1 /*
2    drbd_receiver.c
3 
4    This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
5 
6    Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
7    Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
8    Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
9 
10    drbd is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation; either version 2, or (at your option)
13    any later version.
14 
15    drbd is distributed in the hope that it will be useful,
16    but WITHOUT ANY WARRANTY; without even the implied warranty of
17    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18    GNU General Public License for more details.
19 
20    You should have received a copy of the GNU General Public License
21    along with drbd; see the file COPYING.  If not, write to
22    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24 
25 
26 #include <linux/module.h>
27 
28 #include <linux/uaccess.h>
29 #include <net/sock.h>
30 
31 #include <linux/drbd.h>
32 #include <linux/fs.h>
33 #include <linux/file.h>
34 #include <linux/in.h>
35 #include <linux/mm.h>
36 #include <linux/memcontrol.h>
37 #include <linux/mm_inline.h>
38 #include <linux/slab.h>
39 #include <linux/pkt_sched.h>
40 #define __KERNEL_SYSCALLS__
41 #include <linux/unistd.h>
42 #include <linux/vmalloc.h>
43 #include <linux/random.h>
44 #include <linux/string.h>
45 #include <linux/scatterlist.h>
46 #include "drbd_int.h"
47 #include "drbd_protocol.h"
48 #include "drbd_req.h"
49 #include "drbd_vli.h"
50 
51 #define PRO_FEATURES (DRBD_FF_TRIM|DRBD_FF_THIN_RESYNC|DRBD_FF_WSAME)
52 
53 struct packet_info {
54 	enum drbd_packet cmd;
55 	unsigned int size;
56 	unsigned int vnr;
57 	void *data;
58 };
59 
60 enum finish_epoch {
61 	FE_STILL_LIVE,
62 	FE_DESTROYED,
63 	FE_RECYCLED,
64 };
65 
66 static int drbd_do_features(struct drbd_connection *connection);
67 static int drbd_do_auth(struct drbd_connection *connection);
68 static int drbd_disconnected(struct drbd_peer_device *);
69 static void conn_wait_active_ee_empty(struct drbd_connection *connection);
70 static enum finish_epoch drbd_may_finish_epoch(struct drbd_connection *, struct drbd_epoch *, enum epoch_event);
71 static int e_end_block(struct drbd_work *, int);
72 
73 
74 #define GFP_TRY	(__GFP_HIGHMEM | __GFP_NOWARN)
75 
76 /*
77  * some helper functions to deal with single linked page lists,
78  * page->private being our "next" pointer.
79  */
80 
81 /* If at least n pages are linked at head, get n pages off.
82  * Otherwise, don't modify head, and return NULL.
83  * Locking is the responsibility of the caller.
84  */
85 static struct page *page_chain_del(struct page **head, int n)
86 {
87 	struct page *page;
88 	struct page *tmp;
89 
90 	BUG_ON(!n);
91 	BUG_ON(!head);
92 
93 	page = *head;
94 
95 	if (!page)
96 		return NULL;
97 
98 	while (page) {
99 		tmp = page_chain_next(page);
100 		if (--n == 0)
101 			break; /* found sufficient pages */
102 		if (tmp == NULL)
103 			/* insufficient pages, don't use any of them. */
104 			return NULL;
105 		page = tmp;
106 	}
107 
108 	/* add end of list marker for the returned list */
109 	set_page_private(page, 0);
110 	/* actual return value, and adjustment of head */
111 	page = *head;
112 	*head = tmp;
113 	return page;
114 }
115 
116 /* may be used outside of locks to find the tail of a (usually short)
117  * "private" page chain, before adding it back to a global chain head
118  * with page_chain_add() under a spinlock. */
119 static struct page *page_chain_tail(struct page *page, int *len)
120 {
121 	struct page *tmp;
122 	int i = 1;
123 	while ((tmp = page_chain_next(page)))
124 		++i, page = tmp;
125 	if (len)
126 		*len = i;
127 	return page;
128 }
129 
130 static int page_chain_free(struct page *page)
131 {
132 	struct page *tmp;
133 	int i = 0;
134 	page_chain_for_each_safe(page, tmp) {
135 		put_page(page);
136 		++i;
137 	}
138 	return i;
139 }
140 
141 static void page_chain_add(struct page **head,
142 		struct page *chain_first, struct page *chain_last)
143 {
144 #if 1
145 	struct page *tmp;
146 	tmp = page_chain_tail(chain_first, NULL);
147 	BUG_ON(tmp != chain_last);
148 #endif
149 
150 	/* add chain to head */
151 	set_page_private(chain_last, (unsigned long)*head);
152 	*head = chain_first;
153 }
154 
155 static struct page *__drbd_alloc_pages(struct drbd_device *device,
156 				       unsigned int number)
157 {
158 	struct page *page = NULL;
159 	struct page *tmp = NULL;
160 	unsigned int i = 0;
161 
162 	/* Yes, testing drbd_pp_vacant outside the lock is racy.
163 	 * So what. It saves a spin_lock. */
164 	if (drbd_pp_vacant >= number) {
165 		spin_lock(&drbd_pp_lock);
166 		page = page_chain_del(&drbd_pp_pool, number);
167 		if (page)
168 			drbd_pp_vacant -= number;
169 		spin_unlock(&drbd_pp_lock);
170 		if (page)
171 			return page;
172 	}
173 
174 	/* GFP_TRY, because we must not cause arbitrary write-out: in a DRBD
175 	 * "criss-cross" setup, that might cause write-out on some other DRBD,
176 	 * which in turn might block on the other node at this very place.  */
177 	for (i = 0; i < number; i++) {
178 		tmp = alloc_page(GFP_TRY);
179 		if (!tmp)
180 			break;
181 		set_page_private(tmp, (unsigned long)page);
182 		page = tmp;
183 	}
184 
185 	if (i == number)
186 		return page;
187 
188 	/* Not enough pages immediately available this time.
189 	 * No need to jump around here, drbd_alloc_pages will retry this
190 	 * function "soon". */
191 	if (page) {
192 		tmp = page_chain_tail(page, NULL);
193 		spin_lock(&drbd_pp_lock);
194 		page_chain_add(&drbd_pp_pool, page, tmp);
195 		drbd_pp_vacant += i;
196 		spin_unlock(&drbd_pp_lock);
197 	}
198 	return NULL;
199 }
200 
201 static void reclaim_finished_net_peer_reqs(struct drbd_device *device,
202 					   struct list_head *to_be_freed)
203 {
204 	struct drbd_peer_request *peer_req, *tmp;
205 
206 	/* The EEs are always appended to the end of the list. Since
207 	   they are sent in order over the wire, they have to finish
208 	   in order. As soon as we see the first not finished we can
209 	   stop to examine the list... */
210 
211 	list_for_each_entry_safe(peer_req, tmp, &device->net_ee, w.list) {
212 		if (drbd_peer_req_has_active_page(peer_req))
213 			break;
214 		list_move(&peer_req->w.list, to_be_freed);
215 	}
216 }
217 
218 static void drbd_reclaim_net_peer_reqs(struct drbd_device *device)
219 {
220 	LIST_HEAD(reclaimed);
221 	struct drbd_peer_request *peer_req, *t;
222 
223 	spin_lock_irq(&device->resource->req_lock);
224 	reclaim_finished_net_peer_reqs(device, &reclaimed);
225 	spin_unlock_irq(&device->resource->req_lock);
226 	list_for_each_entry_safe(peer_req, t, &reclaimed, w.list)
227 		drbd_free_net_peer_req(device, peer_req);
228 }
229 
230 static void conn_reclaim_net_peer_reqs(struct drbd_connection *connection)
231 {
232 	struct drbd_peer_device *peer_device;
233 	int vnr;
234 
235 	rcu_read_lock();
236 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
237 		struct drbd_device *device = peer_device->device;
238 		if (!atomic_read(&device->pp_in_use_by_net))
239 			continue;
240 
241 		kref_get(&device->kref);
242 		rcu_read_unlock();
243 		drbd_reclaim_net_peer_reqs(device);
244 		kref_put(&device->kref, drbd_destroy_device);
245 		rcu_read_lock();
246 	}
247 	rcu_read_unlock();
248 }
249 
250 /**
251  * drbd_alloc_pages() - Returns @number pages, retries forever (or until signalled)
252  * @device:	DRBD device.
253  * @number:	number of pages requested
254  * @retry:	whether to retry, if not enough pages are available right now
255  *
256  * Tries to allocate number pages, first from our own page pool, then from
257  * the kernel.
258  * Possibly retry until DRBD frees sufficient pages somewhere else.
259  *
260  * If this allocation would exceed the max_buffers setting, we throttle
261  * allocation (schedule_timeout) to give the system some room to breathe.
262  *
263  * We do not use max-buffers as hard limit, because it could lead to
264  * congestion and further to a distributed deadlock during online-verify or
265  * (checksum based) resync, if the max-buffers, socket buffer sizes and
266  * resync-rate settings are mis-configured.
267  *
268  * Returns a page chain linked via page->private.
269  */
270 struct page *drbd_alloc_pages(struct drbd_peer_device *peer_device, unsigned int number,
271 			      bool retry)
272 {
273 	struct drbd_device *device = peer_device->device;
274 	struct page *page = NULL;
275 	struct net_conf *nc;
276 	DEFINE_WAIT(wait);
277 	unsigned int mxb;
278 
279 	rcu_read_lock();
280 	nc = rcu_dereference(peer_device->connection->net_conf);
281 	mxb = nc ? nc->max_buffers : 1000000;
282 	rcu_read_unlock();
283 
284 	if (atomic_read(&device->pp_in_use) < mxb)
285 		page = __drbd_alloc_pages(device, number);
286 
287 	/* Try to keep the fast path fast, but occasionally we need
288 	 * to reclaim the pages we lended to the network stack. */
289 	if (page && atomic_read(&device->pp_in_use_by_net) > 512)
290 		drbd_reclaim_net_peer_reqs(device);
291 
292 	while (page == NULL) {
293 		prepare_to_wait(&drbd_pp_wait, &wait, TASK_INTERRUPTIBLE);
294 
295 		drbd_reclaim_net_peer_reqs(device);
296 
297 		if (atomic_read(&device->pp_in_use) < mxb) {
298 			page = __drbd_alloc_pages(device, number);
299 			if (page)
300 				break;
301 		}
302 
303 		if (!retry)
304 			break;
305 
306 		if (signal_pending(current)) {
307 			drbd_warn(device, "drbd_alloc_pages interrupted!\n");
308 			break;
309 		}
310 
311 		if (schedule_timeout(HZ/10) == 0)
312 			mxb = UINT_MAX;
313 	}
314 	finish_wait(&drbd_pp_wait, &wait);
315 
316 	if (page)
317 		atomic_add(number, &device->pp_in_use);
318 	return page;
319 }
320 
321 /* Must not be used from irq, as that may deadlock: see drbd_alloc_pages.
322  * Is also used from inside an other spin_lock_irq(&resource->req_lock);
323  * Either links the page chain back to the global pool,
324  * or returns all pages to the system. */
325 static void drbd_free_pages(struct drbd_device *device, struct page *page, int is_net)
326 {
327 	atomic_t *a = is_net ? &device->pp_in_use_by_net : &device->pp_in_use;
328 	int i;
329 
330 	if (page == NULL)
331 		return;
332 
333 	if (drbd_pp_vacant > (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * minor_count)
334 		i = page_chain_free(page);
335 	else {
336 		struct page *tmp;
337 		tmp = page_chain_tail(page, &i);
338 		spin_lock(&drbd_pp_lock);
339 		page_chain_add(&drbd_pp_pool, page, tmp);
340 		drbd_pp_vacant += i;
341 		spin_unlock(&drbd_pp_lock);
342 	}
343 	i = atomic_sub_return(i, a);
344 	if (i < 0)
345 		drbd_warn(device, "ASSERTION FAILED: %s: %d < 0\n",
346 			is_net ? "pp_in_use_by_net" : "pp_in_use", i);
347 	wake_up(&drbd_pp_wait);
348 }
349 
350 /*
351 You need to hold the req_lock:
352  _drbd_wait_ee_list_empty()
353 
354 You must not have the req_lock:
355  drbd_free_peer_req()
356  drbd_alloc_peer_req()
357  drbd_free_peer_reqs()
358  drbd_ee_fix_bhs()
359  drbd_finish_peer_reqs()
360  drbd_clear_done_ee()
361  drbd_wait_ee_list_empty()
362 */
363 
364 /* normal: payload_size == request size (bi_size)
365  * w_same: payload_size == logical_block_size
366  * trim: payload_size == 0 */
367 struct drbd_peer_request *
368 drbd_alloc_peer_req(struct drbd_peer_device *peer_device, u64 id, sector_t sector,
369 		    unsigned int request_size, unsigned int payload_size, gfp_t gfp_mask) __must_hold(local)
370 {
371 	struct drbd_device *device = peer_device->device;
372 	struct drbd_peer_request *peer_req;
373 	struct page *page = NULL;
374 	unsigned nr_pages = (payload_size + PAGE_SIZE -1) >> PAGE_SHIFT;
375 
376 	if (drbd_insert_fault(device, DRBD_FAULT_AL_EE))
377 		return NULL;
378 
379 	peer_req = mempool_alloc(drbd_ee_mempool, gfp_mask & ~__GFP_HIGHMEM);
380 	if (!peer_req) {
381 		if (!(gfp_mask & __GFP_NOWARN))
382 			drbd_err(device, "%s: allocation failed\n", __func__);
383 		return NULL;
384 	}
385 
386 	if (nr_pages) {
387 		page = drbd_alloc_pages(peer_device, nr_pages,
388 					gfpflags_allow_blocking(gfp_mask));
389 		if (!page)
390 			goto fail;
391 	}
392 
393 	memset(peer_req, 0, sizeof(*peer_req));
394 	INIT_LIST_HEAD(&peer_req->w.list);
395 	drbd_clear_interval(&peer_req->i);
396 	peer_req->i.size = request_size;
397 	peer_req->i.sector = sector;
398 	peer_req->submit_jif = jiffies;
399 	peer_req->peer_device = peer_device;
400 	peer_req->pages = page;
401 	/*
402 	 * The block_id is opaque to the receiver.  It is not endianness
403 	 * converted, and sent back to the sender unchanged.
404 	 */
405 	peer_req->block_id = id;
406 
407 	return peer_req;
408 
409  fail:
410 	mempool_free(peer_req, drbd_ee_mempool);
411 	return NULL;
412 }
413 
414 void __drbd_free_peer_req(struct drbd_device *device, struct drbd_peer_request *peer_req,
415 		       int is_net)
416 {
417 	might_sleep();
418 	if (peer_req->flags & EE_HAS_DIGEST)
419 		kfree(peer_req->digest);
420 	drbd_free_pages(device, peer_req->pages, is_net);
421 	D_ASSERT(device, atomic_read(&peer_req->pending_bios) == 0);
422 	D_ASSERT(device, drbd_interval_empty(&peer_req->i));
423 	if (!expect(!(peer_req->flags & EE_CALL_AL_COMPLETE_IO))) {
424 		peer_req->flags &= ~EE_CALL_AL_COMPLETE_IO;
425 		drbd_al_complete_io(device, &peer_req->i);
426 	}
427 	mempool_free(peer_req, drbd_ee_mempool);
428 }
429 
430 int drbd_free_peer_reqs(struct drbd_device *device, struct list_head *list)
431 {
432 	LIST_HEAD(work_list);
433 	struct drbd_peer_request *peer_req, *t;
434 	int count = 0;
435 	int is_net = list == &device->net_ee;
436 
437 	spin_lock_irq(&device->resource->req_lock);
438 	list_splice_init(list, &work_list);
439 	spin_unlock_irq(&device->resource->req_lock);
440 
441 	list_for_each_entry_safe(peer_req, t, &work_list, w.list) {
442 		__drbd_free_peer_req(device, peer_req, is_net);
443 		count++;
444 	}
445 	return count;
446 }
447 
448 /*
449  * See also comments in _req_mod(,BARRIER_ACKED) and receive_Barrier.
450  */
451 static int drbd_finish_peer_reqs(struct drbd_device *device)
452 {
453 	LIST_HEAD(work_list);
454 	LIST_HEAD(reclaimed);
455 	struct drbd_peer_request *peer_req, *t;
456 	int err = 0;
457 
458 	spin_lock_irq(&device->resource->req_lock);
459 	reclaim_finished_net_peer_reqs(device, &reclaimed);
460 	list_splice_init(&device->done_ee, &work_list);
461 	spin_unlock_irq(&device->resource->req_lock);
462 
463 	list_for_each_entry_safe(peer_req, t, &reclaimed, w.list)
464 		drbd_free_net_peer_req(device, peer_req);
465 
466 	/* possible callbacks here:
467 	 * e_end_block, and e_end_resync_block, e_send_superseded.
468 	 * all ignore the last argument.
469 	 */
470 	list_for_each_entry_safe(peer_req, t, &work_list, w.list) {
471 		int err2;
472 
473 		/* list_del not necessary, next/prev members not touched */
474 		err2 = peer_req->w.cb(&peer_req->w, !!err);
475 		if (!err)
476 			err = err2;
477 		drbd_free_peer_req(device, peer_req);
478 	}
479 	wake_up(&device->ee_wait);
480 
481 	return err;
482 }
483 
484 static void _drbd_wait_ee_list_empty(struct drbd_device *device,
485 				     struct list_head *head)
486 {
487 	DEFINE_WAIT(wait);
488 
489 	/* avoids spin_lock/unlock
490 	 * and calling prepare_to_wait in the fast path */
491 	while (!list_empty(head)) {
492 		prepare_to_wait(&device->ee_wait, &wait, TASK_UNINTERRUPTIBLE);
493 		spin_unlock_irq(&device->resource->req_lock);
494 		io_schedule();
495 		finish_wait(&device->ee_wait, &wait);
496 		spin_lock_irq(&device->resource->req_lock);
497 	}
498 }
499 
500 static void drbd_wait_ee_list_empty(struct drbd_device *device,
501 				    struct list_head *head)
502 {
503 	spin_lock_irq(&device->resource->req_lock);
504 	_drbd_wait_ee_list_empty(device, head);
505 	spin_unlock_irq(&device->resource->req_lock);
506 }
507 
508 static int drbd_recv_short(struct socket *sock, void *buf, size_t size, int flags)
509 {
510 	struct kvec iov = {
511 		.iov_base = buf,
512 		.iov_len = size,
513 	};
514 	struct msghdr msg = {
515 		.msg_flags = (flags ? flags : MSG_WAITALL | MSG_NOSIGNAL)
516 	};
517 	return kernel_recvmsg(sock, &msg, &iov, 1, size, msg.msg_flags);
518 }
519 
520 static int drbd_recv(struct drbd_connection *connection, void *buf, size_t size)
521 {
522 	int rv;
523 
524 	rv = drbd_recv_short(connection->data.socket, buf, size, 0);
525 
526 	if (rv < 0) {
527 		if (rv == -ECONNRESET)
528 			drbd_info(connection, "sock was reset by peer\n");
529 		else if (rv != -ERESTARTSYS)
530 			drbd_err(connection, "sock_recvmsg returned %d\n", rv);
531 	} else if (rv == 0) {
532 		if (test_bit(DISCONNECT_SENT, &connection->flags)) {
533 			long t;
534 			rcu_read_lock();
535 			t = rcu_dereference(connection->net_conf)->ping_timeo * HZ/10;
536 			rcu_read_unlock();
537 
538 			t = wait_event_timeout(connection->ping_wait, connection->cstate < C_WF_REPORT_PARAMS, t);
539 
540 			if (t)
541 				goto out;
542 		}
543 		drbd_info(connection, "sock was shut down by peer\n");
544 	}
545 
546 	if (rv != size)
547 		conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD);
548 
549 out:
550 	return rv;
551 }
552 
553 static int drbd_recv_all(struct drbd_connection *connection, void *buf, size_t size)
554 {
555 	int err;
556 
557 	err = drbd_recv(connection, buf, size);
558 	if (err != size) {
559 		if (err >= 0)
560 			err = -EIO;
561 	} else
562 		err = 0;
563 	return err;
564 }
565 
566 static int drbd_recv_all_warn(struct drbd_connection *connection, void *buf, size_t size)
567 {
568 	int err;
569 
570 	err = drbd_recv_all(connection, buf, size);
571 	if (err && !signal_pending(current))
572 		drbd_warn(connection, "short read (expected size %d)\n", (int)size);
573 	return err;
574 }
575 
576 /* quoting tcp(7):
577  *   On individual connections, the socket buffer size must be set prior to the
578  *   listen(2) or connect(2) calls in order to have it take effect.
579  * This is our wrapper to do so.
580  */
581 static void drbd_setbufsize(struct socket *sock, unsigned int snd,
582 		unsigned int rcv)
583 {
584 	/* open coded SO_SNDBUF, SO_RCVBUF */
585 	if (snd) {
586 		sock->sk->sk_sndbuf = snd;
587 		sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
588 	}
589 	if (rcv) {
590 		sock->sk->sk_rcvbuf = rcv;
591 		sock->sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
592 	}
593 }
594 
595 static struct socket *drbd_try_connect(struct drbd_connection *connection)
596 {
597 	const char *what;
598 	struct socket *sock;
599 	struct sockaddr_in6 src_in6;
600 	struct sockaddr_in6 peer_in6;
601 	struct net_conf *nc;
602 	int err, peer_addr_len, my_addr_len;
603 	int sndbuf_size, rcvbuf_size, connect_int;
604 	int disconnect_on_error = 1;
605 
606 	rcu_read_lock();
607 	nc = rcu_dereference(connection->net_conf);
608 	if (!nc) {
609 		rcu_read_unlock();
610 		return NULL;
611 	}
612 	sndbuf_size = nc->sndbuf_size;
613 	rcvbuf_size = nc->rcvbuf_size;
614 	connect_int = nc->connect_int;
615 	rcu_read_unlock();
616 
617 	my_addr_len = min_t(int, connection->my_addr_len, sizeof(src_in6));
618 	memcpy(&src_in6, &connection->my_addr, my_addr_len);
619 
620 	if (((struct sockaddr *)&connection->my_addr)->sa_family == AF_INET6)
621 		src_in6.sin6_port = 0;
622 	else
623 		((struct sockaddr_in *)&src_in6)->sin_port = 0; /* AF_INET & AF_SCI */
624 
625 	peer_addr_len = min_t(int, connection->peer_addr_len, sizeof(src_in6));
626 	memcpy(&peer_in6, &connection->peer_addr, peer_addr_len);
627 
628 	what = "sock_create_kern";
629 	err = sock_create_kern(&init_net, ((struct sockaddr *)&src_in6)->sa_family,
630 			       SOCK_STREAM, IPPROTO_TCP, &sock);
631 	if (err < 0) {
632 		sock = NULL;
633 		goto out;
634 	}
635 
636 	sock->sk->sk_rcvtimeo =
637 	sock->sk->sk_sndtimeo = connect_int * HZ;
638 	drbd_setbufsize(sock, sndbuf_size, rcvbuf_size);
639 
640        /* explicitly bind to the configured IP as source IP
641 	*  for the outgoing connections.
642 	*  This is needed for multihomed hosts and to be
643 	*  able to use lo: interfaces for drbd.
644 	* Make sure to use 0 as port number, so linux selects
645 	*  a free one dynamically.
646 	*/
647 	what = "bind before connect";
648 	err = sock->ops->bind(sock, (struct sockaddr *) &src_in6, my_addr_len);
649 	if (err < 0)
650 		goto out;
651 
652 	/* connect may fail, peer not yet available.
653 	 * stay C_WF_CONNECTION, don't go Disconnecting! */
654 	disconnect_on_error = 0;
655 	what = "connect";
656 	err = sock->ops->connect(sock, (struct sockaddr *) &peer_in6, peer_addr_len, 0);
657 
658 out:
659 	if (err < 0) {
660 		if (sock) {
661 			sock_release(sock);
662 			sock = NULL;
663 		}
664 		switch (-err) {
665 			/* timeout, busy, signal pending */
666 		case ETIMEDOUT: case EAGAIN: case EINPROGRESS:
667 		case EINTR: case ERESTARTSYS:
668 			/* peer not (yet) available, network problem */
669 		case ECONNREFUSED: case ENETUNREACH:
670 		case EHOSTDOWN:    case EHOSTUNREACH:
671 			disconnect_on_error = 0;
672 			break;
673 		default:
674 			drbd_err(connection, "%s failed, err = %d\n", what, err);
675 		}
676 		if (disconnect_on_error)
677 			conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
678 	}
679 
680 	return sock;
681 }
682 
683 struct accept_wait_data {
684 	struct drbd_connection *connection;
685 	struct socket *s_listen;
686 	struct completion door_bell;
687 	void (*original_sk_state_change)(struct sock *sk);
688 
689 };
690 
691 static void drbd_incoming_connection(struct sock *sk)
692 {
693 	struct accept_wait_data *ad = sk->sk_user_data;
694 	void (*state_change)(struct sock *sk);
695 
696 	state_change = ad->original_sk_state_change;
697 	if (sk->sk_state == TCP_ESTABLISHED)
698 		complete(&ad->door_bell);
699 	state_change(sk);
700 }
701 
702 static int prepare_listen_socket(struct drbd_connection *connection, struct accept_wait_data *ad)
703 {
704 	int err, sndbuf_size, rcvbuf_size, my_addr_len;
705 	struct sockaddr_in6 my_addr;
706 	struct socket *s_listen;
707 	struct net_conf *nc;
708 	const char *what;
709 
710 	rcu_read_lock();
711 	nc = rcu_dereference(connection->net_conf);
712 	if (!nc) {
713 		rcu_read_unlock();
714 		return -EIO;
715 	}
716 	sndbuf_size = nc->sndbuf_size;
717 	rcvbuf_size = nc->rcvbuf_size;
718 	rcu_read_unlock();
719 
720 	my_addr_len = min_t(int, connection->my_addr_len, sizeof(struct sockaddr_in6));
721 	memcpy(&my_addr, &connection->my_addr, my_addr_len);
722 
723 	what = "sock_create_kern";
724 	err = sock_create_kern(&init_net, ((struct sockaddr *)&my_addr)->sa_family,
725 			       SOCK_STREAM, IPPROTO_TCP, &s_listen);
726 	if (err) {
727 		s_listen = NULL;
728 		goto out;
729 	}
730 
731 	s_listen->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */
732 	drbd_setbufsize(s_listen, sndbuf_size, rcvbuf_size);
733 
734 	what = "bind before listen";
735 	err = s_listen->ops->bind(s_listen, (struct sockaddr *)&my_addr, my_addr_len);
736 	if (err < 0)
737 		goto out;
738 
739 	ad->s_listen = s_listen;
740 	write_lock_bh(&s_listen->sk->sk_callback_lock);
741 	ad->original_sk_state_change = s_listen->sk->sk_state_change;
742 	s_listen->sk->sk_state_change = drbd_incoming_connection;
743 	s_listen->sk->sk_user_data = ad;
744 	write_unlock_bh(&s_listen->sk->sk_callback_lock);
745 
746 	what = "listen";
747 	err = s_listen->ops->listen(s_listen, 5);
748 	if (err < 0)
749 		goto out;
750 
751 	return 0;
752 out:
753 	if (s_listen)
754 		sock_release(s_listen);
755 	if (err < 0) {
756 		if (err != -EAGAIN && err != -EINTR && err != -ERESTARTSYS) {
757 			drbd_err(connection, "%s failed, err = %d\n", what, err);
758 			conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
759 		}
760 	}
761 
762 	return -EIO;
763 }
764 
765 static void unregister_state_change(struct sock *sk, struct accept_wait_data *ad)
766 {
767 	write_lock_bh(&sk->sk_callback_lock);
768 	sk->sk_state_change = ad->original_sk_state_change;
769 	sk->sk_user_data = NULL;
770 	write_unlock_bh(&sk->sk_callback_lock);
771 }
772 
773 static struct socket *drbd_wait_for_connect(struct drbd_connection *connection, struct accept_wait_data *ad)
774 {
775 	int timeo, connect_int, err = 0;
776 	struct socket *s_estab = NULL;
777 	struct net_conf *nc;
778 
779 	rcu_read_lock();
780 	nc = rcu_dereference(connection->net_conf);
781 	if (!nc) {
782 		rcu_read_unlock();
783 		return NULL;
784 	}
785 	connect_int = nc->connect_int;
786 	rcu_read_unlock();
787 
788 	timeo = connect_int * HZ;
789 	/* 28.5% random jitter */
790 	timeo += (prandom_u32() & 1) ? timeo / 7 : -timeo / 7;
791 
792 	err = wait_for_completion_interruptible_timeout(&ad->door_bell, timeo);
793 	if (err <= 0)
794 		return NULL;
795 
796 	err = kernel_accept(ad->s_listen, &s_estab, 0);
797 	if (err < 0) {
798 		if (err != -EAGAIN && err != -EINTR && err != -ERESTARTSYS) {
799 			drbd_err(connection, "accept failed, err = %d\n", err);
800 			conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
801 		}
802 	}
803 
804 	if (s_estab)
805 		unregister_state_change(s_estab->sk, ad);
806 
807 	return s_estab;
808 }
809 
810 static int decode_header(struct drbd_connection *, void *, struct packet_info *);
811 
812 static int send_first_packet(struct drbd_connection *connection, struct drbd_socket *sock,
813 			     enum drbd_packet cmd)
814 {
815 	if (!conn_prepare_command(connection, sock))
816 		return -EIO;
817 	return conn_send_command(connection, sock, cmd, 0, NULL, 0);
818 }
819 
820 static int receive_first_packet(struct drbd_connection *connection, struct socket *sock)
821 {
822 	unsigned int header_size = drbd_header_size(connection);
823 	struct packet_info pi;
824 	struct net_conf *nc;
825 	int err;
826 
827 	rcu_read_lock();
828 	nc = rcu_dereference(connection->net_conf);
829 	if (!nc) {
830 		rcu_read_unlock();
831 		return -EIO;
832 	}
833 	sock->sk->sk_rcvtimeo = nc->ping_timeo * 4 * HZ / 10;
834 	rcu_read_unlock();
835 
836 	err = drbd_recv_short(sock, connection->data.rbuf, header_size, 0);
837 	if (err != header_size) {
838 		if (err >= 0)
839 			err = -EIO;
840 		return err;
841 	}
842 	err = decode_header(connection, connection->data.rbuf, &pi);
843 	if (err)
844 		return err;
845 	return pi.cmd;
846 }
847 
848 /**
849  * drbd_socket_okay() - Free the socket if its connection is not okay
850  * @sock:	pointer to the pointer to the socket.
851  */
852 static bool drbd_socket_okay(struct socket **sock)
853 {
854 	int rr;
855 	char tb[4];
856 
857 	if (!*sock)
858 		return false;
859 
860 	rr = drbd_recv_short(*sock, tb, 4, MSG_DONTWAIT | MSG_PEEK);
861 
862 	if (rr > 0 || rr == -EAGAIN) {
863 		return true;
864 	} else {
865 		sock_release(*sock);
866 		*sock = NULL;
867 		return false;
868 	}
869 }
870 
871 static bool connection_established(struct drbd_connection *connection,
872 				   struct socket **sock1,
873 				   struct socket **sock2)
874 {
875 	struct net_conf *nc;
876 	int timeout;
877 	bool ok;
878 
879 	if (!*sock1 || !*sock2)
880 		return false;
881 
882 	rcu_read_lock();
883 	nc = rcu_dereference(connection->net_conf);
884 	timeout = (nc->sock_check_timeo ?: nc->ping_timeo) * HZ / 10;
885 	rcu_read_unlock();
886 	schedule_timeout_interruptible(timeout);
887 
888 	ok = drbd_socket_okay(sock1);
889 	ok = drbd_socket_okay(sock2) && ok;
890 
891 	return ok;
892 }
893 
894 /* Gets called if a connection is established, or if a new minor gets created
895    in a connection */
896 int drbd_connected(struct drbd_peer_device *peer_device)
897 {
898 	struct drbd_device *device = peer_device->device;
899 	int err;
900 
901 	atomic_set(&device->packet_seq, 0);
902 	device->peer_seq = 0;
903 
904 	device->state_mutex = peer_device->connection->agreed_pro_version < 100 ?
905 		&peer_device->connection->cstate_mutex :
906 		&device->own_state_mutex;
907 
908 	err = drbd_send_sync_param(peer_device);
909 	if (!err)
910 		err = drbd_send_sizes(peer_device, 0, 0);
911 	if (!err)
912 		err = drbd_send_uuids(peer_device);
913 	if (!err)
914 		err = drbd_send_current_state(peer_device);
915 	clear_bit(USE_DEGR_WFC_T, &device->flags);
916 	clear_bit(RESIZE_PENDING, &device->flags);
917 	atomic_set(&device->ap_in_flight, 0);
918 	mod_timer(&device->request_timer, jiffies + HZ); /* just start it here. */
919 	return err;
920 }
921 
922 /*
923  * return values:
924  *   1 yes, we have a valid connection
925  *   0 oops, did not work out, please try again
926  *  -1 peer talks different language,
927  *     no point in trying again, please go standalone.
928  *  -2 We do not have a network config...
929  */
930 static int conn_connect(struct drbd_connection *connection)
931 {
932 	struct drbd_socket sock, msock;
933 	struct drbd_peer_device *peer_device;
934 	struct net_conf *nc;
935 	int vnr, timeout, h;
936 	bool discard_my_data, ok;
937 	enum drbd_state_rv rv;
938 	struct accept_wait_data ad = {
939 		.connection = connection,
940 		.door_bell = COMPLETION_INITIALIZER_ONSTACK(ad.door_bell),
941 	};
942 
943 	clear_bit(DISCONNECT_SENT, &connection->flags);
944 	if (conn_request_state(connection, NS(conn, C_WF_CONNECTION), CS_VERBOSE) < SS_SUCCESS)
945 		return -2;
946 
947 	mutex_init(&sock.mutex);
948 	sock.sbuf = connection->data.sbuf;
949 	sock.rbuf = connection->data.rbuf;
950 	sock.socket = NULL;
951 	mutex_init(&msock.mutex);
952 	msock.sbuf = connection->meta.sbuf;
953 	msock.rbuf = connection->meta.rbuf;
954 	msock.socket = NULL;
955 
956 	/* Assume that the peer only understands protocol 80 until we know better.  */
957 	connection->agreed_pro_version = 80;
958 
959 	if (prepare_listen_socket(connection, &ad))
960 		return 0;
961 
962 	do {
963 		struct socket *s;
964 
965 		s = drbd_try_connect(connection);
966 		if (s) {
967 			if (!sock.socket) {
968 				sock.socket = s;
969 				send_first_packet(connection, &sock, P_INITIAL_DATA);
970 			} else if (!msock.socket) {
971 				clear_bit(RESOLVE_CONFLICTS, &connection->flags);
972 				msock.socket = s;
973 				send_first_packet(connection, &msock, P_INITIAL_META);
974 			} else {
975 				drbd_err(connection, "Logic error in conn_connect()\n");
976 				goto out_release_sockets;
977 			}
978 		}
979 
980 		if (connection_established(connection, &sock.socket, &msock.socket))
981 			break;
982 
983 retry:
984 		s = drbd_wait_for_connect(connection, &ad);
985 		if (s) {
986 			int fp = receive_first_packet(connection, s);
987 			drbd_socket_okay(&sock.socket);
988 			drbd_socket_okay(&msock.socket);
989 			switch (fp) {
990 			case P_INITIAL_DATA:
991 				if (sock.socket) {
992 					drbd_warn(connection, "initial packet S crossed\n");
993 					sock_release(sock.socket);
994 					sock.socket = s;
995 					goto randomize;
996 				}
997 				sock.socket = s;
998 				break;
999 			case P_INITIAL_META:
1000 				set_bit(RESOLVE_CONFLICTS, &connection->flags);
1001 				if (msock.socket) {
1002 					drbd_warn(connection, "initial packet M crossed\n");
1003 					sock_release(msock.socket);
1004 					msock.socket = s;
1005 					goto randomize;
1006 				}
1007 				msock.socket = s;
1008 				break;
1009 			default:
1010 				drbd_warn(connection, "Error receiving initial packet\n");
1011 				sock_release(s);
1012 randomize:
1013 				if (prandom_u32() & 1)
1014 					goto retry;
1015 			}
1016 		}
1017 
1018 		if (connection->cstate <= C_DISCONNECTING)
1019 			goto out_release_sockets;
1020 		if (signal_pending(current)) {
1021 			flush_signals(current);
1022 			smp_rmb();
1023 			if (get_t_state(&connection->receiver) == EXITING)
1024 				goto out_release_sockets;
1025 		}
1026 
1027 		ok = connection_established(connection, &sock.socket, &msock.socket);
1028 	} while (!ok);
1029 
1030 	if (ad.s_listen)
1031 		sock_release(ad.s_listen);
1032 
1033 	sock.socket->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */
1034 	msock.socket->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */
1035 
1036 	sock.socket->sk->sk_allocation = GFP_NOIO;
1037 	msock.socket->sk->sk_allocation = GFP_NOIO;
1038 
1039 	sock.socket->sk->sk_priority = TC_PRIO_INTERACTIVE_BULK;
1040 	msock.socket->sk->sk_priority = TC_PRIO_INTERACTIVE;
1041 
1042 	/* NOT YET ...
1043 	 * sock.socket->sk->sk_sndtimeo = connection->net_conf->timeout*HZ/10;
1044 	 * sock.socket->sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
1045 	 * first set it to the P_CONNECTION_FEATURES timeout,
1046 	 * which we set to 4x the configured ping_timeout. */
1047 	rcu_read_lock();
1048 	nc = rcu_dereference(connection->net_conf);
1049 
1050 	sock.socket->sk->sk_sndtimeo =
1051 	sock.socket->sk->sk_rcvtimeo = nc->ping_timeo*4*HZ/10;
1052 
1053 	msock.socket->sk->sk_rcvtimeo = nc->ping_int*HZ;
1054 	timeout = nc->timeout * HZ / 10;
1055 	discard_my_data = nc->discard_my_data;
1056 	rcu_read_unlock();
1057 
1058 	msock.socket->sk->sk_sndtimeo = timeout;
1059 
1060 	/* we don't want delays.
1061 	 * we use TCP_CORK where appropriate, though */
1062 	drbd_tcp_nodelay(sock.socket);
1063 	drbd_tcp_nodelay(msock.socket);
1064 
1065 	connection->data.socket = sock.socket;
1066 	connection->meta.socket = msock.socket;
1067 	connection->last_received = jiffies;
1068 
1069 	h = drbd_do_features(connection);
1070 	if (h <= 0)
1071 		return h;
1072 
1073 	if (connection->cram_hmac_tfm) {
1074 		/* drbd_request_state(device, NS(conn, WFAuth)); */
1075 		switch (drbd_do_auth(connection)) {
1076 		case -1:
1077 			drbd_err(connection, "Authentication of peer failed\n");
1078 			return -1;
1079 		case 0:
1080 			drbd_err(connection, "Authentication of peer failed, trying again.\n");
1081 			return 0;
1082 		}
1083 	}
1084 
1085 	connection->data.socket->sk->sk_sndtimeo = timeout;
1086 	connection->data.socket->sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
1087 
1088 	if (drbd_send_protocol(connection) == -EOPNOTSUPP)
1089 		return -1;
1090 
1091 	/* Prevent a race between resync-handshake and
1092 	 * being promoted to Primary.
1093 	 *
1094 	 * Grab and release the state mutex, so we know that any current
1095 	 * drbd_set_role() is finished, and any incoming drbd_set_role
1096 	 * will see the STATE_SENT flag, and wait for it to be cleared.
1097 	 */
1098 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr)
1099 		mutex_lock(peer_device->device->state_mutex);
1100 
1101 	set_bit(STATE_SENT, &connection->flags);
1102 
1103 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr)
1104 		mutex_unlock(peer_device->device->state_mutex);
1105 
1106 	rcu_read_lock();
1107 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
1108 		struct drbd_device *device = peer_device->device;
1109 		kref_get(&device->kref);
1110 		rcu_read_unlock();
1111 
1112 		if (discard_my_data)
1113 			set_bit(DISCARD_MY_DATA, &device->flags);
1114 		else
1115 			clear_bit(DISCARD_MY_DATA, &device->flags);
1116 
1117 		drbd_connected(peer_device);
1118 		kref_put(&device->kref, drbd_destroy_device);
1119 		rcu_read_lock();
1120 	}
1121 	rcu_read_unlock();
1122 
1123 	rv = conn_request_state(connection, NS(conn, C_WF_REPORT_PARAMS), CS_VERBOSE);
1124 	if (rv < SS_SUCCESS || connection->cstate != C_WF_REPORT_PARAMS) {
1125 		clear_bit(STATE_SENT, &connection->flags);
1126 		return 0;
1127 	}
1128 
1129 	drbd_thread_start(&connection->ack_receiver);
1130 	/* opencoded create_singlethread_workqueue(),
1131 	 * to be able to use format string arguments */
1132 	connection->ack_sender =
1133 		alloc_ordered_workqueue("drbd_as_%s", WQ_MEM_RECLAIM, connection->resource->name);
1134 	if (!connection->ack_sender) {
1135 		drbd_err(connection, "Failed to create workqueue ack_sender\n");
1136 		return 0;
1137 	}
1138 
1139 	mutex_lock(&connection->resource->conf_update);
1140 	/* The discard_my_data flag is a single-shot modifier to the next
1141 	 * connection attempt, the handshake of which is now well underway.
1142 	 * No need for rcu style copying of the whole struct
1143 	 * just to clear a single value. */
1144 	connection->net_conf->discard_my_data = 0;
1145 	mutex_unlock(&connection->resource->conf_update);
1146 
1147 	return h;
1148 
1149 out_release_sockets:
1150 	if (ad.s_listen)
1151 		sock_release(ad.s_listen);
1152 	if (sock.socket)
1153 		sock_release(sock.socket);
1154 	if (msock.socket)
1155 		sock_release(msock.socket);
1156 	return -1;
1157 }
1158 
1159 static int decode_header(struct drbd_connection *connection, void *header, struct packet_info *pi)
1160 {
1161 	unsigned int header_size = drbd_header_size(connection);
1162 
1163 	if (header_size == sizeof(struct p_header100) &&
1164 	    *(__be32 *)header == cpu_to_be32(DRBD_MAGIC_100)) {
1165 		struct p_header100 *h = header;
1166 		if (h->pad != 0) {
1167 			drbd_err(connection, "Header padding is not zero\n");
1168 			return -EINVAL;
1169 		}
1170 		pi->vnr = be16_to_cpu(h->volume);
1171 		pi->cmd = be16_to_cpu(h->command);
1172 		pi->size = be32_to_cpu(h->length);
1173 	} else if (header_size == sizeof(struct p_header95) &&
1174 		   *(__be16 *)header == cpu_to_be16(DRBD_MAGIC_BIG)) {
1175 		struct p_header95 *h = header;
1176 		pi->cmd = be16_to_cpu(h->command);
1177 		pi->size = be32_to_cpu(h->length);
1178 		pi->vnr = 0;
1179 	} else if (header_size == sizeof(struct p_header80) &&
1180 		   *(__be32 *)header == cpu_to_be32(DRBD_MAGIC)) {
1181 		struct p_header80 *h = header;
1182 		pi->cmd = be16_to_cpu(h->command);
1183 		pi->size = be16_to_cpu(h->length);
1184 		pi->vnr = 0;
1185 	} else {
1186 		drbd_err(connection, "Wrong magic value 0x%08x in protocol version %d\n",
1187 			 be32_to_cpu(*(__be32 *)header),
1188 			 connection->agreed_pro_version);
1189 		return -EINVAL;
1190 	}
1191 	pi->data = header + header_size;
1192 	return 0;
1193 }
1194 
1195 static int drbd_recv_header(struct drbd_connection *connection, struct packet_info *pi)
1196 {
1197 	void *buffer = connection->data.rbuf;
1198 	int err;
1199 
1200 	err = drbd_recv_all_warn(connection, buffer, drbd_header_size(connection));
1201 	if (err)
1202 		return err;
1203 
1204 	err = decode_header(connection, buffer, pi);
1205 	connection->last_received = jiffies;
1206 
1207 	return err;
1208 }
1209 
1210 /* This is blkdev_issue_flush, but asynchronous.
1211  * We want to submit to all component volumes in parallel,
1212  * then wait for all completions.
1213  */
1214 struct issue_flush_context {
1215 	atomic_t pending;
1216 	int error;
1217 	struct completion done;
1218 };
1219 struct one_flush_context {
1220 	struct drbd_device *device;
1221 	struct issue_flush_context *ctx;
1222 };
1223 
1224 void one_flush_endio(struct bio *bio)
1225 {
1226 	struct one_flush_context *octx = bio->bi_private;
1227 	struct drbd_device *device = octx->device;
1228 	struct issue_flush_context *ctx = octx->ctx;
1229 
1230 	if (bio->bi_error) {
1231 		ctx->error = bio->bi_error;
1232 		drbd_info(device, "local disk FLUSH FAILED with status %d\n", bio->bi_error);
1233 	}
1234 	kfree(octx);
1235 	bio_put(bio);
1236 
1237 	clear_bit(FLUSH_PENDING, &device->flags);
1238 	put_ldev(device);
1239 	kref_put(&device->kref, drbd_destroy_device);
1240 
1241 	if (atomic_dec_and_test(&ctx->pending))
1242 		complete(&ctx->done);
1243 }
1244 
1245 static void submit_one_flush(struct drbd_device *device, struct issue_flush_context *ctx)
1246 {
1247 	struct bio *bio = bio_alloc(GFP_NOIO, 0);
1248 	struct one_flush_context *octx = kmalloc(sizeof(*octx), GFP_NOIO);
1249 	if (!bio || !octx) {
1250 		drbd_warn(device, "Could not allocate a bio, CANNOT ISSUE FLUSH\n");
1251 		/* FIXME: what else can I do now?  disconnecting or detaching
1252 		 * really does not help to improve the state of the world, either.
1253 		 */
1254 		kfree(octx);
1255 		if (bio)
1256 			bio_put(bio);
1257 
1258 		ctx->error = -ENOMEM;
1259 		put_ldev(device);
1260 		kref_put(&device->kref, drbd_destroy_device);
1261 		return;
1262 	}
1263 
1264 	octx->device = device;
1265 	octx->ctx = ctx;
1266 	bio->bi_bdev = device->ldev->backing_bdev;
1267 	bio->bi_private = octx;
1268 	bio->bi_end_io = one_flush_endio;
1269 	bio_set_op_attrs(bio, REQ_OP_FLUSH, WRITE_FLUSH);
1270 
1271 	device->flush_jif = jiffies;
1272 	set_bit(FLUSH_PENDING, &device->flags);
1273 	atomic_inc(&ctx->pending);
1274 	submit_bio(bio);
1275 }
1276 
1277 static void drbd_flush(struct drbd_connection *connection)
1278 {
1279 	if (connection->resource->write_ordering >= WO_BDEV_FLUSH) {
1280 		struct drbd_peer_device *peer_device;
1281 		struct issue_flush_context ctx;
1282 		int vnr;
1283 
1284 		atomic_set(&ctx.pending, 1);
1285 		ctx.error = 0;
1286 		init_completion(&ctx.done);
1287 
1288 		rcu_read_lock();
1289 		idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
1290 			struct drbd_device *device = peer_device->device;
1291 
1292 			if (!get_ldev(device))
1293 				continue;
1294 			kref_get(&device->kref);
1295 			rcu_read_unlock();
1296 
1297 			submit_one_flush(device, &ctx);
1298 
1299 			rcu_read_lock();
1300 		}
1301 		rcu_read_unlock();
1302 
1303 		/* Do we want to add a timeout,
1304 		 * if disk-timeout is set? */
1305 		if (!atomic_dec_and_test(&ctx.pending))
1306 			wait_for_completion(&ctx.done);
1307 
1308 		if (ctx.error) {
1309 			/* would rather check on EOPNOTSUPP, but that is not reliable.
1310 			 * don't try again for ANY return value != 0
1311 			 * if (rv == -EOPNOTSUPP) */
1312 			/* Any error is already reported by bio_endio callback. */
1313 			drbd_bump_write_ordering(connection->resource, NULL, WO_DRAIN_IO);
1314 		}
1315 	}
1316 }
1317 
1318 /**
1319  * drbd_may_finish_epoch() - Applies an epoch_event to the epoch's state, eventually finishes it.
1320  * @device:	DRBD device.
1321  * @epoch:	Epoch object.
1322  * @ev:		Epoch event.
1323  */
1324 static enum finish_epoch drbd_may_finish_epoch(struct drbd_connection *connection,
1325 					       struct drbd_epoch *epoch,
1326 					       enum epoch_event ev)
1327 {
1328 	int epoch_size;
1329 	struct drbd_epoch *next_epoch;
1330 	enum finish_epoch rv = FE_STILL_LIVE;
1331 
1332 	spin_lock(&connection->epoch_lock);
1333 	do {
1334 		next_epoch = NULL;
1335 
1336 		epoch_size = atomic_read(&epoch->epoch_size);
1337 
1338 		switch (ev & ~EV_CLEANUP) {
1339 		case EV_PUT:
1340 			atomic_dec(&epoch->active);
1341 			break;
1342 		case EV_GOT_BARRIER_NR:
1343 			set_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags);
1344 			break;
1345 		case EV_BECAME_LAST:
1346 			/* nothing to do*/
1347 			break;
1348 		}
1349 
1350 		if (epoch_size != 0 &&
1351 		    atomic_read(&epoch->active) == 0 &&
1352 		    (test_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags) || ev & EV_CLEANUP)) {
1353 			if (!(ev & EV_CLEANUP)) {
1354 				spin_unlock(&connection->epoch_lock);
1355 				drbd_send_b_ack(epoch->connection, epoch->barrier_nr, epoch_size);
1356 				spin_lock(&connection->epoch_lock);
1357 			}
1358 #if 0
1359 			/* FIXME: dec unacked on connection, once we have
1360 			 * something to count pending connection packets in. */
1361 			if (test_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags))
1362 				dec_unacked(epoch->connection);
1363 #endif
1364 
1365 			if (connection->current_epoch != epoch) {
1366 				next_epoch = list_entry(epoch->list.next, struct drbd_epoch, list);
1367 				list_del(&epoch->list);
1368 				ev = EV_BECAME_LAST | (ev & EV_CLEANUP);
1369 				connection->epochs--;
1370 				kfree(epoch);
1371 
1372 				if (rv == FE_STILL_LIVE)
1373 					rv = FE_DESTROYED;
1374 			} else {
1375 				epoch->flags = 0;
1376 				atomic_set(&epoch->epoch_size, 0);
1377 				/* atomic_set(&epoch->active, 0); is already zero */
1378 				if (rv == FE_STILL_LIVE)
1379 					rv = FE_RECYCLED;
1380 			}
1381 		}
1382 
1383 		if (!next_epoch)
1384 			break;
1385 
1386 		epoch = next_epoch;
1387 	} while (1);
1388 
1389 	spin_unlock(&connection->epoch_lock);
1390 
1391 	return rv;
1392 }
1393 
1394 static enum write_ordering_e
1395 max_allowed_wo(struct drbd_backing_dev *bdev, enum write_ordering_e wo)
1396 {
1397 	struct disk_conf *dc;
1398 
1399 	dc = rcu_dereference(bdev->disk_conf);
1400 
1401 	if (wo == WO_BDEV_FLUSH && !dc->disk_flushes)
1402 		wo = WO_DRAIN_IO;
1403 	if (wo == WO_DRAIN_IO && !dc->disk_drain)
1404 		wo = WO_NONE;
1405 
1406 	return wo;
1407 }
1408 
1409 /**
1410  * drbd_bump_write_ordering() - Fall back to an other write ordering method
1411  * @connection:	DRBD connection.
1412  * @wo:		Write ordering method to try.
1413  */
1414 void drbd_bump_write_ordering(struct drbd_resource *resource, struct drbd_backing_dev *bdev,
1415 			      enum write_ordering_e wo)
1416 {
1417 	struct drbd_device *device;
1418 	enum write_ordering_e pwo;
1419 	int vnr;
1420 	static char *write_ordering_str[] = {
1421 		[WO_NONE] = "none",
1422 		[WO_DRAIN_IO] = "drain",
1423 		[WO_BDEV_FLUSH] = "flush",
1424 	};
1425 
1426 	pwo = resource->write_ordering;
1427 	if (wo != WO_BDEV_FLUSH)
1428 		wo = min(pwo, wo);
1429 	rcu_read_lock();
1430 	idr_for_each_entry(&resource->devices, device, vnr) {
1431 		if (get_ldev(device)) {
1432 			wo = max_allowed_wo(device->ldev, wo);
1433 			if (device->ldev == bdev)
1434 				bdev = NULL;
1435 			put_ldev(device);
1436 		}
1437 	}
1438 
1439 	if (bdev)
1440 		wo = max_allowed_wo(bdev, wo);
1441 
1442 	rcu_read_unlock();
1443 
1444 	resource->write_ordering = wo;
1445 	if (pwo != resource->write_ordering || wo == WO_BDEV_FLUSH)
1446 		drbd_info(resource, "Method to ensure write ordering: %s\n", write_ordering_str[resource->write_ordering]);
1447 }
1448 
1449 /*
1450  * We *may* ignore the discard-zeroes-data setting, if so configured.
1451  *
1452  * Assumption is that it "discard_zeroes_data=0" is only because the backend
1453  * may ignore partial unaligned discards.
1454  *
1455  * LVM/DM thin as of at least
1456  *   LVM version:     2.02.115(2)-RHEL7 (2015-01-28)
1457  *   Library version: 1.02.93-RHEL7 (2015-01-28)
1458  *   Driver version:  4.29.0
1459  * still behaves this way.
1460  *
1461  * For unaligned (wrt. alignment and granularity) or too small discards,
1462  * we zero-out the initial (and/or) trailing unaligned partial chunks,
1463  * but discard all the aligned full chunks.
1464  *
1465  * At least for LVM/DM thin, the result is effectively "discard_zeroes_data=1".
1466  */
1467 int drbd_issue_discard_or_zero_out(struct drbd_device *device, sector_t start, unsigned int nr_sectors, bool discard)
1468 {
1469 	struct block_device *bdev = device->ldev->backing_bdev;
1470 	struct request_queue *q = bdev_get_queue(bdev);
1471 	sector_t tmp, nr;
1472 	unsigned int max_discard_sectors, granularity;
1473 	int alignment;
1474 	int err = 0;
1475 
1476 	if (!discard)
1477 		goto zero_out;
1478 
1479 	/* Zero-sector (unknown) and one-sector granularities are the same.  */
1480 	granularity = max(q->limits.discard_granularity >> 9, 1U);
1481 	alignment = (bdev_discard_alignment(bdev) >> 9) % granularity;
1482 
1483 	max_discard_sectors = min(q->limits.max_discard_sectors, (1U << 22));
1484 	max_discard_sectors -= max_discard_sectors % granularity;
1485 	if (unlikely(!max_discard_sectors))
1486 		goto zero_out;
1487 
1488 	if (nr_sectors < granularity)
1489 		goto zero_out;
1490 
1491 	tmp = start;
1492 	if (sector_div(tmp, granularity) != alignment) {
1493 		if (nr_sectors < 2*granularity)
1494 			goto zero_out;
1495 		/* start + gran - (start + gran - align) % gran */
1496 		tmp = start + granularity - alignment;
1497 		tmp = start + granularity - sector_div(tmp, granularity);
1498 
1499 		nr = tmp - start;
1500 		err |= blkdev_issue_zeroout(bdev, start, nr, GFP_NOIO, 0);
1501 		nr_sectors -= nr;
1502 		start = tmp;
1503 	}
1504 	while (nr_sectors >= granularity) {
1505 		nr = min_t(sector_t, nr_sectors, max_discard_sectors);
1506 		err |= blkdev_issue_discard(bdev, start, nr, GFP_NOIO, 0);
1507 		nr_sectors -= nr;
1508 		start += nr;
1509 	}
1510  zero_out:
1511 	if (nr_sectors) {
1512 		err |= blkdev_issue_zeroout(bdev, start, nr_sectors, GFP_NOIO, 0);
1513 	}
1514 	return err != 0;
1515 }
1516 
1517 static bool can_do_reliable_discards(struct drbd_device *device)
1518 {
1519 	struct request_queue *q = bdev_get_queue(device->ldev->backing_bdev);
1520 	struct disk_conf *dc;
1521 	bool can_do;
1522 
1523 	if (!blk_queue_discard(q))
1524 		return false;
1525 
1526 	if (q->limits.discard_zeroes_data)
1527 		return true;
1528 
1529 	rcu_read_lock();
1530 	dc = rcu_dereference(device->ldev->disk_conf);
1531 	can_do = dc->discard_zeroes_if_aligned;
1532 	rcu_read_unlock();
1533 	return can_do;
1534 }
1535 
1536 static void drbd_issue_peer_discard(struct drbd_device *device, struct drbd_peer_request *peer_req)
1537 {
1538 	/* If the backend cannot discard, or does not guarantee
1539 	 * read-back zeroes in discarded ranges, we fall back to
1540 	 * zero-out.  Unless configuration specifically requested
1541 	 * otherwise. */
1542 	if (!can_do_reliable_discards(device))
1543 		peer_req->flags |= EE_IS_TRIM_USE_ZEROOUT;
1544 
1545 	if (drbd_issue_discard_or_zero_out(device, peer_req->i.sector,
1546 	    peer_req->i.size >> 9, !(peer_req->flags & EE_IS_TRIM_USE_ZEROOUT)))
1547 		peer_req->flags |= EE_WAS_ERROR;
1548 	drbd_endio_write_sec_final(peer_req);
1549 }
1550 
1551 static void drbd_issue_peer_wsame(struct drbd_device *device,
1552 				  struct drbd_peer_request *peer_req)
1553 {
1554 	struct block_device *bdev = device->ldev->backing_bdev;
1555 	sector_t s = peer_req->i.sector;
1556 	sector_t nr = peer_req->i.size >> 9;
1557 	if (blkdev_issue_write_same(bdev, s, nr, GFP_NOIO, peer_req->pages))
1558 		peer_req->flags |= EE_WAS_ERROR;
1559 	drbd_endio_write_sec_final(peer_req);
1560 }
1561 
1562 
1563 /**
1564  * drbd_submit_peer_request()
1565  * @device:	DRBD device.
1566  * @peer_req:	peer request
1567  * @rw:		flag field, see bio->bi_opf
1568  *
1569  * May spread the pages to multiple bios,
1570  * depending on bio_add_page restrictions.
1571  *
1572  * Returns 0 if all bios have been submitted,
1573  * -ENOMEM if we could not allocate enough bios,
1574  * -ENOSPC (any better suggestion?) if we have not been able to bio_add_page a
1575  *  single page to an empty bio (which should never happen and likely indicates
1576  *  that the lower level IO stack is in some way broken). This has been observed
1577  *  on certain Xen deployments.
1578  */
1579 /* TODO allocate from our own bio_set. */
1580 int drbd_submit_peer_request(struct drbd_device *device,
1581 			     struct drbd_peer_request *peer_req,
1582 			     const unsigned op, const unsigned op_flags,
1583 			     const int fault_type)
1584 {
1585 	struct bio *bios = NULL;
1586 	struct bio *bio;
1587 	struct page *page = peer_req->pages;
1588 	sector_t sector = peer_req->i.sector;
1589 	unsigned data_size = peer_req->i.size;
1590 	unsigned n_bios = 0;
1591 	unsigned nr_pages = (data_size + PAGE_SIZE -1) >> PAGE_SHIFT;
1592 	int err = -ENOMEM;
1593 
1594 	/* TRIM/DISCARD: for now, always use the helper function
1595 	 * blkdev_issue_zeroout(..., discard=true).
1596 	 * It's synchronous, but it does the right thing wrt. bio splitting.
1597 	 * Correctness first, performance later.  Next step is to code an
1598 	 * asynchronous variant of the same.
1599 	 */
1600 	if (peer_req->flags & (EE_IS_TRIM|EE_WRITE_SAME)) {
1601 		/* wait for all pending IO completions, before we start
1602 		 * zeroing things out. */
1603 		conn_wait_active_ee_empty(peer_req->peer_device->connection);
1604 		/* add it to the active list now,
1605 		 * so we can find it to present it in debugfs */
1606 		peer_req->submit_jif = jiffies;
1607 		peer_req->flags |= EE_SUBMITTED;
1608 
1609 		/* If this was a resync request from receive_rs_deallocated(),
1610 		 * it is already on the sync_ee list */
1611 		if (list_empty(&peer_req->w.list)) {
1612 			spin_lock_irq(&device->resource->req_lock);
1613 			list_add_tail(&peer_req->w.list, &device->active_ee);
1614 			spin_unlock_irq(&device->resource->req_lock);
1615 		}
1616 
1617 		if (peer_req->flags & EE_IS_TRIM)
1618 			drbd_issue_peer_discard(device, peer_req);
1619 		else /* EE_WRITE_SAME */
1620 			drbd_issue_peer_wsame(device, peer_req);
1621 		return 0;
1622 	}
1623 
1624 	/* In most cases, we will only need one bio.  But in case the lower
1625 	 * level restrictions happen to be different at this offset on this
1626 	 * side than those of the sending peer, we may need to submit the
1627 	 * request in more than one bio.
1628 	 *
1629 	 * Plain bio_alloc is good enough here, this is no DRBD internally
1630 	 * generated bio, but a bio allocated on behalf of the peer.
1631 	 */
1632 next_bio:
1633 	bio = bio_alloc(GFP_NOIO, nr_pages);
1634 	if (!bio) {
1635 		drbd_err(device, "submit_ee: Allocation of a bio failed (nr_pages=%u)\n", nr_pages);
1636 		goto fail;
1637 	}
1638 	/* > peer_req->i.sector, unless this is the first bio */
1639 	bio->bi_iter.bi_sector = sector;
1640 	bio->bi_bdev = device->ldev->backing_bdev;
1641 	bio_set_op_attrs(bio, op, op_flags);
1642 	bio->bi_private = peer_req;
1643 	bio->bi_end_io = drbd_peer_request_endio;
1644 
1645 	bio->bi_next = bios;
1646 	bios = bio;
1647 	++n_bios;
1648 
1649 	page_chain_for_each(page) {
1650 		unsigned len = min_t(unsigned, data_size, PAGE_SIZE);
1651 		if (!bio_add_page(bio, page, len, 0)) {
1652 			/* A single page must always be possible!
1653 			 * But in case it fails anyways,
1654 			 * we deal with it, and complain (below). */
1655 			if (bio->bi_vcnt == 0) {
1656 				drbd_err(device,
1657 					"bio_add_page failed for len=%u, "
1658 					"bi_vcnt=0 (bi_sector=%llu)\n",
1659 					len, (uint64_t)bio->bi_iter.bi_sector);
1660 				err = -ENOSPC;
1661 				goto fail;
1662 			}
1663 			goto next_bio;
1664 		}
1665 		data_size -= len;
1666 		sector += len >> 9;
1667 		--nr_pages;
1668 	}
1669 	D_ASSERT(device, data_size == 0);
1670 	D_ASSERT(device, page == NULL);
1671 
1672 	atomic_set(&peer_req->pending_bios, n_bios);
1673 	/* for debugfs: update timestamp, mark as submitted */
1674 	peer_req->submit_jif = jiffies;
1675 	peer_req->flags |= EE_SUBMITTED;
1676 	do {
1677 		bio = bios;
1678 		bios = bios->bi_next;
1679 		bio->bi_next = NULL;
1680 
1681 		drbd_generic_make_request(device, fault_type, bio);
1682 	} while (bios);
1683 	return 0;
1684 
1685 fail:
1686 	while (bios) {
1687 		bio = bios;
1688 		bios = bios->bi_next;
1689 		bio_put(bio);
1690 	}
1691 	return err;
1692 }
1693 
1694 static void drbd_remove_epoch_entry_interval(struct drbd_device *device,
1695 					     struct drbd_peer_request *peer_req)
1696 {
1697 	struct drbd_interval *i = &peer_req->i;
1698 
1699 	drbd_remove_interval(&device->write_requests, i);
1700 	drbd_clear_interval(i);
1701 
1702 	/* Wake up any processes waiting for this peer request to complete.  */
1703 	if (i->waiting)
1704 		wake_up(&device->misc_wait);
1705 }
1706 
1707 static void conn_wait_active_ee_empty(struct drbd_connection *connection)
1708 {
1709 	struct drbd_peer_device *peer_device;
1710 	int vnr;
1711 
1712 	rcu_read_lock();
1713 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
1714 		struct drbd_device *device = peer_device->device;
1715 
1716 		kref_get(&device->kref);
1717 		rcu_read_unlock();
1718 		drbd_wait_ee_list_empty(device, &device->active_ee);
1719 		kref_put(&device->kref, drbd_destroy_device);
1720 		rcu_read_lock();
1721 	}
1722 	rcu_read_unlock();
1723 }
1724 
1725 static int receive_Barrier(struct drbd_connection *connection, struct packet_info *pi)
1726 {
1727 	int rv;
1728 	struct p_barrier *p = pi->data;
1729 	struct drbd_epoch *epoch;
1730 
1731 	/* FIXME these are unacked on connection,
1732 	 * not a specific (peer)device.
1733 	 */
1734 	connection->current_epoch->barrier_nr = p->barrier;
1735 	connection->current_epoch->connection = connection;
1736 	rv = drbd_may_finish_epoch(connection, connection->current_epoch, EV_GOT_BARRIER_NR);
1737 
1738 	/* P_BARRIER_ACK may imply that the corresponding extent is dropped from
1739 	 * the activity log, which means it would not be resynced in case the
1740 	 * R_PRIMARY crashes now.
1741 	 * Therefore we must send the barrier_ack after the barrier request was
1742 	 * completed. */
1743 	switch (connection->resource->write_ordering) {
1744 	case WO_NONE:
1745 		if (rv == FE_RECYCLED)
1746 			return 0;
1747 
1748 		/* receiver context, in the writeout path of the other node.
1749 		 * avoid potential distributed deadlock */
1750 		epoch = kmalloc(sizeof(struct drbd_epoch), GFP_NOIO);
1751 		if (epoch)
1752 			break;
1753 		else
1754 			drbd_warn(connection, "Allocation of an epoch failed, slowing down\n");
1755 			/* Fall through */
1756 
1757 	case WO_BDEV_FLUSH:
1758 	case WO_DRAIN_IO:
1759 		conn_wait_active_ee_empty(connection);
1760 		drbd_flush(connection);
1761 
1762 		if (atomic_read(&connection->current_epoch->epoch_size)) {
1763 			epoch = kmalloc(sizeof(struct drbd_epoch), GFP_NOIO);
1764 			if (epoch)
1765 				break;
1766 		}
1767 
1768 		return 0;
1769 	default:
1770 		drbd_err(connection, "Strangeness in connection->write_ordering %d\n",
1771 			 connection->resource->write_ordering);
1772 		return -EIO;
1773 	}
1774 
1775 	epoch->flags = 0;
1776 	atomic_set(&epoch->epoch_size, 0);
1777 	atomic_set(&epoch->active, 0);
1778 
1779 	spin_lock(&connection->epoch_lock);
1780 	if (atomic_read(&connection->current_epoch->epoch_size)) {
1781 		list_add(&epoch->list, &connection->current_epoch->list);
1782 		connection->current_epoch = epoch;
1783 		connection->epochs++;
1784 	} else {
1785 		/* The current_epoch got recycled while we allocated this one... */
1786 		kfree(epoch);
1787 	}
1788 	spin_unlock(&connection->epoch_lock);
1789 
1790 	return 0;
1791 }
1792 
1793 /* quick wrapper in case payload size != request_size (write same) */
1794 static void drbd_csum_ee_size(struct crypto_ahash *h,
1795 			      struct drbd_peer_request *r, void *d,
1796 			      unsigned int payload_size)
1797 {
1798 	unsigned int tmp = r->i.size;
1799 	r->i.size = payload_size;
1800 	drbd_csum_ee(h, r, d);
1801 	r->i.size = tmp;
1802 }
1803 
1804 /* used from receive_RSDataReply (recv_resync_read)
1805  * and from receive_Data.
1806  * data_size: actual payload ("data in")
1807  * 	for normal writes that is bi_size.
1808  * 	for discards, that is zero.
1809  * 	for write same, it is logical_block_size.
1810  * both trim and write same have the bi_size ("data len to be affected")
1811  * as extra argument in the packet header.
1812  */
1813 static struct drbd_peer_request *
1814 read_in_block(struct drbd_peer_device *peer_device, u64 id, sector_t sector,
1815 	      struct packet_info *pi) __must_hold(local)
1816 {
1817 	struct drbd_device *device = peer_device->device;
1818 	const sector_t capacity = drbd_get_capacity(device->this_bdev);
1819 	struct drbd_peer_request *peer_req;
1820 	struct page *page;
1821 	int digest_size, err;
1822 	unsigned int data_size = pi->size, ds;
1823 	void *dig_in = peer_device->connection->int_dig_in;
1824 	void *dig_vv = peer_device->connection->int_dig_vv;
1825 	unsigned long *data;
1826 	struct p_trim *trim = (pi->cmd == P_TRIM) ? pi->data : NULL;
1827 	struct p_trim *wsame = (pi->cmd == P_WSAME) ? pi->data : NULL;
1828 
1829 	digest_size = 0;
1830 	if (!trim && peer_device->connection->peer_integrity_tfm) {
1831 		digest_size = crypto_ahash_digestsize(peer_device->connection->peer_integrity_tfm);
1832 		/*
1833 		 * FIXME: Receive the incoming digest into the receive buffer
1834 		 *	  here, together with its struct p_data?
1835 		 */
1836 		err = drbd_recv_all_warn(peer_device->connection, dig_in, digest_size);
1837 		if (err)
1838 			return NULL;
1839 		data_size -= digest_size;
1840 	}
1841 
1842 	/* assume request_size == data_size, but special case trim and wsame. */
1843 	ds = data_size;
1844 	if (trim) {
1845 		if (!expect(data_size == 0))
1846 			return NULL;
1847 		ds = be32_to_cpu(trim->size);
1848 	} else if (wsame) {
1849 		if (data_size != queue_logical_block_size(device->rq_queue)) {
1850 			drbd_err(peer_device, "data size (%u) != drbd logical block size (%u)\n",
1851 				data_size, queue_logical_block_size(device->rq_queue));
1852 			return NULL;
1853 		}
1854 		if (data_size != bdev_logical_block_size(device->ldev->backing_bdev)) {
1855 			drbd_err(peer_device, "data size (%u) != backend logical block size (%u)\n",
1856 				data_size, bdev_logical_block_size(device->ldev->backing_bdev));
1857 			return NULL;
1858 		}
1859 		ds = be32_to_cpu(wsame->size);
1860 	}
1861 
1862 	if (!expect(IS_ALIGNED(ds, 512)))
1863 		return NULL;
1864 	if (trim || wsame) {
1865 		if (!expect(ds <= (DRBD_MAX_BBIO_SECTORS << 9)))
1866 			return NULL;
1867 	} else if (!expect(ds <= DRBD_MAX_BIO_SIZE))
1868 		return NULL;
1869 
1870 	/* even though we trust out peer,
1871 	 * we sometimes have to double check. */
1872 	if (sector + (ds>>9) > capacity) {
1873 		drbd_err(device, "request from peer beyond end of local disk: "
1874 			"capacity: %llus < sector: %llus + size: %u\n",
1875 			(unsigned long long)capacity,
1876 			(unsigned long long)sector, ds);
1877 		return NULL;
1878 	}
1879 
1880 	/* GFP_NOIO, because we must not cause arbitrary write-out: in a DRBD
1881 	 * "criss-cross" setup, that might cause write-out on some other DRBD,
1882 	 * which in turn might block on the other node at this very place.  */
1883 	peer_req = drbd_alloc_peer_req(peer_device, id, sector, ds, data_size, GFP_NOIO);
1884 	if (!peer_req)
1885 		return NULL;
1886 
1887 	peer_req->flags |= EE_WRITE;
1888 	if (trim) {
1889 		peer_req->flags |= EE_IS_TRIM;
1890 		return peer_req;
1891 	}
1892 	if (wsame)
1893 		peer_req->flags |= EE_WRITE_SAME;
1894 
1895 	/* receive payload size bytes into page chain */
1896 	ds = data_size;
1897 	page = peer_req->pages;
1898 	page_chain_for_each(page) {
1899 		unsigned len = min_t(int, ds, PAGE_SIZE);
1900 		data = kmap(page);
1901 		err = drbd_recv_all_warn(peer_device->connection, data, len);
1902 		if (drbd_insert_fault(device, DRBD_FAULT_RECEIVE)) {
1903 			drbd_err(device, "Fault injection: Corrupting data on receive\n");
1904 			data[0] = data[0] ^ (unsigned long)-1;
1905 		}
1906 		kunmap(page);
1907 		if (err) {
1908 			drbd_free_peer_req(device, peer_req);
1909 			return NULL;
1910 		}
1911 		ds -= len;
1912 	}
1913 
1914 	if (digest_size) {
1915 		drbd_csum_ee_size(peer_device->connection->peer_integrity_tfm, peer_req, dig_vv, data_size);
1916 		if (memcmp(dig_in, dig_vv, digest_size)) {
1917 			drbd_err(device, "Digest integrity check FAILED: %llus +%u\n",
1918 				(unsigned long long)sector, data_size);
1919 			drbd_free_peer_req(device, peer_req);
1920 			return NULL;
1921 		}
1922 	}
1923 	device->recv_cnt += data_size >> 9;
1924 	return peer_req;
1925 }
1926 
1927 /* drbd_drain_block() just takes a data block
1928  * out of the socket input buffer, and discards it.
1929  */
1930 static int drbd_drain_block(struct drbd_peer_device *peer_device, int data_size)
1931 {
1932 	struct page *page;
1933 	int err = 0;
1934 	void *data;
1935 
1936 	if (!data_size)
1937 		return 0;
1938 
1939 	page = drbd_alloc_pages(peer_device, 1, 1);
1940 
1941 	data = kmap(page);
1942 	while (data_size) {
1943 		unsigned int len = min_t(int, data_size, PAGE_SIZE);
1944 
1945 		err = drbd_recv_all_warn(peer_device->connection, data, len);
1946 		if (err)
1947 			break;
1948 		data_size -= len;
1949 	}
1950 	kunmap(page);
1951 	drbd_free_pages(peer_device->device, page, 0);
1952 	return err;
1953 }
1954 
1955 static int recv_dless_read(struct drbd_peer_device *peer_device, struct drbd_request *req,
1956 			   sector_t sector, int data_size)
1957 {
1958 	struct bio_vec bvec;
1959 	struct bvec_iter iter;
1960 	struct bio *bio;
1961 	int digest_size, err, expect;
1962 	void *dig_in = peer_device->connection->int_dig_in;
1963 	void *dig_vv = peer_device->connection->int_dig_vv;
1964 
1965 	digest_size = 0;
1966 	if (peer_device->connection->peer_integrity_tfm) {
1967 		digest_size = crypto_ahash_digestsize(peer_device->connection->peer_integrity_tfm);
1968 		err = drbd_recv_all_warn(peer_device->connection, dig_in, digest_size);
1969 		if (err)
1970 			return err;
1971 		data_size -= digest_size;
1972 	}
1973 
1974 	/* optimistically update recv_cnt.  if receiving fails below,
1975 	 * we disconnect anyways, and counters will be reset. */
1976 	peer_device->device->recv_cnt += data_size>>9;
1977 
1978 	bio = req->master_bio;
1979 	D_ASSERT(peer_device->device, sector == bio->bi_iter.bi_sector);
1980 
1981 	bio_for_each_segment(bvec, bio, iter) {
1982 		void *mapped = kmap(bvec.bv_page) + bvec.bv_offset;
1983 		expect = min_t(int, data_size, bvec.bv_len);
1984 		err = drbd_recv_all_warn(peer_device->connection, mapped, expect);
1985 		kunmap(bvec.bv_page);
1986 		if (err)
1987 			return err;
1988 		data_size -= expect;
1989 	}
1990 
1991 	if (digest_size) {
1992 		drbd_csum_bio(peer_device->connection->peer_integrity_tfm, bio, dig_vv);
1993 		if (memcmp(dig_in, dig_vv, digest_size)) {
1994 			drbd_err(peer_device, "Digest integrity check FAILED. Broken NICs?\n");
1995 			return -EINVAL;
1996 		}
1997 	}
1998 
1999 	D_ASSERT(peer_device->device, data_size == 0);
2000 	return 0;
2001 }
2002 
2003 /*
2004  * e_end_resync_block() is called in ack_sender context via
2005  * drbd_finish_peer_reqs().
2006  */
2007 static int e_end_resync_block(struct drbd_work *w, int unused)
2008 {
2009 	struct drbd_peer_request *peer_req =
2010 		container_of(w, struct drbd_peer_request, w);
2011 	struct drbd_peer_device *peer_device = peer_req->peer_device;
2012 	struct drbd_device *device = peer_device->device;
2013 	sector_t sector = peer_req->i.sector;
2014 	int err;
2015 
2016 	D_ASSERT(device, drbd_interval_empty(&peer_req->i));
2017 
2018 	if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) {
2019 		drbd_set_in_sync(device, sector, peer_req->i.size);
2020 		err = drbd_send_ack(peer_device, P_RS_WRITE_ACK, peer_req);
2021 	} else {
2022 		/* Record failure to sync */
2023 		drbd_rs_failed_io(device, sector, peer_req->i.size);
2024 
2025 		err  = drbd_send_ack(peer_device, P_NEG_ACK, peer_req);
2026 	}
2027 	dec_unacked(device);
2028 
2029 	return err;
2030 }
2031 
2032 static int recv_resync_read(struct drbd_peer_device *peer_device, sector_t sector,
2033 			    struct packet_info *pi) __releases(local)
2034 {
2035 	struct drbd_device *device = peer_device->device;
2036 	struct drbd_peer_request *peer_req;
2037 
2038 	peer_req = read_in_block(peer_device, ID_SYNCER, sector, pi);
2039 	if (!peer_req)
2040 		goto fail;
2041 
2042 	dec_rs_pending(device);
2043 
2044 	inc_unacked(device);
2045 	/* corresponding dec_unacked() in e_end_resync_block()
2046 	 * respective _drbd_clear_done_ee */
2047 
2048 	peer_req->w.cb = e_end_resync_block;
2049 	peer_req->submit_jif = jiffies;
2050 
2051 	spin_lock_irq(&device->resource->req_lock);
2052 	list_add_tail(&peer_req->w.list, &device->sync_ee);
2053 	spin_unlock_irq(&device->resource->req_lock);
2054 
2055 	atomic_add(pi->size >> 9, &device->rs_sect_ev);
2056 	if (drbd_submit_peer_request(device, peer_req, REQ_OP_WRITE, 0,
2057 				     DRBD_FAULT_RS_WR) == 0)
2058 		return 0;
2059 
2060 	/* don't care for the reason here */
2061 	drbd_err(device, "submit failed, triggering re-connect\n");
2062 	spin_lock_irq(&device->resource->req_lock);
2063 	list_del(&peer_req->w.list);
2064 	spin_unlock_irq(&device->resource->req_lock);
2065 
2066 	drbd_free_peer_req(device, peer_req);
2067 fail:
2068 	put_ldev(device);
2069 	return -EIO;
2070 }
2071 
2072 static struct drbd_request *
2073 find_request(struct drbd_device *device, struct rb_root *root, u64 id,
2074 	     sector_t sector, bool missing_ok, const char *func)
2075 {
2076 	struct drbd_request *req;
2077 
2078 	/* Request object according to our peer */
2079 	req = (struct drbd_request *)(unsigned long)id;
2080 	if (drbd_contains_interval(root, sector, &req->i) && req->i.local)
2081 		return req;
2082 	if (!missing_ok) {
2083 		drbd_err(device, "%s: failed to find request 0x%lx, sector %llus\n", func,
2084 			(unsigned long)id, (unsigned long long)sector);
2085 	}
2086 	return NULL;
2087 }
2088 
2089 static int receive_DataReply(struct drbd_connection *connection, struct packet_info *pi)
2090 {
2091 	struct drbd_peer_device *peer_device;
2092 	struct drbd_device *device;
2093 	struct drbd_request *req;
2094 	sector_t sector;
2095 	int err;
2096 	struct p_data *p = pi->data;
2097 
2098 	peer_device = conn_peer_device(connection, pi->vnr);
2099 	if (!peer_device)
2100 		return -EIO;
2101 	device = peer_device->device;
2102 
2103 	sector = be64_to_cpu(p->sector);
2104 
2105 	spin_lock_irq(&device->resource->req_lock);
2106 	req = find_request(device, &device->read_requests, p->block_id, sector, false, __func__);
2107 	spin_unlock_irq(&device->resource->req_lock);
2108 	if (unlikely(!req))
2109 		return -EIO;
2110 
2111 	/* hlist_del(&req->collision) is done in _req_may_be_done, to avoid
2112 	 * special casing it there for the various failure cases.
2113 	 * still no race with drbd_fail_pending_reads */
2114 	err = recv_dless_read(peer_device, req, sector, pi->size);
2115 	if (!err)
2116 		req_mod(req, DATA_RECEIVED);
2117 	/* else: nothing. handled from drbd_disconnect...
2118 	 * I don't think we may complete this just yet
2119 	 * in case we are "on-disconnect: freeze" */
2120 
2121 	return err;
2122 }
2123 
2124 static int receive_RSDataReply(struct drbd_connection *connection, struct packet_info *pi)
2125 {
2126 	struct drbd_peer_device *peer_device;
2127 	struct drbd_device *device;
2128 	sector_t sector;
2129 	int err;
2130 	struct p_data *p = pi->data;
2131 
2132 	peer_device = conn_peer_device(connection, pi->vnr);
2133 	if (!peer_device)
2134 		return -EIO;
2135 	device = peer_device->device;
2136 
2137 	sector = be64_to_cpu(p->sector);
2138 	D_ASSERT(device, p->block_id == ID_SYNCER);
2139 
2140 	if (get_ldev(device)) {
2141 		/* data is submitted to disk within recv_resync_read.
2142 		 * corresponding put_ldev done below on error,
2143 		 * or in drbd_peer_request_endio. */
2144 		err = recv_resync_read(peer_device, sector, pi);
2145 	} else {
2146 		if (__ratelimit(&drbd_ratelimit_state))
2147 			drbd_err(device, "Can not write resync data to local disk.\n");
2148 
2149 		err = drbd_drain_block(peer_device, pi->size);
2150 
2151 		drbd_send_ack_dp(peer_device, P_NEG_ACK, p, pi->size);
2152 	}
2153 
2154 	atomic_add(pi->size >> 9, &device->rs_sect_in);
2155 
2156 	return err;
2157 }
2158 
2159 static void restart_conflicting_writes(struct drbd_device *device,
2160 				       sector_t sector, int size)
2161 {
2162 	struct drbd_interval *i;
2163 	struct drbd_request *req;
2164 
2165 	drbd_for_each_overlap(i, &device->write_requests, sector, size) {
2166 		if (!i->local)
2167 			continue;
2168 		req = container_of(i, struct drbd_request, i);
2169 		if (req->rq_state & RQ_LOCAL_PENDING ||
2170 		    !(req->rq_state & RQ_POSTPONED))
2171 			continue;
2172 		/* as it is RQ_POSTPONED, this will cause it to
2173 		 * be queued on the retry workqueue. */
2174 		__req_mod(req, CONFLICT_RESOLVED, NULL);
2175 	}
2176 }
2177 
2178 /*
2179  * e_end_block() is called in ack_sender context via drbd_finish_peer_reqs().
2180  */
2181 static int e_end_block(struct drbd_work *w, int cancel)
2182 {
2183 	struct drbd_peer_request *peer_req =
2184 		container_of(w, struct drbd_peer_request, w);
2185 	struct drbd_peer_device *peer_device = peer_req->peer_device;
2186 	struct drbd_device *device = peer_device->device;
2187 	sector_t sector = peer_req->i.sector;
2188 	int err = 0, pcmd;
2189 
2190 	if (peer_req->flags & EE_SEND_WRITE_ACK) {
2191 		if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) {
2192 			pcmd = (device->state.conn >= C_SYNC_SOURCE &&
2193 				device->state.conn <= C_PAUSED_SYNC_T &&
2194 				peer_req->flags & EE_MAY_SET_IN_SYNC) ?
2195 				P_RS_WRITE_ACK : P_WRITE_ACK;
2196 			err = drbd_send_ack(peer_device, pcmd, peer_req);
2197 			if (pcmd == P_RS_WRITE_ACK)
2198 				drbd_set_in_sync(device, sector, peer_req->i.size);
2199 		} else {
2200 			err = drbd_send_ack(peer_device, P_NEG_ACK, peer_req);
2201 			/* we expect it to be marked out of sync anyways...
2202 			 * maybe assert this?  */
2203 		}
2204 		dec_unacked(device);
2205 	}
2206 
2207 	/* we delete from the conflict detection hash _after_ we sent out the
2208 	 * P_WRITE_ACK / P_NEG_ACK, to get the sequence number right.  */
2209 	if (peer_req->flags & EE_IN_INTERVAL_TREE) {
2210 		spin_lock_irq(&device->resource->req_lock);
2211 		D_ASSERT(device, !drbd_interval_empty(&peer_req->i));
2212 		drbd_remove_epoch_entry_interval(device, peer_req);
2213 		if (peer_req->flags & EE_RESTART_REQUESTS)
2214 			restart_conflicting_writes(device, sector, peer_req->i.size);
2215 		spin_unlock_irq(&device->resource->req_lock);
2216 	} else
2217 		D_ASSERT(device, drbd_interval_empty(&peer_req->i));
2218 
2219 	drbd_may_finish_epoch(peer_device->connection, peer_req->epoch, EV_PUT + (cancel ? EV_CLEANUP : 0));
2220 
2221 	return err;
2222 }
2223 
2224 static int e_send_ack(struct drbd_work *w, enum drbd_packet ack)
2225 {
2226 	struct drbd_peer_request *peer_req =
2227 		container_of(w, struct drbd_peer_request, w);
2228 	struct drbd_peer_device *peer_device = peer_req->peer_device;
2229 	int err;
2230 
2231 	err = drbd_send_ack(peer_device, ack, peer_req);
2232 	dec_unacked(peer_device->device);
2233 
2234 	return err;
2235 }
2236 
2237 static int e_send_superseded(struct drbd_work *w, int unused)
2238 {
2239 	return e_send_ack(w, P_SUPERSEDED);
2240 }
2241 
2242 static int e_send_retry_write(struct drbd_work *w, int unused)
2243 {
2244 	struct drbd_peer_request *peer_req =
2245 		container_of(w, struct drbd_peer_request, w);
2246 	struct drbd_connection *connection = peer_req->peer_device->connection;
2247 
2248 	return e_send_ack(w, connection->agreed_pro_version >= 100 ?
2249 			     P_RETRY_WRITE : P_SUPERSEDED);
2250 }
2251 
2252 static bool seq_greater(u32 a, u32 b)
2253 {
2254 	/*
2255 	 * We assume 32-bit wrap-around here.
2256 	 * For 24-bit wrap-around, we would have to shift:
2257 	 *  a <<= 8; b <<= 8;
2258 	 */
2259 	return (s32)a - (s32)b > 0;
2260 }
2261 
2262 static u32 seq_max(u32 a, u32 b)
2263 {
2264 	return seq_greater(a, b) ? a : b;
2265 }
2266 
2267 static void update_peer_seq(struct drbd_peer_device *peer_device, unsigned int peer_seq)
2268 {
2269 	struct drbd_device *device = peer_device->device;
2270 	unsigned int newest_peer_seq;
2271 
2272 	if (test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags)) {
2273 		spin_lock(&device->peer_seq_lock);
2274 		newest_peer_seq = seq_max(device->peer_seq, peer_seq);
2275 		device->peer_seq = newest_peer_seq;
2276 		spin_unlock(&device->peer_seq_lock);
2277 		/* wake up only if we actually changed device->peer_seq */
2278 		if (peer_seq == newest_peer_seq)
2279 			wake_up(&device->seq_wait);
2280 	}
2281 }
2282 
2283 static inline int overlaps(sector_t s1, int l1, sector_t s2, int l2)
2284 {
2285 	return !((s1 + (l1>>9) <= s2) || (s1 >= s2 + (l2>>9)));
2286 }
2287 
2288 /* maybe change sync_ee into interval trees as well? */
2289 static bool overlapping_resync_write(struct drbd_device *device, struct drbd_peer_request *peer_req)
2290 {
2291 	struct drbd_peer_request *rs_req;
2292 	bool rv = false;
2293 
2294 	spin_lock_irq(&device->resource->req_lock);
2295 	list_for_each_entry(rs_req, &device->sync_ee, w.list) {
2296 		if (overlaps(peer_req->i.sector, peer_req->i.size,
2297 			     rs_req->i.sector, rs_req->i.size)) {
2298 			rv = true;
2299 			break;
2300 		}
2301 	}
2302 	spin_unlock_irq(&device->resource->req_lock);
2303 
2304 	return rv;
2305 }
2306 
2307 /* Called from receive_Data.
2308  * Synchronize packets on sock with packets on msock.
2309  *
2310  * This is here so even when a P_DATA packet traveling via sock overtook an Ack
2311  * packet traveling on msock, they are still processed in the order they have
2312  * been sent.
2313  *
2314  * Note: we don't care for Ack packets overtaking P_DATA packets.
2315  *
2316  * In case packet_seq is larger than device->peer_seq number, there are
2317  * outstanding packets on the msock. We wait for them to arrive.
2318  * In case we are the logically next packet, we update device->peer_seq
2319  * ourselves. Correctly handles 32bit wrap around.
2320  *
2321  * Assume we have a 10 GBit connection, that is about 1<<30 byte per second,
2322  * about 1<<21 sectors per second. So "worst" case, we have 1<<3 == 8 seconds
2323  * for the 24bit wrap (historical atomic_t guarantee on some archs), and we have
2324  * 1<<9 == 512 seconds aka ages for the 32bit wrap around...
2325  *
2326  * returns 0 if we may process the packet,
2327  * -ERESTARTSYS if we were interrupted (by disconnect signal). */
2328 static int wait_for_and_update_peer_seq(struct drbd_peer_device *peer_device, const u32 peer_seq)
2329 {
2330 	struct drbd_device *device = peer_device->device;
2331 	DEFINE_WAIT(wait);
2332 	long timeout;
2333 	int ret = 0, tp;
2334 
2335 	if (!test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags))
2336 		return 0;
2337 
2338 	spin_lock(&device->peer_seq_lock);
2339 	for (;;) {
2340 		if (!seq_greater(peer_seq - 1, device->peer_seq)) {
2341 			device->peer_seq = seq_max(device->peer_seq, peer_seq);
2342 			break;
2343 		}
2344 
2345 		if (signal_pending(current)) {
2346 			ret = -ERESTARTSYS;
2347 			break;
2348 		}
2349 
2350 		rcu_read_lock();
2351 		tp = rcu_dereference(peer_device->connection->net_conf)->two_primaries;
2352 		rcu_read_unlock();
2353 
2354 		if (!tp)
2355 			break;
2356 
2357 		/* Only need to wait if two_primaries is enabled */
2358 		prepare_to_wait(&device->seq_wait, &wait, TASK_INTERRUPTIBLE);
2359 		spin_unlock(&device->peer_seq_lock);
2360 		rcu_read_lock();
2361 		timeout = rcu_dereference(peer_device->connection->net_conf)->ping_timeo*HZ/10;
2362 		rcu_read_unlock();
2363 		timeout = schedule_timeout(timeout);
2364 		spin_lock(&device->peer_seq_lock);
2365 		if (!timeout) {
2366 			ret = -ETIMEDOUT;
2367 			drbd_err(device, "Timed out waiting for missing ack packets; disconnecting\n");
2368 			break;
2369 		}
2370 	}
2371 	spin_unlock(&device->peer_seq_lock);
2372 	finish_wait(&device->seq_wait, &wait);
2373 	return ret;
2374 }
2375 
2376 /* see also bio_flags_to_wire()
2377  * DRBD_REQ_*, because we need to semantically map the flags to data packet
2378  * flags and back. We may replicate to other kernel versions. */
2379 static unsigned long wire_flags_to_bio_flags(u32 dpf)
2380 {
2381 	return  (dpf & DP_RW_SYNC ? REQ_SYNC : 0) |
2382 		(dpf & DP_FUA ? REQ_FUA : 0) |
2383 		(dpf & DP_FLUSH ? REQ_PREFLUSH : 0);
2384 }
2385 
2386 static unsigned long wire_flags_to_bio_op(u32 dpf)
2387 {
2388 	if (dpf & DP_DISCARD)
2389 		return REQ_OP_DISCARD;
2390 	else
2391 		return REQ_OP_WRITE;
2392 }
2393 
2394 static void fail_postponed_requests(struct drbd_device *device, sector_t sector,
2395 				    unsigned int size)
2396 {
2397 	struct drbd_interval *i;
2398 
2399     repeat:
2400 	drbd_for_each_overlap(i, &device->write_requests, sector, size) {
2401 		struct drbd_request *req;
2402 		struct bio_and_error m;
2403 
2404 		if (!i->local)
2405 			continue;
2406 		req = container_of(i, struct drbd_request, i);
2407 		if (!(req->rq_state & RQ_POSTPONED))
2408 			continue;
2409 		req->rq_state &= ~RQ_POSTPONED;
2410 		__req_mod(req, NEG_ACKED, &m);
2411 		spin_unlock_irq(&device->resource->req_lock);
2412 		if (m.bio)
2413 			complete_master_bio(device, &m);
2414 		spin_lock_irq(&device->resource->req_lock);
2415 		goto repeat;
2416 	}
2417 }
2418 
2419 static int handle_write_conflicts(struct drbd_device *device,
2420 				  struct drbd_peer_request *peer_req)
2421 {
2422 	struct drbd_connection *connection = peer_req->peer_device->connection;
2423 	bool resolve_conflicts = test_bit(RESOLVE_CONFLICTS, &connection->flags);
2424 	sector_t sector = peer_req->i.sector;
2425 	const unsigned int size = peer_req->i.size;
2426 	struct drbd_interval *i;
2427 	bool equal;
2428 	int err;
2429 
2430 	/*
2431 	 * Inserting the peer request into the write_requests tree will prevent
2432 	 * new conflicting local requests from being added.
2433 	 */
2434 	drbd_insert_interval(&device->write_requests, &peer_req->i);
2435 
2436     repeat:
2437 	drbd_for_each_overlap(i, &device->write_requests, sector, size) {
2438 		if (i == &peer_req->i)
2439 			continue;
2440 		if (i->completed)
2441 			continue;
2442 
2443 		if (!i->local) {
2444 			/*
2445 			 * Our peer has sent a conflicting remote request; this
2446 			 * should not happen in a two-node setup.  Wait for the
2447 			 * earlier peer request to complete.
2448 			 */
2449 			err = drbd_wait_misc(device, i);
2450 			if (err)
2451 				goto out;
2452 			goto repeat;
2453 		}
2454 
2455 		equal = i->sector == sector && i->size == size;
2456 		if (resolve_conflicts) {
2457 			/*
2458 			 * If the peer request is fully contained within the
2459 			 * overlapping request, it can be considered overwritten
2460 			 * and thus superseded; otherwise, it will be retried
2461 			 * once all overlapping requests have completed.
2462 			 */
2463 			bool superseded = i->sector <= sector && i->sector +
2464 				       (i->size >> 9) >= sector + (size >> 9);
2465 
2466 			if (!equal)
2467 				drbd_alert(device, "Concurrent writes detected: "
2468 					       "local=%llus +%u, remote=%llus +%u, "
2469 					       "assuming %s came first\n",
2470 					  (unsigned long long)i->sector, i->size,
2471 					  (unsigned long long)sector, size,
2472 					  superseded ? "local" : "remote");
2473 
2474 			peer_req->w.cb = superseded ? e_send_superseded :
2475 						   e_send_retry_write;
2476 			list_add_tail(&peer_req->w.list, &device->done_ee);
2477 			queue_work(connection->ack_sender, &peer_req->peer_device->send_acks_work);
2478 
2479 			err = -ENOENT;
2480 			goto out;
2481 		} else {
2482 			struct drbd_request *req =
2483 				container_of(i, struct drbd_request, i);
2484 
2485 			if (!equal)
2486 				drbd_alert(device, "Concurrent writes detected: "
2487 					       "local=%llus +%u, remote=%llus +%u\n",
2488 					  (unsigned long long)i->sector, i->size,
2489 					  (unsigned long long)sector, size);
2490 
2491 			if (req->rq_state & RQ_LOCAL_PENDING ||
2492 			    !(req->rq_state & RQ_POSTPONED)) {
2493 				/*
2494 				 * Wait for the node with the discard flag to
2495 				 * decide if this request has been superseded
2496 				 * or needs to be retried.
2497 				 * Requests that have been superseded will
2498 				 * disappear from the write_requests tree.
2499 				 *
2500 				 * In addition, wait for the conflicting
2501 				 * request to finish locally before submitting
2502 				 * the conflicting peer request.
2503 				 */
2504 				err = drbd_wait_misc(device, &req->i);
2505 				if (err) {
2506 					_conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD);
2507 					fail_postponed_requests(device, sector, size);
2508 					goto out;
2509 				}
2510 				goto repeat;
2511 			}
2512 			/*
2513 			 * Remember to restart the conflicting requests after
2514 			 * the new peer request has completed.
2515 			 */
2516 			peer_req->flags |= EE_RESTART_REQUESTS;
2517 		}
2518 	}
2519 	err = 0;
2520 
2521     out:
2522 	if (err)
2523 		drbd_remove_epoch_entry_interval(device, peer_req);
2524 	return err;
2525 }
2526 
2527 /* mirrored write */
2528 static int receive_Data(struct drbd_connection *connection, struct packet_info *pi)
2529 {
2530 	struct drbd_peer_device *peer_device;
2531 	struct drbd_device *device;
2532 	struct net_conf *nc;
2533 	sector_t sector;
2534 	struct drbd_peer_request *peer_req;
2535 	struct p_data *p = pi->data;
2536 	u32 peer_seq = be32_to_cpu(p->seq_num);
2537 	int op, op_flags;
2538 	u32 dp_flags;
2539 	int err, tp;
2540 
2541 	peer_device = conn_peer_device(connection, pi->vnr);
2542 	if (!peer_device)
2543 		return -EIO;
2544 	device = peer_device->device;
2545 
2546 	if (!get_ldev(device)) {
2547 		int err2;
2548 
2549 		err = wait_for_and_update_peer_seq(peer_device, peer_seq);
2550 		drbd_send_ack_dp(peer_device, P_NEG_ACK, p, pi->size);
2551 		atomic_inc(&connection->current_epoch->epoch_size);
2552 		err2 = drbd_drain_block(peer_device, pi->size);
2553 		if (!err)
2554 			err = err2;
2555 		return err;
2556 	}
2557 
2558 	/*
2559 	 * Corresponding put_ldev done either below (on various errors), or in
2560 	 * drbd_peer_request_endio, if we successfully submit the data at the
2561 	 * end of this function.
2562 	 */
2563 
2564 	sector = be64_to_cpu(p->sector);
2565 	peer_req = read_in_block(peer_device, p->block_id, sector, pi);
2566 	if (!peer_req) {
2567 		put_ldev(device);
2568 		return -EIO;
2569 	}
2570 
2571 	peer_req->w.cb = e_end_block;
2572 	peer_req->submit_jif = jiffies;
2573 	peer_req->flags |= EE_APPLICATION;
2574 
2575 	dp_flags = be32_to_cpu(p->dp_flags);
2576 	op = wire_flags_to_bio_op(dp_flags);
2577 	op_flags = wire_flags_to_bio_flags(dp_flags);
2578 	if (pi->cmd == P_TRIM) {
2579 		D_ASSERT(peer_device, peer_req->i.size > 0);
2580 		D_ASSERT(peer_device, op == REQ_OP_DISCARD);
2581 		D_ASSERT(peer_device, peer_req->pages == NULL);
2582 	} else if (peer_req->pages == NULL) {
2583 		D_ASSERT(device, peer_req->i.size == 0);
2584 		D_ASSERT(device, dp_flags & DP_FLUSH);
2585 	}
2586 
2587 	if (dp_flags & DP_MAY_SET_IN_SYNC)
2588 		peer_req->flags |= EE_MAY_SET_IN_SYNC;
2589 
2590 	spin_lock(&connection->epoch_lock);
2591 	peer_req->epoch = connection->current_epoch;
2592 	atomic_inc(&peer_req->epoch->epoch_size);
2593 	atomic_inc(&peer_req->epoch->active);
2594 	spin_unlock(&connection->epoch_lock);
2595 
2596 	rcu_read_lock();
2597 	nc = rcu_dereference(peer_device->connection->net_conf);
2598 	tp = nc->two_primaries;
2599 	if (peer_device->connection->agreed_pro_version < 100) {
2600 		switch (nc->wire_protocol) {
2601 		case DRBD_PROT_C:
2602 			dp_flags |= DP_SEND_WRITE_ACK;
2603 			break;
2604 		case DRBD_PROT_B:
2605 			dp_flags |= DP_SEND_RECEIVE_ACK;
2606 			break;
2607 		}
2608 	}
2609 	rcu_read_unlock();
2610 
2611 	if (dp_flags & DP_SEND_WRITE_ACK) {
2612 		peer_req->flags |= EE_SEND_WRITE_ACK;
2613 		inc_unacked(device);
2614 		/* corresponding dec_unacked() in e_end_block()
2615 		 * respective _drbd_clear_done_ee */
2616 	}
2617 
2618 	if (dp_flags & DP_SEND_RECEIVE_ACK) {
2619 		/* I really don't like it that the receiver thread
2620 		 * sends on the msock, but anyways */
2621 		drbd_send_ack(peer_device, P_RECV_ACK, peer_req);
2622 	}
2623 
2624 	if (tp) {
2625 		/* two primaries implies protocol C */
2626 		D_ASSERT(device, dp_flags & DP_SEND_WRITE_ACK);
2627 		peer_req->flags |= EE_IN_INTERVAL_TREE;
2628 		err = wait_for_and_update_peer_seq(peer_device, peer_seq);
2629 		if (err)
2630 			goto out_interrupted;
2631 		spin_lock_irq(&device->resource->req_lock);
2632 		err = handle_write_conflicts(device, peer_req);
2633 		if (err) {
2634 			spin_unlock_irq(&device->resource->req_lock);
2635 			if (err == -ENOENT) {
2636 				put_ldev(device);
2637 				return 0;
2638 			}
2639 			goto out_interrupted;
2640 		}
2641 	} else {
2642 		update_peer_seq(peer_device, peer_seq);
2643 		spin_lock_irq(&device->resource->req_lock);
2644 	}
2645 	/* TRIM and WRITE_SAME are processed synchronously,
2646 	 * we wait for all pending requests, respectively wait for
2647 	 * active_ee to become empty in drbd_submit_peer_request();
2648 	 * better not add ourselves here. */
2649 	if ((peer_req->flags & (EE_IS_TRIM|EE_WRITE_SAME)) == 0)
2650 		list_add_tail(&peer_req->w.list, &device->active_ee);
2651 	spin_unlock_irq(&device->resource->req_lock);
2652 
2653 	if (device->state.conn == C_SYNC_TARGET)
2654 		wait_event(device->ee_wait, !overlapping_resync_write(device, peer_req));
2655 
2656 	if (device->state.pdsk < D_INCONSISTENT) {
2657 		/* In case we have the only disk of the cluster, */
2658 		drbd_set_out_of_sync(device, peer_req->i.sector, peer_req->i.size);
2659 		peer_req->flags &= ~EE_MAY_SET_IN_SYNC;
2660 		drbd_al_begin_io(device, &peer_req->i);
2661 		peer_req->flags |= EE_CALL_AL_COMPLETE_IO;
2662 	}
2663 
2664 	err = drbd_submit_peer_request(device, peer_req, op, op_flags,
2665 				       DRBD_FAULT_DT_WR);
2666 	if (!err)
2667 		return 0;
2668 
2669 	/* don't care for the reason here */
2670 	drbd_err(device, "submit failed, triggering re-connect\n");
2671 	spin_lock_irq(&device->resource->req_lock);
2672 	list_del(&peer_req->w.list);
2673 	drbd_remove_epoch_entry_interval(device, peer_req);
2674 	spin_unlock_irq(&device->resource->req_lock);
2675 	if (peer_req->flags & EE_CALL_AL_COMPLETE_IO) {
2676 		peer_req->flags &= ~EE_CALL_AL_COMPLETE_IO;
2677 		drbd_al_complete_io(device, &peer_req->i);
2678 	}
2679 
2680 out_interrupted:
2681 	drbd_may_finish_epoch(connection, peer_req->epoch, EV_PUT | EV_CLEANUP);
2682 	put_ldev(device);
2683 	drbd_free_peer_req(device, peer_req);
2684 	return err;
2685 }
2686 
2687 /* We may throttle resync, if the lower device seems to be busy,
2688  * and current sync rate is above c_min_rate.
2689  *
2690  * To decide whether or not the lower device is busy, we use a scheme similar
2691  * to MD RAID is_mddev_idle(): if the partition stats reveal "significant"
2692  * (more than 64 sectors) of activity we cannot account for with our own resync
2693  * activity, it obviously is "busy".
2694  *
2695  * The current sync rate used here uses only the most recent two step marks,
2696  * to have a short time average so we can react faster.
2697  */
2698 bool drbd_rs_should_slow_down(struct drbd_device *device, sector_t sector,
2699 		bool throttle_if_app_is_waiting)
2700 {
2701 	struct lc_element *tmp;
2702 	bool throttle = drbd_rs_c_min_rate_throttle(device);
2703 
2704 	if (!throttle || throttle_if_app_is_waiting)
2705 		return throttle;
2706 
2707 	spin_lock_irq(&device->al_lock);
2708 	tmp = lc_find(device->resync, BM_SECT_TO_EXT(sector));
2709 	if (tmp) {
2710 		struct bm_extent *bm_ext = lc_entry(tmp, struct bm_extent, lce);
2711 		if (test_bit(BME_PRIORITY, &bm_ext->flags))
2712 			throttle = false;
2713 		/* Do not slow down if app IO is already waiting for this extent,
2714 		 * and our progress is necessary for application IO to complete. */
2715 	}
2716 	spin_unlock_irq(&device->al_lock);
2717 
2718 	return throttle;
2719 }
2720 
2721 bool drbd_rs_c_min_rate_throttle(struct drbd_device *device)
2722 {
2723 	struct gendisk *disk = device->ldev->backing_bdev->bd_contains->bd_disk;
2724 	unsigned long db, dt, dbdt;
2725 	unsigned int c_min_rate;
2726 	int curr_events;
2727 
2728 	rcu_read_lock();
2729 	c_min_rate = rcu_dereference(device->ldev->disk_conf)->c_min_rate;
2730 	rcu_read_unlock();
2731 
2732 	/* feature disabled? */
2733 	if (c_min_rate == 0)
2734 		return false;
2735 
2736 	curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
2737 		      (int)part_stat_read(&disk->part0, sectors[1]) -
2738 			atomic_read(&device->rs_sect_ev);
2739 
2740 	if (atomic_read(&device->ap_actlog_cnt)
2741 	    || curr_events - device->rs_last_events > 64) {
2742 		unsigned long rs_left;
2743 		int i;
2744 
2745 		device->rs_last_events = curr_events;
2746 
2747 		/* sync speed average over the last 2*DRBD_SYNC_MARK_STEP,
2748 		 * approx. */
2749 		i = (device->rs_last_mark + DRBD_SYNC_MARKS-1) % DRBD_SYNC_MARKS;
2750 
2751 		if (device->state.conn == C_VERIFY_S || device->state.conn == C_VERIFY_T)
2752 			rs_left = device->ov_left;
2753 		else
2754 			rs_left = drbd_bm_total_weight(device) - device->rs_failed;
2755 
2756 		dt = ((long)jiffies - (long)device->rs_mark_time[i]) / HZ;
2757 		if (!dt)
2758 			dt++;
2759 		db = device->rs_mark_left[i] - rs_left;
2760 		dbdt = Bit2KB(db/dt);
2761 
2762 		if (dbdt > c_min_rate)
2763 			return true;
2764 	}
2765 	return false;
2766 }
2767 
2768 static int receive_DataRequest(struct drbd_connection *connection, struct packet_info *pi)
2769 {
2770 	struct drbd_peer_device *peer_device;
2771 	struct drbd_device *device;
2772 	sector_t sector;
2773 	sector_t capacity;
2774 	struct drbd_peer_request *peer_req;
2775 	struct digest_info *di = NULL;
2776 	int size, verb;
2777 	unsigned int fault_type;
2778 	struct p_block_req *p =	pi->data;
2779 
2780 	peer_device = conn_peer_device(connection, pi->vnr);
2781 	if (!peer_device)
2782 		return -EIO;
2783 	device = peer_device->device;
2784 	capacity = drbd_get_capacity(device->this_bdev);
2785 
2786 	sector = be64_to_cpu(p->sector);
2787 	size   = be32_to_cpu(p->blksize);
2788 
2789 	if (size <= 0 || !IS_ALIGNED(size, 512) || size > DRBD_MAX_BIO_SIZE) {
2790 		drbd_err(device, "%s:%d: sector: %llus, size: %u\n", __FILE__, __LINE__,
2791 				(unsigned long long)sector, size);
2792 		return -EINVAL;
2793 	}
2794 	if (sector + (size>>9) > capacity) {
2795 		drbd_err(device, "%s:%d: sector: %llus, size: %u\n", __FILE__, __LINE__,
2796 				(unsigned long long)sector, size);
2797 		return -EINVAL;
2798 	}
2799 
2800 	if (!get_ldev_if_state(device, D_UP_TO_DATE)) {
2801 		verb = 1;
2802 		switch (pi->cmd) {
2803 		case P_DATA_REQUEST:
2804 			drbd_send_ack_rp(peer_device, P_NEG_DREPLY, p);
2805 			break;
2806 		case P_RS_THIN_REQ:
2807 		case P_RS_DATA_REQUEST:
2808 		case P_CSUM_RS_REQUEST:
2809 		case P_OV_REQUEST:
2810 			drbd_send_ack_rp(peer_device, P_NEG_RS_DREPLY , p);
2811 			break;
2812 		case P_OV_REPLY:
2813 			verb = 0;
2814 			dec_rs_pending(device);
2815 			drbd_send_ack_ex(peer_device, P_OV_RESULT, sector, size, ID_IN_SYNC);
2816 			break;
2817 		default:
2818 			BUG();
2819 		}
2820 		if (verb && __ratelimit(&drbd_ratelimit_state))
2821 			drbd_err(device, "Can not satisfy peer's read request, "
2822 			    "no local data.\n");
2823 
2824 		/* drain possibly payload */
2825 		return drbd_drain_block(peer_device, pi->size);
2826 	}
2827 
2828 	/* GFP_NOIO, because we must not cause arbitrary write-out: in a DRBD
2829 	 * "criss-cross" setup, that might cause write-out on some other DRBD,
2830 	 * which in turn might block on the other node at this very place.  */
2831 	peer_req = drbd_alloc_peer_req(peer_device, p->block_id, sector, size,
2832 			size, GFP_NOIO);
2833 	if (!peer_req) {
2834 		put_ldev(device);
2835 		return -ENOMEM;
2836 	}
2837 
2838 	switch (pi->cmd) {
2839 	case P_DATA_REQUEST:
2840 		peer_req->w.cb = w_e_end_data_req;
2841 		fault_type = DRBD_FAULT_DT_RD;
2842 		/* application IO, don't drbd_rs_begin_io */
2843 		peer_req->flags |= EE_APPLICATION;
2844 		goto submit;
2845 
2846 	case P_RS_THIN_REQ:
2847 		/* If at some point in the future we have a smart way to
2848 		   find out if this data block is completely deallocated,
2849 		   then we would do something smarter here than reading
2850 		   the block... */
2851 		peer_req->flags |= EE_RS_THIN_REQ;
2852 	case P_RS_DATA_REQUEST:
2853 		peer_req->w.cb = w_e_end_rsdata_req;
2854 		fault_type = DRBD_FAULT_RS_RD;
2855 		/* used in the sector offset progress display */
2856 		device->bm_resync_fo = BM_SECT_TO_BIT(sector);
2857 		break;
2858 
2859 	case P_OV_REPLY:
2860 	case P_CSUM_RS_REQUEST:
2861 		fault_type = DRBD_FAULT_RS_RD;
2862 		di = kmalloc(sizeof(*di) + pi->size, GFP_NOIO);
2863 		if (!di)
2864 			goto out_free_e;
2865 
2866 		di->digest_size = pi->size;
2867 		di->digest = (((char *)di)+sizeof(struct digest_info));
2868 
2869 		peer_req->digest = di;
2870 		peer_req->flags |= EE_HAS_DIGEST;
2871 
2872 		if (drbd_recv_all(peer_device->connection, di->digest, pi->size))
2873 			goto out_free_e;
2874 
2875 		if (pi->cmd == P_CSUM_RS_REQUEST) {
2876 			D_ASSERT(device, peer_device->connection->agreed_pro_version >= 89);
2877 			peer_req->w.cb = w_e_end_csum_rs_req;
2878 			/* used in the sector offset progress display */
2879 			device->bm_resync_fo = BM_SECT_TO_BIT(sector);
2880 			/* remember to report stats in drbd_resync_finished */
2881 			device->use_csums = true;
2882 		} else if (pi->cmd == P_OV_REPLY) {
2883 			/* track progress, we may need to throttle */
2884 			atomic_add(size >> 9, &device->rs_sect_in);
2885 			peer_req->w.cb = w_e_end_ov_reply;
2886 			dec_rs_pending(device);
2887 			/* drbd_rs_begin_io done when we sent this request,
2888 			 * but accounting still needs to be done. */
2889 			goto submit_for_resync;
2890 		}
2891 		break;
2892 
2893 	case P_OV_REQUEST:
2894 		if (device->ov_start_sector == ~(sector_t)0 &&
2895 		    peer_device->connection->agreed_pro_version >= 90) {
2896 			unsigned long now = jiffies;
2897 			int i;
2898 			device->ov_start_sector = sector;
2899 			device->ov_position = sector;
2900 			device->ov_left = drbd_bm_bits(device) - BM_SECT_TO_BIT(sector);
2901 			device->rs_total = device->ov_left;
2902 			for (i = 0; i < DRBD_SYNC_MARKS; i++) {
2903 				device->rs_mark_left[i] = device->ov_left;
2904 				device->rs_mark_time[i] = now;
2905 			}
2906 			drbd_info(device, "Online Verify start sector: %llu\n",
2907 					(unsigned long long)sector);
2908 		}
2909 		peer_req->w.cb = w_e_end_ov_req;
2910 		fault_type = DRBD_FAULT_RS_RD;
2911 		break;
2912 
2913 	default:
2914 		BUG();
2915 	}
2916 
2917 	/* Throttle, drbd_rs_begin_io and submit should become asynchronous
2918 	 * wrt the receiver, but it is not as straightforward as it may seem.
2919 	 * Various places in the resync start and stop logic assume resync
2920 	 * requests are processed in order, requeuing this on the worker thread
2921 	 * introduces a bunch of new code for synchronization between threads.
2922 	 *
2923 	 * Unlimited throttling before drbd_rs_begin_io may stall the resync
2924 	 * "forever", throttling after drbd_rs_begin_io will lock that extent
2925 	 * for application writes for the same time.  For now, just throttle
2926 	 * here, where the rest of the code expects the receiver to sleep for
2927 	 * a while, anyways.
2928 	 */
2929 
2930 	/* Throttle before drbd_rs_begin_io, as that locks out application IO;
2931 	 * this defers syncer requests for some time, before letting at least
2932 	 * on request through.  The resync controller on the receiving side
2933 	 * will adapt to the incoming rate accordingly.
2934 	 *
2935 	 * We cannot throttle here if remote is Primary/SyncTarget:
2936 	 * we would also throttle its application reads.
2937 	 * In that case, throttling is done on the SyncTarget only.
2938 	 */
2939 
2940 	/* Even though this may be a resync request, we do add to "read_ee";
2941 	 * "sync_ee" is only used for resync WRITEs.
2942 	 * Add to list early, so debugfs can find this request
2943 	 * even if we have to sleep below. */
2944 	spin_lock_irq(&device->resource->req_lock);
2945 	list_add_tail(&peer_req->w.list, &device->read_ee);
2946 	spin_unlock_irq(&device->resource->req_lock);
2947 
2948 	update_receiver_timing_details(connection, drbd_rs_should_slow_down);
2949 	if (device->state.peer != R_PRIMARY
2950 	&& drbd_rs_should_slow_down(device, sector, false))
2951 		schedule_timeout_uninterruptible(HZ/10);
2952 	update_receiver_timing_details(connection, drbd_rs_begin_io);
2953 	if (drbd_rs_begin_io(device, sector))
2954 		goto out_free_e;
2955 
2956 submit_for_resync:
2957 	atomic_add(size >> 9, &device->rs_sect_ev);
2958 
2959 submit:
2960 	update_receiver_timing_details(connection, drbd_submit_peer_request);
2961 	inc_unacked(device);
2962 	if (drbd_submit_peer_request(device, peer_req, REQ_OP_READ, 0,
2963 				     fault_type) == 0)
2964 		return 0;
2965 
2966 	/* don't care for the reason here */
2967 	drbd_err(device, "submit failed, triggering re-connect\n");
2968 
2969 out_free_e:
2970 	spin_lock_irq(&device->resource->req_lock);
2971 	list_del(&peer_req->w.list);
2972 	spin_unlock_irq(&device->resource->req_lock);
2973 	/* no drbd_rs_complete_io(), we are dropping the connection anyways */
2974 
2975 	put_ldev(device);
2976 	drbd_free_peer_req(device, peer_req);
2977 	return -EIO;
2978 }
2979 
2980 /**
2981  * drbd_asb_recover_0p  -  Recover after split-brain with no remaining primaries
2982  */
2983 static int drbd_asb_recover_0p(struct drbd_peer_device *peer_device) __must_hold(local)
2984 {
2985 	struct drbd_device *device = peer_device->device;
2986 	int self, peer, rv = -100;
2987 	unsigned long ch_self, ch_peer;
2988 	enum drbd_after_sb_p after_sb_0p;
2989 
2990 	self = device->ldev->md.uuid[UI_BITMAP] & 1;
2991 	peer = device->p_uuid[UI_BITMAP] & 1;
2992 
2993 	ch_peer = device->p_uuid[UI_SIZE];
2994 	ch_self = device->comm_bm_set;
2995 
2996 	rcu_read_lock();
2997 	after_sb_0p = rcu_dereference(peer_device->connection->net_conf)->after_sb_0p;
2998 	rcu_read_unlock();
2999 	switch (after_sb_0p) {
3000 	case ASB_CONSENSUS:
3001 	case ASB_DISCARD_SECONDARY:
3002 	case ASB_CALL_HELPER:
3003 	case ASB_VIOLENTLY:
3004 		drbd_err(device, "Configuration error.\n");
3005 		break;
3006 	case ASB_DISCONNECT:
3007 		break;
3008 	case ASB_DISCARD_YOUNGER_PRI:
3009 		if (self == 0 && peer == 1) {
3010 			rv = -1;
3011 			break;
3012 		}
3013 		if (self == 1 && peer == 0) {
3014 			rv =  1;
3015 			break;
3016 		}
3017 		/* Else fall through to one of the other strategies... */
3018 	case ASB_DISCARD_OLDER_PRI:
3019 		if (self == 0 && peer == 1) {
3020 			rv = 1;
3021 			break;
3022 		}
3023 		if (self == 1 && peer == 0) {
3024 			rv = -1;
3025 			break;
3026 		}
3027 		/* Else fall through to one of the other strategies... */
3028 		drbd_warn(device, "Discard younger/older primary did not find a decision\n"
3029 		     "Using discard-least-changes instead\n");
3030 	case ASB_DISCARD_ZERO_CHG:
3031 		if (ch_peer == 0 && ch_self == 0) {
3032 			rv = test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags)
3033 				? -1 : 1;
3034 			break;
3035 		} else {
3036 			if (ch_peer == 0) { rv =  1; break; }
3037 			if (ch_self == 0) { rv = -1; break; }
3038 		}
3039 		if (after_sb_0p == ASB_DISCARD_ZERO_CHG)
3040 			break;
3041 	case ASB_DISCARD_LEAST_CHG:
3042 		if	(ch_self < ch_peer)
3043 			rv = -1;
3044 		else if (ch_self > ch_peer)
3045 			rv =  1;
3046 		else /* ( ch_self == ch_peer ) */
3047 		     /* Well, then use something else. */
3048 			rv = test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags)
3049 				? -1 : 1;
3050 		break;
3051 	case ASB_DISCARD_LOCAL:
3052 		rv = -1;
3053 		break;
3054 	case ASB_DISCARD_REMOTE:
3055 		rv =  1;
3056 	}
3057 
3058 	return rv;
3059 }
3060 
3061 /**
3062  * drbd_asb_recover_1p  -  Recover after split-brain with one remaining primary
3063  */
3064 static int drbd_asb_recover_1p(struct drbd_peer_device *peer_device) __must_hold(local)
3065 {
3066 	struct drbd_device *device = peer_device->device;
3067 	int hg, rv = -100;
3068 	enum drbd_after_sb_p after_sb_1p;
3069 
3070 	rcu_read_lock();
3071 	after_sb_1p = rcu_dereference(peer_device->connection->net_conf)->after_sb_1p;
3072 	rcu_read_unlock();
3073 	switch (after_sb_1p) {
3074 	case ASB_DISCARD_YOUNGER_PRI:
3075 	case ASB_DISCARD_OLDER_PRI:
3076 	case ASB_DISCARD_LEAST_CHG:
3077 	case ASB_DISCARD_LOCAL:
3078 	case ASB_DISCARD_REMOTE:
3079 	case ASB_DISCARD_ZERO_CHG:
3080 		drbd_err(device, "Configuration error.\n");
3081 		break;
3082 	case ASB_DISCONNECT:
3083 		break;
3084 	case ASB_CONSENSUS:
3085 		hg = drbd_asb_recover_0p(peer_device);
3086 		if (hg == -1 && device->state.role == R_SECONDARY)
3087 			rv = hg;
3088 		if (hg == 1  && device->state.role == R_PRIMARY)
3089 			rv = hg;
3090 		break;
3091 	case ASB_VIOLENTLY:
3092 		rv = drbd_asb_recover_0p(peer_device);
3093 		break;
3094 	case ASB_DISCARD_SECONDARY:
3095 		return device->state.role == R_PRIMARY ? 1 : -1;
3096 	case ASB_CALL_HELPER:
3097 		hg = drbd_asb_recover_0p(peer_device);
3098 		if (hg == -1 && device->state.role == R_PRIMARY) {
3099 			enum drbd_state_rv rv2;
3100 
3101 			 /* drbd_change_state() does not sleep while in SS_IN_TRANSIENT_STATE,
3102 			  * we might be here in C_WF_REPORT_PARAMS which is transient.
3103 			  * we do not need to wait for the after state change work either. */
3104 			rv2 = drbd_change_state(device, CS_VERBOSE, NS(role, R_SECONDARY));
3105 			if (rv2 != SS_SUCCESS) {
3106 				drbd_khelper(device, "pri-lost-after-sb");
3107 			} else {
3108 				drbd_warn(device, "Successfully gave up primary role.\n");
3109 				rv = hg;
3110 			}
3111 		} else
3112 			rv = hg;
3113 	}
3114 
3115 	return rv;
3116 }
3117 
3118 /**
3119  * drbd_asb_recover_2p  -  Recover after split-brain with two remaining primaries
3120  */
3121 static int drbd_asb_recover_2p(struct drbd_peer_device *peer_device) __must_hold(local)
3122 {
3123 	struct drbd_device *device = peer_device->device;
3124 	int hg, rv = -100;
3125 	enum drbd_after_sb_p after_sb_2p;
3126 
3127 	rcu_read_lock();
3128 	after_sb_2p = rcu_dereference(peer_device->connection->net_conf)->after_sb_2p;
3129 	rcu_read_unlock();
3130 	switch (after_sb_2p) {
3131 	case ASB_DISCARD_YOUNGER_PRI:
3132 	case ASB_DISCARD_OLDER_PRI:
3133 	case ASB_DISCARD_LEAST_CHG:
3134 	case ASB_DISCARD_LOCAL:
3135 	case ASB_DISCARD_REMOTE:
3136 	case ASB_CONSENSUS:
3137 	case ASB_DISCARD_SECONDARY:
3138 	case ASB_DISCARD_ZERO_CHG:
3139 		drbd_err(device, "Configuration error.\n");
3140 		break;
3141 	case ASB_VIOLENTLY:
3142 		rv = drbd_asb_recover_0p(peer_device);
3143 		break;
3144 	case ASB_DISCONNECT:
3145 		break;
3146 	case ASB_CALL_HELPER:
3147 		hg = drbd_asb_recover_0p(peer_device);
3148 		if (hg == -1) {
3149 			enum drbd_state_rv rv2;
3150 
3151 			 /* drbd_change_state() does not sleep while in SS_IN_TRANSIENT_STATE,
3152 			  * we might be here in C_WF_REPORT_PARAMS which is transient.
3153 			  * we do not need to wait for the after state change work either. */
3154 			rv2 = drbd_change_state(device, CS_VERBOSE, NS(role, R_SECONDARY));
3155 			if (rv2 != SS_SUCCESS) {
3156 				drbd_khelper(device, "pri-lost-after-sb");
3157 			} else {
3158 				drbd_warn(device, "Successfully gave up primary role.\n");
3159 				rv = hg;
3160 			}
3161 		} else
3162 			rv = hg;
3163 	}
3164 
3165 	return rv;
3166 }
3167 
3168 static void drbd_uuid_dump(struct drbd_device *device, char *text, u64 *uuid,
3169 			   u64 bits, u64 flags)
3170 {
3171 	if (!uuid) {
3172 		drbd_info(device, "%s uuid info vanished while I was looking!\n", text);
3173 		return;
3174 	}
3175 	drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX bits:%llu flags:%llX\n",
3176 	     text,
3177 	     (unsigned long long)uuid[UI_CURRENT],
3178 	     (unsigned long long)uuid[UI_BITMAP],
3179 	     (unsigned long long)uuid[UI_HISTORY_START],
3180 	     (unsigned long long)uuid[UI_HISTORY_END],
3181 	     (unsigned long long)bits,
3182 	     (unsigned long long)flags);
3183 }
3184 
3185 /*
3186   100	after split brain try auto recover
3187     2	C_SYNC_SOURCE set BitMap
3188     1	C_SYNC_SOURCE use BitMap
3189     0	no Sync
3190    -1	C_SYNC_TARGET use BitMap
3191    -2	C_SYNC_TARGET set BitMap
3192  -100	after split brain, disconnect
3193 -1000	unrelated data
3194 -1091   requires proto 91
3195 -1096   requires proto 96
3196  */
3197 
3198 static int drbd_uuid_compare(struct drbd_device *const device, enum drbd_role const peer_role, int *rule_nr) __must_hold(local)
3199 {
3200 	struct drbd_peer_device *const peer_device = first_peer_device(device);
3201 	struct drbd_connection *const connection = peer_device ? peer_device->connection : NULL;
3202 	u64 self, peer;
3203 	int i, j;
3204 
3205 	self = device->ldev->md.uuid[UI_CURRENT] & ~((u64)1);
3206 	peer = device->p_uuid[UI_CURRENT] & ~((u64)1);
3207 
3208 	*rule_nr = 10;
3209 	if (self == UUID_JUST_CREATED && peer == UUID_JUST_CREATED)
3210 		return 0;
3211 
3212 	*rule_nr = 20;
3213 	if ((self == UUID_JUST_CREATED || self == (u64)0) &&
3214 	     peer != UUID_JUST_CREATED)
3215 		return -2;
3216 
3217 	*rule_nr = 30;
3218 	if (self != UUID_JUST_CREATED &&
3219 	    (peer == UUID_JUST_CREATED || peer == (u64)0))
3220 		return 2;
3221 
3222 	if (self == peer) {
3223 		int rct, dc; /* roles at crash time */
3224 
3225 		if (device->p_uuid[UI_BITMAP] == (u64)0 && device->ldev->md.uuid[UI_BITMAP] != (u64)0) {
3226 
3227 			if (connection->agreed_pro_version < 91)
3228 				return -1091;
3229 
3230 			if ((device->ldev->md.uuid[UI_BITMAP] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START] & ~((u64)1)) &&
3231 			    (device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START + 1] & ~((u64)1))) {
3232 				drbd_info(device, "was SyncSource, missed the resync finished event, corrected myself:\n");
3233 				drbd_uuid_move_history(device);
3234 				device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP];
3235 				device->ldev->md.uuid[UI_BITMAP] = 0;
3236 
3237 				drbd_uuid_dump(device, "self", device->ldev->md.uuid,
3238 					       device->state.disk >= D_NEGOTIATING ? drbd_bm_total_weight(device) : 0, 0);
3239 				*rule_nr = 34;
3240 			} else {
3241 				drbd_info(device, "was SyncSource (peer failed to write sync_uuid)\n");
3242 				*rule_nr = 36;
3243 			}
3244 
3245 			return 1;
3246 		}
3247 
3248 		if (device->ldev->md.uuid[UI_BITMAP] == (u64)0 && device->p_uuid[UI_BITMAP] != (u64)0) {
3249 
3250 			if (connection->agreed_pro_version < 91)
3251 				return -1091;
3252 
3253 			if ((device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == (device->p_uuid[UI_BITMAP] & ~((u64)1)) &&
3254 			    (device->ldev->md.uuid[UI_HISTORY_START + 1] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START] & ~((u64)1))) {
3255 				drbd_info(device, "was SyncTarget, peer missed the resync finished event, corrected peer:\n");
3256 
3257 				device->p_uuid[UI_HISTORY_START + 1] = device->p_uuid[UI_HISTORY_START];
3258 				device->p_uuid[UI_HISTORY_START] = device->p_uuid[UI_BITMAP];
3259 				device->p_uuid[UI_BITMAP] = 0UL;
3260 
3261 				drbd_uuid_dump(device, "peer", device->p_uuid, device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]);
3262 				*rule_nr = 35;
3263 			} else {
3264 				drbd_info(device, "was SyncTarget (failed to write sync_uuid)\n");
3265 				*rule_nr = 37;
3266 			}
3267 
3268 			return -1;
3269 		}
3270 
3271 		/* Common power [off|failure] */
3272 		rct = (test_bit(CRASHED_PRIMARY, &device->flags) ? 1 : 0) +
3273 			(device->p_uuid[UI_FLAGS] & 2);
3274 		/* lowest bit is set when we were primary,
3275 		 * next bit (weight 2) is set when peer was primary */
3276 		*rule_nr = 40;
3277 
3278 		/* Neither has the "crashed primary" flag set,
3279 		 * only a replication link hickup. */
3280 		if (rct == 0)
3281 			return 0;
3282 
3283 		/* Current UUID equal and no bitmap uuid; does not necessarily
3284 		 * mean this was a "simultaneous hard crash", maybe IO was
3285 		 * frozen, so no UUID-bump happened.
3286 		 * This is a protocol change, overload DRBD_FF_WSAME as flag
3287 		 * for "new-enough" peer DRBD version. */
3288 		if (device->state.role == R_PRIMARY || peer_role == R_PRIMARY) {
3289 			*rule_nr = 41;
3290 			if (!(connection->agreed_features & DRBD_FF_WSAME)) {
3291 				drbd_warn(peer_device, "Equivalent unrotated UUIDs, but current primary present.\n");
3292 				return -(0x10000 | PRO_VERSION_MAX | (DRBD_FF_WSAME << 8));
3293 			}
3294 			if (device->state.role == R_PRIMARY && peer_role == R_PRIMARY) {
3295 				/* At least one has the "crashed primary" bit set,
3296 				 * both are primary now, but neither has rotated its UUIDs?
3297 				 * "Can not happen." */
3298 				drbd_err(peer_device, "Equivalent unrotated UUIDs, but both are primary. Can not resolve this.\n");
3299 				return -100;
3300 			}
3301 			if (device->state.role == R_PRIMARY)
3302 				return 1;
3303 			return -1;
3304 		}
3305 
3306 		/* Both are secondary.
3307 		 * Really looks like recovery from simultaneous hard crash.
3308 		 * Check which had been primary before, and arbitrate. */
3309 		switch (rct) {
3310 		case 0: /* !self_pri && !peer_pri */ return 0; /* already handled */
3311 		case 1: /*  self_pri && !peer_pri */ return 1;
3312 		case 2: /* !self_pri &&  peer_pri */ return -1;
3313 		case 3: /*  self_pri &&  peer_pri */
3314 			dc = test_bit(RESOLVE_CONFLICTS, &connection->flags);
3315 			return dc ? -1 : 1;
3316 		}
3317 	}
3318 
3319 	*rule_nr = 50;
3320 	peer = device->p_uuid[UI_BITMAP] & ~((u64)1);
3321 	if (self == peer)
3322 		return -1;
3323 
3324 	*rule_nr = 51;
3325 	peer = device->p_uuid[UI_HISTORY_START] & ~((u64)1);
3326 	if (self == peer) {
3327 		if (connection->agreed_pro_version < 96 ?
3328 		    (device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) ==
3329 		    (device->p_uuid[UI_HISTORY_START + 1] & ~((u64)1)) :
3330 		    peer + UUID_NEW_BM_OFFSET == (device->p_uuid[UI_BITMAP] & ~((u64)1))) {
3331 			/* The last P_SYNC_UUID did not get though. Undo the last start of
3332 			   resync as sync source modifications of the peer's UUIDs. */
3333 
3334 			if (connection->agreed_pro_version < 91)
3335 				return -1091;
3336 
3337 			device->p_uuid[UI_BITMAP] = device->p_uuid[UI_HISTORY_START];
3338 			device->p_uuid[UI_HISTORY_START] = device->p_uuid[UI_HISTORY_START + 1];
3339 
3340 			drbd_info(device, "Lost last syncUUID packet, corrected:\n");
3341 			drbd_uuid_dump(device, "peer", device->p_uuid, device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]);
3342 
3343 			return -1;
3344 		}
3345 	}
3346 
3347 	*rule_nr = 60;
3348 	self = device->ldev->md.uuid[UI_CURRENT] & ~((u64)1);
3349 	for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) {
3350 		peer = device->p_uuid[i] & ~((u64)1);
3351 		if (self == peer)
3352 			return -2;
3353 	}
3354 
3355 	*rule_nr = 70;
3356 	self = device->ldev->md.uuid[UI_BITMAP] & ~((u64)1);
3357 	peer = device->p_uuid[UI_CURRENT] & ~((u64)1);
3358 	if (self == peer)
3359 		return 1;
3360 
3361 	*rule_nr = 71;
3362 	self = device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1);
3363 	if (self == peer) {
3364 		if (connection->agreed_pro_version < 96 ?
3365 		    (device->ldev->md.uuid[UI_HISTORY_START + 1] & ~((u64)1)) ==
3366 		    (device->p_uuid[UI_HISTORY_START] & ~((u64)1)) :
3367 		    self + UUID_NEW_BM_OFFSET == (device->ldev->md.uuid[UI_BITMAP] & ~((u64)1))) {
3368 			/* The last P_SYNC_UUID did not get though. Undo the last start of
3369 			   resync as sync source modifications of our UUIDs. */
3370 
3371 			if (connection->agreed_pro_version < 91)
3372 				return -1091;
3373 
3374 			__drbd_uuid_set(device, UI_BITMAP, device->ldev->md.uuid[UI_HISTORY_START]);
3375 			__drbd_uuid_set(device, UI_HISTORY_START, device->ldev->md.uuid[UI_HISTORY_START + 1]);
3376 
3377 			drbd_info(device, "Last syncUUID did not get through, corrected:\n");
3378 			drbd_uuid_dump(device, "self", device->ldev->md.uuid,
3379 				       device->state.disk >= D_NEGOTIATING ? drbd_bm_total_weight(device) : 0, 0);
3380 
3381 			return 1;
3382 		}
3383 	}
3384 
3385 
3386 	*rule_nr = 80;
3387 	peer = device->p_uuid[UI_CURRENT] & ~((u64)1);
3388 	for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) {
3389 		self = device->ldev->md.uuid[i] & ~((u64)1);
3390 		if (self == peer)
3391 			return 2;
3392 	}
3393 
3394 	*rule_nr = 90;
3395 	self = device->ldev->md.uuid[UI_BITMAP] & ~((u64)1);
3396 	peer = device->p_uuid[UI_BITMAP] & ~((u64)1);
3397 	if (self == peer && self != ((u64)0))
3398 		return 100;
3399 
3400 	*rule_nr = 100;
3401 	for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) {
3402 		self = device->ldev->md.uuid[i] & ~((u64)1);
3403 		for (j = UI_HISTORY_START; j <= UI_HISTORY_END; j++) {
3404 			peer = device->p_uuid[j] & ~((u64)1);
3405 			if (self == peer)
3406 				return -100;
3407 		}
3408 	}
3409 
3410 	return -1000;
3411 }
3412 
3413 /* drbd_sync_handshake() returns the new conn state on success, or
3414    CONN_MASK (-1) on failure.
3415  */
3416 static enum drbd_conns drbd_sync_handshake(struct drbd_peer_device *peer_device,
3417 					   enum drbd_role peer_role,
3418 					   enum drbd_disk_state peer_disk) __must_hold(local)
3419 {
3420 	struct drbd_device *device = peer_device->device;
3421 	enum drbd_conns rv = C_MASK;
3422 	enum drbd_disk_state mydisk;
3423 	struct net_conf *nc;
3424 	int hg, rule_nr, rr_conflict, tentative;
3425 
3426 	mydisk = device->state.disk;
3427 	if (mydisk == D_NEGOTIATING)
3428 		mydisk = device->new_state_tmp.disk;
3429 
3430 	drbd_info(device, "drbd_sync_handshake:\n");
3431 
3432 	spin_lock_irq(&device->ldev->md.uuid_lock);
3433 	drbd_uuid_dump(device, "self", device->ldev->md.uuid, device->comm_bm_set, 0);
3434 	drbd_uuid_dump(device, "peer", device->p_uuid,
3435 		       device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]);
3436 
3437 	hg = drbd_uuid_compare(device, peer_role, &rule_nr);
3438 	spin_unlock_irq(&device->ldev->md.uuid_lock);
3439 
3440 	drbd_info(device, "uuid_compare()=%d by rule %d\n", hg, rule_nr);
3441 
3442 	if (hg == -1000) {
3443 		drbd_alert(device, "Unrelated data, aborting!\n");
3444 		return C_MASK;
3445 	}
3446 	if (hg < -0x10000) {
3447 		int proto, fflags;
3448 		hg = -hg;
3449 		proto = hg & 0xff;
3450 		fflags = (hg >> 8) & 0xff;
3451 		drbd_alert(device, "To resolve this both sides have to support at least protocol %d and feature flags 0x%x\n",
3452 					proto, fflags);
3453 		return C_MASK;
3454 	}
3455 	if (hg < -1000) {
3456 		drbd_alert(device, "To resolve this both sides have to support at least protocol %d\n", -hg - 1000);
3457 		return C_MASK;
3458 	}
3459 
3460 	if    ((mydisk == D_INCONSISTENT && peer_disk > D_INCONSISTENT) ||
3461 	    (peer_disk == D_INCONSISTENT && mydisk    > D_INCONSISTENT)) {
3462 		int f = (hg == -100) || abs(hg) == 2;
3463 		hg = mydisk > D_INCONSISTENT ? 1 : -1;
3464 		if (f)
3465 			hg = hg*2;
3466 		drbd_info(device, "Becoming sync %s due to disk states.\n",
3467 		     hg > 0 ? "source" : "target");
3468 	}
3469 
3470 	if (abs(hg) == 100)
3471 		drbd_khelper(device, "initial-split-brain");
3472 
3473 	rcu_read_lock();
3474 	nc = rcu_dereference(peer_device->connection->net_conf);
3475 
3476 	if (hg == 100 || (hg == -100 && nc->always_asbp)) {
3477 		int pcount = (device->state.role == R_PRIMARY)
3478 			   + (peer_role == R_PRIMARY);
3479 		int forced = (hg == -100);
3480 
3481 		switch (pcount) {
3482 		case 0:
3483 			hg = drbd_asb_recover_0p(peer_device);
3484 			break;
3485 		case 1:
3486 			hg = drbd_asb_recover_1p(peer_device);
3487 			break;
3488 		case 2:
3489 			hg = drbd_asb_recover_2p(peer_device);
3490 			break;
3491 		}
3492 		if (abs(hg) < 100) {
3493 			drbd_warn(device, "Split-Brain detected, %d primaries, "
3494 			     "automatically solved. Sync from %s node\n",
3495 			     pcount, (hg < 0) ? "peer" : "this");
3496 			if (forced) {
3497 				drbd_warn(device, "Doing a full sync, since"
3498 				     " UUIDs where ambiguous.\n");
3499 				hg = hg*2;
3500 			}
3501 		}
3502 	}
3503 
3504 	if (hg == -100) {
3505 		if (test_bit(DISCARD_MY_DATA, &device->flags) && !(device->p_uuid[UI_FLAGS]&1))
3506 			hg = -1;
3507 		if (!test_bit(DISCARD_MY_DATA, &device->flags) && (device->p_uuid[UI_FLAGS]&1))
3508 			hg = 1;
3509 
3510 		if (abs(hg) < 100)
3511 			drbd_warn(device, "Split-Brain detected, manually solved. "
3512 			     "Sync from %s node\n",
3513 			     (hg < 0) ? "peer" : "this");
3514 	}
3515 	rr_conflict = nc->rr_conflict;
3516 	tentative = nc->tentative;
3517 	rcu_read_unlock();
3518 
3519 	if (hg == -100) {
3520 		/* FIXME this log message is not correct if we end up here
3521 		 * after an attempted attach on a diskless node.
3522 		 * We just refuse to attach -- well, we drop the "connection"
3523 		 * to that disk, in a way... */
3524 		drbd_alert(device, "Split-Brain detected but unresolved, dropping connection!\n");
3525 		drbd_khelper(device, "split-brain");
3526 		return C_MASK;
3527 	}
3528 
3529 	if (hg > 0 && mydisk <= D_INCONSISTENT) {
3530 		drbd_err(device, "I shall become SyncSource, but I am inconsistent!\n");
3531 		return C_MASK;
3532 	}
3533 
3534 	if (hg < 0 && /* by intention we do not use mydisk here. */
3535 	    device->state.role == R_PRIMARY && device->state.disk >= D_CONSISTENT) {
3536 		switch (rr_conflict) {
3537 		case ASB_CALL_HELPER:
3538 			drbd_khelper(device, "pri-lost");
3539 			/* fall through */
3540 		case ASB_DISCONNECT:
3541 			drbd_err(device, "I shall become SyncTarget, but I am primary!\n");
3542 			return C_MASK;
3543 		case ASB_VIOLENTLY:
3544 			drbd_warn(device, "Becoming SyncTarget, violating the stable-data"
3545 			     "assumption\n");
3546 		}
3547 	}
3548 
3549 	if (tentative || test_bit(CONN_DRY_RUN, &peer_device->connection->flags)) {
3550 		if (hg == 0)
3551 			drbd_info(device, "dry-run connect: No resync, would become Connected immediately.\n");
3552 		else
3553 			drbd_info(device, "dry-run connect: Would become %s, doing a %s resync.",
3554 				 drbd_conn_str(hg > 0 ? C_SYNC_SOURCE : C_SYNC_TARGET),
3555 				 abs(hg) >= 2 ? "full" : "bit-map based");
3556 		return C_MASK;
3557 	}
3558 
3559 	if (abs(hg) >= 2) {
3560 		drbd_info(device, "Writing the whole bitmap, full sync required after drbd_sync_handshake.\n");
3561 		if (drbd_bitmap_io(device, &drbd_bmio_set_n_write, "set_n_write from sync_handshake",
3562 					BM_LOCKED_SET_ALLOWED))
3563 			return C_MASK;
3564 	}
3565 
3566 	if (hg > 0) { /* become sync source. */
3567 		rv = C_WF_BITMAP_S;
3568 	} else if (hg < 0) { /* become sync target */
3569 		rv = C_WF_BITMAP_T;
3570 	} else {
3571 		rv = C_CONNECTED;
3572 		if (drbd_bm_total_weight(device)) {
3573 			drbd_info(device, "No resync, but %lu bits in bitmap!\n",
3574 			     drbd_bm_total_weight(device));
3575 		}
3576 	}
3577 
3578 	return rv;
3579 }
3580 
3581 static enum drbd_after_sb_p convert_after_sb(enum drbd_after_sb_p peer)
3582 {
3583 	/* ASB_DISCARD_REMOTE - ASB_DISCARD_LOCAL is valid */
3584 	if (peer == ASB_DISCARD_REMOTE)
3585 		return ASB_DISCARD_LOCAL;
3586 
3587 	/* any other things with ASB_DISCARD_REMOTE or ASB_DISCARD_LOCAL are invalid */
3588 	if (peer == ASB_DISCARD_LOCAL)
3589 		return ASB_DISCARD_REMOTE;
3590 
3591 	/* everything else is valid if they are equal on both sides. */
3592 	return peer;
3593 }
3594 
3595 static int receive_protocol(struct drbd_connection *connection, struct packet_info *pi)
3596 {
3597 	struct p_protocol *p = pi->data;
3598 	enum drbd_after_sb_p p_after_sb_0p, p_after_sb_1p, p_after_sb_2p;
3599 	int p_proto, p_discard_my_data, p_two_primaries, cf;
3600 	struct net_conf *nc, *old_net_conf, *new_net_conf = NULL;
3601 	char integrity_alg[SHARED_SECRET_MAX] = "";
3602 	struct crypto_ahash *peer_integrity_tfm = NULL;
3603 	void *int_dig_in = NULL, *int_dig_vv = NULL;
3604 
3605 	p_proto		= be32_to_cpu(p->protocol);
3606 	p_after_sb_0p	= be32_to_cpu(p->after_sb_0p);
3607 	p_after_sb_1p	= be32_to_cpu(p->after_sb_1p);
3608 	p_after_sb_2p	= be32_to_cpu(p->after_sb_2p);
3609 	p_two_primaries = be32_to_cpu(p->two_primaries);
3610 	cf		= be32_to_cpu(p->conn_flags);
3611 	p_discard_my_data = cf & CF_DISCARD_MY_DATA;
3612 
3613 	if (connection->agreed_pro_version >= 87) {
3614 		int err;
3615 
3616 		if (pi->size > sizeof(integrity_alg))
3617 			return -EIO;
3618 		err = drbd_recv_all(connection, integrity_alg, pi->size);
3619 		if (err)
3620 			return err;
3621 		integrity_alg[SHARED_SECRET_MAX - 1] = 0;
3622 	}
3623 
3624 	if (pi->cmd != P_PROTOCOL_UPDATE) {
3625 		clear_bit(CONN_DRY_RUN, &connection->flags);
3626 
3627 		if (cf & CF_DRY_RUN)
3628 			set_bit(CONN_DRY_RUN, &connection->flags);
3629 
3630 		rcu_read_lock();
3631 		nc = rcu_dereference(connection->net_conf);
3632 
3633 		if (p_proto != nc->wire_protocol) {
3634 			drbd_err(connection, "incompatible %s settings\n", "protocol");
3635 			goto disconnect_rcu_unlock;
3636 		}
3637 
3638 		if (convert_after_sb(p_after_sb_0p) != nc->after_sb_0p) {
3639 			drbd_err(connection, "incompatible %s settings\n", "after-sb-0pri");
3640 			goto disconnect_rcu_unlock;
3641 		}
3642 
3643 		if (convert_after_sb(p_after_sb_1p) != nc->after_sb_1p) {
3644 			drbd_err(connection, "incompatible %s settings\n", "after-sb-1pri");
3645 			goto disconnect_rcu_unlock;
3646 		}
3647 
3648 		if (convert_after_sb(p_after_sb_2p) != nc->after_sb_2p) {
3649 			drbd_err(connection, "incompatible %s settings\n", "after-sb-2pri");
3650 			goto disconnect_rcu_unlock;
3651 		}
3652 
3653 		if (p_discard_my_data && nc->discard_my_data) {
3654 			drbd_err(connection, "incompatible %s settings\n", "discard-my-data");
3655 			goto disconnect_rcu_unlock;
3656 		}
3657 
3658 		if (p_two_primaries != nc->two_primaries) {
3659 			drbd_err(connection, "incompatible %s settings\n", "allow-two-primaries");
3660 			goto disconnect_rcu_unlock;
3661 		}
3662 
3663 		if (strcmp(integrity_alg, nc->integrity_alg)) {
3664 			drbd_err(connection, "incompatible %s settings\n", "data-integrity-alg");
3665 			goto disconnect_rcu_unlock;
3666 		}
3667 
3668 		rcu_read_unlock();
3669 	}
3670 
3671 	if (integrity_alg[0]) {
3672 		int hash_size;
3673 
3674 		/*
3675 		 * We can only change the peer data integrity algorithm
3676 		 * here.  Changing our own data integrity algorithm
3677 		 * requires that we send a P_PROTOCOL_UPDATE packet at
3678 		 * the same time; otherwise, the peer has no way to
3679 		 * tell between which packets the algorithm should
3680 		 * change.
3681 		 */
3682 
3683 		peer_integrity_tfm = crypto_alloc_ahash(integrity_alg, 0, CRYPTO_ALG_ASYNC);
3684 		if (IS_ERR(peer_integrity_tfm)) {
3685 			peer_integrity_tfm = NULL;
3686 			drbd_err(connection, "peer data-integrity-alg %s not supported\n",
3687 				 integrity_alg);
3688 			goto disconnect;
3689 		}
3690 
3691 		hash_size = crypto_ahash_digestsize(peer_integrity_tfm);
3692 		int_dig_in = kmalloc(hash_size, GFP_KERNEL);
3693 		int_dig_vv = kmalloc(hash_size, GFP_KERNEL);
3694 		if (!(int_dig_in && int_dig_vv)) {
3695 			drbd_err(connection, "Allocation of buffers for data integrity checking failed\n");
3696 			goto disconnect;
3697 		}
3698 	}
3699 
3700 	new_net_conf = kmalloc(sizeof(struct net_conf), GFP_KERNEL);
3701 	if (!new_net_conf) {
3702 		drbd_err(connection, "Allocation of new net_conf failed\n");
3703 		goto disconnect;
3704 	}
3705 
3706 	mutex_lock(&connection->data.mutex);
3707 	mutex_lock(&connection->resource->conf_update);
3708 	old_net_conf = connection->net_conf;
3709 	*new_net_conf = *old_net_conf;
3710 
3711 	new_net_conf->wire_protocol = p_proto;
3712 	new_net_conf->after_sb_0p = convert_after_sb(p_after_sb_0p);
3713 	new_net_conf->after_sb_1p = convert_after_sb(p_after_sb_1p);
3714 	new_net_conf->after_sb_2p = convert_after_sb(p_after_sb_2p);
3715 	new_net_conf->two_primaries = p_two_primaries;
3716 
3717 	rcu_assign_pointer(connection->net_conf, new_net_conf);
3718 	mutex_unlock(&connection->resource->conf_update);
3719 	mutex_unlock(&connection->data.mutex);
3720 
3721 	crypto_free_ahash(connection->peer_integrity_tfm);
3722 	kfree(connection->int_dig_in);
3723 	kfree(connection->int_dig_vv);
3724 	connection->peer_integrity_tfm = peer_integrity_tfm;
3725 	connection->int_dig_in = int_dig_in;
3726 	connection->int_dig_vv = int_dig_vv;
3727 
3728 	if (strcmp(old_net_conf->integrity_alg, integrity_alg))
3729 		drbd_info(connection, "peer data-integrity-alg: %s\n",
3730 			  integrity_alg[0] ? integrity_alg : "(none)");
3731 
3732 	synchronize_rcu();
3733 	kfree(old_net_conf);
3734 	return 0;
3735 
3736 disconnect_rcu_unlock:
3737 	rcu_read_unlock();
3738 disconnect:
3739 	crypto_free_ahash(peer_integrity_tfm);
3740 	kfree(int_dig_in);
3741 	kfree(int_dig_vv);
3742 	conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
3743 	return -EIO;
3744 }
3745 
3746 /* helper function
3747  * input: alg name, feature name
3748  * return: NULL (alg name was "")
3749  *         ERR_PTR(error) if something goes wrong
3750  *         or the crypto hash ptr, if it worked out ok. */
3751 static struct crypto_ahash *drbd_crypto_alloc_digest_safe(const struct drbd_device *device,
3752 		const char *alg, const char *name)
3753 {
3754 	struct crypto_ahash *tfm;
3755 
3756 	if (!alg[0])
3757 		return NULL;
3758 
3759 	tfm = crypto_alloc_ahash(alg, 0, CRYPTO_ALG_ASYNC);
3760 	if (IS_ERR(tfm)) {
3761 		drbd_err(device, "Can not allocate \"%s\" as %s (reason: %ld)\n",
3762 			alg, name, PTR_ERR(tfm));
3763 		return tfm;
3764 	}
3765 	return tfm;
3766 }
3767 
3768 static int ignore_remaining_packet(struct drbd_connection *connection, struct packet_info *pi)
3769 {
3770 	void *buffer = connection->data.rbuf;
3771 	int size = pi->size;
3772 
3773 	while (size) {
3774 		int s = min_t(int, size, DRBD_SOCKET_BUFFER_SIZE);
3775 		s = drbd_recv(connection, buffer, s);
3776 		if (s <= 0) {
3777 			if (s < 0)
3778 				return s;
3779 			break;
3780 		}
3781 		size -= s;
3782 	}
3783 	if (size)
3784 		return -EIO;
3785 	return 0;
3786 }
3787 
3788 /*
3789  * config_unknown_volume  -  device configuration command for unknown volume
3790  *
3791  * When a device is added to an existing connection, the node on which the
3792  * device is added first will send configuration commands to its peer but the
3793  * peer will not know about the device yet.  It will warn and ignore these
3794  * commands.  Once the device is added on the second node, the second node will
3795  * send the same device configuration commands, but in the other direction.
3796  *
3797  * (We can also end up here if drbd is misconfigured.)
3798  */
3799 static int config_unknown_volume(struct drbd_connection *connection, struct packet_info *pi)
3800 {
3801 	drbd_warn(connection, "%s packet received for volume %u, which is not configured locally\n",
3802 		  cmdname(pi->cmd), pi->vnr);
3803 	return ignore_remaining_packet(connection, pi);
3804 }
3805 
3806 static int receive_SyncParam(struct drbd_connection *connection, struct packet_info *pi)
3807 {
3808 	struct drbd_peer_device *peer_device;
3809 	struct drbd_device *device;
3810 	struct p_rs_param_95 *p;
3811 	unsigned int header_size, data_size, exp_max_sz;
3812 	struct crypto_ahash *verify_tfm = NULL;
3813 	struct crypto_ahash *csums_tfm = NULL;
3814 	struct net_conf *old_net_conf, *new_net_conf = NULL;
3815 	struct disk_conf *old_disk_conf = NULL, *new_disk_conf = NULL;
3816 	const int apv = connection->agreed_pro_version;
3817 	struct fifo_buffer *old_plan = NULL, *new_plan = NULL;
3818 	int fifo_size = 0;
3819 	int err;
3820 
3821 	peer_device = conn_peer_device(connection, pi->vnr);
3822 	if (!peer_device)
3823 		return config_unknown_volume(connection, pi);
3824 	device = peer_device->device;
3825 
3826 	exp_max_sz  = apv <= 87 ? sizeof(struct p_rs_param)
3827 		    : apv == 88 ? sizeof(struct p_rs_param)
3828 					+ SHARED_SECRET_MAX
3829 		    : apv <= 94 ? sizeof(struct p_rs_param_89)
3830 		    : /* apv >= 95 */ sizeof(struct p_rs_param_95);
3831 
3832 	if (pi->size > exp_max_sz) {
3833 		drbd_err(device, "SyncParam packet too long: received %u, expected <= %u bytes\n",
3834 		    pi->size, exp_max_sz);
3835 		return -EIO;
3836 	}
3837 
3838 	if (apv <= 88) {
3839 		header_size = sizeof(struct p_rs_param);
3840 		data_size = pi->size - header_size;
3841 	} else if (apv <= 94) {
3842 		header_size = sizeof(struct p_rs_param_89);
3843 		data_size = pi->size - header_size;
3844 		D_ASSERT(device, data_size == 0);
3845 	} else {
3846 		header_size = sizeof(struct p_rs_param_95);
3847 		data_size = pi->size - header_size;
3848 		D_ASSERT(device, data_size == 0);
3849 	}
3850 
3851 	/* initialize verify_alg and csums_alg */
3852 	p = pi->data;
3853 	memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX);
3854 
3855 	err = drbd_recv_all(peer_device->connection, p, header_size);
3856 	if (err)
3857 		return err;
3858 
3859 	mutex_lock(&connection->resource->conf_update);
3860 	old_net_conf = peer_device->connection->net_conf;
3861 	if (get_ldev(device)) {
3862 		new_disk_conf = kzalloc(sizeof(struct disk_conf), GFP_KERNEL);
3863 		if (!new_disk_conf) {
3864 			put_ldev(device);
3865 			mutex_unlock(&connection->resource->conf_update);
3866 			drbd_err(device, "Allocation of new disk_conf failed\n");
3867 			return -ENOMEM;
3868 		}
3869 
3870 		old_disk_conf = device->ldev->disk_conf;
3871 		*new_disk_conf = *old_disk_conf;
3872 
3873 		new_disk_conf->resync_rate = be32_to_cpu(p->resync_rate);
3874 	}
3875 
3876 	if (apv >= 88) {
3877 		if (apv == 88) {
3878 			if (data_size > SHARED_SECRET_MAX || data_size == 0) {
3879 				drbd_err(device, "verify-alg of wrong size, "
3880 					"peer wants %u, accepting only up to %u byte\n",
3881 					data_size, SHARED_SECRET_MAX);
3882 				err = -EIO;
3883 				goto reconnect;
3884 			}
3885 
3886 			err = drbd_recv_all(peer_device->connection, p->verify_alg, data_size);
3887 			if (err)
3888 				goto reconnect;
3889 			/* we expect NUL terminated string */
3890 			/* but just in case someone tries to be evil */
3891 			D_ASSERT(device, p->verify_alg[data_size-1] == 0);
3892 			p->verify_alg[data_size-1] = 0;
3893 
3894 		} else /* apv >= 89 */ {
3895 			/* we still expect NUL terminated strings */
3896 			/* but just in case someone tries to be evil */
3897 			D_ASSERT(device, p->verify_alg[SHARED_SECRET_MAX-1] == 0);
3898 			D_ASSERT(device, p->csums_alg[SHARED_SECRET_MAX-1] == 0);
3899 			p->verify_alg[SHARED_SECRET_MAX-1] = 0;
3900 			p->csums_alg[SHARED_SECRET_MAX-1] = 0;
3901 		}
3902 
3903 		if (strcmp(old_net_conf->verify_alg, p->verify_alg)) {
3904 			if (device->state.conn == C_WF_REPORT_PARAMS) {
3905 				drbd_err(device, "Different verify-alg settings. me=\"%s\" peer=\"%s\"\n",
3906 				    old_net_conf->verify_alg, p->verify_alg);
3907 				goto disconnect;
3908 			}
3909 			verify_tfm = drbd_crypto_alloc_digest_safe(device,
3910 					p->verify_alg, "verify-alg");
3911 			if (IS_ERR(verify_tfm)) {
3912 				verify_tfm = NULL;
3913 				goto disconnect;
3914 			}
3915 		}
3916 
3917 		if (apv >= 89 && strcmp(old_net_conf->csums_alg, p->csums_alg)) {
3918 			if (device->state.conn == C_WF_REPORT_PARAMS) {
3919 				drbd_err(device, "Different csums-alg settings. me=\"%s\" peer=\"%s\"\n",
3920 				    old_net_conf->csums_alg, p->csums_alg);
3921 				goto disconnect;
3922 			}
3923 			csums_tfm = drbd_crypto_alloc_digest_safe(device,
3924 					p->csums_alg, "csums-alg");
3925 			if (IS_ERR(csums_tfm)) {
3926 				csums_tfm = NULL;
3927 				goto disconnect;
3928 			}
3929 		}
3930 
3931 		if (apv > 94 && new_disk_conf) {
3932 			new_disk_conf->c_plan_ahead = be32_to_cpu(p->c_plan_ahead);
3933 			new_disk_conf->c_delay_target = be32_to_cpu(p->c_delay_target);
3934 			new_disk_conf->c_fill_target = be32_to_cpu(p->c_fill_target);
3935 			new_disk_conf->c_max_rate = be32_to_cpu(p->c_max_rate);
3936 
3937 			fifo_size = (new_disk_conf->c_plan_ahead * 10 * SLEEP_TIME) / HZ;
3938 			if (fifo_size != device->rs_plan_s->size) {
3939 				new_plan = fifo_alloc(fifo_size);
3940 				if (!new_plan) {
3941 					drbd_err(device, "kmalloc of fifo_buffer failed");
3942 					put_ldev(device);
3943 					goto disconnect;
3944 				}
3945 			}
3946 		}
3947 
3948 		if (verify_tfm || csums_tfm) {
3949 			new_net_conf = kzalloc(sizeof(struct net_conf), GFP_KERNEL);
3950 			if (!new_net_conf) {
3951 				drbd_err(device, "Allocation of new net_conf failed\n");
3952 				goto disconnect;
3953 			}
3954 
3955 			*new_net_conf = *old_net_conf;
3956 
3957 			if (verify_tfm) {
3958 				strcpy(new_net_conf->verify_alg, p->verify_alg);
3959 				new_net_conf->verify_alg_len = strlen(p->verify_alg) + 1;
3960 				crypto_free_ahash(peer_device->connection->verify_tfm);
3961 				peer_device->connection->verify_tfm = verify_tfm;
3962 				drbd_info(device, "using verify-alg: \"%s\"\n", p->verify_alg);
3963 			}
3964 			if (csums_tfm) {
3965 				strcpy(new_net_conf->csums_alg, p->csums_alg);
3966 				new_net_conf->csums_alg_len = strlen(p->csums_alg) + 1;
3967 				crypto_free_ahash(peer_device->connection->csums_tfm);
3968 				peer_device->connection->csums_tfm = csums_tfm;
3969 				drbd_info(device, "using csums-alg: \"%s\"\n", p->csums_alg);
3970 			}
3971 			rcu_assign_pointer(connection->net_conf, new_net_conf);
3972 		}
3973 	}
3974 
3975 	if (new_disk_conf) {
3976 		rcu_assign_pointer(device->ldev->disk_conf, new_disk_conf);
3977 		put_ldev(device);
3978 	}
3979 
3980 	if (new_plan) {
3981 		old_plan = device->rs_plan_s;
3982 		rcu_assign_pointer(device->rs_plan_s, new_plan);
3983 	}
3984 
3985 	mutex_unlock(&connection->resource->conf_update);
3986 	synchronize_rcu();
3987 	if (new_net_conf)
3988 		kfree(old_net_conf);
3989 	kfree(old_disk_conf);
3990 	kfree(old_plan);
3991 
3992 	return 0;
3993 
3994 reconnect:
3995 	if (new_disk_conf) {
3996 		put_ldev(device);
3997 		kfree(new_disk_conf);
3998 	}
3999 	mutex_unlock(&connection->resource->conf_update);
4000 	return -EIO;
4001 
4002 disconnect:
4003 	kfree(new_plan);
4004 	if (new_disk_conf) {
4005 		put_ldev(device);
4006 		kfree(new_disk_conf);
4007 	}
4008 	mutex_unlock(&connection->resource->conf_update);
4009 	/* just for completeness: actually not needed,
4010 	 * as this is not reached if csums_tfm was ok. */
4011 	crypto_free_ahash(csums_tfm);
4012 	/* but free the verify_tfm again, if csums_tfm did not work out */
4013 	crypto_free_ahash(verify_tfm);
4014 	conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4015 	return -EIO;
4016 }
4017 
4018 /* warn if the arguments differ by more than 12.5% */
4019 static void warn_if_differ_considerably(struct drbd_device *device,
4020 	const char *s, sector_t a, sector_t b)
4021 {
4022 	sector_t d;
4023 	if (a == 0 || b == 0)
4024 		return;
4025 	d = (a > b) ? (a - b) : (b - a);
4026 	if (d > (a>>3) || d > (b>>3))
4027 		drbd_warn(device, "Considerable difference in %s: %llus vs. %llus\n", s,
4028 		     (unsigned long long)a, (unsigned long long)b);
4029 }
4030 
4031 static int receive_sizes(struct drbd_connection *connection, struct packet_info *pi)
4032 {
4033 	struct drbd_peer_device *peer_device;
4034 	struct drbd_device *device;
4035 	struct p_sizes *p = pi->data;
4036 	struct o_qlim *o = (connection->agreed_features & DRBD_FF_WSAME) ? p->qlim : NULL;
4037 	enum determine_dev_size dd = DS_UNCHANGED;
4038 	sector_t p_size, p_usize, p_csize, my_usize;
4039 	int ldsc = 0; /* local disk size changed */
4040 	enum dds_flags ddsf;
4041 
4042 	peer_device = conn_peer_device(connection, pi->vnr);
4043 	if (!peer_device)
4044 		return config_unknown_volume(connection, pi);
4045 	device = peer_device->device;
4046 
4047 	p_size = be64_to_cpu(p->d_size);
4048 	p_usize = be64_to_cpu(p->u_size);
4049 	p_csize = be64_to_cpu(p->c_size);
4050 
4051 	/* just store the peer's disk size for now.
4052 	 * we still need to figure out whether we accept that. */
4053 	device->p_size = p_size;
4054 
4055 	if (get_ldev(device)) {
4056 		sector_t new_size, cur_size;
4057 		rcu_read_lock();
4058 		my_usize = rcu_dereference(device->ldev->disk_conf)->disk_size;
4059 		rcu_read_unlock();
4060 
4061 		warn_if_differ_considerably(device, "lower level device sizes",
4062 			   p_size, drbd_get_max_capacity(device->ldev));
4063 		warn_if_differ_considerably(device, "user requested size",
4064 					    p_usize, my_usize);
4065 
4066 		/* if this is the first connect, or an otherwise expected
4067 		 * param exchange, choose the minimum */
4068 		if (device->state.conn == C_WF_REPORT_PARAMS)
4069 			p_usize = min_not_zero(my_usize, p_usize);
4070 
4071 		/* Never shrink a device with usable data during connect.
4072 		   But allow online shrinking if we are connected. */
4073 		new_size = drbd_new_dev_size(device, device->ldev, p_usize, 0);
4074 		cur_size = drbd_get_capacity(device->this_bdev);
4075 		if (new_size < cur_size &&
4076 		    device->state.disk >= D_OUTDATED &&
4077 		    device->state.conn < C_CONNECTED) {
4078 			drbd_err(device, "The peer's disk size is too small! (%llu < %llu sectors)\n",
4079 					(unsigned long long)new_size, (unsigned long long)cur_size);
4080 			conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4081 			put_ldev(device);
4082 			return -EIO;
4083 		}
4084 
4085 		if (my_usize != p_usize) {
4086 			struct disk_conf *old_disk_conf, *new_disk_conf = NULL;
4087 
4088 			new_disk_conf = kzalloc(sizeof(struct disk_conf), GFP_KERNEL);
4089 			if (!new_disk_conf) {
4090 				drbd_err(device, "Allocation of new disk_conf failed\n");
4091 				put_ldev(device);
4092 				return -ENOMEM;
4093 			}
4094 
4095 			mutex_lock(&connection->resource->conf_update);
4096 			old_disk_conf = device->ldev->disk_conf;
4097 			*new_disk_conf = *old_disk_conf;
4098 			new_disk_conf->disk_size = p_usize;
4099 
4100 			rcu_assign_pointer(device->ldev->disk_conf, new_disk_conf);
4101 			mutex_unlock(&connection->resource->conf_update);
4102 			synchronize_rcu();
4103 			kfree(old_disk_conf);
4104 
4105 			drbd_info(device, "Peer sets u_size to %lu sectors\n",
4106 				 (unsigned long)my_usize);
4107 		}
4108 
4109 		put_ldev(device);
4110 	}
4111 
4112 	device->peer_max_bio_size = be32_to_cpu(p->max_bio_size);
4113 	/* Leave drbd_reconsider_queue_parameters() before drbd_determine_dev_size().
4114 	   In case we cleared the QUEUE_FLAG_DISCARD from our queue in
4115 	   drbd_reconsider_queue_parameters(), we can be sure that after
4116 	   drbd_determine_dev_size() no REQ_DISCARDs are in the queue. */
4117 
4118 	ddsf = be16_to_cpu(p->dds_flags);
4119 	if (get_ldev(device)) {
4120 		drbd_reconsider_queue_parameters(device, device->ldev, o);
4121 		dd = drbd_determine_dev_size(device, ddsf, NULL);
4122 		put_ldev(device);
4123 		if (dd == DS_ERROR)
4124 			return -EIO;
4125 		drbd_md_sync(device);
4126 	} else {
4127 		/*
4128 		 * I am diskless, need to accept the peer's *current* size.
4129 		 * I must NOT accept the peers backing disk size,
4130 		 * it may have been larger than mine all along...
4131 		 *
4132 		 * At this point, the peer knows more about my disk, or at
4133 		 * least about what we last agreed upon, than myself.
4134 		 * So if his c_size is less than his d_size, the most likely
4135 		 * reason is that *my* d_size was smaller last time we checked.
4136 		 *
4137 		 * However, if he sends a zero current size,
4138 		 * take his (user-capped or) backing disk size anyways.
4139 		 */
4140 		drbd_reconsider_queue_parameters(device, NULL, o);
4141 		drbd_set_my_capacity(device, p_csize ?: p_usize ?: p_size);
4142 	}
4143 
4144 	if (get_ldev(device)) {
4145 		if (device->ldev->known_size != drbd_get_capacity(device->ldev->backing_bdev)) {
4146 			device->ldev->known_size = drbd_get_capacity(device->ldev->backing_bdev);
4147 			ldsc = 1;
4148 		}
4149 
4150 		put_ldev(device);
4151 	}
4152 
4153 	if (device->state.conn > C_WF_REPORT_PARAMS) {
4154 		if (be64_to_cpu(p->c_size) !=
4155 		    drbd_get_capacity(device->this_bdev) || ldsc) {
4156 			/* we have different sizes, probably peer
4157 			 * needs to know my new size... */
4158 			drbd_send_sizes(peer_device, 0, ddsf);
4159 		}
4160 		if (test_and_clear_bit(RESIZE_PENDING, &device->flags) ||
4161 		    (dd == DS_GREW && device->state.conn == C_CONNECTED)) {
4162 			if (device->state.pdsk >= D_INCONSISTENT &&
4163 			    device->state.disk >= D_INCONSISTENT) {
4164 				if (ddsf & DDSF_NO_RESYNC)
4165 					drbd_info(device, "Resync of new storage suppressed with --assume-clean\n");
4166 				else
4167 					resync_after_online_grow(device);
4168 			} else
4169 				set_bit(RESYNC_AFTER_NEG, &device->flags);
4170 		}
4171 	}
4172 
4173 	return 0;
4174 }
4175 
4176 static int receive_uuids(struct drbd_connection *connection, struct packet_info *pi)
4177 {
4178 	struct drbd_peer_device *peer_device;
4179 	struct drbd_device *device;
4180 	struct p_uuids *p = pi->data;
4181 	u64 *p_uuid;
4182 	int i, updated_uuids = 0;
4183 
4184 	peer_device = conn_peer_device(connection, pi->vnr);
4185 	if (!peer_device)
4186 		return config_unknown_volume(connection, pi);
4187 	device = peer_device->device;
4188 
4189 	p_uuid = kmalloc(sizeof(u64)*UI_EXTENDED_SIZE, GFP_NOIO);
4190 	if (!p_uuid) {
4191 		drbd_err(device, "kmalloc of p_uuid failed\n");
4192 		return false;
4193 	}
4194 
4195 	for (i = UI_CURRENT; i < UI_EXTENDED_SIZE; i++)
4196 		p_uuid[i] = be64_to_cpu(p->uuid[i]);
4197 
4198 	kfree(device->p_uuid);
4199 	device->p_uuid = p_uuid;
4200 
4201 	if (device->state.conn < C_CONNECTED &&
4202 	    device->state.disk < D_INCONSISTENT &&
4203 	    device->state.role == R_PRIMARY &&
4204 	    (device->ed_uuid & ~((u64)1)) != (p_uuid[UI_CURRENT] & ~((u64)1))) {
4205 		drbd_err(device, "Can only connect to data with current UUID=%016llX\n",
4206 		    (unsigned long long)device->ed_uuid);
4207 		conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4208 		return -EIO;
4209 	}
4210 
4211 	if (get_ldev(device)) {
4212 		int skip_initial_sync =
4213 			device->state.conn == C_CONNECTED &&
4214 			peer_device->connection->agreed_pro_version >= 90 &&
4215 			device->ldev->md.uuid[UI_CURRENT] == UUID_JUST_CREATED &&
4216 			(p_uuid[UI_FLAGS] & 8);
4217 		if (skip_initial_sync) {
4218 			drbd_info(device, "Accepted new current UUID, preparing to skip initial sync\n");
4219 			drbd_bitmap_io(device, &drbd_bmio_clear_n_write,
4220 					"clear_n_write from receive_uuids",
4221 					BM_LOCKED_TEST_ALLOWED);
4222 			_drbd_uuid_set(device, UI_CURRENT, p_uuid[UI_CURRENT]);
4223 			_drbd_uuid_set(device, UI_BITMAP, 0);
4224 			_drbd_set_state(_NS2(device, disk, D_UP_TO_DATE, pdsk, D_UP_TO_DATE),
4225 					CS_VERBOSE, NULL);
4226 			drbd_md_sync(device);
4227 			updated_uuids = 1;
4228 		}
4229 		put_ldev(device);
4230 	} else if (device->state.disk < D_INCONSISTENT &&
4231 		   device->state.role == R_PRIMARY) {
4232 		/* I am a diskless primary, the peer just created a new current UUID
4233 		   for me. */
4234 		updated_uuids = drbd_set_ed_uuid(device, p_uuid[UI_CURRENT]);
4235 	}
4236 
4237 	/* Before we test for the disk state, we should wait until an eventually
4238 	   ongoing cluster wide state change is finished. That is important if
4239 	   we are primary and are detaching from our disk. We need to see the
4240 	   new disk state... */
4241 	mutex_lock(device->state_mutex);
4242 	mutex_unlock(device->state_mutex);
4243 	if (device->state.conn >= C_CONNECTED && device->state.disk < D_INCONSISTENT)
4244 		updated_uuids |= drbd_set_ed_uuid(device, p_uuid[UI_CURRENT]);
4245 
4246 	if (updated_uuids)
4247 		drbd_print_uuids(device, "receiver updated UUIDs to");
4248 
4249 	return 0;
4250 }
4251 
4252 /**
4253  * convert_state() - Converts the peer's view of the cluster state to our point of view
4254  * @ps:		The state as seen by the peer.
4255  */
4256 static union drbd_state convert_state(union drbd_state ps)
4257 {
4258 	union drbd_state ms;
4259 
4260 	static enum drbd_conns c_tab[] = {
4261 		[C_WF_REPORT_PARAMS] = C_WF_REPORT_PARAMS,
4262 		[C_CONNECTED] = C_CONNECTED,
4263 
4264 		[C_STARTING_SYNC_S] = C_STARTING_SYNC_T,
4265 		[C_STARTING_SYNC_T] = C_STARTING_SYNC_S,
4266 		[C_DISCONNECTING] = C_TEAR_DOWN, /* C_NETWORK_FAILURE, */
4267 		[C_VERIFY_S]       = C_VERIFY_T,
4268 		[C_MASK]   = C_MASK,
4269 	};
4270 
4271 	ms.i = ps.i;
4272 
4273 	ms.conn = c_tab[ps.conn];
4274 	ms.peer = ps.role;
4275 	ms.role = ps.peer;
4276 	ms.pdsk = ps.disk;
4277 	ms.disk = ps.pdsk;
4278 	ms.peer_isp = (ps.aftr_isp | ps.user_isp);
4279 
4280 	return ms;
4281 }
4282 
4283 static int receive_req_state(struct drbd_connection *connection, struct packet_info *pi)
4284 {
4285 	struct drbd_peer_device *peer_device;
4286 	struct drbd_device *device;
4287 	struct p_req_state *p = pi->data;
4288 	union drbd_state mask, val;
4289 	enum drbd_state_rv rv;
4290 
4291 	peer_device = conn_peer_device(connection, pi->vnr);
4292 	if (!peer_device)
4293 		return -EIO;
4294 	device = peer_device->device;
4295 
4296 	mask.i = be32_to_cpu(p->mask);
4297 	val.i = be32_to_cpu(p->val);
4298 
4299 	if (test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags) &&
4300 	    mutex_is_locked(device->state_mutex)) {
4301 		drbd_send_sr_reply(peer_device, SS_CONCURRENT_ST_CHG);
4302 		return 0;
4303 	}
4304 
4305 	mask = convert_state(mask);
4306 	val = convert_state(val);
4307 
4308 	rv = drbd_change_state(device, CS_VERBOSE, mask, val);
4309 	drbd_send_sr_reply(peer_device, rv);
4310 
4311 	drbd_md_sync(device);
4312 
4313 	return 0;
4314 }
4315 
4316 static int receive_req_conn_state(struct drbd_connection *connection, struct packet_info *pi)
4317 {
4318 	struct p_req_state *p = pi->data;
4319 	union drbd_state mask, val;
4320 	enum drbd_state_rv rv;
4321 
4322 	mask.i = be32_to_cpu(p->mask);
4323 	val.i = be32_to_cpu(p->val);
4324 
4325 	if (test_bit(RESOLVE_CONFLICTS, &connection->flags) &&
4326 	    mutex_is_locked(&connection->cstate_mutex)) {
4327 		conn_send_sr_reply(connection, SS_CONCURRENT_ST_CHG);
4328 		return 0;
4329 	}
4330 
4331 	mask = convert_state(mask);
4332 	val = convert_state(val);
4333 
4334 	rv = conn_request_state(connection, mask, val, CS_VERBOSE | CS_LOCAL_ONLY | CS_IGN_OUTD_FAIL);
4335 	conn_send_sr_reply(connection, rv);
4336 
4337 	return 0;
4338 }
4339 
4340 static int receive_state(struct drbd_connection *connection, struct packet_info *pi)
4341 {
4342 	struct drbd_peer_device *peer_device;
4343 	struct drbd_device *device;
4344 	struct p_state *p = pi->data;
4345 	union drbd_state os, ns, peer_state;
4346 	enum drbd_disk_state real_peer_disk;
4347 	enum chg_state_flags cs_flags;
4348 	int rv;
4349 
4350 	peer_device = conn_peer_device(connection, pi->vnr);
4351 	if (!peer_device)
4352 		return config_unknown_volume(connection, pi);
4353 	device = peer_device->device;
4354 
4355 	peer_state.i = be32_to_cpu(p->state);
4356 
4357 	real_peer_disk = peer_state.disk;
4358 	if (peer_state.disk == D_NEGOTIATING) {
4359 		real_peer_disk = device->p_uuid[UI_FLAGS] & 4 ? D_INCONSISTENT : D_CONSISTENT;
4360 		drbd_info(device, "real peer disk state = %s\n", drbd_disk_str(real_peer_disk));
4361 	}
4362 
4363 	spin_lock_irq(&device->resource->req_lock);
4364  retry:
4365 	os = ns = drbd_read_state(device);
4366 	spin_unlock_irq(&device->resource->req_lock);
4367 
4368 	/* If some other part of the code (ack_receiver thread, timeout)
4369 	 * already decided to close the connection again,
4370 	 * we must not "re-establish" it here. */
4371 	if (os.conn <= C_TEAR_DOWN)
4372 		return -ECONNRESET;
4373 
4374 	/* If this is the "end of sync" confirmation, usually the peer disk
4375 	 * transitions from D_INCONSISTENT to D_UP_TO_DATE. For empty (0 bits
4376 	 * set) resync started in PausedSyncT, or if the timing of pause-/
4377 	 * unpause-sync events has been "just right", the peer disk may
4378 	 * transition from D_CONSISTENT to D_UP_TO_DATE as well.
4379 	 */
4380 	if ((os.pdsk == D_INCONSISTENT || os.pdsk == D_CONSISTENT) &&
4381 	    real_peer_disk == D_UP_TO_DATE &&
4382 	    os.conn > C_CONNECTED && os.disk == D_UP_TO_DATE) {
4383 		/* If we are (becoming) SyncSource, but peer is still in sync
4384 		 * preparation, ignore its uptodate-ness to avoid flapping, it
4385 		 * will change to inconsistent once the peer reaches active
4386 		 * syncing states.
4387 		 * It may have changed syncer-paused flags, however, so we
4388 		 * cannot ignore this completely. */
4389 		if (peer_state.conn > C_CONNECTED &&
4390 		    peer_state.conn < C_SYNC_SOURCE)
4391 			real_peer_disk = D_INCONSISTENT;
4392 
4393 		/* if peer_state changes to connected at the same time,
4394 		 * it explicitly notifies us that it finished resync.
4395 		 * Maybe we should finish it up, too? */
4396 		else if (os.conn >= C_SYNC_SOURCE &&
4397 			 peer_state.conn == C_CONNECTED) {
4398 			if (drbd_bm_total_weight(device) <= device->rs_failed)
4399 				drbd_resync_finished(device);
4400 			return 0;
4401 		}
4402 	}
4403 
4404 	/* explicit verify finished notification, stop sector reached. */
4405 	if (os.conn == C_VERIFY_T && os.disk == D_UP_TO_DATE &&
4406 	    peer_state.conn == C_CONNECTED && real_peer_disk == D_UP_TO_DATE) {
4407 		ov_out_of_sync_print(device);
4408 		drbd_resync_finished(device);
4409 		return 0;
4410 	}
4411 
4412 	/* peer says his disk is inconsistent, while we think it is uptodate,
4413 	 * and this happens while the peer still thinks we have a sync going on,
4414 	 * but we think we are already done with the sync.
4415 	 * We ignore this to avoid flapping pdsk.
4416 	 * This should not happen, if the peer is a recent version of drbd. */
4417 	if (os.pdsk == D_UP_TO_DATE && real_peer_disk == D_INCONSISTENT &&
4418 	    os.conn == C_CONNECTED && peer_state.conn > C_SYNC_SOURCE)
4419 		real_peer_disk = D_UP_TO_DATE;
4420 
4421 	if (ns.conn == C_WF_REPORT_PARAMS)
4422 		ns.conn = C_CONNECTED;
4423 
4424 	if (peer_state.conn == C_AHEAD)
4425 		ns.conn = C_BEHIND;
4426 
4427 	if (device->p_uuid && peer_state.disk >= D_NEGOTIATING &&
4428 	    get_ldev_if_state(device, D_NEGOTIATING)) {
4429 		int cr; /* consider resync */
4430 
4431 		/* if we established a new connection */
4432 		cr  = (os.conn < C_CONNECTED);
4433 		/* if we had an established connection
4434 		 * and one of the nodes newly attaches a disk */
4435 		cr |= (os.conn == C_CONNECTED &&
4436 		       (peer_state.disk == D_NEGOTIATING ||
4437 			os.disk == D_NEGOTIATING));
4438 		/* if we have both been inconsistent, and the peer has been
4439 		 * forced to be UpToDate with --overwrite-data */
4440 		cr |= test_bit(CONSIDER_RESYNC, &device->flags);
4441 		/* if we had been plain connected, and the admin requested to
4442 		 * start a sync by "invalidate" or "invalidate-remote" */
4443 		cr |= (os.conn == C_CONNECTED &&
4444 				(peer_state.conn >= C_STARTING_SYNC_S &&
4445 				 peer_state.conn <= C_WF_BITMAP_T));
4446 
4447 		if (cr)
4448 			ns.conn = drbd_sync_handshake(peer_device, peer_state.role, real_peer_disk);
4449 
4450 		put_ldev(device);
4451 		if (ns.conn == C_MASK) {
4452 			ns.conn = C_CONNECTED;
4453 			if (device->state.disk == D_NEGOTIATING) {
4454 				drbd_force_state(device, NS(disk, D_FAILED));
4455 			} else if (peer_state.disk == D_NEGOTIATING) {
4456 				drbd_err(device, "Disk attach process on the peer node was aborted.\n");
4457 				peer_state.disk = D_DISKLESS;
4458 				real_peer_disk = D_DISKLESS;
4459 			} else {
4460 				if (test_and_clear_bit(CONN_DRY_RUN, &peer_device->connection->flags))
4461 					return -EIO;
4462 				D_ASSERT(device, os.conn == C_WF_REPORT_PARAMS);
4463 				conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4464 				return -EIO;
4465 			}
4466 		}
4467 	}
4468 
4469 	spin_lock_irq(&device->resource->req_lock);
4470 	if (os.i != drbd_read_state(device).i)
4471 		goto retry;
4472 	clear_bit(CONSIDER_RESYNC, &device->flags);
4473 	ns.peer = peer_state.role;
4474 	ns.pdsk = real_peer_disk;
4475 	ns.peer_isp = (peer_state.aftr_isp | peer_state.user_isp);
4476 	if ((ns.conn == C_CONNECTED || ns.conn == C_WF_BITMAP_S) && ns.disk == D_NEGOTIATING)
4477 		ns.disk = device->new_state_tmp.disk;
4478 	cs_flags = CS_VERBOSE + (os.conn < C_CONNECTED && ns.conn >= C_CONNECTED ? 0 : CS_HARD);
4479 	if (ns.pdsk == D_CONSISTENT && drbd_suspended(device) && ns.conn == C_CONNECTED && os.conn < C_CONNECTED &&
4480 	    test_bit(NEW_CUR_UUID, &device->flags)) {
4481 		/* Do not allow tl_restart(RESEND) for a rebooted peer. We can only allow this
4482 		   for temporal network outages! */
4483 		spin_unlock_irq(&device->resource->req_lock);
4484 		drbd_err(device, "Aborting Connect, can not thaw IO with an only Consistent peer\n");
4485 		tl_clear(peer_device->connection);
4486 		drbd_uuid_new_current(device);
4487 		clear_bit(NEW_CUR_UUID, &device->flags);
4488 		conn_request_state(peer_device->connection, NS2(conn, C_PROTOCOL_ERROR, susp, 0), CS_HARD);
4489 		return -EIO;
4490 	}
4491 	rv = _drbd_set_state(device, ns, cs_flags, NULL);
4492 	ns = drbd_read_state(device);
4493 	spin_unlock_irq(&device->resource->req_lock);
4494 
4495 	if (rv < SS_SUCCESS) {
4496 		conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4497 		return -EIO;
4498 	}
4499 
4500 	if (os.conn > C_WF_REPORT_PARAMS) {
4501 		if (ns.conn > C_CONNECTED && peer_state.conn <= C_CONNECTED &&
4502 		    peer_state.disk != D_NEGOTIATING ) {
4503 			/* we want resync, peer has not yet decided to sync... */
4504 			/* Nowadays only used when forcing a node into primary role and
4505 			   setting its disk to UpToDate with that */
4506 			drbd_send_uuids(peer_device);
4507 			drbd_send_current_state(peer_device);
4508 		}
4509 	}
4510 
4511 	clear_bit(DISCARD_MY_DATA, &device->flags);
4512 
4513 	drbd_md_sync(device); /* update connected indicator, la_size_sect, ... */
4514 
4515 	return 0;
4516 }
4517 
4518 static int receive_sync_uuid(struct drbd_connection *connection, struct packet_info *pi)
4519 {
4520 	struct drbd_peer_device *peer_device;
4521 	struct drbd_device *device;
4522 	struct p_rs_uuid *p = pi->data;
4523 
4524 	peer_device = conn_peer_device(connection, pi->vnr);
4525 	if (!peer_device)
4526 		return -EIO;
4527 	device = peer_device->device;
4528 
4529 	wait_event(device->misc_wait,
4530 		   device->state.conn == C_WF_SYNC_UUID ||
4531 		   device->state.conn == C_BEHIND ||
4532 		   device->state.conn < C_CONNECTED ||
4533 		   device->state.disk < D_NEGOTIATING);
4534 
4535 	/* D_ASSERT(device,  device->state.conn == C_WF_SYNC_UUID ); */
4536 
4537 	/* Here the _drbd_uuid_ functions are right, current should
4538 	   _not_ be rotated into the history */
4539 	if (get_ldev_if_state(device, D_NEGOTIATING)) {
4540 		_drbd_uuid_set(device, UI_CURRENT, be64_to_cpu(p->uuid));
4541 		_drbd_uuid_set(device, UI_BITMAP, 0UL);
4542 
4543 		drbd_print_uuids(device, "updated sync uuid");
4544 		drbd_start_resync(device, C_SYNC_TARGET);
4545 
4546 		put_ldev(device);
4547 	} else
4548 		drbd_err(device, "Ignoring SyncUUID packet!\n");
4549 
4550 	return 0;
4551 }
4552 
4553 /**
4554  * receive_bitmap_plain
4555  *
4556  * Return 0 when done, 1 when another iteration is needed, and a negative error
4557  * code upon failure.
4558  */
4559 static int
4560 receive_bitmap_plain(struct drbd_peer_device *peer_device, unsigned int size,
4561 		     unsigned long *p, struct bm_xfer_ctx *c)
4562 {
4563 	unsigned int data_size = DRBD_SOCKET_BUFFER_SIZE -
4564 				 drbd_header_size(peer_device->connection);
4565 	unsigned int num_words = min_t(size_t, data_size / sizeof(*p),
4566 				       c->bm_words - c->word_offset);
4567 	unsigned int want = num_words * sizeof(*p);
4568 	int err;
4569 
4570 	if (want != size) {
4571 		drbd_err(peer_device, "%s:want (%u) != size (%u)\n", __func__, want, size);
4572 		return -EIO;
4573 	}
4574 	if (want == 0)
4575 		return 0;
4576 	err = drbd_recv_all(peer_device->connection, p, want);
4577 	if (err)
4578 		return err;
4579 
4580 	drbd_bm_merge_lel(peer_device->device, c->word_offset, num_words, p);
4581 
4582 	c->word_offset += num_words;
4583 	c->bit_offset = c->word_offset * BITS_PER_LONG;
4584 	if (c->bit_offset > c->bm_bits)
4585 		c->bit_offset = c->bm_bits;
4586 
4587 	return 1;
4588 }
4589 
4590 static enum drbd_bitmap_code dcbp_get_code(struct p_compressed_bm *p)
4591 {
4592 	return (enum drbd_bitmap_code)(p->encoding & 0x0f);
4593 }
4594 
4595 static int dcbp_get_start(struct p_compressed_bm *p)
4596 {
4597 	return (p->encoding & 0x80) != 0;
4598 }
4599 
4600 static int dcbp_get_pad_bits(struct p_compressed_bm *p)
4601 {
4602 	return (p->encoding >> 4) & 0x7;
4603 }
4604 
4605 /**
4606  * recv_bm_rle_bits
4607  *
4608  * Return 0 when done, 1 when another iteration is needed, and a negative error
4609  * code upon failure.
4610  */
4611 static int
4612 recv_bm_rle_bits(struct drbd_peer_device *peer_device,
4613 		struct p_compressed_bm *p,
4614 		 struct bm_xfer_ctx *c,
4615 		 unsigned int len)
4616 {
4617 	struct bitstream bs;
4618 	u64 look_ahead;
4619 	u64 rl;
4620 	u64 tmp;
4621 	unsigned long s = c->bit_offset;
4622 	unsigned long e;
4623 	int toggle = dcbp_get_start(p);
4624 	int have;
4625 	int bits;
4626 
4627 	bitstream_init(&bs, p->code, len, dcbp_get_pad_bits(p));
4628 
4629 	bits = bitstream_get_bits(&bs, &look_ahead, 64);
4630 	if (bits < 0)
4631 		return -EIO;
4632 
4633 	for (have = bits; have > 0; s += rl, toggle = !toggle) {
4634 		bits = vli_decode_bits(&rl, look_ahead);
4635 		if (bits <= 0)
4636 			return -EIO;
4637 
4638 		if (toggle) {
4639 			e = s + rl -1;
4640 			if (e >= c->bm_bits) {
4641 				drbd_err(peer_device, "bitmap overflow (e:%lu) while decoding bm RLE packet\n", e);
4642 				return -EIO;
4643 			}
4644 			_drbd_bm_set_bits(peer_device->device, s, e);
4645 		}
4646 
4647 		if (have < bits) {
4648 			drbd_err(peer_device, "bitmap decoding error: h:%d b:%d la:0x%08llx l:%u/%u\n",
4649 				have, bits, look_ahead,
4650 				(unsigned int)(bs.cur.b - p->code),
4651 				(unsigned int)bs.buf_len);
4652 			return -EIO;
4653 		}
4654 		/* if we consumed all 64 bits, assign 0; >> 64 is "undefined"; */
4655 		if (likely(bits < 64))
4656 			look_ahead >>= bits;
4657 		else
4658 			look_ahead = 0;
4659 		have -= bits;
4660 
4661 		bits = bitstream_get_bits(&bs, &tmp, 64 - have);
4662 		if (bits < 0)
4663 			return -EIO;
4664 		look_ahead |= tmp << have;
4665 		have += bits;
4666 	}
4667 
4668 	c->bit_offset = s;
4669 	bm_xfer_ctx_bit_to_word_offset(c);
4670 
4671 	return (s != c->bm_bits);
4672 }
4673 
4674 /**
4675  * decode_bitmap_c
4676  *
4677  * Return 0 when done, 1 when another iteration is needed, and a negative error
4678  * code upon failure.
4679  */
4680 static int
4681 decode_bitmap_c(struct drbd_peer_device *peer_device,
4682 		struct p_compressed_bm *p,
4683 		struct bm_xfer_ctx *c,
4684 		unsigned int len)
4685 {
4686 	if (dcbp_get_code(p) == RLE_VLI_Bits)
4687 		return recv_bm_rle_bits(peer_device, p, c, len - sizeof(*p));
4688 
4689 	/* other variants had been implemented for evaluation,
4690 	 * but have been dropped as this one turned out to be "best"
4691 	 * during all our tests. */
4692 
4693 	drbd_err(peer_device, "receive_bitmap_c: unknown encoding %u\n", p->encoding);
4694 	conn_request_state(peer_device->connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
4695 	return -EIO;
4696 }
4697 
4698 void INFO_bm_xfer_stats(struct drbd_device *device,
4699 		const char *direction, struct bm_xfer_ctx *c)
4700 {
4701 	/* what would it take to transfer it "plaintext" */
4702 	unsigned int header_size = drbd_header_size(first_peer_device(device)->connection);
4703 	unsigned int data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
4704 	unsigned int plain =
4705 		header_size * (DIV_ROUND_UP(c->bm_words, data_size) + 1) +
4706 		c->bm_words * sizeof(unsigned long);
4707 	unsigned int total = c->bytes[0] + c->bytes[1];
4708 	unsigned int r;
4709 
4710 	/* total can not be zero. but just in case: */
4711 	if (total == 0)
4712 		return;
4713 
4714 	/* don't report if not compressed */
4715 	if (total >= plain)
4716 		return;
4717 
4718 	/* total < plain. check for overflow, still */
4719 	r = (total > UINT_MAX/1000) ? (total / (plain/1000))
4720 		                    : (1000 * total / plain);
4721 
4722 	if (r > 1000)
4723 		r = 1000;
4724 
4725 	r = 1000 - r;
4726 	drbd_info(device, "%s bitmap stats [Bytes(packets)]: plain %u(%u), RLE %u(%u), "
4727 	     "total %u; compression: %u.%u%%\n",
4728 			direction,
4729 			c->bytes[1], c->packets[1],
4730 			c->bytes[0], c->packets[0],
4731 			total, r/10, r % 10);
4732 }
4733 
4734 /* Since we are processing the bitfield from lower addresses to higher,
4735    it does not matter if the process it in 32 bit chunks or 64 bit
4736    chunks as long as it is little endian. (Understand it as byte stream,
4737    beginning with the lowest byte...) If we would use big endian
4738    we would need to process it from the highest address to the lowest,
4739    in order to be agnostic to the 32 vs 64 bits issue.
4740 
4741    returns 0 on failure, 1 if we successfully received it. */
4742 static int receive_bitmap(struct drbd_connection *connection, struct packet_info *pi)
4743 {
4744 	struct drbd_peer_device *peer_device;
4745 	struct drbd_device *device;
4746 	struct bm_xfer_ctx c;
4747 	int err;
4748 
4749 	peer_device = conn_peer_device(connection, pi->vnr);
4750 	if (!peer_device)
4751 		return -EIO;
4752 	device = peer_device->device;
4753 
4754 	drbd_bm_lock(device, "receive bitmap", BM_LOCKED_SET_ALLOWED);
4755 	/* you are supposed to send additional out-of-sync information
4756 	 * if you actually set bits during this phase */
4757 
4758 	c = (struct bm_xfer_ctx) {
4759 		.bm_bits = drbd_bm_bits(device),
4760 		.bm_words = drbd_bm_words(device),
4761 	};
4762 
4763 	for(;;) {
4764 		if (pi->cmd == P_BITMAP)
4765 			err = receive_bitmap_plain(peer_device, pi->size, pi->data, &c);
4766 		else if (pi->cmd == P_COMPRESSED_BITMAP) {
4767 			/* MAYBE: sanity check that we speak proto >= 90,
4768 			 * and the feature is enabled! */
4769 			struct p_compressed_bm *p = pi->data;
4770 
4771 			if (pi->size > DRBD_SOCKET_BUFFER_SIZE - drbd_header_size(connection)) {
4772 				drbd_err(device, "ReportCBitmap packet too large\n");
4773 				err = -EIO;
4774 				goto out;
4775 			}
4776 			if (pi->size <= sizeof(*p)) {
4777 				drbd_err(device, "ReportCBitmap packet too small (l:%u)\n", pi->size);
4778 				err = -EIO;
4779 				goto out;
4780 			}
4781 			err = drbd_recv_all(peer_device->connection, p, pi->size);
4782 			if (err)
4783 			       goto out;
4784 			err = decode_bitmap_c(peer_device, p, &c, pi->size);
4785 		} else {
4786 			drbd_warn(device, "receive_bitmap: cmd neither ReportBitMap nor ReportCBitMap (is 0x%x)", pi->cmd);
4787 			err = -EIO;
4788 			goto out;
4789 		}
4790 
4791 		c.packets[pi->cmd == P_BITMAP]++;
4792 		c.bytes[pi->cmd == P_BITMAP] += drbd_header_size(connection) + pi->size;
4793 
4794 		if (err <= 0) {
4795 			if (err < 0)
4796 				goto out;
4797 			break;
4798 		}
4799 		err = drbd_recv_header(peer_device->connection, pi);
4800 		if (err)
4801 			goto out;
4802 	}
4803 
4804 	INFO_bm_xfer_stats(device, "receive", &c);
4805 
4806 	if (device->state.conn == C_WF_BITMAP_T) {
4807 		enum drbd_state_rv rv;
4808 
4809 		err = drbd_send_bitmap(device);
4810 		if (err)
4811 			goto out;
4812 		/* Omit CS_ORDERED with this state transition to avoid deadlocks. */
4813 		rv = _drbd_request_state(device, NS(conn, C_WF_SYNC_UUID), CS_VERBOSE);
4814 		D_ASSERT(device, rv == SS_SUCCESS);
4815 	} else if (device->state.conn != C_WF_BITMAP_S) {
4816 		/* admin may have requested C_DISCONNECTING,
4817 		 * other threads may have noticed network errors */
4818 		drbd_info(device, "unexpected cstate (%s) in receive_bitmap\n",
4819 		    drbd_conn_str(device->state.conn));
4820 	}
4821 	err = 0;
4822 
4823  out:
4824 	drbd_bm_unlock(device);
4825 	if (!err && device->state.conn == C_WF_BITMAP_S)
4826 		drbd_start_resync(device, C_SYNC_SOURCE);
4827 	return err;
4828 }
4829 
4830 static int receive_skip(struct drbd_connection *connection, struct packet_info *pi)
4831 {
4832 	drbd_warn(connection, "skipping unknown optional packet type %d, l: %d!\n",
4833 		 pi->cmd, pi->size);
4834 
4835 	return ignore_remaining_packet(connection, pi);
4836 }
4837 
4838 static int receive_UnplugRemote(struct drbd_connection *connection, struct packet_info *pi)
4839 {
4840 	/* Make sure we've acked all the TCP data associated
4841 	 * with the data requests being unplugged */
4842 	drbd_tcp_quickack(connection->data.socket);
4843 
4844 	return 0;
4845 }
4846 
4847 static int receive_out_of_sync(struct drbd_connection *connection, struct packet_info *pi)
4848 {
4849 	struct drbd_peer_device *peer_device;
4850 	struct drbd_device *device;
4851 	struct p_block_desc *p = pi->data;
4852 
4853 	peer_device = conn_peer_device(connection, pi->vnr);
4854 	if (!peer_device)
4855 		return -EIO;
4856 	device = peer_device->device;
4857 
4858 	switch (device->state.conn) {
4859 	case C_WF_SYNC_UUID:
4860 	case C_WF_BITMAP_T:
4861 	case C_BEHIND:
4862 			break;
4863 	default:
4864 		drbd_err(device, "ASSERT FAILED cstate = %s, expected: WFSyncUUID|WFBitMapT|Behind\n",
4865 				drbd_conn_str(device->state.conn));
4866 	}
4867 
4868 	drbd_set_out_of_sync(device, be64_to_cpu(p->sector), be32_to_cpu(p->blksize));
4869 
4870 	return 0;
4871 }
4872 
4873 static int receive_rs_deallocated(struct drbd_connection *connection, struct packet_info *pi)
4874 {
4875 	struct drbd_peer_device *peer_device;
4876 	struct p_block_desc *p = pi->data;
4877 	struct drbd_device *device;
4878 	sector_t sector;
4879 	int size, err = 0;
4880 
4881 	peer_device = conn_peer_device(connection, pi->vnr);
4882 	if (!peer_device)
4883 		return -EIO;
4884 	device = peer_device->device;
4885 
4886 	sector = be64_to_cpu(p->sector);
4887 	size = be32_to_cpu(p->blksize);
4888 
4889 	dec_rs_pending(device);
4890 
4891 	if (get_ldev(device)) {
4892 		struct drbd_peer_request *peer_req;
4893 		const int op = REQ_OP_DISCARD;
4894 
4895 		peer_req = drbd_alloc_peer_req(peer_device, ID_SYNCER, sector,
4896 					       size, 0, GFP_NOIO);
4897 		if (!peer_req) {
4898 			put_ldev(device);
4899 			return -ENOMEM;
4900 		}
4901 
4902 		peer_req->w.cb = e_end_resync_block;
4903 		peer_req->submit_jif = jiffies;
4904 		peer_req->flags |= EE_IS_TRIM;
4905 
4906 		spin_lock_irq(&device->resource->req_lock);
4907 		list_add_tail(&peer_req->w.list, &device->sync_ee);
4908 		spin_unlock_irq(&device->resource->req_lock);
4909 
4910 		atomic_add(pi->size >> 9, &device->rs_sect_ev);
4911 		err = drbd_submit_peer_request(device, peer_req, op, 0, DRBD_FAULT_RS_WR);
4912 
4913 		if (err) {
4914 			spin_lock_irq(&device->resource->req_lock);
4915 			list_del(&peer_req->w.list);
4916 			spin_unlock_irq(&device->resource->req_lock);
4917 
4918 			drbd_free_peer_req(device, peer_req);
4919 			put_ldev(device);
4920 			err = 0;
4921 			goto fail;
4922 		}
4923 
4924 		inc_unacked(device);
4925 
4926 		/* No put_ldev() here. Gets called in drbd_endio_write_sec_final(),
4927 		   as well as drbd_rs_complete_io() */
4928 	} else {
4929 	fail:
4930 		drbd_rs_complete_io(device, sector);
4931 		drbd_send_ack_ex(peer_device, P_NEG_ACK, sector, size, ID_SYNCER);
4932 	}
4933 
4934 	atomic_add(size >> 9, &device->rs_sect_in);
4935 
4936 	return err;
4937 }
4938 
4939 struct data_cmd {
4940 	int expect_payload;
4941 	unsigned int pkt_size;
4942 	int (*fn)(struct drbd_connection *, struct packet_info *);
4943 };
4944 
4945 static struct data_cmd drbd_cmd_handler[] = {
4946 	[P_DATA]	    = { 1, sizeof(struct p_data), receive_Data },
4947 	[P_DATA_REPLY]	    = { 1, sizeof(struct p_data), receive_DataReply },
4948 	[P_RS_DATA_REPLY]   = { 1, sizeof(struct p_data), receive_RSDataReply } ,
4949 	[P_BARRIER]	    = { 0, sizeof(struct p_barrier), receive_Barrier } ,
4950 	[P_BITMAP]	    = { 1, 0, receive_bitmap } ,
4951 	[P_COMPRESSED_BITMAP] = { 1, 0, receive_bitmap } ,
4952 	[P_UNPLUG_REMOTE]   = { 0, 0, receive_UnplugRemote },
4953 	[P_DATA_REQUEST]    = { 0, sizeof(struct p_block_req), receive_DataRequest },
4954 	[P_RS_DATA_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest },
4955 	[P_SYNC_PARAM]	    = { 1, 0, receive_SyncParam },
4956 	[P_SYNC_PARAM89]    = { 1, 0, receive_SyncParam },
4957 	[P_PROTOCOL]        = { 1, sizeof(struct p_protocol), receive_protocol },
4958 	[P_UUIDS]	    = { 0, sizeof(struct p_uuids), receive_uuids },
4959 	[P_SIZES]	    = { 0, sizeof(struct p_sizes), receive_sizes },
4960 	[P_STATE]	    = { 0, sizeof(struct p_state), receive_state },
4961 	[P_STATE_CHG_REQ]   = { 0, sizeof(struct p_req_state), receive_req_state },
4962 	[P_SYNC_UUID]       = { 0, sizeof(struct p_rs_uuid), receive_sync_uuid },
4963 	[P_OV_REQUEST]      = { 0, sizeof(struct p_block_req), receive_DataRequest },
4964 	[P_OV_REPLY]        = { 1, sizeof(struct p_block_req), receive_DataRequest },
4965 	[P_CSUM_RS_REQUEST] = { 1, sizeof(struct p_block_req), receive_DataRequest },
4966 	[P_RS_THIN_REQ]     = { 0, sizeof(struct p_block_req), receive_DataRequest },
4967 	[P_DELAY_PROBE]     = { 0, sizeof(struct p_delay_probe93), receive_skip },
4968 	[P_OUT_OF_SYNC]     = { 0, sizeof(struct p_block_desc), receive_out_of_sync },
4969 	[P_CONN_ST_CHG_REQ] = { 0, sizeof(struct p_req_state), receive_req_conn_state },
4970 	[P_PROTOCOL_UPDATE] = { 1, sizeof(struct p_protocol), receive_protocol },
4971 	[P_TRIM]	    = { 0, sizeof(struct p_trim), receive_Data },
4972 	[P_RS_DEALLOCATED]  = { 0, sizeof(struct p_block_desc), receive_rs_deallocated },
4973 	[P_WSAME]	    = { 1, sizeof(struct p_wsame), receive_Data },
4974 };
4975 
4976 static void drbdd(struct drbd_connection *connection)
4977 {
4978 	struct packet_info pi;
4979 	size_t shs; /* sub header size */
4980 	int err;
4981 
4982 	while (get_t_state(&connection->receiver) == RUNNING) {
4983 		struct data_cmd const *cmd;
4984 
4985 		drbd_thread_current_set_cpu(&connection->receiver);
4986 		update_receiver_timing_details(connection, drbd_recv_header);
4987 		if (drbd_recv_header(connection, &pi))
4988 			goto err_out;
4989 
4990 		cmd = &drbd_cmd_handler[pi.cmd];
4991 		if (unlikely(pi.cmd >= ARRAY_SIZE(drbd_cmd_handler) || !cmd->fn)) {
4992 			drbd_err(connection, "Unexpected data packet %s (0x%04x)",
4993 				 cmdname(pi.cmd), pi.cmd);
4994 			goto err_out;
4995 		}
4996 
4997 		shs = cmd->pkt_size;
4998 		if (pi.cmd == P_SIZES && connection->agreed_features & DRBD_FF_WSAME)
4999 			shs += sizeof(struct o_qlim);
5000 		if (pi.size > shs && !cmd->expect_payload) {
5001 			drbd_err(connection, "No payload expected %s l:%d\n",
5002 				 cmdname(pi.cmd), pi.size);
5003 			goto err_out;
5004 		}
5005 		if (pi.size < shs) {
5006 			drbd_err(connection, "%s: unexpected packet size, expected:%d received:%d\n",
5007 				 cmdname(pi.cmd), (int)shs, pi.size);
5008 			goto err_out;
5009 		}
5010 
5011 		if (shs) {
5012 			update_receiver_timing_details(connection, drbd_recv_all_warn);
5013 			err = drbd_recv_all_warn(connection, pi.data, shs);
5014 			if (err)
5015 				goto err_out;
5016 			pi.size -= shs;
5017 		}
5018 
5019 		update_receiver_timing_details(connection, cmd->fn);
5020 		err = cmd->fn(connection, &pi);
5021 		if (err) {
5022 			drbd_err(connection, "error receiving %s, e: %d l: %d!\n",
5023 				 cmdname(pi.cmd), err, pi.size);
5024 			goto err_out;
5025 		}
5026 	}
5027 	return;
5028 
5029     err_out:
5030 	conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
5031 }
5032 
5033 static void conn_disconnect(struct drbd_connection *connection)
5034 {
5035 	struct drbd_peer_device *peer_device;
5036 	enum drbd_conns oc;
5037 	int vnr;
5038 
5039 	if (connection->cstate == C_STANDALONE)
5040 		return;
5041 
5042 	/* We are about to start the cleanup after connection loss.
5043 	 * Make sure drbd_make_request knows about that.
5044 	 * Usually we should be in some network failure state already,
5045 	 * but just in case we are not, we fix it up here.
5046 	 */
5047 	conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD);
5048 
5049 	/* ack_receiver does not clean up anything. it must not interfere, either */
5050 	drbd_thread_stop(&connection->ack_receiver);
5051 	if (connection->ack_sender) {
5052 		destroy_workqueue(connection->ack_sender);
5053 		connection->ack_sender = NULL;
5054 	}
5055 	drbd_free_sock(connection);
5056 
5057 	rcu_read_lock();
5058 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
5059 		struct drbd_device *device = peer_device->device;
5060 		kref_get(&device->kref);
5061 		rcu_read_unlock();
5062 		drbd_disconnected(peer_device);
5063 		kref_put(&device->kref, drbd_destroy_device);
5064 		rcu_read_lock();
5065 	}
5066 	rcu_read_unlock();
5067 
5068 	if (!list_empty(&connection->current_epoch->list))
5069 		drbd_err(connection, "ASSERTION FAILED: connection->current_epoch->list not empty\n");
5070 	/* ok, no more ee's on the fly, it is safe to reset the epoch_size */
5071 	atomic_set(&connection->current_epoch->epoch_size, 0);
5072 	connection->send.seen_any_write_yet = false;
5073 
5074 	drbd_info(connection, "Connection closed\n");
5075 
5076 	if (conn_highest_role(connection) == R_PRIMARY && conn_highest_pdsk(connection) >= D_UNKNOWN)
5077 		conn_try_outdate_peer_async(connection);
5078 
5079 	spin_lock_irq(&connection->resource->req_lock);
5080 	oc = connection->cstate;
5081 	if (oc >= C_UNCONNECTED)
5082 		_conn_request_state(connection, NS(conn, C_UNCONNECTED), CS_VERBOSE);
5083 
5084 	spin_unlock_irq(&connection->resource->req_lock);
5085 
5086 	if (oc == C_DISCONNECTING)
5087 		conn_request_state(connection, NS(conn, C_STANDALONE), CS_VERBOSE | CS_HARD);
5088 }
5089 
5090 static int drbd_disconnected(struct drbd_peer_device *peer_device)
5091 {
5092 	struct drbd_device *device = peer_device->device;
5093 	unsigned int i;
5094 
5095 	/* wait for current activity to cease. */
5096 	spin_lock_irq(&device->resource->req_lock);
5097 	_drbd_wait_ee_list_empty(device, &device->active_ee);
5098 	_drbd_wait_ee_list_empty(device, &device->sync_ee);
5099 	_drbd_wait_ee_list_empty(device, &device->read_ee);
5100 	spin_unlock_irq(&device->resource->req_lock);
5101 
5102 	/* We do not have data structures that would allow us to
5103 	 * get the rs_pending_cnt down to 0 again.
5104 	 *  * On C_SYNC_TARGET we do not have any data structures describing
5105 	 *    the pending RSDataRequest's we have sent.
5106 	 *  * On C_SYNC_SOURCE there is no data structure that tracks
5107 	 *    the P_RS_DATA_REPLY blocks that we sent to the SyncTarget.
5108 	 *  And no, it is not the sum of the reference counts in the
5109 	 *  resync_LRU. The resync_LRU tracks the whole operation including
5110 	 *  the disk-IO, while the rs_pending_cnt only tracks the blocks
5111 	 *  on the fly. */
5112 	drbd_rs_cancel_all(device);
5113 	device->rs_total = 0;
5114 	device->rs_failed = 0;
5115 	atomic_set(&device->rs_pending_cnt, 0);
5116 	wake_up(&device->misc_wait);
5117 
5118 	del_timer_sync(&device->resync_timer);
5119 	resync_timer_fn((unsigned long)device);
5120 
5121 	/* wait for all w_e_end_data_req, w_e_end_rsdata_req, w_send_barrier,
5122 	 * w_make_resync_request etc. which may still be on the worker queue
5123 	 * to be "canceled" */
5124 	drbd_flush_workqueue(&peer_device->connection->sender_work);
5125 
5126 	drbd_finish_peer_reqs(device);
5127 
5128 	/* This second workqueue flush is necessary, since drbd_finish_peer_reqs()
5129 	   might have issued a work again. The one before drbd_finish_peer_reqs() is
5130 	   necessary to reclain net_ee in drbd_finish_peer_reqs(). */
5131 	drbd_flush_workqueue(&peer_device->connection->sender_work);
5132 
5133 	/* need to do it again, drbd_finish_peer_reqs() may have populated it
5134 	 * again via drbd_try_clear_on_disk_bm(). */
5135 	drbd_rs_cancel_all(device);
5136 
5137 	kfree(device->p_uuid);
5138 	device->p_uuid = NULL;
5139 
5140 	if (!drbd_suspended(device))
5141 		tl_clear(peer_device->connection);
5142 
5143 	drbd_md_sync(device);
5144 
5145 	if (get_ldev(device)) {
5146 		drbd_bitmap_io(device, &drbd_bm_write_copy_pages,
5147 				"write from disconnected", BM_LOCKED_CHANGE_ALLOWED);
5148 		put_ldev(device);
5149 	}
5150 
5151 	/* tcp_close and release of sendpage pages can be deferred.  I don't
5152 	 * want to use SO_LINGER, because apparently it can be deferred for
5153 	 * more than 20 seconds (longest time I checked).
5154 	 *
5155 	 * Actually we don't care for exactly when the network stack does its
5156 	 * put_page(), but release our reference on these pages right here.
5157 	 */
5158 	i = drbd_free_peer_reqs(device, &device->net_ee);
5159 	if (i)
5160 		drbd_info(device, "net_ee not empty, killed %u entries\n", i);
5161 	i = atomic_read(&device->pp_in_use_by_net);
5162 	if (i)
5163 		drbd_info(device, "pp_in_use_by_net = %d, expected 0\n", i);
5164 	i = atomic_read(&device->pp_in_use);
5165 	if (i)
5166 		drbd_info(device, "pp_in_use = %d, expected 0\n", i);
5167 
5168 	D_ASSERT(device, list_empty(&device->read_ee));
5169 	D_ASSERT(device, list_empty(&device->active_ee));
5170 	D_ASSERT(device, list_empty(&device->sync_ee));
5171 	D_ASSERT(device, list_empty(&device->done_ee));
5172 
5173 	return 0;
5174 }
5175 
5176 /*
5177  * We support PRO_VERSION_MIN to PRO_VERSION_MAX. The protocol version
5178  * we can agree on is stored in agreed_pro_version.
5179  *
5180  * feature flags and the reserved array should be enough room for future
5181  * enhancements of the handshake protocol, and possible plugins...
5182  *
5183  * for now, they are expected to be zero, but ignored.
5184  */
5185 static int drbd_send_features(struct drbd_connection *connection)
5186 {
5187 	struct drbd_socket *sock;
5188 	struct p_connection_features *p;
5189 
5190 	sock = &connection->data;
5191 	p = conn_prepare_command(connection, sock);
5192 	if (!p)
5193 		return -EIO;
5194 	memset(p, 0, sizeof(*p));
5195 	p->protocol_min = cpu_to_be32(PRO_VERSION_MIN);
5196 	p->protocol_max = cpu_to_be32(PRO_VERSION_MAX);
5197 	p->feature_flags = cpu_to_be32(PRO_FEATURES);
5198 	return conn_send_command(connection, sock, P_CONNECTION_FEATURES, sizeof(*p), NULL, 0);
5199 }
5200 
5201 /*
5202  * return values:
5203  *   1 yes, we have a valid connection
5204  *   0 oops, did not work out, please try again
5205  *  -1 peer talks different language,
5206  *     no point in trying again, please go standalone.
5207  */
5208 static int drbd_do_features(struct drbd_connection *connection)
5209 {
5210 	/* ASSERT current == connection->receiver ... */
5211 	struct p_connection_features *p;
5212 	const int expect = sizeof(struct p_connection_features);
5213 	struct packet_info pi;
5214 	int err;
5215 
5216 	err = drbd_send_features(connection);
5217 	if (err)
5218 		return 0;
5219 
5220 	err = drbd_recv_header(connection, &pi);
5221 	if (err)
5222 		return 0;
5223 
5224 	if (pi.cmd != P_CONNECTION_FEATURES) {
5225 		drbd_err(connection, "expected ConnectionFeatures packet, received: %s (0x%04x)\n",
5226 			 cmdname(pi.cmd), pi.cmd);
5227 		return -1;
5228 	}
5229 
5230 	if (pi.size != expect) {
5231 		drbd_err(connection, "expected ConnectionFeatures length: %u, received: %u\n",
5232 		     expect, pi.size);
5233 		return -1;
5234 	}
5235 
5236 	p = pi.data;
5237 	err = drbd_recv_all_warn(connection, p, expect);
5238 	if (err)
5239 		return 0;
5240 
5241 	p->protocol_min = be32_to_cpu(p->protocol_min);
5242 	p->protocol_max = be32_to_cpu(p->protocol_max);
5243 	if (p->protocol_max == 0)
5244 		p->protocol_max = p->protocol_min;
5245 
5246 	if (PRO_VERSION_MAX < p->protocol_min ||
5247 	    PRO_VERSION_MIN > p->protocol_max)
5248 		goto incompat;
5249 
5250 	connection->agreed_pro_version = min_t(int, PRO_VERSION_MAX, p->protocol_max);
5251 	connection->agreed_features = PRO_FEATURES & be32_to_cpu(p->feature_flags);
5252 
5253 	drbd_info(connection, "Handshake successful: "
5254 	     "Agreed network protocol version %d\n", connection->agreed_pro_version);
5255 
5256 	drbd_info(connection, "Feature flags enabled on protocol level: 0x%x%s%s%s.\n",
5257 		  connection->agreed_features,
5258 		  connection->agreed_features & DRBD_FF_TRIM ? " TRIM" : "",
5259 		  connection->agreed_features & DRBD_FF_THIN_RESYNC ? " THIN_RESYNC" : "",
5260 		  connection->agreed_features & DRBD_FF_WSAME ? " WRITE_SAME" :
5261 		  connection->agreed_features ? "" : " none");
5262 
5263 	return 1;
5264 
5265  incompat:
5266 	drbd_err(connection, "incompatible DRBD dialects: "
5267 	    "I support %d-%d, peer supports %d-%d\n",
5268 	    PRO_VERSION_MIN, PRO_VERSION_MAX,
5269 	    p->protocol_min, p->protocol_max);
5270 	return -1;
5271 }
5272 
5273 #if !defined(CONFIG_CRYPTO_HMAC) && !defined(CONFIG_CRYPTO_HMAC_MODULE)
5274 static int drbd_do_auth(struct drbd_connection *connection)
5275 {
5276 	drbd_err(connection, "This kernel was build without CONFIG_CRYPTO_HMAC.\n");
5277 	drbd_err(connection, "You need to disable 'cram-hmac-alg' in drbd.conf.\n");
5278 	return -1;
5279 }
5280 #else
5281 #define CHALLENGE_LEN 64
5282 
5283 /* Return value:
5284 	1 - auth succeeded,
5285 	0 - failed, try again (network error),
5286 	-1 - auth failed, don't try again.
5287 */
5288 
5289 static int drbd_do_auth(struct drbd_connection *connection)
5290 {
5291 	struct drbd_socket *sock;
5292 	char my_challenge[CHALLENGE_LEN];  /* 64 Bytes... */
5293 	char *response = NULL;
5294 	char *right_response = NULL;
5295 	char *peers_ch = NULL;
5296 	unsigned int key_len;
5297 	char secret[SHARED_SECRET_MAX]; /* 64 byte */
5298 	unsigned int resp_size;
5299 	SHASH_DESC_ON_STACK(desc, connection->cram_hmac_tfm);
5300 	struct packet_info pi;
5301 	struct net_conf *nc;
5302 	int err, rv;
5303 
5304 	/* FIXME: Put the challenge/response into the preallocated socket buffer.  */
5305 
5306 	rcu_read_lock();
5307 	nc = rcu_dereference(connection->net_conf);
5308 	key_len = strlen(nc->shared_secret);
5309 	memcpy(secret, nc->shared_secret, key_len);
5310 	rcu_read_unlock();
5311 
5312 	desc->tfm = connection->cram_hmac_tfm;
5313 	desc->flags = 0;
5314 
5315 	rv = crypto_shash_setkey(connection->cram_hmac_tfm, (u8 *)secret, key_len);
5316 	if (rv) {
5317 		drbd_err(connection, "crypto_shash_setkey() failed with %d\n", rv);
5318 		rv = -1;
5319 		goto fail;
5320 	}
5321 
5322 	get_random_bytes(my_challenge, CHALLENGE_LEN);
5323 
5324 	sock = &connection->data;
5325 	if (!conn_prepare_command(connection, sock)) {
5326 		rv = 0;
5327 		goto fail;
5328 	}
5329 	rv = !conn_send_command(connection, sock, P_AUTH_CHALLENGE, 0,
5330 				my_challenge, CHALLENGE_LEN);
5331 	if (!rv)
5332 		goto fail;
5333 
5334 	err = drbd_recv_header(connection, &pi);
5335 	if (err) {
5336 		rv = 0;
5337 		goto fail;
5338 	}
5339 
5340 	if (pi.cmd != P_AUTH_CHALLENGE) {
5341 		drbd_err(connection, "expected AuthChallenge packet, received: %s (0x%04x)\n",
5342 			 cmdname(pi.cmd), pi.cmd);
5343 		rv = 0;
5344 		goto fail;
5345 	}
5346 
5347 	if (pi.size > CHALLENGE_LEN * 2) {
5348 		drbd_err(connection, "expected AuthChallenge payload too big.\n");
5349 		rv = -1;
5350 		goto fail;
5351 	}
5352 
5353 	if (pi.size < CHALLENGE_LEN) {
5354 		drbd_err(connection, "AuthChallenge payload too small.\n");
5355 		rv = -1;
5356 		goto fail;
5357 	}
5358 
5359 	peers_ch = kmalloc(pi.size, GFP_NOIO);
5360 	if (peers_ch == NULL) {
5361 		drbd_err(connection, "kmalloc of peers_ch failed\n");
5362 		rv = -1;
5363 		goto fail;
5364 	}
5365 
5366 	err = drbd_recv_all_warn(connection, peers_ch, pi.size);
5367 	if (err) {
5368 		rv = 0;
5369 		goto fail;
5370 	}
5371 
5372 	if (!memcmp(my_challenge, peers_ch, CHALLENGE_LEN)) {
5373 		drbd_err(connection, "Peer presented the same challenge!\n");
5374 		rv = -1;
5375 		goto fail;
5376 	}
5377 
5378 	resp_size = crypto_shash_digestsize(connection->cram_hmac_tfm);
5379 	response = kmalloc(resp_size, GFP_NOIO);
5380 	if (response == NULL) {
5381 		drbd_err(connection, "kmalloc of response failed\n");
5382 		rv = -1;
5383 		goto fail;
5384 	}
5385 
5386 	rv = crypto_shash_digest(desc, peers_ch, pi.size, response);
5387 	if (rv) {
5388 		drbd_err(connection, "crypto_hash_digest() failed with %d\n", rv);
5389 		rv = -1;
5390 		goto fail;
5391 	}
5392 
5393 	if (!conn_prepare_command(connection, sock)) {
5394 		rv = 0;
5395 		goto fail;
5396 	}
5397 	rv = !conn_send_command(connection, sock, P_AUTH_RESPONSE, 0,
5398 				response, resp_size);
5399 	if (!rv)
5400 		goto fail;
5401 
5402 	err = drbd_recv_header(connection, &pi);
5403 	if (err) {
5404 		rv = 0;
5405 		goto fail;
5406 	}
5407 
5408 	if (pi.cmd != P_AUTH_RESPONSE) {
5409 		drbd_err(connection, "expected AuthResponse packet, received: %s (0x%04x)\n",
5410 			 cmdname(pi.cmd), pi.cmd);
5411 		rv = 0;
5412 		goto fail;
5413 	}
5414 
5415 	if (pi.size != resp_size) {
5416 		drbd_err(connection, "expected AuthResponse payload of wrong size\n");
5417 		rv = 0;
5418 		goto fail;
5419 	}
5420 
5421 	err = drbd_recv_all_warn(connection, response , resp_size);
5422 	if (err) {
5423 		rv = 0;
5424 		goto fail;
5425 	}
5426 
5427 	right_response = kmalloc(resp_size, GFP_NOIO);
5428 	if (right_response == NULL) {
5429 		drbd_err(connection, "kmalloc of right_response failed\n");
5430 		rv = -1;
5431 		goto fail;
5432 	}
5433 
5434 	rv = crypto_shash_digest(desc, my_challenge, CHALLENGE_LEN,
5435 				 right_response);
5436 	if (rv) {
5437 		drbd_err(connection, "crypto_hash_digest() failed with %d\n", rv);
5438 		rv = -1;
5439 		goto fail;
5440 	}
5441 
5442 	rv = !memcmp(response, right_response, resp_size);
5443 
5444 	if (rv)
5445 		drbd_info(connection, "Peer authenticated using %d bytes HMAC\n",
5446 		     resp_size);
5447 	else
5448 		rv = -1;
5449 
5450  fail:
5451 	kfree(peers_ch);
5452 	kfree(response);
5453 	kfree(right_response);
5454 	shash_desc_zero(desc);
5455 
5456 	return rv;
5457 }
5458 #endif
5459 
5460 int drbd_receiver(struct drbd_thread *thi)
5461 {
5462 	struct drbd_connection *connection = thi->connection;
5463 	int h;
5464 
5465 	drbd_info(connection, "receiver (re)started\n");
5466 
5467 	do {
5468 		h = conn_connect(connection);
5469 		if (h == 0) {
5470 			conn_disconnect(connection);
5471 			schedule_timeout_interruptible(HZ);
5472 		}
5473 		if (h == -1) {
5474 			drbd_warn(connection, "Discarding network configuration.\n");
5475 			conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
5476 		}
5477 	} while (h == 0);
5478 
5479 	if (h > 0)
5480 		drbdd(connection);
5481 
5482 	conn_disconnect(connection);
5483 
5484 	drbd_info(connection, "receiver terminated\n");
5485 	return 0;
5486 }
5487 
5488 /* ********* acknowledge sender ******** */
5489 
5490 static int got_conn_RqSReply(struct drbd_connection *connection, struct packet_info *pi)
5491 {
5492 	struct p_req_state_reply *p = pi->data;
5493 	int retcode = be32_to_cpu(p->retcode);
5494 
5495 	if (retcode >= SS_SUCCESS) {
5496 		set_bit(CONN_WD_ST_CHG_OKAY, &connection->flags);
5497 	} else {
5498 		set_bit(CONN_WD_ST_CHG_FAIL, &connection->flags);
5499 		drbd_err(connection, "Requested state change failed by peer: %s (%d)\n",
5500 			 drbd_set_st_err_str(retcode), retcode);
5501 	}
5502 	wake_up(&connection->ping_wait);
5503 
5504 	return 0;
5505 }
5506 
5507 static int got_RqSReply(struct drbd_connection *connection, struct packet_info *pi)
5508 {
5509 	struct drbd_peer_device *peer_device;
5510 	struct drbd_device *device;
5511 	struct p_req_state_reply *p = pi->data;
5512 	int retcode = be32_to_cpu(p->retcode);
5513 
5514 	peer_device = conn_peer_device(connection, pi->vnr);
5515 	if (!peer_device)
5516 		return -EIO;
5517 	device = peer_device->device;
5518 
5519 	if (test_bit(CONN_WD_ST_CHG_REQ, &connection->flags)) {
5520 		D_ASSERT(device, connection->agreed_pro_version < 100);
5521 		return got_conn_RqSReply(connection, pi);
5522 	}
5523 
5524 	if (retcode >= SS_SUCCESS) {
5525 		set_bit(CL_ST_CHG_SUCCESS, &device->flags);
5526 	} else {
5527 		set_bit(CL_ST_CHG_FAIL, &device->flags);
5528 		drbd_err(device, "Requested state change failed by peer: %s (%d)\n",
5529 			drbd_set_st_err_str(retcode), retcode);
5530 	}
5531 	wake_up(&device->state_wait);
5532 
5533 	return 0;
5534 }
5535 
5536 static int got_Ping(struct drbd_connection *connection, struct packet_info *pi)
5537 {
5538 	return drbd_send_ping_ack(connection);
5539 
5540 }
5541 
5542 static int got_PingAck(struct drbd_connection *connection, struct packet_info *pi)
5543 {
5544 	/* restore idle timeout */
5545 	connection->meta.socket->sk->sk_rcvtimeo = connection->net_conf->ping_int*HZ;
5546 	if (!test_and_set_bit(GOT_PING_ACK, &connection->flags))
5547 		wake_up(&connection->ping_wait);
5548 
5549 	return 0;
5550 }
5551 
5552 static int got_IsInSync(struct drbd_connection *connection, struct packet_info *pi)
5553 {
5554 	struct drbd_peer_device *peer_device;
5555 	struct drbd_device *device;
5556 	struct p_block_ack *p = pi->data;
5557 	sector_t sector = be64_to_cpu(p->sector);
5558 	int blksize = be32_to_cpu(p->blksize);
5559 
5560 	peer_device = conn_peer_device(connection, pi->vnr);
5561 	if (!peer_device)
5562 		return -EIO;
5563 	device = peer_device->device;
5564 
5565 	D_ASSERT(device, peer_device->connection->agreed_pro_version >= 89);
5566 
5567 	update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5568 
5569 	if (get_ldev(device)) {
5570 		drbd_rs_complete_io(device, sector);
5571 		drbd_set_in_sync(device, sector, blksize);
5572 		/* rs_same_csums is supposed to count in units of BM_BLOCK_SIZE */
5573 		device->rs_same_csum += (blksize >> BM_BLOCK_SHIFT);
5574 		put_ldev(device);
5575 	}
5576 	dec_rs_pending(device);
5577 	atomic_add(blksize >> 9, &device->rs_sect_in);
5578 
5579 	return 0;
5580 }
5581 
5582 static int
5583 validate_req_change_req_state(struct drbd_device *device, u64 id, sector_t sector,
5584 			      struct rb_root *root, const char *func,
5585 			      enum drbd_req_event what, bool missing_ok)
5586 {
5587 	struct drbd_request *req;
5588 	struct bio_and_error m;
5589 
5590 	spin_lock_irq(&device->resource->req_lock);
5591 	req = find_request(device, root, id, sector, missing_ok, func);
5592 	if (unlikely(!req)) {
5593 		spin_unlock_irq(&device->resource->req_lock);
5594 		return -EIO;
5595 	}
5596 	__req_mod(req, what, &m);
5597 	spin_unlock_irq(&device->resource->req_lock);
5598 
5599 	if (m.bio)
5600 		complete_master_bio(device, &m);
5601 	return 0;
5602 }
5603 
5604 static int got_BlockAck(struct drbd_connection *connection, struct packet_info *pi)
5605 {
5606 	struct drbd_peer_device *peer_device;
5607 	struct drbd_device *device;
5608 	struct p_block_ack *p = pi->data;
5609 	sector_t sector = be64_to_cpu(p->sector);
5610 	int blksize = be32_to_cpu(p->blksize);
5611 	enum drbd_req_event what;
5612 
5613 	peer_device = conn_peer_device(connection, pi->vnr);
5614 	if (!peer_device)
5615 		return -EIO;
5616 	device = peer_device->device;
5617 
5618 	update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5619 
5620 	if (p->block_id == ID_SYNCER) {
5621 		drbd_set_in_sync(device, sector, blksize);
5622 		dec_rs_pending(device);
5623 		return 0;
5624 	}
5625 	switch (pi->cmd) {
5626 	case P_RS_WRITE_ACK:
5627 		what = WRITE_ACKED_BY_PEER_AND_SIS;
5628 		break;
5629 	case P_WRITE_ACK:
5630 		what = WRITE_ACKED_BY_PEER;
5631 		break;
5632 	case P_RECV_ACK:
5633 		what = RECV_ACKED_BY_PEER;
5634 		break;
5635 	case P_SUPERSEDED:
5636 		what = CONFLICT_RESOLVED;
5637 		break;
5638 	case P_RETRY_WRITE:
5639 		what = POSTPONE_WRITE;
5640 		break;
5641 	default:
5642 		BUG();
5643 	}
5644 
5645 	return validate_req_change_req_state(device, p->block_id, sector,
5646 					     &device->write_requests, __func__,
5647 					     what, false);
5648 }
5649 
5650 static int got_NegAck(struct drbd_connection *connection, struct packet_info *pi)
5651 {
5652 	struct drbd_peer_device *peer_device;
5653 	struct drbd_device *device;
5654 	struct p_block_ack *p = pi->data;
5655 	sector_t sector = be64_to_cpu(p->sector);
5656 	int size = be32_to_cpu(p->blksize);
5657 	int err;
5658 
5659 	peer_device = conn_peer_device(connection, pi->vnr);
5660 	if (!peer_device)
5661 		return -EIO;
5662 	device = peer_device->device;
5663 
5664 	update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5665 
5666 	if (p->block_id == ID_SYNCER) {
5667 		dec_rs_pending(device);
5668 		drbd_rs_failed_io(device, sector, size);
5669 		return 0;
5670 	}
5671 
5672 	err = validate_req_change_req_state(device, p->block_id, sector,
5673 					    &device->write_requests, __func__,
5674 					    NEG_ACKED, true);
5675 	if (err) {
5676 		/* Protocol A has no P_WRITE_ACKs, but has P_NEG_ACKs.
5677 		   The master bio might already be completed, therefore the
5678 		   request is no longer in the collision hash. */
5679 		/* In Protocol B we might already have got a P_RECV_ACK
5680 		   but then get a P_NEG_ACK afterwards. */
5681 		drbd_set_out_of_sync(device, sector, size);
5682 	}
5683 	return 0;
5684 }
5685 
5686 static int got_NegDReply(struct drbd_connection *connection, struct packet_info *pi)
5687 {
5688 	struct drbd_peer_device *peer_device;
5689 	struct drbd_device *device;
5690 	struct p_block_ack *p = pi->data;
5691 	sector_t sector = be64_to_cpu(p->sector);
5692 
5693 	peer_device = conn_peer_device(connection, pi->vnr);
5694 	if (!peer_device)
5695 		return -EIO;
5696 	device = peer_device->device;
5697 
5698 	update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5699 
5700 	drbd_err(device, "Got NegDReply; Sector %llus, len %u.\n",
5701 	    (unsigned long long)sector, be32_to_cpu(p->blksize));
5702 
5703 	return validate_req_change_req_state(device, p->block_id, sector,
5704 					     &device->read_requests, __func__,
5705 					     NEG_ACKED, false);
5706 }
5707 
5708 static int got_NegRSDReply(struct drbd_connection *connection, struct packet_info *pi)
5709 {
5710 	struct drbd_peer_device *peer_device;
5711 	struct drbd_device *device;
5712 	sector_t sector;
5713 	int size;
5714 	struct p_block_ack *p = pi->data;
5715 
5716 	peer_device = conn_peer_device(connection, pi->vnr);
5717 	if (!peer_device)
5718 		return -EIO;
5719 	device = peer_device->device;
5720 
5721 	sector = be64_to_cpu(p->sector);
5722 	size = be32_to_cpu(p->blksize);
5723 
5724 	update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5725 
5726 	dec_rs_pending(device);
5727 
5728 	if (get_ldev_if_state(device, D_FAILED)) {
5729 		drbd_rs_complete_io(device, sector);
5730 		switch (pi->cmd) {
5731 		case P_NEG_RS_DREPLY:
5732 			drbd_rs_failed_io(device, sector, size);
5733 		case P_RS_CANCEL:
5734 			break;
5735 		default:
5736 			BUG();
5737 		}
5738 		put_ldev(device);
5739 	}
5740 
5741 	return 0;
5742 }
5743 
5744 static int got_BarrierAck(struct drbd_connection *connection, struct packet_info *pi)
5745 {
5746 	struct p_barrier_ack *p = pi->data;
5747 	struct drbd_peer_device *peer_device;
5748 	int vnr;
5749 
5750 	tl_release(connection, p->barrier, be32_to_cpu(p->set_size));
5751 
5752 	rcu_read_lock();
5753 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
5754 		struct drbd_device *device = peer_device->device;
5755 
5756 		if (device->state.conn == C_AHEAD &&
5757 		    atomic_read(&device->ap_in_flight) == 0 &&
5758 		    !test_and_set_bit(AHEAD_TO_SYNC_SOURCE, &device->flags)) {
5759 			device->start_resync_timer.expires = jiffies + HZ;
5760 			add_timer(&device->start_resync_timer);
5761 		}
5762 	}
5763 	rcu_read_unlock();
5764 
5765 	return 0;
5766 }
5767 
5768 static int got_OVResult(struct drbd_connection *connection, struct packet_info *pi)
5769 {
5770 	struct drbd_peer_device *peer_device;
5771 	struct drbd_device *device;
5772 	struct p_block_ack *p = pi->data;
5773 	struct drbd_device_work *dw;
5774 	sector_t sector;
5775 	int size;
5776 
5777 	peer_device = conn_peer_device(connection, pi->vnr);
5778 	if (!peer_device)
5779 		return -EIO;
5780 	device = peer_device->device;
5781 
5782 	sector = be64_to_cpu(p->sector);
5783 	size = be32_to_cpu(p->blksize);
5784 
5785 	update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5786 
5787 	if (be64_to_cpu(p->block_id) == ID_OUT_OF_SYNC)
5788 		drbd_ov_out_of_sync_found(device, sector, size);
5789 	else
5790 		ov_out_of_sync_print(device);
5791 
5792 	if (!get_ldev(device))
5793 		return 0;
5794 
5795 	drbd_rs_complete_io(device, sector);
5796 	dec_rs_pending(device);
5797 
5798 	--device->ov_left;
5799 
5800 	/* let's advance progress step marks only for every other megabyte */
5801 	if ((device->ov_left & 0x200) == 0x200)
5802 		drbd_advance_rs_marks(device, device->ov_left);
5803 
5804 	if (device->ov_left == 0) {
5805 		dw = kmalloc(sizeof(*dw), GFP_NOIO);
5806 		if (dw) {
5807 			dw->w.cb = w_ov_finished;
5808 			dw->device = device;
5809 			drbd_queue_work(&peer_device->connection->sender_work, &dw->w);
5810 		} else {
5811 			drbd_err(device, "kmalloc(dw) failed.");
5812 			ov_out_of_sync_print(device);
5813 			drbd_resync_finished(device);
5814 		}
5815 	}
5816 	put_ldev(device);
5817 	return 0;
5818 }
5819 
5820 static int got_skip(struct drbd_connection *connection, struct packet_info *pi)
5821 {
5822 	return 0;
5823 }
5824 
5825 struct meta_sock_cmd {
5826 	size_t pkt_size;
5827 	int (*fn)(struct drbd_connection *connection, struct packet_info *);
5828 };
5829 
5830 static void set_rcvtimeo(struct drbd_connection *connection, bool ping_timeout)
5831 {
5832 	long t;
5833 	struct net_conf *nc;
5834 
5835 	rcu_read_lock();
5836 	nc = rcu_dereference(connection->net_conf);
5837 	t = ping_timeout ? nc->ping_timeo : nc->ping_int;
5838 	rcu_read_unlock();
5839 
5840 	t *= HZ;
5841 	if (ping_timeout)
5842 		t /= 10;
5843 
5844 	connection->meta.socket->sk->sk_rcvtimeo = t;
5845 }
5846 
5847 static void set_ping_timeout(struct drbd_connection *connection)
5848 {
5849 	set_rcvtimeo(connection, 1);
5850 }
5851 
5852 static void set_idle_timeout(struct drbd_connection *connection)
5853 {
5854 	set_rcvtimeo(connection, 0);
5855 }
5856 
5857 static struct meta_sock_cmd ack_receiver_tbl[] = {
5858 	[P_PING]	    = { 0, got_Ping },
5859 	[P_PING_ACK]	    = { 0, got_PingAck },
5860 	[P_RECV_ACK]	    = { sizeof(struct p_block_ack), got_BlockAck },
5861 	[P_WRITE_ACK]	    = { sizeof(struct p_block_ack), got_BlockAck },
5862 	[P_RS_WRITE_ACK]    = { sizeof(struct p_block_ack), got_BlockAck },
5863 	[P_SUPERSEDED]   = { sizeof(struct p_block_ack), got_BlockAck },
5864 	[P_NEG_ACK]	    = { sizeof(struct p_block_ack), got_NegAck },
5865 	[P_NEG_DREPLY]	    = { sizeof(struct p_block_ack), got_NegDReply },
5866 	[P_NEG_RS_DREPLY]   = { sizeof(struct p_block_ack), got_NegRSDReply },
5867 	[P_OV_RESULT]	    = { sizeof(struct p_block_ack), got_OVResult },
5868 	[P_BARRIER_ACK]	    = { sizeof(struct p_barrier_ack), got_BarrierAck },
5869 	[P_STATE_CHG_REPLY] = { sizeof(struct p_req_state_reply), got_RqSReply },
5870 	[P_RS_IS_IN_SYNC]   = { sizeof(struct p_block_ack), got_IsInSync },
5871 	[P_DELAY_PROBE]     = { sizeof(struct p_delay_probe93), got_skip },
5872 	[P_RS_CANCEL]       = { sizeof(struct p_block_ack), got_NegRSDReply },
5873 	[P_CONN_ST_CHG_REPLY]={ sizeof(struct p_req_state_reply), got_conn_RqSReply },
5874 	[P_RETRY_WRITE]	    = { sizeof(struct p_block_ack), got_BlockAck },
5875 };
5876 
5877 int drbd_ack_receiver(struct drbd_thread *thi)
5878 {
5879 	struct drbd_connection *connection = thi->connection;
5880 	struct meta_sock_cmd *cmd = NULL;
5881 	struct packet_info pi;
5882 	unsigned long pre_recv_jif;
5883 	int rv;
5884 	void *buf    = connection->meta.rbuf;
5885 	int received = 0;
5886 	unsigned int header_size = drbd_header_size(connection);
5887 	int expect   = header_size;
5888 	bool ping_timeout_active = false;
5889 	struct sched_param param = { .sched_priority = 2 };
5890 
5891 	rv = sched_setscheduler(current, SCHED_RR, &param);
5892 	if (rv < 0)
5893 		drbd_err(connection, "drbd_ack_receiver: ERROR set priority, ret=%d\n", rv);
5894 
5895 	while (get_t_state(thi) == RUNNING) {
5896 		drbd_thread_current_set_cpu(thi);
5897 
5898 		conn_reclaim_net_peer_reqs(connection);
5899 
5900 		if (test_and_clear_bit(SEND_PING, &connection->flags)) {
5901 			if (drbd_send_ping(connection)) {
5902 				drbd_err(connection, "drbd_send_ping has failed\n");
5903 				goto reconnect;
5904 			}
5905 			set_ping_timeout(connection);
5906 			ping_timeout_active = true;
5907 		}
5908 
5909 		pre_recv_jif = jiffies;
5910 		rv = drbd_recv_short(connection->meta.socket, buf, expect-received, 0);
5911 
5912 		/* Note:
5913 		 * -EINTR	 (on meta) we got a signal
5914 		 * -EAGAIN	 (on meta) rcvtimeo expired
5915 		 * -ECONNRESET	 other side closed the connection
5916 		 * -ERESTARTSYS  (on data) we got a signal
5917 		 * rv <  0	 other than above: unexpected error!
5918 		 * rv == expected: full header or command
5919 		 * rv <  expected: "woken" by signal during receive
5920 		 * rv == 0	 : "connection shut down by peer"
5921 		 */
5922 		if (likely(rv > 0)) {
5923 			received += rv;
5924 			buf	 += rv;
5925 		} else if (rv == 0) {
5926 			if (test_bit(DISCONNECT_SENT, &connection->flags)) {
5927 				long t;
5928 				rcu_read_lock();
5929 				t = rcu_dereference(connection->net_conf)->ping_timeo * HZ/10;
5930 				rcu_read_unlock();
5931 
5932 				t = wait_event_timeout(connection->ping_wait,
5933 						       connection->cstate < C_WF_REPORT_PARAMS,
5934 						       t);
5935 				if (t)
5936 					break;
5937 			}
5938 			drbd_err(connection, "meta connection shut down by peer.\n");
5939 			goto reconnect;
5940 		} else if (rv == -EAGAIN) {
5941 			/* If the data socket received something meanwhile,
5942 			 * that is good enough: peer is still alive. */
5943 			if (time_after(connection->last_received, pre_recv_jif))
5944 				continue;
5945 			if (ping_timeout_active) {
5946 				drbd_err(connection, "PingAck did not arrive in time.\n");
5947 				goto reconnect;
5948 			}
5949 			set_bit(SEND_PING, &connection->flags);
5950 			continue;
5951 		} else if (rv == -EINTR) {
5952 			/* maybe drbd_thread_stop(): the while condition will notice.
5953 			 * maybe woken for send_ping: we'll send a ping above,
5954 			 * and change the rcvtimeo */
5955 			flush_signals(current);
5956 			continue;
5957 		} else {
5958 			drbd_err(connection, "sock_recvmsg returned %d\n", rv);
5959 			goto reconnect;
5960 		}
5961 
5962 		if (received == expect && cmd == NULL) {
5963 			if (decode_header(connection, connection->meta.rbuf, &pi))
5964 				goto reconnect;
5965 			cmd = &ack_receiver_tbl[pi.cmd];
5966 			if (pi.cmd >= ARRAY_SIZE(ack_receiver_tbl) || !cmd->fn) {
5967 				drbd_err(connection, "Unexpected meta packet %s (0x%04x)\n",
5968 					 cmdname(pi.cmd), pi.cmd);
5969 				goto disconnect;
5970 			}
5971 			expect = header_size + cmd->pkt_size;
5972 			if (pi.size != expect - header_size) {
5973 				drbd_err(connection, "Wrong packet size on meta (c: %d, l: %d)\n",
5974 					pi.cmd, pi.size);
5975 				goto reconnect;
5976 			}
5977 		}
5978 		if (received == expect) {
5979 			bool err;
5980 
5981 			err = cmd->fn(connection, &pi);
5982 			if (err) {
5983 				drbd_err(connection, "%pf failed\n", cmd->fn);
5984 				goto reconnect;
5985 			}
5986 
5987 			connection->last_received = jiffies;
5988 
5989 			if (cmd == &ack_receiver_tbl[P_PING_ACK]) {
5990 				set_idle_timeout(connection);
5991 				ping_timeout_active = false;
5992 			}
5993 
5994 			buf	 = connection->meta.rbuf;
5995 			received = 0;
5996 			expect	 = header_size;
5997 			cmd	 = NULL;
5998 		}
5999 	}
6000 
6001 	if (0) {
6002 reconnect:
6003 		conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD);
6004 		conn_md_sync(connection);
6005 	}
6006 	if (0) {
6007 disconnect:
6008 		conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
6009 	}
6010 
6011 	drbd_info(connection, "ack_receiver terminated\n");
6012 
6013 	return 0;
6014 }
6015 
6016 void drbd_send_acks_wf(struct work_struct *ws)
6017 {
6018 	struct drbd_peer_device *peer_device =
6019 		container_of(ws, struct drbd_peer_device, send_acks_work);
6020 	struct drbd_connection *connection = peer_device->connection;
6021 	struct drbd_device *device = peer_device->device;
6022 	struct net_conf *nc;
6023 	int tcp_cork, err;
6024 
6025 	rcu_read_lock();
6026 	nc = rcu_dereference(connection->net_conf);
6027 	tcp_cork = nc->tcp_cork;
6028 	rcu_read_unlock();
6029 
6030 	if (tcp_cork)
6031 		drbd_tcp_cork(connection->meta.socket);
6032 
6033 	err = drbd_finish_peer_reqs(device);
6034 	kref_put(&device->kref, drbd_destroy_device);
6035 	/* get is in drbd_endio_write_sec_final(). That is necessary to keep the
6036 	   struct work_struct send_acks_work alive, which is in the peer_device object */
6037 
6038 	if (err) {
6039 		conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD);
6040 		return;
6041 	}
6042 
6043 	if (tcp_cork)
6044 		drbd_tcp_uncork(connection->meta.socket);
6045 
6046 	return;
6047 }
6048