1 /* 2 drbd_receiver.c 3 4 This file is part of DRBD by Philipp Reisner and Lars Ellenberg. 5 6 Copyright (C) 2001-2008, LINBIT Information Technologies GmbH. 7 Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>. 8 Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>. 9 10 drbd is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation; either version 2, or (at your option) 13 any later version. 14 15 drbd is distributed in the hope that it will be useful, 16 but WITHOUT ANY WARRANTY; without even the implied warranty of 17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 GNU General Public License for more details. 19 20 You should have received a copy of the GNU General Public License 21 along with drbd; see the file COPYING. If not, write to 22 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 23 */ 24 25 26 #include <linux/module.h> 27 28 #include <asm/uaccess.h> 29 #include <net/sock.h> 30 31 #include <linux/drbd.h> 32 #include <linux/fs.h> 33 #include <linux/file.h> 34 #include <linux/in.h> 35 #include <linux/mm.h> 36 #include <linux/memcontrol.h> 37 #include <linux/mm_inline.h> 38 #include <linux/slab.h> 39 #include <linux/pkt_sched.h> 40 #define __KERNEL_SYSCALLS__ 41 #include <linux/unistd.h> 42 #include <linux/vmalloc.h> 43 #include <linux/random.h> 44 #include <linux/string.h> 45 #include <linux/scatterlist.h> 46 #include "drbd_int.h" 47 #include "drbd_req.h" 48 49 #include "drbd_vli.h" 50 51 struct packet_info { 52 enum drbd_packet cmd; 53 unsigned int size; 54 unsigned int vnr; 55 void *data; 56 }; 57 58 enum finish_epoch { 59 FE_STILL_LIVE, 60 FE_DESTROYED, 61 FE_RECYCLED, 62 }; 63 64 static int drbd_do_features(struct drbd_tconn *tconn); 65 static int drbd_do_auth(struct drbd_tconn *tconn); 66 static int drbd_disconnected(struct drbd_conf *mdev); 67 68 static enum finish_epoch drbd_may_finish_epoch(struct drbd_tconn *, struct drbd_epoch *, enum epoch_event); 69 static int e_end_block(struct drbd_work *, int); 70 71 72 #define GFP_TRY (__GFP_HIGHMEM | __GFP_NOWARN) 73 74 /* 75 * some helper functions to deal with single linked page lists, 76 * page->private being our "next" pointer. 77 */ 78 79 /* If at least n pages are linked at head, get n pages off. 80 * Otherwise, don't modify head, and return NULL. 81 * Locking is the responsibility of the caller. 82 */ 83 static struct page *page_chain_del(struct page **head, int n) 84 { 85 struct page *page; 86 struct page *tmp; 87 88 BUG_ON(!n); 89 BUG_ON(!head); 90 91 page = *head; 92 93 if (!page) 94 return NULL; 95 96 while (page) { 97 tmp = page_chain_next(page); 98 if (--n == 0) 99 break; /* found sufficient pages */ 100 if (tmp == NULL) 101 /* insufficient pages, don't use any of them. */ 102 return NULL; 103 page = tmp; 104 } 105 106 /* add end of list marker for the returned list */ 107 set_page_private(page, 0); 108 /* actual return value, and adjustment of head */ 109 page = *head; 110 *head = tmp; 111 return page; 112 } 113 114 /* may be used outside of locks to find the tail of a (usually short) 115 * "private" page chain, before adding it back to a global chain head 116 * with page_chain_add() under a spinlock. */ 117 static struct page *page_chain_tail(struct page *page, int *len) 118 { 119 struct page *tmp; 120 int i = 1; 121 while ((tmp = page_chain_next(page))) 122 ++i, page = tmp; 123 if (len) 124 *len = i; 125 return page; 126 } 127 128 static int page_chain_free(struct page *page) 129 { 130 struct page *tmp; 131 int i = 0; 132 page_chain_for_each_safe(page, tmp) { 133 put_page(page); 134 ++i; 135 } 136 return i; 137 } 138 139 static void page_chain_add(struct page **head, 140 struct page *chain_first, struct page *chain_last) 141 { 142 #if 1 143 struct page *tmp; 144 tmp = page_chain_tail(chain_first, NULL); 145 BUG_ON(tmp != chain_last); 146 #endif 147 148 /* add chain to head */ 149 set_page_private(chain_last, (unsigned long)*head); 150 *head = chain_first; 151 } 152 153 static struct page *__drbd_alloc_pages(struct drbd_conf *mdev, 154 unsigned int number) 155 { 156 struct page *page = NULL; 157 struct page *tmp = NULL; 158 unsigned int i = 0; 159 160 /* Yes, testing drbd_pp_vacant outside the lock is racy. 161 * So what. It saves a spin_lock. */ 162 if (drbd_pp_vacant >= number) { 163 spin_lock(&drbd_pp_lock); 164 page = page_chain_del(&drbd_pp_pool, number); 165 if (page) 166 drbd_pp_vacant -= number; 167 spin_unlock(&drbd_pp_lock); 168 if (page) 169 return page; 170 } 171 172 /* GFP_TRY, because we must not cause arbitrary write-out: in a DRBD 173 * "criss-cross" setup, that might cause write-out on some other DRBD, 174 * which in turn might block on the other node at this very place. */ 175 for (i = 0; i < number; i++) { 176 tmp = alloc_page(GFP_TRY); 177 if (!tmp) 178 break; 179 set_page_private(tmp, (unsigned long)page); 180 page = tmp; 181 } 182 183 if (i == number) 184 return page; 185 186 /* Not enough pages immediately available this time. 187 * No need to jump around here, drbd_alloc_pages will retry this 188 * function "soon". */ 189 if (page) { 190 tmp = page_chain_tail(page, NULL); 191 spin_lock(&drbd_pp_lock); 192 page_chain_add(&drbd_pp_pool, page, tmp); 193 drbd_pp_vacant += i; 194 spin_unlock(&drbd_pp_lock); 195 } 196 return NULL; 197 } 198 199 static void reclaim_finished_net_peer_reqs(struct drbd_conf *mdev, 200 struct list_head *to_be_freed) 201 { 202 struct drbd_peer_request *peer_req; 203 struct list_head *le, *tle; 204 205 /* The EEs are always appended to the end of the list. Since 206 they are sent in order over the wire, they have to finish 207 in order. As soon as we see the first not finished we can 208 stop to examine the list... */ 209 210 list_for_each_safe(le, tle, &mdev->net_ee) { 211 peer_req = list_entry(le, struct drbd_peer_request, w.list); 212 if (drbd_peer_req_has_active_page(peer_req)) 213 break; 214 list_move(le, to_be_freed); 215 } 216 } 217 218 static void drbd_kick_lo_and_reclaim_net(struct drbd_conf *mdev) 219 { 220 LIST_HEAD(reclaimed); 221 struct drbd_peer_request *peer_req, *t; 222 223 spin_lock_irq(&mdev->tconn->req_lock); 224 reclaim_finished_net_peer_reqs(mdev, &reclaimed); 225 spin_unlock_irq(&mdev->tconn->req_lock); 226 227 list_for_each_entry_safe(peer_req, t, &reclaimed, w.list) 228 drbd_free_net_peer_req(mdev, peer_req); 229 } 230 231 /** 232 * drbd_alloc_pages() - Returns @number pages, retries forever (or until signalled) 233 * @mdev: DRBD device. 234 * @number: number of pages requested 235 * @retry: whether to retry, if not enough pages are available right now 236 * 237 * Tries to allocate number pages, first from our own page pool, then from 238 * the kernel, unless this allocation would exceed the max_buffers setting. 239 * Possibly retry until DRBD frees sufficient pages somewhere else. 240 * 241 * Returns a page chain linked via page->private. 242 */ 243 struct page *drbd_alloc_pages(struct drbd_conf *mdev, unsigned int number, 244 bool retry) 245 { 246 struct page *page = NULL; 247 struct net_conf *nc; 248 DEFINE_WAIT(wait); 249 int mxb; 250 251 /* Yes, we may run up to @number over max_buffers. If we 252 * follow it strictly, the admin will get it wrong anyways. */ 253 rcu_read_lock(); 254 nc = rcu_dereference(mdev->tconn->net_conf); 255 mxb = nc ? nc->max_buffers : 1000000; 256 rcu_read_unlock(); 257 258 if (atomic_read(&mdev->pp_in_use) < mxb) 259 page = __drbd_alloc_pages(mdev, number); 260 261 while (page == NULL) { 262 prepare_to_wait(&drbd_pp_wait, &wait, TASK_INTERRUPTIBLE); 263 264 drbd_kick_lo_and_reclaim_net(mdev); 265 266 if (atomic_read(&mdev->pp_in_use) < mxb) { 267 page = __drbd_alloc_pages(mdev, number); 268 if (page) 269 break; 270 } 271 272 if (!retry) 273 break; 274 275 if (signal_pending(current)) { 276 dev_warn(DEV, "drbd_alloc_pages interrupted!\n"); 277 break; 278 } 279 280 schedule(); 281 } 282 finish_wait(&drbd_pp_wait, &wait); 283 284 if (page) 285 atomic_add(number, &mdev->pp_in_use); 286 return page; 287 } 288 289 /* Must not be used from irq, as that may deadlock: see drbd_alloc_pages. 290 * Is also used from inside an other spin_lock_irq(&mdev->tconn->req_lock); 291 * Either links the page chain back to the global pool, 292 * or returns all pages to the system. */ 293 static void drbd_free_pages(struct drbd_conf *mdev, struct page *page, int is_net) 294 { 295 atomic_t *a = is_net ? &mdev->pp_in_use_by_net : &mdev->pp_in_use; 296 int i; 297 298 if (page == NULL) 299 return; 300 301 if (drbd_pp_vacant > (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * minor_count) 302 i = page_chain_free(page); 303 else { 304 struct page *tmp; 305 tmp = page_chain_tail(page, &i); 306 spin_lock(&drbd_pp_lock); 307 page_chain_add(&drbd_pp_pool, page, tmp); 308 drbd_pp_vacant += i; 309 spin_unlock(&drbd_pp_lock); 310 } 311 i = atomic_sub_return(i, a); 312 if (i < 0) 313 dev_warn(DEV, "ASSERTION FAILED: %s: %d < 0\n", 314 is_net ? "pp_in_use_by_net" : "pp_in_use", i); 315 wake_up(&drbd_pp_wait); 316 } 317 318 /* 319 You need to hold the req_lock: 320 _drbd_wait_ee_list_empty() 321 322 You must not have the req_lock: 323 drbd_free_peer_req() 324 drbd_alloc_peer_req() 325 drbd_free_peer_reqs() 326 drbd_ee_fix_bhs() 327 drbd_finish_peer_reqs() 328 drbd_clear_done_ee() 329 drbd_wait_ee_list_empty() 330 */ 331 332 struct drbd_peer_request * 333 drbd_alloc_peer_req(struct drbd_conf *mdev, u64 id, sector_t sector, 334 unsigned int data_size, gfp_t gfp_mask) __must_hold(local) 335 { 336 struct drbd_peer_request *peer_req; 337 struct page *page = NULL; 338 unsigned nr_pages = (data_size + PAGE_SIZE -1) >> PAGE_SHIFT; 339 340 if (drbd_insert_fault(mdev, DRBD_FAULT_AL_EE)) 341 return NULL; 342 343 peer_req = mempool_alloc(drbd_ee_mempool, gfp_mask & ~__GFP_HIGHMEM); 344 if (!peer_req) { 345 if (!(gfp_mask & __GFP_NOWARN)) 346 dev_err(DEV, "%s: allocation failed\n", __func__); 347 return NULL; 348 } 349 350 if (data_size) { 351 page = drbd_alloc_pages(mdev, nr_pages, (gfp_mask & __GFP_WAIT)); 352 if (!page) 353 goto fail; 354 } 355 356 drbd_clear_interval(&peer_req->i); 357 peer_req->i.size = data_size; 358 peer_req->i.sector = sector; 359 peer_req->i.local = false; 360 peer_req->i.waiting = false; 361 362 peer_req->epoch = NULL; 363 peer_req->w.mdev = mdev; 364 peer_req->pages = page; 365 atomic_set(&peer_req->pending_bios, 0); 366 peer_req->flags = 0; 367 /* 368 * The block_id is opaque to the receiver. It is not endianness 369 * converted, and sent back to the sender unchanged. 370 */ 371 peer_req->block_id = id; 372 373 return peer_req; 374 375 fail: 376 mempool_free(peer_req, drbd_ee_mempool); 377 return NULL; 378 } 379 380 void __drbd_free_peer_req(struct drbd_conf *mdev, struct drbd_peer_request *peer_req, 381 int is_net) 382 { 383 if (peer_req->flags & EE_HAS_DIGEST) 384 kfree(peer_req->digest); 385 drbd_free_pages(mdev, peer_req->pages, is_net); 386 D_ASSERT(atomic_read(&peer_req->pending_bios) == 0); 387 D_ASSERT(drbd_interval_empty(&peer_req->i)); 388 mempool_free(peer_req, drbd_ee_mempool); 389 } 390 391 int drbd_free_peer_reqs(struct drbd_conf *mdev, struct list_head *list) 392 { 393 LIST_HEAD(work_list); 394 struct drbd_peer_request *peer_req, *t; 395 int count = 0; 396 int is_net = list == &mdev->net_ee; 397 398 spin_lock_irq(&mdev->tconn->req_lock); 399 list_splice_init(list, &work_list); 400 spin_unlock_irq(&mdev->tconn->req_lock); 401 402 list_for_each_entry_safe(peer_req, t, &work_list, w.list) { 403 __drbd_free_peer_req(mdev, peer_req, is_net); 404 count++; 405 } 406 return count; 407 } 408 409 /* 410 * See also comments in _req_mod(,BARRIER_ACKED) and receive_Barrier. 411 */ 412 static int drbd_finish_peer_reqs(struct drbd_conf *mdev) 413 { 414 LIST_HEAD(work_list); 415 LIST_HEAD(reclaimed); 416 struct drbd_peer_request *peer_req, *t; 417 int err = 0; 418 419 spin_lock_irq(&mdev->tconn->req_lock); 420 reclaim_finished_net_peer_reqs(mdev, &reclaimed); 421 list_splice_init(&mdev->done_ee, &work_list); 422 spin_unlock_irq(&mdev->tconn->req_lock); 423 424 list_for_each_entry_safe(peer_req, t, &reclaimed, w.list) 425 drbd_free_net_peer_req(mdev, peer_req); 426 427 /* possible callbacks here: 428 * e_end_block, and e_end_resync_block, e_send_superseded. 429 * all ignore the last argument. 430 */ 431 list_for_each_entry_safe(peer_req, t, &work_list, w.list) { 432 int err2; 433 434 /* list_del not necessary, next/prev members not touched */ 435 err2 = peer_req->w.cb(&peer_req->w, !!err); 436 if (!err) 437 err = err2; 438 drbd_free_peer_req(mdev, peer_req); 439 } 440 wake_up(&mdev->ee_wait); 441 442 return err; 443 } 444 445 static void _drbd_wait_ee_list_empty(struct drbd_conf *mdev, 446 struct list_head *head) 447 { 448 DEFINE_WAIT(wait); 449 450 /* avoids spin_lock/unlock 451 * and calling prepare_to_wait in the fast path */ 452 while (!list_empty(head)) { 453 prepare_to_wait(&mdev->ee_wait, &wait, TASK_UNINTERRUPTIBLE); 454 spin_unlock_irq(&mdev->tconn->req_lock); 455 io_schedule(); 456 finish_wait(&mdev->ee_wait, &wait); 457 spin_lock_irq(&mdev->tconn->req_lock); 458 } 459 } 460 461 static void drbd_wait_ee_list_empty(struct drbd_conf *mdev, 462 struct list_head *head) 463 { 464 spin_lock_irq(&mdev->tconn->req_lock); 465 _drbd_wait_ee_list_empty(mdev, head); 466 spin_unlock_irq(&mdev->tconn->req_lock); 467 } 468 469 static int drbd_recv_short(struct socket *sock, void *buf, size_t size, int flags) 470 { 471 mm_segment_t oldfs; 472 struct kvec iov = { 473 .iov_base = buf, 474 .iov_len = size, 475 }; 476 struct msghdr msg = { 477 .msg_iovlen = 1, 478 .msg_iov = (struct iovec *)&iov, 479 .msg_flags = (flags ? flags : MSG_WAITALL | MSG_NOSIGNAL) 480 }; 481 int rv; 482 483 oldfs = get_fs(); 484 set_fs(KERNEL_DS); 485 rv = sock_recvmsg(sock, &msg, size, msg.msg_flags); 486 set_fs(oldfs); 487 488 return rv; 489 } 490 491 static int drbd_recv(struct drbd_tconn *tconn, void *buf, size_t size) 492 { 493 int rv; 494 495 rv = drbd_recv_short(tconn->data.socket, buf, size, 0); 496 497 if (rv < 0) { 498 if (rv == -ECONNRESET) 499 conn_info(tconn, "sock was reset by peer\n"); 500 else if (rv != -ERESTARTSYS) 501 conn_err(tconn, "sock_recvmsg returned %d\n", rv); 502 } else if (rv == 0) { 503 if (test_bit(DISCONNECT_SENT, &tconn->flags)) { 504 long t; 505 rcu_read_lock(); 506 t = rcu_dereference(tconn->net_conf)->ping_timeo * HZ/10; 507 rcu_read_unlock(); 508 509 t = wait_event_timeout(tconn->ping_wait, tconn->cstate < C_WF_REPORT_PARAMS, t); 510 511 if (t) 512 goto out; 513 } 514 conn_info(tconn, "sock was shut down by peer\n"); 515 } 516 517 if (rv != size) 518 conn_request_state(tconn, NS(conn, C_BROKEN_PIPE), CS_HARD); 519 520 out: 521 return rv; 522 } 523 524 static int drbd_recv_all(struct drbd_tconn *tconn, void *buf, size_t size) 525 { 526 int err; 527 528 err = drbd_recv(tconn, buf, size); 529 if (err != size) { 530 if (err >= 0) 531 err = -EIO; 532 } else 533 err = 0; 534 return err; 535 } 536 537 static int drbd_recv_all_warn(struct drbd_tconn *tconn, void *buf, size_t size) 538 { 539 int err; 540 541 err = drbd_recv_all(tconn, buf, size); 542 if (err && !signal_pending(current)) 543 conn_warn(tconn, "short read (expected size %d)\n", (int)size); 544 return err; 545 } 546 547 /* quoting tcp(7): 548 * On individual connections, the socket buffer size must be set prior to the 549 * listen(2) or connect(2) calls in order to have it take effect. 550 * This is our wrapper to do so. 551 */ 552 static void drbd_setbufsize(struct socket *sock, unsigned int snd, 553 unsigned int rcv) 554 { 555 /* open coded SO_SNDBUF, SO_RCVBUF */ 556 if (snd) { 557 sock->sk->sk_sndbuf = snd; 558 sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 559 } 560 if (rcv) { 561 sock->sk->sk_rcvbuf = rcv; 562 sock->sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 563 } 564 } 565 566 static struct socket *drbd_try_connect(struct drbd_tconn *tconn) 567 { 568 const char *what; 569 struct socket *sock; 570 struct sockaddr_in6 src_in6; 571 struct sockaddr_in6 peer_in6; 572 struct net_conf *nc; 573 int err, peer_addr_len, my_addr_len; 574 int sndbuf_size, rcvbuf_size, connect_int; 575 int disconnect_on_error = 1; 576 577 rcu_read_lock(); 578 nc = rcu_dereference(tconn->net_conf); 579 if (!nc) { 580 rcu_read_unlock(); 581 return NULL; 582 } 583 sndbuf_size = nc->sndbuf_size; 584 rcvbuf_size = nc->rcvbuf_size; 585 connect_int = nc->connect_int; 586 rcu_read_unlock(); 587 588 my_addr_len = min_t(int, tconn->my_addr_len, sizeof(src_in6)); 589 memcpy(&src_in6, &tconn->my_addr, my_addr_len); 590 591 if (((struct sockaddr *)&tconn->my_addr)->sa_family == AF_INET6) 592 src_in6.sin6_port = 0; 593 else 594 ((struct sockaddr_in *)&src_in6)->sin_port = 0; /* AF_INET & AF_SCI */ 595 596 peer_addr_len = min_t(int, tconn->peer_addr_len, sizeof(src_in6)); 597 memcpy(&peer_in6, &tconn->peer_addr, peer_addr_len); 598 599 what = "sock_create_kern"; 600 err = sock_create_kern(((struct sockaddr *)&src_in6)->sa_family, 601 SOCK_STREAM, IPPROTO_TCP, &sock); 602 if (err < 0) { 603 sock = NULL; 604 goto out; 605 } 606 607 sock->sk->sk_rcvtimeo = 608 sock->sk->sk_sndtimeo = connect_int * HZ; 609 drbd_setbufsize(sock, sndbuf_size, rcvbuf_size); 610 611 /* explicitly bind to the configured IP as source IP 612 * for the outgoing connections. 613 * This is needed for multihomed hosts and to be 614 * able to use lo: interfaces for drbd. 615 * Make sure to use 0 as port number, so linux selects 616 * a free one dynamically. 617 */ 618 what = "bind before connect"; 619 err = sock->ops->bind(sock, (struct sockaddr *) &src_in6, my_addr_len); 620 if (err < 0) 621 goto out; 622 623 /* connect may fail, peer not yet available. 624 * stay C_WF_CONNECTION, don't go Disconnecting! */ 625 disconnect_on_error = 0; 626 what = "connect"; 627 err = sock->ops->connect(sock, (struct sockaddr *) &peer_in6, peer_addr_len, 0); 628 629 out: 630 if (err < 0) { 631 if (sock) { 632 sock_release(sock); 633 sock = NULL; 634 } 635 switch (-err) { 636 /* timeout, busy, signal pending */ 637 case ETIMEDOUT: case EAGAIN: case EINPROGRESS: 638 case EINTR: case ERESTARTSYS: 639 /* peer not (yet) available, network problem */ 640 case ECONNREFUSED: case ENETUNREACH: 641 case EHOSTDOWN: case EHOSTUNREACH: 642 disconnect_on_error = 0; 643 break; 644 default: 645 conn_err(tconn, "%s failed, err = %d\n", what, err); 646 } 647 if (disconnect_on_error) 648 conn_request_state(tconn, NS(conn, C_DISCONNECTING), CS_HARD); 649 } 650 651 return sock; 652 } 653 654 struct accept_wait_data { 655 struct drbd_tconn *tconn; 656 struct socket *s_listen; 657 struct completion door_bell; 658 void (*original_sk_state_change)(struct sock *sk); 659 660 }; 661 662 static void drbd_incoming_connection(struct sock *sk) 663 { 664 struct accept_wait_data *ad = sk->sk_user_data; 665 void (*state_change)(struct sock *sk); 666 667 state_change = ad->original_sk_state_change; 668 if (sk->sk_state == TCP_ESTABLISHED) 669 complete(&ad->door_bell); 670 state_change(sk); 671 } 672 673 static int prepare_listen_socket(struct drbd_tconn *tconn, struct accept_wait_data *ad) 674 { 675 int err, sndbuf_size, rcvbuf_size, my_addr_len; 676 struct sockaddr_in6 my_addr; 677 struct socket *s_listen; 678 struct net_conf *nc; 679 const char *what; 680 681 rcu_read_lock(); 682 nc = rcu_dereference(tconn->net_conf); 683 if (!nc) { 684 rcu_read_unlock(); 685 return -EIO; 686 } 687 sndbuf_size = nc->sndbuf_size; 688 rcvbuf_size = nc->rcvbuf_size; 689 rcu_read_unlock(); 690 691 my_addr_len = min_t(int, tconn->my_addr_len, sizeof(struct sockaddr_in6)); 692 memcpy(&my_addr, &tconn->my_addr, my_addr_len); 693 694 what = "sock_create_kern"; 695 err = sock_create_kern(((struct sockaddr *)&my_addr)->sa_family, 696 SOCK_STREAM, IPPROTO_TCP, &s_listen); 697 if (err) { 698 s_listen = NULL; 699 goto out; 700 } 701 702 s_listen->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */ 703 drbd_setbufsize(s_listen, sndbuf_size, rcvbuf_size); 704 705 what = "bind before listen"; 706 err = s_listen->ops->bind(s_listen, (struct sockaddr *)&my_addr, my_addr_len); 707 if (err < 0) 708 goto out; 709 710 ad->s_listen = s_listen; 711 write_lock_bh(&s_listen->sk->sk_callback_lock); 712 ad->original_sk_state_change = s_listen->sk->sk_state_change; 713 s_listen->sk->sk_state_change = drbd_incoming_connection; 714 s_listen->sk->sk_user_data = ad; 715 write_unlock_bh(&s_listen->sk->sk_callback_lock); 716 717 what = "listen"; 718 err = s_listen->ops->listen(s_listen, 5); 719 if (err < 0) 720 goto out; 721 722 return 0; 723 out: 724 if (s_listen) 725 sock_release(s_listen); 726 if (err < 0) { 727 if (err != -EAGAIN && err != -EINTR && err != -ERESTARTSYS) { 728 conn_err(tconn, "%s failed, err = %d\n", what, err); 729 conn_request_state(tconn, NS(conn, C_DISCONNECTING), CS_HARD); 730 } 731 } 732 733 return -EIO; 734 } 735 736 static void unregister_state_change(struct sock *sk, struct accept_wait_data *ad) 737 { 738 write_lock_bh(&sk->sk_callback_lock); 739 sk->sk_state_change = ad->original_sk_state_change; 740 sk->sk_user_data = NULL; 741 write_unlock_bh(&sk->sk_callback_lock); 742 } 743 744 static struct socket *drbd_wait_for_connect(struct drbd_tconn *tconn, struct accept_wait_data *ad) 745 { 746 int timeo, connect_int, err = 0; 747 struct socket *s_estab = NULL; 748 struct net_conf *nc; 749 750 rcu_read_lock(); 751 nc = rcu_dereference(tconn->net_conf); 752 if (!nc) { 753 rcu_read_unlock(); 754 return NULL; 755 } 756 connect_int = nc->connect_int; 757 rcu_read_unlock(); 758 759 timeo = connect_int * HZ; 760 /* 28.5% random jitter */ 761 timeo += (prandom_u32() & 1) ? timeo / 7 : -timeo / 7; 762 763 err = wait_for_completion_interruptible_timeout(&ad->door_bell, timeo); 764 if (err <= 0) 765 return NULL; 766 767 err = kernel_accept(ad->s_listen, &s_estab, 0); 768 if (err < 0) { 769 if (err != -EAGAIN && err != -EINTR && err != -ERESTARTSYS) { 770 conn_err(tconn, "accept failed, err = %d\n", err); 771 conn_request_state(tconn, NS(conn, C_DISCONNECTING), CS_HARD); 772 } 773 } 774 775 if (s_estab) 776 unregister_state_change(s_estab->sk, ad); 777 778 return s_estab; 779 } 780 781 static int decode_header(struct drbd_tconn *, void *, struct packet_info *); 782 783 static int send_first_packet(struct drbd_tconn *tconn, struct drbd_socket *sock, 784 enum drbd_packet cmd) 785 { 786 if (!conn_prepare_command(tconn, sock)) 787 return -EIO; 788 return conn_send_command(tconn, sock, cmd, 0, NULL, 0); 789 } 790 791 static int receive_first_packet(struct drbd_tconn *tconn, struct socket *sock) 792 { 793 unsigned int header_size = drbd_header_size(tconn); 794 struct packet_info pi; 795 int err; 796 797 err = drbd_recv_short(sock, tconn->data.rbuf, header_size, 0); 798 if (err != header_size) { 799 if (err >= 0) 800 err = -EIO; 801 return err; 802 } 803 err = decode_header(tconn, tconn->data.rbuf, &pi); 804 if (err) 805 return err; 806 return pi.cmd; 807 } 808 809 /** 810 * drbd_socket_okay() - Free the socket if its connection is not okay 811 * @sock: pointer to the pointer to the socket. 812 */ 813 static int drbd_socket_okay(struct socket **sock) 814 { 815 int rr; 816 char tb[4]; 817 818 if (!*sock) 819 return false; 820 821 rr = drbd_recv_short(*sock, tb, 4, MSG_DONTWAIT | MSG_PEEK); 822 823 if (rr > 0 || rr == -EAGAIN) { 824 return true; 825 } else { 826 sock_release(*sock); 827 *sock = NULL; 828 return false; 829 } 830 } 831 /* Gets called if a connection is established, or if a new minor gets created 832 in a connection */ 833 int drbd_connected(struct drbd_conf *mdev) 834 { 835 int err; 836 837 atomic_set(&mdev->packet_seq, 0); 838 mdev->peer_seq = 0; 839 840 mdev->state_mutex = mdev->tconn->agreed_pro_version < 100 ? 841 &mdev->tconn->cstate_mutex : 842 &mdev->own_state_mutex; 843 844 err = drbd_send_sync_param(mdev); 845 if (!err) 846 err = drbd_send_sizes(mdev, 0, 0); 847 if (!err) 848 err = drbd_send_uuids(mdev); 849 if (!err) 850 err = drbd_send_current_state(mdev); 851 clear_bit(USE_DEGR_WFC_T, &mdev->flags); 852 clear_bit(RESIZE_PENDING, &mdev->flags); 853 atomic_set(&mdev->ap_in_flight, 0); 854 mod_timer(&mdev->request_timer, jiffies + HZ); /* just start it here. */ 855 return err; 856 } 857 858 /* 859 * return values: 860 * 1 yes, we have a valid connection 861 * 0 oops, did not work out, please try again 862 * -1 peer talks different language, 863 * no point in trying again, please go standalone. 864 * -2 We do not have a network config... 865 */ 866 static int conn_connect(struct drbd_tconn *tconn) 867 { 868 struct drbd_socket sock, msock; 869 struct drbd_conf *mdev; 870 struct net_conf *nc; 871 int vnr, timeout, h, ok; 872 bool discard_my_data; 873 enum drbd_state_rv rv; 874 struct accept_wait_data ad = { 875 .tconn = tconn, 876 .door_bell = COMPLETION_INITIALIZER_ONSTACK(ad.door_bell), 877 }; 878 879 clear_bit(DISCONNECT_SENT, &tconn->flags); 880 if (conn_request_state(tconn, NS(conn, C_WF_CONNECTION), CS_VERBOSE) < SS_SUCCESS) 881 return -2; 882 883 mutex_init(&sock.mutex); 884 sock.sbuf = tconn->data.sbuf; 885 sock.rbuf = tconn->data.rbuf; 886 sock.socket = NULL; 887 mutex_init(&msock.mutex); 888 msock.sbuf = tconn->meta.sbuf; 889 msock.rbuf = tconn->meta.rbuf; 890 msock.socket = NULL; 891 892 /* Assume that the peer only understands protocol 80 until we know better. */ 893 tconn->agreed_pro_version = 80; 894 895 if (prepare_listen_socket(tconn, &ad)) 896 return 0; 897 898 do { 899 struct socket *s; 900 901 s = drbd_try_connect(tconn); 902 if (s) { 903 if (!sock.socket) { 904 sock.socket = s; 905 send_first_packet(tconn, &sock, P_INITIAL_DATA); 906 } else if (!msock.socket) { 907 clear_bit(RESOLVE_CONFLICTS, &tconn->flags); 908 msock.socket = s; 909 send_first_packet(tconn, &msock, P_INITIAL_META); 910 } else { 911 conn_err(tconn, "Logic error in conn_connect()\n"); 912 goto out_release_sockets; 913 } 914 } 915 916 if (sock.socket && msock.socket) { 917 rcu_read_lock(); 918 nc = rcu_dereference(tconn->net_conf); 919 timeout = nc->ping_timeo * HZ / 10; 920 rcu_read_unlock(); 921 schedule_timeout_interruptible(timeout); 922 ok = drbd_socket_okay(&sock.socket); 923 ok = drbd_socket_okay(&msock.socket) && ok; 924 if (ok) 925 break; 926 } 927 928 retry: 929 s = drbd_wait_for_connect(tconn, &ad); 930 if (s) { 931 int fp = receive_first_packet(tconn, s); 932 drbd_socket_okay(&sock.socket); 933 drbd_socket_okay(&msock.socket); 934 switch (fp) { 935 case P_INITIAL_DATA: 936 if (sock.socket) { 937 conn_warn(tconn, "initial packet S crossed\n"); 938 sock_release(sock.socket); 939 sock.socket = s; 940 goto randomize; 941 } 942 sock.socket = s; 943 break; 944 case P_INITIAL_META: 945 set_bit(RESOLVE_CONFLICTS, &tconn->flags); 946 if (msock.socket) { 947 conn_warn(tconn, "initial packet M crossed\n"); 948 sock_release(msock.socket); 949 msock.socket = s; 950 goto randomize; 951 } 952 msock.socket = s; 953 break; 954 default: 955 conn_warn(tconn, "Error receiving initial packet\n"); 956 sock_release(s); 957 randomize: 958 if (prandom_u32() & 1) 959 goto retry; 960 } 961 } 962 963 if (tconn->cstate <= C_DISCONNECTING) 964 goto out_release_sockets; 965 if (signal_pending(current)) { 966 flush_signals(current); 967 smp_rmb(); 968 if (get_t_state(&tconn->receiver) == EXITING) 969 goto out_release_sockets; 970 } 971 972 ok = drbd_socket_okay(&sock.socket); 973 ok = drbd_socket_okay(&msock.socket) && ok; 974 } while (!ok); 975 976 if (ad.s_listen) 977 sock_release(ad.s_listen); 978 979 sock.socket->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */ 980 msock.socket->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */ 981 982 sock.socket->sk->sk_allocation = GFP_NOIO; 983 msock.socket->sk->sk_allocation = GFP_NOIO; 984 985 sock.socket->sk->sk_priority = TC_PRIO_INTERACTIVE_BULK; 986 msock.socket->sk->sk_priority = TC_PRIO_INTERACTIVE; 987 988 /* NOT YET ... 989 * sock.socket->sk->sk_sndtimeo = tconn->net_conf->timeout*HZ/10; 990 * sock.socket->sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 991 * first set it to the P_CONNECTION_FEATURES timeout, 992 * which we set to 4x the configured ping_timeout. */ 993 rcu_read_lock(); 994 nc = rcu_dereference(tconn->net_conf); 995 996 sock.socket->sk->sk_sndtimeo = 997 sock.socket->sk->sk_rcvtimeo = nc->ping_timeo*4*HZ/10; 998 999 msock.socket->sk->sk_rcvtimeo = nc->ping_int*HZ; 1000 timeout = nc->timeout * HZ / 10; 1001 discard_my_data = nc->discard_my_data; 1002 rcu_read_unlock(); 1003 1004 msock.socket->sk->sk_sndtimeo = timeout; 1005 1006 /* we don't want delays. 1007 * we use TCP_CORK where appropriate, though */ 1008 drbd_tcp_nodelay(sock.socket); 1009 drbd_tcp_nodelay(msock.socket); 1010 1011 tconn->data.socket = sock.socket; 1012 tconn->meta.socket = msock.socket; 1013 tconn->last_received = jiffies; 1014 1015 h = drbd_do_features(tconn); 1016 if (h <= 0) 1017 return h; 1018 1019 if (tconn->cram_hmac_tfm) { 1020 /* drbd_request_state(mdev, NS(conn, WFAuth)); */ 1021 switch (drbd_do_auth(tconn)) { 1022 case -1: 1023 conn_err(tconn, "Authentication of peer failed\n"); 1024 return -1; 1025 case 0: 1026 conn_err(tconn, "Authentication of peer failed, trying again.\n"); 1027 return 0; 1028 } 1029 } 1030 1031 tconn->data.socket->sk->sk_sndtimeo = timeout; 1032 tconn->data.socket->sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 1033 1034 if (drbd_send_protocol(tconn) == -EOPNOTSUPP) 1035 return -1; 1036 1037 set_bit(STATE_SENT, &tconn->flags); 1038 1039 rcu_read_lock(); 1040 idr_for_each_entry(&tconn->volumes, mdev, vnr) { 1041 kref_get(&mdev->kref); 1042 rcu_read_unlock(); 1043 1044 /* Prevent a race between resync-handshake and 1045 * being promoted to Primary. 1046 * 1047 * Grab and release the state mutex, so we know that any current 1048 * drbd_set_role() is finished, and any incoming drbd_set_role 1049 * will see the STATE_SENT flag, and wait for it to be cleared. 1050 */ 1051 mutex_lock(mdev->state_mutex); 1052 mutex_unlock(mdev->state_mutex); 1053 1054 if (discard_my_data) 1055 set_bit(DISCARD_MY_DATA, &mdev->flags); 1056 else 1057 clear_bit(DISCARD_MY_DATA, &mdev->flags); 1058 1059 drbd_connected(mdev); 1060 kref_put(&mdev->kref, &drbd_minor_destroy); 1061 rcu_read_lock(); 1062 } 1063 rcu_read_unlock(); 1064 1065 rv = conn_request_state(tconn, NS(conn, C_WF_REPORT_PARAMS), CS_VERBOSE); 1066 if (rv < SS_SUCCESS || tconn->cstate != C_WF_REPORT_PARAMS) { 1067 clear_bit(STATE_SENT, &tconn->flags); 1068 return 0; 1069 } 1070 1071 drbd_thread_start(&tconn->asender); 1072 1073 mutex_lock(&tconn->conf_update); 1074 /* The discard_my_data flag is a single-shot modifier to the next 1075 * connection attempt, the handshake of which is now well underway. 1076 * No need for rcu style copying of the whole struct 1077 * just to clear a single value. */ 1078 tconn->net_conf->discard_my_data = 0; 1079 mutex_unlock(&tconn->conf_update); 1080 1081 return h; 1082 1083 out_release_sockets: 1084 if (ad.s_listen) 1085 sock_release(ad.s_listen); 1086 if (sock.socket) 1087 sock_release(sock.socket); 1088 if (msock.socket) 1089 sock_release(msock.socket); 1090 return -1; 1091 } 1092 1093 static int decode_header(struct drbd_tconn *tconn, void *header, struct packet_info *pi) 1094 { 1095 unsigned int header_size = drbd_header_size(tconn); 1096 1097 if (header_size == sizeof(struct p_header100) && 1098 *(__be32 *)header == cpu_to_be32(DRBD_MAGIC_100)) { 1099 struct p_header100 *h = header; 1100 if (h->pad != 0) { 1101 conn_err(tconn, "Header padding is not zero\n"); 1102 return -EINVAL; 1103 } 1104 pi->vnr = be16_to_cpu(h->volume); 1105 pi->cmd = be16_to_cpu(h->command); 1106 pi->size = be32_to_cpu(h->length); 1107 } else if (header_size == sizeof(struct p_header95) && 1108 *(__be16 *)header == cpu_to_be16(DRBD_MAGIC_BIG)) { 1109 struct p_header95 *h = header; 1110 pi->cmd = be16_to_cpu(h->command); 1111 pi->size = be32_to_cpu(h->length); 1112 pi->vnr = 0; 1113 } else if (header_size == sizeof(struct p_header80) && 1114 *(__be32 *)header == cpu_to_be32(DRBD_MAGIC)) { 1115 struct p_header80 *h = header; 1116 pi->cmd = be16_to_cpu(h->command); 1117 pi->size = be16_to_cpu(h->length); 1118 pi->vnr = 0; 1119 } else { 1120 conn_err(tconn, "Wrong magic value 0x%08x in protocol version %d\n", 1121 be32_to_cpu(*(__be32 *)header), 1122 tconn->agreed_pro_version); 1123 return -EINVAL; 1124 } 1125 pi->data = header + header_size; 1126 return 0; 1127 } 1128 1129 static int drbd_recv_header(struct drbd_tconn *tconn, struct packet_info *pi) 1130 { 1131 void *buffer = tconn->data.rbuf; 1132 int err; 1133 1134 err = drbd_recv_all_warn(tconn, buffer, drbd_header_size(tconn)); 1135 if (err) 1136 return err; 1137 1138 err = decode_header(tconn, buffer, pi); 1139 tconn->last_received = jiffies; 1140 1141 return err; 1142 } 1143 1144 static void drbd_flush(struct drbd_tconn *tconn) 1145 { 1146 int rv; 1147 struct drbd_conf *mdev; 1148 int vnr; 1149 1150 if (tconn->write_ordering >= WO_bdev_flush) { 1151 rcu_read_lock(); 1152 idr_for_each_entry(&tconn->volumes, mdev, vnr) { 1153 if (!get_ldev(mdev)) 1154 continue; 1155 kref_get(&mdev->kref); 1156 rcu_read_unlock(); 1157 1158 rv = blkdev_issue_flush(mdev->ldev->backing_bdev, 1159 GFP_NOIO, NULL); 1160 if (rv) { 1161 dev_info(DEV, "local disk flush failed with status %d\n", rv); 1162 /* would rather check on EOPNOTSUPP, but that is not reliable. 1163 * don't try again for ANY return value != 0 1164 * if (rv == -EOPNOTSUPP) */ 1165 drbd_bump_write_ordering(tconn, WO_drain_io); 1166 } 1167 put_ldev(mdev); 1168 kref_put(&mdev->kref, &drbd_minor_destroy); 1169 1170 rcu_read_lock(); 1171 if (rv) 1172 break; 1173 } 1174 rcu_read_unlock(); 1175 } 1176 } 1177 1178 /** 1179 * drbd_may_finish_epoch() - Applies an epoch_event to the epoch's state, eventually finishes it. 1180 * @mdev: DRBD device. 1181 * @epoch: Epoch object. 1182 * @ev: Epoch event. 1183 */ 1184 static enum finish_epoch drbd_may_finish_epoch(struct drbd_tconn *tconn, 1185 struct drbd_epoch *epoch, 1186 enum epoch_event ev) 1187 { 1188 int epoch_size; 1189 struct drbd_epoch *next_epoch; 1190 enum finish_epoch rv = FE_STILL_LIVE; 1191 1192 spin_lock(&tconn->epoch_lock); 1193 do { 1194 next_epoch = NULL; 1195 1196 epoch_size = atomic_read(&epoch->epoch_size); 1197 1198 switch (ev & ~EV_CLEANUP) { 1199 case EV_PUT: 1200 atomic_dec(&epoch->active); 1201 break; 1202 case EV_GOT_BARRIER_NR: 1203 set_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags); 1204 break; 1205 case EV_BECAME_LAST: 1206 /* nothing to do*/ 1207 break; 1208 } 1209 1210 if (epoch_size != 0 && 1211 atomic_read(&epoch->active) == 0 && 1212 (test_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags) || ev & EV_CLEANUP)) { 1213 if (!(ev & EV_CLEANUP)) { 1214 spin_unlock(&tconn->epoch_lock); 1215 drbd_send_b_ack(epoch->tconn, epoch->barrier_nr, epoch_size); 1216 spin_lock(&tconn->epoch_lock); 1217 } 1218 #if 0 1219 /* FIXME: dec unacked on connection, once we have 1220 * something to count pending connection packets in. */ 1221 if (test_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags)) 1222 dec_unacked(epoch->tconn); 1223 #endif 1224 1225 if (tconn->current_epoch != epoch) { 1226 next_epoch = list_entry(epoch->list.next, struct drbd_epoch, list); 1227 list_del(&epoch->list); 1228 ev = EV_BECAME_LAST | (ev & EV_CLEANUP); 1229 tconn->epochs--; 1230 kfree(epoch); 1231 1232 if (rv == FE_STILL_LIVE) 1233 rv = FE_DESTROYED; 1234 } else { 1235 epoch->flags = 0; 1236 atomic_set(&epoch->epoch_size, 0); 1237 /* atomic_set(&epoch->active, 0); is already zero */ 1238 if (rv == FE_STILL_LIVE) 1239 rv = FE_RECYCLED; 1240 } 1241 } 1242 1243 if (!next_epoch) 1244 break; 1245 1246 epoch = next_epoch; 1247 } while (1); 1248 1249 spin_unlock(&tconn->epoch_lock); 1250 1251 return rv; 1252 } 1253 1254 /** 1255 * drbd_bump_write_ordering() - Fall back to an other write ordering method 1256 * @tconn: DRBD connection. 1257 * @wo: Write ordering method to try. 1258 */ 1259 void drbd_bump_write_ordering(struct drbd_tconn *tconn, enum write_ordering_e wo) 1260 { 1261 struct disk_conf *dc; 1262 struct drbd_conf *mdev; 1263 enum write_ordering_e pwo; 1264 int vnr; 1265 static char *write_ordering_str[] = { 1266 [WO_none] = "none", 1267 [WO_drain_io] = "drain", 1268 [WO_bdev_flush] = "flush", 1269 }; 1270 1271 pwo = tconn->write_ordering; 1272 wo = min(pwo, wo); 1273 rcu_read_lock(); 1274 idr_for_each_entry(&tconn->volumes, mdev, vnr) { 1275 if (!get_ldev_if_state(mdev, D_ATTACHING)) 1276 continue; 1277 dc = rcu_dereference(mdev->ldev->disk_conf); 1278 1279 if (wo == WO_bdev_flush && !dc->disk_flushes) 1280 wo = WO_drain_io; 1281 if (wo == WO_drain_io && !dc->disk_drain) 1282 wo = WO_none; 1283 put_ldev(mdev); 1284 } 1285 rcu_read_unlock(); 1286 tconn->write_ordering = wo; 1287 if (pwo != tconn->write_ordering || wo == WO_bdev_flush) 1288 conn_info(tconn, "Method to ensure write ordering: %s\n", write_ordering_str[tconn->write_ordering]); 1289 } 1290 1291 /** 1292 * drbd_submit_peer_request() 1293 * @mdev: DRBD device. 1294 * @peer_req: peer request 1295 * @rw: flag field, see bio->bi_rw 1296 * 1297 * May spread the pages to multiple bios, 1298 * depending on bio_add_page restrictions. 1299 * 1300 * Returns 0 if all bios have been submitted, 1301 * -ENOMEM if we could not allocate enough bios, 1302 * -ENOSPC (any better suggestion?) if we have not been able to bio_add_page a 1303 * single page to an empty bio (which should never happen and likely indicates 1304 * that the lower level IO stack is in some way broken). This has been observed 1305 * on certain Xen deployments. 1306 */ 1307 /* TODO allocate from our own bio_set. */ 1308 int drbd_submit_peer_request(struct drbd_conf *mdev, 1309 struct drbd_peer_request *peer_req, 1310 const unsigned rw, const int fault_type) 1311 { 1312 struct bio *bios = NULL; 1313 struct bio *bio; 1314 struct page *page = peer_req->pages; 1315 sector_t sector = peer_req->i.sector; 1316 unsigned ds = peer_req->i.size; 1317 unsigned n_bios = 0; 1318 unsigned nr_pages = (ds + PAGE_SIZE -1) >> PAGE_SHIFT; 1319 int err = -ENOMEM; 1320 1321 /* In most cases, we will only need one bio. But in case the lower 1322 * level restrictions happen to be different at this offset on this 1323 * side than those of the sending peer, we may need to submit the 1324 * request in more than one bio. 1325 * 1326 * Plain bio_alloc is good enough here, this is no DRBD internally 1327 * generated bio, but a bio allocated on behalf of the peer. 1328 */ 1329 next_bio: 1330 bio = bio_alloc(GFP_NOIO, nr_pages); 1331 if (!bio) { 1332 dev_err(DEV, "submit_ee: Allocation of a bio failed\n"); 1333 goto fail; 1334 } 1335 /* > peer_req->i.sector, unless this is the first bio */ 1336 bio->bi_sector = sector; 1337 bio->bi_bdev = mdev->ldev->backing_bdev; 1338 bio->bi_rw = rw; 1339 bio->bi_private = peer_req; 1340 bio->bi_end_io = drbd_peer_request_endio; 1341 1342 bio->bi_next = bios; 1343 bios = bio; 1344 ++n_bios; 1345 1346 page_chain_for_each(page) { 1347 unsigned len = min_t(unsigned, ds, PAGE_SIZE); 1348 if (!bio_add_page(bio, page, len, 0)) { 1349 /* A single page must always be possible! 1350 * But in case it fails anyways, 1351 * we deal with it, and complain (below). */ 1352 if (bio->bi_vcnt == 0) { 1353 dev_err(DEV, 1354 "bio_add_page failed for len=%u, " 1355 "bi_vcnt=0 (bi_sector=%llu)\n", 1356 len, (unsigned long long)bio->bi_sector); 1357 err = -ENOSPC; 1358 goto fail; 1359 } 1360 goto next_bio; 1361 } 1362 ds -= len; 1363 sector += len >> 9; 1364 --nr_pages; 1365 } 1366 D_ASSERT(page == NULL); 1367 D_ASSERT(ds == 0); 1368 1369 atomic_set(&peer_req->pending_bios, n_bios); 1370 do { 1371 bio = bios; 1372 bios = bios->bi_next; 1373 bio->bi_next = NULL; 1374 1375 drbd_generic_make_request(mdev, fault_type, bio); 1376 } while (bios); 1377 return 0; 1378 1379 fail: 1380 while (bios) { 1381 bio = bios; 1382 bios = bios->bi_next; 1383 bio_put(bio); 1384 } 1385 return err; 1386 } 1387 1388 static void drbd_remove_epoch_entry_interval(struct drbd_conf *mdev, 1389 struct drbd_peer_request *peer_req) 1390 { 1391 struct drbd_interval *i = &peer_req->i; 1392 1393 drbd_remove_interval(&mdev->write_requests, i); 1394 drbd_clear_interval(i); 1395 1396 /* Wake up any processes waiting for this peer request to complete. */ 1397 if (i->waiting) 1398 wake_up(&mdev->misc_wait); 1399 } 1400 1401 void conn_wait_active_ee_empty(struct drbd_tconn *tconn) 1402 { 1403 struct drbd_conf *mdev; 1404 int vnr; 1405 1406 rcu_read_lock(); 1407 idr_for_each_entry(&tconn->volumes, mdev, vnr) { 1408 kref_get(&mdev->kref); 1409 rcu_read_unlock(); 1410 drbd_wait_ee_list_empty(mdev, &mdev->active_ee); 1411 kref_put(&mdev->kref, &drbd_minor_destroy); 1412 rcu_read_lock(); 1413 } 1414 rcu_read_unlock(); 1415 } 1416 1417 static int receive_Barrier(struct drbd_tconn *tconn, struct packet_info *pi) 1418 { 1419 int rv; 1420 struct p_barrier *p = pi->data; 1421 struct drbd_epoch *epoch; 1422 1423 /* FIXME these are unacked on connection, 1424 * not a specific (peer)device. 1425 */ 1426 tconn->current_epoch->barrier_nr = p->barrier; 1427 tconn->current_epoch->tconn = tconn; 1428 rv = drbd_may_finish_epoch(tconn, tconn->current_epoch, EV_GOT_BARRIER_NR); 1429 1430 /* P_BARRIER_ACK may imply that the corresponding extent is dropped from 1431 * the activity log, which means it would not be resynced in case the 1432 * R_PRIMARY crashes now. 1433 * Therefore we must send the barrier_ack after the barrier request was 1434 * completed. */ 1435 switch (tconn->write_ordering) { 1436 case WO_none: 1437 if (rv == FE_RECYCLED) 1438 return 0; 1439 1440 /* receiver context, in the writeout path of the other node. 1441 * avoid potential distributed deadlock */ 1442 epoch = kmalloc(sizeof(struct drbd_epoch), GFP_NOIO); 1443 if (epoch) 1444 break; 1445 else 1446 conn_warn(tconn, "Allocation of an epoch failed, slowing down\n"); 1447 /* Fall through */ 1448 1449 case WO_bdev_flush: 1450 case WO_drain_io: 1451 conn_wait_active_ee_empty(tconn); 1452 drbd_flush(tconn); 1453 1454 if (atomic_read(&tconn->current_epoch->epoch_size)) { 1455 epoch = kmalloc(sizeof(struct drbd_epoch), GFP_NOIO); 1456 if (epoch) 1457 break; 1458 } 1459 1460 return 0; 1461 default: 1462 conn_err(tconn, "Strangeness in tconn->write_ordering %d\n", tconn->write_ordering); 1463 return -EIO; 1464 } 1465 1466 epoch->flags = 0; 1467 atomic_set(&epoch->epoch_size, 0); 1468 atomic_set(&epoch->active, 0); 1469 1470 spin_lock(&tconn->epoch_lock); 1471 if (atomic_read(&tconn->current_epoch->epoch_size)) { 1472 list_add(&epoch->list, &tconn->current_epoch->list); 1473 tconn->current_epoch = epoch; 1474 tconn->epochs++; 1475 } else { 1476 /* The current_epoch got recycled while we allocated this one... */ 1477 kfree(epoch); 1478 } 1479 spin_unlock(&tconn->epoch_lock); 1480 1481 return 0; 1482 } 1483 1484 /* used from receive_RSDataReply (recv_resync_read) 1485 * and from receive_Data */ 1486 static struct drbd_peer_request * 1487 read_in_block(struct drbd_conf *mdev, u64 id, sector_t sector, 1488 int data_size) __must_hold(local) 1489 { 1490 const sector_t capacity = drbd_get_capacity(mdev->this_bdev); 1491 struct drbd_peer_request *peer_req; 1492 struct page *page; 1493 int dgs, ds, err; 1494 void *dig_in = mdev->tconn->int_dig_in; 1495 void *dig_vv = mdev->tconn->int_dig_vv; 1496 unsigned long *data; 1497 1498 dgs = 0; 1499 if (mdev->tconn->peer_integrity_tfm) { 1500 dgs = crypto_hash_digestsize(mdev->tconn->peer_integrity_tfm); 1501 /* 1502 * FIXME: Receive the incoming digest into the receive buffer 1503 * here, together with its struct p_data? 1504 */ 1505 err = drbd_recv_all_warn(mdev->tconn, dig_in, dgs); 1506 if (err) 1507 return NULL; 1508 data_size -= dgs; 1509 } 1510 1511 if (!expect(IS_ALIGNED(data_size, 512))) 1512 return NULL; 1513 if (!expect(data_size <= DRBD_MAX_BIO_SIZE)) 1514 return NULL; 1515 1516 /* even though we trust out peer, 1517 * we sometimes have to double check. */ 1518 if (sector + (data_size>>9) > capacity) { 1519 dev_err(DEV, "request from peer beyond end of local disk: " 1520 "capacity: %llus < sector: %llus + size: %u\n", 1521 (unsigned long long)capacity, 1522 (unsigned long long)sector, data_size); 1523 return NULL; 1524 } 1525 1526 /* GFP_NOIO, because we must not cause arbitrary write-out: in a DRBD 1527 * "criss-cross" setup, that might cause write-out on some other DRBD, 1528 * which in turn might block on the other node at this very place. */ 1529 peer_req = drbd_alloc_peer_req(mdev, id, sector, data_size, GFP_NOIO); 1530 if (!peer_req) 1531 return NULL; 1532 1533 if (!data_size) 1534 return peer_req; 1535 1536 ds = data_size; 1537 page = peer_req->pages; 1538 page_chain_for_each(page) { 1539 unsigned len = min_t(int, ds, PAGE_SIZE); 1540 data = kmap(page); 1541 err = drbd_recv_all_warn(mdev->tconn, data, len); 1542 if (drbd_insert_fault(mdev, DRBD_FAULT_RECEIVE)) { 1543 dev_err(DEV, "Fault injection: Corrupting data on receive\n"); 1544 data[0] = data[0] ^ (unsigned long)-1; 1545 } 1546 kunmap(page); 1547 if (err) { 1548 drbd_free_peer_req(mdev, peer_req); 1549 return NULL; 1550 } 1551 ds -= len; 1552 } 1553 1554 if (dgs) { 1555 drbd_csum_ee(mdev, mdev->tconn->peer_integrity_tfm, peer_req, dig_vv); 1556 if (memcmp(dig_in, dig_vv, dgs)) { 1557 dev_err(DEV, "Digest integrity check FAILED: %llus +%u\n", 1558 (unsigned long long)sector, data_size); 1559 drbd_free_peer_req(mdev, peer_req); 1560 return NULL; 1561 } 1562 } 1563 mdev->recv_cnt += data_size>>9; 1564 return peer_req; 1565 } 1566 1567 /* drbd_drain_block() just takes a data block 1568 * out of the socket input buffer, and discards it. 1569 */ 1570 static int drbd_drain_block(struct drbd_conf *mdev, int data_size) 1571 { 1572 struct page *page; 1573 int err = 0; 1574 void *data; 1575 1576 if (!data_size) 1577 return 0; 1578 1579 page = drbd_alloc_pages(mdev, 1, 1); 1580 1581 data = kmap(page); 1582 while (data_size) { 1583 unsigned int len = min_t(int, data_size, PAGE_SIZE); 1584 1585 err = drbd_recv_all_warn(mdev->tconn, data, len); 1586 if (err) 1587 break; 1588 data_size -= len; 1589 } 1590 kunmap(page); 1591 drbd_free_pages(mdev, page, 0); 1592 return err; 1593 } 1594 1595 static int recv_dless_read(struct drbd_conf *mdev, struct drbd_request *req, 1596 sector_t sector, int data_size) 1597 { 1598 struct bio_vec *bvec; 1599 struct bio *bio; 1600 int dgs, err, i, expect; 1601 void *dig_in = mdev->tconn->int_dig_in; 1602 void *dig_vv = mdev->tconn->int_dig_vv; 1603 1604 dgs = 0; 1605 if (mdev->tconn->peer_integrity_tfm) { 1606 dgs = crypto_hash_digestsize(mdev->tconn->peer_integrity_tfm); 1607 err = drbd_recv_all_warn(mdev->tconn, dig_in, dgs); 1608 if (err) 1609 return err; 1610 data_size -= dgs; 1611 } 1612 1613 /* optimistically update recv_cnt. if receiving fails below, 1614 * we disconnect anyways, and counters will be reset. */ 1615 mdev->recv_cnt += data_size>>9; 1616 1617 bio = req->master_bio; 1618 D_ASSERT(sector == bio->bi_sector); 1619 1620 bio_for_each_segment(bvec, bio, i) { 1621 void *mapped = kmap(bvec->bv_page) + bvec->bv_offset; 1622 expect = min_t(int, data_size, bvec->bv_len); 1623 err = drbd_recv_all_warn(mdev->tconn, mapped, expect); 1624 kunmap(bvec->bv_page); 1625 if (err) 1626 return err; 1627 data_size -= expect; 1628 } 1629 1630 if (dgs) { 1631 drbd_csum_bio(mdev, mdev->tconn->peer_integrity_tfm, bio, dig_vv); 1632 if (memcmp(dig_in, dig_vv, dgs)) { 1633 dev_err(DEV, "Digest integrity check FAILED. Broken NICs?\n"); 1634 return -EINVAL; 1635 } 1636 } 1637 1638 D_ASSERT(data_size == 0); 1639 return 0; 1640 } 1641 1642 /* 1643 * e_end_resync_block() is called in asender context via 1644 * drbd_finish_peer_reqs(). 1645 */ 1646 static int e_end_resync_block(struct drbd_work *w, int unused) 1647 { 1648 struct drbd_peer_request *peer_req = 1649 container_of(w, struct drbd_peer_request, w); 1650 struct drbd_conf *mdev = w->mdev; 1651 sector_t sector = peer_req->i.sector; 1652 int err; 1653 1654 D_ASSERT(drbd_interval_empty(&peer_req->i)); 1655 1656 if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) { 1657 drbd_set_in_sync(mdev, sector, peer_req->i.size); 1658 err = drbd_send_ack(mdev, P_RS_WRITE_ACK, peer_req); 1659 } else { 1660 /* Record failure to sync */ 1661 drbd_rs_failed_io(mdev, sector, peer_req->i.size); 1662 1663 err = drbd_send_ack(mdev, P_NEG_ACK, peer_req); 1664 } 1665 dec_unacked(mdev); 1666 1667 return err; 1668 } 1669 1670 static int recv_resync_read(struct drbd_conf *mdev, sector_t sector, int data_size) __releases(local) 1671 { 1672 struct drbd_peer_request *peer_req; 1673 1674 peer_req = read_in_block(mdev, ID_SYNCER, sector, data_size); 1675 if (!peer_req) 1676 goto fail; 1677 1678 dec_rs_pending(mdev); 1679 1680 inc_unacked(mdev); 1681 /* corresponding dec_unacked() in e_end_resync_block() 1682 * respective _drbd_clear_done_ee */ 1683 1684 peer_req->w.cb = e_end_resync_block; 1685 1686 spin_lock_irq(&mdev->tconn->req_lock); 1687 list_add(&peer_req->w.list, &mdev->sync_ee); 1688 spin_unlock_irq(&mdev->tconn->req_lock); 1689 1690 atomic_add(data_size >> 9, &mdev->rs_sect_ev); 1691 if (drbd_submit_peer_request(mdev, peer_req, WRITE, DRBD_FAULT_RS_WR) == 0) 1692 return 0; 1693 1694 /* don't care for the reason here */ 1695 dev_err(DEV, "submit failed, triggering re-connect\n"); 1696 spin_lock_irq(&mdev->tconn->req_lock); 1697 list_del(&peer_req->w.list); 1698 spin_unlock_irq(&mdev->tconn->req_lock); 1699 1700 drbd_free_peer_req(mdev, peer_req); 1701 fail: 1702 put_ldev(mdev); 1703 return -EIO; 1704 } 1705 1706 static struct drbd_request * 1707 find_request(struct drbd_conf *mdev, struct rb_root *root, u64 id, 1708 sector_t sector, bool missing_ok, const char *func) 1709 { 1710 struct drbd_request *req; 1711 1712 /* Request object according to our peer */ 1713 req = (struct drbd_request *)(unsigned long)id; 1714 if (drbd_contains_interval(root, sector, &req->i) && req->i.local) 1715 return req; 1716 if (!missing_ok) { 1717 dev_err(DEV, "%s: failed to find request 0x%lx, sector %llus\n", func, 1718 (unsigned long)id, (unsigned long long)sector); 1719 } 1720 return NULL; 1721 } 1722 1723 static int receive_DataReply(struct drbd_tconn *tconn, struct packet_info *pi) 1724 { 1725 struct drbd_conf *mdev; 1726 struct drbd_request *req; 1727 sector_t sector; 1728 int err; 1729 struct p_data *p = pi->data; 1730 1731 mdev = vnr_to_mdev(tconn, pi->vnr); 1732 if (!mdev) 1733 return -EIO; 1734 1735 sector = be64_to_cpu(p->sector); 1736 1737 spin_lock_irq(&mdev->tconn->req_lock); 1738 req = find_request(mdev, &mdev->read_requests, p->block_id, sector, false, __func__); 1739 spin_unlock_irq(&mdev->tconn->req_lock); 1740 if (unlikely(!req)) 1741 return -EIO; 1742 1743 /* hlist_del(&req->collision) is done in _req_may_be_done, to avoid 1744 * special casing it there for the various failure cases. 1745 * still no race with drbd_fail_pending_reads */ 1746 err = recv_dless_read(mdev, req, sector, pi->size); 1747 if (!err) 1748 req_mod(req, DATA_RECEIVED); 1749 /* else: nothing. handled from drbd_disconnect... 1750 * I don't think we may complete this just yet 1751 * in case we are "on-disconnect: freeze" */ 1752 1753 return err; 1754 } 1755 1756 static int receive_RSDataReply(struct drbd_tconn *tconn, struct packet_info *pi) 1757 { 1758 struct drbd_conf *mdev; 1759 sector_t sector; 1760 int err; 1761 struct p_data *p = pi->data; 1762 1763 mdev = vnr_to_mdev(tconn, pi->vnr); 1764 if (!mdev) 1765 return -EIO; 1766 1767 sector = be64_to_cpu(p->sector); 1768 D_ASSERT(p->block_id == ID_SYNCER); 1769 1770 if (get_ldev(mdev)) { 1771 /* data is submitted to disk within recv_resync_read. 1772 * corresponding put_ldev done below on error, 1773 * or in drbd_peer_request_endio. */ 1774 err = recv_resync_read(mdev, sector, pi->size); 1775 } else { 1776 if (__ratelimit(&drbd_ratelimit_state)) 1777 dev_err(DEV, "Can not write resync data to local disk.\n"); 1778 1779 err = drbd_drain_block(mdev, pi->size); 1780 1781 drbd_send_ack_dp(mdev, P_NEG_ACK, p, pi->size); 1782 } 1783 1784 atomic_add(pi->size >> 9, &mdev->rs_sect_in); 1785 1786 return err; 1787 } 1788 1789 static void restart_conflicting_writes(struct drbd_conf *mdev, 1790 sector_t sector, int size) 1791 { 1792 struct drbd_interval *i; 1793 struct drbd_request *req; 1794 1795 drbd_for_each_overlap(i, &mdev->write_requests, sector, size) { 1796 if (!i->local) 1797 continue; 1798 req = container_of(i, struct drbd_request, i); 1799 if (req->rq_state & RQ_LOCAL_PENDING || 1800 !(req->rq_state & RQ_POSTPONED)) 1801 continue; 1802 /* as it is RQ_POSTPONED, this will cause it to 1803 * be queued on the retry workqueue. */ 1804 __req_mod(req, CONFLICT_RESOLVED, NULL); 1805 } 1806 } 1807 1808 /* 1809 * e_end_block() is called in asender context via drbd_finish_peer_reqs(). 1810 */ 1811 static int e_end_block(struct drbd_work *w, int cancel) 1812 { 1813 struct drbd_peer_request *peer_req = 1814 container_of(w, struct drbd_peer_request, w); 1815 struct drbd_conf *mdev = w->mdev; 1816 sector_t sector = peer_req->i.sector; 1817 int err = 0, pcmd; 1818 1819 if (peer_req->flags & EE_SEND_WRITE_ACK) { 1820 if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) { 1821 pcmd = (mdev->state.conn >= C_SYNC_SOURCE && 1822 mdev->state.conn <= C_PAUSED_SYNC_T && 1823 peer_req->flags & EE_MAY_SET_IN_SYNC) ? 1824 P_RS_WRITE_ACK : P_WRITE_ACK; 1825 err = drbd_send_ack(mdev, pcmd, peer_req); 1826 if (pcmd == P_RS_WRITE_ACK) 1827 drbd_set_in_sync(mdev, sector, peer_req->i.size); 1828 } else { 1829 err = drbd_send_ack(mdev, P_NEG_ACK, peer_req); 1830 /* we expect it to be marked out of sync anyways... 1831 * maybe assert this? */ 1832 } 1833 dec_unacked(mdev); 1834 } 1835 /* we delete from the conflict detection hash _after_ we sent out the 1836 * P_WRITE_ACK / P_NEG_ACK, to get the sequence number right. */ 1837 if (peer_req->flags & EE_IN_INTERVAL_TREE) { 1838 spin_lock_irq(&mdev->tconn->req_lock); 1839 D_ASSERT(!drbd_interval_empty(&peer_req->i)); 1840 drbd_remove_epoch_entry_interval(mdev, peer_req); 1841 if (peer_req->flags & EE_RESTART_REQUESTS) 1842 restart_conflicting_writes(mdev, sector, peer_req->i.size); 1843 spin_unlock_irq(&mdev->tconn->req_lock); 1844 } else 1845 D_ASSERT(drbd_interval_empty(&peer_req->i)); 1846 1847 drbd_may_finish_epoch(mdev->tconn, peer_req->epoch, EV_PUT + (cancel ? EV_CLEANUP : 0)); 1848 1849 return err; 1850 } 1851 1852 static int e_send_ack(struct drbd_work *w, enum drbd_packet ack) 1853 { 1854 struct drbd_conf *mdev = w->mdev; 1855 struct drbd_peer_request *peer_req = 1856 container_of(w, struct drbd_peer_request, w); 1857 int err; 1858 1859 err = drbd_send_ack(mdev, ack, peer_req); 1860 dec_unacked(mdev); 1861 1862 return err; 1863 } 1864 1865 static int e_send_superseded(struct drbd_work *w, int unused) 1866 { 1867 return e_send_ack(w, P_SUPERSEDED); 1868 } 1869 1870 static int e_send_retry_write(struct drbd_work *w, int unused) 1871 { 1872 struct drbd_tconn *tconn = w->mdev->tconn; 1873 1874 return e_send_ack(w, tconn->agreed_pro_version >= 100 ? 1875 P_RETRY_WRITE : P_SUPERSEDED); 1876 } 1877 1878 static bool seq_greater(u32 a, u32 b) 1879 { 1880 /* 1881 * We assume 32-bit wrap-around here. 1882 * For 24-bit wrap-around, we would have to shift: 1883 * a <<= 8; b <<= 8; 1884 */ 1885 return (s32)a - (s32)b > 0; 1886 } 1887 1888 static u32 seq_max(u32 a, u32 b) 1889 { 1890 return seq_greater(a, b) ? a : b; 1891 } 1892 1893 static bool need_peer_seq(struct drbd_conf *mdev) 1894 { 1895 struct drbd_tconn *tconn = mdev->tconn; 1896 int tp; 1897 1898 /* 1899 * We only need to keep track of the last packet_seq number of our peer 1900 * if we are in dual-primary mode and we have the resolve-conflicts flag set; see 1901 * handle_write_conflicts(). 1902 */ 1903 1904 rcu_read_lock(); 1905 tp = rcu_dereference(mdev->tconn->net_conf)->two_primaries; 1906 rcu_read_unlock(); 1907 1908 return tp && test_bit(RESOLVE_CONFLICTS, &tconn->flags); 1909 } 1910 1911 static void update_peer_seq(struct drbd_conf *mdev, unsigned int peer_seq) 1912 { 1913 unsigned int newest_peer_seq; 1914 1915 if (need_peer_seq(mdev)) { 1916 spin_lock(&mdev->peer_seq_lock); 1917 newest_peer_seq = seq_max(mdev->peer_seq, peer_seq); 1918 mdev->peer_seq = newest_peer_seq; 1919 spin_unlock(&mdev->peer_seq_lock); 1920 /* wake up only if we actually changed mdev->peer_seq */ 1921 if (peer_seq == newest_peer_seq) 1922 wake_up(&mdev->seq_wait); 1923 } 1924 } 1925 1926 static inline int overlaps(sector_t s1, int l1, sector_t s2, int l2) 1927 { 1928 return !((s1 + (l1>>9) <= s2) || (s1 >= s2 + (l2>>9))); 1929 } 1930 1931 /* maybe change sync_ee into interval trees as well? */ 1932 static bool overlapping_resync_write(struct drbd_conf *mdev, struct drbd_peer_request *peer_req) 1933 { 1934 struct drbd_peer_request *rs_req; 1935 bool rv = 0; 1936 1937 spin_lock_irq(&mdev->tconn->req_lock); 1938 list_for_each_entry(rs_req, &mdev->sync_ee, w.list) { 1939 if (overlaps(peer_req->i.sector, peer_req->i.size, 1940 rs_req->i.sector, rs_req->i.size)) { 1941 rv = 1; 1942 break; 1943 } 1944 } 1945 spin_unlock_irq(&mdev->tconn->req_lock); 1946 1947 return rv; 1948 } 1949 1950 /* Called from receive_Data. 1951 * Synchronize packets on sock with packets on msock. 1952 * 1953 * This is here so even when a P_DATA packet traveling via sock overtook an Ack 1954 * packet traveling on msock, they are still processed in the order they have 1955 * been sent. 1956 * 1957 * Note: we don't care for Ack packets overtaking P_DATA packets. 1958 * 1959 * In case packet_seq is larger than mdev->peer_seq number, there are 1960 * outstanding packets on the msock. We wait for them to arrive. 1961 * In case we are the logically next packet, we update mdev->peer_seq 1962 * ourselves. Correctly handles 32bit wrap around. 1963 * 1964 * Assume we have a 10 GBit connection, that is about 1<<30 byte per second, 1965 * about 1<<21 sectors per second. So "worst" case, we have 1<<3 == 8 seconds 1966 * for the 24bit wrap (historical atomic_t guarantee on some archs), and we have 1967 * 1<<9 == 512 seconds aka ages for the 32bit wrap around... 1968 * 1969 * returns 0 if we may process the packet, 1970 * -ERESTARTSYS if we were interrupted (by disconnect signal). */ 1971 static int wait_for_and_update_peer_seq(struct drbd_conf *mdev, const u32 peer_seq) 1972 { 1973 DEFINE_WAIT(wait); 1974 long timeout; 1975 int ret; 1976 1977 if (!need_peer_seq(mdev)) 1978 return 0; 1979 1980 spin_lock(&mdev->peer_seq_lock); 1981 for (;;) { 1982 if (!seq_greater(peer_seq - 1, mdev->peer_seq)) { 1983 mdev->peer_seq = seq_max(mdev->peer_seq, peer_seq); 1984 ret = 0; 1985 break; 1986 } 1987 if (signal_pending(current)) { 1988 ret = -ERESTARTSYS; 1989 break; 1990 } 1991 prepare_to_wait(&mdev->seq_wait, &wait, TASK_INTERRUPTIBLE); 1992 spin_unlock(&mdev->peer_seq_lock); 1993 rcu_read_lock(); 1994 timeout = rcu_dereference(mdev->tconn->net_conf)->ping_timeo*HZ/10; 1995 rcu_read_unlock(); 1996 timeout = schedule_timeout(timeout); 1997 spin_lock(&mdev->peer_seq_lock); 1998 if (!timeout) { 1999 ret = -ETIMEDOUT; 2000 dev_err(DEV, "Timed out waiting for missing ack packets; disconnecting\n"); 2001 break; 2002 } 2003 } 2004 spin_unlock(&mdev->peer_seq_lock); 2005 finish_wait(&mdev->seq_wait, &wait); 2006 return ret; 2007 } 2008 2009 /* see also bio_flags_to_wire() 2010 * DRBD_REQ_*, because we need to semantically map the flags to data packet 2011 * flags and back. We may replicate to other kernel versions. */ 2012 static unsigned long wire_flags_to_bio(struct drbd_conf *mdev, u32 dpf) 2013 { 2014 return (dpf & DP_RW_SYNC ? REQ_SYNC : 0) | 2015 (dpf & DP_FUA ? REQ_FUA : 0) | 2016 (dpf & DP_FLUSH ? REQ_FLUSH : 0) | 2017 (dpf & DP_DISCARD ? REQ_DISCARD : 0); 2018 } 2019 2020 static void fail_postponed_requests(struct drbd_conf *mdev, sector_t sector, 2021 unsigned int size) 2022 { 2023 struct drbd_interval *i; 2024 2025 repeat: 2026 drbd_for_each_overlap(i, &mdev->write_requests, sector, size) { 2027 struct drbd_request *req; 2028 struct bio_and_error m; 2029 2030 if (!i->local) 2031 continue; 2032 req = container_of(i, struct drbd_request, i); 2033 if (!(req->rq_state & RQ_POSTPONED)) 2034 continue; 2035 req->rq_state &= ~RQ_POSTPONED; 2036 __req_mod(req, NEG_ACKED, &m); 2037 spin_unlock_irq(&mdev->tconn->req_lock); 2038 if (m.bio) 2039 complete_master_bio(mdev, &m); 2040 spin_lock_irq(&mdev->tconn->req_lock); 2041 goto repeat; 2042 } 2043 } 2044 2045 static int handle_write_conflicts(struct drbd_conf *mdev, 2046 struct drbd_peer_request *peer_req) 2047 { 2048 struct drbd_tconn *tconn = mdev->tconn; 2049 bool resolve_conflicts = test_bit(RESOLVE_CONFLICTS, &tconn->flags); 2050 sector_t sector = peer_req->i.sector; 2051 const unsigned int size = peer_req->i.size; 2052 struct drbd_interval *i; 2053 bool equal; 2054 int err; 2055 2056 /* 2057 * Inserting the peer request into the write_requests tree will prevent 2058 * new conflicting local requests from being added. 2059 */ 2060 drbd_insert_interval(&mdev->write_requests, &peer_req->i); 2061 2062 repeat: 2063 drbd_for_each_overlap(i, &mdev->write_requests, sector, size) { 2064 if (i == &peer_req->i) 2065 continue; 2066 2067 if (!i->local) { 2068 /* 2069 * Our peer has sent a conflicting remote request; this 2070 * should not happen in a two-node setup. Wait for the 2071 * earlier peer request to complete. 2072 */ 2073 err = drbd_wait_misc(mdev, i); 2074 if (err) 2075 goto out; 2076 goto repeat; 2077 } 2078 2079 equal = i->sector == sector && i->size == size; 2080 if (resolve_conflicts) { 2081 /* 2082 * If the peer request is fully contained within the 2083 * overlapping request, it can be considered overwritten 2084 * and thus superseded; otherwise, it will be retried 2085 * once all overlapping requests have completed. 2086 */ 2087 bool superseded = i->sector <= sector && i->sector + 2088 (i->size >> 9) >= sector + (size >> 9); 2089 2090 if (!equal) 2091 dev_alert(DEV, "Concurrent writes detected: " 2092 "local=%llus +%u, remote=%llus +%u, " 2093 "assuming %s came first\n", 2094 (unsigned long long)i->sector, i->size, 2095 (unsigned long long)sector, size, 2096 superseded ? "local" : "remote"); 2097 2098 inc_unacked(mdev); 2099 peer_req->w.cb = superseded ? e_send_superseded : 2100 e_send_retry_write; 2101 list_add_tail(&peer_req->w.list, &mdev->done_ee); 2102 wake_asender(mdev->tconn); 2103 2104 err = -ENOENT; 2105 goto out; 2106 } else { 2107 struct drbd_request *req = 2108 container_of(i, struct drbd_request, i); 2109 2110 if (!equal) 2111 dev_alert(DEV, "Concurrent writes detected: " 2112 "local=%llus +%u, remote=%llus +%u\n", 2113 (unsigned long long)i->sector, i->size, 2114 (unsigned long long)sector, size); 2115 2116 if (req->rq_state & RQ_LOCAL_PENDING || 2117 !(req->rq_state & RQ_POSTPONED)) { 2118 /* 2119 * Wait for the node with the discard flag to 2120 * decide if this request has been superseded 2121 * or needs to be retried. 2122 * Requests that have been superseded will 2123 * disappear from the write_requests tree. 2124 * 2125 * In addition, wait for the conflicting 2126 * request to finish locally before submitting 2127 * the conflicting peer request. 2128 */ 2129 err = drbd_wait_misc(mdev, &req->i); 2130 if (err) { 2131 _conn_request_state(mdev->tconn, 2132 NS(conn, C_TIMEOUT), 2133 CS_HARD); 2134 fail_postponed_requests(mdev, sector, size); 2135 goto out; 2136 } 2137 goto repeat; 2138 } 2139 /* 2140 * Remember to restart the conflicting requests after 2141 * the new peer request has completed. 2142 */ 2143 peer_req->flags |= EE_RESTART_REQUESTS; 2144 } 2145 } 2146 err = 0; 2147 2148 out: 2149 if (err) 2150 drbd_remove_epoch_entry_interval(mdev, peer_req); 2151 return err; 2152 } 2153 2154 /* mirrored write */ 2155 static int receive_Data(struct drbd_tconn *tconn, struct packet_info *pi) 2156 { 2157 struct drbd_conf *mdev; 2158 sector_t sector; 2159 struct drbd_peer_request *peer_req; 2160 struct p_data *p = pi->data; 2161 u32 peer_seq = be32_to_cpu(p->seq_num); 2162 int rw = WRITE; 2163 u32 dp_flags; 2164 int err, tp; 2165 2166 mdev = vnr_to_mdev(tconn, pi->vnr); 2167 if (!mdev) 2168 return -EIO; 2169 2170 if (!get_ldev(mdev)) { 2171 int err2; 2172 2173 err = wait_for_and_update_peer_seq(mdev, peer_seq); 2174 drbd_send_ack_dp(mdev, P_NEG_ACK, p, pi->size); 2175 atomic_inc(&tconn->current_epoch->epoch_size); 2176 err2 = drbd_drain_block(mdev, pi->size); 2177 if (!err) 2178 err = err2; 2179 return err; 2180 } 2181 2182 /* 2183 * Corresponding put_ldev done either below (on various errors), or in 2184 * drbd_peer_request_endio, if we successfully submit the data at the 2185 * end of this function. 2186 */ 2187 2188 sector = be64_to_cpu(p->sector); 2189 peer_req = read_in_block(mdev, p->block_id, sector, pi->size); 2190 if (!peer_req) { 2191 put_ldev(mdev); 2192 return -EIO; 2193 } 2194 2195 peer_req->w.cb = e_end_block; 2196 2197 dp_flags = be32_to_cpu(p->dp_flags); 2198 rw |= wire_flags_to_bio(mdev, dp_flags); 2199 if (peer_req->pages == NULL) { 2200 D_ASSERT(peer_req->i.size == 0); 2201 D_ASSERT(dp_flags & DP_FLUSH); 2202 } 2203 2204 if (dp_flags & DP_MAY_SET_IN_SYNC) 2205 peer_req->flags |= EE_MAY_SET_IN_SYNC; 2206 2207 spin_lock(&tconn->epoch_lock); 2208 peer_req->epoch = tconn->current_epoch; 2209 atomic_inc(&peer_req->epoch->epoch_size); 2210 atomic_inc(&peer_req->epoch->active); 2211 spin_unlock(&tconn->epoch_lock); 2212 2213 rcu_read_lock(); 2214 tp = rcu_dereference(mdev->tconn->net_conf)->two_primaries; 2215 rcu_read_unlock(); 2216 if (tp) { 2217 peer_req->flags |= EE_IN_INTERVAL_TREE; 2218 err = wait_for_and_update_peer_seq(mdev, peer_seq); 2219 if (err) 2220 goto out_interrupted; 2221 spin_lock_irq(&mdev->tconn->req_lock); 2222 err = handle_write_conflicts(mdev, peer_req); 2223 if (err) { 2224 spin_unlock_irq(&mdev->tconn->req_lock); 2225 if (err == -ENOENT) { 2226 put_ldev(mdev); 2227 return 0; 2228 } 2229 goto out_interrupted; 2230 } 2231 } else 2232 spin_lock_irq(&mdev->tconn->req_lock); 2233 list_add(&peer_req->w.list, &mdev->active_ee); 2234 spin_unlock_irq(&mdev->tconn->req_lock); 2235 2236 if (mdev->state.conn == C_SYNC_TARGET) 2237 wait_event(mdev->ee_wait, !overlapping_resync_write(mdev, peer_req)); 2238 2239 if (mdev->tconn->agreed_pro_version < 100) { 2240 rcu_read_lock(); 2241 switch (rcu_dereference(mdev->tconn->net_conf)->wire_protocol) { 2242 case DRBD_PROT_C: 2243 dp_flags |= DP_SEND_WRITE_ACK; 2244 break; 2245 case DRBD_PROT_B: 2246 dp_flags |= DP_SEND_RECEIVE_ACK; 2247 break; 2248 } 2249 rcu_read_unlock(); 2250 } 2251 2252 if (dp_flags & DP_SEND_WRITE_ACK) { 2253 peer_req->flags |= EE_SEND_WRITE_ACK; 2254 inc_unacked(mdev); 2255 /* corresponding dec_unacked() in e_end_block() 2256 * respective _drbd_clear_done_ee */ 2257 } 2258 2259 if (dp_flags & DP_SEND_RECEIVE_ACK) { 2260 /* I really don't like it that the receiver thread 2261 * sends on the msock, but anyways */ 2262 drbd_send_ack(mdev, P_RECV_ACK, peer_req); 2263 } 2264 2265 if (mdev->state.pdsk < D_INCONSISTENT) { 2266 /* In case we have the only disk of the cluster, */ 2267 drbd_set_out_of_sync(mdev, peer_req->i.sector, peer_req->i.size); 2268 peer_req->flags |= EE_CALL_AL_COMPLETE_IO; 2269 peer_req->flags &= ~EE_MAY_SET_IN_SYNC; 2270 drbd_al_begin_io(mdev, &peer_req->i, true); 2271 } 2272 2273 err = drbd_submit_peer_request(mdev, peer_req, rw, DRBD_FAULT_DT_WR); 2274 if (!err) 2275 return 0; 2276 2277 /* don't care for the reason here */ 2278 dev_err(DEV, "submit failed, triggering re-connect\n"); 2279 spin_lock_irq(&mdev->tconn->req_lock); 2280 list_del(&peer_req->w.list); 2281 drbd_remove_epoch_entry_interval(mdev, peer_req); 2282 spin_unlock_irq(&mdev->tconn->req_lock); 2283 if (peer_req->flags & EE_CALL_AL_COMPLETE_IO) 2284 drbd_al_complete_io(mdev, &peer_req->i); 2285 2286 out_interrupted: 2287 drbd_may_finish_epoch(tconn, peer_req->epoch, EV_PUT + EV_CLEANUP); 2288 put_ldev(mdev); 2289 drbd_free_peer_req(mdev, peer_req); 2290 return err; 2291 } 2292 2293 /* We may throttle resync, if the lower device seems to be busy, 2294 * and current sync rate is above c_min_rate. 2295 * 2296 * To decide whether or not the lower device is busy, we use a scheme similar 2297 * to MD RAID is_mddev_idle(): if the partition stats reveal "significant" 2298 * (more than 64 sectors) of activity we cannot account for with our own resync 2299 * activity, it obviously is "busy". 2300 * 2301 * The current sync rate used here uses only the most recent two step marks, 2302 * to have a short time average so we can react faster. 2303 */ 2304 int drbd_rs_should_slow_down(struct drbd_conf *mdev, sector_t sector) 2305 { 2306 struct gendisk *disk = mdev->ldev->backing_bdev->bd_contains->bd_disk; 2307 unsigned long db, dt, dbdt; 2308 struct lc_element *tmp; 2309 int curr_events; 2310 int throttle = 0; 2311 unsigned int c_min_rate; 2312 2313 rcu_read_lock(); 2314 c_min_rate = rcu_dereference(mdev->ldev->disk_conf)->c_min_rate; 2315 rcu_read_unlock(); 2316 2317 /* feature disabled? */ 2318 if (c_min_rate == 0) 2319 return 0; 2320 2321 spin_lock_irq(&mdev->al_lock); 2322 tmp = lc_find(mdev->resync, BM_SECT_TO_EXT(sector)); 2323 if (tmp) { 2324 struct bm_extent *bm_ext = lc_entry(tmp, struct bm_extent, lce); 2325 if (test_bit(BME_PRIORITY, &bm_ext->flags)) { 2326 spin_unlock_irq(&mdev->al_lock); 2327 return 0; 2328 } 2329 /* Do not slow down if app IO is already waiting for this extent */ 2330 } 2331 spin_unlock_irq(&mdev->al_lock); 2332 2333 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) + 2334 (int)part_stat_read(&disk->part0, sectors[1]) - 2335 atomic_read(&mdev->rs_sect_ev); 2336 2337 if (!mdev->rs_last_events || curr_events - mdev->rs_last_events > 64) { 2338 unsigned long rs_left; 2339 int i; 2340 2341 mdev->rs_last_events = curr_events; 2342 2343 /* sync speed average over the last 2*DRBD_SYNC_MARK_STEP, 2344 * approx. */ 2345 i = (mdev->rs_last_mark + DRBD_SYNC_MARKS-1) % DRBD_SYNC_MARKS; 2346 2347 if (mdev->state.conn == C_VERIFY_S || mdev->state.conn == C_VERIFY_T) 2348 rs_left = mdev->ov_left; 2349 else 2350 rs_left = drbd_bm_total_weight(mdev) - mdev->rs_failed; 2351 2352 dt = ((long)jiffies - (long)mdev->rs_mark_time[i]) / HZ; 2353 if (!dt) 2354 dt++; 2355 db = mdev->rs_mark_left[i] - rs_left; 2356 dbdt = Bit2KB(db/dt); 2357 2358 if (dbdt > c_min_rate) 2359 throttle = 1; 2360 } 2361 return throttle; 2362 } 2363 2364 2365 static int receive_DataRequest(struct drbd_tconn *tconn, struct packet_info *pi) 2366 { 2367 struct drbd_conf *mdev; 2368 sector_t sector; 2369 sector_t capacity; 2370 struct drbd_peer_request *peer_req; 2371 struct digest_info *di = NULL; 2372 int size, verb; 2373 unsigned int fault_type; 2374 struct p_block_req *p = pi->data; 2375 2376 mdev = vnr_to_mdev(tconn, pi->vnr); 2377 if (!mdev) 2378 return -EIO; 2379 capacity = drbd_get_capacity(mdev->this_bdev); 2380 2381 sector = be64_to_cpu(p->sector); 2382 size = be32_to_cpu(p->blksize); 2383 2384 if (size <= 0 || !IS_ALIGNED(size, 512) || size > DRBD_MAX_BIO_SIZE) { 2385 dev_err(DEV, "%s:%d: sector: %llus, size: %u\n", __FILE__, __LINE__, 2386 (unsigned long long)sector, size); 2387 return -EINVAL; 2388 } 2389 if (sector + (size>>9) > capacity) { 2390 dev_err(DEV, "%s:%d: sector: %llus, size: %u\n", __FILE__, __LINE__, 2391 (unsigned long long)sector, size); 2392 return -EINVAL; 2393 } 2394 2395 if (!get_ldev_if_state(mdev, D_UP_TO_DATE)) { 2396 verb = 1; 2397 switch (pi->cmd) { 2398 case P_DATA_REQUEST: 2399 drbd_send_ack_rp(mdev, P_NEG_DREPLY, p); 2400 break; 2401 case P_RS_DATA_REQUEST: 2402 case P_CSUM_RS_REQUEST: 2403 case P_OV_REQUEST: 2404 drbd_send_ack_rp(mdev, P_NEG_RS_DREPLY , p); 2405 break; 2406 case P_OV_REPLY: 2407 verb = 0; 2408 dec_rs_pending(mdev); 2409 drbd_send_ack_ex(mdev, P_OV_RESULT, sector, size, ID_IN_SYNC); 2410 break; 2411 default: 2412 BUG(); 2413 } 2414 if (verb && __ratelimit(&drbd_ratelimit_state)) 2415 dev_err(DEV, "Can not satisfy peer's read request, " 2416 "no local data.\n"); 2417 2418 /* drain possibly payload */ 2419 return drbd_drain_block(mdev, pi->size); 2420 } 2421 2422 /* GFP_NOIO, because we must not cause arbitrary write-out: in a DRBD 2423 * "criss-cross" setup, that might cause write-out on some other DRBD, 2424 * which in turn might block on the other node at this very place. */ 2425 peer_req = drbd_alloc_peer_req(mdev, p->block_id, sector, size, GFP_NOIO); 2426 if (!peer_req) { 2427 put_ldev(mdev); 2428 return -ENOMEM; 2429 } 2430 2431 switch (pi->cmd) { 2432 case P_DATA_REQUEST: 2433 peer_req->w.cb = w_e_end_data_req; 2434 fault_type = DRBD_FAULT_DT_RD; 2435 /* application IO, don't drbd_rs_begin_io */ 2436 goto submit; 2437 2438 case P_RS_DATA_REQUEST: 2439 peer_req->w.cb = w_e_end_rsdata_req; 2440 fault_type = DRBD_FAULT_RS_RD; 2441 /* used in the sector offset progress display */ 2442 mdev->bm_resync_fo = BM_SECT_TO_BIT(sector); 2443 break; 2444 2445 case P_OV_REPLY: 2446 case P_CSUM_RS_REQUEST: 2447 fault_type = DRBD_FAULT_RS_RD; 2448 di = kmalloc(sizeof(*di) + pi->size, GFP_NOIO); 2449 if (!di) 2450 goto out_free_e; 2451 2452 di->digest_size = pi->size; 2453 di->digest = (((char *)di)+sizeof(struct digest_info)); 2454 2455 peer_req->digest = di; 2456 peer_req->flags |= EE_HAS_DIGEST; 2457 2458 if (drbd_recv_all(mdev->tconn, di->digest, pi->size)) 2459 goto out_free_e; 2460 2461 if (pi->cmd == P_CSUM_RS_REQUEST) { 2462 D_ASSERT(mdev->tconn->agreed_pro_version >= 89); 2463 peer_req->w.cb = w_e_end_csum_rs_req; 2464 /* used in the sector offset progress display */ 2465 mdev->bm_resync_fo = BM_SECT_TO_BIT(sector); 2466 } else if (pi->cmd == P_OV_REPLY) { 2467 /* track progress, we may need to throttle */ 2468 atomic_add(size >> 9, &mdev->rs_sect_in); 2469 peer_req->w.cb = w_e_end_ov_reply; 2470 dec_rs_pending(mdev); 2471 /* drbd_rs_begin_io done when we sent this request, 2472 * but accounting still needs to be done. */ 2473 goto submit_for_resync; 2474 } 2475 break; 2476 2477 case P_OV_REQUEST: 2478 if (mdev->ov_start_sector == ~(sector_t)0 && 2479 mdev->tconn->agreed_pro_version >= 90) { 2480 unsigned long now = jiffies; 2481 int i; 2482 mdev->ov_start_sector = sector; 2483 mdev->ov_position = sector; 2484 mdev->ov_left = drbd_bm_bits(mdev) - BM_SECT_TO_BIT(sector); 2485 mdev->rs_total = mdev->ov_left; 2486 for (i = 0; i < DRBD_SYNC_MARKS; i++) { 2487 mdev->rs_mark_left[i] = mdev->ov_left; 2488 mdev->rs_mark_time[i] = now; 2489 } 2490 dev_info(DEV, "Online Verify start sector: %llu\n", 2491 (unsigned long long)sector); 2492 } 2493 peer_req->w.cb = w_e_end_ov_req; 2494 fault_type = DRBD_FAULT_RS_RD; 2495 break; 2496 2497 default: 2498 BUG(); 2499 } 2500 2501 /* Throttle, drbd_rs_begin_io and submit should become asynchronous 2502 * wrt the receiver, but it is not as straightforward as it may seem. 2503 * Various places in the resync start and stop logic assume resync 2504 * requests are processed in order, requeuing this on the worker thread 2505 * introduces a bunch of new code for synchronization between threads. 2506 * 2507 * Unlimited throttling before drbd_rs_begin_io may stall the resync 2508 * "forever", throttling after drbd_rs_begin_io will lock that extent 2509 * for application writes for the same time. For now, just throttle 2510 * here, where the rest of the code expects the receiver to sleep for 2511 * a while, anyways. 2512 */ 2513 2514 /* Throttle before drbd_rs_begin_io, as that locks out application IO; 2515 * this defers syncer requests for some time, before letting at least 2516 * on request through. The resync controller on the receiving side 2517 * will adapt to the incoming rate accordingly. 2518 * 2519 * We cannot throttle here if remote is Primary/SyncTarget: 2520 * we would also throttle its application reads. 2521 * In that case, throttling is done on the SyncTarget only. 2522 */ 2523 if (mdev->state.peer != R_PRIMARY && drbd_rs_should_slow_down(mdev, sector)) 2524 schedule_timeout_uninterruptible(HZ/10); 2525 if (drbd_rs_begin_io(mdev, sector)) 2526 goto out_free_e; 2527 2528 submit_for_resync: 2529 atomic_add(size >> 9, &mdev->rs_sect_ev); 2530 2531 submit: 2532 inc_unacked(mdev); 2533 spin_lock_irq(&mdev->tconn->req_lock); 2534 list_add_tail(&peer_req->w.list, &mdev->read_ee); 2535 spin_unlock_irq(&mdev->tconn->req_lock); 2536 2537 if (drbd_submit_peer_request(mdev, peer_req, READ, fault_type) == 0) 2538 return 0; 2539 2540 /* don't care for the reason here */ 2541 dev_err(DEV, "submit failed, triggering re-connect\n"); 2542 spin_lock_irq(&mdev->tconn->req_lock); 2543 list_del(&peer_req->w.list); 2544 spin_unlock_irq(&mdev->tconn->req_lock); 2545 /* no drbd_rs_complete_io(), we are dropping the connection anyways */ 2546 2547 out_free_e: 2548 put_ldev(mdev); 2549 drbd_free_peer_req(mdev, peer_req); 2550 return -EIO; 2551 } 2552 2553 static int drbd_asb_recover_0p(struct drbd_conf *mdev) __must_hold(local) 2554 { 2555 int self, peer, rv = -100; 2556 unsigned long ch_self, ch_peer; 2557 enum drbd_after_sb_p after_sb_0p; 2558 2559 self = mdev->ldev->md.uuid[UI_BITMAP] & 1; 2560 peer = mdev->p_uuid[UI_BITMAP] & 1; 2561 2562 ch_peer = mdev->p_uuid[UI_SIZE]; 2563 ch_self = mdev->comm_bm_set; 2564 2565 rcu_read_lock(); 2566 after_sb_0p = rcu_dereference(mdev->tconn->net_conf)->after_sb_0p; 2567 rcu_read_unlock(); 2568 switch (after_sb_0p) { 2569 case ASB_CONSENSUS: 2570 case ASB_DISCARD_SECONDARY: 2571 case ASB_CALL_HELPER: 2572 case ASB_VIOLENTLY: 2573 dev_err(DEV, "Configuration error.\n"); 2574 break; 2575 case ASB_DISCONNECT: 2576 break; 2577 case ASB_DISCARD_YOUNGER_PRI: 2578 if (self == 0 && peer == 1) { 2579 rv = -1; 2580 break; 2581 } 2582 if (self == 1 && peer == 0) { 2583 rv = 1; 2584 break; 2585 } 2586 /* Else fall through to one of the other strategies... */ 2587 case ASB_DISCARD_OLDER_PRI: 2588 if (self == 0 && peer == 1) { 2589 rv = 1; 2590 break; 2591 } 2592 if (self == 1 && peer == 0) { 2593 rv = -1; 2594 break; 2595 } 2596 /* Else fall through to one of the other strategies... */ 2597 dev_warn(DEV, "Discard younger/older primary did not find a decision\n" 2598 "Using discard-least-changes instead\n"); 2599 case ASB_DISCARD_ZERO_CHG: 2600 if (ch_peer == 0 && ch_self == 0) { 2601 rv = test_bit(RESOLVE_CONFLICTS, &mdev->tconn->flags) 2602 ? -1 : 1; 2603 break; 2604 } else { 2605 if (ch_peer == 0) { rv = 1; break; } 2606 if (ch_self == 0) { rv = -1; break; } 2607 } 2608 if (after_sb_0p == ASB_DISCARD_ZERO_CHG) 2609 break; 2610 case ASB_DISCARD_LEAST_CHG: 2611 if (ch_self < ch_peer) 2612 rv = -1; 2613 else if (ch_self > ch_peer) 2614 rv = 1; 2615 else /* ( ch_self == ch_peer ) */ 2616 /* Well, then use something else. */ 2617 rv = test_bit(RESOLVE_CONFLICTS, &mdev->tconn->flags) 2618 ? -1 : 1; 2619 break; 2620 case ASB_DISCARD_LOCAL: 2621 rv = -1; 2622 break; 2623 case ASB_DISCARD_REMOTE: 2624 rv = 1; 2625 } 2626 2627 return rv; 2628 } 2629 2630 static int drbd_asb_recover_1p(struct drbd_conf *mdev) __must_hold(local) 2631 { 2632 int hg, rv = -100; 2633 enum drbd_after_sb_p after_sb_1p; 2634 2635 rcu_read_lock(); 2636 after_sb_1p = rcu_dereference(mdev->tconn->net_conf)->after_sb_1p; 2637 rcu_read_unlock(); 2638 switch (after_sb_1p) { 2639 case ASB_DISCARD_YOUNGER_PRI: 2640 case ASB_DISCARD_OLDER_PRI: 2641 case ASB_DISCARD_LEAST_CHG: 2642 case ASB_DISCARD_LOCAL: 2643 case ASB_DISCARD_REMOTE: 2644 case ASB_DISCARD_ZERO_CHG: 2645 dev_err(DEV, "Configuration error.\n"); 2646 break; 2647 case ASB_DISCONNECT: 2648 break; 2649 case ASB_CONSENSUS: 2650 hg = drbd_asb_recover_0p(mdev); 2651 if (hg == -1 && mdev->state.role == R_SECONDARY) 2652 rv = hg; 2653 if (hg == 1 && mdev->state.role == R_PRIMARY) 2654 rv = hg; 2655 break; 2656 case ASB_VIOLENTLY: 2657 rv = drbd_asb_recover_0p(mdev); 2658 break; 2659 case ASB_DISCARD_SECONDARY: 2660 return mdev->state.role == R_PRIMARY ? 1 : -1; 2661 case ASB_CALL_HELPER: 2662 hg = drbd_asb_recover_0p(mdev); 2663 if (hg == -1 && mdev->state.role == R_PRIMARY) { 2664 enum drbd_state_rv rv2; 2665 2666 /* drbd_change_state() does not sleep while in SS_IN_TRANSIENT_STATE, 2667 * we might be here in C_WF_REPORT_PARAMS which is transient. 2668 * we do not need to wait for the after state change work either. */ 2669 rv2 = drbd_change_state(mdev, CS_VERBOSE, NS(role, R_SECONDARY)); 2670 if (rv2 != SS_SUCCESS) { 2671 drbd_khelper(mdev, "pri-lost-after-sb"); 2672 } else { 2673 dev_warn(DEV, "Successfully gave up primary role.\n"); 2674 rv = hg; 2675 } 2676 } else 2677 rv = hg; 2678 } 2679 2680 return rv; 2681 } 2682 2683 static int drbd_asb_recover_2p(struct drbd_conf *mdev) __must_hold(local) 2684 { 2685 int hg, rv = -100; 2686 enum drbd_after_sb_p after_sb_2p; 2687 2688 rcu_read_lock(); 2689 after_sb_2p = rcu_dereference(mdev->tconn->net_conf)->after_sb_2p; 2690 rcu_read_unlock(); 2691 switch (after_sb_2p) { 2692 case ASB_DISCARD_YOUNGER_PRI: 2693 case ASB_DISCARD_OLDER_PRI: 2694 case ASB_DISCARD_LEAST_CHG: 2695 case ASB_DISCARD_LOCAL: 2696 case ASB_DISCARD_REMOTE: 2697 case ASB_CONSENSUS: 2698 case ASB_DISCARD_SECONDARY: 2699 case ASB_DISCARD_ZERO_CHG: 2700 dev_err(DEV, "Configuration error.\n"); 2701 break; 2702 case ASB_VIOLENTLY: 2703 rv = drbd_asb_recover_0p(mdev); 2704 break; 2705 case ASB_DISCONNECT: 2706 break; 2707 case ASB_CALL_HELPER: 2708 hg = drbd_asb_recover_0p(mdev); 2709 if (hg == -1) { 2710 enum drbd_state_rv rv2; 2711 2712 /* drbd_change_state() does not sleep while in SS_IN_TRANSIENT_STATE, 2713 * we might be here in C_WF_REPORT_PARAMS which is transient. 2714 * we do not need to wait for the after state change work either. */ 2715 rv2 = drbd_change_state(mdev, CS_VERBOSE, NS(role, R_SECONDARY)); 2716 if (rv2 != SS_SUCCESS) { 2717 drbd_khelper(mdev, "pri-lost-after-sb"); 2718 } else { 2719 dev_warn(DEV, "Successfully gave up primary role.\n"); 2720 rv = hg; 2721 } 2722 } else 2723 rv = hg; 2724 } 2725 2726 return rv; 2727 } 2728 2729 static void drbd_uuid_dump(struct drbd_conf *mdev, char *text, u64 *uuid, 2730 u64 bits, u64 flags) 2731 { 2732 if (!uuid) { 2733 dev_info(DEV, "%s uuid info vanished while I was looking!\n", text); 2734 return; 2735 } 2736 dev_info(DEV, "%s %016llX:%016llX:%016llX:%016llX bits:%llu flags:%llX\n", 2737 text, 2738 (unsigned long long)uuid[UI_CURRENT], 2739 (unsigned long long)uuid[UI_BITMAP], 2740 (unsigned long long)uuid[UI_HISTORY_START], 2741 (unsigned long long)uuid[UI_HISTORY_END], 2742 (unsigned long long)bits, 2743 (unsigned long long)flags); 2744 } 2745 2746 /* 2747 100 after split brain try auto recover 2748 2 C_SYNC_SOURCE set BitMap 2749 1 C_SYNC_SOURCE use BitMap 2750 0 no Sync 2751 -1 C_SYNC_TARGET use BitMap 2752 -2 C_SYNC_TARGET set BitMap 2753 -100 after split brain, disconnect 2754 -1000 unrelated data 2755 -1091 requires proto 91 2756 -1096 requires proto 96 2757 */ 2758 static int drbd_uuid_compare(struct drbd_conf *mdev, int *rule_nr) __must_hold(local) 2759 { 2760 u64 self, peer; 2761 int i, j; 2762 2763 self = mdev->ldev->md.uuid[UI_CURRENT] & ~((u64)1); 2764 peer = mdev->p_uuid[UI_CURRENT] & ~((u64)1); 2765 2766 *rule_nr = 10; 2767 if (self == UUID_JUST_CREATED && peer == UUID_JUST_CREATED) 2768 return 0; 2769 2770 *rule_nr = 20; 2771 if ((self == UUID_JUST_CREATED || self == (u64)0) && 2772 peer != UUID_JUST_CREATED) 2773 return -2; 2774 2775 *rule_nr = 30; 2776 if (self != UUID_JUST_CREATED && 2777 (peer == UUID_JUST_CREATED || peer == (u64)0)) 2778 return 2; 2779 2780 if (self == peer) { 2781 int rct, dc; /* roles at crash time */ 2782 2783 if (mdev->p_uuid[UI_BITMAP] == (u64)0 && mdev->ldev->md.uuid[UI_BITMAP] != (u64)0) { 2784 2785 if (mdev->tconn->agreed_pro_version < 91) 2786 return -1091; 2787 2788 if ((mdev->ldev->md.uuid[UI_BITMAP] & ~((u64)1)) == (mdev->p_uuid[UI_HISTORY_START] & ~((u64)1)) && 2789 (mdev->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == (mdev->p_uuid[UI_HISTORY_START + 1] & ~((u64)1))) { 2790 dev_info(DEV, "was SyncSource, missed the resync finished event, corrected myself:\n"); 2791 drbd_uuid_move_history(mdev); 2792 mdev->ldev->md.uuid[UI_HISTORY_START] = mdev->ldev->md.uuid[UI_BITMAP]; 2793 mdev->ldev->md.uuid[UI_BITMAP] = 0; 2794 2795 drbd_uuid_dump(mdev, "self", mdev->ldev->md.uuid, 2796 mdev->state.disk >= D_NEGOTIATING ? drbd_bm_total_weight(mdev) : 0, 0); 2797 *rule_nr = 34; 2798 } else { 2799 dev_info(DEV, "was SyncSource (peer failed to write sync_uuid)\n"); 2800 *rule_nr = 36; 2801 } 2802 2803 return 1; 2804 } 2805 2806 if (mdev->ldev->md.uuid[UI_BITMAP] == (u64)0 && mdev->p_uuid[UI_BITMAP] != (u64)0) { 2807 2808 if (mdev->tconn->agreed_pro_version < 91) 2809 return -1091; 2810 2811 if ((mdev->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == (mdev->p_uuid[UI_BITMAP] & ~((u64)1)) && 2812 (mdev->ldev->md.uuid[UI_HISTORY_START + 1] & ~((u64)1)) == (mdev->p_uuid[UI_HISTORY_START] & ~((u64)1))) { 2813 dev_info(DEV, "was SyncTarget, peer missed the resync finished event, corrected peer:\n"); 2814 2815 mdev->p_uuid[UI_HISTORY_START + 1] = mdev->p_uuid[UI_HISTORY_START]; 2816 mdev->p_uuid[UI_HISTORY_START] = mdev->p_uuid[UI_BITMAP]; 2817 mdev->p_uuid[UI_BITMAP] = 0UL; 2818 2819 drbd_uuid_dump(mdev, "peer", mdev->p_uuid, mdev->p_uuid[UI_SIZE], mdev->p_uuid[UI_FLAGS]); 2820 *rule_nr = 35; 2821 } else { 2822 dev_info(DEV, "was SyncTarget (failed to write sync_uuid)\n"); 2823 *rule_nr = 37; 2824 } 2825 2826 return -1; 2827 } 2828 2829 /* Common power [off|failure] */ 2830 rct = (test_bit(CRASHED_PRIMARY, &mdev->flags) ? 1 : 0) + 2831 (mdev->p_uuid[UI_FLAGS] & 2); 2832 /* lowest bit is set when we were primary, 2833 * next bit (weight 2) is set when peer was primary */ 2834 *rule_nr = 40; 2835 2836 switch (rct) { 2837 case 0: /* !self_pri && !peer_pri */ return 0; 2838 case 1: /* self_pri && !peer_pri */ return 1; 2839 case 2: /* !self_pri && peer_pri */ return -1; 2840 case 3: /* self_pri && peer_pri */ 2841 dc = test_bit(RESOLVE_CONFLICTS, &mdev->tconn->flags); 2842 return dc ? -1 : 1; 2843 } 2844 } 2845 2846 *rule_nr = 50; 2847 peer = mdev->p_uuid[UI_BITMAP] & ~((u64)1); 2848 if (self == peer) 2849 return -1; 2850 2851 *rule_nr = 51; 2852 peer = mdev->p_uuid[UI_HISTORY_START] & ~((u64)1); 2853 if (self == peer) { 2854 if (mdev->tconn->agreed_pro_version < 96 ? 2855 (mdev->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == 2856 (mdev->p_uuid[UI_HISTORY_START + 1] & ~((u64)1)) : 2857 peer + UUID_NEW_BM_OFFSET == (mdev->p_uuid[UI_BITMAP] & ~((u64)1))) { 2858 /* The last P_SYNC_UUID did not get though. Undo the last start of 2859 resync as sync source modifications of the peer's UUIDs. */ 2860 2861 if (mdev->tconn->agreed_pro_version < 91) 2862 return -1091; 2863 2864 mdev->p_uuid[UI_BITMAP] = mdev->p_uuid[UI_HISTORY_START]; 2865 mdev->p_uuid[UI_HISTORY_START] = mdev->p_uuid[UI_HISTORY_START + 1]; 2866 2867 dev_info(DEV, "Lost last syncUUID packet, corrected:\n"); 2868 drbd_uuid_dump(mdev, "peer", mdev->p_uuid, mdev->p_uuid[UI_SIZE], mdev->p_uuid[UI_FLAGS]); 2869 2870 return -1; 2871 } 2872 } 2873 2874 *rule_nr = 60; 2875 self = mdev->ldev->md.uuid[UI_CURRENT] & ~((u64)1); 2876 for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) { 2877 peer = mdev->p_uuid[i] & ~((u64)1); 2878 if (self == peer) 2879 return -2; 2880 } 2881 2882 *rule_nr = 70; 2883 self = mdev->ldev->md.uuid[UI_BITMAP] & ~((u64)1); 2884 peer = mdev->p_uuid[UI_CURRENT] & ~((u64)1); 2885 if (self == peer) 2886 return 1; 2887 2888 *rule_nr = 71; 2889 self = mdev->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1); 2890 if (self == peer) { 2891 if (mdev->tconn->agreed_pro_version < 96 ? 2892 (mdev->ldev->md.uuid[UI_HISTORY_START + 1] & ~((u64)1)) == 2893 (mdev->p_uuid[UI_HISTORY_START] & ~((u64)1)) : 2894 self + UUID_NEW_BM_OFFSET == (mdev->ldev->md.uuid[UI_BITMAP] & ~((u64)1))) { 2895 /* The last P_SYNC_UUID did not get though. Undo the last start of 2896 resync as sync source modifications of our UUIDs. */ 2897 2898 if (mdev->tconn->agreed_pro_version < 91) 2899 return -1091; 2900 2901 __drbd_uuid_set(mdev, UI_BITMAP, mdev->ldev->md.uuid[UI_HISTORY_START]); 2902 __drbd_uuid_set(mdev, UI_HISTORY_START, mdev->ldev->md.uuid[UI_HISTORY_START + 1]); 2903 2904 dev_info(DEV, "Last syncUUID did not get through, corrected:\n"); 2905 drbd_uuid_dump(mdev, "self", mdev->ldev->md.uuid, 2906 mdev->state.disk >= D_NEGOTIATING ? drbd_bm_total_weight(mdev) : 0, 0); 2907 2908 return 1; 2909 } 2910 } 2911 2912 2913 *rule_nr = 80; 2914 peer = mdev->p_uuid[UI_CURRENT] & ~((u64)1); 2915 for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) { 2916 self = mdev->ldev->md.uuid[i] & ~((u64)1); 2917 if (self == peer) 2918 return 2; 2919 } 2920 2921 *rule_nr = 90; 2922 self = mdev->ldev->md.uuid[UI_BITMAP] & ~((u64)1); 2923 peer = mdev->p_uuid[UI_BITMAP] & ~((u64)1); 2924 if (self == peer && self != ((u64)0)) 2925 return 100; 2926 2927 *rule_nr = 100; 2928 for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) { 2929 self = mdev->ldev->md.uuid[i] & ~((u64)1); 2930 for (j = UI_HISTORY_START; j <= UI_HISTORY_END; j++) { 2931 peer = mdev->p_uuid[j] & ~((u64)1); 2932 if (self == peer) 2933 return -100; 2934 } 2935 } 2936 2937 return -1000; 2938 } 2939 2940 /* drbd_sync_handshake() returns the new conn state on success, or 2941 CONN_MASK (-1) on failure. 2942 */ 2943 static enum drbd_conns drbd_sync_handshake(struct drbd_conf *mdev, enum drbd_role peer_role, 2944 enum drbd_disk_state peer_disk) __must_hold(local) 2945 { 2946 enum drbd_conns rv = C_MASK; 2947 enum drbd_disk_state mydisk; 2948 struct net_conf *nc; 2949 int hg, rule_nr, rr_conflict, tentative; 2950 2951 mydisk = mdev->state.disk; 2952 if (mydisk == D_NEGOTIATING) 2953 mydisk = mdev->new_state_tmp.disk; 2954 2955 dev_info(DEV, "drbd_sync_handshake:\n"); 2956 2957 spin_lock_irq(&mdev->ldev->md.uuid_lock); 2958 drbd_uuid_dump(mdev, "self", mdev->ldev->md.uuid, mdev->comm_bm_set, 0); 2959 drbd_uuid_dump(mdev, "peer", mdev->p_uuid, 2960 mdev->p_uuid[UI_SIZE], mdev->p_uuid[UI_FLAGS]); 2961 2962 hg = drbd_uuid_compare(mdev, &rule_nr); 2963 spin_unlock_irq(&mdev->ldev->md.uuid_lock); 2964 2965 dev_info(DEV, "uuid_compare()=%d by rule %d\n", hg, rule_nr); 2966 2967 if (hg == -1000) { 2968 dev_alert(DEV, "Unrelated data, aborting!\n"); 2969 return C_MASK; 2970 } 2971 if (hg < -1000) { 2972 dev_alert(DEV, "To resolve this both sides have to support at least protocol %d\n", -hg - 1000); 2973 return C_MASK; 2974 } 2975 2976 if ((mydisk == D_INCONSISTENT && peer_disk > D_INCONSISTENT) || 2977 (peer_disk == D_INCONSISTENT && mydisk > D_INCONSISTENT)) { 2978 int f = (hg == -100) || abs(hg) == 2; 2979 hg = mydisk > D_INCONSISTENT ? 1 : -1; 2980 if (f) 2981 hg = hg*2; 2982 dev_info(DEV, "Becoming sync %s due to disk states.\n", 2983 hg > 0 ? "source" : "target"); 2984 } 2985 2986 if (abs(hg) == 100) 2987 drbd_khelper(mdev, "initial-split-brain"); 2988 2989 rcu_read_lock(); 2990 nc = rcu_dereference(mdev->tconn->net_conf); 2991 2992 if (hg == 100 || (hg == -100 && nc->always_asbp)) { 2993 int pcount = (mdev->state.role == R_PRIMARY) 2994 + (peer_role == R_PRIMARY); 2995 int forced = (hg == -100); 2996 2997 switch (pcount) { 2998 case 0: 2999 hg = drbd_asb_recover_0p(mdev); 3000 break; 3001 case 1: 3002 hg = drbd_asb_recover_1p(mdev); 3003 break; 3004 case 2: 3005 hg = drbd_asb_recover_2p(mdev); 3006 break; 3007 } 3008 if (abs(hg) < 100) { 3009 dev_warn(DEV, "Split-Brain detected, %d primaries, " 3010 "automatically solved. Sync from %s node\n", 3011 pcount, (hg < 0) ? "peer" : "this"); 3012 if (forced) { 3013 dev_warn(DEV, "Doing a full sync, since" 3014 " UUIDs where ambiguous.\n"); 3015 hg = hg*2; 3016 } 3017 } 3018 } 3019 3020 if (hg == -100) { 3021 if (test_bit(DISCARD_MY_DATA, &mdev->flags) && !(mdev->p_uuid[UI_FLAGS]&1)) 3022 hg = -1; 3023 if (!test_bit(DISCARD_MY_DATA, &mdev->flags) && (mdev->p_uuid[UI_FLAGS]&1)) 3024 hg = 1; 3025 3026 if (abs(hg) < 100) 3027 dev_warn(DEV, "Split-Brain detected, manually solved. " 3028 "Sync from %s node\n", 3029 (hg < 0) ? "peer" : "this"); 3030 } 3031 rr_conflict = nc->rr_conflict; 3032 tentative = nc->tentative; 3033 rcu_read_unlock(); 3034 3035 if (hg == -100) { 3036 /* FIXME this log message is not correct if we end up here 3037 * after an attempted attach on a diskless node. 3038 * We just refuse to attach -- well, we drop the "connection" 3039 * to that disk, in a way... */ 3040 dev_alert(DEV, "Split-Brain detected but unresolved, dropping connection!\n"); 3041 drbd_khelper(mdev, "split-brain"); 3042 return C_MASK; 3043 } 3044 3045 if (hg > 0 && mydisk <= D_INCONSISTENT) { 3046 dev_err(DEV, "I shall become SyncSource, but I am inconsistent!\n"); 3047 return C_MASK; 3048 } 3049 3050 if (hg < 0 && /* by intention we do not use mydisk here. */ 3051 mdev->state.role == R_PRIMARY && mdev->state.disk >= D_CONSISTENT) { 3052 switch (rr_conflict) { 3053 case ASB_CALL_HELPER: 3054 drbd_khelper(mdev, "pri-lost"); 3055 /* fall through */ 3056 case ASB_DISCONNECT: 3057 dev_err(DEV, "I shall become SyncTarget, but I am primary!\n"); 3058 return C_MASK; 3059 case ASB_VIOLENTLY: 3060 dev_warn(DEV, "Becoming SyncTarget, violating the stable-data" 3061 "assumption\n"); 3062 } 3063 } 3064 3065 if (tentative || test_bit(CONN_DRY_RUN, &mdev->tconn->flags)) { 3066 if (hg == 0) 3067 dev_info(DEV, "dry-run connect: No resync, would become Connected immediately.\n"); 3068 else 3069 dev_info(DEV, "dry-run connect: Would become %s, doing a %s resync.", 3070 drbd_conn_str(hg > 0 ? C_SYNC_SOURCE : C_SYNC_TARGET), 3071 abs(hg) >= 2 ? "full" : "bit-map based"); 3072 return C_MASK; 3073 } 3074 3075 if (abs(hg) >= 2) { 3076 dev_info(DEV, "Writing the whole bitmap, full sync required after drbd_sync_handshake.\n"); 3077 if (drbd_bitmap_io(mdev, &drbd_bmio_set_n_write, "set_n_write from sync_handshake", 3078 BM_LOCKED_SET_ALLOWED)) 3079 return C_MASK; 3080 } 3081 3082 if (hg > 0) { /* become sync source. */ 3083 rv = C_WF_BITMAP_S; 3084 } else if (hg < 0) { /* become sync target */ 3085 rv = C_WF_BITMAP_T; 3086 } else { 3087 rv = C_CONNECTED; 3088 if (drbd_bm_total_weight(mdev)) { 3089 dev_info(DEV, "No resync, but %lu bits in bitmap!\n", 3090 drbd_bm_total_weight(mdev)); 3091 } 3092 } 3093 3094 return rv; 3095 } 3096 3097 static enum drbd_after_sb_p convert_after_sb(enum drbd_after_sb_p peer) 3098 { 3099 /* ASB_DISCARD_REMOTE - ASB_DISCARD_LOCAL is valid */ 3100 if (peer == ASB_DISCARD_REMOTE) 3101 return ASB_DISCARD_LOCAL; 3102 3103 /* any other things with ASB_DISCARD_REMOTE or ASB_DISCARD_LOCAL are invalid */ 3104 if (peer == ASB_DISCARD_LOCAL) 3105 return ASB_DISCARD_REMOTE; 3106 3107 /* everything else is valid if they are equal on both sides. */ 3108 return peer; 3109 } 3110 3111 static int receive_protocol(struct drbd_tconn *tconn, struct packet_info *pi) 3112 { 3113 struct p_protocol *p = pi->data; 3114 enum drbd_after_sb_p p_after_sb_0p, p_after_sb_1p, p_after_sb_2p; 3115 int p_proto, p_discard_my_data, p_two_primaries, cf; 3116 struct net_conf *nc, *old_net_conf, *new_net_conf = NULL; 3117 char integrity_alg[SHARED_SECRET_MAX] = ""; 3118 struct crypto_hash *peer_integrity_tfm = NULL; 3119 void *int_dig_in = NULL, *int_dig_vv = NULL; 3120 3121 p_proto = be32_to_cpu(p->protocol); 3122 p_after_sb_0p = be32_to_cpu(p->after_sb_0p); 3123 p_after_sb_1p = be32_to_cpu(p->after_sb_1p); 3124 p_after_sb_2p = be32_to_cpu(p->after_sb_2p); 3125 p_two_primaries = be32_to_cpu(p->two_primaries); 3126 cf = be32_to_cpu(p->conn_flags); 3127 p_discard_my_data = cf & CF_DISCARD_MY_DATA; 3128 3129 if (tconn->agreed_pro_version >= 87) { 3130 int err; 3131 3132 if (pi->size > sizeof(integrity_alg)) 3133 return -EIO; 3134 err = drbd_recv_all(tconn, integrity_alg, pi->size); 3135 if (err) 3136 return err; 3137 integrity_alg[SHARED_SECRET_MAX - 1] = 0; 3138 } 3139 3140 if (pi->cmd != P_PROTOCOL_UPDATE) { 3141 clear_bit(CONN_DRY_RUN, &tconn->flags); 3142 3143 if (cf & CF_DRY_RUN) 3144 set_bit(CONN_DRY_RUN, &tconn->flags); 3145 3146 rcu_read_lock(); 3147 nc = rcu_dereference(tconn->net_conf); 3148 3149 if (p_proto != nc->wire_protocol) { 3150 conn_err(tconn, "incompatible %s settings\n", "protocol"); 3151 goto disconnect_rcu_unlock; 3152 } 3153 3154 if (convert_after_sb(p_after_sb_0p) != nc->after_sb_0p) { 3155 conn_err(tconn, "incompatible %s settings\n", "after-sb-0pri"); 3156 goto disconnect_rcu_unlock; 3157 } 3158 3159 if (convert_after_sb(p_after_sb_1p) != nc->after_sb_1p) { 3160 conn_err(tconn, "incompatible %s settings\n", "after-sb-1pri"); 3161 goto disconnect_rcu_unlock; 3162 } 3163 3164 if (convert_after_sb(p_after_sb_2p) != nc->after_sb_2p) { 3165 conn_err(tconn, "incompatible %s settings\n", "after-sb-2pri"); 3166 goto disconnect_rcu_unlock; 3167 } 3168 3169 if (p_discard_my_data && nc->discard_my_data) { 3170 conn_err(tconn, "incompatible %s settings\n", "discard-my-data"); 3171 goto disconnect_rcu_unlock; 3172 } 3173 3174 if (p_two_primaries != nc->two_primaries) { 3175 conn_err(tconn, "incompatible %s settings\n", "allow-two-primaries"); 3176 goto disconnect_rcu_unlock; 3177 } 3178 3179 if (strcmp(integrity_alg, nc->integrity_alg)) { 3180 conn_err(tconn, "incompatible %s settings\n", "data-integrity-alg"); 3181 goto disconnect_rcu_unlock; 3182 } 3183 3184 rcu_read_unlock(); 3185 } 3186 3187 if (integrity_alg[0]) { 3188 int hash_size; 3189 3190 /* 3191 * We can only change the peer data integrity algorithm 3192 * here. Changing our own data integrity algorithm 3193 * requires that we send a P_PROTOCOL_UPDATE packet at 3194 * the same time; otherwise, the peer has no way to 3195 * tell between which packets the algorithm should 3196 * change. 3197 */ 3198 3199 peer_integrity_tfm = crypto_alloc_hash(integrity_alg, 0, CRYPTO_ALG_ASYNC); 3200 if (!peer_integrity_tfm) { 3201 conn_err(tconn, "peer data-integrity-alg %s not supported\n", 3202 integrity_alg); 3203 goto disconnect; 3204 } 3205 3206 hash_size = crypto_hash_digestsize(peer_integrity_tfm); 3207 int_dig_in = kmalloc(hash_size, GFP_KERNEL); 3208 int_dig_vv = kmalloc(hash_size, GFP_KERNEL); 3209 if (!(int_dig_in && int_dig_vv)) { 3210 conn_err(tconn, "Allocation of buffers for data integrity checking failed\n"); 3211 goto disconnect; 3212 } 3213 } 3214 3215 new_net_conf = kmalloc(sizeof(struct net_conf), GFP_KERNEL); 3216 if (!new_net_conf) { 3217 conn_err(tconn, "Allocation of new net_conf failed\n"); 3218 goto disconnect; 3219 } 3220 3221 mutex_lock(&tconn->data.mutex); 3222 mutex_lock(&tconn->conf_update); 3223 old_net_conf = tconn->net_conf; 3224 *new_net_conf = *old_net_conf; 3225 3226 new_net_conf->wire_protocol = p_proto; 3227 new_net_conf->after_sb_0p = convert_after_sb(p_after_sb_0p); 3228 new_net_conf->after_sb_1p = convert_after_sb(p_after_sb_1p); 3229 new_net_conf->after_sb_2p = convert_after_sb(p_after_sb_2p); 3230 new_net_conf->two_primaries = p_two_primaries; 3231 3232 rcu_assign_pointer(tconn->net_conf, new_net_conf); 3233 mutex_unlock(&tconn->conf_update); 3234 mutex_unlock(&tconn->data.mutex); 3235 3236 crypto_free_hash(tconn->peer_integrity_tfm); 3237 kfree(tconn->int_dig_in); 3238 kfree(tconn->int_dig_vv); 3239 tconn->peer_integrity_tfm = peer_integrity_tfm; 3240 tconn->int_dig_in = int_dig_in; 3241 tconn->int_dig_vv = int_dig_vv; 3242 3243 if (strcmp(old_net_conf->integrity_alg, integrity_alg)) 3244 conn_info(tconn, "peer data-integrity-alg: %s\n", 3245 integrity_alg[0] ? integrity_alg : "(none)"); 3246 3247 synchronize_rcu(); 3248 kfree(old_net_conf); 3249 return 0; 3250 3251 disconnect_rcu_unlock: 3252 rcu_read_unlock(); 3253 disconnect: 3254 crypto_free_hash(peer_integrity_tfm); 3255 kfree(int_dig_in); 3256 kfree(int_dig_vv); 3257 conn_request_state(tconn, NS(conn, C_DISCONNECTING), CS_HARD); 3258 return -EIO; 3259 } 3260 3261 /* helper function 3262 * input: alg name, feature name 3263 * return: NULL (alg name was "") 3264 * ERR_PTR(error) if something goes wrong 3265 * or the crypto hash ptr, if it worked out ok. */ 3266 struct crypto_hash *drbd_crypto_alloc_digest_safe(const struct drbd_conf *mdev, 3267 const char *alg, const char *name) 3268 { 3269 struct crypto_hash *tfm; 3270 3271 if (!alg[0]) 3272 return NULL; 3273 3274 tfm = crypto_alloc_hash(alg, 0, CRYPTO_ALG_ASYNC); 3275 if (IS_ERR(tfm)) { 3276 dev_err(DEV, "Can not allocate \"%s\" as %s (reason: %ld)\n", 3277 alg, name, PTR_ERR(tfm)); 3278 return tfm; 3279 } 3280 return tfm; 3281 } 3282 3283 static int ignore_remaining_packet(struct drbd_tconn *tconn, struct packet_info *pi) 3284 { 3285 void *buffer = tconn->data.rbuf; 3286 int size = pi->size; 3287 3288 while (size) { 3289 int s = min_t(int, size, DRBD_SOCKET_BUFFER_SIZE); 3290 s = drbd_recv(tconn, buffer, s); 3291 if (s <= 0) { 3292 if (s < 0) 3293 return s; 3294 break; 3295 } 3296 size -= s; 3297 } 3298 if (size) 3299 return -EIO; 3300 return 0; 3301 } 3302 3303 /* 3304 * config_unknown_volume - device configuration command for unknown volume 3305 * 3306 * When a device is added to an existing connection, the node on which the 3307 * device is added first will send configuration commands to its peer but the 3308 * peer will not know about the device yet. It will warn and ignore these 3309 * commands. Once the device is added on the second node, the second node will 3310 * send the same device configuration commands, but in the other direction. 3311 * 3312 * (We can also end up here if drbd is misconfigured.) 3313 */ 3314 static int config_unknown_volume(struct drbd_tconn *tconn, struct packet_info *pi) 3315 { 3316 conn_warn(tconn, "%s packet received for volume %u, which is not configured locally\n", 3317 cmdname(pi->cmd), pi->vnr); 3318 return ignore_remaining_packet(tconn, pi); 3319 } 3320 3321 static int receive_SyncParam(struct drbd_tconn *tconn, struct packet_info *pi) 3322 { 3323 struct drbd_conf *mdev; 3324 struct p_rs_param_95 *p; 3325 unsigned int header_size, data_size, exp_max_sz; 3326 struct crypto_hash *verify_tfm = NULL; 3327 struct crypto_hash *csums_tfm = NULL; 3328 struct net_conf *old_net_conf, *new_net_conf = NULL; 3329 struct disk_conf *old_disk_conf = NULL, *new_disk_conf = NULL; 3330 const int apv = tconn->agreed_pro_version; 3331 struct fifo_buffer *old_plan = NULL, *new_plan = NULL; 3332 int fifo_size = 0; 3333 int err; 3334 3335 mdev = vnr_to_mdev(tconn, pi->vnr); 3336 if (!mdev) 3337 return config_unknown_volume(tconn, pi); 3338 3339 exp_max_sz = apv <= 87 ? sizeof(struct p_rs_param) 3340 : apv == 88 ? sizeof(struct p_rs_param) 3341 + SHARED_SECRET_MAX 3342 : apv <= 94 ? sizeof(struct p_rs_param_89) 3343 : /* apv >= 95 */ sizeof(struct p_rs_param_95); 3344 3345 if (pi->size > exp_max_sz) { 3346 dev_err(DEV, "SyncParam packet too long: received %u, expected <= %u bytes\n", 3347 pi->size, exp_max_sz); 3348 return -EIO; 3349 } 3350 3351 if (apv <= 88) { 3352 header_size = sizeof(struct p_rs_param); 3353 data_size = pi->size - header_size; 3354 } else if (apv <= 94) { 3355 header_size = sizeof(struct p_rs_param_89); 3356 data_size = pi->size - header_size; 3357 D_ASSERT(data_size == 0); 3358 } else { 3359 header_size = sizeof(struct p_rs_param_95); 3360 data_size = pi->size - header_size; 3361 D_ASSERT(data_size == 0); 3362 } 3363 3364 /* initialize verify_alg and csums_alg */ 3365 p = pi->data; 3366 memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX); 3367 3368 err = drbd_recv_all(mdev->tconn, p, header_size); 3369 if (err) 3370 return err; 3371 3372 mutex_lock(&mdev->tconn->conf_update); 3373 old_net_conf = mdev->tconn->net_conf; 3374 if (get_ldev(mdev)) { 3375 new_disk_conf = kzalloc(sizeof(struct disk_conf), GFP_KERNEL); 3376 if (!new_disk_conf) { 3377 put_ldev(mdev); 3378 mutex_unlock(&mdev->tconn->conf_update); 3379 dev_err(DEV, "Allocation of new disk_conf failed\n"); 3380 return -ENOMEM; 3381 } 3382 3383 old_disk_conf = mdev->ldev->disk_conf; 3384 *new_disk_conf = *old_disk_conf; 3385 3386 new_disk_conf->resync_rate = be32_to_cpu(p->resync_rate); 3387 } 3388 3389 if (apv >= 88) { 3390 if (apv == 88) { 3391 if (data_size > SHARED_SECRET_MAX || data_size == 0) { 3392 dev_err(DEV, "verify-alg of wrong size, " 3393 "peer wants %u, accepting only up to %u byte\n", 3394 data_size, SHARED_SECRET_MAX); 3395 err = -EIO; 3396 goto reconnect; 3397 } 3398 3399 err = drbd_recv_all(mdev->tconn, p->verify_alg, data_size); 3400 if (err) 3401 goto reconnect; 3402 /* we expect NUL terminated string */ 3403 /* but just in case someone tries to be evil */ 3404 D_ASSERT(p->verify_alg[data_size-1] == 0); 3405 p->verify_alg[data_size-1] = 0; 3406 3407 } else /* apv >= 89 */ { 3408 /* we still expect NUL terminated strings */ 3409 /* but just in case someone tries to be evil */ 3410 D_ASSERT(p->verify_alg[SHARED_SECRET_MAX-1] == 0); 3411 D_ASSERT(p->csums_alg[SHARED_SECRET_MAX-1] == 0); 3412 p->verify_alg[SHARED_SECRET_MAX-1] = 0; 3413 p->csums_alg[SHARED_SECRET_MAX-1] = 0; 3414 } 3415 3416 if (strcmp(old_net_conf->verify_alg, p->verify_alg)) { 3417 if (mdev->state.conn == C_WF_REPORT_PARAMS) { 3418 dev_err(DEV, "Different verify-alg settings. me=\"%s\" peer=\"%s\"\n", 3419 old_net_conf->verify_alg, p->verify_alg); 3420 goto disconnect; 3421 } 3422 verify_tfm = drbd_crypto_alloc_digest_safe(mdev, 3423 p->verify_alg, "verify-alg"); 3424 if (IS_ERR(verify_tfm)) { 3425 verify_tfm = NULL; 3426 goto disconnect; 3427 } 3428 } 3429 3430 if (apv >= 89 && strcmp(old_net_conf->csums_alg, p->csums_alg)) { 3431 if (mdev->state.conn == C_WF_REPORT_PARAMS) { 3432 dev_err(DEV, "Different csums-alg settings. me=\"%s\" peer=\"%s\"\n", 3433 old_net_conf->csums_alg, p->csums_alg); 3434 goto disconnect; 3435 } 3436 csums_tfm = drbd_crypto_alloc_digest_safe(mdev, 3437 p->csums_alg, "csums-alg"); 3438 if (IS_ERR(csums_tfm)) { 3439 csums_tfm = NULL; 3440 goto disconnect; 3441 } 3442 } 3443 3444 if (apv > 94 && new_disk_conf) { 3445 new_disk_conf->c_plan_ahead = be32_to_cpu(p->c_plan_ahead); 3446 new_disk_conf->c_delay_target = be32_to_cpu(p->c_delay_target); 3447 new_disk_conf->c_fill_target = be32_to_cpu(p->c_fill_target); 3448 new_disk_conf->c_max_rate = be32_to_cpu(p->c_max_rate); 3449 3450 fifo_size = (new_disk_conf->c_plan_ahead * 10 * SLEEP_TIME) / HZ; 3451 if (fifo_size != mdev->rs_plan_s->size) { 3452 new_plan = fifo_alloc(fifo_size); 3453 if (!new_plan) { 3454 dev_err(DEV, "kmalloc of fifo_buffer failed"); 3455 put_ldev(mdev); 3456 goto disconnect; 3457 } 3458 } 3459 } 3460 3461 if (verify_tfm || csums_tfm) { 3462 new_net_conf = kzalloc(sizeof(struct net_conf), GFP_KERNEL); 3463 if (!new_net_conf) { 3464 dev_err(DEV, "Allocation of new net_conf failed\n"); 3465 goto disconnect; 3466 } 3467 3468 *new_net_conf = *old_net_conf; 3469 3470 if (verify_tfm) { 3471 strcpy(new_net_conf->verify_alg, p->verify_alg); 3472 new_net_conf->verify_alg_len = strlen(p->verify_alg) + 1; 3473 crypto_free_hash(mdev->tconn->verify_tfm); 3474 mdev->tconn->verify_tfm = verify_tfm; 3475 dev_info(DEV, "using verify-alg: \"%s\"\n", p->verify_alg); 3476 } 3477 if (csums_tfm) { 3478 strcpy(new_net_conf->csums_alg, p->csums_alg); 3479 new_net_conf->csums_alg_len = strlen(p->csums_alg) + 1; 3480 crypto_free_hash(mdev->tconn->csums_tfm); 3481 mdev->tconn->csums_tfm = csums_tfm; 3482 dev_info(DEV, "using csums-alg: \"%s\"\n", p->csums_alg); 3483 } 3484 rcu_assign_pointer(tconn->net_conf, new_net_conf); 3485 } 3486 } 3487 3488 if (new_disk_conf) { 3489 rcu_assign_pointer(mdev->ldev->disk_conf, new_disk_conf); 3490 put_ldev(mdev); 3491 } 3492 3493 if (new_plan) { 3494 old_plan = mdev->rs_plan_s; 3495 rcu_assign_pointer(mdev->rs_plan_s, new_plan); 3496 } 3497 3498 mutex_unlock(&mdev->tconn->conf_update); 3499 synchronize_rcu(); 3500 if (new_net_conf) 3501 kfree(old_net_conf); 3502 kfree(old_disk_conf); 3503 kfree(old_plan); 3504 3505 return 0; 3506 3507 reconnect: 3508 if (new_disk_conf) { 3509 put_ldev(mdev); 3510 kfree(new_disk_conf); 3511 } 3512 mutex_unlock(&mdev->tconn->conf_update); 3513 return -EIO; 3514 3515 disconnect: 3516 kfree(new_plan); 3517 if (new_disk_conf) { 3518 put_ldev(mdev); 3519 kfree(new_disk_conf); 3520 } 3521 mutex_unlock(&mdev->tconn->conf_update); 3522 /* just for completeness: actually not needed, 3523 * as this is not reached if csums_tfm was ok. */ 3524 crypto_free_hash(csums_tfm); 3525 /* but free the verify_tfm again, if csums_tfm did not work out */ 3526 crypto_free_hash(verify_tfm); 3527 conn_request_state(mdev->tconn, NS(conn, C_DISCONNECTING), CS_HARD); 3528 return -EIO; 3529 } 3530 3531 /* warn if the arguments differ by more than 12.5% */ 3532 static void warn_if_differ_considerably(struct drbd_conf *mdev, 3533 const char *s, sector_t a, sector_t b) 3534 { 3535 sector_t d; 3536 if (a == 0 || b == 0) 3537 return; 3538 d = (a > b) ? (a - b) : (b - a); 3539 if (d > (a>>3) || d > (b>>3)) 3540 dev_warn(DEV, "Considerable difference in %s: %llus vs. %llus\n", s, 3541 (unsigned long long)a, (unsigned long long)b); 3542 } 3543 3544 static int receive_sizes(struct drbd_tconn *tconn, struct packet_info *pi) 3545 { 3546 struct drbd_conf *mdev; 3547 struct p_sizes *p = pi->data; 3548 enum determine_dev_size dd = DS_UNCHANGED; 3549 sector_t p_size, p_usize, my_usize; 3550 int ldsc = 0; /* local disk size changed */ 3551 enum dds_flags ddsf; 3552 3553 mdev = vnr_to_mdev(tconn, pi->vnr); 3554 if (!mdev) 3555 return config_unknown_volume(tconn, pi); 3556 3557 p_size = be64_to_cpu(p->d_size); 3558 p_usize = be64_to_cpu(p->u_size); 3559 3560 /* just store the peer's disk size for now. 3561 * we still need to figure out whether we accept that. */ 3562 mdev->p_size = p_size; 3563 3564 if (get_ldev(mdev)) { 3565 rcu_read_lock(); 3566 my_usize = rcu_dereference(mdev->ldev->disk_conf)->disk_size; 3567 rcu_read_unlock(); 3568 3569 warn_if_differ_considerably(mdev, "lower level device sizes", 3570 p_size, drbd_get_max_capacity(mdev->ldev)); 3571 warn_if_differ_considerably(mdev, "user requested size", 3572 p_usize, my_usize); 3573 3574 /* if this is the first connect, or an otherwise expected 3575 * param exchange, choose the minimum */ 3576 if (mdev->state.conn == C_WF_REPORT_PARAMS) 3577 p_usize = min_not_zero(my_usize, p_usize); 3578 3579 /* Never shrink a device with usable data during connect. 3580 But allow online shrinking if we are connected. */ 3581 if (drbd_new_dev_size(mdev, mdev->ldev, p_usize, 0) < 3582 drbd_get_capacity(mdev->this_bdev) && 3583 mdev->state.disk >= D_OUTDATED && 3584 mdev->state.conn < C_CONNECTED) { 3585 dev_err(DEV, "The peer's disk size is too small!\n"); 3586 conn_request_state(mdev->tconn, NS(conn, C_DISCONNECTING), CS_HARD); 3587 put_ldev(mdev); 3588 return -EIO; 3589 } 3590 3591 if (my_usize != p_usize) { 3592 struct disk_conf *old_disk_conf, *new_disk_conf = NULL; 3593 3594 new_disk_conf = kzalloc(sizeof(struct disk_conf), GFP_KERNEL); 3595 if (!new_disk_conf) { 3596 dev_err(DEV, "Allocation of new disk_conf failed\n"); 3597 put_ldev(mdev); 3598 return -ENOMEM; 3599 } 3600 3601 mutex_lock(&mdev->tconn->conf_update); 3602 old_disk_conf = mdev->ldev->disk_conf; 3603 *new_disk_conf = *old_disk_conf; 3604 new_disk_conf->disk_size = p_usize; 3605 3606 rcu_assign_pointer(mdev->ldev->disk_conf, new_disk_conf); 3607 mutex_unlock(&mdev->tconn->conf_update); 3608 synchronize_rcu(); 3609 kfree(old_disk_conf); 3610 3611 dev_info(DEV, "Peer sets u_size to %lu sectors\n", 3612 (unsigned long)my_usize); 3613 } 3614 3615 put_ldev(mdev); 3616 } 3617 3618 ddsf = be16_to_cpu(p->dds_flags); 3619 if (get_ldev(mdev)) { 3620 dd = drbd_determine_dev_size(mdev, ddsf, NULL); 3621 put_ldev(mdev); 3622 if (dd == DS_ERROR) 3623 return -EIO; 3624 drbd_md_sync(mdev); 3625 } else { 3626 /* I am diskless, need to accept the peer's size. */ 3627 drbd_set_my_capacity(mdev, p_size); 3628 } 3629 3630 mdev->peer_max_bio_size = be32_to_cpu(p->max_bio_size); 3631 drbd_reconsider_max_bio_size(mdev); 3632 3633 if (get_ldev(mdev)) { 3634 if (mdev->ldev->known_size != drbd_get_capacity(mdev->ldev->backing_bdev)) { 3635 mdev->ldev->known_size = drbd_get_capacity(mdev->ldev->backing_bdev); 3636 ldsc = 1; 3637 } 3638 3639 put_ldev(mdev); 3640 } 3641 3642 if (mdev->state.conn > C_WF_REPORT_PARAMS) { 3643 if (be64_to_cpu(p->c_size) != 3644 drbd_get_capacity(mdev->this_bdev) || ldsc) { 3645 /* we have different sizes, probably peer 3646 * needs to know my new size... */ 3647 drbd_send_sizes(mdev, 0, ddsf); 3648 } 3649 if (test_and_clear_bit(RESIZE_PENDING, &mdev->flags) || 3650 (dd == DS_GREW && mdev->state.conn == C_CONNECTED)) { 3651 if (mdev->state.pdsk >= D_INCONSISTENT && 3652 mdev->state.disk >= D_INCONSISTENT) { 3653 if (ddsf & DDSF_NO_RESYNC) 3654 dev_info(DEV, "Resync of new storage suppressed with --assume-clean\n"); 3655 else 3656 resync_after_online_grow(mdev); 3657 } else 3658 set_bit(RESYNC_AFTER_NEG, &mdev->flags); 3659 } 3660 } 3661 3662 return 0; 3663 } 3664 3665 static int receive_uuids(struct drbd_tconn *tconn, struct packet_info *pi) 3666 { 3667 struct drbd_conf *mdev; 3668 struct p_uuids *p = pi->data; 3669 u64 *p_uuid; 3670 int i, updated_uuids = 0; 3671 3672 mdev = vnr_to_mdev(tconn, pi->vnr); 3673 if (!mdev) 3674 return config_unknown_volume(tconn, pi); 3675 3676 p_uuid = kmalloc(sizeof(u64)*UI_EXTENDED_SIZE, GFP_NOIO); 3677 if (!p_uuid) { 3678 dev_err(DEV, "kmalloc of p_uuid failed\n"); 3679 return false; 3680 } 3681 3682 for (i = UI_CURRENT; i < UI_EXTENDED_SIZE; i++) 3683 p_uuid[i] = be64_to_cpu(p->uuid[i]); 3684 3685 kfree(mdev->p_uuid); 3686 mdev->p_uuid = p_uuid; 3687 3688 if (mdev->state.conn < C_CONNECTED && 3689 mdev->state.disk < D_INCONSISTENT && 3690 mdev->state.role == R_PRIMARY && 3691 (mdev->ed_uuid & ~((u64)1)) != (p_uuid[UI_CURRENT] & ~((u64)1))) { 3692 dev_err(DEV, "Can only connect to data with current UUID=%016llX\n", 3693 (unsigned long long)mdev->ed_uuid); 3694 conn_request_state(mdev->tconn, NS(conn, C_DISCONNECTING), CS_HARD); 3695 return -EIO; 3696 } 3697 3698 if (get_ldev(mdev)) { 3699 int skip_initial_sync = 3700 mdev->state.conn == C_CONNECTED && 3701 mdev->tconn->agreed_pro_version >= 90 && 3702 mdev->ldev->md.uuid[UI_CURRENT] == UUID_JUST_CREATED && 3703 (p_uuid[UI_FLAGS] & 8); 3704 if (skip_initial_sync) { 3705 dev_info(DEV, "Accepted new current UUID, preparing to skip initial sync\n"); 3706 drbd_bitmap_io(mdev, &drbd_bmio_clear_n_write, 3707 "clear_n_write from receive_uuids", 3708 BM_LOCKED_TEST_ALLOWED); 3709 _drbd_uuid_set(mdev, UI_CURRENT, p_uuid[UI_CURRENT]); 3710 _drbd_uuid_set(mdev, UI_BITMAP, 0); 3711 _drbd_set_state(_NS2(mdev, disk, D_UP_TO_DATE, pdsk, D_UP_TO_DATE), 3712 CS_VERBOSE, NULL); 3713 drbd_md_sync(mdev); 3714 updated_uuids = 1; 3715 } 3716 put_ldev(mdev); 3717 } else if (mdev->state.disk < D_INCONSISTENT && 3718 mdev->state.role == R_PRIMARY) { 3719 /* I am a diskless primary, the peer just created a new current UUID 3720 for me. */ 3721 updated_uuids = drbd_set_ed_uuid(mdev, p_uuid[UI_CURRENT]); 3722 } 3723 3724 /* Before we test for the disk state, we should wait until an eventually 3725 ongoing cluster wide state change is finished. That is important if 3726 we are primary and are detaching from our disk. We need to see the 3727 new disk state... */ 3728 mutex_lock(mdev->state_mutex); 3729 mutex_unlock(mdev->state_mutex); 3730 if (mdev->state.conn >= C_CONNECTED && mdev->state.disk < D_INCONSISTENT) 3731 updated_uuids |= drbd_set_ed_uuid(mdev, p_uuid[UI_CURRENT]); 3732 3733 if (updated_uuids) 3734 drbd_print_uuids(mdev, "receiver updated UUIDs to"); 3735 3736 return 0; 3737 } 3738 3739 /** 3740 * convert_state() - Converts the peer's view of the cluster state to our point of view 3741 * @ps: The state as seen by the peer. 3742 */ 3743 static union drbd_state convert_state(union drbd_state ps) 3744 { 3745 union drbd_state ms; 3746 3747 static enum drbd_conns c_tab[] = { 3748 [C_WF_REPORT_PARAMS] = C_WF_REPORT_PARAMS, 3749 [C_CONNECTED] = C_CONNECTED, 3750 3751 [C_STARTING_SYNC_S] = C_STARTING_SYNC_T, 3752 [C_STARTING_SYNC_T] = C_STARTING_SYNC_S, 3753 [C_DISCONNECTING] = C_TEAR_DOWN, /* C_NETWORK_FAILURE, */ 3754 [C_VERIFY_S] = C_VERIFY_T, 3755 [C_MASK] = C_MASK, 3756 }; 3757 3758 ms.i = ps.i; 3759 3760 ms.conn = c_tab[ps.conn]; 3761 ms.peer = ps.role; 3762 ms.role = ps.peer; 3763 ms.pdsk = ps.disk; 3764 ms.disk = ps.pdsk; 3765 ms.peer_isp = (ps.aftr_isp | ps.user_isp); 3766 3767 return ms; 3768 } 3769 3770 static int receive_req_state(struct drbd_tconn *tconn, struct packet_info *pi) 3771 { 3772 struct drbd_conf *mdev; 3773 struct p_req_state *p = pi->data; 3774 union drbd_state mask, val; 3775 enum drbd_state_rv rv; 3776 3777 mdev = vnr_to_mdev(tconn, pi->vnr); 3778 if (!mdev) 3779 return -EIO; 3780 3781 mask.i = be32_to_cpu(p->mask); 3782 val.i = be32_to_cpu(p->val); 3783 3784 if (test_bit(RESOLVE_CONFLICTS, &mdev->tconn->flags) && 3785 mutex_is_locked(mdev->state_mutex)) { 3786 drbd_send_sr_reply(mdev, SS_CONCURRENT_ST_CHG); 3787 return 0; 3788 } 3789 3790 mask = convert_state(mask); 3791 val = convert_state(val); 3792 3793 rv = drbd_change_state(mdev, CS_VERBOSE, mask, val); 3794 drbd_send_sr_reply(mdev, rv); 3795 3796 drbd_md_sync(mdev); 3797 3798 return 0; 3799 } 3800 3801 static int receive_req_conn_state(struct drbd_tconn *tconn, struct packet_info *pi) 3802 { 3803 struct p_req_state *p = pi->data; 3804 union drbd_state mask, val; 3805 enum drbd_state_rv rv; 3806 3807 mask.i = be32_to_cpu(p->mask); 3808 val.i = be32_to_cpu(p->val); 3809 3810 if (test_bit(RESOLVE_CONFLICTS, &tconn->flags) && 3811 mutex_is_locked(&tconn->cstate_mutex)) { 3812 conn_send_sr_reply(tconn, SS_CONCURRENT_ST_CHG); 3813 return 0; 3814 } 3815 3816 mask = convert_state(mask); 3817 val = convert_state(val); 3818 3819 rv = conn_request_state(tconn, mask, val, CS_VERBOSE | CS_LOCAL_ONLY | CS_IGN_OUTD_FAIL); 3820 conn_send_sr_reply(tconn, rv); 3821 3822 return 0; 3823 } 3824 3825 static int receive_state(struct drbd_tconn *tconn, struct packet_info *pi) 3826 { 3827 struct drbd_conf *mdev; 3828 struct p_state *p = pi->data; 3829 union drbd_state os, ns, peer_state; 3830 enum drbd_disk_state real_peer_disk; 3831 enum chg_state_flags cs_flags; 3832 int rv; 3833 3834 mdev = vnr_to_mdev(tconn, pi->vnr); 3835 if (!mdev) 3836 return config_unknown_volume(tconn, pi); 3837 3838 peer_state.i = be32_to_cpu(p->state); 3839 3840 real_peer_disk = peer_state.disk; 3841 if (peer_state.disk == D_NEGOTIATING) { 3842 real_peer_disk = mdev->p_uuid[UI_FLAGS] & 4 ? D_INCONSISTENT : D_CONSISTENT; 3843 dev_info(DEV, "real peer disk state = %s\n", drbd_disk_str(real_peer_disk)); 3844 } 3845 3846 spin_lock_irq(&mdev->tconn->req_lock); 3847 retry: 3848 os = ns = drbd_read_state(mdev); 3849 spin_unlock_irq(&mdev->tconn->req_lock); 3850 3851 /* If some other part of the code (asender thread, timeout) 3852 * already decided to close the connection again, 3853 * we must not "re-establish" it here. */ 3854 if (os.conn <= C_TEAR_DOWN) 3855 return -ECONNRESET; 3856 3857 /* If this is the "end of sync" confirmation, usually the peer disk 3858 * transitions from D_INCONSISTENT to D_UP_TO_DATE. For empty (0 bits 3859 * set) resync started in PausedSyncT, or if the timing of pause-/ 3860 * unpause-sync events has been "just right", the peer disk may 3861 * transition from D_CONSISTENT to D_UP_TO_DATE as well. 3862 */ 3863 if ((os.pdsk == D_INCONSISTENT || os.pdsk == D_CONSISTENT) && 3864 real_peer_disk == D_UP_TO_DATE && 3865 os.conn > C_CONNECTED && os.disk == D_UP_TO_DATE) { 3866 /* If we are (becoming) SyncSource, but peer is still in sync 3867 * preparation, ignore its uptodate-ness to avoid flapping, it 3868 * will change to inconsistent once the peer reaches active 3869 * syncing states. 3870 * It may have changed syncer-paused flags, however, so we 3871 * cannot ignore this completely. */ 3872 if (peer_state.conn > C_CONNECTED && 3873 peer_state.conn < C_SYNC_SOURCE) 3874 real_peer_disk = D_INCONSISTENT; 3875 3876 /* if peer_state changes to connected at the same time, 3877 * it explicitly notifies us that it finished resync. 3878 * Maybe we should finish it up, too? */ 3879 else if (os.conn >= C_SYNC_SOURCE && 3880 peer_state.conn == C_CONNECTED) { 3881 if (drbd_bm_total_weight(mdev) <= mdev->rs_failed) 3882 drbd_resync_finished(mdev); 3883 return 0; 3884 } 3885 } 3886 3887 /* explicit verify finished notification, stop sector reached. */ 3888 if (os.conn == C_VERIFY_T && os.disk == D_UP_TO_DATE && 3889 peer_state.conn == C_CONNECTED && real_peer_disk == D_UP_TO_DATE) { 3890 ov_out_of_sync_print(mdev); 3891 drbd_resync_finished(mdev); 3892 return 0; 3893 } 3894 3895 /* peer says his disk is inconsistent, while we think it is uptodate, 3896 * and this happens while the peer still thinks we have a sync going on, 3897 * but we think we are already done with the sync. 3898 * We ignore this to avoid flapping pdsk. 3899 * This should not happen, if the peer is a recent version of drbd. */ 3900 if (os.pdsk == D_UP_TO_DATE && real_peer_disk == D_INCONSISTENT && 3901 os.conn == C_CONNECTED && peer_state.conn > C_SYNC_SOURCE) 3902 real_peer_disk = D_UP_TO_DATE; 3903 3904 if (ns.conn == C_WF_REPORT_PARAMS) 3905 ns.conn = C_CONNECTED; 3906 3907 if (peer_state.conn == C_AHEAD) 3908 ns.conn = C_BEHIND; 3909 3910 if (mdev->p_uuid && peer_state.disk >= D_NEGOTIATING && 3911 get_ldev_if_state(mdev, D_NEGOTIATING)) { 3912 int cr; /* consider resync */ 3913 3914 /* if we established a new connection */ 3915 cr = (os.conn < C_CONNECTED); 3916 /* if we had an established connection 3917 * and one of the nodes newly attaches a disk */ 3918 cr |= (os.conn == C_CONNECTED && 3919 (peer_state.disk == D_NEGOTIATING || 3920 os.disk == D_NEGOTIATING)); 3921 /* if we have both been inconsistent, and the peer has been 3922 * forced to be UpToDate with --overwrite-data */ 3923 cr |= test_bit(CONSIDER_RESYNC, &mdev->flags); 3924 /* if we had been plain connected, and the admin requested to 3925 * start a sync by "invalidate" or "invalidate-remote" */ 3926 cr |= (os.conn == C_CONNECTED && 3927 (peer_state.conn >= C_STARTING_SYNC_S && 3928 peer_state.conn <= C_WF_BITMAP_T)); 3929 3930 if (cr) 3931 ns.conn = drbd_sync_handshake(mdev, peer_state.role, real_peer_disk); 3932 3933 put_ldev(mdev); 3934 if (ns.conn == C_MASK) { 3935 ns.conn = C_CONNECTED; 3936 if (mdev->state.disk == D_NEGOTIATING) { 3937 drbd_force_state(mdev, NS(disk, D_FAILED)); 3938 } else if (peer_state.disk == D_NEGOTIATING) { 3939 dev_err(DEV, "Disk attach process on the peer node was aborted.\n"); 3940 peer_state.disk = D_DISKLESS; 3941 real_peer_disk = D_DISKLESS; 3942 } else { 3943 if (test_and_clear_bit(CONN_DRY_RUN, &mdev->tconn->flags)) 3944 return -EIO; 3945 D_ASSERT(os.conn == C_WF_REPORT_PARAMS); 3946 conn_request_state(mdev->tconn, NS(conn, C_DISCONNECTING), CS_HARD); 3947 return -EIO; 3948 } 3949 } 3950 } 3951 3952 spin_lock_irq(&mdev->tconn->req_lock); 3953 if (os.i != drbd_read_state(mdev).i) 3954 goto retry; 3955 clear_bit(CONSIDER_RESYNC, &mdev->flags); 3956 ns.peer = peer_state.role; 3957 ns.pdsk = real_peer_disk; 3958 ns.peer_isp = (peer_state.aftr_isp | peer_state.user_isp); 3959 if ((ns.conn == C_CONNECTED || ns.conn == C_WF_BITMAP_S) && ns.disk == D_NEGOTIATING) 3960 ns.disk = mdev->new_state_tmp.disk; 3961 cs_flags = CS_VERBOSE + (os.conn < C_CONNECTED && ns.conn >= C_CONNECTED ? 0 : CS_HARD); 3962 if (ns.pdsk == D_CONSISTENT && drbd_suspended(mdev) && ns.conn == C_CONNECTED && os.conn < C_CONNECTED && 3963 test_bit(NEW_CUR_UUID, &mdev->flags)) { 3964 /* Do not allow tl_restart(RESEND) for a rebooted peer. We can only allow this 3965 for temporal network outages! */ 3966 spin_unlock_irq(&mdev->tconn->req_lock); 3967 dev_err(DEV, "Aborting Connect, can not thaw IO with an only Consistent peer\n"); 3968 tl_clear(mdev->tconn); 3969 drbd_uuid_new_current(mdev); 3970 clear_bit(NEW_CUR_UUID, &mdev->flags); 3971 conn_request_state(mdev->tconn, NS2(conn, C_PROTOCOL_ERROR, susp, 0), CS_HARD); 3972 return -EIO; 3973 } 3974 rv = _drbd_set_state(mdev, ns, cs_flags, NULL); 3975 ns = drbd_read_state(mdev); 3976 spin_unlock_irq(&mdev->tconn->req_lock); 3977 3978 if (rv < SS_SUCCESS) { 3979 conn_request_state(mdev->tconn, NS(conn, C_DISCONNECTING), CS_HARD); 3980 return -EIO; 3981 } 3982 3983 if (os.conn > C_WF_REPORT_PARAMS) { 3984 if (ns.conn > C_CONNECTED && peer_state.conn <= C_CONNECTED && 3985 peer_state.disk != D_NEGOTIATING ) { 3986 /* we want resync, peer has not yet decided to sync... */ 3987 /* Nowadays only used when forcing a node into primary role and 3988 setting its disk to UpToDate with that */ 3989 drbd_send_uuids(mdev); 3990 drbd_send_current_state(mdev); 3991 } 3992 } 3993 3994 clear_bit(DISCARD_MY_DATA, &mdev->flags); 3995 3996 drbd_md_sync(mdev); /* update connected indicator, la_size_sect, ... */ 3997 3998 return 0; 3999 } 4000 4001 static int receive_sync_uuid(struct drbd_tconn *tconn, struct packet_info *pi) 4002 { 4003 struct drbd_conf *mdev; 4004 struct p_rs_uuid *p = pi->data; 4005 4006 mdev = vnr_to_mdev(tconn, pi->vnr); 4007 if (!mdev) 4008 return -EIO; 4009 4010 wait_event(mdev->misc_wait, 4011 mdev->state.conn == C_WF_SYNC_UUID || 4012 mdev->state.conn == C_BEHIND || 4013 mdev->state.conn < C_CONNECTED || 4014 mdev->state.disk < D_NEGOTIATING); 4015 4016 /* D_ASSERT( mdev->state.conn == C_WF_SYNC_UUID ); */ 4017 4018 /* Here the _drbd_uuid_ functions are right, current should 4019 _not_ be rotated into the history */ 4020 if (get_ldev_if_state(mdev, D_NEGOTIATING)) { 4021 _drbd_uuid_set(mdev, UI_CURRENT, be64_to_cpu(p->uuid)); 4022 _drbd_uuid_set(mdev, UI_BITMAP, 0UL); 4023 4024 drbd_print_uuids(mdev, "updated sync uuid"); 4025 drbd_start_resync(mdev, C_SYNC_TARGET); 4026 4027 put_ldev(mdev); 4028 } else 4029 dev_err(DEV, "Ignoring SyncUUID packet!\n"); 4030 4031 return 0; 4032 } 4033 4034 /** 4035 * receive_bitmap_plain 4036 * 4037 * Return 0 when done, 1 when another iteration is needed, and a negative error 4038 * code upon failure. 4039 */ 4040 static int 4041 receive_bitmap_plain(struct drbd_conf *mdev, unsigned int size, 4042 unsigned long *p, struct bm_xfer_ctx *c) 4043 { 4044 unsigned int data_size = DRBD_SOCKET_BUFFER_SIZE - 4045 drbd_header_size(mdev->tconn); 4046 unsigned int num_words = min_t(size_t, data_size / sizeof(*p), 4047 c->bm_words - c->word_offset); 4048 unsigned int want = num_words * sizeof(*p); 4049 int err; 4050 4051 if (want != size) { 4052 dev_err(DEV, "%s:want (%u) != size (%u)\n", __func__, want, size); 4053 return -EIO; 4054 } 4055 if (want == 0) 4056 return 0; 4057 err = drbd_recv_all(mdev->tconn, p, want); 4058 if (err) 4059 return err; 4060 4061 drbd_bm_merge_lel(mdev, c->word_offset, num_words, p); 4062 4063 c->word_offset += num_words; 4064 c->bit_offset = c->word_offset * BITS_PER_LONG; 4065 if (c->bit_offset > c->bm_bits) 4066 c->bit_offset = c->bm_bits; 4067 4068 return 1; 4069 } 4070 4071 static enum drbd_bitmap_code dcbp_get_code(struct p_compressed_bm *p) 4072 { 4073 return (enum drbd_bitmap_code)(p->encoding & 0x0f); 4074 } 4075 4076 static int dcbp_get_start(struct p_compressed_bm *p) 4077 { 4078 return (p->encoding & 0x80) != 0; 4079 } 4080 4081 static int dcbp_get_pad_bits(struct p_compressed_bm *p) 4082 { 4083 return (p->encoding >> 4) & 0x7; 4084 } 4085 4086 /** 4087 * recv_bm_rle_bits 4088 * 4089 * Return 0 when done, 1 when another iteration is needed, and a negative error 4090 * code upon failure. 4091 */ 4092 static int 4093 recv_bm_rle_bits(struct drbd_conf *mdev, 4094 struct p_compressed_bm *p, 4095 struct bm_xfer_ctx *c, 4096 unsigned int len) 4097 { 4098 struct bitstream bs; 4099 u64 look_ahead; 4100 u64 rl; 4101 u64 tmp; 4102 unsigned long s = c->bit_offset; 4103 unsigned long e; 4104 int toggle = dcbp_get_start(p); 4105 int have; 4106 int bits; 4107 4108 bitstream_init(&bs, p->code, len, dcbp_get_pad_bits(p)); 4109 4110 bits = bitstream_get_bits(&bs, &look_ahead, 64); 4111 if (bits < 0) 4112 return -EIO; 4113 4114 for (have = bits; have > 0; s += rl, toggle = !toggle) { 4115 bits = vli_decode_bits(&rl, look_ahead); 4116 if (bits <= 0) 4117 return -EIO; 4118 4119 if (toggle) { 4120 e = s + rl -1; 4121 if (e >= c->bm_bits) { 4122 dev_err(DEV, "bitmap overflow (e:%lu) while decoding bm RLE packet\n", e); 4123 return -EIO; 4124 } 4125 _drbd_bm_set_bits(mdev, s, e); 4126 } 4127 4128 if (have < bits) { 4129 dev_err(DEV, "bitmap decoding error: h:%d b:%d la:0x%08llx l:%u/%u\n", 4130 have, bits, look_ahead, 4131 (unsigned int)(bs.cur.b - p->code), 4132 (unsigned int)bs.buf_len); 4133 return -EIO; 4134 } 4135 look_ahead >>= bits; 4136 have -= bits; 4137 4138 bits = bitstream_get_bits(&bs, &tmp, 64 - have); 4139 if (bits < 0) 4140 return -EIO; 4141 look_ahead |= tmp << have; 4142 have += bits; 4143 } 4144 4145 c->bit_offset = s; 4146 bm_xfer_ctx_bit_to_word_offset(c); 4147 4148 return (s != c->bm_bits); 4149 } 4150 4151 /** 4152 * decode_bitmap_c 4153 * 4154 * Return 0 when done, 1 when another iteration is needed, and a negative error 4155 * code upon failure. 4156 */ 4157 static int 4158 decode_bitmap_c(struct drbd_conf *mdev, 4159 struct p_compressed_bm *p, 4160 struct bm_xfer_ctx *c, 4161 unsigned int len) 4162 { 4163 if (dcbp_get_code(p) == RLE_VLI_Bits) 4164 return recv_bm_rle_bits(mdev, p, c, len - sizeof(*p)); 4165 4166 /* other variants had been implemented for evaluation, 4167 * but have been dropped as this one turned out to be "best" 4168 * during all our tests. */ 4169 4170 dev_err(DEV, "receive_bitmap_c: unknown encoding %u\n", p->encoding); 4171 conn_request_state(mdev->tconn, NS(conn, C_PROTOCOL_ERROR), CS_HARD); 4172 return -EIO; 4173 } 4174 4175 void INFO_bm_xfer_stats(struct drbd_conf *mdev, 4176 const char *direction, struct bm_xfer_ctx *c) 4177 { 4178 /* what would it take to transfer it "plaintext" */ 4179 unsigned int header_size = drbd_header_size(mdev->tconn); 4180 unsigned int data_size = DRBD_SOCKET_BUFFER_SIZE - header_size; 4181 unsigned int plain = 4182 header_size * (DIV_ROUND_UP(c->bm_words, data_size) + 1) + 4183 c->bm_words * sizeof(unsigned long); 4184 unsigned int total = c->bytes[0] + c->bytes[1]; 4185 unsigned int r; 4186 4187 /* total can not be zero. but just in case: */ 4188 if (total == 0) 4189 return; 4190 4191 /* don't report if not compressed */ 4192 if (total >= plain) 4193 return; 4194 4195 /* total < plain. check for overflow, still */ 4196 r = (total > UINT_MAX/1000) ? (total / (plain/1000)) 4197 : (1000 * total / plain); 4198 4199 if (r > 1000) 4200 r = 1000; 4201 4202 r = 1000 - r; 4203 dev_info(DEV, "%s bitmap stats [Bytes(packets)]: plain %u(%u), RLE %u(%u), " 4204 "total %u; compression: %u.%u%%\n", 4205 direction, 4206 c->bytes[1], c->packets[1], 4207 c->bytes[0], c->packets[0], 4208 total, r/10, r % 10); 4209 } 4210 4211 /* Since we are processing the bitfield from lower addresses to higher, 4212 it does not matter if the process it in 32 bit chunks or 64 bit 4213 chunks as long as it is little endian. (Understand it as byte stream, 4214 beginning with the lowest byte...) If we would use big endian 4215 we would need to process it from the highest address to the lowest, 4216 in order to be agnostic to the 32 vs 64 bits issue. 4217 4218 returns 0 on failure, 1 if we successfully received it. */ 4219 static int receive_bitmap(struct drbd_tconn *tconn, struct packet_info *pi) 4220 { 4221 struct drbd_conf *mdev; 4222 struct bm_xfer_ctx c; 4223 int err; 4224 4225 mdev = vnr_to_mdev(tconn, pi->vnr); 4226 if (!mdev) 4227 return -EIO; 4228 4229 drbd_bm_lock(mdev, "receive bitmap", BM_LOCKED_SET_ALLOWED); 4230 /* you are supposed to send additional out-of-sync information 4231 * if you actually set bits during this phase */ 4232 4233 c = (struct bm_xfer_ctx) { 4234 .bm_bits = drbd_bm_bits(mdev), 4235 .bm_words = drbd_bm_words(mdev), 4236 }; 4237 4238 for(;;) { 4239 if (pi->cmd == P_BITMAP) 4240 err = receive_bitmap_plain(mdev, pi->size, pi->data, &c); 4241 else if (pi->cmd == P_COMPRESSED_BITMAP) { 4242 /* MAYBE: sanity check that we speak proto >= 90, 4243 * and the feature is enabled! */ 4244 struct p_compressed_bm *p = pi->data; 4245 4246 if (pi->size > DRBD_SOCKET_BUFFER_SIZE - drbd_header_size(tconn)) { 4247 dev_err(DEV, "ReportCBitmap packet too large\n"); 4248 err = -EIO; 4249 goto out; 4250 } 4251 if (pi->size <= sizeof(*p)) { 4252 dev_err(DEV, "ReportCBitmap packet too small (l:%u)\n", pi->size); 4253 err = -EIO; 4254 goto out; 4255 } 4256 err = drbd_recv_all(mdev->tconn, p, pi->size); 4257 if (err) 4258 goto out; 4259 err = decode_bitmap_c(mdev, p, &c, pi->size); 4260 } else { 4261 dev_warn(DEV, "receive_bitmap: cmd neither ReportBitMap nor ReportCBitMap (is 0x%x)", pi->cmd); 4262 err = -EIO; 4263 goto out; 4264 } 4265 4266 c.packets[pi->cmd == P_BITMAP]++; 4267 c.bytes[pi->cmd == P_BITMAP] += drbd_header_size(tconn) + pi->size; 4268 4269 if (err <= 0) { 4270 if (err < 0) 4271 goto out; 4272 break; 4273 } 4274 err = drbd_recv_header(mdev->tconn, pi); 4275 if (err) 4276 goto out; 4277 } 4278 4279 INFO_bm_xfer_stats(mdev, "receive", &c); 4280 4281 if (mdev->state.conn == C_WF_BITMAP_T) { 4282 enum drbd_state_rv rv; 4283 4284 err = drbd_send_bitmap(mdev); 4285 if (err) 4286 goto out; 4287 /* Omit CS_ORDERED with this state transition to avoid deadlocks. */ 4288 rv = _drbd_request_state(mdev, NS(conn, C_WF_SYNC_UUID), CS_VERBOSE); 4289 D_ASSERT(rv == SS_SUCCESS); 4290 } else if (mdev->state.conn != C_WF_BITMAP_S) { 4291 /* admin may have requested C_DISCONNECTING, 4292 * other threads may have noticed network errors */ 4293 dev_info(DEV, "unexpected cstate (%s) in receive_bitmap\n", 4294 drbd_conn_str(mdev->state.conn)); 4295 } 4296 err = 0; 4297 4298 out: 4299 drbd_bm_unlock(mdev); 4300 if (!err && mdev->state.conn == C_WF_BITMAP_S) 4301 drbd_start_resync(mdev, C_SYNC_SOURCE); 4302 return err; 4303 } 4304 4305 static int receive_skip(struct drbd_tconn *tconn, struct packet_info *pi) 4306 { 4307 conn_warn(tconn, "skipping unknown optional packet type %d, l: %d!\n", 4308 pi->cmd, pi->size); 4309 4310 return ignore_remaining_packet(tconn, pi); 4311 } 4312 4313 static int receive_UnplugRemote(struct drbd_tconn *tconn, struct packet_info *pi) 4314 { 4315 /* Make sure we've acked all the TCP data associated 4316 * with the data requests being unplugged */ 4317 drbd_tcp_quickack(tconn->data.socket); 4318 4319 return 0; 4320 } 4321 4322 static int receive_out_of_sync(struct drbd_tconn *tconn, struct packet_info *pi) 4323 { 4324 struct drbd_conf *mdev; 4325 struct p_block_desc *p = pi->data; 4326 4327 mdev = vnr_to_mdev(tconn, pi->vnr); 4328 if (!mdev) 4329 return -EIO; 4330 4331 switch (mdev->state.conn) { 4332 case C_WF_SYNC_UUID: 4333 case C_WF_BITMAP_T: 4334 case C_BEHIND: 4335 break; 4336 default: 4337 dev_err(DEV, "ASSERT FAILED cstate = %s, expected: WFSyncUUID|WFBitMapT|Behind\n", 4338 drbd_conn_str(mdev->state.conn)); 4339 } 4340 4341 drbd_set_out_of_sync(mdev, be64_to_cpu(p->sector), be32_to_cpu(p->blksize)); 4342 4343 return 0; 4344 } 4345 4346 struct data_cmd { 4347 int expect_payload; 4348 size_t pkt_size; 4349 int (*fn)(struct drbd_tconn *, struct packet_info *); 4350 }; 4351 4352 static struct data_cmd drbd_cmd_handler[] = { 4353 [P_DATA] = { 1, sizeof(struct p_data), receive_Data }, 4354 [P_DATA_REPLY] = { 1, sizeof(struct p_data), receive_DataReply }, 4355 [P_RS_DATA_REPLY] = { 1, sizeof(struct p_data), receive_RSDataReply } , 4356 [P_BARRIER] = { 0, sizeof(struct p_barrier), receive_Barrier } , 4357 [P_BITMAP] = { 1, 0, receive_bitmap } , 4358 [P_COMPRESSED_BITMAP] = { 1, 0, receive_bitmap } , 4359 [P_UNPLUG_REMOTE] = { 0, 0, receive_UnplugRemote }, 4360 [P_DATA_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest }, 4361 [P_RS_DATA_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest }, 4362 [P_SYNC_PARAM] = { 1, 0, receive_SyncParam }, 4363 [P_SYNC_PARAM89] = { 1, 0, receive_SyncParam }, 4364 [P_PROTOCOL] = { 1, sizeof(struct p_protocol), receive_protocol }, 4365 [P_UUIDS] = { 0, sizeof(struct p_uuids), receive_uuids }, 4366 [P_SIZES] = { 0, sizeof(struct p_sizes), receive_sizes }, 4367 [P_STATE] = { 0, sizeof(struct p_state), receive_state }, 4368 [P_STATE_CHG_REQ] = { 0, sizeof(struct p_req_state), receive_req_state }, 4369 [P_SYNC_UUID] = { 0, sizeof(struct p_rs_uuid), receive_sync_uuid }, 4370 [P_OV_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest }, 4371 [P_OV_REPLY] = { 1, sizeof(struct p_block_req), receive_DataRequest }, 4372 [P_CSUM_RS_REQUEST] = { 1, sizeof(struct p_block_req), receive_DataRequest }, 4373 [P_DELAY_PROBE] = { 0, sizeof(struct p_delay_probe93), receive_skip }, 4374 [P_OUT_OF_SYNC] = { 0, sizeof(struct p_block_desc), receive_out_of_sync }, 4375 [P_CONN_ST_CHG_REQ] = { 0, sizeof(struct p_req_state), receive_req_conn_state }, 4376 [P_PROTOCOL_UPDATE] = { 1, sizeof(struct p_protocol), receive_protocol }, 4377 }; 4378 4379 static void drbdd(struct drbd_tconn *tconn) 4380 { 4381 struct packet_info pi; 4382 size_t shs; /* sub header size */ 4383 int err; 4384 4385 while (get_t_state(&tconn->receiver) == RUNNING) { 4386 struct data_cmd *cmd; 4387 4388 drbd_thread_current_set_cpu(&tconn->receiver); 4389 if (drbd_recv_header(tconn, &pi)) 4390 goto err_out; 4391 4392 cmd = &drbd_cmd_handler[pi.cmd]; 4393 if (unlikely(pi.cmd >= ARRAY_SIZE(drbd_cmd_handler) || !cmd->fn)) { 4394 conn_err(tconn, "Unexpected data packet %s (0x%04x)", 4395 cmdname(pi.cmd), pi.cmd); 4396 goto err_out; 4397 } 4398 4399 shs = cmd->pkt_size; 4400 if (pi.size > shs && !cmd->expect_payload) { 4401 conn_err(tconn, "No payload expected %s l:%d\n", 4402 cmdname(pi.cmd), pi.size); 4403 goto err_out; 4404 } 4405 4406 if (shs) { 4407 err = drbd_recv_all_warn(tconn, pi.data, shs); 4408 if (err) 4409 goto err_out; 4410 pi.size -= shs; 4411 } 4412 4413 err = cmd->fn(tconn, &pi); 4414 if (err) { 4415 conn_err(tconn, "error receiving %s, e: %d l: %d!\n", 4416 cmdname(pi.cmd), err, pi.size); 4417 goto err_out; 4418 } 4419 } 4420 return; 4421 4422 err_out: 4423 conn_request_state(tconn, NS(conn, C_PROTOCOL_ERROR), CS_HARD); 4424 } 4425 4426 void conn_flush_workqueue(struct drbd_tconn *tconn) 4427 { 4428 struct drbd_wq_barrier barr; 4429 4430 barr.w.cb = w_prev_work_done; 4431 barr.w.tconn = tconn; 4432 init_completion(&barr.done); 4433 drbd_queue_work(&tconn->sender_work, &barr.w); 4434 wait_for_completion(&barr.done); 4435 } 4436 4437 static void conn_disconnect(struct drbd_tconn *tconn) 4438 { 4439 struct drbd_conf *mdev; 4440 enum drbd_conns oc; 4441 int vnr; 4442 4443 if (tconn->cstate == C_STANDALONE) 4444 return; 4445 4446 /* We are about to start the cleanup after connection loss. 4447 * Make sure drbd_make_request knows about that. 4448 * Usually we should be in some network failure state already, 4449 * but just in case we are not, we fix it up here. 4450 */ 4451 conn_request_state(tconn, NS(conn, C_NETWORK_FAILURE), CS_HARD); 4452 4453 /* asender does not clean up anything. it must not interfere, either */ 4454 drbd_thread_stop(&tconn->asender); 4455 drbd_free_sock(tconn); 4456 4457 rcu_read_lock(); 4458 idr_for_each_entry(&tconn->volumes, mdev, vnr) { 4459 kref_get(&mdev->kref); 4460 rcu_read_unlock(); 4461 drbd_disconnected(mdev); 4462 kref_put(&mdev->kref, &drbd_minor_destroy); 4463 rcu_read_lock(); 4464 } 4465 rcu_read_unlock(); 4466 4467 if (!list_empty(&tconn->current_epoch->list)) 4468 conn_err(tconn, "ASSERTION FAILED: tconn->current_epoch->list not empty\n"); 4469 /* ok, no more ee's on the fly, it is safe to reset the epoch_size */ 4470 atomic_set(&tconn->current_epoch->epoch_size, 0); 4471 tconn->send.seen_any_write_yet = false; 4472 4473 conn_info(tconn, "Connection closed\n"); 4474 4475 if (conn_highest_role(tconn) == R_PRIMARY && conn_highest_pdsk(tconn) >= D_UNKNOWN) 4476 conn_try_outdate_peer_async(tconn); 4477 4478 spin_lock_irq(&tconn->req_lock); 4479 oc = tconn->cstate; 4480 if (oc >= C_UNCONNECTED) 4481 _conn_request_state(tconn, NS(conn, C_UNCONNECTED), CS_VERBOSE); 4482 4483 spin_unlock_irq(&tconn->req_lock); 4484 4485 if (oc == C_DISCONNECTING) 4486 conn_request_state(tconn, NS(conn, C_STANDALONE), CS_VERBOSE | CS_HARD); 4487 } 4488 4489 static int drbd_disconnected(struct drbd_conf *mdev) 4490 { 4491 unsigned int i; 4492 4493 /* wait for current activity to cease. */ 4494 spin_lock_irq(&mdev->tconn->req_lock); 4495 _drbd_wait_ee_list_empty(mdev, &mdev->active_ee); 4496 _drbd_wait_ee_list_empty(mdev, &mdev->sync_ee); 4497 _drbd_wait_ee_list_empty(mdev, &mdev->read_ee); 4498 spin_unlock_irq(&mdev->tconn->req_lock); 4499 4500 /* We do not have data structures that would allow us to 4501 * get the rs_pending_cnt down to 0 again. 4502 * * On C_SYNC_TARGET we do not have any data structures describing 4503 * the pending RSDataRequest's we have sent. 4504 * * On C_SYNC_SOURCE there is no data structure that tracks 4505 * the P_RS_DATA_REPLY blocks that we sent to the SyncTarget. 4506 * And no, it is not the sum of the reference counts in the 4507 * resync_LRU. The resync_LRU tracks the whole operation including 4508 * the disk-IO, while the rs_pending_cnt only tracks the blocks 4509 * on the fly. */ 4510 drbd_rs_cancel_all(mdev); 4511 mdev->rs_total = 0; 4512 mdev->rs_failed = 0; 4513 atomic_set(&mdev->rs_pending_cnt, 0); 4514 wake_up(&mdev->misc_wait); 4515 4516 del_timer_sync(&mdev->resync_timer); 4517 resync_timer_fn((unsigned long)mdev); 4518 4519 /* wait for all w_e_end_data_req, w_e_end_rsdata_req, w_send_barrier, 4520 * w_make_resync_request etc. which may still be on the worker queue 4521 * to be "canceled" */ 4522 drbd_flush_workqueue(mdev); 4523 4524 drbd_finish_peer_reqs(mdev); 4525 4526 /* This second workqueue flush is necessary, since drbd_finish_peer_reqs() 4527 might have issued a work again. The one before drbd_finish_peer_reqs() is 4528 necessary to reclain net_ee in drbd_finish_peer_reqs(). */ 4529 drbd_flush_workqueue(mdev); 4530 4531 /* need to do it again, drbd_finish_peer_reqs() may have populated it 4532 * again via drbd_try_clear_on_disk_bm(). */ 4533 drbd_rs_cancel_all(mdev); 4534 4535 kfree(mdev->p_uuid); 4536 mdev->p_uuid = NULL; 4537 4538 if (!drbd_suspended(mdev)) 4539 tl_clear(mdev->tconn); 4540 4541 drbd_md_sync(mdev); 4542 4543 /* serialize with bitmap writeout triggered by the state change, 4544 * if any. */ 4545 wait_event(mdev->misc_wait, !test_bit(BITMAP_IO, &mdev->flags)); 4546 4547 /* tcp_close and release of sendpage pages can be deferred. I don't 4548 * want to use SO_LINGER, because apparently it can be deferred for 4549 * more than 20 seconds (longest time I checked). 4550 * 4551 * Actually we don't care for exactly when the network stack does its 4552 * put_page(), but release our reference on these pages right here. 4553 */ 4554 i = drbd_free_peer_reqs(mdev, &mdev->net_ee); 4555 if (i) 4556 dev_info(DEV, "net_ee not empty, killed %u entries\n", i); 4557 i = atomic_read(&mdev->pp_in_use_by_net); 4558 if (i) 4559 dev_info(DEV, "pp_in_use_by_net = %d, expected 0\n", i); 4560 i = atomic_read(&mdev->pp_in_use); 4561 if (i) 4562 dev_info(DEV, "pp_in_use = %d, expected 0\n", i); 4563 4564 D_ASSERT(list_empty(&mdev->read_ee)); 4565 D_ASSERT(list_empty(&mdev->active_ee)); 4566 D_ASSERT(list_empty(&mdev->sync_ee)); 4567 D_ASSERT(list_empty(&mdev->done_ee)); 4568 4569 return 0; 4570 } 4571 4572 /* 4573 * We support PRO_VERSION_MIN to PRO_VERSION_MAX. The protocol version 4574 * we can agree on is stored in agreed_pro_version. 4575 * 4576 * feature flags and the reserved array should be enough room for future 4577 * enhancements of the handshake protocol, and possible plugins... 4578 * 4579 * for now, they are expected to be zero, but ignored. 4580 */ 4581 static int drbd_send_features(struct drbd_tconn *tconn) 4582 { 4583 struct drbd_socket *sock; 4584 struct p_connection_features *p; 4585 4586 sock = &tconn->data; 4587 p = conn_prepare_command(tconn, sock); 4588 if (!p) 4589 return -EIO; 4590 memset(p, 0, sizeof(*p)); 4591 p->protocol_min = cpu_to_be32(PRO_VERSION_MIN); 4592 p->protocol_max = cpu_to_be32(PRO_VERSION_MAX); 4593 return conn_send_command(tconn, sock, P_CONNECTION_FEATURES, sizeof(*p), NULL, 0); 4594 } 4595 4596 /* 4597 * return values: 4598 * 1 yes, we have a valid connection 4599 * 0 oops, did not work out, please try again 4600 * -1 peer talks different language, 4601 * no point in trying again, please go standalone. 4602 */ 4603 static int drbd_do_features(struct drbd_tconn *tconn) 4604 { 4605 /* ASSERT current == tconn->receiver ... */ 4606 struct p_connection_features *p; 4607 const int expect = sizeof(struct p_connection_features); 4608 struct packet_info pi; 4609 int err; 4610 4611 err = drbd_send_features(tconn); 4612 if (err) 4613 return 0; 4614 4615 err = drbd_recv_header(tconn, &pi); 4616 if (err) 4617 return 0; 4618 4619 if (pi.cmd != P_CONNECTION_FEATURES) { 4620 conn_err(tconn, "expected ConnectionFeatures packet, received: %s (0x%04x)\n", 4621 cmdname(pi.cmd), pi.cmd); 4622 return -1; 4623 } 4624 4625 if (pi.size != expect) { 4626 conn_err(tconn, "expected ConnectionFeatures length: %u, received: %u\n", 4627 expect, pi.size); 4628 return -1; 4629 } 4630 4631 p = pi.data; 4632 err = drbd_recv_all_warn(tconn, p, expect); 4633 if (err) 4634 return 0; 4635 4636 p->protocol_min = be32_to_cpu(p->protocol_min); 4637 p->protocol_max = be32_to_cpu(p->protocol_max); 4638 if (p->protocol_max == 0) 4639 p->protocol_max = p->protocol_min; 4640 4641 if (PRO_VERSION_MAX < p->protocol_min || 4642 PRO_VERSION_MIN > p->protocol_max) 4643 goto incompat; 4644 4645 tconn->agreed_pro_version = min_t(int, PRO_VERSION_MAX, p->protocol_max); 4646 4647 conn_info(tconn, "Handshake successful: " 4648 "Agreed network protocol version %d\n", tconn->agreed_pro_version); 4649 4650 return 1; 4651 4652 incompat: 4653 conn_err(tconn, "incompatible DRBD dialects: " 4654 "I support %d-%d, peer supports %d-%d\n", 4655 PRO_VERSION_MIN, PRO_VERSION_MAX, 4656 p->protocol_min, p->protocol_max); 4657 return -1; 4658 } 4659 4660 #if !defined(CONFIG_CRYPTO_HMAC) && !defined(CONFIG_CRYPTO_HMAC_MODULE) 4661 static int drbd_do_auth(struct drbd_tconn *tconn) 4662 { 4663 conn_err(tconn, "This kernel was build without CONFIG_CRYPTO_HMAC.\n"); 4664 conn_err(tconn, "You need to disable 'cram-hmac-alg' in drbd.conf.\n"); 4665 return -1; 4666 } 4667 #else 4668 #define CHALLENGE_LEN 64 4669 4670 /* Return value: 4671 1 - auth succeeded, 4672 0 - failed, try again (network error), 4673 -1 - auth failed, don't try again. 4674 */ 4675 4676 static int drbd_do_auth(struct drbd_tconn *tconn) 4677 { 4678 struct drbd_socket *sock; 4679 char my_challenge[CHALLENGE_LEN]; /* 64 Bytes... */ 4680 struct scatterlist sg; 4681 char *response = NULL; 4682 char *right_response = NULL; 4683 char *peers_ch = NULL; 4684 unsigned int key_len; 4685 char secret[SHARED_SECRET_MAX]; /* 64 byte */ 4686 unsigned int resp_size; 4687 struct hash_desc desc; 4688 struct packet_info pi; 4689 struct net_conf *nc; 4690 int err, rv; 4691 4692 /* FIXME: Put the challenge/response into the preallocated socket buffer. */ 4693 4694 rcu_read_lock(); 4695 nc = rcu_dereference(tconn->net_conf); 4696 key_len = strlen(nc->shared_secret); 4697 memcpy(secret, nc->shared_secret, key_len); 4698 rcu_read_unlock(); 4699 4700 desc.tfm = tconn->cram_hmac_tfm; 4701 desc.flags = 0; 4702 4703 rv = crypto_hash_setkey(tconn->cram_hmac_tfm, (u8 *)secret, key_len); 4704 if (rv) { 4705 conn_err(tconn, "crypto_hash_setkey() failed with %d\n", rv); 4706 rv = -1; 4707 goto fail; 4708 } 4709 4710 get_random_bytes(my_challenge, CHALLENGE_LEN); 4711 4712 sock = &tconn->data; 4713 if (!conn_prepare_command(tconn, sock)) { 4714 rv = 0; 4715 goto fail; 4716 } 4717 rv = !conn_send_command(tconn, sock, P_AUTH_CHALLENGE, 0, 4718 my_challenge, CHALLENGE_LEN); 4719 if (!rv) 4720 goto fail; 4721 4722 err = drbd_recv_header(tconn, &pi); 4723 if (err) { 4724 rv = 0; 4725 goto fail; 4726 } 4727 4728 if (pi.cmd != P_AUTH_CHALLENGE) { 4729 conn_err(tconn, "expected AuthChallenge packet, received: %s (0x%04x)\n", 4730 cmdname(pi.cmd), pi.cmd); 4731 rv = 0; 4732 goto fail; 4733 } 4734 4735 if (pi.size > CHALLENGE_LEN * 2) { 4736 conn_err(tconn, "expected AuthChallenge payload too big.\n"); 4737 rv = -1; 4738 goto fail; 4739 } 4740 4741 peers_ch = kmalloc(pi.size, GFP_NOIO); 4742 if (peers_ch == NULL) { 4743 conn_err(tconn, "kmalloc of peers_ch failed\n"); 4744 rv = -1; 4745 goto fail; 4746 } 4747 4748 err = drbd_recv_all_warn(tconn, peers_ch, pi.size); 4749 if (err) { 4750 rv = 0; 4751 goto fail; 4752 } 4753 4754 resp_size = crypto_hash_digestsize(tconn->cram_hmac_tfm); 4755 response = kmalloc(resp_size, GFP_NOIO); 4756 if (response == NULL) { 4757 conn_err(tconn, "kmalloc of response failed\n"); 4758 rv = -1; 4759 goto fail; 4760 } 4761 4762 sg_init_table(&sg, 1); 4763 sg_set_buf(&sg, peers_ch, pi.size); 4764 4765 rv = crypto_hash_digest(&desc, &sg, sg.length, response); 4766 if (rv) { 4767 conn_err(tconn, "crypto_hash_digest() failed with %d\n", rv); 4768 rv = -1; 4769 goto fail; 4770 } 4771 4772 if (!conn_prepare_command(tconn, sock)) { 4773 rv = 0; 4774 goto fail; 4775 } 4776 rv = !conn_send_command(tconn, sock, P_AUTH_RESPONSE, 0, 4777 response, resp_size); 4778 if (!rv) 4779 goto fail; 4780 4781 err = drbd_recv_header(tconn, &pi); 4782 if (err) { 4783 rv = 0; 4784 goto fail; 4785 } 4786 4787 if (pi.cmd != P_AUTH_RESPONSE) { 4788 conn_err(tconn, "expected AuthResponse packet, received: %s (0x%04x)\n", 4789 cmdname(pi.cmd), pi.cmd); 4790 rv = 0; 4791 goto fail; 4792 } 4793 4794 if (pi.size != resp_size) { 4795 conn_err(tconn, "expected AuthResponse payload of wrong size\n"); 4796 rv = 0; 4797 goto fail; 4798 } 4799 4800 err = drbd_recv_all_warn(tconn, response , resp_size); 4801 if (err) { 4802 rv = 0; 4803 goto fail; 4804 } 4805 4806 right_response = kmalloc(resp_size, GFP_NOIO); 4807 if (right_response == NULL) { 4808 conn_err(tconn, "kmalloc of right_response failed\n"); 4809 rv = -1; 4810 goto fail; 4811 } 4812 4813 sg_set_buf(&sg, my_challenge, CHALLENGE_LEN); 4814 4815 rv = crypto_hash_digest(&desc, &sg, sg.length, right_response); 4816 if (rv) { 4817 conn_err(tconn, "crypto_hash_digest() failed with %d\n", rv); 4818 rv = -1; 4819 goto fail; 4820 } 4821 4822 rv = !memcmp(response, right_response, resp_size); 4823 4824 if (rv) 4825 conn_info(tconn, "Peer authenticated using %d bytes HMAC\n", 4826 resp_size); 4827 else 4828 rv = -1; 4829 4830 fail: 4831 kfree(peers_ch); 4832 kfree(response); 4833 kfree(right_response); 4834 4835 return rv; 4836 } 4837 #endif 4838 4839 int drbdd_init(struct drbd_thread *thi) 4840 { 4841 struct drbd_tconn *tconn = thi->tconn; 4842 int h; 4843 4844 conn_info(tconn, "receiver (re)started\n"); 4845 4846 do { 4847 h = conn_connect(tconn); 4848 if (h == 0) { 4849 conn_disconnect(tconn); 4850 schedule_timeout_interruptible(HZ); 4851 } 4852 if (h == -1) { 4853 conn_warn(tconn, "Discarding network configuration.\n"); 4854 conn_request_state(tconn, NS(conn, C_DISCONNECTING), CS_HARD); 4855 } 4856 } while (h == 0); 4857 4858 if (h > 0) 4859 drbdd(tconn); 4860 4861 conn_disconnect(tconn); 4862 4863 conn_info(tconn, "receiver terminated\n"); 4864 return 0; 4865 } 4866 4867 /* ********* acknowledge sender ******** */ 4868 4869 static int got_conn_RqSReply(struct drbd_tconn *tconn, struct packet_info *pi) 4870 { 4871 struct p_req_state_reply *p = pi->data; 4872 int retcode = be32_to_cpu(p->retcode); 4873 4874 if (retcode >= SS_SUCCESS) { 4875 set_bit(CONN_WD_ST_CHG_OKAY, &tconn->flags); 4876 } else { 4877 set_bit(CONN_WD_ST_CHG_FAIL, &tconn->flags); 4878 conn_err(tconn, "Requested state change failed by peer: %s (%d)\n", 4879 drbd_set_st_err_str(retcode), retcode); 4880 } 4881 wake_up(&tconn->ping_wait); 4882 4883 return 0; 4884 } 4885 4886 static int got_RqSReply(struct drbd_tconn *tconn, struct packet_info *pi) 4887 { 4888 struct drbd_conf *mdev; 4889 struct p_req_state_reply *p = pi->data; 4890 int retcode = be32_to_cpu(p->retcode); 4891 4892 mdev = vnr_to_mdev(tconn, pi->vnr); 4893 if (!mdev) 4894 return -EIO; 4895 4896 if (test_bit(CONN_WD_ST_CHG_REQ, &tconn->flags)) { 4897 D_ASSERT(tconn->agreed_pro_version < 100); 4898 return got_conn_RqSReply(tconn, pi); 4899 } 4900 4901 if (retcode >= SS_SUCCESS) { 4902 set_bit(CL_ST_CHG_SUCCESS, &mdev->flags); 4903 } else { 4904 set_bit(CL_ST_CHG_FAIL, &mdev->flags); 4905 dev_err(DEV, "Requested state change failed by peer: %s (%d)\n", 4906 drbd_set_st_err_str(retcode), retcode); 4907 } 4908 wake_up(&mdev->state_wait); 4909 4910 return 0; 4911 } 4912 4913 static int got_Ping(struct drbd_tconn *tconn, struct packet_info *pi) 4914 { 4915 return drbd_send_ping_ack(tconn); 4916 4917 } 4918 4919 static int got_PingAck(struct drbd_tconn *tconn, struct packet_info *pi) 4920 { 4921 /* restore idle timeout */ 4922 tconn->meta.socket->sk->sk_rcvtimeo = tconn->net_conf->ping_int*HZ; 4923 if (!test_and_set_bit(GOT_PING_ACK, &tconn->flags)) 4924 wake_up(&tconn->ping_wait); 4925 4926 return 0; 4927 } 4928 4929 static int got_IsInSync(struct drbd_tconn *tconn, struct packet_info *pi) 4930 { 4931 struct drbd_conf *mdev; 4932 struct p_block_ack *p = pi->data; 4933 sector_t sector = be64_to_cpu(p->sector); 4934 int blksize = be32_to_cpu(p->blksize); 4935 4936 mdev = vnr_to_mdev(tconn, pi->vnr); 4937 if (!mdev) 4938 return -EIO; 4939 4940 D_ASSERT(mdev->tconn->agreed_pro_version >= 89); 4941 4942 update_peer_seq(mdev, be32_to_cpu(p->seq_num)); 4943 4944 if (get_ldev(mdev)) { 4945 drbd_rs_complete_io(mdev, sector); 4946 drbd_set_in_sync(mdev, sector, blksize); 4947 /* rs_same_csums is supposed to count in units of BM_BLOCK_SIZE */ 4948 mdev->rs_same_csum += (blksize >> BM_BLOCK_SHIFT); 4949 put_ldev(mdev); 4950 } 4951 dec_rs_pending(mdev); 4952 atomic_add(blksize >> 9, &mdev->rs_sect_in); 4953 4954 return 0; 4955 } 4956 4957 static int 4958 validate_req_change_req_state(struct drbd_conf *mdev, u64 id, sector_t sector, 4959 struct rb_root *root, const char *func, 4960 enum drbd_req_event what, bool missing_ok) 4961 { 4962 struct drbd_request *req; 4963 struct bio_and_error m; 4964 4965 spin_lock_irq(&mdev->tconn->req_lock); 4966 req = find_request(mdev, root, id, sector, missing_ok, func); 4967 if (unlikely(!req)) { 4968 spin_unlock_irq(&mdev->tconn->req_lock); 4969 return -EIO; 4970 } 4971 __req_mod(req, what, &m); 4972 spin_unlock_irq(&mdev->tconn->req_lock); 4973 4974 if (m.bio) 4975 complete_master_bio(mdev, &m); 4976 return 0; 4977 } 4978 4979 static int got_BlockAck(struct drbd_tconn *tconn, struct packet_info *pi) 4980 { 4981 struct drbd_conf *mdev; 4982 struct p_block_ack *p = pi->data; 4983 sector_t sector = be64_to_cpu(p->sector); 4984 int blksize = be32_to_cpu(p->blksize); 4985 enum drbd_req_event what; 4986 4987 mdev = vnr_to_mdev(tconn, pi->vnr); 4988 if (!mdev) 4989 return -EIO; 4990 4991 update_peer_seq(mdev, be32_to_cpu(p->seq_num)); 4992 4993 if (p->block_id == ID_SYNCER) { 4994 drbd_set_in_sync(mdev, sector, blksize); 4995 dec_rs_pending(mdev); 4996 return 0; 4997 } 4998 switch (pi->cmd) { 4999 case P_RS_WRITE_ACK: 5000 what = WRITE_ACKED_BY_PEER_AND_SIS; 5001 break; 5002 case P_WRITE_ACK: 5003 what = WRITE_ACKED_BY_PEER; 5004 break; 5005 case P_RECV_ACK: 5006 what = RECV_ACKED_BY_PEER; 5007 break; 5008 case P_SUPERSEDED: 5009 what = CONFLICT_RESOLVED; 5010 break; 5011 case P_RETRY_WRITE: 5012 what = POSTPONE_WRITE; 5013 break; 5014 default: 5015 BUG(); 5016 } 5017 5018 return validate_req_change_req_state(mdev, p->block_id, sector, 5019 &mdev->write_requests, __func__, 5020 what, false); 5021 } 5022 5023 static int got_NegAck(struct drbd_tconn *tconn, struct packet_info *pi) 5024 { 5025 struct drbd_conf *mdev; 5026 struct p_block_ack *p = pi->data; 5027 sector_t sector = be64_to_cpu(p->sector); 5028 int size = be32_to_cpu(p->blksize); 5029 int err; 5030 5031 mdev = vnr_to_mdev(tconn, pi->vnr); 5032 if (!mdev) 5033 return -EIO; 5034 5035 update_peer_seq(mdev, be32_to_cpu(p->seq_num)); 5036 5037 if (p->block_id == ID_SYNCER) { 5038 dec_rs_pending(mdev); 5039 drbd_rs_failed_io(mdev, sector, size); 5040 return 0; 5041 } 5042 5043 err = validate_req_change_req_state(mdev, p->block_id, sector, 5044 &mdev->write_requests, __func__, 5045 NEG_ACKED, true); 5046 if (err) { 5047 /* Protocol A has no P_WRITE_ACKs, but has P_NEG_ACKs. 5048 The master bio might already be completed, therefore the 5049 request is no longer in the collision hash. */ 5050 /* In Protocol B we might already have got a P_RECV_ACK 5051 but then get a P_NEG_ACK afterwards. */ 5052 drbd_set_out_of_sync(mdev, sector, size); 5053 } 5054 return 0; 5055 } 5056 5057 static int got_NegDReply(struct drbd_tconn *tconn, struct packet_info *pi) 5058 { 5059 struct drbd_conf *mdev; 5060 struct p_block_ack *p = pi->data; 5061 sector_t sector = be64_to_cpu(p->sector); 5062 5063 mdev = vnr_to_mdev(tconn, pi->vnr); 5064 if (!mdev) 5065 return -EIO; 5066 5067 update_peer_seq(mdev, be32_to_cpu(p->seq_num)); 5068 5069 dev_err(DEV, "Got NegDReply; Sector %llus, len %u.\n", 5070 (unsigned long long)sector, be32_to_cpu(p->blksize)); 5071 5072 return validate_req_change_req_state(mdev, p->block_id, sector, 5073 &mdev->read_requests, __func__, 5074 NEG_ACKED, false); 5075 } 5076 5077 static int got_NegRSDReply(struct drbd_tconn *tconn, struct packet_info *pi) 5078 { 5079 struct drbd_conf *mdev; 5080 sector_t sector; 5081 int size; 5082 struct p_block_ack *p = pi->data; 5083 5084 mdev = vnr_to_mdev(tconn, pi->vnr); 5085 if (!mdev) 5086 return -EIO; 5087 5088 sector = be64_to_cpu(p->sector); 5089 size = be32_to_cpu(p->blksize); 5090 5091 update_peer_seq(mdev, be32_to_cpu(p->seq_num)); 5092 5093 dec_rs_pending(mdev); 5094 5095 if (get_ldev_if_state(mdev, D_FAILED)) { 5096 drbd_rs_complete_io(mdev, sector); 5097 switch (pi->cmd) { 5098 case P_NEG_RS_DREPLY: 5099 drbd_rs_failed_io(mdev, sector, size); 5100 case P_RS_CANCEL: 5101 break; 5102 default: 5103 BUG(); 5104 } 5105 put_ldev(mdev); 5106 } 5107 5108 return 0; 5109 } 5110 5111 static int got_BarrierAck(struct drbd_tconn *tconn, struct packet_info *pi) 5112 { 5113 struct p_barrier_ack *p = pi->data; 5114 struct drbd_conf *mdev; 5115 int vnr; 5116 5117 tl_release(tconn, p->barrier, be32_to_cpu(p->set_size)); 5118 5119 rcu_read_lock(); 5120 idr_for_each_entry(&tconn->volumes, mdev, vnr) { 5121 if (mdev->state.conn == C_AHEAD && 5122 atomic_read(&mdev->ap_in_flight) == 0 && 5123 !test_and_set_bit(AHEAD_TO_SYNC_SOURCE, &mdev->flags)) { 5124 mdev->start_resync_timer.expires = jiffies + HZ; 5125 add_timer(&mdev->start_resync_timer); 5126 } 5127 } 5128 rcu_read_unlock(); 5129 5130 return 0; 5131 } 5132 5133 static int got_OVResult(struct drbd_tconn *tconn, struct packet_info *pi) 5134 { 5135 struct drbd_conf *mdev; 5136 struct p_block_ack *p = pi->data; 5137 struct drbd_work *w; 5138 sector_t sector; 5139 int size; 5140 5141 mdev = vnr_to_mdev(tconn, pi->vnr); 5142 if (!mdev) 5143 return -EIO; 5144 5145 sector = be64_to_cpu(p->sector); 5146 size = be32_to_cpu(p->blksize); 5147 5148 update_peer_seq(mdev, be32_to_cpu(p->seq_num)); 5149 5150 if (be64_to_cpu(p->block_id) == ID_OUT_OF_SYNC) 5151 drbd_ov_out_of_sync_found(mdev, sector, size); 5152 else 5153 ov_out_of_sync_print(mdev); 5154 5155 if (!get_ldev(mdev)) 5156 return 0; 5157 5158 drbd_rs_complete_io(mdev, sector); 5159 dec_rs_pending(mdev); 5160 5161 --mdev->ov_left; 5162 5163 /* let's advance progress step marks only for every other megabyte */ 5164 if ((mdev->ov_left & 0x200) == 0x200) 5165 drbd_advance_rs_marks(mdev, mdev->ov_left); 5166 5167 if (mdev->ov_left == 0) { 5168 w = kmalloc(sizeof(*w), GFP_NOIO); 5169 if (w) { 5170 w->cb = w_ov_finished; 5171 w->mdev = mdev; 5172 drbd_queue_work(&mdev->tconn->sender_work, w); 5173 } else { 5174 dev_err(DEV, "kmalloc(w) failed."); 5175 ov_out_of_sync_print(mdev); 5176 drbd_resync_finished(mdev); 5177 } 5178 } 5179 put_ldev(mdev); 5180 return 0; 5181 } 5182 5183 static int got_skip(struct drbd_tconn *tconn, struct packet_info *pi) 5184 { 5185 return 0; 5186 } 5187 5188 static int tconn_finish_peer_reqs(struct drbd_tconn *tconn) 5189 { 5190 struct drbd_conf *mdev; 5191 int vnr, not_empty = 0; 5192 5193 do { 5194 clear_bit(SIGNAL_ASENDER, &tconn->flags); 5195 flush_signals(current); 5196 5197 rcu_read_lock(); 5198 idr_for_each_entry(&tconn->volumes, mdev, vnr) { 5199 kref_get(&mdev->kref); 5200 rcu_read_unlock(); 5201 if (drbd_finish_peer_reqs(mdev)) { 5202 kref_put(&mdev->kref, &drbd_minor_destroy); 5203 return 1; 5204 } 5205 kref_put(&mdev->kref, &drbd_minor_destroy); 5206 rcu_read_lock(); 5207 } 5208 set_bit(SIGNAL_ASENDER, &tconn->flags); 5209 5210 spin_lock_irq(&tconn->req_lock); 5211 idr_for_each_entry(&tconn->volumes, mdev, vnr) { 5212 not_empty = !list_empty(&mdev->done_ee); 5213 if (not_empty) 5214 break; 5215 } 5216 spin_unlock_irq(&tconn->req_lock); 5217 rcu_read_unlock(); 5218 } while (not_empty); 5219 5220 return 0; 5221 } 5222 5223 struct asender_cmd { 5224 size_t pkt_size; 5225 int (*fn)(struct drbd_tconn *tconn, struct packet_info *); 5226 }; 5227 5228 static struct asender_cmd asender_tbl[] = { 5229 [P_PING] = { 0, got_Ping }, 5230 [P_PING_ACK] = { 0, got_PingAck }, 5231 [P_RECV_ACK] = { sizeof(struct p_block_ack), got_BlockAck }, 5232 [P_WRITE_ACK] = { sizeof(struct p_block_ack), got_BlockAck }, 5233 [P_RS_WRITE_ACK] = { sizeof(struct p_block_ack), got_BlockAck }, 5234 [P_SUPERSEDED] = { sizeof(struct p_block_ack), got_BlockAck }, 5235 [P_NEG_ACK] = { sizeof(struct p_block_ack), got_NegAck }, 5236 [P_NEG_DREPLY] = { sizeof(struct p_block_ack), got_NegDReply }, 5237 [P_NEG_RS_DREPLY] = { sizeof(struct p_block_ack), got_NegRSDReply }, 5238 [P_OV_RESULT] = { sizeof(struct p_block_ack), got_OVResult }, 5239 [P_BARRIER_ACK] = { sizeof(struct p_barrier_ack), got_BarrierAck }, 5240 [P_STATE_CHG_REPLY] = { sizeof(struct p_req_state_reply), got_RqSReply }, 5241 [P_RS_IS_IN_SYNC] = { sizeof(struct p_block_ack), got_IsInSync }, 5242 [P_DELAY_PROBE] = { sizeof(struct p_delay_probe93), got_skip }, 5243 [P_RS_CANCEL] = { sizeof(struct p_block_ack), got_NegRSDReply }, 5244 [P_CONN_ST_CHG_REPLY]={ sizeof(struct p_req_state_reply), got_conn_RqSReply }, 5245 [P_RETRY_WRITE] = { sizeof(struct p_block_ack), got_BlockAck }, 5246 }; 5247 5248 int drbd_asender(struct drbd_thread *thi) 5249 { 5250 struct drbd_tconn *tconn = thi->tconn; 5251 struct asender_cmd *cmd = NULL; 5252 struct packet_info pi; 5253 int rv; 5254 void *buf = tconn->meta.rbuf; 5255 int received = 0; 5256 unsigned int header_size = drbd_header_size(tconn); 5257 int expect = header_size; 5258 bool ping_timeout_active = false; 5259 struct net_conf *nc; 5260 int ping_timeo, tcp_cork, ping_int; 5261 struct sched_param param = { .sched_priority = 2 }; 5262 5263 rv = sched_setscheduler(current, SCHED_RR, ¶m); 5264 if (rv < 0) 5265 conn_err(tconn, "drbd_asender: ERROR set priority, ret=%d\n", rv); 5266 5267 while (get_t_state(thi) == RUNNING) { 5268 drbd_thread_current_set_cpu(thi); 5269 5270 rcu_read_lock(); 5271 nc = rcu_dereference(tconn->net_conf); 5272 ping_timeo = nc->ping_timeo; 5273 tcp_cork = nc->tcp_cork; 5274 ping_int = nc->ping_int; 5275 rcu_read_unlock(); 5276 5277 if (test_and_clear_bit(SEND_PING, &tconn->flags)) { 5278 if (drbd_send_ping(tconn)) { 5279 conn_err(tconn, "drbd_send_ping has failed\n"); 5280 goto reconnect; 5281 } 5282 tconn->meta.socket->sk->sk_rcvtimeo = ping_timeo * HZ / 10; 5283 ping_timeout_active = true; 5284 } 5285 5286 /* TODO: conditionally cork; it may hurt latency if we cork without 5287 much to send */ 5288 if (tcp_cork) 5289 drbd_tcp_cork(tconn->meta.socket); 5290 if (tconn_finish_peer_reqs(tconn)) { 5291 conn_err(tconn, "tconn_finish_peer_reqs() failed\n"); 5292 goto reconnect; 5293 } 5294 /* but unconditionally uncork unless disabled */ 5295 if (tcp_cork) 5296 drbd_tcp_uncork(tconn->meta.socket); 5297 5298 /* short circuit, recv_msg would return EINTR anyways. */ 5299 if (signal_pending(current)) 5300 continue; 5301 5302 rv = drbd_recv_short(tconn->meta.socket, buf, expect-received, 0); 5303 clear_bit(SIGNAL_ASENDER, &tconn->flags); 5304 5305 flush_signals(current); 5306 5307 /* Note: 5308 * -EINTR (on meta) we got a signal 5309 * -EAGAIN (on meta) rcvtimeo expired 5310 * -ECONNRESET other side closed the connection 5311 * -ERESTARTSYS (on data) we got a signal 5312 * rv < 0 other than above: unexpected error! 5313 * rv == expected: full header or command 5314 * rv < expected: "woken" by signal during receive 5315 * rv == 0 : "connection shut down by peer" 5316 */ 5317 if (likely(rv > 0)) { 5318 received += rv; 5319 buf += rv; 5320 } else if (rv == 0) { 5321 if (test_bit(DISCONNECT_SENT, &tconn->flags)) { 5322 long t; 5323 rcu_read_lock(); 5324 t = rcu_dereference(tconn->net_conf)->ping_timeo * HZ/10; 5325 rcu_read_unlock(); 5326 5327 t = wait_event_timeout(tconn->ping_wait, 5328 tconn->cstate < C_WF_REPORT_PARAMS, 5329 t); 5330 if (t) 5331 break; 5332 } 5333 conn_err(tconn, "meta connection shut down by peer.\n"); 5334 goto reconnect; 5335 } else if (rv == -EAGAIN) { 5336 /* If the data socket received something meanwhile, 5337 * that is good enough: peer is still alive. */ 5338 if (time_after(tconn->last_received, 5339 jiffies - tconn->meta.socket->sk->sk_rcvtimeo)) 5340 continue; 5341 if (ping_timeout_active) { 5342 conn_err(tconn, "PingAck did not arrive in time.\n"); 5343 goto reconnect; 5344 } 5345 set_bit(SEND_PING, &tconn->flags); 5346 continue; 5347 } else if (rv == -EINTR) { 5348 continue; 5349 } else { 5350 conn_err(tconn, "sock_recvmsg returned %d\n", rv); 5351 goto reconnect; 5352 } 5353 5354 if (received == expect && cmd == NULL) { 5355 if (decode_header(tconn, tconn->meta.rbuf, &pi)) 5356 goto reconnect; 5357 cmd = &asender_tbl[pi.cmd]; 5358 if (pi.cmd >= ARRAY_SIZE(asender_tbl) || !cmd->fn) { 5359 conn_err(tconn, "Unexpected meta packet %s (0x%04x)\n", 5360 cmdname(pi.cmd), pi.cmd); 5361 goto disconnect; 5362 } 5363 expect = header_size + cmd->pkt_size; 5364 if (pi.size != expect - header_size) { 5365 conn_err(tconn, "Wrong packet size on meta (c: %d, l: %d)\n", 5366 pi.cmd, pi.size); 5367 goto reconnect; 5368 } 5369 } 5370 if (received == expect) { 5371 bool err; 5372 5373 err = cmd->fn(tconn, &pi); 5374 if (err) { 5375 conn_err(tconn, "%pf failed\n", cmd->fn); 5376 goto reconnect; 5377 } 5378 5379 tconn->last_received = jiffies; 5380 5381 if (cmd == &asender_tbl[P_PING_ACK]) { 5382 /* restore idle timeout */ 5383 tconn->meta.socket->sk->sk_rcvtimeo = ping_int * HZ; 5384 ping_timeout_active = false; 5385 } 5386 5387 buf = tconn->meta.rbuf; 5388 received = 0; 5389 expect = header_size; 5390 cmd = NULL; 5391 } 5392 } 5393 5394 if (0) { 5395 reconnect: 5396 conn_request_state(tconn, NS(conn, C_NETWORK_FAILURE), CS_HARD); 5397 conn_md_sync(tconn); 5398 } 5399 if (0) { 5400 disconnect: 5401 conn_request_state(tconn, NS(conn, C_DISCONNECTING), CS_HARD); 5402 } 5403 clear_bit(SIGNAL_ASENDER, &tconn->flags); 5404 5405 conn_info(tconn, "asender terminated\n"); 5406 5407 return 0; 5408 } 5409