1 /* 2 drbd_receiver.c 3 4 This file is part of DRBD by Philipp Reisner and Lars Ellenberg. 5 6 Copyright (C) 2001-2008, LINBIT Information Technologies GmbH. 7 Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>. 8 Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>. 9 10 drbd is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation; either version 2, or (at your option) 13 any later version. 14 15 drbd is distributed in the hope that it will be useful, 16 but WITHOUT ANY WARRANTY; without even the implied warranty of 17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 GNU General Public License for more details. 19 20 You should have received a copy of the GNU General Public License 21 along with drbd; see the file COPYING. If not, write to 22 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 23 */ 24 25 26 #include <linux/module.h> 27 28 #include <linux/uaccess.h> 29 #include <net/sock.h> 30 31 #include <linux/drbd.h> 32 #include <linux/fs.h> 33 #include <linux/file.h> 34 #include <linux/in.h> 35 #include <linux/mm.h> 36 #include <linux/memcontrol.h> 37 #include <linux/mm_inline.h> 38 #include <linux/slab.h> 39 #include <uapi/linux/sched/types.h> 40 #include <linux/sched/signal.h> 41 #include <linux/pkt_sched.h> 42 #define __KERNEL_SYSCALLS__ 43 #include <linux/unistd.h> 44 #include <linux/vmalloc.h> 45 #include <linux/random.h> 46 #include <linux/string.h> 47 #include <linux/scatterlist.h> 48 #include "drbd_int.h" 49 #include "drbd_protocol.h" 50 #include "drbd_req.h" 51 #include "drbd_vli.h" 52 53 #define PRO_FEATURES (DRBD_FF_TRIM|DRBD_FF_THIN_RESYNC|DRBD_FF_WSAME) 54 55 struct packet_info { 56 enum drbd_packet cmd; 57 unsigned int size; 58 unsigned int vnr; 59 void *data; 60 }; 61 62 enum finish_epoch { 63 FE_STILL_LIVE, 64 FE_DESTROYED, 65 FE_RECYCLED, 66 }; 67 68 static int drbd_do_features(struct drbd_connection *connection); 69 static int drbd_do_auth(struct drbd_connection *connection); 70 static int drbd_disconnected(struct drbd_peer_device *); 71 static void conn_wait_active_ee_empty(struct drbd_connection *connection); 72 static enum finish_epoch drbd_may_finish_epoch(struct drbd_connection *, struct drbd_epoch *, enum epoch_event); 73 static int e_end_block(struct drbd_work *, int); 74 75 76 #define GFP_TRY (__GFP_HIGHMEM | __GFP_NOWARN) 77 78 /* 79 * some helper functions to deal with single linked page lists, 80 * page->private being our "next" pointer. 81 */ 82 83 /* If at least n pages are linked at head, get n pages off. 84 * Otherwise, don't modify head, and return NULL. 85 * Locking is the responsibility of the caller. 86 */ 87 static struct page *page_chain_del(struct page **head, int n) 88 { 89 struct page *page; 90 struct page *tmp; 91 92 BUG_ON(!n); 93 BUG_ON(!head); 94 95 page = *head; 96 97 if (!page) 98 return NULL; 99 100 while (page) { 101 tmp = page_chain_next(page); 102 if (--n == 0) 103 break; /* found sufficient pages */ 104 if (tmp == NULL) 105 /* insufficient pages, don't use any of them. */ 106 return NULL; 107 page = tmp; 108 } 109 110 /* add end of list marker for the returned list */ 111 set_page_private(page, 0); 112 /* actual return value, and adjustment of head */ 113 page = *head; 114 *head = tmp; 115 return page; 116 } 117 118 /* may be used outside of locks to find the tail of a (usually short) 119 * "private" page chain, before adding it back to a global chain head 120 * with page_chain_add() under a spinlock. */ 121 static struct page *page_chain_tail(struct page *page, int *len) 122 { 123 struct page *tmp; 124 int i = 1; 125 while ((tmp = page_chain_next(page))) 126 ++i, page = tmp; 127 if (len) 128 *len = i; 129 return page; 130 } 131 132 static int page_chain_free(struct page *page) 133 { 134 struct page *tmp; 135 int i = 0; 136 page_chain_for_each_safe(page, tmp) { 137 put_page(page); 138 ++i; 139 } 140 return i; 141 } 142 143 static void page_chain_add(struct page **head, 144 struct page *chain_first, struct page *chain_last) 145 { 146 #if 1 147 struct page *tmp; 148 tmp = page_chain_tail(chain_first, NULL); 149 BUG_ON(tmp != chain_last); 150 #endif 151 152 /* add chain to head */ 153 set_page_private(chain_last, (unsigned long)*head); 154 *head = chain_first; 155 } 156 157 static struct page *__drbd_alloc_pages(struct drbd_device *device, 158 unsigned int number) 159 { 160 struct page *page = NULL; 161 struct page *tmp = NULL; 162 unsigned int i = 0; 163 164 /* Yes, testing drbd_pp_vacant outside the lock is racy. 165 * So what. It saves a spin_lock. */ 166 if (drbd_pp_vacant >= number) { 167 spin_lock(&drbd_pp_lock); 168 page = page_chain_del(&drbd_pp_pool, number); 169 if (page) 170 drbd_pp_vacant -= number; 171 spin_unlock(&drbd_pp_lock); 172 if (page) 173 return page; 174 } 175 176 /* GFP_TRY, because we must not cause arbitrary write-out: in a DRBD 177 * "criss-cross" setup, that might cause write-out on some other DRBD, 178 * which in turn might block on the other node at this very place. */ 179 for (i = 0; i < number; i++) { 180 tmp = alloc_page(GFP_TRY); 181 if (!tmp) 182 break; 183 set_page_private(tmp, (unsigned long)page); 184 page = tmp; 185 } 186 187 if (i == number) 188 return page; 189 190 /* Not enough pages immediately available this time. 191 * No need to jump around here, drbd_alloc_pages will retry this 192 * function "soon". */ 193 if (page) { 194 tmp = page_chain_tail(page, NULL); 195 spin_lock(&drbd_pp_lock); 196 page_chain_add(&drbd_pp_pool, page, tmp); 197 drbd_pp_vacant += i; 198 spin_unlock(&drbd_pp_lock); 199 } 200 return NULL; 201 } 202 203 static void reclaim_finished_net_peer_reqs(struct drbd_device *device, 204 struct list_head *to_be_freed) 205 { 206 struct drbd_peer_request *peer_req, *tmp; 207 208 /* The EEs are always appended to the end of the list. Since 209 they are sent in order over the wire, they have to finish 210 in order. As soon as we see the first not finished we can 211 stop to examine the list... */ 212 213 list_for_each_entry_safe(peer_req, tmp, &device->net_ee, w.list) { 214 if (drbd_peer_req_has_active_page(peer_req)) 215 break; 216 list_move(&peer_req->w.list, to_be_freed); 217 } 218 } 219 220 static void drbd_reclaim_net_peer_reqs(struct drbd_device *device) 221 { 222 LIST_HEAD(reclaimed); 223 struct drbd_peer_request *peer_req, *t; 224 225 spin_lock_irq(&device->resource->req_lock); 226 reclaim_finished_net_peer_reqs(device, &reclaimed); 227 spin_unlock_irq(&device->resource->req_lock); 228 list_for_each_entry_safe(peer_req, t, &reclaimed, w.list) 229 drbd_free_net_peer_req(device, peer_req); 230 } 231 232 static void conn_reclaim_net_peer_reqs(struct drbd_connection *connection) 233 { 234 struct drbd_peer_device *peer_device; 235 int vnr; 236 237 rcu_read_lock(); 238 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 239 struct drbd_device *device = peer_device->device; 240 if (!atomic_read(&device->pp_in_use_by_net)) 241 continue; 242 243 kref_get(&device->kref); 244 rcu_read_unlock(); 245 drbd_reclaim_net_peer_reqs(device); 246 kref_put(&device->kref, drbd_destroy_device); 247 rcu_read_lock(); 248 } 249 rcu_read_unlock(); 250 } 251 252 /** 253 * drbd_alloc_pages() - Returns @number pages, retries forever (or until signalled) 254 * @device: DRBD device. 255 * @number: number of pages requested 256 * @retry: whether to retry, if not enough pages are available right now 257 * 258 * Tries to allocate number pages, first from our own page pool, then from 259 * the kernel. 260 * Possibly retry until DRBD frees sufficient pages somewhere else. 261 * 262 * If this allocation would exceed the max_buffers setting, we throttle 263 * allocation (schedule_timeout) to give the system some room to breathe. 264 * 265 * We do not use max-buffers as hard limit, because it could lead to 266 * congestion and further to a distributed deadlock during online-verify or 267 * (checksum based) resync, if the max-buffers, socket buffer sizes and 268 * resync-rate settings are mis-configured. 269 * 270 * Returns a page chain linked via page->private. 271 */ 272 struct page *drbd_alloc_pages(struct drbd_peer_device *peer_device, unsigned int number, 273 bool retry) 274 { 275 struct drbd_device *device = peer_device->device; 276 struct page *page = NULL; 277 struct net_conf *nc; 278 DEFINE_WAIT(wait); 279 unsigned int mxb; 280 281 rcu_read_lock(); 282 nc = rcu_dereference(peer_device->connection->net_conf); 283 mxb = nc ? nc->max_buffers : 1000000; 284 rcu_read_unlock(); 285 286 if (atomic_read(&device->pp_in_use) < mxb) 287 page = __drbd_alloc_pages(device, number); 288 289 /* Try to keep the fast path fast, but occasionally we need 290 * to reclaim the pages we lended to the network stack. */ 291 if (page && atomic_read(&device->pp_in_use_by_net) > 512) 292 drbd_reclaim_net_peer_reqs(device); 293 294 while (page == NULL) { 295 prepare_to_wait(&drbd_pp_wait, &wait, TASK_INTERRUPTIBLE); 296 297 drbd_reclaim_net_peer_reqs(device); 298 299 if (atomic_read(&device->pp_in_use) < mxb) { 300 page = __drbd_alloc_pages(device, number); 301 if (page) 302 break; 303 } 304 305 if (!retry) 306 break; 307 308 if (signal_pending(current)) { 309 drbd_warn(device, "drbd_alloc_pages interrupted!\n"); 310 break; 311 } 312 313 if (schedule_timeout(HZ/10) == 0) 314 mxb = UINT_MAX; 315 } 316 finish_wait(&drbd_pp_wait, &wait); 317 318 if (page) 319 atomic_add(number, &device->pp_in_use); 320 return page; 321 } 322 323 /* Must not be used from irq, as that may deadlock: see drbd_alloc_pages. 324 * Is also used from inside an other spin_lock_irq(&resource->req_lock); 325 * Either links the page chain back to the global pool, 326 * or returns all pages to the system. */ 327 static void drbd_free_pages(struct drbd_device *device, struct page *page, int is_net) 328 { 329 atomic_t *a = is_net ? &device->pp_in_use_by_net : &device->pp_in_use; 330 int i; 331 332 if (page == NULL) 333 return; 334 335 if (drbd_pp_vacant > (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * drbd_minor_count) 336 i = page_chain_free(page); 337 else { 338 struct page *tmp; 339 tmp = page_chain_tail(page, &i); 340 spin_lock(&drbd_pp_lock); 341 page_chain_add(&drbd_pp_pool, page, tmp); 342 drbd_pp_vacant += i; 343 spin_unlock(&drbd_pp_lock); 344 } 345 i = atomic_sub_return(i, a); 346 if (i < 0) 347 drbd_warn(device, "ASSERTION FAILED: %s: %d < 0\n", 348 is_net ? "pp_in_use_by_net" : "pp_in_use", i); 349 wake_up(&drbd_pp_wait); 350 } 351 352 /* 353 You need to hold the req_lock: 354 _drbd_wait_ee_list_empty() 355 356 You must not have the req_lock: 357 drbd_free_peer_req() 358 drbd_alloc_peer_req() 359 drbd_free_peer_reqs() 360 drbd_ee_fix_bhs() 361 drbd_finish_peer_reqs() 362 drbd_clear_done_ee() 363 drbd_wait_ee_list_empty() 364 */ 365 366 /* normal: payload_size == request size (bi_size) 367 * w_same: payload_size == logical_block_size 368 * trim: payload_size == 0 */ 369 struct drbd_peer_request * 370 drbd_alloc_peer_req(struct drbd_peer_device *peer_device, u64 id, sector_t sector, 371 unsigned int request_size, unsigned int payload_size, gfp_t gfp_mask) __must_hold(local) 372 { 373 struct drbd_device *device = peer_device->device; 374 struct drbd_peer_request *peer_req; 375 struct page *page = NULL; 376 unsigned nr_pages = (payload_size + PAGE_SIZE -1) >> PAGE_SHIFT; 377 378 if (drbd_insert_fault(device, DRBD_FAULT_AL_EE)) 379 return NULL; 380 381 peer_req = mempool_alloc(&drbd_ee_mempool, gfp_mask & ~__GFP_HIGHMEM); 382 if (!peer_req) { 383 if (!(gfp_mask & __GFP_NOWARN)) 384 drbd_err(device, "%s: allocation failed\n", __func__); 385 return NULL; 386 } 387 388 if (nr_pages) { 389 page = drbd_alloc_pages(peer_device, nr_pages, 390 gfpflags_allow_blocking(gfp_mask)); 391 if (!page) 392 goto fail; 393 } 394 395 memset(peer_req, 0, sizeof(*peer_req)); 396 INIT_LIST_HEAD(&peer_req->w.list); 397 drbd_clear_interval(&peer_req->i); 398 peer_req->i.size = request_size; 399 peer_req->i.sector = sector; 400 peer_req->submit_jif = jiffies; 401 peer_req->peer_device = peer_device; 402 peer_req->pages = page; 403 /* 404 * The block_id is opaque to the receiver. It is not endianness 405 * converted, and sent back to the sender unchanged. 406 */ 407 peer_req->block_id = id; 408 409 return peer_req; 410 411 fail: 412 mempool_free(peer_req, &drbd_ee_mempool); 413 return NULL; 414 } 415 416 void __drbd_free_peer_req(struct drbd_device *device, struct drbd_peer_request *peer_req, 417 int is_net) 418 { 419 might_sleep(); 420 if (peer_req->flags & EE_HAS_DIGEST) 421 kfree(peer_req->digest); 422 drbd_free_pages(device, peer_req->pages, is_net); 423 D_ASSERT(device, atomic_read(&peer_req->pending_bios) == 0); 424 D_ASSERT(device, drbd_interval_empty(&peer_req->i)); 425 if (!expect(!(peer_req->flags & EE_CALL_AL_COMPLETE_IO))) { 426 peer_req->flags &= ~EE_CALL_AL_COMPLETE_IO; 427 drbd_al_complete_io(device, &peer_req->i); 428 } 429 mempool_free(peer_req, &drbd_ee_mempool); 430 } 431 432 int drbd_free_peer_reqs(struct drbd_device *device, struct list_head *list) 433 { 434 LIST_HEAD(work_list); 435 struct drbd_peer_request *peer_req, *t; 436 int count = 0; 437 int is_net = list == &device->net_ee; 438 439 spin_lock_irq(&device->resource->req_lock); 440 list_splice_init(list, &work_list); 441 spin_unlock_irq(&device->resource->req_lock); 442 443 list_for_each_entry_safe(peer_req, t, &work_list, w.list) { 444 __drbd_free_peer_req(device, peer_req, is_net); 445 count++; 446 } 447 return count; 448 } 449 450 /* 451 * See also comments in _req_mod(,BARRIER_ACKED) and receive_Barrier. 452 */ 453 static int drbd_finish_peer_reqs(struct drbd_device *device) 454 { 455 LIST_HEAD(work_list); 456 LIST_HEAD(reclaimed); 457 struct drbd_peer_request *peer_req, *t; 458 int err = 0; 459 460 spin_lock_irq(&device->resource->req_lock); 461 reclaim_finished_net_peer_reqs(device, &reclaimed); 462 list_splice_init(&device->done_ee, &work_list); 463 spin_unlock_irq(&device->resource->req_lock); 464 465 list_for_each_entry_safe(peer_req, t, &reclaimed, w.list) 466 drbd_free_net_peer_req(device, peer_req); 467 468 /* possible callbacks here: 469 * e_end_block, and e_end_resync_block, e_send_superseded. 470 * all ignore the last argument. 471 */ 472 list_for_each_entry_safe(peer_req, t, &work_list, w.list) { 473 int err2; 474 475 /* list_del not necessary, next/prev members not touched */ 476 err2 = peer_req->w.cb(&peer_req->w, !!err); 477 if (!err) 478 err = err2; 479 drbd_free_peer_req(device, peer_req); 480 } 481 wake_up(&device->ee_wait); 482 483 return err; 484 } 485 486 static void _drbd_wait_ee_list_empty(struct drbd_device *device, 487 struct list_head *head) 488 { 489 DEFINE_WAIT(wait); 490 491 /* avoids spin_lock/unlock 492 * and calling prepare_to_wait in the fast path */ 493 while (!list_empty(head)) { 494 prepare_to_wait(&device->ee_wait, &wait, TASK_UNINTERRUPTIBLE); 495 spin_unlock_irq(&device->resource->req_lock); 496 io_schedule(); 497 finish_wait(&device->ee_wait, &wait); 498 spin_lock_irq(&device->resource->req_lock); 499 } 500 } 501 502 static void drbd_wait_ee_list_empty(struct drbd_device *device, 503 struct list_head *head) 504 { 505 spin_lock_irq(&device->resource->req_lock); 506 _drbd_wait_ee_list_empty(device, head); 507 spin_unlock_irq(&device->resource->req_lock); 508 } 509 510 static int drbd_recv_short(struct socket *sock, void *buf, size_t size, int flags) 511 { 512 struct kvec iov = { 513 .iov_base = buf, 514 .iov_len = size, 515 }; 516 struct msghdr msg = { 517 .msg_flags = (flags ? flags : MSG_WAITALL | MSG_NOSIGNAL) 518 }; 519 iov_iter_kvec(&msg.msg_iter, READ, &iov, 1, size); 520 return sock_recvmsg(sock, &msg, msg.msg_flags); 521 } 522 523 static int drbd_recv(struct drbd_connection *connection, void *buf, size_t size) 524 { 525 int rv; 526 527 rv = drbd_recv_short(connection->data.socket, buf, size, 0); 528 529 if (rv < 0) { 530 if (rv == -ECONNRESET) 531 drbd_info(connection, "sock was reset by peer\n"); 532 else if (rv != -ERESTARTSYS) 533 drbd_err(connection, "sock_recvmsg returned %d\n", rv); 534 } else if (rv == 0) { 535 if (test_bit(DISCONNECT_SENT, &connection->flags)) { 536 long t; 537 rcu_read_lock(); 538 t = rcu_dereference(connection->net_conf)->ping_timeo * HZ/10; 539 rcu_read_unlock(); 540 541 t = wait_event_timeout(connection->ping_wait, connection->cstate < C_WF_REPORT_PARAMS, t); 542 543 if (t) 544 goto out; 545 } 546 drbd_info(connection, "sock was shut down by peer\n"); 547 } 548 549 if (rv != size) 550 conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD); 551 552 out: 553 return rv; 554 } 555 556 static int drbd_recv_all(struct drbd_connection *connection, void *buf, size_t size) 557 { 558 int err; 559 560 err = drbd_recv(connection, buf, size); 561 if (err != size) { 562 if (err >= 0) 563 err = -EIO; 564 } else 565 err = 0; 566 return err; 567 } 568 569 static int drbd_recv_all_warn(struct drbd_connection *connection, void *buf, size_t size) 570 { 571 int err; 572 573 err = drbd_recv_all(connection, buf, size); 574 if (err && !signal_pending(current)) 575 drbd_warn(connection, "short read (expected size %d)\n", (int)size); 576 return err; 577 } 578 579 /* quoting tcp(7): 580 * On individual connections, the socket buffer size must be set prior to the 581 * listen(2) or connect(2) calls in order to have it take effect. 582 * This is our wrapper to do so. 583 */ 584 static void drbd_setbufsize(struct socket *sock, unsigned int snd, 585 unsigned int rcv) 586 { 587 /* open coded SO_SNDBUF, SO_RCVBUF */ 588 if (snd) { 589 sock->sk->sk_sndbuf = snd; 590 sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 591 } 592 if (rcv) { 593 sock->sk->sk_rcvbuf = rcv; 594 sock->sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 595 } 596 } 597 598 static struct socket *drbd_try_connect(struct drbd_connection *connection) 599 { 600 const char *what; 601 struct socket *sock; 602 struct sockaddr_in6 src_in6; 603 struct sockaddr_in6 peer_in6; 604 struct net_conf *nc; 605 int err, peer_addr_len, my_addr_len; 606 int sndbuf_size, rcvbuf_size, connect_int; 607 int disconnect_on_error = 1; 608 609 rcu_read_lock(); 610 nc = rcu_dereference(connection->net_conf); 611 if (!nc) { 612 rcu_read_unlock(); 613 return NULL; 614 } 615 sndbuf_size = nc->sndbuf_size; 616 rcvbuf_size = nc->rcvbuf_size; 617 connect_int = nc->connect_int; 618 rcu_read_unlock(); 619 620 my_addr_len = min_t(int, connection->my_addr_len, sizeof(src_in6)); 621 memcpy(&src_in6, &connection->my_addr, my_addr_len); 622 623 if (((struct sockaddr *)&connection->my_addr)->sa_family == AF_INET6) 624 src_in6.sin6_port = 0; 625 else 626 ((struct sockaddr_in *)&src_in6)->sin_port = 0; /* AF_INET & AF_SCI */ 627 628 peer_addr_len = min_t(int, connection->peer_addr_len, sizeof(src_in6)); 629 memcpy(&peer_in6, &connection->peer_addr, peer_addr_len); 630 631 what = "sock_create_kern"; 632 err = sock_create_kern(&init_net, ((struct sockaddr *)&src_in6)->sa_family, 633 SOCK_STREAM, IPPROTO_TCP, &sock); 634 if (err < 0) { 635 sock = NULL; 636 goto out; 637 } 638 639 sock->sk->sk_rcvtimeo = 640 sock->sk->sk_sndtimeo = connect_int * HZ; 641 drbd_setbufsize(sock, sndbuf_size, rcvbuf_size); 642 643 /* explicitly bind to the configured IP as source IP 644 * for the outgoing connections. 645 * This is needed for multihomed hosts and to be 646 * able to use lo: interfaces for drbd. 647 * Make sure to use 0 as port number, so linux selects 648 * a free one dynamically. 649 */ 650 what = "bind before connect"; 651 err = sock->ops->bind(sock, (struct sockaddr *) &src_in6, my_addr_len); 652 if (err < 0) 653 goto out; 654 655 /* connect may fail, peer not yet available. 656 * stay C_WF_CONNECTION, don't go Disconnecting! */ 657 disconnect_on_error = 0; 658 what = "connect"; 659 err = sock->ops->connect(sock, (struct sockaddr *) &peer_in6, peer_addr_len, 0); 660 661 out: 662 if (err < 0) { 663 if (sock) { 664 sock_release(sock); 665 sock = NULL; 666 } 667 switch (-err) { 668 /* timeout, busy, signal pending */ 669 case ETIMEDOUT: case EAGAIN: case EINPROGRESS: 670 case EINTR: case ERESTARTSYS: 671 /* peer not (yet) available, network problem */ 672 case ECONNREFUSED: case ENETUNREACH: 673 case EHOSTDOWN: case EHOSTUNREACH: 674 disconnect_on_error = 0; 675 break; 676 default: 677 drbd_err(connection, "%s failed, err = %d\n", what, err); 678 } 679 if (disconnect_on_error) 680 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 681 } 682 683 return sock; 684 } 685 686 struct accept_wait_data { 687 struct drbd_connection *connection; 688 struct socket *s_listen; 689 struct completion door_bell; 690 void (*original_sk_state_change)(struct sock *sk); 691 692 }; 693 694 static void drbd_incoming_connection(struct sock *sk) 695 { 696 struct accept_wait_data *ad = sk->sk_user_data; 697 void (*state_change)(struct sock *sk); 698 699 state_change = ad->original_sk_state_change; 700 if (sk->sk_state == TCP_ESTABLISHED) 701 complete(&ad->door_bell); 702 state_change(sk); 703 } 704 705 static int prepare_listen_socket(struct drbd_connection *connection, struct accept_wait_data *ad) 706 { 707 int err, sndbuf_size, rcvbuf_size, my_addr_len; 708 struct sockaddr_in6 my_addr; 709 struct socket *s_listen; 710 struct net_conf *nc; 711 const char *what; 712 713 rcu_read_lock(); 714 nc = rcu_dereference(connection->net_conf); 715 if (!nc) { 716 rcu_read_unlock(); 717 return -EIO; 718 } 719 sndbuf_size = nc->sndbuf_size; 720 rcvbuf_size = nc->rcvbuf_size; 721 rcu_read_unlock(); 722 723 my_addr_len = min_t(int, connection->my_addr_len, sizeof(struct sockaddr_in6)); 724 memcpy(&my_addr, &connection->my_addr, my_addr_len); 725 726 what = "sock_create_kern"; 727 err = sock_create_kern(&init_net, ((struct sockaddr *)&my_addr)->sa_family, 728 SOCK_STREAM, IPPROTO_TCP, &s_listen); 729 if (err) { 730 s_listen = NULL; 731 goto out; 732 } 733 734 s_listen->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */ 735 drbd_setbufsize(s_listen, sndbuf_size, rcvbuf_size); 736 737 what = "bind before listen"; 738 err = s_listen->ops->bind(s_listen, (struct sockaddr *)&my_addr, my_addr_len); 739 if (err < 0) 740 goto out; 741 742 ad->s_listen = s_listen; 743 write_lock_bh(&s_listen->sk->sk_callback_lock); 744 ad->original_sk_state_change = s_listen->sk->sk_state_change; 745 s_listen->sk->sk_state_change = drbd_incoming_connection; 746 s_listen->sk->sk_user_data = ad; 747 write_unlock_bh(&s_listen->sk->sk_callback_lock); 748 749 what = "listen"; 750 err = s_listen->ops->listen(s_listen, 5); 751 if (err < 0) 752 goto out; 753 754 return 0; 755 out: 756 if (s_listen) 757 sock_release(s_listen); 758 if (err < 0) { 759 if (err != -EAGAIN && err != -EINTR && err != -ERESTARTSYS) { 760 drbd_err(connection, "%s failed, err = %d\n", what, err); 761 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 762 } 763 } 764 765 return -EIO; 766 } 767 768 static void unregister_state_change(struct sock *sk, struct accept_wait_data *ad) 769 { 770 write_lock_bh(&sk->sk_callback_lock); 771 sk->sk_state_change = ad->original_sk_state_change; 772 sk->sk_user_data = NULL; 773 write_unlock_bh(&sk->sk_callback_lock); 774 } 775 776 static struct socket *drbd_wait_for_connect(struct drbd_connection *connection, struct accept_wait_data *ad) 777 { 778 int timeo, connect_int, err = 0; 779 struct socket *s_estab = NULL; 780 struct net_conf *nc; 781 782 rcu_read_lock(); 783 nc = rcu_dereference(connection->net_conf); 784 if (!nc) { 785 rcu_read_unlock(); 786 return NULL; 787 } 788 connect_int = nc->connect_int; 789 rcu_read_unlock(); 790 791 timeo = connect_int * HZ; 792 /* 28.5% random jitter */ 793 timeo += (prandom_u32() & 1) ? timeo / 7 : -timeo / 7; 794 795 err = wait_for_completion_interruptible_timeout(&ad->door_bell, timeo); 796 if (err <= 0) 797 return NULL; 798 799 err = kernel_accept(ad->s_listen, &s_estab, 0); 800 if (err < 0) { 801 if (err != -EAGAIN && err != -EINTR && err != -ERESTARTSYS) { 802 drbd_err(connection, "accept failed, err = %d\n", err); 803 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 804 } 805 } 806 807 if (s_estab) 808 unregister_state_change(s_estab->sk, ad); 809 810 return s_estab; 811 } 812 813 static int decode_header(struct drbd_connection *, void *, struct packet_info *); 814 815 static int send_first_packet(struct drbd_connection *connection, struct drbd_socket *sock, 816 enum drbd_packet cmd) 817 { 818 if (!conn_prepare_command(connection, sock)) 819 return -EIO; 820 return conn_send_command(connection, sock, cmd, 0, NULL, 0); 821 } 822 823 static int receive_first_packet(struct drbd_connection *connection, struct socket *sock) 824 { 825 unsigned int header_size = drbd_header_size(connection); 826 struct packet_info pi; 827 struct net_conf *nc; 828 int err; 829 830 rcu_read_lock(); 831 nc = rcu_dereference(connection->net_conf); 832 if (!nc) { 833 rcu_read_unlock(); 834 return -EIO; 835 } 836 sock->sk->sk_rcvtimeo = nc->ping_timeo * 4 * HZ / 10; 837 rcu_read_unlock(); 838 839 err = drbd_recv_short(sock, connection->data.rbuf, header_size, 0); 840 if (err != header_size) { 841 if (err >= 0) 842 err = -EIO; 843 return err; 844 } 845 err = decode_header(connection, connection->data.rbuf, &pi); 846 if (err) 847 return err; 848 return pi.cmd; 849 } 850 851 /** 852 * drbd_socket_okay() - Free the socket if its connection is not okay 853 * @sock: pointer to the pointer to the socket. 854 */ 855 static bool drbd_socket_okay(struct socket **sock) 856 { 857 int rr; 858 char tb[4]; 859 860 if (!*sock) 861 return false; 862 863 rr = drbd_recv_short(*sock, tb, 4, MSG_DONTWAIT | MSG_PEEK); 864 865 if (rr > 0 || rr == -EAGAIN) { 866 return true; 867 } else { 868 sock_release(*sock); 869 *sock = NULL; 870 return false; 871 } 872 } 873 874 static bool connection_established(struct drbd_connection *connection, 875 struct socket **sock1, 876 struct socket **sock2) 877 { 878 struct net_conf *nc; 879 int timeout; 880 bool ok; 881 882 if (!*sock1 || !*sock2) 883 return false; 884 885 rcu_read_lock(); 886 nc = rcu_dereference(connection->net_conf); 887 timeout = (nc->sock_check_timeo ?: nc->ping_timeo) * HZ / 10; 888 rcu_read_unlock(); 889 schedule_timeout_interruptible(timeout); 890 891 ok = drbd_socket_okay(sock1); 892 ok = drbd_socket_okay(sock2) && ok; 893 894 return ok; 895 } 896 897 /* Gets called if a connection is established, or if a new minor gets created 898 in a connection */ 899 int drbd_connected(struct drbd_peer_device *peer_device) 900 { 901 struct drbd_device *device = peer_device->device; 902 int err; 903 904 atomic_set(&device->packet_seq, 0); 905 device->peer_seq = 0; 906 907 device->state_mutex = peer_device->connection->agreed_pro_version < 100 ? 908 &peer_device->connection->cstate_mutex : 909 &device->own_state_mutex; 910 911 err = drbd_send_sync_param(peer_device); 912 if (!err) 913 err = drbd_send_sizes(peer_device, 0, 0); 914 if (!err) 915 err = drbd_send_uuids(peer_device); 916 if (!err) 917 err = drbd_send_current_state(peer_device); 918 clear_bit(USE_DEGR_WFC_T, &device->flags); 919 clear_bit(RESIZE_PENDING, &device->flags); 920 atomic_set(&device->ap_in_flight, 0); 921 mod_timer(&device->request_timer, jiffies + HZ); /* just start it here. */ 922 return err; 923 } 924 925 /* 926 * return values: 927 * 1 yes, we have a valid connection 928 * 0 oops, did not work out, please try again 929 * -1 peer talks different language, 930 * no point in trying again, please go standalone. 931 * -2 We do not have a network config... 932 */ 933 static int conn_connect(struct drbd_connection *connection) 934 { 935 struct drbd_socket sock, msock; 936 struct drbd_peer_device *peer_device; 937 struct net_conf *nc; 938 int vnr, timeout, h; 939 bool discard_my_data, ok; 940 enum drbd_state_rv rv; 941 struct accept_wait_data ad = { 942 .connection = connection, 943 .door_bell = COMPLETION_INITIALIZER_ONSTACK(ad.door_bell), 944 }; 945 946 clear_bit(DISCONNECT_SENT, &connection->flags); 947 if (conn_request_state(connection, NS(conn, C_WF_CONNECTION), CS_VERBOSE) < SS_SUCCESS) 948 return -2; 949 950 mutex_init(&sock.mutex); 951 sock.sbuf = connection->data.sbuf; 952 sock.rbuf = connection->data.rbuf; 953 sock.socket = NULL; 954 mutex_init(&msock.mutex); 955 msock.sbuf = connection->meta.sbuf; 956 msock.rbuf = connection->meta.rbuf; 957 msock.socket = NULL; 958 959 /* Assume that the peer only understands protocol 80 until we know better. */ 960 connection->agreed_pro_version = 80; 961 962 if (prepare_listen_socket(connection, &ad)) 963 return 0; 964 965 do { 966 struct socket *s; 967 968 s = drbd_try_connect(connection); 969 if (s) { 970 if (!sock.socket) { 971 sock.socket = s; 972 send_first_packet(connection, &sock, P_INITIAL_DATA); 973 } else if (!msock.socket) { 974 clear_bit(RESOLVE_CONFLICTS, &connection->flags); 975 msock.socket = s; 976 send_first_packet(connection, &msock, P_INITIAL_META); 977 } else { 978 drbd_err(connection, "Logic error in conn_connect()\n"); 979 goto out_release_sockets; 980 } 981 } 982 983 if (connection_established(connection, &sock.socket, &msock.socket)) 984 break; 985 986 retry: 987 s = drbd_wait_for_connect(connection, &ad); 988 if (s) { 989 int fp = receive_first_packet(connection, s); 990 drbd_socket_okay(&sock.socket); 991 drbd_socket_okay(&msock.socket); 992 switch (fp) { 993 case P_INITIAL_DATA: 994 if (sock.socket) { 995 drbd_warn(connection, "initial packet S crossed\n"); 996 sock_release(sock.socket); 997 sock.socket = s; 998 goto randomize; 999 } 1000 sock.socket = s; 1001 break; 1002 case P_INITIAL_META: 1003 set_bit(RESOLVE_CONFLICTS, &connection->flags); 1004 if (msock.socket) { 1005 drbd_warn(connection, "initial packet M crossed\n"); 1006 sock_release(msock.socket); 1007 msock.socket = s; 1008 goto randomize; 1009 } 1010 msock.socket = s; 1011 break; 1012 default: 1013 drbd_warn(connection, "Error receiving initial packet\n"); 1014 sock_release(s); 1015 randomize: 1016 if (prandom_u32() & 1) 1017 goto retry; 1018 } 1019 } 1020 1021 if (connection->cstate <= C_DISCONNECTING) 1022 goto out_release_sockets; 1023 if (signal_pending(current)) { 1024 flush_signals(current); 1025 smp_rmb(); 1026 if (get_t_state(&connection->receiver) == EXITING) 1027 goto out_release_sockets; 1028 } 1029 1030 ok = connection_established(connection, &sock.socket, &msock.socket); 1031 } while (!ok); 1032 1033 if (ad.s_listen) 1034 sock_release(ad.s_listen); 1035 1036 sock.socket->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */ 1037 msock.socket->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */ 1038 1039 sock.socket->sk->sk_allocation = GFP_NOIO; 1040 msock.socket->sk->sk_allocation = GFP_NOIO; 1041 1042 sock.socket->sk->sk_priority = TC_PRIO_INTERACTIVE_BULK; 1043 msock.socket->sk->sk_priority = TC_PRIO_INTERACTIVE; 1044 1045 /* NOT YET ... 1046 * sock.socket->sk->sk_sndtimeo = connection->net_conf->timeout*HZ/10; 1047 * sock.socket->sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 1048 * first set it to the P_CONNECTION_FEATURES timeout, 1049 * which we set to 4x the configured ping_timeout. */ 1050 rcu_read_lock(); 1051 nc = rcu_dereference(connection->net_conf); 1052 1053 sock.socket->sk->sk_sndtimeo = 1054 sock.socket->sk->sk_rcvtimeo = nc->ping_timeo*4*HZ/10; 1055 1056 msock.socket->sk->sk_rcvtimeo = nc->ping_int*HZ; 1057 timeout = nc->timeout * HZ / 10; 1058 discard_my_data = nc->discard_my_data; 1059 rcu_read_unlock(); 1060 1061 msock.socket->sk->sk_sndtimeo = timeout; 1062 1063 /* we don't want delays. 1064 * we use TCP_CORK where appropriate, though */ 1065 drbd_tcp_nodelay(sock.socket); 1066 drbd_tcp_nodelay(msock.socket); 1067 1068 connection->data.socket = sock.socket; 1069 connection->meta.socket = msock.socket; 1070 connection->last_received = jiffies; 1071 1072 h = drbd_do_features(connection); 1073 if (h <= 0) 1074 return h; 1075 1076 if (connection->cram_hmac_tfm) { 1077 /* drbd_request_state(device, NS(conn, WFAuth)); */ 1078 switch (drbd_do_auth(connection)) { 1079 case -1: 1080 drbd_err(connection, "Authentication of peer failed\n"); 1081 return -1; 1082 case 0: 1083 drbd_err(connection, "Authentication of peer failed, trying again.\n"); 1084 return 0; 1085 } 1086 } 1087 1088 connection->data.socket->sk->sk_sndtimeo = timeout; 1089 connection->data.socket->sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 1090 1091 if (drbd_send_protocol(connection) == -EOPNOTSUPP) 1092 return -1; 1093 1094 /* Prevent a race between resync-handshake and 1095 * being promoted to Primary. 1096 * 1097 * Grab and release the state mutex, so we know that any current 1098 * drbd_set_role() is finished, and any incoming drbd_set_role 1099 * will see the STATE_SENT flag, and wait for it to be cleared. 1100 */ 1101 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) 1102 mutex_lock(peer_device->device->state_mutex); 1103 1104 /* avoid a race with conn_request_state( C_DISCONNECTING ) */ 1105 spin_lock_irq(&connection->resource->req_lock); 1106 set_bit(STATE_SENT, &connection->flags); 1107 spin_unlock_irq(&connection->resource->req_lock); 1108 1109 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) 1110 mutex_unlock(peer_device->device->state_mutex); 1111 1112 rcu_read_lock(); 1113 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 1114 struct drbd_device *device = peer_device->device; 1115 kref_get(&device->kref); 1116 rcu_read_unlock(); 1117 1118 if (discard_my_data) 1119 set_bit(DISCARD_MY_DATA, &device->flags); 1120 else 1121 clear_bit(DISCARD_MY_DATA, &device->flags); 1122 1123 drbd_connected(peer_device); 1124 kref_put(&device->kref, drbd_destroy_device); 1125 rcu_read_lock(); 1126 } 1127 rcu_read_unlock(); 1128 1129 rv = conn_request_state(connection, NS(conn, C_WF_REPORT_PARAMS), CS_VERBOSE); 1130 if (rv < SS_SUCCESS || connection->cstate != C_WF_REPORT_PARAMS) { 1131 clear_bit(STATE_SENT, &connection->flags); 1132 return 0; 1133 } 1134 1135 drbd_thread_start(&connection->ack_receiver); 1136 /* opencoded create_singlethread_workqueue(), 1137 * to be able to use format string arguments */ 1138 connection->ack_sender = 1139 alloc_ordered_workqueue("drbd_as_%s", WQ_MEM_RECLAIM, connection->resource->name); 1140 if (!connection->ack_sender) { 1141 drbd_err(connection, "Failed to create workqueue ack_sender\n"); 1142 return 0; 1143 } 1144 1145 mutex_lock(&connection->resource->conf_update); 1146 /* The discard_my_data flag is a single-shot modifier to the next 1147 * connection attempt, the handshake of which is now well underway. 1148 * No need for rcu style copying of the whole struct 1149 * just to clear a single value. */ 1150 connection->net_conf->discard_my_data = 0; 1151 mutex_unlock(&connection->resource->conf_update); 1152 1153 return h; 1154 1155 out_release_sockets: 1156 if (ad.s_listen) 1157 sock_release(ad.s_listen); 1158 if (sock.socket) 1159 sock_release(sock.socket); 1160 if (msock.socket) 1161 sock_release(msock.socket); 1162 return -1; 1163 } 1164 1165 static int decode_header(struct drbd_connection *connection, void *header, struct packet_info *pi) 1166 { 1167 unsigned int header_size = drbd_header_size(connection); 1168 1169 if (header_size == sizeof(struct p_header100) && 1170 *(__be32 *)header == cpu_to_be32(DRBD_MAGIC_100)) { 1171 struct p_header100 *h = header; 1172 if (h->pad != 0) { 1173 drbd_err(connection, "Header padding is not zero\n"); 1174 return -EINVAL; 1175 } 1176 pi->vnr = be16_to_cpu(h->volume); 1177 pi->cmd = be16_to_cpu(h->command); 1178 pi->size = be32_to_cpu(h->length); 1179 } else if (header_size == sizeof(struct p_header95) && 1180 *(__be16 *)header == cpu_to_be16(DRBD_MAGIC_BIG)) { 1181 struct p_header95 *h = header; 1182 pi->cmd = be16_to_cpu(h->command); 1183 pi->size = be32_to_cpu(h->length); 1184 pi->vnr = 0; 1185 } else if (header_size == sizeof(struct p_header80) && 1186 *(__be32 *)header == cpu_to_be32(DRBD_MAGIC)) { 1187 struct p_header80 *h = header; 1188 pi->cmd = be16_to_cpu(h->command); 1189 pi->size = be16_to_cpu(h->length); 1190 pi->vnr = 0; 1191 } else { 1192 drbd_err(connection, "Wrong magic value 0x%08x in protocol version %d\n", 1193 be32_to_cpu(*(__be32 *)header), 1194 connection->agreed_pro_version); 1195 return -EINVAL; 1196 } 1197 pi->data = header + header_size; 1198 return 0; 1199 } 1200 1201 static void drbd_unplug_all_devices(struct drbd_connection *connection) 1202 { 1203 if (current->plug == &connection->receiver_plug) { 1204 blk_finish_plug(&connection->receiver_plug); 1205 blk_start_plug(&connection->receiver_plug); 1206 } /* else: maybe just schedule() ?? */ 1207 } 1208 1209 static int drbd_recv_header(struct drbd_connection *connection, struct packet_info *pi) 1210 { 1211 void *buffer = connection->data.rbuf; 1212 int err; 1213 1214 err = drbd_recv_all_warn(connection, buffer, drbd_header_size(connection)); 1215 if (err) 1216 return err; 1217 1218 err = decode_header(connection, buffer, pi); 1219 connection->last_received = jiffies; 1220 1221 return err; 1222 } 1223 1224 static int drbd_recv_header_maybe_unplug(struct drbd_connection *connection, struct packet_info *pi) 1225 { 1226 void *buffer = connection->data.rbuf; 1227 unsigned int size = drbd_header_size(connection); 1228 int err; 1229 1230 err = drbd_recv_short(connection->data.socket, buffer, size, MSG_NOSIGNAL|MSG_DONTWAIT); 1231 if (err != size) { 1232 /* If we have nothing in the receive buffer now, to reduce 1233 * application latency, try to drain the backend queues as 1234 * quickly as possible, and let remote TCP know what we have 1235 * received so far. */ 1236 if (err == -EAGAIN) { 1237 drbd_tcp_quickack(connection->data.socket); 1238 drbd_unplug_all_devices(connection); 1239 } 1240 if (err > 0) { 1241 buffer += err; 1242 size -= err; 1243 } 1244 err = drbd_recv_all_warn(connection, buffer, size); 1245 if (err) 1246 return err; 1247 } 1248 1249 err = decode_header(connection, connection->data.rbuf, pi); 1250 connection->last_received = jiffies; 1251 1252 return err; 1253 } 1254 /* This is blkdev_issue_flush, but asynchronous. 1255 * We want to submit to all component volumes in parallel, 1256 * then wait for all completions. 1257 */ 1258 struct issue_flush_context { 1259 atomic_t pending; 1260 int error; 1261 struct completion done; 1262 }; 1263 struct one_flush_context { 1264 struct drbd_device *device; 1265 struct issue_flush_context *ctx; 1266 }; 1267 1268 static void one_flush_endio(struct bio *bio) 1269 { 1270 struct one_flush_context *octx = bio->bi_private; 1271 struct drbd_device *device = octx->device; 1272 struct issue_flush_context *ctx = octx->ctx; 1273 1274 if (bio->bi_status) { 1275 ctx->error = blk_status_to_errno(bio->bi_status); 1276 drbd_info(device, "local disk FLUSH FAILED with status %d\n", bio->bi_status); 1277 } 1278 kfree(octx); 1279 bio_put(bio); 1280 1281 clear_bit(FLUSH_PENDING, &device->flags); 1282 put_ldev(device); 1283 kref_put(&device->kref, drbd_destroy_device); 1284 1285 if (atomic_dec_and_test(&ctx->pending)) 1286 complete(&ctx->done); 1287 } 1288 1289 static void submit_one_flush(struct drbd_device *device, struct issue_flush_context *ctx) 1290 { 1291 struct bio *bio = bio_alloc(GFP_NOIO, 0); 1292 struct one_flush_context *octx = kmalloc(sizeof(*octx), GFP_NOIO); 1293 if (!bio || !octx) { 1294 drbd_warn(device, "Could not allocate a bio, CANNOT ISSUE FLUSH\n"); 1295 /* FIXME: what else can I do now? disconnecting or detaching 1296 * really does not help to improve the state of the world, either. 1297 */ 1298 kfree(octx); 1299 if (bio) 1300 bio_put(bio); 1301 1302 ctx->error = -ENOMEM; 1303 put_ldev(device); 1304 kref_put(&device->kref, drbd_destroy_device); 1305 return; 1306 } 1307 1308 octx->device = device; 1309 octx->ctx = ctx; 1310 bio_set_dev(bio, device->ldev->backing_bdev); 1311 bio->bi_private = octx; 1312 bio->bi_end_io = one_flush_endio; 1313 bio->bi_opf = REQ_OP_FLUSH | REQ_PREFLUSH; 1314 1315 device->flush_jif = jiffies; 1316 set_bit(FLUSH_PENDING, &device->flags); 1317 atomic_inc(&ctx->pending); 1318 submit_bio(bio); 1319 } 1320 1321 static void drbd_flush(struct drbd_connection *connection) 1322 { 1323 if (connection->resource->write_ordering >= WO_BDEV_FLUSH) { 1324 struct drbd_peer_device *peer_device; 1325 struct issue_flush_context ctx; 1326 int vnr; 1327 1328 atomic_set(&ctx.pending, 1); 1329 ctx.error = 0; 1330 init_completion(&ctx.done); 1331 1332 rcu_read_lock(); 1333 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 1334 struct drbd_device *device = peer_device->device; 1335 1336 if (!get_ldev(device)) 1337 continue; 1338 kref_get(&device->kref); 1339 rcu_read_unlock(); 1340 1341 submit_one_flush(device, &ctx); 1342 1343 rcu_read_lock(); 1344 } 1345 rcu_read_unlock(); 1346 1347 /* Do we want to add a timeout, 1348 * if disk-timeout is set? */ 1349 if (!atomic_dec_and_test(&ctx.pending)) 1350 wait_for_completion(&ctx.done); 1351 1352 if (ctx.error) { 1353 /* would rather check on EOPNOTSUPP, but that is not reliable. 1354 * don't try again for ANY return value != 0 1355 * if (rv == -EOPNOTSUPP) */ 1356 /* Any error is already reported by bio_endio callback. */ 1357 drbd_bump_write_ordering(connection->resource, NULL, WO_DRAIN_IO); 1358 } 1359 } 1360 } 1361 1362 /** 1363 * drbd_may_finish_epoch() - Applies an epoch_event to the epoch's state, eventually finishes it. 1364 * @device: DRBD device. 1365 * @epoch: Epoch object. 1366 * @ev: Epoch event. 1367 */ 1368 static enum finish_epoch drbd_may_finish_epoch(struct drbd_connection *connection, 1369 struct drbd_epoch *epoch, 1370 enum epoch_event ev) 1371 { 1372 int epoch_size; 1373 struct drbd_epoch *next_epoch; 1374 enum finish_epoch rv = FE_STILL_LIVE; 1375 1376 spin_lock(&connection->epoch_lock); 1377 do { 1378 next_epoch = NULL; 1379 1380 epoch_size = atomic_read(&epoch->epoch_size); 1381 1382 switch (ev & ~EV_CLEANUP) { 1383 case EV_PUT: 1384 atomic_dec(&epoch->active); 1385 break; 1386 case EV_GOT_BARRIER_NR: 1387 set_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags); 1388 break; 1389 case EV_BECAME_LAST: 1390 /* nothing to do*/ 1391 break; 1392 } 1393 1394 if (epoch_size != 0 && 1395 atomic_read(&epoch->active) == 0 && 1396 (test_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags) || ev & EV_CLEANUP)) { 1397 if (!(ev & EV_CLEANUP)) { 1398 spin_unlock(&connection->epoch_lock); 1399 drbd_send_b_ack(epoch->connection, epoch->barrier_nr, epoch_size); 1400 spin_lock(&connection->epoch_lock); 1401 } 1402 #if 0 1403 /* FIXME: dec unacked on connection, once we have 1404 * something to count pending connection packets in. */ 1405 if (test_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags)) 1406 dec_unacked(epoch->connection); 1407 #endif 1408 1409 if (connection->current_epoch != epoch) { 1410 next_epoch = list_entry(epoch->list.next, struct drbd_epoch, list); 1411 list_del(&epoch->list); 1412 ev = EV_BECAME_LAST | (ev & EV_CLEANUP); 1413 connection->epochs--; 1414 kfree(epoch); 1415 1416 if (rv == FE_STILL_LIVE) 1417 rv = FE_DESTROYED; 1418 } else { 1419 epoch->flags = 0; 1420 atomic_set(&epoch->epoch_size, 0); 1421 /* atomic_set(&epoch->active, 0); is already zero */ 1422 if (rv == FE_STILL_LIVE) 1423 rv = FE_RECYCLED; 1424 } 1425 } 1426 1427 if (!next_epoch) 1428 break; 1429 1430 epoch = next_epoch; 1431 } while (1); 1432 1433 spin_unlock(&connection->epoch_lock); 1434 1435 return rv; 1436 } 1437 1438 static enum write_ordering_e 1439 max_allowed_wo(struct drbd_backing_dev *bdev, enum write_ordering_e wo) 1440 { 1441 struct disk_conf *dc; 1442 1443 dc = rcu_dereference(bdev->disk_conf); 1444 1445 if (wo == WO_BDEV_FLUSH && !dc->disk_flushes) 1446 wo = WO_DRAIN_IO; 1447 if (wo == WO_DRAIN_IO && !dc->disk_drain) 1448 wo = WO_NONE; 1449 1450 return wo; 1451 } 1452 1453 /** 1454 * drbd_bump_write_ordering() - Fall back to an other write ordering method 1455 * @connection: DRBD connection. 1456 * @wo: Write ordering method to try. 1457 */ 1458 void drbd_bump_write_ordering(struct drbd_resource *resource, struct drbd_backing_dev *bdev, 1459 enum write_ordering_e wo) 1460 { 1461 struct drbd_device *device; 1462 enum write_ordering_e pwo; 1463 int vnr; 1464 static char *write_ordering_str[] = { 1465 [WO_NONE] = "none", 1466 [WO_DRAIN_IO] = "drain", 1467 [WO_BDEV_FLUSH] = "flush", 1468 }; 1469 1470 pwo = resource->write_ordering; 1471 if (wo != WO_BDEV_FLUSH) 1472 wo = min(pwo, wo); 1473 rcu_read_lock(); 1474 idr_for_each_entry(&resource->devices, device, vnr) { 1475 if (get_ldev(device)) { 1476 wo = max_allowed_wo(device->ldev, wo); 1477 if (device->ldev == bdev) 1478 bdev = NULL; 1479 put_ldev(device); 1480 } 1481 } 1482 1483 if (bdev) 1484 wo = max_allowed_wo(bdev, wo); 1485 1486 rcu_read_unlock(); 1487 1488 resource->write_ordering = wo; 1489 if (pwo != resource->write_ordering || wo == WO_BDEV_FLUSH) 1490 drbd_info(resource, "Method to ensure write ordering: %s\n", write_ordering_str[resource->write_ordering]); 1491 } 1492 1493 static void drbd_issue_peer_discard(struct drbd_device *device, struct drbd_peer_request *peer_req) 1494 { 1495 struct block_device *bdev = device->ldev->backing_bdev; 1496 1497 if (blkdev_issue_zeroout(bdev, peer_req->i.sector, peer_req->i.size >> 9, 1498 GFP_NOIO, 0)) 1499 peer_req->flags |= EE_WAS_ERROR; 1500 1501 drbd_endio_write_sec_final(peer_req); 1502 } 1503 1504 static void drbd_issue_peer_wsame(struct drbd_device *device, 1505 struct drbd_peer_request *peer_req) 1506 { 1507 struct block_device *bdev = device->ldev->backing_bdev; 1508 sector_t s = peer_req->i.sector; 1509 sector_t nr = peer_req->i.size >> 9; 1510 if (blkdev_issue_write_same(bdev, s, nr, GFP_NOIO, peer_req->pages)) 1511 peer_req->flags |= EE_WAS_ERROR; 1512 drbd_endio_write_sec_final(peer_req); 1513 } 1514 1515 1516 /** 1517 * drbd_submit_peer_request() 1518 * @device: DRBD device. 1519 * @peer_req: peer request 1520 * @rw: flag field, see bio->bi_opf 1521 * 1522 * May spread the pages to multiple bios, 1523 * depending on bio_add_page restrictions. 1524 * 1525 * Returns 0 if all bios have been submitted, 1526 * -ENOMEM if we could not allocate enough bios, 1527 * -ENOSPC (any better suggestion?) if we have not been able to bio_add_page a 1528 * single page to an empty bio (which should never happen and likely indicates 1529 * that the lower level IO stack is in some way broken). This has been observed 1530 * on certain Xen deployments. 1531 */ 1532 /* TODO allocate from our own bio_set. */ 1533 int drbd_submit_peer_request(struct drbd_device *device, 1534 struct drbd_peer_request *peer_req, 1535 const unsigned op, const unsigned op_flags, 1536 const int fault_type) 1537 { 1538 struct bio *bios = NULL; 1539 struct bio *bio; 1540 struct page *page = peer_req->pages; 1541 sector_t sector = peer_req->i.sector; 1542 unsigned data_size = peer_req->i.size; 1543 unsigned n_bios = 0; 1544 unsigned nr_pages = (data_size + PAGE_SIZE -1) >> PAGE_SHIFT; 1545 int err = -ENOMEM; 1546 1547 /* TRIM/DISCARD: for now, always use the helper function 1548 * blkdev_issue_zeroout(..., discard=true). 1549 * It's synchronous, but it does the right thing wrt. bio splitting. 1550 * Correctness first, performance later. Next step is to code an 1551 * asynchronous variant of the same. 1552 */ 1553 if (peer_req->flags & (EE_IS_TRIM|EE_WRITE_SAME)) { 1554 /* wait for all pending IO completions, before we start 1555 * zeroing things out. */ 1556 conn_wait_active_ee_empty(peer_req->peer_device->connection); 1557 /* add it to the active list now, 1558 * so we can find it to present it in debugfs */ 1559 peer_req->submit_jif = jiffies; 1560 peer_req->flags |= EE_SUBMITTED; 1561 1562 /* If this was a resync request from receive_rs_deallocated(), 1563 * it is already on the sync_ee list */ 1564 if (list_empty(&peer_req->w.list)) { 1565 spin_lock_irq(&device->resource->req_lock); 1566 list_add_tail(&peer_req->w.list, &device->active_ee); 1567 spin_unlock_irq(&device->resource->req_lock); 1568 } 1569 1570 if (peer_req->flags & EE_IS_TRIM) 1571 drbd_issue_peer_discard(device, peer_req); 1572 else /* EE_WRITE_SAME */ 1573 drbd_issue_peer_wsame(device, peer_req); 1574 return 0; 1575 } 1576 1577 /* In most cases, we will only need one bio. But in case the lower 1578 * level restrictions happen to be different at this offset on this 1579 * side than those of the sending peer, we may need to submit the 1580 * request in more than one bio. 1581 * 1582 * Plain bio_alloc is good enough here, this is no DRBD internally 1583 * generated bio, but a bio allocated on behalf of the peer. 1584 */ 1585 next_bio: 1586 bio = bio_alloc(GFP_NOIO, nr_pages); 1587 if (!bio) { 1588 drbd_err(device, "submit_ee: Allocation of a bio failed (nr_pages=%u)\n", nr_pages); 1589 goto fail; 1590 } 1591 /* > peer_req->i.sector, unless this is the first bio */ 1592 bio->bi_iter.bi_sector = sector; 1593 bio_set_dev(bio, device->ldev->backing_bdev); 1594 bio_set_op_attrs(bio, op, op_flags); 1595 bio->bi_private = peer_req; 1596 bio->bi_end_io = drbd_peer_request_endio; 1597 1598 bio->bi_next = bios; 1599 bios = bio; 1600 ++n_bios; 1601 1602 page_chain_for_each(page) { 1603 unsigned len = min_t(unsigned, data_size, PAGE_SIZE); 1604 if (!bio_add_page(bio, page, len, 0)) 1605 goto next_bio; 1606 data_size -= len; 1607 sector += len >> 9; 1608 --nr_pages; 1609 } 1610 D_ASSERT(device, data_size == 0); 1611 D_ASSERT(device, page == NULL); 1612 1613 atomic_set(&peer_req->pending_bios, n_bios); 1614 /* for debugfs: update timestamp, mark as submitted */ 1615 peer_req->submit_jif = jiffies; 1616 peer_req->flags |= EE_SUBMITTED; 1617 do { 1618 bio = bios; 1619 bios = bios->bi_next; 1620 bio->bi_next = NULL; 1621 1622 drbd_generic_make_request(device, fault_type, bio); 1623 } while (bios); 1624 return 0; 1625 1626 fail: 1627 while (bios) { 1628 bio = bios; 1629 bios = bios->bi_next; 1630 bio_put(bio); 1631 } 1632 return err; 1633 } 1634 1635 static void drbd_remove_epoch_entry_interval(struct drbd_device *device, 1636 struct drbd_peer_request *peer_req) 1637 { 1638 struct drbd_interval *i = &peer_req->i; 1639 1640 drbd_remove_interval(&device->write_requests, i); 1641 drbd_clear_interval(i); 1642 1643 /* Wake up any processes waiting for this peer request to complete. */ 1644 if (i->waiting) 1645 wake_up(&device->misc_wait); 1646 } 1647 1648 static void conn_wait_active_ee_empty(struct drbd_connection *connection) 1649 { 1650 struct drbd_peer_device *peer_device; 1651 int vnr; 1652 1653 rcu_read_lock(); 1654 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 1655 struct drbd_device *device = peer_device->device; 1656 1657 kref_get(&device->kref); 1658 rcu_read_unlock(); 1659 drbd_wait_ee_list_empty(device, &device->active_ee); 1660 kref_put(&device->kref, drbd_destroy_device); 1661 rcu_read_lock(); 1662 } 1663 rcu_read_unlock(); 1664 } 1665 1666 static int receive_Barrier(struct drbd_connection *connection, struct packet_info *pi) 1667 { 1668 int rv; 1669 struct p_barrier *p = pi->data; 1670 struct drbd_epoch *epoch; 1671 1672 /* FIXME these are unacked on connection, 1673 * not a specific (peer)device. 1674 */ 1675 connection->current_epoch->barrier_nr = p->barrier; 1676 connection->current_epoch->connection = connection; 1677 rv = drbd_may_finish_epoch(connection, connection->current_epoch, EV_GOT_BARRIER_NR); 1678 1679 /* P_BARRIER_ACK may imply that the corresponding extent is dropped from 1680 * the activity log, which means it would not be resynced in case the 1681 * R_PRIMARY crashes now. 1682 * Therefore we must send the barrier_ack after the barrier request was 1683 * completed. */ 1684 switch (connection->resource->write_ordering) { 1685 case WO_NONE: 1686 if (rv == FE_RECYCLED) 1687 return 0; 1688 1689 /* receiver context, in the writeout path of the other node. 1690 * avoid potential distributed deadlock */ 1691 epoch = kmalloc(sizeof(struct drbd_epoch), GFP_NOIO); 1692 if (epoch) 1693 break; 1694 else 1695 drbd_warn(connection, "Allocation of an epoch failed, slowing down\n"); 1696 /* Fall through */ 1697 1698 case WO_BDEV_FLUSH: 1699 case WO_DRAIN_IO: 1700 conn_wait_active_ee_empty(connection); 1701 drbd_flush(connection); 1702 1703 if (atomic_read(&connection->current_epoch->epoch_size)) { 1704 epoch = kmalloc(sizeof(struct drbd_epoch), GFP_NOIO); 1705 if (epoch) 1706 break; 1707 } 1708 1709 return 0; 1710 default: 1711 drbd_err(connection, "Strangeness in connection->write_ordering %d\n", 1712 connection->resource->write_ordering); 1713 return -EIO; 1714 } 1715 1716 epoch->flags = 0; 1717 atomic_set(&epoch->epoch_size, 0); 1718 atomic_set(&epoch->active, 0); 1719 1720 spin_lock(&connection->epoch_lock); 1721 if (atomic_read(&connection->current_epoch->epoch_size)) { 1722 list_add(&epoch->list, &connection->current_epoch->list); 1723 connection->current_epoch = epoch; 1724 connection->epochs++; 1725 } else { 1726 /* The current_epoch got recycled while we allocated this one... */ 1727 kfree(epoch); 1728 } 1729 spin_unlock(&connection->epoch_lock); 1730 1731 return 0; 1732 } 1733 1734 /* quick wrapper in case payload size != request_size (write same) */ 1735 static void drbd_csum_ee_size(struct crypto_shash *h, 1736 struct drbd_peer_request *r, void *d, 1737 unsigned int payload_size) 1738 { 1739 unsigned int tmp = r->i.size; 1740 r->i.size = payload_size; 1741 drbd_csum_ee(h, r, d); 1742 r->i.size = tmp; 1743 } 1744 1745 /* used from receive_RSDataReply (recv_resync_read) 1746 * and from receive_Data. 1747 * data_size: actual payload ("data in") 1748 * for normal writes that is bi_size. 1749 * for discards, that is zero. 1750 * for write same, it is logical_block_size. 1751 * both trim and write same have the bi_size ("data len to be affected") 1752 * as extra argument in the packet header. 1753 */ 1754 static struct drbd_peer_request * 1755 read_in_block(struct drbd_peer_device *peer_device, u64 id, sector_t sector, 1756 struct packet_info *pi) __must_hold(local) 1757 { 1758 struct drbd_device *device = peer_device->device; 1759 const sector_t capacity = drbd_get_capacity(device->this_bdev); 1760 struct drbd_peer_request *peer_req; 1761 struct page *page; 1762 int digest_size, err; 1763 unsigned int data_size = pi->size, ds; 1764 void *dig_in = peer_device->connection->int_dig_in; 1765 void *dig_vv = peer_device->connection->int_dig_vv; 1766 unsigned long *data; 1767 struct p_trim *trim = (pi->cmd == P_TRIM) ? pi->data : NULL; 1768 struct p_trim *wsame = (pi->cmd == P_WSAME) ? pi->data : NULL; 1769 1770 digest_size = 0; 1771 if (!trim && peer_device->connection->peer_integrity_tfm) { 1772 digest_size = crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm); 1773 /* 1774 * FIXME: Receive the incoming digest into the receive buffer 1775 * here, together with its struct p_data? 1776 */ 1777 err = drbd_recv_all_warn(peer_device->connection, dig_in, digest_size); 1778 if (err) 1779 return NULL; 1780 data_size -= digest_size; 1781 } 1782 1783 /* assume request_size == data_size, but special case trim and wsame. */ 1784 ds = data_size; 1785 if (trim) { 1786 if (!expect(data_size == 0)) 1787 return NULL; 1788 ds = be32_to_cpu(trim->size); 1789 } else if (wsame) { 1790 if (data_size != queue_logical_block_size(device->rq_queue)) { 1791 drbd_err(peer_device, "data size (%u) != drbd logical block size (%u)\n", 1792 data_size, queue_logical_block_size(device->rq_queue)); 1793 return NULL; 1794 } 1795 if (data_size != bdev_logical_block_size(device->ldev->backing_bdev)) { 1796 drbd_err(peer_device, "data size (%u) != backend logical block size (%u)\n", 1797 data_size, bdev_logical_block_size(device->ldev->backing_bdev)); 1798 return NULL; 1799 } 1800 ds = be32_to_cpu(wsame->size); 1801 } 1802 1803 if (!expect(IS_ALIGNED(ds, 512))) 1804 return NULL; 1805 if (trim || wsame) { 1806 if (!expect(ds <= (DRBD_MAX_BBIO_SECTORS << 9))) 1807 return NULL; 1808 } else if (!expect(ds <= DRBD_MAX_BIO_SIZE)) 1809 return NULL; 1810 1811 /* even though we trust out peer, 1812 * we sometimes have to double check. */ 1813 if (sector + (ds>>9) > capacity) { 1814 drbd_err(device, "request from peer beyond end of local disk: " 1815 "capacity: %llus < sector: %llus + size: %u\n", 1816 (unsigned long long)capacity, 1817 (unsigned long long)sector, ds); 1818 return NULL; 1819 } 1820 1821 /* GFP_NOIO, because we must not cause arbitrary write-out: in a DRBD 1822 * "criss-cross" setup, that might cause write-out on some other DRBD, 1823 * which in turn might block on the other node at this very place. */ 1824 peer_req = drbd_alloc_peer_req(peer_device, id, sector, ds, data_size, GFP_NOIO); 1825 if (!peer_req) 1826 return NULL; 1827 1828 peer_req->flags |= EE_WRITE; 1829 if (trim) { 1830 peer_req->flags |= EE_IS_TRIM; 1831 return peer_req; 1832 } 1833 if (wsame) 1834 peer_req->flags |= EE_WRITE_SAME; 1835 1836 /* receive payload size bytes into page chain */ 1837 ds = data_size; 1838 page = peer_req->pages; 1839 page_chain_for_each(page) { 1840 unsigned len = min_t(int, ds, PAGE_SIZE); 1841 data = kmap(page); 1842 err = drbd_recv_all_warn(peer_device->connection, data, len); 1843 if (drbd_insert_fault(device, DRBD_FAULT_RECEIVE)) { 1844 drbd_err(device, "Fault injection: Corrupting data on receive\n"); 1845 data[0] = data[0] ^ (unsigned long)-1; 1846 } 1847 kunmap(page); 1848 if (err) { 1849 drbd_free_peer_req(device, peer_req); 1850 return NULL; 1851 } 1852 ds -= len; 1853 } 1854 1855 if (digest_size) { 1856 drbd_csum_ee_size(peer_device->connection->peer_integrity_tfm, peer_req, dig_vv, data_size); 1857 if (memcmp(dig_in, dig_vv, digest_size)) { 1858 drbd_err(device, "Digest integrity check FAILED: %llus +%u\n", 1859 (unsigned long long)sector, data_size); 1860 drbd_free_peer_req(device, peer_req); 1861 return NULL; 1862 } 1863 } 1864 device->recv_cnt += data_size >> 9; 1865 return peer_req; 1866 } 1867 1868 /* drbd_drain_block() just takes a data block 1869 * out of the socket input buffer, and discards it. 1870 */ 1871 static int drbd_drain_block(struct drbd_peer_device *peer_device, int data_size) 1872 { 1873 struct page *page; 1874 int err = 0; 1875 void *data; 1876 1877 if (!data_size) 1878 return 0; 1879 1880 page = drbd_alloc_pages(peer_device, 1, 1); 1881 1882 data = kmap(page); 1883 while (data_size) { 1884 unsigned int len = min_t(int, data_size, PAGE_SIZE); 1885 1886 err = drbd_recv_all_warn(peer_device->connection, data, len); 1887 if (err) 1888 break; 1889 data_size -= len; 1890 } 1891 kunmap(page); 1892 drbd_free_pages(peer_device->device, page, 0); 1893 return err; 1894 } 1895 1896 static int recv_dless_read(struct drbd_peer_device *peer_device, struct drbd_request *req, 1897 sector_t sector, int data_size) 1898 { 1899 struct bio_vec bvec; 1900 struct bvec_iter iter; 1901 struct bio *bio; 1902 int digest_size, err, expect; 1903 void *dig_in = peer_device->connection->int_dig_in; 1904 void *dig_vv = peer_device->connection->int_dig_vv; 1905 1906 digest_size = 0; 1907 if (peer_device->connection->peer_integrity_tfm) { 1908 digest_size = crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm); 1909 err = drbd_recv_all_warn(peer_device->connection, dig_in, digest_size); 1910 if (err) 1911 return err; 1912 data_size -= digest_size; 1913 } 1914 1915 /* optimistically update recv_cnt. if receiving fails below, 1916 * we disconnect anyways, and counters will be reset. */ 1917 peer_device->device->recv_cnt += data_size>>9; 1918 1919 bio = req->master_bio; 1920 D_ASSERT(peer_device->device, sector == bio->bi_iter.bi_sector); 1921 1922 bio_for_each_segment(bvec, bio, iter) { 1923 void *mapped = kmap(bvec.bv_page) + bvec.bv_offset; 1924 expect = min_t(int, data_size, bvec.bv_len); 1925 err = drbd_recv_all_warn(peer_device->connection, mapped, expect); 1926 kunmap(bvec.bv_page); 1927 if (err) 1928 return err; 1929 data_size -= expect; 1930 } 1931 1932 if (digest_size) { 1933 drbd_csum_bio(peer_device->connection->peer_integrity_tfm, bio, dig_vv); 1934 if (memcmp(dig_in, dig_vv, digest_size)) { 1935 drbd_err(peer_device, "Digest integrity check FAILED. Broken NICs?\n"); 1936 return -EINVAL; 1937 } 1938 } 1939 1940 D_ASSERT(peer_device->device, data_size == 0); 1941 return 0; 1942 } 1943 1944 /* 1945 * e_end_resync_block() is called in ack_sender context via 1946 * drbd_finish_peer_reqs(). 1947 */ 1948 static int e_end_resync_block(struct drbd_work *w, int unused) 1949 { 1950 struct drbd_peer_request *peer_req = 1951 container_of(w, struct drbd_peer_request, w); 1952 struct drbd_peer_device *peer_device = peer_req->peer_device; 1953 struct drbd_device *device = peer_device->device; 1954 sector_t sector = peer_req->i.sector; 1955 int err; 1956 1957 D_ASSERT(device, drbd_interval_empty(&peer_req->i)); 1958 1959 if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) { 1960 drbd_set_in_sync(device, sector, peer_req->i.size); 1961 err = drbd_send_ack(peer_device, P_RS_WRITE_ACK, peer_req); 1962 } else { 1963 /* Record failure to sync */ 1964 drbd_rs_failed_io(device, sector, peer_req->i.size); 1965 1966 err = drbd_send_ack(peer_device, P_NEG_ACK, peer_req); 1967 } 1968 dec_unacked(device); 1969 1970 return err; 1971 } 1972 1973 static int recv_resync_read(struct drbd_peer_device *peer_device, sector_t sector, 1974 struct packet_info *pi) __releases(local) 1975 { 1976 struct drbd_device *device = peer_device->device; 1977 struct drbd_peer_request *peer_req; 1978 1979 peer_req = read_in_block(peer_device, ID_SYNCER, sector, pi); 1980 if (!peer_req) 1981 goto fail; 1982 1983 dec_rs_pending(device); 1984 1985 inc_unacked(device); 1986 /* corresponding dec_unacked() in e_end_resync_block() 1987 * respective _drbd_clear_done_ee */ 1988 1989 peer_req->w.cb = e_end_resync_block; 1990 peer_req->submit_jif = jiffies; 1991 1992 spin_lock_irq(&device->resource->req_lock); 1993 list_add_tail(&peer_req->w.list, &device->sync_ee); 1994 spin_unlock_irq(&device->resource->req_lock); 1995 1996 atomic_add(pi->size >> 9, &device->rs_sect_ev); 1997 if (drbd_submit_peer_request(device, peer_req, REQ_OP_WRITE, 0, 1998 DRBD_FAULT_RS_WR) == 0) 1999 return 0; 2000 2001 /* don't care for the reason here */ 2002 drbd_err(device, "submit failed, triggering re-connect\n"); 2003 spin_lock_irq(&device->resource->req_lock); 2004 list_del(&peer_req->w.list); 2005 spin_unlock_irq(&device->resource->req_lock); 2006 2007 drbd_free_peer_req(device, peer_req); 2008 fail: 2009 put_ldev(device); 2010 return -EIO; 2011 } 2012 2013 static struct drbd_request * 2014 find_request(struct drbd_device *device, struct rb_root *root, u64 id, 2015 sector_t sector, bool missing_ok, const char *func) 2016 { 2017 struct drbd_request *req; 2018 2019 /* Request object according to our peer */ 2020 req = (struct drbd_request *)(unsigned long)id; 2021 if (drbd_contains_interval(root, sector, &req->i) && req->i.local) 2022 return req; 2023 if (!missing_ok) { 2024 drbd_err(device, "%s: failed to find request 0x%lx, sector %llus\n", func, 2025 (unsigned long)id, (unsigned long long)sector); 2026 } 2027 return NULL; 2028 } 2029 2030 static int receive_DataReply(struct drbd_connection *connection, struct packet_info *pi) 2031 { 2032 struct drbd_peer_device *peer_device; 2033 struct drbd_device *device; 2034 struct drbd_request *req; 2035 sector_t sector; 2036 int err; 2037 struct p_data *p = pi->data; 2038 2039 peer_device = conn_peer_device(connection, pi->vnr); 2040 if (!peer_device) 2041 return -EIO; 2042 device = peer_device->device; 2043 2044 sector = be64_to_cpu(p->sector); 2045 2046 spin_lock_irq(&device->resource->req_lock); 2047 req = find_request(device, &device->read_requests, p->block_id, sector, false, __func__); 2048 spin_unlock_irq(&device->resource->req_lock); 2049 if (unlikely(!req)) 2050 return -EIO; 2051 2052 /* hlist_del(&req->collision) is done in _req_may_be_done, to avoid 2053 * special casing it there for the various failure cases. 2054 * still no race with drbd_fail_pending_reads */ 2055 err = recv_dless_read(peer_device, req, sector, pi->size); 2056 if (!err) 2057 req_mod(req, DATA_RECEIVED); 2058 /* else: nothing. handled from drbd_disconnect... 2059 * I don't think we may complete this just yet 2060 * in case we are "on-disconnect: freeze" */ 2061 2062 return err; 2063 } 2064 2065 static int receive_RSDataReply(struct drbd_connection *connection, struct packet_info *pi) 2066 { 2067 struct drbd_peer_device *peer_device; 2068 struct drbd_device *device; 2069 sector_t sector; 2070 int err; 2071 struct p_data *p = pi->data; 2072 2073 peer_device = conn_peer_device(connection, pi->vnr); 2074 if (!peer_device) 2075 return -EIO; 2076 device = peer_device->device; 2077 2078 sector = be64_to_cpu(p->sector); 2079 D_ASSERT(device, p->block_id == ID_SYNCER); 2080 2081 if (get_ldev(device)) { 2082 /* data is submitted to disk within recv_resync_read. 2083 * corresponding put_ldev done below on error, 2084 * or in drbd_peer_request_endio. */ 2085 err = recv_resync_read(peer_device, sector, pi); 2086 } else { 2087 if (__ratelimit(&drbd_ratelimit_state)) 2088 drbd_err(device, "Can not write resync data to local disk.\n"); 2089 2090 err = drbd_drain_block(peer_device, pi->size); 2091 2092 drbd_send_ack_dp(peer_device, P_NEG_ACK, p, pi->size); 2093 } 2094 2095 atomic_add(pi->size >> 9, &device->rs_sect_in); 2096 2097 return err; 2098 } 2099 2100 static void restart_conflicting_writes(struct drbd_device *device, 2101 sector_t sector, int size) 2102 { 2103 struct drbd_interval *i; 2104 struct drbd_request *req; 2105 2106 drbd_for_each_overlap(i, &device->write_requests, sector, size) { 2107 if (!i->local) 2108 continue; 2109 req = container_of(i, struct drbd_request, i); 2110 if (req->rq_state & RQ_LOCAL_PENDING || 2111 !(req->rq_state & RQ_POSTPONED)) 2112 continue; 2113 /* as it is RQ_POSTPONED, this will cause it to 2114 * be queued on the retry workqueue. */ 2115 __req_mod(req, CONFLICT_RESOLVED, NULL); 2116 } 2117 } 2118 2119 /* 2120 * e_end_block() is called in ack_sender context via drbd_finish_peer_reqs(). 2121 */ 2122 static int e_end_block(struct drbd_work *w, int cancel) 2123 { 2124 struct drbd_peer_request *peer_req = 2125 container_of(w, struct drbd_peer_request, w); 2126 struct drbd_peer_device *peer_device = peer_req->peer_device; 2127 struct drbd_device *device = peer_device->device; 2128 sector_t sector = peer_req->i.sector; 2129 int err = 0, pcmd; 2130 2131 if (peer_req->flags & EE_SEND_WRITE_ACK) { 2132 if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) { 2133 pcmd = (device->state.conn >= C_SYNC_SOURCE && 2134 device->state.conn <= C_PAUSED_SYNC_T && 2135 peer_req->flags & EE_MAY_SET_IN_SYNC) ? 2136 P_RS_WRITE_ACK : P_WRITE_ACK; 2137 err = drbd_send_ack(peer_device, pcmd, peer_req); 2138 if (pcmd == P_RS_WRITE_ACK) 2139 drbd_set_in_sync(device, sector, peer_req->i.size); 2140 } else { 2141 err = drbd_send_ack(peer_device, P_NEG_ACK, peer_req); 2142 /* we expect it to be marked out of sync anyways... 2143 * maybe assert this? */ 2144 } 2145 dec_unacked(device); 2146 } 2147 2148 /* we delete from the conflict detection hash _after_ we sent out the 2149 * P_WRITE_ACK / P_NEG_ACK, to get the sequence number right. */ 2150 if (peer_req->flags & EE_IN_INTERVAL_TREE) { 2151 spin_lock_irq(&device->resource->req_lock); 2152 D_ASSERT(device, !drbd_interval_empty(&peer_req->i)); 2153 drbd_remove_epoch_entry_interval(device, peer_req); 2154 if (peer_req->flags & EE_RESTART_REQUESTS) 2155 restart_conflicting_writes(device, sector, peer_req->i.size); 2156 spin_unlock_irq(&device->resource->req_lock); 2157 } else 2158 D_ASSERT(device, drbd_interval_empty(&peer_req->i)); 2159 2160 drbd_may_finish_epoch(peer_device->connection, peer_req->epoch, EV_PUT + (cancel ? EV_CLEANUP : 0)); 2161 2162 return err; 2163 } 2164 2165 static int e_send_ack(struct drbd_work *w, enum drbd_packet ack) 2166 { 2167 struct drbd_peer_request *peer_req = 2168 container_of(w, struct drbd_peer_request, w); 2169 struct drbd_peer_device *peer_device = peer_req->peer_device; 2170 int err; 2171 2172 err = drbd_send_ack(peer_device, ack, peer_req); 2173 dec_unacked(peer_device->device); 2174 2175 return err; 2176 } 2177 2178 static int e_send_superseded(struct drbd_work *w, int unused) 2179 { 2180 return e_send_ack(w, P_SUPERSEDED); 2181 } 2182 2183 static int e_send_retry_write(struct drbd_work *w, int unused) 2184 { 2185 struct drbd_peer_request *peer_req = 2186 container_of(w, struct drbd_peer_request, w); 2187 struct drbd_connection *connection = peer_req->peer_device->connection; 2188 2189 return e_send_ack(w, connection->agreed_pro_version >= 100 ? 2190 P_RETRY_WRITE : P_SUPERSEDED); 2191 } 2192 2193 static bool seq_greater(u32 a, u32 b) 2194 { 2195 /* 2196 * We assume 32-bit wrap-around here. 2197 * For 24-bit wrap-around, we would have to shift: 2198 * a <<= 8; b <<= 8; 2199 */ 2200 return (s32)a - (s32)b > 0; 2201 } 2202 2203 static u32 seq_max(u32 a, u32 b) 2204 { 2205 return seq_greater(a, b) ? a : b; 2206 } 2207 2208 static void update_peer_seq(struct drbd_peer_device *peer_device, unsigned int peer_seq) 2209 { 2210 struct drbd_device *device = peer_device->device; 2211 unsigned int newest_peer_seq; 2212 2213 if (test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags)) { 2214 spin_lock(&device->peer_seq_lock); 2215 newest_peer_seq = seq_max(device->peer_seq, peer_seq); 2216 device->peer_seq = newest_peer_seq; 2217 spin_unlock(&device->peer_seq_lock); 2218 /* wake up only if we actually changed device->peer_seq */ 2219 if (peer_seq == newest_peer_seq) 2220 wake_up(&device->seq_wait); 2221 } 2222 } 2223 2224 static inline int overlaps(sector_t s1, int l1, sector_t s2, int l2) 2225 { 2226 return !((s1 + (l1>>9) <= s2) || (s1 >= s2 + (l2>>9))); 2227 } 2228 2229 /* maybe change sync_ee into interval trees as well? */ 2230 static bool overlapping_resync_write(struct drbd_device *device, struct drbd_peer_request *peer_req) 2231 { 2232 struct drbd_peer_request *rs_req; 2233 bool rv = false; 2234 2235 spin_lock_irq(&device->resource->req_lock); 2236 list_for_each_entry(rs_req, &device->sync_ee, w.list) { 2237 if (overlaps(peer_req->i.sector, peer_req->i.size, 2238 rs_req->i.sector, rs_req->i.size)) { 2239 rv = true; 2240 break; 2241 } 2242 } 2243 spin_unlock_irq(&device->resource->req_lock); 2244 2245 return rv; 2246 } 2247 2248 /* Called from receive_Data. 2249 * Synchronize packets on sock with packets on msock. 2250 * 2251 * This is here so even when a P_DATA packet traveling via sock overtook an Ack 2252 * packet traveling on msock, they are still processed in the order they have 2253 * been sent. 2254 * 2255 * Note: we don't care for Ack packets overtaking P_DATA packets. 2256 * 2257 * In case packet_seq is larger than device->peer_seq number, there are 2258 * outstanding packets on the msock. We wait for them to arrive. 2259 * In case we are the logically next packet, we update device->peer_seq 2260 * ourselves. Correctly handles 32bit wrap around. 2261 * 2262 * Assume we have a 10 GBit connection, that is about 1<<30 byte per second, 2263 * about 1<<21 sectors per second. So "worst" case, we have 1<<3 == 8 seconds 2264 * for the 24bit wrap (historical atomic_t guarantee on some archs), and we have 2265 * 1<<9 == 512 seconds aka ages for the 32bit wrap around... 2266 * 2267 * returns 0 if we may process the packet, 2268 * -ERESTARTSYS if we were interrupted (by disconnect signal). */ 2269 static int wait_for_and_update_peer_seq(struct drbd_peer_device *peer_device, const u32 peer_seq) 2270 { 2271 struct drbd_device *device = peer_device->device; 2272 DEFINE_WAIT(wait); 2273 long timeout; 2274 int ret = 0, tp; 2275 2276 if (!test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags)) 2277 return 0; 2278 2279 spin_lock(&device->peer_seq_lock); 2280 for (;;) { 2281 if (!seq_greater(peer_seq - 1, device->peer_seq)) { 2282 device->peer_seq = seq_max(device->peer_seq, peer_seq); 2283 break; 2284 } 2285 2286 if (signal_pending(current)) { 2287 ret = -ERESTARTSYS; 2288 break; 2289 } 2290 2291 rcu_read_lock(); 2292 tp = rcu_dereference(peer_device->connection->net_conf)->two_primaries; 2293 rcu_read_unlock(); 2294 2295 if (!tp) 2296 break; 2297 2298 /* Only need to wait if two_primaries is enabled */ 2299 prepare_to_wait(&device->seq_wait, &wait, TASK_INTERRUPTIBLE); 2300 spin_unlock(&device->peer_seq_lock); 2301 rcu_read_lock(); 2302 timeout = rcu_dereference(peer_device->connection->net_conf)->ping_timeo*HZ/10; 2303 rcu_read_unlock(); 2304 timeout = schedule_timeout(timeout); 2305 spin_lock(&device->peer_seq_lock); 2306 if (!timeout) { 2307 ret = -ETIMEDOUT; 2308 drbd_err(device, "Timed out waiting for missing ack packets; disconnecting\n"); 2309 break; 2310 } 2311 } 2312 spin_unlock(&device->peer_seq_lock); 2313 finish_wait(&device->seq_wait, &wait); 2314 return ret; 2315 } 2316 2317 /* see also bio_flags_to_wire() 2318 * DRBD_REQ_*, because we need to semantically map the flags to data packet 2319 * flags and back. We may replicate to other kernel versions. */ 2320 static unsigned long wire_flags_to_bio_flags(u32 dpf) 2321 { 2322 return (dpf & DP_RW_SYNC ? REQ_SYNC : 0) | 2323 (dpf & DP_FUA ? REQ_FUA : 0) | 2324 (dpf & DP_FLUSH ? REQ_PREFLUSH : 0); 2325 } 2326 2327 static unsigned long wire_flags_to_bio_op(u32 dpf) 2328 { 2329 if (dpf & DP_DISCARD) 2330 return REQ_OP_WRITE_ZEROES; 2331 else 2332 return REQ_OP_WRITE; 2333 } 2334 2335 static void fail_postponed_requests(struct drbd_device *device, sector_t sector, 2336 unsigned int size) 2337 { 2338 struct drbd_interval *i; 2339 2340 repeat: 2341 drbd_for_each_overlap(i, &device->write_requests, sector, size) { 2342 struct drbd_request *req; 2343 struct bio_and_error m; 2344 2345 if (!i->local) 2346 continue; 2347 req = container_of(i, struct drbd_request, i); 2348 if (!(req->rq_state & RQ_POSTPONED)) 2349 continue; 2350 req->rq_state &= ~RQ_POSTPONED; 2351 __req_mod(req, NEG_ACKED, &m); 2352 spin_unlock_irq(&device->resource->req_lock); 2353 if (m.bio) 2354 complete_master_bio(device, &m); 2355 spin_lock_irq(&device->resource->req_lock); 2356 goto repeat; 2357 } 2358 } 2359 2360 static int handle_write_conflicts(struct drbd_device *device, 2361 struct drbd_peer_request *peer_req) 2362 { 2363 struct drbd_connection *connection = peer_req->peer_device->connection; 2364 bool resolve_conflicts = test_bit(RESOLVE_CONFLICTS, &connection->flags); 2365 sector_t sector = peer_req->i.sector; 2366 const unsigned int size = peer_req->i.size; 2367 struct drbd_interval *i; 2368 bool equal; 2369 int err; 2370 2371 /* 2372 * Inserting the peer request into the write_requests tree will prevent 2373 * new conflicting local requests from being added. 2374 */ 2375 drbd_insert_interval(&device->write_requests, &peer_req->i); 2376 2377 repeat: 2378 drbd_for_each_overlap(i, &device->write_requests, sector, size) { 2379 if (i == &peer_req->i) 2380 continue; 2381 if (i->completed) 2382 continue; 2383 2384 if (!i->local) { 2385 /* 2386 * Our peer has sent a conflicting remote request; this 2387 * should not happen in a two-node setup. Wait for the 2388 * earlier peer request to complete. 2389 */ 2390 err = drbd_wait_misc(device, i); 2391 if (err) 2392 goto out; 2393 goto repeat; 2394 } 2395 2396 equal = i->sector == sector && i->size == size; 2397 if (resolve_conflicts) { 2398 /* 2399 * If the peer request is fully contained within the 2400 * overlapping request, it can be considered overwritten 2401 * and thus superseded; otherwise, it will be retried 2402 * once all overlapping requests have completed. 2403 */ 2404 bool superseded = i->sector <= sector && i->sector + 2405 (i->size >> 9) >= sector + (size >> 9); 2406 2407 if (!equal) 2408 drbd_alert(device, "Concurrent writes detected: " 2409 "local=%llus +%u, remote=%llus +%u, " 2410 "assuming %s came first\n", 2411 (unsigned long long)i->sector, i->size, 2412 (unsigned long long)sector, size, 2413 superseded ? "local" : "remote"); 2414 2415 peer_req->w.cb = superseded ? e_send_superseded : 2416 e_send_retry_write; 2417 list_add_tail(&peer_req->w.list, &device->done_ee); 2418 queue_work(connection->ack_sender, &peer_req->peer_device->send_acks_work); 2419 2420 err = -ENOENT; 2421 goto out; 2422 } else { 2423 struct drbd_request *req = 2424 container_of(i, struct drbd_request, i); 2425 2426 if (!equal) 2427 drbd_alert(device, "Concurrent writes detected: " 2428 "local=%llus +%u, remote=%llus +%u\n", 2429 (unsigned long long)i->sector, i->size, 2430 (unsigned long long)sector, size); 2431 2432 if (req->rq_state & RQ_LOCAL_PENDING || 2433 !(req->rq_state & RQ_POSTPONED)) { 2434 /* 2435 * Wait for the node with the discard flag to 2436 * decide if this request has been superseded 2437 * or needs to be retried. 2438 * Requests that have been superseded will 2439 * disappear from the write_requests tree. 2440 * 2441 * In addition, wait for the conflicting 2442 * request to finish locally before submitting 2443 * the conflicting peer request. 2444 */ 2445 err = drbd_wait_misc(device, &req->i); 2446 if (err) { 2447 _conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD); 2448 fail_postponed_requests(device, sector, size); 2449 goto out; 2450 } 2451 goto repeat; 2452 } 2453 /* 2454 * Remember to restart the conflicting requests after 2455 * the new peer request has completed. 2456 */ 2457 peer_req->flags |= EE_RESTART_REQUESTS; 2458 } 2459 } 2460 err = 0; 2461 2462 out: 2463 if (err) 2464 drbd_remove_epoch_entry_interval(device, peer_req); 2465 return err; 2466 } 2467 2468 /* mirrored write */ 2469 static int receive_Data(struct drbd_connection *connection, struct packet_info *pi) 2470 { 2471 struct drbd_peer_device *peer_device; 2472 struct drbd_device *device; 2473 struct net_conf *nc; 2474 sector_t sector; 2475 struct drbd_peer_request *peer_req; 2476 struct p_data *p = pi->data; 2477 u32 peer_seq = be32_to_cpu(p->seq_num); 2478 int op, op_flags; 2479 u32 dp_flags; 2480 int err, tp; 2481 2482 peer_device = conn_peer_device(connection, pi->vnr); 2483 if (!peer_device) 2484 return -EIO; 2485 device = peer_device->device; 2486 2487 if (!get_ldev(device)) { 2488 int err2; 2489 2490 err = wait_for_and_update_peer_seq(peer_device, peer_seq); 2491 drbd_send_ack_dp(peer_device, P_NEG_ACK, p, pi->size); 2492 atomic_inc(&connection->current_epoch->epoch_size); 2493 err2 = drbd_drain_block(peer_device, pi->size); 2494 if (!err) 2495 err = err2; 2496 return err; 2497 } 2498 2499 /* 2500 * Corresponding put_ldev done either below (on various errors), or in 2501 * drbd_peer_request_endio, if we successfully submit the data at the 2502 * end of this function. 2503 */ 2504 2505 sector = be64_to_cpu(p->sector); 2506 peer_req = read_in_block(peer_device, p->block_id, sector, pi); 2507 if (!peer_req) { 2508 put_ldev(device); 2509 return -EIO; 2510 } 2511 2512 peer_req->w.cb = e_end_block; 2513 peer_req->submit_jif = jiffies; 2514 peer_req->flags |= EE_APPLICATION; 2515 2516 dp_flags = be32_to_cpu(p->dp_flags); 2517 op = wire_flags_to_bio_op(dp_flags); 2518 op_flags = wire_flags_to_bio_flags(dp_flags); 2519 if (pi->cmd == P_TRIM) { 2520 D_ASSERT(peer_device, peer_req->i.size > 0); 2521 D_ASSERT(peer_device, op == REQ_OP_WRITE_ZEROES); 2522 D_ASSERT(peer_device, peer_req->pages == NULL); 2523 } else if (peer_req->pages == NULL) { 2524 D_ASSERT(device, peer_req->i.size == 0); 2525 D_ASSERT(device, dp_flags & DP_FLUSH); 2526 } 2527 2528 if (dp_flags & DP_MAY_SET_IN_SYNC) 2529 peer_req->flags |= EE_MAY_SET_IN_SYNC; 2530 2531 spin_lock(&connection->epoch_lock); 2532 peer_req->epoch = connection->current_epoch; 2533 atomic_inc(&peer_req->epoch->epoch_size); 2534 atomic_inc(&peer_req->epoch->active); 2535 spin_unlock(&connection->epoch_lock); 2536 2537 rcu_read_lock(); 2538 nc = rcu_dereference(peer_device->connection->net_conf); 2539 tp = nc->two_primaries; 2540 if (peer_device->connection->agreed_pro_version < 100) { 2541 switch (nc->wire_protocol) { 2542 case DRBD_PROT_C: 2543 dp_flags |= DP_SEND_WRITE_ACK; 2544 break; 2545 case DRBD_PROT_B: 2546 dp_flags |= DP_SEND_RECEIVE_ACK; 2547 break; 2548 } 2549 } 2550 rcu_read_unlock(); 2551 2552 if (dp_flags & DP_SEND_WRITE_ACK) { 2553 peer_req->flags |= EE_SEND_WRITE_ACK; 2554 inc_unacked(device); 2555 /* corresponding dec_unacked() in e_end_block() 2556 * respective _drbd_clear_done_ee */ 2557 } 2558 2559 if (dp_flags & DP_SEND_RECEIVE_ACK) { 2560 /* I really don't like it that the receiver thread 2561 * sends on the msock, but anyways */ 2562 drbd_send_ack(peer_device, P_RECV_ACK, peer_req); 2563 } 2564 2565 if (tp) { 2566 /* two primaries implies protocol C */ 2567 D_ASSERT(device, dp_flags & DP_SEND_WRITE_ACK); 2568 peer_req->flags |= EE_IN_INTERVAL_TREE; 2569 err = wait_for_and_update_peer_seq(peer_device, peer_seq); 2570 if (err) 2571 goto out_interrupted; 2572 spin_lock_irq(&device->resource->req_lock); 2573 err = handle_write_conflicts(device, peer_req); 2574 if (err) { 2575 spin_unlock_irq(&device->resource->req_lock); 2576 if (err == -ENOENT) { 2577 put_ldev(device); 2578 return 0; 2579 } 2580 goto out_interrupted; 2581 } 2582 } else { 2583 update_peer_seq(peer_device, peer_seq); 2584 spin_lock_irq(&device->resource->req_lock); 2585 } 2586 /* TRIM and WRITE_SAME are processed synchronously, 2587 * we wait for all pending requests, respectively wait for 2588 * active_ee to become empty in drbd_submit_peer_request(); 2589 * better not add ourselves here. */ 2590 if ((peer_req->flags & (EE_IS_TRIM|EE_WRITE_SAME)) == 0) 2591 list_add_tail(&peer_req->w.list, &device->active_ee); 2592 spin_unlock_irq(&device->resource->req_lock); 2593 2594 if (device->state.conn == C_SYNC_TARGET) 2595 wait_event(device->ee_wait, !overlapping_resync_write(device, peer_req)); 2596 2597 if (device->state.pdsk < D_INCONSISTENT) { 2598 /* In case we have the only disk of the cluster, */ 2599 drbd_set_out_of_sync(device, peer_req->i.sector, peer_req->i.size); 2600 peer_req->flags &= ~EE_MAY_SET_IN_SYNC; 2601 drbd_al_begin_io(device, &peer_req->i); 2602 peer_req->flags |= EE_CALL_AL_COMPLETE_IO; 2603 } 2604 2605 err = drbd_submit_peer_request(device, peer_req, op, op_flags, 2606 DRBD_FAULT_DT_WR); 2607 if (!err) 2608 return 0; 2609 2610 /* don't care for the reason here */ 2611 drbd_err(device, "submit failed, triggering re-connect\n"); 2612 spin_lock_irq(&device->resource->req_lock); 2613 list_del(&peer_req->w.list); 2614 drbd_remove_epoch_entry_interval(device, peer_req); 2615 spin_unlock_irq(&device->resource->req_lock); 2616 if (peer_req->flags & EE_CALL_AL_COMPLETE_IO) { 2617 peer_req->flags &= ~EE_CALL_AL_COMPLETE_IO; 2618 drbd_al_complete_io(device, &peer_req->i); 2619 } 2620 2621 out_interrupted: 2622 drbd_may_finish_epoch(connection, peer_req->epoch, EV_PUT | EV_CLEANUP); 2623 put_ldev(device); 2624 drbd_free_peer_req(device, peer_req); 2625 return err; 2626 } 2627 2628 /* We may throttle resync, if the lower device seems to be busy, 2629 * and current sync rate is above c_min_rate. 2630 * 2631 * To decide whether or not the lower device is busy, we use a scheme similar 2632 * to MD RAID is_mddev_idle(): if the partition stats reveal "significant" 2633 * (more than 64 sectors) of activity we cannot account for with our own resync 2634 * activity, it obviously is "busy". 2635 * 2636 * The current sync rate used here uses only the most recent two step marks, 2637 * to have a short time average so we can react faster. 2638 */ 2639 bool drbd_rs_should_slow_down(struct drbd_device *device, sector_t sector, 2640 bool throttle_if_app_is_waiting) 2641 { 2642 struct lc_element *tmp; 2643 bool throttle = drbd_rs_c_min_rate_throttle(device); 2644 2645 if (!throttle || throttle_if_app_is_waiting) 2646 return throttle; 2647 2648 spin_lock_irq(&device->al_lock); 2649 tmp = lc_find(device->resync, BM_SECT_TO_EXT(sector)); 2650 if (tmp) { 2651 struct bm_extent *bm_ext = lc_entry(tmp, struct bm_extent, lce); 2652 if (test_bit(BME_PRIORITY, &bm_ext->flags)) 2653 throttle = false; 2654 /* Do not slow down if app IO is already waiting for this extent, 2655 * and our progress is necessary for application IO to complete. */ 2656 } 2657 spin_unlock_irq(&device->al_lock); 2658 2659 return throttle; 2660 } 2661 2662 bool drbd_rs_c_min_rate_throttle(struct drbd_device *device) 2663 { 2664 struct gendisk *disk = device->ldev->backing_bdev->bd_contains->bd_disk; 2665 unsigned long db, dt, dbdt; 2666 unsigned int c_min_rate; 2667 int curr_events; 2668 2669 rcu_read_lock(); 2670 c_min_rate = rcu_dereference(device->ldev->disk_conf)->c_min_rate; 2671 rcu_read_unlock(); 2672 2673 /* feature disabled? */ 2674 if (c_min_rate == 0) 2675 return false; 2676 2677 curr_events = (int)part_stat_read_accum(&disk->part0, sectors) - 2678 atomic_read(&device->rs_sect_ev); 2679 2680 if (atomic_read(&device->ap_actlog_cnt) 2681 || curr_events - device->rs_last_events > 64) { 2682 unsigned long rs_left; 2683 int i; 2684 2685 device->rs_last_events = curr_events; 2686 2687 /* sync speed average over the last 2*DRBD_SYNC_MARK_STEP, 2688 * approx. */ 2689 i = (device->rs_last_mark + DRBD_SYNC_MARKS-1) % DRBD_SYNC_MARKS; 2690 2691 if (device->state.conn == C_VERIFY_S || device->state.conn == C_VERIFY_T) 2692 rs_left = device->ov_left; 2693 else 2694 rs_left = drbd_bm_total_weight(device) - device->rs_failed; 2695 2696 dt = ((long)jiffies - (long)device->rs_mark_time[i]) / HZ; 2697 if (!dt) 2698 dt++; 2699 db = device->rs_mark_left[i] - rs_left; 2700 dbdt = Bit2KB(db/dt); 2701 2702 if (dbdt > c_min_rate) 2703 return true; 2704 } 2705 return false; 2706 } 2707 2708 static int receive_DataRequest(struct drbd_connection *connection, struct packet_info *pi) 2709 { 2710 struct drbd_peer_device *peer_device; 2711 struct drbd_device *device; 2712 sector_t sector; 2713 sector_t capacity; 2714 struct drbd_peer_request *peer_req; 2715 struct digest_info *di = NULL; 2716 int size, verb; 2717 unsigned int fault_type; 2718 struct p_block_req *p = pi->data; 2719 2720 peer_device = conn_peer_device(connection, pi->vnr); 2721 if (!peer_device) 2722 return -EIO; 2723 device = peer_device->device; 2724 capacity = drbd_get_capacity(device->this_bdev); 2725 2726 sector = be64_to_cpu(p->sector); 2727 size = be32_to_cpu(p->blksize); 2728 2729 if (size <= 0 || !IS_ALIGNED(size, 512) || size > DRBD_MAX_BIO_SIZE) { 2730 drbd_err(device, "%s:%d: sector: %llus, size: %u\n", __FILE__, __LINE__, 2731 (unsigned long long)sector, size); 2732 return -EINVAL; 2733 } 2734 if (sector + (size>>9) > capacity) { 2735 drbd_err(device, "%s:%d: sector: %llus, size: %u\n", __FILE__, __LINE__, 2736 (unsigned long long)sector, size); 2737 return -EINVAL; 2738 } 2739 2740 if (!get_ldev_if_state(device, D_UP_TO_DATE)) { 2741 verb = 1; 2742 switch (pi->cmd) { 2743 case P_DATA_REQUEST: 2744 drbd_send_ack_rp(peer_device, P_NEG_DREPLY, p); 2745 break; 2746 case P_RS_THIN_REQ: 2747 case P_RS_DATA_REQUEST: 2748 case P_CSUM_RS_REQUEST: 2749 case P_OV_REQUEST: 2750 drbd_send_ack_rp(peer_device, P_NEG_RS_DREPLY , p); 2751 break; 2752 case P_OV_REPLY: 2753 verb = 0; 2754 dec_rs_pending(device); 2755 drbd_send_ack_ex(peer_device, P_OV_RESULT, sector, size, ID_IN_SYNC); 2756 break; 2757 default: 2758 BUG(); 2759 } 2760 if (verb && __ratelimit(&drbd_ratelimit_state)) 2761 drbd_err(device, "Can not satisfy peer's read request, " 2762 "no local data.\n"); 2763 2764 /* drain possibly payload */ 2765 return drbd_drain_block(peer_device, pi->size); 2766 } 2767 2768 /* GFP_NOIO, because we must not cause arbitrary write-out: in a DRBD 2769 * "criss-cross" setup, that might cause write-out on some other DRBD, 2770 * which in turn might block on the other node at this very place. */ 2771 peer_req = drbd_alloc_peer_req(peer_device, p->block_id, sector, size, 2772 size, GFP_NOIO); 2773 if (!peer_req) { 2774 put_ldev(device); 2775 return -ENOMEM; 2776 } 2777 2778 switch (pi->cmd) { 2779 case P_DATA_REQUEST: 2780 peer_req->w.cb = w_e_end_data_req; 2781 fault_type = DRBD_FAULT_DT_RD; 2782 /* application IO, don't drbd_rs_begin_io */ 2783 peer_req->flags |= EE_APPLICATION; 2784 goto submit; 2785 2786 case P_RS_THIN_REQ: 2787 /* If at some point in the future we have a smart way to 2788 find out if this data block is completely deallocated, 2789 then we would do something smarter here than reading 2790 the block... */ 2791 peer_req->flags |= EE_RS_THIN_REQ; 2792 /* fall through */ 2793 case P_RS_DATA_REQUEST: 2794 peer_req->w.cb = w_e_end_rsdata_req; 2795 fault_type = DRBD_FAULT_RS_RD; 2796 /* used in the sector offset progress display */ 2797 device->bm_resync_fo = BM_SECT_TO_BIT(sector); 2798 break; 2799 2800 case P_OV_REPLY: 2801 case P_CSUM_RS_REQUEST: 2802 fault_type = DRBD_FAULT_RS_RD; 2803 di = kmalloc(sizeof(*di) + pi->size, GFP_NOIO); 2804 if (!di) 2805 goto out_free_e; 2806 2807 di->digest_size = pi->size; 2808 di->digest = (((char *)di)+sizeof(struct digest_info)); 2809 2810 peer_req->digest = di; 2811 peer_req->flags |= EE_HAS_DIGEST; 2812 2813 if (drbd_recv_all(peer_device->connection, di->digest, pi->size)) 2814 goto out_free_e; 2815 2816 if (pi->cmd == P_CSUM_RS_REQUEST) { 2817 D_ASSERT(device, peer_device->connection->agreed_pro_version >= 89); 2818 peer_req->w.cb = w_e_end_csum_rs_req; 2819 /* used in the sector offset progress display */ 2820 device->bm_resync_fo = BM_SECT_TO_BIT(sector); 2821 /* remember to report stats in drbd_resync_finished */ 2822 device->use_csums = true; 2823 } else if (pi->cmd == P_OV_REPLY) { 2824 /* track progress, we may need to throttle */ 2825 atomic_add(size >> 9, &device->rs_sect_in); 2826 peer_req->w.cb = w_e_end_ov_reply; 2827 dec_rs_pending(device); 2828 /* drbd_rs_begin_io done when we sent this request, 2829 * but accounting still needs to be done. */ 2830 goto submit_for_resync; 2831 } 2832 break; 2833 2834 case P_OV_REQUEST: 2835 if (device->ov_start_sector == ~(sector_t)0 && 2836 peer_device->connection->agreed_pro_version >= 90) { 2837 unsigned long now = jiffies; 2838 int i; 2839 device->ov_start_sector = sector; 2840 device->ov_position = sector; 2841 device->ov_left = drbd_bm_bits(device) - BM_SECT_TO_BIT(sector); 2842 device->rs_total = device->ov_left; 2843 for (i = 0; i < DRBD_SYNC_MARKS; i++) { 2844 device->rs_mark_left[i] = device->ov_left; 2845 device->rs_mark_time[i] = now; 2846 } 2847 drbd_info(device, "Online Verify start sector: %llu\n", 2848 (unsigned long long)sector); 2849 } 2850 peer_req->w.cb = w_e_end_ov_req; 2851 fault_type = DRBD_FAULT_RS_RD; 2852 break; 2853 2854 default: 2855 BUG(); 2856 } 2857 2858 /* Throttle, drbd_rs_begin_io and submit should become asynchronous 2859 * wrt the receiver, but it is not as straightforward as it may seem. 2860 * Various places in the resync start and stop logic assume resync 2861 * requests are processed in order, requeuing this on the worker thread 2862 * introduces a bunch of new code for synchronization between threads. 2863 * 2864 * Unlimited throttling before drbd_rs_begin_io may stall the resync 2865 * "forever", throttling after drbd_rs_begin_io will lock that extent 2866 * for application writes for the same time. For now, just throttle 2867 * here, where the rest of the code expects the receiver to sleep for 2868 * a while, anyways. 2869 */ 2870 2871 /* Throttle before drbd_rs_begin_io, as that locks out application IO; 2872 * this defers syncer requests for some time, before letting at least 2873 * on request through. The resync controller on the receiving side 2874 * will adapt to the incoming rate accordingly. 2875 * 2876 * We cannot throttle here if remote is Primary/SyncTarget: 2877 * we would also throttle its application reads. 2878 * In that case, throttling is done on the SyncTarget only. 2879 */ 2880 2881 /* Even though this may be a resync request, we do add to "read_ee"; 2882 * "sync_ee" is only used for resync WRITEs. 2883 * Add to list early, so debugfs can find this request 2884 * even if we have to sleep below. */ 2885 spin_lock_irq(&device->resource->req_lock); 2886 list_add_tail(&peer_req->w.list, &device->read_ee); 2887 spin_unlock_irq(&device->resource->req_lock); 2888 2889 update_receiver_timing_details(connection, drbd_rs_should_slow_down); 2890 if (device->state.peer != R_PRIMARY 2891 && drbd_rs_should_slow_down(device, sector, false)) 2892 schedule_timeout_uninterruptible(HZ/10); 2893 update_receiver_timing_details(connection, drbd_rs_begin_io); 2894 if (drbd_rs_begin_io(device, sector)) 2895 goto out_free_e; 2896 2897 submit_for_resync: 2898 atomic_add(size >> 9, &device->rs_sect_ev); 2899 2900 submit: 2901 update_receiver_timing_details(connection, drbd_submit_peer_request); 2902 inc_unacked(device); 2903 if (drbd_submit_peer_request(device, peer_req, REQ_OP_READ, 0, 2904 fault_type) == 0) 2905 return 0; 2906 2907 /* don't care for the reason here */ 2908 drbd_err(device, "submit failed, triggering re-connect\n"); 2909 2910 out_free_e: 2911 spin_lock_irq(&device->resource->req_lock); 2912 list_del(&peer_req->w.list); 2913 spin_unlock_irq(&device->resource->req_lock); 2914 /* no drbd_rs_complete_io(), we are dropping the connection anyways */ 2915 2916 put_ldev(device); 2917 drbd_free_peer_req(device, peer_req); 2918 return -EIO; 2919 } 2920 2921 /** 2922 * drbd_asb_recover_0p - Recover after split-brain with no remaining primaries 2923 */ 2924 static int drbd_asb_recover_0p(struct drbd_peer_device *peer_device) __must_hold(local) 2925 { 2926 struct drbd_device *device = peer_device->device; 2927 int self, peer, rv = -100; 2928 unsigned long ch_self, ch_peer; 2929 enum drbd_after_sb_p after_sb_0p; 2930 2931 self = device->ldev->md.uuid[UI_BITMAP] & 1; 2932 peer = device->p_uuid[UI_BITMAP] & 1; 2933 2934 ch_peer = device->p_uuid[UI_SIZE]; 2935 ch_self = device->comm_bm_set; 2936 2937 rcu_read_lock(); 2938 after_sb_0p = rcu_dereference(peer_device->connection->net_conf)->after_sb_0p; 2939 rcu_read_unlock(); 2940 switch (after_sb_0p) { 2941 case ASB_CONSENSUS: 2942 case ASB_DISCARD_SECONDARY: 2943 case ASB_CALL_HELPER: 2944 case ASB_VIOLENTLY: 2945 drbd_err(device, "Configuration error.\n"); 2946 break; 2947 case ASB_DISCONNECT: 2948 break; 2949 case ASB_DISCARD_YOUNGER_PRI: 2950 if (self == 0 && peer == 1) { 2951 rv = -1; 2952 break; 2953 } 2954 if (self == 1 && peer == 0) { 2955 rv = 1; 2956 break; 2957 } 2958 /* Else fall through to one of the other strategies... */ 2959 case ASB_DISCARD_OLDER_PRI: 2960 if (self == 0 && peer == 1) { 2961 rv = 1; 2962 break; 2963 } 2964 if (self == 1 && peer == 0) { 2965 rv = -1; 2966 break; 2967 } 2968 /* Else fall through to one of the other strategies... */ 2969 drbd_warn(device, "Discard younger/older primary did not find a decision\n" 2970 "Using discard-least-changes instead\n"); 2971 /* fall through */ 2972 case ASB_DISCARD_ZERO_CHG: 2973 if (ch_peer == 0 && ch_self == 0) { 2974 rv = test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags) 2975 ? -1 : 1; 2976 break; 2977 } else { 2978 if (ch_peer == 0) { rv = 1; break; } 2979 if (ch_self == 0) { rv = -1; break; } 2980 } 2981 if (after_sb_0p == ASB_DISCARD_ZERO_CHG) 2982 break; 2983 /* else: fall through */ 2984 case ASB_DISCARD_LEAST_CHG: 2985 if (ch_self < ch_peer) 2986 rv = -1; 2987 else if (ch_self > ch_peer) 2988 rv = 1; 2989 else /* ( ch_self == ch_peer ) */ 2990 /* Well, then use something else. */ 2991 rv = test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags) 2992 ? -1 : 1; 2993 break; 2994 case ASB_DISCARD_LOCAL: 2995 rv = -1; 2996 break; 2997 case ASB_DISCARD_REMOTE: 2998 rv = 1; 2999 } 3000 3001 return rv; 3002 } 3003 3004 /** 3005 * drbd_asb_recover_1p - Recover after split-brain with one remaining primary 3006 */ 3007 static int drbd_asb_recover_1p(struct drbd_peer_device *peer_device) __must_hold(local) 3008 { 3009 struct drbd_device *device = peer_device->device; 3010 int hg, rv = -100; 3011 enum drbd_after_sb_p after_sb_1p; 3012 3013 rcu_read_lock(); 3014 after_sb_1p = rcu_dereference(peer_device->connection->net_conf)->after_sb_1p; 3015 rcu_read_unlock(); 3016 switch (after_sb_1p) { 3017 case ASB_DISCARD_YOUNGER_PRI: 3018 case ASB_DISCARD_OLDER_PRI: 3019 case ASB_DISCARD_LEAST_CHG: 3020 case ASB_DISCARD_LOCAL: 3021 case ASB_DISCARD_REMOTE: 3022 case ASB_DISCARD_ZERO_CHG: 3023 drbd_err(device, "Configuration error.\n"); 3024 break; 3025 case ASB_DISCONNECT: 3026 break; 3027 case ASB_CONSENSUS: 3028 hg = drbd_asb_recover_0p(peer_device); 3029 if (hg == -1 && device->state.role == R_SECONDARY) 3030 rv = hg; 3031 if (hg == 1 && device->state.role == R_PRIMARY) 3032 rv = hg; 3033 break; 3034 case ASB_VIOLENTLY: 3035 rv = drbd_asb_recover_0p(peer_device); 3036 break; 3037 case ASB_DISCARD_SECONDARY: 3038 return device->state.role == R_PRIMARY ? 1 : -1; 3039 case ASB_CALL_HELPER: 3040 hg = drbd_asb_recover_0p(peer_device); 3041 if (hg == -1 && device->state.role == R_PRIMARY) { 3042 enum drbd_state_rv rv2; 3043 3044 /* drbd_change_state() does not sleep while in SS_IN_TRANSIENT_STATE, 3045 * we might be here in C_WF_REPORT_PARAMS which is transient. 3046 * we do not need to wait for the after state change work either. */ 3047 rv2 = drbd_change_state(device, CS_VERBOSE, NS(role, R_SECONDARY)); 3048 if (rv2 != SS_SUCCESS) { 3049 drbd_khelper(device, "pri-lost-after-sb"); 3050 } else { 3051 drbd_warn(device, "Successfully gave up primary role.\n"); 3052 rv = hg; 3053 } 3054 } else 3055 rv = hg; 3056 } 3057 3058 return rv; 3059 } 3060 3061 /** 3062 * drbd_asb_recover_2p - Recover after split-brain with two remaining primaries 3063 */ 3064 static int drbd_asb_recover_2p(struct drbd_peer_device *peer_device) __must_hold(local) 3065 { 3066 struct drbd_device *device = peer_device->device; 3067 int hg, rv = -100; 3068 enum drbd_after_sb_p after_sb_2p; 3069 3070 rcu_read_lock(); 3071 after_sb_2p = rcu_dereference(peer_device->connection->net_conf)->after_sb_2p; 3072 rcu_read_unlock(); 3073 switch (after_sb_2p) { 3074 case ASB_DISCARD_YOUNGER_PRI: 3075 case ASB_DISCARD_OLDER_PRI: 3076 case ASB_DISCARD_LEAST_CHG: 3077 case ASB_DISCARD_LOCAL: 3078 case ASB_DISCARD_REMOTE: 3079 case ASB_CONSENSUS: 3080 case ASB_DISCARD_SECONDARY: 3081 case ASB_DISCARD_ZERO_CHG: 3082 drbd_err(device, "Configuration error.\n"); 3083 break; 3084 case ASB_VIOLENTLY: 3085 rv = drbd_asb_recover_0p(peer_device); 3086 break; 3087 case ASB_DISCONNECT: 3088 break; 3089 case ASB_CALL_HELPER: 3090 hg = drbd_asb_recover_0p(peer_device); 3091 if (hg == -1) { 3092 enum drbd_state_rv rv2; 3093 3094 /* drbd_change_state() does not sleep while in SS_IN_TRANSIENT_STATE, 3095 * we might be here in C_WF_REPORT_PARAMS which is transient. 3096 * we do not need to wait for the after state change work either. */ 3097 rv2 = drbd_change_state(device, CS_VERBOSE, NS(role, R_SECONDARY)); 3098 if (rv2 != SS_SUCCESS) { 3099 drbd_khelper(device, "pri-lost-after-sb"); 3100 } else { 3101 drbd_warn(device, "Successfully gave up primary role.\n"); 3102 rv = hg; 3103 } 3104 } else 3105 rv = hg; 3106 } 3107 3108 return rv; 3109 } 3110 3111 static void drbd_uuid_dump(struct drbd_device *device, char *text, u64 *uuid, 3112 u64 bits, u64 flags) 3113 { 3114 if (!uuid) { 3115 drbd_info(device, "%s uuid info vanished while I was looking!\n", text); 3116 return; 3117 } 3118 drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX bits:%llu flags:%llX\n", 3119 text, 3120 (unsigned long long)uuid[UI_CURRENT], 3121 (unsigned long long)uuid[UI_BITMAP], 3122 (unsigned long long)uuid[UI_HISTORY_START], 3123 (unsigned long long)uuid[UI_HISTORY_END], 3124 (unsigned long long)bits, 3125 (unsigned long long)flags); 3126 } 3127 3128 /* 3129 100 after split brain try auto recover 3130 2 C_SYNC_SOURCE set BitMap 3131 1 C_SYNC_SOURCE use BitMap 3132 0 no Sync 3133 -1 C_SYNC_TARGET use BitMap 3134 -2 C_SYNC_TARGET set BitMap 3135 -100 after split brain, disconnect 3136 -1000 unrelated data 3137 -1091 requires proto 91 3138 -1096 requires proto 96 3139 */ 3140 3141 static int drbd_uuid_compare(struct drbd_device *const device, enum drbd_role const peer_role, int *rule_nr) __must_hold(local) 3142 { 3143 struct drbd_peer_device *const peer_device = first_peer_device(device); 3144 struct drbd_connection *const connection = peer_device ? peer_device->connection : NULL; 3145 u64 self, peer; 3146 int i, j; 3147 3148 self = device->ldev->md.uuid[UI_CURRENT] & ~((u64)1); 3149 peer = device->p_uuid[UI_CURRENT] & ~((u64)1); 3150 3151 *rule_nr = 10; 3152 if (self == UUID_JUST_CREATED && peer == UUID_JUST_CREATED) 3153 return 0; 3154 3155 *rule_nr = 20; 3156 if ((self == UUID_JUST_CREATED || self == (u64)0) && 3157 peer != UUID_JUST_CREATED) 3158 return -2; 3159 3160 *rule_nr = 30; 3161 if (self != UUID_JUST_CREATED && 3162 (peer == UUID_JUST_CREATED || peer == (u64)0)) 3163 return 2; 3164 3165 if (self == peer) { 3166 int rct, dc; /* roles at crash time */ 3167 3168 if (device->p_uuid[UI_BITMAP] == (u64)0 && device->ldev->md.uuid[UI_BITMAP] != (u64)0) { 3169 3170 if (connection->agreed_pro_version < 91) 3171 return -1091; 3172 3173 if ((device->ldev->md.uuid[UI_BITMAP] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START] & ~((u64)1)) && 3174 (device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START + 1] & ~((u64)1))) { 3175 drbd_info(device, "was SyncSource, missed the resync finished event, corrected myself:\n"); 3176 drbd_uuid_move_history(device); 3177 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP]; 3178 device->ldev->md.uuid[UI_BITMAP] = 0; 3179 3180 drbd_uuid_dump(device, "self", device->ldev->md.uuid, 3181 device->state.disk >= D_NEGOTIATING ? drbd_bm_total_weight(device) : 0, 0); 3182 *rule_nr = 34; 3183 } else { 3184 drbd_info(device, "was SyncSource (peer failed to write sync_uuid)\n"); 3185 *rule_nr = 36; 3186 } 3187 3188 return 1; 3189 } 3190 3191 if (device->ldev->md.uuid[UI_BITMAP] == (u64)0 && device->p_uuid[UI_BITMAP] != (u64)0) { 3192 3193 if (connection->agreed_pro_version < 91) 3194 return -1091; 3195 3196 if ((device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == (device->p_uuid[UI_BITMAP] & ~((u64)1)) && 3197 (device->ldev->md.uuid[UI_HISTORY_START + 1] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START] & ~((u64)1))) { 3198 drbd_info(device, "was SyncTarget, peer missed the resync finished event, corrected peer:\n"); 3199 3200 device->p_uuid[UI_HISTORY_START + 1] = device->p_uuid[UI_HISTORY_START]; 3201 device->p_uuid[UI_HISTORY_START] = device->p_uuid[UI_BITMAP]; 3202 device->p_uuid[UI_BITMAP] = 0UL; 3203 3204 drbd_uuid_dump(device, "peer", device->p_uuid, device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]); 3205 *rule_nr = 35; 3206 } else { 3207 drbd_info(device, "was SyncTarget (failed to write sync_uuid)\n"); 3208 *rule_nr = 37; 3209 } 3210 3211 return -1; 3212 } 3213 3214 /* Common power [off|failure] */ 3215 rct = (test_bit(CRASHED_PRIMARY, &device->flags) ? 1 : 0) + 3216 (device->p_uuid[UI_FLAGS] & 2); 3217 /* lowest bit is set when we were primary, 3218 * next bit (weight 2) is set when peer was primary */ 3219 *rule_nr = 40; 3220 3221 /* Neither has the "crashed primary" flag set, 3222 * only a replication link hickup. */ 3223 if (rct == 0) 3224 return 0; 3225 3226 /* Current UUID equal and no bitmap uuid; does not necessarily 3227 * mean this was a "simultaneous hard crash", maybe IO was 3228 * frozen, so no UUID-bump happened. 3229 * This is a protocol change, overload DRBD_FF_WSAME as flag 3230 * for "new-enough" peer DRBD version. */ 3231 if (device->state.role == R_PRIMARY || peer_role == R_PRIMARY) { 3232 *rule_nr = 41; 3233 if (!(connection->agreed_features & DRBD_FF_WSAME)) { 3234 drbd_warn(peer_device, "Equivalent unrotated UUIDs, but current primary present.\n"); 3235 return -(0x10000 | PRO_VERSION_MAX | (DRBD_FF_WSAME << 8)); 3236 } 3237 if (device->state.role == R_PRIMARY && peer_role == R_PRIMARY) { 3238 /* At least one has the "crashed primary" bit set, 3239 * both are primary now, but neither has rotated its UUIDs? 3240 * "Can not happen." */ 3241 drbd_err(peer_device, "Equivalent unrotated UUIDs, but both are primary. Can not resolve this.\n"); 3242 return -100; 3243 } 3244 if (device->state.role == R_PRIMARY) 3245 return 1; 3246 return -1; 3247 } 3248 3249 /* Both are secondary. 3250 * Really looks like recovery from simultaneous hard crash. 3251 * Check which had been primary before, and arbitrate. */ 3252 switch (rct) { 3253 case 0: /* !self_pri && !peer_pri */ return 0; /* already handled */ 3254 case 1: /* self_pri && !peer_pri */ return 1; 3255 case 2: /* !self_pri && peer_pri */ return -1; 3256 case 3: /* self_pri && peer_pri */ 3257 dc = test_bit(RESOLVE_CONFLICTS, &connection->flags); 3258 return dc ? -1 : 1; 3259 } 3260 } 3261 3262 *rule_nr = 50; 3263 peer = device->p_uuid[UI_BITMAP] & ~((u64)1); 3264 if (self == peer) 3265 return -1; 3266 3267 *rule_nr = 51; 3268 peer = device->p_uuid[UI_HISTORY_START] & ~((u64)1); 3269 if (self == peer) { 3270 if (connection->agreed_pro_version < 96 ? 3271 (device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == 3272 (device->p_uuid[UI_HISTORY_START + 1] & ~((u64)1)) : 3273 peer + UUID_NEW_BM_OFFSET == (device->p_uuid[UI_BITMAP] & ~((u64)1))) { 3274 /* The last P_SYNC_UUID did not get though. Undo the last start of 3275 resync as sync source modifications of the peer's UUIDs. */ 3276 3277 if (connection->agreed_pro_version < 91) 3278 return -1091; 3279 3280 device->p_uuid[UI_BITMAP] = device->p_uuid[UI_HISTORY_START]; 3281 device->p_uuid[UI_HISTORY_START] = device->p_uuid[UI_HISTORY_START + 1]; 3282 3283 drbd_info(device, "Lost last syncUUID packet, corrected:\n"); 3284 drbd_uuid_dump(device, "peer", device->p_uuid, device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]); 3285 3286 return -1; 3287 } 3288 } 3289 3290 *rule_nr = 60; 3291 self = device->ldev->md.uuid[UI_CURRENT] & ~((u64)1); 3292 for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) { 3293 peer = device->p_uuid[i] & ~((u64)1); 3294 if (self == peer) 3295 return -2; 3296 } 3297 3298 *rule_nr = 70; 3299 self = device->ldev->md.uuid[UI_BITMAP] & ~((u64)1); 3300 peer = device->p_uuid[UI_CURRENT] & ~((u64)1); 3301 if (self == peer) 3302 return 1; 3303 3304 *rule_nr = 71; 3305 self = device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1); 3306 if (self == peer) { 3307 if (connection->agreed_pro_version < 96 ? 3308 (device->ldev->md.uuid[UI_HISTORY_START + 1] & ~((u64)1)) == 3309 (device->p_uuid[UI_HISTORY_START] & ~((u64)1)) : 3310 self + UUID_NEW_BM_OFFSET == (device->ldev->md.uuid[UI_BITMAP] & ~((u64)1))) { 3311 /* The last P_SYNC_UUID did not get though. Undo the last start of 3312 resync as sync source modifications of our UUIDs. */ 3313 3314 if (connection->agreed_pro_version < 91) 3315 return -1091; 3316 3317 __drbd_uuid_set(device, UI_BITMAP, device->ldev->md.uuid[UI_HISTORY_START]); 3318 __drbd_uuid_set(device, UI_HISTORY_START, device->ldev->md.uuid[UI_HISTORY_START + 1]); 3319 3320 drbd_info(device, "Last syncUUID did not get through, corrected:\n"); 3321 drbd_uuid_dump(device, "self", device->ldev->md.uuid, 3322 device->state.disk >= D_NEGOTIATING ? drbd_bm_total_weight(device) : 0, 0); 3323 3324 return 1; 3325 } 3326 } 3327 3328 3329 *rule_nr = 80; 3330 peer = device->p_uuid[UI_CURRENT] & ~((u64)1); 3331 for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) { 3332 self = device->ldev->md.uuid[i] & ~((u64)1); 3333 if (self == peer) 3334 return 2; 3335 } 3336 3337 *rule_nr = 90; 3338 self = device->ldev->md.uuid[UI_BITMAP] & ~((u64)1); 3339 peer = device->p_uuid[UI_BITMAP] & ~((u64)1); 3340 if (self == peer && self != ((u64)0)) 3341 return 100; 3342 3343 *rule_nr = 100; 3344 for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) { 3345 self = device->ldev->md.uuid[i] & ~((u64)1); 3346 for (j = UI_HISTORY_START; j <= UI_HISTORY_END; j++) { 3347 peer = device->p_uuid[j] & ~((u64)1); 3348 if (self == peer) 3349 return -100; 3350 } 3351 } 3352 3353 return -1000; 3354 } 3355 3356 /* drbd_sync_handshake() returns the new conn state on success, or 3357 CONN_MASK (-1) on failure. 3358 */ 3359 static enum drbd_conns drbd_sync_handshake(struct drbd_peer_device *peer_device, 3360 enum drbd_role peer_role, 3361 enum drbd_disk_state peer_disk) __must_hold(local) 3362 { 3363 struct drbd_device *device = peer_device->device; 3364 enum drbd_conns rv = C_MASK; 3365 enum drbd_disk_state mydisk; 3366 struct net_conf *nc; 3367 int hg, rule_nr, rr_conflict, tentative; 3368 3369 mydisk = device->state.disk; 3370 if (mydisk == D_NEGOTIATING) 3371 mydisk = device->new_state_tmp.disk; 3372 3373 drbd_info(device, "drbd_sync_handshake:\n"); 3374 3375 spin_lock_irq(&device->ldev->md.uuid_lock); 3376 drbd_uuid_dump(device, "self", device->ldev->md.uuid, device->comm_bm_set, 0); 3377 drbd_uuid_dump(device, "peer", device->p_uuid, 3378 device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]); 3379 3380 hg = drbd_uuid_compare(device, peer_role, &rule_nr); 3381 spin_unlock_irq(&device->ldev->md.uuid_lock); 3382 3383 drbd_info(device, "uuid_compare()=%d by rule %d\n", hg, rule_nr); 3384 3385 if (hg == -1000) { 3386 drbd_alert(device, "Unrelated data, aborting!\n"); 3387 return C_MASK; 3388 } 3389 if (hg < -0x10000) { 3390 int proto, fflags; 3391 hg = -hg; 3392 proto = hg & 0xff; 3393 fflags = (hg >> 8) & 0xff; 3394 drbd_alert(device, "To resolve this both sides have to support at least protocol %d and feature flags 0x%x\n", 3395 proto, fflags); 3396 return C_MASK; 3397 } 3398 if (hg < -1000) { 3399 drbd_alert(device, "To resolve this both sides have to support at least protocol %d\n", -hg - 1000); 3400 return C_MASK; 3401 } 3402 3403 if ((mydisk == D_INCONSISTENT && peer_disk > D_INCONSISTENT) || 3404 (peer_disk == D_INCONSISTENT && mydisk > D_INCONSISTENT)) { 3405 int f = (hg == -100) || abs(hg) == 2; 3406 hg = mydisk > D_INCONSISTENT ? 1 : -1; 3407 if (f) 3408 hg = hg*2; 3409 drbd_info(device, "Becoming sync %s due to disk states.\n", 3410 hg > 0 ? "source" : "target"); 3411 } 3412 3413 if (abs(hg) == 100) 3414 drbd_khelper(device, "initial-split-brain"); 3415 3416 rcu_read_lock(); 3417 nc = rcu_dereference(peer_device->connection->net_conf); 3418 3419 if (hg == 100 || (hg == -100 && nc->always_asbp)) { 3420 int pcount = (device->state.role == R_PRIMARY) 3421 + (peer_role == R_PRIMARY); 3422 int forced = (hg == -100); 3423 3424 switch (pcount) { 3425 case 0: 3426 hg = drbd_asb_recover_0p(peer_device); 3427 break; 3428 case 1: 3429 hg = drbd_asb_recover_1p(peer_device); 3430 break; 3431 case 2: 3432 hg = drbd_asb_recover_2p(peer_device); 3433 break; 3434 } 3435 if (abs(hg) < 100) { 3436 drbd_warn(device, "Split-Brain detected, %d primaries, " 3437 "automatically solved. Sync from %s node\n", 3438 pcount, (hg < 0) ? "peer" : "this"); 3439 if (forced) { 3440 drbd_warn(device, "Doing a full sync, since" 3441 " UUIDs where ambiguous.\n"); 3442 hg = hg*2; 3443 } 3444 } 3445 } 3446 3447 if (hg == -100) { 3448 if (test_bit(DISCARD_MY_DATA, &device->flags) && !(device->p_uuid[UI_FLAGS]&1)) 3449 hg = -1; 3450 if (!test_bit(DISCARD_MY_DATA, &device->flags) && (device->p_uuid[UI_FLAGS]&1)) 3451 hg = 1; 3452 3453 if (abs(hg) < 100) 3454 drbd_warn(device, "Split-Brain detected, manually solved. " 3455 "Sync from %s node\n", 3456 (hg < 0) ? "peer" : "this"); 3457 } 3458 rr_conflict = nc->rr_conflict; 3459 tentative = nc->tentative; 3460 rcu_read_unlock(); 3461 3462 if (hg == -100) { 3463 /* FIXME this log message is not correct if we end up here 3464 * after an attempted attach on a diskless node. 3465 * We just refuse to attach -- well, we drop the "connection" 3466 * to that disk, in a way... */ 3467 drbd_alert(device, "Split-Brain detected but unresolved, dropping connection!\n"); 3468 drbd_khelper(device, "split-brain"); 3469 return C_MASK; 3470 } 3471 3472 if (hg > 0 && mydisk <= D_INCONSISTENT) { 3473 drbd_err(device, "I shall become SyncSource, but I am inconsistent!\n"); 3474 return C_MASK; 3475 } 3476 3477 if (hg < 0 && /* by intention we do not use mydisk here. */ 3478 device->state.role == R_PRIMARY && device->state.disk >= D_CONSISTENT) { 3479 switch (rr_conflict) { 3480 case ASB_CALL_HELPER: 3481 drbd_khelper(device, "pri-lost"); 3482 /* fall through */ 3483 case ASB_DISCONNECT: 3484 drbd_err(device, "I shall become SyncTarget, but I am primary!\n"); 3485 return C_MASK; 3486 case ASB_VIOLENTLY: 3487 drbd_warn(device, "Becoming SyncTarget, violating the stable-data" 3488 "assumption\n"); 3489 } 3490 } 3491 3492 if (tentative || test_bit(CONN_DRY_RUN, &peer_device->connection->flags)) { 3493 if (hg == 0) 3494 drbd_info(device, "dry-run connect: No resync, would become Connected immediately.\n"); 3495 else 3496 drbd_info(device, "dry-run connect: Would become %s, doing a %s resync.", 3497 drbd_conn_str(hg > 0 ? C_SYNC_SOURCE : C_SYNC_TARGET), 3498 abs(hg) >= 2 ? "full" : "bit-map based"); 3499 return C_MASK; 3500 } 3501 3502 if (abs(hg) >= 2) { 3503 drbd_info(device, "Writing the whole bitmap, full sync required after drbd_sync_handshake.\n"); 3504 if (drbd_bitmap_io(device, &drbd_bmio_set_n_write, "set_n_write from sync_handshake", 3505 BM_LOCKED_SET_ALLOWED)) 3506 return C_MASK; 3507 } 3508 3509 if (hg > 0) { /* become sync source. */ 3510 rv = C_WF_BITMAP_S; 3511 } else if (hg < 0) { /* become sync target */ 3512 rv = C_WF_BITMAP_T; 3513 } else { 3514 rv = C_CONNECTED; 3515 if (drbd_bm_total_weight(device)) { 3516 drbd_info(device, "No resync, but %lu bits in bitmap!\n", 3517 drbd_bm_total_weight(device)); 3518 } 3519 } 3520 3521 return rv; 3522 } 3523 3524 static enum drbd_after_sb_p convert_after_sb(enum drbd_after_sb_p peer) 3525 { 3526 /* ASB_DISCARD_REMOTE - ASB_DISCARD_LOCAL is valid */ 3527 if (peer == ASB_DISCARD_REMOTE) 3528 return ASB_DISCARD_LOCAL; 3529 3530 /* any other things with ASB_DISCARD_REMOTE or ASB_DISCARD_LOCAL are invalid */ 3531 if (peer == ASB_DISCARD_LOCAL) 3532 return ASB_DISCARD_REMOTE; 3533 3534 /* everything else is valid if they are equal on both sides. */ 3535 return peer; 3536 } 3537 3538 static int receive_protocol(struct drbd_connection *connection, struct packet_info *pi) 3539 { 3540 struct p_protocol *p = pi->data; 3541 enum drbd_after_sb_p p_after_sb_0p, p_after_sb_1p, p_after_sb_2p; 3542 int p_proto, p_discard_my_data, p_two_primaries, cf; 3543 struct net_conf *nc, *old_net_conf, *new_net_conf = NULL; 3544 char integrity_alg[SHARED_SECRET_MAX] = ""; 3545 struct crypto_shash *peer_integrity_tfm = NULL; 3546 void *int_dig_in = NULL, *int_dig_vv = NULL; 3547 3548 p_proto = be32_to_cpu(p->protocol); 3549 p_after_sb_0p = be32_to_cpu(p->after_sb_0p); 3550 p_after_sb_1p = be32_to_cpu(p->after_sb_1p); 3551 p_after_sb_2p = be32_to_cpu(p->after_sb_2p); 3552 p_two_primaries = be32_to_cpu(p->two_primaries); 3553 cf = be32_to_cpu(p->conn_flags); 3554 p_discard_my_data = cf & CF_DISCARD_MY_DATA; 3555 3556 if (connection->agreed_pro_version >= 87) { 3557 int err; 3558 3559 if (pi->size > sizeof(integrity_alg)) 3560 return -EIO; 3561 err = drbd_recv_all(connection, integrity_alg, pi->size); 3562 if (err) 3563 return err; 3564 integrity_alg[SHARED_SECRET_MAX - 1] = 0; 3565 } 3566 3567 if (pi->cmd != P_PROTOCOL_UPDATE) { 3568 clear_bit(CONN_DRY_RUN, &connection->flags); 3569 3570 if (cf & CF_DRY_RUN) 3571 set_bit(CONN_DRY_RUN, &connection->flags); 3572 3573 rcu_read_lock(); 3574 nc = rcu_dereference(connection->net_conf); 3575 3576 if (p_proto != nc->wire_protocol) { 3577 drbd_err(connection, "incompatible %s settings\n", "protocol"); 3578 goto disconnect_rcu_unlock; 3579 } 3580 3581 if (convert_after_sb(p_after_sb_0p) != nc->after_sb_0p) { 3582 drbd_err(connection, "incompatible %s settings\n", "after-sb-0pri"); 3583 goto disconnect_rcu_unlock; 3584 } 3585 3586 if (convert_after_sb(p_after_sb_1p) != nc->after_sb_1p) { 3587 drbd_err(connection, "incompatible %s settings\n", "after-sb-1pri"); 3588 goto disconnect_rcu_unlock; 3589 } 3590 3591 if (convert_after_sb(p_after_sb_2p) != nc->after_sb_2p) { 3592 drbd_err(connection, "incompatible %s settings\n", "after-sb-2pri"); 3593 goto disconnect_rcu_unlock; 3594 } 3595 3596 if (p_discard_my_data && nc->discard_my_data) { 3597 drbd_err(connection, "incompatible %s settings\n", "discard-my-data"); 3598 goto disconnect_rcu_unlock; 3599 } 3600 3601 if (p_two_primaries != nc->two_primaries) { 3602 drbd_err(connection, "incompatible %s settings\n", "allow-two-primaries"); 3603 goto disconnect_rcu_unlock; 3604 } 3605 3606 if (strcmp(integrity_alg, nc->integrity_alg)) { 3607 drbd_err(connection, "incompatible %s settings\n", "data-integrity-alg"); 3608 goto disconnect_rcu_unlock; 3609 } 3610 3611 rcu_read_unlock(); 3612 } 3613 3614 if (integrity_alg[0]) { 3615 int hash_size; 3616 3617 /* 3618 * We can only change the peer data integrity algorithm 3619 * here. Changing our own data integrity algorithm 3620 * requires that we send a P_PROTOCOL_UPDATE packet at 3621 * the same time; otherwise, the peer has no way to 3622 * tell between which packets the algorithm should 3623 * change. 3624 */ 3625 3626 peer_integrity_tfm = crypto_alloc_shash(integrity_alg, 0, CRYPTO_ALG_ASYNC); 3627 if (IS_ERR(peer_integrity_tfm)) { 3628 peer_integrity_tfm = NULL; 3629 drbd_err(connection, "peer data-integrity-alg %s not supported\n", 3630 integrity_alg); 3631 goto disconnect; 3632 } 3633 3634 hash_size = crypto_shash_digestsize(peer_integrity_tfm); 3635 int_dig_in = kmalloc(hash_size, GFP_KERNEL); 3636 int_dig_vv = kmalloc(hash_size, GFP_KERNEL); 3637 if (!(int_dig_in && int_dig_vv)) { 3638 drbd_err(connection, "Allocation of buffers for data integrity checking failed\n"); 3639 goto disconnect; 3640 } 3641 } 3642 3643 new_net_conf = kmalloc(sizeof(struct net_conf), GFP_KERNEL); 3644 if (!new_net_conf) { 3645 drbd_err(connection, "Allocation of new net_conf failed\n"); 3646 goto disconnect; 3647 } 3648 3649 mutex_lock(&connection->data.mutex); 3650 mutex_lock(&connection->resource->conf_update); 3651 old_net_conf = connection->net_conf; 3652 *new_net_conf = *old_net_conf; 3653 3654 new_net_conf->wire_protocol = p_proto; 3655 new_net_conf->after_sb_0p = convert_after_sb(p_after_sb_0p); 3656 new_net_conf->after_sb_1p = convert_after_sb(p_after_sb_1p); 3657 new_net_conf->after_sb_2p = convert_after_sb(p_after_sb_2p); 3658 new_net_conf->two_primaries = p_two_primaries; 3659 3660 rcu_assign_pointer(connection->net_conf, new_net_conf); 3661 mutex_unlock(&connection->resource->conf_update); 3662 mutex_unlock(&connection->data.mutex); 3663 3664 crypto_free_shash(connection->peer_integrity_tfm); 3665 kfree(connection->int_dig_in); 3666 kfree(connection->int_dig_vv); 3667 connection->peer_integrity_tfm = peer_integrity_tfm; 3668 connection->int_dig_in = int_dig_in; 3669 connection->int_dig_vv = int_dig_vv; 3670 3671 if (strcmp(old_net_conf->integrity_alg, integrity_alg)) 3672 drbd_info(connection, "peer data-integrity-alg: %s\n", 3673 integrity_alg[0] ? integrity_alg : "(none)"); 3674 3675 synchronize_rcu(); 3676 kfree(old_net_conf); 3677 return 0; 3678 3679 disconnect_rcu_unlock: 3680 rcu_read_unlock(); 3681 disconnect: 3682 crypto_free_shash(peer_integrity_tfm); 3683 kfree(int_dig_in); 3684 kfree(int_dig_vv); 3685 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 3686 return -EIO; 3687 } 3688 3689 /* helper function 3690 * input: alg name, feature name 3691 * return: NULL (alg name was "") 3692 * ERR_PTR(error) if something goes wrong 3693 * or the crypto hash ptr, if it worked out ok. */ 3694 static struct crypto_shash *drbd_crypto_alloc_digest_safe( 3695 const struct drbd_device *device, 3696 const char *alg, const char *name) 3697 { 3698 struct crypto_shash *tfm; 3699 3700 if (!alg[0]) 3701 return NULL; 3702 3703 tfm = crypto_alloc_shash(alg, 0, 0); 3704 if (IS_ERR(tfm)) { 3705 drbd_err(device, "Can not allocate \"%s\" as %s (reason: %ld)\n", 3706 alg, name, PTR_ERR(tfm)); 3707 return tfm; 3708 } 3709 return tfm; 3710 } 3711 3712 static int ignore_remaining_packet(struct drbd_connection *connection, struct packet_info *pi) 3713 { 3714 void *buffer = connection->data.rbuf; 3715 int size = pi->size; 3716 3717 while (size) { 3718 int s = min_t(int, size, DRBD_SOCKET_BUFFER_SIZE); 3719 s = drbd_recv(connection, buffer, s); 3720 if (s <= 0) { 3721 if (s < 0) 3722 return s; 3723 break; 3724 } 3725 size -= s; 3726 } 3727 if (size) 3728 return -EIO; 3729 return 0; 3730 } 3731 3732 /* 3733 * config_unknown_volume - device configuration command for unknown volume 3734 * 3735 * When a device is added to an existing connection, the node on which the 3736 * device is added first will send configuration commands to its peer but the 3737 * peer will not know about the device yet. It will warn and ignore these 3738 * commands. Once the device is added on the second node, the second node will 3739 * send the same device configuration commands, but in the other direction. 3740 * 3741 * (We can also end up here if drbd is misconfigured.) 3742 */ 3743 static int config_unknown_volume(struct drbd_connection *connection, struct packet_info *pi) 3744 { 3745 drbd_warn(connection, "%s packet received for volume %u, which is not configured locally\n", 3746 cmdname(pi->cmd), pi->vnr); 3747 return ignore_remaining_packet(connection, pi); 3748 } 3749 3750 static int receive_SyncParam(struct drbd_connection *connection, struct packet_info *pi) 3751 { 3752 struct drbd_peer_device *peer_device; 3753 struct drbd_device *device; 3754 struct p_rs_param_95 *p; 3755 unsigned int header_size, data_size, exp_max_sz; 3756 struct crypto_shash *verify_tfm = NULL; 3757 struct crypto_shash *csums_tfm = NULL; 3758 struct net_conf *old_net_conf, *new_net_conf = NULL; 3759 struct disk_conf *old_disk_conf = NULL, *new_disk_conf = NULL; 3760 const int apv = connection->agreed_pro_version; 3761 struct fifo_buffer *old_plan = NULL, *new_plan = NULL; 3762 int fifo_size = 0; 3763 int err; 3764 3765 peer_device = conn_peer_device(connection, pi->vnr); 3766 if (!peer_device) 3767 return config_unknown_volume(connection, pi); 3768 device = peer_device->device; 3769 3770 exp_max_sz = apv <= 87 ? sizeof(struct p_rs_param) 3771 : apv == 88 ? sizeof(struct p_rs_param) 3772 + SHARED_SECRET_MAX 3773 : apv <= 94 ? sizeof(struct p_rs_param_89) 3774 : /* apv >= 95 */ sizeof(struct p_rs_param_95); 3775 3776 if (pi->size > exp_max_sz) { 3777 drbd_err(device, "SyncParam packet too long: received %u, expected <= %u bytes\n", 3778 pi->size, exp_max_sz); 3779 return -EIO; 3780 } 3781 3782 if (apv <= 88) { 3783 header_size = sizeof(struct p_rs_param); 3784 data_size = pi->size - header_size; 3785 } else if (apv <= 94) { 3786 header_size = sizeof(struct p_rs_param_89); 3787 data_size = pi->size - header_size; 3788 D_ASSERT(device, data_size == 0); 3789 } else { 3790 header_size = sizeof(struct p_rs_param_95); 3791 data_size = pi->size - header_size; 3792 D_ASSERT(device, data_size == 0); 3793 } 3794 3795 /* initialize verify_alg and csums_alg */ 3796 p = pi->data; 3797 memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX); 3798 3799 err = drbd_recv_all(peer_device->connection, p, header_size); 3800 if (err) 3801 return err; 3802 3803 mutex_lock(&connection->resource->conf_update); 3804 old_net_conf = peer_device->connection->net_conf; 3805 if (get_ldev(device)) { 3806 new_disk_conf = kzalloc(sizeof(struct disk_conf), GFP_KERNEL); 3807 if (!new_disk_conf) { 3808 put_ldev(device); 3809 mutex_unlock(&connection->resource->conf_update); 3810 drbd_err(device, "Allocation of new disk_conf failed\n"); 3811 return -ENOMEM; 3812 } 3813 3814 old_disk_conf = device->ldev->disk_conf; 3815 *new_disk_conf = *old_disk_conf; 3816 3817 new_disk_conf->resync_rate = be32_to_cpu(p->resync_rate); 3818 } 3819 3820 if (apv >= 88) { 3821 if (apv == 88) { 3822 if (data_size > SHARED_SECRET_MAX || data_size == 0) { 3823 drbd_err(device, "verify-alg of wrong size, " 3824 "peer wants %u, accepting only up to %u byte\n", 3825 data_size, SHARED_SECRET_MAX); 3826 err = -EIO; 3827 goto reconnect; 3828 } 3829 3830 err = drbd_recv_all(peer_device->connection, p->verify_alg, data_size); 3831 if (err) 3832 goto reconnect; 3833 /* we expect NUL terminated string */ 3834 /* but just in case someone tries to be evil */ 3835 D_ASSERT(device, p->verify_alg[data_size-1] == 0); 3836 p->verify_alg[data_size-1] = 0; 3837 3838 } else /* apv >= 89 */ { 3839 /* we still expect NUL terminated strings */ 3840 /* but just in case someone tries to be evil */ 3841 D_ASSERT(device, p->verify_alg[SHARED_SECRET_MAX-1] == 0); 3842 D_ASSERT(device, p->csums_alg[SHARED_SECRET_MAX-1] == 0); 3843 p->verify_alg[SHARED_SECRET_MAX-1] = 0; 3844 p->csums_alg[SHARED_SECRET_MAX-1] = 0; 3845 } 3846 3847 if (strcmp(old_net_conf->verify_alg, p->verify_alg)) { 3848 if (device->state.conn == C_WF_REPORT_PARAMS) { 3849 drbd_err(device, "Different verify-alg settings. me=\"%s\" peer=\"%s\"\n", 3850 old_net_conf->verify_alg, p->verify_alg); 3851 goto disconnect; 3852 } 3853 verify_tfm = drbd_crypto_alloc_digest_safe(device, 3854 p->verify_alg, "verify-alg"); 3855 if (IS_ERR(verify_tfm)) { 3856 verify_tfm = NULL; 3857 goto disconnect; 3858 } 3859 } 3860 3861 if (apv >= 89 && strcmp(old_net_conf->csums_alg, p->csums_alg)) { 3862 if (device->state.conn == C_WF_REPORT_PARAMS) { 3863 drbd_err(device, "Different csums-alg settings. me=\"%s\" peer=\"%s\"\n", 3864 old_net_conf->csums_alg, p->csums_alg); 3865 goto disconnect; 3866 } 3867 csums_tfm = drbd_crypto_alloc_digest_safe(device, 3868 p->csums_alg, "csums-alg"); 3869 if (IS_ERR(csums_tfm)) { 3870 csums_tfm = NULL; 3871 goto disconnect; 3872 } 3873 } 3874 3875 if (apv > 94 && new_disk_conf) { 3876 new_disk_conf->c_plan_ahead = be32_to_cpu(p->c_plan_ahead); 3877 new_disk_conf->c_delay_target = be32_to_cpu(p->c_delay_target); 3878 new_disk_conf->c_fill_target = be32_to_cpu(p->c_fill_target); 3879 new_disk_conf->c_max_rate = be32_to_cpu(p->c_max_rate); 3880 3881 fifo_size = (new_disk_conf->c_plan_ahead * 10 * SLEEP_TIME) / HZ; 3882 if (fifo_size != device->rs_plan_s->size) { 3883 new_plan = fifo_alloc(fifo_size); 3884 if (!new_plan) { 3885 drbd_err(device, "kmalloc of fifo_buffer failed"); 3886 put_ldev(device); 3887 goto disconnect; 3888 } 3889 } 3890 } 3891 3892 if (verify_tfm || csums_tfm) { 3893 new_net_conf = kzalloc(sizeof(struct net_conf), GFP_KERNEL); 3894 if (!new_net_conf) { 3895 drbd_err(device, "Allocation of new net_conf failed\n"); 3896 goto disconnect; 3897 } 3898 3899 *new_net_conf = *old_net_conf; 3900 3901 if (verify_tfm) { 3902 strcpy(new_net_conf->verify_alg, p->verify_alg); 3903 new_net_conf->verify_alg_len = strlen(p->verify_alg) + 1; 3904 crypto_free_shash(peer_device->connection->verify_tfm); 3905 peer_device->connection->verify_tfm = verify_tfm; 3906 drbd_info(device, "using verify-alg: \"%s\"\n", p->verify_alg); 3907 } 3908 if (csums_tfm) { 3909 strcpy(new_net_conf->csums_alg, p->csums_alg); 3910 new_net_conf->csums_alg_len = strlen(p->csums_alg) + 1; 3911 crypto_free_shash(peer_device->connection->csums_tfm); 3912 peer_device->connection->csums_tfm = csums_tfm; 3913 drbd_info(device, "using csums-alg: \"%s\"\n", p->csums_alg); 3914 } 3915 rcu_assign_pointer(connection->net_conf, new_net_conf); 3916 } 3917 } 3918 3919 if (new_disk_conf) { 3920 rcu_assign_pointer(device->ldev->disk_conf, new_disk_conf); 3921 put_ldev(device); 3922 } 3923 3924 if (new_plan) { 3925 old_plan = device->rs_plan_s; 3926 rcu_assign_pointer(device->rs_plan_s, new_plan); 3927 } 3928 3929 mutex_unlock(&connection->resource->conf_update); 3930 synchronize_rcu(); 3931 if (new_net_conf) 3932 kfree(old_net_conf); 3933 kfree(old_disk_conf); 3934 kfree(old_plan); 3935 3936 return 0; 3937 3938 reconnect: 3939 if (new_disk_conf) { 3940 put_ldev(device); 3941 kfree(new_disk_conf); 3942 } 3943 mutex_unlock(&connection->resource->conf_update); 3944 return -EIO; 3945 3946 disconnect: 3947 kfree(new_plan); 3948 if (new_disk_conf) { 3949 put_ldev(device); 3950 kfree(new_disk_conf); 3951 } 3952 mutex_unlock(&connection->resource->conf_update); 3953 /* just for completeness: actually not needed, 3954 * as this is not reached if csums_tfm was ok. */ 3955 crypto_free_shash(csums_tfm); 3956 /* but free the verify_tfm again, if csums_tfm did not work out */ 3957 crypto_free_shash(verify_tfm); 3958 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD); 3959 return -EIO; 3960 } 3961 3962 /* warn if the arguments differ by more than 12.5% */ 3963 static void warn_if_differ_considerably(struct drbd_device *device, 3964 const char *s, sector_t a, sector_t b) 3965 { 3966 sector_t d; 3967 if (a == 0 || b == 0) 3968 return; 3969 d = (a > b) ? (a - b) : (b - a); 3970 if (d > (a>>3) || d > (b>>3)) 3971 drbd_warn(device, "Considerable difference in %s: %llus vs. %llus\n", s, 3972 (unsigned long long)a, (unsigned long long)b); 3973 } 3974 3975 static int receive_sizes(struct drbd_connection *connection, struct packet_info *pi) 3976 { 3977 struct drbd_peer_device *peer_device; 3978 struct drbd_device *device; 3979 struct p_sizes *p = pi->data; 3980 struct o_qlim *o = (connection->agreed_features & DRBD_FF_WSAME) ? p->qlim : NULL; 3981 enum determine_dev_size dd = DS_UNCHANGED; 3982 sector_t p_size, p_usize, p_csize, my_usize; 3983 int ldsc = 0; /* local disk size changed */ 3984 enum dds_flags ddsf; 3985 3986 peer_device = conn_peer_device(connection, pi->vnr); 3987 if (!peer_device) 3988 return config_unknown_volume(connection, pi); 3989 device = peer_device->device; 3990 3991 p_size = be64_to_cpu(p->d_size); 3992 p_usize = be64_to_cpu(p->u_size); 3993 p_csize = be64_to_cpu(p->c_size); 3994 3995 /* just store the peer's disk size for now. 3996 * we still need to figure out whether we accept that. */ 3997 device->p_size = p_size; 3998 3999 if (get_ldev(device)) { 4000 sector_t new_size, cur_size; 4001 rcu_read_lock(); 4002 my_usize = rcu_dereference(device->ldev->disk_conf)->disk_size; 4003 rcu_read_unlock(); 4004 4005 warn_if_differ_considerably(device, "lower level device sizes", 4006 p_size, drbd_get_max_capacity(device->ldev)); 4007 warn_if_differ_considerably(device, "user requested size", 4008 p_usize, my_usize); 4009 4010 /* if this is the first connect, or an otherwise expected 4011 * param exchange, choose the minimum */ 4012 if (device->state.conn == C_WF_REPORT_PARAMS) 4013 p_usize = min_not_zero(my_usize, p_usize); 4014 4015 /* Never shrink a device with usable data during connect. 4016 But allow online shrinking if we are connected. */ 4017 new_size = drbd_new_dev_size(device, device->ldev, p_usize, 0); 4018 cur_size = drbd_get_capacity(device->this_bdev); 4019 if (new_size < cur_size && 4020 device->state.disk >= D_OUTDATED && 4021 device->state.conn < C_CONNECTED) { 4022 drbd_err(device, "The peer's disk size is too small! (%llu < %llu sectors)\n", 4023 (unsigned long long)new_size, (unsigned long long)cur_size); 4024 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD); 4025 put_ldev(device); 4026 return -EIO; 4027 } 4028 4029 if (my_usize != p_usize) { 4030 struct disk_conf *old_disk_conf, *new_disk_conf = NULL; 4031 4032 new_disk_conf = kzalloc(sizeof(struct disk_conf), GFP_KERNEL); 4033 if (!new_disk_conf) { 4034 drbd_err(device, "Allocation of new disk_conf failed\n"); 4035 put_ldev(device); 4036 return -ENOMEM; 4037 } 4038 4039 mutex_lock(&connection->resource->conf_update); 4040 old_disk_conf = device->ldev->disk_conf; 4041 *new_disk_conf = *old_disk_conf; 4042 new_disk_conf->disk_size = p_usize; 4043 4044 rcu_assign_pointer(device->ldev->disk_conf, new_disk_conf); 4045 mutex_unlock(&connection->resource->conf_update); 4046 synchronize_rcu(); 4047 kfree(old_disk_conf); 4048 4049 drbd_info(device, "Peer sets u_size to %lu sectors\n", 4050 (unsigned long)my_usize); 4051 } 4052 4053 put_ldev(device); 4054 } 4055 4056 device->peer_max_bio_size = be32_to_cpu(p->max_bio_size); 4057 /* Leave drbd_reconsider_queue_parameters() before drbd_determine_dev_size(). 4058 In case we cleared the QUEUE_FLAG_DISCARD from our queue in 4059 drbd_reconsider_queue_parameters(), we can be sure that after 4060 drbd_determine_dev_size() no REQ_DISCARDs are in the queue. */ 4061 4062 ddsf = be16_to_cpu(p->dds_flags); 4063 if (get_ldev(device)) { 4064 drbd_reconsider_queue_parameters(device, device->ldev, o); 4065 dd = drbd_determine_dev_size(device, ddsf, NULL); 4066 put_ldev(device); 4067 if (dd == DS_ERROR) 4068 return -EIO; 4069 drbd_md_sync(device); 4070 } else { 4071 /* 4072 * I am diskless, need to accept the peer's *current* size. 4073 * I must NOT accept the peers backing disk size, 4074 * it may have been larger than mine all along... 4075 * 4076 * At this point, the peer knows more about my disk, or at 4077 * least about what we last agreed upon, than myself. 4078 * So if his c_size is less than his d_size, the most likely 4079 * reason is that *my* d_size was smaller last time we checked. 4080 * 4081 * However, if he sends a zero current size, 4082 * take his (user-capped or) backing disk size anyways. 4083 */ 4084 drbd_reconsider_queue_parameters(device, NULL, o); 4085 drbd_set_my_capacity(device, p_csize ?: p_usize ?: p_size); 4086 } 4087 4088 if (get_ldev(device)) { 4089 if (device->ldev->known_size != drbd_get_capacity(device->ldev->backing_bdev)) { 4090 device->ldev->known_size = drbd_get_capacity(device->ldev->backing_bdev); 4091 ldsc = 1; 4092 } 4093 4094 put_ldev(device); 4095 } 4096 4097 if (device->state.conn > C_WF_REPORT_PARAMS) { 4098 if (be64_to_cpu(p->c_size) != 4099 drbd_get_capacity(device->this_bdev) || ldsc) { 4100 /* we have different sizes, probably peer 4101 * needs to know my new size... */ 4102 drbd_send_sizes(peer_device, 0, ddsf); 4103 } 4104 if (test_and_clear_bit(RESIZE_PENDING, &device->flags) || 4105 (dd == DS_GREW && device->state.conn == C_CONNECTED)) { 4106 if (device->state.pdsk >= D_INCONSISTENT && 4107 device->state.disk >= D_INCONSISTENT) { 4108 if (ddsf & DDSF_NO_RESYNC) 4109 drbd_info(device, "Resync of new storage suppressed with --assume-clean\n"); 4110 else 4111 resync_after_online_grow(device); 4112 } else 4113 set_bit(RESYNC_AFTER_NEG, &device->flags); 4114 } 4115 } 4116 4117 return 0; 4118 } 4119 4120 static int receive_uuids(struct drbd_connection *connection, struct packet_info *pi) 4121 { 4122 struct drbd_peer_device *peer_device; 4123 struct drbd_device *device; 4124 struct p_uuids *p = pi->data; 4125 u64 *p_uuid; 4126 int i, updated_uuids = 0; 4127 4128 peer_device = conn_peer_device(connection, pi->vnr); 4129 if (!peer_device) 4130 return config_unknown_volume(connection, pi); 4131 device = peer_device->device; 4132 4133 p_uuid = kmalloc_array(UI_EXTENDED_SIZE, sizeof(*p_uuid), GFP_NOIO); 4134 if (!p_uuid) { 4135 drbd_err(device, "kmalloc of p_uuid failed\n"); 4136 return false; 4137 } 4138 4139 for (i = UI_CURRENT; i < UI_EXTENDED_SIZE; i++) 4140 p_uuid[i] = be64_to_cpu(p->uuid[i]); 4141 4142 kfree(device->p_uuid); 4143 device->p_uuid = p_uuid; 4144 4145 if (device->state.conn < C_CONNECTED && 4146 device->state.disk < D_INCONSISTENT && 4147 device->state.role == R_PRIMARY && 4148 (device->ed_uuid & ~((u64)1)) != (p_uuid[UI_CURRENT] & ~((u64)1))) { 4149 drbd_err(device, "Can only connect to data with current UUID=%016llX\n", 4150 (unsigned long long)device->ed_uuid); 4151 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD); 4152 return -EIO; 4153 } 4154 4155 if (get_ldev(device)) { 4156 int skip_initial_sync = 4157 device->state.conn == C_CONNECTED && 4158 peer_device->connection->agreed_pro_version >= 90 && 4159 device->ldev->md.uuid[UI_CURRENT] == UUID_JUST_CREATED && 4160 (p_uuid[UI_FLAGS] & 8); 4161 if (skip_initial_sync) { 4162 drbd_info(device, "Accepted new current UUID, preparing to skip initial sync\n"); 4163 drbd_bitmap_io(device, &drbd_bmio_clear_n_write, 4164 "clear_n_write from receive_uuids", 4165 BM_LOCKED_TEST_ALLOWED); 4166 _drbd_uuid_set(device, UI_CURRENT, p_uuid[UI_CURRENT]); 4167 _drbd_uuid_set(device, UI_BITMAP, 0); 4168 _drbd_set_state(_NS2(device, disk, D_UP_TO_DATE, pdsk, D_UP_TO_DATE), 4169 CS_VERBOSE, NULL); 4170 drbd_md_sync(device); 4171 updated_uuids = 1; 4172 } 4173 put_ldev(device); 4174 } else if (device->state.disk < D_INCONSISTENT && 4175 device->state.role == R_PRIMARY) { 4176 /* I am a diskless primary, the peer just created a new current UUID 4177 for me. */ 4178 updated_uuids = drbd_set_ed_uuid(device, p_uuid[UI_CURRENT]); 4179 } 4180 4181 /* Before we test for the disk state, we should wait until an eventually 4182 ongoing cluster wide state change is finished. That is important if 4183 we are primary and are detaching from our disk. We need to see the 4184 new disk state... */ 4185 mutex_lock(device->state_mutex); 4186 mutex_unlock(device->state_mutex); 4187 if (device->state.conn >= C_CONNECTED && device->state.disk < D_INCONSISTENT) 4188 updated_uuids |= drbd_set_ed_uuid(device, p_uuid[UI_CURRENT]); 4189 4190 if (updated_uuids) 4191 drbd_print_uuids(device, "receiver updated UUIDs to"); 4192 4193 return 0; 4194 } 4195 4196 /** 4197 * convert_state() - Converts the peer's view of the cluster state to our point of view 4198 * @ps: The state as seen by the peer. 4199 */ 4200 static union drbd_state convert_state(union drbd_state ps) 4201 { 4202 union drbd_state ms; 4203 4204 static enum drbd_conns c_tab[] = { 4205 [C_WF_REPORT_PARAMS] = C_WF_REPORT_PARAMS, 4206 [C_CONNECTED] = C_CONNECTED, 4207 4208 [C_STARTING_SYNC_S] = C_STARTING_SYNC_T, 4209 [C_STARTING_SYNC_T] = C_STARTING_SYNC_S, 4210 [C_DISCONNECTING] = C_TEAR_DOWN, /* C_NETWORK_FAILURE, */ 4211 [C_VERIFY_S] = C_VERIFY_T, 4212 [C_MASK] = C_MASK, 4213 }; 4214 4215 ms.i = ps.i; 4216 4217 ms.conn = c_tab[ps.conn]; 4218 ms.peer = ps.role; 4219 ms.role = ps.peer; 4220 ms.pdsk = ps.disk; 4221 ms.disk = ps.pdsk; 4222 ms.peer_isp = (ps.aftr_isp | ps.user_isp); 4223 4224 return ms; 4225 } 4226 4227 static int receive_req_state(struct drbd_connection *connection, struct packet_info *pi) 4228 { 4229 struct drbd_peer_device *peer_device; 4230 struct drbd_device *device; 4231 struct p_req_state *p = pi->data; 4232 union drbd_state mask, val; 4233 enum drbd_state_rv rv; 4234 4235 peer_device = conn_peer_device(connection, pi->vnr); 4236 if (!peer_device) 4237 return -EIO; 4238 device = peer_device->device; 4239 4240 mask.i = be32_to_cpu(p->mask); 4241 val.i = be32_to_cpu(p->val); 4242 4243 if (test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags) && 4244 mutex_is_locked(device->state_mutex)) { 4245 drbd_send_sr_reply(peer_device, SS_CONCURRENT_ST_CHG); 4246 return 0; 4247 } 4248 4249 mask = convert_state(mask); 4250 val = convert_state(val); 4251 4252 rv = drbd_change_state(device, CS_VERBOSE, mask, val); 4253 drbd_send_sr_reply(peer_device, rv); 4254 4255 drbd_md_sync(device); 4256 4257 return 0; 4258 } 4259 4260 static int receive_req_conn_state(struct drbd_connection *connection, struct packet_info *pi) 4261 { 4262 struct p_req_state *p = pi->data; 4263 union drbd_state mask, val; 4264 enum drbd_state_rv rv; 4265 4266 mask.i = be32_to_cpu(p->mask); 4267 val.i = be32_to_cpu(p->val); 4268 4269 if (test_bit(RESOLVE_CONFLICTS, &connection->flags) && 4270 mutex_is_locked(&connection->cstate_mutex)) { 4271 conn_send_sr_reply(connection, SS_CONCURRENT_ST_CHG); 4272 return 0; 4273 } 4274 4275 mask = convert_state(mask); 4276 val = convert_state(val); 4277 4278 rv = conn_request_state(connection, mask, val, CS_VERBOSE | CS_LOCAL_ONLY | CS_IGN_OUTD_FAIL); 4279 conn_send_sr_reply(connection, rv); 4280 4281 return 0; 4282 } 4283 4284 static int receive_state(struct drbd_connection *connection, struct packet_info *pi) 4285 { 4286 struct drbd_peer_device *peer_device; 4287 struct drbd_device *device; 4288 struct p_state *p = pi->data; 4289 union drbd_state os, ns, peer_state; 4290 enum drbd_disk_state real_peer_disk; 4291 enum chg_state_flags cs_flags; 4292 int rv; 4293 4294 peer_device = conn_peer_device(connection, pi->vnr); 4295 if (!peer_device) 4296 return config_unknown_volume(connection, pi); 4297 device = peer_device->device; 4298 4299 peer_state.i = be32_to_cpu(p->state); 4300 4301 real_peer_disk = peer_state.disk; 4302 if (peer_state.disk == D_NEGOTIATING) { 4303 real_peer_disk = device->p_uuid[UI_FLAGS] & 4 ? D_INCONSISTENT : D_CONSISTENT; 4304 drbd_info(device, "real peer disk state = %s\n", drbd_disk_str(real_peer_disk)); 4305 } 4306 4307 spin_lock_irq(&device->resource->req_lock); 4308 retry: 4309 os = ns = drbd_read_state(device); 4310 spin_unlock_irq(&device->resource->req_lock); 4311 4312 /* If some other part of the code (ack_receiver thread, timeout) 4313 * already decided to close the connection again, 4314 * we must not "re-establish" it here. */ 4315 if (os.conn <= C_TEAR_DOWN) 4316 return -ECONNRESET; 4317 4318 /* If this is the "end of sync" confirmation, usually the peer disk 4319 * transitions from D_INCONSISTENT to D_UP_TO_DATE. For empty (0 bits 4320 * set) resync started in PausedSyncT, or if the timing of pause-/ 4321 * unpause-sync events has been "just right", the peer disk may 4322 * transition from D_CONSISTENT to D_UP_TO_DATE as well. 4323 */ 4324 if ((os.pdsk == D_INCONSISTENT || os.pdsk == D_CONSISTENT) && 4325 real_peer_disk == D_UP_TO_DATE && 4326 os.conn > C_CONNECTED && os.disk == D_UP_TO_DATE) { 4327 /* If we are (becoming) SyncSource, but peer is still in sync 4328 * preparation, ignore its uptodate-ness to avoid flapping, it 4329 * will change to inconsistent once the peer reaches active 4330 * syncing states. 4331 * It may have changed syncer-paused flags, however, so we 4332 * cannot ignore this completely. */ 4333 if (peer_state.conn > C_CONNECTED && 4334 peer_state.conn < C_SYNC_SOURCE) 4335 real_peer_disk = D_INCONSISTENT; 4336 4337 /* if peer_state changes to connected at the same time, 4338 * it explicitly notifies us that it finished resync. 4339 * Maybe we should finish it up, too? */ 4340 else if (os.conn >= C_SYNC_SOURCE && 4341 peer_state.conn == C_CONNECTED) { 4342 if (drbd_bm_total_weight(device) <= device->rs_failed) 4343 drbd_resync_finished(device); 4344 return 0; 4345 } 4346 } 4347 4348 /* explicit verify finished notification, stop sector reached. */ 4349 if (os.conn == C_VERIFY_T && os.disk == D_UP_TO_DATE && 4350 peer_state.conn == C_CONNECTED && real_peer_disk == D_UP_TO_DATE) { 4351 ov_out_of_sync_print(device); 4352 drbd_resync_finished(device); 4353 return 0; 4354 } 4355 4356 /* peer says his disk is inconsistent, while we think it is uptodate, 4357 * and this happens while the peer still thinks we have a sync going on, 4358 * but we think we are already done with the sync. 4359 * We ignore this to avoid flapping pdsk. 4360 * This should not happen, if the peer is a recent version of drbd. */ 4361 if (os.pdsk == D_UP_TO_DATE && real_peer_disk == D_INCONSISTENT && 4362 os.conn == C_CONNECTED && peer_state.conn > C_SYNC_SOURCE) 4363 real_peer_disk = D_UP_TO_DATE; 4364 4365 if (ns.conn == C_WF_REPORT_PARAMS) 4366 ns.conn = C_CONNECTED; 4367 4368 if (peer_state.conn == C_AHEAD) 4369 ns.conn = C_BEHIND; 4370 4371 if (device->p_uuid && peer_state.disk >= D_NEGOTIATING && 4372 get_ldev_if_state(device, D_NEGOTIATING)) { 4373 int cr; /* consider resync */ 4374 4375 /* if we established a new connection */ 4376 cr = (os.conn < C_CONNECTED); 4377 /* if we had an established connection 4378 * and one of the nodes newly attaches a disk */ 4379 cr |= (os.conn == C_CONNECTED && 4380 (peer_state.disk == D_NEGOTIATING || 4381 os.disk == D_NEGOTIATING)); 4382 /* if we have both been inconsistent, and the peer has been 4383 * forced to be UpToDate with --overwrite-data */ 4384 cr |= test_bit(CONSIDER_RESYNC, &device->flags); 4385 /* if we had been plain connected, and the admin requested to 4386 * start a sync by "invalidate" or "invalidate-remote" */ 4387 cr |= (os.conn == C_CONNECTED && 4388 (peer_state.conn >= C_STARTING_SYNC_S && 4389 peer_state.conn <= C_WF_BITMAP_T)); 4390 4391 if (cr) 4392 ns.conn = drbd_sync_handshake(peer_device, peer_state.role, real_peer_disk); 4393 4394 put_ldev(device); 4395 if (ns.conn == C_MASK) { 4396 ns.conn = C_CONNECTED; 4397 if (device->state.disk == D_NEGOTIATING) { 4398 drbd_force_state(device, NS(disk, D_FAILED)); 4399 } else if (peer_state.disk == D_NEGOTIATING) { 4400 drbd_err(device, "Disk attach process on the peer node was aborted.\n"); 4401 peer_state.disk = D_DISKLESS; 4402 real_peer_disk = D_DISKLESS; 4403 } else { 4404 if (test_and_clear_bit(CONN_DRY_RUN, &peer_device->connection->flags)) 4405 return -EIO; 4406 D_ASSERT(device, os.conn == C_WF_REPORT_PARAMS); 4407 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD); 4408 return -EIO; 4409 } 4410 } 4411 } 4412 4413 spin_lock_irq(&device->resource->req_lock); 4414 if (os.i != drbd_read_state(device).i) 4415 goto retry; 4416 clear_bit(CONSIDER_RESYNC, &device->flags); 4417 ns.peer = peer_state.role; 4418 ns.pdsk = real_peer_disk; 4419 ns.peer_isp = (peer_state.aftr_isp | peer_state.user_isp); 4420 if ((ns.conn == C_CONNECTED || ns.conn == C_WF_BITMAP_S) && ns.disk == D_NEGOTIATING) 4421 ns.disk = device->new_state_tmp.disk; 4422 cs_flags = CS_VERBOSE + (os.conn < C_CONNECTED && ns.conn >= C_CONNECTED ? 0 : CS_HARD); 4423 if (ns.pdsk == D_CONSISTENT && drbd_suspended(device) && ns.conn == C_CONNECTED && os.conn < C_CONNECTED && 4424 test_bit(NEW_CUR_UUID, &device->flags)) { 4425 /* Do not allow tl_restart(RESEND) for a rebooted peer. We can only allow this 4426 for temporal network outages! */ 4427 spin_unlock_irq(&device->resource->req_lock); 4428 drbd_err(device, "Aborting Connect, can not thaw IO with an only Consistent peer\n"); 4429 tl_clear(peer_device->connection); 4430 drbd_uuid_new_current(device); 4431 clear_bit(NEW_CUR_UUID, &device->flags); 4432 conn_request_state(peer_device->connection, NS2(conn, C_PROTOCOL_ERROR, susp, 0), CS_HARD); 4433 return -EIO; 4434 } 4435 rv = _drbd_set_state(device, ns, cs_flags, NULL); 4436 ns = drbd_read_state(device); 4437 spin_unlock_irq(&device->resource->req_lock); 4438 4439 if (rv < SS_SUCCESS) { 4440 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD); 4441 return -EIO; 4442 } 4443 4444 if (os.conn > C_WF_REPORT_PARAMS) { 4445 if (ns.conn > C_CONNECTED && peer_state.conn <= C_CONNECTED && 4446 peer_state.disk != D_NEGOTIATING ) { 4447 /* we want resync, peer has not yet decided to sync... */ 4448 /* Nowadays only used when forcing a node into primary role and 4449 setting its disk to UpToDate with that */ 4450 drbd_send_uuids(peer_device); 4451 drbd_send_current_state(peer_device); 4452 } 4453 } 4454 4455 clear_bit(DISCARD_MY_DATA, &device->flags); 4456 4457 drbd_md_sync(device); /* update connected indicator, la_size_sect, ... */ 4458 4459 return 0; 4460 } 4461 4462 static int receive_sync_uuid(struct drbd_connection *connection, struct packet_info *pi) 4463 { 4464 struct drbd_peer_device *peer_device; 4465 struct drbd_device *device; 4466 struct p_rs_uuid *p = pi->data; 4467 4468 peer_device = conn_peer_device(connection, pi->vnr); 4469 if (!peer_device) 4470 return -EIO; 4471 device = peer_device->device; 4472 4473 wait_event(device->misc_wait, 4474 device->state.conn == C_WF_SYNC_UUID || 4475 device->state.conn == C_BEHIND || 4476 device->state.conn < C_CONNECTED || 4477 device->state.disk < D_NEGOTIATING); 4478 4479 /* D_ASSERT(device, device->state.conn == C_WF_SYNC_UUID ); */ 4480 4481 /* Here the _drbd_uuid_ functions are right, current should 4482 _not_ be rotated into the history */ 4483 if (get_ldev_if_state(device, D_NEGOTIATING)) { 4484 _drbd_uuid_set(device, UI_CURRENT, be64_to_cpu(p->uuid)); 4485 _drbd_uuid_set(device, UI_BITMAP, 0UL); 4486 4487 drbd_print_uuids(device, "updated sync uuid"); 4488 drbd_start_resync(device, C_SYNC_TARGET); 4489 4490 put_ldev(device); 4491 } else 4492 drbd_err(device, "Ignoring SyncUUID packet!\n"); 4493 4494 return 0; 4495 } 4496 4497 /** 4498 * receive_bitmap_plain 4499 * 4500 * Return 0 when done, 1 when another iteration is needed, and a negative error 4501 * code upon failure. 4502 */ 4503 static int 4504 receive_bitmap_plain(struct drbd_peer_device *peer_device, unsigned int size, 4505 unsigned long *p, struct bm_xfer_ctx *c) 4506 { 4507 unsigned int data_size = DRBD_SOCKET_BUFFER_SIZE - 4508 drbd_header_size(peer_device->connection); 4509 unsigned int num_words = min_t(size_t, data_size / sizeof(*p), 4510 c->bm_words - c->word_offset); 4511 unsigned int want = num_words * sizeof(*p); 4512 int err; 4513 4514 if (want != size) { 4515 drbd_err(peer_device, "%s:want (%u) != size (%u)\n", __func__, want, size); 4516 return -EIO; 4517 } 4518 if (want == 0) 4519 return 0; 4520 err = drbd_recv_all(peer_device->connection, p, want); 4521 if (err) 4522 return err; 4523 4524 drbd_bm_merge_lel(peer_device->device, c->word_offset, num_words, p); 4525 4526 c->word_offset += num_words; 4527 c->bit_offset = c->word_offset * BITS_PER_LONG; 4528 if (c->bit_offset > c->bm_bits) 4529 c->bit_offset = c->bm_bits; 4530 4531 return 1; 4532 } 4533 4534 static enum drbd_bitmap_code dcbp_get_code(struct p_compressed_bm *p) 4535 { 4536 return (enum drbd_bitmap_code)(p->encoding & 0x0f); 4537 } 4538 4539 static int dcbp_get_start(struct p_compressed_bm *p) 4540 { 4541 return (p->encoding & 0x80) != 0; 4542 } 4543 4544 static int dcbp_get_pad_bits(struct p_compressed_bm *p) 4545 { 4546 return (p->encoding >> 4) & 0x7; 4547 } 4548 4549 /** 4550 * recv_bm_rle_bits 4551 * 4552 * Return 0 when done, 1 when another iteration is needed, and a negative error 4553 * code upon failure. 4554 */ 4555 static int 4556 recv_bm_rle_bits(struct drbd_peer_device *peer_device, 4557 struct p_compressed_bm *p, 4558 struct bm_xfer_ctx *c, 4559 unsigned int len) 4560 { 4561 struct bitstream bs; 4562 u64 look_ahead; 4563 u64 rl; 4564 u64 tmp; 4565 unsigned long s = c->bit_offset; 4566 unsigned long e; 4567 int toggle = dcbp_get_start(p); 4568 int have; 4569 int bits; 4570 4571 bitstream_init(&bs, p->code, len, dcbp_get_pad_bits(p)); 4572 4573 bits = bitstream_get_bits(&bs, &look_ahead, 64); 4574 if (bits < 0) 4575 return -EIO; 4576 4577 for (have = bits; have > 0; s += rl, toggle = !toggle) { 4578 bits = vli_decode_bits(&rl, look_ahead); 4579 if (bits <= 0) 4580 return -EIO; 4581 4582 if (toggle) { 4583 e = s + rl -1; 4584 if (e >= c->bm_bits) { 4585 drbd_err(peer_device, "bitmap overflow (e:%lu) while decoding bm RLE packet\n", e); 4586 return -EIO; 4587 } 4588 _drbd_bm_set_bits(peer_device->device, s, e); 4589 } 4590 4591 if (have < bits) { 4592 drbd_err(peer_device, "bitmap decoding error: h:%d b:%d la:0x%08llx l:%u/%u\n", 4593 have, bits, look_ahead, 4594 (unsigned int)(bs.cur.b - p->code), 4595 (unsigned int)bs.buf_len); 4596 return -EIO; 4597 } 4598 /* if we consumed all 64 bits, assign 0; >> 64 is "undefined"; */ 4599 if (likely(bits < 64)) 4600 look_ahead >>= bits; 4601 else 4602 look_ahead = 0; 4603 have -= bits; 4604 4605 bits = bitstream_get_bits(&bs, &tmp, 64 - have); 4606 if (bits < 0) 4607 return -EIO; 4608 look_ahead |= tmp << have; 4609 have += bits; 4610 } 4611 4612 c->bit_offset = s; 4613 bm_xfer_ctx_bit_to_word_offset(c); 4614 4615 return (s != c->bm_bits); 4616 } 4617 4618 /** 4619 * decode_bitmap_c 4620 * 4621 * Return 0 when done, 1 when another iteration is needed, and a negative error 4622 * code upon failure. 4623 */ 4624 static int 4625 decode_bitmap_c(struct drbd_peer_device *peer_device, 4626 struct p_compressed_bm *p, 4627 struct bm_xfer_ctx *c, 4628 unsigned int len) 4629 { 4630 if (dcbp_get_code(p) == RLE_VLI_Bits) 4631 return recv_bm_rle_bits(peer_device, p, c, len - sizeof(*p)); 4632 4633 /* other variants had been implemented for evaluation, 4634 * but have been dropped as this one turned out to be "best" 4635 * during all our tests. */ 4636 4637 drbd_err(peer_device, "receive_bitmap_c: unknown encoding %u\n", p->encoding); 4638 conn_request_state(peer_device->connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD); 4639 return -EIO; 4640 } 4641 4642 void INFO_bm_xfer_stats(struct drbd_device *device, 4643 const char *direction, struct bm_xfer_ctx *c) 4644 { 4645 /* what would it take to transfer it "plaintext" */ 4646 unsigned int header_size = drbd_header_size(first_peer_device(device)->connection); 4647 unsigned int data_size = DRBD_SOCKET_BUFFER_SIZE - header_size; 4648 unsigned int plain = 4649 header_size * (DIV_ROUND_UP(c->bm_words, data_size) + 1) + 4650 c->bm_words * sizeof(unsigned long); 4651 unsigned int total = c->bytes[0] + c->bytes[1]; 4652 unsigned int r; 4653 4654 /* total can not be zero. but just in case: */ 4655 if (total == 0) 4656 return; 4657 4658 /* don't report if not compressed */ 4659 if (total >= plain) 4660 return; 4661 4662 /* total < plain. check for overflow, still */ 4663 r = (total > UINT_MAX/1000) ? (total / (plain/1000)) 4664 : (1000 * total / plain); 4665 4666 if (r > 1000) 4667 r = 1000; 4668 4669 r = 1000 - r; 4670 drbd_info(device, "%s bitmap stats [Bytes(packets)]: plain %u(%u), RLE %u(%u), " 4671 "total %u; compression: %u.%u%%\n", 4672 direction, 4673 c->bytes[1], c->packets[1], 4674 c->bytes[0], c->packets[0], 4675 total, r/10, r % 10); 4676 } 4677 4678 /* Since we are processing the bitfield from lower addresses to higher, 4679 it does not matter if the process it in 32 bit chunks or 64 bit 4680 chunks as long as it is little endian. (Understand it as byte stream, 4681 beginning with the lowest byte...) If we would use big endian 4682 we would need to process it from the highest address to the lowest, 4683 in order to be agnostic to the 32 vs 64 bits issue. 4684 4685 returns 0 on failure, 1 if we successfully received it. */ 4686 static int receive_bitmap(struct drbd_connection *connection, struct packet_info *pi) 4687 { 4688 struct drbd_peer_device *peer_device; 4689 struct drbd_device *device; 4690 struct bm_xfer_ctx c; 4691 int err; 4692 4693 peer_device = conn_peer_device(connection, pi->vnr); 4694 if (!peer_device) 4695 return -EIO; 4696 device = peer_device->device; 4697 4698 drbd_bm_lock(device, "receive bitmap", BM_LOCKED_SET_ALLOWED); 4699 /* you are supposed to send additional out-of-sync information 4700 * if you actually set bits during this phase */ 4701 4702 c = (struct bm_xfer_ctx) { 4703 .bm_bits = drbd_bm_bits(device), 4704 .bm_words = drbd_bm_words(device), 4705 }; 4706 4707 for(;;) { 4708 if (pi->cmd == P_BITMAP) 4709 err = receive_bitmap_plain(peer_device, pi->size, pi->data, &c); 4710 else if (pi->cmd == P_COMPRESSED_BITMAP) { 4711 /* MAYBE: sanity check that we speak proto >= 90, 4712 * and the feature is enabled! */ 4713 struct p_compressed_bm *p = pi->data; 4714 4715 if (pi->size > DRBD_SOCKET_BUFFER_SIZE - drbd_header_size(connection)) { 4716 drbd_err(device, "ReportCBitmap packet too large\n"); 4717 err = -EIO; 4718 goto out; 4719 } 4720 if (pi->size <= sizeof(*p)) { 4721 drbd_err(device, "ReportCBitmap packet too small (l:%u)\n", pi->size); 4722 err = -EIO; 4723 goto out; 4724 } 4725 err = drbd_recv_all(peer_device->connection, p, pi->size); 4726 if (err) 4727 goto out; 4728 err = decode_bitmap_c(peer_device, p, &c, pi->size); 4729 } else { 4730 drbd_warn(device, "receive_bitmap: cmd neither ReportBitMap nor ReportCBitMap (is 0x%x)", pi->cmd); 4731 err = -EIO; 4732 goto out; 4733 } 4734 4735 c.packets[pi->cmd == P_BITMAP]++; 4736 c.bytes[pi->cmd == P_BITMAP] += drbd_header_size(connection) + pi->size; 4737 4738 if (err <= 0) { 4739 if (err < 0) 4740 goto out; 4741 break; 4742 } 4743 err = drbd_recv_header(peer_device->connection, pi); 4744 if (err) 4745 goto out; 4746 } 4747 4748 INFO_bm_xfer_stats(device, "receive", &c); 4749 4750 if (device->state.conn == C_WF_BITMAP_T) { 4751 enum drbd_state_rv rv; 4752 4753 err = drbd_send_bitmap(device); 4754 if (err) 4755 goto out; 4756 /* Omit CS_ORDERED with this state transition to avoid deadlocks. */ 4757 rv = _drbd_request_state(device, NS(conn, C_WF_SYNC_UUID), CS_VERBOSE); 4758 D_ASSERT(device, rv == SS_SUCCESS); 4759 } else if (device->state.conn != C_WF_BITMAP_S) { 4760 /* admin may have requested C_DISCONNECTING, 4761 * other threads may have noticed network errors */ 4762 drbd_info(device, "unexpected cstate (%s) in receive_bitmap\n", 4763 drbd_conn_str(device->state.conn)); 4764 } 4765 err = 0; 4766 4767 out: 4768 drbd_bm_unlock(device); 4769 if (!err && device->state.conn == C_WF_BITMAP_S) 4770 drbd_start_resync(device, C_SYNC_SOURCE); 4771 return err; 4772 } 4773 4774 static int receive_skip(struct drbd_connection *connection, struct packet_info *pi) 4775 { 4776 drbd_warn(connection, "skipping unknown optional packet type %d, l: %d!\n", 4777 pi->cmd, pi->size); 4778 4779 return ignore_remaining_packet(connection, pi); 4780 } 4781 4782 static int receive_UnplugRemote(struct drbd_connection *connection, struct packet_info *pi) 4783 { 4784 /* Make sure we've acked all the TCP data associated 4785 * with the data requests being unplugged */ 4786 drbd_tcp_quickack(connection->data.socket); 4787 4788 return 0; 4789 } 4790 4791 static int receive_out_of_sync(struct drbd_connection *connection, struct packet_info *pi) 4792 { 4793 struct drbd_peer_device *peer_device; 4794 struct drbd_device *device; 4795 struct p_block_desc *p = pi->data; 4796 4797 peer_device = conn_peer_device(connection, pi->vnr); 4798 if (!peer_device) 4799 return -EIO; 4800 device = peer_device->device; 4801 4802 switch (device->state.conn) { 4803 case C_WF_SYNC_UUID: 4804 case C_WF_BITMAP_T: 4805 case C_BEHIND: 4806 break; 4807 default: 4808 drbd_err(device, "ASSERT FAILED cstate = %s, expected: WFSyncUUID|WFBitMapT|Behind\n", 4809 drbd_conn_str(device->state.conn)); 4810 } 4811 4812 drbd_set_out_of_sync(device, be64_to_cpu(p->sector), be32_to_cpu(p->blksize)); 4813 4814 return 0; 4815 } 4816 4817 static int receive_rs_deallocated(struct drbd_connection *connection, struct packet_info *pi) 4818 { 4819 struct drbd_peer_device *peer_device; 4820 struct p_block_desc *p = pi->data; 4821 struct drbd_device *device; 4822 sector_t sector; 4823 int size, err = 0; 4824 4825 peer_device = conn_peer_device(connection, pi->vnr); 4826 if (!peer_device) 4827 return -EIO; 4828 device = peer_device->device; 4829 4830 sector = be64_to_cpu(p->sector); 4831 size = be32_to_cpu(p->blksize); 4832 4833 dec_rs_pending(device); 4834 4835 if (get_ldev(device)) { 4836 struct drbd_peer_request *peer_req; 4837 const int op = REQ_OP_WRITE_ZEROES; 4838 4839 peer_req = drbd_alloc_peer_req(peer_device, ID_SYNCER, sector, 4840 size, 0, GFP_NOIO); 4841 if (!peer_req) { 4842 put_ldev(device); 4843 return -ENOMEM; 4844 } 4845 4846 peer_req->w.cb = e_end_resync_block; 4847 peer_req->submit_jif = jiffies; 4848 peer_req->flags |= EE_IS_TRIM; 4849 4850 spin_lock_irq(&device->resource->req_lock); 4851 list_add_tail(&peer_req->w.list, &device->sync_ee); 4852 spin_unlock_irq(&device->resource->req_lock); 4853 4854 atomic_add(pi->size >> 9, &device->rs_sect_ev); 4855 err = drbd_submit_peer_request(device, peer_req, op, 0, DRBD_FAULT_RS_WR); 4856 4857 if (err) { 4858 spin_lock_irq(&device->resource->req_lock); 4859 list_del(&peer_req->w.list); 4860 spin_unlock_irq(&device->resource->req_lock); 4861 4862 drbd_free_peer_req(device, peer_req); 4863 put_ldev(device); 4864 err = 0; 4865 goto fail; 4866 } 4867 4868 inc_unacked(device); 4869 4870 /* No put_ldev() here. Gets called in drbd_endio_write_sec_final(), 4871 as well as drbd_rs_complete_io() */ 4872 } else { 4873 fail: 4874 drbd_rs_complete_io(device, sector); 4875 drbd_send_ack_ex(peer_device, P_NEG_ACK, sector, size, ID_SYNCER); 4876 } 4877 4878 atomic_add(size >> 9, &device->rs_sect_in); 4879 4880 return err; 4881 } 4882 4883 struct data_cmd { 4884 int expect_payload; 4885 unsigned int pkt_size; 4886 int (*fn)(struct drbd_connection *, struct packet_info *); 4887 }; 4888 4889 static struct data_cmd drbd_cmd_handler[] = { 4890 [P_DATA] = { 1, sizeof(struct p_data), receive_Data }, 4891 [P_DATA_REPLY] = { 1, sizeof(struct p_data), receive_DataReply }, 4892 [P_RS_DATA_REPLY] = { 1, sizeof(struct p_data), receive_RSDataReply } , 4893 [P_BARRIER] = { 0, sizeof(struct p_barrier), receive_Barrier } , 4894 [P_BITMAP] = { 1, 0, receive_bitmap } , 4895 [P_COMPRESSED_BITMAP] = { 1, 0, receive_bitmap } , 4896 [P_UNPLUG_REMOTE] = { 0, 0, receive_UnplugRemote }, 4897 [P_DATA_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest }, 4898 [P_RS_DATA_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest }, 4899 [P_SYNC_PARAM] = { 1, 0, receive_SyncParam }, 4900 [P_SYNC_PARAM89] = { 1, 0, receive_SyncParam }, 4901 [P_PROTOCOL] = { 1, sizeof(struct p_protocol), receive_protocol }, 4902 [P_UUIDS] = { 0, sizeof(struct p_uuids), receive_uuids }, 4903 [P_SIZES] = { 0, sizeof(struct p_sizes), receive_sizes }, 4904 [P_STATE] = { 0, sizeof(struct p_state), receive_state }, 4905 [P_STATE_CHG_REQ] = { 0, sizeof(struct p_req_state), receive_req_state }, 4906 [P_SYNC_UUID] = { 0, sizeof(struct p_rs_uuid), receive_sync_uuid }, 4907 [P_OV_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest }, 4908 [P_OV_REPLY] = { 1, sizeof(struct p_block_req), receive_DataRequest }, 4909 [P_CSUM_RS_REQUEST] = { 1, sizeof(struct p_block_req), receive_DataRequest }, 4910 [P_RS_THIN_REQ] = { 0, sizeof(struct p_block_req), receive_DataRequest }, 4911 [P_DELAY_PROBE] = { 0, sizeof(struct p_delay_probe93), receive_skip }, 4912 [P_OUT_OF_SYNC] = { 0, sizeof(struct p_block_desc), receive_out_of_sync }, 4913 [P_CONN_ST_CHG_REQ] = { 0, sizeof(struct p_req_state), receive_req_conn_state }, 4914 [P_PROTOCOL_UPDATE] = { 1, sizeof(struct p_protocol), receive_protocol }, 4915 [P_TRIM] = { 0, sizeof(struct p_trim), receive_Data }, 4916 [P_RS_DEALLOCATED] = { 0, sizeof(struct p_block_desc), receive_rs_deallocated }, 4917 [P_WSAME] = { 1, sizeof(struct p_wsame), receive_Data }, 4918 }; 4919 4920 static void drbdd(struct drbd_connection *connection) 4921 { 4922 struct packet_info pi; 4923 size_t shs; /* sub header size */ 4924 int err; 4925 4926 while (get_t_state(&connection->receiver) == RUNNING) { 4927 struct data_cmd const *cmd; 4928 4929 drbd_thread_current_set_cpu(&connection->receiver); 4930 update_receiver_timing_details(connection, drbd_recv_header_maybe_unplug); 4931 if (drbd_recv_header_maybe_unplug(connection, &pi)) 4932 goto err_out; 4933 4934 cmd = &drbd_cmd_handler[pi.cmd]; 4935 if (unlikely(pi.cmd >= ARRAY_SIZE(drbd_cmd_handler) || !cmd->fn)) { 4936 drbd_err(connection, "Unexpected data packet %s (0x%04x)", 4937 cmdname(pi.cmd), pi.cmd); 4938 goto err_out; 4939 } 4940 4941 shs = cmd->pkt_size; 4942 if (pi.cmd == P_SIZES && connection->agreed_features & DRBD_FF_WSAME) 4943 shs += sizeof(struct o_qlim); 4944 if (pi.size > shs && !cmd->expect_payload) { 4945 drbd_err(connection, "No payload expected %s l:%d\n", 4946 cmdname(pi.cmd), pi.size); 4947 goto err_out; 4948 } 4949 if (pi.size < shs) { 4950 drbd_err(connection, "%s: unexpected packet size, expected:%d received:%d\n", 4951 cmdname(pi.cmd), (int)shs, pi.size); 4952 goto err_out; 4953 } 4954 4955 if (shs) { 4956 update_receiver_timing_details(connection, drbd_recv_all_warn); 4957 err = drbd_recv_all_warn(connection, pi.data, shs); 4958 if (err) 4959 goto err_out; 4960 pi.size -= shs; 4961 } 4962 4963 update_receiver_timing_details(connection, cmd->fn); 4964 err = cmd->fn(connection, &pi); 4965 if (err) { 4966 drbd_err(connection, "error receiving %s, e: %d l: %d!\n", 4967 cmdname(pi.cmd), err, pi.size); 4968 goto err_out; 4969 } 4970 } 4971 return; 4972 4973 err_out: 4974 conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD); 4975 } 4976 4977 static void conn_disconnect(struct drbd_connection *connection) 4978 { 4979 struct drbd_peer_device *peer_device; 4980 enum drbd_conns oc; 4981 int vnr; 4982 4983 if (connection->cstate == C_STANDALONE) 4984 return; 4985 4986 /* We are about to start the cleanup after connection loss. 4987 * Make sure drbd_make_request knows about that. 4988 * Usually we should be in some network failure state already, 4989 * but just in case we are not, we fix it up here. 4990 */ 4991 conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD); 4992 4993 /* ack_receiver does not clean up anything. it must not interfere, either */ 4994 drbd_thread_stop(&connection->ack_receiver); 4995 if (connection->ack_sender) { 4996 destroy_workqueue(connection->ack_sender); 4997 connection->ack_sender = NULL; 4998 } 4999 drbd_free_sock(connection); 5000 5001 rcu_read_lock(); 5002 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 5003 struct drbd_device *device = peer_device->device; 5004 kref_get(&device->kref); 5005 rcu_read_unlock(); 5006 drbd_disconnected(peer_device); 5007 kref_put(&device->kref, drbd_destroy_device); 5008 rcu_read_lock(); 5009 } 5010 rcu_read_unlock(); 5011 5012 if (!list_empty(&connection->current_epoch->list)) 5013 drbd_err(connection, "ASSERTION FAILED: connection->current_epoch->list not empty\n"); 5014 /* ok, no more ee's on the fly, it is safe to reset the epoch_size */ 5015 atomic_set(&connection->current_epoch->epoch_size, 0); 5016 connection->send.seen_any_write_yet = false; 5017 5018 drbd_info(connection, "Connection closed\n"); 5019 5020 if (conn_highest_role(connection) == R_PRIMARY && conn_highest_pdsk(connection) >= D_UNKNOWN) 5021 conn_try_outdate_peer_async(connection); 5022 5023 spin_lock_irq(&connection->resource->req_lock); 5024 oc = connection->cstate; 5025 if (oc >= C_UNCONNECTED) 5026 _conn_request_state(connection, NS(conn, C_UNCONNECTED), CS_VERBOSE); 5027 5028 spin_unlock_irq(&connection->resource->req_lock); 5029 5030 if (oc == C_DISCONNECTING) 5031 conn_request_state(connection, NS(conn, C_STANDALONE), CS_VERBOSE | CS_HARD); 5032 } 5033 5034 static int drbd_disconnected(struct drbd_peer_device *peer_device) 5035 { 5036 struct drbd_device *device = peer_device->device; 5037 unsigned int i; 5038 5039 /* wait for current activity to cease. */ 5040 spin_lock_irq(&device->resource->req_lock); 5041 _drbd_wait_ee_list_empty(device, &device->active_ee); 5042 _drbd_wait_ee_list_empty(device, &device->sync_ee); 5043 _drbd_wait_ee_list_empty(device, &device->read_ee); 5044 spin_unlock_irq(&device->resource->req_lock); 5045 5046 /* We do not have data structures that would allow us to 5047 * get the rs_pending_cnt down to 0 again. 5048 * * On C_SYNC_TARGET we do not have any data structures describing 5049 * the pending RSDataRequest's we have sent. 5050 * * On C_SYNC_SOURCE there is no data structure that tracks 5051 * the P_RS_DATA_REPLY blocks that we sent to the SyncTarget. 5052 * And no, it is not the sum of the reference counts in the 5053 * resync_LRU. The resync_LRU tracks the whole operation including 5054 * the disk-IO, while the rs_pending_cnt only tracks the blocks 5055 * on the fly. */ 5056 drbd_rs_cancel_all(device); 5057 device->rs_total = 0; 5058 device->rs_failed = 0; 5059 atomic_set(&device->rs_pending_cnt, 0); 5060 wake_up(&device->misc_wait); 5061 5062 del_timer_sync(&device->resync_timer); 5063 resync_timer_fn(&device->resync_timer); 5064 5065 /* wait for all w_e_end_data_req, w_e_end_rsdata_req, w_send_barrier, 5066 * w_make_resync_request etc. which may still be on the worker queue 5067 * to be "canceled" */ 5068 drbd_flush_workqueue(&peer_device->connection->sender_work); 5069 5070 drbd_finish_peer_reqs(device); 5071 5072 /* This second workqueue flush is necessary, since drbd_finish_peer_reqs() 5073 might have issued a work again. The one before drbd_finish_peer_reqs() is 5074 necessary to reclain net_ee in drbd_finish_peer_reqs(). */ 5075 drbd_flush_workqueue(&peer_device->connection->sender_work); 5076 5077 /* need to do it again, drbd_finish_peer_reqs() may have populated it 5078 * again via drbd_try_clear_on_disk_bm(). */ 5079 drbd_rs_cancel_all(device); 5080 5081 kfree(device->p_uuid); 5082 device->p_uuid = NULL; 5083 5084 if (!drbd_suspended(device)) 5085 tl_clear(peer_device->connection); 5086 5087 drbd_md_sync(device); 5088 5089 if (get_ldev(device)) { 5090 drbd_bitmap_io(device, &drbd_bm_write_copy_pages, 5091 "write from disconnected", BM_LOCKED_CHANGE_ALLOWED); 5092 put_ldev(device); 5093 } 5094 5095 /* tcp_close and release of sendpage pages can be deferred. I don't 5096 * want to use SO_LINGER, because apparently it can be deferred for 5097 * more than 20 seconds (longest time I checked). 5098 * 5099 * Actually we don't care for exactly when the network stack does its 5100 * put_page(), but release our reference on these pages right here. 5101 */ 5102 i = drbd_free_peer_reqs(device, &device->net_ee); 5103 if (i) 5104 drbd_info(device, "net_ee not empty, killed %u entries\n", i); 5105 i = atomic_read(&device->pp_in_use_by_net); 5106 if (i) 5107 drbd_info(device, "pp_in_use_by_net = %d, expected 0\n", i); 5108 i = atomic_read(&device->pp_in_use); 5109 if (i) 5110 drbd_info(device, "pp_in_use = %d, expected 0\n", i); 5111 5112 D_ASSERT(device, list_empty(&device->read_ee)); 5113 D_ASSERT(device, list_empty(&device->active_ee)); 5114 D_ASSERT(device, list_empty(&device->sync_ee)); 5115 D_ASSERT(device, list_empty(&device->done_ee)); 5116 5117 return 0; 5118 } 5119 5120 /* 5121 * We support PRO_VERSION_MIN to PRO_VERSION_MAX. The protocol version 5122 * we can agree on is stored in agreed_pro_version. 5123 * 5124 * feature flags and the reserved array should be enough room for future 5125 * enhancements of the handshake protocol, and possible plugins... 5126 * 5127 * for now, they are expected to be zero, but ignored. 5128 */ 5129 static int drbd_send_features(struct drbd_connection *connection) 5130 { 5131 struct drbd_socket *sock; 5132 struct p_connection_features *p; 5133 5134 sock = &connection->data; 5135 p = conn_prepare_command(connection, sock); 5136 if (!p) 5137 return -EIO; 5138 memset(p, 0, sizeof(*p)); 5139 p->protocol_min = cpu_to_be32(PRO_VERSION_MIN); 5140 p->protocol_max = cpu_to_be32(PRO_VERSION_MAX); 5141 p->feature_flags = cpu_to_be32(PRO_FEATURES); 5142 return conn_send_command(connection, sock, P_CONNECTION_FEATURES, sizeof(*p), NULL, 0); 5143 } 5144 5145 /* 5146 * return values: 5147 * 1 yes, we have a valid connection 5148 * 0 oops, did not work out, please try again 5149 * -1 peer talks different language, 5150 * no point in trying again, please go standalone. 5151 */ 5152 static int drbd_do_features(struct drbd_connection *connection) 5153 { 5154 /* ASSERT current == connection->receiver ... */ 5155 struct p_connection_features *p; 5156 const int expect = sizeof(struct p_connection_features); 5157 struct packet_info pi; 5158 int err; 5159 5160 err = drbd_send_features(connection); 5161 if (err) 5162 return 0; 5163 5164 err = drbd_recv_header(connection, &pi); 5165 if (err) 5166 return 0; 5167 5168 if (pi.cmd != P_CONNECTION_FEATURES) { 5169 drbd_err(connection, "expected ConnectionFeatures packet, received: %s (0x%04x)\n", 5170 cmdname(pi.cmd), pi.cmd); 5171 return -1; 5172 } 5173 5174 if (pi.size != expect) { 5175 drbd_err(connection, "expected ConnectionFeatures length: %u, received: %u\n", 5176 expect, pi.size); 5177 return -1; 5178 } 5179 5180 p = pi.data; 5181 err = drbd_recv_all_warn(connection, p, expect); 5182 if (err) 5183 return 0; 5184 5185 p->protocol_min = be32_to_cpu(p->protocol_min); 5186 p->protocol_max = be32_to_cpu(p->protocol_max); 5187 if (p->protocol_max == 0) 5188 p->protocol_max = p->protocol_min; 5189 5190 if (PRO_VERSION_MAX < p->protocol_min || 5191 PRO_VERSION_MIN > p->protocol_max) 5192 goto incompat; 5193 5194 connection->agreed_pro_version = min_t(int, PRO_VERSION_MAX, p->protocol_max); 5195 connection->agreed_features = PRO_FEATURES & be32_to_cpu(p->feature_flags); 5196 5197 drbd_info(connection, "Handshake successful: " 5198 "Agreed network protocol version %d\n", connection->agreed_pro_version); 5199 5200 drbd_info(connection, "Feature flags enabled on protocol level: 0x%x%s%s%s.\n", 5201 connection->agreed_features, 5202 connection->agreed_features & DRBD_FF_TRIM ? " TRIM" : "", 5203 connection->agreed_features & DRBD_FF_THIN_RESYNC ? " THIN_RESYNC" : "", 5204 connection->agreed_features & DRBD_FF_WSAME ? " WRITE_SAME" : 5205 connection->agreed_features ? "" : " none"); 5206 5207 return 1; 5208 5209 incompat: 5210 drbd_err(connection, "incompatible DRBD dialects: " 5211 "I support %d-%d, peer supports %d-%d\n", 5212 PRO_VERSION_MIN, PRO_VERSION_MAX, 5213 p->protocol_min, p->protocol_max); 5214 return -1; 5215 } 5216 5217 #if !defined(CONFIG_CRYPTO_HMAC) && !defined(CONFIG_CRYPTO_HMAC_MODULE) 5218 static int drbd_do_auth(struct drbd_connection *connection) 5219 { 5220 drbd_err(connection, "This kernel was build without CONFIG_CRYPTO_HMAC.\n"); 5221 drbd_err(connection, "You need to disable 'cram-hmac-alg' in drbd.conf.\n"); 5222 return -1; 5223 } 5224 #else 5225 #define CHALLENGE_LEN 64 5226 5227 /* Return value: 5228 1 - auth succeeded, 5229 0 - failed, try again (network error), 5230 -1 - auth failed, don't try again. 5231 */ 5232 5233 static int drbd_do_auth(struct drbd_connection *connection) 5234 { 5235 struct drbd_socket *sock; 5236 char my_challenge[CHALLENGE_LEN]; /* 64 Bytes... */ 5237 char *response = NULL; 5238 char *right_response = NULL; 5239 char *peers_ch = NULL; 5240 unsigned int key_len; 5241 char secret[SHARED_SECRET_MAX]; /* 64 byte */ 5242 unsigned int resp_size; 5243 SHASH_DESC_ON_STACK(desc, connection->cram_hmac_tfm); 5244 struct packet_info pi; 5245 struct net_conf *nc; 5246 int err, rv; 5247 5248 /* FIXME: Put the challenge/response into the preallocated socket buffer. */ 5249 5250 rcu_read_lock(); 5251 nc = rcu_dereference(connection->net_conf); 5252 key_len = strlen(nc->shared_secret); 5253 memcpy(secret, nc->shared_secret, key_len); 5254 rcu_read_unlock(); 5255 5256 desc->tfm = connection->cram_hmac_tfm; 5257 desc->flags = 0; 5258 5259 rv = crypto_shash_setkey(connection->cram_hmac_tfm, (u8 *)secret, key_len); 5260 if (rv) { 5261 drbd_err(connection, "crypto_shash_setkey() failed with %d\n", rv); 5262 rv = -1; 5263 goto fail; 5264 } 5265 5266 get_random_bytes(my_challenge, CHALLENGE_LEN); 5267 5268 sock = &connection->data; 5269 if (!conn_prepare_command(connection, sock)) { 5270 rv = 0; 5271 goto fail; 5272 } 5273 rv = !conn_send_command(connection, sock, P_AUTH_CHALLENGE, 0, 5274 my_challenge, CHALLENGE_LEN); 5275 if (!rv) 5276 goto fail; 5277 5278 err = drbd_recv_header(connection, &pi); 5279 if (err) { 5280 rv = 0; 5281 goto fail; 5282 } 5283 5284 if (pi.cmd != P_AUTH_CHALLENGE) { 5285 drbd_err(connection, "expected AuthChallenge packet, received: %s (0x%04x)\n", 5286 cmdname(pi.cmd), pi.cmd); 5287 rv = 0; 5288 goto fail; 5289 } 5290 5291 if (pi.size > CHALLENGE_LEN * 2) { 5292 drbd_err(connection, "expected AuthChallenge payload too big.\n"); 5293 rv = -1; 5294 goto fail; 5295 } 5296 5297 if (pi.size < CHALLENGE_LEN) { 5298 drbd_err(connection, "AuthChallenge payload too small.\n"); 5299 rv = -1; 5300 goto fail; 5301 } 5302 5303 peers_ch = kmalloc(pi.size, GFP_NOIO); 5304 if (peers_ch == NULL) { 5305 drbd_err(connection, "kmalloc of peers_ch failed\n"); 5306 rv = -1; 5307 goto fail; 5308 } 5309 5310 err = drbd_recv_all_warn(connection, peers_ch, pi.size); 5311 if (err) { 5312 rv = 0; 5313 goto fail; 5314 } 5315 5316 if (!memcmp(my_challenge, peers_ch, CHALLENGE_LEN)) { 5317 drbd_err(connection, "Peer presented the same challenge!\n"); 5318 rv = -1; 5319 goto fail; 5320 } 5321 5322 resp_size = crypto_shash_digestsize(connection->cram_hmac_tfm); 5323 response = kmalloc(resp_size, GFP_NOIO); 5324 if (response == NULL) { 5325 drbd_err(connection, "kmalloc of response failed\n"); 5326 rv = -1; 5327 goto fail; 5328 } 5329 5330 rv = crypto_shash_digest(desc, peers_ch, pi.size, response); 5331 if (rv) { 5332 drbd_err(connection, "crypto_hash_digest() failed with %d\n", rv); 5333 rv = -1; 5334 goto fail; 5335 } 5336 5337 if (!conn_prepare_command(connection, sock)) { 5338 rv = 0; 5339 goto fail; 5340 } 5341 rv = !conn_send_command(connection, sock, P_AUTH_RESPONSE, 0, 5342 response, resp_size); 5343 if (!rv) 5344 goto fail; 5345 5346 err = drbd_recv_header(connection, &pi); 5347 if (err) { 5348 rv = 0; 5349 goto fail; 5350 } 5351 5352 if (pi.cmd != P_AUTH_RESPONSE) { 5353 drbd_err(connection, "expected AuthResponse packet, received: %s (0x%04x)\n", 5354 cmdname(pi.cmd), pi.cmd); 5355 rv = 0; 5356 goto fail; 5357 } 5358 5359 if (pi.size != resp_size) { 5360 drbd_err(connection, "expected AuthResponse payload of wrong size\n"); 5361 rv = 0; 5362 goto fail; 5363 } 5364 5365 err = drbd_recv_all_warn(connection, response , resp_size); 5366 if (err) { 5367 rv = 0; 5368 goto fail; 5369 } 5370 5371 right_response = kmalloc(resp_size, GFP_NOIO); 5372 if (right_response == NULL) { 5373 drbd_err(connection, "kmalloc of right_response failed\n"); 5374 rv = -1; 5375 goto fail; 5376 } 5377 5378 rv = crypto_shash_digest(desc, my_challenge, CHALLENGE_LEN, 5379 right_response); 5380 if (rv) { 5381 drbd_err(connection, "crypto_hash_digest() failed with %d\n", rv); 5382 rv = -1; 5383 goto fail; 5384 } 5385 5386 rv = !memcmp(response, right_response, resp_size); 5387 5388 if (rv) 5389 drbd_info(connection, "Peer authenticated using %d bytes HMAC\n", 5390 resp_size); 5391 else 5392 rv = -1; 5393 5394 fail: 5395 kfree(peers_ch); 5396 kfree(response); 5397 kfree(right_response); 5398 shash_desc_zero(desc); 5399 5400 return rv; 5401 } 5402 #endif 5403 5404 int drbd_receiver(struct drbd_thread *thi) 5405 { 5406 struct drbd_connection *connection = thi->connection; 5407 int h; 5408 5409 drbd_info(connection, "receiver (re)started\n"); 5410 5411 do { 5412 h = conn_connect(connection); 5413 if (h == 0) { 5414 conn_disconnect(connection); 5415 schedule_timeout_interruptible(HZ); 5416 } 5417 if (h == -1) { 5418 drbd_warn(connection, "Discarding network configuration.\n"); 5419 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 5420 } 5421 } while (h == 0); 5422 5423 if (h > 0) { 5424 blk_start_plug(&connection->receiver_plug); 5425 drbdd(connection); 5426 blk_finish_plug(&connection->receiver_plug); 5427 } 5428 5429 conn_disconnect(connection); 5430 5431 drbd_info(connection, "receiver terminated\n"); 5432 return 0; 5433 } 5434 5435 /* ********* acknowledge sender ******** */ 5436 5437 static int got_conn_RqSReply(struct drbd_connection *connection, struct packet_info *pi) 5438 { 5439 struct p_req_state_reply *p = pi->data; 5440 int retcode = be32_to_cpu(p->retcode); 5441 5442 if (retcode >= SS_SUCCESS) { 5443 set_bit(CONN_WD_ST_CHG_OKAY, &connection->flags); 5444 } else { 5445 set_bit(CONN_WD_ST_CHG_FAIL, &connection->flags); 5446 drbd_err(connection, "Requested state change failed by peer: %s (%d)\n", 5447 drbd_set_st_err_str(retcode), retcode); 5448 } 5449 wake_up(&connection->ping_wait); 5450 5451 return 0; 5452 } 5453 5454 static int got_RqSReply(struct drbd_connection *connection, struct packet_info *pi) 5455 { 5456 struct drbd_peer_device *peer_device; 5457 struct drbd_device *device; 5458 struct p_req_state_reply *p = pi->data; 5459 int retcode = be32_to_cpu(p->retcode); 5460 5461 peer_device = conn_peer_device(connection, pi->vnr); 5462 if (!peer_device) 5463 return -EIO; 5464 device = peer_device->device; 5465 5466 if (test_bit(CONN_WD_ST_CHG_REQ, &connection->flags)) { 5467 D_ASSERT(device, connection->agreed_pro_version < 100); 5468 return got_conn_RqSReply(connection, pi); 5469 } 5470 5471 if (retcode >= SS_SUCCESS) { 5472 set_bit(CL_ST_CHG_SUCCESS, &device->flags); 5473 } else { 5474 set_bit(CL_ST_CHG_FAIL, &device->flags); 5475 drbd_err(device, "Requested state change failed by peer: %s (%d)\n", 5476 drbd_set_st_err_str(retcode), retcode); 5477 } 5478 wake_up(&device->state_wait); 5479 5480 return 0; 5481 } 5482 5483 static int got_Ping(struct drbd_connection *connection, struct packet_info *pi) 5484 { 5485 return drbd_send_ping_ack(connection); 5486 5487 } 5488 5489 static int got_PingAck(struct drbd_connection *connection, struct packet_info *pi) 5490 { 5491 /* restore idle timeout */ 5492 connection->meta.socket->sk->sk_rcvtimeo = connection->net_conf->ping_int*HZ; 5493 if (!test_and_set_bit(GOT_PING_ACK, &connection->flags)) 5494 wake_up(&connection->ping_wait); 5495 5496 return 0; 5497 } 5498 5499 static int got_IsInSync(struct drbd_connection *connection, struct packet_info *pi) 5500 { 5501 struct drbd_peer_device *peer_device; 5502 struct drbd_device *device; 5503 struct p_block_ack *p = pi->data; 5504 sector_t sector = be64_to_cpu(p->sector); 5505 int blksize = be32_to_cpu(p->blksize); 5506 5507 peer_device = conn_peer_device(connection, pi->vnr); 5508 if (!peer_device) 5509 return -EIO; 5510 device = peer_device->device; 5511 5512 D_ASSERT(device, peer_device->connection->agreed_pro_version >= 89); 5513 5514 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5515 5516 if (get_ldev(device)) { 5517 drbd_rs_complete_io(device, sector); 5518 drbd_set_in_sync(device, sector, blksize); 5519 /* rs_same_csums is supposed to count in units of BM_BLOCK_SIZE */ 5520 device->rs_same_csum += (blksize >> BM_BLOCK_SHIFT); 5521 put_ldev(device); 5522 } 5523 dec_rs_pending(device); 5524 atomic_add(blksize >> 9, &device->rs_sect_in); 5525 5526 return 0; 5527 } 5528 5529 static int 5530 validate_req_change_req_state(struct drbd_device *device, u64 id, sector_t sector, 5531 struct rb_root *root, const char *func, 5532 enum drbd_req_event what, bool missing_ok) 5533 { 5534 struct drbd_request *req; 5535 struct bio_and_error m; 5536 5537 spin_lock_irq(&device->resource->req_lock); 5538 req = find_request(device, root, id, sector, missing_ok, func); 5539 if (unlikely(!req)) { 5540 spin_unlock_irq(&device->resource->req_lock); 5541 return -EIO; 5542 } 5543 __req_mod(req, what, &m); 5544 spin_unlock_irq(&device->resource->req_lock); 5545 5546 if (m.bio) 5547 complete_master_bio(device, &m); 5548 return 0; 5549 } 5550 5551 static int got_BlockAck(struct drbd_connection *connection, struct packet_info *pi) 5552 { 5553 struct drbd_peer_device *peer_device; 5554 struct drbd_device *device; 5555 struct p_block_ack *p = pi->data; 5556 sector_t sector = be64_to_cpu(p->sector); 5557 int blksize = be32_to_cpu(p->blksize); 5558 enum drbd_req_event what; 5559 5560 peer_device = conn_peer_device(connection, pi->vnr); 5561 if (!peer_device) 5562 return -EIO; 5563 device = peer_device->device; 5564 5565 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5566 5567 if (p->block_id == ID_SYNCER) { 5568 drbd_set_in_sync(device, sector, blksize); 5569 dec_rs_pending(device); 5570 return 0; 5571 } 5572 switch (pi->cmd) { 5573 case P_RS_WRITE_ACK: 5574 what = WRITE_ACKED_BY_PEER_AND_SIS; 5575 break; 5576 case P_WRITE_ACK: 5577 what = WRITE_ACKED_BY_PEER; 5578 break; 5579 case P_RECV_ACK: 5580 what = RECV_ACKED_BY_PEER; 5581 break; 5582 case P_SUPERSEDED: 5583 what = CONFLICT_RESOLVED; 5584 break; 5585 case P_RETRY_WRITE: 5586 what = POSTPONE_WRITE; 5587 break; 5588 default: 5589 BUG(); 5590 } 5591 5592 return validate_req_change_req_state(device, p->block_id, sector, 5593 &device->write_requests, __func__, 5594 what, false); 5595 } 5596 5597 static int got_NegAck(struct drbd_connection *connection, struct packet_info *pi) 5598 { 5599 struct drbd_peer_device *peer_device; 5600 struct drbd_device *device; 5601 struct p_block_ack *p = pi->data; 5602 sector_t sector = be64_to_cpu(p->sector); 5603 int size = be32_to_cpu(p->blksize); 5604 int err; 5605 5606 peer_device = conn_peer_device(connection, pi->vnr); 5607 if (!peer_device) 5608 return -EIO; 5609 device = peer_device->device; 5610 5611 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5612 5613 if (p->block_id == ID_SYNCER) { 5614 dec_rs_pending(device); 5615 drbd_rs_failed_io(device, sector, size); 5616 return 0; 5617 } 5618 5619 err = validate_req_change_req_state(device, p->block_id, sector, 5620 &device->write_requests, __func__, 5621 NEG_ACKED, true); 5622 if (err) { 5623 /* Protocol A has no P_WRITE_ACKs, but has P_NEG_ACKs. 5624 The master bio might already be completed, therefore the 5625 request is no longer in the collision hash. */ 5626 /* In Protocol B we might already have got a P_RECV_ACK 5627 but then get a P_NEG_ACK afterwards. */ 5628 drbd_set_out_of_sync(device, sector, size); 5629 } 5630 return 0; 5631 } 5632 5633 static int got_NegDReply(struct drbd_connection *connection, struct packet_info *pi) 5634 { 5635 struct drbd_peer_device *peer_device; 5636 struct drbd_device *device; 5637 struct p_block_ack *p = pi->data; 5638 sector_t sector = be64_to_cpu(p->sector); 5639 5640 peer_device = conn_peer_device(connection, pi->vnr); 5641 if (!peer_device) 5642 return -EIO; 5643 device = peer_device->device; 5644 5645 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5646 5647 drbd_err(device, "Got NegDReply; Sector %llus, len %u.\n", 5648 (unsigned long long)sector, be32_to_cpu(p->blksize)); 5649 5650 return validate_req_change_req_state(device, p->block_id, sector, 5651 &device->read_requests, __func__, 5652 NEG_ACKED, false); 5653 } 5654 5655 static int got_NegRSDReply(struct drbd_connection *connection, struct packet_info *pi) 5656 { 5657 struct drbd_peer_device *peer_device; 5658 struct drbd_device *device; 5659 sector_t sector; 5660 int size; 5661 struct p_block_ack *p = pi->data; 5662 5663 peer_device = conn_peer_device(connection, pi->vnr); 5664 if (!peer_device) 5665 return -EIO; 5666 device = peer_device->device; 5667 5668 sector = be64_to_cpu(p->sector); 5669 size = be32_to_cpu(p->blksize); 5670 5671 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5672 5673 dec_rs_pending(device); 5674 5675 if (get_ldev_if_state(device, D_FAILED)) { 5676 drbd_rs_complete_io(device, sector); 5677 switch (pi->cmd) { 5678 case P_NEG_RS_DREPLY: 5679 drbd_rs_failed_io(device, sector, size); 5680 case P_RS_CANCEL: 5681 break; 5682 default: 5683 BUG(); 5684 } 5685 put_ldev(device); 5686 } 5687 5688 return 0; 5689 } 5690 5691 static int got_BarrierAck(struct drbd_connection *connection, struct packet_info *pi) 5692 { 5693 struct p_barrier_ack *p = pi->data; 5694 struct drbd_peer_device *peer_device; 5695 int vnr; 5696 5697 tl_release(connection, p->barrier, be32_to_cpu(p->set_size)); 5698 5699 rcu_read_lock(); 5700 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 5701 struct drbd_device *device = peer_device->device; 5702 5703 if (device->state.conn == C_AHEAD && 5704 atomic_read(&device->ap_in_flight) == 0 && 5705 !test_and_set_bit(AHEAD_TO_SYNC_SOURCE, &device->flags)) { 5706 device->start_resync_timer.expires = jiffies + HZ; 5707 add_timer(&device->start_resync_timer); 5708 } 5709 } 5710 rcu_read_unlock(); 5711 5712 return 0; 5713 } 5714 5715 static int got_OVResult(struct drbd_connection *connection, struct packet_info *pi) 5716 { 5717 struct drbd_peer_device *peer_device; 5718 struct drbd_device *device; 5719 struct p_block_ack *p = pi->data; 5720 struct drbd_device_work *dw; 5721 sector_t sector; 5722 int size; 5723 5724 peer_device = conn_peer_device(connection, pi->vnr); 5725 if (!peer_device) 5726 return -EIO; 5727 device = peer_device->device; 5728 5729 sector = be64_to_cpu(p->sector); 5730 size = be32_to_cpu(p->blksize); 5731 5732 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5733 5734 if (be64_to_cpu(p->block_id) == ID_OUT_OF_SYNC) 5735 drbd_ov_out_of_sync_found(device, sector, size); 5736 else 5737 ov_out_of_sync_print(device); 5738 5739 if (!get_ldev(device)) 5740 return 0; 5741 5742 drbd_rs_complete_io(device, sector); 5743 dec_rs_pending(device); 5744 5745 --device->ov_left; 5746 5747 /* let's advance progress step marks only for every other megabyte */ 5748 if ((device->ov_left & 0x200) == 0x200) 5749 drbd_advance_rs_marks(device, device->ov_left); 5750 5751 if (device->ov_left == 0) { 5752 dw = kmalloc(sizeof(*dw), GFP_NOIO); 5753 if (dw) { 5754 dw->w.cb = w_ov_finished; 5755 dw->device = device; 5756 drbd_queue_work(&peer_device->connection->sender_work, &dw->w); 5757 } else { 5758 drbd_err(device, "kmalloc(dw) failed."); 5759 ov_out_of_sync_print(device); 5760 drbd_resync_finished(device); 5761 } 5762 } 5763 put_ldev(device); 5764 return 0; 5765 } 5766 5767 static int got_skip(struct drbd_connection *connection, struct packet_info *pi) 5768 { 5769 return 0; 5770 } 5771 5772 struct meta_sock_cmd { 5773 size_t pkt_size; 5774 int (*fn)(struct drbd_connection *connection, struct packet_info *); 5775 }; 5776 5777 static void set_rcvtimeo(struct drbd_connection *connection, bool ping_timeout) 5778 { 5779 long t; 5780 struct net_conf *nc; 5781 5782 rcu_read_lock(); 5783 nc = rcu_dereference(connection->net_conf); 5784 t = ping_timeout ? nc->ping_timeo : nc->ping_int; 5785 rcu_read_unlock(); 5786 5787 t *= HZ; 5788 if (ping_timeout) 5789 t /= 10; 5790 5791 connection->meta.socket->sk->sk_rcvtimeo = t; 5792 } 5793 5794 static void set_ping_timeout(struct drbd_connection *connection) 5795 { 5796 set_rcvtimeo(connection, 1); 5797 } 5798 5799 static void set_idle_timeout(struct drbd_connection *connection) 5800 { 5801 set_rcvtimeo(connection, 0); 5802 } 5803 5804 static struct meta_sock_cmd ack_receiver_tbl[] = { 5805 [P_PING] = { 0, got_Ping }, 5806 [P_PING_ACK] = { 0, got_PingAck }, 5807 [P_RECV_ACK] = { sizeof(struct p_block_ack), got_BlockAck }, 5808 [P_WRITE_ACK] = { sizeof(struct p_block_ack), got_BlockAck }, 5809 [P_RS_WRITE_ACK] = { sizeof(struct p_block_ack), got_BlockAck }, 5810 [P_SUPERSEDED] = { sizeof(struct p_block_ack), got_BlockAck }, 5811 [P_NEG_ACK] = { sizeof(struct p_block_ack), got_NegAck }, 5812 [P_NEG_DREPLY] = { sizeof(struct p_block_ack), got_NegDReply }, 5813 [P_NEG_RS_DREPLY] = { sizeof(struct p_block_ack), got_NegRSDReply }, 5814 [P_OV_RESULT] = { sizeof(struct p_block_ack), got_OVResult }, 5815 [P_BARRIER_ACK] = { sizeof(struct p_barrier_ack), got_BarrierAck }, 5816 [P_STATE_CHG_REPLY] = { sizeof(struct p_req_state_reply), got_RqSReply }, 5817 [P_RS_IS_IN_SYNC] = { sizeof(struct p_block_ack), got_IsInSync }, 5818 [P_DELAY_PROBE] = { sizeof(struct p_delay_probe93), got_skip }, 5819 [P_RS_CANCEL] = { sizeof(struct p_block_ack), got_NegRSDReply }, 5820 [P_CONN_ST_CHG_REPLY]={ sizeof(struct p_req_state_reply), got_conn_RqSReply }, 5821 [P_RETRY_WRITE] = { sizeof(struct p_block_ack), got_BlockAck }, 5822 }; 5823 5824 int drbd_ack_receiver(struct drbd_thread *thi) 5825 { 5826 struct drbd_connection *connection = thi->connection; 5827 struct meta_sock_cmd *cmd = NULL; 5828 struct packet_info pi; 5829 unsigned long pre_recv_jif; 5830 int rv; 5831 void *buf = connection->meta.rbuf; 5832 int received = 0; 5833 unsigned int header_size = drbd_header_size(connection); 5834 int expect = header_size; 5835 bool ping_timeout_active = false; 5836 struct sched_param param = { .sched_priority = 2 }; 5837 5838 rv = sched_setscheduler(current, SCHED_RR, ¶m); 5839 if (rv < 0) 5840 drbd_err(connection, "drbd_ack_receiver: ERROR set priority, ret=%d\n", rv); 5841 5842 while (get_t_state(thi) == RUNNING) { 5843 drbd_thread_current_set_cpu(thi); 5844 5845 conn_reclaim_net_peer_reqs(connection); 5846 5847 if (test_and_clear_bit(SEND_PING, &connection->flags)) { 5848 if (drbd_send_ping(connection)) { 5849 drbd_err(connection, "drbd_send_ping has failed\n"); 5850 goto reconnect; 5851 } 5852 set_ping_timeout(connection); 5853 ping_timeout_active = true; 5854 } 5855 5856 pre_recv_jif = jiffies; 5857 rv = drbd_recv_short(connection->meta.socket, buf, expect-received, 0); 5858 5859 /* Note: 5860 * -EINTR (on meta) we got a signal 5861 * -EAGAIN (on meta) rcvtimeo expired 5862 * -ECONNRESET other side closed the connection 5863 * -ERESTARTSYS (on data) we got a signal 5864 * rv < 0 other than above: unexpected error! 5865 * rv == expected: full header or command 5866 * rv < expected: "woken" by signal during receive 5867 * rv == 0 : "connection shut down by peer" 5868 */ 5869 if (likely(rv > 0)) { 5870 received += rv; 5871 buf += rv; 5872 } else if (rv == 0) { 5873 if (test_bit(DISCONNECT_SENT, &connection->flags)) { 5874 long t; 5875 rcu_read_lock(); 5876 t = rcu_dereference(connection->net_conf)->ping_timeo * HZ/10; 5877 rcu_read_unlock(); 5878 5879 t = wait_event_timeout(connection->ping_wait, 5880 connection->cstate < C_WF_REPORT_PARAMS, 5881 t); 5882 if (t) 5883 break; 5884 } 5885 drbd_err(connection, "meta connection shut down by peer.\n"); 5886 goto reconnect; 5887 } else if (rv == -EAGAIN) { 5888 /* If the data socket received something meanwhile, 5889 * that is good enough: peer is still alive. */ 5890 if (time_after(connection->last_received, pre_recv_jif)) 5891 continue; 5892 if (ping_timeout_active) { 5893 drbd_err(connection, "PingAck did not arrive in time.\n"); 5894 goto reconnect; 5895 } 5896 set_bit(SEND_PING, &connection->flags); 5897 continue; 5898 } else if (rv == -EINTR) { 5899 /* maybe drbd_thread_stop(): the while condition will notice. 5900 * maybe woken for send_ping: we'll send a ping above, 5901 * and change the rcvtimeo */ 5902 flush_signals(current); 5903 continue; 5904 } else { 5905 drbd_err(connection, "sock_recvmsg returned %d\n", rv); 5906 goto reconnect; 5907 } 5908 5909 if (received == expect && cmd == NULL) { 5910 if (decode_header(connection, connection->meta.rbuf, &pi)) 5911 goto reconnect; 5912 cmd = &ack_receiver_tbl[pi.cmd]; 5913 if (pi.cmd >= ARRAY_SIZE(ack_receiver_tbl) || !cmd->fn) { 5914 drbd_err(connection, "Unexpected meta packet %s (0x%04x)\n", 5915 cmdname(pi.cmd), pi.cmd); 5916 goto disconnect; 5917 } 5918 expect = header_size + cmd->pkt_size; 5919 if (pi.size != expect - header_size) { 5920 drbd_err(connection, "Wrong packet size on meta (c: %d, l: %d)\n", 5921 pi.cmd, pi.size); 5922 goto reconnect; 5923 } 5924 } 5925 if (received == expect) { 5926 bool err; 5927 5928 err = cmd->fn(connection, &pi); 5929 if (err) { 5930 drbd_err(connection, "%pf failed\n", cmd->fn); 5931 goto reconnect; 5932 } 5933 5934 connection->last_received = jiffies; 5935 5936 if (cmd == &ack_receiver_tbl[P_PING_ACK]) { 5937 set_idle_timeout(connection); 5938 ping_timeout_active = false; 5939 } 5940 5941 buf = connection->meta.rbuf; 5942 received = 0; 5943 expect = header_size; 5944 cmd = NULL; 5945 } 5946 } 5947 5948 if (0) { 5949 reconnect: 5950 conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD); 5951 conn_md_sync(connection); 5952 } 5953 if (0) { 5954 disconnect: 5955 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 5956 } 5957 5958 drbd_info(connection, "ack_receiver terminated\n"); 5959 5960 return 0; 5961 } 5962 5963 void drbd_send_acks_wf(struct work_struct *ws) 5964 { 5965 struct drbd_peer_device *peer_device = 5966 container_of(ws, struct drbd_peer_device, send_acks_work); 5967 struct drbd_connection *connection = peer_device->connection; 5968 struct drbd_device *device = peer_device->device; 5969 struct net_conf *nc; 5970 int tcp_cork, err; 5971 5972 rcu_read_lock(); 5973 nc = rcu_dereference(connection->net_conf); 5974 tcp_cork = nc->tcp_cork; 5975 rcu_read_unlock(); 5976 5977 if (tcp_cork) 5978 drbd_tcp_cork(connection->meta.socket); 5979 5980 err = drbd_finish_peer_reqs(device); 5981 kref_put(&device->kref, drbd_destroy_device); 5982 /* get is in drbd_endio_write_sec_final(). That is necessary to keep the 5983 struct work_struct send_acks_work alive, which is in the peer_device object */ 5984 5985 if (err) { 5986 conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD); 5987 return; 5988 } 5989 5990 if (tcp_cork) 5991 drbd_tcp_uncork(connection->meta.socket); 5992 5993 return; 5994 } 5995