1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 drbd_receiver.c 4 5 This file is part of DRBD by Philipp Reisner and Lars Ellenberg. 6 7 Copyright (C) 2001-2008, LINBIT Information Technologies GmbH. 8 Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>. 9 Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>. 10 11 */ 12 13 14 #include <linux/module.h> 15 16 #include <linux/uaccess.h> 17 #include <net/sock.h> 18 19 #include <linux/drbd.h> 20 #include <linux/fs.h> 21 #include <linux/file.h> 22 #include <linux/in.h> 23 #include <linux/mm.h> 24 #include <linux/memcontrol.h> 25 #include <linux/mm_inline.h> 26 #include <linux/slab.h> 27 #include <uapi/linux/sched/types.h> 28 #include <linux/sched/signal.h> 29 #include <linux/pkt_sched.h> 30 #define __KERNEL_SYSCALLS__ 31 #include <linux/unistd.h> 32 #include <linux/vmalloc.h> 33 #include <linux/random.h> 34 #include <linux/string.h> 35 #include <linux/scatterlist.h> 36 #include <linux/part_stat.h> 37 #include "drbd_int.h" 38 #include "drbd_protocol.h" 39 #include "drbd_req.h" 40 #include "drbd_vli.h" 41 42 #define PRO_FEATURES (DRBD_FF_TRIM|DRBD_FF_THIN_RESYNC|DRBD_FF_WSAME|DRBD_FF_WZEROES) 43 44 struct packet_info { 45 enum drbd_packet cmd; 46 unsigned int size; 47 unsigned int vnr; 48 void *data; 49 }; 50 51 enum finish_epoch { 52 FE_STILL_LIVE, 53 FE_DESTROYED, 54 FE_RECYCLED, 55 }; 56 57 static int drbd_do_features(struct drbd_connection *connection); 58 static int drbd_do_auth(struct drbd_connection *connection); 59 static int drbd_disconnected(struct drbd_peer_device *); 60 static void conn_wait_active_ee_empty(struct drbd_connection *connection); 61 static enum finish_epoch drbd_may_finish_epoch(struct drbd_connection *, struct drbd_epoch *, enum epoch_event); 62 static int e_end_block(struct drbd_work *, int); 63 64 65 #define GFP_TRY (__GFP_HIGHMEM | __GFP_NOWARN) 66 67 /* 68 * some helper functions to deal with single linked page lists, 69 * page->private being our "next" pointer. 70 */ 71 72 /* If at least n pages are linked at head, get n pages off. 73 * Otherwise, don't modify head, and return NULL. 74 * Locking is the responsibility of the caller. 75 */ 76 static struct page *page_chain_del(struct page **head, int n) 77 { 78 struct page *page; 79 struct page *tmp; 80 81 BUG_ON(!n); 82 BUG_ON(!head); 83 84 page = *head; 85 86 if (!page) 87 return NULL; 88 89 while (page) { 90 tmp = page_chain_next(page); 91 if (--n == 0) 92 break; /* found sufficient pages */ 93 if (tmp == NULL) 94 /* insufficient pages, don't use any of them. */ 95 return NULL; 96 page = tmp; 97 } 98 99 /* add end of list marker for the returned list */ 100 set_page_private(page, 0); 101 /* actual return value, and adjustment of head */ 102 page = *head; 103 *head = tmp; 104 return page; 105 } 106 107 /* may be used outside of locks to find the tail of a (usually short) 108 * "private" page chain, before adding it back to a global chain head 109 * with page_chain_add() under a spinlock. */ 110 static struct page *page_chain_tail(struct page *page, int *len) 111 { 112 struct page *tmp; 113 int i = 1; 114 while ((tmp = page_chain_next(page))) { 115 ++i; 116 page = tmp; 117 } 118 if (len) 119 *len = i; 120 return page; 121 } 122 123 static int page_chain_free(struct page *page) 124 { 125 struct page *tmp; 126 int i = 0; 127 page_chain_for_each_safe(page, tmp) { 128 put_page(page); 129 ++i; 130 } 131 return i; 132 } 133 134 static void page_chain_add(struct page **head, 135 struct page *chain_first, struct page *chain_last) 136 { 137 #if 1 138 struct page *tmp; 139 tmp = page_chain_tail(chain_first, NULL); 140 BUG_ON(tmp != chain_last); 141 #endif 142 143 /* add chain to head */ 144 set_page_private(chain_last, (unsigned long)*head); 145 *head = chain_first; 146 } 147 148 static struct page *__drbd_alloc_pages(struct drbd_device *device, 149 unsigned int number) 150 { 151 struct page *page = NULL; 152 struct page *tmp = NULL; 153 unsigned int i = 0; 154 155 /* Yes, testing drbd_pp_vacant outside the lock is racy. 156 * So what. It saves a spin_lock. */ 157 if (drbd_pp_vacant >= number) { 158 spin_lock(&drbd_pp_lock); 159 page = page_chain_del(&drbd_pp_pool, number); 160 if (page) 161 drbd_pp_vacant -= number; 162 spin_unlock(&drbd_pp_lock); 163 if (page) 164 return page; 165 } 166 167 /* GFP_TRY, because we must not cause arbitrary write-out: in a DRBD 168 * "criss-cross" setup, that might cause write-out on some other DRBD, 169 * which in turn might block on the other node at this very place. */ 170 for (i = 0; i < number; i++) { 171 tmp = alloc_page(GFP_TRY); 172 if (!tmp) 173 break; 174 set_page_private(tmp, (unsigned long)page); 175 page = tmp; 176 } 177 178 if (i == number) 179 return page; 180 181 /* Not enough pages immediately available this time. 182 * No need to jump around here, drbd_alloc_pages will retry this 183 * function "soon". */ 184 if (page) { 185 tmp = page_chain_tail(page, NULL); 186 spin_lock(&drbd_pp_lock); 187 page_chain_add(&drbd_pp_pool, page, tmp); 188 drbd_pp_vacant += i; 189 spin_unlock(&drbd_pp_lock); 190 } 191 return NULL; 192 } 193 194 static void reclaim_finished_net_peer_reqs(struct drbd_device *device, 195 struct list_head *to_be_freed) 196 { 197 struct drbd_peer_request *peer_req, *tmp; 198 199 /* The EEs are always appended to the end of the list. Since 200 they are sent in order over the wire, they have to finish 201 in order. As soon as we see the first not finished we can 202 stop to examine the list... */ 203 204 list_for_each_entry_safe(peer_req, tmp, &device->net_ee, w.list) { 205 if (drbd_peer_req_has_active_page(peer_req)) 206 break; 207 list_move(&peer_req->w.list, to_be_freed); 208 } 209 } 210 211 static void drbd_reclaim_net_peer_reqs(struct drbd_device *device) 212 { 213 LIST_HEAD(reclaimed); 214 struct drbd_peer_request *peer_req, *t; 215 216 spin_lock_irq(&device->resource->req_lock); 217 reclaim_finished_net_peer_reqs(device, &reclaimed); 218 spin_unlock_irq(&device->resource->req_lock); 219 list_for_each_entry_safe(peer_req, t, &reclaimed, w.list) 220 drbd_free_net_peer_req(device, peer_req); 221 } 222 223 static void conn_reclaim_net_peer_reqs(struct drbd_connection *connection) 224 { 225 struct drbd_peer_device *peer_device; 226 int vnr; 227 228 rcu_read_lock(); 229 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 230 struct drbd_device *device = peer_device->device; 231 if (!atomic_read(&device->pp_in_use_by_net)) 232 continue; 233 234 kref_get(&device->kref); 235 rcu_read_unlock(); 236 drbd_reclaim_net_peer_reqs(device); 237 kref_put(&device->kref, drbd_destroy_device); 238 rcu_read_lock(); 239 } 240 rcu_read_unlock(); 241 } 242 243 /** 244 * drbd_alloc_pages() - Returns @number pages, retries forever (or until signalled) 245 * @peer_device: DRBD device. 246 * @number: number of pages requested 247 * @retry: whether to retry, if not enough pages are available right now 248 * 249 * Tries to allocate number pages, first from our own page pool, then from 250 * the kernel. 251 * Possibly retry until DRBD frees sufficient pages somewhere else. 252 * 253 * If this allocation would exceed the max_buffers setting, we throttle 254 * allocation (schedule_timeout) to give the system some room to breathe. 255 * 256 * We do not use max-buffers as hard limit, because it could lead to 257 * congestion and further to a distributed deadlock during online-verify or 258 * (checksum based) resync, if the max-buffers, socket buffer sizes and 259 * resync-rate settings are mis-configured. 260 * 261 * Returns a page chain linked via page->private. 262 */ 263 struct page *drbd_alloc_pages(struct drbd_peer_device *peer_device, unsigned int number, 264 bool retry) 265 { 266 struct drbd_device *device = peer_device->device; 267 struct page *page = NULL; 268 struct net_conf *nc; 269 DEFINE_WAIT(wait); 270 unsigned int mxb; 271 272 rcu_read_lock(); 273 nc = rcu_dereference(peer_device->connection->net_conf); 274 mxb = nc ? nc->max_buffers : 1000000; 275 rcu_read_unlock(); 276 277 if (atomic_read(&device->pp_in_use) < mxb) 278 page = __drbd_alloc_pages(device, number); 279 280 /* Try to keep the fast path fast, but occasionally we need 281 * to reclaim the pages we lended to the network stack. */ 282 if (page && atomic_read(&device->pp_in_use_by_net) > 512) 283 drbd_reclaim_net_peer_reqs(device); 284 285 while (page == NULL) { 286 prepare_to_wait(&drbd_pp_wait, &wait, TASK_INTERRUPTIBLE); 287 288 drbd_reclaim_net_peer_reqs(device); 289 290 if (atomic_read(&device->pp_in_use) < mxb) { 291 page = __drbd_alloc_pages(device, number); 292 if (page) 293 break; 294 } 295 296 if (!retry) 297 break; 298 299 if (signal_pending(current)) { 300 drbd_warn(device, "drbd_alloc_pages interrupted!\n"); 301 break; 302 } 303 304 if (schedule_timeout(HZ/10) == 0) 305 mxb = UINT_MAX; 306 } 307 finish_wait(&drbd_pp_wait, &wait); 308 309 if (page) 310 atomic_add(number, &device->pp_in_use); 311 return page; 312 } 313 314 /* Must not be used from irq, as that may deadlock: see drbd_alloc_pages. 315 * Is also used from inside an other spin_lock_irq(&resource->req_lock); 316 * Either links the page chain back to the global pool, 317 * or returns all pages to the system. */ 318 static void drbd_free_pages(struct drbd_device *device, struct page *page, int is_net) 319 { 320 atomic_t *a = is_net ? &device->pp_in_use_by_net : &device->pp_in_use; 321 int i; 322 323 if (page == NULL) 324 return; 325 326 if (drbd_pp_vacant > (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * drbd_minor_count) 327 i = page_chain_free(page); 328 else { 329 struct page *tmp; 330 tmp = page_chain_tail(page, &i); 331 spin_lock(&drbd_pp_lock); 332 page_chain_add(&drbd_pp_pool, page, tmp); 333 drbd_pp_vacant += i; 334 spin_unlock(&drbd_pp_lock); 335 } 336 i = atomic_sub_return(i, a); 337 if (i < 0) 338 drbd_warn(device, "ASSERTION FAILED: %s: %d < 0\n", 339 is_net ? "pp_in_use_by_net" : "pp_in_use", i); 340 wake_up(&drbd_pp_wait); 341 } 342 343 /* 344 You need to hold the req_lock: 345 _drbd_wait_ee_list_empty() 346 347 You must not have the req_lock: 348 drbd_free_peer_req() 349 drbd_alloc_peer_req() 350 drbd_free_peer_reqs() 351 drbd_ee_fix_bhs() 352 drbd_finish_peer_reqs() 353 drbd_clear_done_ee() 354 drbd_wait_ee_list_empty() 355 */ 356 357 /* normal: payload_size == request size (bi_size) 358 * w_same: payload_size == logical_block_size 359 * trim: payload_size == 0 */ 360 struct drbd_peer_request * 361 drbd_alloc_peer_req(struct drbd_peer_device *peer_device, u64 id, sector_t sector, 362 unsigned int request_size, unsigned int payload_size, gfp_t gfp_mask) __must_hold(local) 363 { 364 struct drbd_device *device = peer_device->device; 365 struct drbd_peer_request *peer_req; 366 struct page *page = NULL; 367 unsigned int nr_pages = PFN_UP(payload_size); 368 369 if (drbd_insert_fault(device, DRBD_FAULT_AL_EE)) 370 return NULL; 371 372 peer_req = mempool_alloc(&drbd_ee_mempool, gfp_mask & ~__GFP_HIGHMEM); 373 if (!peer_req) { 374 if (!(gfp_mask & __GFP_NOWARN)) 375 drbd_err(device, "%s: allocation failed\n", __func__); 376 return NULL; 377 } 378 379 if (nr_pages) { 380 page = drbd_alloc_pages(peer_device, nr_pages, 381 gfpflags_allow_blocking(gfp_mask)); 382 if (!page) 383 goto fail; 384 } 385 386 memset(peer_req, 0, sizeof(*peer_req)); 387 INIT_LIST_HEAD(&peer_req->w.list); 388 drbd_clear_interval(&peer_req->i); 389 peer_req->i.size = request_size; 390 peer_req->i.sector = sector; 391 peer_req->submit_jif = jiffies; 392 peer_req->peer_device = peer_device; 393 peer_req->pages = page; 394 /* 395 * The block_id is opaque to the receiver. It is not endianness 396 * converted, and sent back to the sender unchanged. 397 */ 398 peer_req->block_id = id; 399 400 return peer_req; 401 402 fail: 403 mempool_free(peer_req, &drbd_ee_mempool); 404 return NULL; 405 } 406 407 void __drbd_free_peer_req(struct drbd_device *device, struct drbd_peer_request *peer_req, 408 int is_net) 409 { 410 might_sleep(); 411 if (peer_req->flags & EE_HAS_DIGEST) 412 kfree(peer_req->digest); 413 drbd_free_pages(device, peer_req->pages, is_net); 414 D_ASSERT(device, atomic_read(&peer_req->pending_bios) == 0); 415 D_ASSERT(device, drbd_interval_empty(&peer_req->i)); 416 if (!expect(!(peer_req->flags & EE_CALL_AL_COMPLETE_IO))) { 417 peer_req->flags &= ~EE_CALL_AL_COMPLETE_IO; 418 drbd_al_complete_io(device, &peer_req->i); 419 } 420 mempool_free(peer_req, &drbd_ee_mempool); 421 } 422 423 int drbd_free_peer_reqs(struct drbd_device *device, struct list_head *list) 424 { 425 LIST_HEAD(work_list); 426 struct drbd_peer_request *peer_req, *t; 427 int count = 0; 428 int is_net = list == &device->net_ee; 429 430 spin_lock_irq(&device->resource->req_lock); 431 list_splice_init(list, &work_list); 432 spin_unlock_irq(&device->resource->req_lock); 433 434 list_for_each_entry_safe(peer_req, t, &work_list, w.list) { 435 __drbd_free_peer_req(device, peer_req, is_net); 436 count++; 437 } 438 return count; 439 } 440 441 /* 442 * See also comments in _req_mod(,BARRIER_ACKED) and receive_Barrier. 443 */ 444 static int drbd_finish_peer_reqs(struct drbd_device *device) 445 { 446 LIST_HEAD(work_list); 447 LIST_HEAD(reclaimed); 448 struct drbd_peer_request *peer_req, *t; 449 int err = 0; 450 451 spin_lock_irq(&device->resource->req_lock); 452 reclaim_finished_net_peer_reqs(device, &reclaimed); 453 list_splice_init(&device->done_ee, &work_list); 454 spin_unlock_irq(&device->resource->req_lock); 455 456 list_for_each_entry_safe(peer_req, t, &reclaimed, w.list) 457 drbd_free_net_peer_req(device, peer_req); 458 459 /* possible callbacks here: 460 * e_end_block, and e_end_resync_block, e_send_superseded. 461 * all ignore the last argument. 462 */ 463 list_for_each_entry_safe(peer_req, t, &work_list, w.list) { 464 int err2; 465 466 /* list_del not necessary, next/prev members not touched */ 467 err2 = peer_req->w.cb(&peer_req->w, !!err); 468 if (!err) 469 err = err2; 470 drbd_free_peer_req(device, peer_req); 471 } 472 wake_up(&device->ee_wait); 473 474 return err; 475 } 476 477 static void _drbd_wait_ee_list_empty(struct drbd_device *device, 478 struct list_head *head) 479 { 480 DEFINE_WAIT(wait); 481 482 /* avoids spin_lock/unlock 483 * and calling prepare_to_wait in the fast path */ 484 while (!list_empty(head)) { 485 prepare_to_wait(&device->ee_wait, &wait, TASK_UNINTERRUPTIBLE); 486 spin_unlock_irq(&device->resource->req_lock); 487 io_schedule(); 488 finish_wait(&device->ee_wait, &wait); 489 spin_lock_irq(&device->resource->req_lock); 490 } 491 } 492 493 static void drbd_wait_ee_list_empty(struct drbd_device *device, 494 struct list_head *head) 495 { 496 spin_lock_irq(&device->resource->req_lock); 497 _drbd_wait_ee_list_empty(device, head); 498 spin_unlock_irq(&device->resource->req_lock); 499 } 500 501 static int drbd_recv_short(struct socket *sock, void *buf, size_t size, int flags) 502 { 503 struct kvec iov = { 504 .iov_base = buf, 505 .iov_len = size, 506 }; 507 struct msghdr msg = { 508 .msg_flags = (flags ? flags : MSG_WAITALL | MSG_NOSIGNAL) 509 }; 510 iov_iter_kvec(&msg.msg_iter, READ, &iov, 1, size); 511 return sock_recvmsg(sock, &msg, msg.msg_flags); 512 } 513 514 static int drbd_recv(struct drbd_connection *connection, void *buf, size_t size) 515 { 516 int rv; 517 518 rv = drbd_recv_short(connection->data.socket, buf, size, 0); 519 520 if (rv < 0) { 521 if (rv == -ECONNRESET) 522 drbd_info(connection, "sock was reset by peer\n"); 523 else if (rv != -ERESTARTSYS) 524 drbd_err(connection, "sock_recvmsg returned %d\n", rv); 525 } else if (rv == 0) { 526 if (test_bit(DISCONNECT_SENT, &connection->flags)) { 527 long t; 528 rcu_read_lock(); 529 t = rcu_dereference(connection->net_conf)->ping_timeo * HZ/10; 530 rcu_read_unlock(); 531 532 t = wait_event_timeout(connection->ping_wait, connection->cstate < C_WF_REPORT_PARAMS, t); 533 534 if (t) 535 goto out; 536 } 537 drbd_info(connection, "sock was shut down by peer\n"); 538 } 539 540 if (rv != size) 541 conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD); 542 543 out: 544 return rv; 545 } 546 547 static int drbd_recv_all(struct drbd_connection *connection, void *buf, size_t size) 548 { 549 int err; 550 551 err = drbd_recv(connection, buf, size); 552 if (err != size) { 553 if (err >= 0) 554 err = -EIO; 555 } else 556 err = 0; 557 return err; 558 } 559 560 static int drbd_recv_all_warn(struct drbd_connection *connection, void *buf, size_t size) 561 { 562 int err; 563 564 err = drbd_recv_all(connection, buf, size); 565 if (err && !signal_pending(current)) 566 drbd_warn(connection, "short read (expected size %d)\n", (int)size); 567 return err; 568 } 569 570 /* quoting tcp(7): 571 * On individual connections, the socket buffer size must be set prior to the 572 * listen(2) or connect(2) calls in order to have it take effect. 573 * This is our wrapper to do so. 574 */ 575 static void drbd_setbufsize(struct socket *sock, unsigned int snd, 576 unsigned int rcv) 577 { 578 /* open coded SO_SNDBUF, SO_RCVBUF */ 579 if (snd) { 580 sock->sk->sk_sndbuf = snd; 581 sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 582 } 583 if (rcv) { 584 sock->sk->sk_rcvbuf = rcv; 585 sock->sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 586 } 587 } 588 589 static struct socket *drbd_try_connect(struct drbd_connection *connection) 590 { 591 const char *what; 592 struct socket *sock; 593 struct sockaddr_in6 src_in6; 594 struct sockaddr_in6 peer_in6; 595 struct net_conf *nc; 596 int err, peer_addr_len, my_addr_len; 597 int sndbuf_size, rcvbuf_size, connect_int; 598 int disconnect_on_error = 1; 599 600 rcu_read_lock(); 601 nc = rcu_dereference(connection->net_conf); 602 if (!nc) { 603 rcu_read_unlock(); 604 return NULL; 605 } 606 sndbuf_size = nc->sndbuf_size; 607 rcvbuf_size = nc->rcvbuf_size; 608 connect_int = nc->connect_int; 609 rcu_read_unlock(); 610 611 my_addr_len = min_t(int, connection->my_addr_len, sizeof(src_in6)); 612 memcpy(&src_in6, &connection->my_addr, my_addr_len); 613 614 if (((struct sockaddr *)&connection->my_addr)->sa_family == AF_INET6) 615 src_in6.sin6_port = 0; 616 else 617 ((struct sockaddr_in *)&src_in6)->sin_port = 0; /* AF_INET & AF_SCI */ 618 619 peer_addr_len = min_t(int, connection->peer_addr_len, sizeof(src_in6)); 620 memcpy(&peer_in6, &connection->peer_addr, peer_addr_len); 621 622 what = "sock_create_kern"; 623 err = sock_create_kern(&init_net, ((struct sockaddr *)&src_in6)->sa_family, 624 SOCK_STREAM, IPPROTO_TCP, &sock); 625 if (err < 0) { 626 sock = NULL; 627 goto out; 628 } 629 630 sock->sk->sk_rcvtimeo = 631 sock->sk->sk_sndtimeo = connect_int * HZ; 632 drbd_setbufsize(sock, sndbuf_size, rcvbuf_size); 633 634 /* explicitly bind to the configured IP as source IP 635 * for the outgoing connections. 636 * This is needed for multihomed hosts and to be 637 * able to use lo: interfaces for drbd. 638 * Make sure to use 0 as port number, so linux selects 639 * a free one dynamically. 640 */ 641 what = "bind before connect"; 642 err = sock->ops->bind(sock, (struct sockaddr *) &src_in6, my_addr_len); 643 if (err < 0) 644 goto out; 645 646 /* connect may fail, peer not yet available. 647 * stay C_WF_CONNECTION, don't go Disconnecting! */ 648 disconnect_on_error = 0; 649 what = "connect"; 650 err = sock->ops->connect(sock, (struct sockaddr *) &peer_in6, peer_addr_len, 0); 651 652 out: 653 if (err < 0) { 654 if (sock) { 655 sock_release(sock); 656 sock = NULL; 657 } 658 switch (-err) { 659 /* timeout, busy, signal pending */ 660 case ETIMEDOUT: case EAGAIN: case EINPROGRESS: 661 case EINTR: case ERESTARTSYS: 662 /* peer not (yet) available, network problem */ 663 case ECONNREFUSED: case ENETUNREACH: 664 case EHOSTDOWN: case EHOSTUNREACH: 665 disconnect_on_error = 0; 666 break; 667 default: 668 drbd_err(connection, "%s failed, err = %d\n", what, err); 669 } 670 if (disconnect_on_error) 671 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 672 } 673 674 return sock; 675 } 676 677 struct accept_wait_data { 678 struct drbd_connection *connection; 679 struct socket *s_listen; 680 struct completion door_bell; 681 void (*original_sk_state_change)(struct sock *sk); 682 683 }; 684 685 static void drbd_incoming_connection(struct sock *sk) 686 { 687 struct accept_wait_data *ad = sk->sk_user_data; 688 void (*state_change)(struct sock *sk); 689 690 state_change = ad->original_sk_state_change; 691 if (sk->sk_state == TCP_ESTABLISHED) 692 complete(&ad->door_bell); 693 state_change(sk); 694 } 695 696 static int prepare_listen_socket(struct drbd_connection *connection, struct accept_wait_data *ad) 697 { 698 int err, sndbuf_size, rcvbuf_size, my_addr_len; 699 struct sockaddr_in6 my_addr; 700 struct socket *s_listen; 701 struct net_conf *nc; 702 const char *what; 703 704 rcu_read_lock(); 705 nc = rcu_dereference(connection->net_conf); 706 if (!nc) { 707 rcu_read_unlock(); 708 return -EIO; 709 } 710 sndbuf_size = nc->sndbuf_size; 711 rcvbuf_size = nc->rcvbuf_size; 712 rcu_read_unlock(); 713 714 my_addr_len = min_t(int, connection->my_addr_len, sizeof(struct sockaddr_in6)); 715 memcpy(&my_addr, &connection->my_addr, my_addr_len); 716 717 what = "sock_create_kern"; 718 err = sock_create_kern(&init_net, ((struct sockaddr *)&my_addr)->sa_family, 719 SOCK_STREAM, IPPROTO_TCP, &s_listen); 720 if (err) { 721 s_listen = NULL; 722 goto out; 723 } 724 725 s_listen->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */ 726 drbd_setbufsize(s_listen, sndbuf_size, rcvbuf_size); 727 728 what = "bind before listen"; 729 err = s_listen->ops->bind(s_listen, (struct sockaddr *)&my_addr, my_addr_len); 730 if (err < 0) 731 goto out; 732 733 ad->s_listen = s_listen; 734 write_lock_bh(&s_listen->sk->sk_callback_lock); 735 ad->original_sk_state_change = s_listen->sk->sk_state_change; 736 s_listen->sk->sk_state_change = drbd_incoming_connection; 737 s_listen->sk->sk_user_data = ad; 738 write_unlock_bh(&s_listen->sk->sk_callback_lock); 739 740 what = "listen"; 741 err = s_listen->ops->listen(s_listen, 5); 742 if (err < 0) 743 goto out; 744 745 return 0; 746 out: 747 if (s_listen) 748 sock_release(s_listen); 749 if (err < 0) { 750 if (err != -EAGAIN && err != -EINTR && err != -ERESTARTSYS) { 751 drbd_err(connection, "%s failed, err = %d\n", what, err); 752 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 753 } 754 } 755 756 return -EIO; 757 } 758 759 static void unregister_state_change(struct sock *sk, struct accept_wait_data *ad) 760 { 761 write_lock_bh(&sk->sk_callback_lock); 762 sk->sk_state_change = ad->original_sk_state_change; 763 sk->sk_user_data = NULL; 764 write_unlock_bh(&sk->sk_callback_lock); 765 } 766 767 static struct socket *drbd_wait_for_connect(struct drbd_connection *connection, struct accept_wait_data *ad) 768 { 769 int timeo, connect_int, err = 0; 770 struct socket *s_estab = NULL; 771 struct net_conf *nc; 772 773 rcu_read_lock(); 774 nc = rcu_dereference(connection->net_conf); 775 if (!nc) { 776 rcu_read_unlock(); 777 return NULL; 778 } 779 connect_int = nc->connect_int; 780 rcu_read_unlock(); 781 782 timeo = connect_int * HZ; 783 /* 28.5% random jitter */ 784 timeo += prandom_u32_max(2) ? timeo / 7 : -timeo / 7; 785 786 err = wait_for_completion_interruptible_timeout(&ad->door_bell, timeo); 787 if (err <= 0) 788 return NULL; 789 790 err = kernel_accept(ad->s_listen, &s_estab, 0); 791 if (err < 0) { 792 if (err != -EAGAIN && err != -EINTR && err != -ERESTARTSYS) { 793 drbd_err(connection, "accept failed, err = %d\n", err); 794 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 795 } 796 } 797 798 if (s_estab) 799 unregister_state_change(s_estab->sk, ad); 800 801 return s_estab; 802 } 803 804 static int decode_header(struct drbd_connection *, void *, struct packet_info *); 805 806 static int send_first_packet(struct drbd_connection *connection, struct drbd_socket *sock, 807 enum drbd_packet cmd) 808 { 809 if (!conn_prepare_command(connection, sock)) 810 return -EIO; 811 return conn_send_command(connection, sock, cmd, 0, NULL, 0); 812 } 813 814 static int receive_first_packet(struct drbd_connection *connection, struct socket *sock) 815 { 816 unsigned int header_size = drbd_header_size(connection); 817 struct packet_info pi; 818 struct net_conf *nc; 819 int err; 820 821 rcu_read_lock(); 822 nc = rcu_dereference(connection->net_conf); 823 if (!nc) { 824 rcu_read_unlock(); 825 return -EIO; 826 } 827 sock->sk->sk_rcvtimeo = nc->ping_timeo * 4 * HZ / 10; 828 rcu_read_unlock(); 829 830 err = drbd_recv_short(sock, connection->data.rbuf, header_size, 0); 831 if (err != header_size) { 832 if (err >= 0) 833 err = -EIO; 834 return err; 835 } 836 err = decode_header(connection, connection->data.rbuf, &pi); 837 if (err) 838 return err; 839 return pi.cmd; 840 } 841 842 /** 843 * drbd_socket_okay() - Free the socket if its connection is not okay 844 * @sock: pointer to the pointer to the socket. 845 */ 846 static bool drbd_socket_okay(struct socket **sock) 847 { 848 int rr; 849 char tb[4]; 850 851 if (!*sock) 852 return false; 853 854 rr = drbd_recv_short(*sock, tb, 4, MSG_DONTWAIT | MSG_PEEK); 855 856 if (rr > 0 || rr == -EAGAIN) { 857 return true; 858 } else { 859 sock_release(*sock); 860 *sock = NULL; 861 return false; 862 } 863 } 864 865 static bool connection_established(struct drbd_connection *connection, 866 struct socket **sock1, 867 struct socket **sock2) 868 { 869 struct net_conf *nc; 870 int timeout; 871 bool ok; 872 873 if (!*sock1 || !*sock2) 874 return false; 875 876 rcu_read_lock(); 877 nc = rcu_dereference(connection->net_conf); 878 timeout = (nc->sock_check_timeo ?: nc->ping_timeo) * HZ / 10; 879 rcu_read_unlock(); 880 schedule_timeout_interruptible(timeout); 881 882 ok = drbd_socket_okay(sock1); 883 ok = drbd_socket_okay(sock2) && ok; 884 885 return ok; 886 } 887 888 /* Gets called if a connection is established, or if a new minor gets created 889 in a connection */ 890 int drbd_connected(struct drbd_peer_device *peer_device) 891 { 892 struct drbd_device *device = peer_device->device; 893 int err; 894 895 atomic_set(&device->packet_seq, 0); 896 device->peer_seq = 0; 897 898 device->state_mutex = peer_device->connection->agreed_pro_version < 100 ? 899 &peer_device->connection->cstate_mutex : 900 &device->own_state_mutex; 901 902 err = drbd_send_sync_param(peer_device); 903 if (!err) 904 err = drbd_send_sizes(peer_device, 0, 0); 905 if (!err) 906 err = drbd_send_uuids(peer_device); 907 if (!err) 908 err = drbd_send_current_state(peer_device); 909 clear_bit(USE_DEGR_WFC_T, &device->flags); 910 clear_bit(RESIZE_PENDING, &device->flags); 911 atomic_set(&device->ap_in_flight, 0); 912 mod_timer(&device->request_timer, jiffies + HZ); /* just start it here. */ 913 return err; 914 } 915 916 /* 917 * return values: 918 * 1 yes, we have a valid connection 919 * 0 oops, did not work out, please try again 920 * -1 peer talks different language, 921 * no point in trying again, please go standalone. 922 * -2 We do not have a network config... 923 */ 924 static int conn_connect(struct drbd_connection *connection) 925 { 926 struct drbd_socket sock, msock; 927 struct drbd_peer_device *peer_device; 928 struct net_conf *nc; 929 int vnr, timeout, h; 930 bool discard_my_data, ok; 931 enum drbd_state_rv rv; 932 struct accept_wait_data ad = { 933 .connection = connection, 934 .door_bell = COMPLETION_INITIALIZER_ONSTACK(ad.door_bell), 935 }; 936 937 clear_bit(DISCONNECT_SENT, &connection->flags); 938 if (conn_request_state(connection, NS(conn, C_WF_CONNECTION), CS_VERBOSE) < SS_SUCCESS) 939 return -2; 940 941 mutex_init(&sock.mutex); 942 sock.sbuf = connection->data.sbuf; 943 sock.rbuf = connection->data.rbuf; 944 sock.socket = NULL; 945 mutex_init(&msock.mutex); 946 msock.sbuf = connection->meta.sbuf; 947 msock.rbuf = connection->meta.rbuf; 948 msock.socket = NULL; 949 950 /* Assume that the peer only understands protocol 80 until we know better. */ 951 connection->agreed_pro_version = 80; 952 953 if (prepare_listen_socket(connection, &ad)) 954 return 0; 955 956 do { 957 struct socket *s; 958 959 s = drbd_try_connect(connection); 960 if (s) { 961 if (!sock.socket) { 962 sock.socket = s; 963 send_first_packet(connection, &sock, P_INITIAL_DATA); 964 } else if (!msock.socket) { 965 clear_bit(RESOLVE_CONFLICTS, &connection->flags); 966 msock.socket = s; 967 send_first_packet(connection, &msock, P_INITIAL_META); 968 } else { 969 drbd_err(connection, "Logic error in conn_connect()\n"); 970 goto out_release_sockets; 971 } 972 } 973 974 if (connection_established(connection, &sock.socket, &msock.socket)) 975 break; 976 977 retry: 978 s = drbd_wait_for_connect(connection, &ad); 979 if (s) { 980 int fp = receive_first_packet(connection, s); 981 drbd_socket_okay(&sock.socket); 982 drbd_socket_okay(&msock.socket); 983 switch (fp) { 984 case P_INITIAL_DATA: 985 if (sock.socket) { 986 drbd_warn(connection, "initial packet S crossed\n"); 987 sock_release(sock.socket); 988 sock.socket = s; 989 goto randomize; 990 } 991 sock.socket = s; 992 break; 993 case P_INITIAL_META: 994 set_bit(RESOLVE_CONFLICTS, &connection->flags); 995 if (msock.socket) { 996 drbd_warn(connection, "initial packet M crossed\n"); 997 sock_release(msock.socket); 998 msock.socket = s; 999 goto randomize; 1000 } 1001 msock.socket = s; 1002 break; 1003 default: 1004 drbd_warn(connection, "Error receiving initial packet\n"); 1005 sock_release(s); 1006 randomize: 1007 if (prandom_u32_max(2)) 1008 goto retry; 1009 } 1010 } 1011 1012 if (connection->cstate <= C_DISCONNECTING) 1013 goto out_release_sockets; 1014 if (signal_pending(current)) { 1015 flush_signals(current); 1016 smp_rmb(); 1017 if (get_t_state(&connection->receiver) == EXITING) 1018 goto out_release_sockets; 1019 } 1020 1021 ok = connection_established(connection, &sock.socket, &msock.socket); 1022 } while (!ok); 1023 1024 if (ad.s_listen) 1025 sock_release(ad.s_listen); 1026 1027 sock.socket->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */ 1028 msock.socket->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */ 1029 1030 sock.socket->sk->sk_allocation = GFP_NOIO; 1031 msock.socket->sk->sk_allocation = GFP_NOIO; 1032 1033 sock.socket->sk->sk_priority = TC_PRIO_INTERACTIVE_BULK; 1034 msock.socket->sk->sk_priority = TC_PRIO_INTERACTIVE; 1035 1036 /* NOT YET ... 1037 * sock.socket->sk->sk_sndtimeo = connection->net_conf->timeout*HZ/10; 1038 * sock.socket->sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 1039 * first set it to the P_CONNECTION_FEATURES timeout, 1040 * which we set to 4x the configured ping_timeout. */ 1041 rcu_read_lock(); 1042 nc = rcu_dereference(connection->net_conf); 1043 1044 sock.socket->sk->sk_sndtimeo = 1045 sock.socket->sk->sk_rcvtimeo = nc->ping_timeo*4*HZ/10; 1046 1047 msock.socket->sk->sk_rcvtimeo = nc->ping_int*HZ; 1048 timeout = nc->timeout * HZ / 10; 1049 discard_my_data = nc->discard_my_data; 1050 rcu_read_unlock(); 1051 1052 msock.socket->sk->sk_sndtimeo = timeout; 1053 1054 /* we don't want delays. 1055 * we use TCP_CORK where appropriate, though */ 1056 tcp_sock_set_nodelay(sock.socket->sk); 1057 tcp_sock_set_nodelay(msock.socket->sk); 1058 1059 connection->data.socket = sock.socket; 1060 connection->meta.socket = msock.socket; 1061 connection->last_received = jiffies; 1062 1063 h = drbd_do_features(connection); 1064 if (h <= 0) 1065 return h; 1066 1067 if (connection->cram_hmac_tfm) { 1068 /* drbd_request_state(device, NS(conn, WFAuth)); */ 1069 switch (drbd_do_auth(connection)) { 1070 case -1: 1071 drbd_err(connection, "Authentication of peer failed\n"); 1072 return -1; 1073 case 0: 1074 drbd_err(connection, "Authentication of peer failed, trying again.\n"); 1075 return 0; 1076 } 1077 } 1078 1079 connection->data.socket->sk->sk_sndtimeo = timeout; 1080 connection->data.socket->sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 1081 1082 if (drbd_send_protocol(connection) == -EOPNOTSUPP) 1083 return -1; 1084 1085 /* Prevent a race between resync-handshake and 1086 * being promoted to Primary. 1087 * 1088 * Grab and release the state mutex, so we know that any current 1089 * drbd_set_role() is finished, and any incoming drbd_set_role 1090 * will see the STATE_SENT flag, and wait for it to be cleared. 1091 */ 1092 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) 1093 mutex_lock(peer_device->device->state_mutex); 1094 1095 /* avoid a race with conn_request_state( C_DISCONNECTING ) */ 1096 spin_lock_irq(&connection->resource->req_lock); 1097 set_bit(STATE_SENT, &connection->flags); 1098 spin_unlock_irq(&connection->resource->req_lock); 1099 1100 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) 1101 mutex_unlock(peer_device->device->state_mutex); 1102 1103 rcu_read_lock(); 1104 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 1105 struct drbd_device *device = peer_device->device; 1106 kref_get(&device->kref); 1107 rcu_read_unlock(); 1108 1109 if (discard_my_data) 1110 set_bit(DISCARD_MY_DATA, &device->flags); 1111 else 1112 clear_bit(DISCARD_MY_DATA, &device->flags); 1113 1114 drbd_connected(peer_device); 1115 kref_put(&device->kref, drbd_destroy_device); 1116 rcu_read_lock(); 1117 } 1118 rcu_read_unlock(); 1119 1120 rv = conn_request_state(connection, NS(conn, C_WF_REPORT_PARAMS), CS_VERBOSE); 1121 if (rv < SS_SUCCESS || connection->cstate != C_WF_REPORT_PARAMS) { 1122 clear_bit(STATE_SENT, &connection->flags); 1123 return 0; 1124 } 1125 1126 drbd_thread_start(&connection->ack_receiver); 1127 /* opencoded create_singlethread_workqueue(), 1128 * to be able to use format string arguments */ 1129 connection->ack_sender = 1130 alloc_ordered_workqueue("drbd_as_%s", WQ_MEM_RECLAIM, connection->resource->name); 1131 if (!connection->ack_sender) { 1132 drbd_err(connection, "Failed to create workqueue ack_sender\n"); 1133 return 0; 1134 } 1135 1136 mutex_lock(&connection->resource->conf_update); 1137 /* The discard_my_data flag is a single-shot modifier to the next 1138 * connection attempt, the handshake of which is now well underway. 1139 * No need for rcu style copying of the whole struct 1140 * just to clear a single value. */ 1141 connection->net_conf->discard_my_data = 0; 1142 mutex_unlock(&connection->resource->conf_update); 1143 1144 return h; 1145 1146 out_release_sockets: 1147 if (ad.s_listen) 1148 sock_release(ad.s_listen); 1149 if (sock.socket) 1150 sock_release(sock.socket); 1151 if (msock.socket) 1152 sock_release(msock.socket); 1153 return -1; 1154 } 1155 1156 static int decode_header(struct drbd_connection *connection, void *header, struct packet_info *pi) 1157 { 1158 unsigned int header_size = drbd_header_size(connection); 1159 1160 if (header_size == sizeof(struct p_header100) && 1161 *(__be32 *)header == cpu_to_be32(DRBD_MAGIC_100)) { 1162 struct p_header100 *h = header; 1163 if (h->pad != 0) { 1164 drbd_err(connection, "Header padding is not zero\n"); 1165 return -EINVAL; 1166 } 1167 pi->vnr = be16_to_cpu(h->volume); 1168 pi->cmd = be16_to_cpu(h->command); 1169 pi->size = be32_to_cpu(h->length); 1170 } else if (header_size == sizeof(struct p_header95) && 1171 *(__be16 *)header == cpu_to_be16(DRBD_MAGIC_BIG)) { 1172 struct p_header95 *h = header; 1173 pi->cmd = be16_to_cpu(h->command); 1174 pi->size = be32_to_cpu(h->length); 1175 pi->vnr = 0; 1176 } else if (header_size == sizeof(struct p_header80) && 1177 *(__be32 *)header == cpu_to_be32(DRBD_MAGIC)) { 1178 struct p_header80 *h = header; 1179 pi->cmd = be16_to_cpu(h->command); 1180 pi->size = be16_to_cpu(h->length); 1181 pi->vnr = 0; 1182 } else { 1183 drbd_err(connection, "Wrong magic value 0x%08x in protocol version %d\n", 1184 be32_to_cpu(*(__be32 *)header), 1185 connection->agreed_pro_version); 1186 return -EINVAL; 1187 } 1188 pi->data = header + header_size; 1189 return 0; 1190 } 1191 1192 static void drbd_unplug_all_devices(struct drbd_connection *connection) 1193 { 1194 if (current->plug == &connection->receiver_plug) { 1195 blk_finish_plug(&connection->receiver_plug); 1196 blk_start_plug(&connection->receiver_plug); 1197 } /* else: maybe just schedule() ?? */ 1198 } 1199 1200 static int drbd_recv_header(struct drbd_connection *connection, struct packet_info *pi) 1201 { 1202 void *buffer = connection->data.rbuf; 1203 int err; 1204 1205 err = drbd_recv_all_warn(connection, buffer, drbd_header_size(connection)); 1206 if (err) 1207 return err; 1208 1209 err = decode_header(connection, buffer, pi); 1210 connection->last_received = jiffies; 1211 1212 return err; 1213 } 1214 1215 static int drbd_recv_header_maybe_unplug(struct drbd_connection *connection, struct packet_info *pi) 1216 { 1217 void *buffer = connection->data.rbuf; 1218 unsigned int size = drbd_header_size(connection); 1219 int err; 1220 1221 err = drbd_recv_short(connection->data.socket, buffer, size, MSG_NOSIGNAL|MSG_DONTWAIT); 1222 if (err != size) { 1223 /* If we have nothing in the receive buffer now, to reduce 1224 * application latency, try to drain the backend queues as 1225 * quickly as possible, and let remote TCP know what we have 1226 * received so far. */ 1227 if (err == -EAGAIN) { 1228 tcp_sock_set_quickack(connection->data.socket->sk, 2); 1229 drbd_unplug_all_devices(connection); 1230 } 1231 if (err > 0) { 1232 buffer += err; 1233 size -= err; 1234 } 1235 err = drbd_recv_all_warn(connection, buffer, size); 1236 if (err) 1237 return err; 1238 } 1239 1240 err = decode_header(connection, connection->data.rbuf, pi); 1241 connection->last_received = jiffies; 1242 1243 return err; 1244 } 1245 /* This is blkdev_issue_flush, but asynchronous. 1246 * We want to submit to all component volumes in parallel, 1247 * then wait for all completions. 1248 */ 1249 struct issue_flush_context { 1250 atomic_t pending; 1251 int error; 1252 struct completion done; 1253 }; 1254 struct one_flush_context { 1255 struct drbd_device *device; 1256 struct issue_flush_context *ctx; 1257 }; 1258 1259 static void one_flush_endio(struct bio *bio) 1260 { 1261 struct one_flush_context *octx = bio->bi_private; 1262 struct drbd_device *device = octx->device; 1263 struct issue_flush_context *ctx = octx->ctx; 1264 1265 if (bio->bi_status) { 1266 ctx->error = blk_status_to_errno(bio->bi_status); 1267 drbd_info(device, "local disk FLUSH FAILED with status %d\n", bio->bi_status); 1268 } 1269 kfree(octx); 1270 bio_put(bio); 1271 1272 clear_bit(FLUSH_PENDING, &device->flags); 1273 put_ldev(device); 1274 kref_put(&device->kref, drbd_destroy_device); 1275 1276 if (atomic_dec_and_test(&ctx->pending)) 1277 complete(&ctx->done); 1278 } 1279 1280 static void submit_one_flush(struct drbd_device *device, struct issue_flush_context *ctx) 1281 { 1282 struct bio *bio = bio_alloc(device->ldev->backing_bdev, 0, 1283 REQ_OP_FLUSH | REQ_PREFLUSH, GFP_NOIO); 1284 struct one_flush_context *octx = kmalloc(sizeof(*octx), GFP_NOIO); 1285 1286 if (!octx) { 1287 drbd_warn(device, "Could not allocate a octx, CANNOT ISSUE FLUSH\n"); 1288 /* FIXME: what else can I do now? disconnecting or detaching 1289 * really does not help to improve the state of the world, either. 1290 */ 1291 bio_put(bio); 1292 1293 ctx->error = -ENOMEM; 1294 put_ldev(device); 1295 kref_put(&device->kref, drbd_destroy_device); 1296 return; 1297 } 1298 1299 octx->device = device; 1300 octx->ctx = ctx; 1301 bio->bi_private = octx; 1302 bio->bi_end_io = one_flush_endio; 1303 1304 device->flush_jif = jiffies; 1305 set_bit(FLUSH_PENDING, &device->flags); 1306 atomic_inc(&ctx->pending); 1307 submit_bio(bio); 1308 } 1309 1310 static void drbd_flush(struct drbd_connection *connection) 1311 { 1312 if (connection->resource->write_ordering >= WO_BDEV_FLUSH) { 1313 struct drbd_peer_device *peer_device; 1314 struct issue_flush_context ctx; 1315 int vnr; 1316 1317 atomic_set(&ctx.pending, 1); 1318 ctx.error = 0; 1319 init_completion(&ctx.done); 1320 1321 rcu_read_lock(); 1322 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 1323 struct drbd_device *device = peer_device->device; 1324 1325 if (!get_ldev(device)) 1326 continue; 1327 kref_get(&device->kref); 1328 rcu_read_unlock(); 1329 1330 submit_one_flush(device, &ctx); 1331 1332 rcu_read_lock(); 1333 } 1334 rcu_read_unlock(); 1335 1336 /* Do we want to add a timeout, 1337 * if disk-timeout is set? */ 1338 if (!atomic_dec_and_test(&ctx.pending)) 1339 wait_for_completion(&ctx.done); 1340 1341 if (ctx.error) { 1342 /* would rather check on EOPNOTSUPP, but that is not reliable. 1343 * don't try again for ANY return value != 0 1344 * if (rv == -EOPNOTSUPP) */ 1345 /* Any error is already reported by bio_endio callback. */ 1346 drbd_bump_write_ordering(connection->resource, NULL, WO_DRAIN_IO); 1347 } 1348 } 1349 } 1350 1351 /** 1352 * drbd_may_finish_epoch() - Applies an epoch_event to the epoch's state, eventually finishes it. 1353 * @connection: DRBD connection. 1354 * @epoch: Epoch object. 1355 * @ev: Epoch event. 1356 */ 1357 static enum finish_epoch drbd_may_finish_epoch(struct drbd_connection *connection, 1358 struct drbd_epoch *epoch, 1359 enum epoch_event ev) 1360 { 1361 int epoch_size; 1362 struct drbd_epoch *next_epoch; 1363 enum finish_epoch rv = FE_STILL_LIVE; 1364 1365 spin_lock(&connection->epoch_lock); 1366 do { 1367 next_epoch = NULL; 1368 1369 epoch_size = atomic_read(&epoch->epoch_size); 1370 1371 switch (ev & ~EV_CLEANUP) { 1372 case EV_PUT: 1373 atomic_dec(&epoch->active); 1374 break; 1375 case EV_GOT_BARRIER_NR: 1376 set_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags); 1377 break; 1378 case EV_BECAME_LAST: 1379 /* nothing to do*/ 1380 break; 1381 } 1382 1383 if (epoch_size != 0 && 1384 atomic_read(&epoch->active) == 0 && 1385 (test_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags) || ev & EV_CLEANUP)) { 1386 if (!(ev & EV_CLEANUP)) { 1387 spin_unlock(&connection->epoch_lock); 1388 drbd_send_b_ack(epoch->connection, epoch->barrier_nr, epoch_size); 1389 spin_lock(&connection->epoch_lock); 1390 } 1391 #if 0 1392 /* FIXME: dec unacked on connection, once we have 1393 * something to count pending connection packets in. */ 1394 if (test_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags)) 1395 dec_unacked(epoch->connection); 1396 #endif 1397 1398 if (connection->current_epoch != epoch) { 1399 next_epoch = list_entry(epoch->list.next, struct drbd_epoch, list); 1400 list_del(&epoch->list); 1401 ev = EV_BECAME_LAST | (ev & EV_CLEANUP); 1402 connection->epochs--; 1403 kfree(epoch); 1404 1405 if (rv == FE_STILL_LIVE) 1406 rv = FE_DESTROYED; 1407 } else { 1408 epoch->flags = 0; 1409 atomic_set(&epoch->epoch_size, 0); 1410 /* atomic_set(&epoch->active, 0); is already zero */ 1411 if (rv == FE_STILL_LIVE) 1412 rv = FE_RECYCLED; 1413 } 1414 } 1415 1416 if (!next_epoch) 1417 break; 1418 1419 epoch = next_epoch; 1420 } while (1); 1421 1422 spin_unlock(&connection->epoch_lock); 1423 1424 return rv; 1425 } 1426 1427 static enum write_ordering_e 1428 max_allowed_wo(struct drbd_backing_dev *bdev, enum write_ordering_e wo) 1429 { 1430 struct disk_conf *dc; 1431 1432 dc = rcu_dereference(bdev->disk_conf); 1433 1434 if (wo == WO_BDEV_FLUSH && !dc->disk_flushes) 1435 wo = WO_DRAIN_IO; 1436 if (wo == WO_DRAIN_IO && !dc->disk_drain) 1437 wo = WO_NONE; 1438 1439 return wo; 1440 } 1441 1442 /* 1443 * drbd_bump_write_ordering() - Fall back to an other write ordering method 1444 * @wo: Write ordering method to try. 1445 */ 1446 void drbd_bump_write_ordering(struct drbd_resource *resource, struct drbd_backing_dev *bdev, 1447 enum write_ordering_e wo) 1448 { 1449 struct drbd_device *device; 1450 enum write_ordering_e pwo; 1451 int vnr; 1452 static char *write_ordering_str[] = { 1453 [WO_NONE] = "none", 1454 [WO_DRAIN_IO] = "drain", 1455 [WO_BDEV_FLUSH] = "flush", 1456 }; 1457 1458 pwo = resource->write_ordering; 1459 if (wo != WO_BDEV_FLUSH) 1460 wo = min(pwo, wo); 1461 rcu_read_lock(); 1462 idr_for_each_entry(&resource->devices, device, vnr) { 1463 if (get_ldev(device)) { 1464 wo = max_allowed_wo(device->ldev, wo); 1465 if (device->ldev == bdev) 1466 bdev = NULL; 1467 put_ldev(device); 1468 } 1469 } 1470 1471 if (bdev) 1472 wo = max_allowed_wo(bdev, wo); 1473 1474 rcu_read_unlock(); 1475 1476 resource->write_ordering = wo; 1477 if (pwo != resource->write_ordering || wo == WO_BDEV_FLUSH) 1478 drbd_info(resource, "Method to ensure write ordering: %s\n", write_ordering_str[resource->write_ordering]); 1479 } 1480 1481 /* 1482 * Mapping "discard" to ZEROOUT with UNMAP does not work for us: 1483 * Drivers have to "announce" q->limits.max_write_zeroes_sectors, or it 1484 * will directly go to fallback mode, submitting normal writes, and 1485 * never even try to UNMAP. 1486 * 1487 * And dm-thin does not do this (yet), mostly because in general it has 1488 * to assume that "skip_block_zeroing" is set. See also: 1489 * https://www.mail-archive.com/dm-devel%40redhat.com/msg07965.html 1490 * https://www.redhat.com/archives/dm-devel/2018-January/msg00271.html 1491 * 1492 * We *may* ignore the discard-zeroes-data setting, if so configured. 1493 * 1494 * Assumption is that this "discard_zeroes_data=0" is only because the backend 1495 * may ignore partial unaligned discards. 1496 * 1497 * LVM/DM thin as of at least 1498 * LVM version: 2.02.115(2)-RHEL7 (2015-01-28) 1499 * Library version: 1.02.93-RHEL7 (2015-01-28) 1500 * Driver version: 4.29.0 1501 * still behaves this way. 1502 * 1503 * For unaligned (wrt. alignment and granularity) or too small discards, 1504 * we zero-out the initial (and/or) trailing unaligned partial chunks, 1505 * but discard all the aligned full chunks. 1506 * 1507 * At least for LVM/DM thin, with skip_block_zeroing=false, 1508 * the result is effectively "discard_zeroes_data=1". 1509 */ 1510 /* flags: EE_TRIM|EE_ZEROOUT */ 1511 int drbd_issue_discard_or_zero_out(struct drbd_device *device, sector_t start, unsigned int nr_sectors, int flags) 1512 { 1513 struct block_device *bdev = device->ldev->backing_bdev; 1514 sector_t tmp, nr; 1515 unsigned int max_discard_sectors, granularity; 1516 int alignment; 1517 int err = 0; 1518 1519 if ((flags & EE_ZEROOUT) || !(flags & EE_TRIM)) 1520 goto zero_out; 1521 1522 /* Zero-sector (unknown) and one-sector granularities are the same. */ 1523 granularity = max(bdev_discard_granularity(bdev) >> 9, 1U); 1524 alignment = (bdev_discard_alignment(bdev) >> 9) % granularity; 1525 1526 max_discard_sectors = min(bdev_max_discard_sectors(bdev), (1U << 22)); 1527 max_discard_sectors -= max_discard_sectors % granularity; 1528 if (unlikely(!max_discard_sectors)) 1529 goto zero_out; 1530 1531 if (nr_sectors < granularity) 1532 goto zero_out; 1533 1534 tmp = start; 1535 if (sector_div(tmp, granularity) != alignment) { 1536 if (nr_sectors < 2*granularity) 1537 goto zero_out; 1538 /* start + gran - (start + gran - align) % gran */ 1539 tmp = start + granularity - alignment; 1540 tmp = start + granularity - sector_div(tmp, granularity); 1541 1542 nr = tmp - start; 1543 /* don't flag BLKDEV_ZERO_NOUNMAP, we don't know how many 1544 * layers are below us, some may have smaller granularity */ 1545 err |= blkdev_issue_zeroout(bdev, start, nr, GFP_NOIO, 0); 1546 nr_sectors -= nr; 1547 start = tmp; 1548 } 1549 while (nr_sectors >= max_discard_sectors) { 1550 err |= blkdev_issue_discard(bdev, start, max_discard_sectors, 1551 GFP_NOIO); 1552 nr_sectors -= max_discard_sectors; 1553 start += max_discard_sectors; 1554 } 1555 if (nr_sectors) { 1556 /* max_discard_sectors is unsigned int (and a multiple of 1557 * granularity, we made sure of that above already); 1558 * nr is < max_discard_sectors; 1559 * I don't need sector_div here, even though nr is sector_t */ 1560 nr = nr_sectors; 1561 nr -= (unsigned int)nr % granularity; 1562 if (nr) { 1563 err |= blkdev_issue_discard(bdev, start, nr, GFP_NOIO); 1564 nr_sectors -= nr; 1565 start += nr; 1566 } 1567 } 1568 zero_out: 1569 if (nr_sectors) { 1570 err |= blkdev_issue_zeroout(bdev, start, nr_sectors, GFP_NOIO, 1571 (flags & EE_TRIM) ? 0 : BLKDEV_ZERO_NOUNMAP); 1572 } 1573 return err != 0; 1574 } 1575 1576 static bool can_do_reliable_discards(struct drbd_device *device) 1577 { 1578 struct disk_conf *dc; 1579 bool can_do; 1580 1581 if (!bdev_max_discard_sectors(device->ldev->backing_bdev)) 1582 return false; 1583 1584 rcu_read_lock(); 1585 dc = rcu_dereference(device->ldev->disk_conf); 1586 can_do = dc->discard_zeroes_if_aligned; 1587 rcu_read_unlock(); 1588 return can_do; 1589 } 1590 1591 static void drbd_issue_peer_discard_or_zero_out(struct drbd_device *device, struct drbd_peer_request *peer_req) 1592 { 1593 /* If the backend cannot discard, or does not guarantee 1594 * read-back zeroes in discarded ranges, we fall back to 1595 * zero-out. Unless configuration specifically requested 1596 * otherwise. */ 1597 if (!can_do_reliable_discards(device)) 1598 peer_req->flags |= EE_ZEROOUT; 1599 1600 if (drbd_issue_discard_or_zero_out(device, peer_req->i.sector, 1601 peer_req->i.size >> 9, peer_req->flags & (EE_ZEROOUT|EE_TRIM))) 1602 peer_req->flags |= EE_WAS_ERROR; 1603 drbd_endio_write_sec_final(peer_req); 1604 } 1605 1606 /** 1607 * drbd_submit_peer_request() 1608 * @device: DRBD device. 1609 * @peer_req: peer request 1610 * 1611 * May spread the pages to multiple bios, 1612 * depending on bio_add_page restrictions. 1613 * 1614 * Returns 0 if all bios have been submitted, 1615 * -ENOMEM if we could not allocate enough bios, 1616 * -ENOSPC (any better suggestion?) if we have not been able to bio_add_page a 1617 * single page to an empty bio (which should never happen and likely indicates 1618 * that the lower level IO stack is in some way broken). This has been observed 1619 * on certain Xen deployments. 1620 */ 1621 /* TODO allocate from our own bio_set. */ 1622 int drbd_submit_peer_request(struct drbd_device *device, 1623 struct drbd_peer_request *peer_req, 1624 const blk_opf_t opf, const int fault_type) 1625 { 1626 struct bio *bios = NULL; 1627 struct bio *bio; 1628 struct page *page = peer_req->pages; 1629 sector_t sector = peer_req->i.sector; 1630 unsigned int data_size = peer_req->i.size; 1631 unsigned int n_bios = 0; 1632 unsigned int nr_pages = PFN_UP(data_size); 1633 1634 /* TRIM/DISCARD: for now, always use the helper function 1635 * blkdev_issue_zeroout(..., discard=true). 1636 * It's synchronous, but it does the right thing wrt. bio splitting. 1637 * Correctness first, performance later. Next step is to code an 1638 * asynchronous variant of the same. 1639 */ 1640 if (peer_req->flags & (EE_TRIM | EE_ZEROOUT)) { 1641 /* wait for all pending IO completions, before we start 1642 * zeroing things out. */ 1643 conn_wait_active_ee_empty(peer_req->peer_device->connection); 1644 /* add it to the active list now, 1645 * so we can find it to present it in debugfs */ 1646 peer_req->submit_jif = jiffies; 1647 peer_req->flags |= EE_SUBMITTED; 1648 1649 /* If this was a resync request from receive_rs_deallocated(), 1650 * it is already on the sync_ee list */ 1651 if (list_empty(&peer_req->w.list)) { 1652 spin_lock_irq(&device->resource->req_lock); 1653 list_add_tail(&peer_req->w.list, &device->active_ee); 1654 spin_unlock_irq(&device->resource->req_lock); 1655 } 1656 1657 drbd_issue_peer_discard_or_zero_out(device, peer_req); 1658 return 0; 1659 } 1660 1661 /* In most cases, we will only need one bio. But in case the lower 1662 * level restrictions happen to be different at this offset on this 1663 * side than those of the sending peer, we may need to submit the 1664 * request in more than one bio. 1665 * 1666 * Plain bio_alloc is good enough here, this is no DRBD internally 1667 * generated bio, but a bio allocated on behalf of the peer. 1668 */ 1669 next_bio: 1670 bio = bio_alloc(device->ldev->backing_bdev, nr_pages, opf, GFP_NOIO); 1671 /* > peer_req->i.sector, unless this is the first bio */ 1672 bio->bi_iter.bi_sector = sector; 1673 bio->bi_private = peer_req; 1674 bio->bi_end_io = drbd_peer_request_endio; 1675 1676 bio->bi_next = bios; 1677 bios = bio; 1678 ++n_bios; 1679 1680 page_chain_for_each(page) { 1681 unsigned len = min_t(unsigned, data_size, PAGE_SIZE); 1682 if (!bio_add_page(bio, page, len, 0)) 1683 goto next_bio; 1684 data_size -= len; 1685 sector += len >> 9; 1686 --nr_pages; 1687 } 1688 D_ASSERT(device, data_size == 0); 1689 D_ASSERT(device, page == NULL); 1690 1691 atomic_set(&peer_req->pending_bios, n_bios); 1692 /* for debugfs: update timestamp, mark as submitted */ 1693 peer_req->submit_jif = jiffies; 1694 peer_req->flags |= EE_SUBMITTED; 1695 do { 1696 bio = bios; 1697 bios = bios->bi_next; 1698 bio->bi_next = NULL; 1699 1700 drbd_submit_bio_noacct(device, fault_type, bio); 1701 } while (bios); 1702 return 0; 1703 } 1704 1705 static void drbd_remove_epoch_entry_interval(struct drbd_device *device, 1706 struct drbd_peer_request *peer_req) 1707 { 1708 struct drbd_interval *i = &peer_req->i; 1709 1710 drbd_remove_interval(&device->write_requests, i); 1711 drbd_clear_interval(i); 1712 1713 /* Wake up any processes waiting for this peer request to complete. */ 1714 if (i->waiting) 1715 wake_up(&device->misc_wait); 1716 } 1717 1718 static void conn_wait_active_ee_empty(struct drbd_connection *connection) 1719 { 1720 struct drbd_peer_device *peer_device; 1721 int vnr; 1722 1723 rcu_read_lock(); 1724 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 1725 struct drbd_device *device = peer_device->device; 1726 1727 kref_get(&device->kref); 1728 rcu_read_unlock(); 1729 drbd_wait_ee_list_empty(device, &device->active_ee); 1730 kref_put(&device->kref, drbd_destroy_device); 1731 rcu_read_lock(); 1732 } 1733 rcu_read_unlock(); 1734 } 1735 1736 static int receive_Barrier(struct drbd_connection *connection, struct packet_info *pi) 1737 { 1738 int rv; 1739 struct p_barrier *p = pi->data; 1740 struct drbd_epoch *epoch; 1741 1742 /* FIXME these are unacked on connection, 1743 * not a specific (peer)device. 1744 */ 1745 connection->current_epoch->barrier_nr = p->barrier; 1746 connection->current_epoch->connection = connection; 1747 rv = drbd_may_finish_epoch(connection, connection->current_epoch, EV_GOT_BARRIER_NR); 1748 1749 /* P_BARRIER_ACK may imply that the corresponding extent is dropped from 1750 * the activity log, which means it would not be resynced in case the 1751 * R_PRIMARY crashes now. 1752 * Therefore we must send the barrier_ack after the barrier request was 1753 * completed. */ 1754 switch (connection->resource->write_ordering) { 1755 case WO_NONE: 1756 if (rv == FE_RECYCLED) 1757 return 0; 1758 1759 /* receiver context, in the writeout path of the other node. 1760 * avoid potential distributed deadlock */ 1761 epoch = kmalloc(sizeof(struct drbd_epoch), GFP_NOIO); 1762 if (epoch) 1763 break; 1764 else 1765 drbd_warn(connection, "Allocation of an epoch failed, slowing down\n"); 1766 fallthrough; 1767 1768 case WO_BDEV_FLUSH: 1769 case WO_DRAIN_IO: 1770 conn_wait_active_ee_empty(connection); 1771 drbd_flush(connection); 1772 1773 if (atomic_read(&connection->current_epoch->epoch_size)) { 1774 epoch = kmalloc(sizeof(struct drbd_epoch), GFP_NOIO); 1775 if (epoch) 1776 break; 1777 } 1778 1779 return 0; 1780 default: 1781 drbd_err(connection, "Strangeness in connection->write_ordering %d\n", 1782 connection->resource->write_ordering); 1783 return -EIO; 1784 } 1785 1786 epoch->flags = 0; 1787 atomic_set(&epoch->epoch_size, 0); 1788 atomic_set(&epoch->active, 0); 1789 1790 spin_lock(&connection->epoch_lock); 1791 if (atomic_read(&connection->current_epoch->epoch_size)) { 1792 list_add(&epoch->list, &connection->current_epoch->list); 1793 connection->current_epoch = epoch; 1794 connection->epochs++; 1795 } else { 1796 /* The current_epoch got recycled while we allocated this one... */ 1797 kfree(epoch); 1798 } 1799 spin_unlock(&connection->epoch_lock); 1800 1801 return 0; 1802 } 1803 1804 /* quick wrapper in case payload size != request_size (write same) */ 1805 static void drbd_csum_ee_size(struct crypto_shash *h, 1806 struct drbd_peer_request *r, void *d, 1807 unsigned int payload_size) 1808 { 1809 unsigned int tmp = r->i.size; 1810 r->i.size = payload_size; 1811 drbd_csum_ee(h, r, d); 1812 r->i.size = tmp; 1813 } 1814 1815 /* used from receive_RSDataReply (recv_resync_read) 1816 * and from receive_Data. 1817 * data_size: actual payload ("data in") 1818 * for normal writes that is bi_size. 1819 * for discards, that is zero. 1820 * for write same, it is logical_block_size. 1821 * both trim and write same have the bi_size ("data len to be affected") 1822 * as extra argument in the packet header. 1823 */ 1824 static struct drbd_peer_request * 1825 read_in_block(struct drbd_peer_device *peer_device, u64 id, sector_t sector, 1826 struct packet_info *pi) __must_hold(local) 1827 { 1828 struct drbd_device *device = peer_device->device; 1829 const sector_t capacity = get_capacity(device->vdisk); 1830 struct drbd_peer_request *peer_req; 1831 struct page *page; 1832 int digest_size, err; 1833 unsigned int data_size = pi->size, ds; 1834 void *dig_in = peer_device->connection->int_dig_in; 1835 void *dig_vv = peer_device->connection->int_dig_vv; 1836 unsigned long *data; 1837 struct p_trim *trim = (pi->cmd == P_TRIM) ? pi->data : NULL; 1838 struct p_trim *zeroes = (pi->cmd == P_ZEROES) ? pi->data : NULL; 1839 1840 digest_size = 0; 1841 if (!trim && peer_device->connection->peer_integrity_tfm) { 1842 digest_size = crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm); 1843 /* 1844 * FIXME: Receive the incoming digest into the receive buffer 1845 * here, together with its struct p_data? 1846 */ 1847 err = drbd_recv_all_warn(peer_device->connection, dig_in, digest_size); 1848 if (err) 1849 return NULL; 1850 data_size -= digest_size; 1851 } 1852 1853 /* assume request_size == data_size, but special case trim. */ 1854 ds = data_size; 1855 if (trim) { 1856 if (!expect(data_size == 0)) 1857 return NULL; 1858 ds = be32_to_cpu(trim->size); 1859 } else if (zeroes) { 1860 if (!expect(data_size == 0)) 1861 return NULL; 1862 ds = be32_to_cpu(zeroes->size); 1863 } 1864 1865 if (!expect(IS_ALIGNED(ds, 512))) 1866 return NULL; 1867 if (trim || zeroes) { 1868 if (!expect(ds <= (DRBD_MAX_BBIO_SECTORS << 9))) 1869 return NULL; 1870 } else if (!expect(ds <= DRBD_MAX_BIO_SIZE)) 1871 return NULL; 1872 1873 /* even though we trust out peer, 1874 * we sometimes have to double check. */ 1875 if (sector + (ds>>9) > capacity) { 1876 drbd_err(device, "request from peer beyond end of local disk: " 1877 "capacity: %llus < sector: %llus + size: %u\n", 1878 (unsigned long long)capacity, 1879 (unsigned long long)sector, ds); 1880 return NULL; 1881 } 1882 1883 /* GFP_NOIO, because we must not cause arbitrary write-out: in a DRBD 1884 * "criss-cross" setup, that might cause write-out on some other DRBD, 1885 * which in turn might block on the other node at this very place. */ 1886 peer_req = drbd_alloc_peer_req(peer_device, id, sector, ds, data_size, GFP_NOIO); 1887 if (!peer_req) 1888 return NULL; 1889 1890 peer_req->flags |= EE_WRITE; 1891 if (trim) { 1892 peer_req->flags |= EE_TRIM; 1893 return peer_req; 1894 } 1895 if (zeroes) { 1896 peer_req->flags |= EE_ZEROOUT; 1897 return peer_req; 1898 } 1899 1900 /* receive payload size bytes into page chain */ 1901 ds = data_size; 1902 page = peer_req->pages; 1903 page_chain_for_each(page) { 1904 unsigned len = min_t(int, ds, PAGE_SIZE); 1905 data = kmap(page); 1906 err = drbd_recv_all_warn(peer_device->connection, data, len); 1907 if (drbd_insert_fault(device, DRBD_FAULT_RECEIVE)) { 1908 drbd_err(device, "Fault injection: Corrupting data on receive\n"); 1909 data[0] = data[0] ^ (unsigned long)-1; 1910 } 1911 kunmap(page); 1912 if (err) { 1913 drbd_free_peer_req(device, peer_req); 1914 return NULL; 1915 } 1916 ds -= len; 1917 } 1918 1919 if (digest_size) { 1920 drbd_csum_ee_size(peer_device->connection->peer_integrity_tfm, peer_req, dig_vv, data_size); 1921 if (memcmp(dig_in, dig_vv, digest_size)) { 1922 drbd_err(device, "Digest integrity check FAILED: %llus +%u\n", 1923 (unsigned long long)sector, data_size); 1924 drbd_free_peer_req(device, peer_req); 1925 return NULL; 1926 } 1927 } 1928 device->recv_cnt += data_size >> 9; 1929 return peer_req; 1930 } 1931 1932 /* drbd_drain_block() just takes a data block 1933 * out of the socket input buffer, and discards it. 1934 */ 1935 static int drbd_drain_block(struct drbd_peer_device *peer_device, int data_size) 1936 { 1937 struct page *page; 1938 int err = 0; 1939 void *data; 1940 1941 if (!data_size) 1942 return 0; 1943 1944 page = drbd_alloc_pages(peer_device, 1, 1); 1945 1946 data = kmap(page); 1947 while (data_size) { 1948 unsigned int len = min_t(int, data_size, PAGE_SIZE); 1949 1950 err = drbd_recv_all_warn(peer_device->connection, data, len); 1951 if (err) 1952 break; 1953 data_size -= len; 1954 } 1955 kunmap(page); 1956 drbd_free_pages(peer_device->device, page, 0); 1957 return err; 1958 } 1959 1960 static int recv_dless_read(struct drbd_peer_device *peer_device, struct drbd_request *req, 1961 sector_t sector, int data_size) 1962 { 1963 struct bio_vec bvec; 1964 struct bvec_iter iter; 1965 struct bio *bio; 1966 int digest_size, err, expect; 1967 void *dig_in = peer_device->connection->int_dig_in; 1968 void *dig_vv = peer_device->connection->int_dig_vv; 1969 1970 digest_size = 0; 1971 if (peer_device->connection->peer_integrity_tfm) { 1972 digest_size = crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm); 1973 err = drbd_recv_all_warn(peer_device->connection, dig_in, digest_size); 1974 if (err) 1975 return err; 1976 data_size -= digest_size; 1977 } 1978 1979 /* optimistically update recv_cnt. if receiving fails below, 1980 * we disconnect anyways, and counters will be reset. */ 1981 peer_device->device->recv_cnt += data_size>>9; 1982 1983 bio = req->master_bio; 1984 D_ASSERT(peer_device->device, sector == bio->bi_iter.bi_sector); 1985 1986 bio_for_each_segment(bvec, bio, iter) { 1987 void *mapped = bvec_kmap_local(&bvec); 1988 expect = min_t(int, data_size, bvec.bv_len); 1989 err = drbd_recv_all_warn(peer_device->connection, mapped, expect); 1990 kunmap_local(mapped); 1991 if (err) 1992 return err; 1993 data_size -= expect; 1994 } 1995 1996 if (digest_size) { 1997 drbd_csum_bio(peer_device->connection->peer_integrity_tfm, bio, dig_vv); 1998 if (memcmp(dig_in, dig_vv, digest_size)) { 1999 drbd_err(peer_device, "Digest integrity check FAILED. Broken NICs?\n"); 2000 return -EINVAL; 2001 } 2002 } 2003 2004 D_ASSERT(peer_device->device, data_size == 0); 2005 return 0; 2006 } 2007 2008 /* 2009 * e_end_resync_block() is called in ack_sender context via 2010 * drbd_finish_peer_reqs(). 2011 */ 2012 static int e_end_resync_block(struct drbd_work *w, int unused) 2013 { 2014 struct drbd_peer_request *peer_req = 2015 container_of(w, struct drbd_peer_request, w); 2016 struct drbd_peer_device *peer_device = peer_req->peer_device; 2017 struct drbd_device *device = peer_device->device; 2018 sector_t sector = peer_req->i.sector; 2019 int err; 2020 2021 D_ASSERT(device, drbd_interval_empty(&peer_req->i)); 2022 2023 if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) { 2024 drbd_set_in_sync(device, sector, peer_req->i.size); 2025 err = drbd_send_ack(peer_device, P_RS_WRITE_ACK, peer_req); 2026 } else { 2027 /* Record failure to sync */ 2028 drbd_rs_failed_io(device, sector, peer_req->i.size); 2029 2030 err = drbd_send_ack(peer_device, P_NEG_ACK, peer_req); 2031 } 2032 dec_unacked(device); 2033 2034 return err; 2035 } 2036 2037 static int recv_resync_read(struct drbd_peer_device *peer_device, sector_t sector, 2038 struct packet_info *pi) __releases(local) 2039 { 2040 struct drbd_device *device = peer_device->device; 2041 struct drbd_peer_request *peer_req; 2042 2043 peer_req = read_in_block(peer_device, ID_SYNCER, sector, pi); 2044 if (!peer_req) 2045 goto fail; 2046 2047 dec_rs_pending(device); 2048 2049 inc_unacked(device); 2050 /* corresponding dec_unacked() in e_end_resync_block() 2051 * respective _drbd_clear_done_ee */ 2052 2053 peer_req->w.cb = e_end_resync_block; 2054 peer_req->submit_jif = jiffies; 2055 2056 spin_lock_irq(&device->resource->req_lock); 2057 list_add_tail(&peer_req->w.list, &device->sync_ee); 2058 spin_unlock_irq(&device->resource->req_lock); 2059 2060 atomic_add(pi->size >> 9, &device->rs_sect_ev); 2061 if (drbd_submit_peer_request(device, peer_req, REQ_OP_WRITE, 2062 DRBD_FAULT_RS_WR) == 0) 2063 return 0; 2064 2065 /* don't care for the reason here */ 2066 drbd_err(device, "submit failed, triggering re-connect\n"); 2067 spin_lock_irq(&device->resource->req_lock); 2068 list_del(&peer_req->w.list); 2069 spin_unlock_irq(&device->resource->req_lock); 2070 2071 drbd_free_peer_req(device, peer_req); 2072 fail: 2073 put_ldev(device); 2074 return -EIO; 2075 } 2076 2077 static struct drbd_request * 2078 find_request(struct drbd_device *device, struct rb_root *root, u64 id, 2079 sector_t sector, bool missing_ok, const char *func) 2080 { 2081 struct drbd_request *req; 2082 2083 /* Request object according to our peer */ 2084 req = (struct drbd_request *)(unsigned long)id; 2085 if (drbd_contains_interval(root, sector, &req->i) && req->i.local) 2086 return req; 2087 if (!missing_ok) { 2088 drbd_err(device, "%s: failed to find request 0x%lx, sector %llus\n", func, 2089 (unsigned long)id, (unsigned long long)sector); 2090 } 2091 return NULL; 2092 } 2093 2094 static int receive_DataReply(struct drbd_connection *connection, struct packet_info *pi) 2095 { 2096 struct drbd_peer_device *peer_device; 2097 struct drbd_device *device; 2098 struct drbd_request *req; 2099 sector_t sector; 2100 int err; 2101 struct p_data *p = pi->data; 2102 2103 peer_device = conn_peer_device(connection, pi->vnr); 2104 if (!peer_device) 2105 return -EIO; 2106 device = peer_device->device; 2107 2108 sector = be64_to_cpu(p->sector); 2109 2110 spin_lock_irq(&device->resource->req_lock); 2111 req = find_request(device, &device->read_requests, p->block_id, sector, false, __func__); 2112 spin_unlock_irq(&device->resource->req_lock); 2113 if (unlikely(!req)) 2114 return -EIO; 2115 2116 err = recv_dless_read(peer_device, req, sector, pi->size); 2117 if (!err) 2118 req_mod(req, DATA_RECEIVED); 2119 /* else: nothing. handled from drbd_disconnect... 2120 * I don't think we may complete this just yet 2121 * in case we are "on-disconnect: freeze" */ 2122 2123 return err; 2124 } 2125 2126 static int receive_RSDataReply(struct drbd_connection *connection, struct packet_info *pi) 2127 { 2128 struct drbd_peer_device *peer_device; 2129 struct drbd_device *device; 2130 sector_t sector; 2131 int err; 2132 struct p_data *p = pi->data; 2133 2134 peer_device = conn_peer_device(connection, pi->vnr); 2135 if (!peer_device) 2136 return -EIO; 2137 device = peer_device->device; 2138 2139 sector = be64_to_cpu(p->sector); 2140 D_ASSERT(device, p->block_id == ID_SYNCER); 2141 2142 if (get_ldev(device)) { 2143 /* data is submitted to disk within recv_resync_read. 2144 * corresponding put_ldev done below on error, 2145 * or in drbd_peer_request_endio. */ 2146 err = recv_resync_read(peer_device, sector, pi); 2147 } else { 2148 if (__ratelimit(&drbd_ratelimit_state)) 2149 drbd_err(device, "Can not write resync data to local disk.\n"); 2150 2151 err = drbd_drain_block(peer_device, pi->size); 2152 2153 drbd_send_ack_dp(peer_device, P_NEG_ACK, p, pi->size); 2154 } 2155 2156 atomic_add(pi->size >> 9, &device->rs_sect_in); 2157 2158 return err; 2159 } 2160 2161 static void restart_conflicting_writes(struct drbd_device *device, 2162 sector_t sector, int size) 2163 { 2164 struct drbd_interval *i; 2165 struct drbd_request *req; 2166 2167 drbd_for_each_overlap(i, &device->write_requests, sector, size) { 2168 if (!i->local) 2169 continue; 2170 req = container_of(i, struct drbd_request, i); 2171 if (req->rq_state & RQ_LOCAL_PENDING || 2172 !(req->rq_state & RQ_POSTPONED)) 2173 continue; 2174 /* as it is RQ_POSTPONED, this will cause it to 2175 * be queued on the retry workqueue. */ 2176 __req_mod(req, CONFLICT_RESOLVED, NULL); 2177 } 2178 } 2179 2180 /* 2181 * e_end_block() is called in ack_sender context via drbd_finish_peer_reqs(). 2182 */ 2183 static int e_end_block(struct drbd_work *w, int cancel) 2184 { 2185 struct drbd_peer_request *peer_req = 2186 container_of(w, struct drbd_peer_request, w); 2187 struct drbd_peer_device *peer_device = peer_req->peer_device; 2188 struct drbd_device *device = peer_device->device; 2189 sector_t sector = peer_req->i.sector; 2190 int err = 0, pcmd; 2191 2192 if (peer_req->flags & EE_SEND_WRITE_ACK) { 2193 if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) { 2194 pcmd = (device->state.conn >= C_SYNC_SOURCE && 2195 device->state.conn <= C_PAUSED_SYNC_T && 2196 peer_req->flags & EE_MAY_SET_IN_SYNC) ? 2197 P_RS_WRITE_ACK : P_WRITE_ACK; 2198 err = drbd_send_ack(peer_device, pcmd, peer_req); 2199 if (pcmd == P_RS_WRITE_ACK) 2200 drbd_set_in_sync(device, sector, peer_req->i.size); 2201 } else { 2202 err = drbd_send_ack(peer_device, P_NEG_ACK, peer_req); 2203 /* we expect it to be marked out of sync anyways... 2204 * maybe assert this? */ 2205 } 2206 dec_unacked(device); 2207 } 2208 2209 /* we delete from the conflict detection hash _after_ we sent out the 2210 * P_WRITE_ACK / P_NEG_ACK, to get the sequence number right. */ 2211 if (peer_req->flags & EE_IN_INTERVAL_TREE) { 2212 spin_lock_irq(&device->resource->req_lock); 2213 D_ASSERT(device, !drbd_interval_empty(&peer_req->i)); 2214 drbd_remove_epoch_entry_interval(device, peer_req); 2215 if (peer_req->flags & EE_RESTART_REQUESTS) 2216 restart_conflicting_writes(device, sector, peer_req->i.size); 2217 spin_unlock_irq(&device->resource->req_lock); 2218 } else 2219 D_ASSERT(device, drbd_interval_empty(&peer_req->i)); 2220 2221 drbd_may_finish_epoch(peer_device->connection, peer_req->epoch, EV_PUT + (cancel ? EV_CLEANUP : 0)); 2222 2223 return err; 2224 } 2225 2226 static int e_send_ack(struct drbd_work *w, enum drbd_packet ack) 2227 { 2228 struct drbd_peer_request *peer_req = 2229 container_of(w, struct drbd_peer_request, w); 2230 struct drbd_peer_device *peer_device = peer_req->peer_device; 2231 int err; 2232 2233 err = drbd_send_ack(peer_device, ack, peer_req); 2234 dec_unacked(peer_device->device); 2235 2236 return err; 2237 } 2238 2239 static int e_send_superseded(struct drbd_work *w, int unused) 2240 { 2241 return e_send_ack(w, P_SUPERSEDED); 2242 } 2243 2244 static int e_send_retry_write(struct drbd_work *w, int unused) 2245 { 2246 struct drbd_peer_request *peer_req = 2247 container_of(w, struct drbd_peer_request, w); 2248 struct drbd_connection *connection = peer_req->peer_device->connection; 2249 2250 return e_send_ack(w, connection->agreed_pro_version >= 100 ? 2251 P_RETRY_WRITE : P_SUPERSEDED); 2252 } 2253 2254 static bool seq_greater(u32 a, u32 b) 2255 { 2256 /* 2257 * We assume 32-bit wrap-around here. 2258 * For 24-bit wrap-around, we would have to shift: 2259 * a <<= 8; b <<= 8; 2260 */ 2261 return (s32)a - (s32)b > 0; 2262 } 2263 2264 static u32 seq_max(u32 a, u32 b) 2265 { 2266 return seq_greater(a, b) ? a : b; 2267 } 2268 2269 static void update_peer_seq(struct drbd_peer_device *peer_device, unsigned int peer_seq) 2270 { 2271 struct drbd_device *device = peer_device->device; 2272 unsigned int newest_peer_seq; 2273 2274 if (test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags)) { 2275 spin_lock(&device->peer_seq_lock); 2276 newest_peer_seq = seq_max(device->peer_seq, peer_seq); 2277 device->peer_seq = newest_peer_seq; 2278 spin_unlock(&device->peer_seq_lock); 2279 /* wake up only if we actually changed device->peer_seq */ 2280 if (peer_seq == newest_peer_seq) 2281 wake_up(&device->seq_wait); 2282 } 2283 } 2284 2285 static inline int overlaps(sector_t s1, int l1, sector_t s2, int l2) 2286 { 2287 return !((s1 + (l1>>9) <= s2) || (s1 >= s2 + (l2>>9))); 2288 } 2289 2290 /* maybe change sync_ee into interval trees as well? */ 2291 static bool overlapping_resync_write(struct drbd_device *device, struct drbd_peer_request *peer_req) 2292 { 2293 struct drbd_peer_request *rs_req; 2294 bool rv = false; 2295 2296 spin_lock_irq(&device->resource->req_lock); 2297 list_for_each_entry(rs_req, &device->sync_ee, w.list) { 2298 if (overlaps(peer_req->i.sector, peer_req->i.size, 2299 rs_req->i.sector, rs_req->i.size)) { 2300 rv = true; 2301 break; 2302 } 2303 } 2304 spin_unlock_irq(&device->resource->req_lock); 2305 2306 return rv; 2307 } 2308 2309 /* Called from receive_Data. 2310 * Synchronize packets on sock with packets on msock. 2311 * 2312 * This is here so even when a P_DATA packet traveling via sock overtook an Ack 2313 * packet traveling on msock, they are still processed in the order they have 2314 * been sent. 2315 * 2316 * Note: we don't care for Ack packets overtaking P_DATA packets. 2317 * 2318 * In case packet_seq is larger than device->peer_seq number, there are 2319 * outstanding packets on the msock. We wait for them to arrive. 2320 * In case we are the logically next packet, we update device->peer_seq 2321 * ourselves. Correctly handles 32bit wrap around. 2322 * 2323 * Assume we have a 10 GBit connection, that is about 1<<30 byte per second, 2324 * about 1<<21 sectors per second. So "worst" case, we have 1<<3 == 8 seconds 2325 * for the 24bit wrap (historical atomic_t guarantee on some archs), and we have 2326 * 1<<9 == 512 seconds aka ages for the 32bit wrap around... 2327 * 2328 * returns 0 if we may process the packet, 2329 * -ERESTARTSYS if we were interrupted (by disconnect signal). */ 2330 static int wait_for_and_update_peer_seq(struct drbd_peer_device *peer_device, const u32 peer_seq) 2331 { 2332 struct drbd_device *device = peer_device->device; 2333 DEFINE_WAIT(wait); 2334 long timeout; 2335 int ret = 0, tp; 2336 2337 if (!test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags)) 2338 return 0; 2339 2340 spin_lock(&device->peer_seq_lock); 2341 for (;;) { 2342 if (!seq_greater(peer_seq - 1, device->peer_seq)) { 2343 device->peer_seq = seq_max(device->peer_seq, peer_seq); 2344 break; 2345 } 2346 2347 if (signal_pending(current)) { 2348 ret = -ERESTARTSYS; 2349 break; 2350 } 2351 2352 rcu_read_lock(); 2353 tp = rcu_dereference(peer_device->connection->net_conf)->two_primaries; 2354 rcu_read_unlock(); 2355 2356 if (!tp) 2357 break; 2358 2359 /* Only need to wait if two_primaries is enabled */ 2360 prepare_to_wait(&device->seq_wait, &wait, TASK_INTERRUPTIBLE); 2361 spin_unlock(&device->peer_seq_lock); 2362 rcu_read_lock(); 2363 timeout = rcu_dereference(peer_device->connection->net_conf)->ping_timeo*HZ/10; 2364 rcu_read_unlock(); 2365 timeout = schedule_timeout(timeout); 2366 spin_lock(&device->peer_seq_lock); 2367 if (!timeout) { 2368 ret = -ETIMEDOUT; 2369 drbd_err(device, "Timed out waiting for missing ack packets; disconnecting\n"); 2370 break; 2371 } 2372 } 2373 spin_unlock(&device->peer_seq_lock); 2374 finish_wait(&device->seq_wait, &wait); 2375 return ret; 2376 } 2377 2378 /* see also bio_flags_to_wire() 2379 * DRBD_REQ_*, because we need to semantically map the flags to data packet 2380 * flags and back. We may replicate to other kernel versions. */ 2381 static blk_opf_t wire_flags_to_bio_flags(u32 dpf) 2382 { 2383 return (dpf & DP_RW_SYNC ? REQ_SYNC : 0) | 2384 (dpf & DP_FUA ? REQ_FUA : 0) | 2385 (dpf & DP_FLUSH ? REQ_PREFLUSH : 0); 2386 } 2387 2388 static enum req_op wire_flags_to_bio_op(u32 dpf) 2389 { 2390 if (dpf & DP_ZEROES) 2391 return REQ_OP_WRITE_ZEROES; 2392 if (dpf & DP_DISCARD) 2393 return REQ_OP_DISCARD; 2394 else 2395 return REQ_OP_WRITE; 2396 } 2397 2398 static void fail_postponed_requests(struct drbd_device *device, sector_t sector, 2399 unsigned int size) 2400 { 2401 struct drbd_interval *i; 2402 2403 repeat: 2404 drbd_for_each_overlap(i, &device->write_requests, sector, size) { 2405 struct drbd_request *req; 2406 struct bio_and_error m; 2407 2408 if (!i->local) 2409 continue; 2410 req = container_of(i, struct drbd_request, i); 2411 if (!(req->rq_state & RQ_POSTPONED)) 2412 continue; 2413 req->rq_state &= ~RQ_POSTPONED; 2414 __req_mod(req, NEG_ACKED, &m); 2415 spin_unlock_irq(&device->resource->req_lock); 2416 if (m.bio) 2417 complete_master_bio(device, &m); 2418 spin_lock_irq(&device->resource->req_lock); 2419 goto repeat; 2420 } 2421 } 2422 2423 static int handle_write_conflicts(struct drbd_device *device, 2424 struct drbd_peer_request *peer_req) 2425 { 2426 struct drbd_connection *connection = peer_req->peer_device->connection; 2427 bool resolve_conflicts = test_bit(RESOLVE_CONFLICTS, &connection->flags); 2428 sector_t sector = peer_req->i.sector; 2429 const unsigned int size = peer_req->i.size; 2430 struct drbd_interval *i; 2431 bool equal; 2432 int err; 2433 2434 /* 2435 * Inserting the peer request into the write_requests tree will prevent 2436 * new conflicting local requests from being added. 2437 */ 2438 drbd_insert_interval(&device->write_requests, &peer_req->i); 2439 2440 repeat: 2441 drbd_for_each_overlap(i, &device->write_requests, sector, size) { 2442 if (i == &peer_req->i) 2443 continue; 2444 if (i->completed) 2445 continue; 2446 2447 if (!i->local) { 2448 /* 2449 * Our peer has sent a conflicting remote request; this 2450 * should not happen in a two-node setup. Wait for the 2451 * earlier peer request to complete. 2452 */ 2453 err = drbd_wait_misc(device, i); 2454 if (err) 2455 goto out; 2456 goto repeat; 2457 } 2458 2459 equal = i->sector == sector && i->size == size; 2460 if (resolve_conflicts) { 2461 /* 2462 * If the peer request is fully contained within the 2463 * overlapping request, it can be considered overwritten 2464 * and thus superseded; otherwise, it will be retried 2465 * once all overlapping requests have completed. 2466 */ 2467 bool superseded = i->sector <= sector && i->sector + 2468 (i->size >> 9) >= sector + (size >> 9); 2469 2470 if (!equal) 2471 drbd_alert(device, "Concurrent writes detected: " 2472 "local=%llus +%u, remote=%llus +%u, " 2473 "assuming %s came first\n", 2474 (unsigned long long)i->sector, i->size, 2475 (unsigned long long)sector, size, 2476 superseded ? "local" : "remote"); 2477 2478 peer_req->w.cb = superseded ? e_send_superseded : 2479 e_send_retry_write; 2480 list_add_tail(&peer_req->w.list, &device->done_ee); 2481 queue_work(connection->ack_sender, &peer_req->peer_device->send_acks_work); 2482 2483 err = -ENOENT; 2484 goto out; 2485 } else { 2486 struct drbd_request *req = 2487 container_of(i, struct drbd_request, i); 2488 2489 if (!equal) 2490 drbd_alert(device, "Concurrent writes detected: " 2491 "local=%llus +%u, remote=%llus +%u\n", 2492 (unsigned long long)i->sector, i->size, 2493 (unsigned long long)sector, size); 2494 2495 if (req->rq_state & RQ_LOCAL_PENDING || 2496 !(req->rq_state & RQ_POSTPONED)) { 2497 /* 2498 * Wait for the node with the discard flag to 2499 * decide if this request has been superseded 2500 * or needs to be retried. 2501 * Requests that have been superseded will 2502 * disappear from the write_requests tree. 2503 * 2504 * In addition, wait for the conflicting 2505 * request to finish locally before submitting 2506 * the conflicting peer request. 2507 */ 2508 err = drbd_wait_misc(device, &req->i); 2509 if (err) { 2510 _conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD); 2511 fail_postponed_requests(device, sector, size); 2512 goto out; 2513 } 2514 goto repeat; 2515 } 2516 /* 2517 * Remember to restart the conflicting requests after 2518 * the new peer request has completed. 2519 */ 2520 peer_req->flags |= EE_RESTART_REQUESTS; 2521 } 2522 } 2523 err = 0; 2524 2525 out: 2526 if (err) 2527 drbd_remove_epoch_entry_interval(device, peer_req); 2528 return err; 2529 } 2530 2531 /* mirrored write */ 2532 static int receive_Data(struct drbd_connection *connection, struct packet_info *pi) 2533 { 2534 struct drbd_peer_device *peer_device; 2535 struct drbd_device *device; 2536 struct net_conf *nc; 2537 sector_t sector; 2538 struct drbd_peer_request *peer_req; 2539 struct p_data *p = pi->data; 2540 u32 peer_seq = be32_to_cpu(p->seq_num); 2541 enum req_op op; 2542 blk_opf_t op_flags; 2543 u32 dp_flags; 2544 int err, tp; 2545 2546 peer_device = conn_peer_device(connection, pi->vnr); 2547 if (!peer_device) 2548 return -EIO; 2549 device = peer_device->device; 2550 2551 if (!get_ldev(device)) { 2552 int err2; 2553 2554 err = wait_for_and_update_peer_seq(peer_device, peer_seq); 2555 drbd_send_ack_dp(peer_device, P_NEG_ACK, p, pi->size); 2556 atomic_inc(&connection->current_epoch->epoch_size); 2557 err2 = drbd_drain_block(peer_device, pi->size); 2558 if (!err) 2559 err = err2; 2560 return err; 2561 } 2562 2563 /* 2564 * Corresponding put_ldev done either below (on various errors), or in 2565 * drbd_peer_request_endio, if we successfully submit the data at the 2566 * end of this function. 2567 */ 2568 2569 sector = be64_to_cpu(p->sector); 2570 peer_req = read_in_block(peer_device, p->block_id, sector, pi); 2571 if (!peer_req) { 2572 put_ldev(device); 2573 return -EIO; 2574 } 2575 2576 peer_req->w.cb = e_end_block; 2577 peer_req->submit_jif = jiffies; 2578 peer_req->flags |= EE_APPLICATION; 2579 2580 dp_flags = be32_to_cpu(p->dp_flags); 2581 op = wire_flags_to_bio_op(dp_flags); 2582 op_flags = wire_flags_to_bio_flags(dp_flags); 2583 if (pi->cmd == P_TRIM) { 2584 D_ASSERT(peer_device, peer_req->i.size > 0); 2585 D_ASSERT(peer_device, op == REQ_OP_DISCARD); 2586 D_ASSERT(peer_device, peer_req->pages == NULL); 2587 /* need to play safe: an older DRBD sender 2588 * may mean zero-out while sending P_TRIM. */ 2589 if (0 == (connection->agreed_features & DRBD_FF_WZEROES)) 2590 peer_req->flags |= EE_ZEROOUT; 2591 } else if (pi->cmd == P_ZEROES) { 2592 D_ASSERT(peer_device, peer_req->i.size > 0); 2593 D_ASSERT(peer_device, op == REQ_OP_WRITE_ZEROES); 2594 D_ASSERT(peer_device, peer_req->pages == NULL); 2595 /* Do (not) pass down BLKDEV_ZERO_NOUNMAP? */ 2596 if (dp_flags & DP_DISCARD) 2597 peer_req->flags |= EE_TRIM; 2598 } else if (peer_req->pages == NULL) { 2599 D_ASSERT(device, peer_req->i.size == 0); 2600 D_ASSERT(device, dp_flags & DP_FLUSH); 2601 } 2602 2603 if (dp_flags & DP_MAY_SET_IN_SYNC) 2604 peer_req->flags |= EE_MAY_SET_IN_SYNC; 2605 2606 spin_lock(&connection->epoch_lock); 2607 peer_req->epoch = connection->current_epoch; 2608 atomic_inc(&peer_req->epoch->epoch_size); 2609 atomic_inc(&peer_req->epoch->active); 2610 spin_unlock(&connection->epoch_lock); 2611 2612 rcu_read_lock(); 2613 nc = rcu_dereference(peer_device->connection->net_conf); 2614 tp = nc->two_primaries; 2615 if (peer_device->connection->agreed_pro_version < 100) { 2616 switch (nc->wire_protocol) { 2617 case DRBD_PROT_C: 2618 dp_flags |= DP_SEND_WRITE_ACK; 2619 break; 2620 case DRBD_PROT_B: 2621 dp_flags |= DP_SEND_RECEIVE_ACK; 2622 break; 2623 } 2624 } 2625 rcu_read_unlock(); 2626 2627 if (dp_flags & DP_SEND_WRITE_ACK) { 2628 peer_req->flags |= EE_SEND_WRITE_ACK; 2629 inc_unacked(device); 2630 /* corresponding dec_unacked() in e_end_block() 2631 * respective _drbd_clear_done_ee */ 2632 } 2633 2634 if (dp_flags & DP_SEND_RECEIVE_ACK) { 2635 /* I really don't like it that the receiver thread 2636 * sends on the msock, but anyways */ 2637 drbd_send_ack(peer_device, P_RECV_ACK, peer_req); 2638 } 2639 2640 if (tp) { 2641 /* two primaries implies protocol C */ 2642 D_ASSERT(device, dp_flags & DP_SEND_WRITE_ACK); 2643 peer_req->flags |= EE_IN_INTERVAL_TREE; 2644 err = wait_for_and_update_peer_seq(peer_device, peer_seq); 2645 if (err) 2646 goto out_interrupted; 2647 spin_lock_irq(&device->resource->req_lock); 2648 err = handle_write_conflicts(device, peer_req); 2649 if (err) { 2650 spin_unlock_irq(&device->resource->req_lock); 2651 if (err == -ENOENT) { 2652 put_ldev(device); 2653 return 0; 2654 } 2655 goto out_interrupted; 2656 } 2657 } else { 2658 update_peer_seq(peer_device, peer_seq); 2659 spin_lock_irq(&device->resource->req_lock); 2660 } 2661 /* TRIM and is processed synchronously, 2662 * we wait for all pending requests, respectively wait for 2663 * active_ee to become empty in drbd_submit_peer_request(); 2664 * better not add ourselves here. */ 2665 if ((peer_req->flags & (EE_TRIM | EE_ZEROOUT)) == 0) 2666 list_add_tail(&peer_req->w.list, &device->active_ee); 2667 spin_unlock_irq(&device->resource->req_lock); 2668 2669 if (device->state.conn == C_SYNC_TARGET) 2670 wait_event(device->ee_wait, !overlapping_resync_write(device, peer_req)); 2671 2672 if (device->state.pdsk < D_INCONSISTENT) { 2673 /* In case we have the only disk of the cluster, */ 2674 drbd_set_out_of_sync(device, peer_req->i.sector, peer_req->i.size); 2675 peer_req->flags &= ~EE_MAY_SET_IN_SYNC; 2676 drbd_al_begin_io(device, &peer_req->i); 2677 peer_req->flags |= EE_CALL_AL_COMPLETE_IO; 2678 } 2679 2680 err = drbd_submit_peer_request(device, peer_req, op | op_flags, 2681 DRBD_FAULT_DT_WR); 2682 if (!err) 2683 return 0; 2684 2685 /* don't care for the reason here */ 2686 drbd_err(device, "submit failed, triggering re-connect\n"); 2687 spin_lock_irq(&device->resource->req_lock); 2688 list_del(&peer_req->w.list); 2689 drbd_remove_epoch_entry_interval(device, peer_req); 2690 spin_unlock_irq(&device->resource->req_lock); 2691 if (peer_req->flags & EE_CALL_AL_COMPLETE_IO) { 2692 peer_req->flags &= ~EE_CALL_AL_COMPLETE_IO; 2693 drbd_al_complete_io(device, &peer_req->i); 2694 } 2695 2696 out_interrupted: 2697 drbd_may_finish_epoch(connection, peer_req->epoch, EV_PUT | EV_CLEANUP); 2698 put_ldev(device); 2699 drbd_free_peer_req(device, peer_req); 2700 return err; 2701 } 2702 2703 /* We may throttle resync, if the lower device seems to be busy, 2704 * and current sync rate is above c_min_rate. 2705 * 2706 * To decide whether or not the lower device is busy, we use a scheme similar 2707 * to MD RAID is_mddev_idle(): if the partition stats reveal "significant" 2708 * (more than 64 sectors) of activity we cannot account for with our own resync 2709 * activity, it obviously is "busy". 2710 * 2711 * The current sync rate used here uses only the most recent two step marks, 2712 * to have a short time average so we can react faster. 2713 */ 2714 bool drbd_rs_should_slow_down(struct drbd_device *device, sector_t sector, 2715 bool throttle_if_app_is_waiting) 2716 { 2717 struct lc_element *tmp; 2718 bool throttle = drbd_rs_c_min_rate_throttle(device); 2719 2720 if (!throttle || throttle_if_app_is_waiting) 2721 return throttle; 2722 2723 spin_lock_irq(&device->al_lock); 2724 tmp = lc_find(device->resync, BM_SECT_TO_EXT(sector)); 2725 if (tmp) { 2726 struct bm_extent *bm_ext = lc_entry(tmp, struct bm_extent, lce); 2727 if (test_bit(BME_PRIORITY, &bm_ext->flags)) 2728 throttle = false; 2729 /* Do not slow down if app IO is already waiting for this extent, 2730 * and our progress is necessary for application IO to complete. */ 2731 } 2732 spin_unlock_irq(&device->al_lock); 2733 2734 return throttle; 2735 } 2736 2737 bool drbd_rs_c_min_rate_throttle(struct drbd_device *device) 2738 { 2739 struct gendisk *disk = device->ldev->backing_bdev->bd_disk; 2740 unsigned long db, dt, dbdt; 2741 unsigned int c_min_rate; 2742 int curr_events; 2743 2744 rcu_read_lock(); 2745 c_min_rate = rcu_dereference(device->ldev->disk_conf)->c_min_rate; 2746 rcu_read_unlock(); 2747 2748 /* feature disabled? */ 2749 if (c_min_rate == 0) 2750 return false; 2751 2752 curr_events = (int)part_stat_read_accum(disk->part0, sectors) - 2753 atomic_read(&device->rs_sect_ev); 2754 2755 if (atomic_read(&device->ap_actlog_cnt) 2756 || curr_events - device->rs_last_events > 64) { 2757 unsigned long rs_left; 2758 int i; 2759 2760 device->rs_last_events = curr_events; 2761 2762 /* sync speed average over the last 2*DRBD_SYNC_MARK_STEP, 2763 * approx. */ 2764 i = (device->rs_last_mark + DRBD_SYNC_MARKS-1) % DRBD_SYNC_MARKS; 2765 2766 if (device->state.conn == C_VERIFY_S || device->state.conn == C_VERIFY_T) 2767 rs_left = device->ov_left; 2768 else 2769 rs_left = drbd_bm_total_weight(device) - device->rs_failed; 2770 2771 dt = ((long)jiffies - (long)device->rs_mark_time[i]) / HZ; 2772 if (!dt) 2773 dt++; 2774 db = device->rs_mark_left[i] - rs_left; 2775 dbdt = Bit2KB(db/dt); 2776 2777 if (dbdt > c_min_rate) 2778 return true; 2779 } 2780 return false; 2781 } 2782 2783 static int receive_DataRequest(struct drbd_connection *connection, struct packet_info *pi) 2784 { 2785 struct drbd_peer_device *peer_device; 2786 struct drbd_device *device; 2787 sector_t sector; 2788 sector_t capacity; 2789 struct drbd_peer_request *peer_req; 2790 struct digest_info *di = NULL; 2791 int size, verb; 2792 unsigned int fault_type; 2793 struct p_block_req *p = pi->data; 2794 2795 peer_device = conn_peer_device(connection, pi->vnr); 2796 if (!peer_device) 2797 return -EIO; 2798 device = peer_device->device; 2799 capacity = get_capacity(device->vdisk); 2800 2801 sector = be64_to_cpu(p->sector); 2802 size = be32_to_cpu(p->blksize); 2803 2804 if (size <= 0 || !IS_ALIGNED(size, 512) || size > DRBD_MAX_BIO_SIZE) { 2805 drbd_err(device, "%s:%d: sector: %llus, size: %u\n", __FILE__, __LINE__, 2806 (unsigned long long)sector, size); 2807 return -EINVAL; 2808 } 2809 if (sector + (size>>9) > capacity) { 2810 drbd_err(device, "%s:%d: sector: %llus, size: %u\n", __FILE__, __LINE__, 2811 (unsigned long long)sector, size); 2812 return -EINVAL; 2813 } 2814 2815 if (!get_ldev_if_state(device, D_UP_TO_DATE)) { 2816 verb = 1; 2817 switch (pi->cmd) { 2818 case P_DATA_REQUEST: 2819 drbd_send_ack_rp(peer_device, P_NEG_DREPLY, p); 2820 break; 2821 case P_RS_THIN_REQ: 2822 case P_RS_DATA_REQUEST: 2823 case P_CSUM_RS_REQUEST: 2824 case P_OV_REQUEST: 2825 drbd_send_ack_rp(peer_device, P_NEG_RS_DREPLY , p); 2826 break; 2827 case P_OV_REPLY: 2828 verb = 0; 2829 dec_rs_pending(device); 2830 drbd_send_ack_ex(peer_device, P_OV_RESULT, sector, size, ID_IN_SYNC); 2831 break; 2832 default: 2833 BUG(); 2834 } 2835 if (verb && __ratelimit(&drbd_ratelimit_state)) 2836 drbd_err(device, "Can not satisfy peer's read request, " 2837 "no local data.\n"); 2838 2839 /* drain possibly payload */ 2840 return drbd_drain_block(peer_device, pi->size); 2841 } 2842 2843 /* GFP_NOIO, because we must not cause arbitrary write-out: in a DRBD 2844 * "criss-cross" setup, that might cause write-out on some other DRBD, 2845 * which in turn might block on the other node at this very place. */ 2846 peer_req = drbd_alloc_peer_req(peer_device, p->block_id, sector, size, 2847 size, GFP_NOIO); 2848 if (!peer_req) { 2849 put_ldev(device); 2850 return -ENOMEM; 2851 } 2852 2853 switch (pi->cmd) { 2854 case P_DATA_REQUEST: 2855 peer_req->w.cb = w_e_end_data_req; 2856 fault_type = DRBD_FAULT_DT_RD; 2857 /* application IO, don't drbd_rs_begin_io */ 2858 peer_req->flags |= EE_APPLICATION; 2859 goto submit; 2860 2861 case P_RS_THIN_REQ: 2862 /* If at some point in the future we have a smart way to 2863 find out if this data block is completely deallocated, 2864 then we would do something smarter here than reading 2865 the block... */ 2866 peer_req->flags |= EE_RS_THIN_REQ; 2867 fallthrough; 2868 case P_RS_DATA_REQUEST: 2869 peer_req->w.cb = w_e_end_rsdata_req; 2870 fault_type = DRBD_FAULT_RS_RD; 2871 /* used in the sector offset progress display */ 2872 device->bm_resync_fo = BM_SECT_TO_BIT(sector); 2873 break; 2874 2875 case P_OV_REPLY: 2876 case P_CSUM_RS_REQUEST: 2877 fault_type = DRBD_FAULT_RS_RD; 2878 di = kmalloc(sizeof(*di) + pi->size, GFP_NOIO); 2879 if (!di) 2880 goto out_free_e; 2881 2882 di->digest_size = pi->size; 2883 di->digest = (((char *)di)+sizeof(struct digest_info)); 2884 2885 peer_req->digest = di; 2886 peer_req->flags |= EE_HAS_DIGEST; 2887 2888 if (drbd_recv_all(peer_device->connection, di->digest, pi->size)) 2889 goto out_free_e; 2890 2891 if (pi->cmd == P_CSUM_RS_REQUEST) { 2892 D_ASSERT(device, peer_device->connection->agreed_pro_version >= 89); 2893 peer_req->w.cb = w_e_end_csum_rs_req; 2894 /* used in the sector offset progress display */ 2895 device->bm_resync_fo = BM_SECT_TO_BIT(sector); 2896 /* remember to report stats in drbd_resync_finished */ 2897 device->use_csums = true; 2898 } else if (pi->cmd == P_OV_REPLY) { 2899 /* track progress, we may need to throttle */ 2900 atomic_add(size >> 9, &device->rs_sect_in); 2901 peer_req->w.cb = w_e_end_ov_reply; 2902 dec_rs_pending(device); 2903 /* drbd_rs_begin_io done when we sent this request, 2904 * but accounting still needs to be done. */ 2905 goto submit_for_resync; 2906 } 2907 break; 2908 2909 case P_OV_REQUEST: 2910 if (device->ov_start_sector == ~(sector_t)0 && 2911 peer_device->connection->agreed_pro_version >= 90) { 2912 unsigned long now = jiffies; 2913 int i; 2914 device->ov_start_sector = sector; 2915 device->ov_position = sector; 2916 device->ov_left = drbd_bm_bits(device) - BM_SECT_TO_BIT(sector); 2917 device->rs_total = device->ov_left; 2918 for (i = 0; i < DRBD_SYNC_MARKS; i++) { 2919 device->rs_mark_left[i] = device->ov_left; 2920 device->rs_mark_time[i] = now; 2921 } 2922 drbd_info(device, "Online Verify start sector: %llu\n", 2923 (unsigned long long)sector); 2924 } 2925 peer_req->w.cb = w_e_end_ov_req; 2926 fault_type = DRBD_FAULT_RS_RD; 2927 break; 2928 2929 default: 2930 BUG(); 2931 } 2932 2933 /* Throttle, drbd_rs_begin_io and submit should become asynchronous 2934 * wrt the receiver, but it is not as straightforward as it may seem. 2935 * Various places in the resync start and stop logic assume resync 2936 * requests are processed in order, requeuing this on the worker thread 2937 * introduces a bunch of new code for synchronization between threads. 2938 * 2939 * Unlimited throttling before drbd_rs_begin_io may stall the resync 2940 * "forever", throttling after drbd_rs_begin_io will lock that extent 2941 * for application writes for the same time. For now, just throttle 2942 * here, where the rest of the code expects the receiver to sleep for 2943 * a while, anyways. 2944 */ 2945 2946 /* Throttle before drbd_rs_begin_io, as that locks out application IO; 2947 * this defers syncer requests for some time, before letting at least 2948 * on request through. The resync controller on the receiving side 2949 * will adapt to the incoming rate accordingly. 2950 * 2951 * We cannot throttle here if remote is Primary/SyncTarget: 2952 * we would also throttle its application reads. 2953 * In that case, throttling is done on the SyncTarget only. 2954 */ 2955 2956 /* Even though this may be a resync request, we do add to "read_ee"; 2957 * "sync_ee" is only used for resync WRITEs. 2958 * Add to list early, so debugfs can find this request 2959 * even if we have to sleep below. */ 2960 spin_lock_irq(&device->resource->req_lock); 2961 list_add_tail(&peer_req->w.list, &device->read_ee); 2962 spin_unlock_irq(&device->resource->req_lock); 2963 2964 update_receiver_timing_details(connection, drbd_rs_should_slow_down); 2965 if (device->state.peer != R_PRIMARY 2966 && drbd_rs_should_slow_down(device, sector, false)) 2967 schedule_timeout_uninterruptible(HZ/10); 2968 update_receiver_timing_details(connection, drbd_rs_begin_io); 2969 if (drbd_rs_begin_io(device, sector)) 2970 goto out_free_e; 2971 2972 submit_for_resync: 2973 atomic_add(size >> 9, &device->rs_sect_ev); 2974 2975 submit: 2976 update_receiver_timing_details(connection, drbd_submit_peer_request); 2977 inc_unacked(device); 2978 if (drbd_submit_peer_request(device, peer_req, REQ_OP_READ, 2979 fault_type) == 0) 2980 return 0; 2981 2982 /* don't care for the reason here */ 2983 drbd_err(device, "submit failed, triggering re-connect\n"); 2984 2985 out_free_e: 2986 spin_lock_irq(&device->resource->req_lock); 2987 list_del(&peer_req->w.list); 2988 spin_unlock_irq(&device->resource->req_lock); 2989 /* no drbd_rs_complete_io(), we are dropping the connection anyways */ 2990 2991 put_ldev(device); 2992 drbd_free_peer_req(device, peer_req); 2993 return -EIO; 2994 } 2995 2996 /* 2997 * drbd_asb_recover_0p - Recover after split-brain with no remaining primaries 2998 */ 2999 static int drbd_asb_recover_0p(struct drbd_peer_device *peer_device) __must_hold(local) 3000 { 3001 struct drbd_device *device = peer_device->device; 3002 int self, peer, rv = -100; 3003 unsigned long ch_self, ch_peer; 3004 enum drbd_after_sb_p after_sb_0p; 3005 3006 self = device->ldev->md.uuid[UI_BITMAP] & 1; 3007 peer = device->p_uuid[UI_BITMAP] & 1; 3008 3009 ch_peer = device->p_uuid[UI_SIZE]; 3010 ch_self = device->comm_bm_set; 3011 3012 rcu_read_lock(); 3013 after_sb_0p = rcu_dereference(peer_device->connection->net_conf)->after_sb_0p; 3014 rcu_read_unlock(); 3015 switch (after_sb_0p) { 3016 case ASB_CONSENSUS: 3017 case ASB_DISCARD_SECONDARY: 3018 case ASB_CALL_HELPER: 3019 case ASB_VIOLENTLY: 3020 drbd_err(device, "Configuration error.\n"); 3021 break; 3022 case ASB_DISCONNECT: 3023 break; 3024 case ASB_DISCARD_YOUNGER_PRI: 3025 if (self == 0 && peer == 1) { 3026 rv = -1; 3027 break; 3028 } 3029 if (self == 1 && peer == 0) { 3030 rv = 1; 3031 break; 3032 } 3033 fallthrough; /* to one of the other strategies */ 3034 case ASB_DISCARD_OLDER_PRI: 3035 if (self == 0 && peer == 1) { 3036 rv = 1; 3037 break; 3038 } 3039 if (self == 1 && peer == 0) { 3040 rv = -1; 3041 break; 3042 } 3043 /* Else fall through to one of the other strategies... */ 3044 drbd_warn(device, "Discard younger/older primary did not find a decision\n" 3045 "Using discard-least-changes instead\n"); 3046 fallthrough; 3047 case ASB_DISCARD_ZERO_CHG: 3048 if (ch_peer == 0 && ch_self == 0) { 3049 rv = test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags) 3050 ? -1 : 1; 3051 break; 3052 } else { 3053 if (ch_peer == 0) { rv = 1; break; } 3054 if (ch_self == 0) { rv = -1; break; } 3055 } 3056 if (after_sb_0p == ASB_DISCARD_ZERO_CHG) 3057 break; 3058 fallthrough; 3059 case ASB_DISCARD_LEAST_CHG: 3060 if (ch_self < ch_peer) 3061 rv = -1; 3062 else if (ch_self > ch_peer) 3063 rv = 1; 3064 else /* ( ch_self == ch_peer ) */ 3065 /* Well, then use something else. */ 3066 rv = test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags) 3067 ? -1 : 1; 3068 break; 3069 case ASB_DISCARD_LOCAL: 3070 rv = -1; 3071 break; 3072 case ASB_DISCARD_REMOTE: 3073 rv = 1; 3074 } 3075 3076 return rv; 3077 } 3078 3079 /* 3080 * drbd_asb_recover_1p - Recover after split-brain with one remaining primary 3081 */ 3082 static int drbd_asb_recover_1p(struct drbd_peer_device *peer_device) __must_hold(local) 3083 { 3084 struct drbd_device *device = peer_device->device; 3085 int hg, rv = -100; 3086 enum drbd_after_sb_p after_sb_1p; 3087 3088 rcu_read_lock(); 3089 after_sb_1p = rcu_dereference(peer_device->connection->net_conf)->after_sb_1p; 3090 rcu_read_unlock(); 3091 switch (after_sb_1p) { 3092 case ASB_DISCARD_YOUNGER_PRI: 3093 case ASB_DISCARD_OLDER_PRI: 3094 case ASB_DISCARD_LEAST_CHG: 3095 case ASB_DISCARD_LOCAL: 3096 case ASB_DISCARD_REMOTE: 3097 case ASB_DISCARD_ZERO_CHG: 3098 drbd_err(device, "Configuration error.\n"); 3099 break; 3100 case ASB_DISCONNECT: 3101 break; 3102 case ASB_CONSENSUS: 3103 hg = drbd_asb_recover_0p(peer_device); 3104 if (hg == -1 && device->state.role == R_SECONDARY) 3105 rv = hg; 3106 if (hg == 1 && device->state.role == R_PRIMARY) 3107 rv = hg; 3108 break; 3109 case ASB_VIOLENTLY: 3110 rv = drbd_asb_recover_0p(peer_device); 3111 break; 3112 case ASB_DISCARD_SECONDARY: 3113 return device->state.role == R_PRIMARY ? 1 : -1; 3114 case ASB_CALL_HELPER: 3115 hg = drbd_asb_recover_0p(peer_device); 3116 if (hg == -1 && device->state.role == R_PRIMARY) { 3117 enum drbd_state_rv rv2; 3118 3119 /* drbd_change_state() does not sleep while in SS_IN_TRANSIENT_STATE, 3120 * we might be here in C_WF_REPORT_PARAMS which is transient. 3121 * we do not need to wait for the after state change work either. */ 3122 rv2 = drbd_change_state(device, CS_VERBOSE, NS(role, R_SECONDARY)); 3123 if (rv2 != SS_SUCCESS) { 3124 drbd_khelper(device, "pri-lost-after-sb"); 3125 } else { 3126 drbd_warn(device, "Successfully gave up primary role.\n"); 3127 rv = hg; 3128 } 3129 } else 3130 rv = hg; 3131 } 3132 3133 return rv; 3134 } 3135 3136 /* 3137 * drbd_asb_recover_2p - Recover after split-brain with two remaining primaries 3138 */ 3139 static int drbd_asb_recover_2p(struct drbd_peer_device *peer_device) __must_hold(local) 3140 { 3141 struct drbd_device *device = peer_device->device; 3142 int hg, rv = -100; 3143 enum drbd_after_sb_p after_sb_2p; 3144 3145 rcu_read_lock(); 3146 after_sb_2p = rcu_dereference(peer_device->connection->net_conf)->after_sb_2p; 3147 rcu_read_unlock(); 3148 switch (after_sb_2p) { 3149 case ASB_DISCARD_YOUNGER_PRI: 3150 case ASB_DISCARD_OLDER_PRI: 3151 case ASB_DISCARD_LEAST_CHG: 3152 case ASB_DISCARD_LOCAL: 3153 case ASB_DISCARD_REMOTE: 3154 case ASB_CONSENSUS: 3155 case ASB_DISCARD_SECONDARY: 3156 case ASB_DISCARD_ZERO_CHG: 3157 drbd_err(device, "Configuration error.\n"); 3158 break; 3159 case ASB_VIOLENTLY: 3160 rv = drbd_asb_recover_0p(peer_device); 3161 break; 3162 case ASB_DISCONNECT: 3163 break; 3164 case ASB_CALL_HELPER: 3165 hg = drbd_asb_recover_0p(peer_device); 3166 if (hg == -1) { 3167 enum drbd_state_rv rv2; 3168 3169 /* drbd_change_state() does not sleep while in SS_IN_TRANSIENT_STATE, 3170 * we might be here in C_WF_REPORT_PARAMS which is transient. 3171 * we do not need to wait for the after state change work either. */ 3172 rv2 = drbd_change_state(device, CS_VERBOSE, NS(role, R_SECONDARY)); 3173 if (rv2 != SS_SUCCESS) { 3174 drbd_khelper(device, "pri-lost-after-sb"); 3175 } else { 3176 drbd_warn(device, "Successfully gave up primary role.\n"); 3177 rv = hg; 3178 } 3179 } else 3180 rv = hg; 3181 } 3182 3183 return rv; 3184 } 3185 3186 static void drbd_uuid_dump(struct drbd_device *device, char *text, u64 *uuid, 3187 u64 bits, u64 flags) 3188 { 3189 if (!uuid) { 3190 drbd_info(device, "%s uuid info vanished while I was looking!\n", text); 3191 return; 3192 } 3193 drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX bits:%llu flags:%llX\n", 3194 text, 3195 (unsigned long long)uuid[UI_CURRENT], 3196 (unsigned long long)uuid[UI_BITMAP], 3197 (unsigned long long)uuid[UI_HISTORY_START], 3198 (unsigned long long)uuid[UI_HISTORY_END], 3199 (unsigned long long)bits, 3200 (unsigned long long)flags); 3201 } 3202 3203 /* 3204 100 after split brain try auto recover 3205 2 C_SYNC_SOURCE set BitMap 3206 1 C_SYNC_SOURCE use BitMap 3207 0 no Sync 3208 -1 C_SYNC_TARGET use BitMap 3209 -2 C_SYNC_TARGET set BitMap 3210 -100 after split brain, disconnect 3211 -1000 unrelated data 3212 -1091 requires proto 91 3213 -1096 requires proto 96 3214 */ 3215 3216 static int drbd_uuid_compare(struct drbd_device *const device, enum drbd_role const peer_role, int *rule_nr) __must_hold(local) 3217 { 3218 struct drbd_peer_device *const peer_device = first_peer_device(device); 3219 struct drbd_connection *const connection = peer_device ? peer_device->connection : NULL; 3220 u64 self, peer; 3221 int i, j; 3222 3223 self = device->ldev->md.uuid[UI_CURRENT] & ~((u64)1); 3224 peer = device->p_uuid[UI_CURRENT] & ~((u64)1); 3225 3226 *rule_nr = 10; 3227 if (self == UUID_JUST_CREATED && peer == UUID_JUST_CREATED) 3228 return 0; 3229 3230 *rule_nr = 20; 3231 if ((self == UUID_JUST_CREATED || self == (u64)0) && 3232 peer != UUID_JUST_CREATED) 3233 return -2; 3234 3235 *rule_nr = 30; 3236 if (self != UUID_JUST_CREATED && 3237 (peer == UUID_JUST_CREATED || peer == (u64)0)) 3238 return 2; 3239 3240 if (self == peer) { 3241 int rct, dc; /* roles at crash time */ 3242 3243 if (device->p_uuid[UI_BITMAP] == (u64)0 && device->ldev->md.uuid[UI_BITMAP] != (u64)0) { 3244 3245 if (connection->agreed_pro_version < 91) 3246 return -1091; 3247 3248 if ((device->ldev->md.uuid[UI_BITMAP] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START] & ~((u64)1)) && 3249 (device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START + 1] & ~((u64)1))) { 3250 drbd_info(device, "was SyncSource, missed the resync finished event, corrected myself:\n"); 3251 drbd_uuid_move_history(device); 3252 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP]; 3253 device->ldev->md.uuid[UI_BITMAP] = 0; 3254 3255 drbd_uuid_dump(device, "self", device->ldev->md.uuid, 3256 device->state.disk >= D_NEGOTIATING ? drbd_bm_total_weight(device) : 0, 0); 3257 *rule_nr = 34; 3258 } else { 3259 drbd_info(device, "was SyncSource (peer failed to write sync_uuid)\n"); 3260 *rule_nr = 36; 3261 } 3262 3263 return 1; 3264 } 3265 3266 if (device->ldev->md.uuid[UI_BITMAP] == (u64)0 && device->p_uuid[UI_BITMAP] != (u64)0) { 3267 3268 if (connection->agreed_pro_version < 91) 3269 return -1091; 3270 3271 if ((device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == (device->p_uuid[UI_BITMAP] & ~((u64)1)) && 3272 (device->ldev->md.uuid[UI_HISTORY_START + 1] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START] & ~((u64)1))) { 3273 drbd_info(device, "was SyncTarget, peer missed the resync finished event, corrected peer:\n"); 3274 3275 device->p_uuid[UI_HISTORY_START + 1] = device->p_uuid[UI_HISTORY_START]; 3276 device->p_uuid[UI_HISTORY_START] = device->p_uuid[UI_BITMAP]; 3277 device->p_uuid[UI_BITMAP] = 0UL; 3278 3279 drbd_uuid_dump(device, "peer", device->p_uuid, device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]); 3280 *rule_nr = 35; 3281 } else { 3282 drbd_info(device, "was SyncTarget (failed to write sync_uuid)\n"); 3283 *rule_nr = 37; 3284 } 3285 3286 return -1; 3287 } 3288 3289 /* Common power [off|failure] */ 3290 rct = (test_bit(CRASHED_PRIMARY, &device->flags) ? 1 : 0) + 3291 (device->p_uuid[UI_FLAGS] & 2); 3292 /* lowest bit is set when we were primary, 3293 * next bit (weight 2) is set when peer was primary */ 3294 *rule_nr = 40; 3295 3296 /* Neither has the "crashed primary" flag set, 3297 * only a replication link hickup. */ 3298 if (rct == 0) 3299 return 0; 3300 3301 /* Current UUID equal and no bitmap uuid; does not necessarily 3302 * mean this was a "simultaneous hard crash", maybe IO was 3303 * frozen, so no UUID-bump happened. 3304 * This is a protocol change, overload DRBD_FF_WSAME as flag 3305 * for "new-enough" peer DRBD version. */ 3306 if (device->state.role == R_PRIMARY || peer_role == R_PRIMARY) { 3307 *rule_nr = 41; 3308 if (!(connection->agreed_features & DRBD_FF_WSAME)) { 3309 drbd_warn(peer_device, "Equivalent unrotated UUIDs, but current primary present.\n"); 3310 return -(0x10000 | PRO_VERSION_MAX | (DRBD_FF_WSAME << 8)); 3311 } 3312 if (device->state.role == R_PRIMARY && peer_role == R_PRIMARY) { 3313 /* At least one has the "crashed primary" bit set, 3314 * both are primary now, but neither has rotated its UUIDs? 3315 * "Can not happen." */ 3316 drbd_err(peer_device, "Equivalent unrotated UUIDs, but both are primary. Can not resolve this.\n"); 3317 return -100; 3318 } 3319 if (device->state.role == R_PRIMARY) 3320 return 1; 3321 return -1; 3322 } 3323 3324 /* Both are secondary. 3325 * Really looks like recovery from simultaneous hard crash. 3326 * Check which had been primary before, and arbitrate. */ 3327 switch (rct) { 3328 case 0: /* !self_pri && !peer_pri */ return 0; /* already handled */ 3329 case 1: /* self_pri && !peer_pri */ return 1; 3330 case 2: /* !self_pri && peer_pri */ return -1; 3331 case 3: /* self_pri && peer_pri */ 3332 dc = test_bit(RESOLVE_CONFLICTS, &connection->flags); 3333 return dc ? -1 : 1; 3334 } 3335 } 3336 3337 *rule_nr = 50; 3338 peer = device->p_uuid[UI_BITMAP] & ~((u64)1); 3339 if (self == peer) 3340 return -1; 3341 3342 *rule_nr = 51; 3343 peer = device->p_uuid[UI_HISTORY_START] & ~((u64)1); 3344 if (self == peer) { 3345 if (connection->agreed_pro_version < 96 ? 3346 (device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == 3347 (device->p_uuid[UI_HISTORY_START + 1] & ~((u64)1)) : 3348 peer + UUID_NEW_BM_OFFSET == (device->p_uuid[UI_BITMAP] & ~((u64)1))) { 3349 /* The last P_SYNC_UUID did not get though. Undo the last start of 3350 resync as sync source modifications of the peer's UUIDs. */ 3351 3352 if (connection->agreed_pro_version < 91) 3353 return -1091; 3354 3355 device->p_uuid[UI_BITMAP] = device->p_uuid[UI_HISTORY_START]; 3356 device->p_uuid[UI_HISTORY_START] = device->p_uuid[UI_HISTORY_START + 1]; 3357 3358 drbd_info(device, "Lost last syncUUID packet, corrected:\n"); 3359 drbd_uuid_dump(device, "peer", device->p_uuid, device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]); 3360 3361 return -1; 3362 } 3363 } 3364 3365 *rule_nr = 60; 3366 self = device->ldev->md.uuid[UI_CURRENT] & ~((u64)1); 3367 for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) { 3368 peer = device->p_uuid[i] & ~((u64)1); 3369 if (self == peer) 3370 return -2; 3371 } 3372 3373 *rule_nr = 70; 3374 self = device->ldev->md.uuid[UI_BITMAP] & ~((u64)1); 3375 peer = device->p_uuid[UI_CURRENT] & ~((u64)1); 3376 if (self == peer) 3377 return 1; 3378 3379 *rule_nr = 71; 3380 self = device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1); 3381 if (self == peer) { 3382 if (connection->agreed_pro_version < 96 ? 3383 (device->ldev->md.uuid[UI_HISTORY_START + 1] & ~((u64)1)) == 3384 (device->p_uuid[UI_HISTORY_START] & ~((u64)1)) : 3385 self + UUID_NEW_BM_OFFSET == (device->ldev->md.uuid[UI_BITMAP] & ~((u64)1))) { 3386 /* The last P_SYNC_UUID did not get though. Undo the last start of 3387 resync as sync source modifications of our UUIDs. */ 3388 3389 if (connection->agreed_pro_version < 91) 3390 return -1091; 3391 3392 __drbd_uuid_set(device, UI_BITMAP, device->ldev->md.uuid[UI_HISTORY_START]); 3393 __drbd_uuid_set(device, UI_HISTORY_START, device->ldev->md.uuid[UI_HISTORY_START + 1]); 3394 3395 drbd_info(device, "Last syncUUID did not get through, corrected:\n"); 3396 drbd_uuid_dump(device, "self", device->ldev->md.uuid, 3397 device->state.disk >= D_NEGOTIATING ? drbd_bm_total_weight(device) : 0, 0); 3398 3399 return 1; 3400 } 3401 } 3402 3403 3404 *rule_nr = 80; 3405 peer = device->p_uuid[UI_CURRENT] & ~((u64)1); 3406 for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) { 3407 self = device->ldev->md.uuid[i] & ~((u64)1); 3408 if (self == peer) 3409 return 2; 3410 } 3411 3412 *rule_nr = 90; 3413 self = device->ldev->md.uuid[UI_BITMAP] & ~((u64)1); 3414 peer = device->p_uuid[UI_BITMAP] & ~((u64)1); 3415 if (self == peer && self != ((u64)0)) 3416 return 100; 3417 3418 *rule_nr = 100; 3419 for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) { 3420 self = device->ldev->md.uuid[i] & ~((u64)1); 3421 for (j = UI_HISTORY_START; j <= UI_HISTORY_END; j++) { 3422 peer = device->p_uuid[j] & ~((u64)1); 3423 if (self == peer) 3424 return -100; 3425 } 3426 } 3427 3428 return -1000; 3429 } 3430 3431 /* drbd_sync_handshake() returns the new conn state on success, or 3432 CONN_MASK (-1) on failure. 3433 */ 3434 static enum drbd_conns drbd_sync_handshake(struct drbd_peer_device *peer_device, 3435 enum drbd_role peer_role, 3436 enum drbd_disk_state peer_disk) __must_hold(local) 3437 { 3438 struct drbd_device *device = peer_device->device; 3439 enum drbd_conns rv = C_MASK; 3440 enum drbd_disk_state mydisk; 3441 struct net_conf *nc; 3442 int hg, rule_nr, rr_conflict, tentative, always_asbp; 3443 3444 mydisk = device->state.disk; 3445 if (mydisk == D_NEGOTIATING) 3446 mydisk = device->new_state_tmp.disk; 3447 3448 drbd_info(device, "drbd_sync_handshake:\n"); 3449 3450 spin_lock_irq(&device->ldev->md.uuid_lock); 3451 drbd_uuid_dump(device, "self", device->ldev->md.uuid, device->comm_bm_set, 0); 3452 drbd_uuid_dump(device, "peer", device->p_uuid, 3453 device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]); 3454 3455 hg = drbd_uuid_compare(device, peer_role, &rule_nr); 3456 spin_unlock_irq(&device->ldev->md.uuid_lock); 3457 3458 drbd_info(device, "uuid_compare()=%d by rule %d\n", hg, rule_nr); 3459 3460 if (hg == -1000) { 3461 drbd_alert(device, "Unrelated data, aborting!\n"); 3462 return C_MASK; 3463 } 3464 if (hg < -0x10000) { 3465 int proto, fflags; 3466 hg = -hg; 3467 proto = hg & 0xff; 3468 fflags = (hg >> 8) & 0xff; 3469 drbd_alert(device, "To resolve this both sides have to support at least protocol %d and feature flags 0x%x\n", 3470 proto, fflags); 3471 return C_MASK; 3472 } 3473 if (hg < -1000) { 3474 drbd_alert(device, "To resolve this both sides have to support at least protocol %d\n", -hg - 1000); 3475 return C_MASK; 3476 } 3477 3478 if ((mydisk == D_INCONSISTENT && peer_disk > D_INCONSISTENT) || 3479 (peer_disk == D_INCONSISTENT && mydisk > D_INCONSISTENT)) { 3480 int f = (hg == -100) || abs(hg) == 2; 3481 hg = mydisk > D_INCONSISTENT ? 1 : -1; 3482 if (f) 3483 hg = hg*2; 3484 drbd_info(device, "Becoming sync %s due to disk states.\n", 3485 hg > 0 ? "source" : "target"); 3486 } 3487 3488 if (abs(hg) == 100) 3489 drbd_khelper(device, "initial-split-brain"); 3490 3491 rcu_read_lock(); 3492 nc = rcu_dereference(peer_device->connection->net_conf); 3493 always_asbp = nc->always_asbp; 3494 rr_conflict = nc->rr_conflict; 3495 tentative = nc->tentative; 3496 rcu_read_unlock(); 3497 3498 if (hg == 100 || (hg == -100 && always_asbp)) { 3499 int pcount = (device->state.role == R_PRIMARY) 3500 + (peer_role == R_PRIMARY); 3501 int forced = (hg == -100); 3502 3503 switch (pcount) { 3504 case 0: 3505 hg = drbd_asb_recover_0p(peer_device); 3506 break; 3507 case 1: 3508 hg = drbd_asb_recover_1p(peer_device); 3509 break; 3510 case 2: 3511 hg = drbd_asb_recover_2p(peer_device); 3512 break; 3513 } 3514 if (abs(hg) < 100) { 3515 drbd_warn(device, "Split-Brain detected, %d primaries, " 3516 "automatically solved. Sync from %s node\n", 3517 pcount, (hg < 0) ? "peer" : "this"); 3518 if (forced) { 3519 drbd_warn(device, "Doing a full sync, since" 3520 " UUIDs where ambiguous.\n"); 3521 hg = hg*2; 3522 } 3523 } 3524 } 3525 3526 if (hg == -100) { 3527 if (test_bit(DISCARD_MY_DATA, &device->flags) && !(device->p_uuid[UI_FLAGS]&1)) 3528 hg = -1; 3529 if (!test_bit(DISCARD_MY_DATA, &device->flags) && (device->p_uuid[UI_FLAGS]&1)) 3530 hg = 1; 3531 3532 if (abs(hg) < 100) 3533 drbd_warn(device, "Split-Brain detected, manually solved. " 3534 "Sync from %s node\n", 3535 (hg < 0) ? "peer" : "this"); 3536 } 3537 3538 if (hg == -100) { 3539 /* FIXME this log message is not correct if we end up here 3540 * after an attempted attach on a diskless node. 3541 * We just refuse to attach -- well, we drop the "connection" 3542 * to that disk, in a way... */ 3543 drbd_alert(device, "Split-Brain detected but unresolved, dropping connection!\n"); 3544 drbd_khelper(device, "split-brain"); 3545 return C_MASK; 3546 } 3547 3548 if (hg > 0 && mydisk <= D_INCONSISTENT) { 3549 drbd_err(device, "I shall become SyncSource, but I am inconsistent!\n"); 3550 return C_MASK; 3551 } 3552 3553 if (hg < 0 && /* by intention we do not use mydisk here. */ 3554 device->state.role == R_PRIMARY && device->state.disk >= D_CONSISTENT) { 3555 switch (rr_conflict) { 3556 case ASB_CALL_HELPER: 3557 drbd_khelper(device, "pri-lost"); 3558 fallthrough; 3559 case ASB_DISCONNECT: 3560 drbd_err(device, "I shall become SyncTarget, but I am primary!\n"); 3561 return C_MASK; 3562 case ASB_VIOLENTLY: 3563 drbd_warn(device, "Becoming SyncTarget, violating the stable-data" 3564 "assumption\n"); 3565 } 3566 } 3567 3568 if (tentative || test_bit(CONN_DRY_RUN, &peer_device->connection->flags)) { 3569 if (hg == 0) 3570 drbd_info(device, "dry-run connect: No resync, would become Connected immediately.\n"); 3571 else 3572 drbd_info(device, "dry-run connect: Would become %s, doing a %s resync.", 3573 drbd_conn_str(hg > 0 ? C_SYNC_SOURCE : C_SYNC_TARGET), 3574 abs(hg) >= 2 ? "full" : "bit-map based"); 3575 return C_MASK; 3576 } 3577 3578 if (abs(hg) >= 2) { 3579 drbd_info(device, "Writing the whole bitmap, full sync required after drbd_sync_handshake.\n"); 3580 if (drbd_bitmap_io(device, &drbd_bmio_set_n_write, "set_n_write from sync_handshake", 3581 BM_LOCKED_SET_ALLOWED)) 3582 return C_MASK; 3583 } 3584 3585 if (hg > 0) { /* become sync source. */ 3586 rv = C_WF_BITMAP_S; 3587 } else if (hg < 0) { /* become sync target */ 3588 rv = C_WF_BITMAP_T; 3589 } else { 3590 rv = C_CONNECTED; 3591 if (drbd_bm_total_weight(device)) { 3592 drbd_info(device, "No resync, but %lu bits in bitmap!\n", 3593 drbd_bm_total_weight(device)); 3594 } 3595 } 3596 3597 return rv; 3598 } 3599 3600 static enum drbd_after_sb_p convert_after_sb(enum drbd_after_sb_p peer) 3601 { 3602 /* ASB_DISCARD_REMOTE - ASB_DISCARD_LOCAL is valid */ 3603 if (peer == ASB_DISCARD_REMOTE) 3604 return ASB_DISCARD_LOCAL; 3605 3606 /* any other things with ASB_DISCARD_REMOTE or ASB_DISCARD_LOCAL are invalid */ 3607 if (peer == ASB_DISCARD_LOCAL) 3608 return ASB_DISCARD_REMOTE; 3609 3610 /* everything else is valid if they are equal on both sides. */ 3611 return peer; 3612 } 3613 3614 static int receive_protocol(struct drbd_connection *connection, struct packet_info *pi) 3615 { 3616 struct p_protocol *p = pi->data; 3617 enum drbd_after_sb_p p_after_sb_0p, p_after_sb_1p, p_after_sb_2p; 3618 int p_proto, p_discard_my_data, p_two_primaries, cf; 3619 struct net_conf *nc, *old_net_conf, *new_net_conf = NULL; 3620 char integrity_alg[SHARED_SECRET_MAX] = ""; 3621 struct crypto_shash *peer_integrity_tfm = NULL; 3622 void *int_dig_in = NULL, *int_dig_vv = NULL; 3623 3624 p_proto = be32_to_cpu(p->protocol); 3625 p_after_sb_0p = be32_to_cpu(p->after_sb_0p); 3626 p_after_sb_1p = be32_to_cpu(p->after_sb_1p); 3627 p_after_sb_2p = be32_to_cpu(p->after_sb_2p); 3628 p_two_primaries = be32_to_cpu(p->two_primaries); 3629 cf = be32_to_cpu(p->conn_flags); 3630 p_discard_my_data = cf & CF_DISCARD_MY_DATA; 3631 3632 if (connection->agreed_pro_version >= 87) { 3633 int err; 3634 3635 if (pi->size > sizeof(integrity_alg)) 3636 return -EIO; 3637 err = drbd_recv_all(connection, integrity_alg, pi->size); 3638 if (err) 3639 return err; 3640 integrity_alg[SHARED_SECRET_MAX - 1] = 0; 3641 } 3642 3643 if (pi->cmd != P_PROTOCOL_UPDATE) { 3644 clear_bit(CONN_DRY_RUN, &connection->flags); 3645 3646 if (cf & CF_DRY_RUN) 3647 set_bit(CONN_DRY_RUN, &connection->flags); 3648 3649 rcu_read_lock(); 3650 nc = rcu_dereference(connection->net_conf); 3651 3652 if (p_proto != nc->wire_protocol) { 3653 drbd_err(connection, "incompatible %s settings\n", "protocol"); 3654 goto disconnect_rcu_unlock; 3655 } 3656 3657 if (convert_after_sb(p_after_sb_0p) != nc->after_sb_0p) { 3658 drbd_err(connection, "incompatible %s settings\n", "after-sb-0pri"); 3659 goto disconnect_rcu_unlock; 3660 } 3661 3662 if (convert_after_sb(p_after_sb_1p) != nc->after_sb_1p) { 3663 drbd_err(connection, "incompatible %s settings\n", "after-sb-1pri"); 3664 goto disconnect_rcu_unlock; 3665 } 3666 3667 if (convert_after_sb(p_after_sb_2p) != nc->after_sb_2p) { 3668 drbd_err(connection, "incompatible %s settings\n", "after-sb-2pri"); 3669 goto disconnect_rcu_unlock; 3670 } 3671 3672 if (p_discard_my_data && nc->discard_my_data) { 3673 drbd_err(connection, "incompatible %s settings\n", "discard-my-data"); 3674 goto disconnect_rcu_unlock; 3675 } 3676 3677 if (p_two_primaries != nc->two_primaries) { 3678 drbd_err(connection, "incompatible %s settings\n", "allow-two-primaries"); 3679 goto disconnect_rcu_unlock; 3680 } 3681 3682 if (strcmp(integrity_alg, nc->integrity_alg)) { 3683 drbd_err(connection, "incompatible %s settings\n", "data-integrity-alg"); 3684 goto disconnect_rcu_unlock; 3685 } 3686 3687 rcu_read_unlock(); 3688 } 3689 3690 if (integrity_alg[0]) { 3691 int hash_size; 3692 3693 /* 3694 * We can only change the peer data integrity algorithm 3695 * here. Changing our own data integrity algorithm 3696 * requires that we send a P_PROTOCOL_UPDATE packet at 3697 * the same time; otherwise, the peer has no way to 3698 * tell between which packets the algorithm should 3699 * change. 3700 */ 3701 3702 peer_integrity_tfm = crypto_alloc_shash(integrity_alg, 0, 0); 3703 if (IS_ERR(peer_integrity_tfm)) { 3704 peer_integrity_tfm = NULL; 3705 drbd_err(connection, "peer data-integrity-alg %s not supported\n", 3706 integrity_alg); 3707 goto disconnect; 3708 } 3709 3710 hash_size = crypto_shash_digestsize(peer_integrity_tfm); 3711 int_dig_in = kmalloc(hash_size, GFP_KERNEL); 3712 int_dig_vv = kmalloc(hash_size, GFP_KERNEL); 3713 if (!(int_dig_in && int_dig_vv)) { 3714 drbd_err(connection, "Allocation of buffers for data integrity checking failed\n"); 3715 goto disconnect; 3716 } 3717 } 3718 3719 new_net_conf = kmalloc(sizeof(struct net_conf), GFP_KERNEL); 3720 if (!new_net_conf) 3721 goto disconnect; 3722 3723 mutex_lock(&connection->data.mutex); 3724 mutex_lock(&connection->resource->conf_update); 3725 old_net_conf = connection->net_conf; 3726 *new_net_conf = *old_net_conf; 3727 3728 new_net_conf->wire_protocol = p_proto; 3729 new_net_conf->after_sb_0p = convert_after_sb(p_after_sb_0p); 3730 new_net_conf->after_sb_1p = convert_after_sb(p_after_sb_1p); 3731 new_net_conf->after_sb_2p = convert_after_sb(p_after_sb_2p); 3732 new_net_conf->two_primaries = p_two_primaries; 3733 3734 rcu_assign_pointer(connection->net_conf, new_net_conf); 3735 mutex_unlock(&connection->resource->conf_update); 3736 mutex_unlock(&connection->data.mutex); 3737 3738 crypto_free_shash(connection->peer_integrity_tfm); 3739 kfree(connection->int_dig_in); 3740 kfree(connection->int_dig_vv); 3741 connection->peer_integrity_tfm = peer_integrity_tfm; 3742 connection->int_dig_in = int_dig_in; 3743 connection->int_dig_vv = int_dig_vv; 3744 3745 if (strcmp(old_net_conf->integrity_alg, integrity_alg)) 3746 drbd_info(connection, "peer data-integrity-alg: %s\n", 3747 integrity_alg[0] ? integrity_alg : "(none)"); 3748 3749 kvfree_rcu(old_net_conf); 3750 return 0; 3751 3752 disconnect_rcu_unlock: 3753 rcu_read_unlock(); 3754 disconnect: 3755 crypto_free_shash(peer_integrity_tfm); 3756 kfree(int_dig_in); 3757 kfree(int_dig_vv); 3758 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 3759 return -EIO; 3760 } 3761 3762 /* helper function 3763 * input: alg name, feature name 3764 * return: NULL (alg name was "") 3765 * ERR_PTR(error) if something goes wrong 3766 * or the crypto hash ptr, if it worked out ok. */ 3767 static struct crypto_shash *drbd_crypto_alloc_digest_safe( 3768 const struct drbd_device *device, 3769 const char *alg, const char *name) 3770 { 3771 struct crypto_shash *tfm; 3772 3773 if (!alg[0]) 3774 return NULL; 3775 3776 tfm = crypto_alloc_shash(alg, 0, 0); 3777 if (IS_ERR(tfm)) { 3778 drbd_err(device, "Can not allocate \"%s\" as %s (reason: %ld)\n", 3779 alg, name, PTR_ERR(tfm)); 3780 return tfm; 3781 } 3782 return tfm; 3783 } 3784 3785 static int ignore_remaining_packet(struct drbd_connection *connection, struct packet_info *pi) 3786 { 3787 void *buffer = connection->data.rbuf; 3788 int size = pi->size; 3789 3790 while (size) { 3791 int s = min_t(int, size, DRBD_SOCKET_BUFFER_SIZE); 3792 s = drbd_recv(connection, buffer, s); 3793 if (s <= 0) { 3794 if (s < 0) 3795 return s; 3796 break; 3797 } 3798 size -= s; 3799 } 3800 if (size) 3801 return -EIO; 3802 return 0; 3803 } 3804 3805 /* 3806 * config_unknown_volume - device configuration command for unknown volume 3807 * 3808 * When a device is added to an existing connection, the node on which the 3809 * device is added first will send configuration commands to its peer but the 3810 * peer will not know about the device yet. It will warn and ignore these 3811 * commands. Once the device is added on the second node, the second node will 3812 * send the same device configuration commands, but in the other direction. 3813 * 3814 * (We can also end up here if drbd is misconfigured.) 3815 */ 3816 static int config_unknown_volume(struct drbd_connection *connection, struct packet_info *pi) 3817 { 3818 drbd_warn(connection, "%s packet received for volume %u, which is not configured locally\n", 3819 cmdname(pi->cmd), pi->vnr); 3820 return ignore_remaining_packet(connection, pi); 3821 } 3822 3823 static int receive_SyncParam(struct drbd_connection *connection, struct packet_info *pi) 3824 { 3825 struct drbd_peer_device *peer_device; 3826 struct drbd_device *device; 3827 struct p_rs_param_95 *p; 3828 unsigned int header_size, data_size, exp_max_sz; 3829 struct crypto_shash *verify_tfm = NULL; 3830 struct crypto_shash *csums_tfm = NULL; 3831 struct net_conf *old_net_conf, *new_net_conf = NULL; 3832 struct disk_conf *old_disk_conf = NULL, *new_disk_conf = NULL; 3833 const int apv = connection->agreed_pro_version; 3834 struct fifo_buffer *old_plan = NULL, *new_plan = NULL; 3835 unsigned int fifo_size = 0; 3836 int err; 3837 3838 peer_device = conn_peer_device(connection, pi->vnr); 3839 if (!peer_device) 3840 return config_unknown_volume(connection, pi); 3841 device = peer_device->device; 3842 3843 exp_max_sz = apv <= 87 ? sizeof(struct p_rs_param) 3844 : apv == 88 ? sizeof(struct p_rs_param) 3845 + SHARED_SECRET_MAX 3846 : apv <= 94 ? sizeof(struct p_rs_param_89) 3847 : /* apv >= 95 */ sizeof(struct p_rs_param_95); 3848 3849 if (pi->size > exp_max_sz) { 3850 drbd_err(device, "SyncParam packet too long: received %u, expected <= %u bytes\n", 3851 pi->size, exp_max_sz); 3852 return -EIO; 3853 } 3854 3855 if (apv <= 88) { 3856 header_size = sizeof(struct p_rs_param); 3857 data_size = pi->size - header_size; 3858 } else if (apv <= 94) { 3859 header_size = sizeof(struct p_rs_param_89); 3860 data_size = pi->size - header_size; 3861 D_ASSERT(device, data_size == 0); 3862 } else { 3863 header_size = sizeof(struct p_rs_param_95); 3864 data_size = pi->size - header_size; 3865 D_ASSERT(device, data_size == 0); 3866 } 3867 3868 /* initialize verify_alg and csums_alg */ 3869 p = pi->data; 3870 BUILD_BUG_ON(sizeof(p->algs) != 2 * SHARED_SECRET_MAX); 3871 memset(&p->algs, 0, sizeof(p->algs)); 3872 3873 err = drbd_recv_all(peer_device->connection, p, header_size); 3874 if (err) 3875 return err; 3876 3877 mutex_lock(&connection->resource->conf_update); 3878 old_net_conf = peer_device->connection->net_conf; 3879 if (get_ldev(device)) { 3880 new_disk_conf = kzalloc(sizeof(struct disk_conf), GFP_KERNEL); 3881 if (!new_disk_conf) { 3882 put_ldev(device); 3883 mutex_unlock(&connection->resource->conf_update); 3884 drbd_err(device, "Allocation of new disk_conf failed\n"); 3885 return -ENOMEM; 3886 } 3887 3888 old_disk_conf = device->ldev->disk_conf; 3889 *new_disk_conf = *old_disk_conf; 3890 3891 new_disk_conf->resync_rate = be32_to_cpu(p->resync_rate); 3892 } 3893 3894 if (apv >= 88) { 3895 if (apv == 88) { 3896 if (data_size > SHARED_SECRET_MAX || data_size == 0) { 3897 drbd_err(device, "verify-alg of wrong size, " 3898 "peer wants %u, accepting only up to %u byte\n", 3899 data_size, SHARED_SECRET_MAX); 3900 goto reconnect; 3901 } 3902 3903 err = drbd_recv_all(peer_device->connection, p->verify_alg, data_size); 3904 if (err) 3905 goto reconnect; 3906 /* we expect NUL terminated string */ 3907 /* but just in case someone tries to be evil */ 3908 D_ASSERT(device, p->verify_alg[data_size-1] == 0); 3909 p->verify_alg[data_size-1] = 0; 3910 3911 } else /* apv >= 89 */ { 3912 /* we still expect NUL terminated strings */ 3913 /* but just in case someone tries to be evil */ 3914 D_ASSERT(device, p->verify_alg[SHARED_SECRET_MAX-1] == 0); 3915 D_ASSERT(device, p->csums_alg[SHARED_SECRET_MAX-1] == 0); 3916 p->verify_alg[SHARED_SECRET_MAX-1] = 0; 3917 p->csums_alg[SHARED_SECRET_MAX-1] = 0; 3918 } 3919 3920 if (strcmp(old_net_conf->verify_alg, p->verify_alg)) { 3921 if (device->state.conn == C_WF_REPORT_PARAMS) { 3922 drbd_err(device, "Different verify-alg settings. me=\"%s\" peer=\"%s\"\n", 3923 old_net_conf->verify_alg, p->verify_alg); 3924 goto disconnect; 3925 } 3926 verify_tfm = drbd_crypto_alloc_digest_safe(device, 3927 p->verify_alg, "verify-alg"); 3928 if (IS_ERR(verify_tfm)) { 3929 verify_tfm = NULL; 3930 goto disconnect; 3931 } 3932 } 3933 3934 if (apv >= 89 && strcmp(old_net_conf->csums_alg, p->csums_alg)) { 3935 if (device->state.conn == C_WF_REPORT_PARAMS) { 3936 drbd_err(device, "Different csums-alg settings. me=\"%s\" peer=\"%s\"\n", 3937 old_net_conf->csums_alg, p->csums_alg); 3938 goto disconnect; 3939 } 3940 csums_tfm = drbd_crypto_alloc_digest_safe(device, 3941 p->csums_alg, "csums-alg"); 3942 if (IS_ERR(csums_tfm)) { 3943 csums_tfm = NULL; 3944 goto disconnect; 3945 } 3946 } 3947 3948 if (apv > 94 && new_disk_conf) { 3949 new_disk_conf->c_plan_ahead = be32_to_cpu(p->c_plan_ahead); 3950 new_disk_conf->c_delay_target = be32_to_cpu(p->c_delay_target); 3951 new_disk_conf->c_fill_target = be32_to_cpu(p->c_fill_target); 3952 new_disk_conf->c_max_rate = be32_to_cpu(p->c_max_rate); 3953 3954 fifo_size = (new_disk_conf->c_plan_ahead * 10 * SLEEP_TIME) / HZ; 3955 if (fifo_size != device->rs_plan_s->size) { 3956 new_plan = fifo_alloc(fifo_size); 3957 if (!new_plan) { 3958 drbd_err(device, "kmalloc of fifo_buffer failed"); 3959 put_ldev(device); 3960 goto disconnect; 3961 } 3962 } 3963 } 3964 3965 if (verify_tfm || csums_tfm) { 3966 new_net_conf = kzalloc(sizeof(struct net_conf), GFP_KERNEL); 3967 if (!new_net_conf) 3968 goto disconnect; 3969 3970 *new_net_conf = *old_net_conf; 3971 3972 if (verify_tfm) { 3973 strcpy(new_net_conf->verify_alg, p->verify_alg); 3974 new_net_conf->verify_alg_len = strlen(p->verify_alg) + 1; 3975 crypto_free_shash(peer_device->connection->verify_tfm); 3976 peer_device->connection->verify_tfm = verify_tfm; 3977 drbd_info(device, "using verify-alg: \"%s\"\n", p->verify_alg); 3978 } 3979 if (csums_tfm) { 3980 strcpy(new_net_conf->csums_alg, p->csums_alg); 3981 new_net_conf->csums_alg_len = strlen(p->csums_alg) + 1; 3982 crypto_free_shash(peer_device->connection->csums_tfm); 3983 peer_device->connection->csums_tfm = csums_tfm; 3984 drbd_info(device, "using csums-alg: \"%s\"\n", p->csums_alg); 3985 } 3986 rcu_assign_pointer(connection->net_conf, new_net_conf); 3987 } 3988 } 3989 3990 if (new_disk_conf) { 3991 rcu_assign_pointer(device->ldev->disk_conf, new_disk_conf); 3992 put_ldev(device); 3993 } 3994 3995 if (new_plan) { 3996 old_plan = device->rs_plan_s; 3997 rcu_assign_pointer(device->rs_plan_s, new_plan); 3998 } 3999 4000 mutex_unlock(&connection->resource->conf_update); 4001 synchronize_rcu(); 4002 if (new_net_conf) 4003 kfree(old_net_conf); 4004 kfree(old_disk_conf); 4005 kfree(old_plan); 4006 4007 return 0; 4008 4009 reconnect: 4010 if (new_disk_conf) { 4011 put_ldev(device); 4012 kfree(new_disk_conf); 4013 } 4014 mutex_unlock(&connection->resource->conf_update); 4015 return -EIO; 4016 4017 disconnect: 4018 kfree(new_plan); 4019 if (new_disk_conf) { 4020 put_ldev(device); 4021 kfree(new_disk_conf); 4022 } 4023 mutex_unlock(&connection->resource->conf_update); 4024 /* just for completeness: actually not needed, 4025 * as this is not reached if csums_tfm was ok. */ 4026 crypto_free_shash(csums_tfm); 4027 /* but free the verify_tfm again, if csums_tfm did not work out */ 4028 crypto_free_shash(verify_tfm); 4029 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD); 4030 return -EIO; 4031 } 4032 4033 /* warn if the arguments differ by more than 12.5% */ 4034 static void warn_if_differ_considerably(struct drbd_device *device, 4035 const char *s, sector_t a, sector_t b) 4036 { 4037 sector_t d; 4038 if (a == 0 || b == 0) 4039 return; 4040 d = (a > b) ? (a - b) : (b - a); 4041 if (d > (a>>3) || d > (b>>3)) 4042 drbd_warn(device, "Considerable difference in %s: %llus vs. %llus\n", s, 4043 (unsigned long long)a, (unsigned long long)b); 4044 } 4045 4046 static int receive_sizes(struct drbd_connection *connection, struct packet_info *pi) 4047 { 4048 struct drbd_peer_device *peer_device; 4049 struct drbd_device *device; 4050 struct p_sizes *p = pi->data; 4051 struct o_qlim *o = (connection->agreed_features & DRBD_FF_WSAME) ? p->qlim : NULL; 4052 enum determine_dev_size dd = DS_UNCHANGED; 4053 sector_t p_size, p_usize, p_csize, my_usize; 4054 sector_t new_size, cur_size; 4055 int ldsc = 0; /* local disk size changed */ 4056 enum dds_flags ddsf; 4057 4058 peer_device = conn_peer_device(connection, pi->vnr); 4059 if (!peer_device) 4060 return config_unknown_volume(connection, pi); 4061 device = peer_device->device; 4062 cur_size = get_capacity(device->vdisk); 4063 4064 p_size = be64_to_cpu(p->d_size); 4065 p_usize = be64_to_cpu(p->u_size); 4066 p_csize = be64_to_cpu(p->c_size); 4067 4068 /* just store the peer's disk size for now. 4069 * we still need to figure out whether we accept that. */ 4070 device->p_size = p_size; 4071 4072 if (get_ldev(device)) { 4073 rcu_read_lock(); 4074 my_usize = rcu_dereference(device->ldev->disk_conf)->disk_size; 4075 rcu_read_unlock(); 4076 4077 warn_if_differ_considerably(device, "lower level device sizes", 4078 p_size, drbd_get_max_capacity(device->ldev)); 4079 warn_if_differ_considerably(device, "user requested size", 4080 p_usize, my_usize); 4081 4082 /* if this is the first connect, or an otherwise expected 4083 * param exchange, choose the minimum */ 4084 if (device->state.conn == C_WF_REPORT_PARAMS) 4085 p_usize = min_not_zero(my_usize, p_usize); 4086 4087 /* Never shrink a device with usable data during connect, 4088 * or "attach" on the peer. 4089 * But allow online shrinking if we are connected. */ 4090 new_size = drbd_new_dev_size(device, device->ldev, p_usize, 0); 4091 if (new_size < cur_size && 4092 device->state.disk >= D_OUTDATED && 4093 (device->state.conn < C_CONNECTED || device->state.pdsk == D_DISKLESS)) { 4094 drbd_err(device, "The peer's disk size is too small! (%llu < %llu sectors)\n", 4095 (unsigned long long)new_size, (unsigned long long)cur_size); 4096 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD); 4097 put_ldev(device); 4098 return -EIO; 4099 } 4100 4101 if (my_usize != p_usize) { 4102 struct disk_conf *old_disk_conf, *new_disk_conf = NULL; 4103 4104 new_disk_conf = kzalloc(sizeof(struct disk_conf), GFP_KERNEL); 4105 if (!new_disk_conf) { 4106 put_ldev(device); 4107 return -ENOMEM; 4108 } 4109 4110 mutex_lock(&connection->resource->conf_update); 4111 old_disk_conf = device->ldev->disk_conf; 4112 *new_disk_conf = *old_disk_conf; 4113 new_disk_conf->disk_size = p_usize; 4114 4115 rcu_assign_pointer(device->ldev->disk_conf, new_disk_conf); 4116 mutex_unlock(&connection->resource->conf_update); 4117 kvfree_rcu(old_disk_conf); 4118 4119 drbd_info(device, "Peer sets u_size to %lu sectors (old: %lu)\n", 4120 (unsigned long)p_usize, (unsigned long)my_usize); 4121 } 4122 4123 put_ldev(device); 4124 } 4125 4126 device->peer_max_bio_size = be32_to_cpu(p->max_bio_size); 4127 /* Leave drbd_reconsider_queue_parameters() before drbd_determine_dev_size(). 4128 In case we cleared the QUEUE_FLAG_DISCARD from our queue in 4129 drbd_reconsider_queue_parameters(), we can be sure that after 4130 drbd_determine_dev_size() no REQ_DISCARDs are in the queue. */ 4131 4132 ddsf = be16_to_cpu(p->dds_flags); 4133 if (get_ldev(device)) { 4134 drbd_reconsider_queue_parameters(device, device->ldev, o); 4135 dd = drbd_determine_dev_size(device, ddsf, NULL); 4136 put_ldev(device); 4137 if (dd == DS_ERROR) 4138 return -EIO; 4139 drbd_md_sync(device); 4140 } else { 4141 /* 4142 * I am diskless, need to accept the peer's *current* size. 4143 * I must NOT accept the peers backing disk size, 4144 * it may have been larger than mine all along... 4145 * 4146 * At this point, the peer knows more about my disk, or at 4147 * least about what we last agreed upon, than myself. 4148 * So if his c_size is less than his d_size, the most likely 4149 * reason is that *my* d_size was smaller last time we checked. 4150 * 4151 * However, if he sends a zero current size, 4152 * take his (user-capped or) backing disk size anyways. 4153 * 4154 * Unless of course he does not have a disk himself. 4155 * In which case we ignore this completely. 4156 */ 4157 sector_t new_size = p_csize ?: p_usize ?: p_size; 4158 drbd_reconsider_queue_parameters(device, NULL, o); 4159 if (new_size == 0) { 4160 /* Ignore, peer does not know nothing. */ 4161 } else if (new_size == cur_size) { 4162 /* nothing to do */ 4163 } else if (cur_size != 0 && p_size == 0) { 4164 drbd_warn(device, "Ignored diskless peer device size (peer:%llu != me:%llu sectors)!\n", 4165 (unsigned long long)new_size, (unsigned long long)cur_size); 4166 } else if (new_size < cur_size && device->state.role == R_PRIMARY) { 4167 drbd_err(device, "The peer's device size is too small! (%llu < %llu sectors); demote me first!\n", 4168 (unsigned long long)new_size, (unsigned long long)cur_size); 4169 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD); 4170 return -EIO; 4171 } else { 4172 /* I believe the peer, if 4173 * - I don't have a current size myself 4174 * - we agree on the size anyways 4175 * - I do have a current size, am Secondary, 4176 * and he has the only disk 4177 * - I do have a current size, am Primary, 4178 * and he has the only disk, 4179 * which is larger than my current size 4180 */ 4181 drbd_set_my_capacity(device, new_size); 4182 } 4183 } 4184 4185 if (get_ldev(device)) { 4186 if (device->ldev->known_size != drbd_get_capacity(device->ldev->backing_bdev)) { 4187 device->ldev->known_size = drbd_get_capacity(device->ldev->backing_bdev); 4188 ldsc = 1; 4189 } 4190 4191 put_ldev(device); 4192 } 4193 4194 if (device->state.conn > C_WF_REPORT_PARAMS) { 4195 if (be64_to_cpu(p->c_size) != get_capacity(device->vdisk) || 4196 ldsc) { 4197 /* we have different sizes, probably peer 4198 * needs to know my new size... */ 4199 drbd_send_sizes(peer_device, 0, ddsf); 4200 } 4201 if (test_and_clear_bit(RESIZE_PENDING, &device->flags) || 4202 (dd == DS_GREW && device->state.conn == C_CONNECTED)) { 4203 if (device->state.pdsk >= D_INCONSISTENT && 4204 device->state.disk >= D_INCONSISTENT) { 4205 if (ddsf & DDSF_NO_RESYNC) 4206 drbd_info(device, "Resync of new storage suppressed with --assume-clean\n"); 4207 else 4208 resync_after_online_grow(device); 4209 } else 4210 set_bit(RESYNC_AFTER_NEG, &device->flags); 4211 } 4212 } 4213 4214 return 0; 4215 } 4216 4217 static int receive_uuids(struct drbd_connection *connection, struct packet_info *pi) 4218 { 4219 struct drbd_peer_device *peer_device; 4220 struct drbd_device *device; 4221 struct p_uuids *p = pi->data; 4222 u64 *p_uuid; 4223 int i, updated_uuids = 0; 4224 4225 peer_device = conn_peer_device(connection, pi->vnr); 4226 if (!peer_device) 4227 return config_unknown_volume(connection, pi); 4228 device = peer_device->device; 4229 4230 p_uuid = kmalloc_array(UI_EXTENDED_SIZE, sizeof(*p_uuid), GFP_NOIO); 4231 if (!p_uuid) 4232 return false; 4233 4234 for (i = UI_CURRENT; i < UI_EXTENDED_SIZE; i++) 4235 p_uuid[i] = be64_to_cpu(p->uuid[i]); 4236 4237 kfree(device->p_uuid); 4238 device->p_uuid = p_uuid; 4239 4240 if ((device->state.conn < C_CONNECTED || device->state.pdsk == D_DISKLESS) && 4241 device->state.disk < D_INCONSISTENT && 4242 device->state.role == R_PRIMARY && 4243 (device->ed_uuid & ~((u64)1)) != (p_uuid[UI_CURRENT] & ~((u64)1))) { 4244 drbd_err(device, "Can only connect to data with current UUID=%016llX\n", 4245 (unsigned long long)device->ed_uuid); 4246 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD); 4247 return -EIO; 4248 } 4249 4250 if (get_ldev(device)) { 4251 int skip_initial_sync = 4252 device->state.conn == C_CONNECTED && 4253 peer_device->connection->agreed_pro_version >= 90 && 4254 device->ldev->md.uuid[UI_CURRENT] == UUID_JUST_CREATED && 4255 (p_uuid[UI_FLAGS] & 8); 4256 if (skip_initial_sync) { 4257 drbd_info(device, "Accepted new current UUID, preparing to skip initial sync\n"); 4258 drbd_bitmap_io(device, &drbd_bmio_clear_n_write, 4259 "clear_n_write from receive_uuids", 4260 BM_LOCKED_TEST_ALLOWED); 4261 _drbd_uuid_set(device, UI_CURRENT, p_uuid[UI_CURRENT]); 4262 _drbd_uuid_set(device, UI_BITMAP, 0); 4263 _drbd_set_state(_NS2(device, disk, D_UP_TO_DATE, pdsk, D_UP_TO_DATE), 4264 CS_VERBOSE, NULL); 4265 drbd_md_sync(device); 4266 updated_uuids = 1; 4267 } 4268 put_ldev(device); 4269 } else if (device->state.disk < D_INCONSISTENT && 4270 device->state.role == R_PRIMARY) { 4271 /* I am a diskless primary, the peer just created a new current UUID 4272 for me. */ 4273 updated_uuids = drbd_set_ed_uuid(device, p_uuid[UI_CURRENT]); 4274 } 4275 4276 /* Before we test for the disk state, we should wait until an eventually 4277 ongoing cluster wide state change is finished. That is important if 4278 we are primary and are detaching from our disk. We need to see the 4279 new disk state... */ 4280 mutex_lock(device->state_mutex); 4281 mutex_unlock(device->state_mutex); 4282 if (device->state.conn >= C_CONNECTED && device->state.disk < D_INCONSISTENT) 4283 updated_uuids |= drbd_set_ed_uuid(device, p_uuid[UI_CURRENT]); 4284 4285 if (updated_uuids) 4286 drbd_print_uuids(device, "receiver updated UUIDs to"); 4287 4288 return 0; 4289 } 4290 4291 /** 4292 * convert_state() - Converts the peer's view of the cluster state to our point of view 4293 * @ps: The state as seen by the peer. 4294 */ 4295 static union drbd_state convert_state(union drbd_state ps) 4296 { 4297 union drbd_state ms; 4298 4299 static enum drbd_conns c_tab[] = { 4300 [C_WF_REPORT_PARAMS] = C_WF_REPORT_PARAMS, 4301 [C_CONNECTED] = C_CONNECTED, 4302 4303 [C_STARTING_SYNC_S] = C_STARTING_SYNC_T, 4304 [C_STARTING_SYNC_T] = C_STARTING_SYNC_S, 4305 [C_DISCONNECTING] = C_TEAR_DOWN, /* C_NETWORK_FAILURE, */ 4306 [C_VERIFY_S] = C_VERIFY_T, 4307 [C_MASK] = C_MASK, 4308 }; 4309 4310 ms.i = ps.i; 4311 4312 ms.conn = c_tab[ps.conn]; 4313 ms.peer = ps.role; 4314 ms.role = ps.peer; 4315 ms.pdsk = ps.disk; 4316 ms.disk = ps.pdsk; 4317 ms.peer_isp = (ps.aftr_isp | ps.user_isp); 4318 4319 return ms; 4320 } 4321 4322 static int receive_req_state(struct drbd_connection *connection, struct packet_info *pi) 4323 { 4324 struct drbd_peer_device *peer_device; 4325 struct drbd_device *device; 4326 struct p_req_state *p = pi->data; 4327 union drbd_state mask, val; 4328 enum drbd_state_rv rv; 4329 4330 peer_device = conn_peer_device(connection, pi->vnr); 4331 if (!peer_device) 4332 return -EIO; 4333 device = peer_device->device; 4334 4335 mask.i = be32_to_cpu(p->mask); 4336 val.i = be32_to_cpu(p->val); 4337 4338 if (test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags) && 4339 mutex_is_locked(device->state_mutex)) { 4340 drbd_send_sr_reply(peer_device, SS_CONCURRENT_ST_CHG); 4341 return 0; 4342 } 4343 4344 mask = convert_state(mask); 4345 val = convert_state(val); 4346 4347 rv = drbd_change_state(device, CS_VERBOSE, mask, val); 4348 drbd_send_sr_reply(peer_device, rv); 4349 4350 drbd_md_sync(device); 4351 4352 return 0; 4353 } 4354 4355 static int receive_req_conn_state(struct drbd_connection *connection, struct packet_info *pi) 4356 { 4357 struct p_req_state *p = pi->data; 4358 union drbd_state mask, val; 4359 enum drbd_state_rv rv; 4360 4361 mask.i = be32_to_cpu(p->mask); 4362 val.i = be32_to_cpu(p->val); 4363 4364 if (test_bit(RESOLVE_CONFLICTS, &connection->flags) && 4365 mutex_is_locked(&connection->cstate_mutex)) { 4366 conn_send_sr_reply(connection, SS_CONCURRENT_ST_CHG); 4367 return 0; 4368 } 4369 4370 mask = convert_state(mask); 4371 val = convert_state(val); 4372 4373 rv = conn_request_state(connection, mask, val, CS_VERBOSE | CS_LOCAL_ONLY | CS_IGN_OUTD_FAIL); 4374 conn_send_sr_reply(connection, rv); 4375 4376 return 0; 4377 } 4378 4379 static int receive_state(struct drbd_connection *connection, struct packet_info *pi) 4380 { 4381 struct drbd_peer_device *peer_device; 4382 struct drbd_device *device; 4383 struct p_state *p = pi->data; 4384 union drbd_state os, ns, peer_state; 4385 enum drbd_disk_state real_peer_disk; 4386 enum chg_state_flags cs_flags; 4387 int rv; 4388 4389 peer_device = conn_peer_device(connection, pi->vnr); 4390 if (!peer_device) 4391 return config_unknown_volume(connection, pi); 4392 device = peer_device->device; 4393 4394 peer_state.i = be32_to_cpu(p->state); 4395 4396 real_peer_disk = peer_state.disk; 4397 if (peer_state.disk == D_NEGOTIATING) { 4398 real_peer_disk = device->p_uuid[UI_FLAGS] & 4 ? D_INCONSISTENT : D_CONSISTENT; 4399 drbd_info(device, "real peer disk state = %s\n", drbd_disk_str(real_peer_disk)); 4400 } 4401 4402 spin_lock_irq(&device->resource->req_lock); 4403 retry: 4404 os = ns = drbd_read_state(device); 4405 spin_unlock_irq(&device->resource->req_lock); 4406 4407 /* If some other part of the code (ack_receiver thread, timeout) 4408 * already decided to close the connection again, 4409 * we must not "re-establish" it here. */ 4410 if (os.conn <= C_TEAR_DOWN) 4411 return -ECONNRESET; 4412 4413 /* If this is the "end of sync" confirmation, usually the peer disk 4414 * transitions from D_INCONSISTENT to D_UP_TO_DATE. For empty (0 bits 4415 * set) resync started in PausedSyncT, or if the timing of pause-/ 4416 * unpause-sync events has been "just right", the peer disk may 4417 * transition from D_CONSISTENT to D_UP_TO_DATE as well. 4418 */ 4419 if ((os.pdsk == D_INCONSISTENT || os.pdsk == D_CONSISTENT) && 4420 real_peer_disk == D_UP_TO_DATE && 4421 os.conn > C_CONNECTED && os.disk == D_UP_TO_DATE) { 4422 /* If we are (becoming) SyncSource, but peer is still in sync 4423 * preparation, ignore its uptodate-ness to avoid flapping, it 4424 * will change to inconsistent once the peer reaches active 4425 * syncing states. 4426 * It may have changed syncer-paused flags, however, so we 4427 * cannot ignore this completely. */ 4428 if (peer_state.conn > C_CONNECTED && 4429 peer_state.conn < C_SYNC_SOURCE) 4430 real_peer_disk = D_INCONSISTENT; 4431 4432 /* if peer_state changes to connected at the same time, 4433 * it explicitly notifies us that it finished resync. 4434 * Maybe we should finish it up, too? */ 4435 else if (os.conn >= C_SYNC_SOURCE && 4436 peer_state.conn == C_CONNECTED) { 4437 if (drbd_bm_total_weight(device) <= device->rs_failed) 4438 drbd_resync_finished(device); 4439 return 0; 4440 } 4441 } 4442 4443 /* explicit verify finished notification, stop sector reached. */ 4444 if (os.conn == C_VERIFY_T && os.disk == D_UP_TO_DATE && 4445 peer_state.conn == C_CONNECTED && real_peer_disk == D_UP_TO_DATE) { 4446 ov_out_of_sync_print(device); 4447 drbd_resync_finished(device); 4448 return 0; 4449 } 4450 4451 /* peer says his disk is inconsistent, while we think it is uptodate, 4452 * and this happens while the peer still thinks we have a sync going on, 4453 * but we think we are already done with the sync. 4454 * We ignore this to avoid flapping pdsk. 4455 * This should not happen, if the peer is a recent version of drbd. */ 4456 if (os.pdsk == D_UP_TO_DATE && real_peer_disk == D_INCONSISTENT && 4457 os.conn == C_CONNECTED && peer_state.conn > C_SYNC_SOURCE) 4458 real_peer_disk = D_UP_TO_DATE; 4459 4460 if (ns.conn == C_WF_REPORT_PARAMS) 4461 ns.conn = C_CONNECTED; 4462 4463 if (peer_state.conn == C_AHEAD) 4464 ns.conn = C_BEHIND; 4465 4466 /* TODO: 4467 * if (primary and diskless and peer uuid != effective uuid) 4468 * abort attach on peer; 4469 * 4470 * If this node does not have good data, was already connected, but 4471 * the peer did a late attach only now, trying to "negotiate" with me, 4472 * AND I am currently Primary, possibly frozen, with some specific 4473 * "effective" uuid, this should never be reached, really, because 4474 * we first send the uuids, then the current state. 4475 * 4476 * In this scenario, we already dropped the connection hard 4477 * when we received the unsuitable uuids (receive_uuids(). 4478 * 4479 * Should we want to change this, that is: not drop the connection in 4480 * receive_uuids() already, then we would need to add a branch here 4481 * that aborts the attach of "unsuitable uuids" on the peer in case 4482 * this node is currently Diskless Primary. 4483 */ 4484 4485 if (device->p_uuid && peer_state.disk >= D_NEGOTIATING && 4486 get_ldev_if_state(device, D_NEGOTIATING)) { 4487 int cr; /* consider resync */ 4488 4489 /* if we established a new connection */ 4490 cr = (os.conn < C_CONNECTED); 4491 /* if we had an established connection 4492 * and one of the nodes newly attaches a disk */ 4493 cr |= (os.conn == C_CONNECTED && 4494 (peer_state.disk == D_NEGOTIATING || 4495 os.disk == D_NEGOTIATING)); 4496 /* if we have both been inconsistent, and the peer has been 4497 * forced to be UpToDate with --force */ 4498 cr |= test_bit(CONSIDER_RESYNC, &device->flags); 4499 /* if we had been plain connected, and the admin requested to 4500 * start a sync by "invalidate" or "invalidate-remote" */ 4501 cr |= (os.conn == C_CONNECTED && 4502 (peer_state.conn >= C_STARTING_SYNC_S && 4503 peer_state.conn <= C_WF_BITMAP_T)); 4504 4505 if (cr) 4506 ns.conn = drbd_sync_handshake(peer_device, peer_state.role, real_peer_disk); 4507 4508 put_ldev(device); 4509 if (ns.conn == C_MASK) { 4510 ns.conn = C_CONNECTED; 4511 if (device->state.disk == D_NEGOTIATING) { 4512 drbd_force_state(device, NS(disk, D_FAILED)); 4513 } else if (peer_state.disk == D_NEGOTIATING) { 4514 drbd_err(device, "Disk attach process on the peer node was aborted.\n"); 4515 peer_state.disk = D_DISKLESS; 4516 real_peer_disk = D_DISKLESS; 4517 } else { 4518 if (test_and_clear_bit(CONN_DRY_RUN, &peer_device->connection->flags)) 4519 return -EIO; 4520 D_ASSERT(device, os.conn == C_WF_REPORT_PARAMS); 4521 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD); 4522 return -EIO; 4523 } 4524 } 4525 } 4526 4527 spin_lock_irq(&device->resource->req_lock); 4528 if (os.i != drbd_read_state(device).i) 4529 goto retry; 4530 clear_bit(CONSIDER_RESYNC, &device->flags); 4531 ns.peer = peer_state.role; 4532 ns.pdsk = real_peer_disk; 4533 ns.peer_isp = (peer_state.aftr_isp | peer_state.user_isp); 4534 if ((ns.conn == C_CONNECTED || ns.conn == C_WF_BITMAP_S) && ns.disk == D_NEGOTIATING) 4535 ns.disk = device->new_state_tmp.disk; 4536 cs_flags = CS_VERBOSE + (os.conn < C_CONNECTED && ns.conn >= C_CONNECTED ? 0 : CS_HARD); 4537 if (ns.pdsk == D_CONSISTENT && drbd_suspended(device) && ns.conn == C_CONNECTED && os.conn < C_CONNECTED && 4538 test_bit(NEW_CUR_UUID, &device->flags)) { 4539 /* Do not allow tl_restart(RESEND) for a rebooted peer. We can only allow this 4540 for temporal network outages! */ 4541 spin_unlock_irq(&device->resource->req_lock); 4542 drbd_err(device, "Aborting Connect, can not thaw IO with an only Consistent peer\n"); 4543 tl_clear(peer_device->connection); 4544 drbd_uuid_new_current(device); 4545 clear_bit(NEW_CUR_UUID, &device->flags); 4546 conn_request_state(peer_device->connection, NS2(conn, C_PROTOCOL_ERROR, susp, 0), CS_HARD); 4547 return -EIO; 4548 } 4549 rv = _drbd_set_state(device, ns, cs_flags, NULL); 4550 ns = drbd_read_state(device); 4551 spin_unlock_irq(&device->resource->req_lock); 4552 4553 if (rv < SS_SUCCESS) { 4554 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD); 4555 return -EIO; 4556 } 4557 4558 if (os.conn > C_WF_REPORT_PARAMS) { 4559 if (ns.conn > C_CONNECTED && peer_state.conn <= C_CONNECTED && 4560 peer_state.disk != D_NEGOTIATING ) { 4561 /* we want resync, peer has not yet decided to sync... */ 4562 /* Nowadays only used when forcing a node into primary role and 4563 setting its disk to UpToDate with that */ 4564 drbd_send_uuids(peer_device); 4565 drbd_send_current_state(peer_device); 4566 } 4567 } 4568 4569 clear_bit(DISCARD_MY_DATA, &device->flags); 4570 4571 drbd_md_sync(device); /* update connected indicator, la_size_sect, ... */ 4572 4573 return 0; 4574 } 4575 4576 static int receive_sync_uuid(struct drbd_connection *connection, struct packet_info *pi) 4577 { 4578 struct drbd_peer_device *peer_device; 4579 struct drbd_device *device; 4580 struct p_rs_uuid *p = pi->data; 4581 4582 peer_device = conn_peer_device(connection, pi->vnr); 4583 if (!peer_device) 4584 return -EIO; 4585 device = peer_device->device; 4586 4587 wait_event(device->misc_wait, 4588 device->state.conn == C_WF_SYNC_UUID || 4589 device->state.conn == C_BEHIND || 4590 device->state.conn < C_CONNECTED || 4591 device->state.disk < D_NEGOTIATING); 4592 4593 /* D_ASSERT(device, device->state.conn == C_WF_SYNC_UUID ); */ 4594 4595 /* Here the _drbd_uuid_ functions are right, current should 4596 _not_ be rotated into the history */ 4597 if (get_ldev_if_state(device, D_NEGOTIATING)) { 4598 _drbd_uuid_set(device, UI_CURRENT, be64_to_cpu(p->uuid)); 4599 _drbd_uuid_set(device, UI_BITMAP, 0UL); 4600 4601 drbd_print_uuids(device, "updated sync uuid"); 4602 drbd_start_resync(device, C_SYNC_TARGET); 4603 4604 put_ldev(device); 4605 } else 4606 drbd_err(device, "Ignoring SyncUUID packet!\n"); 4607 4608 return 0; 4609 } 4610 4611 /* 4612 * receive_bitmap_plain 4613 * 4614 * Return 0 when done, 1 when another iteration is needed, and a negative error 4615 * code upon failure. 4616 */ 4617 static int 4618 receive_bitmap_plain(struct drbd_peer_device *peer_device, unsigned int size, 4619 unsigned long *p, struct bm_xfer_ctx *c) 4620 { 4621 unsigned int data_size = DRBD_SOCKET_BUFFER_SIZE - 4622 drbd_header_size(peer_device->connection); 4623 unsigned int num_words = min_t(size_t, data_size / sizeof(*p), 4624 c->bm_words - c->word_offset); 4625 unsigned int want = num_words * sizeof(*p); 4626 int err; 4627 4628 if (want != size) { 4629 drbd_err(peer_device, "%s:want (%u) != size (%u)\n", __func__, want, size); 4630 return -EIO; 4631 } 4632 if (want == 0) 4633 return 0; 4634 err = drbd_recv_all(peer_device->connection, p, want); 4635 if (err) 4636 return err; 4637 4638 drbd_bm_merge_lel(peer_device->device, c->word_offset, num_words, p); 4639 4640 c->word_offset += num_words; 4641 c->bit_offset = c->word_offset * BITS_PER_LONG; 4642 if (c->bit_offset > c->bm_bits) 4643 c->bit_offset = c->bm_bits; 4644 4645 return 1; 4646 } 4647 4648 static enum drbd_bitmap_code dcbp_get_code(struct p_compressed_bm *p) 4649 { 4650 return (enum drbd_bitmap_code)(p->encoding & 0x0f); 4651 } 4652 4653 static int dcbp_get_start(struct p_compressed_bm *p) 4654 { 4655 return (p->encoding & 0x80) != 0; 4656 } 4657 4658 static int dcbp_get_pad_bits(struct p_compressed_bm *p) 4659 { 4660 return (p->encoding >> 4) & 0x7; 4661 } 4662 4663 /* 4664 * recv_bm_rle_bits 4665 * 4666 * Return 0 when done, 1 when another iteration is needed, and a negative error 4667 * code upon failure. 4668 */ 4669 static int 4670 recv_bm_rle_bits(struct drbd_peer_device *peer_device, 4671 struct p_compressed_bm *p, 4672 struct bm_xfer_ctx *c, 4673 unsigned int len) 4674 { 4675 struct bitstream bs; 4676 u64 look_ahead; 4677 u64 rl; 4678 u64 tmp; 4679 unsigned long s = c->bit_offset; 4680 unsigned long e; 4681 int toggle = dcbp_get_start(p); 4682 int have; 4683 int bits; 4684 4685 bitstream_init(&bs, p->code, len, dcbp_get_pad_bits(p)); 4686 4687 bits = bitstream_get_bits(&bs, &look_ahead, 64); 4688 if (bits < 0) 4689 return -EIO; 4690 4691 for (have = bits; have > 0; s += rl, toggle = !toggle) { 4692 bits = vli_decode_bits(&rl, look_ahead); 4693 if (bits <= 0) 4694 return -EIO; 4695 4696 if (toggle) { 4697 e = s + rl -1; 4698 if (e >= c->bm_bits) { 4699 drbd_err(peer_device, "bitmap overflow (e:%lu) while decoding bm RLE packet\n", e); 4700 return -EIO; 4701 } 4702 _drbd_bm_set_bits(peer_device->device, s, e); 4703 } 4704 4705 if (have < bits) { 4706 drbd_err(peer_device, "bitmap decoding error: h:%d b:%d la:0x%08llx l:%u/%u\n", 4707 have, bits, look_ahead, 4708 (unsigned int)(bs.cur.b - p->code), 4709 (unsigned int)bs.buf_len); 4710 return -EIO; 4711 } 4712 /* if we consumed all 64 bits, assign 0; >> 64 is "undefined"; */ 4713 if (likely(bits < 64)) 4714 look_ahead >>= bits; 4715 else 4716 look_ahead = 0; 4717 have -= bits; 4718 4719 bits = bitstream_get_bits(&bs, &tmp, 64 - have); 4720 if (bits < 0) 4721 return -EIO; 4722 look_ahead |= tmp << have; 4723 have += bits; 4724 } 4725 4726 c->bit_offset = s; 4727 bm_xfer_ctx_bit_to_word_offset(c); 4728 4729 return (s != c->bm_bits); 4730 } 4731 4732 /* 4733 * decode_bitmap_c 4734 * 4735 * Return 0 when done, 1 when another iteration is needed, and a negative error 4736 * code upon failure. 4737 */ 4738 static int 4739 decode_bitmap_c(struct drbd_peer_device *peer_device, 4740 struct p_compressed_bm *p, 4741 struct bm_xfer_ctx *c, 4742 unsigned int len) 4743 { 4744 if (dcbp_get_code(p) == RLE_VLI_Bits) 4745 return recv_bm_rle_bits(peer_device, p, c, len - sizeof(*p)); 4746 4747 /* other variants had been implemented for evaluation, 4748 * but have been dropped as this one turned out to be "best" 4749 * during all our tests. */ 4750 4751 drbd_err(peer_device, "receive_bitmap_c: unknown encoding %u\n", p->encoding); 4752 conn_request_state(peer_device->connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD); 4753 return -EIO; 4754 } 4755 4756 void INFO_bm_xfer_stats(struct drbd_device *device, 4757 const char *direction, struct bm_xfer_ctx *c) 4758 { 4759 /* what would it take to transfer it "plaintext" */ 4760 unsigned int header_size = drbd_header_size(first_peer_device(device)->connection); 4761 unsigned int data_size = DRBD_SOCKET_BUFFER_SIZE - header_size; 4762 unsigned int plain = 4763 header_size * (DIV_ROUND_UP(c->bm_words, data_size) + 1) + 4764 c->bm_words * sizeof(unsigned long); 4765 unsigned int total = c->bytes[0] + c->bytes[1]; 4766 unsigned int r; 4767 4768 /* total can not be zero. but just in case: */ 4769 if (total == 0) 4770 return; 4771 4772 /* don't report if not compressed */ 4773 if (total >= plain) 4774 return; 4775 4776 /* total < plain. check for overflow, still */ 4777 r = (total > UINT_MAX/1000) ? (total / (plain/1000)) 4778 : (1000 * total / plain); 4779 4780 if (r > 1000) 4781 r = 1000; 4782 4783 r = 1000 - r; 4784 drbd_info(device, "%s bitmap stats [Bytes(packets)]: plain %u(%u), RLE %u(%u), " 4785 "total %u; compression: %u.%u%%\n", 4786 direction, 4787 c->bytes[1], c->packets[1], 4788 c->bytes[0], c->packets[0], 4789 total, r/10, r % 10); 4790 } 4791 4792 /* Since we are processing the bitfield from lower addresses to higher, 4793 it does not matter if the process it in 32 bit chunks or 64 bit 4794 chunks as long as it is little endian. (Understand it as byte stream, 4795 beginning with the lowest byte...) If we would use big endian 4796 we would need to process it from the highest address to the lowest, 4797 in order to be agnostic to the 32 vs 64 bits issue. 4798 4799 returns 0 on failure, 1 if we successfully received it. */ 4800 static int receive_bitmap(struct drbd_connection *connection, struct packet_info *pi) 4801 { 4802 struct drbd_peer_device *peer_device; 4803 struct drbd_device *device; 4804 struct bm_xfer_ctx c; 4805 int err; 4806 4807 peer_device = conn_peer_device(connection, pi->vnr); 4808 if (!peer_device) 4809 return -EIO; 4810 device = peer_device->device; 4811 4812 drbd_bm_lock(device, "receive bitmap", BM_LOCKED_SET_ALLOWED); 4813 /* you are supposed to send additional out-of-sync information 4814 * if you actually set bits during this phase */ 4815 4816 c = (struct bm_xfer_ctx) { 4817 .bm_bits = drbd_bm_bits(device), 4818 .bm_words = drbd_bm_words(device), 4819 }; 4820 4821 for(;;) { 4822 if (pi->cmd == P_BITMAP) 4823 err = receive_bitmap_plain(peer_device, pi->size, pi->data, &c); 4824 else if (pi->cmd == P_COMPRESSED_BITMAP) { 4825 /* MAYBE: sanity check that we speak proto >= 90, 4826 * and the feature is enabled! */ 4827 struct p_compressed_bm *p = pi->data; 4828 4829 if (pi->size > DRBD_SOCKET_BUFFER_SIZE - drbd_header_size(connection)) { 4830 drbd_err(device, "ReportCBitmap packet too large\n"); 4831 err = -EIO; 4832 goto out; 4833 } 4834 if (pi->size <= sizeof(*p)) { 4835 drbd_err(device, "ReportCBitmap packet too small (l:%u)\n", pi->size); 4836 err = -EIO; 4837 goto out; 4838 } 4839 err = drbd_recv_all(peer_device->connection, p, pi->size); 4840 if (err) 4841 goto out; 4842 err = decode_bitmap_c(peer_device, p, &c, pi->size); 4843 } else { 4844 drbd_warn(device, "receive_bitmap: cmd neither ReportBitMap nor ReportCBitMap (is 0x%x)", pi->cmd); 4845 err = -EIO; 4846 goto out; 4847 } 4848 4849 c.packets[pi->cmd == P_BITMAP]++; 4850 c.bytes[pi->cmd == P_BITMAP] += drbd_header_size(connection) + pi->size; 4851 4852 if (err <= 0) { 4853 if (err < 0) 4854 goto out; 4855 break; 4856 } 4857 err = drbd_recv_header(peer_device->connection, pi); 4858 if (err) 4859 goto out; 4860 } 4861 4862 INFO_bm_xfer_stats(device, "receive", &c); 4863 4864 if (device->state.conn == C_WF_BITMAP_T) { 4865 enum drbd_state_rv rv; 4866 4867 err = drbd_send_bitmap(device); 4868 if (err) 4869 goto out; 4870 /* Omit CS_ORDERED with this state transition to avoid deadlocks. */ 4871 rv = _drbd_request_state(device, NS(conn, C_WF_SYNC_UUID), CS_VERBOSE); 4872 D_ASSERT(device, rv == SS_SUCCESS); 4873 } else if (device->state.conn != C_WF_BITMAP_S) { 4874 /* admin may have requested C_DISCONNECTING, 4875 * other threads may have noticed network errors */ 4876 drbd_info(device, "unexpected cstate (%s) in receive_bitmap\n", 4877 drbd_conn_str(device->state.conn)); 4878 } 4879 err = 0; 4880 4881 out: 4882 drbd_bm_unlock(device); 4883 if (!err && device->state.conn == C_WF_BITMAP_S) 4884 drbd_start_resync(device, C_SYNC_SOURCE); 4885 return err; 4886 } 4887 4888 static int receive_skip(struct drbd_connection *connection, struct packet_info *pi) 4889 { 4890 drbd_warn(connection, "skipping unknown optional packet type %d, l: %d!\n", 4891 pi->cmd, pi->size); 4892 4893 return ignore_remaining_packet(connection, pi); 4894 } 4895 4896 static int receive_UnplugRemote(struct drbd_connection *connection, struct packet_info *pi) 4897 { 4898 /* Make sure we've acked all the TCP data associated 4899 * with the data requests being unplugged */ 4900 tcp_sock_set_quickack(connection->data.socket->sk, 2); 4901 return 0; 4902 } 4903 4904 static int receive_out_of_sync(struct drbd_connection *connection, struct packet_info *pi) 4905 { 4906 struct drbd_peer_device *peer_device; 4907 struct drbd_device *device; 4908 struct p_block_desc *p = pi->data; 4909 4910 peer_device = conn_peer_device(connection, pi->vnr); 4911 if (!peer_device) 4912 return -EIO; 4913 device = peer_device->device; 4914 4915 switch (device->state.conn) { 4916 case C_WF_SYNC_UUID: 4917 case C_WF_BITMAP_T: 4918 case C_BEHIND: 4919 break; 4920 default: 4921 drbd_err(device, "ASSERT FAILED cstate = %s, expected: WFSyncUUID|WFBitMapT|Behind\n", 4922 drbd_conn_str(device->state.conn)); 4923 } 4924 4925 drbd_set_out_of_sync(device, be64_to_cpu(p->sector), be32_to_cpu(p->blksize)); 4926 4927 return 0; 4928 } 4929 4930 static int receive_rs_deallocated(struct drbd_connection *connection, struct packet_info *pi) 4931 { 4932 struct drbd_peer_device *peer_device; 4933 struct p_block_desc *p = pi->data; 4934 struct drbd_device *device; 4935 sector_t sector; 4936 int size, err = 0; 4937 4938 peer_device = conn_peer_device(connection, pi->vnr); 4939 if (!peer_device) 4940 return -EIO; 4941 device = peer_device->device; 4942 4943 sector = be64_to_cpu(p->sector); 4944 size = be32_to_cpu(p->blksize); 4945 4946 dec_rs_pending(device); 4947 4948 if (get_ldev(device)) { 4949 struct drbd_peer_request *peer_req; 4950 const enum req_op op = REQ_OP_WRITE_ZEROES; 4951 4952 peer_req = drbd_alloc_peer_req(peer_device, ID_SYNCER, sector, 4953 size, 0, GFP_NOIO); 4954 if (!peer_req) { 4955 put_ldev(device); 4956 return -ENOMEM; 4957 } 4958 4959 peer_req->w.cb = e_end_resync_block; 4960 peer_req->submit_jif = jiffies; 4961 peer_req->flags |= EE_TRIM; 4962 4963 spin_lock_irq(&device->resource->req_lock); 4964 list_add_tail(&peer_req->w.list, &device->sync_ee); 4965 spin_unlock_irq(&device->resource->req_lock); 4966 4967 atomic_add(pi->size >> 9, &device->rs_sect_ev); 4968 err = drbd_submit_peer_request(device, peer_req, op, 4969 DRBD_FAULT_RS_WR); 4970 4971 if (err) { 4972 spin_lock_irq(&device->resource->req_lock); 4973 list_del(&peer_req->w.list); 4974 spin_unlock_irq(&device->resource->req_lock); 4975 4976 drbd_free_peer_req(device, peer_req); 4977 put_ldev(device); 4978 err = 0; 4979 goto fail; 4980 } 4981 4982 inc_unacked(device); 4983 4984 /* No put_ldev() here. Gets called in drbd_endio_write_sec_final(), 4985 as well as drbd_rs_complete_io() */ 4986 } else { 4987 fail: 4988 drbd_rs_complete_io(device, sector); 4989 drbd_send_ack_ex(peer_device, P_NEG_ACK, sector, size, ID_SYNCER); 4990 } 4991 4992 atomic_add(size >> 9, &device->rs_sect_in); 4993 4994 return err; 4995 } 4996 4997 struct data_cmd { 4998 int expect_payload; 4999 unsigned int pkt_size; 5000 int (*fn)(struct drbd_connection *, struct packet_info *); 5001 }; 5002 5003 static struct data_cmd drbd_cmd_handler[] = { 5004 [P_DATA] = { 1, sizeof(struct p_data), receive_Data }, 5005 [P_DATA_REPLY] = { 1, sizeof(struct p_data), receive_DataReply }, 5006 [P_RS_DATA_REPLY] = { 1, sizeof(struct p_data), receive_RSDataReply } , 5007 [P_BARRIER] = { 0, sizeof(struct p_barrier), receive_Barrier } , 5008 [P_BITMAP] = { 1, 0, receive_bitmap } , 5009 [P_COMPRESSED_BITMAP] = { 1, 0, receive_bitmap } , 5010 [P_UNPLUG_REMOTE] = { 0, 0, receive_UnplugRemote }, 5011 [P_DATA_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest }, 5012 [P_RS_DATA_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest }, 5013 [P_SYNC_PARAM] = { 1, 0, receive_SyncParam }, 5014 [P_SYNC_PARAM89] = { 1, 0, receive_SyncParam }, 5015 [P_PROTOCOL] = { 1, sizeof(struct p_protocol), receive_protocol }, 5016 [P_UUIDS] = { 0, sizeof(struct p_uuids), receive_uuids }, 5017 [P_SIZES] = { 0, sizeof(struct p_sizes), receive_sizes }, 5018 [P_STATE] = { 0, sizeof(struct p_state), receive_state }, 5019 [P_STATE_CHG_REQ] = { 0, sizeof(struct p_req_state), receive_req_state }, 5020 [P_SYNC_UUID] = { 0, sizeof(struct p_rs_uuid), receive_sync_uuid }, 5021 [P_OV_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest }, 5022 [P_OV_REPLY] = { 1, sizeof(struct p_block_req), receive_DataRequest }, 5023 [P_CSUM_RS_REQUEST] = { 1, sizeof(struct p_block_req), receive_DataRequest }, 5024 [P_RS_THIN_REQ] = { 0, sizeof(struct p_block_req), receive_DataRequest }, 5025 [P_DELAY_PROBE] = { 0, sizeof(struct p_delay_probe93), receive_skip }, 5026 [P_OUT_OF_SYNC] = { 0, sizeof(struct p_block_desc), receive_out_of_sync }, 5027 [P_CONN_ST_CHG_REQ] = { 0, sizeof(struct p_req_state), receive_req_conn_state }, 5028 [P_PROTOCOL_UPDATE] = { 1, sizeof(struct p_protocol), receive_protocol }, 5029 [P_TRIM] = { 0, sizeof(struct p_trim), receive_Data }, 5030 [P_ZEROES] = { 0, sizeof(struct p_trim), receive_Data }, 5031 [P_RS_DEALLOCATED] = { 0, sizeof(struct p_block_desc), receive_rs_deallocated }, 5032 }; 5033 5034 static void drbdd(struct drbd_connection *connection) 5035 { 5036 struct packet_info pi; 5037 size_t shs; /* sub header size */ 5038 int err; 5039 5040 while (get_t_state(&connection->receiver) == RUNNING) { 5041 struct data_cmd const *cmd; 5042 5043 drbd_thread_current_set_cpu(&connection->receiver); 5044 update_receiver_timing_details(connection, drbd_recv_header_maybe_unplug); 5045 if (drbd_recv_header_maybe_unplug(connection, &pi)) 5046 goto err_out; 5047 5048 cmd = &drbd_cmd_handler[pi.cmd]; 5049 if (unlikely(pi.cmd >= ARRAY_SIZE(drbd_cmd_handler) || !cmd->fn)) { 5050 drbd_err(connection, "Unexpected data packet %s (0x%04x)", 5051 cmdname(pi.cmd), pi.cmd); 5052 goto err_out; 5053 } 5054 5055 shs = cmd->pkt_size; 5056 if (pi.cmd == P_SIZES && connection->agreed_features & DRBD_FF_WSAME) 5057 shs += sizeof(struct o_qlim); 5058 if (pi.size > shs && !cmd->expect_payload) { 5059 drbd_err(connection, "No payload expected %s l:%d\n", 5060 cmdname(pi.cmd), pi.size); 5061 goto err_out; 5062 } 5063 if (pi.size < shs) { 5064 drbd_err(connection, "%s: unexpected packet size, expected:%d received:%d\n", 5065 cmdname(pi.cmd), (int)shs, pi.size); 5066 goto err_out; 5067 } 5068 5069 if (shs) { 5070 update_receiver_timing_details(connection, drbd_recv_all_warn); 5071 err = drbd_recv_all_warn(connection, pi.data, shs); 5072 if (err) 5073 goto err_out; 5074 pi.size -= shs; 5075 } 5076 5077 update_receiver_timing_details(connection, cmd->fn); 5078 err = cmd->fn(connection, &pi); 5079 if (err) { 5080 drbd_err(connection, "error receiving %s, e: %d l: %d!\n", 5081 cmdname(pi.cmd), err, pi.size); 5082 goto err_out; 5083 } 5084 } 5085 return; 5086 5087 err_out: 5088 conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD); 5089 } 5090 5091 static void conn_disconnect(struct drbd_connection *connection) 5092 { 5093 struct drbd_peer_device *peer_device; 5094 enum drbd_conns oc; 5095 int vnr; 5096 5097 if (connection->cstate == C_STANDALONE) 5098 return; 5099 5100 /* We are about to start the cleanup after connection loss. 5101 * Make sure drbd_make_request knows about that. 5102 * Usually we should be in some network failure state already, 5103 * but just in case we are not, we fix it up here. 5104 */ 5105 conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD); 5106 5107 /* ack_receiver does not clean up anything. it must not interfere, either */ 5108 drbd_thread_stop(&connection->ack_receiver); 5109 if (connection->ack_sender) { 5110 destroy_workqueue(connection->ack_sender); 5111 connection->ack_sender = NULL; 5112 } 5113 drbd_free_sock(connection); 5114 5115 rcu_read_lock(); 5116 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 5117 struct drbd_device *device = peer_device->device; 5118 kref_get(&device->kref); 5119 rcu_read_unlock(); 5120 drbd_disconnected(peer_device); 5121 kref_put(&device->kref, drbd_destroy_device); 5122 rcu_read_lock(); 5123 } 5124 rcu_read_unlock(); 5125 5126 if (!list_empty(&connection->current_epoch->list)) 5127 drbd_err(connection, "ASSERTION FAILED: connection->current_epoch->list not empty\n"); 5128 /* ok, no more ee's on the fly, it is safe to reset the epoch_size */ 5129 atomic_set(&connection->current_epoch->epoch_size, 0); 5130 connection->send.seen_any_write_yet = false; 5131 5132 drbd_info(connection, "Connection closed\n"); 5133 5134 if (conn_highest_role(connection) == R_PRIMARY && conn_highest_pdsk(connection) >= D_UNKNOWN) 5135 conn_try_outdate_peer_async(connection); 5136 5137 spin_lock_irq(&connection->resource->req_lock); 5138 oc = connection->cstate; 5139 if (oc >= C_UNCONNECTED) 5140 _conn_request_state(connection, NS(conn, C_UNCONNECTED), CS_VERBOSE); 5141 5142 spin_unlock_irq(&connection->resource->req_lock); 5143 5144 if (oc == C_DISCONNECTING) 5145 conn_request_state(connection, NS(conn, C_STANDALONE), CS_VERBOSE | CS_HARD); 5146 } 5147 5148 static int drbd_disconnected(struct drbd_peer_device *peer_device) 5149 { 5150 struct drbd_device *device = peer_device->device; 5151 unsigned int i; 5152 5153 /* wait for current activity to cease. */ 5154 spin_lock_irq(&device->resource->req_lock); 5155 _drbd_wait_ee_list_empty(device, &device->active_ee); 5156 _drbd_wait_ee_list_empty(device, &device->sync_ee); 5157 _drbd_wait_ee_list_empty(device, &device->read_ee); 5158 spin_unlock_irq(&device->resource->req_lock); 5159 5160 /* We do not have data structures that would allow us to 5161 * get the rs_pending_cnt down to 0 again. 5162 * * On C_SYNC_TARGET we do not have any data structures describing 5163 * the pending RSDataRequest's we have sent. 5164 * * On C_SYNC_SOURCE there is no data structure that tracks 5165 * the P_RS_DATA_REPLY blocks that we sent to the SyncTarget. 5166 * And no, it is not the sum of the reference counts in the 5167 * resync_LRU. The resync_LRU tracks the whole operation including 5168 * the disk-IO, while the rs_pending_cnt only tracks the blocks 5169 * on the fly. */ 5170 drbd_rs_cancel_all(device); 5171 device->rs_total = 0; 5172 device->rs_failed = 0; 5173 atomic_set(&device->rs_pending_cnt, 0); 5174 wake_up(&device->misc_wait); 5175 5176 del_timer_sync(&device->resync_timer); 5177 resync_timer_fn(&device->resync_timer); 5178 5179 /* wait for all w_e_end_data_req, w_e_end_rsdata_req, w_send_barrier, 5180 * w_make_resync_request etc. which may still be on the worker queue 5181 * to be "canceled" */ 5182 drbd_flush_workqueue(&peer_device->connection->sender_work); 5183 5184 drbd_finish_peer_reqs(device); 5185 5186 /* This second workqueue flush is necessary, since drbd_finish_peer_reqs() 5187 might have issued a work again. The one before drbd_finish_peer_reqs() is 5188 necessary to reclain net_ee in drbd_finish_peer_reqs(). */ 5189 drbd_flush_workqueue(&peer_device->connection->sender_work); 5190 5191 /* need to do it again, drbd_finish_peer_reqs() may have populated it 5192 * again via drbd_try_clear_on_disk_bm(). */ 5193 drbd_rs_cancel_all(device); 5194 5195 kfree(device->p_uuid); 5196 device->p_uuid = NULL; 5197 5198 if (!drbd_suspended(device)) 5199 tl_clear(peer_device->connection); 5200 5201 drbd_md_sync(device); 5202 5203 if (get_ldev(device)) { 5204 drbd_bitmap_io(device, &drbd_bm_write_copy_pages, 5205 "write from disconnected", BM_LOCKED_CHANGE_ALLOWED); 5206 put_ldev(device); 5207 } 5208 5209 /* tcp_close and release of sendpage pages can be deferred. I don't 5210 * want to use SO_LINGER, because apparently it can be deferred for 5211 * more than 20 seconds (longest time I checked). 5212 * 5213 * Actually we don't care for exactly when the network stack does its 5214 * put_page(), but release our reference on these pages right here. 5215 */ 5216 i = drbd_free_peer_reqs(device, &device->net_ee); 5217 if (i) 5218 drbd_info(device, "net_ee not empty, killed %u entries\n", i); 5219 i = atomic_read(&device->pp_in_use_by_net); 5220 if (i) 5221 drbd_info(device, "pp_in_use_by_net = %d, expected 0\n", i); 5222 i = atomic_read(&device->pp_in_use); 5223 if (i) 5224 drbd_info(device, "pp_in_use = %d, expected 0\n", i); 5225 5226 D_ASSERT(device, list_empty(&device->read_ee)); 5227 D_ASSERT(device, list_empty(&device->active_ee)); 5228 D_ASSERT(device, list_empty(&device->sync_ee)); 5229 D_ASSERT(device, list_empty(&device->done_ee)); 5230 5231 return 0; 5232 } 5233 5234 /* 5235 * We support PRO_VERSION_MIN to PRO_VERSION_MAX. The protocol version 5236 * we can agree on is stored in agreed_pro_version. 5237 * 5238 * feature flags and the reserved array should be enough room for future 5239 * enhancements of the handshake protocol, and possible plugins... 5240 * 5241 * for now, they are expected to be zero, but ignored. 5242 */ 5243 static int drbd_send_features(struct drbd_connection *connection) 5244 { 5245 struct drbd_socket *sock; 5246 struct p_connection_features *p; 5247 5248 sock = &connection->data; 5249 p = conn_prepare_command(connection, sock); 5250 if (!p) 5251 return -EIO; 5252 memset(p, 0, sizeof(*p)); 5253 p->protocol_min = cpu_to_be32(PRO_VERSION_MIN); 5254 p->protocol_max = cpu_to_be32(PRO_VERSION_MAX); 5255 p->feature_flags = cpu_to_be32(PRO_FEATURES); 5256 return conn_send_command(connection, sock, P_CONNECTION_FEATURES, sizeof(*p), NULL, 0); 5257 } 5258 5259 /* 5260 * return values: 5261 * 1 yes, we have a valid connection 5262 * 0 oops, did not work out, please try again 5263 * -1 peer talks different language, 5264 * no point in trying again, please go standalone. 5265 */ 5266 static int drbd_do_features(struct drbd_connection *connection) 5267 { 5268 /* ASSERT current == connection->receiver ... */ 5269 struct p_connection_features *p; 5270 const int expect = sizeof(struct p_connection_features); 5271 struct packet_info pi; 5272 int err; 5273 5274 err = drbd_send_features(connection); 5275 if (err) 5276 return 0; 5277 5278 err = drbd_recv_header(connection, &pi); 5279 if (err) 5280 return 0; 5281 5282 if (pi.cmd != P_CONNECTION_FEATURES) { 5283 drbd_err(connection, "expected ConnectionFeatures packet, received: %s (0x%04x)\n", 5284 cmdname(pi.cmd), pi.cmd); 5285 return -1; 5286 } 5287 5288 if (pi.size != expect) { 5289 drbd_err(connection, "expected ConnectionFeatures length: %u, received: %u\n", 5290 expect, pi.size); 5291 return -1; 5292 } 5293 5294 p = pi.data; 5295 err = drbd_recv_all_warn(connection, p, expect); 5296 if (err) 5297 return 0; 5298 5299 p->protocol_min = be32_to_cpu(p->protocol_min); 5300 p->protocol_max = be32_to_cpu(p->protocol_max); 5301 if (p->protocol_max == 0) 5302 p->protocol_max = p->protocol_min; 5303 5304 if (PRO_VERSION_MAX < p->protocol_min || 5305 PRO_VERSION_MIN > p->protocol_max) 5306 goto incompat; 5307 5308 connection->agreed_pro_version = min_t(int, PRO_VERSION_MAX, p->protocol_max); 5309 connection->agreed_features = PRO_FEATURES & be32_to_cpu(p->feature_flags); 5310 5311 drbd_info(connection, "Handshake successful: " 5312 "Agreed network protocol version %d\n", connection->agreed_pro_version); 5313 5314 drbd_info(connection, "Feature flags enabled on protocol level: 0x%x%s%s%s%s.\n", 5315 connection->agreed_features, 5316 connection->agreed_features & DRBD_FF_TRIM ? " TRIM" : "", 5317 connection->agreed_features & DRBD_FF_THIN_RESYNC ? " THIN_RESYNC" : "", 5318 connection->agreed_features & DRBD_FF_WSAME ? " WRITE_SAME" : "", 5319 connection->agreed_features & DRBD_FF_WZEROES ? " WRITE_ZEROES" : 5320 connection->agreed_features ? "" : " none"); 5321 5322 return 1; 5323 5324 incompat: 5325 drbd_err(connection, "incompatible DRBD dialects: " 5326 "I support %d-%d, peer supports %d-%d\n", 5327 PRO_VERSION_MIN, PRO_VERSION_MAX, 5328 p->protocol_min, p->protocol_max); 5329 return -1; 5330 } 5331 5332 #if !defined(CONFIG_CRYPTO_HMAC) && !defined(CONFIG_CRYPTO_HMAC_MODULE) 5333 static int drbd_do_auth(struct drbd_connection *connection) 5334 { 5335 drbd_err(connection, "This kernel was build without CONFIG_CRYPTO_HMAC.\n"); 5336 drbd_err(connection, "You need to disable 'cram-hmac-alg' in drbd.conf.\n"); 5337 return -1; 5338 } 5339 #else 5340 #define CHALLENGE_LEN 64 5341 5342 /* Return value: 5343 1 - auth succeeded, 5344 0 - failed, try again (network error), 5345 -1 - auth failed, don't try again. 5346 */ 5347 5348 static int drbd_do_auth(struct drbd_connection *connection) 5349 { 5350 struct drbd_socket *sock; 5351 char my_challenge[CHALLENGE_LEN]; /* 64 Bytes... */ 5352 char *response = NULL; 5353 char *right_response = NULL; 5354 char *peers_ch = NULL; 5355 unsigned int key_len; 5356 char secret[SHARED_SECRET_MAX]; /* 64 byte */ 5357 unsigned int resp_size; 5358 struct shash_desc *desc; 5359 struct packet_info pi; 5360 struct net_conf *nc; 5361 int err, rv; 5362 5363 /* FIXME: Put the challenge/response into the preallocated socket buffer. */ 5364 5365 rcu_read_lock(); 5366 nc = rcu_dereference(connection->net_conf); 5367 key_len = strlen(nc->shared_secret); 5368 memcpy(secret, nc->shared_secret, key_len); 5369 rcu_read_unlock(); 5370 5371 desc = kmalloc(sizeof(struct shash_desc) + 5372 crypto_shash_descsize(connection->cram_hmac_tfm), 5373 GFP_KERNEL); 5374 if (!desc) { 5375 rv = -1; 5376 goto fail; 5377 } 5378 desc->tfm = connection->cram_hmac_tfm; 5379 5380 rv = crypto_shash_setkey(connection->cram_hmac_tfm, (u8 *)secret, key_len); 5381 if (rv) { 5382 drbd_err(connection, "crypto_shash_setkey() failed with %d\n", rv); 5383 rv = -1; 5384 goto fail; 5385 } 5386 5387 get_random_bytes(my_challenge, CHALLENGE_LEN); 5388 5389 sock = &connection->data; 5390 if (!conn_prepare_command(connection, sock)) { 5391 rv = 0; 5392 goto fail; 5393 } 5394 rv = !conn_send_command(connection, sock, P_AUTH_CHALLENGE, 0, 5395 my_challenge, CHALLENGE_LEN); 5396 if (!rv) 5397 goto fail; 5398 5399 err = drbd_recv_header(connection, &pi); 5400 if (err) { 5401 rv = 0; 5402 goto fail; 5403 } 5404 5405 if (pi.cmd != P_AUTH_CHALLENGE) { 5406 drbd_err(connection, "expected AuthChallenge packet, received: %s (0x%04x)\n", 5407 cmdname(pi.cmd), pi.cmd); 5408 rv = -1; 5409 goto fail; 5410 } 5411 5412 if (pi.size > CHALLENGE_LEN * 2) { 5413 drbd_err(connection, "expected AuthChallenge payload too big.\n"); 5414 rv = -1; 5415 goto fail; 5416 } 5417 5418 if (pi.size < CHALLENGE_LEN) { 5419 drbd_err(connection, "AuthChallenge payload too small.\n"); 5420 rv = -1; 5421 goto fail; 5422 } 5423 5424 peers_ch = kmalloc(pi.size, GFP_NOIO); 5425 if (!peers_ch) { 5426 rv = -1; 5427 goto fail; 5428 } 5429 5430 err = drbd_recv_all_warn(connection, peers_ch, pi.size); 5431 if (err) { 5432 rv = 0; 5433 goto fail; 5434 } 5435 5436 if (!memcmp(my_challenge, peers_ch, CHALLENGE_LEN)) { 5437 drbd_err(connection, "Peer presented the same challenge!\n"); 5438 rv = -1; 5439 goto fail; 5440 } 5441 5442 resp_size = crypto_shash_digestsize(connection->cram_hmac_tfm); 5443 response = kmalloc(resp_size, GFP_NOIO); 5444 if (!response) { 5445 rv = -1; 5446 goto fail; 5447 } 5448 5449 rv = crypto_shash_digest(desc, peers_ch, pi.size, response); 5450 if (rv) { 5451 drbd_err(connection, "crypto_hash_digest() failed with %d\n", rv); 5452 rv = -1; 5453 goto fail; 5454 } 5455 5456 if (!conn_prepare_command(connection, sock)) { 5457 rv = 0; 5458 goto fail; 5459 } 5460 rv = !conn_send_command(connection, sock, P_AUTH_RESPONSE, 0, 5461 response, resp_size); 5462 if (!rv) 5463 goto fail; 5464 5465 err = drbd_recv_header(connection, &pi); 5466 if (err) { 5467 rv = 0; 5468 goto fail; 5469 } 5470 5471 if (pi.cmd != P_AUTH_RESPONSE) { 5472 drbd_err(connection, "expected AuthResponse packet, received: %s (0x%04x)\n", 5473 cmdname(pi.cmd), pi.cmd); 5474 rv = 0; 5475 goto fail; 5476 } 5477 5478 if (pi.size != resp_size) { 5479 drbd_err(connection, "expected AuthResponse payload of wrong size\n"); 5480 rv = 0; 5481 goto fail; 5482 } 5483 5484 err = drbd_recv_all_warn(connection, response , resp_size); 5485 if (err) { 5486 rv = 0; 5487 goto fail; 5488 } 5489 5490 right_response = kmalloc(resp_size, GFP_NOIO); 5491 if (!right_response) { 5492 rv = -1; 5493 goto fail; 5494 } 5495 5496 rv = crypto_shash_digest(desc, my_challenge, CHALLENGE_LEN, 5497 right_response); 5498 if (rv) { 5499 drbd_err(connection, "crypto_hash_digest() failed with %d\n", rv); 5500 rv = -1; 5501 goto fail; 5502 } 5503 5504 rv = !memcmp(response, right_response, resp_size); 5505 5506 if (rv) 5507 drbd_info(connection, "Peer authenticated using %d bytes HMAC\n", 5508 resp_size); 5509 else 5510 rv = -1; 5511 5512 fail: 5513 kfree(peers_ch); 5514 kfree(response); 5515 kfree(right_response); 5516 if (desc) { 5517 shash_desc_zero(desc); 5518 kfree(desc); 5519 } 5520 5521 return rv; 5522 } 5523 #endif 5524 5525 int drbd_receiver(struct drbd_thread *thi) 5526 { 5527 struct drbd_connection *connection = thi->connection; 5528 int h; 5529 5530 drbd_info(connection, "receiver (re)started\n"); 5531 5532 do { 5533 h = conn_connect(connection); 5534 if (h == 0) { 5535 conn_disconnect(connection); 5536 schedule_timeout_interruptible(HZ); 5537 } 5538 if (h == -1) { 5539 drbd_warn(connection, "Discarding network configuration.\n"); 5540 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 5541 } 5542 } while (h == 0); 5543 5544 if (h > 0) { 5545 blk_start_plug(&connection->receiver_plug); 5546 drbdd(connection); 5547 blk_finish_plug(&connection->receiver_plug); 5548 } 5549 5550 conn_disconnect(connection); 5551 5552 drbd_info(connection, "receiver terminated\n"); 5553 return 0; 5554 } 5555 5556 /* ********* acknowledge sender ******** */ 5557 5558 static int got_conn_RqSReply(struct drbd_connection *connection, struct packet_info *pi) 5559 { 5560 struct p_req_state_reply *p = pi->data; 5561 int retcode = be32_to_cpu(p->retcode); 5562 5563 if (retcode >= SS_SUCCESS) { 5564 set_bit(CONN_WD_ST_CHG_OKAY, &connection->flags); 5565 } else { 5566 set_bit(CONN_WD_ST_CHG_FAIL, &connection->flags); 5567 drbd_err(connection, "Requested state change failed by peer: %s (%d)\n", 5568 drbd_set_st_err_str(retcode), retcode); 5569 } 5570 wake_up(&connection->ping_wait); 5571 5572 return 0; 5573 } 5574 5575 static int got_RqSReply(struct drbd_connection *connection, struct packet_info *pi) 5576 { 5577 struct drbd_peer_device *peer_device; 5578 struct drbd_device *device; 5579 struct p_req_state_reply *p = pi->data; 5580 int retcode = be32_to_cpu(p->retcode); 5581 5582 peer_device = conn_peer_device(connection, pi->vnr); 5583 if (!peer_device) 5584 return -EIO; 5585 device = peer_device->device; 5586 5587 if (test_bit(CONN_WD_ST_CHG_REQ, &connection->flags)) { 5588 D_ASSERT(device, connection->agreed_pro_version < 100); 5589 return got_conn_RqSReply(connection, pi); 5590 } 5591 5592 if (retcode >= SS_SUCCESS) { 5593 set_bit(CL_ST_CHG_SUCCESS, &device->flags); 5594 } else { 5595 set_bit(CL_ST_CHG_FAIL, &device->flags); 5596 drbd_err(device, "Requested state change failed by peer: %s (%d)\n", 5597 drbd_set_st_err_str(retcode), retcode); 5598 } 5599 wake_up(&device->state_wait); 5600 5601 return 0; 5602 } 5603 5604 static int got_Ping(struct drbd_connection *connection, struct packet_info *pi) 5605 { 5606 return drbd_send_ping_ack(connection); 5607 5608 } 5609 5610 static int got_PingAck(struct drbd_connection *connection, struct packet_info *pi) 5611 { 5612 /* restore idle timeout */ 5613 connection->meta.socket->sk->sk_rcvtimeo = connection->net_conf->ping_int*HZ; 5614 if (!test_and_set_bit(GOT_PING_ACK, &connection->flags)) 5615 wake_up(&connection->ping_wait); 5616 5617 return 0; 5618 } 5619 5620 static int got_IsInSync(struct drbd_connection *connection, struct packet_info *pi) 5621 { 5622 struct drbd_peer_device *peer_device; 5623 struct drbd_device *device; 5624 struct p_block_ack *p = pi->data; 5625 sector_t sector = be64_to_cpu(p->sector); 5626 int blksize = be32_to_cpu(p->blksize); 5627 5628 peer_device = conn_peer_device(connection, pi->vnr); 5629 if (!peer_device) 5630 return -EIO; 5631 device = peer_device->device; 5632 5633 D_ASSERT(device, peer_device->connection->agreed_pro_version >= 89); 5634 5635 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5636 5637 if (get_ldev(device)) { 5638 drbd_rs_complete_io(device, sector); 5639 drbd_set_in_sync(device, sector, blksize); 5640 /* rs_same_csums is supposed to count in units of BM_BLOCK_SIZE */ 5641 device->rs_same_csum += (blksize >> BM_BLOCK_SHIFT); 5642 put_ldev(device); 5643 } 5644 dec_rs_pending(device); 5645 atomic_add(blksize >> 9, &device->rs_sect_in); 5646 5647 return 0; 5648 } 5649 5650 static int 5651 validate_req_change_req_state(struct drbd_device *device, u64 id, sector_t sector, 5652 struct rb_root *root, const char *func, 5653 enum drbd_req_event what, bool missing_ok) 5654 { 5655 struct drbd_request *req; 5656 struct bio_and_error m; 5657 5658 spin_lock_irq(&device->resource->req_lock); 5659 req = find_request(device, root, id, sector, missing_ok, func); 5660 if (unlikely(!req)) { 5661 spin_unlock_irq(&device->resource->req_lock); 5662 return -EIO; 5663 } 5664 __req_mod(req, what, &m); 5665 spin_unlock_irq(&device->resource->req_lock); 5666 5667 if (m.bio) 5668 complete_master_bio(device, &m); 5669 return 0; 5670 } 5671 5672 static int got_BlockAck(struct drbd_connection *connection, struct packet_info *pi) 5673 { 5674 struct drbd_peer_device *peer_device; 5675 struct drbd_device *device; 5676 struct p_block_ack *p = pi->data; 5677 sector_t sector = be64_to_cpu(p->sector); 5678 int blksize = be32_to_cpu(p->blksize); 5679 enum drbd_req_event what; 5680 5681 peer_device = conn_peer_device(connection, pi->vnr); 5682 if (!peer_device) 5683 return -EIO; 5684 device = peer_device->device; 5685 5686 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5687 5688 if (p->block_id == ID_SYNCER) { 5689 drbd_set_in_sync(device, sector, blksize); 5690 dec_rs_pending(device); 5691 return 0; 5692 } 5693 switch (pi->cmd) { 5694 case P_RS_WRITE_ACK: 5695 what = WRITE_ACKED_BY_PEER_AND_SIS; 5696 break; 5697 case P_WRITE_ACK: 5698 what = WRITE_ACKED_BY_PEER; 5699 break; 5700 case P_RECV_ACK: 5701 what = RECV_ACKED_BY_PEER; 5702 break; 5703 case P_SUPERSEDED: 5704 what = CONFLICT_RESOLVED; 5705 break; 5706 case P_RETRY_WRITE: 5707 what = POSTPONE_WRITE; 5708 break; 5709 default: 5710 BUG(); 5711 } 5712 5713 return validate_req_change_req_state(device, p->block_id, sector, 5714 &device->write_requests, __func__, 5715 what, false); 5716 } 5717 5718 static int got_NegAck(struct drbd_connection *connection, struct packet_info *pi) 5719 { 5720 struct drbd_peer_device *peer_device; 5721 struct drbd_device *device; 5722 struct p_block_ack *p = pi->data; 5723 sector_t sector = be64_to_cpu(p->sector); 5724 int size = be32_to_cpu(p->blksize); 5725 int err; 5726 5727 peer_device = conn_peer_device(connection, pi->vnr); 5728 if (!peer_device) 5729 return -EIO; 5730 device = peer_device->device; 5731 5732 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5733 5734 if (p->block_id == ID_SYNCER) { 5735 dec_rs_pending(device); 5736 drbd_rs_failed_io(device, sector, size); 5737 return 0; 5738 } 5739 5740 err = validate_req_change_req_state(device, p->block_id, sector, 5741 &device->write_requests, __func__, 5742 NEG_ACKED, true); 5743 if (err) { 5744 /* Protocol A has no P_WRITE_ACKs, but has P_NEG_ACKs. 5745 The master bio might already be completed, therefore the 5746 request is no longer in the collision hash. */ 5747 /* In Protocol B we might already have got a P_RECV_ACK 5748 but then get a P_NEG_ACK afterwards. */ 5749 drbd_set_out_of_sync(device, sector, size); 5750 } 5751 return 0; 5752 } 5753 5754 static int got_NegDReply(struct drbd_connection *connection, struct packet_info *pi) 5755 { 5756 struct drbd_peer_device *peer_device; 5757 struct drbd_device *device; 5758 struct p_block_ack *p = pi->data; 5759 sector_t sector = be64_to_cpu(p->sector); 5760 5761 peer_device = conn_peer_device(connection, pi->vnr); 5762 if (!peer_device) 5763 return -EIO; 5764 device = peer_device->device; 5765 5766 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5767 5768 drbd_err(device, "Got NegDReply; Sector %llus, len %u.\n", 5769 (unsigned long long)sector, be32_to_cpu(p->blksize)); 5770 5771 return validate_req_change_req_state(device, p->block_id, sector, 5772 &device->read_requests, __func__, 5773 NEG_ACKED, false); 5774 } 5775 5776 static int got_NegRSDReply(struct drbd_connection *connection, struct packet_info *pi) 5777 { 5778 struct drbd_peer_device *peer_device; 5779 struct drbd_device *device; 5780 sector_t sector; 5781 int size; 5782 struct p_block_ack *p = pi->data; 5783 5784 peer_device = conn_peer_device(connection, pi->vnr); 5785 if (!peer_device) 5786 return -EIO; 5787 device = peer_device->device; 5788 5789 sector = be64_to_cpu(p->sector); 5790 size = be32_to_cpu(p->blksize); 5791 5792 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5793 5794 dec_rs_pending(device); 5795 5796 if (get_ldev_if_state(device, D_FAILED)) { 5797 drbd_rs_complete_io(device, sector); 5798 switch (pi->cmd) { 5799 case P_NEG_RS_DREPLY: 5800 drbd_rs_failed_io(device, sector, size); 5801 break; 5802 case P_RS_CANCEL: 5803 break; 5804 default: 5805 BUG(); 5806 } 5807 put_ldev(device); 5808 } 5809 5810 return 0; 5811 } 5812 5813 static int got_BarrierAck(struct drbd_connection *connection, struct packet_info *pi) 5814 { 5815 struct p_barrier_ack *p = pi->data; 5816 struct drbd_peer_device *peer_device; 5817 int vnr; 5818 5819 tl_release(connection, p->barrier, be32_to_cpu(p->set_size)); 5820 5821 rcu_read_lock(); 5822 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 5823 struct drbd_device *device = peer_device->device; 5824 5825 if (device->state.conn == C_AHEAD && 5826 atomic_read(&device->ap_in_flight) == 0 && 5827 !test_and_set_bit(AHEAD_TO_SYNC_SOURCE, &device->flags)) { 5828 device->start_resync_timer.expires = jiffies + HZ; 5829 add_timer(&device->start_resync_timer); 5830 } 5831 } 5832 rcu_read_unlock(); 5833 5834 return 0; 5835 } 5836 5837 static int got_OVResult(struct drbd_connection *connection, struct packet_info *pi) 5838 { 5839 struct drbd_peer_device *peer_device; 5840 struct drbd_device *device; 5841 struct p_block_ack *p = pi->data; 5842 struct drbd_device_work *dw; 5843 sector_t sector; 5844 int size; 5845 5846 peer_device = conn_peer_device(connection, pi->vnr); 5847 if (!peer_device) 5848 return -EIO; 5849 device = peer_device->device; 5850 5851 sector = be64_to_cpu(p->sector); 5852 size = be32_to_cpu(p->blksize); 5853 5854 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5855 5856 if (be64_to_cpu(p->block_id) == ID_OUT_OF_SYNC) 5857 drbd_ov_out_of_sync_found(device, sector, size); 5858 else 5859 ov_out_of_sync_print(device); 5860 5861 if (!get_ldev(device)) 5862 return 0; 5863 5864 drbd_rs_complete_io(device, sector); 5865 dec_rs_pending(device); 5866 5867 --device->ov_left; 5868 5869 /* let's advance progress step marks only for every other megabyte */ 5870 if ((device->ov_left & 0x200) == 0x200) 5871 drbd_advance_rs_marks(device, device->ov_left); 5872 5873 if (device->ov_left == 0) { 5874 dw = kmalloc(sizeof(*dw), GFP_NOIO); 5875 if (dw) { 5876 dw->w.cb = w_ov_finished; 5877 dw->device = device; 5878 drbd_queue_work(&peer_device->connection->sender_work, &dw->w); 5879 } else { 5880 drbd_err(device, "kmalloc(dw) failed."); 5881 ov_out_of_sync_print(device); 5882 drbd_resync_finished(device); 5883 } 5884 } 5885 put_ldev(device); 5886 return 0; 5887 } 5888 5889 static int got_skip(struct drbd_connection *connection, struct packet_info *pi) 5890 { 5891 return 0; 5892 } 5893 5894 struct meta_sock_cmd { 5895 size_t pkt_size; 5896 int (*fn)(struct drbd_connection *connection, struct packet_info *); 5897 }; 5898 5899 static void set_rcvtimeo(struct drbd_connection *connection, bool ping_timeout) 5900 { 5901 long t; 5902 struct net_conf *nc; 5903 5904 rcu_read_lock(); 5905 nc = rcu_dereference(connection->net_conf); 5906 t = ping_timeout ? nc->ping_timeo : nc->ping_int; 5907 rcu_read_unlock(); 5908 5909 t *= HZ; 5910 if (ping_timeout) 5911 t /= 10; 5912 5913 connection->meta.socket->sk->sk_rcvtimeo = t; 5914 } 5915 5916 static void set_ping_timeout(struct drbd_connection *connection) 5917 { 5918 set_rcvtimeo(connection, 1); 5919 } 5920 5921 static void set_idle_timeout(struct drbd_connection *connection) 5922 { 5923 set_rcvtimeo(connection, 0); 5924 } 5925 5926 static struct meta_sock_cmd ack_receiver_tbl[] = { 5927 [P_PING] = { 0, got_Ping }, 5928 [P_PING_ACK] = { 0, got_PingAck }, 5929 [P_RECV_ACK] = { sizeof(struct p_block_ack), got_BlockAck }, 5930 [P_WRITE_ACK] = { sizeof(struct p_block_ack), got_BlockAck }, 5931 [P_RS_WRITE_ACK] = { sizeof(struct p_block_ack), got_BlockAck }, 5932 [P_SUPERSEDED] = { sizeof(struct p_block_ack), got_BlockAck }, 5933 [P_NEG_ACK] = { sizeof(struct p_block_ack), got_NegAck }, 5934 [P_NEG_DREPLY] = { sizeof(struct p_block_ack), got_NegDReply }, 5935 [P_NEG_RS_DREPLY] = { sizeof(struct p_block_ack), got_NegRSDReply }, 5936 [P_OV_RESULT] = { sizeof(struct p_block_ack), got_OVResult }, 5937 [P_BARRIER_ACK] = { sizeof(struct p_barrier_ack), got_BarrierAck }, 5938 [P_STATE_CHG_REPLY] = { sizeof(struct p_req_state_reply), got_RqSReply }, 5939 [P_RS_IS_IN_SYNC] = { sizeof(struct p_block_ack), got_IsInSync }, 5940 [P_DELAY_PROBE] = { sizeof(struct p_delay_probe93), got_skip }, 5941 [P_RS_CANCEL] = { sizeof(struct p_block_ack), got_NegRSDReply }, 5942 [P_CONN_ST_CHG_REPLY]={ sizeof(struct p_req_state_reply), got_conn_RqSReply }, 5943 [P_RETRY_WRITE] = { sizeof(struct p_block_ack), got_BlockAck }, 5944 }; 5945 5946 int drbd_ack_receiver(struct drbd_thread *thi) 5947 { 5948 struct drbd_connection *connection = thi->connection; 5949 struct meta_sock_cmd *cmd = NULL; 5950 struct packet_info pi; 5951 unsigned long pre_recv_jif; 5952 int rv; 5953 void *buf = connection->meta.rbuf; 5954 int received = 0; 5955 unsigned int header_size = drbd_header_size(connection); 5956 int expect = header_size; 5957 bool ping_timeout_active = false; 5958 5959 sched_set_fifo_low(current); 5960 5961 while (get_t_state(thi) == RUNNING) { 5962 drbd_thread_current_set_cpu(thi); 5963 5964 conn_reclaim_net_peer_reqs(connection); 5965 5966 if (test_and_clear_bit(SEND_PING, &connection->flags)) { 5967 if (drbd_send_ping(connection)) { 5968 drbd_err(connection, "drbd_send_ping has failed\n"); 5969 goto reconnect; 5970 } 5971 set_ping_timeout(connection); 5972 ping_timeout_active = true; 5973 } 5974 5975 pre_recv_jif = jiffies; 5976 rv = drbd_recv_short(connection->meta.socket, buf, expect-received, 0); 5977 5978 /* Note: 5979 * -EINTR (on meta) we got a signal 5980 * -EAGAIN (on meta) rcvtimeo expired 5981 * -ECONNRESET other side closed the connection 5982 * -ERESTARTSYS (on data) we got a signal 5983 * rv < 0 other than above: unexpected error! 5984 * rv == expected: full header or command 5985 * rv < expected: "woken" by signal during receive 5986 * rv == 0 : "connection shut down by peer" 5987 */ 5988 if (likely(rv > 0)) { 5989 received += rv; 5990 buf += rv; 5991 } else if (rv == 0) { 5992 if (test_bit(DISCONNECT_SENT, &connection->flags)) { 5993 long t; 5994 rcu_read_lock(); 5995 t = rcu_dereference(connection->net_conf)->ping_timeo * HZ/10; 5996 rcu_read_unlock(); 5997 5998 t = wait_event_timeout(connection->ping_wait, 5999 connection->cstate < C_WF_REPORT_PARAMS, 6000 t); 6001 if (t) 6002 break; 6003 } 6004 drbd_err(connection, "meta connection shut down by peer.\n"); 6005 goto reconnect; 6006 } else if (rv == -EAGAIN) { 6007 /* If the data socket received something meanwhile, 6008 * that is good enough: peer is still alive. */ 6009 if (time_after(connection->last_received, pre_recv_jif)) 6010 continue; 6011 if (ping_timeout_active) { 6012 drbd_err(connection, "PingAck did not arrive in time.\n"); 6013 goto reconnect; 6014 } 6015 set_bit(SEND_PING, &connection->flags); 6016 continue; 6017 } else if (rv == -EINTR) { 6018 /* maybe drbd_thread_stop(): the while condition will notice. 6019 * maybe woken for send_ping: we'll send a ping above, 6020 * and change the rcvtimeo */ 6021 flush_signals(current); 6022 continue; 6023 } else { 6024 drbd_err(connection, "sock_recvmsg returned %d\n", rv); 6025 goto reconnect; 6026 } 6027 6028 if (received == expect && cmd == NULL) { 6029 if (decode_header(connection, connection->meta.rbuf, &pi)) 6030 goto reconnect; 6031 cmd = &ack_receiver_tbl[pi.cmd]; 6032 if (pi.cmd >= ARRAY_SIZE(ack_receiver_tbl) || !cmd->fn) { 6033 drbd_err(connection, "Unexpected meta packet %s (0x%04x)\n", 6034 cmdname(pi.cmd), pi.cmd); 6035 goto disconnect; 6036 } 6037 expect = header_size + cmd->pkt_size; 6038 if (pi.size != expect - header_size) { 6039 drbd_err(connection, "Wrong packet size on meta (c: %d, l: %d)\n", 6040 pi.cmd, pi.size); 6041 goto reconnect; 6042 } 6043 } 6044 if (received == expect) { 6045 bool err; 6046 6047 err = cmd->fn(connection, &pi); 6048 if (err) { 6049 drbd_err(connection, "%ps failed\n", cmd->fn); 6050 goto reconnect; 6051 } 6052 6053 connection->last_received = jiffies; 6054 6055 if (cmd == &ack_receiver_tbl[P_PING_ACK]) { 6056 set_idle_timeout(connection); 6057 ping_timeout_active = false; 6058 } 6059 6060 buf = connection->meta.rbuf; 6061 received = 0; 6062 expect = header_size; 6063 cmd = NULL; 6064 } 6065 } 6066 6067 if (0) { 6068 reconnect: 6069 conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD); 6070 conn_md_sync(connection); 6071 } 6072 if (0) { 6073 disconnect: 6074 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 6075 } 6076 6077 drbd_info(connection, "ack_receiver terminated\n"); 6078 6079 return 0; 6080 } 6081 6082 void drbd_send_acks_wf(struct work_struct *ws) 6083 { 6084 struct drbd_peer_device *peer_device = 6085 container_of(ws, struct drbd_peer_device, send_acks_work); 6086 struct drbd_connection *connection = peer_device->connection; 6087 struct drbd_device *device = peer_device->device; 6088 struct net_conf *nc; 6089 int tcp_cork, err; 6090 6091 rcu_read_lock(); 6092 nc = rcu_dereference(connection->net_conf); 6093 tcp_cork = nc->tcp_cork; 6094 rcu_read_unlock(); 6095 6096 if (tcp_cork) 6097 tcp_sock_set_cork(connection->meta.socket->sk, true); 6098 6099 err = drbd_finish_peer_reqs(device); 6100 kref_put(&device->kref, drbd_destroy_device); 6101 /* get is in drbd_endio_write_sec_final(). That is necessary to keep the 6102 struct work_struct send_acks_work alive, which is in the peer_device object */ 6103 6104 if (err) { 6105 conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD); 6106 return; 6107 } 6108 6109 if (tcp_cork) 6110 tcp_sock_set_cork(connection->meta.socket->sk, false); 6111 6112 return; 6113 } 6114