1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3    drbd_receiver.c
4 
5    This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
6 
7    Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
8    Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
9    Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
10 
11  */
12 
13 
14 #include <linux/module.h>
15 
16 #include <linux/uaccess.h>
17 #include <net/sock.h>
18 
19 #include <linux/drbd.h>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/in.h>
23 #include <linux/mm.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/slab.h>
27 #include <uapi/linux/sched/types.h>
28 #include <linux/sched/signal.h>
29 #include <linux/pkt_sched.h>
30 #define __KERNEL_SYSCALLS__
31 #include <linux/unistd.h>
32 #include <linux/vmalloc.h>
33 #include <linux/random.h>
34 #include <linux/string.h>
35 #include <linux/scatterlist.h>
36 #include <linux/part_stat.h>
37 #include "drbd_int.h"
38 #include "drbd_protocol.h"
39 #include "drbd_req.h"
40 #include "drbd_vli.h"
41 
42 #define PRO_FEATURES (DRBD_FF_TRIM|DRBD_FF_THIN_RESYNC|DRBD_FF_WSAME|DRBD_FF_WZEROES)
43 
44 struct packet_info {
45 	enum drbd_packet cmd;
46 	unsigned int size;
47 	unsigned int vnr;
48 	void *data;
49 };
50 
51 enum finish_epoch {
52 	FE_STILL_LIVE,
53 	FE_DESTROYED,
54 	FE_RECYCLED,
55 };
56 
57 static int drbd_do_features(struct drbd_connection *connection);
58 static int drbd_do_auth(struct drbd_connection *connection);
59 static int drbd_disconnected(struct drbd_peer_device *);
60 static void conn_wait_active_ee_empty(struct drbd_connection *connection);
61 static enum finish_epoch drbd_may_finish_epoch(struct drbd_connection *, struct drbd_epoch *, enum epoch_event);
62 static int e_end_block(struct drbd_work *, int);
63 
64 
65 #define GFP_TRY	(__GFP_HIGHMEM | __GFP_NOWARN)
66 
67 /*
68  * some helper functions to deal with single linked page lists,
69  * page->private being our "next" pointer.
70  */
71 
72 /* If at least n pages are linked at head, get n pages off.
73  * Otherwise, don't modify head, and return NULL.
74  * Locking is the responsibility of the caller.
75  */
76 static struct page *page_chain_del(struct page **head, int n)
77 {
78 	struct page *page;
79 	struct page *tmp;
80 
81 	BUG_ON(!n);
82 	BUG_ON(!head);
83 
84 	page = *head;
85 
86 	if (!page)
87 		return NULL;
88 
89 	while (page) {
90 		tmp = page_chain_next(page);
91 		if (--n == 0)
92 			break; /* found sufficient pages */
93 		if (tmp == NULL)
94 			/* insufficient pages, don't use any of them. */
95 			return NULL;
96 		page = tmp;
97 	}
98 
99 	/* add end of list marker for the returned list */
100 	set_page_private(page, 0);
101 	/* actual return value, and adjustment of head */
102 	page = *head;
103 	*head = tmp;
104 	return page;
105 }
106 
107 /* may be used outside of locks to find the tail of a (usually short)
108  * "private" page chain, before adding it back to a global chain head
109  * with page_chain_add() under a spinlock. */
110 static struct page *page_chain_tail(struct page *page, int *len)
111 {
112 	struct page *tmp;
113 	int i = 1;
114 	while ((tmp = page_chain_next(page))) {
115 		++i;
116 		page = tmp;
117 	}
118 	if (len)
119 		*len = i;
120 	return page;
121 }
122 
123 static int page_chain_free(struct page *page)
124 {
125 	struct page *tmp;
126 	int i = 0;
127 	page_chain_for_each_safe(page, tmp) {
128 		put_page(page);
129 		++i;
130 	}
131 	return i;
132 }
133 
134 static void page_chain_add(struct page **head,
135 		struct page *chain_first, struct page *chain_last)
136 {
137 #if 1
138 	struct page *tmp;
139 	tmp = page_chain_tail(chain_first, NULL);
140 	BUG_ON(tmp != chain_last);
141 #endif
142 
143 	/* add chain to head */
144 	set_page_private(chain_last, (unsigned long)*head);
145 	*head = chain_first;
146 }
147 
148 static struct page *__drbd_alloc_pages(struct drbd_device *device,
149 				       unsigned int number)
150 {
151 	struct page *page = NULL;
152 	struct page *tmp = NULL;
153 	unsigned int i = 0;
154 
155 	/* Yes, testing drbd_pp_vacant outside the lock is racy.
156 	 * So what. It saves a spin_lock. */
157 	if (drbd_pp_vacant >= number) {
158 		spin_lock(&drbd_pp_lock);
159 		page = page_chain_del(&drbd_pp_pool, number);
160 		if (page)
161 			drbd_pp_vacant -= number;
162 		spin_unlock(&drbd_pp_lock);
163 		if (page)
164 			return page;
165 	}
166 
167 	/* GFP_TRY, because we must not cause arbitrary write-out: in a DRBD
168 	 * "criss-cross" setup, that might cause write-out on some other DRBD,
169 	 * which in turn might block on the other node at this very place.  */
170 	for (i = 0; i < number; i++) {
171 		tmp = alloc_page(GFP_TRY);
172 		if (!tmp)
173 			break;
174 		set_page_private(tmp, (unsigned long)page);
175 		page = tmp;
176 	}
177 
178 	if (i == number)
179 		return page;
180 
181 	/* Not enough pages immediately available this time.
182 	 * No need to jump around here, drbd_alloc_pages will retry this
183 	 * function "soon". */
184 	if (page) {
185 		tmp = page_chain_tail(page, NULL);
186 		spin_lock(&drbd_pp_lock);
187 		page_chain_add(&drbd_pp_pool, page, tmp);
188 		drbd_pp_vacant += i;
189 		spin_unlock(&drbd_pp_lock);
190 	}
191 	return NULL;
192 }
193 
194 static void reclaim_finished_net_peer_reqs(struct drbd_device *device,
195 					   struct list_head *to_be_freed)
196 {
197 	struct drbd_peer_request *peer_req, *tmp;
198 
199 	/* The EEs are always appended to the end of the list. Since
200 	   they are sent in order over the wire, they have to finish
201 	   in order. As soon as we see the first not finished we can
202 	   stop to examine the list... */
203 
204 	list_for_each_entry_safe(peer_req, tmp, &device->net_ee, w.list) {
205 		if (drbd_peer_req_has_active_page(peer_req))
206 			break;
207 		list_move(&peer_req->w.list, to_be_freed);
208 	}
209 }
210 
211 static void drbd_reclaim_net_peer_reqs(struct drbd_device *device)
212 {
213 	LIST_HEAD(reclaimed);
214 	struct drbd_peer_request *peer_req, *t;
215 
216 	spin_lock_irq(&device->resource->req_lock);
217 	reclaim_finished_net_peer_reqs(device, &reclaimed);
218 	spin_unlock_irq(&device->resource->req_lock);
219 	list_for_each_entry_safe(peer_req, t, &reclaimed, w.list)
220 		drbd_free_net_peer_req(device, peer_req);
221 }
222 
223 static void conn_reclaim_net_peer_reqs(struct drbd_connection *connection)
224 {
225 	struct drbd_peer_device *peer_device;
226 	int vnr;
227 
228 	rcu_read_lock();
229 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
230 		struct drbd_device *device = peer_device->device;
231 		if (!atomic_read(&device->pp_in_use_by_net))
232 			continue;
233 
234 		kref_get(&device->kref);
235 		rcu_read_unlock();
236 		drbd_reclaim_net_peer_reqs(device);
237 		kref_put(&device->kref, drbd_destroy_device);
238 		rcu_read_lock();
239 	}
240 	rcu_read_unlock();
241 }
242 
243 /**
244  * drbd_alloc_pages() - Returns @number pages, retries forever (or until signalled)
245  * @peer_device:	DRBD device.
246  * @number:		number of pages requested
247  * @retry:		whether to retry, if not enough pages are available right now
248  *
249  * Tries to allocate number pages, first from our own page pool, then from
250  * the kernel.
251  * Possibly retry until DRBD frees sufficient pages somewhere else.
252  *
253  * If this allocation would exceed the max_buffers setting, we throttle
254  * allocation (schedule_timeout) to give the system some room to breathe.
255  *
256  * We do not use max-buffers as hard limit, because it could lead to
257  * congestion and further to a distributed deadlock during online-verify or
258  * (checksum based) resync, if the max-buffers, socket buffer sizes and
259  * resync-rate settings are mis-configured.
260  *
261  * Returns a page chain linked via page->private.
262  */
263 struct page *drbd_alloc_pages(struct drbd_peer_device *peer_device, unsigned int number,
264 			      bool retry)
265 {
266 	struct drbd_device *device = peer_device->device;
267 	struct page *page = NULL;
268 	struct net_conf *nc;
269 	DEFINE_WAIT(wait);
270 	unsigned int mxb;
271 
272 	rcu_read_lock();
273 	nc = rcu_dereference(peer_device->connection->net_conf);
274 	mxb = nc ? nc->max_buffers : 1000000;
275 	rcu_read_unlock();
276 
277 	if (atomic_read(&device->pp_in_use) < mxb)
278 		page = __drbd_alloc_pages(device, number);
279 
280 	/* Try to keep the fast path fast, but occasionally we need
281 	 * to reclaim the pages we lended to the network stack. */
282 	if (page && atomic_read(&device->pp_in_use_by_net) > 512)
283 		drbd_reclaim_net_peer_reqs(device);
284 
285 	while (page == NULL) {
286 		prepare_to_wait(&drbd_pp_wait, &wait, TASK_INTERRUPTIBLE);
287 
288 		drbd_reclaim_net_peer_reqs(device);
289 
290 		if (atomic_read(&device->pp_in_use) < mxb) {
291 			page = __drbd_alloc_pages(device, number);
292 			if (page)
293 				break;
294 		}
295 
296 		if (!retry)
297 			break;
298 
299 		if (signal_pending(current)) {
300 			drbd_warn(device, "drbd_alloc_pages interrupted!\n");
301 			break;
302 		}
303 
304 		if (schedule_timeout(HZ/10) == 0)
305 			mxb = UINT_MAX;
306 	}
307 	finish_wait(&drbd_pp_wait, &wait);
308 
309 	if (page)
310 		atomic_add(number, &device->pp_in_use);
311 	return page;
312 }
313 
314 /* Must not be used from irq, as that may deadlock: see drbd_alloc_pages.
315  * Is also used from inside an other spin_lock_irq(&resource->req_lock);
316  * Either links the page chain back to the global pool,
317  * or returns all pages to the system. */
318 static void drbd_free_pages(struct drbd_device *device, struct page *page, int is_net)
319 {
320 	atomic_t *a = is_net ? &device->pp_in_use_by_net : &device->pp_in_use;
321 	int i;
322 
323 	if (page == NULL)
324 		return;
325 
326 	if (drbd_pp_vacant > (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * drbd_minor_count)
327 		i = page_chain_free(page);
328 	else {
329 		struct page *tmp;
330 		tmp = page_chain_tail(page, &i);
331 		spin_lock(&drbd_pp_lock);
332 		page_chain_add(&drbd_pp_pool, page, tmp);
333 		drbd_pp_vacant += i;
334 		spin_unlock(&drbd_pp_lock);
335 	}
336 	i = atomic_sub_return(i, a);
337 	if (i < 0)
338 		drbd_warn(device, "ASSERTION FAILED: %s: %d < 0\n",
339 			is_net ? "pp_in_use_by_net" : "pp_in_use", i);
340 	wake_up(&drbd_pp_wait);
341 }
342 
343 /*
344 You need to hold the req_lock:
345  _drbd_wait_ee_list_empty()
346 
347 You must not have the req_lock:
348  drbd_free_peer_req()
349  drbd_alloc_peer_req()
350  drbd_free_peer_reqs()
351  drbd_ee_fix_bhs()
352  drbd_finish_peer_reqs()
353  drbd_clear_done_ee()
354  drbd_wait_ee_list_empty()
355 */
356 
357 /* normal: payload_size == request size (bi_size)
358  * w_same: payload_size == logical_block_size
359  * trim: payload_size == 0 */
360 struct drbd_peer_request *
361 drbd_alloc_peer_req(struct drbd_peer_device *peer_device, u64 id, sector_t sector,
362 		    unsigned int request_size, unsigned int payload_size, gfp_t gfp_mask) __must_hold(local)
363 {
364 	struct drbd_device *device = peer_device->device;
365 	struct drbd_peer_request *peer_req;
366 	struct page *page = NULL;
367 	unsigned int nr_pages = PFN_UP(payload_size);
368 
369 	if (drbd_insert_fault(device, DRBD_FAULT_AL_EE))
370 		return NULL;
371 
372 	peer_req = mempool_alloc(&drbd_ee_mempool, gfp_mask & ~__GFP_HIGHMEM);
373 	if (!peer_req) {
374 		if (!(gfp_mask & __GFP_NOWARN))
375 			drbd_err(device, "%s: allocation failed\n", __func__);
376 		return NULL;
377 	}
378 
379 	if (nr_pages) {
380 		page = drbd_alloc_pages(peer_device, nr_pages,
381 					gfpflags_allow_blocking(gfp_mask));
382 		if (!page)
383 			goto fail;
384 	}
385 
386 	memset(peer_req, 0, sizeof(*peer_req));
387 	INIT_LIST_HEAD(&peer_req->w.list);
388 	drbd_clear_interval(&peer_req->i);
389 	peer_req->i.size = request_size;
390 	peer_req->i.sector = sector;
391 	peer_req->submit_jif = jiffies;
392 	peer_req->peer_device = peer_device;
393 	peer_req->pages = page;
394 	/*
395 	 * The block_id is opaque to the receiver.  It is not endianness
396 	 * converted, and sent back to the sender unchanged.
397 	 */
398 	peer_req->block_id = id;
399 
400 	return peer_req;
401 
402  fail:
403 	mempool_free(peer_req, &drbd_ee_mempool);
404 	return NULL;
405 }
406 
407 void __drbd_free_peer_req(struct drbd_device *device, struct drbd_peer_request *peer_req,
408 		       int is_net)
409 {
410 	might_sleep();
411 	if (peer_req->flags & EE_HAS_DIGEST)
412 		kfree(peer_req->digest);
413 	drbd_free_pages(device, peer_req->pages, is_net);
414 	D_ASSERT(device, atomic_read(&peer_req->pending_bios) == 0);
415 	D_ASSERT(device, drbd_interval_empty(&peer_req->i));
416 	if (!expect(!(peer_req->flags & EE_CALL_AL_COMPLETE_IO))) {
417 		peer_req->flags &= ~EE_CALL_AL_COMPLETE_IO;
418 		drbd_al_complete_io(device, &peer_req->i);
419 	}
420 	mempool_free(peer_req, &drbd_ee_mempool);
421 }
422 
423 int drbd_free_peer_reqs(struct drbd_device *device, struct list_head *list)
424 {
425 	LIST_HEAD(work_list);
426 	struct drbd_peer_request *peer_req, *t;
427 	int count = 0;
428 	int is_net = list == &device->net_ee;
429 
430 	spin_lock_irq(&device->resource->req_lock);
431 	list_splice_init(list, &work_list);
432 	spin_unlock_irq(&device->resource->req_lock);
433 
434 	list_for_each_entry_safe(peer_req, t, &work_list, w.list) {
435 		__drbd_free_peer_req(device, peer_req, is_net);
436 		count++;
437 	}
438 	return count;
439 }
440 
441 /*
442  * See also comments in _req_mod(,BARRIER_ACKED) and receive_Barrier.
443  */
444 static int drbd_finish_peer_reqs(struct drbd_device *device)
445 {
446 	LIST_HEAD(work_list);
447 	LIST_HEAD(reclaimed);
448 	struct drbd_peer_request *peer_req, *t;
449 	int err = 0;
450 
451 	spin_lock_irq(&device->resource->req_lock);
452 	reclaim_finished_net_peer_reqs(device, &reclaimed);
453 	list_splice_init(&device->done_ee, &work_list);
454 	spin_unlock_irq(&device->resource->req_lock);
455 
456 	list_for_each_entry_safe(peer_req, t, &reclaimed, w.list)
457 		drbd_free_net_peer_req(device, peer_req);
458 
459 	/* possible callbacks here:
460 	 * e_end_block, and e_end_resync_block, e_send_superseded.
461 	 * all ignore the last argument.
462 	 */
463 	list_for_each_entry_safe(peer_req, t, &work_list, w.list) {
464 		int err2;
465 
466 		/* list_del not necessary, next/prev members not touched */
467 		err2 = peer_req->w.cb(&peer_req->w, !!err);
468 		if (!err)
469 			err = err2;
470 		drbd_free_peer_req(device, peer_req);
471 	}
472 	wake_up(&device->ee_wait);
473 
474 	return err;
475 }
476 
477 static void _drbd_wait_ee_list_empty(struct drbd_device *device,
478 				     struct list_head *head)
479 {
480 	DEFINE_WAIT(wait);
481 
482 	/* avoids spin_lock/unlock
483 	 * and calling prepare_to_wait in the fast path */
484 	while (!list_empty(head)) {
485 		prepare_to_wait(&device->ee_wait, &wait, TASK_UNINTERRUPTIBLE);
486 		spin_unlock_irq(&device->resource->req_lock);
487 		io_schedule();
488 		finish_wait(&device->ee_wait, &wait);
489 		spin_lock_irq(&device->resource->req_lock);
490 	}
491 }
492 
493 static void drbd_wait_ee_list_empty(struct drbd_device *device,
494 				    struct list_head *head)
495 {
496 	spin_lock_irq(&device->resource->req_lock);
497 	_drbd_wait_ee_list_empty(device, head);
498 	spin_unlock_irq(&device->resource->req_lock);
499 }
500 
501 static int drbd_recv_short(struct socket *sock, void *buf, size_t size, int flags)
502 {
503 	struct kvec iov = {
504 		.iov_base = buf,
505 		.iov_len = size,
506 	};
507 	struct msghdr msg = {
508 		.msg_flags = (flags ? flags : MSG_WAITALL | MSG_NOSIGNAL)
509 	};
510 	iov_iter_kvec(&msg.msg_iter, READ, &iov, 1, size);
511 	return sock_recvmsg(sock, &msg, msg.msg_flags);
512 }
513 
514 static int drbd_recv(struct drbd_connection *connection, void *buf, size_t size)
515 {
516 	int rv;
517 
518 	rv = drbd_recv_short(connection->data.socket, buf, size, 0);
519 
520 	if (rv < 0) {
521 		if (rv == -ECONNRESET)
522 			drbd_info(connection, "sock was reset by peer\n");
523 		else if (rv != -ERESTARTSYS)
524 			drbd_err(connection, "sock_recvmsg returned %d\n", rv);
525 	} else if (rv == 0) {
526 		if (test_bit(DISCONNECT_SENT, &connection->flags)) {
527 			long t;
528 			rcu_read_lock();
529 			t = rcu_dereference(connection->net_conf)->ping_timeo * HZ/10;
530 			rcu_read_unlock();
531 
532 			t = wait_event_timeout(connection->ping_wait, connection->cstate < C_WF_REPORT_PARAMS, t);
533 
534 			if (t)
535 				goto out;
536 		}
537 		drbd_info(connection, "sock was shut down by peer\n");
538 	}
539 
540 	if (rv != size)
541 		conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD);
542 
543 out:
544 	return rv;
545 }
546 
547 static int drbd_recv_all(struct drbd_connection *connection, void *buf, size_t size)
548 {
549 	int err;
550 
551 	err = drbd_recv(connection, buf, size);
552 	if (err != size) {
553 		if (err >= 0)
554 			err = -EIO;
555 	} else
556 		err = 0;
557 	return err;
558 }
559 
560 static int drbd_recv_all_warn(struct drbd_connection *connection, void *buf, size_t size)
561 {
562 	int err;
563 
564 	err = drbd_recv_all(connection, buf, size);
565 	if (err && !signal_pending(current))
566 		drbd_warn(connection, "short read (expected size %d)\n", (int)size);
567 	return err;
568 }
569 
570 /* quoting tcp(7):
571  *   On individual connections, the socket buffer size must be set prior to the
572  *   listen(2) or connect(2) calls in order to have it take effect.
573  * This is our wrapper to do so.
574  */
575 static void drbd_setbufsize(struct socket *sock, unsigned int snd,
576 		unsigned int rcv)
577 {
578 	/* open coded SO_SNDBUF, SO_RCVBUF */
579 	if (snd) {
580 		sock->sk->sk_sndbuf = snd;
581 		sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
582 	}
583 	if (rcv) {
584 		sock->sk->sk_rcvbuf = rcv;
585 		sock->sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
586 	}
587 }
588 
589 static struct socket *drbd_try_connect(struct drbd_connection *connection)
590 {
591 	const char *what;
592 	struct socket *sock;
593 	struct sockaddr_in6 src_in6;
594 	struct sockaddr_in6 peer_in6;
595 	struct net_conf *nc;
596 	int err, peer_addr_len, my_addr_len;
597 	int sndbuf_size, rcvbuf_size, connect_int;
598 	int disconnect_on_error = 1;
599 
600 	rcu_read_lock();
601 	nc = rcu_dereference(connection->net_conf);
602 	if (!nc) {
603 		rcu_read_unlock();
604 		return NULL;
605 	}
606 	sndbuf_size = nc->sndbuf_size;
607 	rcvbuf_size = nc->rcvbuf_size;
608 	connect_int = nc->connect_int;
609 	rcu_read_unlock();
610 
611 	my_addr_len = min_t(int, connection->my_addr_len, sizeof(src_in6));
612 	memcpy(&src_in6, &connection->my_addr, my_addr_len);
613 
614 	if (((struct sockaddr *)&connection->my_addr)->sa_family == AF_INET6)
615 		src_in6.sin6_port = 0;
616 	else
617 		((struct sockaddr_in *)&src_in6)->sin_port = 0; /* AF_INET & AF_SCI */
618 
619 	peer_addr_len = min_t(int, connection->peer_addr_len, sizeof(src_in6));
620 	memcpy(&peer_in6, &connection->peer_addr, peer_addr_len);
621 
622 	what = "sock_create_kern";
623 	err = sock_create_kern(&init_net, ((struct sockaddr *)&src_in6)->sa_family,
624 			       SOCK_STREAM, IPPROTO_TCP, &sock);
625 	if (err < 0) {
626 		sock = NULL;
627 		goto out;
628 	}
629 
630 	sock->sk->sk_rcvtimeo =
631 	sock->sk->sk_sndtimeo = connect_int * HZ;
632 	drbd_setbufsize(sock, sndbuf_size, rcvbuf_size);
633 
634        /* explicitly bind to the configured IP as source IP
635 	*  for the outgoing connections.
636 	*  This is needed for multihomed hosts and to be
637 	*  able to use lo: interfaces for drbd.
638 	* Make sure to use 0 as port number, so linux selects
639 	*  a free one dynamically.
640 	*/
641 	what = "bind before connect";
642 	err = sock->ops->bind(sock, (struct sockaddr *) &src_in6, my_addr_len);
643 	if (err < 0)
644 		goto out;
645 
646 	/* connect may fail, peer not yet available.
647 	 * stay C_WF_CONNECTION, don't go Disconnecting! */
648 	disconnect_on_error = 0;
649 	what = "connect";
650 	err = sock->ops->connect(sock, (struct sockaddr *) &peer_in6, peer_addr_len, 0);
651 
652 out:
653 	if (err < 0) {
654 		if (sock) {
655 			sock_release(sock);
656 			sock = NULL;
657 		}
658 		switch (-err) {
659 			/* timeout, busy, signal pending */
660 		case ETIMEDOUT: case EAGAIN: case EINPROGRESS:
661 		case EINTR: case ERESTARTSYS:
662 			/* peer not (yet) available, network problem */
663 		case ECONNREFUSED: case ENETUNREACH:
664 		case EHOSTDOWN:    case EHOSTUNREACH:
665 			disconnect_on_error = 0;
666 			break;
667 		default:
668 			drbd_err(connection, "%s failed, err = %d\n", what, err);
669 		}
670 		if (disconnect_on_error)
671 			conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
672 	}
673 
674 	return sock;
675 }
676 
677 struct accept_wait_data {
678 	struct drbd_connection *connection;
679 	struct socket *s_listen;
680 	struct completion door_bell;
681 	void (*original_sk_state_change)(struct sock *sk);
682 
683 };
684 
685 static void drbd_incoming_connection(struct sock *sk)
686 {
687 	struct accept_wait_data *ad = sk->sk_user_data;
688 	void (*state_change)(struct sock *sk);
689 
690 	state_change = ad->original_sk_state_change;
691 	if (sk->sk_state == TCP_ESTABLISHED)
692 		complete(&ad->door_bell);
693 	state_change(sk);
694 }
695 
696 static int prepare_listen_socket(struct drbd_connection *connection, struct accept_wait_data *ad)
697 {
698 	int err, sndbuf_size, rcvbuf_size, my_addr_len;
699 	struct sockaddr_in6 my_addr;
700 	struct socket *s_listen;
701 	struct net_conf *nc;
702 	const char *what;
703 
704 	rcu_read_lock();
705 	nc = rcu_dereference(connection->net_conf);
706 	if (!nc) {
707 		rcu_read_unlock();
708 		return -EIO;
709 	}
710 	sndbuf_size = nc->sndbuf_size;
711 	rcvbuf_size = nc->rcvbuf_size;
712 	rcu_read_unlock();
713 
714 	my_addr_len = min_t(int, connection->my_addr_len, sizeof(struct sockaddr_in6));
715 	memcpy(&my_addr, &connection->my_addr, my_addr_len);
716 
717 	what = "sock_create_kern";
718 	err = sock_create_kern(&init_net, ((struct sockaddr *)&my_addr)->sa_family,
719 			       SOCK_STREAM, IPPROTO_TCP, &s_listen);
720 	if (err) {
721 		s_listen = NULL;
722 		goto out;
723 	}
724 
725 	s_listen->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */
726 	drbd_setbufsize(s_listen, sndbuf_size, rcvbuf_size);
727 
728 	what = "bind before listen";
729 	err = s_listen->ops->bind(s_listen, (struct sockaddr *)&my_addr, my_addr_len);
730 	if (err < 0)
731 		goto out;
732 
733 	ad->s_listen = s_listen;
734 	write_lock_bh(&s_listen->sk->sk_callback_lock);
735 	ad->original_sk_state_change = s_listen->sk->sk_state_change;
736 	s_listen->sk->sk_state_change = drbd_incoming_connection;
737 	s_listen->sk->sk_user_data = ad;
738 	write_unlock_bh(&s_listen->sk->sk_callback_lock);
739 
740 	what = "listen";
741 	err = s_listen->ops->listen(s_listen, 5);
742 	if (err < 0)
743 		goto out;
744 
745 	return 0;
746 out:
747 	if (s_listen)
748 		sock_release(s_listen);
749 	if (err < 0) {
750 		if (err != -EAGAIN && err != -EINTR && err != -ERESTARTSYS) {
751 			drbd_err(connection, "%s failed, err = %d\n", what, err);
752 			conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
753 		}
754 	}
755 
756 	return -EIO;
757 }
758 
759 static void unregister_state_change(struct sock *sk, struct accept_wait_data *ad)
760 {
761 	write_lock_bh(&sk->sk_callback_lock);
762 	sk->sk_state_change = ad->original_sk_state_change;
763 	sk->sk_user_data = NULL;
764 	write_unlock_bh(&sk->sk_callback_lock);
765 }
766 
767 static struct socket *drbd_wait_for_connect(struct drbd_connection *connection, struct accept_wait_data *ad)
768 {
769 	int timeo, connect_int, err = 0;
770 	struct socket *s_estab = NULL;
771 	struct net_conf *nc;
772 
773 	rcu_read_lock();
774 	nc = rcu_dereference(connection->net_conf);
775 	if (!nc) {
776 		rcu_read_unlock();
777 		return NULL;
778 	}
779 	connect_int = nc->connect_int;
780 	rcu_read_unlock();
781 
782 	timeo = connect_int * HZ;
783 	/* 28.5% random jitter */
784 	timeo += prandom_u32_max(2) ? timeo / 7 : -timeo / 7;
785 
786 	err = wait_for_completion_interruptible_timeout(&ad->door_bell, timeo);
787 	if (err <= 0)
788 		return NULL;
789 
790 	err = kernel_accept(ad->s_listen, &s_estab, 0);
791 	if (err < 0) {
792 		if (err != -EAGAIN && err != -EINTR && err != -ERESTARTSYS) {
793 			drbd_err(connection, "accept failed, err = %d\n", err);
794 			conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
795 		}
796 	}
797 
798 	if (s_estab)
799 		unregister_state_change(s_estab->sk, ad);
800 
801 	return s_estab;
802 }
803 
804 static int decode_header(struct drbd_connection *, void *, struct packet_info *);
805 
806 static int send_first_packet(struct drbd_connection *connection, struct drbd_socket *sock,
807 			     enum drbd_packet cmd)
808 {
809 	if (!conn_prepare_command(connection, sock))
810 		return -EIO;
811 	return conn_send_command(connection, sock, cmd, 0, NULL, 0);
812 }
813 
814 static int receive_first_packet(struct drbd_connection *connection, struct socket *sock)
815 {
816 	unsigned int header_size = drbd_header_size(connection);
817 	struct packet_info pi;
818 	struct net_conf *nc;
819 	int err;
820 
821 	rcu_read_lock();
822 	nc = rcu_dereference(connection->net_conf);
823 	if (!nc) {
824 		rcu_read_unlock();
825 		return -EIO;
826 	}
827 	sock->sk->sk_rcvtimeo = nc->ping_timeo * 4 * HZ / 10;
828 	rcu_read_unlock();
829 
830 	err = drbd_recv_short(sock, connection->data.rbuf, header_size, 0);
831 	if (err != header_size) {
832 		if (err >= 0)
833 			err = -EIO;
834 		return err;
835 	}
836 	err = decode_header(connection, connection->data.rbuf, &pi);
837 	if (err)
838 		return err;
839 	return pi.cmd;
840 }
841 
842 /**
843  * drbd_socket_okay() - Free the socket if its connection is not okay
844  * @sock:	pointer to the pointer to the socket.
845  */
846 static bool drbd_socket_okay(struct socket **sock)
847 {
848 	int rr;
849 	char tb[4];
850 
851 	if (!*sock)
852 		return false;
853 
854 	rr = drbd_recv_short(*sock, tb, 4, MSG_DONTWAIT | MSG_PEEK);
855 
856 	if (rr > 0 || rr == -EAGAIN) {
857 		return true;
858 	} else {
859 		sock_release(*sock);
860 		*sock = NULL;
861 		return false;
862 	}
863 }
864 
865 static bool connection_established(struct drbd_connection *connection,
866 				   struct socket **sock1,
867 				   struct socket **sock2)
868 {
869 	struct net_conf *nc;
870 	int timeout;
871 	bool ok;
872 
873 	if (!*sock1 || !*sock2)
874 		return false;
875 
876 	rcu_read_lock();
877 	nc = rcu_dereference(connection->net_conf);
878 	timeout = (nc->sock_check_timeo ?: nc->ping_timeo) * HZ / 10;
879 	rcu_read_unlock();
880 	schedule_timeout_interruptible(timeout);
881 
882 	ok = drbd_socket_okay(sock1);
883 	ok = drbd_socket_okay(sock2) && ok;
884 
885 	return ok;
886 }
887 
888 /* Gets called if a connection is established, or if a new minor gets created
889    in a connection */
890 int drbd_connected(struct drbd_peer_device *peer_device)
891 {
892 	struct drbd_device *device = peer_device->device;
893 	int err;
894 
895 	atomic_set(&device->packet_seq, 0);
896 	device->peer_seq = 0;
897 
898 	device->state_mutex = peer_device->connection->agreed_pro_version < 100 ?
899 		&peer_device->connection->cstate_mutex :
900 		&device->own_state_mutex;
901 
902 	err = drbd_send_sync_param(peer_device);
903 	if (!err)
904 		err = drbd_send_sizes(peer_device, 0, 0);
905 	if (!err)
906 		err = drbd_send_uuids(peer_device);
907 	if (!err)
908 		err = drbd_send_current_state(peer_device);
909 	clear_bit(USE_DEGR_WFC_T, &device->flags);
910 	clear_bit(RESIZE_PENDING, &device->flags);
911 	atomic_set(&device->ap_in_flight, 0);
912 	mod_timer(&device->request_timer, jiffies + HZ); /* just start it here. */
913 	return err;
914 }
915 
916 /*
917  * return values:
918  *   1 yes, we have a valid connection
919  *   0 oops, did not work out, please try again
920  *  -1 peer talks different language,
921  *     no point in trying again, please go standalone.
922  *  -2 We do not have a network config...
923  */
924 static int conn_connect(struct drbd_connection *connection)
925 {
926 	struct drbd_socket sock, msock;
927 	struct drbd_peer_device *peer_device;
928 	struct net_conf *nc;
929 	int vnr, timeout, h;
930 	bool discard_my_data, ok;
931 	enum drbd_state_rv rv;
932 	struct accept_wait_data ad = {
933 		.connection = connection,
934 		.door_bell = COMPLETION_INITIALIZER_ONSTACK(ad.door_bell),
935 	};
936 
937 	clear_bit(DISCONNECT_SENT, &connection->flags);
938 	if (conn_request_state(connection, NS(conn, C_WF_CONNECTION), CS_VERBOSE) < SS_SUCCESS)
939 		return -2;
940 
941 	mutex_init(&sock.mutex);
942 	sock.sbuf = connection->data.sbuf;
943 	sock.rbuf = connection->data.rbuf;
944 	sock.socket = NULL;
945 	mutex_init(&msock.mutex);
946 	msock.sbuf = connection->meta.sbuf;
947 	msock.rbuf = connection->meta.rbuf;
948 	msock.socket = NULL;
949 
950 	/* Assume that the peer only understands protocol 80 until we know better.  */
951 	connection->agreed_pro_version = 80;
952 
953 	if (prepare_listen_socket(connection, &ad))
954 		return 0;
955 
956 	do {
957 		struct socket *s;
958 
959 		s = drbd_try_connect(connection);
960 		if (s) {
961 			if (!sock.socket) {
962 				sock.socket = s;
963 				send_first_packet(connection, &sock, P_INITIAL_DATA);
964 			} else if (!msock.socket) {
965 				clear_bit(RESOLVE_CONFLICTS, &connection->flags);
966 				msock.socket = s;
967 				send_first_packet(connection, &msock, P_INITIAL_META);
968 			} else {
969 				drbd_err(connection, "Logic error in conn_connect()\n");
970 				goto out_release_sockets;
971 			}
972 		}
973 
974 		if (connection_established(connection, &sock.socket, &msock.socket))
975 			break;
976 
977 retry:
978 		s = drbd_wait_for_connect(connection, &ad);
979 		if (s) {
980 			int fp = receive_first_packet(connection, s);
981 			drbd_socket_okay(&sock.socket);
982 			drbd_socket_okay(&msock.socket);
983 			switch (fp) {
984 			case P_INITIAL_DATA:
985 				if (sock.socket) {
986 					drbd_warn(connection, "initial packet S crossed\n");
987 					sock_release(sock.socket);
988 					sock.socket = s;
989 					goto randomize;
990 				}
991 				sock.socket = s;
992 				break;
993 			case P_INITIAL_META:
994 				set_bit(RESOLVE_CONFLICTS, &connection->flags);
995 				if (msock.socket) {
996 					drbd_warn(connection, "initial packet M crossed\n");
997 					sock_release(msock.socket);
998 					msock.socket = s;
999 					goto randomize;
1000 				}
1001 				msock.socket = s;
1002 				break;
1003 			default:
1004 				drbd_warn(connection, "Error receiving initial packet\n");
1005 				sock_release(s);
1006 randomize:
1007 				if (prandom_u32_max(2))
1008 					goto retry;
1009 			}
1010 		}
1011 
1012 		if (connection->cstate <= C_DISCONNECTING)
1013 			goto out_release_sockets;
1014 		if (signal_pending(current)) {
1015 			flush_signals(current);
1016 			smp_rmb();
1017 			if (get_t_state(&connection->receiver) == EXITING)
1018 				goto out_release_sockets;
1019 		}
1020 
1021 		ok = connection_established(connection, &sock.socket, &msock.socket);
1022 	} while (!ok);
1023 
1024 	if (ad.s_listen)
1025 		sock_release(ad.s_listen);
1026 
1027 	sock.socket->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */
1028 	msock.socket->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */
1029 
1030 	sock.socket->sk->sk_allocation = GFP_NOIO;
1031 	msock.socket->sk->sk_allocation = GFP_NOIO;
1032 
1033 	sock.socket->sk->sk_priority = TC_PRIO_INTERACTIVE_BULK;
1034 	msock.socket->sk->sk_priority = TC_PRIO_INTERACTIVE;
1035 
1036 	/* NOT YET ...
1037 	 * sock.socket->sk->sk_sndtimeo = connection->net_conf->timeout*HZ/10;
1038 	 * sock.socket->sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
1039 	 * first set it to the P_CONNECTION_FEATURES timeout,
1040 	 * which we set to 4x the configured ping_timeout. */
1041 	rcu_read_lock();
1042 	nc = rcu_dereference(connection->net_conf);
1043 
1044 	sock.socket->sk->sk_sndtimeo =
1045 	sock.socket->sk->sk_rcvtimeo = nc->ping_timeo*4*HZ/10;
1046 
1047 	msock.socket->sk->sk_rcvtimeo = nc->ping_int*HZ;
1048 	timeout = nc->timeout * HZ / 10;
1049 	discard_my_data = nc->discard_my_data;
1050 	rcu_read_unlock();
1051 
1052 	msock.socket->sk->sk_sndtimeo = timeout;
1053 
1054 	/* we don't want delays.
1055 	 * we use TCP_CORK where appropriate, though */
1056 	tcp_sock_set_nodelay(sock.socket->sk);
1057 	tcp_sock_set_nodelay(msock.socket->sk);
1058 
1059 	connection->data.socket = sock.socket;
1060 	connection->meta.socket = msock.socket;
1061 	connection->last_received = jiffies;
1062 
1063 	h = drbd_do_features(connection);
1064 	if (h <= 0)
1065 		return h;
1066 
1067 	if (connection->cram_hmac_tfm) {
1068 		/* drbd_request_state(device, NS(conn, WFAuth)); */
1069 		switch (drbd_do_auth(connection)) {
1070 		case -1:
1071 			drbd_err(connection, "Authentication of peer failed\n");
1072 			return -1;
1073 		case 0:
1074 			drbd_err(connection, "Authentication of peer failed, trying again.\n");
1075 			return 0;
1076 		}
1077 	}
1078 
1079 	connection->data.socket->sk->sk_sndtimeo = timeout;
1080 	connection->data.socket->sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
1081 
1082 	if (drbd_send_protocol(connection) == -EOPNOTSUPP)
1083 		return -1;
1084 
1085 	/* Prevent a race between resync-handshake and
1086 	 * being promoted to Primary.
1087 	 *
1088 	 * Grab and release the state mutex, so we know that any current
1089 	 * drbd_set_role() is finished, and any incoming drbd_set_role
1090 	 * will see the STATE_SENT flag, and wait for it to be cleared.
1091 	 */
1092 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr)
1093 		mutex_lock(peer_device->device->state_mutex);
1094 
1095 	/* avoid a race with conn_request_state( C_DISCONNECTING ) */
1096 	spin_lock_irq(&connection->resource->req_lock);
1097 	set_bit(STATE_SENT, &connection->flags);
1098 	spin_unlock_irq(&connection->resource->req_lock);
1099 
1100 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr)
1101 		mutex_unlock(peer_device->device->state_mutex);
1102 
1103 	rcu_read_lock();
1104 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
1105 		struct drbd_device *device = peer_device->device;
1106 		kref_get(&device->kref);
1107 		rcu_read_unlock();
1108 
1109 		if (discard_my_data)
1110 			set_bit(DISCARD_MY_DATA, &device->flags);
1111 		else
1112 			clear_bit(DISCARD_MY_DATA, &device->flags);
1113 
1114 		drbd_connected(peer_device);
1115 		kref_put(&device->kref, drbd_destroy_device);
1116 		rcu_read_lock();
1117 	}
1118 	rcu_read_unlock();
1119 
1120 	rv = conn_request_state(connection, NS(conn, C_WF_REPORT_PARAMS), CS_VERBOSE);
1121 	if (rv < SS_SUCCESS || connection->cstate != C_WF_REPORT_PARAMS) {
1122 		clear_bit(STATE_SENT, &connection->flags);
1123 		return 0;
1124 	}
1125 
1126 	drbd_thread_start(&connection->ack_receiver);
1127 	/* opencoded create_singlethread_workqueue(),
1128 	 * to be able to use format string arguments */
1129 	connection->ack_sender =
1130 		alloc_ordered_workqueue("drbd_as_%s", WQ_MEM_RECLAIM, connection->resource->name);
1131 	if (!connection->ack_sender) {
1132 		drbd_err(connection, "Failed to create workqueue ack_sender\n");
1133 		return 0;
1134 	}
1135 
1136 	mutex_lock(&connection->resource->conf_update);
1137 	/* The discard_my_data flag is a single-shot modifier to the next
1138 	 * connection attempt, the handshake of which is now well underway.
1139 	 * No need for rcu style copying of the whole struct
1140 	 * just to clear a single value. */
1141 	connection->net_conf->discard_my_data = 0;
1142 	mutex_unlock(&connection->resource->conf_update);
1143 
1144 	return h;
1145 
1146 out_release_sockets:
1147 	if (ad.s_listen)
1148 		sock_release(ad.s_listen);
1149 	if (sock.socket)
1150 		sock_release(sock.socket);
1151 	if (msock.socket)
1152 		sock_release(msock.socket);
1153 	return -1;
1154 }
1155 
1156 static int decode_header(struct drbd_connection *connection, void *header, struct packet_info *pi)
1157 {
1158 	unsigned int header_size = drbd_header_size(connection);
1159 
1160 	if (header_size == sizeof(struct p_header100) &&
1161 	    *(__be32 *)header == cpu_to_be32(DRBD_MAGIC_100)) {
1162 		struct p_header100 *h = header;
1163 		if (h->pad != 0) {
1164 			drbd_err(connection, "Header padding is not zero\n");
1165 			return -EINVAL;
1166 		}
1167 		pi->vnr = be16_to_cpu(h->volume);
1168 		pi->cmd = be16_to_cpu(h->command);
1169 		pi->size = be32_to_cpu(h->length);
1170 	} else if (header_size == sizeof(struct p_header95) &&
1171 		   *(__be16 *)header == cpu_to_be16(DRBD_MAGIC_BIG)) {
1172 		struct p_header95 *h = header;
1173 		pi->cmd = be16_to_cpu(h->command);
1174 		pi->size = be32_to_cpu(h->length);
1175 		pi->vnr = 0;
1176 	} else if (header_size == sizeof(struct p_header80) &&
1177 		   *(__be32 *)header == cpu_to_be32(DRBD_MAGIC)) {
1178 		struct p_header80 *h = header;
1179 		pi->cmd = be16_to_cpu(h->command);
1180 		pi->size = be16_to_cpu(h->length);
1181 		pi->vnr = 0;
1182 	} else {
1183 		drbd_err(connection, "Wrong magic value 0x%08x in protocol version %d\n",
1184 			 be32_to_cpu(*(__be32 *)header),
1185 			 connection->agreed_pro_version);
1186 		return -EINVAL;
1187 	}
1188 	pi->data = header + header_size;
1189 	return 0;
1190 }
1191 
1192 static void drbd_unplug_all_devices(struct drbd_connection *connection)
1193 {
1194 	if (current->plug == &connection->receiver_plug) {
1195 		blk_finish_plug(&connection->receiver_plug);
1196 		blk_start_plug(&connection->receiver_plug);
1197 	} /* else: maybe just schedule() ?? */
1198 }
1199 
1200 static int drbd_recv_header(struct drbd_connection *connection, struct packet_info *pi)
1201 {
1202 	void *buffer = connection->data.rbuf;
1203 	int err;
1204 
1205 	err = drbd_recv_all_warn(connection, buffer, drbd_header_size(connection));
1206 	if (err)
1207 		return err;
1208 
1209 	err = decode_header(connection, buffer, pi);
1210 	connection->last_received = jiffies;
1211 
1212 	return err;
1213 }
1214 
1215 static int drbd_recv_header_maybe_unplug(struct drbd_connection *connection, struct packet_info *pi)
1216 {
1217 	void *buffer = connection->data.rbuf;
1218 	unsigned int size = drbd_header_size(connection);
1219 	int err;
1220 
1221 	err = drbd_recv_short(connection->data.socket, buffer, size, MSG_NOSIGNAL|MSG_DONTWAIT);
1222 	if (err != size) {
1223 		/* If we have nothing in the receive buffer now, to reduce
1224 		 * application latency, try to drain the backend queues as
1225 		 * quickly as possible, and let remote TCP know what we have
1226 		 * received so far. */
1227 		if (err == -EAGAIN) {
1228 			tcp_sock_set_quickack(connection->data.socket->sk, 2);
1229 			drbd_unplug_all_devices(connection);
1230 		}
1231 		if (err > 0) {
1232 			buffer += err;
1233 			size -= err;
1234 		}
1235 		err = drbd_recv_all_warn(connection, buffer, size);
1236 		if (err)
1237 			return err;
1238 	}
1239 
1240 	err = decode_header(connection, connection->data.rbuf, pi);
1241 	connection->last_received = jiffies;
1242 
1243 	return err;
1244 }
1245 /* This is blkdev_issue_flush, but asynchronous.
1246  * We want to submit to all component volumes in parallel,
1247  * then wait for all completions.
1248  */
1249 struct issue_flush_context {
1250 	atomic_t pending;
1251 	int error;
1252 	struct completion done;
1253 };
1254 struct one_flush_context {
1255 	struct drbd_device *device;
1256 	struct issue_flush_context *ctx;
1257 };
1258 
1259 static void one_flush_endio(struct bio *bio)
1260 {
1261 	struct one_flush_context *octx = bio->bi_private;
1262 	struct drbd_device *device = octx->device;
1263 	struct issue_flush_context *ctx = octx->ctx;
1264 
1265 	if (bio->bi_status) {
1266 		ctx->error = blk_status_to_errno(bio->bi_status);
1267 		drbd_info(device, "local disk FLUSH FAILED with status %d\n", bio->bi_status);
1268 	}
1269 	kfree(octx);
1270 	bio_put(bio);
1271 
1272 	clear_bit(FLUSH_PENDING, &device->flags);
1273 	put_ldev(device);
1274 	kref_put(&device->kref, drbd_destroy_device);
1275 
1276 	if (atomic_dec_and_test(&ctx->pending))
1277 		complete(&ctx->done);
1278 }
1279 
1280 static void submit_one_flush(struct drbd_device *device, struct issue_flush_context *ctx)
1281 {
1282 	struct bio *bio = bio_alloc(device->ldev->backing_bdev, 0,
1283 				    REQ_OP_FLUSH | REQ_PREFLUSH, GFP_NOIO);
1284 	struct one_flush_context *octx = kmalloc(sizeof(*octx), GFP_NOIO);
1285 
1286 	if (!octx) {
1287 		drbd_warn(device, "Could not allocate a octx, CANNOT ISSUE FLUSH\n");
1288 		/* FIXME: what else can I do now?  disconnecting or detaching
1289 		 * really does not help to improve the state of the world, either.
1290 		 */
1291 		bio_put(bio);
1292 
1293 		ctx->error = -ENOMEM;
1294 		put_ldev(device);
1295 		kref_put(&device->kref, drbd_destroy_device);
1296 		return;
1297 	}
1298 
1299 	octx->device = device;
1300 	octx->ctx = ctx;
1301 	bio->bi_private = octx;
1302 	bio->bi_end_io = one_flush_endio;
1303 
1304 	device->flush_jif = jiffies;
1305 	set_bit(FLUSH_PENDING, &device->flags);
1306 	atomic_inc(&ctx->pending);
1307 	submit_bio(bio);
1308 }
1309 
1310 static void drbd_flush(struct drbd_connection *connection)
1311 {
1312 	if (connection->resource->write_ordering >= WO_BDEV_FLUSH) {
1313 		struct drbd_peer_device *peer_device;
1314 		struct issue_flush_context ctx;
1315 		int vnr;
1316 
1317 		atomic_set(&ctx.pending, 1);
1318 		ctx.error = 0;
1319 		init_completion(&ctx.done);
1320 
1321 		rcu_read_lock();
1322 		idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
1323 			struct drbd_device *device = peer_device->device;
1324 
1325 			if (!get_ldev(device))
1326 				continue;
1327 			kref_get(&device->kref);
1328 			rcu_read_unlock();
1329 
1330 			submit_one_flush(device, &ctx);
1331 
1332 			rcu_read_lock();
1333 		}
1334 		rcu_read_unlock();
1335 
1336 		/* Do we want to add a timeout,
1337 		 * if disk-timeout is set? */
1338 		if (!atomic_dec_and_test(&ctx.pending))
1339 			wait_for_completion(&ctx.done);
1340 
1341 		if (ctx.error) {
1342 			/* would rather check on EOPNOTSUPP, but that is not reliable.
1343 			 * don't try again for ANY return value != 0
1344 			 * if (rv == -EOPNOTSUPP) */
1345 			/* Any error is already reported by bio_endio callback. */
1346 			drbd_bump_write_ordering(connection->resource, NULL, WO_DRAIN_IO);
1347 		}
1348 	}
1349 }
1350 
1351 /**
1352  * drbd_may_finish_epoch() - Applies an epoch_event to the epoch's state, eventually finishes it.
1353  * @connection:	DRBD connection.
1354  * @epoch:	Epoch object.
1355  * @ev:		Epoch event.
1356  */
1357 static enum finish_epoch drbd_may_finish_epoch(struct drbd_connection *connection,
1358 					       struct drbd_epoch *epoch,
1359 					       enum epoch_event ev)
1360 {
1361 	int epoch_size;
1362 	struct drbd_epoch *next_epoch;
1363 	enum finish_epoch rv = FE_STILL_LIVE;
1364 
1365 	spin_lock(&connection->epoch_lock);
1366 	do {
1367 		next_epoch = NULL;
1368 
1369 		epoch_size = atomic_read(&epoch->epoch_size);
1370 
1371 		switch (ev & ~EV_CLEANUP) {
1372 		case EV_PUT:
1373 			atomic_dec(&epoch->active);
1374 			break;
1375 		case EV_GOT_BARRIER_NR:
1376 			set_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags);
1377 			break;
1378 		case EV_BECAME_LAST:
1379 			/* nothing to do*/
1380 			break;
1381 		}
1382 
1383 		if (epoch_size != 0 &&
1384 		    atomic_read(&epoch->active) == 0 &&
1385 		    (test_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags) || ev & EV_CLEANUP)) {
1386 			if (!(ev & EV_CLEANUP)) {
1387 				spin_unlock(&connection->epoch_lock);
1388 				drbd_send_b_ack(epoch->connection, epoch->barrier_nr, epoch_size);
1389 				spin_lock(&connection->epoch_lock);
1390 			}
1391 #if 0
1392 			/* FIXME: dec unacked on connection, once we have
1393 			 * something to count pending connection packets in. */
1394 			if (test_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags))
1395 				dec_unacked(epoch->connection);
1396 #endif
1397 
1398 			if (connection->current_epoch != epoch) {
1399 				next_epoch = list_entry(epoch->list.next, struct drbd_epoch, list);
1400 				list_del(&epoch->list);
1401 				ev = EV_BECAME_LAST | (ev & EV_CLEANUP);
1402 				connection->epochs--;
1403 				kfree(epoch);
1404 
1405 				if (rv == FE_STILL_LIVE)
1406 					rv = FE_DESTROYED;
1407 			} else {
1408 				epoch->flags = 0;
1409 				atomic_set(&epoch->epoch_size, 0);
1410 				/* atomic_set(&epoch->active, 0); is already zero */
1411 				if (rv == FE_STILL_LIVE)
1412 					rv = FE_RECYCLED;
1413 			}
1414 		}
1415 
1416 		if (!next_epoch)
1417 			break;
1418 
1419 		epoch = next_epoch;
1420 	} while (1);
1421 
1422 	spin_unlock(&connection->epoch_lock);
1423 
1424 	return rv;
1425 }
1426 
1427 static enum write_ordering_e
1428 max_allowed_wo(struct drbd_backing_dev *bdev, enum write_ordering_e wo)
1429 {
1430 	struct disk_conf *dc;
1431 
1432 	dc = rcu_dereference(bdev->disk_conf);
1433 
1434 	if (wo == WO_BDEV_FLUSH && !dc->disk_flushes)
1435 		wo = WO_DRAIN_IO;
1436 	if (wo == WO_DRAIN_IO && !dc->disk_drain)
1437 		wo = WO_NONE;
1438 
1439 	return wo;
1440 }
1441 
1442 /*
1443  * drbd_bump_write_ordering() - Fall back to an other write ordering method
1444  * @wo:		Write ordering method to try.
1445  */
1446 void drbd_bump_write_ordering(struct drbd_resource *resource, struct drbd_backing_dev *bdev,
1447 			      enum write_ordering_e wo)
1448 {
1449 	struct drbd_device *device;
1450 	enum write_ordering_e pwo;
1451 	int vnr;
1452 	static char *write_ordering_str[] = {
1453 		[WO_NONE] = "none",
1454 		[WO_DRAIN_IO] = "drain",
1455 		[WO_BDEV_FLUSH] = "flush",
1456 	};
1457 
1458 	pwo = resource->write_ordering;
1459 	if (wo != WO_BDEV_FLUSH)
1460 		wo = min(pwo, wo);
1461 	rcu_read_lock();
1462 	idr_for_each_entry(&resource->devices, device, vnr) {
1463 		if (get_ldev(device)) {
1464 			wo = max_allowed_wo(device->ldev, wo);
1465 			if (device->ldev == bdev)
1466 				bdev = NULL;
1467 			put_ldev(device);
1468 		}
1469 	}
1470 
1471 	if (bdev)
1472 		wo = max_allowed_wo(bdev, wo);
1473 
1474 	rcu_read_unlock();
1475 
1476 	resource->write_ordering = wo;
1477 	if (pwo != resource->write_ordering || wo == WO_BDEV_FLUSH)
1478 		drbd_info(resource, "Method to ensure write ordering: %s\n", write_ordering_str[resource->write_ordering]);
1479 }
1480 
1481 /*
1482  * Mapping "discard" to ZEROOUT with UNMAP does not work for us:
1483  * Drivers have to "announce" q->limits.max_write_zeroes_sectors, or it
1484  * will directly go to fallback mode, submitting normal writes, and
1485  * never even try to UNMAP.
1486  *
1487  * And dm-thin does not do this (yet), mostly because in general it has
1488  * to assume that "skip_block_zeroing" is set.  See also:
1489  * https://www.mail-archive.com/dm-devel%40redhat.com/msg07965.html
1490  * https://www.redhat.com/archives/dm-devel/2018-January/msg00271.html
1491  *
1492  * We *may* ignore the discard-zeroes-data setting, if so configured.
1493  *
1494  * Assumption is that this "discard_zeroes_data=0" is only because the backend
1495  * may ignore partial unaligned discards.
1496  *
1497  * LVM/DM thin as of at least
1498  *   LVM version:     2.02.115(2)-RHEL7 (2015-01-28)
1499  *   Library version: 1.02.93-RHEL7 (2015-01-28)
1500  *   Driver version:  4.29.0
1501  * still behaves this way.
1502  *
1503  * For unaligned (wrt. alignment and granularity) or too small discards,
1504  * we zero-out the initial (and/or) trailing unaligned partial chunks,
1505  * but discard all the aligned full chunks.
1506  *
1507  * At least for LVM/DM thin, with skip_block_zeroing=false,
1508  * the result is effectively "discard_zeroes_data=1".
1509  */
1510 /* flags: EE_TRIM|EE_ZEROOUT */
1511 int drbd_issue_discard_or_zero_out(struct drbd_device *device, sector_t start, unsigned int nr_sectors, int flags)
1512 {
1513 	struct block_device *bdev = device->ldev->backing_bdev;
1514 	sector_t tmp, nr;
1515 	unsigned int max_discard_sectors, granularity;
1516 	int alignment;
1517 	int err = 0;
1518 
1519 	if ((flags & EE_ZEROOUT) || !(flags & EE_TRIM))
1520 		goto zero_out;
1521 
1522 	/* Zero-sector (unknown) and one-sector granularities are the same.  */
1523 	granularity = max(bdev_discard_granularity(bdev) >> 9, 1U);
1524 	alignment = (bdev_discard_alignment(bdev) >> 9) % granularity;
1525 
1526 	max_discard_sectors = min(bdev_max_discard_sectors(bdev), (1U << 22));
1527 	max_discard_sectors -= max_discard_sectors % granularity;
1528 	if (unlikely(!max_discard_sectors))
1529 		goto zero_out;
1530 
1531 	if (nr_sectors < granularity)
1532 		goto zero_out;
1533 
1534 	tmp = start;
1535 	if (sector_div(tmp, granularity) != alignment) {
1536 		if (nr_sectors < 2*granularity)
1537 			goto zero_out;
1538 		/* start + gran - (start + gran - align) % gran */
1539 		tmp = start + granularity - alignment;
1540 		tmp = start + granularity - sector_div(tmp, granularity);
1541 
1542 		nr = tmp - start;
1543 		/* don't flag BLKDEV_ZERO_NOUNMAP, we don't know how many
1544 		 * layers are below us, some may have smaller granularity */
1545 		err |= blkdev_issue_zeroout(bdev, start, nr, GFP_NOIO, 0);
1546 		nr_sectors -= nr;
1547 		start = tmp;
1548 	}
1549 	while (nr_sectors >= max_discard_sectors) {
1550 		err |= blkdev_issue_discard(bdev, start, max_discard_sectors,
1551 					    GFP_NOIO);
1552 		nr_sectors -= max_discard_sectors;
1553 		start += max_discard_sectors;
1554 	}
1555 	if (nr_sectors) {
1556 		/* max_discard_sectors is unsigned int (and a multiple of
1557 		 * granularity, we made sure of that above already);
1558 		 * nr is < max_discard_sectors;
1559 		 * I don't need sector_div here, even though nr is sector_t */
1560 		nr = nr_sectors;
1561 		nr -= (unsigned int)nr % granularity;
1562 		if (nr) {
1563 			err |= blkdev_issue_discard(bdev, start, nr, GFP_NOIO);
1564 			nr_sectors -= nr;
1565 			start += nr;
1566 		}
1567 	}
1568  zero_out:
1569 	if (nr_sectors) {
1570 		err |= blkdev_issue_zeroout(bdev, start, nr_sectors, GFP_NOIO,
1571 				(flags & EE_TRIM) ? 0 : BLKDEV_ZERO_NOUNMAP);
1572 	}
1573 	return err != 0;
1574 }
1575 
1576 static bool can_do_reliable_discards(struct drbd_device *device)
1577 {
1578 	struct disk_conf *dc;
1579 	bool can_do;
1580 
1581 	if (!bdev_max_discard_sectors(device->ldev->backing_bdev))
1582 		return false;
1583 
1584 	rcu_read_lock();
1585 	dc = rcu_dereference(device->ldev->disk_conf);
1586 	can_do = dc->discard_zeroes_if_aligned;
1587 	rcu_read_unlock();
1588 	return can_do;
1589 }
1590 
1591 static void drbd_issue_peer_discard_or_zero_out(struct drbd_device *device, struct drbd_peer_request *peer_req)
1592 {
1593 	/* If the backend cannot discard, or does not guarantee
1594 	 * read-back zeroes in discarded ranges, we fall back to
1595 	 * zero-out.  Unless configuration specifically requested
1596 	 * otherwise. */
1597 	if (!can_do_reliable_discards(device))
1598 		peer_req->flags |= EE_ZEROOUT;
1599 
1600 	if (drbd_issue_discard_or_zero_out(device, peer_req->i.sector,
1601 	    peer_req->i.size >> 9, peer_req->flags & (EE_ZEROOUT|EE_TRIM)))
1602 		peer_req->flags |= EE_WAS_ERROR;
1603 	drbd_endio_write_sec_final(peer_req);
1604 }
1605 
1606 /**
1607  * drbd_submit_peer_request()
1608  * @device:	DRBD device.
1609  * @peer_req:	peer request
1610  *
1611  * May spread the pages to multiple bios,
1612  * depending on bio_add_page restrictions.
1613  *
1614  * Returns 0 if all bios have been submitted,
1615  * -ENOMEM if we could not allocate enough bios,
1616  * -ENOSPC (any better suggestion?) if we have not been able to bio_add_page a
1617  *  single page to an empty bio (which should never happen and likely indicates
1618  *  that the lower level IO stack is in some way broken). This has been observed
1619  *  on certain Xen deployments.
1620  */
1621 /* TODO allocate from our own bio_set. */
1622 int drbd_submit_peer_request(struct drbd_device *device,
1623 			     struct drbd_peer_request *peer_req,
1624 			     const blk_opf_t opf, const int fault_type)
1625 {
1626 	struct bio *bios = NULL;
1627 	struct bio *bio;
1628 	struct page *page = peer_req->pages;
1629 	sector_t sector = peer_req->i.sector;
1630 	unsigned int data_size = peer_req->i.size;
1631 	unsigned int n_bios = 0;
1632 	unsigned int nr_pages = PFN_UP(data_size);
1633 
1634 	/* TRIM/DISCARD: for now, always use the helper function
1635 	 * blkdev_issue_zeroout(..., discard=true).
1636 	 * It's synchronous, but it does the right thing wrt. bio splitting.
1637 	 * Correctness first, performance later.  Next step is to code an
1638 	 * asynchronous variant of the same.
1639 	 */
1640 	if (peer_req->flags & (EE_TRIM | EE_ZEROOUT)) {
1641 		/* wait for all pending IO completions, before we start
1642 		 * zeroing things out. */
1643 		conn_wait_active_ee_empty(peer_req->peer_device->connection);
1644 		/* add it to the active list now,
1645 		 * so we can find it to present it in debugfs */
1646 		peer_req->submit_jif = jiffies;
1647 		peer_req->flags |= EE_SUBMITTED;
1648 
1649 		/* If this was a resync request from receive_rs_deallocated(),
1650 		 * it is already on the sync_ee list */
1651 		if (list_empty(&peer_req->w.list)) {
1652 			spin_lock_irq(&device->resource->req_lock);
1653 			list_add_tail(&peer_req->w.list, &device->active_ee);
1654 			spin_unlock_irq(&device->resource->req_lock);
1655 		}
1656 
1657 		drbd_issue_peer_discard_or_zero_out(device, peer_req);
1658 		return 0;
1659 	}
1660 
1661 	/* In most cases, we will only need one bio.  But in case the lower
1662 	 * level restrictions happen to be different at this offset on this
1663 	 * side than those of the sending peer, we may need to submit the
1664 	 * request in more than one bio.
1665 	 *
1666 	 * Plain bio_alloc is good enough here, this is no DRBD internally
1667 	 * generated bio, but a bio allocated on behalf of the peer.
1668 	 */
1669 next_bio:
1670 	bio = bio_alloc(device->ldev->backing_bdev, nr_pages, opf, GFP_NOIO);
1671 	/* > peer_req->i.sector, unless this is the first bio */
1672 	bio->bi_iter.bi_sector = sector;
1673 	bio->bi_private = peer_req;
1674 	bio->bi_end_io = drbd_peer_request_endio;
1675 
1676 	bio->bi_next = bios;
1677 	bios = bio;
1678 	++n_bios;
1679 
1680 	page_chain_for_each(page) {
1681 		unsigned len = min_t(unsigned, data_size, PAGE_SIZE);
1682 		if (!bio_add_page(bio, page, len, 0))
1683 			goto next_bio;
1684 		data_size -= len;
1685 		sector += len >> 9;
1686 		--nr_pages;
1687 	}
1688 	D_ASSERT(device, data_size == 0);
1689 	D_ASSERT(device, page == NULL);
1690 
1691 	atomic_set(&peer_req->pending_bios, n_bios);
1692 	/* for debugfs: update timestamp, mark as submitted */
1693 	peer_req->submit_jif = jiffies;
1694 	peer_req->flags |= EE_SUBMITTED;
1695 	do {
1696 		bio = bios;
1697 		bios = bios->bi_next;
1698 		bio->bi_next = NULL;
1699 
1700 		drbd_submit_bio_noacct(device, fault_type, bio);
1701 	} while (bios);
1702 	return 0;
1703 }
1704 
1705 static void drbd_remove_epoch_entry_interval(struct drbd_device *device,
1706 					     struct drbd_peer_request *peer_req)
1707 {
1708 	struct drbd_interval *i = &peer_req->i;
1709 
1710 	drbd_remove_interval(&device->write_requests, i);
1711 	drbd_clear_interval(i);
1712 
1713 	/* Wake up any processes waiting for this peer request to complete.  */
1714 	if (i->waiting)
1715 		wake_up(&device->misc_wait);
1716 }
1717 
1718 static void conn_wait_active_ee_empty(struct drbd_connection *connection)
1719 {
1720 	struct drbd_peer_device *peer_device;
1721 	int vnr;
1722 
1723 	rcu_read_lock();
1724 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
1725 		struct drbd_device *device = peer_device->device;
1726 
1727 		kref_get(&device->kref);
1728 		rcu_read_unlock();
1729 		drbd_wait_ee_list_empty(device, &device->active_ee);
1730 		kref_put(&device->kref, drbd_destroy_device);
1731 		rcu_read_lock();
1732 	}
1733 	rcu_read_unlock();
1734 }
1735 
1736 static int receive_Barrier(struct drbd_connection *connection, struct packet_info *pi)
1737 {
1738 	int rv;
1739 	struct p_barrier *p = pi->data;
1740 	struct drbd_epoch *epoch;
1741 
1742 	/* FIXME these are unacked on connection,
1743 	 * not a specific (peer)device.
1744 	 */
1745 	connection->current_epoch->barrier_nr = p->barrier;
1746 	connection->current_epoch->connection = connection;
1747 	rv = drbd_may_finish_epoch(connection, connection->current_epoch, EV_GOT_BARRIER_NR);
1748 
1749 	/* P_BARRIER_ACK may imply that the corresponding extent is dropped from
1750 	 * the activity log, which means it would not be resynced in case the
1751 	 * R_PRIMARY crashes now.
1752 	 * Therefore we must send the barrier_ack after the barrier request was
1753 	 * completed. */
1754 	switch (connection->resource->write_ordering) {
1755 	case WO_NONE:
1756 		if (rv == FE_RECYCLED)
1757 			return 0;
1758 
1759 		/* receiver context, in the writeout path of the other node.
1760 		 * avoid potential distributed deadlock */
1761 		epoch = kmalloc(sizeof(struct drbd_epoch), GFP_NOIO);
1762 		if (epoch)
1763 			break;
1764 		else
1765 			drbd_warn(connection, "Allocation of an epoch failed, slowing down\n");
1766 		fallthrough;
1767 
1768 	case WO_BDEV_FLUSH:
1769 	case WO_DRAIN_IO:
1770 		conn_wait_active_ee_empty(connection);
1771 		drbd_flush(connection);
1772 
1773 		if (atomic_read(&connection->current_epoch->epoch_size)) {
1774 			epoch = kmalloc(sizeof(struct drbd_epoch), GFP_NOIO);
1775 			if (epoch)
1776 				break;
1777 		}
1778 
1779 		return 0;
1780 	default:
1781 		drbd_err(connection, "Strangeness in connection->write_ordering %d\n",
1782 			 connection->resource->write_ordering);
1783 		return -EIO;
1784 	}
1785 
1786 	epoch->flags = 0;
1787 	atomic_set(&epoch->epoch_size, 0);
1788 	atomic_set(&epoch->active, 0);
1789 
1790 	spin_lock(&connection->epoch_lock);
1791 	if (atomic_read(&connection->current_epoch->epoch_size)) {
1792 		list_add(&epoch->list, &connection->current_epoch->list);
1793 		connection->current_epoch = epoch;
1794 		connection->epochs++;
1795 	} else {
1796 		/* The current_epoch got recycled while we allocated this one... */
1797 		kfree(epoch);
1798 	}
1799 	spin_unlock(&connection->epoch_lock);
1800 
1801 	return 0;
1802 }
1803 
1804 /* quick wrapper in case payload size != request_size (write same) */
1805 static void drbd_csum_ee_size(struct crypto_shash *h,
1806 			      struct drbd_peer_request *r, void *d,
1807 			      unsigned int payload_size)
1808 {
1809 	unsigned int tmp = r->i.size;
1810 	r->i.size = payload_size;
1811 	drbd_csum_ee(h, r, d);
1812 	r->i.size = tmp;
1813 }
1814 
1815 /* used from receive_RSDataReply (recv_resync_read)
1816  * and from receive_Data.
1817  * data_size: actual payload ("data in")
1818  * 	for normal writes that is bi_size.
1819  * 	for discards, that is zero.
1820  * 	for write same, it is logical_block_size.
1821  * both trim and write same have the bi_size ("data len to be affected")
1822  * as extra argument in the packet header.
1823  */
1824 static struct drbd_peer_request *
1825 read_in_block(struct drbd_peer_device *peer_device, u64 id, sector_t sector,
1826 	      struct packet_info *pi) __must_hold(local)
1827 {
1828 	struct drbd_device *device = peer_device->device;
1829 	const sector_t capacity = get_capacity(device->vdisk);
1830 	struct drbd_peer_request *peer_req;
1831 	struct page *page;
1832 	int digest_size, err;
1833 	unsigned int data_size = pi->size, ds;
1834 	void *dig_in = peer_device->connection->int_dig_in;
1835 	void *dig_vv = peer_device->connection->int_dig_vv;
1836 	unsigned long *data;
1837 	struct p_trim *trim = (pi->cmd == P_TRIM) ? pi->data : NULL;
1838 	struct p_trim *zeroes = (pi->cmd == P_ZEROES) ? pi->data : NULL;
1839 
1840 	digest_size = 0;
1841 	if (!trim && peer_device->connection->peer_integrity_tfm) {
1842 		digest_size = crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm);
1843 		/*
1844 		 * FIXME: Receive the incoming digest into the receive buffer
1845 		 *	  here, together with its struct p_data?
1846 		 */
1847 		err = drbd_recv_all_warn(peer_device->connection, dig_in, digest_size);
1848 		if (err)
1849 			return NULL;
1850 		data_size -= digest_size;
1851 	}
1852 
1853 	/* assume request_size == data_size, but special case trim. */
1854 	ds = data_size;
1855 	if (trim) {
1856 		if (!expect(data_size == 0))
1857 			return NULL;
1858 		ds = be32_to_cpu(trim->size);
1859 	} else if (zeroes) {
1860 		if (!expect(data_size == 0))
1861 			return NULL;
1862 		ds = be32_to_cpu(zeroes->size);
1863 	}
1864 
1865 	if (!expect(IS_ALIGNED(ds, 512)))
1866 		return NULL;
1867 	if (trim || zeroes) {
1868 		if (!expect(ds <= (DRBD_MAX_BBIO_SECTORS << 9)))
1869 			return NULL;
1870 	} else if (!expect(ds <= DRBD_MAX_BIO_SIZE))
1871 		return NULL;
1872 
1873 	/* even though we trust out peer,
1874 	 * we sometimes have to double check. */
1875 	if (sector + (ds>>9) > capacity) {
1876 		drbd_err(device, "request from peer beyond end of local disk: "
1877 			"capacity: %llus < sector: %llus + size: %u\n",
1878 			(unsigned long long)capacity,
1879 			(unsigned long long)sector, ds);
1880 		return NULL;
1881 	}
1882 
1883 	/* GFP_NOIO, because we must not cause arbitrary write-out: in a DRBD
1884 	 * "criss-cross" setup, that might cause write-out on some other DRBD,
1885 	 * which in turn might block on the other node at this very place.  */
1886 	peer_req = drbd_alloc_peer_req(peer_device, id, sector, ds, data_size, GFP_NOIO);
1887 	if (!peer_req)
1888 		return NULL;
1889 
1890 	peer_req->flags |= EE_WRITE;
1891 	if (trim) {
1892 		peer_req->flags |= EE_TRIM;
1893 		return peer_req;
1894 	}
1895 	if (zeroes) {
1896 		peer_req->flags |= EE_ZEROOUT;
1897 		return peer_req;
1898 	}
1899 
1900 	/* receive payload size bytes into page chain */
1901 	ds = data_size;
1902 	page = peer_req->pages;
1903 	page_chain_for_each(page) {
1904 		unsigned len = min_t(int, ds, PAGE_SIZE);
1905 		data = kmap(page);
1906 		err = drbd_recv_all_warn(peer_device->connection, data, len);
1907 		if (drbd_insert_fault(device, DRBD_FAULT_RECEIVE)) {
1908 			drbd_err(device, "Fault injection: Corrupting data on receive\n");
1909 			data[0] = data[0] ^ (unsigned long)-1;
1910 		}
1911 		kunmap(page);
1912 		if (err) {
1913 			drbd_free_peer_req(device, peer_req);
1914 			return NULL;
1915 		}
1916 		ds -= len;
1917 	}
1918 
1919 	if (digest_size) {
1920 		drbd_csum_ee_size(peer_device->connection->peer_integrity_tfm, peer_req, dig_vv, data_size);
1921 		if (memcmp(dig_in, dig_vv, digest_size)) {
1922 			drbd_err(device, "Digest integrity check FAILED: %llus +%u\n",
1923 				(unsigned long long)sector, data_size);
1924 			drbd_free_peer_req(device, peer_req);
1925 			return NULL;
1926 		}
1927 	}
1928 	device->recv_cnt += data_size >> 9;
1929 	return peer_req;
1930 }
1931 
1932 /* drbd_drain_block() just takes a data block
1933  * out of the socket input buffer, and discards it.
1934  */
1935 static int drbd_drain_block(struct drbd_peer_device *peer_device, int data_size)
1936 {
1937 	struct page *page;
1938 	int err = 0;
1939 	void *data;
1940 
1941 	if (!data_size)
1942 		return 0;
1943 
1944 	page = drbd_alloc_pages(peer_device, 1, 1);
1945 
1946 	data = kmap(page);
1947 	while (data_size) {
1948 		unsigned int len = min_t(int, data_size, PAGE_SIZE);
1949 
1950 		err = drbd_recv_all_warn(peer_device->connection, data, len);
1951 		if (err)
1952 			break;
1953 		data_size -= len;
1954 	}
1955 	kunmap(page);
1956 	drbd_free_pages(peer_device->device, page, 0);
1957 	return err;
1958 }
1959 
1960 static int recv_dless_read(struct drbd_peer_device *peer_device, struct drbd_request *req,
1961 			   sector_t sector, int data_size)
1962 {
1963 	struct bio_vec bvec;
1964 	struct bvec_iter iter;
1965 	struct bio *bio;
1966 	int digest_size, err, expect;
1967 	void *dig_in = peer_device->connection->int_dig_in;
1968 	void *dig_vv = peer_device->connection->int_dig_vv;
1969 
1970 	digest_size = 0;
1971 	if (peer_device->connection->peer_integrity_tfm) {
1972 		digest_size = crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm);
1973 		err = drbd_recv_all_warn(peer_device->connection, dig_in, digest_size);
1974 		if (err)
1975 			return err;
1976 		data_size -= digest_size;
1977 	}
1978 
1979 	/* optimistically update recv_cnt.  if receiving fails below,
1980 	 * we disconnect anyways, and counters will be reset. */
1981 	peer_device->device->recv_cnt += data_size>>9;
1982 
1983 	bio = req->master_bio;
1984 	D_ASSERT(peer_device->device, sector == bio->bi_iter.bi_sector);
1985 
1986 	bio_for_each_segment(bvec, bio, iter) {
1987 		void *mapped = bvec_kmap_local(&bvec);
1988 		expect = min_t(int, data_size, bvec.bv_len);
1989 		err = drbd_recv_all_warn(peer_device->connection, mapped, expect);
1990 		kunmap_local(mapped);
1991 		if (err)
1992 			return err;
1993 		data_size -= expect;
1994 	}
1995 
1996 	if (digest_size) {
1997 		drbd_csum_bio(peer_device->connection->peer_integrity_tfm, bio, dig_vv);
1998 		if (memcmp(dig_in, dig_vv, digest_size)) {
1999 			drbd_err(peer_device, "Digest integrity check FAILED. Broken NICs?\n");
2000 			return -EINVAL;
2001 		}
2002 	}
2003 
2004 	D_ASSERT(peer_device->device, data_size == 0);
2005 	return 0;
2006 }
2007 
2008 /*
2009  * e_end_resync_block() is called in ack_sender context via
2010  * drbd_finish_peer_reqs().
2011  */
2012 static int e_end_resync_block(struct drbd_work *w, int unused)
2013 {
2014 	struct drbd_peer_request *peer_req =
2015 		container_of(w, struct drbd_peer_request, w);
2016 	struct drbd_peer_device *peer_device = peer_req->peer_device;
2017 	struct drbd_device *device = peer_device->device;
2018 	sector_t sector = peer_req->i.sector;
2019 	int err;
2020 
2021 	D_ASSERT(device, drbd_interval_empty(&peer_req->i));
2022 
2023 	if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) {
2024 		drbd_set_in_sync(device, sector, peer_req->i.size);
2025 		err = drbd_send_ack(peer_device, P_RS_WRITE_ACK, peer_req);
2026 	} else {
2027 		/* Record failure to sync */
2028 		drbd_rs_failed_io(device, sector, peer_req->i.size);
2029 
2030 		err  = drbd_send_ack(peer_device, P_NEG_ACK, peer_req);
2031 	}
2032 	dec_unacked(device);
2033 
2034 	return err;
2035 }
2036 
2037 static int recv_resync_read(struct drbd_peer_device *peer_device, sector_t sector,
2038 			    struct packet_info *pi) __releases(local)
2039 {
2040 	struct drbd_device *device = peer_device->device;
2041 	struct drbd_peer_request *peer_req;
2042 
2043 	peer_req = read_in_block(peer_device, ID_SYNCER, sector, pi);
2044 	if (!peer_req)
2045 		goto fail;
2046 
2047 	dec_rs_pending(device);
2048 
2049 	inc_unacked(device);
2050 	/* corresponding dec_unacked() in e_end_resync_block()
2051 	 * respective _drbd_clear_done_ee */
2052 
2053 	peer_req->w.cb = e_end_resync_block;
2054 	peer_req->submit_jif = jiffies;
2055 
2056 	spin_lock_irq(&device->resource->req_lock);
2057 	list_add_tail(&peer_req->w.list, &device->sync_ee);
2058 	spin_unlock_irq(&device->resource->req_lock);
2059 
2060 	atomic_add(pi->size >> 9, &device->rs_sect_ev);
2061 	if (drbd_submit_peer_request(device, peer_req, REQ_OP_WRITE,
2062 				     DRBD_FAULT_RS_WR) == 0)
2063 		return 0;
2064 
2065 	/* don't care for the reason here */
2066 	drbd_err(device, "submit failed, triggering re-connect\n");
2067 	spin_lock_irq(&device->resource->req_lock);
2068 	list_del(&peer_req->w.list);
2069 	spin_unlock_irq(&device->resource->req_lock);
2070 
2071 	drbd_free_peer_req(device, peer_req);
2072 fail:
2073 	put_ldev(device);
2074 	return -EIO;
2075 }
2076 
2077 static struct drbd_request *
2078 find_request(struct drbd_device *device, struct rb_root *root, u64 id,
2079 	     sector_t sector, bool missing_ok, const char *func)
2080 {
2081 	struct drbd_request *req;
2082 
2083 	/* Request object according to our peer */
2084 	req = (struct drbd_request *)(unsigned long)id;
2085 	if (drbd_contains_interval(root, sector, &req->i) && req->i.local)
2086 		return req;
2087 	if (!missing_ok) {
2088 		drbd_err(device, "%s: failed to find request 0x%lx, sector %llus\n", func,
2089 			(unsigned long)id, (unsigned long long)sector);
2090 	}
2091 	return NULL;
2092 }
2093 
2094 static int receive_DataReply(struct drbd_connection *connection, struct packet_info *pi)
2095 {
2096 	struct drbd_peer_device *peer_device;
2097 	struct drbd_device *device;
2098 	struct drbd_request *req;
2099 	sector_t sector;
2100 	int err;
2101 	struct p_data *p = pi->data;
2102 
2103 	peer_device = conn_peer_device(connection, pi->vnr);
2104 	if (!peer_device)
2105 		return -EIO;
2106 	device = peer_device->device;
2107 
2108 	sector = be64_to_cpu(p->sector);
2109 
2110 	spin_lock_irq(&device->resource->req_lock);
2111 	req = find_request(device, &device->read_requests, p->block_id, sector, false, __func__);
2112 	spin_unlock_irq(&device->resource->req_lock);
2113 	if (unlikely(!req))
2114 		return -EIO;
2115 
2116 	err = recv_dless_read(peer_device, req, sector, pi->size);
2117 	if (!err)
2118 		req_mod(req, DATA_RECEIVED);
2119 	/* else: nothing. handled from drbd_disconnect...
2120 	 * I don't think we may complete this just yet
2121 	 * in case we are "on-disconnect: freeze" */
2122 
2123 	return err;
2124 }
2125 
2126 static int receive_RSDataReply(struct drbd_connection *connection, struct packet_info *pi)
2127 {
2128 	struct drbd_peer_device *peer_device;
2129 	struct drbd_device *device;
2130 	sector_t sector;
2131 	int err;
2132 	struct p_data *p = pi->data;
2133 
2134 	peer_device = conn_peer_device(connection, pi->vnr);
2135 	if (!peer_device)
2136 		return -EIO;
2137 	device = peer_device->device;
2138 
2139 	sector = be64_to_cpu(p->sector);
2140 	D_ASSERT(device, p->block_id == ID_SYNCER);
2141 
2142 	if (get_ldev(device)) {
2143 		/* data is submitted to disk within recv_resync_read.
2144 		 * corresponding put_ldev done below on error,
2145 		 * or in drbd_peer_request_endio. */
2146 		err = recv_resync_read(peer_device, sector, pi);
2147 	} else {
2148 		if (__ratelimit(&drbd_ratelimit_state))
2149 			drbd_err(device, "Can not write resync data to local disk.\n");
2150 
2151 		err = drbd_drain_block(peer_device, pi->size);
2152 
2153 		drbd_send_ack_dp(peer_device, P_NEG_ACK, p, pi->size);
2154 	}
2155 
2156 	atomic_add(pi->size >> 9, &device->rs_sect_in);
2157 
2158 	return err;
2159 }
2160 
2161 static void restart_conflicting_writes(struct drbd_device *device,
2162 				       sector_t sector, int size)
2163 {
2164 	struct drbd_interval *i;
2165 	struct drbd_request *req;
2166 
2167 	drbd_for_each_overlap(i, &device->write_requests, sector, size) {
2168 		if (!i->local)
2169 			continue;
2170 		req = container_of(i, struct drbd_request, i);
2171 		if (req->rq_state & RQ_LOCAL_PENDING ||
2172 		    !(req->rq_state & RQ_POSTPONED))
2173 			continue;
2174 		/* as it is RQ_POSTPONED, this will cause it to
2175 		 * be queued on the retry workqueue. */
2176 		__req_mod(req, CONFLICT_RESOLVED, NULL);
2177 	}
2178 }
2179 
2180 /*
2181  * e_end_block() is called in ack_sender context via drbd_finish_peer_reqs().
2182  */
2183 static int e_end_block(struct drbd_work *w, int cancel)
2184 {
2185 	struct drbd_peer_request *peer_req =
2186 		container_of(w, struct drbd_peer_request, w);
2187 	struct drbd_peer_device *peer_device = peer_req->peer_device;
2188 	struct drbd_device *device = peer_device->device;
2189 	sector_t sector = peer_req->i.sector;
2190 	int err = 0, pcmd;
2191 
2192 	if (peer_req->flags & EE_SEND_WRITE_ACK) {
2193 		if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) {
2194 			pcmd = (device->state.conn >= C_SYNC_SOURCE &&
2195 				device->state.conn <= C_PAUSED_SYNC_T &&
2196 				peer_req->flags & EE_MAY_SET_IN_SYNC) ?
2197 				P_RS_WRITE_ACK : P_WRITE_ACK;
2198 			err = drbd_send_ack(peer_device, pcmd, peer_req);
2199 			if (pcmd == P_RS_WRITE_ACK)
2200 				drbd_set_in_sync(device, sector, peer_req->i.size);
2201 		} else {
2202 			err = drbd_send_ack(peer_device, P_NEG_ACK, peer_req);
2203 			/* we expect it to be marked out of sync anyways...
2204 			 * maybe assert this?  */
2205 		}
2206 		dec_unacked(device);
2207 	}
2208 
2209 	/* we delete from the conflict detection hash _after_ we sent out the
2210 	 * P_WRITE_ACK / P_NEG_ACK, to get the sequence number right.  */
2211 	if (peer_req->flags & EE_IN_INTERVAL_TREE) {
2212 		spin_lock_irq(&device->resource->req_lock);
2213 		D_ASSERT(device, !drbd_interval_empty(&peer_req->i));
2214 		drbd_remove_epoch_entry_interval(device, peer_req);
2215 		if (peer_req->flags & EE_RESTART_REQUESTS)
2216 			restart_conflicting_writes(device, sector, peer_req->i.size);
2217 		spin_unlock_irq(&device->resource->req_lock);
2218 	} else
2219 		D_ASSERT(device, drbd_interval_empty(&peer_req->i));
2220 
2221 	drbd_may_finish_epoch(peer_device->connection, peer_req->epoch, EV_PUT + (cancel ? EV_CLEANUP : 0));
2222 
2223 	return err;
2224 }
2225 
2226 static int e_send_ack(struct drbd_work *w, enum drbd_packet ack)
2227 {
2228 	struct drbd_peer_request *peer_req =
2229 		container_of(w, struct drbd_peer_request, w);
2230 	struct drbd_peer_device *peer_device = peer_req->peer_device;
2231 	int err;
2232 
2233 	err = drbd_send_ack(peer_device, ack, peer_req);
2234 	dec_unacked(peer_device->device);
2235 
2236 	return err;
2237 }
2238 
2239 static int e_send_superseded(struct drbd_work *w, int unused)
2240 {
2241 	return e_send_ack(w, P_SUPERSEDED);
2242 }
2243 
2244 static int e_send_retry_write(struct drbd_work *w, int unused)
2245 {
2246 	struct drbd_peer_request *peer_req =
2247 		container_of(w, struct drbd_peer_request, w);
2248 	struct drbd_connection *connection = peer_req->peer_device->connection;
2249 
2250 	return e_send_ack(w, connection->agreed_pro_version >= 100 ?
2251 			     P_RETRY_WRITE : P_SUPERSEDED);
2252 }
2253 
2254 static bool seq_greater(u32 a, u32 b)
2255 {
2256 	/*
2257 	 * We assume 32-bit wrap-around here.
2258 	 * For 24-bit wrap-around, we would have to shift:
2259 	 *  a <<= 8; b <<= 8;
2260 	 */
2261 	return (s32)a - (s32)b > 0;
2262 }
2263 
2264 static u32 seq_max(u32 a, u32 b)
2265 {
2266 	return seq_greater(a, b) ? a : b;
2267 }
2268 
2269 static void update_peer_seq(struct drbd_peer_device *peer_device, unsigned int peer_seq)
2270 {
2271 	struct drbd_device *device = peer_device->device;
2272 	unsigned int newest_peer_seq;
2273 
2274 	if (test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags)) {
2275 		spin_lock(&device->peer_seq_lock);
2276 		newest_peer_seq = seq_max(device->peer_seq, peer_seq);
2277 		device->peer_seq = newest_peer_seq;
2278 		spin_unlock(&device->peer_seq_lock);
2279 		/* wake up only if we actually changed device->peer_seq */
2280 		if (peer_seq == newest_peer_seq)
2281 			wake_up(&device->seq_wait);
2282 	}
2283 }
2284 
2285 static inline int overlaps(sector_t s1, int l1, sector_t s2, int l2)
2286 {
2287 	return !((s1 + (l1>>9) <= s2) || (s1 >= s2 + (l2>>9)));
2288 }
2289 
2290 /* maybe change sync_ee into interval trees as well? */
2291 static bool overlapping_resync_write(struct drbd_device *device, struct drbd_peer_request *peer_req)
2292 {
2293 	struct drbd_peer_request *rs_req;
2294 	bool rv = false;
2295 
2296 	spin_lock_irq(&device->resource->req_lock);
2297 	list_for_each_entry(rs_req, &device->sync_ee, w.list) {
2298 		if (overlaps(peer_req->i.sector, peer_req->i.size,
2299 			     rs_req->i.sector, rs_req->i.size)) {
2300 			rv = true;
2301 			break;
2302 		}
2303 	}
2304 	spin_unlock_irq(&device->resource->req_lock);
2305 
2306 	return rv;
2307 }
2308 
2309 /* Called from receive_Data.
2310  * Synchronize packets on sock with packets on msock.
2311  *
2312  * This is here so even when a P_DATA packet traveling via sock overtook an Ack
2313  * packet traveling on msock, they are still processed in the order they have
2314  * been sent.
2315  *
2316  * Note: we don't care for Ack packets overtaking P_DATA packets.
2317  *
2318  * In case packet_seq is larger than device->peer_seq number, there are
2319  * outstanding packets on the msock. We wait for them to arrive.
2320  * In case we are the logically next packet, we update device->peer_seq
2321  * ourselves. Correctly handles 32bit wrap around.
2322  *
2323  * Assume we have a 10 GBit connection, that is about 1<<30 byte per second,
2324  * about 1<<21 sectors per second. So "worst" case, we have 1<<3 == 8 seconds
2325  * for the 24bit wrap (historical atomic_t guarantee on some archs), and we have
2326  * 1<<9 == 512 seconds aka ages for the 32bit wrap around...
2327  *
2328  * returns 0 if we may process the packet,
2329  * -ERESTARTSYS if we were interrupted (by disconnect signal). */
2330 static int wait_for_and_update_peer_seq(struct drbd_peer_device *peer_device, const u32 peer_seq)
2331 {
2332 	struct drbd_device *device = peer_device->device;
2333 	DEFINE_WAIT(wait);
2334 	long timeout;
2335 	int ret = 0, tp;
2336 
2337 	if (!test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags))
2338 		return 0;
2339 
2340 	spin_lock(&device->peer_seq_lock);
2341 	for (;;) {
2342 		if (!seq_greater(peer_seq - 1, device->peer_seq)) {
2343 			device->peer_seq = seq_max(device->peer_seq, peer_seq);
2344 			break;
2345 		}
2346 
2347 		if (signal_pending(current)) {
2348 			ret = -ERESTARTSYS;
2349 			break;
2350 		}
2351 
2352 		rcu_read_lock();
2353 		tp = rcu_dereference(peer_device->connection->net_conf)->two_primaries;
2354 		rcu_read_unlock();
2355 
2356 		if (!tp)
2357 			break;
2358 
2359 		/* Only need to wait if two_primaries is enabled */
2360 		prepare_to_wait(&device->seq_wait, &wait, TASK_INTERRUPTIBLE);
2361 		spin_unlock(&device->peer_seq_lock);
2362 		rcu_read_lock();
2363 		timeout = rcu_dereference(peer_device->connection->net_conf)->ping_timeo*HZ/10;
2364 		rcu_read_unlock();
2365 		timeout = schedule_timeout(timeout);
2366 		spin_lock(&device->peer_seq_lock);
2367 		if (!timeout) {
2368 			ret = -ETIMEDOUT;
2369 			drbd_err(device, "Timed out waiting for missing ack packets; disconnecting\n");
2370 			break;
2371 		}
2372 	}
2373 	spin_unlock(&device->peer_seq_lock);
2374 	finish_wait(&device->seq_wait, &wait);
2375 	return ret;
2376 }
2377 
2378 /* see also bio_flags_to_wire()
2379  * DRBD_REQ_*, because we need to semantically map the flags to data packet
2380  * flags and back. We may replicate to other kernel versions. */
2381 static blk_opf_t wire_flags_to_bio_flags(u32 dpf)
2382 {
2383 	return  (dpf & DP_RW_SYNC ? REQ_SYNC : 0) |
2384 		(dpf & DP_FUA ? REQ_FUA : 0) |
2385 		(dpf & DP_FLUSH ? REQ_PREFLUSH : 0);
2386 }
2387 
2388 static enum req_op wire_flags_to_bio_op(u32 dpf)
2389 {
2390 	if (dpf & DP_ZEROES)
2391 		return REQ_OP_WRITE_ZEROES;
2392 	if (dpf & DP_DISCARD)
2393 		return REQ_OP_DISCARD;
2394 	else
2395 		return REQ_OP_WRITE;
2396 }
2397 
2398 static void fail_postponed_requests(struct drbd_device *device, sector_t sector,
2399 				    unsigned int size)
2400 {
2401 	struct drbd_interval *i;
2402 
2403     repeat:
2404 	drbd_for_each_overlap(i, &device->write_requests, sector, size) {
2405 		struct drbd_request *req;
2406 		struct bio_and_error m;
2407 
2408 		if (!i->local)
2409 			continue;
2410 		req = container_of(i, struct drbd_request, i);
2411 		if (!(req->rq_state & RQ_POSTPONED))
2412 			continue;
2413 		req->rq_state &= ~RQ_POSTPONED;
2414 		__req_mod(req, NEG_ACKED, &m);
2415 		spin_unlock_irq(&device->resource->req_lock);
2416 		if (m.bio)
2417 			complete_master_bio(device, &m);
2418 		spin_lock_irq(&device->resource->req_lock);
2419 		goto repeat;
2420 	}
2421 }
2422 
2423 static int handle_write_conflicts(struct drbd_device *device,
2424 				  struct drbd_peer_request *peer_req)
2425 {
2426 	struct drbd_connection *connection = peer_req->peer_device->connection;
2427 	bool resolve_conflicts = test_bit(RESOLVE_CONFLICTS, &connection->flags);
2428 	sector_t sector = peer_req->i.sector;
2429 	const unsigned int size = peer_req->i.size;
2430 	struct drbd_interval *i;
2431 	bool equal;
2432 	int err;
2433 
2434 	/*
2435 	 * Inserting the peer request into the write_requests tree will prevent
2436 	 * new conflicting local requests from being added.
2437 	 */
2438 	drbd_insert_interval(&device->write_requests, &peer_req->i);
2439 
2440     repeat:
2441 	drbd_for_each_overlap(i, &device->write_requests, sector, size) {
2442 		if (i == &peer_req->i)
2443 			continue;
2444 		if (i->completed)
2445 			continue;
2446 
2447 		if (!i->local) {
2448 			/*
2449 			 * Our peer has sent a conflicting remote request; this
2450 			 * should not happen in a two-node setup.  Wait for the
2451 			 * earlier peer request to complete.
2452 			 */
2453 			err = drbd_wait_misc(device, i);
2454 			if (err)
2455 				goto out;
2456 			goto repeat;
2457 		}
2458 
2459 		equal = i->sector == sector && i->size == size;
2460 		if (resolve_conflicts) {
2461 			/*
2462 			 * If the peer request is fully contained within the
2463 			 * overlapping request, it can be considered overwritten
2464 			 * and thus superseded; otherwise, it will be retried
2465 			 * once all overlapping requests have completed.
2466 			 */
2467 			bool superseded = i->sector <= sector && i->sector +
2468 				       (i->size >> 9) >= sector + (size >> 9);
2469 
2470 			if (!equal)
2471 				drbd_alert(device, "Concurrent writes detected: "
2472 					       "local=%llus +%u, remote=%llus +%u, "
2473 					       "assuming %s came first\n",
2474 					  (unsigned long long)i->sector, i->size,
2475 					  (unsigned long long)sector, size,
2476 					  superseded ? "local" : "remote");
2477 
2478 			peer_req->w.cb = superseded ? e_send_superseded :
2479 						   e_send_retry_write;
2480 			list_add_tail(&peer_req->w.list, &device->done_ee);
2481 			queue_work(connection->ack_sender, &peer_req->peer_device->send_acks_work);
2482 
2483 			err = -ENOENT;
2484 			goto out;
2485 		} else {
2486 			struct drbd_request *req =
2487 				container_of(i, struct drbd_request, i);
2488 
2489 			if (!equal)
2490 				drbd_alert(device, "Concurrent writes detected: "
2491 					       "local=%llus +%u, remote=%llus +%u\n",
2492 					  (unsigned long long)i->sector, i->size,
2493 					  (unsigned long long)sector, size);
2494 
2495 			if (req->rq_state & RQ_LOCAL_PENDING ||
2496 			    !(req->rq_state & RQ_POSTPONED)) {
2497 				/*
2498 				 * Wait for the node with the discard flag to
2499 				 * decide if this request has been superseded
2500 				 * or needs to be retried.
2501 				 * Requests that have been superseded will
2502 				 * disappear from the write_requests tree.
2503 				 *
2504 				 * In addition, wait for the conflicting
2505 				 * request to finish locally before submitting
2506 				 * the conflicting peer request.
2507 				 */
2508 				err = drbd_wait_misc(device, &req->i);
2509 				if (err) {
2510 					_conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD);
2511 					fail_postponed_requests(device, sector, size);
2512 					goto out;
2513 				}
2514 				goto repeat;
2515 			}
2516 			/*
2517 			 * Remember to restart the conflicting requests after
2518 			 * the new peer request has completed.
2519 			 */
2520 			peer_req->flags |= EE_RESTART_REQUESTS;
2521 		}
2522 	}
2523 	err = 0;
2524 
2525     out:
2526 	if (err)
2527 		drbd_remove_epoch_entry_interval(device, peer_req);
2528 	return err;
2529 }
2530 
2531 /* mirrored write */
2532 static int receive_Data(struct drbd_connection *connection, struct packet_info *pi)
2533 {
2534 	struct drbd_peer_device *peer_device;
2535 	struct drbd_device *device;
2536 	struct net_conf *nc;
2537 	sector_t sector;
2538 	struct drbd_peer_request *peer_req;
2539 	struct p_data *p = pi->data;
2540 	u32 peer_seq = be32_to_cpu(p->seq_num);
2541 	enum req_op op;
2542 	blk_opf_t op_flags;
2543 	u32 dp_flags;
2544 	int err, tp;
2545 
2546 	peer_device = conn_peer_device(connection, pi->vnr);
2547 	if (!peer_device)
2548 		return -EIO;
2549 	device = peer_device->device;
2550 
2551 	if (!get_ldev(device)) {
2552 		int err2;
2553 
2554 		err = wait_for_and_update_peer_seq(peer_device, peer_seq);
2555 		drbd_send_ack_dp(peer_device, P_NEG_ACK, p, pi->size);
2556 		atomic_inc(&connection->current_epoch->epoch_size);
2557 		err2 = drbd_drain_block(peer_device, pi->size);
2558 		if (!err)
2559 			err = err2;
2560 		return err;
2561 	}
2562 
2563 	/*
2564 	 * Corresponding put_ldev done either below (on various errors), or in
2565 	 * drbd_peer_request_endio, if we successfully submit the data at the
2566 	 * end of this function.
2567 	 */
2568 
2569 	sector = be64_to_cpu(p->sector);
2570 	peer_req = read_in_block(peer_device, p->block_id, sector, pi);
2571 	if (!peer_req) {
2572 		put_ldev(device);
2573 		return -EIO;
2574 	}
2575 
2576 	peer_req->w.cb = e_end_block;
2577 	peer_req->submit_jif = jiffies;
2578 	peer_req->flags |= EE_APPLICATION;
2579 
2580 	dp_flags = be32_to_cpu(p->dp_flags);
2581 	op = wire_flags_to_bio_op(dp_flags);
2582 	op_flags = wire_flags_to_bio_flags(dp_flags);
2583 	if (pi->cmd == P_TRIM) {
2584 		D_ASSERT(peer_device, peer_req->i.size > 0);
2585 		D_ASSERT(peer_device, op == REQ_OP_DISCARD);
2586 		D_ASSERT(peer_device, peer_req->pages == NULL);
2587 		/* need to play safe: an older DRBD sender
2588 		 * may mean zero-out while sending P_TRIM. */
2589 		if (0 == (connection->agreed_features & DRBD_FF_WZEROES))
2590 			peer_req->flags |= EE_ZEROOUT;
2591 	} else if (pi->cmd == P_ZEROES) {
2592 		D_ASSERT(peer_device, peer_req->i.size > 0);
2593 		D_ASSERT(peer_device, op == REQ_OP_WRITE_ZEROES);
2594 		D_ASSERT(peer_device, peer_req->pages == NULL);
2595 		/* Do (not) pass down BLKDEV_ZERO_NOUNMAP? */
2596 		if (dp_flags & DP_DISCARD)
2597 			peer_req->flags |= EE_TRIM;
2598 	} else if (peer_req->pages == NULL) {
2599 		D_ASSERT(device, peer_req->i.size == 0);
2600 		D_ASSERT(device, dp_flags & DP_FLUSH);
2601 	}
2602 
2603 	if (dp_flags & DP_MAY_SET_IN_SYNC)
2604 		peer_req->flags |= EE_MAY_SET_IN_SYNC;
2605 
2606 	spin_lock(&connection->epoch_lock);
2607 	peer_req->epoch = connection->current_epoch;
2608 	atomic_inc(&peer_req->epoch->epoch_size);
2609 	atomic_inc(&peer_req->epoch->active);
2610 	spin_unlock(&connection->epoch_lock);
2611 
2612 	rcu_read_lock();
2613 	nc = rcu_dereference(peer_device->connection->net_conf);
2614 	tp = nc->two_primaries;
2615 	if (peer_device->connection->agreed_pro_version < 100) {
2616 		switch (nc->wire_protocol) {
2617 		case DRBD_PROT_C:
2618 			dp_flags |= DP_SEND_WRITE_ACK;
2619 			break;
2620 		case DRBD_PROT_B:
2621 			dp_flags |= DP_SEND_RECEIVE_ACK;
2622 			break;
2623 		}
2624 	}
2625 	rcu_read_unlock();
2626 
2627 	if (dp_flags & DP_SEND_WRITE_ACK) {
2628 		peer_req->flags |= EE_SEND_WRITE_ACK;
2629 		inc_unacked(device);
2630 		/* corresponding dec_unacked() in e_end_block()
2631 		 * respective _drbd_clear_done_ee */
2632 	}
2633 
2634 	if (dp_flags & DP_SEND_RECEIVE_ACK) {
2635 		/* I really don't like it that the receiver thread
2636 		 * sends on the msock, but anyways */
2637 		drbd_send_ack(peer_device, P_RECV_ACK, peer_req);
2638 	}
2639 
2640 	if (tp) {
2641 		/* two primaries implies protocol C */
2642 		D_ASSERT(device, dp_flags & DP_SEND_WRITE_ACK);
2643 		peer_req->flags |= EE_IN_INTERVAL_TREE;
2644 		err = wait_for_and_update_peer_seq(peer_device, peer_seq);
2645 		if (err)
2646 			goto out_interrupted;
2647 		spin_lock_irq(&device->resource->req_lock);
2648 		err = handle_write_conflicts(device, peer_req);
2649 		if (err) {
2650 			spin_unlock_irq(&device->resource->req_lock);
2651 			if (err == -ENOENT) {
2652 				put_ldev(device);
2653 				return 0;
2654 			}
2655 			goto out_interrupted;
2656 		}
2657 	} else {
2658 		update_peer_seq(peer_device, peer_seq);
2659 		spin_lock_irq(&device->resource->req_lock);
2660 	}
2661 	/* TRIM and is processed synchronously,
2662 	 * we wait for all pending requests, respectively wait for
2663 	 * active_ee to become empty in drbd_submit_peer_request();
2664 	 * better not add ourselves here. */
2665 	if ((peer_req->flags & (EE_TRIM | EE_ZEROOUT)) == 0)
2666 		list_add_tail(&peer_req->w.list, &device->active_ee);
2667 	spin_unlock_irq(&device->resource->req_lock);
2668 
2669 	if (device->state.conn == C_SYNC_TARGET)
2670 		wait_event(device->ee_wait, !overlapping_resync_write(device, peer_req));
2671 
2672 	if (device->state.pdsk < D_INCONSISTENT) {
2673 		/* In case we have the only disk of the cluster, */
2674 		drbd_set_out_of_sync(device, peer_req->i.sector, peer_req->i.size);
2675 		peer_req->flags &= ~EE_MAY_SET_IN_SYNC;
2676 		drbd_al_begin_io(device, &peer_req->i);
2677 		peer_req->flags |= EE_CALL_AL_COMPLETE_IO;
2678 	}
2679 
2680 	err = drbd_submit_peer_request(device, peer_req, op | op_flags,
2681 				       DRBD_FAULT_DT_WR);
2682 	if (!err)
2683 		return 0;
2684 
2685 	/* don't care for the reason here */
2686 	drbd_err(device, "submit failed, triggering re-connect\n");
2687 	spin_lock_irq(&device->resource->req_lock);
2688 	list_del(&peer_req->w.list);
2689 	drbd_remove_epoch_entry_interval(device, peer_req);
2690 	spin_unlock_irq(&device->resource->req_lock);
2691 	if (peer_req->flags & EE_CALL_AL_COMPLETE_IO) {
2692 		peer_req->flags &= ~EE_CALL_AL_COMPLETE_IO;
2693 		drbd_al_complete_io(device, &peer_req->i);
2694 	}
2695 
2696 out_interrupted:
2697 	drbd_may_finish_epoch(connection, peer_req->epoch, EV_PUT | EV_CLEANUP);
2698 	put_ldev(device);
2699 	drbd_free_peer_req(device, peer_req);
2700 	return err;
2701 }
2702 
2703 /* We may throttle resync, if the lower device seems to be busy,
2704  * and current sync rate is above c_min_rate.
2705  *
2706  * To decide whether or not the lower device is busy, we use a scheme similar
2707  * to MD RAID is_mddev_idle(): if the partition stats reveal "significant"
2708  * (more than 64 sectors) of activity we cannot account for with our own resync
2709  * activity, it obviously is "busy".
2710  *
2711  * The current sync rate used here uses only the most recent two step marks,
2712  * to have a short time average so we can react faster.
2713  */
2714 bool drbd_rs_should_slow_down(struct drbd_device *device, sector_t sector,
2715 		bool throttle_if_app_is_waiting)
2716 {
2717 	struct lc_element *tmp;
2718 	bool throttle = drbd_rs_c_min_rate_throttle(device);
2719 
2720 	if (!throttle || throttle_if_app_is_waiting)
2721 		return throttle;
2722 
2723 	spin_lock_irq(&device->al_lock);
2724 	tmp = lc_find(device->resync, BM_SECT_TO_EXT(sector));
2725 	if (tmp) {
2726 		struct bm_extent *bm_ext = lc_entry(tmp, struct bm_extent, lce);
2727 		if (test_bit(BME_PRIORITY, &bm_ext->flags))
2728 			throttle = false;
2729 		/* Do not slow down if app IO is already waiting for this extent,
2730 		 * and our progress is necessary for application IO to complete. */
2731 	}
2732 	spin_unlock_irq(&device->al_lock);
2733 
2734 	return throttle;
2735 }
2736 
2737 bool drbd_rs_c_min_rate_throttle(struct drbd_device *device)
2738 {
2739 	struct gendisk *disk = device->ldev->backing_bdev->bd_disk;
2740 	unsigned long db, dt, dbdt;
2741 	unsigned int c_min_rate;
2742 	int curr_events;
2743 
2744 	rcu_read_lock();
2745 	c_min_rate = rcu_dereference(device->ldev->disk_conf)->c_min_rate;
2746 	rcu_read_unlock();
2747 
2748 	/* feature disabled? */
2749 	if (c_min_rate == 0)
2750 		return false;
2751 
2752 	curr_events = (int)part_stat_read_accum(disk->part0, sectors) -
2753 			atomic_read(&device->rs_sect_ev);
2754 
2755 	if (atomic_read(&device->ap_actlog_cnt)
2756 	    || curr_events - device->rs_last_events > 64) {
2757 		unsigned long rs_left;
2758 		int i;
2759 
2760 		device->rs_last_events = curr_events;
2761 
2762 		/* sync speed average over the last 2*DRBD_SYNC_MARK_STEP,
2763 		 * approx. */
2764 		i = (device->rs_last_mark + DRBD_SYNC_MARKS-1) % DRBD_SYNC_MARKS;
2765 
2766 		if (device->state.conn == C_VERIFY_S || device->state.conn == C_VERIFY_T)
2767 			rs_left = device->ov_left;
2768 		else
2769 			rs_left = drbd_bm_total_weight(device) - device->rs_failed;
2770 
2771 		dt = ((long)jiffies - (long)device->rs_mark_time[i]) / HZ;
2772 		if (!dt)
2773 			dt++;
2774 		db = device->rs_mark_left[i] - rs_left;
2775 		dbdt = Bit2KB(db/dt);
2776 
2777 		if (dbdt > c_min_rate)
2778 			return true;
2779 	}
2780 	return false;
2781 }
2782 
2783 static int receive_DataRequest(struct drbd_connection *connection, struct packet_info *pi)
2784 {
2785 	struct drbd_peer_device *peer_device;
2786 	struct drbd_device *device;
2787 	sector_t sector;
2788 	sector_t capacity;
2789 	struct drbd_peer_request *peer_req;
2790 	struct digest_info *di = NULL;
2791 	int size, verb;
2792 	unsigned int fault_type;
2793 	struct p_block_req *p =	pi->data;
2794 
2795 	peer_device = conn_peer_device(connection, pi->vnr);
2796 	if (!peer_device)
2797 		return -EIO;
2798 	device = peer_device->device;
2799 	capacity = get_capacity(device->vdisk);
2800 
2801 	sector = be64_to_cpu(p->sector);
2802 	size   = be32_to_cpu(p->blksize);
2803 
2804 	if (size <= 0 || !IS_ALIGNED(size, 512) || size > DRBD_MAX_BIO_SIZE) {
2805 		drbd_err(device, "%s:%d: sector: %llus, size: %u\n", __FILE__, __LINE__,
2806 				(unsigned long long)sector, size);
2807 		return -EINVAL;
2808 	}
2809 	if (sector + (size>>9) > capacity) {
2810 		drbd_err(device, "%s:%d: sector: %llus, size: %u\n", __FILE__, __LINE__,
2811 				(unsigned long long)sector, size);
2812 		return -EINVAL;
2813 	}
2814 
2815 	if (!get_ldev_if_state(device, D_UP_TO_DATE)) {
2816 		verb = 1;
2817 		switch (pi->cmd) {
2818 		case P_DATA_REQUEST:
2819 			drbd_send_ack_rp(peer_device, P_NEG_DREPLY, p);
2820 			break;
2821 		case P_RS_THIN_REQ:
2822 		case P_RS_DATA_REQUEST:
2823 		case P_CSUM_RS_REQUEST:
2824 		case P_OV_REQUEST:
2825 			drbd_send_ack_rp(peer_device, P_NEG_RS_DREPLY , p);
2826 			break;
2827 		case P_OV_REPLY:
2828 			verb = 0;
2829 			dec_rs_pending(device);
2830 			drbd_send_ack_ex(peer_device, P_OV_RESULT, sector, size, ID_IN_SYNC);
2831 			break;
2832 		default:
2833 			BUG();
2834 		}
2835 		if (verb && __ratelimit(&drbd_ratelimit_state))
2836 			drbd_err(device, "Can not satisfy peer's read request, "
2837 			    "no local data.\n");
2838 
2839 		/* drain possibly payload */
2840 		return drbd_drain_block(peer_device, pi->size);
2841 	}
2842 
2843 	/* GFP_NOIO, because we must not cause arbitrary write-out: in a DRBD
2844 	 * "criss-cross" setup, that might cause write-out on some other DRBD,
2845 	 * which in turn might block on the other node at this very place.  */
2846 	peer_req = drbd_alloc_peer_req(peer_device, p->block_id, sector, size,
2847 			size, GFP_NOIO);
2848 	if (!peer_req) {
2849 		put_ldev(device);
2850 		return -ENOMEM;
2851 	}
2852 
2853 	switch (pi->cmd) {
2854 	case P_DATA_REQUEST:
2855 		peer_req->w.cb = w_e_end_data_req;
2856 		fault_type = DRBD_FAULT_DT_RD;
2857 		/* application IO, don't drbd_rs_begin_io */
2858 		peer_req->flags |= EE_APPLICATION;
2859 		goto submit;
2860 
2861 	case P_RS_THIN_REQ:
2862 		/* If at some point in the future we have a smart way to
2863 		   find out if this data block is completely deallocated,
2864 		   then we would do something smarter here than reading
2865 		   the block... */
2866 		peer_req->flags |= EE_RS_THIN_REQ;
2867 		fallthrough;
2868 	case P_RS_DATA_REQUEST:
2869 		peer_req->w.cb = w_e_end_rsdata_req;
2870 		fault_type = DRBD_FAULT_RS_RD;
2871 		/* used in the sector offset progress display */
2872 		device->bm_resync_fo = BM_SECT_TO_BIT(sector);
2873 		break;
2874 
2875 	case P_OV_REPLY:
2876 	case P_CSUM_RS_REQUEST:
2877 		fault_type = DRBD_FAULT_RS_RD;
2878 		di = kmalloc(sizeof(*di) + pi->size, GFP_NOIO);
2879 		if (!di)
2880 			goto out_free_e;
2881 
2882 		di->digest_size = pi->size;
2883 		di->digest = (((char *)di)+sizeof(struct digest_info));
2884 
2885 		peer_req->digest = di;
2886 		peer_req->flags |= EE_HAS_DIGEST;
2887 
2888 		if (drbd_recv_all(peer_device->connection, di->digest, pi->size))
2889 			goto out_free_e;
2890 
2891 		if (pi->cmd == P_CSUM_RS_REQUEST) {
2892 			D_ASSERT(device, peer_device->connection->agreed_pro_version >= 89);
2893 			peer_req->w.cb = w_e_end_csum_rs_req;
2894 			/* used in the sector offset progress display */
2895 			device->bm_resync_fo = BM_SECT_TO_BIT(sector);
2896 			/* remember to report stats in drbd_resync_finished */
2897 			device->use_csums = true;
2898 		} else if (pi->cmd == P_OV_REPLY) {
2899 			/* track progress, we may need to throttle */
2900 			atomic_add(size >> 9, &device->rs_sect_in);
2901 			peer_req->w.cb = w_e_end_ov_reply;
2902 			dec_rs_pending(device);
2903 			/* drbd_rs_begin_io done when we sent this request,
2904 			 * but accounting still needs to be done. */
2905 			goto submit_for_resync;
2906 		}
2907 		break;
2908 
2909 	case P_OV_REQUEST:
2910 		if (device->ov_start_sector == ~(sector_t)0 &&
2911 		    peer_device->connection->agreed_pro_version >= 90) {
2912 			unsigned long now = jiffies;
2913 			int i;
2914 			device->ov_start_sector = sector;
2915 			device->ov_position = sector;
2916 			device->ov_left = drbd_bm_bits(device) - BM_SECT_TO_BIT(sector);
2917 			device->rs_total = device->ov_left;
2918 			for (i = 0; i < DRBD_SYNC_MARKS; i++) {
2919 				device->rs_mark_left[i] = device->ov_left;
2920 				device->rs_mark_time[i] = now;
2921 			}
2922 			drbd_info(device, "Online Verify start sector: %llu\n",
2923 					(unsigned long long)sector);
2924 		}
2925 		peer_req->w.cb = w_e_end_ov_req;
2926 		fault_type = DRBD_FAULT_RS_RD;
2927 		break;
2928 
2929 	default:
2930 		BUG();
2931 	}
2932 
2933 	/* Throttle, drbd_rs_begin_io and submit should become asynchronous
2934 	 * wrt the receiver, but it is not as straightforward as it may seem.
2935 	 * Various places in the resync start and stop logic assume resync
2936 	 * requests are processed in order, requeuing this on the worker thread
2937 	 * introduces a bunch of new code for synchronization between threads.
2938 	 *
2939 	 * Unlimited throttling before drbd_rs_begin_io may stall the resync
2940 	 * "forever", throttling after drbd_rs_begin_io will lock that extent
2941 	 * for application writes for the same time.  For now, just throttle
2942 	 * here, where the rest of the code expects the receiver to sleep for
2943 	 * a while, anyways.
2944 	 */
2945 
2946 	/* Throttle before drbd_rs_begin_io, as that locks out application IO;
2947 	 * this defers syncer requests for some time, before letting at least
2948 	 * on request through.  The resync controller on the receiving side
2949 	 * will adapt to the incoming rate accordingly.
2950 	 *
2951 	 * We cannot throttle here if remote is Primary/SyncTarget:
2952 	 * we would also throttle its application reads.
2953 	 * In that case, throttling is done on the SyncTarget only.
2954 	 */
2955 
2956 	/* Even though this may be a resync request, we do add to "read_ee";
2957 	 * "sync_ee" is only used for resync WRITEs.
2958 	 * Add to list early, so debugfs can find this request
2959 	 * even if we have to sleep below. */
2960 	spin_lock_irq(&device->resource->req_lock);
2961 	list_add_tail(&peer_req->w.list, &device->read_ee);
2962 	spin_unlock_irq(&device->resource->req_lock);
2963 
2964 	update_receiver_timing_details(connection, drbd_rs_should_slow_down);
2965 	if (device->state.peer != R_PRIMARY
2966 	&& drbd_rs_should_slow_down(device, sector, false))
2967 		schedule_timeout_uninterruptible(HZ/10);
2968 	update_receiver_timing_details(connection, drbd_rs_begin_io);
2969 	if (drbd_rs_begin_io(device, sector))
2970 		goto out_free_e;
2971 
2972 submit_for_resync:
2973 	atomic_add(size >> 9, &device->rs_sect_ev);
2974 
2975 submit:
2976 	update_receiver_timing_details(connection, drbd_submit_peer_request);
2977 	inc_unacked(device);
2978 	if (drbd_submit_peer_request(device, peer_req, REQ_OP_READ,
2979 				     fault_type) == 0)
2980 		return 0;
2981 
2982 	/* don't care for the reason here */
2983 	drbd_err(device, "submit failed, triggering re-connect\n");
2984 
2985 out_free_e:
2986 	spin_lock_irq(&device->resource->req_lock);
2987 	list_del(&peer_req->w.list);
2988 	spin_unlock_irq(&device->resource->req_lock);
2989 	/* no drbd_rs_complete_io(), we are dropping the connection anyways */
2990 
2991 	put_ldev(device);
2992 	drbd_free_peer_req(device, peer_req);
2993 	return -EIO;
2994 }
2995 
2996 /*
2997  * drbd_asb_recover_0p  -  Recover after split-brain with no remaining primaries
2998  */
2999 static int drbd_asb_recover_0p(struct drbd_peer_device *peer_device) __must_hold(local)
3000 {
3001 	struct drbd_device *device = peer_device->device;
3002 	int self, peer, rv = -100;
3003 	unsigned long ch_self, ch_peer;
3004 	enum drbd_after_sb_p after_sb_0p;
3005 
3006 	self = device->ldev->md.uuid[UI_BITMAP] & 1;
3007 	peer = device->p_uuid[UI_BITMAP] & 1;
3008 
3009 	ch_peer = device->p_uuid[UI_SIZE];
3010 	ch_self = device->comm_bm_set;
3011 
3012 	rcu_read_lock();
3013 	after_sb_0p = rcu_dereference(peer_device->connection->net_conf)->after_sb_0p;
3014 	rcu_read_unlock();
3015 	switch (after_sb_0p) {
3016 	case ASB_CONSENSUS:
3017 	case ASB_DISCARD_SECONDARY:
3018 	case ASB_CALL_HELPER:
3019 	case ASB_VIOLENTLY:
3020 		drbd_err(device, "Configuration error.\n");
3021 		break;
3022 	case ASB_DISCONNECT:
3023 		break;
3024 	case ASB_DISCARD_YOUNGER_PRI:
3025 		if (self == 0 && peer == 1) {
3026 			rv = -1;
3027 			break;
3028 		}
3029 		if (self == 1 && peer == 0) {
3030 			rv =  1;
3031 			break;
3032 		}
3033 		fallthrough;	/* to one of the other strategies */
3034 	case ASB_DISCARD_OLDER_PRI:
3035 		if (self == 0 && peer == 1) {
3036 			rv = 1;
3037 			break;
3038 		}
3039 		if (self == 1 && peer == 0) {
3040 			rv = -1;
3041 			break;
3042 		}
3043 		/* Else fall through to one of the other strategies... */
3044 		drbd_warn(device, "Discard younger/older primary did not find a decision\n"
3045 		     "Using discard-least-changes instead\n");
3046 		fallthrough;
3047 	case ASB_DISCARD_ZERO_CHG:
3048 		if (ch_peer == 0 && ch_self == 0) {
3049 			rv = test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags)
3050 				? -1 : 1;
3051 			break;
3052 		} else {
3053 			if (ch_peer == 0) { rv =  1; break; }
3054 			if (ch_self == 0) { rv = -1; break; }
3055 		}
3056 		if (after_sb_0p == ASB_DISCARD_ZERO_CHG)
3057 			break;
3058 		fallthrough;
3059 	case ASB_DISCARD_LEAST_CHG:
3060 		if	(ch_self < ch_peer)
3061 			rv = -1;
3062 		else if (ch_self > ch_peer)
3063 			rv =  1;
3064 		else /* ( ch_self == ch_peer ) */
3065 		     /* Well, then use something else. */
3066 			rv = test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags)
3067 				? -1 : 1;
3068 		break;
3069 	case ASB_DISCARD_LOCAL:
3070 		rv = -1;
3071 		break;
3072 	case ASB_DISCARD_REMOTE:
3073 		rv =  1;
3074 	}
3075 
3076 	return rv;
3077 }
3078 
3079 /*
3080  * drbd_asb_recover_1p  -  Recover after split-brain with one remaining primary
3081  */
3082 static int drbd_asb_recover_1p(struct drbd_peer_device *peer_device) __must_hold(local)
3083 {
3084 	struct drbd_device *device = peer_device->device;
3085 	int hg, rv = -100;
3086 	enum drbd_after_sb_p after_sb_1p;
3087 
3088 	rcu_read_lock();
3089 	after_sb_1p = rcu_dereference(peer_device->connection->net_conf)->after_sb_1p;
3090 	rcu_read_unlock();
3091 	switch (after_sb_1p) {
3092 	case ASB_DISCARD_YOUNGER_PRI:
3093 	case ASB_DISCARD_OLDER_PRI:
3094 	case ASB_DISCARD_LEAST_CHG:
3095 	case ASB_DISCARD_LOCAL:
3096 	case ASB_DISCARD_REMOTE:
3097 	case ASB_DISCARD_ZERO_CHG:
3098 		drbd_err(device, "Configuration error.\n");
3099 		break;
3100 	case ASB_DISCONNECT:
3101 		break;
3102 	case ASB_CONSENSUS:
3103 		hg = drbd_asb_recover_0p(peer_device);
3104 		if (hg == -1 && device->state.role == R_SECONDARY)
3105 			rv = hg;
3106 		if (hg == 1  && device->state.role == R_PRIMARY)
3107 			rv = hg;
3108 		break;
3109 	case ASB_VIOLENTLY:
3110 		rv = drbd_asb_recover_0p(peer_device);
3111 		break;
3112 	case ASB_DISCARD_SECONDARY:
3113 		return device->state.role == R_PRIMARY ? 1 : -1;
3114 	case ASB_CALL_HELPER:
3115 		hg = drbd_asb_recover_0p(peer_device);
3116 		if (hg == -1 && device->state.role == R_PRIMARY) {
3117 			enum drbd_state_rv rv2;
3118 
3119 			 /* drbd_change_state() does not sleep while in SS_IN_TRANSIENT_STATE,
3120 			  * we might be here in C_WF_REPORT_PARAMS which is transient.
3121 			  * we do not need to wait for the after state change work either. */
3122 			rv2 = drbd_change_state(device, CS_VERBOSE, NS(role, R_SECONDARY));
3123 			if (rv2 != SS_SUCCESS) {
3124 				drbd_khelper(device, "pri-lost-after-sb");
3125 			} else {
3126 				drbd_warn(device, "Successfully gave up primary role.\n");
3127 				rv = hg;
3128 			}
3129 		} else
3130 			rv = hg;
3131 	}
3132 
3133 	return rv;
3134 }
3135 
3136 /*
3137  * drbd_asb_recover_2p  -  Recover after split-brain with two remaining primaries
3138  */
3139 static int drbd_asb_recover_2p(struct drbd_peer_device *peer_device) __must_hold(local)
3140 {
3141 	struct drbd_device *device = peer_device->device;
3142 	int hg, rv = -100;
3143 	enum drbd_after_sb_p after_sb_2p;
3144 
3145 	rcu_read_lock();
3146 	after_sb_2p = rcu_dereference(peer_device->connection->net_conf)->after_sb_2p;
3147 	rcu_read_unlock();
3148 	switch (after_sb_2p) {
3149 	case ASB_DISCARD_YOUNGER_PRI:
3150 	case ASB_DISCARD_OLDER_PRI:
3151 	case ASB_DISCARD_LEAST_CHG:
3152 	case ASB_DISCARD_LOCAL:
3153 	case ASB_DISCARD_REMOTE:
3154 	case ASB_CONSENSUS:
3155 	case ASB_DISCARD_SECONDARY:
3156 	case ASB_DISCARD_ZERO_CHG:
3157 		drbd_err(device, "Configuration error.\n");
3158 		break;
3159 	case ASB_VIOLENTLY:
3160 		rv = drbd_asb_recover_0p(peer_device);
3161 		break;
3162 	case ASB_DISCONNECT:
3163 		break;
3164 	case ASB_CALL_HELPER:
3165 		hg = drbd_asb_recover_0p(peer_device);
3166 		if (hg == -1) {
3167 			enum drbd_state_rv rv2;
3168 
3169 			 /* drbd_change_state() does not sleep while in SS_IN_TRANSIENT_STATE,
3170 			  * we might be here in C_WF_REPORT_PARAMS which is transient.
3171 			  * we do not need to wait for the after state change work either. */
3172 			rv2 = drbd_change_state(device, CS_VERBOSE, NS(role, R_SECONDARY));
3173 			if (rv2 != SS_SUCCESS) {
3174 				drbd_khelper(device, "pri-lost-after-sb");
3175 			} else {
3176 				drbd_warn(device, "Successfully gave up primary role.\n");
3177 				rv = hg;
3178 			}
3179 		} else
3180 			rv = hg;
3181 	}
3182 
3183 	return rv;
3184 }
3185 
3186 static void drbd_uuid_dump(struct drbd_device *device, char *text, u64 *uuid,
3187 			   u64 bits, u64 flags)
3188 {
3189 	if (!uuid) {
3190 		drbd_info(device, "%s uuid info vanished while I was looking!\n", text);
3191 		return;
3192 	}
3193 	drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX bits:%llu flags:%llX\n",
3194 	     text,
3195 	     (unsigned long long)uuid[UI_CURRENT],
3196 	     (unsigned long long)uuid[UI_BITMAP],
3197 	     (unsigned long long)uuid[UI_HISTORY_START],
3198 	     (unsigned long long)uuid[UI_HISTORY_END],
3199 	     (unsigned long long)bits,
3200 	     (unsigned long long)flags);
3201 }
3202 
3203 /*
3204   100	after split brain try auto recover
3205     2	C_SYNC_SOURCE set BitMap
3206     1	C_SYNC_SOURCE use BitMap
3207     0	no Sync
3208    -1	C_SYNC_TARGET use BitMap
3209    -2	C_SYNC_TARGET set BitMap
3210  -100	after split brain, disconnect
3211 -1000	unrelated data
3212 -1091   requires proto 91
3213 -1096   requires proto 96
3214  */
3215 
3216 static int drbd_uuid_compare(struct drbd_device *const device, enum drbd_role const peer_role, int *rule_nr) __must_hold(local)
3217 {
3218 	struct drbd_peer_device *const peer_device = first_peer_device(device);
3219 	struct drbd_connection *const connection = peer_device ? peer_device->connection : NULL;
3220 	u64 self, peer;
3221 	int i, j;
3222 
3223 	self = device->ldev->md.uuid[UI_CURRENT] & ~((u64)1);
3224 	peer = device->p_uuid[UI_CURRENT] & ~((u64)1);
3225 
3226 	*rule_nr = 10;
3227 	if (self == UUID_JUST_CREATED && peer == UUID_JUST_CREATED)
3228 		return 0;
3229 
3230 	*rule_nr = 20;
3231 	if ((self == UUID_JUST_CREATED || self == (u64)0) &&
3232 	     peer != UUID_JUST_CREATED)
3233 		return -2;
3234 
3235 	*rule_nr = 30;
3236 	if (self != UUID_JUST_CREATED &&
3237 	    (peer == UUID_JUST_CREATED || peer == (u64)0))
3238 		return 2;
3239 
3240 	if (self == peer) {
3241 		int rct, dc; /* roles at crash time */
3242 
3243 		if (device->p_uuid[UI_BITMAP] == (u64)0 && device->ldev->md.uuid[UI_BITMAP] != (u64)0) {
3244 
3245 			if (connection->agreed_pro_version < 91)
3246 				return -1091;
3247 
3248 			if ((device->ldev->md.uuid[UI_BITMAP] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START] & ~((u64)1)) &&
3249 			    (device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START + 1] & ~((u64)1))) {
3250 				drbd_info(device, "was SyncSource, missed the resync finished event, corrected myself:\n");
3251 				drbd_uuid_move_history(device);
3252 				device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP];
3253 				device->ldev->md.uuid[UI_BITMAP] = 0;
3254 
3255 				drbd_uuid_dump(device, "self", device->ldev->md.uuid,
3256 					       device->state.disk >= D_NEGOTIATING ? drbd_bm_total_weight(device) : 0, 0);
3257 				*rule_nr = 34;
3258 			} else {
3259 				drbd_info(device, "was SyncSource (peer failed to write sync_uuid)\n");
3260 				*rule_nr = 36;
3261 			}
3262 
3263 			return 1;
3264 		}
3265 
3266 		if (device->ldev->md.uuid[UI_BITMAP] == (u64)0 && device->p_uuid[UI_BITMAP] != (u64)0) {
3267 
3268 			if (connection->agreed_pro_version < 91)
3269 				return -1091;
3270 
3271 			if ((device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == (device->p_uuid[UI_BITMAP] & ~((u64)1)) &&
3272 			    (device->ldev->md.uuid[UI_HISTORY_START + 1] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START] & ~((u64)1))) {
3273 				drbd_info(device, "was SyncTarget, peer missed the resync finished event, corrected peer:\n");
3274 
3275 				device->p_uuid[UI_HISTORY_START + 1] = device->p_uuid[UI_HISTORY_START];
3276 				device->p_uuid[UI_HISTORY_START] = device->p_uuid[UI_BITMAP];
3277 				device->p_uuid[UI_BITMAP] = 0UL;
3278 
3279 				drbd_uuid_dump(device, "peer", device->p_uuid, device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]);
3280 				*rule_nr = 35;
3281 			} else {
3282 				drbd_info(device, "was SyncTarget (failed to write sync_uuid)\n");
3283 				*rule_nr = 37;
3284 			}
3285 
3286 			return -1;
3287 		}
3288 
3289 		/* Common power [off|failure] */
3290 		rct = (test_bit(CRASHED_PRIMARY, &device->flags) ? 1 : 0) +
3291 			(device->p_uuid[UI_FLAGS] & 2);
3292 		/* lowest bit is set when we were primary,
3293 		 * next bit (weight 2) is set when peer was primary */
3294 		*rule_nr = 40;
3295 
3296 		/* Neither has the "crashed primary" flag set,
3297 		 * only a replication link hickup. */
3298 		if (rct == 0)
3299 			return 0;
3300 
3301 		/* Current UUID equal and no bitmap uuid; does not necessarily
3302 		 * mean this was a "simultaneous hard crash", maybe IO was
3303 		 * frozen, so no UUID-bump happened.
3304 		 * This is a protocol change, overload DRBD_FF_WSAME as flag
3305 		 * for "new-enough" peer DRBD version. */
3306 		if (device->state.role == R_PRIMARY || peer_role == R_PRIMARY) {
3307 			*rule_nr = 41;
3308 			if (!(connection->agreed_features & DRBD_FF_WSAME)) {
3309 				drbd_warn(peer_device, "Equivalent unrotated UUIDs, but current primary present.\n");
3310 				return -(0x10000 | PRO_VERSION_MAX | (DRBD_FF_WSAME << 8));
3311 			}
3312 			if (device->state.role == R_PRIMARY && peer_role == R_PRIMARY) {
3313 				/* At least one has the "crashed primary" bit set,
3314 				 * both are primary now, but neither has rotated its UUIDs?
3315 				 * "Can not happen." */
3316 				drbd_err(peer_device, "Equivalent unrotated UUIDs, but both are primary. Can not resolve this.\n");
3317 				return -100;
3318 			}
3319 			if (device->state.role == R_PRIMARY)
3320 				return 1;
3321 			return -1;
3322 		}
3323 
3324 		/* Both are secondary.
3325 		 * Really looks like recovery from simultaneous hard crash.
3326 		 * Check which had been primary before, and arbitrate. */
3327 		switch (rct) {
3328 		case 0: /* !self_pri && !peer_pri */ return 0; /* already handled */
3329 		case 1: /*  self_pri && !peer_pri */ return 1;
3330 		case 2: /* !self_pri &&  peer_pri */ return -1;
3331 		case 3: /*  self_pri &&  peer_pri */
3332 			dc = test_bit(RESOLVE_CONFLICTS, &connection->flags);
3333 			return dc ? -1 : 1;
3334 		}
3335 	}
3336 
3337 	*rule_nr = 50;
3338 	peer = device->p_uuid[UI_BITMAP] & ~((u64)1);
3339 	if (self == peer)
3340 		return -1;
3341 
3342 	*rule_nr = 51;
3343 	peer = device->p_uuid[UI_HISTORY_START] & ~((u64)1);
3344 	if (self == peer) {
3345 		if (connection->agreed_pro_version < 96 ?
3346 		    (device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) ==
3347 		    (device->p_uuid[UI_HISTORY_START + 1] & ~((u64)1)) :
3348 		    peer + UUID_NEW_BM_OFFSET == (device->p_uuid[UI_BITMAP] & ~((u64)1))) {
3349 			/* The last P_SYNC_UUID did not get though. Undo the last start of
3350 			   resync as sync source modifications of the peer's UUIDs. */
3351 
3352 			if (connection->agreed_pro_version < 91)
3353 				return -1091;
3354 
3355 			device->p_uuid[UI_BITMAP] = device->p_uuid[UI_HISTORY_START];
3356 			device->p_uuid[UI_HISTORY_START] = device->p_uuid[UI_HISTORY_START + 1];
3357 
3358 			drbd_info(device, "Lost last syncUUID packet, corrected:\n");
3359 			drbd_uuid_dump(device, "peer", device->p_uuid, device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]);
3360 
3361 			return -1;
3362 		}
3363 	}
3364 
3365 	*rule_nr = 60;
3366 	self = device->ldev->md.uuid[UI_CURRENT] & ~((u64)1);
3367 	for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) {
3368 		peer = device->p_uuid[i] & ~((u64)1);
3369 		if (self == peer)
3370 			return -2;
3371 	}
3372 
3373 	*rule_nr = 70;
3374 	self = device->ldev->md.uuid[UI_BITMAP] & ~((u64)1);
3375 	peer = device->p_uuid[UI_CURRENT] & ~((u64)1);
3376 	if (self == peer)
3377 		return 1;
3378 
3379 	*rule_nr = 71;
3380 	self = device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1);
3381 	if (self == peer) {
3382 		if (connection->agreed_pro_version < 96 ?
3383 		    (device->ldev->md.uuid[UI_HISTORY_START + 1] & ~((u64)1)) ==
3384 		    (device->p_uuid[UI_HISTORY_START] & ~((u64)1)) :
3385 		    self + UUID_NEW_BM_OFFSET == (device->ldev->md.uuid[UI_BITMAP] & ~((u64)1))) {
3386 			/* The last P_SYNC_UUID did not get though. Undo the last start of
3387 			   resync as sync source modifications of our UUIDs. */
3388 
3389 			if (connection->agreed_pro_version < 91)
3390 				return -1091;
3391 
3392 			__drbd_uuid_set(device, UI_BITMAP, device->ldev->md.uuid[UI_HISTORY_START]);
3393 			__drbd_uuid_set(device, UI_HISTORY_START, device->ldev->md.uuid[UI_HISTORY_START + 1]);
3394 
3395 			drbd_info(device, "Last syncUUID did not get through, corrected:\n");
3396 			drbd_uuid_dump(device, "self", device->ldev->md.uuid,
3397 				       device->state.disk >= D_NEGOTIATING ? drbd_bm_total_weight(device) : 0, 0);
3398 
3399 			return 1;
3400 		}
3401 	}
3402 
3403 
3404 	*rule_nr = 80;
3405 	peer = device->p_uuid[UI_CURRENT] & ~((u64)1);
3406 	for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) {
3407 		self = device->ldev->md.uuid[i] & ~((u64)1);
3408 		if (self == peer)
3409 			return 2;
3410 	}
3411 
3412 	*rule_nr = 90;
3413 	self = device->ldev->md.uuid[UI_BITMAP] & ~((u64)1);
3414 	peer = device->p_uuid[UI_BITMAP] & ~((u64)1);
3415 	if (self == peer && self != ((u64)0))
3416 		return 100;
3417 
3418 	*rule_nr = 100;
3419 	for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) {
3420 		self = device->ldev->md.uuid[i] & ~((u64)1);
3421 		for (j = UI_HISTORY_START; j <= UI_HISTORY_END; j++) {
3422 			peer = device->p_uuid[j] & ~((u64)1);
3423 			if (self == peer)
3424 				return -100;
3425 		}
3426 	}
3427 
3428 	return -1000;
3429 }
3430 
3431 /* drbd_sync_handshake() returns the new conn state on success, or
3432    CONN_MASK (-1) on failure.
3433  */
3434 static enum drbd_conns drbd_sync_handshake(struct drbd_peer_device *peer_device,
3435 					   enum drbd_role peer_role,
3436 					   enum drbd_disk_state peer_disk) __must_hold(local)
3437 {
3438 	struct drbd_device *device = peer_device->device;
3439 	enum drbd_conns rv = C_MASK;
3440 	enum drbd_disk_state mydisk;
3441 	struct net_conf *nc;
3442 	int hg, rule_nr, rr_conflict, tentative, always_asbp;
3443 
3444 	mydisk = device->state.disk;
3445 	if (mydisk == D_NEGOTIATING)
3446 		mydisk = device->new_state_tmp.disk;
3447 
3448 	drbd_info(device, "drbd_sync_handshake:\n");
3449 
3450 	spin_lock_irq(&device->ldev->md.uuid_lock);
3451 	drbd_uuid_dump(device, "self", device->ldev->md.uuid, device->comm_bm_set, 0);
3452 	drbd_uuid_dump(device, "peer", device->p_uuid,
3453 		       device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]);
3454 
3455 	hg = drbd_uuid_compare(device, peer_role, &rule_nr);
3456 	spin_unlock_irq(&device->ldev->md.uuid_lock);
3457 
3458 	drbd_info(device, "uuid_compare()=%d by rule %d\n", hg, rule_nr);
3459 
3460 	if (hg == -1000) {
3461 		drbd_alert(device, "Unrelated data, aborting!\n");
3462 		return C_MASK;
3463 	}
3464 	if (hg < -0x10000) {
3465 		int proto, fflags;
3466 		hg = -hg;
3467 		proto = hg & 0xff;
3468 		fflags = (hg >> 8) & 0xff;
3469 		drbd_alert(device, "To resolve this both sides have to support at least protocol %d and feature flags 0x%x\n",
3470 					proto, fflags);
3471 		return C_MASK;
3472 	}
3473 	if (hg < -1000) {
3474 		drbd_alert(device, "To resolve this both sides have to support at least protocol %d\n", -hg - 1000);
3475 		return C_MASK;
3476 	}
3477 
3478 	if    ((mydisk == D_INCONSISTENT && peer_disk > D_INCONSISTENT) ||
3479 	    (peer_disk == D_INCONSISTENT && mydisk    > D_INCONSISTENT)) {
3480 		int f = (hg == -100) || abs(hg) == 2;
3481 		hg = mydisk > D_INCONSISTENT ? 1 : -1;
3482 		if (f)
3483 			hg = hg*2;
3484 		drbd_info(device, "Becoming sync %s due to disk states.\n",
3485 		     hg > 0 ? "source" : "target");
3486 	}
3487 
3488 	if (abs(hg) == 100)
3489 		drbd_khelper(device, "initial-split-brain");
3490 
3491 	rcu_read_lock();
3492 	nc = rcu_dereference(peer_device->connection->net_conf);
3493 	always_asbp = nc->always_asbp;
3494 	rr_conflict = nc->rr_conflict;
3495 	tentative = nc->tentative;
3496 	rcu_read_unlock();
3497 
3498 	if (hg == 100 || (hg == -100 && always_asbp)) {
3499 		int pcount = (device->state.role == R_PRIMARY)
3500 			   + (peer_role == R_PRIMARY);
3501 		int forced = (hg == -100);
3502 
3503 		switch (pcount) {
3504 		case 0:
3505 			hg = drbd_asb_recover_0p(peer_device);
3506 			break;
3507 		case 1:
3508 			hg = drbd_asb_recover_1p(peer_device);
3509 			break;
3510 		case 2:
3511 			hg = drbd_asb_recover_2p(peer_device);
3512 			break;
3513 		}
3514 		if (abs(hg) < 100) {
3515 			drbd_warn(device, "Split-Brain detected, %d primaries, "
3516 			     "automatically solved. Sync from %s node\n",
3517 			     pcount, (hg < 0) ? "peer" : "this");
3518 			if (forced) {
3519 				drbd_warn(device, "Doing a full sync, since"
3520 				     " UUIDs where ambiguous.\n");
3521 				hg = hg*2;
3522 			}
3523 		}
3524 	}
3525 
3526 	if (hg == -100) {
3527 		if (test_bit(DISCARD_MY_DATA, &device->flags) && !(device->p_uuid[UI_FLAGS]&1))
3528 			hg = -1;
3529 		if (!test_bit(DISCARD_MY_DATA, &device->flags) && (device->p_uuid[UI_FLAGS]&1))
3530 			hg = 1;
3531 
3532 		if (abs(hg) < 100)
3533 			drbd_warn(device, "Split-Brain detected, manually solved. "
3534 			     "Sync from %s node\n",
3535 			     (hg < 0) ? "peer" : "this");
3536 	}
3537 
3538 	if (hg == -100) {
3539 		/* FIXME this log message is not correct if we end up here
3540 		 * after an attempted attach on a diskless node.
3541 		 * We just refuse to attach -- well, we drop the "connection"
3542 		 * to that disk, in a way... */
3543 		drbd_alert(device, "Split-Brain detected but unresolved, dropping connection!\n");
3544 		drbd_khelper(device, "split-brain");
3545 		return C_MASK;
3546 	}
3547 
3548 	if (hg > 0 && mydisk <= D_INCONSISTENT) {
3549 		drbd_err(device, "I shall become SyncSource, but I am inconsistent!\n");
3550 		return C_MASK;
3551 	}
3552 
3553 	if (hg < 0 && /* by intention we do not use mydisk here. */
3554 	    device->state.role == R_PRIMARY && device->state.disk >= D_CONSISTENT) {
3555 		switch (rr_conflict) {
3556 		case ASB_CALL_HELPER:
3557 			drbd_khelper(device, "pri-lost");
3558 			fallthrough;
3559 		case ASB_DISCONNECT:
3560 			drbd_err(device, "I shall become SyncTarget, but I am primary!\n");
3561 			return C_MASK;
3562 		case ASB_VIOLENTLY:
3563 			drbd_warn(device, "Becoming SyncTarget, violating the stable-data"
3564 			     "assumption\n");
3565 		}
3566 	}
3567 
3568 	if (tentative || test_bit(CONN_DRY_RUN, &peer_device->connection->flags)) {
3569 		if (hg == 0)
3570 			drbd_info(device, "dry-run connect: No resync, would become Connected immediately.\n");
3571 		else
3572 			drbd_info(device, "dry-run connect: Would become %s, doing a %s resync.",
3573 				 drbd_conn_str(hg > 0 ? C_SYNC_SOURCE : C_SYNC_TARGET),
3574 				 abs(hg) >= 2 ? "full" : "bit-map based");
3575 		return C_MASK;
3576 	}
3577 
3578 	if (abs(hg) >= 2) {
3579 		drbd_info(device, "Writing the whole bitmap, full sync required after drbd_sync_handshake.\n");
3580 		if (drbd_bitmap_io(device, &drbd_bmio_set_n_write, "set_n_write from sync_handshake",
3581 					BM_LOCKED_SET_ALLOWED))
3582 			return C_MASK;
3583 	}
3584 
3585 	if (hg > 0) { /* become sync source. */
3586 		rv = C_WF_BITMAP_S;
3587 	} else if (hg < 0) { /* become sync target */
3588 		rv = C_WF_BITMAP_T;
3589 	} else {
3590 		rv = C_CONNECTED;
3591 		if (drbd_bm_total_weight(device)) {
3592 			drbd_info(device, "No resync, but %lu bits in bitmap!\n",
3593 			     drbd_bm_total_weight(device));
3594 		}
3595 	}
3596 
3597 	return rv;
3598 }
3599 
3600 static enum drbd_after_sb_p convert_after_sb(enum drbd_after_sb_p peer)
3601 {
3602 	/* ASB_DISCARD_REMOTE - ASB_DISCARD_LOCAL is valid */
3603 	if (peer == ASB_DISCARD_REMOTE)
3604 		return ASB_DISCARD_LOCAL;
3605 
3606 	/* any other things with ASB_DISCARD_REMOTE or ASB_DISCARD_LOCAL are invalid */
3607 	if (peer == ASB_DISCARD_LOCAL)
3608 		return ASB_DISCARD_REMOTE;
3609 
3610 	/* everything else is valid if they are equal on both sides. */
3611 	return peer;
3612 }
3613 
3614 static int receive_protocol(struct drbd_connection *connection, struct packet_info *pi)
3615 {
3616 	struct p_protocol *p = pi->data;
3617 	enum drbd_after_sb_p p_after_sb_0p, p_after_sb_1p, p_after_sb_2p;
3618 	int p_proto, p_discard_my_data, p_two_primaries, cf;
3619 	struct net_conf *nc, *old_net_conf, *new_net_conf = NULL;
3620 	char integrity_alg[SHARED_SECRET_MAX] = "";
3621 	struct crypto_shash *peer_integrity_tfm = NULL;
3622 	void *int_dig_in = NULL, *int_dig_vv = NULL;
3623 
3624 	p_proto		= be32_to_cpu(p->protocol);
3625 	p_after_sb_0p	= be32_to_cpu(p->after_sb_0p);
3626 	p_after_sb_1p	= be32_to_cpu(p->after_sb_1p);
3627 	p_after_sb_2p	= be32_to_cpu(p->after_sb_2p);
3628 	p_two_primaries = be32_to_cpu(p->two_primaries);
3629 	cf		= be32_to_cpu(p->conn_flags);
3630 	p_discard_my_data = cf & CF_DISCARD_MY_DATA;
3631 
3632 	if (connection->agreed_pro_version >= 87) {
3633 		int err;
3634 
3635 		if (pi->size > sizeof(integrity_alg))
3636 			return -EIO;
3637 		err = drbd_recv_all(connection, integrity_alg, pi->size);
3638 		if (err)
3639 			return err;
3640 		integrity_alg[SHARED_SECRET_MAX - 1] = 0;
3641 	}
3642 
3643 	if (pi->cmd != P_PROTOCOL_UPDATE) {
3644 		clear_bit(CONN_DRY_RUN, &connection->flags);
3645 
3646 		if (cf & CF_DRY_RUN)
3647 			set_bit(CONN_DRY_RUN, &connection->flags);
3648 
3649 		rcu_read_lock();
3650 		nc = rcu_dereference(connection->net_conf);
3651 
3652 		if (p_proto != nc->wire_protocol) {
3653 			drbd_err(connection, "incompatible %s settings\n", "protocol");
3654 			goto disconnect_rcu_unlock;
3655 		}
3656 
3657 		if (convert_after_sb(p_after_sb_0p) != nc->after_sb_0p) {
3658 			drbd_err(connection, "incompatible %s settings\n", "after-sb-0pri");
3659 			goto disconnect_rcu_unlock;
3660 		}
3661 
3662 		if (convert_after_sb(p_after_sb_1p) != nc->after_sb_1p) {
3663 			drbd_err(connection, "incompatible %s settings\n", "after-sb-1pri");
3664 			goto disconnect_rcu_unlock;
3665 		}
3666 
3667 		if (convert_after_sb(p_after_sb_2p) != nc->after_sb_2p) {
3668 			drbd_err(connection, "incompatible %s settings\n", "after-sb-2pri");
3669 			goto disconnect_rcu_unlock;
3670 		}
3671 
3672 		if (p_discard_my_data && nc->discard_my_data) {
3673 			drbd_err(connection, "incompatible %s settings\n", "discard-my-data");
3674 			goto disconnect_rcu_unlock;
3675 		}
3676 
3677 		if (p_two_primaries != nc->two_primaries) {
3678 			drbd_err(connection, "incompatible %s settings\n", "allow-two-primaries");
3679 			goto disconnect_rcu_unlock;
3680 		}
3681 
3682 		if (strcmp(integrity_alg, nc->integrity_alg)) {
3683 			drbd_err(connection, "incompatible %s settings\n", "data-integrity-alg");
3684 			goto disconnect_rcu_unlock;
3685 		}
3686 
3687 		rcu_read_unlock();
3688 	}
3689 
3690 	if (integrity_alg[0]) {
3691 		int hash_size;
3692 
3693 		/*
3694 		 * We can only change the peer data integrity algorithm
3695 		 * here.  Changing our own data integrity algorithm
3696 		 * requires that we send a P_PROTOCOL_UPDATE packet at
3697 		 * the same time; otherwise, the peer has no way to
3698 		 * tell between which packets the algorithm should
3699 		 * change.
3700 		 */
3701 
3702 		peer_integrity_tfm = crypto_alloc_shash(integrity_alg, 0, 0);
3703 		if (IS_ERR(peer_integrity_tfm)) {
3704 			peer_integrity_tfm = NULL;
3705 			drbd_err(connection, "peer data-integrity-alg %s not supported\n",
3706 				 integrity_alg);
3707 			goto disconnect;
3708 		}
3709 
3710 		hash_size = crypto_shash_digestsize(peer_integrity_tfm);
3711 		int_dig_in = kmalloc(hash_size, GFP_KERNEL);
3712 		int_dig_vv = kmalloc(hash_size, GFP_KERNEL);
3713 		if (!(int_dig_in && int_dig_vv)) {
3714 			drbd_err(connection, "Allocation of buffers for data integrity checking failed\n");
3715 			goto disconnect;
3716 		}
3717 	}
3718 
3719 	new_net_conf = kmalloc(sizeof(struct net_conf), GFP_KERNEL);
3720 	if (!new_net_conf)
3721 		goto disconnect;
3722 
3723 	mutex_lock(&connection->data.mutex);
3724 	mutex_lock(&connection->resource->conf_update);
3725 	old_net_conf = connection->net_conf;
3726 	*new_net_conf = *old_net_conf;
3727 
3728 	new_net_conf->wire_protocol = p_proto;
3729 	new_net_conf->after_sb_0p = convert_after_sb(p_after_sb_0p);
3730 	new_net_conf->after_sb_1p = convert_after_sb(p_after_sb_1p);
3731 	new_net_conf->after_sb_2p = convert_after_sb(p_after_sb_2p);
3732 	new_net_conf->two_primaries = p_two_primaries;
3733 
3734 	rcu_assign_pointer(connection->net_conf, new_net_conf);
3735 	mutex_unlock(&connection->resource->conf_update);
3736 	mutex_unlock(&connection->data.mutex);
3737 
3738 	crypto_free_shash(connection->peer_integrity_tfm);
3739 	kfree(connection->int_dig_in);
3740 	kfree(connection->int_dig_vv);
3741 	connection->peer_integrity_tfm = peer_integrity_tfm;
3742 	connection->int_dig_in = int_dig_in;
3743 	connection->int_dig_vv = int_dig_vv;
3744 
3745 	if (strcmp(old_net_conf->integrity_alg, integrity_alg))
3746 		drbd_info(connection, "peer data-integrity-alg: %s\n",
3747 			  integrity_alg[0] ? integrity_alg : "(none)");
3748 
3749 	kvfree_rcu(old_net_conf);
3750 	return 0;
3751 
3752 disconnect_rcu_unlock:
3753 	rcu_read_unlock();
3754 disconnect:
3755 	crypto_free_shash(peer_integrity_tfm);
3756 	kfree(int_dig_in);
3757 	kfree(int_dig_vv);
3758 	conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
3759 	return -EIO;
3760 }
3761 
3762 /* helper function
3763  * input: alg name, feature name
3764  * return: NULL (alg name was "")
3765  *         ERR_PTR(error) if something goes wrong
3766  *         or the crypto hash ptr, if it worked out ok. */
3767 static struct crypto_shash *drbd_crypto_alloc_digest_safe(
3768 		const struct drbd_device *device,
3769 		const char *alg, const char *name)
3770 {
3771 	struct crypto_shash *tfm;
3772 
3773 	if (!alg[0])
3774 		return NULL;
3775 
3776 	tfm = crypto_alloc_shash(alg, 0, 0);
3777 	if (IS_ERR(tfm)) {
3778 		drbd_err(device, "Can not allocate \"%s\" as %s (reason: %ld)\n",
3779 			alg, name, PTR_ERR(tfm));
3780 		return tfm;
3781 	}
3782 	return tfm;
3783 }
3784 
3785 static int ignore_remaining_packet(struct drbd_connection *connection, struct packet_info *pi)
3786 {
3787 	void *buffer = connection->data.rbuf;
3788 	int size = pi->size;
3789 
3790 	while (size) {
3791 		int s = min_t(int, size, DRBD_SOCKET_BUFFER_SIZE);
3792 		s = drbd_recv(connection, buffer, s);
3793 		if (s <= 0) {
3794 			if (s < 0)
3795 				return s;
3796 			break;
3797 		}
3798 		size -= s;
3799 	}
3800 	if (size)
3801 		return -EIO;
3802 	return 0;
3803 }
3804 
3805 /*
3806  * config_unknown_volume  -  device configuration command for unknown volume
3807  *
3808  * When a device is added to an existing connection, the node on which the
3809  * device is added first will send configuration commands to its peer but the
3810  * peer will not know about the device yet.  It will warn and ignore these
3811  * commands.  Once the device is added on the second node, the second node will
3812  * send the same device configuration commands, but in the other direction.
3813  *
3814  * (We can also end up here if drbd is misconfigured.)
3815  */
3816 static int config_unknown_volume(struct drbd_connection *connection, struct packet_info *pi)
3817 {
3818 	drbd_warn(connection, "%s packet received for volume %u, which is not configured locally\n",
3819 		  cmdname(pi->cmd), pi->vnr);
3820 	return ignore_remaining_packet(connection, pi);
3821 }
3822 
3823 static int receive_SyncParam(struct drbd_connection *connection, struct packet_info *pi)
3824 {
3825 	struct drbd_peer_device *peer_device;
3826 	struct drbd_device *device;
3827 	struct p_rs_param_95 *p;
3828 	unsigned int header_size, data_size, exp_max_sz;
3829 	struct crypto_shash *verify_tfm = NULL;
3830 	struct crypto_shash *csums_tfm = NULL;
3831 	struct net_conf *old_net_conf, *new_net_conf = NULL;
3832 	struct disk_conf *old_disk_conf = NULL, *new_disk_conf = NULL;
3833 	const int apv = connection->agreed_pro_version;
3834 	struct fifo_buffer *old_plan = NULL, *new_plan = NULL;
3835 	unsigned int fifo_size = 0;
3836 	int err;
3837 
3838 	peer_device = conn_peer_device(connection, pi->vnr);
3839 	if (!peer_device)
3840 		return config_unknown_volume(connection, pi);
3841 	device = peer_device->device;
3842 
3843 	exp_max_sz  = apv <= 87 ? sizeof(struct p_rs_param)
3844 		    : apv == 88 ? sizeof(struct p_rs_param)
3845 					+ SHARED_SECRET_MAX
3846 		    : apv <= 94 ? sizeof(struct p_rs_param_89)
3847 		    : /* apv >= 95 */ sizeof(struct p_rs_param_95);
3848 
3849 	if (pi->size > exp_max_sz) {
3850 		drbd_err(device, "SyncParam packet too long: received %u, expected <= %u bytes\n",
3851 		    pi->size, exp_max_sz);
3852 		return -EIO;
3853 	}
3854 
3855 	if (apv <= 88) {
3856 		header_size = sizeof(struct p_rs_param);
3857 		data_size = pi->size - header_size;
3858 	} else if (apv <= 94) {
3859 		header_size = sizeof(struct p_rs_param_89);
3860 		data_size = pi->size - header_size;
3861 		D_ASSERT(device, data_size == 0);
3862 	} else {
3863 		header_size = sizeof(struct p_rs_param_95);
3864 		data_size = pi->size - header_size;
3865 		D_ASSERT(device, data_size == 0);
3866 	}
3867 
3868 	/* initialize verify_alg and csums_alg */
3869 	p = pi->data;
3870 	BUILD_BUG_ON(sizeof(p->algs) != 2 * SHARED_SECRET_MAX);
3871 	memset(&p->algs, 0, sizeof(p->algs));
3872 
3873 	err = drbd_recv_all(peer_device->connection, p, header_size);
3874 	if (err)
3875 		return err;
3876 
3877 	mutex_lock(&connection->resource->conf_update);
3878 	old_net_conf = peer_device->connection->net_conf;
3879 	if (get_ldev(device)) {
3880 		new_disk_conf = kzalloc(sizeof(struct disk_conf), GFP_KERNEL);
3881 		if (!new_disk_conf) {
3882 			put_ldev(device);
3883 			mutex_unlock(&connection->resource->conf_update);
3884 			drbd_err(device, "Allocation of new disk_conf failed\n");
3885 			return -ENOMEM;
3886 		}
3887 
3888 		old_disk_conf = device->ldev->disk_conf;
3889 		*new_disk_conf = *old_disk_conf;
3890 
3891 		new_disk_conf->resync_rate = be32_to_cpu(p->resync_rate);
3892 	}
3893 
3894 	if (apv >= 88) {
3895 		if (apv == 88) {
3896 			if (data_size > SHARED_SECRET_MAX || data_size == 0) {
3897 				drbd_err(device, "verify-alg of wrong size, "
3898 					"peer wants %u, accepting only up to %u byte\n",
3899 					data_size, SHARED_SECRET_MAX);
3900 				goto reconnect;
3901 			}
3902 
3903 			err = drbd_recv_all(peer_device->connection, p->verify_alg, data_size);
3904 			if (err)
3905 				goto reconnect;
3906 			/* we expect NUL terminated string */
3907 			/* but just in case someone tries to be evil */
3908 			D_ASSERT(device, p->verify_alg[data_size-1] == 0);
3909 			p->verify_alg[data_size-1] = 0;
3910 
3911 		} else /* apv >= 89 */ {
3912 			/* we still expect NUL terminated strings */
3913 			/* but just in case someone tries to be evil */
3914 			D_ASSERT(device, p->verify_alg[SHARED_SECRET_MAX-1] == 0);
3915 			D_ASSERT(device, p->csums_alg[SHARED_SECRET_MAX-1] == 0);
3916 			p->verify_alg[SHARED_SECRET_MAX-1] = 0;
3917 			p->csums_alg[SHARED_SECRET_MAX-1] = 0;
3918 		}
3919 
3920 		if (strcmp(old_net_conf->verify_alg, p->verify_alg)) {
3921 			if (device->state.conn == C_WF_REPORT_PARAMS) {
3922 				drbd_err(device, "Different verify-alg settings. me=\"%s\" peer=\"%s\"\n",
3923 				    old_net_conf->verify_alg, p->verify_alg);
3924 				goto disconnect;
3925 			}
3926 			verify_tfm = drbd_crypto_alloc_digest_safe(device,
3927 					p->verify_alg, "verify-alg");
3928 			if (IS_ERR(verify_tfm)) {
3929 				verify_tfm = NULL;
3930 				goto disconnect;
3931 			}
3932 		}
3933 
3934 		if (apv >= 89 && strcmp(old_net_conf->csums_alg, p->csums_alg)) {
3935 			if (device->state.conn == C_WF_REPORT_PARAMS) {
3936 				drbd_err(device, "Different csums-alg settings. me=\"%s\" peer=\"%s\"\n",
3937 				    old_net_conf->csums_alg, p->csums_alg);
3938 				goto disconnect;
3939 			}
3940 			csums_tfm = drbd_crypto_alloc_digest_safe(device,
3941 					p->csums_alg, "csums-alg");
3942 			if (IS_ERR(csums_tfm)) {
3943 				csums_tfm = NULL;
3944 				goto disconnect;
3945 			}
3946 		}
3947 
3948 		if (apv > 94 && new_disk_conf) {
3949 			new_disk_conf->c_plan_ahead = be32_to_cpu(p->c_plan_ahead);
3950 			new_disk_conf->c_delay_target = be32_to_cpu(p->c_delay_target);
3951 			new_disk_conf->c_fill_target = be32_to_cpu(p->c_fill_target);
3952 			new_disk_conf->c_max_rate = be32_to_cpu(p->c_max_rate);
3953 
3954 			fifo_size = (new_disk_conf->c_plan_ahead * 10 * SLEEP_TIME) / HZ;
3955 			if (fifo_size != device->rs_plan_s->size) {
3956 				new_plan = fifo_alloc(fifo_size);
3957 				if (!new_plan) {
3958 					drbd_err(device, "kmalloc of fifo_buffer failed");
3959 					put_ldev(device);
3960 					goto disconnect;
3961 				}
3962 			}
3963 		}
3964 
3965 		if (verify_tfm || csums_tfm) {
3966 			new_net_conf = kzalloc(sizeof(struct net_conf), GFP_KERNEL);
3967 			if (!new_net_conf)
3968 				goto disconnect;
3969 
3970 			*new_net_conf = *old_net_conf;
3971 
3972 			if (verify_tfm) {
3973 				strcpy(new_net_conf->verify_alg, p->verify_alg);
3974 				new_net_conf->verify_alg_len = strlen(p->verify_alg) + 1;
3975 				crypto_free_shash(peer_device->connection->verify_tfm);
3976 				peer_device->connection->verify_tfm = verify_tfm;
3977 				drbd_info(device, "using verify-alg: \"%s\"\n", p->verify_alg);
3978 			}
3979 			if (csums_tfm) {
3980 				strcpy(new_net_conf->csums_alg, p->csums_alg);
3981 				new_net_conf->csums_alg_len = strlen(p->csums_alg) + 1;
3982 				crypto_free_shash(peer_device->connection->csums_tfm);
3983 				peer_device->connection->csums_tfm = csums_tfm;
3984 				drbd_info(device, "using csums-alg: \"%s\"\n", p->csums_alg);
3985 			}
3986 			rcu_assign_pointer(connection->net_conf, new_net_conf);
3987 		}
3988 	}
3989 
3990 	if (new_disk_conf) {
3991 		rcu_assign_pointer(device->ldev->disk_conf, new_disk_conf);
3992 		put_ldev(device);
3993 	}
3994 
3995 	if (new_plan) {
3996 		old_plan = device->rs_plan_s;
3997 		rcu_assign_pointer(device->rs_plan_s, new_plan);
3998 	}
3999 
4000 	mutex_unlock(&connection->resource->conf_update);
4001 	synchronize_rcu();
4002 	if (new_net_conf)
4003 		kfree(old_net_conf);
4004 	kfree(old_disk_conf);
4005 	kfree(old_plan);
4006 
4007 	return 0;
4008 
4009 reconnect:
4010 	if (new_disk_conf) {
4011 		put_ldev(device);
4012 		kfree(new_disk_conf);
4013 	}
4014 	mutex_unlock(&connection->resource->conf_update);
4015 	return -EIO;
4016 
4017 disconnect:
4018 	kfree(new_plan);
4019 	if (new_disk_conf) {
4020 		put_ldev(device);
4021 		kfree(new_disk_conf);
4022 	}
4023 	mutex_unlock(&connection->resource->conf_update);
4024 	/* just for completeness: actually not needed,
4025 	 * as this is not reached if csums_tfm was ok. */
4026 	crypto_free_shash(csums_tfm);
4027 	/* but free the verify_tfm again, if csums_tfm did not work out */
4028 	crypto_free_shash(verify_tfm);
4029 	conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4030 	return -EIO;
4031 }
4032 
4033 /* warn if the arguments differ by more than 12.5% */
4034 static void warn_if_differ_considerably(struct drbd_device *device,
4035 	const char *s, sector_t a, sector_t b)
4036 {
4037 	sector_t d;
4038 	if (a == 0 || b == 0)
4039 		return;
4040 	d = (a > b) ? (a - b) : (b - a);
4041 	if (d > (a>>3) || d > (b>>3))
4042 		drbd_warn(device, "Considerable difference in %s: %llus vs. %llus\n", s,
4043 		     (unsigned long long)a, (unsigned long long)b);
4044 }
4045 
4046 static int receive_sizes(struct drbd_connection *connection, struct packet_info *pi)
4047 {
4048 	struct drbd_peer_device *peer_device;
4049 	struct drbd_device *device;
4050 	struct p_sizes *p = pi->data;
4051 	struct o_qlim *o = (connection->agreed_features & DRBD_FF_WSAME) ? p->qlim : NULL;
4052 	enum determine_dev_size dd = DS_UNCHANGED;
4053 	sector_t p_size, p_usize, p_csize, my_usize;
4054 	sector_t new_size, cur_size;
4055 	int ldsc = 0; /* local disk size changed */
4056 	enum dds_flags ddsf;
4057 
4058 	peer_device = conn_peer_device(connection, pi->vnr);
4059 	if (!peer_device)
4060 		return config_unknown_volume(connection, pi);
4061 	device = peer_device->device;
4062 	cur_size = get_capacity(device->vdisk);
4063 
4064 	p_size = be64_to_cpu(p->d_size);
4065 	p_usize = be64_to_cpu(p->u_size);
4066 	p_csize = be64_to_cpu(p->c_size);
4067 
4068 	/* just store the peer's disk size for now.
4069 	 * we still need to figure out whether we accept that. */
4070 	device->p_size = p_size;
4071 
4072 	if (get_ldev(device)) {
4073 		rcu_read_lock();
4074 		my_usize = rcu_dereference(device->ldev->disk_conf)->disk_size;
4075 		rcu_read_unlock();
4076 
4077 		warn_if_differ_considerably(device, "lower level device sizes",
4078 			   p_size, drbd_get_max_capacity(device->ldev));
4079 		warn_if_differ_considerably(device, "user requested size",
4080 					    p_usize, my_usize);
4081 
4082 		/* if this is the first connect, or an otherwise expected
4083 		 * param exchange, choose the minimum */
4084 		if (device->state.conn == C_WF_REPORT_PARAMS)
4085 			p_usize = min_not_zero(my_usize, p_usize);
4086 
4087 		/* Never shrink a device with usable data during connect,
4088 		 * or "attach" on the peer.
4089 		 * But allow online shrinking if we are connected. */
4090 		new_size = drbd_new_dev_size(device, device->ldev, p_usize, 0);
4091 		if (new_size < cur_size &&
4092 		    device->state.disk >= D_OUTDATED &&
4093 		    (device->state.conn < C_CONNECTED || device->state.pdsk == D_DISKLESS)) {
4094 			drbd_err(device, "The peer's disk size is too small! (%llu < %llu sectors)\n",
4095 					(unsigned long long)new_size, (unsigned long long)cur_size);
4096 			conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4097 			put_ldev(device);
4098 			return -EIO;
4099 		}
4100 
4101 		if (my_usize != p_usize) {
4102 			struct disk_conf *old_disk_conf, *new_disk_conf = NULL;
4103 
4104 			new_disk_conf = kzalloc(sizeof(struct disk_conf), GFP_KERNEL);
4105 			if (!new_disk_conf) {
4106 				put_ldev(device);
4107 				return -ENOMEM;
4108 			}
4109 
4110 			mutex_lock(&connection->resource->conf_update);
4111 			old_disk_conf = device->ldev->disk_conf;
4112 			*new_disk_conf = *old_disk_conf;
4113 			new_disk_conf->disk_size = p_usize;
4114 
4115 			rcu_assign_pointer(device->ldev->disk_conf, new_disk_conf);
4116 			mutex_unlock(&connection->resource->conf_update);
4117 			kvfree_rcu(old_disk_conf);
4118 
4119 			drbd_info(device, "Peer sets u_size to %lu sectors (old: %lu)\n",
4120 				 (unsigned long)p_usize, (unsigned long)my_usize);
4121 		}
4122 
4123 		put_ldev(device);
4124 	}
4125 
4126 	device->peer_max_bio_size = be32_to_cpu(p->max_bio_size);
4127 	/* Leave drbd_reconsider_queue_parameters() before drbd_determine_dev_size().
4128 	   In case we cleared the QUEUE_FLAG_DISCARD from our queue in
4129 	   drbd_reconsider_queue_parameters(), we can be sure that after
4130 	   drbd_determine_dev_size() no REQ_DISCARDs are in the queue. */
4131 
4132 	ddsf = be16_to_cpu(p->dds_flags);
4133 	if (get_ldev(device)) {
4134 		drbd_reconsider_queue_parameters(device, device->ldev, o);
4135 		dd = drbd_determine_dev_size(device, ddsf, NULL);
4136 		put_ldev(device);
4137 		if (dd == DS_ERROR)
4138 			return -EIO;
4139 		drbd_md_sync(device);
4140 	} else {
4141 		/*
4142 		 * I am diskless, need to accept the peer's *current* size.
4143 		 * I must NOT accept the peers backing disk size,
4144 		 * it may have been larger than mine all along...
4145 		 *
4146 		 * At this point, the peer knows more about my disk, or at
4147 		 * least about what we last agreed upon, than myself.
4148 		 * So if his c_size is less than his d_size, the most likely
4149 		 * reason is that *my* d_size was smaller last time we checked.
4150 		 *
4151 		 * However, if he sends a zero current size,
4152 		 * take his (user-capped or) backing disk size anyways.
4153 		 *
4154 		 * Unless of course he does not have a disk himself.
4155 		 * In which case we ignore this completely.
4156 		 */
4157 		sector_t new_size = p_csize ?: p_usize ?: p_size;
4158 		drbd_reconsider_queue_parameters(device, NULL, o);
4159 		if (new_size == 0) {
4160 			/* Ignore, peer does not know nothing. */
4161 		} else if (new_size == cur_size) {
4162 			/* nothing to do */
4163 		} else if (cur_size != 0 && p_size == 0) {
4164 			drbd_warn(device, "Ignored diskless peer device size (peer:%llu != me:%llu sectors)!\n",
4165 					(unsigned long long)new_size, (unsigned long long)cur_size);
4166 		} else if (new_size < cur_size && device->state.role == R_PRIMARY) {
4167 			drbd_err(device, "The peer's device size is too small! (%llu < %llu sectors); demote me first!\n",
4168 					(unsigned long long)new_size, (unsigned long long)cur_size);
4169 			conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4170 			return -EIO;
4171 		} else {
4172 			/* I believe the peer, if
4173 			 *  - I don't have a current size myself
4174 			 *  - we agree on the size anyways
4175 			 *  - I do have a current size, am Secondary,
4176 			 *    and he has the only disk
4177 			 *  - I do have a current size, am Primary,
4178 			 *    and he has the only disk,
4179 			 *    which is larger than my current size
4180 			 */
4181 			drbd_set_my_capacity(device, new_size);
4182 		}
4183 	}
4184 
4185 	if (get_ldev(device)) {
4186 		if (device->ldev->known_size != drbd_get_capacity(device->ldev->backing_bdev)) {
4187 			device->ldev->known_size = drbd_get_capacity(device->ldev->backing_bdev);
4188 			ldsc = 1;
4189 		}
4190 
4191 		put_ldev(device);
4192 	}
4193 
4194 	if (device->state.conn > C_WF_REPORT_PARAMS) {
4195 		if (be64_to_cpu(p->c_size) != get_capacity(device->vdisk) ||
4196 		    ldsc) {
4197 			/* we have different sizes, probably peer
4198 			 * needs to know my new size... */
4199 			drbd_send_sizes(peer_device, 0, ddsf);
4200 		}
4201 		if (test_and_clear_bit(RESIZE_PENDING, &device->flags) ||
4202 		    (dd == DS_GREW && device->state.conn == C_CONNECTED)) {
4203 			if (device->state.pdsk >= D_INCONSISTENT &&
4204 			    device->state.disk >= D_INCONSISTENT) {
4205 				if (ddsf & DDSF_NO_RESYNC)
4206 					drbd_info(device, "Resync of new storage suppressed with --assume-clean\n");
4207 				else
4208 					resync_after_online_grow(device);
4209 			} else
4210 				set_bit(RESYNC_AFTER_NEG, &device->flags);
4211 		}
4212 	}
4213 
4214 	return 0;
4215 }
4216 
4217 static int receive_uuids(struct drbd_connection *connection, struct packet_info *pi)
4218 {
4219 	struct drbd_peer_device *peer_device;
4220 	struct drbd_device *device;
4221 	struct p_uuids *p = pi->data;
4222 	u64 *p_uuid;
4223 	int i, updated_uuids = 0;
4224 
4225 	peer_device = conn_peer_device(connection, pi->vnr);
4226 	if (!peer_device)
4227 		return config_unknown_volume(connection, pi);
4228 	device = peer_device->device;
4229 
4230 	p_uuid = kmalloc_array(UI_EXTENDED_SIZE, sizeof(*p_uuid), GFP_NOIO);
4231 	if (!p_uuid)
4232 		return false;
4233 
4234 	for (i = UI_CURRENT; i < UI_EXTENDED_SIZE; i++)
4235 		p_uuid[i] = be64_to_cpu(p->uuid[i]);
4236 
4237 	kfree(device->p_uuid);
4238 	device->p_uuid = p_uuid;
4239 
4240 	if ((device->state.conn < C_CONNECTED || device->state.pdsk == D_DISKLESS) &&
4241 	    device->state.disk < D_INCONSISTENT &&
4242 	    device->state.role == R_PRIMARY &&
4243 	    (device->ed_uuid & ~((u64)1)) != (p_uuid[UI_CURRENT] & ~((u64)1))) {
4244 		drbd_err(device, "Can only connect to data with current UUID=%016llX\n",
4245 		    (unsigned long long)device->ed_uuid);
4246 		conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4247 		return -EIO;
4248 	}
4249 
4250 	if (get_ldev(device)) {
4251 		int skip_initial_sync =
4252 			device->state.conn == C_CONNECTED &&
4253 			peer_device->connection->agreed_pro_version >= 90 &&
4254 			device->ldev->md.uuid[UI_CURRENT] == UUID_JUST_CREATED &&
4255 			(p_uuid[UI_FLAGS] & 8);
4256 		if (skip_initial_sync) {
4257 			drbd_info(device, "Accepted new current UUID, preparing to skip initial sync\n");
4258 			drbd_bitmap_io(device, &drbd_bmio_clear_n_write,
4259 					"clear_n_write from receive_uuids",
4260 					BM_LOCKED_TEST_ALLOWED);
4261 			_drbd_uuid_set(device, UI_CURRENT, p_uuid[UI_CURRENT]);
4262 			_drbd_uuid_set(device, UI_BITMAP, 0);
4263 			_drbd_set_state(_NS2(device, disk, D_UP_TO_DATE, pdsk, D_UP_TO_DATE),
4264 					CS_VERBOSE, NULL);
4265 			drbd_md_sync(device);
4266 			updated_uuids = 1;
4267 		}
4268 		put_ldev(device);
4269 	} else if (device->state.disk < D_INCONSISTENT &&
4270 		   device->state.role == R_PRIMARY) {
4271 		/* I am a diskless primary, the peer just created a new current UUID
4272 		   for me. */
4273 		updated_uuids = drbd_set_ed_uuid(device, p_uuid[UI_CURRENT]);
4274 	}
4275 
4276 	/* Before we test for the disk state, we should wait until an eventually
4277 	   ongoing cluster wide state change is finished. That is important if
4278 	   we are primary and are detaching from our disk. We need to see the
4279 	   new disk state... */
4280 	mutex_lock(device->state_mutex);
4281 	mutex_unlock(device->state_mutex);
4282 	if (device->state.conn >= C_CONNECTED && device->state.disk < D_INCONSISTENT)
4283 		updated_uuids |= drbd_set_ed_uuid(device, p_uuid[UI_CURRENT]);
4284 
4285 	if (updated_uuids)
4286 		drbd_print_uuids(device, "receiver updated UUIDs to");
4287 
4288 	return 0;
4289 }
4290 
4291 /**
4292  * convert_state() - Converts the peer's view of the cluster state to our point of view
4293  * @ps:		The state as seen by the peer.
4294  */
4295 static union drbd_state convert_state(union drbd_state ps)
4296 {
4297 	union drbd_state ms;
4298 
4299 	static enum drbd_conns c_tab[] = {
4300 		[C_WF_REPORT_PARAMS] = C_WF_REPORT_PARAMS,
4301 		[C_CONNECTED] = C_CONNECTED,
4302 
4303 		[C_STARTING_SYNC_S] = C_STARTING_SYNC_T,
4304 		[C_STARTING_SYNC_T] = C_STARTING_SYNC_S,
4305 		[C_DISCONNECTING] = C_TEAR_DOWN, /* C_NETWORK_FAILURE, */
4306 		[C_VERIFY_S]       = C_VERIFY_T,
4307 		[C_MASK]   = C_MASK,
4308 	};
4309 
4310 	ms.i = ps.i;
4311 
4312 	ms.conn = c_tab[ps.conn];
4313 	ms.peer = ps.role;
4314 	ms.role = ps.peer;
4315 	ms.pdsk = ps.disk;
4316 	ms.disk = ps.pdsk;
4317 	ms.peer_isp = (ps.aftr_isp | ps.user_isp);
4318 
4319 	return ms;
4320 }
4321 
4322 static int receive_req_state(struct drbd_connection *connection, struct packet_info *pi)
4323 {
4324 	struct drbd_peer_device *peer_device;
4325 	struct drbd_device *device;
4326 	struct p_req_state *p = pi->data;
4327 	union drbd_state mask, val;
4328 	enum drbd_state_rv rv;
4329 
4330 	peer_device = conn_peer_device(connection, pi->vnr);
4331 	if (!peer_device)
4332 		return -EIO;
4333 	device = peer_device->device;
4334 
4335 	mask.i = be32_to_cpu(p->mask);
4336 	val.i = be32_to_cpu(p->val);
4337 
4338 	if (test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags) &&
4339 	    mutex_is_locked(device->state_mutex)) {
4340 		drbd_send_sr_reply(peer_device, SS_CONCURRENT_ST_CHG);
4341 		return 0;
4342 	}
4343 
4344 	mask = convert_state(mask);
4345 	val = convert_state(val);
4346 
4347 	rv = drbd_change_state(device, CS_VERBOSE, mask, val);
4348 	drbd_send_sr_reply(peer_device, rv);
4349 
4350 	drbd_md_sync(device);
4351 
4352 	return 0;
4353 }
4354 
4355 static int receive_req_conn_state(struct drbd_connection *connection, struct packet_info *pi)
4356 {
4357 	struct p_req_state *p = pi->data;
4358 	union drbd_state mask, val;
4359 	enum drbd_state_rv rv;
4360 
4361 	mask.i = be32_to_cpu(p->mask);
4362 	val.i = be32_to_cpu(p->val);
4363 
4364 	if (test_bit(RESOLVE_CONFLICTS, &connection->flags) &&
4365 	    mutex_is_locked(&connection->cstate_mutex)) {
4366 		conn_send_sr_reply(connection, SS_CONCURRENT_ST_CHG);
4367 		return 0;
4368 	}
4369 
4370 	mask = convert_state(mask);
4371 	val = convert_state(val);
4372 
4373 	rv = conn_request_state(connection, mask, val, CS_VERBOSE | CS_LOCAL_ONLY | CS_IGN_OUTD_FAIL);
4374 	conn_send_sr_reply(connection, rv);
4375 
4376 	return 0;
4377 }
4378 
4379 static int receive_state(struct drbd_connection *connection, struct packet_info *pi)
4380 {
4381 	struct drbd_peer_device *peer_device;
4382 	struct drbd_device *device;
4383 	struct p_state *p = pi->data;
4384 	union drbd_state os, ns, peer_state;
4385 	enum drbd_disk_state real_peer_disk;
4386 	enum chg_state_flags cs_flags;
4387 	int rv;
4388 
4389 	peer_device = conn_peer_device(connection, pi->vnr);
4390 	if (!peer_device)
4391 		return config_unknown_volume(connection, pi);
4392 	device = peer_device->device;
4393 
4394 	peer_state.i = be32_to_cpu(p->state);
4395 
4396 	real_peer_disk = peer_state.disk;
4397 	if (peer_state.disk == D_NEGOTIATING) {
4398 		real_peer_disk = device->p_uuid[UI_FLAGS] & 4 ? D_INCONSISTENT : D_CONSISTENT;
4399 		drbd_info(device, "real peer disk state = %s\n", drbd_disk_str(real_peer_disk));
4400 	}
4401 
4402 	spin_lock_irq(&device->resource->req_lock);
4403  retry:
4404 	os = ns = drbd_read_state(device);
4405 	spin_unlock_irq(&device->resource->req_lock);
4406 
4407 	/* If some other part of the code (ack_receiver thread, timeout)
4408 	 * already decided to close the connection again,
4409 	 * we must not "re-establish" it here. */
4410 	if (os.conn <= C_TEAR_DOWN)
4411 		return -ECONNRESET;
4412 
4413 	/* If this is the "end of sync" confirmation, usually the peer disk
4414 	 * transitions from D_INCONSISTENT to D_UP_TO_DATE. For empty (0 bits
4415 	 * set) resync started in PausedSyncT, or if the timing of pause-/
4416 	 * unpause-sync events has been "just right", the peer disk may
4417 	 * transition from D_CONSISTENT to D_UP_TO_DATE as well.
4418 	 */
4419 	if ((os.pdsk == D_INCONSISTENT || os.pdsk == D_CONSISTENT) &&
4420 	    real_peer_disk == D_UP_TO_DATE &&
4421 	    os.conn > C_CONNECTED && os.disk == D_UP_TO_DATE) {
4422 		/* If we are (becoming) SyncSource, but peer is still in sync
4423 		 * preparation, ignore its uptodate-ness to avoid flapping, it
4424 		 * will change to inconsistent once the peer reaches active
4425 		 * syncing states.
4426 		 * It may have changed syncer-paused flags, however, so we
4427 		 * cannot ignore this completely. */
4428 		if (peer_state.conn > C_CONNECTED &&
4429 		    peer_state.conn < C_SYNC_SOURCE)
4430 			real_peer_disk = D_INCONSISTENT;
4431 
4432 		/* if peer_state changes to connected at the same time,
4433 		 * it explicitly notifies us that it finished resync.
4434 		 * Maybe we should finish it up, too? */
4435 		else if (os.conn >= C_SYNC_SOURCE &&
4436 			 peer_state.conn == C_CONNECTED) {
4437 			if (drbd_bm_total_weight(device) <= device->rs_failed)
4438 				drbd_resync_finished(device);
4439 			return 0;
4440 		}
4441 	}
4442 
4443 	/* explicit verify finished notification, stop sector reached. */
4444 	if (os.conn == C_VERIFY_T && os.disk == D_UP_TO_DATE &&
4445 	    peer_state.conn == C_CONNECTED && real_peer_disk == D_UP_TO_DATE) {
4446 		ov_out_of_sync_print(device);
4447 		drbd_resync_finished(device);
4448 		return 0;
4449 	}
4450 
4451 	/* peer says his disk is inconsistent, while we think it is uptodate,
4452 	 * and this happens while the peer still thinks we have a sync going on,
4453 	 * but we think we are already done with the sync.
4454 	 * We ignore this to avoid flapping pdsk.
4455 	 * This should not happen, if the peer is a recent version of drbd. */
4456 	if (os.pdsk == D_UP_TO_DATE && real_peer_disk == D_INCONSISTENT &&
4457 	    os.conn == C_CONNECTED && peer_state.conn > C_SYNC_SOURCE)
4458 		real_peer_disk = D_UP_TO_DATE;
4459 
4460 	if (ns.conn == C_WF_REPORT_PARAMS)
4461 		ns.conn = C_CONNECTED;
4462 
4463 	if (peer_state.conn == C_AHEAD)
4464 		ns.conn = C_BEHIND;
4465 
4466 	/* TODO:
4467 	 * if (primary and diskless and peer uuid != effective uuid)
4468 	 *     abort attach on peer;
4469 	 *
4470 	 * If this node does not have good data, was already connected, but
4471 	 * the peer did a late attach only now, trying to "negotiate" with me,
4472 	 * AND I am currently Primary, possibly frozen, with some specific
4473 	 * "effective" uuid, this should never be reached, really, because
4474 	 * we first send the uuids, then the current state.
4475 	 *
4476 	 * In this scenario, we already dropped the connection hard
4477 	 * when we received the unsuitable uuids (receive_uuids().
4478 	 *
4479 	 * Should we want to change this, that is: not drop the connection in
4480 	 * receive_uuids() already, then we would need to add a branch here
4481 	 * that aborts the attach of "unsuitable uuids" on the peer in case
4482 	 * this node is currently Diskless Primary.
4483 	 */
4484 
4485 	if (device->p_uuid && peer_state.disk >= D_NEGOTIATING &&
4486 	    get_ldev_if_state(device, D_NEGOTIATING)) {
4487 		int cr; /* consider resync */
4488 
4489 		/* if we established a new connection */
4490 		cr  = (os.conn < C_CONNECTED);
4491 		/* if we had an established connection
4492 		 * and one of the nodes newly attaches a disk */
4493 		cr |= (os.conn == C_CONNECTED &&
4494 		       (peer_state.disk == D_NEGOTIATING ||
4495 			os.disk == D_NEGOTIATING));
4496 		/* if we have both been inconsistent, and the peer has been
4497 		 * forced to be UpToDate with --force */
4498 		cr |= test_bit(CONSIDER_RESYNC, &device->flags);
4499 		/* if we had been plain connected, and the admin requested to
4500 		 * start a sync by "invalidate" or "invalidate-remote" */
4501 		cr |= (os.conn == C_CONNECTED &&
4502 				(peer_state.conn >= C_STARTING_SYNC_S &&
4503 				 peer_state.conn <= C_WF_BITMAP_T));
4504 
4505 		if (cr)
4506 			ns.conn = drbd_sync_handshake(peer_device, peer_state.role, real_peer_disk);
4507 
4508 		put_ldev(device);
4509 		if (ns.conn == C_MASK) {
4510 			ns.conn = C_CONNECTED;
4511 			if (device->state.disk == D_NEGOTIATING) {
4512 				drbd_force_state(device, NS(disk, D_FAILED));
4513 			} else if (peer_state.disk == D_NEGOTIATING) {
4514 				drbd_err(device, "Disk attach process on the peer node was aborted.\n");
4515 				peer_state.disk = D_DISKLESS;
4516 				real_peer_disk = D_DISKLESS;
4517 			} else {
4518 				if (test_and_clear_bit(CONN_DRY_RUN, &peer_device->connection->flags))
4519 					return -EIO;
4520 				D_ASSERT(device, os.conn == C_WF_REPORT_PARAMS);
4521 				conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4522 				return -EIO;
4523 			}
4524 		}
4525 	}
4526 
4527 	spin_lock_irq(&device->resource->req_lock);
4528 	if (os.i != drbd_read_state(device).i)
4529 		goto retry;
4530 	clear_bit(CONSIDER_RESYNC, &device->flags);
4531 	ns.peer = peer_state.role;
4532 	ns.pdsk = real_peer_disk;
4533 	ns.peer_isp = (peer_state.aftr_isp | peer_state.user_isp);
4534 	if ((ns.conn == C_CONNECTED || ns.conn == C_WF_BITMAP_S) && ns.disk == D_NEGOTIATING)
4535 		ns.disk = device->new_state_tmp.disk;
4536 	cs_flags = CS_VERBOSE + (os.conn < C_CONNECTED && ns.conn >= C_CONNECTED ? 0 : CS_HARD);
4537 	if (ns.pdsk == D_CONSISTENT && drbd_suspended(device) && ns.conn == C_CONNECTED && os.conn < C_CONNECTED &&
4538 	    test_bit(NEW_CUR_UUID, &device->flags)) {
4539 		/* Do not allow tl_restart(RESEND) for a rebooted peer. We can only allow this
4540 		   for temporal network outages! */
4541 		spin_unlock_irq(&device->resource->req_lock);
4542 		drbd_err(device, "Aborting Connect, can not thaw IO with an only Consistent peer\n");
4543 		tl_clear(peer_device->connection);
4544 		drbd_uuid_new_current(device);
4545 		clear_bit(NEW_CUR_UUID, &device->flags);
4546 		conn_request_state(peer_device->connection, NS2(conn, C_PROTOCOL_ERROR, susp, 0), CS_HARD);
4547 		return -EIO;
4548 	}
4549 	rv = _drbd_set_state(device, ns, cs_flags, NULL);
4550 	ns = drbd_read_state(device);
4551 	spin_unlock_irq(&device->resource->req_lock);
4552 
4553 	if (rv < SS_SUCCESS) {
4554 		conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4555 		return -EIO;
4556 	}
4557 
4558 	if (os.conn > C_WF_REPORT_PARAMS) {
4559 		if (ns.conn > C_CONNECTED && peer_state.conn <= C_CONNECTED &&
4560 		    peer_state.disk != D_NEGOTIATING ) {
4561 			/* we want resync, peer has not yet decided to sync... */
4562 			/* Nowadays only used when forcing a node into primary role and
4563 			   setting its disk to UpToDate with that */
4564 			drbd_send_uuids(peer_device);
4565 			drbd_send_current_state(peer_device);
4566 		}
4567 	}
4568 
4569 	clear_bit(DISCARD_MY_DATA, &device->flags);
4570 
4571 	drbd_md_sync(device); /* update connected indicator, la_size_sect, ... */
4572 
4573 	return 0;
4574 }
4575 
4576 static int receive_sync_uuid(struct drbd_connection *connection, struct packet_info *pi)
4577 {
4578 	struct drbd_peer_device *peer_device;
4579 	struct drbd_device *device;
4580 	struct p_rs_uuid *p = pi->data;
4581 
4582 	peer_device = conn_peer_device(connection, pi->vnr);
4583 	if (!peer_device)
4584 		return -EIO;
4585 	device = peer_device->device;
4586 
4587 	wait_event(device->misc_wait,
4588 		   device->state.conn == C_WF_SYNC_UUID ||
4589 		   device->state.conn == C_BEHIND ||
4590 		   device->state.conn < C_CONNECTED ||
4591 		   device->state.disk < D_NEGOTIATING);
4592 
4593 	/* D_ASSERT(device,  device->state.conn == C_WF_SYNC_UUID ); */
4594 
4595 	/* Here the _drbd_uuid_ functions are right, current should
4596 	   _not_ be rotated into the history */
4597 	if (get_ldev_if_state(device, D_NEGOTIATING)) {
4598 		_drbd_uuid_set(device, UI_CURRENT, be64_to_cpu(p->uuid));
4599 		_drbd_uuid_set(device, UI_BITMAP, 0UL);
4600 
4601 		drbd_print_uuids(device, "updated sync uuid");
4602 		drbd_start_resync(device, C_SYNC_TARGET);
4603 
4604 		put_ldev(device);
4605 	} else
4606 		drbd_err(device, "Ignoring SyncUUID packet!\n");
4607 
4608 	return 0;
4609 }
4610 
4611 /*
4612  * receive_bitmap_plain
4613  *
4614  * Return 0 when done, 1 when another iteration is needed, and a negative error
4615  * code upon failure.
4616  */
4617 static int
4618 receive_bitmap_plain(struct drbd_peer_device *peer_device, unsigned int size,
4619 		     unsigned long *p, struct bm_xfer_ctx *c)
4620 {
4621 	unsigned int data_size = DRBD_SOCKET_BUFFER_SIZE -
4622 				 drbd_header_size(peer_device->connection);
4623 	unsigned int num_words = min_t(size_t, data_size / sizeof(*p),
4624 				       c->bm_words - c->word_offset);
4625 	unsigned int want = num_words * sizeof(*p);
4626 	int err;
4627 
4628 	if (want != size) {
4629 		drbd_err(peer_device, "%s:want (%u) != size (%u)\n", __func__, want, size);
4630 		return -EIO;
4631 	}
4632 	if (want == 0)
4633 		return 0;
4634 	err = drbd_recv_all(peer_device->connection, p, want);
4635 	if (err)
4636 		return err;
4637 
4638 	drbd_bm_merge_lel(peer_device->device, c->word_offset, num_words, p);
4639 
4640 	c->word_offset += num_words;
4641 	c->bit_offset = c->word_offset * BITS_PER_LONG;
4642 	if (c->bit_offset > c->bm_bits)
4643 		c->bit_offset = c->bm_bits;
4644 
4645 	return 1;
4646 }
4647 
4648 static enum drbd_bitmap_code dcbp_get_code(struct p_compressed_bm *p)
4649 {
4650 	return (enum drbd_bitmap_code)(p->encoding & 0x0f);
4651 }
4652 
4653 static int dcbp_get_start(struct p_compressed_bm *p)
4654 {
4655 	return (p->encoding & 0x80) != 0;
4656 }
4657 
4658 static int dcbp_get_pad_bits(struct p_compressed_bm *p)
4659 {
4660 	return (p->encoding >> 4) & 0x7;
4661 }
4662 
4663 /*
4664  * recv_bm_rle_bits
4665  *
4666  * Return 0 when done, 1 when another iteration is needed, and a negative error
4667  * code upon failure.
4668  */
4669 static int
4670 recv_bm_rle_bits(struct drbd_peer_device *peer_device,
4671 		struct p_compressed_bm *p,
4672 		 struct bm_xfer_ctx *c,
4673 		 unsigned int len)
4674 {
4675 	struct bitstream bs;
4676 	u64 look_ahead;
4677 	u64 rl;
4678 	u64 tmp;
4679 	unsigned long s = c->bit_offset;
4680 	unsigned long e;
4681 	int toggle = dcbp_get_start(p);
4682 	int have;
4683 	int bits;
4684 
4685 	bitstream_init(&bs, p->code, len, dcbp_get_pad_bits(p));
4686 
4687 	bits = bitstream_get_bits(&bs, &look_ahead, 64);
4688 	if (bits < 0)
4689 		return -EIO;
4690 
4691 	for (have = bits; have > 0; s += rl, toggle = !toggle) {
4692 		bits = vli_decode_bits(&rl, look_ahead);
4693 		if (bits <= 0)
4694 			return -EIO;
4695 
4696 		if (toggle) {
4697 			e = s + rl -1;
4698 			if (e >= c->bm_bits) {
4699 				drbd_err(peer_device, "bitmap overflow (e:%lu) while decoding bm RLE packet\n", e);
4700 				return -EIO;
4701 			}
4702 			_drbd_bm_set_bits(peer_device->device, s, e);
4703 		}
4704 
4705 		if (have < bits) {
4706 			drbd_err(peer_device, "bitmap decoding error: h:%d b:%d la:0x%08llx l:%u/%u\n",
4707 				have, bits, look_ahead,
4708 				(unsigned int)(bs.cur.b - p->code),
4709 				(unsigned int)bs.buf_len);
4710 			return -EIO;
4711 		}
4712 		/* if we consumed all 64 bits, assign 0; >> 64 is "undefined"; */
4713 		if (likely(bits < 64))
4714 			look_ahead >>= bits;
4715 		else
4716 			look_ahead = 0;
4717 		have -= bits;
4718 
4719 		bits = bitstream_get_bits(&bs, &tmp, 64 - have);
4720 		if (bits < 0)
4721 			return -EIO;
4722 		look_ahead |= tmp << have;
4723 		have += bits;
4724 	}
4725 
4726 	c->bit_offset = s;
4727 	bm_xfer_ctx_bit_to_word_offset(c);
4728 
4729 	return (s != c->bm_bits);
4730 }
4731 
4732 /*
4733  * decode_bitmap_c
4734  *
4735  * Return 0 when done, 1 when another iteration is needed, and a negative error
4736  * code upon failure.
4737  */
4738 static int
4739 decode_bitmap_c(struct drbd_peer_device *peer_device,
4740 		struct p_compressed_bm *p,
4741 		struct bm_xfer_ctx *c,
4742 		unsigned int len)
4743 {
4744 	if (dcbp_get_code(p) == RLE_VLI_Bits)
4745 		return recv_bm_rle_bits(peer_device, p, c, len - sizeof(*p));
4746 
4747 	/* other variants had been implemented for evaluation,
4748 	 * but have been dropped as this one turned out to be "best"
4749 	 * during all our tests. */
4750 
4751 	drbd_err(peer_device, "receive_bitmap_c: unknown encoding %u\n", p->encoding);
4752 	conn_request_state(peer_device->connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
4753 	return -EIO;
4754 }
4755 
4756 void INFO_bm_xfer_stats(struct drbd_device *device,
4757 		const char *direction, struct bm_xfer_ctx *c)
4758 {
4759 	/* what would it take to transfer it "plaintext" */
4760 	unsigned int header_size = drbd_header_size(first_peer_device(device)->connection);
4761 	unsigned int data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
4762 	unsigned int plain =
4763 		header_size * (DIV_ROUND_UP(c->bm_words, data_size) + 1) +
4764 		c->bm_words * sizeof(unsigned long);
4765 	unsigned int total = c->bytes[0] + c->bytes[1];
4766 	unsigned int r;
4767 
4768 	/* total can not be zero. but just in case: */
4769 	if (total == 0)
4770 		return;
4771 
4772 	/* don't report if not compressed */
4773 	if (total >= plain)
4774 		return;
4775 
4776 	/* total < plain. check for overflow, still */
4777 	r = (total > UINT_MAX/1000) ? (total / (plain/1000))
4778 		                    : (1000 * total / plain);
4779 
4780 	if (r > 1000)
4781 		r = 1000;
4782 
4783 	r = 1000 - r;
4784 	drbd_info(device, "%s bitmap stats [Bytes(packets)]: plain %u(%u), RLE %u(%u), "
4785 	     "total %u; compression: %u.%u%%\n",
4786 			direction,
4787 			c->bytes[1], c->packets[1],
4788 			c->bytes[0], c->packets[0],
4789 			total, r/10, r % 10);
4790 }
4791 
4792 /* Since we are processing the bitfield from lower addresses to higher,
4793    it does not matter if the process it in 32 bit chunks or 64 bit
4794    chunks as long as it is little endian. (Understand it as byte stream,
4795    beginning with the lowest byte...) If we would use big endian
4796    we would need to process it from the highest address to the lowest,
4797    in order to be agnostic to the 32 vs 64 bits issue.
4798 
4799    returns 0 on failure, 1 if we successfully received it. */
4800 static int receive_bitmap(struct drbd_connection *connection, struct packet_info *pi)
4801 {
4802 	struct drbd_peer_device *peer_device;
4803 	struct drbd_device *device;
4804 	struct bm_xfer_ctx c;
4805 	int err;
4806 
4807 	peer_device = conn_peer_device(connection, pi->vnr);
4808 	if (!peer_device)
4809 		return -EIO;
4810 	device = peer_device->device;
4811 
4812 	drbd_bm_lock(device, "receive bitmap", BM_LOCKED_SET_ALLOWED);
4813 	/* you are supposed to send additional out-of-sync information
4814 	 * if you actually set bits during this phase */
4815 
4816 	c = (struct bm_xfer_ctx) {
4817 		.bm_bits = drbd_bm_bits(device),
4818 		.bm_words = drbd_bm_words(device),
4819 	};
4820 
4821 	for(;;) {
4822 		if (pi->cmd == P_BITMAP)
4823 			err = receive_bitmap_plain(peer_device, pi->size, pi->data, &c);
4824 		else if (pi->cmd == P_COMPRESSED_BITMAP) {
4825 			/* MAYBE: sanity check that we speak proto >= 90,
4826 			 * and the feature is enabled! */
4827 			struct p_compressed_bm *p = pi->data;
4828 
4829 			if (pi->size > DRBD_SOCKET_BUFFER_SIZE - drbd_header_size(connection)) {
4830 				drbd_err(device, "ReportCBitmap packet too large\n");
4831 				err = -EIO;
4832 				goto out;
4833 			}
4834 			if (pi->size <= sizeof(*p)) {
4835 				drbd_err(device, "ReportCBitmap packet too small (l:%u)\n", pi->size);
4836 				err = -EIO;
4837 				goto out;
4838 			}
4839 			err = drbd_recv_all(peer_device->connection, p, pi->size);
4840 			if (err)
4841 			       goto out;
4842 			err = decode_bitmap_c(peer_device, p, &c, pi->size);
4843 		} else {
4844 			drbd_warn(device, "receive_bitmap: cmd neither ReportBitMap nor ReportCBitMap (is 0x%x)", pi->cmd);
4845 			err = -EIO;
4846 			goto out;
4847 		}
4848 
4849 		c.packets[pi->cmd == P_BITMAP]++;
4850 		c.bytes[pi->cmd == P_BITMAP] += drbd_header_size(connection) + pi->size;
4851 
4852 		if (err <= 0) {
4853 			if (err < 0)
4854 				goto out;
4855 			break;
4856 		}
4857 		err = drbd_recv_header(peer_device->connection, pi);
4858 		if (err)
4859 			goto out;
4860 	}
4861 
4862 	INFO_bm_xfer_stats(device, "receive", &c);
4863 
4864 	if (device->state.conn == C_WF_BITMAP_T) {
4865 		enum drbd_state_rv rv;
4866 
4867 		err = drbd_send_bitmap(device);
4868 		if (err)
4869 			goto out;
4870 		/* Omit CS_ORDERED with this state transition to avoid deadlocks. */
4871 		rv = _drbd_request_state(device, NS(conn, C_WF_SYNC_UUID), CS_VERBOSE);
4872 		D_ASSERT(device, rv == SS_SUCCESS);
4873 	} else if (device->state.conn != C_WF_BITMAP_S) {
4874 		/* admin may have requested C_DISCONNECTING,
4875 		 * other threads may have noticed network errors */
4876 		drbd_info(device, "unexpected cstate (%s) in receive_bitmap\n",
4877 		    drbd_conn_str(device->state.conn));
4878 	}
4879 	err = 0;
4880 
4881  out:
4882 	drbd_bm_unlock(device);
4883 	if (!err && device->state.conn == C_WF_BITMAP_S)
4884 		drbd_start_resync(device, C_SYNC_SOURCE);
4885 	return err;
4886 }
4887 
4888 static int receive_skip(struct drbd_connection *connection, struct packet_info *pi)
4889 {
4890 	drbd_warn(connection, "skipping unknown optional packet type %d, l: %d!\n",
4891 		 pi->cmd, pi->size);
4892 
4893 	return ignore_remaining_packet(connection, pi);
4894 }
4895 
4896 static int receive_UnplugRemote(struct drbd_connection *connection, struct packet_info *pi)
4897 {
4898 	/* Make sure we've acked all the TCP data associated
4899 	 * with the data requests being unplugged */
4900 	tcp_sock_set_quickack(connection->data.socket->sk, 2);
4901 	return 0;
4902 }
4903 
4904 static int receive_out_of_sync(struct drbd_connection *connection, struct packet_info *pi)
4905 {
4906 	struct drbd_peer_device *peer_device;
4907 	struct drbd_device *device;
4908 	struct p_block_desc *p = pi->data;
4909 
4910 	peer_device = conn_peer_device(connection, pi->vnr);
4911 	if (!peer_device)
4912 		return -EIO;
4913 	device = peer_device->device;
4914 
4915 	switch (device->state.conn) {
4916 	case C_WF_SYNC_UUID:
4917 	case C_WF_BITMAP_T:
4918 	case C_BEHIND:
4919 			break;
4920 	default:
4921 		drbd_err(device, "ASSERT FAILED cstate = %s, expected: WFSyncUUID|WFBitMapT|Behind\n",
4922 				drbd_conn_str(device->state.conn));
4923 	}
4924 
4925 	drbd_set_out_of_sync(device, be64_to_cpu(p->sector), be32_to_cpu(p->blksize));
4926 
4927 	return 0;
4928 }
4929 
4930 static int receive_rs_deallocated(struct drbd_connection *connection, struct packet_info *pi)
4931 {
4932 	struct drbd_peer_device *peer_device;
4933 	struct p_block_desc *p = pi->data;
4934 	struct drbd_device *device;
4935 	sector_t sector;
4936 	int size, err = 0;
4937 
4938 	peer_device = conn_peer_device(connection, pi->vnr);
4939 	if (!peer_device)
4940 		return -EIO;
4941 	device = peer_device->device;
4942 
4943 	sector = be64_to_cpu(p->sector);
4944 	size = be32_to_cpu(p->blksize);
4945 
4946 	dec_rs_pending(device);
4947 
4948 	if (get_ldev(device)) {
4949 		struct drbd_peer_request *peer_req;
4950 		const enum req_op op = REQ_OP_WRITE_ZEROES;
4951 
4952 		peer_req = drbd_alloc_peer_req(peer_device, ID_SYNCER, sector,
4953 					       size, 0, GFP_NOIO);
4954 		if (!peer_req) {
4955 			put_ldev(device);
4956 			return -ENOMEM;
4957 		}
4958 
4959 		peer_req->w.cb = e_end_resync_block;
4960 		peer_req->submit_jif = jiffies;
4961 		peer_req->flags |= EE_TRIM;
4962 
4963 		spin_lock_irq(&device->resource->req_lock);
4964 		list_add_tail(&peer_req->w.list, &device->sync_ee);
4965 		spin_unlock_irq(&device->resource->req_lock);
4966 
4967 		atomic_add(pi->size >> 9, &device->rs_sect_ev);
4968 		err = drbd_submit_peer_request(device, peer_req, op,
4969 					       DRBD_FAULT_RS_WR);
4970 
4971 		if (err) {
4972 			spin_lock_irq(&device->resource->req_lock);
4973 			list_del(&peer_req->w.list);
4974 			spin_unlock_irq(&device->resource->req_lock);
4975 
4976 			drbd_free_peer_req(device, peer_req);
4977 			put_ldev(device);
4978 			err = 0;
4979 			goto fail;
4980 		}
4981 
4982 		inc_unacked(device);
4983 
4984 		/* No put_ldev() here. Gets called in drbd_endio_write_sec_final(),
4985 		   as well as drbd_rs_complete_io() */
4986 	} else {
4987 	fail:
4988 		drbd_rs_complete_io(device, sector);
4989 		drbd_send_ack_ex(peer_device, P_NEG_ACK, sector, size, ID_SYNCER);
4990 	}
4991 
4992 	atomic_add(size >> 9, &device->rs_sect_in);
4993 
4994 	return err;
4995 }
4996 
4997 struct data_cmd {
4998 	int expect_payload;
4999 	unsigned int pkt_size;
5000 	int (*fn)(struct drbd_connection *, struct packet_info *);
5001 };
5002 
5003 static struct data_cmd drbd_cmd_handler[] = {
5004 	[P_DATA]	    = { 1, sizeof(struct p_data), receive_Data },
5005 	[P_DATA_REPLY]	    = { 1, sizeof(struct p_data), receive_DataReply },
5006 	[P_RS_DATA_REPLY]   = { 1, sizeof(struct p_data), receive_RSDataReply } ,
5007 	[P_BARRIER]	    = { 0, sizeof(struct p_barrier), receive_Barrier } ,
5008 	[P_BITMAP]	    = { 1, 0, receive_bitmap } ,
5009 	[P_COMPRESSED_BITMAP] = { 1, 0, receive_bitmap } ,
5010 	[P_UNPLUG_REMOTE]   = { 0, 0, receive_UnplugRemote },
5011 	[P_DATA_REQUEST]    = { 0, sizeof(struct p_block_req), receive_DataRequest },
5012 	[P_RS_DATA_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest },
5013 	[P_SYNC_PARAM]	    = { 1, 0, receive_SyncParam },
5014 	[P_SYNC_PARAM89]    = { 1, 0, receive_SyncParam },
5015 	[P_PROTOCOL]        = { 1, sizeof(struct p_protocol), receive_protocol },
5016 	[P_UUIDS]	    = { 0, sizeof(struct p_uuids), receive_uuids },
5017 	[P_SIZES]	    = { 0, sizeof(struct p_sizes), receive_sizes },
5018 	[P_STATE]	    = { 0, sizeof(struct p_state), receive_state },
5019 	[P_STATE_CHG_REQ]   = { 0, sizeof(struct p_req_state), receive_req_state },
5020 	[P_SYNC_UUID]       = { 0, sizeof(struct p_rs_uuid), receive_sync_uuid },
5021 	[P_OV_REQUEST]      = { 0, sizeof(struct p_block_req), receive_DataRequest },
5022 	[P_OV_REPLY]        = { 1, sizeof(struct p_block_req), receive_DataRequest },
5023 	[P_CSUM_RS_REQUEST] = { 1, sizeof(struct p_block_req), receive_DataRequest },
5024 	[P_RS_THIN_REQ]     = { 0, sizeof(struct p_block_req), receive_DataRequest },
5025 	[P_DELAY_PROBE]     = { 0, sizeof(struct p_delay_probe93), receive_skip },
5026 	[P_OUT_OF_SYNC]     = { 0, sizeof(struct p_block_desc), receive_out_of_sync },
5027 	[P_CONN_ST_CHG_REQ] = { 0, sizeof(struct p_req_state), receive_req_conn_state },
5028 	[P_PROTOCOL_UPDATE] = { 1, sizeof(struct p_protocol), receive_protocol },
5029 	[P_TRIM]	    = { 0, sizeof(struct p_trim), receive_Data },
5030 	[P_ZEROES]	    = { 0, sizeof(struct p_trim), receive_Data },
5031 	[P_RS_DEALLOCATED]  = { 0, sizeof(struct p_block_desc), receive_rs_deallocated },
5032 };
5033 
5034 static void drbdd(struct drbd_connection *connection)
5035 {
5036 	struct packet_info pi;
5037 	size_t shs; /* sub header size */
5038 	int err;
5039 
5040 	while (get_t_state(&connection->receiver) == RUNNING) {
5041 		struct data_cmd const *cmd;
5042 
5043 		drbd_thread_current_set_cpu(&connection->receiver);
5044 		update_receiver_timing_details(connection, drbd_recv_header_maybe_unplug);
5045 		if (drbd_recv_header_maybe_unplug(connection, &pi))
5046 			goto err_out;
5047 
5048 		cmd = &drbd_cmd_handler[pi.cmd];
5049 		if (unlikely(pi.cmd >= ARRAY_SIZE(drbd_cmd_handler) || !cmd->fn)) {
5050 			drbd_err(connection, "Unexpected data packet %s (0x%04x)",
5051 				 cmdname(pi.cmd), pi.cmd);
5052 			goto err_out;
5053 		}
5054 
5055 		shs = cmd->pkt_size;
5056 		if (pi.cmd == P_SIZES && connection->agreed_features & DRBD_FF_WSAME)
5057 			shs += sizeof(struct o_qlim);
5058 		if (pi.size > shs && !cmd->expect_payload) {
5059 			drbd_err(connection, "No payload expected %s l:%d\n",
5060 				 cmdname(pi.cmd), pi.size);
5061 			goto err_out;
5062 		}
5063 		if (pi.size < shs) {
5064 			drbd_err(connection, "%s: unexpected packet size, expected:%d received:%d\n",
5065 				 cmdname(pi.cmd), (int)shs, pi.size);
5066 			goto err_out;
5067 		}
5068 
5069 		if (shs) {
5070 			update_receiver_timing_details(connection, drbd_recv_all_warn);
5071 			err = drbd_recv_all_warn(connection, pi.data, shs);
5072 			if (err)
5073 				goto err_out;
5074 			pi.size -= shs;
5075 		}
5076 
5077 		update_receiver_timing_details(connection, cmd->fn);
5078 		err = cmd->fn(connection, &pi);
5079 		if (err) {
5080 			drbd_err(connection, "error receiving %s, e: %d l: %d!\n",
5081 				 cmdname(pi.cmd), err, pi.size);
5082 			goto err_out;
5083 		}
5084 	}
5085 	return;
5086 
5087     err_out:
5088 	conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
5089 }
5090 
5091 static void conn_disconnect(struct drbd_connection *connection)
5092 {
5093 	struct drbd_peer_device *peer_device;
5094 	enum drbd_conns oc;
5095 	int vnr;
5096 
5097 	if (connection->cstate == C_STANDALONE)
5098 		return;
5099 
5100 	/* We are about to start the cleanup after connection loss.
5101 	 * Make sure drbd_make_request knows about that.
5102 	 * Usually we should be in some network failure state already,
5103 	 * but just in case we are not, we fix it up here.
5104 	 */
5105 	conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD);
5106 
5107 	/* ack_receiver does not clean up anything. it must not interfere, either */
5108 	drbd_thread_stop(&connection->ack_receiver);
5109 	if (connection->ack_sender) {
5110 		destroy_workqueue(connection->ack_sender);
5111 		connection->ack_sender = NULL;
5112 	}
5113 	drbd_free_sock(connection);
5114 
5115 	rcu_read_lock();
5116 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
5117 		struct drbd_device *device = peer_device->device;
5118 		kref_get(&device->kref);
5119 		rcu_read_unlock();
5120 		drbd_disconnected(peer_device);
5121 		kref_put(&device->kref, drbd_destroy_device);
5122 		rcu_read_lock();
5123 	}
5124 	rcu_read_unlock();
5125 
5126 	if (!list_empty(&connection->current_epoch->list))
5127 		drbd_err(connection, "ASSERTION FAILED: connection->current_epoch->list not empty\n");
5128 	/* ok, no more ee's on the fly, it is safe to reset the epoch_size */
5129 	atomic_set(&connection->current_epoch->epoch_size, 0);
5130 	connection->send.seen_any_write_yet = false;
5131 
5132 	drbd_info(connection, "Connection closed\n");
5133 
5134 	if (conn_highest_role(connection) == R_PRIMARY && conn_highest_pdsk(connection) >= D_UNKNOWN)
5135 		conn_try_outdate_peer_async(connection);
5136 
5137 	spin_lock_irq(&connection->resource->req_lock);
5138 	oc = connection->cstate;
5139 	if (oc >= C_UNCONNECTED)
5140 		_conn_request_state(connection, NS(conn, C_UNCONNECTED), CS_VERBOSE);
5141 
5142 	spin_unlock_irq(&connection->resource->req_lock);
5143 
5144 	if (oc == C_DISCONNECTING)
5145 		conn_request_state(connection, NS(conn, C_STANDALONE), CS_VERBOSE | CS_HARD);
5146 }
5147 
5148 static int drbd_disconnected(struct drbd_peer_device *peer_device)
5149 {
5150 	struct drbd_device *device = peer_device->device;
5151 	unsigned int i;
5152 
5153 	/* wait for current activity to cease. */
5154 	spin_lock_irq(&device->resource->req_lock);
5155 	_drbd_wait_ee_list_empty(device, &device->active_ee);
5156 	_drbd_wait_ee_list_empty(device, &device->sync_ee);
5157 	_drbd_wait_ee_list_empty(device, &device->read_ee);
5158 	spin_unlock_irq(&device->resource->req_lock);
5159 
5160 	/* We do not have data structures that would allow us to
5161 	 * get the rs_pending_cnt down to 0 again.
5162 	 *  * On C_SYNC_TARGET we do not have any data structures describing
5163 	 *    the pending RSDataRequest's we have sent.
5164 	 *  * On C_SYNC_SOURCE there is no data structure that tracks
5165 	 *    the P_RS_DATA_REPLY blocks that we sent to the SyncTarget.
5166 	 *  And no, it is not the sum of the reference counts in the
5167 	 *  resync_LRU. The resync_LRU tracks the whole operation including
5168 	 *  the disk-IO, while the rs_pending_cnt only tracks the blocks
5169 	 *  on the fly. */
5170 	drbd_rs_cancel_all(device);
5171 	device->rs_total = 0;
5172 	device->rs_failed = 0;
5173 	atomic_set(&device->rs_pending_cnt, 0);
5174 	wake_up(&device->misc_wait);
5175 
5176 	del_timer_sync(&device->resync_timer);
5177 	resync_timer_fn(&device->resync_timer);
5178 
5179 	/* wait for all w_e_end_data_req, w_e_end_rsdata_req, w_send_barrier,
5180 	 * w_make_resync_request etc. which may still be on the worker queue
5181 	 * to be "canceled" */
5182 	drbd_flush_workqueue(&peer_device->connection->sender_work);
5183 
5184 	drbd_finish_peer_reqs(device);
5185 
5186 	/* This second workqueue flush is necessary, since drbd_finish_peer_reqs()
5187 	   might have issued a work again. The one before drbd_finish_peer_reqs() is
5188 	   necessary to reclain net_ee in drbd_finish_peer_reqs(). */
5189 	drbd_flush_workqueue(&peer_device->connection->sender_work);
5190 
5191 	/* need to do it again, drbd_finish_peer_reqs() may have populated it
5192 	 * again via drbd_try_clear_on_disk_bm(). */
5193 	drbd_rs_cancel_all(device);
5194 
5195 	kfree(device->p_uuid);
5196 	device->p_uuid = NULL;
5197 
5198 	if (!drbd_suspended(device))
5199 		tl_clear(peer_device->connection);
5200 
5201 	drbd_md_sync(device);
5202 
5203 	if (get_ldev(device)) {
5204 		drbd_bitmap_io(device, &drbd_bm_write_copy_pages,
5205 				"write from disconnected", BM_LOCKED_CHANGE_ALLOWED);
5206 		put_ldev(device);
5207 	}
5208 
5209 	/* tcp_close and release of sendpage pages can be deferred.  I don't
5210 	 * want to use SO_LINGER, because apparently it can be deferred for
5211 	 * more than 20 seconds (longest time I checked).
5212 	 *
5213 	 * Actually we don't care for exactly when the network stack does its
5214 	 * put_page(), but release our reference on these pages right here.
5215 	 */
5216 	i = drbd_free_peer_reqs(device, &device->net_ee);
5217 	if (i)
5218 		drbd_info(device, "net_ee not empty, killed %u entries\n", i);
5219 	i = atomic_read(&device->pp_in_use_by_net);
5220 	if (i)
5221 		drbd_info(device, "pp_in_use_by_net = %d, expected 0\n", i);
5222 	i = atomic_read(&device->pp_in_use);
5223 	if (i)
5224 		drbd_info(device, "pp_in_use = %d, expected 0\n", i);
5225 
5226 	D_ASSERT(device, list_empty(&device->read_ee));
5227 	D_ASSERT(device, list_empty(&device->active_ee));
5228 	D_ASSERT(device, list_empty(&device->sync_ee));
5229 	D_ASSERT(device, list_empty(&device->done_ee));
5230 
5231 	return 0;
5232 }
5233 
5234 /*
5235  * We support PRO_VERSION_MIN to PRO_VERSION_MAX. The protocol version
5236  * we can agree on is stored in agreed_pro_version.
5237  *
5238  * feature flags and the reserved array should be enough room for future
5239  * enhancements of the handshake protocol, and possible plugins...
5240  *
5241  * for now, they are expected to be zero, but ignored.
5242  */
5243 static int drbd_send_features(struct drbd_connection *connection)
5244 {
5245 	struct drbd_socket *sock;
5246 	struct p_connection_features *p;
5247 
5248 	sock = &connection->data;
5249 	p = conn_prepare_command(connection, sock);
5250 	if (!p)
5251 		return -EIO;
5252 	memset(p, 0, sizeof(*p));
5253 	p->protocol_min = cpu_to_be32(PRO_VERSION_MIN);
5254 	p->protocol_max = cpu_to_be32(PRO_VERSION_MAX);
5255 	p->feature_flags = cpu_to_be32(PRO_FEATURES);
5256 	return conn_send_command(connection, sock, P_CONNECTION_FEATURES, sizeof(*p), NULL, 0);
5257 }
5258 
5259 /*
5260  * return values:
5261  *   1 yes, we have a valid connection
5262  *   0 oops, did not work out, please try again
5263  *  -1 peer talks different language,
5264  *     no point in trying again, please go standalone.
5265  */
5266 static int drbd_do_features(struct drbd_connection *connection)
5267 {
5268 	/* ASSERT current == connection->receiver ... */
5269 	struct p_connection_features *p;
5270 	const int expect = sizeof(struct p_connection_features);
5271 	struct packet_info pi;
5272 	int err;
5273 
5274 	err = drbd_send_features(connection);
5275 	if (err)
5276 		return 0;
5277 
5278 	err = drbd_recv_header(connection, &pi);
5279 	if (err)
5280 		return 0;
5281 
5282 	if (pi.cmd != P_CONNECTION_FEATURES) {
5283 		drbd_err(connection, "expected ConnectionFeatures packet, received: %s (0x%04x)\n",
5284 			 cmdname(pi.cmd), pi.cmd);
5285 		return -1;
5286 	}
5287 
5288 	if (pi.size != expect) {
5289 		drbd_err(connection, "expected ConnectionFeatures length: %u, received: %u\n",
5290 		     expect, pi.size);
5291 		return -1;
5292 	}
5293 
5294 	p = pi.data;
5295 	err = drbd_recv_all_warn(connection, p, expect);
5296 	if (err)
5297 		return 0;
5298 
5299 	p->protocol_min = be32_to_cpu(p->protocol_min);
5300 	p->protocol_max = be32_to_cpu(p->protocol_max);
5301 	if (p->protocol_max == 0)
5302 		p->protocol_max = p->protocol_min;
5303 
5304 	if (PRO_VERSION_MAX < p->protocol_min ||
5305 	    PRO_VERSION_MIN > p->protocol_max)
5306 		goto incompat;
5307 
5308 	connection->agreed_pro_version = min_t(int, PRO_VERSION_MAX, p->protocol_max);
5309 	connection->agreed_features = PRO_FEATURES & be32_to_cpu(p->feature_flags);
5310 
5311 	drbd_info(connection, "Handshake successful: "
5312 	     "Agreed network protocol version %d\n", connection->agreed_pro_version);
5313 
5314 	drbd_info(connection, "Feature flags enabled on protocol level: 0x%x%s%s%s%s.\n",
5315 		  connection->agreed_features,
5316 		  connection->agreed_features & DRBD_FF_TRIM ? " TRIM" : "",
5317 		  connection->agreed_features & DRBD_FF_THIN_RESYNC ? " THIN_RESYNC" : "",
5318 		  connection->agreed_features & DRBD_FF_WSAME ? " WRITE_SAME" : "",
5319 		  connection->agreed_features & DRBD_FF_WZEROES ? " WRITE_ZEROES" :
5320 		  connection->agreed_features ? "" : " none");
5321 
5322 	return 1;
5323 
5324  incompat:
5325 	drbd_err(connection, "incompatible DRBD dialects: "
5326 	    "I support %d-%d, peer supports %d-%d\n",
5327 	    PRO_VERSION_MIN, PRO_VERSION_MAX,
5328 	    p->protocol_min, p->protocol_max);
5329 	return -1;
5330 }
5331 
5332 #if !defined(CONFIG_CRYPTO_HMAC) && !defined(CONFIG_CRYPTO_HMAC_MODULE)
5333 static int drbd_do_auth(struct drbd_connection *connection)
5334 {
5335 	drbd_err(connection, "This kernel was build without CONFIG_CRYPTO_HMAC.\n");
5336 	drbd_err(connection, "You need to disable 'cram-hmac-alg' in drbd.conf.\n");
5337 	return -1;
5338 }
5339 #else
5340 #define CHALLENGE_LEN 64
5341 
5342 /* Return value:
5343 	1 - auth succeeded,
5344 	0 - failed, try again (network error),
5345 	-1 - auth failed, don't try again.
5346 */
5347 
5348 static int drbd_do_auth(struct drbd_connection *connection)
5349 {
5350 	struct drbd_socket *sock;
5351 	char my_challenge[CHALLENGE_LEN];  /* 64 Bytes... */
5352 	char *response = NULL;
5353 	char *right_response = NULL;
5354 	char *peers_ch = NULL;
5355 	unsigned int key_len;
5356 	char secret[SHARED_SECRET_MAX]; /* 64 byte */
5357 	unsigned int resp_size;
5358 	struct shash_desc *desc;
5359 	struct packet_info pi;
5360 	struct net_conf *nc;
5361 	int err, rv;
5362 
5363 	/* FIXME: Put the challenge/response into the preallocated socket buffer.  */
5364 
5365 	rcu_read_lock();
5366 	nc = rcu_dereference(connection->net_conf);
5367 	key_len = strlen(nc->shared_secret);
5368 	memcpy(secret, nc->shared_secret, key_len);
5369 	rcu_read_unlock();
5370 
5371 	desc = kmalloc(sizeof(struct shash_desc) +
5372 		       crypto_shash_descsize(connection->cram_hmac_tfm),
5373 		       GFP_KERNEL);
5374 	if (!desc) {
5375 		rv = -1;
5376 		goto fail;
5377 	}
5378 	desc->tfm = connection->cram_hmac_tfm;
5379 
5380 	rv = crypto_shash_setkey(connection->cram_hmac_tfm, (u8 *)secret, key_len);
5381 	if (rv) {
5382 		drbd_err(connection, "crypto_shash_setkey() failed with %d\n", rv);
5383 		rv = -1;
5384 		goto fail;
5385 	}
5386 
5387 	get_random_bytes(my_challenge, CHALLENGE_LEN);
5388 
5389 	sock = &connection->data;
5390 	if (!conn_prepare_command(connection, sock)) {
5391 		rv = 0;
5392 		goto fail;
5393 	}
5394 	rv = !conn_send_command(connection, sock, P_AUTH_CHALLENGE, 0,
5395 				my_challenge, CHALLENGE_LEN);
5396 	if (!rv)
5397 		goto fail;
5398 
5399 	err = drbd_recv_header(connection, &pi);
5400 	if (err) {
5401 		rv = 0;
5402 		goto fail;
5403 	}
5404 
5405 	if (pi.cmd != P_AUTH_CHALLENGE) {
5406 		drbd_err(connection, "expected AuthChallenge packet, received: %s (0x%04x)\n",
5407 			 cmdname(pi.cmd), pi.cmd);
5408 		rv = -1;
5409 		goto fail;
5410 	}
5411 
5412 	if (pi.size > CHALLENGE_LEN * 2) {
5413 		drbd_err(connection, "expected AuthChallenge payload too big.\n");
5414 		rv = -1;
5415 		goto fail;
5416 	}
5417 
5418 	if (pi.size < CHALLENGE_LEN) {
5419 		drbd_err(connection, "AuthChallenge payload too small.\n");
5420 		rv = -1;
5421 		goto fail;
5422 	}
5423 
5424 	peers_ch = kmalloc(pi.size, GFP_NOIO);
5425 	if (!peers_ch) {
5426 		rv = -1;
5427 		goto fail;
5428 	}
5429 
5430 	err = drbd_recv_all_warn(connection, peers_ch, pi.size);
5431 	if (err) {
5432 		rv = 0;
5433 		goto fail;
5434 	}
5435 
5436 	if (!memcmp(my_challenge, peers_ch, CHALLENGE_LEN)) {
5437 		drbd_err(connection, "Peer presented the same challenge!\n");
5438 		rv = -1;
5439 		goto fail;
5440 	}
5441 
5442 	resp_size = crypto_shash_digestsize(connection->cram_hmac_tfm);
5443 	response = kmalloc(resp_size, GFP_NOIO);
5444 	if (!response) {
5445 		rv = -1;
5446 		goto fail;
5447 	}
5448 
5449 	rv = crypto_shash_digest(desc, peers_ch, pi.size, response);
5450 	if (rv) {
5451 		drbd_err(connection, "crypto_hash_digest() failed with %d\n", rv);
5452 		rv = -1;
5453 		goto fail;
5454 	}
5455 
5456 	if (!conn_prepare_command(connection, sock)) {
5457 		rv = 0;
5458 		goto fail;
5459 	}
5460 	rv = !conn_send_command(connection, sock, P_AUTH_RESPONSE, 0,
5461 				response, resp_size);
5462 	if (!rv)
5463 		goto fail;
5464 
5465 	err = drbd_recv_header(connection, &pi);
5466 	if (err) {
5467 		rv = 0;
5468 		goto fail;
5469 	}
5470 
5471 	if (pi.cmd != P_AUTH_RESPONSE) {
5472 		drbd_err(connection, "expected AuthResponse packet, received: %s (0x%04x)\n",
5473 			 cmdname(pi.cmd), pi.cmd);
5474 		rv = 0;
5475 		goto fail;
5476 	}
5477 
5478 	if (pi.size != resp_size) {
5479 		drbd_err(connection, "expected AuthResponse payload of wrong size\n");
5480 		rv = 0;
5481 		goto fail;
5482 	}
5483 
5484 	err = drbd_recv_all_warn(connection, response , resp_size);
5485 	if (err) {
5486 		rv = 0;
5487 		goto fail;
5488 	}
5489 
5490 	right_response = kmalloc(resp_size, GFP_NOIO);
5491 	if (!right_response) {
5492 		rv = -1;
5493 		goto fail;
5494 	}
5495 
5496 	rv = crypto_shash_digest(desc, my_challenge, CHALLENGE_LEN,
5497 				 right_response);
5498 	if (rv) {
5499 		drbd_err(connection, "crypto_hash_digest() failed with %d\n", rv);
5500 		rv = -1;
5501 		goto fail;
5502 	}
5503 
5504 	rv = !memcmp(response, right_response, resp_size);
5505 
5506 	if (rv)
5507 		drbd_info(connection, "Peer authenticated using %d bytes HMAC\n",
5508 		     resp_size);
5509 	else
5510 		rv = -1;
5511 
5512  fail:
5513 	kfree(peers_ch);
5514 	kfree(response);
5515 	kfree(right_response);
5516 	if (desc) {
5517 		shash_desc_zero(desc);
5518 		kfree(desc);
5519 	}
5520 
5521 	return rv;
5522 }
5523 #endif
5524 
5525 int drbd_receiver(struct drbd_thread *thi)
5526 {
5527 	struct drbd_connection *connection = thi->connection;
5528 	int h;
5529 
5530 	drbd_info(connection, "receiver (re)started\n");
5531 
5532 	do {
5533 		h = conn_connect(connection);
5534 		if (h == 0) {
5535 			conn_disconnect(connection);
5536 			schedule_timeout_interruptible(HZ);
5537 		}
5538 		if (h == -1) {
5539 			drbd_warn(connection, "Discarding network configuration.\n");
5540 			conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
5541 		}
5542 	} while (h == 0);
5543 
5544 	if (h > 0) {
5545 		blk_start_plug(&connection->receiver_plug);
5546 		drbdd(connection);
5547 		blk_finish_plug(&connection->receiver_plug);
5548 	}
5549 
5550 	conn_disconnect(connection);
5551 
5552 	drbd_info(connection, "receiver terminated\n");
5553 	return 0;
5554 }
5555 
5556 /* ********* acknowledge sender ******** */
5557 
5558 static int got_conn_RqSReply(struct drbd_connection *connection, struct packet_info *pi)
5559 {
5560 	struct p_req_state_reply *p = pi->data;
5561 	int retcode = be32_to_cpu(p->retcode);
5562 
5563 	if (retcode >= SS_SUCCESS) {
5564 		set_bit(CONN_WD_ST_CHG_OKAY, &connection->flags);
5565 	} else {
5566 		set_bit(CONN_WD_ST_CHG_FAIL, &connection->flags);
5567 		drbd_err(connection, "Requested state change failed by peer: %s (%d)\n",
5568 			 drbd_set_st_err_str(retcode), retcode);
5569 	}
5570 	wake_up(&connection->ping_wait);
5571 
5572 	return 0;
5573 }
5574 
5575 static int got_RqSReply(struct drbd_connection *connection, struct packet_info *pi)
5576 {
5577 	struct drbd_peer_device *peer_device;
5578 	struct drbd_device *device;
5579 	struct p_req_state_reply *p = pi->data;
5580 	int retcode = be32_to_cpu(p->retcode);
5581 
5582 	peer_device = conn_peer_device(connection, pi->vnr);
5583 	if (!peer_device)
5584 		return -EIO;
5585 	device = peer_device->device;
5586 
5587 	if (test_bit(CONN_WD_ST_CHG_REQ, &connection->flags)) {
5588 		D_ASSERT(device, connection->agreed_pro_version < 100);
5589 		return got_conn_RqSReply(connection, pi);
5590 	}
5591 
5592 	if (retcode >= SS_SUCCESS) {
5593 		set_bit(CL_ST_CHG_SUCCESS, &device->flags);
5594 	} else {
5595 		set_bit(CL_ST_CHG_FAIL, &device->flags);
5596 		drbd_err(device, "Requested state change failed by peer: %s (%d)\n",
5597 			drbd_set_st_err_str(retcode), retcode);
5598 	}
5599 	wake_up(&device->state_wait);
5600 
5601 	return 0;
5602 }
5603 
5604 static int got_Ping(struct drbd_connection *connection, struct packet_info *pi)
5605 {
5606 	return drbd_send_ping_ack(connection);
5607 
5608 }
5609 
5610 static int got_PingAck(struct drbd_connection *connection, struct packet_info *pi)
5611 {
5612 	/* restore idle timeout */
5613 	connection->meta.socket->sk->sk_rcvtimeo = connection->net_conf->ping_int*HZ;
5614 	if (!test_and_set_bit(GOT_PING_ACK, &connection->flags))
5615 		wake_up(&connection->ping_wait);
5616 
5617 	return 0;
5618 }
5619 
5620 static int got_IsInSync(struct drbd_connection *connection, struct packet_info *pi)
5621 {
5622 	struct drbd_peer_device *peer_device;
5623 	struct drbd_device *device;
5624 	struct p_block_ack *p = pi->data;
5625 	sector_t sector = be64_to_cpu(p->sector);
5626 	int blksize = be32_to_cpu(p->blksize);
5627 
5628 	peer_device = conn_peer_device(connection, pi->vnr);
5629 	if (!peer_device)
5630 		return -EIO;
5631 	device = peer_device->device;
5632 
5633 	D_ASSERT(device, peer_device->connection->agreed_pro_version >= 89);
5634 
5635 	update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5636 
5637 	if (get_ldev(device)) {
5638 		drbd_rs_complete_io(device, sector);
5639 		drbd_set_in_sync(device, sector, blksize);
5640 		/* rs_same_csums is supposed to count in units of BM_BLOCK_SIZE */
5641 		device->rs_same_csum += (blksize >> BM_BLOCK_SHIFT);
5642 		put_ldev(device);
5643 	}
5644 	dec_rs_pending(device);
5645 	atomic_add(blksize >> 9, &device->rs_sect_in);
5646 
5647 	return 0;
5648 }
5649 
5650 static int
5651 validate_req_change_req_state(struct drbd_device *device, u64 id, sector_t sector,
5652 			      struct rb_root *root, const char *func,
5653 			      enum drbd_req_event what, bool missing_ok)
5654 {
5655 	struct drbd_request *req;
5656 	struct bio_and_error m;
5657 
5658 	spin_lock_irq(&device->resource->req_lock);
5659 	req = find_request(device, root, id, sector, missing_ok, func);
5660 	if (unlikely(!req)) {
5661 		spin_unlock_irq(&device->resource->req_lock);
5662 		return -EIO;
5663 	}
5664 	__req_mod(req, what, &m);
5665 	spin_unlock_irq(&device->resource->req_lock);
5666 
5667 	if (m.bio)
5668 		complete_master_bio(device, &m);
5669 	return 0;
5670 }
5671 
5672 static int got_BlockAck(struct drbd_connection *connection, struct packet_info *pi)
5673 {
5674 	struct drbd_peer_device *peer_device;
5675 	struct drbd_device *device;
5676 	struct p_block_ack *p = pi->data;
5677 	sector_t sector = be64_to_cpu(p->sector);
5678 	int blksize = be32_to_cpu(p->blksize);
5679 	enum drbd_req_event what;
5680 
5681 	peer_device = conn_peer_device(connection, pi->vnr);
5682 	if (!peer_device)
5683 		return -EIO;
5684 	device = peer_device->device;
5685 
5686 	update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5687 
5688 	if (p->block_id == ID_SYNCER) {
5689 		drbd_set_in_sync(device, sector, blksize);
5690 		dec_rs_pending(device);
5691 		return 0;
5692 	}
5693 	switch (pi->cmd) {
5694 	case P_RS_WRITE_ACK:
5695 		what = WRITE_ACKED_BY_PEER_AND_SIS;
5696 		break;
5697 	case P_WRITE_ACK:
5698 		what = WRITE_ACKED_BY_PEER;
5699 		break;
5700 	case P_RECV_ACK:
5701 		what = RECV_ACKED_BY_PEER;
5702 		break;
5703 	case P_SUPERSEDED:
5704 		what = CONFLICT_RESOLVED;
5705 		break;
5706 	case P_RETRY_WRITE:
5707 		what = POSTPONE_WRITE;
5708 		break;
5709 	default:
5710 		BUG();
5711 	}
5712 
5713 	return validate_req_change_req_state(device, p->block_id, sector,
5714 					     &device->write_requests, __func__,
5715 					     what, false);
5716 }
5717 
5718 static int got_NegAck(struct drbd_connection *connection, struct packet_info *pi)
5719 {
5720 	struct drbd_peer_device *peer_device;
5721 	struct drbd_device *device;
5722 	struct p_block_ack *p = pi->data;
5723 	sector_t sector = be64_to_cpu(p->sector);
5724 	int size = be32_to_cpu(p->blksize);
5725 	int err;
5726 
5727 	peer_device = conn_peer_device(connection, pi->vnr);
5728 	if (!peer_device)
5729 		return -EIO;
5730 	device = peer_device->device;
5731 
5732 	update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5733 
5734 	if (p->block_id == ID_SYNCER) {
5735 		dec_rs_pending(device);
5736 		drbd_rs_failed_io(device, sector, size);
5737 		return 0;
5738 	}
5739 
5740 	err = validate_req_change_req_state(device, p->block_id, sector,
5741 					    &device->write_requests, __func__,
5742 					    NEG_ACKED, true);
5743 	if (err) {
5744 		/* Protocol A has no P_WRITE_ACKs, but has P_NEG_ACKs.
5745 		   The master bio might already be completed, therefore the
5746 		   request is no longer in the collision hash. */
5747 		/* In Protocol B we might already have got a P_RECV_ACK
5748 		   but then get a P_NEG_ACK afterwards. */
5749 		drbd_set_out_of_sync(device, sector, size);
5750 	}
5751 	return 0;
5752 }
5753 
5754 static int got_NegDReply(struct drbd_connection *connection, struct packet_info *pi)
5755 {
5756 	struct drbd_peer_device *peer_device;
5757 	struct drbd_device *device;
5758 	struct p_block_ack *p = pi->data;
5759 	sector_t sector = be64_to_cpu(p->sector);
5760 
5761 	peer_device = conn_peer_device(connection, pi->vnr);
5762 	if (!peer_device)
5763 		return -EIO;
5764 	device = peer_device->device;
5765 
5766 	update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5767 
5768 	drbd_err(device, "Got NegDReply; Sector %llus, len %u.\n",
5769 	    (unsigned long long)sector, be32_to_cpu(p->blksize));
5770 
5771 	return validate_req_change_req_state(device, p->block_id, sector,
5772 					     &device->read_requests, __func__,
5773 					     NEG_ACKED, false);
5774 }
5775 
5776 static int got_NegRSDReply(struct drbd_connection *connection, struct packet_info *pi)
5777 {
5778 	struct drbd_peer_device *peer_device;
5779 	struct drbd_device *device;
5780 	sector_t sector;
5781 	int size;
5782 	struct p_block_ack *p = pi->data;
5783 
5784 	peer_device = conn_peer_device(connection, pi->vnr);
5785 	if (!peer_device)
5786 		return -EIO;
5787 	device = peer_device->device;
5788 
5789 	sector = be64_to_cpu(p->sector);
5790 	size = be32_to_cpu(p->blksize);
5791 
5792 	update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5793 
5794 	dec_rs_pending(device);
5795 
5796 	if (get_ldev_if_state(device, D_FAILED)) {
5797 		drbd_rs_complete_io(device, sector);
5798 		switch (pi->cmd) {
5799 		case P_NEG_RS_DREPLY:
5800 			drbd_rs_failed_io(device, sector, size);
5801 			break;
5802 		case P_RS_CANCEL:
5803 			break;
5804 		default:
5805 			BUG();
5806 		}
5807 		put_ldev(device);
5808 	}
5809 
5810 	return 0;
5811 }
5812 
5813 static int got_BarrierAck(struct drbd_connection *connection, struct packet_info *pi)
5814 {
5815 	struct p_barrier_ack *p = pi->data;
5816 	struct drbd_peer_device *peer_device;
5817 	int vnr;
5818 
5819 	tl_release(connection, p->barrier, be32_to_cpu(p->set_size));
5820 
5821 	rcu_read_lock();
5822 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
5823 		struct drbd_device *device = peer_device->device;
5824 
5825 		if (device->state.conn == C_AHEAD &&
5826 		    atomic_read(&device->ap_in_flight) == 0 &&
5827 		    !test_and_set_bit(AHEAD_TO_SYNC_SOURCE, &device->flags)) {
5828 			device->start_resync_timer.expires = jiffies + HZ;
5829 			add_timer(&device->start_resync_timer);
5830 		}
5831 	}
5832 	rcu_read_unlock();
5833 
5834 	return 0;
5835 }
5836 
5837 static int got_OVResult(struct drbd_connection *connection, struct packet_info *pi)
5838 {
5839 	struct drbd_peer_device *peer_device;
5840 	struct drbd_device *device;
5841 	struct p_block_ack *p = pi->data;
5842 	struct drbd_device_work *dw;
5843 	sector_t sector;
5844 	int size;
5845 
5846 	peer_device = conn_peer_device(connection, pi->vnr);
5847 	if (!peer_device)
5848 		return -EIO;
5849 	device = peer_device->device;
5850 
5851 	sector = be64_to_cpu(p->sector);
5852 	size = be32_to_cpu(p->blksize);
5853 
5854 	update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5855 
5856 	if (be64_to_cpu(p->block_id) == ID_OUT_OF_SYNC)
5857 		drbd_ov_out_of_sync_found(device, sector, size);
5858 	else
5859 		ov_out_of_sync_print(device);
5860 
5861 	if (!get_ldev(device))
5862 		return 0;
5863 
5864 	drbd_rs_complete_io(device, sector);
5865 	dec_rs_pending(device);
5866 
5867 	--device->ov_left;
5868 
5869 	/* let's advance progress step marks only for every other megabyte */
5870 	if ((device->ov_left & 0x200) == 0x200)
5871 		drbd_advance_rs_marks(device, device->ov_left);
5872 
5873 	if (device->ov_left == 0) {
5874 		dw = kmalloc(sizeof(*dw), GFP_NOIO);
5875 		if (dw) {
5876 			dw->w.cb = w_ov_finished;
5877 			dw->device = device;
5878 			drbd_queue_work(&peer_device->connection->sender_work, &dw->w);
5879 		} else {
5880 			drbd_err(device, "kmalloc(dw) failed.");
5881 			ov_out_of_sync_print(device);
5882 			drbd_resync_finished(device);
5883 		}
5884 	}
5885 	put_ldev(device);
5886 	return 0;
5887 }
5888 
5889 static int got_skip(struct drbd_connection *connection, struct packet_info *pi)
5890 {
5891 	return 0;
5892 }
5893 
5894 struct meta_sock_cmd {
5895 	size_t pkt_size;
5896 	int (*fn)(struct drbd_connection *connection, struct packet_info *);
5897 };
5898 
5899 static void set_rcvtimeo(struct drbd_connection *connection, bool ping_timeout)
5900 {
5901 	long t;
5902 	struct net_conf *nc;
5903 
5904 	rcu_read_lock();
5905 	nc = rcu_dereference(connection->net_conf);
5906 	t = ping_timeout ? nc->ping_timeo : nc->ping_int;
5907 	rcu_read_unlock();
5908 
5909 	t *= HZ;
5910 	if (ping_timeout)
5911 		t /= 10;
5912 
5913 	connection->meta.socket->sk->sk_rcvtimeo = t;
5914 }
5915 
5916 static void set_ping_timeout(struct drbd_connection *connection)
5917 {
5918 	set_rcvtimeo(connection, 1);
5919 }
5920 
5921 static void set_idle_timeout(struct drbd_connection *connection)
5922 {
5923 	set_rcvtimeo(connection, 0);
5924 }
5925 
5926 static struct meta_sock_cmd ack_receiver_tbl[] = {
5927 	[P_PING]	    = { 0, got_Ping },
5928 	[P_PING_ACK]	    = { 0, got_PingAck },
5929 	[P_RECV_ACK]	    = { sizeof(struct p_block_ack), got_BlockAck },
5930 	[P_WRITE_ACK]	    = { sizeof(struct p_block_ack), got_BlockAck },
5931 	[P_RS_WRITE_ACK]    = { sizeof(struct p_block_ack), got_BlockAck },
5932 	[P_SUPERSEDED]   = { sizeof(struct p_block_ack), got_BlockAck },
5933 	[P_NEG_ACK]	    = { sizeof(struct p_block_ack), got_NegAck },
5934 	[P_NEG_DREPLY]	    = { sizeof(struct p_block_ack), got_NegDReply },
5935 	[P_NEG_RS_DREPLY]   = { sizeof(struct p_block_ack), got_NegRSDReply },
5936 	[P_OV_RESULT]	    = { sizeof(struct p_block_ack), got_OVResult },
5937 	[P_BARRIER_ACK]	    = { sizeof(struct p_barrier_ack), got_BarrierAck },
5938 	[P_STATE_CHG_REPLY] = { sizeof(struct p_req_state_reply), got_RqSReply },
5939 	[P_RS_IS_IN_SYNC]   = { sizeof(struct p_block_ack), got_IsInSync },
5940 	[P_DELAY_PROBE]     = { sizeof(struct p_delay_probe93), got_skip },
5941 	[P_RS_CANCEL]       = { sizeof(struct p_block_ack), got_NegRSDReply },
5942 	[P_CONN_ST_CHG_REPLY]={ sizeof(struct p_req_state_reply), got_conn_RqSReply },
5943 	[P_RETRY_WRITE]	    = { sizeof(struct p_block_ack), got_BlockAck },
5944 };
5945 
5946 int drbd_ack_receiver(struct drbd_thread *thi)
5947 {
5948 	struct drbd_connection *connection = thi->connection;
5949 	struct meta_sock_cmd *cmd = NULL;
5950 	struct packet_info pi;
5951 	unsigned long pre_recv_jif;
5952 	int rv;
5953 	void *buf    = connection->meta.rbuf;
5954 	int received = 0;
5955 	unsigned int header_size = drbd_header_size(connection);
5956 	int expect   = header_size;
5957 	bool ping_timeout_active = false;
5958 
5959 	sched_set_fifo_low(current);
5960 
5961 	while (get_t_state(thi) == RUNNING) {
5962 		drbd_thread_current_set_cpu(thi);
5963 
5964 		conn_reclaim_net_peer_reqs(connection);
5965 
5966 		if (test_and_clear_bit(SEND_PING, &connection->flags)) {
5967 			if (drbd_send_ping(connection)) {
5968 				drbd_err(connection, "drbd_send_ping has failed\n");
5969 				goto reconnect;
5970 			}
5971 			set_ping_timeout(connection);
5972 			ping_timeout_active = true;
5973 		}
5974 
5975 		pre_recv_jif = jiffies;
5976 		rv = drbd_recv_short(connection->meta.socket, buf, expect-received, 0);
5977 
5978 		/* Note:
5979 		 * -EINTR	 (on meta) we got a signal
5980 		 * -EAGAIN	 (on meta) rcvtimeo expired
5981 		 * -ECONNRESET	 other side closed the connection
5982 		 * -ERESTARTSYS  (on data) we got a signal
5983 		 * rv <  0	 other than above: unexpected error!
5984 		 * rv == expected: full header or command
5985 		 * rv <  expected: "woken" by signal during receive
5986 		 * rv == 0	 : "connection shut down by peer"
5987 		 */
5988 		if (likely(rv > 0)) {
5989 			received += rv;
5990 			buf	 += rv;
5991 		} else if (rv == 0) {
5992 			if (test_bit(DISCONNECT_SENT, &connection->flags)) {
5993 				long t;
5994 				rcu_read_lock();
5995 				t = rcu_dereference(connection->net_conf)->ping_timeo * HZ/10;
5996 				rcu_read_unlock();
5997 
5998 				t = wait_event_timeout(connection->ping_wait,
5999 						       connection->cstate < C_WF_REPORT_PARAMS,
6000 						       t);
6001 				if (t)
6002 					break;
6003 			}
6004 			drbd_err(connection, "meta connection shut down by peer.\n");
6005 			goto reconnect;
6006 		} else if (rv == -EAGAIN) {
6007 			/* If the data socket received something meanwhile,
6008 			 * that is good enough: peer is still alive. */
6009 			if (time_after(connection->last_received, pre_recv_jif))
6010 				continue;
6011 			if (ping_timeout_active) {
6012 				drbd_err(connection, "PingAck did not arrive in time.\n");
6013 				goto reconnect;
6014 			}
6015 			set_bit(SEND_PING, &connection->flags);
6016 			continue;
6017 		} else if (rv == -EINTR) {
6018 			/* maybe drbd_thread_stop(): the while condition will notice.
6019 			 * maybe woken for send_ping: we'll send a ping above,
6020 			 * and change the rcvtimeo */
6021 			flush_signals(current);
6022 			continue;
6023 		} else {
6024 			drbd_err(connection, "sock_recvmsg returned %d\n", rv);
6025 			goto reconnect;
6026 		}
6027 
6028 		if (received == expect && cmd == NULL) {
6029 			if (decode_header(connection, connection->meta.rbuf, &pi))
6030 				goto reconnect;
6031 			cmd = &ack_receiver_tbl[pi.cmd];
6032 			if (pi.cmd >= ARRAY_SIZE(ack_receiver_tbl) || !cmd->fn) {
6033 				drbd_err(connection, "Unexpected meta packet %s (0x%04x)\n",
6034 					 cmdname(pi.cmd), pi.cmd);
6035 				goto disconnect;
6036 			}
6037 			expect = header_size + cmd->pkt_size;
6038 			if (pi.size != expect - header_size) {
6039 				drbd_err(connection, "Wrong packet size on meta (c: %d, l: %d)\n",
6040 					pi.cmd, pi.size);
6041 				goto reconnect;
6042 			}
6043 		}
6044 		if (received == expect) {
6045 			bool err;
6046 
6047 			err = cmd->fn(connection, &pi);
6048 			if (err) {
6049 				drbd_err(connection, "%ps failed\n", cmd->fn);
6050 				goto reconnect;
6051 			}
6052 
6053 			connection->last_received = jiffies;
6054 
6055 			if (cmd == &ack_receiver_tbl[P_PING_ACK]) {
6056 				set_idle_timeout(connection);
6057 				ping_timeout_active = false;
6058 			}
6059 
6060 			buf	 = connection->meta.rbuf;
6061 			received = 0;
6062 			expect	 = header_size;
6063 			cmd	 = NULL;
6064 		}
6065 	}
6066 
6067 	if (0) {
6068 reconnect:
6069 		conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD);
6070 		conn_md_sync(connection);
6071 	}
6072 	if (0) {
6073 disconnect:
6074 		conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
6075 	}
6076 
6077 	drbd_info(connection, "ack_receiver terminated\n");
6078 
6079 	return 0;
6080 }
6081 
6082 void drbd_send_acks_wf(struct work_struct *ws)
6083 {
6084 	struct drbd_peer_device *peer_device =
6085 		container_of(ws, struct drbd_peer_device, send_acks_work);
6086 	struct drbd_connection *connection = peer_device->connection;
6087 	struct drbd_device *device = peer_device->device;
6088 	struct net_conf *nc;
6089 	int tcp_cork, err;
6090 
6091 	rcu_read_lock();
6092 	nc = rcu_dereference(connection->net_conf);
6093 	tcp_cork = nc->tcp_cork;
6094 	rcu_read_unlock();
6095 
6096 	if (tcp_cork)
6097 		tcp_sock_set_cork(connection->meta.socket->sk, true);
6098 
6099 	err = drbd_finish_peer_reqs(device);
6100 	kref_put(&device->kref, drbd_destroy_device);
6101 	/* get is in drbd_endio_write_sec_final(). That is necessary to keep the
6102 	   struct work_struct send_acks_work alive, which is in the peer_device object */
6103 
6104 	if (err) {
6105 		conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD);
6106 		return;
6107 	}
6108 
6109 	if (tcp_cork)
6110 		tcp_sock_set_cork(connection->meta.socket->sk, false);
6111 
6112 	return;
6113 }
6114