_0p(peer_device); 3120 if (hg == -1 && device->state.role == R_PRIMARY) { 3121 enum drbd_state_rv rv2; 3122 3123 /* drbd_change_state() does not sleep while in SS_IN_TRANSIENT_STATE, 3124 * we might be here in C_WF_REPORT_PARAMS which is transient. 3125 * we do not need to wait for the after state change work either. */ 3126 rv2 = drbd_change_state(device, CS_VERBOSE, NS(role, R_SECONDARY)); 3127 if (rv2 != SS_SUCCESS) { 3128 drbd_khelper(device, "pri-lost-after-sb"); 3129 } else { 3130 drbd_warn(device, "Successfully gave up primary role.\n"); 3131 rv = hg; 3132 } 3133 } else 3134 rv = hg; 3135 } 3136 3137 return rv; 3138 } 3139 3140 /* 3141 * drbd_asb_recover_2p - Recover after split-brain with two remaining primaries 3142 */ 3143 static int drbd_asb_recover_2p(struct drbd_peer_device *peer_device) __must_hold(local) 3144 { 3145 struct drbd_device *device = peer_device->device; 3146 int hg, rv = -100; 3147 enum drbd_after_sb_p after_sb_2p; 3148 3149 rcu_read_lock(); 3150 after_sb_2p = rcu_dereference(peer_device->connection->net_conf)->after_sb_2p; 3151 rcu_read_unlock(); 3152 switch (after_sb_2p) { 3153 case ASB_DISCARD_YOUNGER_PRI: 3154 case ASB_DISCARD_OLDER_PRI: 3155 case ASB_DISCARD_LEAST_CHG: 3156 case ASB_DISCARD_LOCAL: 3157 case ASB_DISCARD_REMOTE: 3158 case ASB_CONSENSUS: 3159 case ASB_DISCARD_SECONDARY: 3160 case ASB_DISCARD_ZERO_CHG: 3161 drbd_err(device, "Configuration error.\n"); 3162 break; 3163 case ASB_VIOLENTLY: 3164 rv = drbd_asb_recover_0p(peer_device); 3165 break; 3166 case ASB_DISCONNECT: 3167 break; 3168 case ASB_CALL_HELPER: 3169 hg = drbd_asb_recover_0p(peer_device); 3170 if (hg == -1) { 3171 enum drbd_state_rv rv2; 3172 3173 /* drbd_change_state() does not sleep while in SS_IN_TRANSIENT_STATE, 3174 * we might be here in C_WF_REPORT_PARAMS which is transient. 3175 * we do not need to wait for the after state change work either. */ 3176 rv2 = drbd_change_state(device, CS_VERBOSE, NS(role, R_SECONDARY)); 3177 if (rv2 != SS_SUCCESS) { 3178 drbd_khelper(device, "pri-lost-after-sb"); 3179 } else { 3180 drbd_warn(device, "Successfully gave up primary role.\n"); 3181 rv = hg; 3182 } 3183 } else 3184 rv = hg; 3185 } 3186 3187 return rv; 3188 } 3189 3190 static void drbd_uuid_dump(struct drbd_device *device, char *text, u64 *uuid, 3191 u64 bits, u64 flags) 3192 { 3193 if (!uuid) { 3194 drbd_info(device, "%s uuid info vanished while I was looking!\n", text); 3195 return; 3196 } 3197 drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX bits:%llu flags:%llX\n", 3198 text, 3199 (unsigned long long)uuid[UI_CURRENT], 3200 (unsigned long long)uuid[UI_BITMAP], 3201 (unsigned long long)uuid[UI_HISTORY_START], 3202 (unsigned long long)uuid[UI_HISTORY_END], 3203 (unsigned long long)bits, 3204 (unsigned long long)flags); 3205 } 3206 3207 /* 3208 100 after split brain try auto recover 3209 2 C_SYNC_SOURCE set BitMap 3210 1 C_SYNC_SOURCE use BitMap 3211 0 no Sync 3212 -1 C_SYNC_TARGET use BitMap 3213 -2 C_SYNC_TARGET set BitMap 3214 -100 after split brain, disconnect 3215 -1000 unrelated data 3216 -1091 requires proto 91 3217 -1096 requires proto 96 3218 */ 3219 3220 static int drbd_uuid_compare(struct drbd_device *const device, enum drbd_role const peer_role, int *rule_nr) __must_hold(local) 3221 { 3222 struct drbd_peer_device *const peer_device = first_peer_device(device); 3223 struct drbd_connection *const connection = peer_device ? peer_device->connection : NULL; 3224 u64 self, peer; 3225 int i, j; 3226 3227 self = device->ldev->md.uuid[UI_CURRENT] & ~((u64)1); 3228 peer = device->p_uuid[UI_CURRENT] & ~((u64)1); 3229 3230 *rule_nr = 10; 3231 if (self == UUID_JUST_CREATED && peer == UUID_JUST_CREATED) 3232 return 0; 3233 3234 *rule_nr = 20; 3235 if ((self == UUID_JUST_CREATED || self == (u64)0) && 3236 peer != UUID_JUST_CREATED) 3237 return -2; 3238 3239 *rule_nr = 30; 3240 if (self != UUID_JUST_CREATED && 3241 (peer == UUID_JUST_CREATED || peer == (u64)0)) 3242 return 2; 3243 3244 if (self == peer) { 3245 int rct, dc; /* roles at crash time */ 3246 3247 if (device->p_uuid[UI_BITMAP] == (u64)0 && device->ldev->md.uuid[UI_BITMAP] != (u64)0) { 3248 3249 if (connection->agreed_pro_version < 91) 3250 return -1091; 3251 3252 if ((device->ldev->md.uuid[UI_BITMAP] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START] & ~((u64)1)) && 3253 (device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START + 1] & ~((u64)1))) { 3254 drbd_info(device, "was SyncSource, missed the resync finished event, corrected myself:\n"); 3255 drbd_uuid_move_history(device); 3256 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP]; 3257 device->ldev->md.uuid[UI_BITMAP] = 0; 3258 3259 drbd_uuid_dump(device, "self", device->ldev->md.uuid, 3260 device->state.disk >= D_NEGOTIATING ? drbd_bm_total_weight(device) : 0, 0); 3261 *rule_nr = 34; 3262 } else { 3263 drbd_info(device, "was SyncSource (peer failed to write sync_uuid)\n"); 3264 *rule_nr = 36; 3265 } 3266 3267 return 1; 3268 } 3269 3270 if (device->ldev->md.uuid[UI_BITMAP] == (u64)0 && device->p_uuid[UI_BITMAP] != (u64)0) { 3271 3272 if (connection->agreed_pro_version < 91) 3273 return -1091; 3274 3275 if ((device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == (device->p_uuid[UI_BITMAP] & ~((u64)1)) && 3276 (device->ldev->md.uuid[UI_HISTORY_START + 1] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START] & ~((u64)1))) { 3277 drbd_info(device, "was SyncTarget, peer missed the resync finished event, corrected peer:\n"); 3278 3279 device->p_uuid[UI_HISTORY_START + 1] = device->p_uuid[UI_HISTORY_START]; 3280 device->p_uuid[UI_HISTORY_START] = device->p_uuid[UI_BITMAP]; 3281 device->p_uuid[UI_BITMAP] = 0UL; 3282 3283 drbd_uuid_dump(device, "peer", device->p_uuid, device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]); 3284 *rule_nr = 35; 3285 } else { 3286 drbd_info(device, "was SyncTarget (failed to write sync_uuid)\n"); 3287 *rule_nr = 37; 3288 } 3289 3290 return -1; 3291 } 3292 3293 /* Common power [off|failure] */ 3294 rct = (test_bit(CRASHED_PRIMARY, &device->flags) ? 1 : 0) + 3295 (device->p_uuid[UI_FLAGS] & 2); 3296 /* lowest bit is set when we were primary, 3297 * next bit (weight 2) is set when peer was primary */ 3298 *rule_nr = 40; 3299 3300 /* Neither has the "crashed primary" flag set, 3301 * only a replication link hickup. */ 3302 if (rct == 0) 3303 return 0; 3304 3305 /* Current UUID equal and no bitmap uuid; does not necessarily 3306 * mean this was a "simultaneous hard crash", maybe IO was 3307 * frozen, so no UUID-bump happened. 3308 * This is a protocol change, overload DRBD_FF_WSAME as flag 3309 * for "new-enough" peer DRBD version. */ 3310 if (device->state.role == R_PRIMARY || peer_role == R_PRIMARY) { 3311 *rule_nr = 41; 3312 if (!(connection->agreed_features & DRBD_FF_WSAME)) { 3313 drbd_warn(peer_device, "Equivalent unrotated UUIDs, but current primary present.\n"); 3314 return -(0x10000 | PRO_VERSION_MAX | (DRBD_FF_WSAME << 8)); 3315 } 3316 if (device->state.role == R_PRIMARY && peer_role == R_PRIMARY) { 3317 /* At least one has the "crashed primary" bit set, 3318 * both are primary now, but neither has rotated its UUIDs? 3319 * "Can not happen." */ 3320 drbd_err(peer_device, "Equivalent unrotated UUIDs, but both are primary. Can not resolve this.\n"); 3321 return -100; 3322 } 3323 if (device->state.role == R_PRIMARY) 3324 return 1; 3325 return -1; 3326 } 3327 3328 /* Both are secondary. 3329 * Really looks like recovery from simultaneous hard crash. 3330 * Check which had been primary before, and arbitrate. */ 3331 switch (rct) { 3332 case 0: /* !self_pri && !peer_pri */ return 0; /* already handled */ 3333 case 1: /* self_pri && !peer_pri */ return 1; 3334 case 2: /* !self_pri && peer_pri */ return -1; 3335 case 3: /* self_pri && peer_pri */ 3336 dc = test_bit(RESOLVE_CONFLICTS, &connection->flags); 3337 return dc ? -1 : 1; 3338 } 3339 } 3340 3341 *rule_nr = 50; 3342 peer = device->p_uuid[UI_BITMAP] & ~((u64)1); 3343 if (self == peer) 3344 return -1; 3345 3346 *rule_nr = 51; 3347 peer = device->p_uuid[UI_HISTORY_START] & ~((u64)1); 3348 if (self == peer) { 3349 if (connection->agreed_pro_version < 96 ? 3350 (device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == 3351 (device->p_uuid[UI_HISTORY_START + 1] & ~((u64)1)) : 3352 peer + UUID_NEW_BM_OFFSET == (device->p_uuid[UI_BITMAP] & ~((u64)1))) { 3353 /* The last P_SYNC_UUID did not get though. Undo the last start of 3354 resync as sync source modifications of the peer's UUIDs. */ 3355 3356 if (connection->agreed_pro_version < 91) 3357 return -1091; 3358 3359 device->p_uuid[UI_BITMAP] = device->p_uuid[UI_HISTORY_START]; 3360 device->p_uuid[UI_HISTORY_START] = device->p_uuid[UI_HISTORY_START + 1]; 3361 3362 drbd_info(device, "Lost last syncUUID packet, corrected:\n"); 3363 drbd_uuid_dump(device, "peer", device->p_uuid, device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]); 3364 3365 return -1; 3366 } 3367 } 3368 3369 *rule_nr = 60; 3370 self = device->ldev->md.uuid[UI_CURRENT] & ~((u64)1); 3371 for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) { 3372 peer = device->p_uuid[i] & ~((u64)1); 3373 if (self == peer) 3374 return -2; 3375 } 3376 3377 *rule_nr = 70; 3378 self = device->ldev->md.uuid[UI_BITMAP] & ~((u64)1); 3379 peer = device->p_uuid[UI_CURRENT] & ~((u64)1); 3380 if (self == peer) 3381 return 1; 3382 3383 *rule_nr = 71; 3384 self = device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1); 3385 if (self == peer) { 3386 if (connection->agreed_pro_version < 96 ? 3387 (device->ldev->md.uuid[UI_HISTORY_START + 1] & ~((u64)1)) == 3388 (device->p_uuid[UI_HISTORY_START] & ~((u64)1)) : 3389 self + UUID_NEW_BM_OFFSET == (device->ldev->md.uuid[UI_BITMAP] & ~((u64)1))) { 3390 /* The last P_SYNC_UUID did not get though. Undo the last start of 3391 resync as sync source modifications of our UUIDs. */ 3392 3393 if (connection->agreed_pro_version < 91) 3394 return -1091; 3395 3396 __drbd_uuid_set(device, UI_BITMAP, device->ldev->md.uuid[UI_HISTORY_START]); 3397 __drbd_uuid_set(device, UI_HISTORY_START, device->ldev->md.uuid[UI_HISTORY_START + 1]); 3398 3399 drbd_info(device, "Last syncUUID did not get through, corrected:\n"); 3400 drbd_uuid_dump(device, "self", device->ldev->md.uuid, 3401 device->state.disk >= D_NEGOTIATING ? drbd_bm_total_weight(device) : 0, 0); 3402 3403 return 1; 3404 } 3405 } 3406 3407 3408 *rule_nr = 80; 3409 peer = device->p_uuid[UI_CURRENT] & ~((u64)1); 3410 for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) { 3411 self = device->ldev->md.uuid[i] & ~((u64)1); 3412 if (self == peer) 3413 return 2; 3414 } 3415 3416 *rule_nr = 90; 3417 self = device->ldev->md.uuid[UI_BITMAP] & ~((u64)1); 3418 peer = device->p_uuid[UI_BITMAP] & ~((u64)1); 3419 if (self == peer && self != ((u64)0)) 3420 return 100; 3421 3422 *rule_nr = 100; 3423 for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) { 3424 self = device->ldev->md.uuid[i] & ~((u64)1); 3425 for (j = UI_HISTORY_START; j <= UI_HISTORY_END; j++) { 3426 peer = device->p_uuid[j] & ~((u64)1); 3427 if (self == peer) 3428 return -100; 3429 } 3430 } 3431 3432 return -1000; 3433 } 3434 3435 /* drbd_sync_handshake() returns the new conn state on success, or 3436 CONN_MASK (-1) on failure. 3437 */ 3438 static enum drbd_conns drbd_sync_handshake(struct drbd_peer_device *peer_device, 3439 enum drbd_role peer_role, 3440 enum drbd_disk_state peer_disk) __must_hold(local) 3441 { 3442 struct drbd_device *device = peer_device->device; 3443 enum drbd_conns rv = C_MASK; 3444 enum drbd_disk_state mydisk; 3445 struct net_conf *nc; 3446 int hg, rule_nr, rr_conflict, tentative, always_asbp; 3447 3448 mydisk = device->state.disk; 3449 if (mydisk == D_NEGOTIATING) 3450 mydisk = device->new_state_tmp.disk; 3451 3452 drbd_info(device, "drbd_sync_handshake:\n"); 3453 3454 spin_lock_irq(&device->ldev->md.uuid_lock); 3455 drbd_uuid_dump(device, "self", device->ldev->md.uuid, device->comm_bm_set, 0); 3456 drbd_uuid_dump(device, "peer", device->p_uuid, 3457 device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]); 3458 3459 hg = drbd_uuid_compare(device, peer_role, &rule_nr); 3460 spin_unlock_irq(&device->ldev->md.uuid_lock); 3461 3462 drbd_info(device, "uuid_compare()=%d by rule %d\n", hg, rule_nr); 3463 3464 if (hg == -1000) { 3465 drbd_alert(device, "Unrelated data, aborting!\n"); 3466 return C_MASK; 3467 } 3468 if (hg < -0x10000) { 3469 int proto, fflags; 3470 hg = -hg; 3471 proto = hg & 0xff; 3472 fflags = (hg >> 8) & 0xff; 3473 drbd_alert(device, "To resolve this both sides have to support at least protocol %d and feature flags 0x%x\n", 3474 proto, fflags); 3475 return C_MASK; 3476 } 3477 if (hg < -1000) { 3478 drbd_alert(device, "To resolve this both sides have to support at least protocol %d\n", -hg - 1000); 3479 return C_MASK; 3480 } 3481 3482 if ((mydisk == D_INCONSISTENT && peer_disk > D_INCONSISTENT) || 3483 (peer_disk == D_INCONSISTENT && mydisk > D_INCONSISTENT)) { 3484 int f = (hg == -100) || abs(hg) == 2; 3485 hg = mydisk > D_INCONSISTENT ? 1 : -1; 3486 if (f) 3487 hg = hg*2; 3488 drbd_info(device, "Becoming sync %s due to disk states.\n", 3489 hg > 0 ? "source" : "target"); 3490 } 3491 3492 if (abs(hg) == 100) 3493 drbd_khelper(device, "initial-split-brain"); 3494 3495 rcu_read_lock(); 3496 nc = rcu_dereference(peer_device->connection->net_conf); 3497 always_asbp = nc->always_asbp; 3498 rr_conflict = nc->rr_conflict; 3499 tentative = nc->tentative; 3500 rcu_read_unlock(); 3501 3502 if (hg == 100 || (hg == -100 && always_asbp)) { 3503 int pcount = (device->state.role == R_PRIMARY) 3504 + (peer_role == R_PRIMARY); 3505 int forced = (hg == -100); 3506 3507 switch (pcount) { 3508 case 0: 3509 hg = drbd_asb_recover_0p(peer_device); 3510 break; 3511 case 1: 3512 hg = drbd_asb_recover_1p(peer_device); 3513 break; 3514 case 2: 3515 hg = drbd_asb_recover_2p(peer_device); 3516 break; 3517 } 3518 if (abs(hg) < 100) { 3519 drbd_warn(device, "Split-Brain detected, %d primaries, " 3520 "automatically solved. Sync from %s node\n", 3521 pcount, (hg < 0) ? "peer" : "this"); 3522 if (forced) { 3523 drbd_warn(device, "Doing a full sync, since" 3524 " UUIDs where ambiguous.\n"); 3525 hg = hg*2; 3526 } 3527 } 3528 } 3529 3530 if (hg == -100) { 3531 if (test_bit(DISCARD_MY_DATA, &device->flags) && !(device->p_uuid[UI_FLAGS]&1)) 3532 hg = -1; 3533 if (!test_bit(DISCARD_MY_DATA, &device->flags) && (device->p_uuid[UI_FLAGS]&1)) 3534 hg = 1; 3535 3536 if (abs(hg) < 100) 3537 drbd_warn(device, "Split-Brain detected, manually solved. " 3538 "Sync from %s node\n", 3539 (hg < 0) ? "peer" : "this"); 3540 } 3541 3542 if (hg == -100) { 3543 /* FIXME this log message is not correct if we end up here 3544 * after an attempted attach on a diskless node. 3545 * We just refuse to attach -- well, we drop the "connection" 3546 * to that disk, in a way... */ 3547 drbd_alert(device, "Split-Brain detected but unresolved, dropping connection!\n"); 3548 drbd_khelper(device, "split-brain"); 3549 return C_MASK; 3550 } 3551 3552 if (hg > 0 && mydisk <= D_INCONSISTENT) { 3553 drbd_err(device, "I shall become SyncSource, but I am inconsistent!\n"); 3554 return C_MASK; 3555 } 3556 3557 if (hg < 0 && /* by intention we do not use mydisk here. */ 3558 device->state.role == R_PRIMARY && device->state.disk >= D_CONSISTENT) { 3559 switch (rr_conflict) { 3560 case ASB_CALL_HELPER: 3561 drbd_khelper(device, "pri-lost"); 3562 fallthrough; 3563 case ASB_DISCONNECT: 3564 drbd_err(device, "I shall become SyncTarget, but I am primary!\n"); 3565 return C_MASK; 3566 case ASB_VIOLENTLY: 3567 drbd_warn(device, "Becoming SyncTarget, violating the stable-data" 3568 "assumption\n"); 3569 } 3570 } 3571 3572 if (tentative || test_bit(CONN_DRY_RUN, &peer_device->connection->flags)) { 3573 if (hg == 0) 3574 drbd_info(device, "dry-run connect: No resync, would become Connected immediately.\n"); 3575 else 3576 drbd_info(device, "dry-run connect: Would become %s, doing a %s resync.", 3577 drbd_conn_str(hg > 0 ? C_SYNC_SOURCE : C_SYNC_TARGET), 3578 abs(hg) >= 2 ? "full" : "bit-map based"); 3579 return C_MASK; 3580 } 3581 3582 if (abs(hg) >= 2) { 3583 drbd_info(device, "Writing the whole bitmap, full sync required after drbd_sync_handshake.\n"); 3584 if (drbd_bitmap_io(device, &drbd_bmio_set_n_write, "set_n_write from sync_handshake", 3585 BM_LOCKED_SET_ALLOWED)) 3586 return C_MASK; 3587 } 3588 3589 if (hg > 0) { /* become sync source. */ 3590 rv = C_WF_BITMAP_S; 3591 } else if (hg < 0) { /* become sync target */ 3592 rv = C_WF_BITMAP_T; 3593 } else { 3594 rv = C_CONNECTED; 3595 if (drbd_bm_total_weight(device)) { 3596 drbd_info(device, "No resync, but %lu bits in bitmap!\n", 3597 drbd_bm_total_weight(device)); 3598 } 3599 } 3600 3601 return rv; 3602 } 3603 3604 static enum drbd_after_sb_p convert_after_sb(enum drbd_after_sb_p peer) 3605 { 3606 /* ASB_DISCARD_REMOTE - ASB_DISCARD_LOCAL is valid */ 3607 if (peer == ASB_DISCARD_REMOTE) 3608 return ASB_DISCARD_LOCAL; 3609 3610 /* any other things with ASB_DISCARD_REMOTE or ASB_DISCARD_LOCAL are invalid */ 3611 if (peer == ASB_DISCARD_LOCAL) 3612 return ASB_DISCARD_REMOTE; 3613 3614 /* everything else is valid if they are equal on both sides. */ 3615 return peer; 3616 } 3617 3618 static int receive_protocol(struct drbd_connection *connection, struct packet_info *pi) 3619 { 3620 struct p_protocol *p = pi->data; 3621 enum drbd_after_sb_p p_after_sb_0p, p_after_sb_1p, p_after_sb_2p; 3622 int p_proto, p_discard_my_data, p_two_primaries, cf; 3623 struct net_conf *nc, *old_net_conf, *new_net_conf = NULL; 3624 char integrity_alg[SHARED_SECRET_MAX] = ""; 3625 struct crypto_shash *peer_integrity_tfm = NULL; 3626 void *int_dig_in = NULL, *int_dig_vv = NULL; 3627 3628 p_proto = be32_to_cpu(p->protocol); 3629 p_after_sb_0p = be32_to_cpu(p->after_sb_0p); 3630 p_after_sb_1p = be32_to_cpu(p->after_sb_1p); 3631 p_after_sb_2p = be32_to_cpu(p->after_sb_2p); 3632 p_two_primaries = be32_to_cpu(p->two_primaries); 3633 cf = be32_to_cpu(p->conn_flags); 3634 p_discard_my_data = cf & CF_DISCARD_MY_DATA; 3635 3636 if (connection->agreed_pro_version >= 87) { 3637 int err; 3638 3639 if (pi->size > sizeof(integrity_alg)) 3640 return -EIO; 3641 err = drbd_recv_all(connection, integrity_alg, pi->size); 3642 if (err) 3643 return err; 3644 integrity_alg[SHARED_SECRET_MAX - 1] = 0; 3645 } 3646 3647 if (pi->cmd != P_PROTOCOL_UPDATE) { 3648 clear_bit(CONN_DRY_RUN, &connection->flags); 3649 3650 if (cf & CF_DRY_RUN) 3651 set_bit(CONN_DRY_RUN, &connection->flags); 3652 3653 rcu_read_lock(); 3654 nc = rcu_dereference(connection->net_conf); 3655 3656 if (p_proto != nc->wire_protocol) { 3657 drbd_err(connection, "incompatible %s settings\n", "protocol"); 3658 goto disconnect_rcu_unlock; 3659 } 3660 3661 if (convert_after_sb(p_after_sb_0p) != nc->after_sb_0p) { 3662 drbd_err(connection, "incompatible %s settings\n", "after-sb-0pri"); 3663 goto disconnect_rcu_unlock; 3664 } 3665 3666 if (convert_after_sb(p_after_sb_1p) != nc->after_sb_1p) { 3667 drbd_err(connection, "incompatible %s settings\n", "after-sb-1pri"); 3668 goto disconnect_rcu_unlock; 3669 } 3670 3671 if (convert_after_sb(p_after_sb_2p) != nc->after_sb_2p) { 3672 drbd_err(connection, "incompatible %s settings\n", "after-sb-2pri"); 3673 goto disconnect_rcu_unlock; 3674 } 3675 3676 if (p_discard_my_data && nc->discard_my_data) { 3677 drbd_err(connection, "incompatible %s settings\n", "discard-my-data"); 3678 goto disconnect_rcu_unlock; 3679 } 3680 3681 if (p_two_primaries != nc->two_primaries) { 3682 drbd_err(connection, "incompatible %s settings\n", "allow-two-primaries"); 3683 goto disconnect_rcu_unlock; 3684 } 3685 3686 if (strcmp(integrity_alg, nc->integrity_alg)) { 3687 drbd_err(connection, "incompatible %s settings\n", "data-integrity-alg"); 3688 goto disconnect_rcu_unlock; 3689 } 3690 3691 rcu_read_unlock(); 3692 } 3693 3694 if (integrity_alg[0]) { 3695 int hash_size; 3696 3697 /* 3698 * We can only change the peer data integrity algorithm 3699 * here. Changing our own data integrity algorithm 3700 * requires that we send a P_PROTOCOL_UPDATE packet at 3701 * the same time; otherwise, the peer has no way to 3702 * tell between which packets the algorithm should 3703 * change. 3704 */ 3705 3706 peer_integrity_tfm = crypto_alloc_shash(integrity_alg, 0, 0); 3707 if (IS_ERR(peer_integrity_tfm)) { 3708 peer_integrity_tfm = NULL; 3709 drbd_err(connection, "peer data-integrity-alg %s not supported\n", 3710 integrity_alg); 3711 goto disconnect; 3712 } 3713 3714 hash_size = crypto_shash_digestsize(peer_integrity_tfm); 3715 int_dig_in = kmalloc(hash_size, GFP_KERNEL); 3716 int_dig_vv = kmalloc(hash_size, GFP_KERNEL); 3717 if (!(int_dig_in && int_dig_vv)) { 3718 drbd_err(connection, "Allocation of buffers for data integrity checking failed\n"); 3719 goto disconnect; 3720 } 3721 } 3722 3723 new_net_conf = kmalloc(sizeof(struct net_conf), GFP_KERNEL); 3724 if (!new_net_conf) 3725 goto disconnect; 3726 3727 mutex_lock(&connection->data.mutex); 3728 mutex_lock(&connection->resource->conf_update); 3729 old_net_conf = connection->net_conf; 3730 *new_net_conf = *old_net_conf; 3731 3732 new_net_conf->wire_protocol = p_proto; 3733 new_net_conf->after_sb_0p = convert_after_sb(p_after_sb_0p); 3734 new_net_conf->after_sb_1p = convert_after_sb(p_after_sb_1p); 3735 new_net_conf->after_sb_2p = convert_after_sb(p_after_sb_2p); 3736 new_net_conf->two_primaries = p_two_primaries; 3737 3738 rcu_assign_pointer(connection->net_conf, new_net_conf); 3739 mutex_unlock(&connection->resource->conf_update); 3740 mutex_unlock(&connection->data.mutex); 3741 3742 crypto_free_shash(connection->peer_integrity_tfm); 3743 kfree(connection->int_dig_in); 3744 kfree(connection->int_dig_vv); 3745 connection->peer_integrity_tfm = peer_integrity_tfm; 3746 connection->int_dig_in = int_dig_in; 3747 connection->int_dig_vv = int_dig_vv; 3748 3749 if (strcmp(old_net_conf->integrity_alg, integrity_alg)) 3750 drbd_info(connection, "peer data-integrity-alg: %s\n", 3751 integrity_alg[0] ? integrity_alg : "(none)"); 3752 3753 kvfree_rcu(old_net_conf); 3754 return 0; 3755 3756 disconnect_rcu_unlock: 3757 rcu_read_unlock(); 3758 disconnect: 3759 crypto_free_shash(peer_integrity_tfm); 3760 kfree(int_dig_in); 3761 kfree(int_dig_vv); 3762 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 3763 return -EIO; 3764 } 3765 3766 /* helper function 3767 * input: alg name, feature name 3768 * return: NULL (alg name was "") 3769 * ERR_PTR(error) if something goes wrong 3770 * or the crypto hash ptr, if it worked out ok. */ 3771 static struct crypto_shash *drbd_crypto_alloc_digest_safe( 3772 const struct drbd_device *device, 3773 const char *alg, const char *name) 3774 { 3775 struct crypto_shash *tfm; 3776 3777 if (!alg[0]) 3778 return NULL; 3779 3780 tfm = crypto_alloc_shash(alg, 0, 0); 3781 if (IS_ERR(tfm)) { 3782 drbd_err(device, "Can not allocate \"%s\" as %s (reason: %ld)\n", 3783 alg, name, PTR_ERR(tfm)); 3784 return tfm; 3785 } 3786 return tfm; 3787 } 3788 3789 static int ignore_remaining_packet(struct drbd_connection *connection, struct packet_info *pi) 3790 { 3791 void *buffer = connection->data.rbuf; 3792 int size = pi->size; 3793 3794 while (size) { 3795 int s = min_t(int, size, DRBD_SOCKET_BUFFER_SIZE); 3796 s = drbd_recv(connection, buffer, s); 3797 if (s <= 0) { 3798 if (s < 0) 3799 return s; 3800 break; 3801 } 3802 size -= s; 3803 } 3804 if (size) 3805 return -EIO; 3806 return 0; 3807 } 3808 3809 /* 3810 * config_unknown_volume - device configuration command for unknown volume 3811 * 3812 * When a device is added to an existing connection, the node on which the 3813 * device is added first will send configuration commands to its peer but the 3814 * peer will not know about the device yet. It will warn and ignore these 3815 * commands. Once the device is added on the second node, the second node will 3816 * send the same device configuration commands, but in the other direction. 3817 * 3818 * (We can also end up here if drbd is misconfigured.) 3819 */ 3820 static int config_unknown_volume(struct drbd_connection *connection, struct packet_info *pi) 3821 { 3822 drbd_warn(connection, "%s packet received for volume %u, which is not configured locally\n", 3823 cmdname(pi->cmd), pi->vnr); 3824 return ignore_remaining_packet(connection, pi); 3825 } 3826 3827 static int receive_SyncParam(struct drbd_connection *connection, struct packet_info *pi) 3828 { 3829 struct drbd_peer_device *peer_device; 3830 struct drbd_device *device; 3831 struct p_rs_param_95 *p; 3832 unsigned int header_size, data_size, exp_max_sz; 3833 struct crypto_shash *verify_tfm = NULL; 3834 struct crypto_shash *csums_tfm = NULL; 3835 struct net_conf *old_net_conf, *new_net_conf = NULL; 3836 struct disk_conf *old_disk_conf = NULL, *new_disk_conf = NULL; 3837 const int apv = connection->agreed_pro_version; 3838 struct fifo_buffer *old_plan = NULL, *new_plan = NULL; 3839 unsigned int fifo_size = 0; 3840 int err; 3841 3842 peer_device = conn_peer_device(connection, pi->vnr); 3843 if (!peer_device) 3844 return config_unknown_volume(connection, pi); 3845 device = peer_device->device; 3846 3847 exp_max_sz = apv <= 87 ? sizeof(struct p_rs_param) 3848 : apv == 88 ? sizeof(struct p_rs_param) 3849 + SHARED_SECRET_MAX 3850 : apv <= 94 ? sizeof(struct p_rs_param_89) 3851 : /* apv >= 95 */ sizeof(struct p_rs_param_95); 3852 3853 if (pi->size > exp_max_sz) { 3854 drbd_err(device, "SyncParam packet too long: received %u, expected <= %u bytes\n", 3855 pi->size, exp_max_sz); 3856 return -EIO; 3857 } 3858 3859 if (apv <= 88) { 3860 header_size = sizeof(struct p_rs_param); 3861 data_size = pi->size - header_size; 3862 } else if (apv <= 94) { 3863 header_size = sizeof(struct p_rs_param_89); 3864 data_size = pi->size - header_size; 3865 D_ASSERT(device, data_size == 0); 3866 } else { 3867 header_size = sizeof(struct p_rs_param_95); 3868 data_size = pi->size - header_size; 3869 D_ASSERT(device, data_size == 0); 3870 } 3871 3872 /* initialize verify_alg and csums_alg */ 3873 p = pi->data; 3874 BUILD_BUG_ON(sizeof(p->algs) != 2 * SHARED_SECRET_MAX); 3875 memset(&p->algs, 0, sizeof(p->algs)); 3876 3877 err = drbd_recv_all(peer_device->connection, p, header_size); 3878 if (err) 3879 return err; 3880 3881 mutex_lock(&connection->resource->conf_update); 3882 old_net_conf = peer_device->connection->net_conf; 3883 if (get_ldev(device)) { 3884 new_disk_conf = kzalloc(sizeof(struct disk_conf), GFP_KERNEL); 3885 if (!new_disk_conf) { 3886 put_ldev(device); 3887 mutex_unlock(&connection->resource->conf_update); 3888 drbd_err(device, "Allocation of new disk_conf failed\n"); 3889 return -ENOMEM; 3890 } 3891 3892 old_disk_conf = device->ldev->disk_conf; 3893 *new_disk_conf = *old_disk_conf; 3894 3895 new_disk_conf->resync_rate = be32_to_cpu(p->resync_rate); 3896 } 3897 3898 if (apv >= 88) { 3899 if (apv == 88) { 3900 if (data_size > SHARED_SECRET_MAX || data_size == 0) { 3901 drbd_err(device, "verify-alg of wrong size, " 3902 "peer wants %u, accepting only up to %u byte\n", 3903 data_size, SHARED_SECRET_MAX); 3904 goto reconnect; 3905 } 3906 3907 err = drbd_recv_all(peer_device->connection, p->verify_alg, data_size); 3908 if (err) 3909 goto reconnect; 3910 /* we expect NUL terminated string */ 3911 /* but just in case someone tries to be evil */ 3912 D_ASSERT(device, p->verify_alg[data_size-1] == 0); 3913 p->verify_alg[data_size-1] = 0; 3914 3915 } else /* apv >= 89 */ { 3916 /* we still expect NUL terminated strings */ 3917 /* but just in case someone tries to be evil */ 3918 D_ASSERT(device, p->verify_alg[SHARED_SECRET_MAX-1] == 0); 3919 D_ASSERT(device, p->csums_alg[SHARED_SECRET_MAX-1] == 0); 3920 p->verify_alg[SHARED_SECRET_MAX-1] = 0; 3921 p->csums_alg[SHARED_SECRET_MAX-1] = 0; 3922 } 3923 3924 if (strcmp(old_net_conf->verify_alg, p->verify_alg)) { 3925 if (device->state.conn == C_WF_REPORT_PARAMS) { 3926 drbd_err(device, "Different verify-alg settings. me=\"%s\" peer=\"%s\"\n", 3927 old_net_conf->verify_alg, p->verify_alg); 3928 goto disconnect; 3929 } 3930 verify_tfm = drbd_crypto_alloc_digest_safe(device, 3931 p->verify_alg, "verify-alg"); 3932 if (IS_ERR(verify_tfm)) { 3933 verify_tfm = NULL; 3934 goto disconnect; 3935 } 3936 } 3937 3938 if (apv >= 89 && strcmp(old_net_conf->csums_alg, p->csums_alg)) { 3939 if (device->state.conn == C_WF_REPORT_PARAMS) { 3940 drbd_err(device, "Different csums-alg settings. me=\"%s\" peer=\"%s\"\n", 3941 old_net_conf->csums_alg, p->csums_alg); 3942 goto disconnect; 3943 } 3944 csums_tfm = drbd_crypto_alloc_digest_safe(device, 3945 p->csums_alg, "csums-alg"); 3946 if (IS_ERR(csums_tfm)) { 3947 csums_tfm = NULL; 3948 goto disconnect; 3949 } 3950 } 3951 3952 if (apv > 94 && new_disk_conf) { 3953 new_disk_conf->c_plan_ahead = be32_to_cpu(p->c_plan_ahead); 3954 new_disk_conf->c_delay_target = be32_to_cpu(p->c_delay_target); 3955 new_disk_conf->c_fill_target = be32_to_cpu(p->c_fill_target); 3956 new_disk_conf->c_max_rate = be32_to_cpu(p->c_max_rate); 3957 3958 fifo_size = (new_disk_conf->c_plan_ahead * 10 * SLEEP_TIME) / HZ; 3959 if (fifo_size != device->rs_plan_s->size) { 3960 new_plan = fifo_alloc(fifo_size); 3961 if (!new_plan) { 3962 drbd_err(device, "kmalloc of fifo_buffer failed"); 3963 put_ldev(device); 3964 goto disconnect; 3965 } 3966 } 3967 } 3968 3969 if (verify_tfm || csums_tfm) { 3970 new_net_conf = kzalloc(sizeof(struct net_conf), GFP_KERNEL); 3971 if (!new_net_conf) 3972 goto disconnect; 3973 3974 *new_net_conf = *old_net_conf; 3975 3976 if (verify_tfm) { 3977 strcpy(new_net_conf->verify_alg, p->verify_alg); 3978 new_net_conf->verify_alg_len = strlen(p->verify_alg) + 1; 3979 crypto_free_shash(peer_device->connection->verify_tfm); 3980 peer_device->connection->verify_tfm = verify_tfm; 3981 drbd_info(device, "using verify-alg: \"%s\"\n", p->verify_alg); 3982 } 3983 if (csums_tfm) { 3984 strcpy(new_net_conf->csums_alg, p->csums_alg); 3985 new_net_conf->csums_alg_len = strlen(p->csums_alg) + 1; 3986 crypto_free_shash(peer_device->connection->csums_tfm); 3987 peer_device->connection->csums_tfm = csums_tfm; 3988 drbd_info(device, "using csums-alg: \"%s\"\n", p->csums_alg); 3989 } 3990 rcu_assign_pointer(connection->net_conf, new_net_conf); 3991 } 3992 } 3993 3994 if (new_disk_conf) { 3995 rcu_assign_pointer(device->ldev->disk_conf, new_disk_conf); 3996 put_ldev(device); 3997 } 3998 3999 if (new_plan) { 4000 old_plan = device->rs_plan_s; 4001 rcu_assign_pointer(device->rs_plan_s, new_plan); 4002 } 4003 4004 mutex_unlock(&connection->resource->conf_update); 4005 synchronize_rcu(); 4006 if (new_net_conf) 4007 kfree(old_net_conf); 4008 kfree(old_disk_conf); 4009 kfree(old_plan); 4010 4011 return 0; 4012 4013 reconnect: 4014 if (new_disk_conf) { 4015 put_ldev(device); 4016 kfree(new_disk_conf); 4017 } 4018 mutex_unlock(&connection->resource->conf_update); 4019 return -EIO; 4020 4021 disconnect: 4022 kfree(new_plan); 4023 if (new_disk_conf) { 4024 put_ldev(device); 4025 kfree(new_disk_conf); 4026 } 4027 mutex_unlock(&connection->resource->conf_update); 4028 /* just for completeness: actually not needed, 4029 * as this is not reached if csums_tfm was ok. */ 4030 crypto_free_shash(csums_tfm); 4031 /* but free the verify_tfm again, if csums_tfm did not work out */ 4032 crypto_free_shash(verify_tfm); 4033 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD); 4034 return -EIO; 4035 } 4036 4037 /* warn if the arguments differ by more than 12.5% */ 4038 static void warn_if_differ_considerably(struct drbd_device *device, 4039 const char *s, sector_t a, sector_t b) 4040 { 4041 sector_t d; 4042 if (a == 0 || b == 0) 4043 return; 4044 d = (a > b) ? (a - b) : (b - a); 4045 if (d > (a>>3) || d > (b>>3)) 4046 drbd_warn(device, "Considerable difference in %s: %llus vs. %llus\n", s, 4047 (unsigned long long)a, (unsigned long long)b); 4048 } 4049 4050 static int receive_sizes(struct drbd_connection *connection, struct packet_info *pi) 4051 { 4052 struct drbd_peer_device *peer_device; 4053 struct drbd_device *device; 4054 struct p_sizes *p = pi->data; 4055 struct o_qlim *o = (connection->agreed_features & DRBD_FF_WSAME) ? p->qlim : NULL; 4056 enum determine_dev_size dd = DS_UNCHANGED; 4057 sector_t p_size, p_usize, p_csize, my_usize; 4058 sector_t new_size, cur_size; 4059 int ldsc = 0; /* local disk size changed */ 4060 enum dds_flags ddsf; 4061 4062 peer_device = conn_peer_device(connection, pi->vnr); 4063 if (!peer_device) 4064 return config_unknown_volume(connection, pi); 4065 device = peer_device->device; 4066 cur_size = get_capacity(device->vdisk); 4067 4068 p_size = be64_to_cpu(p->d_size); 4069 p_usize = be64_to_cpu(p->u_size); 4070 p_csize = be64_to_cpu(p->c_size); 4071 4072 /* just store the peer's disk size for now. 4073 * we still need to figure out whether we accept that. */ 4074 device->p_size = p_size; 4075 4076 if (get_ldev(device)) { 4077 rcu_read_lock(); 4078 my_usize = rcu_dereference(device->ldev->disk_conf)->disk_size; 4079 rcu_read_unlock(); 4080 4081 warn_if_differ_considerably(device, "lower level device sizes", 4082 p_size, drbd_get_max_capacity(device->ldev)); 4083 warn_if_differ_considerably(device, "user requested size", 4084 p_usize, my_usize); 4085 4086 /* if this is the first connect, or an otherwise expected 4087 * param exchange, choose the minimum */ 4088 if (device->state.conn == C_WF_REPORT_PARAMS) 4089 p_usize = min_not_zero(my_usize, p_usize); 4090 4091 /* Never shrink a device with usable data during connect, 4092 * or "attach" on the peer. 4093 * But allow online shrinking if we are connected. */ 4094 new_size = drbd_new_dev_size(device, device->ldev, p_usize, 0); 4095 if (new_size < cur_size && 4096 device->state.disk >= D_OUTDATED && 4097 (device->state.conn < C_CONNECTED || device->state.pdsk == D_DISKLESS)) { 4098 drbd_err(device, "The peer's disk size is too small! (%llu < %llu sectors)\n", 4099 (unsigned long long)new_size, (unsigned long long)cur_size); 4100 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD); 4101 put_ldev(device); 4102 return -EIO; 4103 } 4104 4105 if (my_usize != p_usize) { 4106 struct disk_conf *old_disk_conf, *new_disk_conf = NULL; 4107 4108 new_disk_conf = kzalloc(sizeof(struct disk_conf), GFP_KERNEL); 4109 if (!new_disk_conf) { 4110 put_ldev(device); 4111 return -ENOMEM; 4112 } 4113 4114 mutex_lock(&connection->resource->conf_update); 4115 old_disk_conf = device->ldev->disk_conf; 4116 *new_disk_conf = *old_disk_conf; 4117 new_disk_conf->disk_size = p_usize; 4118 4119 rcu_assign_pointer(device->ldev->disk_conf, new_disk_conf); 4120 mutex_unlock(&connection->resource->conf_update); 4121 kvfree_rcu(old_disk_conf); 4122 4123 drbd_info(device, "Peer sets u_size to %lu sectors (old: %lu)\n", 4124 (unsigned long)p_usize, (unsigned long)my_usize); 4125 } 4126 4127 put_ldev(device); 4128 } 4129 4130 device->peer_max_bio_size = be32_to_cpu(p->max_bio_size); 4131 /* Leave drbd_reconsider_queue_parameters() before drbd_determine_dev_size(). 4132 In case we cleared the QUEUE_FLAG_DISCARD from our queue in 4133 drbd_reconsider_queue_parameters(), we can be sure that after 4134 drbd_determine_dev_size() no REQ_DISCARDs are in the queue. */ 4135 4136 ddsf = be16_to_cpu(p->dds_flags); 4137 if (get_ldev(device)) { 4138 drbd_reconsider_queue_parameters(device, device->ldev, o); 4139 dd = drbd_determine_dev_size(device, ddsf, NULL); 4140 put_ldev(device); 4141 if (dd == DS_ERROR) 4142 return -EIO; 4143 drbd_md_sync(device); 4144 } else { 4145 /* 4146 * I am diskless, need to accept the peer's *current* size. 4147 * I must NOT accept the peers backing disk size, 4148 * it may have been larger than mine all along... 4149 * 4150 * At this point, the peer knows more about my disk, or at 4151 * least about what we last agreed upon, than myself. 4152 * So if his c_size is less than his d_size, the most likely 4153 * reason is that *my* d_size was smaller last time we checked. 4154 * 4155 * However, if he sends a zero current size, 4156 * take his (user-capped or) backing disk size anyways. 4157 * 4158 * Unless of course he does not have a disk himself. 4159 * In which case we ignore this completely. 4160 */ 4161 sector_t new_size = p_csize ?: p_usize ?: p_size; 4162 drbd_reconsider_queue_parameters(device, NULL, o); 4163 if (new_size == 0) { 4164 /* Ignore, peer does not know nothing. */ 4165 } else if (new_size == cur_size) { 4166 /* nothing to do */ 4167 } else if (cur_size != 0 && p_size == 0) { 4168 drbd_warn(device, "Ignored diskless peer device size (peer:%llu != me:%llu sectors)!\n", 4169 (unsigned long long)new_size, (unsigned long long)cur_size); 4170 } else if (new_size < cur_size && device->state.role == R_PRIMARY) { 4171 drbd_err(device, "The peer's device size is too small! (%llu < %llu sectors); demote me first!\n", 4172 (unsigned long long)new_size, (unsigned long long)cur_size); 4173 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD); 4174 return -EIO; 4175 } else { 4176 /* I believe the peer, if 4177 * - I don't have a current size myself 4178 * - we agree on the size anyways 4179 * - I do have a current size, am Secondary, 4180 * and he has the only disk 4181 * - I do have a current size, am Primary, 4182 * and he has the only disk, 4183 * which is larger than my current size 4184 */ 4185 drbd_set_my_capacity(device, new_size); 4186 } 4187 } 4188 4189 if (get_ldev(device)) { 4190 if (device->ldev->known_size != drbd_get_capacity(device->ldev->backing_bdev)) { 4191 device->ldev->known_size = drbd_get_capacity(device->ldev->backing_bdev); 4192 ldsc = 1; 4193 } 4194 4195 put_ldev(device); 4196 } 4197 4198 if (device->state.conn > C_WF_REPORT_PARAMS) { 4199 if (be64_to_cpu(p->c_size) != get_capacity(device->vdisk) || 4200 ldsc) { 4201 /* we have different sizes, probably peer 4202 * needs to know my new size... */ 4203 drbd_send_sizes(peer_device, 0, ddsf); 4204 } 4205 if (test_and_clear_bit(RESIZE_PENDING, &device->flags) || 4206 (dd == DS_GREW && device->state.conn == C_CONNECTED)) { 4207 if (device->state.pdsk >= D_INCONSISTENT && 4208 device->state.disk >= D_INCONSISTENT) { 4209 if (ddsf & DDSF_NO_RESYNC) 4210 drbd_info(device, "Resync of new storage suppressed with --assume-clean\n"); 4211 else 4212 resync_after_online_grow(device); 4213 } else 4214 set_bit(RESYNC_AFTER_NEG, &device->flags); 4215 } 4216 } 4217 4218 return 0; 4219 } 4220 4221 static int receive_uuids(struct drbd_connection *connection, struct packet_info *pi) 4222 { 4223 struct drbd_peer_device *peer_device; 4224 struct drbd_device *device; 4225 struct p_uuids *p = pi->data; 4226 u64 *p_uuid; 4227 int i, updated_uuids = 0; 4228 4229 peer_device = conn_peer_device(connection, pi->vnr); 4230 if (!peer_device) 4231 return config_unknown_volume(connection, pi); 4232 device = peer_device->device; 4233 4234 p_uuid = kmalloc_array(UI_EXTENDED_SIZE, sizeof(*p_uuid), GFP_NOIO); 4235 if (!p_uuid) 4236 return false; 4237 4238 for (i = UI_CURRENT; i < UI_EXTENDED_SIZE; i++) 4239 p_uuid[i] = be64_to_cpu(p->uuid[i]); 4240 4241 kfree(device->p_uuid); 4242 device->p_uuid = p_uuid; 4243 4244 if ((device->state.conn < C_CONNECTED || device->state.pdsk == D_DISKLESS) && 4245 device->state.disk < D_INCONSISTENT && 4246 device->state.role == R_PRIMARY && 4247 (device->ed_uuid & ~((u64)1)) != (p_uuid[UI_CURRENT] & ~((u64)1))) { 4248 drbd_err(device, "Can only connect to data with current UUID=%016llX\n", 4249 (unsigned long long)device->ed_uuid); 4250 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD); 4251 return -EIO; 4252 } 4253 4254 if (get_ldev(device)) { 4255 int skip_initial_sync = 4256 device->state.conn == C_CONNECTED && 4257 peer_device->connection->agreed_pro_version >= 90 && 4258 device->ldev->md.uuid[UI_CURRENT] == UUID_JUST_CREATED && 4259 (p_uuid[UI_FLAGS] & 8); 4260 if (skip_initial_sync) { 4261 drbd_info(device, "Accepted new current UUID, preparing to skip initial sync\n"); 4262 drbd_bitmap_io(device, &drbd_bmio_clear_n_write, 4263 "clear_n_write from receive_uuids", 4264 BM_LOCKED_TEST_ALLOWED); 4265 _drbd_uuid_set(device, UI_CURRENT, p_uuid[UI_CURRENT]); 4266 _drbd_uuid_set(device, UI_BITMAP, 0); 4267 _drbd_set_state(_NS2(device, disk, D_UP_TO_DATE, pdsk, D_UP_TO_DATE), 4268 CS_VERBOSE, NULL); 4269 drbd_md_sync(device); 4270 updated_uuids = 1; 4271 } 4272 put_ldev(device); 4273 } else if (device->state.disk < D_INCONSISTENT && 4274 device->state.role == R_PRIMARY) { 4275 /* I am a diskless primary, the peer just created a new current UUID 4276 for me. */ 4277 updated_uuids = drbd_set_ed_uuid(device, p_uuid[UI_CURRENT]); 4278 } 4279 4280 /* Before we test for the disk state, we should wait until an eventually 4281 ongoing cluster wide state change is finished. That is important if 4282 we are primary and are detaching from our disk. We need to see the 4283 new disk state... */ 4284 mutex_lock(device->state_mutex); 4285 mutex_unlock(device->state_mutex); 4286 if (device->state.conn >= C_CONNECTED && device->state.disk < D_INCONSISTENT) 4287 updated_uuids |= drbd_set_ed_uuid(device, p_uuid[UI_CURRENT]); 4288 4289 if (updated_uuids) 4290 drbd_print_uuids(device, "receiver updated UUIDs to"); 4291 4292 return 0; 4293 } 4294 4295 /** 4296 * convert_state() - Converts the peer's view of the cluster state to our point of view 4297 * @ps: The state as seen by the peer. 4298 */ 4299 static union drbd_state convert_state(union drbd_state ps) 4300 { 4301 union drbd_state ms; 4302 4303 static enum drbd_conns c_tab[] = { 4304 [C_WF_REPORT_PARAMS] = C_WF_REPORT_PARAMS, 4305 [C_CONNECTED] = C_CONNECTED, 4306 4307 [C_STARTING_SYNC_S] = C_STARTING_SYNC_T, 4308 [C_STARTING_SYNC_T] = C_STARTING_SYNC_S, 4309 [C_DISCONNECTING] = C_TEAR_DOWN, /* C_NETWORK_FAILURE, */ 4310 [C_VERIFY_S] = C_VERIFY_T, 4311 [C_MASK] = C_MASK, 4312 }; 4313 4314 ms.i = ps.i; 4315 4316 ms.conn = c_tab[ps.conn]; 4317 ms.peer = ps.role; 4318 ms.role = ps.peer; 4319 ms.pdsk = ps.disk; 4320 ms.disk = ps.pdsk; 4321 ms.peer_isp = (ps.aftr_isp | ps.user_isp); 4322 4323 return ms; 4324 } 4325 4326 static int receive_req_state(struct drbd_connection *connection, struct packet_info *pi) 4327 { 4328 struct drbd_peer_device *peer_device; 4329 struct drbd_device *device; 4330 struct p_req_state *p = pi->data; 4331 union drbd_state mask, val; 4332 enum drbd_state_rv rv; 4333 4334 peer_device = conn_peer_device(connection, pi->vnr); 4335 if (!peer_device) 4336 return -EIO; 4337 device = peer_device->device; 4338 4339 mask.i = be32_to_cpu(p->mask); 4340 val.i = be32_to_cpu(p->val); 4341 4342 if (test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags) && 4343 mutex_is_locked(device->state_mutex)) { 4344 drbd_send_sr_reply(peer_device, SS_CONCURRENT_ST_CHG); 4345 return 0; 4346 } 4347 4348 mask = convert_state(mask); 4349 val = convert_state(val); 4350 4351 rv = drbd_change_state(device, CS_VERBOSE, mask, val); 4352 drbd_send_sr_reply(peer_device, rv); 4353 4354 drbd_md_sync(device); 4355 4356 return 0; 4357 } 4358 4359 static int receive_req_conn_state(struct drbd_connection *connection, struct packet_info *pi) 4360 { 4361 struct p_req_state *p = pi->data; 4362 union drbd_state mask, val; 4363 enum drbd_state_rv rv; 4364 4365 mask.i = be32_to_cpu(p->mask); 4366 val.i = be32_to_cpu(p->val); 4367 4368 if (test_bit(RESOLVE_CONFLICTS, &connection->flags) && 4369 mutex_is_locked(&connection->cstate_mutex)) { 4370 conn_send_sr_reply(connection, SS_CONCURRENT_ST_CHG); 4371 return 0; 4372 } 4373 4374 mask = convert_state(mask); 4375 val = convert_state(val); 4376 4377 rv = conn_request_state(connection, mask, val, CS_VERBOSE | CS_LOCAL_ONLY | CS_IGN_OUTD_FAIL); 4378 conn_send_sr_reply(connection, rv); 4379 4380 return 0; 4381 } 4382 4383 static int receive_state(struct drbd_connection *connection, struct packet_info *pi) 4384 { 4385 struct drbd_peer_device *peer_device; 4386 struct drbd_device *device; 4387 struct p_state *p = pi->data; 4388 union drbd_state os, ns, peer_state; 4389 enum drbd_disk_state real_peer_disk; 4390 enum chg_state_flags cs_flags; 4391 int rv; 4392 4393 peer_device = conn_peer_device(connection, pi->vnr); 4394 if (!peer_device) 4395 return config_unknown_volume(connection, pi); 4396 device = peer_device->device; 4397 4398 peer_state.i = be32_to_cpu(p->state); 4399 4400 real_peer_disk = peer_state.disk; 4401 if (peer_state.disk == D_NEGOTIATING) { 4402 real_peer_disk = device->p_uuid[UI_FLAGS] & 4 ? D_INCONSISTENT : D_CONSISTENT; 4403 drbd_info(device, "real peer disk state = %s\n", drbd_disk_str(real_peer_disk)); 4404 } 4405 4406 spin_lock_irq(&device->resource->req_lock); 4407 retry: 4408 os = ns = drbd_read_state(device); 4409 spin_unlock_irq(&device->resource->req_lock); 4410 4411 /* If some other part of the code (ack_receiver thread, timeout) 4412 * already decided to close the connection again, 4413 * we must not "re-establish" it here. */ 4414 if (os.conn <= C_TEAR_DOWN) 4415 return -ECONNRESET; 4416 4417 /* If this is the "end of sync" confirmation, usually the peer disk 4418 * transitions from D_INCONSISTENT to D_UP_TO_DATE. For empty (0 bits 4419 * set) resync started in PausedSyncT, or if the timing of pause-/ 4420 * unpause-sync events has been "just right", the peer disk may 4421 * transition from D_CONSISTENT to D_UP_TO_DATE as well. 4422 */ 4423 if ((os.pdsk == D_INCONSISTENT || os.pdsk == D_CONSISTENT) && 4424 real_peer_disk == D_UP_TO_DATE && 4425 os.conn > C_CONNECTED && os.disk == D_UP_TO_DATE) { 4426 /* If we are (becoming) SyncSource, but peer is still in sync 4427 * preparation, ignore its uptodate-ness to avoid flapping, it 4428 * will change to inconsistent once the peer reaches active 4429 * syncing states. 4430 * It may have changed syncer-paused flags, however, so we 4431 * cannot ignore this completely. */ 4432 if (peer_state.conn > C_CONNECTED && 4433 peer_state.conn < C_SYNC_SOURCE) 4434 real_peer_disk = D_INCONSISTENT; 4435 4436 /* if peer_state changes to connected at the same time, 4437 * it explicitly notifies us that it finished resync. 4438 * Maybe we should finish it up, too? */ 4439 else if (os.conn >= C_SYNC_SOURCE && 4440 peer_state.conn == C_CONNECTED) { 4441 if (drbd_bm_total_weight(device) <= device->rs_failed) 4442 drbd_resync_finished(device); 4443 return 0; 4444 } 4445 } 4446 4447 /* explicit verify finished notification, stop sector reached. */ 4448 if (os.conn == C_VERIFY_T && os.disk == D_UP_TO_DATE && 4449 peer_state.conn == C_CONNECTED && real_peer_disk == D_UP_TO_DATE) { 4450 ov_out_of_sync_print(device); 4451 drbd_resync_finished(device); 4452 return 0; 4453 } 4454 4455 /* peer says his disk is inconsistent, while we think it is uptodate, 4456 * and this happens while the peer still thinks we have a sync going on, 4457 * but we think we are already done with the sync. 4458 * We ignore this to avoid flapping pdsk. 4459 * This should not happen, if the peer is a recent version of drbd. */ 4460 if (os.pdsk == D_UP_TO_DATE && real_peer_disk == D_INCONSISTENT && 4461 os.conn == C_CONNECTED && peer_state.conn > C_SYNC_SOURCE) 4462 real_peer_disk = D_UP_TO_DATE; 4463 4464 if (ns.conn == C_WF_REPORT_PARAMS) 4465 ns.conn = C_CONNECTED; 4466 4467 if (peer_state.conn == C_AHEAD) 4468 ns.conn = C_BEHIND; 4469 4470 /* TODO: 4471 * if (primary and diskless and peer uuid != effective uuid) 4472 * abort attach on peer; 4473 * 4474 * If this node does not have good data, was already connected, but 4475 * the peer did a late attach only now, trying to "negotiate" with me, 4476 * AND I am currently Primary, possibly frozen, with some specific 4477 * "effective" uuid, this should never be reached, really, because 4478 * we first send the uuids, then the current state. 4479 * 4480 * In this scenario, we already dropped the connection hard 4481 * when we received the unsuitable uuids (receive_uuids(). 4482 * 4483 * Should we want to change this, that is: not drop the connection in 4484 * receive_uuids() already, then we would need to add a branch here 4485 * that aborts the attach of "unsuitable uuids" on the peer in case 4486 * this node is currently Diskless Primary. 4487 */ 4488 4489 if (device->p_uuid && peer_state.disk >= D_NEGOTIATING && 4490 get_ldev_if_state(device, D_NEGOTIATING)) { 4491 int cr; /* consider resync */ 4492 4493 /* if we established a new connection */ 4494 cr = (os.conn < C_CONNECTED); 4495 /* if we had an established connection 4496 * and one of the nodes newly attaches a disk */ 4497 cr |= (os.conn == C_CONNECTED && 4498 (peer_state.disk == D_NEGOTIATING || 4499 os.disk == D_NEGOTIATING)); 4500 /* if we have both been inconsistent, and the peer has been 4501 * forced to be UpToDate with --force */ 4502 cr |= test_bit(CONSIDER_RESYNC, &device->flags); 4503 /* if we had been plain connected, and the admin requested to 4504 * start a sync by "invalidate" or "invalidate-remote" */ 4505 cr |= (os.conn == C_CONNECTED && 4506 (peer_state.conn >= C_STARTING_SYNC_S && 4507 peer_state.conn <= C_WF_BITMAP_T)); 4508 4509 if (cr) 4510 ns.conn = drbd_sync_handshake(peer_device, peer_state.role, real_peer_disk); 4511 4512 put_ldev(device); 4513 if (ns.conn == C_MASK) { 4514 ns.conn = C_CONNECTED; 4515 if (device->state.disk == D_NEGOTIATING) { 4516 drbd_force_state(device, NS(disk, D_FAILED)); 4517 } else if (peer_state.disk == D_NEGOTIATING) { 4518 drbd_err(device, "Disk attach process on the peer node was aborted.\n"); 4519 peer_state.disk = D_DISKLESS; 4520 real_peer_disk = D_DISKLESS; 4521 } else { 4522 if (test_and_clear_bit(CONN_DRY_RUN, &peer_device->connection->flags)) 4523 return -EIO; 4524 D_ASSERT(device, os.conn == C_WF_REPORT_PARAMS); 4525 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD); 4526 return -EIO; 4527 } 4528 } 4529 } 4530 4531 spin_lock_irq(&device->resource->req_lock); 4532 if (os.i != drbd_read_state(device).i) 4533 goto retry; 4534 clear_bit(CONSIDER_RESYNC, &device->flags); 4535 ns.peer = peer_state.role; 4536 ns.pdsk = real_peer_disk; 4537 ns.peer_isp = (peer_state.aftr_isp | peer_state.user_isp); 4538 if ((ns.conn == C_CONNECTED || ns.conn == C_WF_BITMAP_S) && ns.disk == D_NEGOTIATING) 4539 ns.disk = device->new_state_tmp.disk; 4540 cs_flags = CS_VERBOSE + (os.conn < C_CONNECTED && ns.conn >= C_CONNECTED ? 0 : CS_HARD); 4541 if (ns.pdsk == D_CONSISTENT && drbd_suspended(device) && ns.conn == C_CONNECTED && os.conn < C_CONNECTED && 4542 test_bit(NEW_CUR_UUID, &device->flags)) { 4543 /* Do not allow tl_restart(RESEND) for a rebooted peer. We can only allow this 4544 for temporal network outages! */ 4545 spin_unlock_irq(&device->resource->req_lock); 4546 drbd_err(device, "Aborting Connect, can not thaw IO with an only Consistent peer\n"); 4547 tl_clear(peer_device->connection); 4548 drbd_uuid_new_current(device); 4549 clear_bit(NEW_CUR_UUID, &device->flags); 4550 conn_request_state(peer_device->connection, NS2(conn, C_PROTOCOL_ERROR, susp, 0), CS_HARD); 4551 return -EIO; 4552 } 4553 rv = _drbd_set_state(device, ns, cs_flags, NULL); 4554 ns = drbd_read_state(device); 4555 spin_unlock_irq(&device->resource->req_lock); 4556 4557 if (rv < SS_SUCCESS) { 4558 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD); 4559 return -EIO; 4560 } 4561 4562 if (os.conn > C_WF_REPORT_PARAMS) { 4563 if (ns.conn > C_CONNECTED && peer_state.conn <= C_CONNECTED && 4564 peer_state.disk != D_NEGOTIATING ) { 4565 /* we want resync, peer has not yet decided to sync... */ 4566 /* Nowadays only used when forcing a node into primary role and 4567 setting its disk to UpToDate with that */ 4568 drbd_send_uuids(peer_device); 4569 drbd_send_current_state(peer_device); 4570 } 4571 } 4572 4573 clear_bit(DISCARD_MY_DATA, &device->flags); 4574 4575 drbd_md_sync(device); /* update connected indicator, la_size_sect, ... */ 4576 4577 return 0; 4578 } 4579 4580 static int receive_sync_uuid(struct drbd_connection *connection, struct packet_info *pi) 4581 { 4582 struct drbd_peer_device *peer_device; 4583 struct drbd_device *device; 4584 struct p_rs_uuid *p = pi->data; 4585 4586 peer_device = conn_peer_device(connection, pi->vnr); 4587 if (!peer_device) 4588 return -EIO; 4589 device = peer_device->device; 4590 4591 wait_event(device->misc_wait, 4592 device->state.conn == C_WF_SYNC_UUID || 4593 device->state.conn == C_BEHIND || 4594 device->state.conn < C_CONNECTED || 4595 device->state.disk < D_NEGOTIATING); 4596 4597 /* D_ASSERT(device, device->state.conn == C_WF_SYNC_UUID ); */ 4598 4599 /* Here the _drbd_uuid_ functions are right, current should 4600 _not_ be rotated into the history */ 4601 if (get_ldev_if_state(device, D_NEGOTIATING)) { 4602 _drbd_uuid_set(device, UI_CURRENT, be64_to_cpu(p->uuid)); 4603 _drbd_uuid_set(device, UI_BITMAP, 0UL); 4604 4605 drbd_print_uuids(device, "updated sync uuid"); 4606 drbd_start_resync(device, C_SYNC_TARGET); 4607 4608 put_ldev(device); 4609 } else 4610 drbd_err(device, "Ignoring SyncUUID packet!\n"); 4611 4612 return 0; 4613 } 4614 4615 /* 4616 * receive_bitmap_plain 4617 * 4618 * Return 0 when done, 1 when another iteration is needed, and a negative error 4619 * code upon failure. 4620 */ 4621 static int 4622 receive_bitmap_plain(struct drbd_peer_device *peer_device, unsigned int size, 4623 unsigned long *p, struct bm_xfer_ctx *c) 4624 { 4625 unsigned int data_size = DRBD_SOCKET_BUFFER_SIZE - 4626 drbd_header_size(peer_device->connection); 4627 unsigned int num_words = min_t(size_t, data_size / sizeof(*p), 4628 c->bm_words - c->word_offset); 4629 unsigned int want = num_words * sizeof(*p); 4630 int err; 4631 4632 if (want != size) { 4633 drbd_err(peer_device, "%s:want (%u) != size (%u)\n", __func__, want, size); 4634 return -EIO; 4635 } 4636 if (want == 0) 4637 return 0; 4638 err = drbd_recv_all(peer_device->connection, p, want); 4639 if (err) 4640 return err; 4641 4642 drbd_bm_merge_lel(peer_device->device, c->word_offset, num_words, p); 4643 4644 c->word_offset += num_words; 4645 c->bit_offset = c->word_offset * BITS_PER_LONG; 4646 if (c->bit_offset > c->bm_bits) 4647 c->bit_offset = c->bm_bits; 4648 4649 return 1; 4650 } 4651 4652 static enum drbd_bitmap_code dcbp_get_code(struct p_compressed_bm *p) 4653 { 4654 return (enum drbd_bitmap_code)(p->encoding & 0x0f); 4655 } 4656 4657 static int dcbp_get_start(struct p_compressed_bm *p) 4658 { 4659 return (p->encoding & 0x80) != 0; 4660 } 4661 4662 static int dcbp_get_pad_bits(struct p_compressed_bm *p) 4663 { 4664 return (p->encoding >> 4) & 0x7; 4665 } 4666 4667 /* 4668 * recv_bm_rle_bits 4669 * 4670 * Return 0 when done, 1 when another iteration is needed, and a negative error 4671 * code upon failure. 4672 */ 4673 static int 4674 recv_bm_rle_bits(struct drbd_peer_device *peer_device, 4675 struct p_compressed_bm *p, 4676 struct bm_xfer_ctx *c, 4677 unsigned int len) 4678 { 4679 struct bitstream bs; 4680 u64 look_ahead; 4681 u64 rl; 4682 u64 tmp; 4683 unsigned long s = c->bit_offset; 4684 unsigned long e; 4685 int toggle = dcbp_get_start(p); 4686 int have; 4687 int bits; 4688 4689 bitstream_init(&bs, p->code, len, dcbp_get_pad_bits(p)); 4690 4691 bits = bitstream_get_bits(&bs, &look_ahead, 64); 4692 if (bits < 0) 4693 return -EIO; 4694 4695 for (have = bits; have > 0; s += rl, toggle = !toggle) { 4696 bits = vli_decode_bits(&rl, look_ahead); 4697 if (bits <= 0) 4698 return -EIO; 4699 4700 if (toggle) { 4701 e = s + rl -1; 4702 if (e >= c->bm_bits) { 4703 drbd_err(peer_device, "bitmap overflow (e:%lu) while decoding bm RLE packet\n", e); 4704 return -EIO; 4705 } 4706 _drbd_bm_set_bits(peer_device->device, s, e); 4707 } 4708 4709 if (have < bits) { 4710 drbd_err(peer_device, "bitmap decoding error: h:%d b:%d la:0x%08llx l:%u/%u\n", 4711 have, bits, look_ahead, 4712 (unsigned int)(bs.cur.b - p->code), 4713 (unsigned int)bs.buf_len); 4714 return -EIO; 4715 } 4716 /* if we consumed all 64 bits, assign 0; >> 64 is "undefined"; */ 4717 if (likely(bits < 64)) 4718 look_ahead >>= bits; 4719 else 4720 look_ahead = 0; 4721 have -= bits; 4722 4723 bits = bitstream_get_bits(&bs, &tmp, 64 - have); 4724 if (bits < 0) 4725 return -EIO; 4726 look_ahead |= tmp << have; 4727 have += bits; 4728 } 4729 4730 c->bit_offset = s; 4731 bm_xfer_ctx_bit_to_word_offset(c); 4732 4733 return (s != c->bm_bits); 4734 } 4735 4736 /* 4737 * decode_bitmap_c 4738 * 4739 * Return 0 when done, 1 when another iteration is needed, and a negative error 4740 * code upon failure. 4741 */ 4742 static int 4743 decode_bitmap_c(struct drbd_peer_device *peer_device, 4744 struct p_compressed_bm *p, 4745 struct bm_xfer_ctx *c, 4746 unsigned int len) 4747 { 4748 if (dcbp_get_code(p) == RLE_VLI_Bits) 4749 return recv_bm_rle_bits(peer_device, p, c, len - sizeof(*p)); 4750 4751 /* other variants had been implemented for evaluation, 4752 * but have been dropped as this one turned out to be "best" 4753 * during all our tests. */ 4754 4755 drbd_err(peer_device, "receive_bitmap_c: unknown encoding %u\n", p->encoding); 4756 conn_request_state(peer_device->connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD); 4757 return -EIO; 4758 } 4759 4760 void INFO_bm_xfer_stats(struct drbd_device *device, 4761 const char *direction, struct bm_xfer_ctx *c) 4762 { 4763 /* what would it take to transfer it "plaintext" */ 4764 unsigned int header_size = drbd_header_size(first_peer_device(device)->connection); 4765 unsigned int data_size = DRBD_SOCKET_BUFFER_SIZE - header_size; 4766 unsigned int plain = 4767 header_size * (DIV_ROUND_UP(c->bm_words, data_size) + 1) + 4768 c->bm_words * sizeof(unsigned long); 4769 unsigned int total = c->bytes[0] + c->bytes[1]; 4770 unsigned int r; 4771 4772 /* total can not be zero. but just in case: */ 4773 if (total == 0) 4774 return; 4775 4776 /* don't report if not compressed */ 4777 if (total >= plain) 4778 return; 4779 4780 /* total < plain. check for overflow, still */ 4781 r = (total > UINT_MAX/1000) ? (total / (plain/1000)) 4782 : (1000 * total / plain); 4783 4784 if (r > 1000) 4785 r = 1000; 4786 4787 r = 1000 - r; 4788 drbd_info(device, "%s bitmap stats [Bytes(packets)]: plain %u(%u), RLE %u(%u), " 4789 "total %u; compression: %u.%u%%\n", 4790 direction, 4791 c->bytes[1], c->packets[1], 4792 c->bytes[0], c->packets[0], 4793 total, r/10, r % 10); 4794 } 4795 4796 /* Since we are processing the bitfield from lower addresses to higher, 4797 it does not matter if the process it in 32 bit chunks or 64 bit 4798 chunks as long as it is little endian. (Understand it as byte stream, 4799 beginning with the lowest byte...) If we would use big endian 4800 we would need to process it from the highest address to the lowest, 4801 in order to be agnostic to the 32 vs 64 bits issue. 4802 4803 returns 0 on failure, 1 if we successfully received it. */ 4804 static int receive_bitmap(struct drbd_connection *connection, struct packet_info *pi) 4805 { 4806 struct drbd_peer_device *peer_device; 4807 struct drbd_device *device; 4808 struct bm_xfer_ctx c; 4809 int err; 4810 4811 peer_device = conn_peer_device(connection, pi->vnr); 4812 if (!peer_device) 4813 return -EIO; 4814 device = peer_device->device; 4815 4816 drbd_bm_lock(device, "receive bitmap", BM_LOCKED_SET_ALLOWED); 4817 /* you are supposed to send additional out-of-sync information 4818 * if you actually set bits during this phase */ 4819 4820 c = (struct bm_xfer_ctx) { 4821 .bm_bits = drbd_bm_bits(device), 4822 .bm_words = drbd_bm_words(device), 4823 }; 4824 4825 for(;;) { 4826 if (pi->cmd == P_BITMAP) 4827 err = receive_bitmap_plain(peer_device, pi->size, pi->data, &c); 4828 else if (pi->cmd == P_COMPRESSED_BITMAP) { 4829 /* MAYBE: sanity check that we speak proto >= 90, 4830 * and the feature is enabled! */ 4831 struct p_compressed_bm *p = pi->data; 4832 4833 if (pi->size > DRBD_SOCKET_BUFFER_SIZE - drbd_header_size(connection)) { 4834 drbd_err(device, "ReportCBitmap packet too large\n"); 4835 err = -EIO; 4836 goto out; 4837 } 4838 if (pi->size <= sizeof(*p)) { 4839 drbd_err(device, "ReportCBitmap packet too small (l:%u)\n", pi->size); 4840 err = -EIO; 4841 goto out; 4842 } 4843 err = drbd_recv_all(peer_device->connection, p, pi->size); 4844 if (err) 4845 goto out; 4846 err = decode_bitmap_c(peer_device, p, &c, pi->size); 4847 } else { 4848 drbd_warn(device, "receive_bitmap: cmd neither ReportBitMap nor ReportCBitMap (is 0x%x)", pi->cmd); 4849 err = -EIO; 4850 goto out; 4851 } 4852 4853 c.packets[pi->cmd == P_BITMAP]++; 4854 c.bytes[pi->cmd == P_BITMAP] += drbd_header_size(connection) + pi->size; 4855 4856 if (err <= 0) { 4857 if (err < 0) 4858 goto out; 4859 break; 4860 } 4861 err = drbd_recv_header(peer_device->connection, pi); 4862 if (err) 4863 goto out; 4864 } 4865 4866 INFO_bm_xfer_stats(device, "receive", &c); 4867 4868 if (device->state.conn == C_WF_BITMAP_T) { 4869 enum drbd_state_rv rv; 4870 4871 err = drbd_send_bitmap(device); 4872 if (err) 4873 goto out; 4874 /* Omit CS_ORDERED with this state transition to avoid deadlocks. */ 4875 rv = _drbd_request_state(device, NS(conn, C_WF_SYNC_UUID), CS_VERBOSE); 4876 D_ASSERT(device, rv == SS_SUCCESS); 4877 } else if (device->state.conn != C_WF_BITMAP_S) { 4878 /* admin may have requested C_DISCONNECTING, 4879 * other threads may have noticed network errors */ 4880 drbd_info(device, "unexpected cstate (%s) in receive_bitmap\n", 4881 drbd_conn_str(device->state.conn)); 4882 } 4883 err = 0; 4884 4885 out: 4886 drbd_bm_unlock(device); 4887 if (!err && device->state.conn == C_WF_BITMAP_S) 4888 drbd_start_resync(device, C_SYNC_SOURCE); 4889 return err; 4890 } 4891 4892 static int receive_skip(struct drbd_connection *connection, struct packet_info *pi) 4893 { 4894 drbd_warn(connection, "skipping unknown optional packet type %d, l: %d!\n", 4895 pi->cmd, pi->size); 4896 4897 return ignore_remaining_packet(connection, pi); 4898 } 4899 4900 static int receive_UnplugRemote(struct drbd_connection *connection, struct packet_info *pi) 4901 { 4902 /* Make sure we've acked all the TCP data associated 4903 * with the data requests being unplugged */ 4904 tcp_sock_set_quickack(connection->data.socket->sk, 2); 4905 return 0; 4906 } 4907 4908 static int receive_out_of_sync(struct drbd_connection *connection, struct packet_info *pi) 4909 { 4910 struct drbd_peer_device *peer_device; 4911 struct drbd_device *device; 4912 struct p_block_desc *p = pi->data; 4913 4914 peer_device = conn_peer_device(connection, pi->vnr); 4915 if (!peer_device) 4916 return -EIO; 4917 device = peer_device->device; 4918 4919 switch (device->state.conn) { 4920 case C_WF_SYNC_UUID: 4921 case C_WF_BITMAP_T: 4922 case C_BEHIND: 4923 break; 4924 default: 4925 drbd_err(device, "ASSERT FAILED cstate = %s, expected: WFSyncUUID|WFBitMapT|Behind\n", 4926 drbd_conn_str(device->state.conn)); 4927 } 4928 4929 drbd_set_out_of_sync(device, be64_to_cpu(p->sector), be32_to_cpu(p->blksize)); 4930 4931 return 0; 4932 } 4933 4934 static int receive_rs_deallocated(struct drbd_connection *connection, struct packet_info *pi) 4935 { 4936 struct drbd_peer_device *peer_device; 4937 struct p_block_desc *p = pi->data; 4938 struct drbd_device *device; 4939 sector_t sector; 4940 int size, err = 0; 4941 4942 peer_device = conn_peer_device(connection, pi->vnr); 4943 if (!peer_device) 4944 return -EIO; 4945 device = peer_device->device; 4946 4947 sector = be64_to_cpu(p->sector); 4948 size = be32_to_cpu(p->blksize); 4949 4950 dec_rs_pending(device); 4951 4952 if (get_ldev(device)) { 4953 struct drbd_peer_request *peer_req; 4954 const int op = REQ_OP_WRITE_ZEROES; 4955 4956 peer_req = drbd_alloc_peer_req(peer_device, ID_SYNCER, sector, 4957 size, 0, GFP_NOIO); 4958 if (!peer_req) { 4959 put_ldev(device); 4960 return -ENOMEM; 4961 } 4962 4963 peer_req->w.cb = e_end_resync_block; 4964 peer_req->submit_jif = jiffies; 4965 peer_req->flags |= EE_TRIM; 4966 4967 spin_lock_irq(&device->resource->req_lock); 4968 list_add_tail(&peer_req->w.list, &device->sync_ee); 4969 spin_unlock_irq(&device->resource->req_lock); 4970 4971 atomic_add(pi->size >> 9, &device->rs_sect_ev); 4972 err = drbd_submit_peer_request(device, peer_req, op, 0, DRBD_FAULT_RS_WR); 4973 4974 if (err) { 4975 spin_lock_irq(&device->resource->req_lock); 4976 list_del(&peer_req->w.list); 4977 spin_unlock_irq(&device->resource->req_lock); 4978 4979 drbd_free_peer_req(device, peer_req); 4980 put_ldev(device); 4981 err = 0; 4982 goto fail; 4983 } 4984 4985 inc_unacked(device); 4986 4987 /* No put_ldev() here. Gets called in drbd_endio_write_sec_final(), 4988 as well as drbd_rs_complete_io() */ 4989 } else { 4990 fail: 4991 drbd_rs_complete_io(device, sector); 4992 drbd_send_ack_ex(peer_device, P_NEG_ACK, sector, size, ID_SYNCER); 4993 } 4994 4995 atomic_add(size >> 9, &device->rs_sect_in); 4996 4997 return err; 4998 } 4999 5000 struct data_cmd { 5001 int expect_payload; 5002 unsigned int pkt_size; 5003 int (*fn)(struct drbd_connection *, struct packet_info *); 5004 }; 5005 5006 static struct data_cmd drbd_cmd_handler[] = { 5007 [P_DATA] = { 1, sizeof(struct p_data), receive_Data }, 5008 [P_DATA_REPLY] = { 1, sizeof(struct p_data), receive_DataReply }, 5009 [P_RS_DATA_REPLY] = { 1, sizeof(struct p_data), receive_RSDataReply } , 5010 [P_BARRIER] = { 0, sizeof(struct p_barrier), receive_Barrier } , 5011 [P_BITMAP] = { 1, 0, receive_bitmap } , 5012 [P_COMPRESSED_BITMAP] = { 1, 0, receive_bitmap } , 5013 [P_UNPLUG_REMOTE] = { 0, 0, receive_UnplugRemote }, 5014 [P_DATA_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest }, 5015 [P_RS_DATA_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest }, 5016 [P_SYNC_PARAM] = { 1, 0, receive_SyncParam }, 5017 [P_SYNC_PARAM89] = { 1, 0, receive_SyncParam }, 5018 [P_PROTOCOL] = { 1, sizeof(struct p_protocol), receive_protocol }, 5019 [P_UUIDS] = { 0, sizeof(struct p_uuids), receive_uuids }, 5020 [P_SIZES] = { 0, sizeof(struct p_sizes), receive_sizes }, 5021 [P_STATE] = { 0, sizeof(struct p_state), receive_state }, 5022 [P_STATE_CHG_REQ] = { 0, sizeof(struct p_req_state), receive_req_state }, 5023 [P_SYNC_UUID] = { 0, sizeof(struct p_rs_uuid), receive_sync_uuid }, 5024 [P_OV_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest }, 5025 [P_OV_REPLY] = { 1, sizeof(struct p_block_req), receive_DataRequest }, 5026 [P_CSUM_RS_REQUEST] = { 1, sizeof(struct p_block_req), receive_DataRequest }, 5027 [P_RS_THIN_REQ] = { 0, sizeof(struct p_block_req), receive_DataRequest }, 5028 [P_DELAY_PROBE] = { 0, sizeof(struct p_delay_probe93), receive_skip }, 5029 [P_OUT_OF_SYNC] = { 0, sizeof(struct p_block_desc), receive_out_of_sync }, 5030 [P_CONN_ST_CHG_REQ] = { 0, sizeof(struct p_req_state), receive_req_conn_state }, 5031 [P_PROTOCOL_UPDATE] = { 1, sizeof(struct p_protocol), receive_protocol }, 5032 [P_TRIM] = { 0, sizeof(struct p_trim), receive_Data }, 5033 [P_ZEROES] = { 0, sizeof(struct p_trim), receive_Data }, 5034 [P_RS_DEALLOCATED] = { 0, sizeof(struct p_block_desc), receive_rs_deallocated }, 5035 }; 5036 5037 static void drbdd(struct drbd_connection *connection) 5038 { 5039 struct packet_info pi; 5040 size_t shs; /* sub header size */ 5041 int err; 5042 5043 while (get_t_state(&connection->receiver) == RUNNING) { 5044 struct data_cmd const *cmd; 5045 5046 drbd_thread_current_set_cpu(&connection->receiver); 5047 update_receiver_timing_details(connection, drbd_recv_header_maybe_unplug); 5048 if (drbd_recv_header_maybe_unplug(connection, &pi)) 5049 goto err_out; 5050 5051 cmd = &drbd_cmd_handler[pi.cmd]; 5052 if (unlikely(pi.cmd >= ARRAY_SIZE(drbd_cmd_handler) || !cmd->fn)) { 5053 drbd_err(connection, "Unexpected data packet %s (0x%04x)", 5054 cmdname(pi.cmd), pi.cmd); 5055 goto err_out; 5056 } 5057 5058 shs = cmd->pkt_size; 5059 if (pi.cmd == P_SIZES && connection->agreed_features & DRBD_FF_WSAME) 5060 shs += sizeof(struct o_qlim); 5061 if (pi.size > shs && !cmd->expect_payload) { 5062 drbd_err(connection, "No payload expected %s l:%d\n", 5063 cmdname(pi.cmd), pi.size); 5064 goto err_out; 5065 } 5066 if (pi.size < shs) { 5067 drbd_err(connection, "%s: unexpected packet size, expected:%d received:%d\n", 5068 cmdname(pi.cmd), (int)shs, pi.size); 5069 goto err_out; 5070 } 5071 5072 if (shs) { 5073 update_receiver_timing_details(connection, drbd_recv_all_warn); 5074 err = drbd_recv_all_warn(connection, pi.data, shs); 5075 if (err) 5076 goto err_out; 5077 pi.size -= shs; 5078 } 5079 5080 update_receiver_timing_details(connection, cmd->fn); 5081 err = cmd->fn(connection, &pi); 5082 if (err) { 5083 drbd_err(connection, "error receiving %s, e: %d l: %d!\n", 5084 cmdname(pi.cmd), err, pi.size); 5085 goto err_out; 5086 } 5087 } 5088 return; 5089 5090 err_out: 5091 conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD); 5092 } 5093 5094 static void conn_disconnect(struct drbd_connection *connection) 5095 { 5096 struct drbd_peer_device *peer_device; 5097 enum drbd_conns oc; 5098 int vnr; 5099 5100 if (connection->cstate == C_STANDALONE) 5101 return; 5102 5103 /* We are about to start the cleanup after connection loss. 5104 * Make sure drbd_make_request knows about that. 5105 * Usually we should be in some network failure state already, 5106 * but just in case we are not, we fix it up here. 5107 */ 5108 conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD); 5109 5110 /* ack_receiver does not clean up anything. it must not interfere, either */ 5111 drbd_thread_stop(&connection->ack_receiver); 5112 if (connection->ack_sender) { 5113 destroy_workqueue(connection->ack_sender); 5114 connection->ack_sender = NULL; 5115 } 5116 drbd_free_sock(connection); 5117 5118 rcu_read_lock(); 5119 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 5120 struct drbd_device *device = peer_device->device; 5121 kref_get(&device->kref); 5122 rcu_read_unlock(); 5123 drbd_disconnected(peer_device); 5124 kref_put(&device->kref, drbd_destroy_device); 5125 rcu_read_lock(); 5126 } 5127 rcu_read_unlock(); 5128 5129 if (!list_empty(&connection->current_epoch->list)) 5130 drbd_err(connection, "ASSERTION FAILED: connection->current_epoch->list not empty\n"); 5131 /* ok, no more ee's on the fly, it is safe to reset the epoch_size */ 5132 atomic_set(&connection->current_epoch->epoch_size, 0); 5133 connection->send.seen_any_write_yet = false; 5134 5135 drbd_info(connection, "Connection closed\n"); 5136 5137 if (conn_highest_role(connection) == R_PRIMARY && conn_highest_pdsk(connection) >= D_UNKNOWN) 5138 conn_try_outdate_peer_async(connection); 5139 5140 spin_lock_irq(&connection->resource->req_lock); 5141 oc = connection->cstate; 5142 if (oc >= C_UNCONNECTED) 5143 _conn_request_state(connection, NS(conn, C_UNCONNECTED), CS_VERBOSE); 5144 5145 spin_unlock_irq(&connection->resource->req_lock); 5146 5147 if (oc == C_DISCONNECTING) 5148 conn_request_state(connection, NS(conn, C_STANDALONE), CS_VERBOSE | CS_HARD); 5149 } 5150 5151 static int drbd_disconnected(struct drbd_peer_device *peer_device) 5152 { 5153 struct drbd_device *device = peer_device->device; 5154 unsigned int i; 5155 5156 /* wait for current activity to cease. */ 5157 spin_lock_irq(&device->resource->req_lock); 5158 _drbd_wait_ee_list_empty(device, &device->active_ee); 5159 _drbd_wait_ee_list_empty(device, &device->sync_ee); 5160 _drbd_wait_ee_list_empty(device, &device->read_ee); 5161 spin_unlock_irq(&device->resource->req_lock); 5162 5163 /* We do not have data structures that would allow us to 5164 * get the rs_pending_cnt down to 0 again. 5165 * * On C_SYNC_TARGET we do not have any data structures describing 5166 * the pending RSDataRequest's we have sent. 5167 * * On C_SYNC_SOURCE there is no data structure that tracks 5168 * the P_RS_DATA_REPLY blocks that we sent to the SyncTarget. 5169 * And no, it is not the sum of the reference counts in the 5170 * resync_LRU. The resync_LRU tracks the whole operation including 5171 * the disk-IO, while the rs_pending_cnt only tracks the blocks 5172 * on the fly. */ 5173 drbd_rs_cancel_all(device); 5174 device->rs_total = 0; 5175 device->rs_failed = 0; 5176 atomic_set(&device->rs_pending_cnt, 0); 5177 wake_up(&device->misc_wait); 5178 5179 del_timer_sync(&device->resync_timer); 5180 resync_timer_fn(&device->resync_timer); 5181 5182 /* wait for all w_e_end_data_req, w_e_end_rsdata_req, w_send_barrier, 5183 * w_make_resync_request etc. which may still be on the worker queue 5184 * to be "canceled" */ 5185 drbd_flush_workqueue(&peer_device->connection->sender_work); 5186 5187 drbd_finish_peer_reqs(device); 5188 5189 /* This second workqueue flush is necessary, since drbd_finish_peer_reqs() 5190 might have issued a work again. The one before drbd_finish_peer_reqs() is 5191 necessary to reclain net_ee in drbd_finish_peer_reqs(). */ 5192 drbd_flush_workqueue(&peer_device->connection->sender_work); 5193 5194 /* need to do it again, drbd_finish_peer_reqs() may have populated it 5195 * again via drbd_try_clear_on_disk_bm(). */ 5196 drbd_rs_cancel_all(device); 5197 5198 kfree(device->p_uuid); 5199 device->p_uuid = NULL; 5200 5201 if (!drbd_suspended(device)) 5202 tl_clear(peer_device->connection); 5203 5204 drbd_md_sync(device); 5205 5206 if (get_ldev(device)) { 5207 drbd_bitmap_io(device, &drbd_bm_write_copy_pages, 5208 "write from disconnected", BM_LOCKED_CHANGE_ALLOWED); 5209 put_ldev(device); 5210 } 5211 5212 /* tcp_close and release of sendpage pages can be deferred. I don't 5213 * want to use SO_LINGER, because apparently it can be deferred for 5214 * more than 20 seconds (longest time I checked). 5215 * 5216 * Actually we don't care for exactly when the network stack does its 5217 * put_page(), but release our reference on these pages right here. 5218 */ 5219 i = drbd_free_peer_reqs(device, &device->net_ee); 5220 if (i) 5221 drbd_info(device, "net_ee not empty, killed %u entries\n", i); 5222 i = atomic_read(&device->pp_in_use_by_net); 5223 if (i) 5224 drbd_info(device, "pp_in_use_by_net = %d, expected 0\n", i); 5225 i = atomic_read(&device->pp_in_use); 5226 if (i) 5227 drbd_info(device, "pp_in_use = %d, expected 0\n", i); 5228 5229 D_ASSERT(device, list_empty(&device->read_ee)); 5230 D_ASSERT(device, list_empty(&device->active_ee)); 5231 D_ASSERT(device, list_empty(&device->sync_ee)); 5232 D_ASSERT(device, list_empty(&device->done_ee)); 5233 5234 return 0; 5235 } 5236 5237 /* 5238 * We support PRO_VERSION_MIN to PRO_VERSION_MAX. The protocol version 5239 * we can agree on is stored in agreed_pro_version. 5240 * 5241 * feature flags and the reserved array should be enough room for future 5242 * enhancements of the handshake protocol, and possible plugins... 5243 * 5244 * for now, they are expected to be zero, but ignored. 5245 */ 5246 static int drbd_send_features(struct drbd_connection *connection) 5247 { 5248 struct drbd_socket *sock; 5249 struct p_connection_features *p; 5250 5251 sock = &connection->data; 5252 p = conn_prepare_command(connection, sock); 5253 if (!p) 5254 return -EIO; 5255 memset(p, 0, sizeof(*p)); 5256 p->protocol_min = cpu_to_be32(PRO_VERSION_MIN); 5257 p->protocol_max = cpu_to_be32(PRO_VERSION_MAX); 5258 p->feature_flags = cpu_to_be32(PRO_FEATURES); 5259 return conn_send_command(connection, sock, P_CONNECTION_FEATURES, sizeof(*p), NULL, 0); 5260 } 5261 5262 /* 5263 * return values: 5264 * 1 yes, we have a valid connection 5265 * 0 oops, did not work out, please try again 5266 * -1 peer talks different language, 5267 * no point in trying again, please go standalone. 5268 */ 5269 static int drbd_do_features(struct drbd_connection *connection) 5270 { 5271 /* ASSERT current == connection->receiver ... */ 5272 struct p_connection_features *p; 5273 const int expect = sizeof(struct p_connection_features); 5274 struct packet_info pi; 5275 int err; 5276 5277 err = drbd_send_features(connection); 5278 if (err) 5279 return 0; 5280 5281 err = drbd_recv_header(connection, &pi); 5282 if (err) 5283 return 0; 5284 5285 if (pi.cmd != P_CONNECTION_FEATURES) { 5286 drbd_err(connection, "expected ConnectionFeatures packet, received: %s (0x%04x)\n", 5287 cmdname(pi.cmd), pi.cmd); 5288 return -1; 5289 } 5290 5291 if (pi.size != expect) { 5292 drbd_err(connection, "expected ConnectionFeatures length: %u, received: %u\n", 5293 expect, pi.size); 5294 return -1; 5295 } 5296 5297 p = pi.data; 5298 err = drbd_recv_all_warn(connection, p, expect); 5299 if (err) 5300 return 0; 5301 5302 p->protocol_min = be32_to_cpu(p->protocol_min); 5303 p->protocol_max = be32_to_cpu(p->protocol_max); 5304 if (p->protocol_max == 0) 5305 p->protocol_max = p->protocol_min; 5306 5307 if (PRO_VERSION_MAX < p->protocol_min || 5308 PRO_VERSION_MIN > p->protocol_max) 5309 goto incompat; 5310 5311 connection->agreed_pro_version = min_t(int, PRO_VERSION_MAX, p->protocol_max); 5312 connection->agreed_features = PRO_FEATURES & be32_to_cpu(p->feature_flags); 5313 5314 drbd_info(connection, "Handshake successful: " 5315 "Agreed network protocol version %d\n", connection->agreed_pro_version); 5316 5317 drbd_info(connection, "Feature flags enabled on protocol level: 0x%x%s%s%s%s.\n", 5318 connection->agreed_features, 5319 connection->agreed_features & DRBD_FF_TRIM ? " TRIM" : "", 5320 connection->agreed_features & DRBD_FF_THIN_RESYNC ? " THIN_RESYNC" : "", 5321 connection->agreed_features & DRBD_FF_WSAME ? " WRITE_SAME" : "", 5322 connection->agreed_features & DRBD_FF_WZEROES ? " WRITE_ZEROES" : 5323 connection->agreed_features ? "" : " none"); 5324 5325 return 1; 5326 5327 incompat: 5328 drbd_err(connection, "incompatible DRBD dialects: " 5329 "I support %d-%d, peer supports %d-%d\n", 5330 PRO_VERSION_MIN, PRO_VERSION_MAX, 5331 p->protocol_min, p->protocol_max); 5332 return -1; 5333 } 5334 5335 #if !defined(CONFIG_CRYPTO_HMAC) && !defined(CONFIG_CRYPTO_HMAC_MODULE) 5336 static int drbd_do_auth(struct drbd_connection *connection) 5337 { 5338 drbd_err(connection, "This kernel was build without CONFIG_CRYPTO_HMAC.\n"); 5339 drbd_err(connection, "You need to disable 'cram-hmac-alg' in drbd.conf.\n"); 5340 return -1; 5341 } 5342 #else 5343 #define CHALLENGE_LEN 64 5344 5345 /* Return value: 5346 1 - auth succeeded, 5347 0 - failed, try again (network error), 5348 -1 - auth failed, don't try again. 5349 */ 5350 5351 static int drbd_do_auth(struct drbd_connection *connection) 5352 { 5353 struct drbd_socket *sock; 5354 char my_challenge[CHALLENGE_LEN]; /* 64 Bytes... */ 5355 char *response = NULL; 5356 char *right_response = NULL; 5357 char *peers_ch = NULL; 5358 unsigned int key_len; 5359 char secret[SHARED_SECRET_MAX]; /* 64 byte */ 5360 unsigned int resp_size; 5361 struct shash_desc *desc; 5362 struct packet_info pi; 5363 struct net_conf *nc; 5364 int err, rv; 5365 5366 /* FIXME: Put the challenge/response into the preallocated socket buffer. */ 5367 5368 rcu_read_lock(); 5369 nc = rcu_dereference(connection->net_conf); 5370 key_len = strlen(nc->shared_secret); 5371 memcpy(secret, nc->shared_secret, key_len); 5372 rcu_read_unlock(); 5373 5374 desc = kmalloc(sizeof(struct shash_desc) + 5375 crypto_shash_descsize(connection->cram_hmac_tfm), 5376 GFP_KERNEL); 5377 if (!desc) { 5378 rv = -1; 5379 goto fail; 5380 } 5381 desc->tfm = connection->cram_hmac_tfm; 5382 5383 rv = crypto_shash_setkey(connection->cram_hmac_tfm, (u8 *)secret, key_len); 5384 if (rv) { 5385 drbd_err(connection, "crypto_shash_setkey() failed with %d\n", rv); 5386 rv = -1; 5387 goto fail; 5388 } 5389 5390 get_random_bytes(my_challenge, CHALLENGE_LEN); 5391 5392 sock = &connection->data; 5393 if (!conn_prepare_command(connection, sock)) { 5394 rv = 0; 5395 goto fail; 5396 } 5397 rv = !conn_send_command(connection, sock, P_AUTH_CHALLENGE, 0, 5398 my_challenge, CHALLENGE_LEN); 5399 if (!rv) 5400 goto fail; 5401 5402 err = drbd_recv_header(connection, &pi); 5403 if (err) { 5404 rv = 0; 5405 goto fail; 5406 } 5407 5408 if (pi.cmd != P_AUTH_CHALLENGE) { 5409 drbd_err(connection, "expected AuthChallenge packet, received: %s (0x%04x)\n", 5410 cmdname(pi.cmd), pi.cmd); 5411 rv = -1; 5412 goto fail; 5413 } 5414 5415 if (pi.size > CHALLENGE_LEN * 2) { 5416 drbd_err(connection, "expected AuthChallenge payload too big.\n"); 5417 rv = -1; 5418 goto fail; 5419 } 5420 5421 if (pi.size < CHALLENGE_LEN) { 5422 drbd_err(connection, "AuthChallenge payload too small.\n"); 5423 rv = -1; 5424 goto fail; 5425 } 5426 5427 peers_ch = kmalloc(pi.size, GFP_NOIO); 5428 if (!peers_ch) { 5429 rv = -1; 5430 goto fail; 5431 } 5432 5433 err = drbd_recv_all_warn(connection, peers_ch, pi.size); 5434 if (err) { 5435 rv = 0; 5436 goto fail; 5437 } 5438 5439 if (!memcmp(my_challenge, peers_ch, CHALLENGE_LEN)) { 5440 drbd_err(connection, "Peer presented the same challenge!\n"); 5441 rv = -1; 5442 goto fail; 5443 } 5444 5445 resp_size = crypto_shash_digestsize(connection->cram_hmac_tfm); 5446 response = kmalloc(resp_size, GFP_NOIO); 5447 if (!response) { 5448 rv = -1; 5449 goto fail; 5450 } 5451 5452 rv = crypto_shash_digest(desc, peers_ch, pi.size, response); 5453 if (rv) { 5454 drbd_err(connection, "crypto_hash_digest() failed with %d\n", rv); 5455 rv = -1; 5456 goto fail; 5457 } 5458 5459 if (!conn_prepare_command(connection, sock)) { 5460 rv = 0; 5461 goto fail; 5462 } 5463 rv = !conn_send_command(connection, sock, P_AUTH_RESPONSE, 0, 5464 response, resp_size); 5465 if (!rv) 5466 goto fail; 5467 5468 err = drbd_recv_header(connection, &pi); 5469 if (err) { 5470 rv = 0; 5471 goto fail; 5472 } 5473 5474 if (pi.cmd != P_AUTH_RESPONSE) { 5475 drbd_err(connection, "expected AuthResponse packet, received: %s (0x%04x)\n", 5476 cmdname(pi.cmd), pi.cmd); 5477 rv = 0; 5478 goto fail; 5479 } 5480 5481 if (pi.size != resp_size) { 5482 drbd_err(connection, "expected AuthResponse payload of wrong size\n"); 5483 rv = 0; 5484 goto fail; 5485 } 5486 5487 err = drbd_recv_all_warn(connection, response , resp_size); 5488 if (err) { 5489 rv = 0; 5490 goto fail; 5491 } 5492 5493 right_response = kmalloc(resp_size, GFP_NOIO); 5494 if (!right_response) { 5495 rv = -1; 5496 goto fail; 5497 } 5498 5499 rv = crypto_shash_digest(desc, my_challenge, CHALLENGE_LEN, 5500 right_response); 5501 if (rv) { 5502 drbd_err(connection, "crypto_hash_digest() failed with %d\n", rv); 5503 rv = -1; 5504 goto fail; 5505 } 5506 5507 rv = !memcmp(response, right_response, resp_size); 5508 5509 if (rv) 5510 drbd_info(connection, "Peer authenticated using %d bytes HMAC\n", 5511 resp_size); 5512 else 5513 rv = -1; 5514 5515 fail: 5516 kfree(peers_ch); 5517 kfree(response); 5518 kfree(right_response); 5519 if (desc) { 5520 shash_desc_zero(desc); 5521 kfree(desc); 5522 } 5523 5524 return rv; 5525 } 5526 #endif 5527 5528 int drbd_receiver(struct drbd_thread *thi) 5529 { 5530 struct drbd_connection *connection = thi->connection; 5531 int h; 5532 5533 drbd_info(connection, "receiver (re)started\n"); 5534 5535 do { 5536 h = conn_connect(connection); 5537 if (h == 0) { 5538 conn_disconnect(connection); 5539 schedule_timeout_interruptible(HZ); 5540 } 5541 if (h == -1) { 5542 drbd_warn(connection, "Discarding network configuration.\n"); 5543 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 5544 } 5545 } while (h == 0); 5546 5547 if (h > 0) { 5548 blk_start_plug(&connection->receiver_plug); 5549 drbdd(connection); 5550 blk_finish_plug(&connection->receiver_plug); 5551 } 5552 5553 conn_disconnect(connection); 5554 5555 drbd_info(connection, "receiver terminated\n"); 5556 return 0; 5557 } 5558 5559 /* ********* acknowledge sender ******** */ 5560 5561 static int got_conn_RqSReply(struct drbd_connection *connection, struct packet_info *pi) 5562 { 5563 struct p_req_state_reply *p = pi->data; 5564 int retcode = be32_to_cpu(p->retcode); 5565 5566 if (retcode >= SS_SUCCESS) { 5567 set_bit(CONN_WD_ST_CHG_OKAY, &connection->flags); 5568 } else { 5569 set_bit(CONN_WD_ST_CHG_FAIL, &connection->flags); 5570 drbd_err(connection, "Requested state change failed by peer: %s (%d)\n", 5571 drbd_set_st_err_str(retcode), retcode); 5572 } 5573 wake_up(&connection->ping_wait); 5574 5575 return 0; 5576 } 5577 5578 static int got_RqSReply(struct drbd_connection *connection, struct packet_info *pi) 5579 { 5580 struct drbd_peer_device *peer_device; 5581 struct drbd_device *device; 5582 struct p_req_state_reply *p = pi->data; 5583 int retcode = be32_to_cpu(p->retcode); 5584 5585 peer_device = conn_peer_device(connection, pi->vnr); 5586 if (!peer_device) 5587 return -EIO; 5588 device = peer_device->device; 5589 5590 if (test_bit(CONN_WD_ST_CHG_REQ, &connection->flags)) { 5591 D_ASSERT(device, connection->agreed_pro_version < 100); 5592 return got_conn_RqSReply(connection, pi); 5593 } 5594 5595 if (retcode >= SS_SUCCESS) { 5596 set_bit(CL_ST_CHG_SUCCESS, &device->flags); 5597 } else { 5598 set_bit(CL_ST_CHG_FAIL, &device->flags); 5599 drbd_err(device, "Requested state change failed by peer: %s (%d)\n", 5600 drbd_set_st_err_str(retcode), retcode); 5601 } 5602 wake_up(&device->state_wait); 5603 5604 return 0; 5605 } 5606 5607 static int got_Ping(struct drbd_connection *connection, struct packet_info *pi) 5608 { 5609 return drbd_send_ping_ack(connection); 5610 5611 } 5612 5613 static int got_PingAck(struct drbd_connection *connection, struct packet_info *pi) 5614 { 5615 /* restore idle timeout */ 5616 connection->meta.socket->sk->sk_rcvtimeo = connection->net_conf->ping_int*HZ; 5617 if (!test_and_set_bit(GOT_PING_ACK, &connection->flags)) 5618 wake_up(&connection->ping_wait); 5619 5620 return 0; 5621 } 5622 5623 static int got_IsInSync(struct drbd_connection *connection, struct packet_info *pi) 5624 { 5625 struct drbd_peer_device *peer_device; 5626 struct drbd_device *device; 5627 struct p_block_ack *p = pi->data; 5628 sector_t sector = be64_to_cpu(p->sector); 5629 int blksize = be32_to_cpu(p->blksize); 5630 5631 peer_device = conn_peer_device(connection, pi->vnr); 5632 if (!peer_device) 5633 return -EIO; 5634 device = peer_device->device; 5635 5636 D_ASSERT(device, peer_device->connection->agreed_pro_version >= 89); 5637 5638 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5639 5640 if (get_ldev(device)) { 5641 drbd_rs_complete_io(device, sector); 5642 drbd_set_in_sync(device, sector, blksize); 5643 /* rs_same_csums is supposed to count in units of BM_BLOCK_SIZE */ 5644 device->rs_same_csum += (blksize >> BM_BLOCK_SHIFT); 5645 put_ldev(device); 5646 } 5647 dec_rs_pending(device); 5648 atomic_add(blksize >> 9, &device->rs_sect_in); 5649 5650 return 0; 5651 } 5652 5653 static int 5654 validate_req_change_req_state(struct drbd_device *device, u64 id, sector_t sector, 5655 struct rb_root *root, const char *func, 5656 enum drbd_req_event what, bool missing_ok) 5657 { 5658 struct drbd_request *req; 5659 struct bio_and_error m; 5660 5661 spin_lock_irq(&device->resource->req_lock); 5662 req = find_request(device, root, id, sector, missing_ok, func); 5663 if (unlikely(!req)) { 5664 spin_unlock_irq(&device->resource->req_lock); 5665 return -EIO; 5666 } 5667 __req_mod(req, what, &m); 5668 spin_unlock_irq(&device->resource->req_lock); 5669 5670 if (m.bio) 5671 complete_master_bio(device, &m); 5672 return 0; 5673 } 5674 5675 static int got_BlockAck(struct drbd_connection *connection, struct packet_info *pi) 5676 { 5677 struct drbd_peer_device *peer_device; 5678 struct drbd_device *device; 5679 struct p_block_ack *p = pi->data; 5680 sector_t sector = be64_to_cpu(p->sector); 5681 int blksize = be32_to_cpu(p->blksize); 5682 enum drbd_req_event what; 5683 5684 peer_device = conn_peer_device(connection, pi->vnr); 5685 if (!peer_device) 5686 return -EIO; 5687 device = peer_device->device; 5688 5689 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5690 5691 if (p->block_id == ID_SYNCER) { 5692 drbd_set_in_sync(device, sector, blksize); 5693 dec_rs_pending(device); 5694 return 0; 5695 } 5696 switch (pi->cmd) { 5697 case P_RS_WRITE_ACK: 5698 what = WRITE_ACKED_BY_PEER_AND_SIS; 5699 break; 5700 case P_WRITE_ACK: 5701 what = WRITE_ACKED_BY_PEER; 5702 break; 5703 case P_RECV_ACK: 5704 what = RECV_ACKED_BY_PEER; 5705 break; 5706 case P_SUPERSEDED: 5707 what = CONFLICT_RESOLVED; 5708 break; 5709 case P_RETRY_WRITE: 5710 what = POSTPONE_WRITE; 5711 break; 5712 default: 5713 BUG(); 5714 } 5715 5716 return validate_req_change_req_state(device, p->block_id, sector, 5717 &device->write_requests, __func__, 5718 what, false); 5719 } 5720 5721 static int got_NegAck(struct drbd_connection *connection, struct packet_info *pi) 5722 { 5723 struct drbd_peer_device *peer_device; 5724 struct drbd_device *device; 5725 struct p_block_ack *p = pi->data; 5726 sector_t sector = be64_to_cpu(p->sector); 5727 int size = be32_to_cpu(p->blksize); 5728 int err; 5729 5730 peer_device = conn_peer_device(connection, pi->vnr); 5731 if (!peer_device) 5732 return -EIO; 5733 device = peer_device->device; 5734 5735 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5736 5737 if (p->block_id == ID_SYNCER) { 5738 dec_rs_pending(device); 5739 drbd_rs_failed_io(device, sector, size); 5740 return 0; 5741 } 5742 5743 err = validate_req_change_req_state(device, p->block_id, sector, 5744 &device->write_requests, __func__, 5745 NEG_ACKED, true); 5746 if (err) { 5747 /* Protocol A has no P_WRITE_ACKs, but has P_NEG_ACKs. 5748 The master bio might already be completed, therefore the 5749 request is no longer in the collision hash. */ 5750 /* In Protocol B we might already have got a P_RECV_ACK 5751 but then get a P_NEG_ACK afterwards. */ 5752 drbd_set_out_of_sync(device, sector, size); 5753 } 5754 return 0; 5755 } 5756 5757 static int got_NegDReply(struct drbd_connection *connection, struct packet_info *pi) 5758 { 5759 struct drbd_peer_device *peer_device; 5760 struct drbd_device *device; 5761 struct p_block_ack *p = pi->data; 5762 sector_t sector = be64_to_cpu(p->sector); 5763 5764 peer_device = conn_peer_device(connection, pi->vnr); 5765 if (!peer_device) 5766 return -EIO; 5767 device = peer_device->device; 5768 5769 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5770 5771 drbd_err(device, "Got NegDReply; Sector %llus, len %u.\n", 5772 (unsigned long long)sector, be32_to_cpu(p->blksize)); 5773 5774 return validate_req_change_req_state(device, p->block_id, sector, 5775 &device->read_requests, __func__, 5776 NEG_ACKED, false); 5777 } 5778 5779 static int got_NegRSDReply(struct drbd_connection *connection, struct packet_info *pi) 5780 { 5781 struct drbd_peer_device *peer_device; 5782 struct drbd_device *device; 5783 sector_t sector; 5784 int size; 5785 struct p_block_ack *p = pi->data; 5786 5787 peer_device = conn_peer_device(connection, pi->vnr); 5788 if (!peer_device) 5789 return -EIO; 5790 device = peer_device->device; 5791 5792 sector = be64_to_cpu(p->sector); 5793 size = be32_to_cpu(p->blksize); 5794 5795 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5796 5797 dec_rs_pending(device); 5798 5799 if (get_ldev_if_state(device, D_FAILED)) { 5800 drbd_rs_complete_io(device, sector); 5801 switch (pi->cmd) { 5802 case P_NEG_RS_DREPLY: 5803 drbd_rs_failed_io(device, sector, size); 5804 break; 5805 case P_RS_CANCEL: 5806 break; 5807 default: 5808 BUG(); 5809 } 5810 put_ldev(device); 5811 } 5812 5813 return 0; 5814 } 5815 5816 static int got_BarrierAck(struct drbd_connection *connection, struct packet_info *pi) 5817 { 5818 struct p_barrier_ack *p = pi->data; 5819 struct drbd_peer_device *peer_device; 5820 int vnr; 5821 5822 tl_release(connection, p->barrier, be32_to_cpu(p->set_size)); 5823 5824 rcu_read_lock(); 5825 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 5826 struct drbd_device *device = peer_device->device; 5827 5828 if (device->state.conn == C_AHEAD && 5829 atomic_read(&device->ap_in_flight) == 0 && 5830 !test_and_set_bit(AHEAD_TO_SYNC_SOURCE, &device->flags)) { 5831 device->start_resync_timer.expires = jiffies + HZ; 5832 add_timer(&device->start_resync_timer); 5833 } 5834 } 5835 rcu_read_unlock(); 5836 5837 return 0; 5838 } 5839 5840 static int got_OVResult(struct drbd_connection *connection, struct packet_info *pi) 5841 { 5842 struct drbd_peer_device *peer_device; 5843 struct drbd_device *device; 5844 struct p_block_ack *p = pi->data; 5845 struct drbd_device_work *dw; 5846 sector_t sector; 5847 int size; 5848 5849 peer_device = conn_peer_device(connection, pi->vnr); 5850 if (!peer_device) 5851 return -EIO; 5852 device = peer_device->device; 5853 5854 sector = be64_to_cpu(p->sector); 5855 size = be32_to_cpu(p->blksize); 5856 5857 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5858 5859 if (be64_to_cpu(p->block_id) == ID_OUT_OF_SYNC) 5860 drbd_ov_out_of_sync_found(device, sector, size); 5861 else 5862 ov_out_of_sync_print(device); 5863 5864 if (!get_ldev(device)) 5865 return 0; 5866 5867 drbd_rs_complete_io(device, sector); 5868 dec_rs_pending(device); 5869 5870 --device->ov_left; 5871 5872 /* let's advance progress step marks only for every other megabyte */ 5873 if ((device->ov_left & 0x200) == 0x200) 5874 drbd_advance_rs_marks(device, device->ov_left); 5875 5876 if (device->ov_left == 0) { 5877 dw = kmalloc(sizeof(*dw), GFP_NOIO); 5878 if (dw) { 5879 dw->w.cb = w_ov_finished; 5880 dw->device = device; 5881 drbd_queue_work(&peer_device->connection->sender_work, &dw->w); 5882 } else { 5883 drbd_err(device, "kmalloc(dw) failed."); 5884 ov_out_of_sync_print(device); 5885 drbd_resync_finished(device); 5886 } 5887 } 5888 put_ldev(device); 5889 return 0; 5890 } 5891 5892 static int got_skip(struct drbd_connection *connection, struct packet_info *pi) 5893 { 5894 return 0; 5895 } 5896 5897 struct meta_sock_cmd { 5898 size_t pkt_size; 5899 int (*fn)(struct drbd_connection *connection, struct packet_info *); 5900 }; 5901 5902 static void set_rcvtimeo(struct drbd_connection *connection, bool ping_timeout) 5903 { 5904 long t; 5905 struct net_conf *nc; 5906 5907 rcu_read_lock(); 5908 nc = rcu_dereference(connection->net_conf); 5909 t = ping_timeout ? nc->ping_timeo : nc->ping_int; 5910 rcu_read_unlock(); 5911 5912 t *= HZ; 5913 if (ping_timeout) 5914 t /= 10; 5915 5916 connection->meta.socket->sk->sk_rcvtimeo = t; 5917 } 5918 5919 static void set_ping_timeout(struct drbd_connection *connection) 5920 { 5921 set_rcvtimeo(connection, 1); 5922 } 5923 5924 static void set_idle_timeout(struct drbd_connection *connection) 5925 { 5926 set_rcvtimeo(connection, 0); 5927 } 5928 5929 static struct meta_sock_cmd ack_receiver_tbl[] = { 5930 [P_PING] = { 0, got_Ping }, 5931 [P_PING_ACK] = { 0, got_PingAck }, 5932 [P_RECV_ACK] = { sizeof(struct p_block_ack), got_BlockAck }, 5933 [P_WRITE_ACK] = { sizeof(struct p_block_ack), got_BlockAck }, 5934 [P_RS_WRITE_ACK] = { sizeof(struct p_block_ack), got_BlockAck }, 5935 [P_SUPERSEDED] = { sizeof(struct p_block_ack), got_BlockAck }, 5936 [P_NEG_ACK] = { sizeof(struct p_block_ack), got_NegAck }, 5937 [P_NEG_DREPLY] = { sizeof(struct p_block_ack), got_NegDReply }, 5938 [P_NEG_RS_DREPLY] = { sizeof(struct p_block_ack), got_NegRSDReply }, 5939 [P_OV_RESULT] = { sizeof(struct p_block_ack), got_OVResult }, 5940 [P_BARRIER_ACK] = { sizeof(struct p_barrier_ack), got_BarrierAck }, 5941 [P_STATE_CHG_REPLY] = { sizeof(struct p_req_state_reply), got_RqSReply }, 5942 [P_RS_IS_IN_SYNC] = { sizeof(struct p_block_ack), got_IsInSync }, 5943 [P_DELAY_PROBE] = { sizeof(struct p_delay_probe93), got_skip }, 5944 [P_RS_CANCEL] = { sizeof(struct p_block_ack), got_NegRSDReply }, 5945 [P_CONN_ST_CHG_REPLY]={ sizeof(struct p_req_state_reply), got_conn_RqSReply }, 5946 [P_RETRY_WRITE] = { sizeof(struct p_block_ack), got_BlockAck }, 5947 }; 5948 5949 int drbd_ack_receiver(struct drbd_thread *thi) 5950 { 5951 struct drbd_connection *connection = thi->connection; 5952 struct meta_sock_cmd *cmd = NULL; 5953 struct packet_info pi; 5954 unsigned long pre_recv_jif; 5955 int rv; 5956 void *buf = connection->meta.rbuf; 5957 int received = 0; 5958 unsigned int header_size = drbd_header_size(connection); 5959 int expect = header_size; 5960 bool ping_timeout_active = false; 5961 5962 sched_set_fifo_low(current); 5963 5964 while (get_t_state(thi) == RUNNING) { 5965 drbd_thread_current_set_cpu(thi); 5966 5967 conn_reclaim_net_peer_reqs(connection); 5968 5969 if (test_and_clear_bit(SEND_PING, &connection->flags)) { 5970 if (drbd_send_ping(connection)) { 5971 drbd_err(connection, "drbd_send_ping has failed\n"); 5972 goto reconnect; 5973 } 5974 set_ping_timeout(connection); 5975 ping_timeout_active = true; 5976 } 5977 5978 pre_recv_jif = jiffies; 5979 rv = drbd_recv_short(connection->meta.socket, buf, expect-received, 0); 5980 5981 /* Note: 5982 * -EINTR (on meta) we got a signal 5983 * -EAGAIN (on meta) rcvtimeo expired 5984 * -ECONNRESET other side closed the connection 5985 * -ERESTARTSYS (on data) we got a signal 5986 * rv < 0 other than above: unexpected error! 5987 * rv == expected: full header or command 5988 * rv < expected: "woken" by signal during receive 5989 * rv == 0 : "connection shut down by peer" 5990 */ 5991 if (likely(rv > 0)) { 5992 received += rv; 5993 buf += rv; 5994 } else if (rv == 0) { 5995 if (test_bit(DISCONNECT_SENT, &connection->flags)) { 5996 long t; 5997 rcu_read_lock(); 5998 t = rcu_dereference(connection->net_conf)->ping_timeo * HZ/10; 5999 rcu_read_unlock(); 6000 6001 t = wait_event_timeout(connection->ping_wait, 6002 connection->cstate < C_WF_REPORT_PARAMS, 6003 t); 6004 if (t) 6005 break; 6006 } 6007 drbd_err(connection, "meta connection shut down by peer.\n"); 6008 goto reconnect; 6009 } else if (rv == -EAGAIN) { 6010 /* If the data socket received something meanwhile, 6011 * that is good enough: peer is still alive. */ 6012 if (time_after(connection->last_received, pre_recv_jif)) 6013 continue; 6014 if (ping_timeout_active) { 6015 drbd_err(connection, "PingAck did not arrive in time.\n"); 6016 goto reconnect; 6017 } 6018 set_bit(SEND_PING, &connection->flags); 6019 continue; 6020 } else if (rv == -EINTR) { 6021 /* maybe drbd_thread_stop(): the while condition will notice. 6022 * maybe woken for send_ping: we'll send a ping above, 6023 * and change the rcvtimeo */ 6024 flush_signals(current); 6025 continue; 6026 } else { 6027 drbd_err(connection, "sock_recvmsg returned %d\n", rv); 6028 goto reconnect; 6029 } 6030 6031 if (received == expect && cmd == NULL) { 6032 if (decode_header(connection, connection->meta.rbuf, &pi)) 6033 goto reconnect; 6034 cmd = &ack_receiver_tbl[pi.cmd]; 6035 if (pi.cmd >= ARRAY_SIZE(ack_receiver_tbl) || !cmd->fn) { 6036 drbd_err(connection, "Unexpected meta packet %s (0x%04x)\n", 6037 cmdname(pi.cmd), pi.cmd); 6038 goto disconnect; 6039 } 6040 expect = header_size + cmd->pkt_size; 6041 if (pi.size != expect - header_size) { 6042 drbd_err(connection, "Wrong packet size on meta (c: %d, l: %d)\n", 6043 pi.cmd, pi.size); 6044 goto reconnect; 6045 } 6046 } 6047 if (received == expect) { 6048 bool err; 6049 6050 err = cmd->fn(connection, &pi); 6051 if (err) { 6052 drbd_err(connection, "%ps failed\n", cmd->fn); 6053 goto reconnect; 6054 } 6055 6056 connection->last_received = jiffies; 6057 6058 if (cmd == &ack_receiver_tbl[P_PING_ACK]) { 6059 set_idle_timeout(connection); 6060 ping_timeout_active = false; 6061 } 6062 6063 buf = connection->meta.rbuf; 6064 received = 0; 6065 expect = header_size; 6066 cmd = NULL; 6067 } 6068 } 6069 6070 if (0) { 6071 reconnect: 6072 conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD); 6073 conn_md_sync(connection); 6074 } 6075 if (0) { 6076 disconnect: 6077 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 6078 } 6079 6080 drbd_info(connection, "ack_receiver terminated\n"); 6081 6082 return 0; 6083 } 6084 6085 void drbd_send_acks_wf(struct work_struct *ws) 6086 { 6087 struct drbd_peer_device *peer_device = 6088 container_of(ws, struct drbd_peer_device, send_acks_work); 6089 struct drbd_connection *connection = peer_device->connection; 6090 struct drbd_device *device = peer_device->device; 6091 struct net_conf *nc; 6092 int tcp_cork, err; 6093 6094 rcu_read_lock(); 6095 nc = rcu_dereference(connection->net_conf); 6096 tcp_cork = nc->tcp_cork; 6097 rcu_read_unlock(); 6098 6099 if (tcp_cork) 6100 tcp_sock_set_cork(connection->meta.socket->sk, true); 6101 6102 err = drbd_finish_peer_reqs(device); 6103 kref_put(&device->kref, drbd_destroy_device); 6104 /* get is in drbd_endio_write_sec_final(). That is necessary to keep the 6105 struct work_struct send_acks_work alive, which is in the peer_device object */ 6106 6107 if (err) { 6108 conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD); 6109 return; 6110 } 6111 6112 if (tcp_cork) 6113 tcp_sock_set_cork(connection->meta.socket->sk, false); 6114 6115 return; 6116 } 6117