1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3    drbd_receiver.c
4 
5    This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
6 
7    Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
8    Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
9    Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
10 
11  */
12 
13 
14 #include <linux/module.h>
15 
16 #include <linux/uaccess.h>
17 #include <net/sock.h>
18 
19 #include <linux/drbd.h>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/in.h>
23 #include <linux/mm.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/slab.h>
27 #include <uapi/linux/sched/types.h>
28 #include <linux/sched/signal.h>
29 #include <linux/pkt_sched.h>
30 #define __KERNEL_SYSCALLS__
31 #include <linux/unistd.h>
32 #include <linux/vmalloc.h>
33 #include <linux/random.h>
34 #include <linux/string.h>
35 #include <linux/scatterlist.h>
36 #include <linux/part_stat.h>
37 #include "drbd_int.h"
38 #include "drbd_protocol.h"
39 #include "drbd_req.h"
40 #include "drbd_vli.h"
41 
42 #define PRO_FEATURES (DRBD_FF_TRIM|DRBD_FF_THIN_RESYNC|DRBD_FF_WSAME|DRBD_FF_WZEROES)
43 
44 struct packet_info {
45 	enum drbd_packet cmd;
46 	unsigned int size;
47 	unsigned int vnr;
48 	void *data;
49 };
50 
51 enum finish_epoch {
52 	FE_STILL_LIVE,
53 	FE_DESTROYED,
54 	FE_RECYCLED,
55 };
56 
57 static int drbd_do_features(struct drbd_connection *connection);
58 static int drbd_do_auth(struct drbd_connection *connection);
59 static int drbd_disconnected(struct drbd_peer_device *);
60 static void conn_wait_active_ee_empty(struct drbd_connection *connection);
61 static enum finish_epoch drbd_may_finish_epoch(struct drbd_connection *, struct drbd_epoch *, enum epoch_event);
62 static int e_end_block(struct drbd_work *, int);
63 
64 
65 #define GFP_TRY	(__GFP_HIGHMEM | __GFP_NOWARN)
66 
67 /*
68  * some helper functions to deal with single linked page lists,
69  * page->private being our "next" pointer.
70  */
71 
72 /* If at least n pages are linked at head, get n pages off.
73  * Otherwise, don't modify head, and return NULL.
74  * Locking is the responsibility of the caller.
75  */
76 static struct page *page_chain_del(struct page **head, int n)
77 {
78 	struct page *page;
79 	struct page *tmp;
80 
81 	BUG_ON(!n);
82 	BUG_ON(!head);
83 
84 	page = *head;
85 
86 	if (!page)
87 		return NULL;
88 
89 	while (page) {
90 		tmp = page_chain_next(page);
91 		if (--n == 0)
92 			break; /* found sufficient pages */
93 		if (tmp == NULL)
94 			/* insufficient pages, don't use any of them. */
95 			return NULL;
96 		page = tmp;
97 	}
98 
99 	/* add end of list marker for the returned list */
100 	set_page_private(page, 0);
101 	/* actual return value, and adjustment of head */
102 	page = *head;
103 	*head = tmp;
104 	return page;
105 }
106 
107 /* may be used outside of locks to find the tail of a (usually short)
108  * "private" page chain, before adding it back to a global chain head
109  * with page_chain_add() under a spinlock. */
110 static struct page *page_chain_tail(struct page *page, int *len)
111 {
112 	struct page *tmp;
113 	int i = 1;
114 	while ((tmp = page_chain_next(page))) {
115 		++i;
116 		page = tmp;
117 	}
118 	if (len)
119 		*len = i;
120 	return page;
121 }
122 
123 static int page_chain_free(struct page *page)
124 {
125 	struct page *tmp;
126 	int i = 0;
127 	page_chain_for_each_safe(page, tmp) {
128 		put_page(page);
129 		++i;
130 	}
131 	return i;
132 }
133 
134 static void page_chain_add(struct page **head,
135 		struct page *chain_first, struct page *chain_last)
136 {
137 #if 1
138 	struct page *tmp;
139 	tmp = page_chain_tail(chain_first, NULL);
140 	BUG_ON(tmp != chain_last);
141 #endif
142 
143 	/* add chain to head */
144 	set_page_private(chain_last, (unsigned long)*head);
145 	*head = chain_first;
146 }
147 
148 static struct page *__drbd_alloc_pages(struct drbd_device *device,
149 				       unsigned int number)
150 {
151 	struct page *page = NULL;
152 	struct page *tmp = NULL;
153 	unsigned int i = 0;
154 
155 	/* Yes, testing drbd_pp_vacant outside the lock is racy.
156 	 * So what. It saves a spin_lock. */
157 	if (drbd_pp_vacant >= number) {
158 		spin_lock(&drbd_pp_lock);
159 		page = page_chain_del(&drbd_pp_pool, number);
160 		if (page)
161 			drbd_pp_vacant -= number;
162 		spin_unlock(&drbd_pp_lock);
163 		if (page)
164 			return page;
165 	}
166 
167 	/* GFP_TRY, because we must not cause arbitrary write-out: in a DRBD
168 	 * "criss-cross" setup, that might cause write-out on some other DRBD,
169 	 * which in turn might block on the other node at this very place.  */
170 	for (i = 0; i < number; i++) {
171 		tmp = alloc_page(GFP_TRY);
172 		if (!tmp)
173 			break;
174 		set_page_private(tmp, (unsigned long)page);
175 		page = tmp;
176 	}
177 
178 	if (i == number)
179 		return page;
180 
181 	/* Not enough pages immediately available this time.
182 	 * No need to jump around here, drbd_alloc_pages will retry this
183 	 * function "soon". */
184 	if (page) {
185 		tmp = page_chain_tail(page, NULL);
186 		spin_lock(&drbd_pp_lock);
187 		page_chain_add(&drbd_pp_pool, page, tmp);
188 		drbd_pp_vacant += i;
189 		spin_unlock(&drbd_pp_lock);
190 	}
191 	return NULL;
192 }
193 
194 static void reclaim_finished_net_peer_reqs(struct drbd_device *device,
195 					   struct list_head *to_be_freed)
196 {
197 	struct drbd_peer_request *peer_req, *tmp;
198 
199 	/* The EEs are always appended to the end of the list. Since
200 	   they are sent in order over the wire, they have to finish
201 	   in order. As soon as we see the first not finished we can
202 	   stop to examine the list... */
203 
204 	list_for_each_entry_safe(peer_req, tmp, &device->net_ee, w.list) {
205 		if (drbd_peer_req_has_active_page(peer_req))
206 			break;
207 		list_move(&peer_req->w.list, to_be_freed);
208 	}
209 }
210 
211 static void drbd_reclaim_net_peer_reqs(struct drbd_device *device)
212 {
213 	LIST_HEAD(reclaimed);
214 	struct drbd_peer_request *peer_req, *t;
215 
216 	spin_lock_irq(&device->resource->req_lock);
217 	reclaim_finished_net_peer_reqs(device, &reclaimed);
218 	spin_unlock_irq(&device->resource->req_lock);
219 	list_for_each_entry_safe(peer_req, t, &reclaimed, w.list)
220 		drbd_free_net_peer_req(device, peer_req);
221 }
222 
223 static void conn_reclaim_net_peer_reqs(struct drbd_connection *connection)
224 {
225 	struct drbd_peer_device *peer_device;
226 	int vnr;
227 
228 	rcu_read_lock();
229 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
230 		struct drbd_device *device = peer_device->device;
231 		if (!atomic_read(&device->pp_in_use_by_net))
232 			continue;
233 
234 		kref_get(&device->kref);
235 		rcu_read_unlock();
236 		drbd_reclaim_net_peer_reqs(device);
237 		kref_put(&device->kref, drbd_destroy_device);
238 		rcu_read_lock();
239 	}
240 	rcu_read_unlock();
241 }
242 
243 /**
244  * drbd_alloc_pages() - Returns @number pages, retries forever (or until signalled)
245  * @peer_device:	DRBD device.
246  * @number:		number of pages requested
247  * @retry:		whether to retry, if not enough pages are available right now
248  *
249  * Tries to allocate number pages, first from our own page pool, then from
250  * the kernel.
251  * Possibly retry until DRBD frees sufficient pages somewhere else.
252  *
253  * If this allocation would exceed the max_buffers setting, we throttle
254  * allocation (schedule_timeout) to give the system some room to breathe.
255  *
256  * We do not use max-buffers as hard limit, because it could lead to
257  * congestion and further to a distributed deadlock during online-verify or
258  * (checksum based) resync, if the max-buffers, socket buffer sizes and
259  * resync-rate settings are mis-configured.
260  *
261  * Returns a page chain linked via page->private.
262  */
263 struct page *drbd_alloc_pages(struct drbd_peer_device *peer_device, unsigned int number,
264 			      bool retry)
265 {
266 	struct drbd_device *device = peer_device->device;
267 	struct page *page = NULL;
268 	struct net_conf *nc;
269 	DEFINE_WAIT(wait);
270 	unsigned int mxb;
271 
272 	rcu_read_lock();
273 	nc = rcu_dereference(peer_device->connection->net_conf);
274 	mxb = nc ? nc->max_buffers : 1000000;
275 	rcu_read_unlock();
276 
277 	if (atomic_read(&device->pp_in_use) < mxb)
278 		page = __drbd_alloc_pages(device, number);
279 
280 	/* Try to keep the fast path fast, but occasionally we need
281 	 * to reclaim the pages we lended to the network stack. */
282 	if (page && atomic_read(&device->pp_in_use_by_net) > 512)
283 		drbd_reclaim_net_peer_reqs(device);
284 
285 	while (page == NULL) {
286 		prepare_to_wait(&drbd_pp_wait, &wait, TASK_INTERRUPTIBLE);
287 
288 		drbd_reclaim_net_peer_reqs(device);
289 
290 		if (atomic_read(&device->pp_in_use) < mxb) {
291 			page = __drbd_alloc_pages(device, number);
292 			if (page)
293 				break;
294 		}
295 
296 		if (!retry)
297 			break;
298 
299 		if (signal_pending(current)) {
300 			drbd_warn(device, "drbd_alloc_pages interrupted!\n");
301 			break;
302 		}
303 
304 		if (schedule_timeout(HZ/10) == 0)
305 			mxb = UINT_MAX;
306 	}
307 	finish_wait(&drbd_pp_wait, &wait);
308 
309 	if (page)
310 		atomic_add(number, &device->pp_in_use);
311 	return page;
312 }
313 
314 /* Must not be used from irq, as that may deadlock: see drbd_alloc_pages.
315  * Is also used from inside an other spin_lock_irq(&resource->req_lock);
316  * Either links the page chain back to the global pool,
317  * or returns all pages to the system. */
318 static void drbd_free_pages(struct drbd_device *device, struct page *page, int is_net)
319 {
320 	atomic_t *a = is_net ? &device->pp_in_use_by_net : &device->pp_in_use;
321 	int i;
322 
323 	if (page == NULL)
324 		return;
325 
326 	if (drbd_pp_vacant > (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * drbd_minor_count)
327 		i = page_chain_free(page);
328 	else {
329 		struct page *tmp;
330 		tmp = page_chain_tail(page, &i);
331 		spin_lock(&drbd_pp_lock);
332 		page_chain_add(&drbd_pp_pool, page, tmp);
333 		drbd_pp_vacant += i;
334 		spin_unlock(&drbd_pp_lock);
335 	}
336 	i = atomic_sub_return(i, a);
337 	if (i < 0)
338 		drbd_warn(device, "ASSERTION FAILED: %s: %d < 0\n",
339 			is_net ? "pp_in_use_by_net" : "pp_in_use", i);
340 	wake_up(&drbd_pp_wait);
341 }
342 
343 /*
344 You need to hold the req_lock:
345  _drbd_wait_ee_list_empty()
346 
347 You must not have the req_lock:
348  drbd_free_peer_req()
349  drbd_alloc_peer_req()
350  drbd_free_peer_reqs()
351  drbd_ee_fix_bhs()
352  drbd_finish_peer_reqs()
353  drbd_clear_done_ee()
354  drbd_wait_ee_list_empty()
355 */
356 
357 /* normal: payload_size == request size (bi_size)
358  * w_same: payload_size == logical_block_size
359  * trim: payload_size == 0 */
360 struct drbd_peer_request *
361 drbd_alloc_peer_req(struct drbd_peer_device *peer_device, u64 id, sector_t sector,
362 		    unsigned int request_size, unsigned int payload_size, gfp_t gfp_mask) __must_hold(local)
363 {
364 	struct drbd_device *device = peer_device->device;
365 	struct drbd_peer_request *peer_req;
366 	struct page *page = NULL;
367 	unsigned int nr_pages = PFN_UP(payload_size);
368 
369 	if (drbd_insert_fault(device, DRBD_FAULT_AL_EE))
370 		return NULL;
371 
372 	peer_req = mempool_alloc(&drbd_ee_mempool, gfp_mask & ~__GFP_HIGHMEM);
373 	if (!peer_req) {
374 		if (!(gfp_mask & __GFP_NOWARN))
375 			drbd_err(device, "%s: allocation failed\n", __func__);
376 		return NULL;
377 	}
378 
379 	if (nr_pages) {
380 		page = drbd_alloc_pages(peer_device, nr_pages,
381 					gfpflags_allow_blocking(gfp_mask));
382 		if (!page)
383 			goto fail;
384 	}
385 
386 	memset(peer_req, 0, sizeof(*peer_req));
387 	INIT_LIST_HEAD(&peer_req->w.list);
388 	drbd_clear_interval(&peer_req->i);
389 	peer_req->i.size = request_size;
390 	peer_req->i.sector = sector;
391 	peer_req->submit_jif = jiffies;
392 	peer_req->peer_device = peer_device;
393 	peer_req->pages = page;
394 	/*
395 	 * The block_id is opaque to the receiver.  It is not endianness
396 	 * converted, and sent back to the sender unchanged.
397 	 */
398 	peer_req->block_id = id;
399 
400 	return peer_req;
401 
402  fail:
403 	mempool_free(peer_req, &drbd_ee_mempool);
404 	return NULL;
405 }
406 
407 void __drbd_free_peer_req(struct drbd_device *device, struct drbd_peer_request *peer_req,
408 		       int is_net)
409 {
410 	might_sleep();
411 	if (peer_req->flags & EE_HAS_DIGEST)
412 		kfree(peer_req->digest);
413 	drbd_free_pages(device, peer_req->pages, is_net);
414 	D_ASSERT(device, atomic_read(&peer_req->pending_bios) == 0);
415 	D_ASSERT(device, drbd_interval_empty(&peer_req->i));
416 	if (!expect(!(peer_req->flags & EE_CALL_AL_COMPLETE_IO))) {
417 		peer_req->flags &= ~EE_CALL_AL_COMPLETE_IO;
418 		drbd_al_complete_io(device, &peer_req->i);
419 	}
420 	mempool_free(peer_req, &drbd_ee_mempool);
421 }
422 
423 int drbd_free_peer_reqs(struct drbd_device *device, struct list_head *list)
424 {
425 	LIST_HEAD(work_list);
426 	struct drbd_peer_request *peer_req, *t;
427 	int count = 0;
428 	int is_net = list == &device->net_ee;
429 
430 	spin_lock_irq(&device->resource->req_lock);
431 	list_splice_init(list, &work_list);
432 	spin_unlock_irq(&device->resource->req_lock);
433 
434 	list_for_each_entry_safe(peer_req, t, &work_list, w.list) {
435 		__drbd_free_peer_req(device, peer_req, is_net);
436 		count++;
437 	}
438 	return count;
439 }
440 
441 /*
442  * See also comments in _req_mod(,BARRIER_ACKED) and receive_Barrier.
443  */
444 static int drbd_finish_peer_reqs(struct drbd_device *device)
445 {
446 	LIST_HEAD(work_list);
447 	LIST_HEAD(reclaimed);
448 	struct drbd_peer_request *peer_req, *t;
449 	int err = 0;
450 
451 	spin_lock_irq(&device->resource->req_lock);
452 	reclaim_finished_net_peer_reqs(device, &reclaimed);
453 	list_splice_init(&device->done_ee, &work_list);
454 	spin_unlock_irq(&device->resource->req_lock);
455 
456 	list_for_each_entry_safe(peer_req, t, &reclaimed, w.list)
457 		drbd_free_net_peer_req(device, peer_req);
458 
459 	/* possible callbacks here:
460 	 * e_end_block, and e_end_resync_block, e_send_superseded.
461 	 * all ignore the last argument.
462 	 */
463 	list_for_each_entry_safe(peer_req, t, &work_list, w.list) {
464 		int err2;
465 
466 		/* list_del not necessary, next/prev members not touched */
467 		err2 = peer_req->w.cb(&peer_req->w, !!err);
468 		if (!err)
469 			err = err2;
470 		drbd_free_peer_req(device, peer_req);
471 	}
472 	wake_up(&device->ee_wait);
473 
474 	return err;
475 }
476 
477 static void _drbd_wait_ee_list_empty(struct drbd_device *device,
478 				     struct list_head *head)
479 {
480 	DEFINE_WAIT(wait);
481 
482 	/* avoids spin_lock/unlock
483 	 * and calling prepare_to_wait in the fast path */
484 	while (!list_empty(head)) {
485 		prepare_to_wait(&device->ee_wait, &wait, TASK_UNINTERRUPTIBLE);
486 		spin_unlock_irq(&device->resource->req_lock);
487 		io_schedule();
488 		finish_wait(&device->ee_wait, &wait);
489 		spin_lock_irq(&device->resource->req_lock);
490 	}
491 }
492 
493 static void drbd_wait_ee_list_empty(struct drbd_device *device,
494 				    struct list_head *head)
495 {
496 	spin_lock_irq(&device->resource->req_lock);
497 	_drbd_wait_ee_list_empty(device, head);
498 	spin_unlock_irq(&device->resource->req_lock);
499 }
500 
501 static int drbd_recv_short(struct socket *sock, void *buf, size_t size, int flags)
502 {
503 	struct kvec iov = {
504 		.iov_base = buf,
505 		.iov_len = size,
506 	};
507 	struct msghdr msg = {
508 		.msg_flags = (flags ? flags : MSG_WAITALL | MSG_NOSIGNAL)
509 	};
510 	iov_iter_kvec(&msg.msg_iter, READ, &iov, 1, size);
511 	return sock_recvmsg(sock, &msg, msg.msg_flags);
512 }
513 
514 static int drbd_recv(struct drbd_connection *connection, void *buf, size_t size)
515 {
516 	int rv;
517 
518 	rv = drbd_recv_short(connection->data.socket, buf, size, 0);
519 
520 	if (rv < 0) {
521 		if (rv == -ECONNRESET)
522 			drbd_info(connection, "sock was reset by peer\n");
523 		else if (rv != -ERESTARTSYS)
524 			drbd_err(connection, "sock_recvmsg returned %d\n", rv);
525 	} else if (rv == 0) {
526 		if (test_bit(DISCONNECT_SENT, &connection->flags)) {
527 			long t;
528 			rcu_read_lock();
529 			t = rcu_dereference(connection->net_conf)->ping_timeo * HZ/10;
530 			rcu_read_unlock();
531 
532 			t = wait_event_timeout(connection->ping_wait, connection->cstate < C_WF_REPORT_PARAMS, t);
533 
534 			if (t)
535 				goto out;
536 		}
537 		drbd_info(connection, "sock was shut down by peer\n");
538 	}
539 
540 	if (rv != size)
541 		conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD);
542 
543 out:
544 	return rv;
545 }
546 
547 static int drbd_recv_all(struct drbd_connection *connection, void *buf, size_t size)
548 {
549 	int err;
550 
551 	err = drbd_recv(connection, buf, size);
552 	if (err != size) {
553 		if (err >= 0)
554 			err = -EIO;
555 	} else
556 		err = 0;
557 	return err;
558 }
559 
560 static int drbd_recv_all_warn(struct drbd_connection *connection, void *buf, size_t size)
561 {
562 	int err;
563 
564 	err = drbd_recv_all(connection, buf, size);
565 	if (err && !signal_pending(current))
566 		drbd_warn(connection, "short read (expected size %d)\n", (int)size);
567 	return err;
568 }
569 
570 /* quoting tcp(7):
571  *   On individual connections, the socket buffer size must be set prior to the
572  *   listen(2) or connect(2) calls in order to have it take effect.
573  * This is our wrapper to do so.
574  */
575 static void drbd_setbufsize(struct socket *sock, unsigned int snd,
576 		unsigned int rcv)
577 {
578 	/* open coded SO_SNDBUF, SO_RCVBUF */
579 	if (snd) {
580 		sock->sk->sk_sndbuf = snd;
581 		sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
582 	}
583 	if (rcv) {
584 		sock->sk->sk_rcvbuf = rcv;
585 		sock->sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
586 	}
587 }
588 
589 static struct socket *drbd_try_connect(struct drbd_connection *connection)
590 {
591 	const char *what;
592 	struct socket *sock;
593 	struct sockaddr_in6 src_in6;
594 	struct sockaddr_in6 peer_in6;
595 	struct net_conf *nc;
596 	int err, peer_addr_len, my_addr_len;
597 	int sndbuf_size, rcvbuf_size, connect_int;
598 	int disconnect_on_error = 1;
599 
600 	rcu_read_lock();
601 	nc = rcu_dereference(connection->net_conf);
602 	if (!nc) {
603 		rcu_read_unlock();
604 		return NULL;
605 	}
606 	sndbuf_size = nc->sndbuf_size;
607 	rcvbuf_size = nc->rcvbuf_size;
608 	connect_int = nc->connect_int;
609 	rcu_read_unlock();
610 
611 	my_addr_len = min_t(int, connection->my_addr_len, sizeof(src_in6));
612 	memcpy(&src_in6, &connection->my_addr, my_addr_len);
613 
614 	if (((struct sockaddr *)&connection->my_addr)->sa_family == AF_INET6)
615 		src_in6.sin6_port = 0;
616 	else
617 		((struct sockaddr_in *)&src_in6)->sin_port = 0; /* AF_INET & AF_SCI */
618 
619 	peer_addr_len = min_t(int, connection->peer_addr_len, sizeof(src_in6));
620 	memcpy(&peer_in6, &connection->peer_addr, peer_addr_len);
621 
622 	what = "sock_create_kern";
623 	err = sock_create_kern(&init_net, ((struct sockaddr *)&src_in6)->sa_family,
624 			       SOCK_STREAM, IPPROTO_TCP, &sock);
625 	if (err < 0) {
626 		sock = NULL;
627 		goto out;
628 	}
629 
630 	sock->sk->sk_rcvtimeo =
631 	sock->sk->sk_sndtimeo = connect_int * HZ;
632 	drbd_setbufsize(sock, sndbuf_size, rcvbuf_size);
633 
634        /* explicitly bind to the configured IP as source IP
635 	*  for the outgoing connections.
636 	*  This is needed for multihomed hosts and to be
637 	*  able to use lo: interfaces for drbd.
638 	* Make sure to use 0 as port number, so linux selects
639 	*  a free one dynamically.
640 	*/
641 	what = "bind before connect";
642 	err = sock->ops->bind(sock, (struct sockaddr *) &src_in6, my_addr_len);
643 	if (err < 0)
644 		goto out;
645 
646 	/* connect may fail, peer not yet available.
647 	 * stay C_WF_CONNECTION, don't go Disconnecting! */
648 	disconnect_on_error = 0;
649 	what = "connect";
650 	err = sock->ops->connect(sock, (struct sockaddr *) &peer_in6, peer_addr_len, 0);
651 
652 out:
653 	if (err < 0) {
654 		if (sock) {
655 			sock_release(sock);
656 			sock = NULL;
657 		}
658 		switch (-err) {
659 			/* timeout, busy, signal pending */
660 		case ETIMEDOUT: case EAGAIN: case EINPROGRESS:
661 		case EINTR: case ERESTARTSYS:
662 			/* peer not (yet) available, network problem */
663 		case ECONNREFUSED: case ENETUNREACH:
664 		case EHOSTDOWN:    case EHOSTUNREACH:
665 			disconnect_on_error = 0;
666 			break;
667 		default:
668 			drbd_err(connection, "%s failed, err = %d\n", what, err);
669 		}
670 		if (disconnect_on_error)
671 			conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
672 	}
673 
674 	return sock;
675 }
676 
677 struct accept_wait_data {
678 	struct drbd_connection *connection;
679 	struct socket *s_listen;
680 	struct completion door_bell;
681 	void (*original_sk_state_change)(struct sock *sk);
682 
683 };
684 
685 static void drbd_incoming_connection(struct sock *sk)
686 {
687 	struct accept_wait_data *ad = sk->sk_user_data;
688 	void (*state_change)(struct sock *sk);
689 
690 	state_change = ad->original_sk_state_change;
691 	if (sk->sk_state == TCP_ESTABLISHED)
692 		complete(&ad->door_bell);
693 	state_change(sk);
694 }
695 
696 static int prepare_listen_socket(struct drbd_connection *connection, struct accept_wait_data *ad)
697 {
698 	int err, sndbuf_size, rcvbuf_size, my_addr_len;
699 	struct sockaddr_in6 my_addr;
700 	struct socket *s_listen;
701 	struct net_conf *nc;
702 	const char *what;
703 
704 	rcu_read_lock();
705 	nc = rcu_dereference(connection->net_conf);
706 	if (!nc) {
707 		rcu_read_unlock();
708 		return -EIO;
709 	}
710 	sndbuf_size = nc->sndbuf_size;
711 	rcvbuf_size = nc->rcvbuf_size;
712 	rcu_read_unlock();
713 
714 	my_addr_len = min_t(int, connection->my_addr_len, sizeof(struct sockaddr_in6));
715 	memcpy(&my_addr, &connection->my_addr, my_addr_len);
716 
717 	what = "sock_create_kern";
718 	err = sock_create_kern(&init_net, ((struct sockaddr *)&my_addr)->sa_family,
719 			       SOCK_STREAM, IPPROTO_TCP, &s_listen);
720 	if (err) {
721 		s_listen = NULL;
722 		goto out;
723 	}
724 
725 	s_listen->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */
726 	drbd_setbufsize(s_listen, sndbuf_size, rcvbuf_size);
727 
728 	what = "bind before listen";
729 	err = s_listen->ops->bind(s_listen, (struct sockaddr *)&my_addr, my_addr_len);
730 	if (err < 0)
731 		goto out;
732 
733 	ad->s_listen = s_listen;
734 	write_lock_bh(&s_listen->sk->sk_callback_lock);
735 	ad->original_sk_state_change = s_listen->sk->sk_state_change;
736 	s_listen->sk->sk_state_change = drbd_incoming_connection;
737 	s_listen->sk->sk_user_data = ad;
738 	write_unlock_bh(&s_listen->sk->sk_callback_lock);
739 
740 	what = "listen";
741 	err = s_listen->ops->listen(s_listen, 5);
742 	if (err < 0)
743 		goto out;
744 
745 	return 0;
746 out:
747 	if (s_listen)
748 		sock_release(s_listen);
749 	if (err < 0) {
750 		if (err != -EAGAIN && err != -EINTR && err != -ERESTARTSYS) {
751 			drbd_err(connection, "%s failed, err = %d\n", what, err);
752 			conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
753 		}
754 	}
755 
756 	return -EIO;
757 }
758 
759 static void unregister_state_change(struct sock *sk, struct accept_wait_data *ad)
760 {
761 	write_lock_bh(&sk->sk_callback_lock);
762 	sk->sk_state_change = ad->original_sk_state_change;
763 	sk->sk_user_data = NULL;
764 	write_unlock_bh(&sk->sk_callback_lock);
765 }
766 
767 static struct socket *drbd_wait_for_connect(struct drbd_connection *connection, struct accept_wait_data *ad)
768 {
769 	int timeo, connect_int, err = 0;
770 	struct socket *s_estab = NULL;
771 	struct net_conf *nc;
772 
773 	rcu_read_lock();
774 	nc = rcu_dereference(connection->net_conf);
775 	if (!nc) {
776 		rcu_read_unlock();
777 		return NULL;
778 	}
779 	connect_int = nc->connect_int;
780 	rcu_read_unlock();
781 
782 	timeo = connect_int * HZ;
783 	/* 28.5% random jitter */
784 	timeo += (prandom_u32() & 1) ? timeo / 7 : -timeo / 7;
785 
786 	err = wait_for_completion_interruptible_timeout(&ad->door_bell, timeo);
787 	if (err <= 0)
788 		return NULL;
789 
790 	err = kernel_accept(ad->s_listen, &s_estab, 0);
791 	if (err < 0) {
792 		if (err != -EAGAIN && err != -EINTR && err != -ERESTARTSYS) {
793 			drbd_err(connection, "accept failed, err = %d\n", err);
794 			conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
795 		}
796 	}
797 
798 	if (s_estab)
799 		unregister_state_change(s_estab->sk, ad);
800 
801 	return s_estab;
802 }
803 
804 static int decode_header(struct drbd_connection *, void *, struct packet_info *);
805 
806 static int send_first_packet(struct drbd_connection *connection, struct drbd_socket *sock,
807 			     enum drbd_packet cmd)
808 {
809 	if (!conn_prepare_command(connection, sock))
810 		return -EIO;
811 	return conn_send_command(connection, sock, cmd, 0, NULL, 0);
812 }
813 
814 static int receive_first_packet(struct drbd_connection *connection, struct socket *sock)
815 {
816 	unsigned int header_size = drbd_header_size(connection);
817 	struct packet_info pi;
818 	struct net_conf *nc;
819 	int err;
820 
821 	rcu_read_lock();
822 	nc = rcu_dereference(connection->net_conf);
823 	if (!nc) {
824 		rcu_read_unlock();
825 		return -EIO;
826 	}
827 	sock->sk->sk_rcvtimeo = nc->ping_timeo * 4 * HZ / 10;
828 	rcu_read_unlock();
829 
830 	err = drbd_recv_short(sock, connection->data.rbuf, header_size, 0);
831 	if (err != header_size) {
832 		if (err >= 0)
833 			err = -EIO;
834 		return err;
835 	}
836 	err = decode_header(connection, connection->data.rbuf, &pi);
837 	if (err)
838 		return err;
839 	return pi.cmd;
840 }
841 
842 /**
843  * drbd_socket_okay() - Free the socket if its connection is not okay
844  * @sock:	pointer to the pointer to the socket.
845  */
846 static bool drbd_socket_okay(struct socket **sock)
847 {
848 	int rr;
849 	char tb[4];
850 
851 	if (!*sock)
852 		return false;
853 
854 	rr = drbd_recv_short(*sock, tb, 4, MSG_DONTWAIT | MSG_PEEK);
855 
856 	if (rr > 0 || rr == -EAGAIN) {
857 		return true;
858 	} else {
859 		sock_release(*sock);
860 		*sock = NULL;
861 		return false;
862 	}
863 }
864 
865 static bool connection_established(struct drbd_connection *connection,
866 				   struct socket **sock1,
867 				   struct socket **sock2)
868 {
869 	struct net_conf *nc;
870 	int timeout;
871 	bool ok;
872 
873 	if (!*sock1 || !*sock2)
874 		return false;
875 
876 	rcu_read_lock();
877 	nc = rcu_dereference(connection->net_conf);
878 	timeout = (nc->sock_check_timeo ?: nc->ping_timeo) * HZ / 10;
879 	rcu_read_unlock();
880 	schedule_timeout_interruptible(timeout);
881 
882 	ok = drbd_socket_okay(sock1);
883 	ok = drbd_socket_okay(sock2) && ok;
884 
885 	return ok;
886 }
887 
888 /* Gets called if a connection is established, or if a new minor gets created
889    in a connection */
890 int drbd_connected(struct drbd_peer_device *peer_device)
891 {
892 	struct drbd_device *device = peer_device->device;
893 	int err;
894 
895 	atomic_set(&device->packet_seq, 0);
896 	device->peer_seq = 0;
897 
898 	device->state_mutex = peer_device->connection->agreed_pro_version < 100 ?
899 		&peer_device->connection->cstate_mutex :
900 		&device->own_state_mutex;
901 
902 	err = drbd_send_sync_param(peer_device);
903 	if (!err)
904 		err = drbd_send_sizes(peer_device, 0, 0);
905 	if (!err)
906 		err = drbd_send_uuids(peer_device);
907 	if (!err)
908 		err = drbd_send_current_state(peer_device);
909 	clear_bit(USE_DEGR_WFC_T, &device->flags);
910 	clear_bit(RESIZE_PENDING, &device->flags);
911 	atomic_set(&device->ap_in_flight, 0);
912 	mod_timer(&device->request_timer, jiffies + HZ); /* just start it here. */
913 	return err;
914 }
915 
916 /*
917  * return values:
918  *   1 yes, we have a valid connection
919  *   0 oops, did not work out, please try again
920  *  -1 peer talks different language,
921  *     no point in trying again, please go standalone.
922  *  -2 We do not have a network config...
923  */
924 static int conn_connect(struct drbd_connection *connection)
925 {
926 	struct drbd_socket sock, msock;
927 	struct drbd_peer_device *peer_device;
928 	struct net_conf *nc;
929 	int vnr, timeout, h;
930 	bool discard_my_data, ok;
931 	enum drbd_state_rv rv;
932 	struct accept_wait_data ad = {
933 		.connection = connection,
934 		.door_bell = COMPLETION_INITIALIZER_ONSTACK(ad.door_bell),
935 	};
936 
937 	clear_bit(DISCONNECT_SENT, &connection->flags);
938 	if (conn_request_state(connection, NS(conn, C_WF_CONNECTION), CS_VERBOSE) < SS_SUCCESS)
939 		return -2;
940 
941 	mutex_init(&sock.mutex);
942 	sock.sbuf = connection->data.sbuf;
943 	sock.rbuf = connection->data.rbuf;
944 	sock.socket = NULL;
945 	mutex_init(&msock.mutex);
946 	msock.sbuf = connection->meta.sbuf;
947 	msock.rbuf = connection->meta.rbuf;
948 	msock.socket = NULL;
949 
950 	/* Assume that the peer only understands protocol 80 until we know better.  */
951 	connection->agreed_pro_version = 80;
952 
953 	if (prepare_listen_socket(connection, &ad))
954 		return 0;
955 
956 	do {
957 		struct socket *s;
958 
959 		s = drbd_try_connect(connection);
960 		if (s) {
961 			if (!sock.socket) {
962 				sock.socket = s;
963 				send_first_packet(connection, &sock, P_INITIAL_DATA);
964 			} else if (!msock.socket) {
965 				clear_bit(RESOLVE_CONFLICTS, &connection->flags);
966 				msock.socket = s;
967 				send_first_packet(connection, &msock, P_INITIAL_META);
968 			} else {
969 				drbd_err(connection, "Logic error in conn_connect()\n");
970 				goto out_release_sockets;
971 			}
972 		}
973 
974 		if (connection_established(connection, &sock.socket, &msock.socket))
975 			break;
976 
977 retry:
978 		s = drbd_wait_for_connect(connection, &ad);
979 		if (s) {
980 			int fp = receive_first_packet(connection, s);
981 			drbd_socket_okay(&sock.socket);
982 			drbd_socket_okay(&msock.socket);
983 			switch (fp) {
984 			case P_INITIAL_DATA:
985 				if (sock.socket) {
986 					drbd_warn(connection, "initial packet S crossed\n");
987 					sock_release(sock.socket);
988 					sock.socket = s;
989 					goto randomize;
990 				}
991 				sock.socket = s;
992 				break;
993 			case P_INITIAL_META:
994 				set_bit(RESOLVE_CONFLICTS, &connection->flags);
995 				if (msock.socket) {
996 					drbd_warn(connection, "initial packet M crossed\n");
997 					sock_release(msock.socket);
998 					msock.socket = s;
999 					goto randomize;
1000 				}
1001 				msock.socket = s;
1002 				break;
1003 			default:
1004 				drbd_warn(connection, "Error receiving initial packet\n");
1005 				sock_release(s);
1006 randomize:
1007 				if (prandom_u32() & 1)
1008 					goto retry;
1009 			}
1010 		}
1011 
1012 		if (connection->cstate <= C_DISCONNECTING)
1013 			goto out_release_sockets;
1014 		if (signal_pending(current)) {
1015 			flush_signals(current);
1016 			smp_rmb();
1017 			if (get_t_state(&connection->receiver) == EXITING)
1018 				goto out_release_sockets;
1019 		}
1020 
1021 		ok = connection_established(connection, &sock.socket, &msock.socket);
1022 	} while (!ok);
1023 
1024 	if (ad.s_listen)
1025 		sock_release(ad.s_listen);
1026 
1027 	sock.socket->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */
1028 	msock.socket->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */
1029 
1030 	sock.socket->sk->sk_allocation = GFP_NOIO;
1031 	msock.socket->sk->sk_allocation = GFP_NOIO;
1032 
1033 	sock.socket->sk->sk_priority = TC_PRIO_INTERACTIVE_BULK;
1034 	msock.socket->sk->sk_priority = TC_PRIO_INTERACTIVE;
1035 
1036 	/* NOT YET ...
1037 	 * sock.socket->sk->sk_sndtimeo = connection->net_conf->timeout*HZ/10;
1038 	 * sock.socket->sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
1039 	 * first set it to the P_CONNECTION_FEATURES timeout,
1040 	 * which we set to 4x the configured ping_timeout. */
1041 	rcu_read_lock();
1042 	nc = rcu_dereference(connection->net_conf);
1043 
1044 	sock.socket->sk->sk_sndtimeo =
1045 	sock.socket->sk->sk_rcvtimeo = nc->ping_timeo*4*HZ/10;
1046 
1047 	msock.socket->sk->sk_rcvtimeo = nc->ping_int*HZ;
1048 	timeout = nc->timeout * HZ / 10;
1049 	discard_my_data = nc->discard_my_data;
1050 	rcu_read_unlock();
1051 
1052 	msock.socket->sk->sk_sndtimeo = timeout;
1053 
1054 	/* we don't want delays.
1055 	 * we use TCP_CORK where appropriate, though */
1056 	tcp_sock_set_nodelay(sock.socket->sk);
1057 	tcp_sock_set_nodelay(msock.socket->sk);
1058 
1059 	connection->data.socket = sock.socket;
1060 	connection->meta.socket = msock.socket;
1061 	connection->last_received = jiffies;
1062 
1063 	h = drbd_do_features(connection);
1064 	if (h <= 0)
1065 		return h;
1066 
1067 	if (connection->cram_hmac_tfm) {
1068 		/* drbd_request_state(device, NS(conn, WFAuth)); */
1069 		switch (drbd_do_auth(connection)) {
1070 		case -1:
1071 			drbd_err(connection, "Authentication of peer failed\n");
1072 			return -1;
1073 		case 0:
1074 			drbd_err(connection, "Authentication of peer failed, trying again.\n");
1075 			return 0;
1076 		}
1077 	}
1078 
1079 	connection->data.socket->sk->sk_sndtimeo = timeout;
1080 	connection->data.socket->sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
1081 
1082 	if (drbd_send_protocol(connection) == -EOPNOTSUPP)
1083 		return -1;
1084 
1085 	/* Prevent a race between resync-handshake and
1086 	 * being promoted to Primary.
1087 	 *
1088 	 * Grab and release the state mutex, so we know that any current
1089 	 * drbd_set_role() is finished, and any incoming drbd_set_role
1090 	 * will see the STATE_SENT flag, and wait for it to be cleared.
1091 	 */
1092 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr)
1093 		mutex_lock(peer_device->device->state_mutex);
1094 
1095 	/* avoid a race with conn_request_state( C_DISCONNECTING ) */
1096 	spin_lock_irq(&connection->resource->req_lock);
1097 	set_bit(STATE_SENT, &connection->flags);
1098 	spin_unlock_irq(&connection->resource->req_lock);
1099 
1100 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr)
1101 		mutex_unlock(peer_device->device->state_mutex);
1102 
1103 	rcu_read_lock();
1104 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
1105 		struct drbd_device *device = peer_device->device;
1106 		kref_get(&device->kref);
1107 		rcu_read_unlock();
1108 
1109 		if (discard_my_data)
1110 			set_bit(DISCARD_MY_DATA, &device->flags);
1111 		else
1112 			clear_bit(DISCARD_MY_DATA, &device->flags);
1113 
1114 		drbd_connected(peer_device);
1115 		kref_put(&device->kref, drbd_destroy_device);
1116 		rcu_read_lock();
1117 	}
1118 	rcu_read_unlock();
1119 
1120 	rv = conn_request_state(connection, NS(conn, C_WF_REPORT_PARAMS), CS_VERBOSE);
1121 	if (rv < SS_SUCCESS || connection->cstate != C_WF_REPORT_PARAMS) {
1122 		clear_bit(STATE_SENT, &connection->flags);
1123 		return 0;
1124 	}
1125 
1126 	drbd_thread_start(&connection->ack_receiver);
1127 	/* opencoded create_singlethread_workqueue(),
1128 	 * to be able to use format string arguments */
1129 	connection->ack_sender =
1130 		alloc_ordered_workqueue("drbd_as_%s", WQ_MEM_RECLAIM, connection->resource->name);
1131 	if (!connection->ack_sender) {
1132 		drbd_err(connection, "Failed to create workqueue ack_sender\n");
1133 		return 0;
1134 	}
1135 
1136 	mutex_lock(&connection->resource->conf_update);
1137 	/* The discard_my_data flag is a single-shot modifier to the next
1138 	 * connection attempt, the handshake of which is now well underway.
1139 	 * No need for rcu style copying of the whole struct
1140 	 * just to clear a single value. */
1141 	connection->net_conf->discard_my_data = 0;
1142 	mutex_unlock(&connection->resource->conf_update);
1143 
1144 	return h;
1145 
1146 out_release_sockets:
1147 	if (ad.s_listen)
1148 		sock_release(ad.s_listen);
1149 	if (sock.socket)
1150 		sock_release(sock.socket);
1151 	if (msock.socket)
1152 		sock_release(msock.socket);
1153 	return -1;
1154 }
1155 
1156 static int decode_header(struct drbd_connection *connection, void *header, struct packet_info *pi)
1157 {
1158 	unsigned int header_size = drbd_header_size(connection);
1159 
1160 	if (header_size == sizeof(struct p_header100) &&
1161 	    *(__be32 *)header == cpu_to_be32(DRBD_MAGIC_100)) {
1162 		struct p_header100 *h = header;
1163 		if (h->pad != 0) {
1164 			drbd_err(connection, "Header padding is not zero\n");
1165 			return -EINVAL;
1166 		}
1167 		pi->vnr = be16_to_cpu(h->volume);
1168 		pi->cmd = be16_to_cpu(h->command);
1169 		pi->size = be32_to_cpu(h->length);
1170 	} else if (header_size == sizeof(struct p_header95) &&
1171 		   *(__be16 *)header == cpu_to_be16(DRBD_MAGIC_BIG)) {
1172 		struct p_header95 *h = header;
1173 		pi->cmd = be16_to_cpu(h->command);
1174 		pi->size = be32_to_cpu(h->length);
1175 		pi->vnr = 0;
1176 	} else if (header_size == sizeof(struct p_header80) &&
1177 		   *(__be32 *)header == cpu_to_be32(DRBD_MAGIC)) {
1178 		struct p_header80 *h = header;
1179 		pi->cmd = be16_to_cpu(h->command);
1180 		pi->size = be16_to_cpu(h->length);
1181 		pi->vnr = 0;
1182 	} else {
1183 		drbd_err(connection, "Wrong magic value 0x%08x in protocol version %d\n",
1184 			 be32_to_cpu(*(__be32 *)header),
1185 			 connection->agreed_pro_version);
1186 		return -EINVAL;
1187 	}
1188 	pi->data = header + header_size;
1189 	return 0;
1190 }
1191 
1192 static void drbd_unplug_all_devices(struct drbd_connection *connection)
1193 {
1194 	if (current->plug == &connection->receiver_plug) {
1195 		blk_finish_plug(&connection->receiver_plug);
1196 		blk_start_plug(&connection->receiver_plug);
1197 	} /* else: maybe just schedule() ?? */
1198 }
1199 
1200 static int drbd_recv_header(struct drbd_connection *connection, struct packet_info *pi)
1201 {
1202 	void *buffer = connection->data.rbuf;
1203 	int err;
1204 
1205 	err = drbd_recv_all_warn(connection, buffer, drbd_header_size(connection));
1206 	if (err)
1207 		return err;
1208 
1209 	err = decode_header(connection, buffer, pi);
1210 	connection->last_received = jiffies;
1211 
1212 	return err;
1213 }
1214 
1215 static int drbd_recv_header_maybe_unplug(struct drbd_connection *connection, struct packet_info *pi)
1216 {
1217 	void *buffer = connection->data.rbuf;
1218 	unsigned int size = drbd_header_size(connection);
1219 	int err;
1220 
1221 	err = drbd_recv_short(connection->data.socket, buffer, size, MSG_NOSIGNAL|MSG_DONTWAIT);
1222 	if (err != size) {
1223 		/* If we have nothing in the receive buffer now, to reduce
1224 		 * application latency, try to drain the backend queues as
1225 		 * quickly as possible, and let remote TCP know what we have
1226 		 * received so far. */
1227 		if (err == -EAGAIN) {
1228 			tcp_sock_set_quickack(connection->data.socket->sk, 2);
1229 			drbd_unplug_all_devices(connection);
1230 		}
1231 		if (err > 0) {
1232 			buffer += err;
1233 			size -= err;
1234 		}
1235 		err = drbd_recv_all_warn(connection, buffer, size);
1236 		if (err)
1237 			return err;
1238 	}
1239 
1240 	err = decode_header(connection, connection->data.rbuf, pi);
1241 	connection->last_received = jiffies;
1242 
1243 	return err;
1244 }
1245 /* This is blkdev_issue_flush, but asynchronous.
1246  * We want to submit to all component volumes in parallel,
1247  * then wait for all completions.
1248  */
1249 struct issue_flush_context {
1250 	atomic_t pending;
1251 	int error;
1252 	struct completion done;
1253 };
1254 struct one_flush_context {
1255 	struct drbd_device *device;
1256 	struct issue_flush_context *ctx;
1257 };
1258 
1259 static void one_flush_endio(struct bio *bio)
1260 {
1261 	struct one_flush_context *octx = bio->bi_private;
1262 	struct drbd_device *device = octx->device;
1263 	struct issue_flush_context *ctx = octx->ctx;
1264 
1265 	if (bio->bi_status) {
1266 		ctx->error = blk_status_to_errno(bio->bi_status);
1267 		drbd_info(device, "local disk FLUSH FAILED with status %d\n", bio->bi_status);
1268 	}
1269 	kfree(octx);
1270 	bio_put(bio);
1271 
1272 	clear_bit(FLUSH_PENDING, &device->flags);
1273 	put_ldev(device);
1274 	kref_put(&device->kref, drbd_destroy_device);
1275 
1276 	if (atomic_dec_and_test(&ctx->pending))
1277 		complete(&ctx->done);
1278 }
1279 
1280 static void submit_one_flush(struct drbd_device *device, struct issue_flush_context *ctx)
1281 {
1282 	struct bio *bio = bio_alloc(device->ldev->backing_bdev, 0,
1283 				    REQ_OP_FLUSH | REQ_PREFLUSH, GFP_NOIO);
1284 	struct one_flush_context *octx = kmalloc(sizeof(*octx), GFP_NOIO);
1285 
1286 	if (!octx) {
1287 		drbd_warn(device, "Could not allocate a octx, CANNOT ISSUE FLUSH\n");
1288 		/* FIXME: what else can I do now?  disconnecting or detaching
1289 		 * really does not help to improve the state of the world, either.
1290 		 */
1291 		bio_put(bio);
1292 
1293 		ctx->error = -ENOMEM;
1294 		put_ldev(device);
1295 		kref_put(&device->kref, drbd_destroy_device);
1296 		return;
1297 	}
1298 
1299 	octx->device = device;
1300 	octx->ctx = ctx;
1301 	bio->bi_private = octx;
1302 	bio->bi_end_io = one_flush_endio;
1303 
1304 	device->flush_jif = jiffies;
1305 	set_bit(FLUSH_PENDING, &device->flags);
1306 	atomic_inc(&ctx->pending);
1307 	submit_bio(bio);
1308 }
1309 
1310 static void drbd_flush(struct drbd_connection *connection)
1311 {
1312 	if (connection->resource->write_ordering >= WO_BDEV_FLUSH) {
1313 		struct drbd_peer_device *peer_device;
1314 		struct issue_flush_context ctx;
1315 		int vnr;
1316 
1317 		atomic_set(&ctx.pending, 1);
1318 		ctx.error = 0;
1319 		init_completion(&ctx.done);
1320 
1321 		rcu_read_lock();
1322 		idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
1323 			struct drbd_device *device = peer_device->device;
1324 
1325 			if (!get_ldev(device))
1326 				continue;
1327 			kref_get(&device->kref);
1328 			rcu_read_unlock();
1329 
1330 			submit_one_flush(device, &ctx);
1331 
1332 			rcu_read_lock();
1333 		}
1334 		rcu_read_unlock();
1335 
1336 		/* Do we want to add a timeout,
1337 		 * if disk-timeout is set? */
1338 		if (!atomic_dec_and_test(&ctx.pending))
1339 			wait_for_completion(&ctx.done);
1340 
1341 		if (ctx.error) {
1342 			/* would rather check on EOPNOTSUPP, but that is not reliable.
1343 			 * don't try again for ANY return value != 0
1344 			 * if (rv == -EOPNOTSUPP) */
1345 			/* Any error is already reported by bio_endio callback. */
1346 			drbd_bump_write_ordering(connection->resource, NULL, WO_DRAIN_IO);
1347 		}
1348 	}
1349 }
1350 
1351 /**
1352  * drbd_may_finish_epoch() - Applies an epoch_event to the epoch's state, eventually finishes it.
1353  * @connection:	DRBD connection.
1354  * @epoch:	Epoch object.
1355  * @ev:		Epoch event.
1356  */
1357 static enum finish_epoch drbd_may_finish_epoch(struct drbd_connection *connection,
1358 					       struct drbd_epoch *epoch,
1359 					       enum epoch_event ev)
1360 {
1361 	int epoch_size;
1362 	struct drbd_epoch *next_epoch;
1363 	enum finish_epoch rv = FE_STILL_LIVE;
1364 
1365 	spin_lock(&connection->epoch_lock);
1366 	do {
1367 		next_epoch = NULL;
1368 
1369 		epoch_size = atomic_read(&epoch->epoch_size);
1370 
1371 		switch (ev & ~EV_CLEANUP) {
1372 		case EV_PUT:
1373 			atomic_dec(&epoch->active);
1374 			break;
1375 		case EV_GOT_BARRIER_NR:
1376 			set_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags);
1377 			break;
1378 		case EV_BECAME_LAST:
1379 			/* nothing to do*/
1380 			break;
1381 		}
1382 
1383 		if (epoch_size != 0 &&
1384 		    atomic_read(&epoch->active) == 0 &&
1385 		    (test_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags) || ev & EV_CLEANUP)) {
1386 			if (!(ev & EV_CLEANUP)) {
1387 				spin_unlock(&connection->epoch_lock);
1388 				drbd_send_b_ack(epoch->connection, epoch->barrier_nr, epoch_size);
1389 				spin_lock(&connection->epoch_lock);
1390 			}
1391 #if 0
1392 			/* FIXME: dec unacked on connection, once we have
1393 			 * something to count pending connection packets in. */
1394 			if (test_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags))
1395 				dec_unacked(epoch->connection);
1396 #endif
1397 
1398 			if (connection->current_epoch != epoch) {
1399 				next_epoch = list_entry(epoch->list.next, struct drbd_epoch, list);
1400 				list_del(&epoch->list);
1401 				ev = EV_BECAME_LAST | (ev & EV_CLEANUP);
1402 				connection->epochs--;
1403 				kfree(epoch);
1404 
1405 				if (rv == FE_STILL_LIVE)
1406 					rv = FE_DESTROYED;
1407 			} else {
1408 				epoch->flags = 0;
1409 				atomic_set(&epoch->epoch_size, 0);
1410 				/* atomic_set(&epoch->active, 0); is already zero */
1411 				if (rv == FE_STILL_LIVE)
1412 					rv = FE_RECYCLED;
1413 			}
1414 		}
1415 
1416 		if (!next_epoch)
1417 			break;
1418 
1419 		epoch = next_epoch;
1420 	} while (1);
1421 
1422 	spin_unlock(&connection->epoch_lock);
1423 
1424 	return rv;
1425 }
1426 
1427 static enum write_ordering_e
1428 max_allowed_wo(struct drbd_backing_dev *bdev, enum write_ordering_e wo)
1429 {
1430 	struct disk_conf *dc;
1431 
1432 	dc = rcu_dereference(bdev->disk_conf);
1433 
1434 	if (wo == WO_BDEV_FLUSH && !dc->disk_flushes)
1435 		wo = WO_DRAIN_IO;
1436 	if (wo == WO_DRAIN_IO && !dc->disk_drain)
1437 		wo = WO_NONE;
1438 
1439 	return wo;
1440 }
1441 
1442 /*
1443  * drbd_bump_write_ordering() - Fall back to an other write ordering method
1444  * @wo:		Write ordering method to try.
1445  */
1446 void drbd_bump_write_ordering(struct drbd_resource *resource, struct drbd_backing_dev *bdev,
1447 			      enum write_ordering_e wo)
1448 {
1449 	struct drbd_device *device;
1450 	enum write_ordering_e pwo;
1451 	int vnr;
1452 	static char *write_ordering_str[] = {
1453 		[WO_NONE] = "none",
1454 		[WO_DRAIN_IO] = "drain",
1455 		[WO_BDEV_FLUSH] = "flush",
1456 	};
1457 
1458 	pwo = resource->write_ordering;
1459 	if (wo != WO_BDEV_FLUSH)
1460 		wo = min(pwo, wo);
1461 	rcu_read_lock();
1462 	idr_for_each_entry(&resource->devices, device, vnr) {
1463 		if (get_ldev(device)) {
1464 			wo = max_allowed_wo(device->ldev, wo);
1465 			if (device->ldev == bdev)
1466 				bdev = NULL;
1467 			put_ldev(device);
1468 		}
1469 	}
1470 
1471 	if (bdev)
1472 		wo = max_allowed_wo(bdev, wo);
1473 
1474 	rcu_read_unlock();
1475 
1476 	resource->write_ordering = wo;
1477 	if (pwo != resource->write_ordering || wo == WO_BDEV_FLUSH)
1478 		drbd_info(resource, "Method to ensure write ordering: %s\n", write_ordering_str[resource->write_ordering]);
1479 }
1480 
1481 /*
1482  * Mapping "discard" to ZEROOUT with UNMAP does not work for us:
1483  * Drivers have to "announce" q->limits.max_write_zeroes_sectors, or it
1484  * will directly go to fallback mode, submitting normal writes, and
1485  * never even try to UNMAP.
1486  *
1487  * And dm-thin does not do this (yet), mostly because in general it has
1488  * to assume that "skip_block_zeroing" is set.  See also:
1489  * https://www.mail-archive.com/dm-devel%40redhat.com/msg07965.html
1490  * https://www.redhat.com/archives/dm-devel/2018-January/msg00271.html
1491  *
1492  * We *may* ignore the discard-zeroes-data setting, if so configured.
1493  *
1494  * Assumption is that this "discard_zeroes_data=0" is only because the backend
1495  * may ignore partial unaligned discards.
1496  *
1497  * LVM/DM thin as of at least
1498  *   LVM version:     2.02.115(2)-RHEL7 (2015-01-28)
1499  *   Library version: 1.02.93-RHEL7 (2015-01-28)
1500  *   Driver version:  4.29.0
1501  * still behaves this way.
1502  *
1503  * For unaligned (wrt. alignment and granularity) or too small discards,
1504  * we zero-out the initial (and/or) trailing unaligned partial chunks,
1505  * but discard all the aligned full chunks.
1506  *
1507  * At least for LVM/DM thin, with skip_block_zeroing=false,
1508  * the result is effectively "discard_zeroes_data=1".
1509  */
1510 /* flags: EE_TRIM|EE_ZEROOUT */
1511 int drbd_issue_discard_or_zero_out(struct drbd_device *device, sector_t start, unsigned int nr_sectors, int flags)
1512 {
1513 	struct block_device *bdev = device->ldev->backing_bdev;
1514 	sector_t tmp, nr;
1515 	unsigned int max_discard_sectors, granularity;
1516 	int alignment;
1517 	int err = 0;
1518 
1519 	if ((flags & EE_ZEROOUT) || !(flags & EE_TRIM))
1520 		goto zero_out;
1521 
1522 	/* Zero-sector (unknown) and one-sector granularities are the same.  */
1523 	granularity = max(bdev_discard_granularity(bdev) >> 9, 1U);
1524 	alignment = (bdev_discard_alignment(bdev) >> 9) % granularity;
1525 
1526 	max_discard_sectors = min(bdev_max_discard_sectors(bdev), (1U << 22));
1527 	max_discard_sectors -= max_discard_sectors % granularity;
1528 	if (unlikely(!max_discard_sectors))
1529 		goto zero_out;
1530 
1531 	if (nr_sectors < granularity)
1532 		goto zero_out;
1533 
1534 	tmp = start;
1535 	if (sector_div(tmp, granularity) != alignment) {
1536 		if (nr_sectors < 2*granularity)
1537 			goto zero_out;
1538 		/* start + gran - (start + gran - align) % gran */
1539 		tmp = start + granularity - alignment;
1540 		tmp = start + granularity - sector_div(tmp, granularity);
1541 
1542 		nr = tmp - start;
1543 		/* don't flag BLKDEV_ZERO_NOUNMAP, we don't know how many
1544 		 * layers are below us, some may have smaller granularity */
1545 		err |= blkdev_issue_zeroout(bdev, start, nr, GFP_NOIO, 0);
1546 		nr_sectors -= nr;
1547 		start = tmp;
1548 	}
1549 	while (nr_sectors >= max_discard_sectors) {
1550 		err |= blkdev_issue_discard(bdev, start, max_discard_sectors,
1551 					    GFP_NOIO);
1552 		nr_sectors -= max_discard_sectors;
1553 		start += max_discard_sectors;
1554 	}
1555 	if (nr_sectors) {
1556 		/* max_discard_sectors is unsigned int (and a multiple of
1557 		 * granularity, we made sure of that above already);
1558 		 * nr is < max_discard_sectors;
1559 		 * I don't need sector_div here, even though nr is sector_t */
1560 		nr = nr_sectors;
1561 		nr -= (unsigned int)nr % granularity;
1562 		if (nr) {
1563 			err |= blkdev_issue_discard(bdev, start, nr, GFP_NOIO);
1564 			nr_sectors -= nr;
1565 			start += nr;
1566 		}
1567 	}
1568  zero_out:
1569 	if (nr_sectors) {
1570 		err |= blkdev_issue_zeroout(bdev, start, nr_sectors, GFP_NOIO,
1571 				(flags & EE_TRIM) ? 0 : BLKDEV_ZERO_NOUNMAP);
1572 	}
1573 	return err != 0;
1574 }
1575 
1576 static bool can_do_reliable_discards(struct drbd_device *device)
1577 {
1578 	struct disk_conf *dc;
1579 	bool can_do;
1580 
1581 	if (!bdev_max_discard_sectors(device->ldev->backing_bdev))
1582 		return false;
1583 
1584 	rcu_read_lock();
1585 	dc = rcu_dereference(device->ldev->disk_conf);
1586 	can_do = dc->discard_zeroes_if_aligned;
1587 	rcu_read_unlock();
1588 	return can_do;
1589 }
1590 
1591 static void drbd_issue_peer_discard_or_zero_out(struct drbd_device *device, struct drbd_peer_request *peer_req)
1592 {
1593 	/* If the backend cannot discard, or does not guarantee
1594 	 * read-back zeroes in discarded ranges, we fall back to
1595 	 * zero-out.  Unless configuration specifically requested
1596 	 * otherwise. */
1597 	if (!can_do_reliable_discards(device))
1598 		peer_req->flags |= EE_ZEROOUT;
1599 
1600 	if (drbd_issue_discard_or_zero_out(device, peer_req->i.sector,
1601 	    peer_req->i.size >> 9, peer_req->flags & (EE_ZEROOUT|EE_TRIM)))
1602 		peer_req->flags |= EE_WAS_ERROR;
1603 	drbd_endio_write_sec_final(peer_req);
1604 }
1605 
1606 /**
1607  * drbd_submit_peer_request()
1608  * @device:	DRBD device.
1609  * @peer_req:	peer request
1610  *
1611  * May spread the pages to multiple bios,
1612  * depending on bio_add_page restrictions.
1613  *
1614  * Returns 0 if all bios have been submitted,
1615  * -ENOMEM if we could not allocate enough bios,
1616  * -ENOSPC (any better suggestion?) if we have not been able to bio_add_page a
1617  *  single page to an empty bio (which should never happen and likely indicates
1618  *  that the lower level IO stack is in some way broken). This has been observed
1619  *  on certain Xen deployments.
1620  */
1621 /* TODO allocate from our own bio_set. */
1622 int drbd_submit_peer_request(struct drbd_device *device,
1623 			     struct drbd_peer_request *peer_req,
1624 			     const blk_opf_t opf, const int fault_type)
1625 {
1626 	struct bio *bios = NULL;
1627 	struct bio *bio;
1628 	struct page *page = peer_req->pages;
1629 	sector_t sector = peer_req->i.sector;
1630 	unsigned int data_size = peer_req->i.size;
1631 	unsigned int n_bios = 0;
1632 	unsigned int nr_pages = PFN_UP(data_size);
1633 
1634 	/* TRIM/DISCARD: for now, always use the helper function
1635 	 * blkdev_issue_zeroout(..., discard=true).
1636 	 * It's synchronous, but it does the right thing wrt. bio splitting.
1637 	 * Correctness first, performance later.  Next step is to code an
1638 	 * asynchronous variant of the same.
1639 	 */
1640 	if (peer_req->flags & (EE_TRIM | EE_ZEROOUT)) {
1641 		/* wait for all pending IO completions, before we start
1642 		 * zeroing things out. */
1643 		conn_wait_active_ee_empty(peer_req->peer_device->connection);
1644 		/* add it to the active list now,
1645 		 * so we can find it to present it in debugfs */
1646 		peer_req->submit_jif = jiffies;
1647 		peer_req->flags |= EE_SUBMITTED;
1648 
1649 		/* If this was a resync request from receive_rs_deallocated(),
1650 		 * it is already on the sync_ee list */
1651 		if (list_empty(&peer_req->w.list)) {
1652 			spin_lock_irq(&device->resource->req_lock);
1653 			list_add_tail(&peer_req->w.list, &device->active_ee);
1654 			spin_unlock_irq(&device->resource->req_lock);
1655 		}
1656 
1657 		drbd_issue_peer_discard_or_zero_out(device, peer_req);
1658 		return 0;
1659 	}
1660 
1661 	/* In most cases, we will only need one bio.  But in case the lower
1662 	 * level restrictions happen to be different at this offset on this
1663 	 * side than those of the sending peer, we may need to submit the
1664 	 * request in more than one bio.
1665 	 *
1666 	 * Plain bio_alloc is good enough here, this is no DRBD internally
1667 	 * generated bio, but a bio allocated on behalf of the peer.
1668 	 */
1669 next_bio:
1670 	bio = bio_alloc(device->ldev->backing_bdev, nr_pages, opf, GFP_NOIO);
1671 	/* > peer_req->i.sector, unless this is the first bio */
1672 	bio->bi_iter.bi_sector = sector;
1673 	bio->bi_private = peer_req;
1674 	bio->bi_end_io = drbd_peer_request_endio;
1675 
1676 	bio->bi_next = bios;
1677 	bios = bio;
1678 	++n_bios;
1679 
1680 	page_chain_for_each(page) {
1681 		unsigned len = min_t(unsigned, data_size, PAGE_SIZE);
1682 		if (!bio_add_page(bio, page, len, 0))
1683 			goto next_bio;
1684 		data_size -= len;
1685 		sector += len >> 9;
1686 		--nr_pages;
1687 	}
1688 	D_ASSERT(device, data_size == 0);
1689 	D_ASSERT(device, page == NULL);
1690 
1691 	atomic_set(&peer_req->pending_bios, n_bios);
1692 	/* for debugfs: update timestamp, mark as submitted */
1693 	peer_req->submit_jif = jiffies;
1694 	peer_req->flags |= EE_SUBMITTED;
1695 	do {
1696 		bio = bios;
1697 		bios = bios->bi_next;
1698 		bio->bi_next = NULL;
1699 
1700 		drbd_submit_bio_noacct(device, fault_type, bio);
1701 	} while (bios);
1702 	return 0;
1703 }
1704 
1705 static void drbd_remove_epoch_entry_interval(struct drbd_device *device,
1706 					     struct drbd_peer_request *peer_req)
1707 {
1708 	struct drbd_interval *i = &peer_req->i;
1709 
1710 	drbd_remove_interval(&device->write_requests, i);
1711 	drbd_clear_interval(i);
1712 
1713 	/* Wake up any processes waiting for this peer request to complete.  */
1714 	if (i->waiting)
1715 		wake_up(&device->misc_wait);
1716 }
1717 
1718 static void conn_wait_active_ee_empty(struct drbd_connection *connection)
1719 {
1720 	struct drbd_peer_device *peer_device;
1721 	int vnr;
1722 
1723 	rcu_read_lock();
1724 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
1725 		struct drbd_device *device = peer_device->device;
1726 
1727 		kref_get(&device->kref);
1728 		rcu_read_unlock();
1729 		drbd_wait_ee_list_empty(device, &device->active_ee);
1730 		kref_put(&device->kref, drbd_destroy_device);
1731 		rcu_read_lock();
1732 	}
1733 	rcu_read_unlock();
1734 }
1735 
1736 static int receive_Barrier(struct drbd_connection *connection, struct packet_info *pi)
1737 {
1738 	int rv;
1739 	struct p_barrier *p = pi->data;
1740 	struct drbd_epoch *epoch;
1741 
1742 	/* FIXME these are unacked on connection,
1743 	 * not a specific (peer)device.
1744 	 */
1745 	connection->current_epoch->barrier_nr = p->barrier;
1746 	connection->current_epoch->connection = connection;
1747 	rv = drbd_may_finish_epoch(connection, connection->current_epoch, EV_GOT_BARRIER_NR);
1748 
1749 	/* P_BARRIER_ACK may imply that the corresponding extent is dropped from
1750 	 * the activity log, which means it would not be resynced in case the
1751 	 * R_PRIMARY crashes now.
1752 	 * Therefore we must send the barrier_ack after the barrier request was
1753 	 * completed. */
1754 	switch (connection->resource->write_ordering) {
1755 	case WO_NONE:
1756 		if (rv == FE_RECYCLED)
1757 			return 0;
1758 
1759 		/* receiver context, in the writeout path of the other node.
1760 		 * avoid potential distributed deadlock */
1761 		epoch = kmalloc(sizeof(struct drbd_epoch), GFP_NOIO);
1762 		if (epoch)
1763 			break;
1764 		else
1765 			drbd_warn(connection, "Allocation of an epoch failed, slowing down\n");
1766 		fallthrough;
1767 
1768 	case WO_BDEV_FLUSH:
1769 	case WO_DRAIN_IO:
1770 		conn_wait_active_ee_empty(connection);
1771 		drbd_flush(connection);
1772 
1773 		if (atomic_read(&connection->current_epoch->epoch_size)) {
1774 			epoch = kmalloc(sizeof(struct drbd_epoch), GFP_NOIO);
1775 			if (epoch)
1776 				break;
1777 		}
1778 
1779 		return 0;
1780 	default:
1781 		drbd_err(connection, "Strangeness in connection->write_ordering %d\n",
1782 			 connection->resource->write_ordering);
1783 		return -EIO;
1784 	}
1785 
1786 	epoch->flags = 0;
1787 	atomic_set(&epoch->epoch_size, 0);
1788 	atomic_set(&epoch->active, 0);
1789 
1790 	spin_lock(&connection->epoch_lock);
1791 	if (atomic_read(&connection->current_epoch->epoch_size)) {
1792 		list_add(&epoch->list, &connection->current_epoch->list);
1793 		connection->current_epoch = epoch;
1794 		connection->epochs++;
1795 	} else {
1796 		/* The current_epoch got recycled while we allocated this one... */
1797 		kfree(epoch);
1798 	}
1799 	spin_unlock(&connection->epoch_lock);
1800 
1801 	return 0;
1802 }
1803 
1804 /* quick wrapper in case payload size != request_size (write same) */
1805 static void drbd_csum_ee_size(struct crypto_shash *h,
1806 			      struct drbd_peer_request *r, void *d,
1807 			      unsigned int payload_size)
1808 {
1809 	unsigned int tmp = r->i.size;
1810 	r->i.size = payload_size;
1811 	drbd_csum_ee(h, r, d);
1812 	r->i.size = tmp;
1813 }
1814 
1815 /* used from receive_RSDataReply (recv_resync_read)
1816  * and from receive_Data.
1817  * data_size: actual payload ("data in")
1818  * 	for normal writes that is bi_size.
1819  * 	for discards, that is zero.
1820  * 	for write same, it is logical_block_size.
1821  * both trim and write same have the bi_size ("data len to be affected")
1822  * as extra argument in the packet header.
1823  */
1824 static struct drbd_peer_request *
1825 read_in_block(struct drbd_peer_device *peer_device, u64 id, sector_t sector,
1826 	      struct packet_info *pi) __must_hold(local)
1827 {
1828 	struct drbd_device *device = peer_device->device;
1829 	const sector_t capacity = get_capacity(device->vdisk);
1830 	struct drbd_peer_request *peer_req;
1831 	struct page *page;
1832 	int digest_size, err;
1833 	unsigned int data_size = pi->size, ds;
1834 	void *dig_in = peer_device->connection->int_dig_in;
1835 	void *dig_vv = peer_device->connection->int_dig_vv;
1836 	unsigned long *data;
1837 	struct p_trim *trim = (pi->cmd == P_TRIM) ? pi->data : NULL;
1838 	struct p_trim *zeroes = (pi->cmd == P_ZEROES) ? pi->data : NULL;
1839 
1840 	digest_size = 0;
1841 	if (!trim && peer_device->connection->peer_integrity_tfm) {
1842 		digest_size = crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm);
1843 		/*
1844 		 * FIXME: Receive the incoming digest into the receive buffer
1845 		 *	  here, together with its struct p_data?
1846 		 */
1847 		err = drbd_recv_all_warn(peer_device->connection, dig_in, digest_size);
1848 		if (err)
1849 			return NULL;
1850 		data_size -= digest_size;
1851 	}
1852 
1853 	/* assume request_size == data_size, but special case trim. */
1854 	ds = data_size;
1855 	if (trim) {
1856 		if (!expect(data_size == 0))
1857 			return NULL;
1858 		ds = be32_to_cpu(trim->size);
1859 	} else if (zeroes) {
1860 		if (!expect(data_size == 0))
1861 			return NULL;
1862 		ds = be32_to_cpu(zeroes->size);
1863 	}
1864 
1865 	if (!expect(IS_ALIGNED(ds, 512)))
1866 		return NULL;
1867 	if (trim || zeroes) {
1868 		if (!expect(ds <= (DRBD_MAX_BBIO_SECTORS << 9)))
1869 			return NULL;
1870 	} else if (!expect(ds <= DRBD_MAX_BIO_SIZE))
1871 		return NULL;
1872 
1873 	/* even though we trust out peer,
1874 	 * we sometimes have to double check. */
1875 	if (sector + (ds>>9) > capacity) {
1876 		drbd_err(device, "request from peer beyond end of local disk: "
1877 			"capacity: %llus < sector: %llus + size: %u\n",
1878 			(unsigned long long)capacity,
1879 			(unsigned long long)sector, ds);
1880 		return NULL;
1881 	}
1882 
1883 	/* GFP_NOIO, because we must not cause arbitrary write-out: in a DRBD
1884 	 * "criss-cross" setup, that might cause write-out on some other DRBD,
1885 	 * which in turn might block on the other node at this very place.  */
1886 	peer_req = drbd_alloc_peer_req(peer_device, id, sector, ds, data_size, GFP_NOIO);
1887 	if (!peer_req)
1888 		return NULL;
1889 
1890 	peer_req->flags |= EE_WRITE;
1891 	if (trim) {
1892 		peer_req->flags |= EE_TRIM;
1893 		return peer_req;
1894 	}
1895 	if (zeroes) {
1896 		peer_req->flags |= EE_ZEROOUT;
1897 		return peer_req;
1898 	}
1899 
1900 	/* receive payload size bytes into page chain */
1901 	ds = data_size;
1902 	page = peer_req->pages;
1903 	page_chain_for_each(page) {
1904 		unsigned len = min_t(int, ds, PAGE_SIZE);
1905 		data = kmap(page);
1906 		err = drbd_recv_all_warn(peer_device->connection, data, len);
1907 		if (drbd_insert_fault(device, DRBD_FAULT_RECEIVE)) {
1908 			drbd_err(device, "Fault injection: Corrupting data on receive\n");
1909 			data[0] = data[0] ^ (unsigned long)-1;
1910 		}
1911 		kunmap(page);
1912 		if (err) {
1913 			drbd_free_peer_req(device, peer_req);
1914 			return NULL;
1915 		}
1916 		ds -= len;
1917 	}
1918 
1919 	if (digest_size) {
1920 		drbd_csum_ee_size(peer_device->connection->peer_integrity_tfm, peer_req, dig_vv, data_size);
1921 		if (memcmp(dig_in, dig_vv, digest_size)) {
1922 			drbd_err(device, "Digest integrity check FAILED: %llus +%u\n",
1923 				(unsigned long long)sector, data_size);
1924 			drbd_free_peer_req(device, peer_req);
1925 			return NULL;
1926 		}
1927 	}
1928 	device->recv_cnt += data_size >> 9;
1929 	return peer_req;
1930 }
1931 
1932 /* drbd_drain_block() just takes a data block
1933  * out of the socket input buffer, and discards it.
1934  */
1935 static int drbd_drain_block(struct drbd_peer_device *peer_device, int data_size)
1936 {
1937 	struct page *page;
1938 	int err = 0;
1939 	void *data;
1940 
1941 	if (!data_size)
1942 		return 0;
1943 
1944 	page = drbd_alloc_pages(peer_device, 1, 1);
1945 
1946 	data = kmap(page);
1947 	while (data_size) {
1948 		unsigned int len = min_t(int, data_size, PAGE_SIZE);
1949 
1950 		err = drbd_recv_all_warn(peer_device->connection, data, len);
1951 		if (err)
1952 			break;
1953 		data_size -= len;
1954 	}
1955 	kunmap(page);
1956 	drbd_free_pages(peer_device->device, page, 0);
1957 	return err;
1958 }
1959 
1960 static int recv_dless_read(struct drbd_peer_device *peer_device, struct drbd_request *req,
1961 			   sector_t sector, int data_size)
1962 {
1963 	struct bio_vec bvec;
1964 	struct bvec_iter iter;
1965 	struct bio *bio;
1966 	int digest_size, err, expect;
1967 	void *dig_in = peer_device->connection->int_dig_in;
1968 	void *dig_vv = peer_device->connection->int_dig_vv;
1969 
1970 	digest_size = 0;
1971 	if (peer_device->connection->peer_integrity_tfm) {
1972 		digest_size = crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm);
1973 		err = drbd_recv_all_warn(peer_device->connection, dig_in, digest_size);
1974 		if (err)
1975 			return err;
1976 		data_size -= digest_size;
1977 	}
1978 
1979 	/* optimistically update recv_cnt.  if receiving fails below,
1980 	 * we disconnect anyways, and counters will be reset. */
1981 	peer_device->device->recv_cnt += data_size>>9;
1982 
1983 	bio = req->master_bio;
1984 	D_ASSERT(peer_device->device, sector == bio->bi_iter.bi_sector);
1985 
1986 	bio_for_each_segment(bvec, bio, iter) {
1987 		void *mapped = bvec_kmap_local(&bvec);
1988 		expect = min_t(int, data_size, bvec.bv_len);
1989 		err = drbd_recv_all_warn(peer_device->connection, mapped, expect);
1990 		kunmap_local(mapped);
1991 		if (err)
1992 			return err;
1993 		data_size -= expect;
1994 	}
1995 
1996 	if (digest_size) {
1997 		drbd_csum_bio(peer_device->connection->peer_integrity_tfm, bio, dig_vv);
1998 		if (memcmp(dig_in, dig_vv, digest_size)) {
1999 			drbd_err(peer_device, "Digest integrity check FAILED. Broken NICs?\n");
2000 			return -EINVAL;
2001 		}
2002 	}
2003 
2004 	D_ASSERT(peer_device->device, data_size == 0);
2005 	return 0;
2006 }
2007 
2008 /*
2009  * e_end_resync_block() is called in ack_sender context via
2010  * drbd_finish_peer_reqs().
2011  */
2012 static int e_end_resync_block(struct drbd_work *w, int unused)
2013 {
2014 	struct drbd_peer_request *peer_req =
2015 		container_of(w, struct drbd_peer_request, w);
2016 	struct drbd_peer_device *peer_device = peer_req->peer_device;
2017 	struct drbd_device *device = peer_device->device;
2018 	sector_t sector = peer_req->i.sector;
2019 	int err;
2020 
2021 	D_ASSERT(device, drbd_interval_empty(&peer_req->i));
2022 
2023 	if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) {
2024 		drbd_set_in_sync(device, sector, peer_req->i.size);
2025 		err = drbd_send_ack(peer_device, P_RS_WRITE_ACK, peer_req);
2026 	} else {
2027 		/* Record failure to sync */
2028 		drbd_rs_failed_io(device, sector, peer_req->i.size);
2029 
2030 		err  = drbd_send_ack(peer_device, P_NEG_ACK, peer_req);
2031 	}
2032 	dec_unacked(device);
2033 
2034 	return err;
2035 }
2036 
2037 static int recv_resync_read(struct drbd_peer_device *peer_device, sector_t sector,
2038 			    struct packet_info *pi) __releases(local)
2039 {
2040 	struct drbd_device *device = peer_device->device;
2041 	struct drbd_peer_request *peer_req;
2042 
2043 	peer_req = read_in_block(peer_device, ID_SYNCER, sector, pi);
2044 	if (!peer_req)
2045 		goto fail;
2046 
2047 	dec_rs_pending(device);
2048 
2049 	inc_unacked(device);
2050 	/* corresponding dec_unacked() in e_end_resync_block()
2051 	 * respective _drbd_clear_done_ee */
2052 
2053 	peer_req->w.cb = e_end_resync_block;
2054 	peer_req->submit_jif = jiffies;
2055 
2056 	spin_lock_irq(&device->resource->req_lock);
2057 	list_add_tail(&peer_req->w.list, &device->sync_ee);
2058 	spin_unlock_irq(&device->resource->req_lock);
2059 
2060 	atomic_add(pi->size >> 9, &device->rs_sect_ev);
2061 	if (drbd_submit_peer_request(device, peer_req, REQ_OP_WRITE,
2062 				     DRBD_FAULT_RS_WR) == 0)
2063 		return 0;
2064 
2065 	/* don't care for the reason here */
2066 	drbd_err(device, "submit failed, triggering re-connect\n");
2067 	spin_lock_irq(&device->resource->req_lock);
2068 	list_del(&peer_req->w.list);
2069 	spin_unlock_irq(&device->resource->req_lock);
2070 
2071 	drbd_free_peer_req(device, peer_req);
2072 fail:
2073 	put_ldev(device);
2074 	return -EIO;
2075 }
2076 
2077 static struct drbd_request *
2078 find_request(struct drbd_device *device, struct rb_root *root, u64 id,
2079 	     sector_t sector, bool missing_ok, const char *func)
2080 {
2081 	struct drbd_request *req;
2082 
2083 	/* Request object according to our peer */
2084 	req = (struct drbd_request *)(unsigned long)id;
2085 	if (drbd_contains_interval(root, sector, &req->i) && req->i.local)
2086 		return req;
2087 	if (!missing_ok) {
2088 		drbd_err(device, "%s: failed to find request 0x%lx, sector %llus\n", func,
2089 			(unsigned long)id, (unsigned long long)sector);
2090 	}
2091 	return NULL;
2092 }
2093 
2094 static int receive_DataReply(struct drbd_connection *connection, struct packet_info *pi)
2095 {
2096 	struct drbd_peer_device *peer_device;
2097 	struct drbd_device *device;
2098 	struct drbd_request *req;
2099 	sector_t sector;
2100 	int err;
2101 	struct p_data *p = pi->data;
2102 
2103 	peer_device = conn_peer_device(connection, pi->vnr);
2104 	if (!peer_device)
2105 		return -EIO;
2106 	device = peer_device->device;
2107 
2108 	sector = be64_to_cpu(p->sector);
2109 
2110 	spin_lock_irq(&device->resource->req_lock);
2111 	req = find_request(device, &device->read_requests, p->block_id, sector, false, __func__);
2112 	spin_unlock_irq(&device->resource->req_lock);
2113 	if (unlikely(!req))
2114 		return -EIO;
2115 
2116 	/* hlist_del(&req->collision) is done in _req_may_be_done, to avoid
2117 	 * special casing it there for the various failure cases.
2118 	 * still no race with drbd_fail_pending_reads */
2119 	err = recv_dless_read(peer_device, req, sector, pi->size);
2120 	if (!err)
2121 		req_mod(req, DATA_RECEIVED);
2122 	/* else: nothing. handled from drbd_disconnect...
2123 	 * I don't think we may complete this just yet
2124 	 * in case we are "on-disconnect: freeze" */
2125 
2126 	return err;
2127 }
2128 
2129 static int receive_RSDataReply(struct drbd_connection *connection, struct packet_info *pi)
2130 {
2131 	struct drbd_peer_device *peer_device;
2132 	struct drbd_device *device;
2133 	sector_t sector;
2134 	int err;
2135 	struct p_data *p = pi->data;
2136 
2137 	peer_device = conn_peer_device(connection, pi->vnr);
2138 	if (!peer_device)
2139 		return -EIO;
2140 	device = peer_device->device;
2141 
2142 	sector = be64_to_cpu(p->sector);
2143 	D_ASSERT(device, p->block_id == ID_SYNCER);
2144 
2145 	if (get_ldev(device)) {
2146 		/* data is submitted to disk within recv_resync_read.
2147 		 * corresponding put_ldev done below on error,
2148 		 * or in drbd_peer_request_endio. */
2149 		err = recv_resync_read(peer_device, sector, pi);
2150 	} else {
2151 		if (__ratelimit(&drbd_ratelimit_state))
2152 			drbd_err(device, "Can not write resync data to local disk.\n");
2153 
2154 		err = drbd_drain_block(peer_device, pi->size);
2155 
2156 		drbd_send_ack_dp(peer_device, P_NEG_ACK, p, pi->size);
2157 	}
2158 
2159 	atomic_add(pi->size >> 9, &device->rs_sect_in);
2160 
2161 	return err;
2162 }
2163 
2164 static void restart_conflicting_writes(struct drbd_device *device,
2165 				       sector_t sector, int size)
2166 {
2167 	struct drbd_interval *i;
2168 	struct drbd_request *req;
2169 
2170 	drbd_for_each_overlap(i, &device->write_requests, sector, size) {
2171 		if (!i->local)
2172 			continue;
2173 		req = container_of(i, struct drbd_request, i);
2174 		if (req->rq_state & RQ_LOCAL_PENDING ||
2175 		    !(req->rq_state & RQ_POSTPONED))
2176 			continue;
2177 		/* as it is RQ_POSTPONED, this will cause it to
2178 		 * be queued on the retry workqueue. */
2179 		__req_mod(req, CONFLICT_RESOLVED, NULL);
2180 	}
2181 }
2182 
2183 /*
2184  * e_end_block() is called in ack_sender context via drbd_finish_peer_reqs().
2185  */
2186 static int e_end_block(struct drbd_work *w, int cancel)
2187 {
2188 	struct drbd_peer_request *peer_req =
2189 		container_of(w, struct drbd_peer_request, w);
2190 	struct drbd_peer_device *peer_device = peer_req->peer_device;
2191 	struct drbd_device *device = peer_device->device;
2192 	sector_t sector = peer_req->i.sector;
2193 	int err = 0, pcmd;
2194 
2195 	if (peer_req->flags & EE_SEND_WRITE_ACK) {
2196 		if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) {
2197 			pcmd = (device->state.conn >= C_SYNC_SOURCE &&
2198 				device->state.conn <= C_PAUSED_SYNC_T &&
2199 				peer_req->flags & EE_MAY_SET_IN_SYNC) ?
2200 				P_RS_WRITE_ACK : P_WRITE_ACK;
2201 			err = drbd_send_ack(peer_device, pcmd, peer_req);
2202 			if (pcmd == P_RS_WRITE_ACK)
2203 				drbd_set_in_sync(device, sector, peer_req->i.size);
2204 		} else {
2205 			err = drbd_send_ack(peer_device, P_NEG_ACK, peer_req);
2206 			/* we expect it to be marked out of sync anyways...
2207 			 * maybe assert this?  */
2208 		}
2209 		dec_unacked(device);
2210 	}
2211 
2212 	/* we delete from the conflict detection hash _after_ we sent out the
2213 	 * P_WRITE_ACK / P_NEG_ACK, to get the sequence number right.  */
2214 	if (peer_req->flags & EE_IN_INTERVAL_TREE) {
2215 		spin_lock_irq(&device->resource->req_lock);
2216 		D_ASSERT(device, !drbd_interval_empty(&peer_req->i));
2217 		drbd_remove_epoch_entry_interval(device, peer_req);
2218 		if (peer_req->flags & EE_RESTART_REQUESTS)
2219 			restart_conflicting_writes(device, sector, peer_req->i.size);
2220 		spin_unlock_irq(&device->resource->req_lock);
2221 	} else
2222 		D_ASSERT(device, drbd_interval_empty(&peer_req->i));
2223 
2224 	drbd_may_finish_epoch(peer_device->connection, peer_req->epoch, EV_PUT + (cancel ? EV_CLEANUP : 0));
2225 
2226 	return err;
2227 }
2228 
2229 static int e_send_ack(struct drbd_work *w, enum drbd_packet ack)
2230 {
2231 	struct drbd_peer_request *peer_req =
2232 		container_of(w, struct drbd_peer_request, w);
2233 	struct drbd_peer_device *peer_device = peer_req->peer_device;
2234 	int err;
2235 
2236 	err = drbd_send_ack(peer_device, ack, peer_req);
2237 	dec_unacked(peer_device->device);
2238 
2239 	return err;
2240 }
2241 
2242 static int e_send_superseded(struct drbd_work *w, int unused)
2243 {
2244 	return e_send_ack(w, P_SUPERSEDED);
2245 }
2246 
2247 static int e_send_retry_write(struct drbd_work *w, int unused)
2248 {
2249 	struct drbd_peer_request *peer_req =
2250 		container_of(w, struct drbd_peer_request, w);
2251 	struct drbd_connection *connection = peer_req->peer_device->connection;
2252 
2253 	return e_send_ack(w, connection->agreed_pro_version >= 100 ?
2254 			     P_RETRY_WRITE : P_SUPERSEDED);
2255 }
2256 
2257 static bool seq_greater(u32 a, u32 b)
2258 {
2259 	/*
2260 	 * We assume 32-bit wrap-around here.
2261 	 * For 24-bit wrap-around, we would have to shift:
2262 	 *  a <<= 8; b <<= 8;
2263 	 */
2264 	return (s32)a - (s32)b > 0;
2265 }
2266 
2267 static u32 seq_max(u32 a, u32 b)
2268 {
2269 	return seq_greater(a, b) ? a : b;
2270 }
2271 
2272 static void update_peer_seq(struct drbd_peer_device *peer_device, unsigned int peer_seq)
2273 {
2274 	struct drbd_device *device = peer_device->device;
2275 	unsigned int newest_peer_seq;
2276 
2277 	if (test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags)) {
2278 		spin_lock(&device->peer_seq_lock);
2279 		newest_peer_seq = seq_max(device->peer_seq, peer_seq);
2280 		device->peer_seq = newest_peer_seq;
2281 		spin_unlock(&device->peer_seq_lock);
2282 		/* wake up only if we actually changed device->peer_seq */
2283 		if (peer_seq == newest_peer_seq)
2284 			wake_up(&device->seq_wait);
2285 	}
2286 }
2287 
2288 static inline int overlaps(sector_t s1, int l1, sector_t s2, int l2)
2289 {
2290 	return !((s1 + (l1>>9) <= s2) || (s1 >= s2 + (l2>>9)));
2291 }
2292 
2293 /* maybe change sync_ee into interval trees as well? */
2294 static bool overlapping_resync_write(struct drbd_device *device, struct drbd_peer_request *peer_req)
2295 {
2296 	struct drbd_peer_request *rs_req;
2297 	bool rv = false;
2298 
2299 	spin_lock_irq(&device->resource->req_lock);
2300 	list_for_each_entry(rs_req, &device->sync_ee, w.list) {
2301 		if (overlaps(peer_req->i.sector, peer_req->i.size,
2302 			     rs_req->i.sector, rs_req->i.size)) {
2303 			rv = true;
2304 			break;
2305 		}
2306 	}
2307 	spin_unlock_irq(&device->resource->req_lock);
2308 
2309 	return rv;
2310 }
2311 
2312 /* Called from receive_Data.
2313  * Synchronize packets on sock with packets on msock.
2314  *
2315  * This is here so even when a P_DATA packet traveling via sock overtook an Ack
2316  * packet traveling on msock, they are still processed in the order they have
2317  * been sent.
2318  *
2319  * Note: we don't care for Ack packets overtaking P_DATA packets.
2320  *
2321  * In case packet_seq is larger than device->peer_seq number, there are
2322  * outstanding packets on the msock. We wait for them to arrive.
2323  * In case we are the logically next packet, we update device->peer_seq
2324  * ourselves. Correctly handles 32bit wrap around.
2325  *
2326  * Assume we have a 10 GBit connection, that is about 1<<30 byte per second,
2327  * about 1<<21 sectors per second. So "worst" case, we have 1<<3 == 8 seconds
2328  * for the 24bit wrap (historical atomic_t guarantee on some archs), and we have
2329  * 1<<9 == 512 seconds aka ages for the 32bit wrap around...
2330  *
2331  * returns 0 if we may process the packet,
2332  * -ERESTARTSYS if we were interrupted (by disconnect signal). */
2333 static int wait_for_and_update_peer_seq(struct drbd_peer_device *peer_device, const u32 peer_seq)
2334 {
2335 	struct drbd_device *device = peer_device->device;
2336 	DEFINE_WAIT(wait);
2337 	long timeout;
2338 	int ret = 0, tp;
2339 
2340 	if (!test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags))
2341 		return 0;
2342 
2343 	spin_lock(&device->peer_seq_lock);
2344 	for (;;) {
2345 		if (!seq_greater(peer_seq - 1, device->peer_seq)) {
2346 			device->peer_seq = seq_max(device->peer_seq, peer_seq);
2347 			break;
2348 		}
2349 
2350 		if (signal_pending(current)) {
2351 			ret = -ERESTARTSYS;
2352 			break;
2353 		}
2354 
2355 		rcu_read_lock();
2356 		tp = rcu_dereference(peer_device->connection->net_conf)->two_primaries;
2357 		rcu_read_unlock();
2358 
2359 		if (!tp)
2360 			break;
2361 
2362 		/* Only need to wait if two_primaries is enabled */
2363 		prepare_to_wait(&device->seq_wait, &wait, TASK_INTERRUPTIBLE);
2364 		spin_unlock(&device->peer_seq_lock);
2365 		rcu_read_lock();
2366 		timeout = rcu_dereference(peer_device->connection->net_conf)->ping_timeo*HZ/10;
2367 		rcu_read_unlock();
2368 		timeout = schedule_timeout(timeout);
2369 		spin_lock(&device->peer_seq_lock);
2370 		if (!timeout) {
2371 			ret = -ETIMEDOUT;
2372 			drbd_err(device, "Timed out waiting for missing ack packets; disconnecting\n");
2373 			break;
2374 		}
2375 	}
2376 	spin_unlock(&device->peer_seq_lock);
2377 	finish_wait(&device->seq_wait, &wait);
2378 	return ret;
2379 }
2380 
2381 /* see also bio_flags_to_wire()
2382  * DRBD_REQ_*, because we need to semantically map the flags to data packet
2383  * flags and back. We may replicate to other kernel versions. */
2384 static blk_opf_t wire_flags_to_bio_flags(u32 dpf)
2385 {
2386 	return  (dpf & DP_RW_SYNC ? REQ_SYNC : 0) |
2387 		(dpf & DP_FUA ? REQ_FUA : 0) |
2388 		(dpf & DP_FLUSH ? REQ_PREFLUSH : 0);
2389 }
2390 
2391 static enum req_op wire_flags_to_bio_op(u32 dpf)
2392 {
2393 	if (dpf & DP_ZEROES)
2394 		return REQ_OP_WRITE_ZEROES;
2395 	if (dpf & DP_DISCARD)
2396 		return REQ_OP_DISCARD;
2397 	else
2398 		return REQ_OP_WRITE;
2399 }
2400 
2401 static void fail_postponed_requests(struct drbd_device *device, sector_t sector,
2402 				    unsigned int size)
2403 {
2404 	struct drbd_interval *i;
2405 
2406     repeat:
2407 	drbd_for_each_overlap(i, &device->write_requests, sector, size) {
2408 		struct drbd_request *req;
2409 		struct bio_and_error m;
2410 
2411 		if (!i->local)
2412 			continue;
2413 		req = container_of(i, struct drbd_request, i);
2414 		if (!(req->rq_state & RQ_POSTPONED))
2415 			continue;
2416 		req->rq_state &= ~RQ_POSTPONED;
2417 		__req_mod(req, NEG_ACKED, &m);
2418 		spin_unlock_irq(&device->resource->req_lock);
2419 		if (m.bio)
2420 			complete_master_bio(device, &m);
2421 		spin_lock_irq(&device->resource->req_lock);
2422 		goto repeat;
2423 	}
2424 }
2425 
2426 static int handle_write_conflicts(struct drbd_device *device,
2427 				  struct drbd_peer_request *peer_req)
2428 {
2429 	struct drbd_connection *connection = peer_req->peer_device->connection;
2430 	bool resolve_conflicts = test_bit(RESOLVE_CONFLICTS, &connection->flags);
2431 	sector_t sector = peer_req->i.sector;
2432 	const unsigned int size = peer_req->i.size;
2433 	struct drbd_interval *i;
2434 	bool equal;
2435 	int err;
2436 
2437 	/*
2438 	 * Inserting the peer request into the write_requests tree will prevent
2439 	 * new conflicting local requests from being added.
2440 	 */
2441 	drbd_insert_interval(&device->write_requests, &peer_req->i);
2442 
2443     repeat:
2444 	drbd_for_each_overlap(i, &device->write_requests, sector, size) {
2445 		if (i == &peer_req->i)
2446 			continue;
2447 		if (i->completed)
2448 			continue;
2449 
2450 		if (!i->local) {
2451 			/*
2452 			 * Our peer has sent a conflicting remote request; this
2453 			 * should not happen in a two-node setup.  Wait for the
2454 			 * earlier peer request to complete.
2455 			 */
2456 			err = drbd_wait_misc(device, i);
2457 			if (err)
2458 				goto out;
2459 			goto repeat;
2460 		}
2461 
2462 		equal = i->sector == sector && i->size == size;
2463 		if (resolve_conflicts) {
2464 			/*
2465 			 * If the peer request is fully contained within the
2466 			 * overlapping request, it can be considered overwritten
2467 			 * and thus superseded; otherwise, it will be retried
2468 			 * once all overlapping requests have completed.
2469 			 */
2470 			bool superseded = i->sector <= sector && i->sector +
2471 				       (i->size >> 9) >= sector + (size >> 9);
2472 
2473 			if (!equal)
2474 				drbd_alert(device, "Concurrent writes detected: "
2475 					       "local=%llus +%u, remote=%llus +%u, "
2476 					       "assuming %s came first\n",
2477 					  (unsigned long long)i->sector, i->size,
2478 					  (unsigned long long)sector, size,
2479 					  superseded ? "local" : "remote");
2480 
2481 			peer_req->w.cb = superseded ? e_send_superseded :
2482 						   e_send_retry_write;
2483 			list_add_tail(&peer_req->w.list, &device->done_ee);
2484 			queue_work(connection->ack_sender, &peer_req->peer_device->send_acks_work);
2485 
2486 			err = -ENOENT;
2487 			goto out;
2488 		} else {
2489 			struct drbd_request *req =
2490 				container_of(i, struct drbd_request, i);
2491 
2492 			if (!equal)
2493 				drbd_alert(device, "Concurrent writes detected: "
2494 					       "local=%llus +%u, remote=%llus +%u\n",
2495 					  (unsigned long long)i->sector, i->size,
2496 					  (unsigned long long)sector, size);
2497 
2498 			if (req->rq_state & RQ_LOCAL_PENDING ||
2499 			    !(req->rq_state & RQ_POSTPONED)) {
2500 				/*
2501 				 * Wait for the node with the discard flag to
2502 				 * decide if this request has been superseded
2503 				 * or needs to be retried.
2504 				 * Requests that have been superseded will
2505 				 * disappear from the write_requests tree.
2506 				 *
2507 				 * In addition, wait for the conflicting
2508 				 * request to finish locally before submitting
2509 				 * the conflicting peer request.
2510 				 */
2511 				err = drbd_wait_misc(device, &req->i);
2512 				if (err) {
2513 					_conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD);
2514 					fail_postponed_requests(device, sector, size);
2515 					goto out;
2516 				}
2517 				goto repeat;
2518 			}
2519 			/*
2520 			 * Remember to restart the conflicting requests after
2521 			 * the new peer request has completed.
2522 			 */
2523 			peer_req->flags |= EE_RESTART_REQUESTS;
2524 		}
2525 	}
2526 	err = 0;
2527 
2528     out:
2529 	if (err)
2530 		drbd_remove_epoch_entry_interval(device, peer_req);
2531 	return err;
2532 }
2533 
2534 /* mirrored write */
2535 static int receive_Data(struct drbd_connection *connection, struct packet_info *pi)
2536 {
2537 	struct drbd_peer_device *peer_device;
2538 	struct drbd_device *device;
2539 	struct net_conf *nc;
2540 	sector_t sector;
2541 	struct drbd_peer_request *peer_req;
2542 	struct p_data *p = pi->data;
2543 	u32 peer_seq = be32_to_cpu(p->seq_num);
2544 	enum req_op op;
2545 	blk_opf_t op_flags;
2546 	u32 dp_flags;
2547 	int err, tp;
2548 
2549 	peer_device = conn_peer_device(connection, pi->vnr);
2550 	if (!peer_device)
2551 		return -EIO;
2552 	device = peer_device->device;
2553 
2554 	if (!get_ldev(device)) {
2555 		int err2;
2556 
2557 		err = wait_for_and_update_peer_seq(peer_device, peer_seq);
2558 		drbd_send_ack_dp(peer_device, P_NEG_ACK, p, pi->size);
2559 		atomic_inc(&connection->current_epoch->epoch_size);
2560 		err2 = drbd_drain_block(peer_device, pi->size);
2561 		if (!err)
2562 			err = err2;
2563 		return err;
2564 	}
2565 
2566 	/*
2567 	 * Corresponding put_ldev done either below (on various errors), or in
2568 	 * drbd_peer_request_endio, if we successfully submit the data at the
2569 	 * end of this function.
2570 	 */
2571 
2572 	sector = be64_to_cpu(p->sector);
2573 	peer_req = read_in_block(peer_device, p->block_id, sector, pi);
2574 	if (!peer_req) {
2575 		put_ldev(device);
2576 		return -EIO;
2577 	}
2578 
2579 	peer_req->w.cb = e_end_block;
2580 	peer_req->submit_jif = jiffies;
2581 	peer_req->flags |= EE_APPLICATION;
2582 
2583 	dp_flags = be32_to_cpu(p->dp_flags);
2584 	op = wire_flags_to_bio_op(dp_flags);
2585 	op_flags = wire_flags_to_bio_flags(dp_flags);
2586 	if (pi->cmd == P_TRIM) {
2587 		D_ASSERT(peer_device, peer_req->i.size > 0);
2588 		D_ASSERT(peer_device, op == REQ_OP_DISCARD);
2589 		D_ASSERT(peer_device, peer_req->pages == NULL);
2590 		/* need to play safe: an older DRBD sender
2591 		 * may mean zero-out while sending P_TRIM. */
2592 		if (0 == (connection->agreed_features & DRBD_FF_WZEROES))
2593 			peer_req->flags |= EE_ZEROOUT;
2594 	} else if (pi->cmd == P_ZEROES) {
2595 		D_ASSERT(peer_device, peer_req->i.size > 0);
2596 		D_ASSERT(peer_device, op == REQ_OP_WRITE_ZEROES);
2597 		D_ASSERT(peer_device, peer_req->pages == NULL);
2598 		/* Do (not) pass down BLKDEV_ZERO_NOUNMAP? */
2599 		if (dp_flags & DP_DISCARD)
2600 			peer_req->flags |= EE_TRIM;
2601 	} else if (peer_req->pages == NULL) {
2602 		D_ASSERT(device, peer_req->i.size == 0);
2603 		D_ASSERT(device, dp_flags & DP_FLUSH);
2604 	}
2605 
2606 	if (dp_flags & DP_MAY_SET_IN_SYNC)
2607 		peer_req->flags |= EE_MAY_SET_IN_SYNC;
2608 
2609 	spin_lock(&connection->epoch_lock);
2610 	peer_req->epoch = connection->current_epoch;
2611 	atomic_inc(&peer_req->epoch->epoch_size);
2612 	atomic_inc(&peer_req->epoch->active);
2613 	spin_unlock(&connection->epoch_lock);
2614 
2615 	rcu_read_lock();
2616 	nc = rcu_dereference(peer_device->connection->net_conf);
2617 	tp = nc->two_primaries;
2618 	if (peer_device->connection->agreed_pro_version < 100) {
2619 		switch (nc->wire_protocol) {
2620 		case DRBD_PROT_C:
2621 			dp_flags |= DP_SEND_WRITE_ACK;
2622 			break;
2623 		case DRBD_PROT_B:
2624 			dp_flags |= DP_SEND_RECEIVE_ACK;
2625 			break;
2626 		}
2627 	}
2628 	rcu_read_unlock();
2629 
2630 	if (dp_flags & DP_SEND_WRITE_ACK) {
2631 		peer_req->flags |= EE_SEND_WRITE_ACK;
2632 		inc_unacked(device);
2633 		/* corresponding dec_unacked() in e_end_block()
2634 		 * respective _drbd_clear_done_ee */
2635 	}
2636 
2637 	if (dp_flags & DP_SEND_RECEIVE_ACK) {
2638 		/* I really don't like it that the receiver thread
2639 		 * sends on the msock, but anyways */
2640 		drbd_send_ack(peer_device, P_RECV_ACK, peer_req);
2641 	}
2642 
2643 	if (tp) {
2644 		/* two primaries implies protocol C */
2645 		D_ASSERT(device, dp_flags & DP_SEND_WRITE_ACK);
2646 		peer_req->flags |= EE_IN_INTERVAL_TREE;
2647 		err = wait_for_and_update_peer_seq(peer_device, peer_seq);
2648 		if (err)
2649 			goto out_interrupted;
2650 		spin_lock_irq(&device->resource->req_lock);
2651 		err = handle_write_conflicts(device, peer_req);
2652 		if (err) {
2653 			spin_unlock_irq(&device->resource->req_lock);
2654 			if (err == -ENOENT) {
2655 				put_ldev(device);
2656 				return 0;
2657 			}
2658 			goto out_interrupted;
2659 		}
2660 	} else {
2661 		update_peer_seq(peer_device, peer_seq);
2662 		spin_lock_irq(&device->resource->req_lock);
2663 	}
2664 	/* TRIM and is processed synchronously,
2665 	 * we wait for all pending requests, respectively wait for
2666 	 * active_ee to become empty in drbd_submit_peer_request();
2667 	 * better not add ourselves here. */
2668 	if ((peer_req->flags & (EE_TRIM | EE_ZEROOUT)) == 0)
2669 		list_add_tail(&peer_req->w.list, &device->active_ee);
2670 	spin_unlock_irq(&device->resource->req_lock);
2671 
2672 	if (device->state.conn == C_SYNC_TARGET)
2673 		wait_event(device->ee_wait, !overlapping_resync_write(device, peer_req));
2674 
2675 	if (device->state.pdsk < D_INCONSISTENT) {
2676 		/* In case we have the only disk of the cluster, */
2677 		drbd_set_out_of_sync(device, peer_req->i.sector, peer_req->i.size);
2678 		peer_req->flags &= ~EE_MAY_SET_IN_SYNC;
2679 		drbd_al_begin_io(device, &peer_req->i);
2680 		peer_req->flags |= EE_CALL_AL_COMPLETE_IO;
2681 	}
2682 
2683 	err = drbd_submit_peer_request(device, peer_req, op | op_flags,
2684 				       DRBD_FAULT_DT_WR);
2685 	if (!err)
2686 		return 0;
2687 
2688 	/* don't care for the reason here */
2689 	drbd_err(device, "submit failed, triggering re-connect\n");
2690 	spin_lock_irq(&device->resource->req_lock);
2691 	list_del(&peer_req->w.list);
2692 	drbd_remove_epoch_entry_interval(device, peer_req);
2693 	spin_unlock_irq(&device->resource->req_lock);
2694 	if (peer_req->flags & EE_CALL_AL_COMPLETE_IO) {
2695 		peer_req->flags &= ~EE_CALL_AL_COMPLETE_IO;
2696 		drbd_al_complete_io(device, &peer_req->i);
2697 	}
2698 
2699 out_interrupted:
2700 	drbd_may_finish_epoch(connection, peer_req->epoch, EV_PUT | EV_CLEANUP);
2701 	put_ldev(device);
2702 	drbd_free_peer_req(device, peer_req);
2703 	return err;
2704 }
2705 
2706 /* We may throttle resync, if the lower device seems to be busy,
2707  * and current sync rate is above c_min_rate.
2708  *
2709  * To decide whether or not the lower device is busy, we use a scheme similar
2710  * to MD RAID is_mddev_idle(): if the partition stats reveal "significant"
2711  * (more than 64 sectors) of activity we cannot account for with our own resync
2712  * activity, it obviously is "busy".
2713  *
2714  * The current sync rate used here uses only the most recent two step marks,
2715  * to have a short time average so we can react faster.
2716  */
2717 bool drbd_rs_should_slow_down(struct drbd_device *device, sector_t sector,
2718 		bool throttle_if_app_is_waiting)
2719 {
2720 	struct lc_element *tmp;
2721 	bool throttle = drbd_rs_c_min_rate_throttle(device);
2722 
2723 	if (!throttle || throttle_if_app_is_waiting)
2724 		return throttle;
2725 
2726 	spin_lock_irq(&device->al_lock);
2727 	tmp = lc_find(device->resync, BM_SECT_TO_EXT(sector));
2728 	if (tmp) {
2729 		struct bm_extent *bm_ext = lc_entry(tmp, struct bm_extent, lce);
2730 		if (test_bit(BME_PRIORITY, &bm_ext->flags))
2731 			throttle = false;
2732 		/* Do not slow down if app IO is already waiting for this extent,
2733 		 * and our progress is necessary for application IO to complete. */
2734 	}
2735 	spin_unlock_irq(&device->al_lock);
2736 
2737 	return throttle;
2738 }
2739 
2740 bool drbd_rs_c_min_rate_throttle(struct drbd_device *device)
2741 {
2742 	struct gendisk *disk = device->ldev->backing_bdev->bd_disk;
2743 	unsigned long db, dt, dbdt;
2744 	unsigned int c_min_rate;
2745 	int curr_events;
2746 
2747 	rcu_read_lock();
2748 	c_min_rate = rcu_dereference(device->ldev->disk_conf)->c_min_rate;
2749 	rcu_read_unlock();
2750 
2751 	/* feature disabled? */
2752 	if (c_min_rate == 0)
2753 		return false;
2754 
2755 	curr_events = (int)part_stat_read_accum(disk->part0, sectors) -
2756 			atomic_read(&device->rs_sect_ev);
2757 
2758 	if (atomic_read(&device->ap_actlog_cnt)
2759 	    || curr_events - device->rs_last_events > 64) {
2760 		unsigned long rs_left;
2761 		int i;
2762 
2763 		device->rs_last_events = curr_events;
2764 
2765 		/* sync speed average over the last 2*DRBD_SYNC_MARK_STEP,
2766 		 * approx. */
2767 		i = (device->rs_last_mark + DRBD_SYNC_MARKS-1) % DRBD_SYNC_MARKS;
2768 
2769 		if (device->state.conn == C_VERIFY_S || device->state.conn == C_VERIFY_T)
2770 			rs_left = device->ov_left;
2771 		else
2772 			rs_left = drbd_bm_total_weight(device) - device->rs_failed;
2773 
2774 		dt = ((long)jiffies - (long)device->rs_mark_time[i]) / HZ;
2775 		if (!dt)
2776 			dt++;
2777 		db = device->rs_mark_left[i] - rs_left;
2778 		dbdt = Bit2KB(db/dt);
2779 
2780 		if (dbdt > c_min_rate)
2781 			return true;
2782 	}
2783 	return false;
2784 }
2785 
2786 static int receive_DataRequest(struct drbd_connection *connection, struct packet_info *pi)
2787 {
2788 	struct drbd_peer_device *peer_device;
2789 	struct drbd_device *device;
2790 	sector_t sector;
2791 	sector_t capacity;
2792 	struct drbd_peer_request *peer_req;
2793 	struct digest_info *di = NULL;
2794 	int size, verb;
2795 	unsigned int fault_type;
2796 	struct p_block_req *p =	pi->data;
2797 
2798 	peer_device = conn_peer_device(connection, pi->vnr);
2799 	if (!peer_device)
2800 		return -EIO;
2801 	device = peer_device->device;
2802 	capacity = get_capacity(device->vdisk);
2803 
2804 	sector = be64_to_cpu(p->sector);
2805 	size   = be32_to_cpu(p->blksize);
2806 
2807 	if (size <= 0 || !IS_ALIGNED(size, 512) || size > DRBD_MAX_BIO_SIZE) {
2808 		drbd_err(device, "%s:%d: sector: %llus, size: %u\n", __FILE__, __LINE__,
2809 				(unsigned long long)sector, size);
2810 		return -EINVAL;
2811 	}
2812 	if (sector + (size>>9) > capacity) {
2813 		drbd_err(device, "%s:%d: sector: %llus, size: %u\n", __FILE__, __LINE__,
2814 				(unsigned long long)sector, size);
2815 		return -EINVAL;
2816 	}
2817 
2818 	if (!get_ldev_if_state(device, D_UP_TO_DATE)) {
2819 		verb = 1;
2820 		switch (pi->cmd) {
2821 		case P_DATA_REQUEST:
2822 			drbd_send_ack_rp(peer_device, P_NEG_DREPLY, p);
2823 			break;
2824 		case P_RS_THIN_REQ:
2825 		case P_RS_DATA_REQUEST:
2826 		case P_CSUM_RS_REQUEST:
2827 		case P_OV_REQUEST:
2828 			drbd_send_ack_rp(peer_device, P_NEG_RS_DREPLY , p);
2829 			break;
2830 		case P_OV_REPLY:
2831 			verb = 0;
2832 			dec_rs_pending(device);
2833 			drbd_send_ack_ex(peer_device, P_OV_RESULT, sector, size, ID_IN_SYNC);
2834 			break;
2835 		default:
2836 			BUG();
2837 		}
2838 		if (verb && __ratelimit(&drbd_ratelimit_state))
2839 			drbd_err(device, "Can not satisfy peer's read request, "
2840 			    "no local data.\n");
2841 
2842 		/* drain possibly payload */
2843 		return drbd_drain_block(peer_device, pi->size);
2844 	}
2845 
2846 	/* GFP_NOIO, because we must not cause arbitrary write-out: in a DRBD
2847 	 * "criss-cross" setup, that might cause write-out on some other DRBD,
2848 	 * which in turn might block on the other node at this very place.  */
2849 	peer_req = drbd_alloc_peer_req(peer_device, p->block_id, sector, size,
2850 			size, GFP_NOIO);
2851 	if (!peer_req) {
2852 		put_ldev(device);
2853 		return -ENOMEM;
2854 	}
2855 
2856 	switch (pi->cmd) {
2857 	case P_DATA_REQUEST:
2858 		peer_req->w.cb = w_e_end_data_req;
2859 		fault_type = DRBD_FAULT_DT_RD;
2860 		/* application IO, don't drbd_rs_begin_io */
2861 		peer_req->flags |= EE_APPLICATION;
2862 		goto submit;
2863 
2864 	case P_RS_THIN_REQ:
2865 		/* If at some point in the future we have a smart way to
2866 		   find out if this data block is completely deallocated,
2867 		   then we would do something smarter here than reading
2868 		   the block... */
2869 		peer_req->flags |= EE_RS_THIN_REQ;
2870 		fallthrough;
2871 	case P_RS_DATA_REQUEST:
2872 		peer_req->w.cb = w_e_end_rsdata_req;
2873 		fault_type = DRBD_FAULT_RS_RD;
2874 		/* used in the sector offset progress display */
2875 		device->bm_resync_fo = BM_SECT_TO_BIT(sector);
2876 		break;
2877 
2878 	case P_OV_REPLY:
2879 	case P_CSUM_RS_REQUEST:
2880 		fault_type = DRBD_FAULT_RS_RD;
2881 		di = kmalloc(sizeof(*di) + pi->size, GFP_NOIO);
2882 		if (!di)
2883 			goto out_free_e;
2884 
2885 		di->digest_size = pi->size;
2886 		di->digest = (((char *)di)+sizeof(struct digest_info));
2887 
2888 		peer_req->digest = di;
2889 		peer_req->flags |= EE_HAS_DIGEST;
2890 
2891 		if (drbd_recv_all(peer_device->connection, di->digest, pi->size))
2892 			goto out_free_e;
2893 
2894 		if (pi->cmd == P_CSUM_RS_REQUEST) {
2895 			D_ASSERT(device, peer_device->connection->agreed_pro_version >= 89);
2896 			peer_req->w.cb = w_e_end_csum_rs_req;
2897 			/* used in the sector offset progress display */
2898 			device->bm_resync_fo = BM_SECT_TO_BIT(sector);
2899 			/* remember to report stats in drbd_resync_finished */
2900 			device->use_csums = true;
2901 		} else if (pi->cmd == P_OV_REPLY) {
2902 			/* track progress, we may need to throttle */
2903 			atomic_add(size >> 9, &device->rs_sect_in);
2904 			peer_req->w.cb = w_e_end_ov_reply;
2905 			dec_rs_pending(device);
2906 			/* drbd_rs_begin_io done when we sent this request,
2907 			 * but accounting still needs to be done. */
2908 			goto submit_for_resync;
2909 		}
2910 		break;
2911 
2912 	case P_OV_REQUEST:
2913 		if (device->ov_start_sector == ~(sector_t)0 &&
2914 		    peer_device->connection->agreed_pro_version >= 90) {
2915 			unsigned long now = jiffies;
2916 			int i;
2917 			device->ov_start_sector = sector;
2918 			device->ov_position = sector;
2919 			device->ov_left = drbd_bm_bits(device) - BM_SECT_TO_BIT(sector);
2920 			device->rs_total = device->ov_left;
2921 			for (i = 0; i < DRBD_SYNC_MARKS; i++) {
2922 				device->rs_mark_left[i] = device->ov_left;
2923 				device->rs_mark_time[i] = now;
2924 			}
2925 			drbd_info(device, "Online Verify start sector: %llu\n",
2926 					(unsigned long long)sector);
2927 		}
2928 		peer_req->w.cb = w_e_end_ov_req;
2929 		fault_type = DRBD_FAULT_RS_RD;
2930 		break;
2931 
2932 	default:
2933 		BUG();
2934 	}
2935 
2936 	/* Throttle, drbd_rs_begin_io and submit should become asynchronous
2937 	 * wrt the receiver, but it is not as straightforward as it may seem.
2938 	 * Various places in the resync start and stop logic assume resync
2939 	 * requests are processed in order, requeuing this on the worker thread
2940 	 * introduces a bunch of new code for synchronization between threads.
2941 	 *
2942 	 * Unlimited throttling before drbd_rs_begin_io may stall the resync
2943 	 * "forever", throttling after drbd_rs_begin_io will lock that extent
2944 	 * for application writes for the same time.  For now, just throttle
2945 	 * here, where the rest of the code expects the receiver to sleep for
2946 	 * a while, anyways.
2947 	 */
2948 
2949 	/* Throttle before drbd_rs_begin_io, as that locks out application IO;
2950 	 * this defers syncer requests for some time, before letting at least
2951 	 * on request through.  The resync controller on the receiving side
2952 	 * will adapt to the incoming rate accordingly.
2953 	 *
2954 	 * We cannot throttle here if remote is Primary/SyncTarget:
2955 	 * we would also throttle its application reads.
2956 	 * In that case, throttling is done on the SyncTarget only.
2957 	 */
2958 
2959 	/* Even though this may be a resync request, we do add to "read_ee";
2960 	 * "sync_ee" is only used for resync WRITEs.
2961 	 * Add to list early, so debugfs can find this request
2962 	 * even if we have to sleep below. */
2963 	spin_lock_irq(&device->resource->req_lock);
2964 	list_add_tail(&peer_req->w.list, &device->read_ee);
2965 	spin_unlock_irq(&device->resource->req_lock);
2966 
2967 	update_receiver_timing_details(connection, drbd_rs_should_slow_down);
2968 	if (device->state.peer != R_PRIMARY
2969 	&& drbd_rs_should_slow_down(device, sector, false))
2970 		schedule_timeout_uninterruptible(HZ/10);
2971 	update_receiver_timing_details(connection, drbd_rs_begin_io);
2972 	if (drbd_rs_begin_io(device, sector))
2973 		goto out_free_e;
2974 
2975 submit_for_resync:
2976 	atomic_add(size >> 9, &device->rs_sect_ev);
2977 
2978 submit:
2979 	update_receiver_timing_details(connection, drbd_submit_peer_request);
2980 	inc_unacked(device);
2981 	if (drbd_submit_peer_request(device, peer_req, REQ_OP_READ,
2982 				     fault_type) == 0)
2983 		return 0;
2984 
2985 	/* don't care for the reason here */
2986 	drbd_err(device, "submit failed, triggering re-connect\n");
2987 
2988 out_free_e:
2989 	spin_lock_irq(&device->resource->req_lock);
2990 	list_del(&peer_req->w.list);
2991 	spin_unlock_irq(&device->resource->req_lock);
2992 	/* no drbd_rs_complete_io(), we are dropping the connection anyways */
2993 
2994 	put_ldev(device);
2995 	drbd_free_peer_req(device, peer_req);
2996 	return -EIO;
2997 }
2998 
2999 /*
3000  * drbd_asb_recover_0p  -  Recover after split-brain with no remaining primaries
3001  */
3002 static int drbd_asb_recover_0p(struct drbd_peer_device *peer_device) __must_hold(local)
3003 {
3004 	struct drbd_device *device = peer_device->device;
3005 	int self, peer, rv = -100;
3006 	unsigned long ch_self, ch_peer;
3007 	enum drbd_after_sb_p after_sb_0p;
3008 
3009 	self = device->ldev->md.uuid[UI_BITMAP] & 1;
3010 	peer = device->p_uuid[UI_BITMAP] & 1;
3011 
3012 	ch_peer = device->p_uuid[UI_SIZE];
3013 	ch_self = device->comm_bm_set;
3014 
3015 	rcu_read_lock();
3016 	after_sb_0p = rcu_dereference(peer_device->connection->net_conf)->after_sb_0p;
3017 	rcu_read_unlock();
3018 	switch (after_sb_0p) {
3019 	case ASB_CONSENSUS:
3020 	case ASB_DISCARD_SECONDARY:
3021 	case ASB_CALL_HELPER:
3022 	case ASB_VIOLENTLY:
3023 		drbd_err(device, "Configuration error.\n");
3024 		break;
3025 	case ASB_DISCONNECT:
3026 		break;
3027 	case ASB_DISCARD_YOUNGER_PRI:
3028 		if (self == 0 && peer == 1) {
3029 			rv = -1;
3030 			break;
3031 		}
3032 		if (self == 1 && peer == 0) {
3033 			rv =  1;
3034 			break;
3035 		}
3036 		fallthrough;	/* to one of the other strategies */
3037 	case ASB_DISCARD_OLDER_PRI:
3038 		if (self == 0 && peer == 1) {
3039 			rv = 1;
3040 			break;
3041 		}
3042 		if (self == 1 && peer == 0) {
3043 			rv = -1;
3044 			break;
3045 		}
3046 		/* Else fall through to one of the other strategies... */
3047 		drbd_warn(device, "Discard younger/older primary did not find a decision\n"
3048 		     "Using discard-least-changes instead\n");
3049 		fallthrough;
3050 	case ASB_DISCARD_ZERO_CHG:
3051 		if (ch_peer == 0 && ch_self == 0) {
3052 			rv = test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags)
3053 				? -1 : 1;
3054 			break;
3055 		} else {
3056 			if (ch_peer == 0) { rv =  1; break; }
3057 			if (ch_self == 0) { rv = -1; break; }
3058 		}
3059 		if (after_sb_0p == ASB_DISCARD_ZERO_CHG)
3060 			break;
3061 		fallthrough;
3062 	case ASB_DISCARD_LEAST_CHG:
3063 		if	(ch_self < ch_peer)
3064 			rv = -1;
3065 		else if (ch_self > ch_peer)
3066 			rv =  1;
3067 		else /* ( ch_self == ch_peer ) */
3068 		     /* Well, then use something else. */
3069 			rv = test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags)
3070 				? -1 : 1;
3071 		break;
3072 	case ASB_DISCARD_LOCAL:
3073 		rv = -1;
3074 		break;
3075 	case ASB_DISCARD_REMOTE:
3076 		rv =  1;
3077 	}
3078 
3079 	return rv;
3080 }
3081 
3082 /*
3083  * drbd_asb_recover_1p  -  Recover after split-brain with one remaining primary
3084  */
3085 static int drbd_asb_recover_1p(struct drbd_peer_device *peer_device) __must_hold(local)
3086 {
3087 	struct drbd_device *device = peer_device->device;
3088 	int hg, rv = -100;
3089 	enum drbd_after_sb_p after_sb_1p;
3090 
3091 	rcu_read_lock();
3092 	after_sb_1p = rcu_dereference(peer_device->connection->net_conf)->after_sb_1p;
3093 	rcu_read_unlock();
3094 	switch (after_sb_1p) {
3095 	case ASB_DISCARD_YOUNGER_PRI:
3096 	case ASB_DISCARD_OLDER_PRI:
3097 	case ASB_DISCARD_LEAST_CHG:
3098 	case ASB_DISCARD_LOCAL:
3099 	case ASB_DISCARD_REMOTE:
3100 	case ASB_DISCARD_ZERO_CHG:
3101 		drbd_err(device, "Configuration error.\n");
3102 		break;
3103 	case ASB_DISCONNECT:
3104 		break;
3105 	case ASB_CONSENSUS:
3106 		hg = drbd_asb_recover_0p(peer_device);
3107 		if (hg == -1 && device->state.role == R_SECONDARY)
3108 			rv = hg;
3109 		if (hg == 1  && device->state.role == R_PRIMARY)
3110 			rv = hg;
3111 		break;
3112 	case ASB_VIOLENTLY:
3113 		rv = drbd_asb_recover_0p(peer_device);
3114 		break;
3115 	case ASB_DISCARD_SECONDARY:
3116 		return device->state.role == R_PRIMARY ? 1 : -1;
3117 	case ASB_CALL_HELPER:
3118 		hg = drbd_asb_recover_0p(peer_device);
3119 		if (hg == -1 && device->state.role == R_PRIMARY) {
3120 			enum drbd_state_rv rv2;
3121 
3122 			 /* drbd_change_state() does not sleep while in SS_IN_TRANSIENT_STATE,
3123 			  * we might be here in C_WF_REPORT_PARAMS which is transient.
3124 			  * we do not need to wait for the after state change work either. */
3125 			rv2 = drbd_change_state(device, CS_VERBOSE, NS(role, R_SECONDARY));
3126 			if (rv2 != SS_SUCCESS) {
3127 				drbd_khelper(device, "pri-lost-after-sb");
3128 			} else {
3129 				drbd_warn(device, "Successfully gave up primary role.\n");
3130 				rv = hg;
3131 			}
3132 		} else
3133 			rv = hg;
3134 	}
3135 
3136 	return rv;
3137 }
3138 
3139 /*
3140  * drbd_asb_recover_2p  -  Recover after split-brain with two remaining primaries
3141  */
3142 static int drbd_asb_recover_2p(struct drbd_peer_device *peer_device) __must_hold(local)
3143 {
3144 	struct drbd_device *device = peer_device->device;
3145 	int hg, rv = -100;
3146 	enum drbd_after_sb_p after_sb_2p;
3147 
3148 	rcu_read_lock();
3149 	after_sb_2p = rcu_dereference(peer_device->connection->net_conf)->after_sb_2p;
3150 	rcu_read_unlock();
3151 	switch (after_sb_2p) {
3152 	case ASB_DISCARD_YOUNGER_PRI:
3153 	case ASB_DISCARD_OLDER_PRI:
3154 	case ASB_DISCARD_LEAST_CHG:
3155 	case ASB_DISCARD_LOCAL:
3156 	case ASB_DISCARD_REMOTE:
3157 	case ASB_CONSENSUS:
3158 	case ASB_DISCARD_SECONDARY:
3159 	case ASB_DISCARD_ZERO_CHG:
3160 		drbd_err(device, "Configuration error.\n");
3161 		break;
3162 	case ASB_VIOLENTLY:
3163 		rv = drbd_asb_recover_0p(peer_device);
3164 		break;
3165 	case ASB_DISCONNECT:
3166 		break;
3167 	case ASB_CALL_HELPER:
3168 		hg = drbd_asb_recover_0p(peer_device);
3169 		if (hg == -1) {
3170 			enum drbd_state_rv rv2;
3171 
3172 			 /* drbd_change_state() does not sleep while in SS_IN_TRANSIENT_STATE,
3173 			  * we might be here in C_WF_REPORT_PARAMS which is transient.
3174 			  * we do not need to wait for the after state change work either. */
3175 			rv2 = drbd_change_state(device, CS_VERBOSE, NS(role, R_SECONDARY));
3176 			if (rv2 != SS_SUCCESS) {
3177 				drbd_khelper(device, "pri-lost-after-sb");
3178 			} else {
3179 				drbd_warn(device, "Successfully gave up primary role.\n");
3180 				rv = hg;
3181 			}
3182 		} else
3183 			rv = hg;
3184 	}
3185 
3186 	return rv;
3187 }
3188 
3189 static void drbd_uuid_dump(struct drbd_device *device, char *text, u64 *uuid,
3190 			   u64 bits, u64 flags)
3191 {
3192 	if (!uuid) {
3193 		drbd_info(device, "%s uuid info vanished while I was looking!\n", text);
3194 		return;
3195 	}
3196 	drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX bits:%llu flags:%llX\n",
3197 	     text,
3198 	     (unsigned long long)uuid[UI_CURRENT],
3199 	     (unsigned long long)uuid[UI_BITMAP],
3200 	     (unsigned long long)uuid[UI_HISTORY_START],
3201 	     (unsigned long long)uuid[UI_HISTORY_END],
3202 	     (unsigned long long)bits,
3203 	     (unsigned long long)flags);
3204 }
3205 
3206 /*
3207   100	after split brain try auto recover
3208     2	C_SYNC_SOURCE set BitMap
3209     1	C_SYNC_SOURCE use BitMap
3210     0	no Sync
3211    -1	C_SYNC_TARGET use BitMap
3212    -2	C_SYNC_TARGET set BitMap
3213  -100	after split brain, disconnect
3214 -1000	unrelated data
3215 -1091   requires proto 91
3216 -1096   requires proto 96
3217  */
3218 
3219 static int drbd_uuid_compare(struct drbd_device *const device, enum drbd_role const peer_role, int *rule_nr) __must_hold(local)
3220 {
3221 	struct drbd_peer_device *const peer_device = first_peer_device(device);
3222 	struct drbd_connection *const connection = peer_device ? peer_device->connection : NULL;
3223 	u64 self, peer;
3224 	int i, j;
3225 
3226 	self = device->ldev->md.uuid[UI_CURRENT] & ~((u64)1);
3227 	peer = device->p_uuid[UI_CURRENT] & ~((u64)1);
3228 
3229 	*rule_nr = 10;
3230 	if (self == UUID_JUST_CREATED && peer == UUID_JUST_CREATED)
3231 		return 0;
3232 
3233 	*rule_nr = 20;
3234 	if ((self == UUID_JUST_CREATED || self == (u64)0) &&
3235 	     peer != UUID_JUST_CREATED)
3236 		return -2;
3237 
3238 	*rule_nr = 30;
3239 	if (self != UUID_JUST_CREATED &&
3240 	    (peer == UUID_JUST_CREATED || peer == (u64)0))
3241 		return 2;
3242 
3243 	if (self == peer) {
3244 		int rct, dc; /* roles at crash time */
3245 
3246 		if (device->p_uuid[UI_BITMAP] == (u64)0 && device->ldev->md.uuid[UI_BITMAP] != (u64)0) {
3247 
3248 			if (connection->agreed_pro_version < 91)
3249 				return -1091;
3250 
3251 			if ((device->ldev->md.uuid[UI_BITMAP] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START] & ~((u64)1)) &&
3252 			    (device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START + 1] & ~((u64)1))) {
3253 				drbd_info(device, "was SyncSource, missed the resync finished event, corrected myself:\n");
3254 				drbd_uuid_move_history(device);
3255 				device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP];
3256 				device->ldev->md.uuid[UI_BITMAP] = 0;
3257 
3258 				drbd_uuid_dump(device, "self", device->ldev->md.uuid,
3259 					       device->state.disk >= D_NEGOTIATING ? drbd_bm_total_weight(device) : 0, 0);
3260 				*rule_nr = 34;
3261 			} else {
3262 				drbd_info(device, "was SyncSource (peer failed to write sync_uuid)\n");
3263 				*rule_nr = 36;
3264 			}
3265 
3266 			return 1;
3267 		}
3268 
3269 		if (device->ldev->md.uuid[UI_BITMAP] == (u64)0 && device->p_uuid[UI_BITMAP] != (u64)0) {
3270 
3271 			if (connection->agreed_pro_version < 91)
3272 				return -1091;
3273 
3274 			if ((device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == (device->p_uuid[UI_BITMAP] & ~((u64)1)) &&
3275 			    (device->ldev->md.uuid[UI_HISTORY_START + 1] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START] & ~((u64)1))) {
3276 				drbd_info(device, "was SyncTarget, peer missed the resync finished event, corrected peer:\n");
3277 
3278 				device->p_uuid[UI_HISTORY_START + 1] = device->p_uuid[UI_HISTORY_START];
3279 				device->p_uuid[UI_HISTORY_START] = device->p_uuid[UI_BITMAP];
3280 				device->p_uuid[UI_BITMAP] = 0UL;
3281 
3282 				drbd_uuid_dump(device, "peer", device->p_uuid, device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]);
3283 				*rule_nr = 35;
3284 			} else {
3285 				drbd_info(device, "was SyncTarget (failed to write sync_uuid)\n");
3286 				*rule_nr = 37;
3287 			}
3288 
3289 			return -1;
3290 		}
3291 
3292 		/* Common power [off|failure] */
3293 		rct = (test_bit(CRASHED_PRIMARY, &device->flags) ? 1 : 0) +
3294 			(device->p_uuid[UI_FLAGS] & 2);
3295 		/* lowest bit is set when we were primary,
3296 		 * next bit (weight 2) is set when peer was primary */
3297 		*rule_nr = 40;
3298 
3299 		/* Neither has the "crashed primary" flag set,
3300 		 * only a replication link hickup. */
3301 		if (rct == 0)
3302 			return 0;
3303 
3304 		/* Current UUID equal and no bitmap uuid; does not necessarily
3305 		 * mean this was a "simultaneous hard crash", maybe IO was
3306 		 * frozen, so no UUID-bump happened.
3307 		 * This is a protocol change, overload DRBD_FF_WSAME as flag
3308 		 * for "new-enough" peer DRBD version. */
3309 		if (device->state.role == R_PRIMARY || peer_role == R_PRIMARY) {
3310 			*rule_nr = 41;
3311 			if (!(connection->agreed_features & DRBD_FF_WSAME)) {
3312 				drbd_warn(peer_device, "Equivalent unrotated UUIDs, but current primary present.\n");
3313 				return -(0x10000 | PRO_VERSION_MAX | (DRBD_FF_WSAME << 8));
3314 			}
3315 			if (device->state.role == R_PRIMARY && peer_role == R_PRIMARY) {
3316 				/* At least one has the "crashed primary" bit set,
3317 				 * both are primary now, but neither has rotated its UUIDs?
3318 				 * "Can not happen." */
3319 				drbd_err(peer_device, "Equivalent unrotated UUIDs, but both are primary. Can not resolve this.\n");
3320 				return -100;
3321 			}
3322 			if (device->state.role == R_PRIMARY)
3323 				return 1;
3324 			return -1;
3325 		}
3326 
3327 		/* Both are secondary.
3328 		 * Really looks like recovery from simultaneous hard crash.
3329 		 * Check which had been primary before, and arbitrate. */
3330 		switch (rct) {
3331 		case 0: /* !self_pri && !peer_pri */ return 0; /* already handled */
3332 		case 1: /*  self_pri && !peer_pri */ return 1;
3333 		case 2: /* !self_pri &&  peer_pri */ return -1;
3334 		case 3: /*  self_pri &&  peer_pri */
3335 			dc = test_bit(RESOLVE_CONFLICTS, &connection->flags);
3336 			return dc ? -1 : 1;
3337 		}
3338 	}
3339 
3340 	*rule_nr = 50;
3341 	peer = device->p_uuid[UI_BITMAP] & ~((u64)1);
3342 	if (self == peer)
3343 		return -1;
3344 
3345 	*rule_nr = 51;
3346 	peer = device->p_uuid[UI_HISTORY_START] & ~((u64)1);
3347 	if (self == peer) {
3348 		if (connection->agreed_pro_version < 96 ?
3349 		    (device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) ==
3350 		    (device->p_uuid[UI_HISTORY_START + 1] & ~((u64)1)) :
3351 		    peer + UUID_NEW_BM_OFFSET == (device->p_uuid[UI_BITMAP] & ~((u64)1))) {
3352 			/* The last P_SYNC_UUID did not get though. Undo the last start of
3353 			   resync as sync source modifications of the peer's UUIDs. */
3354 
3355 			if (connection->agreed_pro_version < 91)
3356 				return -1091;
3357 
3358 			device->p_uuid[UI_BITMAP] = device->p_uuid[UI_HISTORY_START];
3359 			device->p_uuid[UI_HISTORY_START] = device->p_uuid[UI_HISTORY_START + 1];
3360 
3361 			drbd_info(device, "Lost last syncUUID packet, corrected:\n");
3362 			drbd_uuid_dump(device, "peer", device->p_uuid, device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]);
3363 
3364 			return -1;
3365 		}
3366 	}
3367 
3368 	*rule_nr = 60;
3369 	self = device->ldev->md.uuid[UI_CURRENT] & ~((u64)1);
3370 	for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) {
3371 		peer = device->p_uuid[i] & ~((u64)1);
3372 		if (self == peer)
3373 			return -2;
3374 	}
3375 
3376 	*rule_nr = 70;
3377 	self = device->ldev->md.uuid[UI_BITMAP] & ~((u64)1);
3378 	peer = device->p_uuid[UI_CURRENT] & ~((u64)1);
3379 	if (self == peer)
3380 		return 1;
3381 
3382 	*rule_nr = 71;
3383 	self = device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1);
3384 	if (self == peer) {
3385 		if (connection->agreed_pro_version < 96 ?
3386 		    (device->ldev->md.uuid[UI_HISTORY_START + 1] & ~((u64)1)) ==
3387 		    (device->p_uuid[UI_HISTORY_START] & ~((u64)1)) :
3388 		    self + UUID_NEW_BM_OFFSET == (device->ldev->md.uuid[UI_BITMAP] & ~((u64)1))) {
3389 			/* The last P_SYNC_UUID did not get though. Undo the last start of
3390 			   resync as sync source modifications of our UUIDs. */
3391 
3392 			if (connection->agreed_pro_version < 91)
3393 				return -1091;
3394 
3395 			__drbd_uuid_set(device, UI_BITMAP, device->ldev->md.uuid[UI_HISTORY_START]);
3396 			__drbd_uuid_set(device, UI_HISTORY_START, device->ldev->md.uuid[UI_HISTORY_START + 1]);
3397 
3398 			drbd_info(device, "Last syncUUID did not get through, corrected:\n");
3399 			drbd_uuid_dump(device, "self", device->ldev->md.uuid,
3400 				       device->state.disk >= D_NEGOTIATING ? drbd_bm_total_weight(device) : 0, 0);
3401 
3402 			return 1;
3403 		}
3404 	}
3405 
3406 
3407 	*rule_nr = 80;
3408 	peer = device->p_uuid[UI_CURRENT] & ~((u64)1);
3409 	for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) {
3410 		self = device->ldev->md.uuid[i] & ~((u64)1);
3411 		if (self == peer)
3412 			return 2;
3413 	}
3414 
3415 	*rule_nr = 90;
3416 	self = device->ldev->md.uuid[UI_BITMAP] & ~((u64)1);
3417 	peer = device->p_uuid[UI_BITMAP] & ~((u64)1);
3418 	if (self == peer && self != ((u64)0))
3419 		return 100;
3420 
3421 	*rule_nr = 100;
3422 	for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) {
3423 		self = device->ldev->md.uuid[i] & ~((u64)1);
3424 		for (j = UI_HISTORY_START; j <= UI_HISTORY_END; j++) {
3425 			peer = device->p_uuid[j] & ~((u64)1);
3426 			if (self == peer)
3427 				return -100;
3428 		}
3429 	}
3430 
3431 	return -1000;
3432 }
3433 
3434 /* drbd_sync_handshake() returns the new conn state on success, or
3435    CONN_MASK (-1) on failure.
3436  */
3437 static enum drbd_conns drbd_sync_handshake(struct drbd_peer_device *peer_device,
3438 					   enum drbd_role peer_role,
3439 					   enum drbd_disk_state peer_disk) __must_hold(local)
3440 {
3441 	struct drbd_device *device = peer_device->device;
3442 	enum drbd_conns rv = C_MASK;
3443 	enum drbd_disk_state mydisk;
3444 	struct net_conf *nc;
3445 	int hg, rule_nr, rr_conflict, tentative, always_asbp;
3446 
3447 	mydisk = device->state.disk;
3448 	if (mydisk == D_NEGOTIATING)
3449 		mydisk = device->new_state_tmp.disk;
3450 
3451 	drbd_info(device, "drbd_sync_handshake:\n");
3452 
3453 	spin_lock_irq(&device->ldev->md.uuid_lock);
3454 	drbd_uuid_dump(device, "self", device->ldev->md.uuid, device->comm_bm_set, 0);
3455 	drbd_uuid_dump(device, "peer", device->p_uuid,
3456 		       device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]);
3457 
3458 	hg = drbd_uuid_compare(device, peer_role, &rule_nr);
3459 	spin_unlock_irq(&device->ldev->md.uuid_lock);
3460 
3461 	drbd_info(device, "uuid_compare()=%d by rule %d\n", hg, rule_nr);
3462 
3463 	if (hg == -1000) {
3464 		drbd_alert(device, "Unrelated data, aborting!\n");
3465 		return C_MASK;
3466 	}
3467 	if (hg < -0x10000) {
3468 		int proto, fflags;
3469 		hg = -hg;
3470 		proto = hg & 0xff;
3471 		fflags = (hg >> 8) & 0xff;
3472 		drbd_alert(device, "To resolve this both sides have to support at least protocol %d and feature flags 0x%x\n",
3473 					proto, fflags);
3474 		return C_MASK;
3475 	}
3476 	if (hg < -1000) {
3477 		drbd_alert(device, "To resolve this both sides have to support at least protocol %d\n", -hg - 1000);
3478 		return C_MASK;
3479 	}
3480 
3481 	if    ((mydisk == D_INCONSISTENT && peer_disk > D_INCONSISTENT) ||
3482 	    (peer_disk == D_INCONSISTENT && mydisk    > D_INCONSISTENT)) {
3483 		int f = (hg == -100) || abs(hg) == 2;
3484 		hg = mydisk > D_INCONSISTENT ? 1 : -1;
3485 		if (f)
3486 			hg = hg*2;
3487 		drbd_info(device, "Becoming sync %s due to disk states.\n",
3488 		     hg > 0 ? "source" : "target");
3489 	}
3490 
3491 	if (abs(hg) == 100)
3492 		drbd_khelper(device, "initial-split-brain");
3493 
3494 	rcu_read_lock();
3495 	nc = rcu_dereference(peer_device->connection->net_conf);
3496 	always_asbp = nc->always_asbp;
3497 	rr_conflict = nc->rr_conflict;
3498 	tentative = nc->tentative;
3499 	rcu_read_unlock();
3500 
3501 	if (hg == 100 || (hg == -100 && always_asbp)) {
3502 		int pcount = (device->state.role == R_PRIMARY)
3503 			   + (peer_role == R_PRIMARY);
3504 		int forced = (hg == -100);
3505 
3506 		switch (pcount) {
3507 		case 0:
3508 			hg = drbd_asb_recover_0p(peer_device);
3509 			break;
3510 		case 1:
3511 			hg = drbd_asb_recover_1p(peer_device);
3512 			break;
3513 		case 2:
3514 			hg = drbd_asb_recover_2p(peer_device);
3515 			break;
3516 		}
3517 		if (abs(hg) < 100) {
3518 			drbd_warn(device, "Split-Brain detected, %d primaries, "
3519 			     "automatically solved. Sync from %s node\n",
3520 			     pcount, (hg < 0) ? "peer" : "this");
3521 			if (forced) {
3522 				drbd_warn(device, "Doing a full sync, since"
3523 				     " UUIDs where ambiguous.\n");
3524 				hg = hg*2;
3525 			}
3526 		}
3527 	}
3528 
3529 	if (hg == -100) {
3530 		if (test_bit(DISCARD_MY_DATA, &device->flags) && !(device->p_uuid[UI_FLAGS]&1))
3531 			hg = -1;
3532 		if (!test_bit(DISCARD_MY_DATA, &device->flags) && (device->p_uuid[UI_FLAGS]&1))
3533 			hg = 1;
3534 
3535 		if (abs(hg) < 100)
3536 			drbd_warn(device, "Split-Brain detected, manually solved. "
3537 			     "Sync from %s node\n",
3538 			     (hg < 0) ? "peer" : "this");
3539 	}
3540 
3541 	if (hg == -100) {
3542 		/* FIXME this log message is not correct if we end up here
3543 		 * after an attempted attach on a diskless node.
3544 		 * We just refuse to attach -- well, we drop the "connection"
3545 		 * to that disk, in a way... */
3546 		drbd_alert(device, "Split-Brain detected but unresolved, dropping connection!\n");
3547 		drbd_khelper(device, "split-brain");
3548 		return C_MASK;
3549 	}
3550 
3551 	if (hg > 0 && mydisk <= D_INCONSISTENT) {
3552 		drbd_err(device, "I shall become SyncSource, but I am inconsistent!\n");
3553 		return C_MASK;
3554 	}
3555 
3556 	if (hg < 0 && /* by intention we do not use mydisk here. */
3557 	    device->state.role == R_PRIMARY && device->state.disk >= D_CONSISTENT) {
3558 		switch (rr_conflict) {
3559 		case ASB_CALL_HELPER:
3560 			drbd_khelper(device, "pri-lost");
3561 			fallthrough;
3562 		case ASB_DISCONNECT:
3563 			drbd_err(device, "I shall become SyncTarget, but I am primary!\n");
3564 			return C_MASK;
3565 		case ASB_VIOLENTLY:
3566 			drbd_warn(device, "Becoming SyncTarget, violating the stable-data"
3567 			     "assumption\n");
3568 		}
3569 	}
3570 
3571 	if (tentative || test_bit(CONN_DRY_RUN, &peer_device->connection->flags)) {
3572 		if (hg == 0)
3573 			drbd_info(device, "dry-run connect: No resync, would become Connected immediately.\n");
3574 		else
3575 			drbd_info(device, "dry-run connect: Would become %s, doing a %s resync.",
3576 				 drbd_conn_str(hg > 0 ? C_SYNC_SOURCE : C_SYNC_TARGET),
3577 				 abs(hg) >= 2 ? "full" : "bit-map based");
3578 		return C_MASK;
3579 	}
3580 
3581 	if (abs(hg) >= 2) {
3582 		drbd_info(device, "Writing the whole bitmap, full sync required after drbd_sync_handshake.\n");
3583 		if (drbd_bitmap_io(device, &drbd_bmio_set_n_write, "set_n_write from sync_handshake",
3584 					BM_LOCKED_SET_ALLOWED))
3585 			return C_MASK;
3586 	}
3587 
3588 	if (hg > 0) { /* become sync source. */
3589 		rv = C_WF_BITMAP_S;
3590 	} else if (hg < 0) { /* become sync target */
3591 		rv = C_WF_BITMAP_T;
3592 	} else {
3593 		rv = C_CONNECTED;
3594 		if (drbd_bm_total_weight(device)) {
3595 			drbd_info(device, "No resync, but %lu bits in bitmap!\n",
3596 			     drbd_bm_total_weight(device));
3597 		}
3598 	}
3599 
3600 	return rv;
3601 }
3602 
3603 static enum drbd_after_sb_p convert_after_sb(enum drbd_after_sb_p peer)
3604 {
3605 	/* ASB_DISCARD_REMOTE - ASB_DISCARD_LOCAL is valid */
3606 	if (peer == ASB_DISCARD_REMOTE)
3607 		return ASB_DISCARD_LOCAL;
3608 
3609 	/* any other things with ASB_DISCARD_REMOTE or ASB_DISCARD_LOCAL are invalid */
3610 	if (peer == ASB_DISCARD_LOCAL)
3611 		return ASB_DISCARD_REMOTE;
3612 
3613 	/* everything else is valid if they are equal on both sides. */
3614 	return peer;
3615 }
3616 
3617 static int receive_protocol(struct drbd_connection *connection, struct packet_info *pi)
3618 {
3619 	struct p_protocol *p = pi->data;
3620 	enum drbd_after_sb_p p_after_sb_0p, p_after_sb_1p, p_after_sb_2p;
3621 	int p_proto, p_discard_my_data, p_two_primaries, cf;
3622 	struct net_conf *nc, *old_net_conf, *new_net_conf = NULL;
3623 	char integrity_alg[SHARED_SECRET_MAX] = "";
3624 	struct crypto_shash *peer_integrity_tfm = NULL;
3625 	void *int_dig_in = NULL, *int_dig_vv = NULL;
3626 
3627 	p_proto		= be32_to_cpu(p->protocol);
3628 	p_after_sb_0p	= be32_to_cpu(p->after_sb_0p);
3629 	p_after_sb_1p	= be32_to_cpu(p->after_sb_1p);
3630 	p_after_sb_2p	= be32_to_cpu(p->after_sb_2p);
3631 	p_two_primaries = be32_to_cpu(p->two_primaries);
3632 	cf		= be32_to_cpu(p->conn_flags);
3633 	p_discard_my_data = cf & CF_DISCARD_MY_DATA;
3634 
3635 	if (connection->agreed_pro_version >= 87) {
3636 		int err;
3637 
3638 		if (pi->size > sizeof(integrity_alg))
3639 			return -EIO;
3640 		err = drbd_recv_all(connection, integrity_alg, pi->size);
3641 		if (err)
3642 			return err;
3643 		integrity_alg[SHARED_SECRET_MAX - 1] = 0;
3644 	}
3645 
3646 	if (pi->cmd != P_PROTOCOL_UPDATE) {
3647 		clear_bit(CONN_DRY_RUN, &connection->flags);
3648 
3649 		if (cf & CF_DRY_RUN)
3650 			set_bit(CONN_DRY_RUN, &connection->flags);
3651 
3652 		rcu_read_lock();
3653 		nc = rcu_dereference(connection->net_conf);
3654 
3655 		if (p_proto != nc->wire_protocol) {
3656 			drbd_err(connection, "incompatible %s settings\n", "protocol");
3657 			goto disconnect_rcu_unlock;
3658 		}
3659 
3660 		if (convert_after_sb(p_after_sb_0p) != nc->after_sb_0p) {
3661 			drbd_err(connection, "incompatible %s settings\n", "after-sb-0pri");
3662 			goto disconnect_rcu_unlock;
3663 		}
3664 
3665 		if (convert_after_sb(p_after_sb_1p) != nc->after_sb_1p) {
3666 			drbd_err(connection, "incompatible %s settings\n", "after-sb-1pri");
3667 			goto disconnect_rcu_unlock;
3668 		}
3669 
3670 		if (convert_after_sb(p_after_sb_2p) != nc->after_sb_2p) {
3671 			drbd_err(connection, "incompatible %s settings\n", "after-sb-2pri");
3672 			goto disconnect_rcu_unlock;
3673 		}
3674 
3675 		if (p_discard_my_data && nc->discard_my_data) {
3676 			drbd_err(connection, "incompatible %s settings\n", "discard-my-data");
3677 			goto disconnect_rcu_unlock;
3678 		}
3679 
3680 		if (p_two_primaries != nc->two_primaries) {
3681 			drbd_err(connection, "incompatible %s settings\n", "allow-two-primaries");
3682 			goto disconnect_rcu_unlock;
3683 		}
3684 
3685 		if (strcmp(integrity_alg, nc->integrity_alg)) {
3686 			drbd_err(connection, "incompatible %s settings\n", "data-integrity-alg");
3687 			goto disconnect_rcu_unlock;
3688 		}
3689 
3690 		rcu_read_unlock();
3691 	}
3692 
3693 	if (integrity_alg[0]) {
3694 		int hash_size;
3695 
3696 		/*
3697 		 * We can only change the peer data integrity algorithm
3698 		 * here.  Changing our own data integrity algorithm
3699 		 * requires that we send a P_PROTOCOL_UPDATE packet at
3700 		 * the same time; otherwise, the peer has no way to
3701 		 * tell between which packets the algorithm should
3702 		 * change.
3703 		 */
3704 
3705 		peer_integrity_tfm = crypto_alloc_shash(integrity_alg, 0, 0);
3706 		if (IS_ERR(peer_integrity_tfm)) {
3707 			peer_integrity_tfm = NULL;
3708 			drbd_err(connection, "peer data-integrity-alg %s not supported\n",
3709 				 integrity_alg);
3710 			goto disconnect;
3711 		}
3712 
3713 		hash_size = crypto_shash_digestsize(peer_integrity_tfm);
3714 		int_dig_in = kmalloc(hash_size, GFP_KERNEL);
3715 		int_dig_vv = kmalloc(hash_size, GFP_KERNEL);
3716 		if (!(int_dig_in && int_dig_vv)) {
3717 			drbd_err(connection, "Allocation of buffers for data integrity checking failed\n");
3718 			goto disconnect;
3719 		}
3720 	}
3721 
3722 	new_net_conf = kmalloc(sizeof(struct net_conf), GFP_KERNEL);
3723 	if (!new_net_conf)
3724 		goto disconnect;
3725 
3726 	mutex_lock(&connection->data.mutex);
3727 	mutex_lock(&connection->resource->conf_update);
3728 	old_net_conf = connection->net_conf;
3729 	*new_net_conf = *old_net_conf;
3730 
3731 	new_net_conf->wire_protocol = p_proto;
3732 	new_net_conf->after_sb_0p = convert_after_sb(p_after_sb_0p);
3733 	new_net_conf->after_sb_1p = convert_after_sb(p_after_sb_1p);
3734 	new_net_conf->after_sb_2p = convert_after_sb(p_after_sb_2p);
3735 	new_net_conf->two_primaries = p_two_primaries;
3736 
3737 	rcu_assign_pointer(connection->net_conf, new_net_conf);
3738 	mutex_unlock(&connection->resource->conf_update);
3739 	mutex_unlock(&connection->data.mutex);
3740 
3741 	crypto_free_shash(connection->peer_integrity_tfm);
3742 	kfree(connection->int_dig_in);
3743 	kfree(connection->int_dig_vv);
3744 	connection->peer_integrity_tfm = peer_integrity_tfm;
3745 	connection->int_dig_in = int_dig_in;
3746 	connection->int_dig_vv = int_dig_vv;
3747 
3748 	if (strcmp(old_net_conf->integrity_alg, integrity_alg))
3749 		drbd_info(connection, "peer data-integrity-alg: %s\n",
3750 			  integrity_alg[0] ? integrity_alg : "(none)");
3751 
3752 	kvfree_rcu(old_net_conf);
3753 	return 0;
3754 
3755 disconnect_rcu_unlock:
3756 	rcu_read_unlock();
3757 disconnect:
3758 	crypto_free_shash(peer_integrity_tfm);
3759 	kfree(int_dig_in);
3760 	kfree(int_dig_vv);
3761 	conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
3762 	return -EIO;
3763 }
3764 
3765 /* helper function
3766  * input: alg name, feature name
3767  * return: NULL (alg name was "")
3768  *         ERR_PTR(error) if something goes wrong
3769  *         or the crypto hash ptr, if it worked out ok. */
3770 static struct crypto_shash *drbd_crypto_alloc_digest_safe(
3771 		const struct drbd_device *device,
3772 		const char *alg, const char *name)
3773 {
3774 	struct crypto_shash *tfm;
3775 
3776 	if (!alg[0])
3777 		return NULL;
3778 
3779 	tfm = crypto_alloc_shash(alg, 0, 0);
3780 	if (IS_ERR(tfm)) {
3781 		drbd_err(device, "Can not allocate \"%s\" as %s (reason: %ld)\n",
3782 			alg, name, PTR_ERR(tfm));
3783 		return tfm;
3784 	}
3785 	return tfm;
3786 }
3787 
3788 static int ignore_remaining_packet(struct drbd_connection *connection, struct packet_info *pi)
3789 {
3790 	void *buffer = connection->data.rbuf;
3791 	int size = pi->size;
3792 
3793 	while (size) {
3794 		int s = min_t(int, size, DRBD_SOCKET_BUFFER_SIZE);
3795 		s = drbd_recv(connection, buffer, s);
3796 		if (s <= 0) {
3797 			if (s < 0)
3798 				return s;
3799 			break;
3800 		}
3801 		size -= s;
3802 	}
3803 	if (size)
3804 		return -EIO;
3805 	return 0;
3806 }
3807 
3808 /*
3809  * config_unknown_volume  -  device configuration command for unknown volume
3810  *
3811  * When a device is added to an existing connection, the node on which the
3812  * device is added first will send configuration commands to its peer but the
3813  * peer will not know about the device yet.  It will warn and ignore these
3814  * commands.  Once the device is added on the second node, the second node will
3815  * send the same device configuration commands, but in the other direction.
3816  *
3817  * (We can also end up here if drbd is misconfigured.)
3818  */
3819 static int config_unknown_volume(struct drbd_connection *connection, struct packet_info *pi)
3820 {
3821 	drbd_warn(connection, "%s packet received for volume %u, which is not configured locally\n",
3822 		  cmdname(pi->cmd), pi->vnr);
3823 	return ignore_remaining_packet(connection, pi);
3824 }
3825 
3826 static int receive_SyncParam(struct drbd_connection *connection, struct packet_info *pi)
3827 {
3828 	struct drbd_peer_device *peer_device;
3829 	struct drbd_device *device;
3830 	struct p_rs_param_95 *p;
3831 	unsigned int header_size, data_size, exp_max_sz;
3832 	struct crypto_shash *verify_tfm = NULL;
3833 	struct crypto_shash *csums_tfm = NULL;
3834 	struct net_conf *old_net_conf, *new_net_conf = NULL;
3835 	struct disk_conf *old_disk_conf = NULL, *new_disk_conf = NULL;
3836 	const int apv = connection->agreed_pro_version;
3837 	struct fifo_buffer *old_plan = NULL, *new_plan = NULL;
3838 	unsigned int fifo_size = 0;
3839 	int err;
3840 
3841 	peer_device = conn_peer_device(connection, pi->vnr);
3842 	if (!peer_device)
3843 		return config_unknown_volume(connection, pi);
3844 	device = peer_device->device;
3845 
3846 	exp_max_sz  = apv <= 87 ? sizeof(struct p_rs_param)
3847 		    : apv == 88 ? sizeof(struct p_rs_param)
3848 					+ SHARED_SECRET_MAX
3849 		    : apv <= 94 ? sizeof(struct p_rs_param_89)
3850 		    : /* apv >= 95 */ sizeof(struct p_rs_param_95);
3851 
3852 	if (pi->size > exp_max_sz) {
3853 		drbd_err(device, "SyncParam packet too long: received %u, expected <= %u bytes\n",
3854 		    pi->size, exp_max_sz);
3855 		return -EIO;
3856 	}
3857 
3858 	if (apv <= 88) {
3859 		header_size = sizeof(struct p_rs_param);
3860 		data_size = pi->size - header_size;
3861 	} else if (apv <= 94) {
3862 		header_size = sizeof(struct p_rs_param_89);
3863 		data_size = pi->size - header_size;
3864 		D_ASSERT(device, data_size == 0);
3865 	} else {
3866 		header_size = sizeof(struct p_rs_param_95);
3867 		data_size = pi->size - header_size;
3868 		D_ASSERT(device, data_size == 0);
3869 	}
3870 
3871 	/* initialize verify_alg and csums_alg */
3872 	p = pi->data;
3873 	BUILD_BUG_ON(sizeof(p->algs) != 2 * SHARED_SECRET_MAX);
3874 	memset(&p->algs, 0, sizeof(p->algs));
3875 
3876 	err = drbd_recv_all(peer_device->connection, p, header_size);
3877 	if (err)
3878 		return err;
3879 
3880 	mutex_lock(&connection->resource->conf_update);
3881 	old_net_conf = peer_device->connection->net_conf;
3882 	if (get_ldev(device)) {
3883 		new_disk_conf = kzalloc(sizeof(struct disk_conf), GFP_KERNEL);
3884 		if (!new_disk_conf) {
3885 			put_ldev(device);
3886 			mutex_unlock(&connection->resource->conf_update);
3887 			drbd_err(device, "Allocation of new disk_conf failed\n");
3888 			return -ENOMEM;
3889 		}
3890 
3891 		old_disk_conf = device->ldev->disk_conf;
3892 		*new_disk_conf = *old_disk_conf;
3893 
3894 		new_disk_conf->resync_rate = be32_to_cpu(p->resync_rate);
3895 	}
3896 
3897 	if (apv >= 88) {
3898 		if (apv == 88) {
3899 			if (data_size > SHARED_SECRET_MAX || data_size == 0) {
3900 				drbd_err(device, "verify-alg of wrong size, "
3901 					"peer wants %u, accepting only up to %u byte\n",
3902 					data_size, SHARED_SECRET_MAX);
3903 				goto reconnect;
3904 			}
3905 
3906 			err = drbd_recv_all(peer_device->connection, p->verify_alg, data_size);
3907 			if (err)
3908 				goto reconnect;
3909 			/* we expect NUL terminated string */
3910 			/* but just in case someone tries to be evil */
3911 			D_ASSERT(device, p->verify_alg[data_size-1] == 0);
3912 			p->verify_alg[data_size-1] = 0;
3913 
3914 		} else /* apv >= 89 */ {
3915 			/* we still expect NUL terminated strings */
3916 			/* but just in case someone tries to be evil */
3917 			D_ASSERT(device, p->verify_alg[SHARED_SECRET_MAX-1] == 0);
3918 			D_ASSERT(device, p->csums_alg[SHARED_SECRET_MAX-1] == 0);
3919 			p->verify_alg[SHARED_SECRET_MAX-1] = 0;
3920 			p->csums_alg[SHARED_SECRET_MAX-1] = 0;
3921 		}
3922 
3923 		if (strcmp(old_net_conf->verify_alg, p->verify_alg)) {
3924 			if (device->state.conn == C_WF_REPORT_PARAMS) {
3925 				drbd_err(device, "Different verify-alg settings. me=\"%s\" peer=\"%s\"\n",
3926 				    old_net_conf->verify_alg, p->verify_alg);
3927 				goto disconnect;
3928 			}
3929 			verify_tfm = drbd_crypto_alloc_digest_safe(device,
3930 					p->verify_alg, "verify-alg");
3931 			if (IS_ERR(verify_tfm)) {
3932 				verify_tfm = NULL;
3933 				goto disconnect;
3934 			}
3935 		}
3936 
3937 		if (apv >= 89 && strcmp(old_net_conf->csums_alg, p->csums_alg)) {
3938 			if (device->state.conn == C_WF_REPORT_PARAMS) {
3939 				drbd_err(device, "Different csums-alg settings. me=\"%s\" peer=\"%s\"\n",
3940 				    old_net_conf->csums_alg, p->csums_alg);
3941 				goto disconnect;
3942 			}
3943 			csums_tfm = drbd_crypto_alloc_digest_safe(device,
3944 					p->csums_alg, "csums-alg");
3945 			if (IS_ERR(csums_tfm)) {
3946 				csums_tfm = NULL;
3947 				goto disconnect;
3948 			}
3949 		}
3950 
3951 		if (apv > 94 && new_disk_conf) {
3952 			new_disk_conf->c_plan_ahead = be32_to_cpu(p->c_plan_ahead);
3953 			new_disk_conf->c_delay_target = be32_to_cpu(p->c_delay_target);
3954 			new_disk_conf->c_fill_target = be32_to_cpu(p->c_fill_target);
3955 			new_disk_conf->c_max_rate = be32_to_cpu(p->c_max_rate);
3956 
3957 			fifo_size = (new_disk_conf->c_plan_ahead * 10 * SLEEP_TIME) / HZ;
3958 			if (fifo_size != device->rs_plan_s->size) {
3959 				new_plan = fifo_alloc(fifo_size);
3960 				if (!new_plan) {
3961 					drbd_err(device, "kmalloc of fifo_buffer failed");
3962 					put_ldev(device);
3963 					goto disconnect;
3964 				}
3965 			}
3966 		}
3967 
3968 		if (verify_tfm || csums_tfm) {
3969 			new_net_conf = kzalloc(sizeof(struct net_conf), GFP_KERNEL);
3970 			if (!new_net_conf)
3971 				goto disconnect;
3972 
3973 			*new_net_conf = *old_net_conf;
3974 
3975 			if (verify_tfm) {
3976 				strcpy(new_net_conf->verify_alg, p->verify_alg);
3977 				new_net_conf->verify_alg_len = strlen(p->verify_alg) + 1;
3978 				crypto_free_shash(peer_device->connection->verify_tfm);
3979 				peer_device->connection->verify_tfm = verify_tfm;
3980 				drbd_info(device, "using verify-alg: \"%s\"\n", p->verify_alg);
3981 			}
3982 			if (csums_tfm) {
3983 				strcpy(new_net_conf->csums_alg, p->csums_alg);
3984 				new_net_conf->csums_alg_len = strlen(p->csums_alg) + 1;
3985 				crypto_free_shash(peer_device->connection->csums_tfm);
3986 				peer_device->connection->csums_tfm = csums_tfm;
3987 				drbd_info(device, "using csums-alg: \"%s\"\n", p->csums_alg);
3988 			}
3989 			rcu_assign_pointer(connection->net_conf, new_net_conf);
3990 		}
3991 	}
3992 
3993 	if (new_disk_conf) {
3994 		rcu_assign_pointer(device->ldev->disk_conf, new_disk_conf);
3995 		put_ldev(device);
3996 	}
3997 
3998 	if (new_plan) {
3999 		old_plan = device->rs_plan_s;
4000 		rcu_assign_pointer(device->rs_plan_s, new_plan);
4001 	}
4002 
4003 	mutex_unlock(&connection->resource->conf_update);
4004 	synchronize_rcu();
4005 	if (new_net_conf)
4006 		kfree(old_net_conf);
4007 	kfree(old_disk_conf);
4008 	kfree(old_plan);
4009 
4010 	return 0;
4011 
4012 reconnect:
4013 	if (new_disk_conf) {
4014 		put_ldev(device);
4015 		kfree(new_disk_conf);
4016 	}
4017 	mutex_unlock(&connection->resource->conf_update);
4018 	return -EIO;
4019 
4020 disconnect:
4021 	kfree(new_plan);
4022 	if (new_disk_conf) {
4023 		put_ldev(device);
4024 		kfree(new_disk_conf);
4025 	}
4026 	mutex_unlock(&connection->resource->conf_update);
4027 	/* just for completeness: actually not needed,
4028 	 * as this is not reached if csums_tfm was ok. */
4029 	crypto_free_shash(csums_tfm);
4030 	/* but free the verify_tfm again, if csums_tfm did not work out */
4031 	crypto_free_shash(verify_tfm);
4032 	conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4033 	return -EIO;
4034 }
4035 
4036 /* warn if the arguments differ by more than 12.5% */
4037 static void warn_if_differ_considerably(struct drbd_device *device,
4038 	const char *s, sector_t a, sector_t b)
4039 {
4040 	sector_t d;
4041 	if (a == 0 || b == 0)
4042 		return;
4043 	d = (a > b) ? (a - b) : (b - a);
4044 	if (d > (a>>3) || d > (b>>3))
4045 		drbd_warn(device, "Considerable difference in %s: %llus vs. %llus\n", s,
4046 		     (unsigned long long)a, (unsigned long long)b);
4047 }
4048 
4049 static int receive_sizes(struct drbd_connection *connection, struct packet_info *pi)
4050 {
4051 	struct drbd_peer_device *peer_device;
4052 	struct drbd_device *device;
4053 	struct p_sizes *p = pi->data;
4054 	struct o_qlim *o = (connection->agreed_features & DRBD_FF_WSAME) ? p->qlim : NULL;
4055 	enum determine_dev_size dd = DS_UNCHANGED;
4056 	sector_t p_size, p_usize, p_csize, my_usize;
4057 	sector_t new_size, cur_size;
4058 	int ldsc = 0; /* local disk size changed */
4059 	enum dds_flags ddsf;
4060 
4061 	peer_device = conn_peer_device(connection, pi->vnr);
4062 	if (!peer_device)
4063 		return config_unknown_volume(connection, pi);
4064 	device = peer_device->device;
4065 	cur_size = get_capacity(device->vdisk);
4066 
4067 	p_size = be64_to_cpu(p->d_size);
4068 	p_usize = be64_to_cpu(p->u_size);
4069 	p_csize = be64_to_cpu(p->c_size);
4070 
4071 	/* just store the peer's disk size for now.
4072 	 * we still need to figure out whether we accept that. */
4073 	device->p_size = p_size;
4074 
4075 	if (get_ldev(device)) {
4076 		rcu_read_lock();
4077 		my_usize = rcu_dereference(device->ldev->disk_conf)->disk_size;
4078 		rcu_read_unlock();
4079 
4080 		warn_if_differ_considerably(device, "lower level device sizes",
4081 			   p_size, drbd_get_max_capacity(device->ldev));
4082 		warn_if_differ_considerably(device, "user requested size",
4083 					    p_usize, my_usize);
4084 
4085 		/* if this is the first connect, or an otherwise expected
4086 		 * param exchange, choose the minimum */
4087 		if (device->state.conn == C_WF_REPORT_PARAMS)
4088 			p_usize = min_not_zero(my_usize, p_usize);
4089 
4090 		/* Never shrink a device with usable data during connect,
4091 		 * or "attach" on the peer.
4092 		 * But allow online shrinking if we are connected. */
4093 		new_size = drbd_new_dev_size(device, device->ldev, p_usize, 0);
4094 		if (new_size < cur_size &&
4095 		    device->state.disk >= D_OUTDATED &&
4096 		    (device->state.conn < C_CONNECTED || device->state.pdsk == D_DISKLESS)) {
4097 			drbd_err(device, "The peer's disk size is too small! (%llu < %llu sectors)\n",
4098 					(unsigned long long)new_size, (unsigned long long)cur_size);
4099 			conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4100 			put_ldev(device);
4101 			return -EIO;
4102 		}
4103 
4104 		if (my_usize != p_usize) {
4105 			struct disk_conf *old_disk_conf, *new_disk_conf = NULL;
4106 
4107 			new_disk_conf = kzalloc(sizeof(struct disk_conf), GFP_KERNEL);
4108 			if (!new_disk_conf) {
4109 				put_ldev(device);
4110 				return -ENOMEM;
4111 			}
4112 
4113 			mutex_lock(&connection->resource->conf_update);
4114 			old_disk_conf = device->ldev->disk_conf;
4115 			*new_disk_conf = *old_disk_conf;
4116 			new_disk_conf->disk_size = p_usize;
4117 
4118 			rcu_assign_pointer(device->ldev->disk_conf, new_disk_conf);
4119 			mutex_unlock(&connection->resource->conf_update);
4120 			kvfree_rcu(old_disk_conf);
4121 
4122 			drbd_info(device, "Peer sets u_size to %lu sectors (old: %lu)\n",
4123 				 (unsigned long)p_usize, (unsigned long)my_usize);
4124 		}
4125 
4126 		put_ldev(device);
4127 	}
4128 
4129 	device->peer_max_bio_size = be32_to_cpu(p->max_bio_size);
4130 	/* Leave drbd_reconsider_queue_parameters() before drbd_determine_dev_size().
4131 	   In case we cleared the QUEUE_FLAG_DISCARD from our queue in
4132 	   drbd_reconsider_queue_parameters(), we can be sure that after
4133 	   drbd_determine_dev_size() no REQ_DISCARDs are in the queue. */
4134 
4135 	ddsf = be16_to_cpu(p->dds_flags);
4136 	if (get_ldev(device)) {
4137 		drbd_reconsider_queue_parameters(device, device->ldev, o);
4138 		dd = drbd_determine_dev_size(device, ddsf, NULL);
4139 		put_ldev(device);
4140 		if (dd == DS_ERROR)
4141 			return -EIO;
4142 		drbd_md_sync(device);
4143 	} else {
4144 		/*
4145 		 * I am diskless, need to accept the peer's *current* size.
4146 		 * I must NOT accept the peers backing disk size,
4147 		 * it may have been larger than mine all along...
4148 		 *
4149 		 * At this point, the peer knows more about my disk, or at
4150 		 * least about what we last agreed upon, than myself.
4151 		 * So if his c_size is less than his d_size, the most likely
4152 		 * reason is that *my* d_size was smaller last time we checked.
4153 		 *
4154 		 * However, if he sends a zero current size,
4155 		 * take his (user-capped or) backing disk size anyways.
4156 		 *
4157 		 * Unless of course he does not have a disk himself.
4158 		 * In which case we ignore this completely.
4159 		 */
4160 		sector_t new_size = p_csize ?: p_usize ?: p_size;
4161 		drbd_reconsider_queue_parameters(device, NULL, o);
4162 		if (new_size == 0) {
4163 			/* Ignore, peer does not know nothing. */
4164 		} else if (new_size == cur_size) {
4165 			/* nothing to do */
4166 		} else if (cur_size != 0 && p_size == 0) {
4167 			drbd_warn(device, "Ignored diskless peer device size (peer:%llu != me:%llu sectors)!\n",
4168 					(unsigned long long)new_size, (unsigned long long)cur_size);
4169 		} else if (new_size < cur_size && device->state.role == R_PRIMARY) {
4170 			drbd_err(device, "The peer's device size is too small! (%llu < %llu sectors); demote me first!\n",
4171 					(unsigned long long)new_size, (unsigned long long)cur_size);
4172 			conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4173 			return -EIO;
4174 		} else {
4175 			/* I believe the peer, if
4176 			 *  - I don't have a current size myself
4177 			 *  - we agree on the size anyways
4178 			 *  - I do have a current size, am Secondary,
4179 			 *    and he has the only disk
4180 			 *  - I do have a current size, am Primary,
4181 			 *    and he has the only disk,
4182 			 *    which is larger than my current size
4183 			 */
4184 			drbd_set_my_capacity(device, new_size);
4185 		}
4186 	}
4187 
4188 	if (get_ldev(device)) {
4189 		if (device->ldev->known_size != drbd_get_capacity(device->ldev->backing_bdev)) {
4190 			device->ldev->known_size = drbd_get_capacity(device->ldev->backing_bdev);
4191 			ldsc = 1;
4192 		}
4193 
4194 		put_ldev(device);
4195 	}
4196 
4197 	if (device->state.conn > C_WF_REPORT_PARAMS) {
4198 		if (be64_to_cpu(p->c_size) != get_capacity(device->vdisk) ||
4199 		    ldsc) {
4200 			/* we have different sizes, probably peer
4201 			 * needs to know my new size... */
4202 			drbd_send_sizes(peer_device, 0, ddsf);
4203 		}
4204 		if (test_and_clear_bit(RESIZE_PENDING, &device->flags) ||
4205 		    (dd == DS_GREW && device->state.conn == C_CONNECTED)) {
4206 			if (device->state.pdsk >= D_INCONSISTENT &&
4207 			    device->state.disk >= D_INCONSISTENT) {
4208 				if (ddsf & DDSF_NO_RESYNC)
4209 					drbd_info(device, "Resync of new storage suppressed with --assume-clean\n");
4210 				else
4211 					resync_after_online_grow(device);
4212 			} else
4213 				set_bit(RESYNC_AFTER_NEG, &device->flags);
4214 		}
4215 	}
4216 
4217 	return 0;
4218 }
4219 
4220 static int receive_uuids(struct drbd_connection *connection, struct packet_info *pi)
4221 {
4222 	struct drbd_peer_device *peer_device;
4223 	struct drbd_device *device;
4224 	struct p_uuids *p = pi->data;
4225 	u64 *p_uuid;
4226 	int i, updated_uuids = 0;
4227 
4228 	peer_device = conn_peer_device(connection, pi->vnr);
4229 	if (!peer_device)
4230 		return config_unknown_volume(connection, pi);
4231 	device = peer_device->device;
4232 
4233 	p_uuid = kmalloc_array(UI_EXTENDED_SIZE, sizeof(*p_uuid), GFP_NOIO);
4234 	if (!p_uuid)
4235 		return false;
4236 
4237 	for (i = UI_CURRENT; i < UI_EXTENDED_SIZE; i++)
4238 		p_uuid[i] = be64_to_cpu(p->uuid[i]);
4239 
4240 	kfree(device->p_uuid);
4241 	device->p_uuid = p_uuid;
4242 
4243 	if ((device->state.conn < C_CONNECTED || device->state.pdsk == D_DISKLESS) &&
4244 	    device->state.disk < D_INCONSISTENT &&
4245 	    device->state.role == R_PRIMARY &&
4246 	    (device->ed_uuid & ~((u64)1)) != (p_uuid[UI_CURRENT] & ~((u64)1))) {
4247 		drbd_err(device, "Can only connect to data with current UUID=%016llX\n",
4248 		    (unsigned long long)device->ed_uuid);
4249 		conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4250 		return -EIO;
4251 	}
4252 
4253 	if (get_ldev(device)) {
4254 		int skip_initial_sync =
4255 			device->state.conn == C_CONNECTED &&
4256 			peer_device->connection->agreed_pro_version >= 90 &&
4257 			device->ldev->md.uuid[UI_CURRENT] == UUID_JUST_CREATED &&
4258 			(p_uuid[UI_FLAGS] & 8);
4259 		if (skip_initial_sync) {
4260 			drbd_info(device, "Accepted new current UUID, preparing to skip initial sync\n");
4261 			drbd_bitmap_io(device, &drbd_bmio_clear_n_write,
4262 					"clear_n_write from receive_uuids",
4263 					BM_LOCKED_TEST_ALLOWED);
4264 			_drbd_uuid_set(device, UI_CURRENT, p_uuid[UI_CURRENT]);
4265 			_drbd_uuid_set(device, UI_BITMAP, 0);
4266 			_drbd_set_state(_NS2(device, disk, D_UP_TO_DATE, pdsk, D_UP_TO_DATE),
4267 					CS_VERBOSE, NULL);
4268 			drbd_md_sync(device);
4269 			updated_uuids = 1;
4270 		}
4271 		put_ldev(device);
4272 	} else if (device->state.disk < D_INCONSISTENT &&
4273 		   device->state.role == R_PRIMARY) {
4274 		/* I am a diskless primary, the peer just created a new current UUID
4275 		   for me. */
4276 		updated_uuids = drbd_set_ed_uuid(device, p_uuid[UI_CURRENT]);
4277 	}
4278 
4279 	/* Before we test for the disk state, we should wait until an eventually
4280 	   ongoing cluster wide state change is finished. That is important if
4281 	   we are primary and are detaching from our disk. We need to see the
4282 	   new disk state... */
4283 	mutex_lock(device->state_mutex);
4284 	mutex_unlock(device->state_mutex);
4285 	if (device->state.conn >= C_CONNECTED && device->state.disk < D_INCONSISTENT)
4286 		updated_uuids |= drbd_set_ed_uuid(device, p_uuid[UI_CURRENT]);
4287 
4288 	if (updated_uuids)
4289 		drbd_print_uuids(device, "receiver updated UUIDs to");
4290 
4291 	return 0;
4292 }
4293 
4294 /**
4295  * convert_state() - Converts the peer's view of the cluster state to our point of view
4296  * @ps:		The state as seen by the peer.
4297  */
4298 static union drbd_state convert_state(union drbd_state ps)
4299 {
4300 	union drbd_state ms;
4301 
4302 	static enum drbd_conns c_tab[] = {
4303 		[C_WF_REPORT_PARAMS] = C_WF_REPORT_PARAMS,
4304 		[C_CONNECTED] = C_CONNECTED,
4305 
4306 		[C_STARTING_SYNC_S] = C_STARTING_SYNC_T,
4307 		[C_STARTING_SYNC_T] = C_STARTING_SYNC_S,
4308 		[C_DISCONNECTING] = C_TEAR_DOWN, /* C_NETWORK_FAILURE, */
4309 		[C_VERIFY_S]       = C_VERIFY_T,
4310 		[C_MASK]   = C_MASK,
4311 	};
4312 
4313 	ms.i = ps.i;
4314 
4315 	ms.conn = c_tab[ps.conn];
4316 	ms.peer = ps.role;
4317 	ms.role = ps.peer;
4318 	ms.pdsk = ps.disk;
4319 	ms.disk = ps.pdsk;
4320 	ms.peer_isp = (ps.aftr_isp | ps.user_isp);
4321 
4322 	return ms;
4323 }
4324 
4325 static int receive_req_state(struct drbd_connection *connection, struct packet_info *pi)
4326 {
4327 	struct drbd_peer_device *peer_device;
4328 	struct drbd_device *device;
4329 	struct p_req_state *p = pi->data;
4330 	union drbd_state mask, val;
4331 	enum drbd_state_rv rv;
4332 
4333 	peer_device = conn_peer_device(connection, pi->vnr);
4334 	if (!peer_device)
4335 		return -EIO;
4336 	device = peer_device->device;
4337 
4338 	mask.i = be32_to_cpu(p->mask);
4339 	val.i = be32_to_cpu(p->val);
4340 
4341 	if (test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags) &&
4342 	    mutex_is_locked(device->state_mutex)) {
4343 		drbd_send_sr_reply(peer_device, SS_CONCURRENT_ST_CHG);
4344 		return 0;
4345 	}
4346 
4347 	mask = convert_state(mask);
4348 	val = convert_state(val);
4349 
4350 	rv = drbd_change_state(device, CS_VERBOSE, mask, val);
4351 	drbd_send_sr_reply(peer_device, rv);
4352 
4353 	drbd_md_sync(device);
4354 
4355 	return 0;
4356 }
4357 
4358 static int receive_req_conn_state(struct drbd_connection *connection, struct packet_info *pi)
4359 {
4360 	struct p_req_state *p = pi->data;
4361 	union drbd_state mask, val;
4362 	enum drbd_state_rv rv;
4363 
4364 	mask.i = be32_to_cpu(p->mask);
4365 	val.i = be32_to_cpu(p->val);
4366 
4367 	if (test_bit(RESOLVE_CONFLICTS, &connection->flags) &&
4368 	    mutex_is_locked(&connection->cstate_mutex)) {
4369 		conn_send_sr_reply(connection, SS_CONCURRENT_ST_CHG);
4370 		return 0;
4371 	}
4372 
4373 	mask = convert_state(mask);
4374 	val = convert_state(val);
4375 
4376 	rv = conn_request_state(connection, mask, val, CS_VERBOSE | CS_LOCAL_ONLY | CS_IGN_OUTD_FAIL);
4377 	conn_send_sr_reply(connection, rv);
4378 
4379 	return 0;
4380 }
4381 
4382 static int receive_state(struct drbd_connection *connection, struct packet_info *pi)
4383 {
4384 	struct drbd_peer_device *peer_device;
4385 	struct drbd_device *device;
4386 	struct p_state *p = pi->data;
4387 	union drbd_state os, ns, peer_state;
4388 	enum drbd_disk_state real_peer_disk;
4389 	enum chg_state_flags cs_flags;
4390 	int rv;
4391 
4392 	peer_device = conn_peer_device(connection, pi->vnr);
4393 	if (!peer_device)
4394 		return config_unknown_volume(connection, pi);
4395 	device = peer_device->device;
4396 
4397 	peer_state.i = be32_to_cpu(p->state);
4398 
4399 	real_peer_disk = peer_state.disk;
4400 	if (peer_state.disk == D_NEGOTIATING) {
4401 		real_peer_disk = device->p_uuid[UI_FLAGS] & 4 ? D_INCONSISTENT : D_CONSISTENT;
4402 		drbd_info(device, "real peer disk state = %s\n", drbd_disk_str(real_peer_disk));
4403 	}
4404 
4405 	spin_lock_irq(&device->resource->req_lock);
4406  retry:
4407 	os = ns = drbd_read_state(device);
4408 	spin_unlock_irq(&device->resource->req_lock);
4409 
4410 	/* If some other part of the code (ack_receiver thread, timeout)
4411 	 * already decided to close the connection again,
4412 	 * we must not "re-establish" it here. */
4413 	if (os.conn <= C_TEAR_DOWN)
4414 		return -ECONNRESET;
4415 
4416 	/* If this is the "end of sync" confirmation, usually the peer disk
4417 	 * transitions from D_INCONSISTENT to D_UP_TO_DATE. For empty (0 bits
4418 	 * set) resync started in PausedSyncT, or if the timing of pause-/
4419 	 * unpause-sync events has been "just right", the peer disk may
4420 	 * transition from D_CONSISTENT to D_UP_TO_DATE as well.
4421 	 */
4422 	if ((os.pdsk == D_INCONSISTENT || os.pdsk == D_CONSISTENT) &&
4423 	    real_peer_disk == D_UP_TO_DATE &&
4424 	    os.conn > C_CONNECTED && os.disk == D_UP_TO_DATE) {
4425 		/* If we are (becoming) SyncSource, but peer is still in sync
4426 		 * preparation, ignore its uptodate-ness to avoid flapping, it
4427 		 * will change to inconsistent once the peer reaches active
4428 		 * syncing states.
4429 		 * It may have changed syncer-paused flags, however, so we
4430 		 * cannot ignore this completely. */
4431 		if (peer_state.conn > C_CONNECTED &&
4432 		    peer_state.conn < C_SYNC_SOURCE)
4433 			real_peer_disk = D_INCONSISTENT;
4434 
4435 		/* if peer_state changes to connected at the same time,
4436 		 * it explicitly notifies us that it finished resync.
4437 		 * Maybe we should finish it up, too? */
4438 		else if (os.conn >= C_SYNC_SOURCE &&
4439 			 peer_state.conn == C_CONNECTED) {
4440 			if (drbd_bm_total_weight(device) <= device->rs_failed)
4441 				drbd_resync_finished(device);
4442 			return 0;
4443 		}
4444 	}
4445 
4446 	/* explicit verify finished notification, stop sector reached. */
4447 	if (os.conn == C_VERIFY_T && os.disk == D_UP_TO_DATE &&
4448 	    peer_state.conn == C_CONNECTED && real_peer_disk == D_UP_TO_DATE) {
4449 		ov_out_of_sync_print(device);
4450 		drbd_resync_finished(device);
4451 		return 0;
4452 	}
4453 
4454 	/* peer says his disk is inconsistent, while we think it is uptodate,
4455 	 * and this happens while the peer still thinks we have a sync going on,
4456 	 * but we think we are already done with the sync.
4457 	 * We ignore this to avoid flapping pdsk.
4458 	 * This should not happen, if the peer is a recent version of drbd. */
4459 	if (os.pdsk == D_UP_TO_DATE && real_peer_disk == D_INCONSISTENT &&
4460 	    os.conn == C_CONNECTED && peer_state.conn > C_SYNC_SOURCE)
4461 		real_peer_disk = D_UP_TO_DATE;
4462 
4463 	if (ns.conn == C_WF_REPORT_PARAMS)
4464 		ns.conn = C_CONNECTED;
4465 
4466 	if (peer_state.conn == C_AHEAD)
4467 		ns.conn = C_BEHIND;
4468 
4469 	/* TODO:
4470 	 * if (primary and diskless and peer uuid != effective uuid)
4471 	 *     abort attach on peer;
4472 	 *
4473 	 * If this node does not have good data, was already connected, but
4474 	 * the peer did a late attach only now, trying to "negotiate" with me,
4475 	 * AND I am currently Primary, possibly frozen, with some specific
4476 	 * "effective" uuid, this should never be reached, really, because
4477 	 * we first send the uuids, then the current state.
4478 	 *
4479 	 * In this scenario, we already dropped the connection hard
4480 	 * when we received the unsuitable uuids (receive_uuids().
4481 	 *
4482 	 * Should we want to change this, that is: not drop the connection in
4483 	 * receive_uuids() already, then we would need to add a branch here
4484 	 * that aborts the attach of "unsuitable uuids" on the peer in case
4485 	 * this node is currently Diskless Primary.
4486 	 */
4487 
4488 	if (device->p_uuid && peer_state.disk >= D_NEGOTIATING &&
4489 	    get_ldev_if_state(device, D_NEGOTIATING)) {
4490 		int cr; /* consider resync */
4491 
4492 		/* if we established a new connection */
4493 		cr  = (os.conn < C_CONNECTED);
4494 		/* if we had an established connection
4495 		 * and one of the nodes newly attaches a disk */
4496 		cr |= (os.conn == C_CONNECTED &&
4497 		       (peer_state.disk == D_NEGOTIATING ||
4498 			os.disk == D_NEGOTIATING));
4499 		/* if we have both been inconsistent, and the peer has been
4500 		 * forced to be UpToDate with --force */
4501 		cr |= test_bit(CONSIDER_RESYNC, &device->flags);
4502 		/* if we had been plain connected, and the admin requested to
4503 		 * start a sync by "invalidate" or "invalidate-remote" */
4504 		cr |= (os.conn == C_CONNECTED &&
4505 				(peer_state.conn >= C_STARTING_SYNC_S &&
4506 				 peer_state.conn <= C_WF_BITMAP_T));
4507 
4508 		if (cr)
4509 			ns.conn = drbd_sync_handshake(peer_device, peer_state.role, real_peer_disk);
4510 
4511 		put_ldev(device);
4512 		if (ns.conn == C_MASK) {
4513 			ns.conn = C_CONNECTED;
4514 			if (device->state.disk == D_NEGOTIATING) {
4515 				drbd_force_state(device, NS(disk, D_FAILED));
4516 			} else if (peer_state.disk == D_NEGOTIATING) {
4517 				drbd_err(device, "Disk attach process on the peer node was aborted.\n");
4518 				peer_state.disk = D_DISKLESS;
4519 				real_peer_disk = D_DISKLESS;
4520 			} else {
4521 				if (test_and_clear_bit(CONN_DRY_RUN, &peer_device->connection->flags))
4522 					return -EIO;
4523 				D_ASSERT(device, os.conn == C_WF_REPORT_PARAMS);
4524 				conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4525 				return -EIO;
4526 			}
4527 		}
4528 	}
4529 
4530 	spin_lock_irq(&device->resource->req_lock);
4531 	if (os.i != drbd_read_state(device).i)
4532 		goto retry;
4533 	clear_bit(CONSIDER_RESYNC, &device->flags);
4534 	ns.peer = peer_state.role;
4535 	ns.pdsk = real_peer_disk;
4536 	ns.peer_isp = (peer_state.aftr_isp | peer_state.user_isp);
4537 	if ((ns.conn == C_CONNECTED || ns.conn == C_WF_BITMAP_S) && ns.disk == D_NEGOTIATING)
4538 		ns.disk = device->new_state_tmp.disk;
4539 	cs_flags = CS_VERBOSE + (os.conn < C_CONNECTED && ns.conn >= C_CONNECTED ? 0 : CS_HARD);
4540 	if (ns.pdsk == D_CONSISTENT && drbd_suspended(device) && ns.conn == C_CONNECTED && os.conn < C_CONNECTED &&
4541 	    test_bit(NEW_CUR_UUID, &device->flags)) {
4542 		/* Do not allow tl_restart(RESEND) for a rebooted peer. We can only allow this
4543 		   for temporal network outages! */
4544 		spin_unlock_irq(&device->resource->req_lock);
4545 		drbd_err(device, "Aborting Connect, can not thaw IO with an only Consistent peer\n");
4546 		tl_clear(peer_device->connection);
4547 		drbd_uuid_new_current(device);
4548 		clear_bit(NEW_CUR_UUID, &device->flags);
4549 		conn_request_state(peer_device->connection, NS2(conn, C_PROTOCOL_ERROR, susp, 0), CS_HARD);
4550 		return -EIO;
4551 	}
4552 	rv = _drbd_set_state(device, ns, cs_flags, NULL);
4553 	ns = drbd_read_state(device);
4554 	spin_unlock_irq(&device->resource->req_lock);
4555 
4556 	if (rv < SS_SUCCESS) {
4557 		conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4558 		return -EIO;
4559 	}
4560 
4561 	if (os.conn > C_WF_REPORT_PARAMS) {
4562 		if (ns.conn > C_CONNECTED && peer_state.conn <= C_CONNECTED &&
4563 		    peer_state.disk != D_NEGOTIATING ) {
4564 			/* we want resync, peer has not yet decided to sync... */
4565 			/* Nowadays only used when forcing a node into primary role and
4566 			   setting its disk to UpToDate with that */
4567 			drbd_send_uuids(peer_device);
4568 			drbd_send_current_state(peer_device);
4569 		}
4570 	}
4571 
4572 	clear_bit(DISCARD_MY_DATA, &device->flags);
4573 
4574 	drbd_md_sync(device); /* update connected indicator, la_size_sect, ... */
4575 
4576 	return 0;
4577 }
4578 
4579 static int receive_sync_uuid(struct drbd_connection *connection, struct packet_info *pi)
4580 {
4581 	struct drbd_peer_device *peer_device;
4582 	struct drbd_device *device;
4583 	struct p_rs_uuid *p = pi->data;
4584 
4585 	peer_device = conn_peer_device(connection, pi->vnr);
4586 	if (!peer_device)
4587 		return -EIO;
4588 	device = peer_device->device;
4589 
4590 	wait_event(device->misc_wait,
4591 		   device->state.conn == C_WF_SYNC_UUID ||
4592 		   device->state.conn == C_BEHIND ||
4593 		   device->state.conn < C_CONNECTED ||
4594 		   device->state.disk < D_NEGOTIATING);
4595 
4596 	/* D_ASSERT(device,  device->state.conn == C_WF_SYNC_UUID ); */
4597 
4598 	/* Here the _drbd_uuid_ functions are right, current should
4599 	   _not_ be rotated into the history */
4600 	if (get_ldev_if_state(device, D_NEGOTIATING)) {
4601 		_drbd_uuid_set(device, UI_CURRENT, be64_to_cpu(p->uuid));
4602 		_drbd_uuid_set(device, UI_BITMAP, 0UL);
4603 
4604 		drbd_print_uuids(device, "updated sync uuid");
4605 		drbd_start_resync(device, C_SYNC_TARGET);
4606 
4607 		put_ldev(device);
4608 	} else
4609 		drbd_err(device, "Ignoring SyncUUID packet!\n");
4610 
4611 	return 0;
4612 }
4613 
4614 /*
4615  * receive_bitmap_plain
4616  *
4617  * Return 0 when done, 1 when another iteration is needed, and a negative error
4618  * code upon failure.
4619  */
4620 static int
4621 receive_bitmap_plain(struct drbd_peer_device *peer_device, unsigned int size,
4622 		     unsigned long *p, struct bm_xfer_ctx *c)
4623 {
4624 	unsigned int data_size = DRBD_SOCKET_BUFFER_SIZE -
4625 				 drbd_header_size(peer_device->connection);
4626 	unsigned int num_words = min_t(size_t, data_size / sizeof(*p),
4627 				       c->bm_words - c->word_offset);
4628 	unsigned int want = num_words * sizeof(*p);
4629 	int err;
4630 
4631 	if (want != size) {
4632 		drbd_err(peer_device, "%s:want (%u) != size (%u)\n", __func__, want, size);
4633 		return -EIO;
4634 	}
4635 	if (want == 0)
4636 		return 0;
4637 	err = drbd_recv_all(peer_device->connection, p, want);
4638 	if (err)
4639 		return err;
4640 
4641 	drbd_bm_merge_lel(peer_device->device, c->word_offset, num_words, p);
4642 
4643 	c->word_offset += num_words;
4644 	c->bit_offset = c->word_offset * BITS_PER_LONG;
4645 	if (c->bit_offset > c->bm_bits)
4646 		c->bit_offset = c->bm_bits;
4647 
4648 	return 1;
4649 }
4650 
4651 static enum drbd_bitmap_code dcbp_get_code(struct p_compressed_bm *p)
4652 {
4653 	return (enum drbd_bitmap_code)(p->encoding & 0x0f);
4654 }
4655 
4656 static int dcbp_get_start(struct p_compressed_bm *p)
4657 {
4658 	return (p->encoding & 0x80) != 0;
4659 }
4660 
4661 static int dcbp_get_pad_bits(struct p_compressed_bm *p)
4662 {
4663 	return (p->encoding >> 4) & 0x7;
4664 }
4665 
4666 /*
4667  * recv_bm_rle_bits
4668  *
4669  * Return 0 when done, 1 when another iteration is needed, and a negative error
4670  * code upon failure.
4671  */
4672 static int
4673 recv_bm_rle_bits(struct drbd_peer_device *peer_device,
4674 		struct p_compressed_bm *p,
4675 		 struct bm_xfer_ctx *c,
4676 		 unsigned int len)
4677 {
4678 	struct bitstream bs;
4679 	u64 look_ahead;
4680 	u64 rl;
4681 	u64 tmp;
4682 	unsigned long s = c->bit_offset;
4683 	unsigned long e;
4684 	int toggle = dcbp_get_start(p);
4685 	int have;
4686 	int bits;
4687 
4688 	bitstream_init(&bs, p->code, len, dcbp_get_pad_bits(p));
4689 
4690 	bits = bitstream_get_bits(&bs, &look_ahead, 64);
4691 	if (bits < 0)
4692 		return -EIO;
4693 
4694 	for (have = bits; have > 0; s += rl, toggle = !toggle) {
4695 		bits = vli_decode_bits(&rl, look_ahead);
4696 		if (bits <= 0)
4697 			return -EIO;
4698 
4699 		if (toggle) {
4700 			e = s + rl -1;
4701 			if (e >= c->bm_bits) {
4702 				drbd_err(peer_device, "bitmap overflow (e:%lu) while decoding bm RLE packet\n", e);
4703 				return -EIO;
4704 			}
4705 			_drbd_bm_set_bits(peer_device->device, s, e);
4706 		}
4707 
4708 		if (have < bits) {
4709 			drbd_err(peer_device, "bitmap decoding error: h:%d b:%d la:0x%08llx l:%u/%u\n",
4710 				have, bits, look_ahead,
4711 				(unsigned int)(bs.cur.b - p->code),
4712 				(unsigned int)bs.buf_len);
4713 			return -EIO;
4714 		}
4715 		/* if we consumed all 64 bits, assign 0; >> 64 is "undefined"; */
4716 		if (likely(bits < 64))
4717 			look_ahead >>= bits;
4718 		else
4719 			look_ahead = 0;
4720 		have -= bits;
4721 
4722 		bits = bitstream_get_bits(&bs, &tmp, 64 - have);
4723 		if (bits < 0)
4724 			return -EIO;
4725 		look_ahead |= tmp << have;
4726 		have += bits;
4727 	}
4728 
4729 	c->bit_offset = s;
4730 	bm_xfer_ctx_bit_to_word_offset(c);
4731 
4732 	return (s != c->bm_bits);
4733 }
4734 
4735 /*
4736  * decode_bitmap_c
4737  *
4738  * Return 0 when done, 1 when another iteration is needed, and a negative error
4739  * code upon failure.
4740  */
4741 static int
4742 decode_bitmap_c(struct drbd_peer_device *peer_device,
4743 		struct p_compressed_bm *p,
4744 		struct bm_xfer_ctx *c,
4745 		unsigned int len)
4746 {
4747 	if (dcbp_get_code(p) == RLE_VLI_Bits)
4748 		return recv_bm_rle_bits(peer_device, p, c, len - sizeof(*p));
4749 
4750 	/* other variants had been implemented for evaluation,
4751 	 * but have been dropped as this one turned out to be "best"
4752 	 * during all our tests. */
4753 
4754 	drbd_err(peer_device, "receive_bitmap_c: unknown encoding %u\n", p->encoding);
4755 	conn_request_state(peer_device->connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
4756 	return -EIO;
4757 }
4758 
4759 void INFO_bm_xfer_stats(struct drbd_device *device,
4760 		const char *direction, struct bm_xfer_ctx *c)
4761 {
4762 	/* what would it take to transfer it "plaintext" */
4763 	unsigned int header_size = drbd_header_size(first_peer_device(device)->connection);
4764 	unsigned int data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
4765 	unsigned int plain =
4766 		header_size * (DIV_ROUND_UP(c->bm_words, data_size) + 1) +
4767 		c->bm_words * sizeof(unsigned long);
4768 	unsigned int total = c->bytes[0] + c->bytes[1];
4769 	unsigned int r;
4770 
4771 	/* total can not be zero. but just in case: */
4772 	if (total == 0)
4773 		return;
4774 
4775 	/* don't report if not compressed */
4776 	if (total >= plain)
4777 		return;
4778 
4779 	/* total < plain. check for overflow, still */
4780 	r = (total > UINT_MAX/1000) ? (total / (plain/1000))
4781 		                    : (1000 * total / plain);
4782 
4783 	if (r > 1000)
4784 		r = 1000;
4785 
4786 	r = 1000 - r;
4787 	drbd_info(device, "%s bitmap stats [Bytes(packets)]: plain %u(%u), RLE %u(%u), "
4788 	     "total %u; compression: %u.%u%%\n",
4789 			direction,
4790 			c->bytes[1], c->packets[1],
4791 			c->bytes[0], c->packets[0],
4792 			total, r/10, r % 10);
4793 }
4794 
4795 /* Since we are processing the bitfield from lower addresses to higher,
4796    it does not matter if the process it in 32 bit chunks or 64 bit
4797    chunks as long as it is little endian. (Understand it as byte stream,
4798    beginning with the lowest byte...) If we would use big endian
4799    we would need to process it from the highest address to the lowest,
4800    in order to be agnostic to the 32 vs 64 bits issue.
4801 
4802    returns 0 on failure, 1 if we successfully received it. */
4803 static int receive_bitmap(struct drbd_connection *connection, struct packet_info *pi)
4804 {
4805 	struct drbd_peer_device *peer_device;
4806 	struct drbd_device *device;
4807 	struct bm_xfer_ctx c;
4808 	int err;
4809 
4810 	peer_device = conn_peer_device(connection, pi->vnr);
4811 	if (!peer_device)
4812 		return -EIO;
4813 	device = peer_device->device;
4814 
4815 	drbd_bm_lock(device, "receive bitmap", BM_LOCKED_SET_ALLOWED);
4816 	/* you are supposed to send additional out-of-sync information
4817 	 * if you actually set bits during this phase */
4818 
4819 	c = (struct bm_xfer_ctx) {
4820 		.bm_bits = drbd_bm_bits(device),
4821 		.bm_words = drbd_bm_words(device),
4822 	};
4823 
4824 	for(;;) {
4825 		if (pi->cmd == P_BITMAP)
4826 			err = receive_bitmap_plain(peer_device, pi->size, pi->data, &c);
4827 		else if (pi->cmd == P_COMPRESSED_BITMAP) {
4828 			/* MAYBE: sanity check that we speak proto >= 90,
4829 			 * and the feature is enabled! */
4830 			struct p_compressed_bm *p = pi->data;
4831 
4832 			if (pi->size > DRBD_SOCKET_BUFFER_SIZE - drbd_header_size(connection)) {
4833 				drbd_err(device, "ReportCBitmap packet too large\n");
4834 				err = -EIO;
4835 				goto out;
4836 			}
4837 			if (pi->size <= sizeof(*p)) {
4838 				drbd_err(device, "ReportCBitmap packet too small (l:%u)\n", pi->size);
4839 				err = -EIO;
4840 				goto out;
4841 			}
4842 			err = drbd_recv_all(peer_device->connection, p, pi->size);
4843 			if (err)
4844 			       goto out;
4845 			err = decode_bitmap_c(peer_device, p, &c, pi->size);
4846 		} else {
4847 			drbd_warn(device, "receive_bitmap: cmd neither ReportBitMap nor ReportCBitMap (is 0x%x)", pi->cmd);
4848 			err = -EIO;
4849 			goto out;
4850 		}
4851 
4852 		c.packets[pi->cmd == P_BITMAP]++;
4853 		c.bytes[pi->cmd == P_BITMAP] += drbd_header_size(connection) + pi->size;
4854 
4855 		if (err <= 0) {
4856 			if (err < 0)
4857 				goto out;
4858 			break;
4859 		}
4860 		err = drbd_recv_header(peer_device->connection, pi);
4861 		if (err)
4862 			goto out;
4863 	}
4864 
4865 	INFO_bm_xfer_stats(device, "receive", &c);
4866 
4867 	if (device->state.conn == C_WF_BITMAP_T) {
4868 		enum drbd_state_rv rv;
4869 
4870 		err = drbd_send_bitmap(device);
4871 		if (err)
4872 			goto out;
4873 		/* Omit CS_ORDERED with this state transition to avoid deadlocks. */
4874 		rv = _drbd_request_state(device, NS(conn, C_WF_SYNC_UUID), CS_VERBOSE);
4875 		D_ASSERT(device, rv == SS_SUCCESS);
4876 	} else if (device->state.conn != C_WF_BITMAP_S) {
4877 		/* admin may have requested C_DISCONNECTING,
4878 		 * other threads may have noticed network errors */
4879 		drbd_info(device, "unexpected cstate (%s) in receive_bitmap\n",
4880 		    drbd_conn_str(device->state.conn));
4881 	}
4882 	err = 0;
4883 
4884  out:
4885 	drbd_bm_unlock(device);
4886 	if (!err && device->state.conn == C_WF_BITMAP_S)
4887 		drbd_start_resync(device, C_SYNC_SOURCE);
4888 	return err;
4889 }
4890 
4891 static int receive_skip(struct drbd_connection *connection, struct packet_info *pi)
4892 {
4893 	drbd_warn(connection, "skipping unknown optional packet type %d, l: %d!\n",
4894 		 pi->cmd, pi->size);
4895 
4896 	return ignore_remaining_packet(connection, pi);
4897 }
4898 
4899 static int receive_UnplugRemote(struct drbd_connection *connection, struct packet_info *pi)
4900 {
4901 	/* Make sure we've acked all the TCP data associated
4902 	 * with the data requests being unplugged */
4903 	tcp_sock_set_quickack(connection->data.socket->sk, 2);
4904 	return 0;
4905 }
4906 
4907 static int receive_out_of_sync(struct drbd_connection *connection, struct packet_info *pi)
4908 {
4909 	struct drbd_peer_device *peer_device;
4910 	struct drbd_device *device;
4911 	struct p_block_desc *p = pi->data;
4912 
4913 	peer_device = conn_peer_device(connection, pi->vnr);
4914 	if (!peer_device)
4915 		return -EIO;
4916 	device = peer_device->device;
4917 
4918 	switch (device->state.conn) {
4919 	case C_WF_SYNC_UUID:
4920 	case C_WF_BITMAP_T:
4921 	case C_BEHIND:
4922 			break;
4923 	default:
4924 		drbd_err(device, "ASSERT FAILED cstate = %s, expected: WFSyncUUID|WFBitMapT|Behind\n",
4925 				drbd_conn_str(device->state.conn));
4926 	}
4927 
4928 	drbd_set_out_of_sync(device, be64_to_cpu(p->sector), be32_to_cpu(p->blksize));
4929 
4930 	return 0;
4931 }
4932 
4933 static int receive_rs_deallocated(struct drbd_connection *connection, struct packet_info *pi)
4934 {
4935 	struct drbd_peer_device *peer_device;
4936 	struct p_block_desc *p = pi->data;
4937 	struct drbd_device *device;
4938 	sector_t sector;
4939 	int size, err = 0;
4940 
4941 	peer_device = conn_peer_device(connection, pi->vnr);
4942 	if (!peer_device)
4943 		return -EIO;
4944 	device = peer_device->device;
4945 
4946 	sector = be64_to_cpu(p->sector);
4947 	size = be32_to_cpu(p->blksize);
4948 
4949 	dec_rs_pending(device);
4950 
4951 	if (get_ldev(device)) {
4952 		struct drbd_peer_request *peer_req;
4953 		const enum req_op op = REQ_OP_WRITE_ZEROES;
4954 
4955 		peer_req = drbd_alloc_peer_req(peer_device, ID_SYNCER, sector,
4956 					       size, 0, GFP_NOIO);
4957 		if (!peer_req) {
4958 			put_ldev(device);
4959 			return -ENOMEM;
4960 		}
4961 
4962 		peer_req->w.cb = e_end_resync_block;
4963 		peer_req->submit_jif = jiffies;
4964 		peer_req->flags |= EE_TRIM;
4965 
4966 		spin_lock_irq(&device->resource->req_lock);
4967 		list_add_tail(&peer_req->w.list, &device->sync_ee);
4968 		spin_unlock_irq(&device->resource->req_lock);
4969 
4970 		atomic_add(pi->size >> 9, &device->rs_sect_ev);
4971 		err = drbd_submit_peer_request(device, peer_req, op,
4972 					       DRBD_FAULT_RS_WR);
4973 
4974 		if (err) {
4975 			spin_lock_irq(&device->resource->req_lock);
4976 			list_del(&peer_req->w.list);
4977 			spin_unlock_irq(&device->resource->req_lock);
4978 
4979 			drbd_free_peer_req(device, peer_req);
4980 			put_ldev(device);
4981 			err = 0;
4982 			goto fail;
4983 		}
4984 
4985 		inc_unacked(device);
4986 
4987 		/* No put_ldev() here. Gets called in drbd_endio_write_sec_final(),
4988 		   as well as drbd_rs_complete_io() */
4989 	} else {
4990 	fail:
4991 		drbd_rs_complete_io(device, sector);
4992 		drbd_send_ack_ex(peer_device, P_NEG_ACK, sector, size, ID_SYNCER);
4993 	}
4994 
4995 	atomic_add(size >> 9, &device->rs_sect_in);
4996 
4997 	return err;
4998 }
4999 
5000 struct data_cmd {
5001 	int expect_payload;
5002 	unsigned int pkt_size;
5003 	int (*fn)(struct drbd_connection *, struct packet_info *);
5004 };
5005 
5006 static struct data_cmd drbd_cmd_handler[] = {
5007 	[P_DATA]	    = { 1, sizeof(struct p_data), receive_Data },
5008 	[P_DATA_REPLY]	    = { 1, sizeof(struct p_data), receive_DataReply },
5009 	[P_RS_DATA_REPLY]   = { 1, sizeof(struct p_data), receive_RSDataReply } ,
5010 	[P_BARRIER]	    = { 0, sizeof(struct p_barrier), receive_Barrier } ,
5011 	[P_BITMAP]	    = { 1, 0, receive_bitmap } ,
5012 	[P_COMPRESSED_BITMAP] = { 1, 0, receive_bitmap } ,
5013 	[P_UNPLUG_REMOTE]   = { 0, 0, receive_UnplugRemote },
5014 	[P_DATA_REQUEST]    = { 0, sizeof(struct p_block_req), receive_DataRequest },
5015 	[P_RS_DATA_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest },
5016 	[P_SYNC_PARAM]	    = { 1, 0, receive_SyncParam },
5017 	[P_SYNC_PARAM89]    = { 1, 0, receive_SyncParam },
5018 	[P_PROTOCOL]        = { 1, sizeof(struct p_protocol), receive_protocol },
5019 	[P_UUIDS]	    = { 0, sizeof(struct p_uuids), receive_uuids },
5020 	[P_SIZES]	    = { 0, sizeof(struct p_sizes), receive_sizes },
5021 	[P_STATE]	    = { 0, sizeof(struct p_state), receive_state },
5022 	[P_STATE_CHG_REQ]   = { 0, sizeof(struct p_req_state), receive_req_state },
5023 	[P_SYNC_UUID]       = { 0, sizeof(struct p_rs_uuid), receive_sync_uuid },
5024 	[P_OV_REQUEST]      = { 0, sizeof(struct p_block_req), receive_DataRequest },
5025 	[P_OV_REPLY]        = { 1, sizeof(struct p_block_req), receive_DataRequest },
5026 	[P_CSUM_RS_REQUEST] = { 1, sizeof(struct p_block_req), receive_DataRequest },
5027 	[P_RS_THIN_REQ]     = { 0, sizeof(struct p_block_req), receive_DataRequest },
5028 	[P_DELAY_PROBE]     = { 0, sizeof(struct p_delay_probe93), receive_skip },
5029 	[P_OUT_OF_SYNC]     = { 0, sizeof(struct p_block_desc), receive_out_of_sync },
5030 	[P_CONN_ST_CHG_REQ] = { 0, sizeof(struct p_req_state), receive_req_conn_state },
5031 	[P_PROTOCOL_UPDATE] = { 1, sizeof(struct p_protocol), receive_protocol },
5032 	[P_TRIM]	    = { 0, sizeof(struct p_trim), receive_Data },
5033 	[P_ZEROES]	    = { 0, sizeof(struct p_trim), receive_Data },
5034 	[P_RS_DEALLOCATED]  = { 0, sizeof(struct p_block_desc), receive_rs_deallocated },
5035 };
5036 
5037 static void drbdd(struct drbd_connection *connection)
5038 {
5039 	struct packet_info pi;
5040 	size_t shs; /* sub header size */
5041 	int err;
5042 
5043 	while (get_t_state(&connection->receiver) == RUNNING) {
5044 		struct data_cmd const *cmd;
5045 
5046 		drbd_thread_current_set_cpu(&connection->receiver);
5047 		update_receiver_timing_details(connection, drbd_recv_header_maybe_unplug);
5048 		if (drbd_recv_header_maybe_unplug(connection, &pi))
5049 			goto err_out;
5050 
5051 		cmd = &drbd_cmd_handler[pi.cmd];
5052 		if (unlikely(pi.cmd >= ARRAY_SIZE(drbd_cmd_handler) || !cmd->fn)) {
5053 			drbd_err(connection, "Unexpected data packet %s (0x%04x)",
5054 				 cmdname(pi.cmd), pi.cmd);
5055 			goto err_out;
5056 		}
5057 
5058 		shs = cmd->pkt_size;
5059 		if (pi.cmd == P_SIZES && connection->agreed_features & DRBD_FF_WSAME)
5060 			shs += sizeof(struct o_qlim);
5061 		if (pi.size > shs && !cmd->expect_payload) {
5062 			drbd_err(connection, "No payload expected %s l:%d\n",
5063 				 cmdname(pi.cmd), pi.size);
5064 			goto err_out;
5065 		}
5066 		if (pi.size < shs) {
5067 			drbd_err(connection, "%s: unexpected packet size, expected:%d received:%d\n",
5068 				 cmdname(pi.cmd), (int)shs, pi.size);
5069 			goto err_out;
5070 		}
5071 
5072 		if (shs) {
5073 			update_receiver_timing_details(connection, drbd_recv_all_warn);
5074 			err = drbd_recv_all_warn(connection, pi.data, shs);
5075 			if (err)
5076 				goto err_out;
5077 			pi.size -= shs;
5078 		}
5079 
5080 		update_receiver_timing_details(connection, cmd->fn);
5081 		err = cmd->fn(connection, &pi);
5082 		if (err) {
5083 			drbd_err(connection, "error receiving %s, e: %d l: %d!\n",
5084 				 cmdname(pi.cmd), err, pi.size);
5085 			goto err_out;
5086 		}
5087 	}
5088 	return;
5089 
5090     err_out:
5091 	conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
5092 }
5093 
5094 static void conn_disconnect(struct drbd_connection *connection)
5095 {
5096 	struct drbd_peer_device *peer_device;
5097 	enum drbd_conns oc;
5098 	int vnr;
5099 
5100 	if (connection->cstate == C_STANDALONE)
5101 		return;
5102 
5103 	/* We are about to start the cleanup after connection loss.
5104 	 * Make sure drbd_make_request knows about that.
5105 	 * Usually we should be in some network failure state already,
5106 	 * but just in case we are not, we fix it up here.
5107 	 */
5108 	conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD);
5109 
5110 	/* ack_receiver does not clean up anything. it must not interfere, either */
5111 	drbd_thread_stop(&connection->ack_receiver);
5112 	if (connection->ack_sender) {
5113 		destroy_workqueue(connection->ack_sender);
5114 		connection->ack_sender = NULL;
5115 	}
5116 	drbd_free_sock(connection);
5117 
5118 	rcu_read_lock();
5119 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
5120 		struct drbd_device *device = peer_device->device;
5121 		kref_get(&device->kref);
5122 		rcu_read_unlock();
5123 		drbd_disconnected(peer_device);
5124 		kref_put(&device->kref, drbd_destroy_device);
5125 		rcu_read_lock();
5126 	}
5127 	rcu_read_unlock();
5128 
5129 	if (!list_empty(&connection->current_epoch->list))
5130 		drbd_err(connection, "ASSERTION FAILED: connection->current_epoch->list not empty\n");
5131 	/* ok, no more ee's on the fly, it is safe to reset the epoch_size */
5132 	atomic_set(&connection->current_epoch->epoch_size, 0);
5133 	connection->send.seen_any_write_yet = false;
5134 
5135 	drbd_info(connection, "Connection closed\n");
5136 
5137 	if (conn_highest_role(connection) == R_PRIMARY && conn_highest_pdsk(connection) >= D_UNKNOWN)
5138 		conn_try_outdate_peer_async(connection);
5139 
5140 	spin_lock_irq(&connection->resource->req_lock);
5141 	oc = connection->cstate;
5142 	if (oc >= C_UNCONNECTED)
5143 		_conn_request_state(connection, NS(conn, C_UNCONNECTED), CS_VERBOSE);
5144 
5145 	spin_unlock_irq(&connection->resource->req_lock);
5146 
5147 	if (oc == C_DISCONNECTING)
5148 		conn_request_state(connection, NS(conn, C_STANDALONE), CS_VERBOSE | CS_HARD);
5149 }
5150 
5151 static int drbd_disconnected(struct drbd_peer_device *peer_device)
5152 {
5153 	struct drbd_device *device = peer_device->device;
5154 	unsigned int i;
5155 
5156 	/* wait for current activity to cease. */
5157 	spin_lock_irq(&device->resource->req_lock);
5158 	_drbd_wait_ee_list_empty(device, &device->active_ee);
5159 	_drbd_wait_ee_list_empty(device, &device->sync_ee);
5160 	_drbd_wait_ee_list_empty(device, &device->read_ee);
5161 	spin_unlock_irq(&device->resource->req_lock);
5162 
5163 	/* We do not have data structures that would allow us to
5164 	 * get the rs_pending_cnt down to 0 again.
5165 	 *  * On C_SYNC_TARGET we do not have any data structures describing
5166 	 *    the pending RSDataRequest's we have sent.
5167 	 *  * On C_SYNC_SOURCE there is no data structure that tracks
5168 	 *    the P_RS_DATA_REPLY blocks that we sent to the SyncTarget.
5169 	 *  And no, it is not the sum of the reference counts in the
5170 	 *  resync_LRU. The resync_LRU tracks the whole operation including
5171 	 *  the disk-IO, while the rs_pending_cnt only tracks the blocks
5172 	 *  on the fly. */
5173 	drbd_rs_cancel_all(device);
5174 	device->rs_total = 0;
5175 	device->rs_failed = 0;
5176 	atomic_set(&device->rs_pending_cnt, 0);
5177 	wake_up(&device->misc_wait);
5178 
5179 	del_timer_sync(&device->resync_timer);
5180 	resync_timer_fn(&device->resync_timer);
5181 
5182 	/* wait for all w_e_end_data_req, w_e_end_rsdata_req, w_send_barrier,
5183 	 * w_make_resync_request etc. which may still be on the worker queue
5184 	 * to be "canceled" */
5185 	drbd_flush_workqueue(&peer_device->connection->sender_work);
5186 
5187 	drbd_finish_peer_reqs(device);
5188 
5189 	/* This second workqueue flush is necessary, since drbd_finish_peer_reqs()
5190 	   might have issued a work again. The one before drbd_finish_peer_reqs() is
5191 	   necessary to reclain net_ee in drbd_finish_peer_reqs(). */
5192 	drbd_flush_workqueue(&peer_device->connection->sender_work);
5193 
5194 	/* need to do it again, drbd_finish_peer_reqs() may have populated it
5195 	 * again via drbd_try_clear_on_disk_bm(). */
5196 	drbd_rs_cancel_all(device);
5197 
5198 	kfree(device->p_uuid);
5199 	device->p_uuid = NULL;
5200 
5201 	if (!drbd_suspended(device))
5202 		tl_clear(peer_device->connection);
5203 
5204 	drbd_md_sync(device);
5205 
5206 	if (get_ldev(device)) {
5207 		drbd_bitmap_io(device, &drbd_bm_write_copy_pages,
5208 				"write from disconnected", BM_LOCKED_CHANGE_ALLOWED);
5209 		put_ldev(device);
5210 	}
5211 
5212 	/* tcp_close and release of sendpage pages can be deferred.  I don't
5213 	 * want to use SO_LINGER, because apparently it can be deferred for
5214 	 * more than 20 seconds (longest time I checked).
5215 	 *
5216 	 * Actually we don't care for exactly when the network stack does its
5217 	 * put_page(), but release our reference on these pages right here.
5218 	 */
5219 	i = drbd_free_peer_reqs(device, &device->net_ee);
5220 	if (i)
5221 		drbd_info(device, "net_ee not empty, killed %u entries\n", i);
5222 	i = atomic_read(&device->pp_in_use_by_net);
5223 	if (i)
5224 		drbd_info(device, "pp_in_use_by_net = %d, expected 0\n", i);
5225 	i = atomic_read(&device->pp_in_use);
5226 	if (i)
5227 		drbd_info(device, "pp_in_use = %d, expected 0\n", i);
5228 
5229 	D_ASSERT(device, list_empty(&device->read_ee));
5230 	D_ASSERT(device, list_empty(&device->active_ee));
5231 	D_ASSERT(device, list_empty(&device->sync_ee));
5232 	D_ASSERT(device, list_empty(&device->done_ee));
5233 
5234 	return 0;
5235 }
5236 
5237 /*
5238  * We support PRO_VERSION_MIN to PRO_VERSION_MAX. The protocol version
5239  * we can agree on is stored in agreed_pro_version.
5240  *
5241  * feature flags and the reserved array should be enough room for future
5242  * enhancements of the handshake protocol, and possible plugins...
5243  *
5244  * for now, they are expected to be zero, but ignored.
5245  */
5246 static int drbd_send_features(struct drbd_connection *connection)
5247 {
5248 	struct drbd_socket *sock;
5249 	struct p_connection_features *p;
5250 
5251 	sock = &connection->data;
5252 	p = conn_prepare_command(connection, sock);
5253 	if (!p)
5254 		return -EIO;
5255 	memset(p, 0, sizeof(*p));
5256 	p->protocol_min = cpu_to_be32(PRO_VERSION_MIN);
5257 	p->protocol_max = cpu_to_be32(PRO_VERSION_MAX);
5258 	p->feature_flags = cpu_to_be32(PRO_FEATURES);
5259 	return conn_send_command(connection, sock, P_CONNECTION_FEATURES, sizeof(*p), NULL, 0);
5260 }
5261 
5262 /*
5263  * return values:
5264  *   1 yes, we have a valid connection
5265  *   0 oops, did not work out, please try again
5266  *  -1 peer talks different language,
5267  *     no point in trying again, please go standalone.
5268  */
5269 static int drbd_do_features(struct drbd_connection *connection)
5270 {
5271 	/* ASSERT current == connection->receiver ... */
5272 	struct p_connection_features *p;
5273 	const int expect = sizeof(struct p_connection_features);
5274 	struct packet_info pi;
5275 	int err;
5276 
5277 	err = drbd_send_features(connection);
5278 	if (err)
5279 		return 0;
5280 
5281 	err = drbd_recv_header(connection, &pi);
5282 	if (err)
5283 		return 0;
5284 
5285 	if (pi.cmd != P_CONNECTION_FEATURES) {
5286 		drbd_err(connection, "expected ConnectionFeatures packet, received: %s (0x%04x)\n",
5287 			 cmdname(pi.cmd), pi.cmd);
5288 		return -1;
5289 	}
5290 
5291 	if (pi.size != expect) {
5292 		drbd_err(connection, "expected ConnectionFeatures length: %u, received: %u\n",
5293 		     expect, pi.size);
5294 		return -1;
5295 	}
5296 
5297 	p = pi.data;
5298 	err = drbd_recv_all_warn(connection, p, expect);
5299 	if (err)
5300 		return 0;
5301 
5302 	p->protocol_min = be32_to_cpu(p->protocol_min);
5303 	p->protocol_max = be32_to_cpu(p->protocol_max);
5304 	if (p->protocol_max == 0)
5305 		p->protocol_max = p->protocol_min;
5306 
5307 	if (PRO_VERSION_MAX < p->protocol_min ||
5308 	    PRO_VERSION_MIN > p->protocol_max)
5309 		goto incompat;
5310 
5311 	connection->agreed_pro_version = min_t(int, PRO_VERSION_MAX, p->protocol_max);
5312 	connection->agreed_features = PRO_FEATURES & be32_to_cpu(p->feature_flags);
5313 
5314 	drbd_info(connection, "Handshake successful: "
5315 	     "Agreed network protocol version %d\n", connection->agreed_pro_version);
5316 
5317 	drbd_info(connection, "Feature flags enabled on protocol level: 0x%x%s%s%s%s.\n",
5318 		  connection->agreed_features,
5319 		  connection->agreed_features & DRBD_FF_TRIM ? " TRIM" : "",
5320 		  connection->agreed_features & DRBD_FF_THIN_RESYNC ? " THIN_RESYNC" : "",
5321 		  connection->agreed_features & DRBD_FF_WSAME ? " WRITE_SAME" : "",
5322 		  connection->agreed_features & DRBD_FF_WZEROES ? " WRITE_ZEROES" :
5323 		  connection->agreed_features ? "" : " none");
5324 
5325 	return 1;
5326 
5327  incompat:
5328 	drbd_err(connection, "incompatible DRBD dialects: "
5329 	    "I support %d-%d, peer supports %d-%d\n",
5330 	    PRO_VERSION_MIN, PRO_VERSION_MAX,
5331 	    p->protocol_min, p->protocol_max);
5332 	return -1;
5333 }
5334 
5335 #if !defined(CONFIG_CRYPTO_HMAC) && !defined(CONFIG_CRYPTO_HMAC_MODULE)
5336 static int drbd_do_auth(struct drbd_connection *connection)
5337 {
5338 	drbd_err(connection, "This kernel was build without CONFIG_CRYPTO_HMAC.\n");
5339 	drbd_err(connection, "You need to disable 'cram-hmac-alg' in drbd.conf.\n");
5340 	return -1;
5341 }
5342 #else
5343 #define CHALLENGE_LEN 64
5344 
5345 /* Return value:
5346 	1 - auth succeeded,
5347 	0 - failed, try again (network error),
5348 	-1 - auth failed, don't try again.
5349 */
5350 
5351 static int drbd_do_auth(struct drbd_connection *connection)
5352 {
5353 	struct drbd_socket *sock;
5354 	char my_challenge[CHALLENGE_LEN];  /* 64 Bytes... */
5355 	char *response = NULL;
5356 	char *right_response = NULL;
5357 	char *peers_ch = NULL;
5358 	unsigned int key_len;
5359 	char secret[SHARED_SECRET_MAX]; /* 64 byte */
5360 	unsigned int resp_size;
5361 	struct shash_desc *desc;
5362 	struct packet_info pi;
5363 	struct net_conf *nc;
5364 	int err, rv;
5365 
5366 	/* FIXME: Put the challenge/response into the preallocated socket buffer.  */
5367 
5368 	rcu_read_lock();
5369 	nc = rcu_dereference(connection->net_conf);
5370 	key_len = strlen(nc->shared_secret);
5371 	memcpy(secret, nc->shared_secret, key_len);
5372 	rcu_read_unlock();
5373 
5374 	desc = kmalloc(sizeof(struct shash_desc) +
5375 		       crypto_shash_descsize(connection->cram_hmac_tfm),
5376 		       GFP_KERNEL);
5377 	if (!desc) {
5378 		rv = -1;
5379 		goto fail;
5380 	}
5381 	desc->tfm = connection->cram_hmac_tfm;
5382 
5383 	rv = crypto_shash_setkey(connection->cram_hmac_tfm, (u8 *)secret, key_len);
5384 	if (rv) {
5385 		drbd_err(connection, "crypto_shash_setkey() failed with %d\n", rv);
5386 		rv = -1;
5387 		goto fail;
5388 	}
5389 
5390 	get_random_bytes(my_challenge, CHALLENGE_LEN);
5391 
5392 	sock = &connection->data;
5393 	if (!conn_prepare_command(connection, sock)) {
5394 		rv = 0;
5395 		goto fail;
5396 	}
5397 	rv = !conn_send_command(connection, sock, P_AUTH_CHALLENGE, 0,
5398 				my_challenge, CHALLENGE_LEN);
5399 	if (!rv)
5400 		goto fail;
5401 
5402 	err = drbd_recv_header(connection, &pi);
5403 	if (err) {
5404 		rv = 0;
5405 		goto fail;
5406 	}
5407 
5408 	if (pi.cmd != P_AUTH_CHALLENGE) {
5409 		drbd_err(connection, "expected AuthChallenge packet, received: %s (0x%04x)\n",
5410 			 cmdname(pi.cmd), pi.cmd);
5411 		rv = -1;
5412 		goto fail;
5413 	}
5414 
5415 	if (pi.size > CHALLENGE_LEN * 2) {
5416 		drbd_err(connection, "expected AuthChallenge payload too big.\n");
5417 		rv = -1;
5418 		goto fail;
5419 	}
5420 
5421 	if (pi.size < CHALLENGE_LEN) {
5422 		drbd_err(connection, "AuthChallenge payload too small.\n");
5423 		rv = -1;
5424 		goto fail;
5425 	}
5426 
5427 	peers_ch = kmalloc(pi.size, GFP_NOIO);
5428 	if (!peers_ch) {
5429 		rv = -1;
5430 		goto fail;
5431 	}
5432 
5433 	err = drbd_recv_all_warn(connection, peers_ch, pi.size);
5434 	if (err) {
5435 		rv = 0;
5436 		goto fail;
5437 	}
5438 
5439 	if (!memcmp(my_challenge, peers_ch, CHALLENGE_LEN)) {
5440 		drbd_err(connection, "Peer presented the same challenge!\n");
5441 		rv = -1;
5442 		goto fail;
5443 	}
5444 
5445 	resp_size = crypto_shash_digestsize(connection->cram_hmac_tfm);
5446 	response = kmalloc(resp_size, GFP_NOIO);
5447 	if (!response) {
5448 		rv = -1;
5449 		goto fail;
5450 	}
5451 
5452 	rv = crypto_shash_digest(desc, peers_ch, pi.size, response);
5453 	if (rv) {
5454 		drbd_err(connection, "crypto_hash_digest() failed with %d\n", rv);
5455 		rv = -1;
5456 		goto fail;
5457 	}
5458 
5459 	if (!conn_prepare_command(connection, sock)) {
5460 		rv = 0;
5461 		goto fail;
5462 	}
5463 	rv = !conn_send_command(connection, sock, P_AUTH_RESPONSE, 0,
5464 				response, resp_size);
5465 	if (!rv)
5466 		goto fail;
5467 
5468 	err = drbd_recv_header(connection, &pi);
5469 	if (err) {
5470 		rv = 0;
5471 		goto fail;
5472 	}
5473 
5474 	if (pi.cmd != P_AUTH_RESPONSE) {
5475 		drbd_err(connection, "expected AuthResponse packet, received: %s (0x%04x)\n",
5476 			 cmdname(pi.cmd), pi.cmd);
5477 		rv = 0;
5478 		goto fail;
5479 	}
5480 
5481 	if (pi.size != resp_size) {
5482 		drbd_err(connection, "expected AuthResponse payload of wrong size\n");
5483 		rv = 0;
5484 		goto fail;
5485 	}
5486 
5487 	err = drbd_recv_all_warn(connection, response , resp_size);
5488 	if (err) {
5489 		rv = 0;
5490 		goto fail;
5491 	}
5492 
5493 	right_response = kmalloc(resp_size, GFP_NOIO);
5494 	if (!right_response) {
5495 		rv = -1;
5496 		goto fail;
5497 	}
5498 
5499 	rv = crypto_shash_digest(desc, my_challenge, CHALLENGE_LEN,
5500 				 right_response);
5501 	if (rv) {
5502 		drbd_err(connection, "crypto_hash_digest() failed with %d\n", rv);
5503 		rv = -1;
5504 		goto fail;
5505 	}
5506 
5507 	rv = !memcmp(response, right_response, resp_size);
5508 
5509 	if (rv)
5510 		drbd_info(connection, "Peer authenticated using %d bytes HMAC\n",
5511 		     resp_size);
5512 	else
5513 		rv = -1;
5514 
5515  fail:
5516 	kfree(peers_ch);
5517 	kfree(response);
5518 	kfree(right_response);
5519 	if (desc) {
5520 		shash_desc_zero(desc);
5521 		kfree(desc);
5522 	}
5523 
5524 	return rv;
5525 }
5526 #endif
5527 
5528 int drbd_receiver(struct drbd_thread *thi)
5529 {
5530 	struct drbd_connection *connection = thi->connection;
5531 	int h;
5532 
5533 	drbd_info(connection, "receiver (re)started\n");
5534 
5535 	do {
5536 		h = conn_connect(connection);
5537 		if (h == 0) {
5538 			conn_disconnect(connection);
5539 			schedule_timeout_interruptible(HZ);
5540 		}
5541 		if (h == -1) {
5542 			drbd_warn(connection, "Discarding network configuration.\n");
5543 			conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
5544 		}
5545 	} while (h == 0);
5546 
5547 	if (h > 0) {
5548 		blk_start_plug(&connection->receiver_plug);
5549 		drbdd(connection);
5550 		blk_finish_plug(&connection->receiver_plug);
5551 	}
5552 
5553 	conn_disconnect(connection);
5554 
5555 	drbd_info(connection, "receiver terminated\n");
5556 	return 0;
5557 }
5558 
5559 /* ********* acknowledge sender ******** */
5560 
5561 static int got_conn_RqSReply(struct drbd_connection *connection, struct packet_info *pi)
5562 {
5563 	struct p_req_state_reply *p = pi->data;
5564 	int retcode = be32_to_cpu(p->retcode);
5565 
5566 	if (retcode >= SS_SUCCESS) {
5567 		set_bit(CONN_WD_ST_CHG_OKAY, &connection->flags);
5568 	} else {
5569 		set_bit(CONN_WD_ST_CHG_FAIL, &connection->flags);
5570 		drbd_err(connection, "Requested state change failed by peer: %s (%d)\n",
5571 			 drbd_set_st_err_str(retcode), retcode);
5572 	}
5573 	wake_up(&connection->ping_wait);
5574 
5575 	return 0;
5576 }
5577 
5578 static int got_RqSReply(struct drbd_connection *connection, struct packet_info *pi)
5579 {
5580 	struct drbd_peer_device *peer_device;
5581 	struct drbd_device *device;
5582 	struct p_req_state_reply *p = pi->data;
5583 	int retcode = be32_to_cpu(p->retcode);
5584 
5585 	peer_device = conn_peer_device(connection, pi->vnr);
5586 	if (!peer_device)
5587 		return -EIO;
5588 	device = peer_device->device;
5589 
5590 	if (test_bit(CONN_WD_ST_CHG_REQ, &connection->flags)) {
5591 		D_ASSERT(device, connection->agreed_pro_version < 100);
5592 		return got_conn_RqSReply(connection, pi);
5593 	}
5594 
5595 	if (retcode >= SS_SUCCESS) {
5596 		set_bit(CL_ST_CHG_SUCCESS, &device->flags);
5597 	} else {
5598 		set_bit(CL_ST_CHG_FAIL, &device->flags);
5599 		drbd_err(device, "Requested state change failed by peer: %s (%d)\n",
5600 			drbd_set_st_err_str(retcode), retcode);
5601 	}
5602 	wake_up(&device->state_wait);
5603 
5604 	return 0;
5605 }
5606 
5607 static int got_Ping(struct drbd_connection *connection, struct packet_info *pi)
5608 {
5609 	return drbd_send_ping_ack(connection);
5610 
5611 }
5612 
5613 static int got_PingAck(struct drbd_connection *connection, struct packet_info *pi)
5614 {
5615 	/* restore idle timeout */
5616 	connection->meta.socket->sk->sk_rcvtimeo = connection->net_conf->ping_int*HZ;
5617 	if (!test_and_set_bit(GOT_PING_ACK, &connection->flags))
5618 		wake_up(&connection->ping_wait);
5619 
5620 	return 0;
5621 }
5622 
5623 static int got_IsInSync(struct drbd_connection *connection, struct packet_info *pi)
5624 {
5625 	struct drbd_peer_device *peer_device;
5626 	struct drbd_device *device;
5627 	struct p_block_ack *p = pi->data;
5628 	sector_t sector = be64_to_cpu(p->sector);
5629 	int blksize = be32_to_cpu(p->blksize);
5630 
5631 	peer_device = conn_peer_device(connection, pi->vnr);
5632 	if (!peer_device)
5633 		return -EIO;
5634 	device = peer_device->device;
5635 
5636 	D_ASSERT(device, peer_device->connection->agreed_pro_version >= 89);
5637 
5638 	update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5639 
5640 	if (get_ldev(device)) {
5641 		drbd_rs_complete_io(device, sector);
5642 		drbd_set_in_sync(device, sector, blksize);
5643 		/* rs_same_csums is supposed to count in units of BM_BLOCK_SIZE */
5644 		device->rs_same_csum += (blksize >> BM_BLOCK_SHIFT);
5645 		put_ldev(device);
5646 	}
5647 	dec_rs_pending(device);
5648 	atomic_add(blksize >> 9, &device->rs_sect_in);
5649 
5650 	return 0;
5651 }
5652 
5653 static int
5654 validate_req_change_req_state(struct drbd_device *device, u64 id, sector_t sector,
5655 			      struct rb_root *root, const char *func,
5656 			      enum drbd_req_event what, bool missing_ok)
5657 {
5658 	struct drbd_request *req;
5659 	struct bio_and_error m;
5660 
5661 	spin_lock_irq(&device->resource->req_lock);
5662 	req = find_request(device, root, id, sector, missing_ok, func);
5663 	if (unlikely(!req)) {
5664 		spin_unlock_irq(&device->resource->req_lock);
5665 		return -EIO;
5666 	}
5667 	__req_mod(req, what, &m);
5668 	spin_unlock_irq(&device->resource->req_lock);
5669 
5670 	if (m.bio)
5671 		complete_master_bio(device, &m);
5672 	return 0;
5673 }
5674 
5675 static int got_BlockAck(struct drbd_connection *connection, struct packet_info *pi)
5676 {
5677 	struct drbd_peer_device *peer_device;
5678 	struct drbd_device *device;
5679 	struct p_block_ack *p = pi->data;
5680 	sector_t sector = be64_to_cpu(p->sector);
5681 	int blksize = be32_to_cpu(p->blksize);
5682 	enum drbd_req_event what;
5683 
5684 	peer_device = conn_peer_device(connection, pi->vnr);
5685 	if (!peer_device)
5686 		return -EIO;
5687 	device = peer_device->device;
5688 
5689 	update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5690 
5691 	if (p->block_id == ID_SYNCER) {
5692 		drbd_set_in_sync(device, sector, blksize);
5693 		dec_rs_pending(device);
5694 		return 0;
5695 	}
5696 	switch (pi->cmd) {
5697 	case P_RS_WRITE_ACK:
5698 		what = WRITE_ACKED_BY_PEER_AND_SIS;
5699 		break;
5700 	case P_WRITE_ACK:
5701 		what = WRITE_ACKED_BY_PEER;
5702 		break;
5703 	case P_RECV_ACK:
5704 		what = RECV_ACKED_BY_PEER;
5705 		break;
5706 	case P_SUPERSEDED:
5707 		what = CONFLICT_RESOLVED;
5708 		break;
5709 	case P_RETRY_WRITE:
5710 		what = POSTPONE_WRITE;
5711 		break;
5712 	default:
5713 		BUG();
5714 	}
5715 
5716 	return validate_req_change_req_state(device, p->block_id, sector,
5717 					     &device->write_requests, __func__,
5718 					     what, false);
5719 }
5720 
5721 static int got_NegAck(struct drbd_connection *connection, struct packet_info *pi)
5722 {
5723 	struct drbd_peer_device *peer_device;
5724 	struct drbd_device *device;
5725 	struct p_block_ack *p = pi->data;
5726 	sector_t sector = be64_to_cpu(p->sector);
5727 	int size = be32_to_cpu(p->blksize);
5728 	int err;
5729 
5730 	peer_device = conn_peer_device(connection, pi->vnr);
5731 	if (!peer_device)
5732 		return -EIO;
5733 	device = peer_device->device;
5734 
5735 	update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5736 
5737 	if (p->block_id == ID_SYNCER) {
5738 		dec_rs_pending(device);
5739 		drbd_rs_failed_io(device, sector, size);
5740 		return 0;
5741 	}
5742 
5743 	err = validate_req_change_req_state(device, p->block_id, sector,
5744 					    &device->write_requests, __func__,
5745 					    NEG_ACKED, true);
5746 	if (err) {
5747 		/* Protocol A has no P_WRITE_ACKs, but has P_NEG_ACKs.
5748 		   The master bio might already be completed, therefore the
5749 		   request is no longer in the collision hash. */
5750 		/* In Protocol B we might already have got a P_RECV_ACK
5751 		   but then get a P_NEG_ACK afterwards. */
5752 		drbd_set_out_of_sync(device, sector, size);
5753 	}
5754 	return 0;
5755 }
5756 
5757 static int got_NegDReply(struct drbd_connection *connection, struct packet_info *pi)
5758 {
5759 	struct drbd_peer_device *peer_device;
5760 	struct drbd_device *device;
5761 	struct p_block_ack *p = pi->data;
5762 	sector_t sector = be64_to_cpu(p->sector);
5763 
5764 	peer_device = conn_peer_device(connection, pi->vnr);
5765 	if (!peer_device)
5766 		return -EIO;
5767 	device = peer_device->device;
5768 
5769 	update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5770 
5771 	drbd_err(device, "Got NegDReply; Sector %llus, len %u.\n",
5772 	    (unsigned long long)sector, be32_to_cpu(p->blksize));
5773 
5774 	return validate_req_change_req_state(device, p->block_id, sector,
5775 					     &device->read_requests, __func__,
5776 					     NEG_ACKED, false);
5777 }
5778 
5779 static int got_NegRSDReply(struct drbd_connection *connection, struct packet_info *pi)
5780 {
5781 	struct drbd_peer_device *peer_device;
5782 	struct drbd_device *device;
5783 	sector_t sector;
5784 	int size;
5785 	struct p_block_ack *p = pi->data;
5786 
5787 	peer_device = conn_peer_device(connection, pi->vnr);
5788 	if (!peer_device)
5789 		return -EIO;
5790 	device = peer_device->device;
5791 
5792 	sector = be64_to_cpu(p->sector);
5793 	size = be32_to_cpu(p->blksize);
5794 
5795 	update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5796 
5797 	dec_rs_pending(device);
5798 
5799 	if (get_ldev_if_state(device, D_FAILED)) {
5800 		drbd_rs_complete_io(device, sector);
5801 		switch (pi->cmd) {
5802 		case P_NEG_RS_DREPLY:
5803 			drbd_rs_failed_io(device, sector, size);
5804 			break;
5805 		case P_RS_CANCEL:
5806 			break;
5807 		default:
5808 			BUG();
5809 		}
5810 		put_ldev(device);
5811 	}
5812 
5813 	return 0;
5814 }
5815 
5816 static int got_BarrierAck(struct drbd_connection *connection, struct packet_info *pi)
5817 {
5818 	struct p_barrier_ack *p = pi->data;
5819 	struct drbd_peer_device *peer_device;
5820 	int vnr;
5821 
5822 	tl_release(connection, p->barrier, be32_to_cpu(p->set_size));
5823 
5824 	rcu_read_lock();
5825 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
5826 		struct drbd_device *device = peer_device->device;
5827 
5828 		if (device->state.conn == C_AHEAD &&
5829 		    atomic_read(&device->ap_in_flight) == 0 &&
5830 		    !test_and_set_bit(AHEAD_TO_SYNC_SOURCE, &device->flags)) {
5831 			device->start_resync_timer.expires = jiffies + HZ;
5832 			add_timer(&device->start_resync_timer);
5833 		}
5834 	}
5835 	rcu_read_unlock();
5836 
5837 	return 0;
5838 }
5839 
5840 static int got_OVResult(struct drbd_connection *connection, struct packet_info *pi)
5841 {
5842 	struct drbd_peer_device *peer_device;
5843 	struct drbd_device *device;
5844 	struct p_block_ack *p = pi->data;
5845 	struct drbd_device_work *dw;
5846 	sector_t sector;
5847 	int size;
5848 
5849 	peer_device = conn_peer_device(connection, pi->vnr);
5850 	if (!peer_device)
5851 		return -EIO;
5852 	device = peer_device->device;
5853 
5854 	sector = be64_to_cpu(p->sector);
5855 	size = be32_to_cpu(p->blksize);
5856 
5857 	update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5858 
5859 	if (be64_to_cpu(p->block_id) == ID_OUT_OF_SYNC)
5860 		drbd_ov_out_of_sync_found(device, sector, size);
5861 	else
5862 		ov_out_of_sync_print(device);
5863 
5864 	if (!get_ldev(device))
5865 		return 0;
5866 
5867 	drbd_rs_complete_io(device, sector);
5868 	dec_rs_pending(device);
5869 
5870 	--device->ov_left;
5871 
5872 	/* let's advance progress step marks only for every other megabyte */
5873 	if ((device->ov_left & 0x200) == 0x200)
5874 		drbd_advance_rs_marks(device, device->ov_left);
5875 
5876 	if (device->ov_left == 0) {
5877 		dw = kmalloc(sizeof(*dw), GFP_NOIO);
5878 		if (dw) {
5879 			dw->w.cb = w_ov_finished;
5880 			dw->device = device;
5881 			drbd_queue_work(&peer_device->connection->sender_work, &dw->w);
5882 		} else {
5883 			drbd_err(device, "kmalloc(dw) failed.");
5884 			ov_out_of_sync_print(device);
5885 			drbd_resync_finished(device);
5886 		}
5887 	}
5888 	put_ldev(device);
5889 	return 0;
5890 }
5891 
5892 static int got_skip(struct drbd_connection *connection, struct packet_info *pi)
5893 {
5894 	return 0;
5895 }
5896 
5897 struct meta_sock_cmd {
5898 	size_t pkt_size;
5899 	int (*fn)(struct drbd_connection *connection, struct packet_info *);
5900 };
5901 
5902 static void set_rcvtimeo(struct drbd_connection *connection, bool ping_timeout)
5903 {
5904 	long t;
5905 	struct net_conf *nc;
5906 
5907 	rcu_read_lock();
5908 	nc = rcu_dereference(connection->net_conf);
5909 	t = ping_timeout ? nc->ping_timeo : nc->ping_int;
5910 	rcu_read_unlock();
5911 
5912 	t *= HZ;
5913 	if (ping_timeout)
5914 		t /= 10;
5915 
5916 	connection->meta.socket->sk->sk_rcvtimeo = t;
5917 }
5918 
5919 static void set_ping_timeout(struct drbd_connection *connection)
5920 {
5921 	set_rcvtimeo(connection, 1);
5922 }
5923 
5924 static void set_idle_timeout(struct drbd_connection *connection)
5925 {
5926 	set_rcvtimeo(connection, 0);
5927 }
5928 
5929 static struct meta_sock_cmd ack_receiver_tbl[] = {
5930 	[P_PING]	    = { 0, got_Ping },
5931 	[P_PING_ACK]	    = { 0, got_PingAck },
5932 	[P_RECV_ACK]	    = { sizeof(struct p_block_ack), got_BlockAck },
5933 	[P_WRITE_ACK]	    = { sizeof(struct p_block_ack), got_BlockAck },
5934 	[P_RS_WRITE_ACK]    = { sizeof(struct p_block_ack), got_BlockAck },
5935 	[P_SUPERSEDED]   = { sizeof(struct p_block_ack), got_BlockAck },
5936 	[P_NEG_ACK]	    = { sizeof(struct p_block_ack), got_NegAck },
5937 	[P_NEG_DREPLY]	    = { sizeof(struct p_block_ack), got_NegDReply },
5938 	[P_NEG_RS_DREPLY]   = { sizeof(struct p_block_ack), got_NegRSDReply },
5939 	[P_OV_RESULT]	    = { sizeof(struct p_block_ack), got_OVResult },
5940 	[P_BARRIER_ACK]	    = { sizeof(struct p_barrier_ack), got_BarrierAck },
5941 	[P_STATE_CHG_REPLY] = { sizeof(struct p_req_state_reply), got_RqSReply },
5942 	[P_RS_IS_IN_SYNC]   = { sizeof(struct p_block_ack), got_IsInSync },
5943 	[P_DELAY_PROBE]     = { sizeof(struct p_delay_probe93), got_skip },
5944 	[P_RS_CANCEL]       = { sizeof(struct p_block_ack), got_NegRSDReply },
5945 	[P_CONN_ST_CHG_REPLY]={ sizeof(struct p_req_state_reply), got_conn_RqSReply },
5946 	[P_RETRY_WRITE]	    = { sizeof(struct p_block_ack), got_BlockAck },
5947 };
5948 
5949 int drbd_ack_receiver(struct drbd_thread *thi)
5950 {
5951 	struct drbd_connection *connection = thi->connection;
5952 	struct meta_sock_cmd *cmd = NULL;
5953 	struct packet_info pi;
5954 	unsigned long pre_recv_jif;
5955 	int rv;
5956 	void *buf    = connection->meta.rbuf;
5957 	int received = 0;
5958 	unsigned int header_size = drbd_header_size(connection);
5959 	int expect   = header_size;
5960 	bool ping_timeout_active = false;
5961 
5962 	sched_set_fifo_low(current);
5963 
5964 	while (get_t_state(thi) == RUNNING) {
5965 		drbd_thread_current_set_cpu(thi);
5966 
5967 		conn_reclaim_net_peer_reqs(connection);
5968 
5969 		if (test_and_clear_bit(SEND_PING, &connection->flags)) {
5970 			if (drbd_send_ping(connection)) {
5971 				drbd_err(connection, "drbd_send_ping has failed\n");
5972 				goto reconnect;
5973 			}
5974 			set_ping_timeout(connection);
5975 			ping_timeout_active = true;
5976 		}
5977 
5978 		pre_recv_jif = jiffies;
5979 		rv = drbd_recv_short(connection->meta.socket, buf, expect-received, 0);
5980 
5981 		/* Note:
5982 		 * -EINTR	 (on meta) we got a signal
5983 		 * -EAGAIN	 (on meta) rcvtimeo expired
5984 		 * -ECONNRESET	 other side closed the connection
5985 		 * -ERESTARTSYS  (on data) we got a signal
5986 		 * rv <  0	 other than above: unexpected error!
5987 		 * rv == expected: full header or command
5988 		 * rv <  expected: "woken" by signal during receive
5989 		 * rv == 0	 : "connection shut down by peer"
5990 		 */
5991 		if (likely(rv > 0)) {
5992 			received += rv;
5993 			buf	 += rv;
5994 		} else if (rv == 0) {
5995 			if (test_bit(DISCONNECT_SENT, &connection->flags)) {
5996 				long t;
5997 				rcu_read_lock();
5998 				t = rcu_dereference(connection->net_conf)->ping_timeo * HZ/10;
5999 				rcu_read_unlock();
6000 
6001 				t = wait_event_timeout(connection->ping_wait,
6002 						       connection->cstate < C_WF_REPORT_PARAMS,
6003 						       t);
6004 				if (t)
6005 					break;
6006 			}
6007 			drbd_err(connection, "meta connection shut down by peer.\n");
6008 			goto reconnect;
6009 		} else if (rv == -EAGAIN) {
6010 			/* If the data socket received something meanwhile,
6011 			 * that is good enough: peer is still alive. */
6012 			if (time_after(connection->last_received, pre_recv_jif))
6013 				continue;
6014 			if (ping_timeout_active) {
6015 				drbd_err(connection, "PingAck did not arrive in time.\n");
6016 				goto reconnect;
6017 			}
6018 			set_bit(SEND_PING, &connection->flags);
6019 			continue;
6020 		} else if (rv == -EINTR) {
6021 			/* maybe drbd_thread_stop(): the while condition will notice.
6022 			 * maybe woken for send_ping: we'll send a ping above,
6023 			 * and change the rcvtimeo */
6024 			flush_signals(current);
6025 			continue;
6026 		} else {
6027 			drbd_err(connection, "sock_recvmsg returned %d\n", rv);
6028 			goto reconnect;
6029 		}
6030 
6031 		if (received == expect && cmd == NULL) {
6032 			if (decode_header(connection, connection->meta.rbuf, &pi))
6033 				goto reconnect;
6034 			cmd = &ack_receiver_tbl[pi.cmd];
6035 			if (pi.cmd >= ARRAY_SIZE(ack_receiver_tbl) || !cmd->fn) {
6036 				drbd_err(connection, "Unexpected meta packet %s (0x%04x)\n",
6037 					 cmdname(pi.cmd), pi.cmd);
6038 				goto disconnect;
6039 			}
6040 			expect = header_size + cmd->pkt_size;
6041 			if (pi.size != expect - header_size) {
6042 				drbd_err(connection, "Wrong packet size on meta (c: %d, l: %d)\n",
6043 					pi.cmd, pi.size);
6044 				goto reconnect;
6045 			}
6046 		}
6047 		if (received == expect) {
6048 			bool err;
6049 
6050 			err = cmd->fn(connection, &pi);
6051 			if (err) {
6052 				drbd_err(connection, "%ps failed\n", cmd->fn);
6053 				goto reconnect;
6054 			}
6055 
6056 			connection->last_received = jiffies;
6057 
6058 			if (cmd == &ack_receiver_tbl[P_PING_ACK]) {
6059 				set_idle_timeout(connection);
6060 				ping_timeout_active = false;
6061 			}
6062 
6063 			buf	 = connection->meta.rbuf;
6064 			received = 0;
6065 			expect	 = header_size;
6066 			cmd	 = NULL;
6067 		}
6068 	}
6069 
6070 	if (0) {
6071 reconnect:
6072 		conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD);
6073 		conn_md_sync(connection);
6074 	}
6075 	if (0) {
6076 disconnect:
6077 		conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
6078 	}
6079 
6080 	drbd_info(connection, "ack_receiver terminated\n");
6081 
6082 	return 0;
6083 }
6084 
6085 void drbd_send_acks_wf(struct work_struct *ws)
6086 {
6087 	struct drbd_peer_device *peer_device =
6088 		container_of(ws, struct drbd_peer_device, send_acks_work);
6089 	struct drbd_connection *connection = peer_device->connection;
6090 	struct drbd_device *device = peer_device->device;
6091 	struct net_conf *nc;
6092 	int tcp_cork, err;
6093 
6094 	rcu_read_lock();
6095 	nc = rcu_dereference(connection->net_conf);
6096 	tcp_cork = nc->tcp_cork;
6097 	rcu_read_unlock();
6098 
6099 	if (tcp_cork)
6100 		tcp_sock_set_cork(connection->meta.socket->sk, true);
6101 
6102 	err = drbd_finish_peer_reqs(device);
6103 	kref_put(&device->kref, drbd_destroy_device);
6104 	/* get is in drbd_endio_write_sec_final(). That is necessary to keep the
6105 	   struct work_struct send_acks_work alive, which is in the peer_device object */
6106 
6107 	if (err) {
6108 		conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD);
6109 		return;
6110 	}
6111 
6112 	if (tcp_cork)
6113 		tcp_sock_set_cork(connection->meta.socket->sk, false);
6114 
6115 	return;
6116 }
6117