1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3    drbd_receiver.c
4 
5    This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
6 
7    Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
8    Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
9    Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
10 
11  */
12 
13 
14 #include <linux/module.h>
15 
16 #include <linux/uaccess.h>
17 #include <net/sock.h>
18 
19 #include <linux/drbd.h>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/in.h>
23 #include <linux/mm.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/slab.h>
27 #include <uapi/linux/sched/types.h>
28 #include <linux/sched/signal.h>
29 #include <linux/pkt_sched.h>
30 #define __KERNEL_SYSCALLS__
31 #include <linux/unistd.h>
32 #include <linux/vmalloc.h>
33 #include <linux/random.h>
34 #include <linux/string.h>
35 #include <linux/scatterlist.h>
36 #include <linux/part_stat.h>
37 #include "drbd_int.h"
38 #include "drbd_protocol.h"
39 #include "drbd_req.h"
40 #include "drbd_vli.h"
41 
42 #define PRO_FEATURES (DRBD_FF_TRIM|DRBD_FF_THIN_RESYNC|DRBD_FF_WSAME|DRBD_FF_WZEROES)
43 
44 struct packet_info {
45 	enum drbd_packet cmd;
46 	unsigned int size;
47 	unsigned int vnr;
48 	void *data;
49 };
50 
51 enum finish_epoch {
52 	FE_STILL_LIVE,
53 	FE_DESTROYED,
54 	FE_RECYCLED,
55 };
56 
57 static int drbd_do_features(struct drbd_connection *connection);
58 static int drbd_do_auth(struct drbd_connection *connection);
59 static int drbd_disconnected(struct drbd_peer_device *);
60 static void conn_wait_active_ee_empty(struct drbd_connection *connection);
61 static enum finish_epoch drbd_may_finish_epoch(struct drbd_connection *, struct drbd_epoch *, enum epoch_event);
62 static int e_end_block(struct drbd_work *, int);
63 
64 
65 #define GFP_TRY	(__GFP_HIGHMEM | __GFP_NOWARN)
66 
67 /*
68  * some helper functions to deal with single linked page lists,
69  * page->private being our "next" pointer.
70  */
71 
72 /* If at least n pages are linked at head, get n pages off.
73  * Otherwise, don't modify head, and return NULL.
74  * Locking is the responsibility of the caller.
75  */
76 static struct page *page_chain_del(struct page **head, int n)
77 {
78 	struct page *page;
79 	struct page *tmp;
80 
81 	BUG_ON(!n);
82 	BUG_ON(!head);
83 
84 	page = *head;
85 
86 	if (!page)
87 		return NULL;
88 
89 	while (page) {
90 		tmp = page_chain_next(page);
91 		if (--n == 0)
92 			break; /* found sufficient pages */
93 		if (tmp == NULL)
94 			/* insufficient pages, don't use any of them. */
95 			return NULL;
96 		page = tmp;
97 	}
98 
99 	/* add end of list marker for the returned list */
100 	set_page_private(page, 0);
101 	/* actual return value, and adjustment of head */
102 	page = *head;
103 	*head = tmp;
104 	return page;
105 }
106 
107 /* may be used outside of locks to find the tail of a (usually short)
108  * "private" page chain, before adding it back to a global chain head
109  * with page_chain_add() under a spinlock. */
110 static struct page *page_chain_tail(struct page *page, int *len)
111 {
112 	struct page *tmp;
113 	int i = 1;
114 	while ((tmp = page_chain_next(page))) {
115 		++i;
116 		page = tmp;
117 	}
118 	if (len)
119 		*len = i;
120 	return page;
121 }
122 
123 static int page_chain_free(struct page *page)
124 {
125 	struct page *tmp;
126 	int i = 0;
127 	page_chain_for_each_safe(page, tmp) {
128 		put_page(page);
129 		++i;
130 	}
131 	return i;
132 }
133 
134 static void page_chain_add(struct page **head,
135 		struct page *chain_first, struct page *chain_last)
136 {
137 #if 1
138 	struct page *tmp;
139 	tmp = page_chain_tail(chain_first, NULL);
140 	BUG_ON(tmp != chain_last);
141 #endif
142 
143 	/* add chain to head */
144 	set_page_private(chain_last, (unsigned long)*head);
145 	*head = chain_first;
146 }
147 
148 static struct page *__drbd_alloc_pages(struct drbd_device *device,
149 				       unsigned int number)
150 {
151 	struct page *page = NULL;
152 	struct page *tmp = NULL;
153 	unsigned int i = 0;
154 
155 	/* Yes, testing drbd_pp_vacant outside the lock is racy.
156 	 * So what. It saves a spin_lock. */
157 	if (drbd_pp_vacant >= number) {
158 		spin_lock(&drbd_pp_lock);
159 		page = page_chain_del(&drbd_pp_pool, number);
160 		if (page)
161 			drbd_pp_vacant -= number;
162 		spin_unlock(&drbd_pp_lock);
163 		if (page)
164 			return page;
165 	}
166 
167 	/* GFP_TRY, because we must not cause arbitrary write-out: in a DRBD
168 	 * "criss-cross" setup, that might cause write-out on some other DRBD,
169 	 * which in turn might block on the other node at this very place.  */
170 	for (i = 0; i < number; i++) {
171 		tmp = alloc_page(GFP_TRY);
172 		if (!tmp)
173 			break;
174 		set_page_private(tmp, (unsigned long)page);
175 		page = tmp;
176 	}
177 
178 	if (i == number)
179 		return page;
180 
181 	/* Not enough pages immediately available this time.
182 	 * No need to jump around here, drbd_alloc_pages will retry this
183 	 * function "soon". */
184 	if (page) {
185 		tmp = page_chain_tail(page, NULL);
186 		spin_lock(&drbd_pp_lock);
187 		page_chain_add(&drbd_pp_pool, page, tmp);
188 		drbd_pp_vacant += i;
189 		spin_unlock(&drbd_pp_lock);
190 	}
191 	return NULL;
192 }
193 
194 static void reclaim_finished_net_peer_reqs(struct drbd_device *device,
195 					   struct list_head *to_be_freed)
196 {
197 	struct drbd_peer_request *peer_req, *tmp;
198 
199 	/* The EEs are always appended to the end of the list. Since
200 	   they are sent in order over the wire, they have to finish
201 	   in order. As soon as we see the first not finished we can
202 	   stop to examine the list... */
203 
204 	list_for_each_entry_safe(peer_req, tmp, &device->net_ee, w.list) {
205 		if (drbd_peer_req_has_active_page(peer_req))
206 			break;
207 		list_move(&peer_req->w.list, to_be_freed);
208 	}
209 }
210 
211 static void drbd_reclaim_net_peer_reqs(struct drbd_device *device)
212 {
213 	LIST_HEAD(reclaimed);
214 	struct drbd_peer_request *peer_req, *t;
215 
216 	spin_lock_irq(&device->resource->req_lock);
217 	reclaim_finished_net_peer_reqs(device, &reclaimed);
218 	spin_unlock_irq(&device->resource->req_lock);
219 	list_for_each_entry_safe(peer_req, t, &reclaimed, w.list)
220 		drbd_free_net_peer_req(device, peer_req);
221 }
222 
223 static void conn_reclaim_net_peer_reqs(struct drbd_connection *connection)
224 {
225 	struct drbd_peer_device *peer_device;
226 	int vnr;
227 
228 	rcu_read_lock();
229 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
230 		struct drbd_device *device = peer_device->device;
231 		if (!atomic_read(&device->pp_in_use_by_net))
232 			continue;
233 
234 		kref_get(&device->kref);
235 		rcu_read_unlock();
236 		drbd_reclaim_net_peer_reqs(device);
237 		kref_put(&device->kref, drbd_destroy_device);
238 		rcu_read_lock();
239 	}
240 	rcu_read_unlock();
241 }
242 
243 /**
244  * drbd_alloc_pages() - Returns @number pages, retries forever (or until signalled)
245  * @peer_device:	DRBD device.
246  * @number:		number of pages requested
247  * @retry:		whether to retry, if not enough pages are available right now
248  *
249  * Tries to allocate number pages, first from our own page pool, then from
250  * the kernel.
251  * Possibly retry until DRBD frees sufficient pages somewhere else.
252  *
253  * If this allocation would exceed the max_buffers setting, we throttle
254  * allocation (schedule_timeout) to give the system some room to breathe.
255  *
256  * We do not use max-buffers as hard limit, because it could lead to
257  * congestion and further to a distributed deadlock during online-verify or
258  * (checksum based) resync, if the max-buffers, socket buffer sizes and
259  * resync-rate settings are mis-configured.
260  *
261  * Returns a page chain linked via page->private.
262  */
263 struct page *drbd_alloc_pages(struct drbd_peer_device *peer_device, unsigned int number,
264 			      bool retry)
265 {
266 	struct drbd_device *device = peer_device->device;
267 	struct page *page = NULL;
268 	struct net_conf *nc;
269 	DEFINE_WAIT(wait);
270 	unsigned int mxb;
271 
272 	rcu_read_lock();
273 	nc = rcu_dereference(peer_device->connection->net_conf);
274 	mxb = nc ? nc->max_buffers : 1000000;
275 	rcu_read_unlock();
276 
277 	if (atomic_read(&device->pp_in_use) < mxb)
278 		page = __drbd_alloc_pages(device, number);
279 
280 	/* Try to keep the fast path fast, but occasionally we need
281 	 * to reclaim the pages we lended to the network stack. */
282 	if (page && atomic_read(&device->pp_in_use_by_net) > 512)
283 		drbd_reclaim_net_peer_reqs(device);
284 
285 	while (page == NULL) {
286 		prepare_to_wait(&drbd_pp_wait, &wait, TASK_INTERRUPTIBLE);
287 
288 		drbd_reclaim_net_peer_reqs(device);
289 
290 		if (atomic_read(&device->pp_in_use) < mxb) {
291 			page = __drbd_alloc_pages(device, number);
292 			if (page)
293 				break;
294 		}
295 
296 		if (!retry)
297 			break;
298 
299 		if (signal_pending(current)) {
300 			drbd_warn(device, "drbd_alloc_pages interrupted!\n");
301 			break;
302 		}
303 
304 		if (schedule_timeout(HZ/10) == 0)
305 			mxb = UINT_MAX;
306 	}
307 	finish_wait(&drbd_pp_wait, &wait);
308 
309 	if (page)
310 		atomic_add(number, &device->pp_in_use);
311 	return page;
312 }
313 
314 /* Must not be used from irq, as that may deadlock: see drbd_alloc_pages.
315  * Is also used from inside an other spin_lock_irq(&resource->req_lock);
316  * Either links the page chain back to the global pool,
317  * or returns all pages to the system. */
318 static void drbd_free_pages(struct drbd_device *device, struct page *page, int is_net)
319 {
320 	atomic_t *a = is_net ? &device->pp_in_use_by_net : &device->pp_in_use;
321 	int i;
322 
323 	if (page == NULL)
324 		return;
325 
326 	if (drbd_pp_vacant > (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * drbd_minor_count)
327 		i = page_chain_free(page);
328 	else {
329 		struct page *tmp;
330 		tmp = page_chain_tail(page, &i);
331 		spin_lock(&drbd_pp_lock);
332 		page_chain_add(&drbd_pp_pool, page, tmp);
333 		drbd_pp_vacant += i;
334 		spin_unlock(&drbd_pp_lock);
335 	}
336 	i = atomic_sub_return(i, a);
337 	if (i < 0)
338 		drbd_warn(device, "ASSERTION FAILED: %s: %d < 0\n",
339 			is_net ? "pp_in_use_by_net" : "pp_in_use", i);
340 	wake_up(&drbd_pp_wait);
341 }
342 
343 /*
344 You need to hold the req_lock:
345  _drbd_wait_ee_list_empty()
346 
347 You must not have the req_lock:
348  drbd_free_peer_req()
349  drbd_alloc_peer_req()
350  drbd_free_peer_reqs()
351  drbd_ee_fix_bhs()
352  drbd_finish_peer_reqs()
353  drbd_clear_done_ee()
354  drbd_wait_ee_list_empty()
355 */
356 
357 /* normal: payload_size == request size (bi_size)
358  * w_same: payload_size == logical_block_size
359  * trim: payload_size == 0 */
360 struct drbd_peer_request *
361 drbd_alloc_peer_req(struct drbd_peer_device *peer_device, u64 id, sector_t sector,
362 		    unsigned int request_size, unsigned int payload_size, gfp_t gfp_mask) __must_hold(local)
363 {
364 	struct drbd_device *device = peer_device->device;
365 	struct drbd_peer_request *peer_req;
366 	struct page *page = NULL;
367 	unsigned int nr_pages = PFN_UP(payload_size);
368 
369 	if (drbd_insert_fault(device, DRBD_FAULT_AL_EE))
370 		return NULL;
371 
372 	peer_req = mempool_alloc(&drbd_ee_mempool, gfp_mask & ~__GFP_HIGHMEM);
373 	if (!peer_req) {
374 		if (!(gfp_mask & __GFP_NOWARN))
375 			drbd_err(device, "%s: allocation failed\n", __func__);
376 		return NULL;
377 	}
378 
379 	if (nr_pages) {
380 		page = drbd_alloc_pages(peer_device, nr_pages,
381 					gfpflags_allow_blocking(gfp_mask));
382 		if (!page)
383 			goto fail;
384 	}
385 
386 	memset(peer_req, 0, sizeof(*peer_req));
387 	INIT_LIST_HEAD(&peer_req->w.list);
388 	drbd_clear_interval(&peer_req->i);
389 	peer_req->i.size = request_size;
390 	peer_req->i.sector = sector;
391 	peer_req->submit_jif = jiffies;
392 	peer_req->peer_device = peer_device;
393 	peer_req->pages = page;
394 	/*
395 	 * The block_id is opaque to the receiver.  It is not endianness
396 	 * converted, and sent back to the sender unchanged.
397 	 */
398 	peer_req->block_id = id;
399 
400 	return peer_req;
401 
402  fail:
403 	mempool_free(peer_req, &drbd_ee_mempool);
404 	return NULL;
405 }
406 
407 void __drbd_free_peer_req(struct drbd_device *device, struct drbd_peer_request *peer_req,
408 		       int is_net)
409 {
410 	might_sleep();
411 	if (peer_req->flags & EE_HAS_DIGEST)
412 		kfree(peer_req->digest);
413 	drbd_free_pages(device, peer_req->pages, is_net);
414 	D_ASSERT(device, atomic_read(&peer_req->pending_bios) == 0);
415 	D_ASSERT(device, drbd_interval_empty(&peer_req->i));
416 	if (!expect(device, !(peer_req->flags & EE_CALL_AL_COMPLETE_IO))) {
417 		peer_req->flags &= ~EE_CALL_AL_COMPLETE_IO;
418 		drbd_al_complete_io(device, &peer_req->i);
419 	}
420 	mempool_free(peer_req, &drbd_ee_mempool);
421 }
422 
423 int drbd_free_peer_reqs(struct drbd_device *device, struct list_head *list)
424 {
425 	LIST_HEAD(work_list);
426 	struct drbd_peer_request *peer_req, *t;
427 	int count = 0;
428 	int is_net = list == &device->net_ee;
429 
430 	spin_lock_irq(&device->resource->req_lock);
431 	list_splice_init(list, &work_list);
432 	spin_unlock_irq(&device->resource->req_lock);
433 
434 	list_for_each_entry_safe(peer_req, t, &work_list, w.list) {
435 		__drbd_free_peer_req(device, peer_req, is_net);
436 		count++;
437 	}
438 	return count;
439 }
440 
441 /*
442  * See also comments in _req_mod(,BARRIER_ACKED) and receive_Barrier.
443  */
444 static int drbd_finish_peer_reqs(struct drbd_device *device)
445 {
446 	LIST_HEAD(work_list);
447 	LIST_HEAD(reclaimed);
448 	struct drbd_peer_request *peer_req, *t;
449 	int err = 0;
450 
451 	spin_lock_irq(&device->resource->req_lock);
452 	reclaim_finished_net_peer_reqs(device, &reclaimed);
453 	list_splice_init(&device->done_ee, &work_list);
454 	spin_unlock_irq(&device->resource->req_lock);
455 
456 	list_for_each_entry_safe(peer_req, t, &reclaimed, w.list)
457 		drbd_free_net_peer_req(device, peer_req);
458 
459 	/* possible callbacks here:
460 	 * e_end_block, and e_end_resync_block, e_send_superseded.
461 	 * all ignore the last argument.
462 	 */
463 	list_for_each_entry_safe(peer_req, t, &work_list, w.list) {
464 		int err2;
465 
466 		/* list_del not necessary, next/prev members not touched */
467 		err2 = peer_req->w.cb(&peer_req->w, !!err);
468 		if (!err)
469 			err = err2;
470 		drbd_free_peer_req(device, peer_req);
471 	}
472 	wake_up(&device->ee_wait);
473 
474 	return err;
475 }
476 
477 static void _drbd_wait_ee_list_empty(struct drbd_device *device,
478 				     struct list_head *head)
479 {
480 	DEFINE_WAIT(wait);
481 
482 	/* avoids spin_lock/unlock
483 	 * and calling prepare_to_wait in the fast path */
484 	while (!list_empty(head)) {
485 		prepare_to_wait(&device->ee_wait, &wait, TASK_UNINTERRUPTIBLE);
486 		spin_unlock_irq(&device->resource->req_lock);
487 		io_schedule();
488 		finish_wait(&device->ee_wait, &wait);
489 		spin_lock_irq(&device->resource->req_lock);
490 	}
491 }
492 
493 static void drbd_wait_ee_list_empty(struct drbd_device *device,
494 				    struct list_head *head)
495 {
496 	spin_lock_irq(&device->resource->req_lock);
497 	_drbd_wait_ee_list_empty(device, head);
498 	spin_unlock_irq(&device->resource->req_lock);
499 }
500 
501 static int drbd_recv_short(struct socket *sock, void *buf, size_t size, int flags)
502 {
503 	struct kvec iov = {
504 		.iov_base = buf,
505 		.iov_len = size,
506 	};
507 	struct msghdr msg = {
508 		.msg_flags = (flags ? flags : MSG_WAITALL | MSG_NOSIGNAL)
509 	};
510 	iov_iter_kvec(&msg.msg_iter, ITER_DEST, &iov, 1, size);
511 	return sock_recvmsg(sock, &msg, msg.msg_flags);
512 }
513 
514 static int drbd_recv(struct drbd_connection *connection, void *buf, size_t size)
515 {
516 	int rv;
517 
518 	rv = drbd_recv_short(connection->data.socket, buf, size, 0);
519 
520 	if (rv < 0) {
521 		if (rv == -ECONNRESET)
522 			drbd_info(connection, "sock was reset by peer\n");
523 		else if (rv != -ERESTARTSYS)
524 			drbd_err(connection, "sock_recvmsg returned %d\n", rv);
525 	} else if (rv == 0) {
526 		if (test_bit(DISCONNECT_SENT, &connection->flags)) {
527 			long t;
528 			rcu_read_lock();
529 			t = rcu_dereference(connection->net_conf)->ping_timeo * HZ/10;
530 			rcu_read_unlock();
531 
532 			t = wait_event_timeout(connection->ping_wait, connection->cstate < C_WF_REPORT_PARAMS, t);
533 
534 			if (t)
535 				goto out;
536 		}
537 		drbd_info(connection, "sock was shut down by peer\n");
538 	}
539 
540 	if (rv != size)
541 		conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD);
542 
543 out:
544 	return rv;
545 }
546 
547 static int drbd_recv_all(struct drbd_connection *connection, void *buf, size_t size)
548 {
549 	int err;
550 
551 	err = drbd_recv(connection, buf, size);
552 	if (err != size) {
553 		if (err >= 0)
554 			err = -EIO;
555 	} else
556 		err = 0;
557 	return err;
558 }
559 
560 static int drbd_recv_all_warn(struct drbd_connection *connection, void *buf, size_t size)
561 {
562 	int err;
563 
564 	err = drbd_recv_all(connection, buf, size);
565 	if (err && !signal_pending(current))
566 		drbd_warn(connection, "short read (expected size %d)\n", (int)size);
567 	return err;
568 }
569 
570 /* quoting tcp(7):
571  *   On individual connections, the socket buffer size must be set prior to the
572  *   listen(2) or connect(2) calls in order to have it take effect.
573  * This is our wrapper to do so.
574  */
575 static void drbd_setbufsize(struct socket *sock, unsigned int snd,
576 		unsigned int rcv)
577 {
578 	/* open coded SO_SNDBUF, SO_RCVBUF */
579 	if (snd) {
580 		sock->sk->sk_sndbuf = snd;
581 		sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
582 	}
583 	if (rcv) {
584 		sock->sk->sk_rcvbuf = rcv;
585 		sock->sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
586 	}
587 }
588 
589 static struct socket *drbd_try_connect(struct drbd_connection *connection)
590 {
591 	const char *what;
592 	struct socket *sock;
593 	struct sockaddr_in6 src_in6;
594 	struct sockaddr_in6 peer_in6;
595 	struct net_conf *nc;
596 	int err, peer_addr_len, my_addr_len;
597 	int sndbuf_size, rcvbuf_size, connect_int;
598 	int disconnect_on_error = 1;
599 
600 	rcu_read_lock();
601 	nc = rcu_dereference(connection->net_conf);
602 	if (!nc) {
603 		rcu_read_unlock();
604 		return NULL;
605 	}
606 	sndbuf_size = nc->sndbuf_size;
607 	rcvbuf_size = nc->rcvbuf_size;
608 	connect_int = nc->connect_int;
609 	rcu_read_unlock();
610 
611 	my_addr_len = min_t(int, connection->my_addr_len, sizeof(src_in6));
612 	memcpy(&src_in6, &connection->my_addr, my_addr_len);
613 
614 	if (((struct sockaddr *)&connection->my_addr)->sa_family == AF_INET6)
615 		src_in6.sin6_port = 0;
616 	else
617 		((struct sockaddr_in *)&src_in6)->sin_port = 0; /* AF_INET & AF_SCI */
618 
619 	peer_addr_len = min_t(int, connection->peer_addr_len, sizeof(src_in6));
620 	memcpy(&peer_in6, &connection->peer_addr, peer_addr_len);
621 
622 	what = "sock_create_kern";
623 	err = sock_create_kern(&init_net, ((struct sockaddr *)&src_in6)->sa_family,
624 			       SOCK_STREAM, IPPROTO_TCP, &sock);
625 	if (err < 0) {
626 		sock = NULL;
627 		goto out;
628 	}
629 
630 	sock->sk->sk_rcvtimeo =
631 	sock->sk->sk_sndtimeo = connect_int * HZ;
632 	drbd_setbufsize(sock, sndbuf_size, rcvbuf_size);
633 
634        /* explicitly bind to the configured IP as source IP
635 	*  for the outgoing connections.
636 	*  This is needed for multihomed hosts and to be
637 	*  able to use lo: interfaces for drbd.
638 	* Make sure to use 0 as port number, so linux selects
639 	*  a free one dynamically.
640 	*/
641 	what = "bind before connect";
642 	err = sock->ops->bind(sock, (struct sockaddr *) &src_in6, my_addr_len);
643 	if (err < 0)
644 		goto out;
645 
646 	/* connect may fail, peer not yet available.
647 	 * stay C_WF_CONNECTION, don't go Disconnecting! */
648 	disconnect_on_error = 0;
649 	what = "connect";
650 	err = sock->ops->connect(sock, (struct sockaddr *) &peer_in6, peer_addr_len, 0);
651 
652 out:
653 	if (err < 0) {
654 		if (sock) {
655 			sock_release(sock);
656 			sock = NULL;
657 		}
658 		switch (-err) {
659 			/* timeout, busy, signal pending */
660 		case ETIMEDOUT: case EAGAIN: case EINPROGRESS:
661 		case EINTR: case ERESTARTSYS:
662 			/* peer not (yet) available, network problem */
663 		case ECONNREFUSED: case ENETUNREACH:
664 		case EHOSTDOWN:    case EHOSTUNREACH:
665 			disconnect_on_error = 0;
666 			break;
667 		default:
668 			drbd_err(connection, "%s failed, err = %d\n", what, err);
669 		}
670 		if (disconnect_on_error)
671 			conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
672 	}
673 
674 	return sock;
675 }
676 
677 struct accept_wait_data {
678 	struct drbd_connection *connection;
679 	struct socket *s_listen;
680 	struct completion door_bell;
681 	void (*original_sk_state_change)(struct sock *sk);
682 
683 };
684 
685 static void drbd_incoming_connection(struct sock *sk)
686 {
687 	struct accept_wait_data *ad = sk->sk_user_data;
688 	void (*state_change)(struct sock *sk);
689 
690 	state_change = ad->original_sk_state_change;
691 	if (sk->sk_state == TCP_ESTABLISHED)
692 		complete(&ad->door_bell);
693 	state_change(sk);
694 }
695 
696 static int prepare_listen_socket(struct drbd_connection *connection, struct accept_wait_data *ad)
697 {
698 	int err, sndbuf_size, rcvbuf_size, my_addr_len;
699 	struct sockaddr_in6 my_addr;
700 	struct socket *s_listen;
701 	struct net_conf *nc;
702 	const char *what;
703 
704 	rcu_read_lock();
705 	nc = rcu_dereference(connection->net_conf);
706 	if (!nc) {
707 		rcu_read_unlock();
708 		return -EIO;
709 	}
710 	sndbuf_size = nc->sndbuf_size;
711 	rcvbuf_size = nc->rcvbuf_size;
712 	rcu_read_unlock();
713 
714 	my_addr_len = min_t(int, connection->my_addr_len, sizeof(struct sockaddr_in6));
715 	memcpy(&my_addr, &connection->my_addr, my_addr_len);
716 
717 	what = "sock_create_kern";
718 	err = sock_create_kern(&init_net, ((struct sockaddr *)&my_addr)->sa_family,
719 			       SOCK_STREAM, IPPROTO_TCP, &s_listen);
720 	if (err) {
721 		s_listen = NULL;
722 		goto out;
723 	}
724 
725 	s_listen->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */
726 	drbd_setbufsize(s_listen, sndbuf_size, rcvbuf_size);
727 
728 	what = "bind before listen";
729 	err = s_listen->ops->bind(s_listen, (struct sockaddr *)&my_addr, my_addr_len);
730 	if (err < 0)
731 		goto out;
732 
733 	ad->s_listen = s_listen;
734 	write_lock_bh(&s_listen->sk->sk_callback_lock);
735 	ad->original_sk_state_change = s_listen->sk->sk_state_change;
736 	s_listen->sk->sk_state_change = drbd_incoming_connection;
737 	s_listen->sk->sk_user_data = ad;
738 	write_unlock_bh(&s_listen->sk->sk_callback_lock);
739 
740 	what = "listen";
741 	err = s_listen->ops->listen(s_listen, 5);
742 	if (err < 0)
743 		goto out;
744 
745 	return 0;
746 out:
747 	if (s_listen)
748 		sock_release(s_listen);
749 	if (err < 0) {
750 		if (err != -EAGAIN && err != -EINTR && err != -ERESTARTSYS) {
751 			drbd_err(connection, "%s failed, err = %d\n", what, err);
752 			conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
753 		}
754 	}
755 
756 	return -EIO;
757 }
758 
759 static void unregister_state_change(struct sock *sk, struct accept_wait_data *ad)
760 {
761 	write_lock_bh(&sk->sk_callback_lock);
762 	sk->sk_state_change = ad->original_sk_state_change;
763 	sk->sk_user_data = NULL;
764 	write_unlock_bh(&sk->sk_callback_lock);
765 }
766 
767 static struct socket *drbd_wait_for_connect(struct drbd_connection *connection, struct accept_wait_data *ad)
768 {
769 	int timeo, connect_int, err = 0;
770 	struct socket *s_estab = NULL;
771 	struct net_conf *nc;
772 
773 	rcu_read_lock();
774 	nc = rcu_dereference(connection->net_conf);
775 	if (!nc) {
776 		rcu_read_unlock();
777 		return NULL;
778 	}
779 	connect_int = nc->connect_int;
780 	rcu_read_unlock();
781 
782 	timeo = connect_int * HZ;
783 	/* 28.5% random jitter */
784 	timeo += get_random_u32_below(2) ? timeo / 7 : -timeo / 7;
785 
786 	err = wait_for_completion_interruptible_timeout(&ad->door_bell, timeo);
787 	if (err <= 0)
788 		return NULL;
789 
790 	err = kernel_accept(ad->s_listen, &s_estab, 0);
791 	if (err < 0) {
792 		if (err != -EAGAIN && err != -EINTR && err != -ERESTARTSYS) {
793 			drbd_err(connection, "accept failed, err = %d\n", err);
794 			conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
795 		}
796 	}
797 
798 	if (s_estab)
799 		unregister_state_change(s_estab->sk, ad);
800 
801 	return s_estab;
802 }
803 
804 static int decode_header(struct drbd_connection *, void *, struct packet_info *);
805 
806 static int send_first_packet(struct drbd_connection *connection, struct drbd_socket *sock,
807 			     enum drbd_packet cmd)
808 {
809 	if (!conn_prepare_command(connection, sock))
810 		return -EIO;
811 	return conn_send_command(connection, sock, cmd, 0, NULL, 0);
812 }
813 
814 static int receive_first_packet(struct drbd_connection *connection, struct socket *sock)
815 {
816 	unsigned int header_size = drbd_header_size(connection);
817 	struct packet_info pi;
818 	struct net_conf *nc;
819 	int err;
820 
821 	rcu_read_lock();
822 	nc = rcu_dereference(connection->net_conf);
823 	if (!nc) {
824 		rcu_read_unlock();
825 		return -EIO;
826 	}
827 	sock->sk->sk_rcvtimeo = nc->ping_timeo * 4 * HZ / 10;
828 	rcu_read_unlock();
829 
830 	err = drbd_recv_short(sock, connection->data.rbuf, header_size, 0);
831 	if (err != header_size) {
832 		if (err >= 0)
833 			err = -EIO;
834 		return err;
835 	}
836 	err = decode_header(connection, connection->data.rbuf, &pi);
837 	if (err)
838 		return err;
839 	return pi.cmd;
840 }
841 
842 /**
843  * drbd_socket_okay() - Free the socket if its connection is not okay
844  * @sock:	pointer to the pointer to the socket.
845  */
846 static bool drbd_socket_okay(struct socket **sock)
847 {
848 	int rr;
849 	char tb[4];
850 
851 	if (!*sock)
852 		return false;
853 
854 	rr = drbd_recv_short(*sock, tb, 4, MSG_DONTWAIT | MSG_PEEK);
855 
856 	if (rr > 0 || rr == -EAGAIN) {
857 		return true;
858 	} else {
859 		sock_release(*sock);
860 		*sock = NULL;
861 		return false;
862 	}
863 }
864 
865 static bool connection_established(struct drbd_connection *connection,
866 				   struct socket **sock1,
867 				   struct socket **sock2)
868 {
869 	struct net_conf *nc;
870 	int timeout;
871 	bool ok;
872 
873 	if (!*sock1 || !*sock2)
874 		return false;
875 
876 	rcu_read_lock();
877 	nc = rcu_dereference(connection->net_conf);
878 	timeout = (nc->sock_check_timeo ?: nc->ping_timeo) * HZ / 10;
879 	rcu_read_unlock();
880 	schedule_timeout_interruptible(timeout);
881 
882 	ok = drbd_socket_okay(sock1);
883 	ok = drbd_socket_okay(sock2) && ok;
884 
885 	return ok;
886 }
887 
888 /* Gets called if a connection is established, or if a new minor gets created
889    in a connection */
890 int drbd_connected(struct drbd_peer_device *peer_device)
891 {
892 	struct drbd_device *device = peer_device->device;
893 	int err;
894 
895 	atomic_set(&device->packet_seq, 0);
896 	device->peer_seq = 0;
897 
898 	device->state_mutex = peer_device->connection->agreed_pro_version < 100 ?
899 		&peer_device->connection->cstate_mutex :
900 		&device->own_state_mutex;
901 
902 	err = drbd_send_sync_param(peer_device);
903 	if (!err)
904 		err = drbd_send_sizes(peer_device, 0, 0);
905 	if (!err)
906 		err = drbd_send_uuids(peer_device);
907 	if (!err)
908 		err = drbd_send_current_state(peer_device);
909 	clear_bit(USE_DEGR_WFC_T, &device->flags);
910 	clear_bit(RESIZE_PENDING, &device->flags);
911 	atomic_set(&device->ap_in_flight, 0);
912 	mod_timer(&device->request_timer, jiffies + HZ); /* just start it here. */
913 	return err;
914 }
915 
916 /*
917  * return values:
918  *   1 yes, we have a valid connection
919  *   0 oops, did not work out, please try again
920  *  -1 peer talks different language,
921  *     no point in trying again, please go standalone.
922  *  -2 We do not have a network config...
923  */
924 static int conn_connect(struct drbd_connection *connection)
925 {
926 	struct drbd_socket sock, msock;
927 	struct drbd_peer_device *peer_device;
928 	struct net_conf *nc;
929 	int vnr, timeout, h;
930 	bool discard_my_data, ok;
931 	enum drbd_state_rv rv;
932 	struct accept_wait_data ad = {
933 		.connection = connection,
934 		.door_bell = COMPLETION_INITIALIZER_ONSTACK(ad.door_bell),
935 	};
936 
937 	clear_bit(DISCONNECT_SENT, &connection->flags);
938 	if (conn_request_state(connection, NS(conn, C_WF_CONNECTION), CS_VERBOSE) < SS_SUCCESS)
939 		return -2;
940 
941 	mutex_init(&sock.mutex);
942 	sock.sbuf = connection->data.sbuf;
943 	sock.rbuf = connection->data.rbuf;
944 	sock.socket = NULL;
945 	mutex_init(&msock.mutex);
946 	msock.sbuf = connection->meta.sbuf;
947 	msock.rbuf = connection->meta.rbuf;
948 	msock.socket = NULL;
949 
950 	/* Assume that the peer only understands protocol 80 until we know better.  */
951 	connection->agreed_pro_version = 80;
952 
953 	if (prepare_listen_socket(connection, &ad))
954 		return 0;
955 
956 	do {
957 		struct socket *s;
958 
959 		s = drbd_try_connect(connection);
960 		if (s) {
961 			if (!sock.socket) {
962 				sock.socket = s;
963 				send_first_packet(connection, &sock, P_INITIAL_DATA);
964 			} else if (!msock.socket) {
965 				clear_bit(RESOLVE_CONFLICTS, &connection->flags);
966 				msock.socket = s;
967 				send_first_packet(connection, &msock, P_INITIAL_META);
968 			} else {
969 				drbd_err(connection, "Logic error in conn_connect()\n");
970 				goto out_release_sockets;
971 			}
972 		}
973 
974 		if (connection_established(connection, &sock.socket, &msock.socket))
975 			break;
976 
977 retry:
978 		s = drbd_wait_for_connect(connection, &ad);
979 		if (s) {
980 			int fp = receive_first_packet(connection, s);
981 			drbd_socket_okay(&sock.socket);
982 			drbd_socket_okay(&msock.socket);
983 			switch (fp) {
984 			case P_INITIAL_DATA:
985 				if (sock.socket) {
986 					drbd_warn(connection, "initial packet S crossed\n");
987 					sock_release(sock.socket);
988 					sock.socket = s;
989 					goto randomize;
990 				}
991 				sock.socket = s;
992 				break;
993 			case P_INITIAL_META:
994 				set_bit(RESOLVE_CONFLICTS, &connection->flags);
995 				if (msock.socket) {
996 					drbd_warn(connection, "initial packet M crossed\n");
997 					sock_release(msock.socket);
998 					msock.socket = s;
999 					goto randomize;
1000 				}
1001 				msock.socket = s;
1002 				break;
1003 			default:
1004 				drbd_warn(connection, "Error receiving initial packet\n");
1005 				sock_release(s);
1006 randomize:
1007 				if (get_random_u32_below(2))
1008 					goto retry;
1009 			}
1010 		}
1011 
1012 		if (connection->cstate <= C_DISCONNECTING)
1013 			goto out_release_sockets;
1014 		if (signal_pending(current)) {
1015 			flush_signals(current);
1016 			smp_rmb();
1017 			if (get_t_state(&connection->receiver) == EXITING)
1018 				goto out_release_sockets;
1019 		}
1020 
1021 		ok = connection_established(connection, &sock.socket, &msock.socket);
1022 	} while (!ok);
1023 
1024 	if (ad.s_listen)
1025 		sock_release(ad.s_listen);
1026 
1027 	sock.socket->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */
1028 	msock.socket->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */
1029 
1030 	sock.socket->sk->sk_allocation = GFP_NOIO;
1031 	msock.socket->sk->sk_allocation = GFP_NOIO;
1032 
1033 	sock.socket->sk->sk_use_task_frag = false;
1034 	msock.socket->sk->sk_use_task_frag = false;
1035 
1036 	sock.socket->sk->sk_priority = TC_PRIO_INTERACTIVE_BULK;
1037 	msock.socket->sk->sk_priority = TC_PRIO_INTERACTIVE;
1038 
1039 	/* NOT YET ...
1040 	 * sock.socket->sk->sk_sndtimeo = connection->net_conf->timeout*HZ/10;
1041 	 * sock.socket->sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
1042 	 * first set it to the P_CONNECTION_FEATURES timeout,
1043 	 * which we set to 4x the configured ping_timeout. */
1044 	rcu_read_lock();
1045 	nc = rcu_dereference(connection->net_conf);
1046 
1047 	sock.socket->sk->sk_sndtimeo =
1048 	sock.socket->sk->sk_rcvtimeo = nc->ping_timeo*4*HZ/10;
1049 
1050 	msock.socket->sk->sk_rcvtimeo = nc->ping_int*HZ;
1051 	timeout = nc->timeout * HZ / 10;
1052 	discard_my_data = nc->discard_my_data;
1053 	rcu_read_unlock();
1054 
1055 	msock.socket->sk->sk_sndtimeo = timeout;
1056 
1057 	/* we don't want delays.
1058 	 * we use TCP_CORK where appropriate, though */
1059 	tcp_sock_set_nodelay(sock.socket->sk);
1060 	tcp_sock_set_nodelay(msock.socket->sk);
1061 
1062 	connection->data.socket = sock.socket;
1063 	connection->meta.socket = msock.socket;
1064 	connection->last_received = jiffies;
1065 
1066 	h = drbd_do_features(connection);
1067 	if (h <= 0)
1068 		return h;
1069 
1070 	if (connection->cram_hmac_tfm) {
1071 		/* drbd_request_state(device, NS(conn, WFAuth)); */
1072 		switch (drbd_do_auth(connection)) {
1073 		case -1:
1074 			drbd_err(connection, "Authentication of peer failed\n");
1075 			return -1;
1076 		case 0:
1077 			drbd_err(connection, "Authentication of peer failed, trying again.\n");
1078 			return 0;
1079 		}
1080 	}
1081 
1082 	connection->data.socket->sk->sk_sndtimeo = timeout;
1083 	connection->data.socket->sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
1084 
1085 	if (drbd_send_protocol(connection) == -EOPNOTSUPP)
1086 		return -1;
1087 
1088 	/* Prevent a race between resync-handshake and
1089 	 * being promoted to Primary.
1090 	 *
1091 	 * Grab and release the state mutex, so we know that any current
1092 	 * drbd_set_role() is finished, and any incoming drbd_set_role
1093 	 * will see the STATE_SENT flag, and wait for it to be cleared.
1094 	 */
1095 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr)
1096 		mutex_lock(peer_device->device->state_mutex);
1097 
1098 	/* avoid a race with conn_request_state( C_DISCONNECTING ) */
1099 	spin_lock_irq(&connection->resource->req_lock);
1100 	set_bit(STATE_SENT, &connection->flags);
1101 	spin_unlock_irq(&connection->resource->req_lock);
1102 
1103 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr)
1104 		mutex_unlock(peer_device->device->state_mutex);
1105 
1106 	rcu_read_lock();
1107 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
1108 		struct drbd_device *device = peer_device->device;
1109 		kref_get(&device->kref);
1110 		rcu_read_unlock();
1111 
1112 		if (discard_my_data)
1113 			set_bit(DISCARD_MY_DATA, &device->flags);
1114 		else
1115 			clear_bit(DISCARD_MY_DATA, &device->flags);
1116 
1117 		drbd_connected(peer_device);
1118 		kref_put(&device->kref, drbd_destroy_device);
1119 		rcu_read_lock();
1120 	}
1121 	rcu_read_unlock();
1122 
1123 	rv = conn_request_state(connection, NS(conn, C_WF_REPORT_PARAMS), CS_VERBOSE);
1124 	if (rv < SS_SUCCESS || connection->cstate != C_WF_REPORT_PARAMS) {
1125 		clear_bit(STATE_SENT, &connection->flags);
1126 		return 0;
1127 	}
1128 
1129 	drbd_thread_start(&connection->ack_receiver);
1130 	/* opencoded create_singlethread_workqueue(),
1131 	 * to be able to use format string arguments */
1132 	connection->ack_sender =
1133 		alloc_ordered_workqueue("drbd_as_%s", WQ_MEM_RECLAIM, connection->resource->name);
1134 	if (!connection->ack_sender) {
1135 		drbd_err(connection, "Failed to create workqueue ack_sender\n");
1136 		return 0;
1137 	}
1138 
1139 	mutex_lock(&connection->resource->conf_update);
1140 	/* The discard_my_data flag is a single-shot modifier to the next
1141 	 * connection attempt, the handshake of which is now well underway.
1142 	 * No need for rcu style copying of the whole struct
1143 	 * just to clear a single value. */
1144 	connection->net_conf->discard_my_data = 0;
1145 	mutex_unlock(&connection->resource->conf_update);
1146 
1147 	return h;
1148 
1149 out_release_sockets:
1150 	if (ad.s_listen)
1151 		sock_release(ad.s_listen);
1152 	if (sock.socket)
1153 		sock_release(sock.socket);
1154 	if (msock.socket)
1155 		sock_release(msock.socket);
1156 	return -1;
1157 }
1158 
1159 static int decode_header(struct drbd_connection *connection, void *header, struct packet_info *pi)
1160 {
1161 	unsigned int header_size = drbd_header_size(connection);
1162 
1163 	if (header_size == sizeof(struct p_header100) &&
1164 	    *(__be32 *)header == cpu_to_be32(DRBD_MAGIC_100)) {
1165 		struct p_header100 *h = header;
1166 		if (h->pad != 0) {
1167 			drbd_err(connection, "Header padding is not zero\n");
1168 			return -EINVAL;
1169 		}
1170 		pi->vnr = be16_to_cpu(h->volume);
1171 		pi->cmd = be16_to_cpu(h->command);
1172 		pi->size = be32_to_cpu(h->length);
1173 	} else if (header_size == sizeof(struct p_header95) &&
1174 		   *(__be16 *)header == cpu_to_be16(DRBD_MAGIC_BIG)) {
1175 		struct p_header95 *h = header;
1176 		pi->cmd = be16_to_cpu(h->command);
1177 		pi->size = be32_to_cpu(h->length);
1178 		pi->vnr = 0;
1179 	} else if (header_size == sizeof(struct p_header80) &&
1180 		   *(__be32 *)header == cpu_to_be32(DRBD_MAGIC)) {
1181 		struct p_header80 *h = header;
1182 		pi->cmd = be16_to_cpu(h->command);
1183 		pi->size = be16_to_cpu(h->length);
1184 		pi->vnr = 0;
1185 	} else {
1186 		drbd_err(connection, "Wrong magic value 0x%08x in protocol version %d\n",
1187 			 be32_to_cpu(*(__be32 *)header),
1188 			 connection->agreed_pro_version);
1189 		return -EINVAL;
1190 	}
1191 	pi->data = header + header_size;
1192 	return 0;
1193 }
1194 
1195 static void drbd_unplug_all_devices(struct drbd_connection *connection)
1196 {
1197 	if (current->plug == &connection->receiver_plug) {
1198 		blk_finish_plug(&connection->receiver_plug);
1199 		blk_start_plug(&connection->receiver_plug);
1200 	} /* else: maybe just schedule() ?? */
1201 }
1202 
1203 static int drbd_recv_header(struct drbd_connection *connection, struct packet_info *pi)
1204 {
1205 	void *buffer = connection->data.rbuf;
1206 	int err;
1207 
1208 	err = drbd_recv_all_warn(connection, buffer, drbd_header_size(connection));
1209 	if (err)
1210 		return err;
1211 
1212 	err = decode_header(connection, buffer, pi);
1213 	connection->last_received = jiffies;
1214 
1215 	return err;
1216 }
1217 
1218 static int drbd_recv_header_maybe_unplug(struct drbd_connection *connection, struct packet_info *pi)
1219 {
1220 	void *buffer = connection->data.rbuf;
1221 	unsigned int size = drbd_header_size(connection);
1222 	int err;
1223 
1224 	err = drbd_recv_short(connection->data.socket, buffer, size, MSG_NOSIGNAL|MSG_DONTWAIT);
1225 	if (err != size) {
1226 		/* If we have nothing in the receive buffer now, to reduce
1227 		 * application latency, try to drain the backend queues as
1228 		 * quickly as possible, and let remote TCP know what we have
1229 		 * received so far. */
1230 		if (err == -EAGAIN) {
1231 			tcp_sock_set_quickack(connection->data.socket->sk, 2);
1232 			drbd_unplug_all_devices(connection);
1233 		}
1234 		if (err > 0) {
1235 			buffer += err;
1236 			size -= err;
1237 		}
1238 		err = drbd_recv_all_warn(connection, buffer, size);
1239 		if (err)
1240 			return err;
1241 	}
1242 
1243 	err = decode_header(connection, connection->data.rbuf, pi);
1244 	connection->last_received = jiffies;
1245 
1246 	return err;
1247 }
1248 /* This is blkdev_issue_flush, but asynchronous.
1249  * We want to submit to all component volumes in parallel,
1250  * then wait for all completions.
1251  */
1252 struct issue_flush_context {
1253 	atomic_t pending;
1254 	int error;
1255 	struct completion done;
1256 };
1257 struct one_flush_context {
1258 	struct drbd_device *device;
1259 	struct issue_flush_context *ctx;
1260 };
1261 
1262 static void one_flush_endio(struct bio *bio)
1263 {
1264 	struct one_flush_context *octx = bio->bi_private;
1265 	struct drbd_device *device = octx->device;
1266 	struct issue_flush_context *ctx = octx->ctx;
1267 
1268 	if (bio->bi_status) {
1269 		ctx->error = blk_status_to_errno(bio->bi_status);
1270 		drbd_info(device, "local disk FLUSH FAILED with status %d\n", bio->bi_status);
1271 	}
1272 	kfree(octx);
1273 	bio_put(bio);
1274 
1275 	clear_bit(FLUSH_PENDING, &device->flags);
1276 	put_ldev(device);
1277 	kref_put(&device->kref, drbd_destroy_device);
1278 
1279 	if (atomic_dec_and_test(&ctx->pending))
1280 		complete(&ctx->done);
1281 }
1282 
1283 static void submit_one_flush(struct drbd_device *device, struct issue_flush_context *ctx)
1284 {
1285 	struct bio *bio = bio_alloc(device->ldev->backing_bdev, 0,
1286 				    REQ_OP_WRITE | REQ_PREFLUSH, GFP_NOIO);
1287 	struct one_flush_context *octx = kmalloc(sizeof(*octx), GFP_NOIO);
1288 
1289 	if (!octx) {
1290 		drbd_warn(device, "Could not allocate a octx, CANNOT ISSUE FLUSH\n");
1291 		/* FIXME: what else can I do now?  disconnecting or detaching
1292 		 * really does not help to improve the state of the world, either.
1293 		 */
1294 		bio_put(bio);
1295 
1296 		ctx->error = -ENOMEM;
1297 		put_ldev(device);
1298 		kref_put(&device->kref, drbd_destroy_device);
1299 		return;
1300 	}
1301 
1302 	octx->device = device;
1303 	octx->ctx = ctx;
1304 	bio->bi_private = octx;
1305 	bio->bi_end_io = one_flush_endio;
1306 
1307 	device->flush_jif = jiffies;
1308 	set_bit(FLUSH_PENDING, &device->flags);
1309 	atomic_inc(&ctx->pending);
1310 	submit_bio(bio);
1311 }
1312 
1313 static void drbd_flush(struct drbd_connection *connection)
1314 {
1315 	if (connection->resource->write_ordering >= WO_BDEV_FLUSH) {
1316 		struct drbd_peer_device *peer_device;
1317 		struct issue_flush_context ctx;
1318 		int vnr;
1319 
1320 		atomic_set(&ctx.pending, 1);
1321 		ctx.error = 0;
1322 		init_completion(&ctx.done);
1323 
1324 		rcu_read_lock();
1325 		idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
1326 			struct drbd_device *device = peer_device->device;
1327 
1328 			if (!get_ldev(device))
1329 				continue;
1330 			kref_get(&device->kref);
1331 			rcu_read_unlock();
1332 
1333 			submit_one_flush(device, &ctx);
1334 
1335 			rcu_read_lock();
1336 		}
1337 		rcu_read_unlock();
1338 
1339 		/* Do we want to add a timeout,
1340 		 * if disk-timeout is set? */
1341 		if (!atomic_dec_and_test(&ctx.pending))
1342 			wait_for_completion(&ctx.done);
1343 
1344 		if (ctx.error) {
1345 			/* would rather check on EOPNOTSUPP, but that is not reliable.
1346 			 * don't try again for ANY return value != 0
1347 			 * if (rv == -EOPNOTSUPP) */
1348 			/* Any error is already reported by bio_endio callback. */
1349 			drbd_bump_write_ordering(connection->resource, NULL, WO_DRAIN_IO);
1350 		}
1351 	}
1352 }
1353 
1354 /**
1355  * drbd_may_finish_epoch() - Applies an epoch_event to the epoch's state, eventually finishes it.
1356  * @connection:	DRBD connection.
1357  * @epoch:	Epoch object.
1358  * @ev:		Epoch event.
1359  */
1360 static enum finish_epoch drbd_may_finish_epoch(struct drbd_connection *connection,
1361 					       struct drbd_epoch *epoch,
1362 					       enum epoch_event ev)
1363 {
1364 	int epoch_size;
1365 	struct drbd_epoch *next_epoch;
1366 	enum finish_epoch rv = FE_STILL_LIVE;
1367 
1368 	spin_lock(&connection->epoch_lock);
1369 	do {
1370 		next_epoch = NULL;
1371 
1372 		epoch_size = atomic_read(&epoch->epoch_size);
1373 
1374 		switch (ev & ~EV_CLEANUP) {
1375 		case EV_PUT:
1376 			atomic_dec(&epoch->active);
1377 			break;
1378 		case EV_GOT_BARRIER_NR:
1379 			set_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags);
1380 			break;
1381 		case EV_BECAME_LAST:
1382 			/* nothing to do*/
1383 			break;
1384 		}
1385 
1386 		if (epoch_size != 0 &&
1387 		    atomic_read(&epoch->active) == 0 &&
1388 		    (test_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags) || ev & EV_CLEANUP)) {
1389 			if (!(ev & EV_CLEANUP)) {
1390 				spin_unlock(&connection->epoch_lock);
1391 				drbd_send_b_ack(epoch->connection, epoch->barrier_nr, epoch_size);
1392 				spin_lock(&connection->epoch_lock);
1393 			}
1394 #if 0
1395 			/* FIXME: dec unacked on connection, once we have
1396 			 * something to count pending connection packets in. */
1397 			if (test_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags))
1398 				dec_unacked(epoch->connection);
1399 #endif
1400 
1401 			if (connection->current_epoch != epoch) {
1402 				next_epoch = list_entry(epoch->list.next, struct drbd_epoch, list);
1403 				list_del(&epoch->list);
1404 				ev = EV_BECAME_LAST | (ev & EV_CLEANUP);
1405 				connection->epochs--;
1406 				kfree(epoch);
1407 
1408 				if (rv == FE_STILL_LIVE)
1409 					rv = FE_DESTROYED;
1410 			} else {
1411 				epoch->flags = 0;
1412 				atomic_set(&epoch->epoch_size, 0);
1413 				/* atomic_set(&epoch->active, 0); is already zero */
1414 				if (rv == FE_STILL_LIVE)
1415 					rv = FE_RECYCLED;
1416 			}
1417 		}
1418 
1419 		if (!next_epoch)
1420 			break;
1421 
1422 		epoch = next_epoch;
1423 	} while (1);
1424 
1425 	spin_unlock(&connection->epoch_lock);
1426 
1427 	return rv;
1428 }
1429 
1430 static enum write_ordering_e
1431 max_allowed_wo(struct drbd_backing_dev *bdev, enum write_ordering_e wo)
1432 {
1433 	struct disk_conf *dc;
1434 
1435 	dc = rcu_dereference(bdev->disk_conf);
1436 
1437 	if (wo == WO_BDEV_FLUSH && !dc->disk_flushes)
1438 		wo = WO_DRAIN_IO;
1439 	if (wo == WO_DRAIN_IO && !dc->disk_drain)
1440 		wo = WO_NONE;
1441 
1442 	return wo;
1443 }
1444 
1445 /*
1446  * drbd_bump_write_ordering() - Fall back to an other write ordering method
1447  * @wo:		Write ordering method to try.
1448  */
1449 void drbd_bump_write_ordering(struct drbd_resource *resource, struct drbd_backing_dev *bdev,
1450 			      enum write_ordering_e wo)
1451 {
1452 	struct drbd_device *device;
1453 	enum write_ordering_e pwo;
1454 	int vnr;
1455 	static char *write_ordering_str[] = {
1456 		[WO_NONE] = "none",
1457 		[WO_DRAIN_IO] = "drain",
1458 		[WO_BDEV_FLUSH] = "flush",
1459 	};
1460 
1461 	pwo = resource->write_ordering;
1462 	if (wo != WO_BDEV_FLUSH)
1463 		wo = min(pwo, wo);
1464 	rcu_read_lock();
1465 	idr_for_each_entry(&resource->devices, device, vnr) {
1466 		if (get_ldev(device)) {
1467 			wo = max_allowed_wo(device->ldev, wo);
1468 			if (device->ldev == bdev)
1469 				bdev = NULL;
1470 			put_ldev(device);
1471 		}
1472 	}
1473 
1474 	if (bdev)
1475 		wo = max_allowed_wo(bdev, wo);
1476 
1477 	rcu_read_unlock();
1478 
1479 	resource->write_ordering = wo;
1480 	if (pwo != resource->write_ordering || wo == WO_BDEV_FLUSH)
1481 		drbd_info(resource, "Method to ensure write ordering: %s\n", write_ordering_str[resource->write_ordering]);
1482 }
1483 
1484 /*
1485  * Mapping "discard" to ZEROOUT with UNMAP does not work for us:
1486  * Drivers have to "announce" q->limits.max_write_zeroes_sectors, or it
1487  * will directly go to fallback mode, submitting normal writes, and
1488  * never even try to UNMAP.
1489  *
1490  * And dm-thin does not do this (yet), mostly because in general it has
1491  * to assume that "skip_block_zeroing" is set.  See also:
1492  * https://www.mail-archive.com/dm-devel%40redhat.com/msg07965.html
1493  * https://www.redhat.com/archives/dm-devel/2018-January/msg00271.html
1494  *
1495  * We *may* ignore the discard-zeroes-data setting, if so configured.
1496  *
1497  * Assumption is that this "discard_zeroes_data=0" is only because the backend
1498  * may ignore partial unaligned discards.
1499  *
1500  * LVM/DM thin as of at least
1501  *   LVM version:     2.02.115(2)-RHEL7 (2015-01-28)
1502  *   Library version: 1.02.93-RHEL7 (2015-01-28)
1503  *   Driver version:  4.29.0
1504  * still behaves this way.
1505  *
1506  * For unaligned (wrt. alignment and granularity) or too small discards,
1507  * we zero-out the initial (and/or) trailing unaligned partial chunks,
1508  * but discard all the aligned full chunks.
1509  *
1510  * At least for LVM/DM thin, with skip_block_zeroing=false,
1511  * the result is effectively "discard_zeroes_data=1".
1512  */
1513 /* flags: EE_TRIM|EE_ZEROOUT */
1514 int drbd_issue_discard_or_zero_out(struct drbd_device *device, sector_t start, unsigned int nr_sectors, int flags)
1515 {
1516 	struct block_device *bdev = device->ldev->backing_bdev;
1517 	sector_t tmp, nr;
1518 	unsigned int max_discard_sectors, granularity;
1519 	int alignment;
1520 	int err = 0;
1521 
1522 	if ((flags & EE_ZEROOUT) || !(flags & EE_TRIM))
1523 		goto zero_out;
1524 
1525 	/* Zero-sector (unknown) and one-sector granularities are the same.  */
1526 	granularity = max(bdev_discard_granularity(bdev) >> 9, 1U);
1527 	alignment = (bdev_discard_alignment(bdev) >> 9) % granularity;
1528 
1529 	max_discard_sectors = min(bdev_max_discard_sectors(bdev), (1U << 22));
1530 	max_discard_sectors -= max_discard_sectors % granularity;
1531 	if (unlikely(!max_discard_sectors))
1532 		goto zero_out;
1533 
1534 	if (nr_sectors < granularity)
1535 		goto zero_out;
1536 
1537 	tmp = start;
1538 	if (sector_div(tmp, granularity) != alignment) {
1539 		if (nr_sectors < 2*granularity)
1540 			goto zero_out;
1541 		/* start + gran - (start + gran - align) % gran */
1542 		tmp = start + granularity - alignment;
1543 		tmp = start + granularity - sector_div(tmp, granularity);
1544 
1545 		nr = tmp - start;
1546 		/* don't flag BLKDEV_ZERO_NOUNMAP, we don't know how many
1547 		 * layers are below us, some may have smaller granularity */
1548 		err |= blkdev_issue_zeroout(bdev, start, nr, GFP_NOIO, 0);
1549 		nr_sectors -= nr;
1550 		start = tmp;
1551 	}
1552 	while (nr_sectors >= max_discard_sectors) {
1553 		err |= blkdev_issue_discard(bdev, start, max_discard_sectors,
1554 					    GFP_NOIO);
1555 		nr_sectors -= max_discard_sectors;
1556 		start += max_discard_sectors;
1557 	}
1558 	if (nr_sectors) {
1559 		/* max_discard_sectors is unsigned int (and a multiple of
1560 		 * granularity, we made sure of that above already);
1561 		 * nr is < max_discard_sectors;
1562 		 * I don't need sector_div here, even though nr is sector_t */
1563 		nr = nr_sectors;
1564 		nr -= (unsigned int)nr % granularity;
1565 		if (nr) {
1566 			err |= blkdev_issue_discard(bdev, start, nr, GFP_NOIO);
1567 			nr_sectors -= nr;
1568 			start += nr;
1569 		}
1570 	}
1571  zero_out:
1572 	if (nr_sectors) {
1573 		err |= blkdev_issue_zeroout(bdev, start, nr_sectors, GFP_NOIO,
1574 				(flags & EE_TRIM) ? 0 : BLKDEV_ZERO_NOUNMAP);
1575 	}
1576 	return err != 0;
1577 }
1578 
1579 static bool can_do_reliable_discards(struct drbd_device *device)
1580 {
1581 	struct disk_conf *dc;
1582 	bool can_do;
1583 
1584 	if (!bdev_max_discard_sectors(device->ldev->backing_bdev))
1585 		return false;
1586 
1587 	rcu_read_lock();
1588 	dc = rcu_dereference(device->ldev->disk_conf);
1589 	can_do = dc->discard_zeroes_if_aligned;
1590 	rcu_read_unlock();
1591 	return can_do;
1592 }
1593 
1594 static void drbd_issue_peer_discard_or_zero_out(struct drbd_device *device, struct drbd_peer_request *peer_req)
1595 {
1596 	/* If the backend cannot discard, or does not guarantee
1597 	 * read-back zeroes in discarded ranges, we fall back to
1598 	 * zero-out.  Unless configuration specifically requested
1599 	 * otherwise. */
1600 	if (!can_do_reliable_discards(device))
1601 		peer_req->flags |= EE_ZEROOUT;
1602 
1603 	if (drbd_issue_discard_or_zero_out(device, peer_req->i.sector,
1604 	    peer_req->i.size >> 9, peer_req->flags & (EE_ZEROOUT|EE_TRIM)))
1605 		peer_req->flags |= EE_WAS_ERROR;
1606 	drbd_endio_write_sec_final(peer_req);
1607 }
1608 
1609 static int peer_request_fault_type(struct drbd_peer_request *peer_req)
1610 {
1611 	if (peer_req_op(peer_req) == REQ_OP_READ) {
1612 		return peer_req->flags & EE_APPLICATION ?
1613 			DRBD_FAULT_DT_RD : DRBD_FAULT_RS_RD;
1614 	} else {
1615 		return peer_req->flags & EE_APPLICATION ?
1616 			DRBD_FAULT_DT_WR : DRBD_FAULT_RS_WR;
1617 	}
1618 }
1619 
1620 /**
1621  * drbd_submit_peer_request()
1622  * @peer_req:	peer request
1623  *
1624  * May spread the pages to multiple bios,
1625  * depending on bio_add_page restrictions.
1626  *
1627  * Returns 0 if all bios have been submitted,
1628  * -ENOMEM if we could not allocate enough bios,
1629  * -ENOSPC (any better suggestion?) if we have not been able to bio_add_page a
1630  *  single page to an empty bio (which should never happen and likely indicates
1631  *  that the lower level IO stack is in some way broken). This has been observed
1632  *  on certain Xen deployments.
1633  */
1634 /* TODO allocate from our own bio_set. */
1635 int drbd_submit_peer_request(struct drbd_peer_request *peer_req)
1636 {
1637 	struct drbd_device *device = peer_req->peer_device->device;
1638 	struct bio *bios = NULL;
1639 	struct bio *bio;
1640 	struct page *page = peer_req->pages;
1641 	sector_t sector = peer_req->i.sector;
1642 	unsigned int data_size = peer_req->i.size;
1643 	unsigned int n_bios = 0;
1644 	unsigned int nr_pages = PFN_UP(data_size);
1645 
1646 	/* TRIM/DISCARD: for now, always use the helper function
1647 	 * blkdev_issue_zeroout(..., discard=true).
1648 	 * It's synchronous, but it does the right thing wrt. bio splitting.
1649 	 * Correctness first, performance later.  Next step is to code an
1650 	 * asynchronous variant of the same.
1651 	 */
1652 	if (peer_req->flags & (EE_TRIM | EE_ZEROOUT)) {
1653 		/* wait for all pending IO completions, before we start
1654 		 * zeroing things out. */
1655 		conn_wait_active_ee_empty(peer_req->peer_device->connection);
1656 		/* add it to the active list now,
1657 		 * so we can find it to present it in debugfs */
1658 		peer_req->submit_jif = jiffies;
1659 		peer_req->flags |= EE_SUBMITTED;
1660 
1661 		/* If this was a resync request from receive_rs_deallocated(),
1662 		 * it is already on the sync_ee list */
1663 		if (list_empty(&peer_req->w.list)) {
1664 			spin_lock_irq(&device->resource->req_lock);
1665 			list_add_tail(&peer_req->w.list, &device->active_ee);
1666 			spin_unlock_irq(&device->resource->req_lock);
1667 		}
1668 
1669 		drbd_issue_peer_discard_or_zero_out(device, peer_req);
1670 		return 0;
1671 	}
1672 
1673 	/* In most cases, we will only need one bio.  But in case the lower
1674 	 * level restrictions happen to be different at this offset on this
1675 	 * side than those of the sending peer, we may need to submit the
1676 	 * request in more than one bio.
1677 	 *
1678 	 * Plain bio_alloc is good enough here, this is no DRBD internally
1679 	 * generated bio, but a bio allocated on behalf of the peer.
1680 	 */
1681 next_bio:
1682 	/* _DISCARD, _WRITE_ZEROES handled above.
1683 	 * REQ_OP_FLUSH (empty flush) not expected,
1684 	 * should have been mapped to a "drbd protocol barrier".
1685 	 * REQ_OP_SECURE_ERASE: I don't see how we could ever support that.
1686 	 */
1687 	if (!(peer_req_op(peer_req) == REQ_OP_WRITE ||
1688 				peer_req_op(peer_req) == REQ_OP_READ)) {
1689 		drbd_err(device, "Invalid bio op received: 0x%x\n", peer_req->opf);
1690 		return -EINVAL;
1691 	}
1692 
1693 	bio = bio_alloc(device->ldev->backing_bdev, nr_pages, peer_req->opf, GFP_NOIO);
1694 	/* > peer_req->i.sector, unless this is the first bio */
1695 	bio->bi_iter.bi_sector = sector;
1696 	bio->bi_private = peer_req;
1697 	bio->bi_end_io = drbd_peer_request_endio;
1698 
1699 	bio->bi_next = bios;
1700 	bios = bio;
1701 	++n_bios;
1702 
1703 	page_chain_for_each(page) {
1704 		unsigned len = min_t(unsigned, data_size, PAGE_SIZE);
1705 		if (!bio_add_page(bio, page, len, 0))
1706 			goto next_bio;
1707 		data_size -= len;
1708 		sector += len >> 9;
1709 		--nr_pages;
1710 	}
1711 	D_ASSERT(device, data_size == 0);
1712 	D_ASSERT(device, page == NULL);
1713 
1714 	atomic_set(&peer_req->pending_bios, n_bios);
1715 	/* for debugfs: update timestamp, mark as submitted */
1716 	peer_req->submit_jif = jiffies;
1717 	peer_req->flags |= EE_SUBMITTED;
1718 	do {
1719 		bio = bios;
1720 		bios = bios->bi_next;
1721 		bio->bi_next = NULL;
1722 
1723 		drbd_submit_bio_noacct(device, peer_request_fault_type(peer_req), bio);
1724 	} while (bios);
1725 	return 0;
1726 }
1727 
1728 static void drbd_remove_epoch_entry_interval(struct drbd_device *device,
1729 					     struct drbd_peer_request *peer_req)
1730 {
1731 	struct drbd_interval *i = &peer_req->i;
1732 
1733 	drbd_remove_interval(&device->write_requests, i);
1734 	drbd_clear_interval(i);
1735 
1736 	/* Wake up any processes waiting for this peer request to complete.  */
1737 	if (i->waiting)
1738 		wake_up(&device->misc_wait);
1739 }
1740 
1741 static void conn_wait_active_ee_empty(struct drbd_connection *connection)
1742 {
1743 	struct drbd_peer_device *peer_device;
1744 	int vnr;
1745 
1746 	rcu_read_lock();
1747 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
1748 		struct drbd_device *device = peer_device->device;
1749 
1750 		kref_get(&device->kref);
1751 		rcu_read_unlock();
1752 		drbd_wait_ee_list_empty(device, &device->active_ee);
1753 		kref_put(&device->kref, drbd_destroy_device);
1754 		rcu_read_lock();
1755 	}
1756 	rcu_read_unlock();
1757 }
1758 
1759 static int receive_Barrier(struct drbd_connection *connection, struct packet_info *pi)
1760 {
1761 	int rv;
1762 	struct p_barrier *p = pi->data;
1763 	struct drbd_epoch *epoch;
1764 
1765 	/* FIXME these are unacked on connection,
1766 	 * not a specific (peer)device.
1767 	 */
1768 	connection->current_epoch->barrier_nr = p->barrier;
1769 	connection->current_epoch->connection = connection;
1770 	rv = drbd_may_finish_epoch(connection, connection->current_epoch, EV_GOT_BARRIER_NR);
1771 
1772 	/* P_BARRIER_ACK may imply that the corresponding extent is dropped from
1773 	 * the activity log, which means it would not be resynced in case the
1774 	 * R_PRIMARY crashes now.
1775 	 * Therefore we must send the barrier_ack after the barrier request was
1776 	 * completed. */
1777 	switch (connection->resource->write_ordering) {
1778 	case WO_NONE:
1779 		if (rv == FE_RECYCLED)
1780 			return 0;
1781 
1782 		/* receiver context, in the writeout path of the other node.
1783 		 * avoid potential distributed deadlock */
1784 		epoch = kmalloc(sizeof(struct drbd_epoch), GFP_NOIO);
1785 		if (epoch)
1786 			break;
1787 		else
1788 			drbd_warn(connection, "Allocation of an epoch failed, slowing down\n");
1789 		fallthrough;
1790 
1791 	case WO_BDEV_FLUSH:
1792 	case WO_DRAIN_IO:
1793 		conn_wait_active_ee_empty(connection);
1794 		drbd_flush(connection);
1795 
1796 		if (atomic_read(&connection->current_epoch->epoch_size)) {
1797 			epoch = kmalloc(sizeof(struct drbd_epoch), GFP_NOIO);
1798 			if (epoch)
1799 				break;
1800 		}
1801 
1802 		return 0;
1803 	default:
1804 		drbd_err(connection, "Strangeness in connection->write_ordering %d\n",
1805 			 connection->resource->write_ordering);
1806 		return -EIO;
1807 	}
1808 
1809 	epoch->flags = 0;
1810 	atomic_set(&epoch->epoch_size, 0);
1811 	atomic_set(&epoch->active, 0);
1812 
1813 	spin_lock(&connection->epoch_lock);
1814 	if (atomic_read(&connection->current_epoch->epoch_size)) {
1815 		list_add(&epoch->list, &connection->current_epoch->list);
1816 		connection->current_epoch = epoch;
1817 		connection->epochs++;
1818 	} else {
1819 		/* The current_epoch got recycled while we allocated this one... */
1820 		kfree(epoch);
1821 	}
1822 	spin_unlock(&connection->epoch_lock);
1823 
1824 	return 0;
1825 }
1826 
1827 /* quick wrapper in case payload size != request_size (write same) */
1828 static void drbd_csum_ee_size(struct crypto_shash *h,
1829 			      struct drbd_peer_request *r, void *d,
1830 			      unsigned int payload_size)
1831 {
1832 	unsigned int tmp = r->i.size;
1833 	r->i.size = payload_size;
1834 	drbd_csum_ee(h, r, d);
1835 	r->i.size = tmp;
1836 }
1837 
1838 /* used from receive_RSDataReply (recv_resync_read)
1839  * and from receive_Data.
1840  * data_size: actual payload ("data in")
1841  * 	for normal writes that is bi_size.
1842  * 	for discards, that is zero.
1843  * 	for write same, it is logical_block_size.
1844  * both trim and write same have the bi_size ("data len to be affected")
1845  * as extra argument in the packet header.
1846  */
1847 static struct drbd_peer_request *
1848 read_in_block(struct drbd_peer_device *peer_device, u64 id, sector_t sector,
1849 	      struct packet_info *pi) __must_hold(local)
1850 {
1851 	struct drbd_device *device = peer_device->device;
1852 	const sector_t capacity = get_capacity(device->vdisk);
1853 	struct drbd_peer_request *peer_req;
1854 	struct page *page;
1855 	int digest_size, err;
1856 	unsigned int data_size = pi->size, ds;
1857 	void *dig_in = peer_device->connection->int_dig_in;
1858 	void *dig_vv = peer_device->connection->int_dig_vv;
1859 	unsigned long *data;
1860 	struct p_trim *trim = (pi->cmd == P_TRIM) ? pi->data : NULL;
1861 	struct p_trim *zeroes = (pi->cmd == P_ZEROES) ? pi->data : NULL;
1862 
1863 	digest_size = 0;
1864 	if (!trim && peer_device->connection->peer_integrity_tfm) {
1865 		digest_size = crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm);
1866 		/*
1867 		 * FIXME: Receive the incoming digest into the receive buffer
1868 		 *	  here, together with its struct p_data?
1869 		 */
1870 		err = drbd_recv_all_warn(peer_device->connection, dig_in, digest_size);
1871 		if (err)
1872 			return NULL;
1873 		data_size -= digest_size;
1874 	}
1875 
1876 	/* assume request_size == data_size, but special case trim. */
1877 	ds = data_size;
1878 	if (trim) {
1879 		if (!expect(peer_device, data_size == 0))
1880 			return NULL;
1881 		ds = be32_to_cpu(trim->size);
1882 	} else if (zeroes) {
1883 		if (!expect(peer_device, data_size == 0))
1884 			return NULL;
1885 		ds = be32_to_cpu(zeroes->size);
1886 	}
1887 
1888 	if (!expect(peer_device, IS_ALIGNED(ds, 512)))
1889 		return NULL;
1890 	if (trim || zeroes) {
1891 		if (!expect(peer_device, ds <= (DRBD_MAX_BBIO_SECTORS << 9)))
1892 			return NULL;
1893 	} else if (!expect(peer_device, ds <= DRBD_MAX_BIO_SIZE))
1894 		return NULL;
1895 
1896 	/* even though we trust out peer,
1897 	 * we sometimes have to double check. */
1898 	if (sector + (ds>>9) > capacity) {
1899 		drbd_err(device, "request from peer beyond end of local disk: "
1900 			"capacity: %llus < sector: %llus + size: %u\n",
1901 			(unsigned long long)capacity,
1902 			(unsigned long long)sector, ds);
1903 		return NULL;
1904 	}
1905 
1906 	/* GFP_NOIO, because we must not cause arbitrary write-out: in a DRBD
1907 	 * "criss-cross" setup, that might cause write-out on some other DRBD,
1908 	 * which in turn might block on the other node at this very place.  */
1909 	peer_req = drbd_alloc_peer_req(peer_device, id, sector, ds, data_size, GFP_NOIO);
1910 	if (!peer_req)
1911 		return NULL;
1912 
1913 	peer_req->flags |= EE_WRITE;
1914 	if (trim) {
1915 		peer_req->flags |= EE_TRIM;
1916 		return peer_req;
1917 	}
1918 	if (zeroes) {
1919 		peer_req->flags |= EE_ZEROOUT;
1920 		return peer_req;
1921 	}
1922 
1923 	/* receive payload size bytes into page chain */
1924 	ds = data_size;
1925 	page = peer_req->pages;
1926 	page_chain_for_each(page) {
1927 		unsigned len = min_t(int, ds, PAGE_SIZE);
1928 		data = kmap(page);
1929 		err = drbd_recv_all_warn(peer_device->connection, data, len);
1930 		if (drbd_insert_fault(device, DRBD_FAULT_RECEIVE)) {
1931 			drbd_err(device, "Fault injection: Corrupting data on receive\n");
1932 			data[0] = data[0] ^ (unsigned long)-1;
1933 		}
1934 		kunmap(page);
1935 		if (err) {
1936 			drbd_free_peer_req(device, peer_req);
1937 			return NULL;
1938 		}
1939 		ds -= len;
1940 	}
1941 
1942 	if (digest_size) {
1943 		drbd_csum_ee_size(peer_device->connection->peer_integrity_tfm, peer_req, dig_vv, data_size);
1944 		if (memcmp(dig_in, dig_vv, digest_size)) {
1945 			drbd_err(device, "Digest integrity check FAILED: %llus +%u\n",
1946 				(unsigned long long)sector, data_size);
1947 			drbd_free_peer_req(device, peer_req);
1948 			return NULL;
1949 		}
1950 	}
1951 	device->recv_cnt += data_size >> 9;
1952 	return peer_req;
1953 }
1954 
1955 /* drbd_drain_block() just takes a data block
1956  * out of the socket input buffer, and discards it.
1957  */
1958 static int drbd_drain_block(struct drbd_peer_device *peer_device, int data_size)
1959 {
1960 	struct page *page;
1961 	int err = 0;
1962 	void *data;
1963 
1964 	if (!data_size)
1965 		return 0;
1966 
1967 	page = drbd_alloc_pages(peer_device, 1, 1);
1968 
1969 	data = kmap(page);
1970 	while (data_size) {
1971 		unsigned int len = min_t(int, data_size, PAGE_SIZE);
1972 
1973 		err = drbd_recv_all_warn(peer_device->connection, data, len);
1974 		if (err)
1975 			break;
1976 		data_size -= len;
1977 	}
1978 	kunmap(page);
1979 	drbd_free_pages(peer_device->device, page, 0);
1980 	return err;
1981 }
1982 
1983 static int recv_dless_read(struct drbd_peer_device *peer_device, struct drbd_request *req,
1984 			   sector_t sector, int data_size)
1985 {
1986 	struct bio_vec bvec;
1987 	struct bvec_iter iter;
1988 	struct bio *bio;
1989 	int digest_size, err, expect;
1990 	void *dig_in = peer_device->connection->int_dig_in;
1991 	void *dig_vv = peer_device->connection->int_dig_vv;
1992 
1993 	digest_size = 0;
1994 	if (peer_device->connection->peer_integrity_tfm) {
1995 		digest_size = crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm);
1996 		err = drbd_recv_all_warn(peer_device->connection, dig_in, digest_size);
1997 		if (err)
1998 			return err;
1999 		data_size -= digest_size;
2000 	}
2001 
2002 	/* optimistically update recv_cnt.  if receiving fails below,
2003 	 * we disconnect anyways, and counters will be reset. */
2004 	peer_device->device->recv_cnt += data_size>>9;
2005 
2006 	bio = req->master_bio;
2007 	D_ASSERT(peer_device->device, sector == bio->bi_iter.bi_sector);
2008 
2009 	bio_for_each_segment(bvec, bio, iter) {
2010 		void *mapped = bvec_kmap_local(&bvec);
2011 		expect = min_t(int, data_size, bvec.bv_len);
2012 		err = drbd_recv_all_warn(peer_device->connection, mapped, expect);
2013 		kunmap_local(mapped);
2014 		if (err)
2015 			return err;
2016 		data_size -= expect;
2017 	}
2018 
2019 	if (digest_size) {
2020 		drbd_csum_bio(peer_device->connection->peer_integrity_tfm, bio, dig_vv);
2021 		if (memcmp(dig_in, dig_vv, digest_size)) {
2022 			drbd_err(peer_device, "Digest integrity check FAILED. Broken NICs?\n");
2023 			return -EINVAL;
2024 		}
2025 	}
2026 
2027 	D_ASSERT(peer_device->device, data_size == 0);
2028 	return 0;
2029 }
2030 
2031 /*
2032  * e_end_resync_block() is called in ack_sender context via
2033  * drbd_finish_peer_reqs().
2034  */
2035 static int e_end_resync_block(struct drbd_work *w, int unused)
2036 {
2037 	struct drbd_peer_request *peer_req =
2038 		container_of(w, struct drbd_peer_request, w);
2039 	struct drbd_peer_device *peer_device = peer_req->peer_device;
2040 	struct drbd_device *device = peer_device->device;
2041 	sector_t sector = peer_req->i.sector;
2042 	int err;
2043 
2044 	D_ASSERT(device, drbd_interval_empty(&peer_req->i));
2045 
2046 	if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) {
2047 		drbd_set_in_sync(peer_device, sector, peer_req->i.size);
2048 		err = drbd_send_ack(peer_device, P_RS_WRITE_ACK, peer_req);
2049 	} else {
2050 		/* Record failure to sync */
2051 		drbd_rs_failed_io(peer_device, sector, peer_req->i.size);
2052 
2053 		err  = drbd_send_ack(peer_device, P_NEG_ACK, peer_req);
2054 	}
2055 	dec_unacked(device);
2056 
2057 	return err;
2058 }
2059 
2060 static int recv_resync_read(struct drbd_peer_device *peer_device, sector_t sector,
2061 			    struct packet_info *pi) __releases(local)
2062 {
2063 	struct drbd_device *device = peer_device->device;
2064 	struct drbd_peer_request *peer_req;
2065 
2066 	peer_req = read_in_block(peer_device, ID_SYNCER, sector, pi);
2067 	if (!peer_req)
2068 		goto fail;
2069 
2070 	dec_rs_pending(peer_device);
2071 
2072 	inc_unacked(device);
2073 	/* corresponding dec_unacked() in e_end_resync_block()
2074 	 * respective _drbd_clear_done_ee */
2075 
2076 	peer_req->w.cb = e_end_resync_block;
2077 	peer_req->opf = REQ_OP_WRITE;
2078 	peer_req->submit_jif = jiffies;
2079 
2080 	spin_lock_irq(&device->resource->req_lock);
2081 	list_add_tail(&peer_req->w.list, &device->sync_ee);
2082 	spin_unlock_irq(&device->resource->req_lock);
2083 
2084 	atomic_add(pi->size >> 9, &device->rs_sect_ev);
2085 	if (drbd_submit_peer_request(peer_req) == 0)
2086 		return 0;
2087 
2088 	/* don't care for the reason here */
2089 	drbd_err(device, "submit failed, triggering re-connect\n");
2090 	spin_lock_irq(&device->resource->req_lock);
2091 	list_del(&peer_req->w.list);
2092 	spin_unlock_irq(&device->resource->req_lock);
2093 
2094 	drbd_free_peer_req(device, peer_req);
2095 fail:
2096 	put_ldev(device);
2097 	return -EIO;
2098 }
2099 
2100 static struct drbd_request *
2101 find_request(struct drbd_device *device, struct rb_root *root, u64 id,
2102 	     sector_t sector, bool missing_ok, const char *func)
2103 {
2104 	struct drbd_request *req;
2105 
2106 	/* Request object according to our peer */
2107 	req = (struct drbd_request *)(unsigned long)id;
2108 	if (drbd_contains_interval(root, sector, &req->i) && req->i.local)
2109 		return req;
2110 	if (!missing_ok) {
2111 		drbd_err(device, "%s: failed to find request 0x%lx, sector %llus\n", func,
2112 			(unsigned long)id, (unsigned long long)sector);
2113 	}
2114 	return NULL;
2115 }
2116 
2117 static int receive_DataReply(struct drbd_connection *connection, struct packet_info *pi)
2118 {
2119 	struct drbd_peer_device *peer_device;
2120 	struct drbd_device *device;
2121 	struct drbd_request *req;
2122 	sector_t sector;
2123 	int err;
2124 	struct p_data *p = pi->data;
2125 
2126 	peer_device = conn_peer_device(connection, pi->vnr);
2127 	if (!peer_device)
2128 		return -EIO;
2129 	device = peer_device->device;
2130 
2131 	sector = be64_to_cpu(p->sector);
2132 
2133 	spin_lock_irq(&device->resource->req_lock);
2134 	req = find_request(device, &device->read_requests, p->block_id, sector, false, __func__);
2135 	spin_unlock_irq(&device->resource->req_lock);
2136 	if (unlikely(!req))
2137 		return -EIO;
2138 
2139 	err = recv_dless_read(peer_device, req, sector, pi->size);
2140 	if (!err)
2141 		req_mod(req, DATA_RECEIVED, peer_device);
2142 	/* else: nothing. handled from drbd_disconnect...
2143 	 * I don't think we may complete this just yet
2144 	 * in case we are "on-disconnect: freeze" */
2145 
2146 	return err;
2147 }
2148 
2149 static int receive_RSDataReply(struct drbd_connection *connection, struct packet_info *pi)
2150 {
2151 	struct drbd_peer_device *peer_device;
2152 	struct drbd_device *device;
2153 	sector_t sector;
2154 	int err;
2155 	struct p_data *p = pi->data;
2156 
2157 	peer_device = conn_peer_device(connection, pi->vnr);
2158 	if (!peer_device)
2159 		return -EIO;
2160 	device = peer_device->device;
2161 
2162 	sector = be64_to_cpu(p->sector);
2163 	D_ASSERT(device, p->block_id == ID_SYNCER);
2164 
2165 	if (get_ldev(device)) {
2166 		/* data is submitted to disk within recv_resync_read.
2167 		 * corresponding put_ldev done below on error,
2168 		 * or in drbd_peer_request_endio. */
2169 		err = recv_resync_read(peer_device, sector, pi);
2170 	} else {
2171 		if (drbd_ratelimit())
2172 			drbd_err(device, "Can not write resync data to local disk.\n");
2173 
2174 		err = drbd_drain_block(peer_device, pi->size);
2175 
2176 		drbd_send_ack_dp(peer_device, P_NEG_ACK, p, pi->size);
2177 	}
2178 
2179 	atomic_add(pi->size >> 9, &device->rs_sect_in);
2180 
2181 	return err;
2182 }
2183 
2184 static void restart_conflicting_writes(struct drbd_device *device,
2185 				       sector_t sector, int size)
2186 {
2187 	struct drbd_interval *i;
2188 	struct drbd_request *req;
2189 
2190 	drbd_for_each_overlap(i, &device->write_requests, sector, size) {
2191 		if (!i->local)
2192 			continue;
2193 		req = container_of(i, struct drbd_request, i);
2194 		if (req->rq_state & RQ_LOCAL_PENDING ||
2195 		    !(req->rq_state & RQ_POSTPONED))
2196 			continue;
2197 		/* as it is RQ_POSTPONED, this will cause it to
2198 		 * be queued on the retry workqueue. */
2199 		__req_mod(req, CONFLICT_RESOLVED, NULL, NULL);
2200 	}
2201 }
2202 
2203 /*
2204  * e_end_block() is called in ack_sender context via drbd_finish_peer_reqs().
2205  */
2206 static int e_end_block(struct drbd_work *w, int cancel)
2207 {
2208 	struct drbd_peer_request *peer_req =
2209 		container_of(w, struct drbd_peer_request, w);
2210 	struct drbd_peer_device *peer_device = peer_req->peer_device;
2211 	struct drbd_device *device = peer_device->device;
2212 	sector_t sector = peer_req->i.sector;
2213 	int err = 0, pcmd;
2214 
2215 	if (peer_req->flags & EE_SEND_WRITE_ACK) {
2216 		if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) {
2217 			pcmd = (device->state.conn >= C_SYNC_SOURCE &&
2218 				device->state.conn <= C_PAUSED_SYNC_T &&
2219 				peer_req->flags & EE_MAY_SET_IN_SYNC) ?
2220 				P_RS_WRITE_ACK : P_WRITE_ACK;
2221 			err = drbd_send_ack(peer_device, pcmd, peer_req);
2222 			if (pcmd == P_RS_WRITE_ACK)
2223 				drbd_set_in_sync(peer_device, sector, peer_req->i.size);
2224 		} else {
2225 			err = drbd_send_ack(peer_device, P_NEG_ACK, peer_req);
2226 			/* we expect it to be marked out of sync anyways...
2227 			 * maybe assert this?  */
2228 		}
2229 		dec_unacked(device);
2230 	}
2231 
2232 	/* we delete from the conflict detection hash _after_ we sent out the
2233 	 * P_WRITE_ACK / P_NEG_ACK, to get the sequence number right.  */
2234 	if (peer_req->flags & EE_IN_INTERVAL_TREE) {
2235 		spin_lock_irq(&device->resource->req_lock);
2236 		D_ASSERT(device, !drbd_interval_empty(&peer_req->i));
2237 		drbd_remove_epoch_entry_interval(device, peer_req);
2238 		if (peer_req->flags & EE_RESTART_REQUESTS)
2239 			restart_conflicting_writes(device, sector, peer_req->i.size);
2240 		spin_unlock_irq(&device->resource->req_lock);
2241 	} else
2242 		D_ASSERT(device, drbd_interval_empty(&peer_req->i));
2243 
2244 	drbd_may_finish_epoch(peer_device->connection, peer_req->epoch, EV_PUT + (cancel ? EV_CLEANUP : 0));
2245 
2246 	return err;
2247 }
2248 
2249 static int e_send_ack(struct drbd_work *w, enum drbd_packet ack)
2250 {
2251 	struct drbd_peer_request *peer_req =
2252 		container_of(w, struct drbd_peer_request, w);
2253 	struct drbd_peer_device *peer_device = peer_req->peer_device;
2254 	int err;
2255 
2256 	err = drbd_send_ack(peer_device, ack, peer_req);
2257 	dec_unacked(peer_device->device);
2258 
2259 	return err;
2260 }
2261 
2262 static int e_send_superseded(struct drbd_work *w, int unused)
2263 {
2264 	return e_send_ack(w, P_SUPERSEDED);
2265 }
2266 
2267 static int e_send_retry_write(struct drbd_work *w, int unused)
2268 {
2269 	struct drbd_peer_request *peer_req =
2270 		container_of(w, struct drbd_peer_request, w);
2271 	struct drbd_connection *connection = peer_req->peer_device->connection;
2272 
2273 	return e_send_ack(w, connection->agreed_pro_version >= 100 ?
2274 			     P_RETRY_WRITE : P_SUPERSEDED);
2275 }
2276 
2277 static bool seq_greater(u32 a, u32 b)
2278 {
2279 	/*
2280 	 * We assume 32-bit wrap-around here.
2281 	 * For 24-bit wrap-around, we would have to shift:
2282 	 *  a <<= 8; b <<= 8;
2283 	 */
2284 	return (s32)a - (s32)b > 0;
2285 }
2286 
2287 static u32 seq_max(u32 a, u32 b)
2288 {
2289 	return seq_greater(a, b) ? a : b;
2290 }
2291 
2292 static void update_peer_seq(struct drbd_peer_device *peer_device, unsigned int peer_seq)
2293 {
2294 	struct drbd_device *device = peer_device->device;
2295 	unsigned int newest_peer_seq;
2296 
2297 	if (test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags)) {
2298 		spin_lock(&device->peer_seq_lock);
2299 		newest_peer_seq = seq_max(device->peer_seq, peer_seq);
2300 		device->peer_seq = newest_peer_seq;
2301 		spin_unlock(&device->peer_seq_lock);
2302 		/* wake up only if we actually changed device->peer_seq */
2303 		if (peer_seq == newest_peer_seq)
2304 			wake_up(&device->seq_wait);
2305 	}
2306 }
2307 
2308 static inline int overlaps(sector_t s1, int l1, sector_t s2, int l2)
2309 {
2310 	return !((s1 + (l1>>9) <= s2) || (s1 >= s2 + (l2>>9)));
2311 }
2312 
2313 /* maybe change sync_ee into interval trees as well? */
2314 static bool overlapping_resync_write(struct drbd_device *device, struct drbd_peer_request *peer_req)
2315 {
2316 	struct drbd_peer_request *rs_req;
2317 	bool rv = false;
2318 
2319 	spin_lock_irq(&device->resource->req_lock);
2320 	list_for_each_entry(rs_req, &device->sync_ee, w.list) {
2321 		if (overlaps(peer_req->i.sector, peer_req->i.size,
2322 			     rs_req->i.sector, rs_req->i.size)) {
2323 			rv = true;
2324 			break;
2325 		}
2326 	}
2327 	spin_unlock_irq(&device->resource->req_lock);
2328 
2329 	return rv;
2330 }
2331 
2332 /* Called from receive_Data.
2333  * Synchronize packets on sock with packets on msock.
2334  *
2335  * This is here so even when a P_DATA packet traveling via sock overtook an Ack
2336  * packet traveling on msock, they are still processed in the order they have
2337  * been sent.
2338  *
2339  * Note: we don't care for Ack packets overtaking P_DATA packets.
2340  *
2341  * In case packet_seq is larger than device->peer_seq number, there are
2342  * outstanding packets on the msock. We wait for them to arrive.
2343  * In case we are the logically next packet, we update device->peer_seq
2344  * ourselves. Correctly handles 32bit wrap around.
2345  *
2346  * Assume we have a 10 GBit connection, that is about 1<<30 byte per second,
2347  * about 1<<21 sectors per second. So "worst" case, we have 1<<3 == 8 seconds
2348  * for the 24bit wrap (historical atomic_t guarantee on some archs), and we have
2349  * 1<<9 == 512 seconds aka ages for the 32bit wrap around...
2350  *
2351  * returns 0 if we may process the packet,
2352  * -ERESTARTSYS if we were interrupted (by disconnect signal). */
2353 static int wait_for_and_update_peer_seq(struct drbd_peer_device *peer_device, const u32 peer_seq)
2354 {
2355 	struct drbd_device *device = peer_device->device;
2356 	DEFINE_WAIT(wait);
2357 	long timeout;
2358 	int ret = 0, tp;
2359 
2360 	if (!test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags))
2361 		return 0;
2362 
2363 	spin_lock(&device->peer_seq_lock);
2364 	for (;;) {
2365 		if (!seq_greater(peer_seq - 1, device->peer_seq)) {
2366 			device->peer_seq = seq_max(device->peer_seq, peer_seq);
2367 			break;
2368 		}
2369 
2370 		if (signal_pending(current)) {
2371 			ret = -ERESTARTSYS;
2372 			break;
2373 		}
2374 
2375 		rcu_read_lock();
2376 		tp = rcu_dereference(peer_device->connection->net_conf)->two_primaries;
2377 		rcu_read_unlock();
2378 
2379 		if (!tp)
2380 			break;
2381 
2382 		/* Only need to wait if two_primaries is enabled */
2383 		prepare_to_wait(&device->seq_wait, &wait, TASK_INTERRUPTIBLE);
2384 		spin_unlock(&device->peer_seq_lock);
2385 		rcu_read_lock();
2386 		timeout = rcu_dereference(peer_device->connection->net_conf)->ping_timeo*HZ/10;
2387 		rcu_read_unlock();
2388 		timeout = schedule_timeout(timeout);
2389 		spin_lock(&device->peer_seq_lock);
2390 		if (!timeout) {
2391 			ret = -ETIMEDOUT;
2392 			drbd_err(device, "Timed out waiting for missing ack packets; disconnecting\n");
2393 			break;
2394 		}
2395 	}
2396 	spin_unlock(&device->peer_seq_lock);
2397 	finish_wait(&device->seq_wait, &wait);
2398 	return ret;
2399 }
2400 
2401 static enum req_op wire_flags_to_bio_op(u32 dpf)
2402 {
2403 	if (dpf & DP_ZEROES)
2404 		return REQ_OP_WRITE_ZEROES;
2405 	if (dpf & DP_DISCARD)
2406 		return REQ_OP_DISCARD;
2407 	else
2408 		return REQ_OP_WRITE;
2409 }
2410 
2411 /* see also bio_flags_to_wire() */
2412 static blk_opf_t wire_flags_to_bio(struct drbd_connection *connection, u32 dpf)
2413 {
2414 	return wire_flags_to_bio_op(dpf) |
2415 		(dpf & DP_RW_SYNC ? REQ_SYNC : 0) |
2416 		(dpf & DP_FUA ? REQ_FUA : 0) |
2417 		(dpf & DP_FLUSH ? REQ_PREFLUSH : 0);
2418 }
2419 
2420 static void fail_postponed_requests(struct drbd_device *device, sector_t sector,
2421 				    unsigned int size)
2422 {
2423 	struct drbd_peer_device *peer_device = first_peer_device(device);
2424 	struct drbd_interval *i;
2425 
2426     repeat:
2427 	drbd_for_each_overlap(i, &device->write_requests, sector, size) {
2428 		struct drbd_request *req;
2429 		struct bio_and_error m;
2430 
2431 		if (!i->local)
2432 			continue;
2433 		req = container_of(i, struct drbd_request, i);
2434 		if (!(req->rq_state & RQ_POSTPONED))
2435 			continue;
2436 		req->rq_state &= ~RQ_POSTPONED;
2437 		__req_mod(req, NEG_ACKED, peer_device, &m);
2438 		spin_unlock_irq(&device->resource->req_lock);
2439 		if (m.bio)
2440 			complete_master_bio(device, &m);
2441 		spin_lock_irq(&device->resource->req_lock);
2442 		goto repeat;
2443 	}
2444 }
2445 
2446 static int handle_write_conflicts(struct drbd_device *device,
2447 				  struct drbd_peer_request *peer_req)
2448 {
2449 	struct drbd_connection *connection = peer_req->peer_device->connection;
2450 	bool resolve_conflicts = test_bit(RESOLVE_CONFLICTS, &connection->flags);
2451 	sector_t sector = peer_req->i.sector;
2452 	const unsigned int size = peer_req->i.size;
2453 	struct drbd_interval *i;
2454 	bool equal;
2455 	int err;
2456 
2457 	/*
2458 	 * Inserting the peer request into the write_requests tree will prevent
2459 	 * new conflicting local requests from being added.
2460 	 */
2461 	drbd_insert_interval(&device->write_requests, &peer_req->i);
2462 
2463     repeat:
2464 	drbd_for_each_overlap(i, &device->write_requests, sector, size) {
2465 		if (i == &peer_req->i)
2466 			continue;
2467 		if (i->completed)
2468 			continue;
2469 
2470 		if (!i->local) {
2471 			/*
2472 			 * Our peer has sent a conflicting remote request; this
2473 			 * should not happen in a two-node setup.  Wait for the
2474 			 * earlier peer request to complete.
2475 			 */
2476 			err = drbd_wait_misc(device, i);
2477 			if (err)
2478 				goto out;
2479 			goto repeat;
2480 		}
2481 
2482 		equal = i->sector == sector && i->size == size;
2483 		if (resolve_conflicts) {
2484 			/*
2485 			 * If the peer request is fully contained within the
2486 			 * overlapping request, it can be considered overwritten
2487 			 * and thus superseded; otherwise, it will be retried
2488 			 * once all overlapping requests have completed.
2489 			 */
2490 			bool superseded = i->sector <= sector && i->sector +
2491 				       (i->size >> 9) >= sector + (size >> 9);
2492 
2493 			if (!equal)
2494 				drbd_alert(device, "Concurrent writes detected: "
2495 					       "local=%llus +%u, remote=%llus +%u, "
2496 					       "assuming %s came first\n",
2497 					  (unsigned long long)i->sector, i->size,
2498 					  (unsigned long long)sector, size,
2499 					  superseded ? "local" : "remote");
2500 
2501 			peer_req->w.cb = superseded ? e_send_superseded :
2502 						   e_send_retry_write;
2503 			list_add_tail(&peer_req->w.list, &device->done_ee);
2504 			queue_work(connection->ack_sender, &peer_req->peer_device->send_acks_work);
2505 
2506 			err = -ENOENT;
2507 			goto out;
2508 		} else {
2509 			struct drbd_request *req =
2510 				container_of(i, struct drbd_request, i);
2511 
2512 			if (!equal)
2513 				drbd_alert(device, "Concurrent writes detected: "
2514 					       "local=%llus +%u, remote=%llus +%u\n",
2515 					  (unsigned long long)i->sector, i->size,
2516 					  (unsigned long long)sector, size);
2517 
2518 			if (req->rq_state & RQ_LOCAL_PENDING ||
2519 			    !(req->rq_state & RQ_POSTPONED)) {
2520 				/*
2521 				 * Wait for the node with the discard flag to
2522 				 * decide if this request has been superseded
2523 				 * or needs to be retried.
2524 				 * Requests that have been superseded will
2525 				 * disappear from the write_requests tree.
2526 				 *
2527 				 * In addition, wait for the conflicting
2528 				 * request to finish locally before submitting
2529 				 * the conflicting peer request.
2530 				 */
2531 				err = drbd_wait_misc(device, &req->i);
2532 				if (err) {
2533 					_conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD);
2534 					fail_postponed_requests(device, sector, size);
2535 					goto out;
2536 				}
2537 				goto repeat;
2538 			}
2539 			/*
2540 			 * Remember to restart the conflicting requests after
2541 			 * the new peer request has completed.
2542 			 */
2543 			peer_req->flags |= EE_RESTART_REQUESTS;
2544 		}
2545 	}
2546 	err = 0;
2547 
2548     out:
2549 	if (err)
2550 		drbd_remove_epoch_entry_interval(device, peer_req);
2551 	return err;
2552 }
2553 
2554 /* mirrored write */
2555 static int receive_Data(struct drbd_connection *connection, struct packet_info *pi)
2556 {
2557 	struct drbd_peer_device *peer_device;
2558 	struct drbd_device *device;
2559 	struct net_conf *nc;
2560 	sector_t sector;
2561 	struct drbd_peer_request *peer_req;
2562 	struct p_data *p = pi->data;
2563 	u32 peer_seq = be32_to_cpu(p->seq_num);
2564 	u32 dp_flags;
2565 	int err, tp;
2566 
2567 	peer_device = conn_peer_device(connection, pi->vnr);
2568 	if (!peer_device)
2569 		return -EIO;
2570 	device = peer_device->device;
2571 
2572 	if (!get_ldev(device)) {
2573 		int err2;
2574 
2575 		err = wait_for_and_update_peer_seq(peer_device, peer_seq);
2576 		drbd_send_ack_dp(peer_device, P_NEG_ACK, p, pi->size);
2577 		atomic_inc(&connection->current_epoch->epoch_size);
2578 		err2 = drbd_drain_block(peer_device, pi->size);
2579 		if (!err)
2580 			err = err2;
2581 		return err;
2582 	}
2583 
2584 	/*
2585 	 * Corresponding put_ldev done either below (on various errors), or in
2586 	 * drbd_peer_request_endio, if we successfully submit the data at the
2587 	 * end of this function.
2588 	 */
2589 
2590 	sector = be64_to_cpu(p->sector);
2591 	peer_req = read_in_block(peer_device, p->block_id, sector, pi);
2592 	if (!peer_req) {
2593 		put_ldev(device);
2594 		return -EIO;
2595 	}
2596 
2597 	peer_req->w.cb = e_end_block;
2598 	peer_req->submit_jif = jiffies;
2599 	peer_req->flags |= EE_APPLICATION;
2600 
2601 	dp_flags = be32_to_cpu(p->dp_flags);
2602 	peer_req->opf = wire_flags_to_bio(connection, dp_flags);
2603 	if (pi->cmd == P_TRIM) {
2604 		D_ASSERT(peer_device, peer_req->i.size > 0);
2605 		D_ASSERT(peer_device, peer_req_op(peer_req) == REQ_OP_DISCARD);
2606 		D_ASSERT(peer_device, peer_req->pages == NULL);
2607 		/* need to play safe: an older DRBD sender
2608 		 * may mean zero-out while sending P_TRIM. */
2609 		if (0 == (connection->agreed_features & DRBD_FF_WZEROES))
2610 			peer_req->flags |= EE_ZEROOUT;
2611 	} else if (pi->cmd == P_ZEROES) {
2612 		D_ASSERT(peer_device, peer_req->i.size > 0);
2613 		D_ASSERT(peer_device, peer_req_op(peer_req) == REQ_OP_WRITE_ZEROES);
2614 		D_ASSERT(peer_device, peer_req->pages == NULL);
2615 		/* Do (not) pass down BLKDEV_ZERO_NOUNMAP? */
2616 		if (dp_flags & DP_DISCARD)
2617 			peer_req->flags |= EE_TRIM;
2618 	} else if (peer_req->pages == NULL) {
2619 		D_ASSERT(device, peer_req->i.size == 0);
2620 		D_ASSERT(device, dp_flags & DP_FLUSH);
2621 	}
2622 
2623 	if (dp_flags & DP_MAY_SET_IN_SYNC)
2624 		peer_req->flags |= EE_MAY_SET_IN_SYNC;
2625 
2626 	spin_lock(&connection->epoch_lock);
2627 	peer_req->epoch = connection->current_epoch;
2628 	atomic_inc(&peer_req->epoch->epoch_size);
2629 	atomic_inc(&peer_req->epoch->active);
2630 	spin_unlock(&connection->epoch_lock);
2631 
2632 	rcu_read_lock();
2633 	nc = rcu_dereference(peer_device->connection->net_conf);
2634 	tp = nc->two_primaries;
2635 	if (peer_device->connection->agreed_pro_version < 100) {
2636 		switch (nc->wire_protocol) {
2637 		case DRBD_PROT_C:
2638 			dp_flags |= DP_SEND_WRITE_ACK;
2639 			break;
2640 		case DRBD_PROT_B:
2641 			dp_flags |= DP_SEND_RECEIVE_ACK;
2642 			break;
2643 		}
2644 	}
2645 	rcu_read_unlock();
2646 
2647 	if (dp_flags & DP_SEND_WRITE_ACK) {
2648 		peer_req->flags |= EE_SEND_WRITE_ACK;
2649 		inc_unacked(device);
2650 		/* corresponding dec_unacked() in e_end_block()
2651 		 * respective _drbd_clear_done_ee */
2652 	}
2653 
2654 	if (dp_flags & DP_SEND_RECEIVE_ACK) {
2655 		/* I really don't like it that the receiver thread
2656 		 * sends on the msock, but anyways */
2657 		drbd_send_ack(peer_device, P_RECV_ACK, peer_req);
2658 	}
2659 
2660 	if (tp) {
2661 		/* two primaries implies protocol C */
2662 		D_ASSERT(device, dp_flags & DP_SEND_WRITE_ACK);
2663 		peer_req->flags |= EE_IN_INTERVAL_TREE;
2664 		err = wait_for_and_update_peer_seq(peer_device, peer_seq);
2665 		if (err)
2666 			goto out_interrupted;
2667 		spin_lock_irq(&device->resource->req_lock);
2668 		err = handle_write_conflicts(device, peer_req);
2669 		if (err) {
2670 			spin_unlock_irq(&device->resource->req_lock);
2671 			if (err == -ENOENT) {
2672 				put_ldev(device);
2673 				return 0;
2674 			}
2675 			goto out_interrupted;
2676 		}
2677 	} else {
2678 		update_peer_seq(peer_device, peer_seq);
2679 		spin_lock_irq(&device->resource->req_lock);
2680 	}
2681 	/* TRIM and is processed synchronously,
2682 	 * we wait for all pending requests, respectively wait for
2683 	 * active_ee to become empty in drbd_submit_peer_request();
2684 	 * better not add ourselves here. */
2685 	if ((peer_req->flags & (EE_TRIM | EE_ZEROOUT)) == 0)
2686 		list_add_tail(&peer_req->w.list, &device->active_ee);
2687 	spin_unlock_irq(&device->resource->req_lock);
2688 
2689 	if (device->state.conn == C_SYNC_TARGET)
2690 		wait_event(device->ee_wait, !overlapping_resync_write(device, peer_req));
2691 
2692 	if (device->state.pdsk < D_INCONSISTENT) {
2693 		/* In case we have the only disk of the cluster, */
2694 		drbd_set_out_of_sync(peer_device, peer_req->i.sector, peer_req->i.size);
2695 		peer_req->flags &= ~EE_MAY_SET_IN_SYNC;
2696 		drbd_al_begin_io(device, &peer_req->i);
2697 		peer_req->flags |= EE_CALL_AL_COMPLETE_IO;
2698 	}
2699 
2700 	err = drbd_submit_peer_request(peer_req);
2701 	if (!err)
2702 		return 0;
2703 
2704 	/* don't care for the reason here */
2705 	drbd_err(device, "submit failed, triggering re-connect\n");
2706 	spin_lock_irq(&device->resource->req_lock);
2707 	list_del(&peer_req->w.list);
2708 	drbd_remove_epoch_entry_interval(device, peer_req);
2709 	spin_unlock_irq(&device->resource->req_lock);
2710 	if (peer_req->flags & EE_CALL_AL_COMPLETE_IO) {
2711 		peer_req->flags &= ~EE_CALL_AL_COMPLETE_IO;
2712 		drbd_al_complete_io(device, &peer_req->i);
2713 	}
2714 
2715 out_interrupted:
2716 	drbd_may_finish_epoch(connection, peer_req->epoch, EV_PUT | EV_CLEANUP);
2717 	put_ldev(device);
2718 	drbd_free_peer_req(device, peer_req);
2719 	return err;
2720 }
2721 
2722 /* We may throttle resync, if the lower device seems to be busy,
2723  * and current sync rate is above c_min_rate.
2724  *
2725  * To decide whether or not the lower device is busy, we use a scheme similar
2726  * to MD RAID is_mddev_idle(): if the partition stats reveal "significant"
2727  * (more than 64 sectors) of activity we cannot account for with our own resync
2728  * activity, it obviously is "busy".
2729  *
2730  * The current sync rate used here uses only the most recent two step marks,
2731  * to have a short time average so we can react faster.
2732  */
2733 bool drbd_rs_should_slow_down(struct drbd_peer_device *peer_device, sector_t sector,
2734 		bool throttle_if_app_is_waiting)
2735 {
2736 	struct drbd_device *device = peer_device->device;
2737 	struct lc_element *tmp;
2738 	bool throttle = drbd_rs_c_min_rate_throttle(device);
2739 
2740 	if (!throttle || throttle_if_app_is_waiting)
2741 		return throttle;
2742 
2743 	spin_lock_irq(&device->al_lock);
2744 	tmp = lc_find(device->resync, BM_SECT_TO_EXT(sector));
2745 	if (tmp) {
2746 		struct bm_extent *bm_ext = lc_entry(tmp, struct bm_extent, lce);
2747 		if (test_bit(BME_PRIORITY, &bm_ext->flags))
2748 			throttle = false;
2749 		/* Do not slow down if app IO is already waiting for this extent,
2750 		 * and our progress is necessary for application IO to complete. */
2751 	}
2752 	spin_unlock_irq(&device->al_lock);
2753 
2754 	return throttle;
2755 }
2756 
2757 bool drbd_rs_c_min_rate_throttle(struct drbd_device *device)
2758 {
2759 	struct gendisk *disk = device->ldev->backing_bdev->bd_disk;
2760 	unsigned long db, dt, dbdt;
2761 	unsigned int c_min_rate;
2762 	int curr_events;
2763 
2764 	rcu_read_lock();
2765 	c_min_rate = rcu_dereference(device->ldev->disk_conf)->c_min_rate;
2766 	rcu_read_unlock();
2767 
2768 	/* feature disabled? */
2769 	if (c_min_rate == 0)
2770 		return false;
2771 
2772 	curr_events = (int)part_stat_read_accum(disk->part0, sectors) -
2773 			atomic_read(&device->rs_sect_ev);
2774 
2775 	if (atomic_read(&device->ap_actlog_cnt)
2776 	    || curr_events - device->rs_last_events > 64) {
2777 		unsigned long rs_left;
2778 		int i;
2779 
2780 		device->rs_last_events = curr_events;
2781 
2782 		/* sync speed average over the last 2*DRBD_SYNC_MARK_STEP,
2783 		 * approx. */
2784 		i = (device->rs_last_mark + DRBD_SYNC_MARKS-1) % DRBD_SYNC_MARKS;
2785 
2786 		if (device->state.conn == C_VERIFY_S || device->state.conn == C_VERIFY_T)
2787 			rs_left = device->ov_left;
2788 		else
2789 			rs_left = drbd_bm_total_weight(device) - device->rs_failed;
2790 
2791 		dt = ((long)jiffies - (long)device->rs_mark_time[i]) / HZ;
2792 		if (!dt)
2793 			dt++;
2794 		db = device->rs_mark_left[i] - rs_left;
2795 		dbdt = Bit2KB(db/dt);
2796 
2797 		if (dbdt > c_min_rate)
2798 			return true;
2799 	}
2800 	return false;
2801 }
2802 
2803 static int receive_DataRequest(struct drbd_connection *connection, struct packet_info *pi)
2804 {
2805 	struct drbd_peer_device *peer_device;
2806 	struct drbd_device *device;
2807 	sector_t sector;
2808 	sector_t capacity;
2809 	struct drbd_peer_request *peer_req;
2810 	struct digest_info *di = NULL;
2811 	int size, verb;
2812 	struct p_block_req *p =	pi->data;
2813 
2814 	peer_device = conn_peer_device(connection, pi->vnr);
2815 	if (!peer_device)
2816 		return -EIO;
2817 	device = peer_device->device;
2818 	capacity = get_capacity(device->vdisk);
2819 
2820 	sector = be64_to_cpu(p->sector);
2821 	size   = be32_to_cpu(p->blksize);
2822 
2823 	if (size <= 0 || !IS_ALIGNED(size, 512) || size > DRBD_MAX_BIO_SIZE) {
2824 		drbd_err(device, "%s:%d: sector: %llus, size: %u\n", __FILE__, __LINE__,
2825 				(unsigned long long)sector, size);
2826 		return -EINVAL;
2827 	}
2828 	if (sector + (size>>9) > capacity) {
2829 		drbd_err(device, "%s:%d: sector: %llus, size: %u\n", __FILE__, __LINE__,
2830 				(unsigned long long)sector, size);
2831 		return -EINVAL;
2832 	}
2833 
2834 	if (!get_ldev_if_state(device, D_UP_TO_DATE)) {
2835 		verb = 1;
2836 		switch (pi->cmd) {
2837 		case P_DATA_REQUEST:
2838 			drbd_send_ack_rp(peer_device, P_NEG_DREPLY, p);
2839 			break;
2840 		case P_RS_THIN_REQ:
2841 		case P_RS_DATA_REQUEST:
2842 		case P_CSUM_RS_REQUEST:
2843 		case P_OV_REQUEST:
2844 			drbd_send_ack_rp(peer_device, P_NEG_RS_DREPLY , p);
2845 			break;
2846 		case P_OV_REPLY:
2847 			verb = 0;
2848 			dec_rs_pending(peer_device);
2849 			drbd_send_ack_ex(peer_device, P_OV_RESULT, sector, size, ID_IN_SYNC);
2850 			break;
2851 		default:
2852 			BUG();
2853 		}
2854 		if (verb && drbd_ratelimit())
2855 			drbd_err(device, "Can not satisfy peer's read request, "
2856 			    "no local data.\n");
2857 
2858 		/* drain possibly payload */
2859 		return drbd_drain_block(peer_device, pi->size);
2860 	}
2861 
2862 	/* GFP_NOIO, because we must not cause arbitrary write-out: in a DRBD
2863 	 * "criss-cross" setup, that might cause write-out on some other DRBD,
2864 	 * which in turn might block on the other node at this very place.  */
2865 	peer_req = drbd_alloc_peer_req(peer_device, p->block_id, sector, size,
2866 			size, GFP_NOIO);
2867 	if (!peer_req) {
2868 		put_ldev(device);
2869 		return -ENOMEM;
2870 	}
2871 	peer_req->opf = REQ_OP_READ;
2872 
2873 	switch (pi->cmd) {
2874 	case P_DATA_REQUEST:
2875 		peer_req->w.cb = w_e_end_data_req;
2876 		/* application IO, don't drbd_rs_begin_io */
2877 		peer_req->flags |= EE_APPLICATION;
2878 		goto submit;
2879 
2880 	case P_RS_THIN_REQ:
2881 		/* If at some point in the future we have a smart way to
2882 		   find out if this data block is completely deallocated,
2883 		   then we would do something smarter here than reading
2884 		   the block... */
2885 		peer_req->flags |= EE_RS_THIN_REQ;
2886 		fallthrough;
2887 	case P_RS_DATA_REQUEST:
2888 		peer_req->w.cb = w_e_end_rsdata_req;
2889 		/* used in the sector offset progress display */
2890 		device->bm_resync_fo = BM_SECT_TO_BIT(sector);
2891 		break;
2892 
2893 	case P_OV_REPLY:
2894 	case P_CSUM_RS_REQUEST:
2895 		di = kmalloc(sizeof(*di) + pi->size, GFP_NOIO);
2896 		if (!di)
2897 			goto out_free_e;
2898 
2899 		di->digest_size = pi->size;
2900 		di->digest = (((char *)di)+sizeof(struct digest_info));
2901 
2902 		peer_req->digest = di;
2903 		peer_req->flags |= EE_HAS_DIGEST;
2904 
2905 		if (drbd_recv_all(peer_device->connection, di->digest, pi->size))
2906 			goto out_free_e;
2907 
2908 		if (pi->cmd == P_CSUM_RS_REQUEST) {
2909 			D_ASSERT(device, peer_device->connection->agreed_pro_version >= 89);
2910 			peer_req->w.cb = w_e_end_csum_rs_req;
2911 			/* used in the sector offset progress display */
2912 			device->bm_resync_fo = BM_SECT_TO_BIT(sector);
2913 			/* remember to report stats in drbd_resync_finished */
2914 			device->use_csums = true;
2915 		} else if (pi->cmd == P_OV_REPLY) {
2916 			/* track progress, we may need to throttle */
2917 			atomic_add(size >> 9, &device->rs_sect_in);
2918 			peer_req->w.cb = w_e_end_ov_reply;
2919 			dec_rs_pending(peer_device);
2920 			/* drbd_rs_begin_io done when we sent this request,
2921 			 * but accounting still needs to be done. */
2922 			goto submit_for_resync;
2923 		}
2924 		break;
2925 
2926 	case P_OV_REQUEST:
2927 		if (device->ov_start_sector == ~(sector_t)0 &&
2928 		    peer_device->connection->agreed_pro_version >= 90) {
2929 			unsigned long now = jiffies;
2930 			int i;
2931 			device->ov_start_sector = sector;
2932 			device->ov_position = sector;
2933 			device->ov_left = drbd_bm_bits(device) - BM_SECT_TO_BIT(sector);
2934 			device->rs_total = device->ov_left;
2935 			for (i = 0; i < DRBD_SYNC_MARKS; i++) {
2936 				device->rs_mark_left[i] = device->ov_left;
2937 				device->rs_mark_time[i] = now;
2938 			}
2939 			drbd_info(device, "Online Verify start sector: %llu\n",
2940 					(unsigned long long)sector);
2941 		}
2942 		peer_req->w.cb = w_e_end_ov_req;
2943 		break;
2944 
2945 	default:
2946 		BUG();
2947 	}
2948 
2949 	/* Throttle, drbd_rs_begin_io and submit should become asynchronous
2950 	 * wrt the receiver, but it is not as straightforward as it may seem.
2951 	 * Various places in the resync start and stop logic assume resync
2952 	 * requests are processed in order, requeuing this on the worker thread
2953 	 * introduces a bunch of new code for synchronization between threads.
2954 	 *
2955 	 * Unlimited throttling before drbd_rs_begin_io may stall the resync
2956 	 * "forever", throttling after drbd_rs_begin_io will lock that extent
2957 	 * for application writes for the same time.  For now, just throttle
2958 	 * here, where the rest of the code expects the receiver to sleep for
2959 	 * a while, anyways.
2960 	 */
2961 
2962 	/* Throttle before drbd_rs_begin_io, as that locks out application IO;
2963 	 * this defers syncer requests for some time, before letting at least
2964 	 * on request through.  The resync controller on the receiving side
2965 	 * will adapt to the incoming rate accordingly.
2966 	 *
2967 	 * We cannot throttle here if remote is Primary/SyncTarget:
2968 	 * we would also throttle its application reads.
2969 	 * In that case, throttling is done on the SyncTarget only.
2970 	 */
2971 
2972 	/* Even though this may be a resync request, we do add to "read_ee";
2973 	 * "sync_ee" is only used for resync WRITEs.
2974 	 * Add to list early, so debugfs can find this request
2975 	 * even if we have to sleep below. */
2976 	spin_lock_irq(&device->resource->req_lock);
2977 	list_add_tail(&peer_req->w.list, &device->read_ee);
2978 	spin_unlock_irq(&device->resource->req_lock);
2979 
2980 	update_receiver_timing_details(connection, drbd_rs_should_slow_down);
2981 	if (device->state.peer != R_PRIMARY
2982 	&& drbd_rs_should_slow_down(peer_device, sector, false))
2983 		schedule_timeout_uninterruptible(HZ/10);
2984 	update_receiver_timing_details(connection, drbd_rs_begin_io);
2985 	if (drbd_rs_begin_io(device, sector))
2986 		goto out_free_e;
2987 
2988 submit_for_resync:
2989 	atomic_add(size >> 9, &device->rs_sect_ev);
2990 
2991 submit:
2992 	update_receiver_timing_details(connection, drbd_submit_peer_request);
2993 	inc_unacked(device);
2994 	if (drbd_submit_peer_request(peer_req) == 0)
2995 		return 0;
2996 
2997 	/* don't care for the reason here */
2998 	drbd_err(device, "submit failed, triggering re-connect\n");
2999 
3000 out_free_e:
3001 	spin_lock_irq(&device->resource->req_lock);
3002 	list_del(&peer_req->w.list);
3003 	spin_unlock_irq(&device->resource->req_lock);
3004 	/* no drbd_rs_complete_io(), we are dropping the connection anyways */
3005 
3006 	put_ldev(device);
3007 	drbd_free_peer_req(device, peer_req);
3008 	return -EIO;
3009 }
3010 
3011 /*
3012  * drbd_asb_recover_0p  -  Recover after split-brain with no remaining primaries
3013  */
3014 static int drbd_asb_recover_0p(struct drbd_peer_device *peer_device) __must_hold(local)
3015 {
3016 	struct drbd_device *device = peer_device->device;
3017 	int self, peer, rv = -100;
3018 	unsigned long ch_self, ch_peer;
3019 	enum drbd_after_sb_p after_sb_0p;
3020 
3021 	self = device->ldev->md.uuid[UI_BITMAP] & 1;
3022 	peer = device->p_uuid[UI_BITMAP] & 1;
3023 
3024 	ch_peer = device->p_uuid[UI_SIZE];
3025 	ch_self = device->comm_bm_set;
3026 
3027 	rcu_read_lock();
3028 	after_sb_0p = rcu_dereference(peer_device->connection->net_conf)->after_sb_0p;
3029 	rcu_read_unlock();
3030 	switch (after_sb_0p) {
3031 	case ASB_CONSENSUS:
3032 	case ASB_DISCARD_SECONDARY:
3033 	case ASB_CALL_HELPER:
3034 	case ASB_VIOLENTLY:
3035 		drbd_err(device, "Configuration error.\n");
3036 		break;
3037 	case ASB_DISCONNECT:
3038 		break;
3039 	case ASB_DISCARD_YOUNGER_PRI:
3040 		if (self == 0 && peer == 1) {
3041 			rv = -1;
3042 			break;
3043 		}
3044 		if (self == 1 && peer == 0) {
3045 			rv =  1;
3046 			break;
3047 		}
3048 		fallthrough;	/* to one of the other strategies */
3049 	case ASB_DISCARD_OLDER_PRI:
3050 		if (self == 0 && peer == 1) {
3051 			rv = 1;
3052 			break;
3053 		}
3054 		if (self == 1 && peer == 0) {
3055 			rv = -1;
3056 			break;
3057 		}
3058 		/* Else fall through to one of the other strategies... */
3059 		drbd_warn(device, "Discard younger/older primary did not find a decision\n"
3060 		     "Using discard-least-changes instead\n");
3061 		fallthrough;
3062 	case ASB_DISCARD_ZERO_CHG:
3063 		if (ch_peer == 0 && ch_self == 0) {
3064 			rv = test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags)
3065 				? -1 : 1;
3066 			break;
3067 		} else {
3068 			if (ch_peer == 0) { rv =  1; break; }
3069 			if (ch_self == 0) { rv = -1; break; }
3070 		}
3071 		if (after_sb_0p == ASB_DISCARD_ZERO_CHG)
3072 			break;
3073 		fallthrough;
3074 	case ASB_DISCARD_LEAST_CHG:
3075 		if	(ch_self < ch_peer)
3076 			rv = -1;
3077 		else if (ch_self > ch_peer)
3078 			rv =  1;
3079 		else /* ( ch_self == ch_peer ) */
3080 		     /* Well, then use something else. */
3081 			rv = test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags)
3082 				? -1 : 1;
3083 		break;
3084 	case ASB_DISCARD_LOCAL:
3085 		rv = -1;
3086 		break;
3087 	case ASB_DISCARD_REMOTE:
3088 		rv =  1;
3089 	}
3090 
3091 	return rv;
3092 }
3093 
3094 /*
3095  * drbd_asb_recover_1p  -  Recover after split-brain with one remaining primary
3096  */
3097 static int drbd_asb_recover_1p(struct drbd_peer_device *peer_device) __must_hold(local)
3098 {
3099 	struct drbd_device *device = peer_device->device;
3100 	int hg, rv = -100;
3101 	enum drbd_after_sb_p after_sb_1p;
3102 
3103 	rcu_read_lock();
3104 	after_sb_1p = rcu_dereference(peer_device->connection->net_conf)->after_sb_1p;
3105 	rcu_read_unlock();
3106 	switch (after_sb_1p) {
3107 	case ASB_DISCARD_YOUNGER_PRI:
3108 	case ASB_DISCARD_OLDER_PRI:
3109 	case ASB_DISCARD_LEAST_CHG:
3110 	case ASB_DISCARD_LOCAL:
3111 	case ASB_DISCARD_REMOTE:
3112 	case ASB_DISCARD_ZERO_CHG:
3113 		drbd_err(device, "Configuration error.\n");
3114 		break;
3115 	case ASB_DISCONNECT:
3116 		break;
3117 	case ASB_CONSENSUS:
3118 		hg = drbd_asb_recover_0p(peer_device);
3119 		if (hg == -1 && device->state.role == R_SECONDARY)
3120 			rv = hg;
3121 		if (hg == 1  && device->state.role == R_PRIMARY)
3122 			rv = hg;
3123 		break;
3124 	case ASB_VIOLENTLY:
3125 		rv = drbd_asb_recover_0p(peer_device);
3126 		break;
3127 	case ASB_DISCARD_SECONDARY:
3128 		return device->state.role == R_PRIMARY ? 1 : -1;
3129 	case ASB_CALL_HELPER:
3130 		hg = drbd_asb_recover_0p(peer_device);
3131 		if (hg == -1 && device->state.role == R_PRIMARY) {
3132 			enum drbd_state_rv rv2;
3133 
3134 			 /* drbd_change_state() does not sleep while in SS_IN_TRANSIENT_STATE,
3135 			  * we might be here in C_WF_REPORT_PARAMS which is transient.
3136 			  * we do not need to wait for the after state change work either. */
3137 			rv2 = drbd_change_state(device, CS_VERBOSE, NS(role, R_SECONDARY));
3138 			if (rv2 != SS_SUCCESS) {
3139 				drbd_khelper(device, "pri-lost-after-sb");
3140 			} else {
3141 				drbd_warn(device, "Successfully gave up primary role.\n");
3142 				rv = hg;
3143 			}
3144 		} else
3145 			rv = hg;
3146 	}
3147 
3148 	return rv;
3149 }
3150 
3151 /*
3152  * drbd_asb_recover_2p  -  Recover after split-brain with two remaining primaries
3153  */
3154 static int drbd_asb_recover_2p(struct drbd_peer_device *peer_device) __must_hold(local)
3155 {
3156 	struct drbd_device *device = peer_device->device;
3157 	int hg, rv = -100;
3158 	enum drbd_after_sb_p after_sb_2p;
3159 
3160 	rcu_read_lock();
3161 	after_sb_2p = rcu_dereference(peer_device->connection->net_conf)->after_sb_2p;
3162 	rcu_read_unlock();
3163 	switch (after_sb_2p) {
3164 	case ASB_DISCARD_YOUNGER_PRI:
3165 	case ASB_DISCARD_OLDER_PRI:
3166 	case ASB_DISCARD_LEAST_CHG:
3167 	case ASB_DISCARD_LOCAL:
3168 	case ASB_DISCARD_REMOTE:
3169 	case ASB_CONSENSUS:
3170 	case ASB_DISCARD_SECONDARY:
3171 	case ASB_DISCARD_ZERO_CHG:
3172 		drbd_err(device, "Configuration error.\n");
3173 		break;
3174 	case ASB_VIOLENTLY:
3175 		rv = drbd_asb_recover_0p(peer_device);
3176 		break;
3177 	case ASB_DISCONNECT:
3178 		break;
3179 	case ASB_CALL_HELPER:
3180 		hg = drbd_asb_recover_0p(peer_device);
3181 		if (hg == -1) {
3182 			enum drbd_state_rv rv2;
3183 
3184 			 /* drbd_change_state() does not sleep while in SS_IN_TRANSIENT_STATE,
3185 			  * we might be here in C_WF_REPORT_PARAMS which is transient.
3186 			  * we do not need to wait for the after state change work either. */
3187 			rv2 = drbd_change_state(device, CS_VERBOSE, NS(role, R_SECONDARY));
3188 			if (rv2 != SS_SUCCESS) {
3189 				drbd_khelper(device, "pri-lost-after-sb");
3190 			} else {
3191 				drbd_warn(device, "Successfully gave up primary role.\n");
3192 				rv = hg;
3193 			}
3194 		} else
3195 			rv = hg;
3196 	}
3197 
3198 	return rv;
3199 }
3200 
3201 static void drbd_uuid_dump(struct drbd_device *device, char *text, u64 *uuid,
3202 			   u64 bits, u64 flags)
3203 {
3204 	if (!uuid) {
3205 		drbd_info(device, "%s uuid info vanished while I was looking!\n", text);
3206 		return;
3207 	}
3208 	drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX bits:%llu flags:%llX\n",
3209 	     text,
3210 	     (unsigned long long)uuid[UI_CURRENT],
3211 	     (unsigned long long)uuid[UI_BITMAP],
3212 	     (unsigned long long)uuid[UI_HISTORY_START],
3213 	     (unsigned long long)uuid[UI_HISTORY_END],
3214 	     (unsigned long long)bits,
3215 	     (unsigned long long)flags);
3216 }
3217 
3218 /*
3219   100	after split brain try auto recover
3220     2	C_SYNC_SOURCE set BitMap
3221     1	C_SYNC_SOURCE use BitMap
3222     0	no Sync
3223    -1	C_SYNC_TARGET use BitMap
3224    -2	C_SYNC_TARGET set BitMap
3225  -100	after split brain, disconnect
3226 -1000	unrelated data
3227 -1091   requires proto 91
3228 -1096   requires proto 96
3229  */
3230 
3231 static int drbd_uuid_compare(struct drbd_peer_device *const peer_device,
3232 		enum drbd_role const peer_role, int *rule_nr) __must_hold(local)
3233 {
3234 	struct drbd_connection *const connection = peer_device->connection;
3235 	struct drbd_device *device = peer_device->device;
3236 	u64 self, peer;
3237 	int i, j;
3238 
3239 	self = device->ldev->md.uuid[UI_CURRENT] & ~((u64)1);
3240 	peer = device->p_uuid[UI_CURRENT] & ~((u64)1);
3241 
3242 	*rule_nr = 10;
3243 	if (self == UUID_JUST_CREATED && peer == UUID_JUST_CREATED)
3244 		return 0;
3245 
3246 	*rule_nr = 20;
3247 	if ((self == UUID_JUST_CREATED || self == (u64)0) &&
3248 	     peer != UUID_JUST_CREATED)
3249 		return -2;
3250 
3251 	*rule_nr = 30;
3252 	if (self != UUID_JUST_CREATED &&
3253 	    (peer == UUID_JUST_CREATED || peer == (u64)0))
3254 		return 2;
3255 
3256 	if (self == peer) {
3257 		int rct, dc; /* roles at crash time */
3258 
3259 		if (device->p_uuid[UI_BITMAP] == (u64)0 && device->ldev->md.uuid[UI_BITMAP] != (u64)0) {
3260 
3261 			if (connection->agreed_pro_version < 91)
3262 				return -1091;
3263 
3264 			if ((device->ldev->md.uuid[UI_BITMAP] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START] & ~((u64)1)) &&
3265 			    (device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START + 1] & ~((u64)1))) {
3266 				drbd_info(device, "was SyncSource, missed the resync finished event, corrected myself:\n");
3267 				drbd_uuid_move_history(device);
3268 				device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP];
3269 				device->ldev->md.uuid[UI_BITMAP] = 0;
3270 
3271 				drbd_uuid_dump(device, "self", device->ldev->md.uuid,
3272 					       device->state.disk >= D_NEGOTIATING ? drbd_bm_total_weight(device) : 0, 0);
3273 				*rule_nr = 34;
3274 			} else {
3275 				drbd_info(device, "was SyncSource (peer failed to write sync_uuid)\n");
3276 				*rule_nr = 36;
3277 			}
3278 
3279 			return 1;
3280 		}
3281 
3282 		if (device->ldev->md.uuid[UI_BITMAP] == (u64)0 && device->p_uuid[UI_BITMAP] != (u64)0) {
3283 
3284 			if (connection->agreed_pro_version < 91)
3285 				return -1091;
3286 
3287 			if ((device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == (device->p_uuid[UI_BITMAP] & ~((u64)1)) &&
3288 			    (device->ldev->md.uuid[UI_HISTORY_START + 1] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START] & ~((u64)1))) {
3289 				drbd_info(device, "was SyncTarget, peer missed the resync finished event, corrected peer:\n");
3290 
3291 				device->p_uuid[UI_HISTORY_START + 1] = device->p_uuid[UI_HISTORY_START];
3292 				device->p_uuid[UI_HISTORY_START] = device->p_uuid[UI_BITMAP];
3293 				device->p_uuid[UI_BITMAP] = 0UL;
3294 
3295 				drbd_uuid_dump(device, "peer", device->p_uuid, device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]);
3296 				*rule_nr = 35;
3297 			} else {
3298 				drbd_info(device, "was SyncTarget (failed to write sync_uuid)\n");
3299 				*rule_nr = 37;
3300 			}
3301 
3302 			return -1;
3303 		}
3304 
3305 		/* Common power [off|failure] */
3306 		rct = (test_bit(CRASHED_PRIMARY, &device->flags) ? 1 : 0) +
3307 			(device->p_uuid[UI_FLAGS] & 2);
3308 		/* lowest bit is set when we were primary,
3309 		 * next bit (weight 2) is set when peer was primary */
3310 		*rule_nr = 40;
3311 
3312 		/* Neither has the "crashed primary" flag set,
3313 		 * only a replication link hickup. */
3314 		if (rct == 0)
3315 			return 0;
3316 
3317 		/* Current UUID equal and no bitmap uuid; does not necessarily
3318 		 * mean this was a "simultaneous hard crash", maybe IO was
3319 		 * frozen, so no UUID-bump happened.
3320 		 * This is a protocol change, overload DRBD_FF_WSAME as flag
3321 		 * for "new-enough" peer DRBD version. */
3322 		if (device->state.role == R_PRIMARY || peer_role == R_PRIMARY) {
3323 			*rule_nr = 41;
3324 			if (!(connection->agreed_features & DRBD_FF_WSAME)) {
3325 				drbd_warn(peer_device, "Equivalent unrotated UUIDs, but current primary present.\n");
3326 				return -(0x10000 | PRO_VERSION_MAX | (DRBD_FF_WSAME << 8));
3327 			}
3328 			if (device->state.role == R_PRIMARY && peer_role == R_PRIMARY) {
3329 				/* At least one has the "crashed primary" bit set,
3330 				 * both are primary now, but neither has rotated its UUIDs?
3331 				 * "Can not happen." */
3332 				drbd_err(peer_device, "Equivalent unrotated UUIDs, but both are primary. Can not resolve this.\n");
3333 				return -100;
3334 			}
3335 			if (device->state.role == R_PRIMARY)
3336 				return 1;
3337 			return -1;
3338 		}
3339 
3340 		/* Both are secondary.
3341 		 * Really looks like recovery from simultaneous hard crash.
3342 		 * Check which had been primary before, and arbitrate. */
3343 		switch (rct) {
3344 		case 0: /* !self_pri && !peer_pri */ return 0; /* already handled */
3345 		case 1: /*  self_pri && !peer_pri */ return 1;
3346 		case 2: /* !self_pri &&  peer_pri */ return -1;
3347 		case 3: /*  self_pri &&  peer_pri */
3348 			dc = test_bit(RESOLVE_CONFLICTS, &connection->flags);
3349 			return dc ? -1 : 1;
3350 		}
3351 	}
3352 
3353 	*rule_nr = 50;
3354 	peer = device->p_uuid[UI_BITMAP] & ~((u64)1);
3355 	if (self == peer)
3356 		return -1;
3357 
3358 	*rule_nr = 51;
3359 	peer = device->p_uuid[UI_HISTORY_START] & ~((u64)1);
3360 	if (self == peer) {
3361 		if (connection->agreed_pro_version < 96 ?
3362 		    (device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) ==
3363 		    (device->p_uuid[UI_HISTORY_START + 1] & ~((u64)1)) :
3364 		    peer + UUID_NEW_BM_OFFSET == (device->p_uuid[UI_BITMAP] & ~((u64)1))) {
3365 			/* The last P_SYNC_UUID did not get though. Undo the last start of
3366 			   resync as sync source modifications of the peer's UUIDs. */
3367 
3368 			if (connection->agreed_pro_version < 91)
3369 				return -1091;
3370 
3371 			device->p_uuid[UI_BITMAP] = device->p_uuid[UI_HISTORY_START];
3372 			device->p_uuid[UI_HISTORY_START] = device->p_uuid[UI_HISTORY_START + 1];
3373 
3374 			drbd_info(device, "Lost last syncUUID packet, corrected:\n");
3375 			drbd_uuid_dump(device, "peer", device->p_uuid, device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]);
3376 
3377 			return -1;
3378 		}
3379 	}
3380 
3381 	*rule_nr = 60;
3382 	self = device->ldev->md.uuid[UI_CURRENT] & ~((u64)1);
3383 	for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) {
3384 		peer = device->p_uuid[i] & ~((u64)1);
3385 		if (self == peer)
3386 			return -2;
3387 	}
3388 
3389 	*rule_nr = 70;
3390 	self = device->ldev->md.uuid[UI_BITMAP] & ~((u64)1);
3391 	peer = device->p_uuid[UI_CURRENT] & ~((u64)1);
3392 	if (self == peer)
3393 		return 1;
3394 
3395 	*rule_nr = 71;
3396 	self = device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1);
3397 	if (self == peer) {
3398 		if (connection->agreed_pro_version < 96 ?
3399 		    (device->ldev->md.uuid[UI_HISTORY_START + 1] & ~((u64)1)) ==
3400 		    (device->p_uuid[UI_HISTORY_START] & ~((u64)1)) :
3401 		    self + UUID_NEW_BM_OFFSET == (device->ldev->md.uuid[UI_BITMAP] & ~((u64)1))) {
3402 			/* The last P_SYNC_UUID did not get though. Undo the last start of
3403 			   resync as sync source modifications of our UUIDs. */
3404 
3405 			if (connection->agreed_pro_version < 91)
3406 				return -1091;
3407 
3408 			__drbd_uuid_set(device, UI_BITMAP, device->ldev->md.uuid[UI_HISTORY_START]);
3409 			__drbd_uuid_set(device, UI_HISTORY_START, device->ldev->md.uuid[UI_HISTORY_START + 1]);
3410 
3411 			drbd_info(device, "Last syncUUID did not get through, corrected:\n");
3412 			drbd_uuid_dump(device, "self", device->ldev->md.uuid,
3413 				       device->state.disk >= D_NEGOTIATING ? drbd_bm_total_weight(device) : 0, 0);
3414 
3415 			return 1;
3416 		}
3417 	}
3418 
3419 
3420 	*rule_nr = 80;
3421 	peer = device->p_uuid[UI_CURRENT] & ~((u64)1);
3422 	for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) {
3423 		self = device->ldev->md.uuid[i] & ~((u64)1);
3424 		if (self == peer)
3425 			return 2;
3426 	}
3427 
3428 	*rule_nr = 90;
3429 	self = device->ldev->md.uuid[UI_BITMAP] & ~((u64)1);
3430 	peer = device->p_uuid[UI_BITMAP] & ~((u64)1);
3431 	if (self == peer && self != ((u64)0))
3432 		return 100;
3433 
3434 	*rule_nr = 100;
3435 	for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) {
3436 		self = device->ldev->md.uuid[i] & ~((u64)1);
3437 		for (j = UI_HISTORY_START; j <= UI_HISTORY_END; j++) {
3438 			peer = device->p_uuid[j] & ~((u64)1);
3439 			if (self == peer)
3440 				return -100;
3441 		}
3442 	}
3443 
3444 	return -1000;
3445 }
3446 
3447 /* drbd_sync_handshake() returns the new conn state on success, or
3448    CONN_MASK (-1) on failure.
3449  */
3450 static enum drbd_conns drbd_sync_handshake(struct drbd_peer_device *peer_device,
3451 					   enum drbd_role peer_role,
3452 					   enum drbd_disk_state peer_disk) __must_hold(local)
3453 {
3454 	struct drbd_device *device = peer_device->device;
3455 	enum drbd_conns rv = C_MASK;
3456 	enum drbd_disk_state mydisk;
3457 	struct net_conf *nc;
3458 	int hg, rule_nr, rr_conflict, tentative, always_asbp;
3459 
3460 	mydisk = device->state.disk;
3461 	if (mydisk == D_NEGOTIATING)
3462 		mydisk = device->new_state_tmp.disk;
3463 
3464 	drbd_info(device, "drbd_sync_handshake:\n");
3465 
3466 	spin_lock_irq(&device->ldev->md.uuid_lock);
3467 	drbd_uuid_dump(device, "self", device->ldev->md.uuid, device->comm_bm_set, 0);
3468 	drbd_uuid_dump(device, "peer", device->p_uuid,
3469 		       device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]);
3470 
3471 	hg = drbd_uuid_compare(peer_device, peer_role, &rule_nr);
3472 	spin_unlock_irq(&device->ldev->md.uuid_lock);
3473 
3474 	drbd_info(device, "uuid_compare()=%d by rule %d\n", hg, rule_nr);
3475 
3476 	if (hg == -1000) {
3477 		drbd_alert(device, "Unrelated data, aborting!\n");
3478 		return C_MASK;
3479 	}
3480 	if (hg < -0x10000) {
3481 		int proto, fflags;
3482 		hg = -hg;
3483 		proto = hg & 0xff;
3484 		fflags = (hg >> 8) & 0xff;
3485 		drbd_alert(device, "To resolve this both sides have to support at least protocol %d and feature flags 0x%x\n",
3486 					proto, fflags);
3487 		return C_MASK;
3488 	}
3489 	if (hg < -1000) {
3490 		drbd_alert(device, "To resolve this both sides have to support at least protocol %d\n", -hg - 1000);
3491 		return C_MASK;
3492 	}
3493 
3494 	if    ((mydisk == D_INCONSISTENT && peer_disk > D_INCONSISTENT) ||
3495 	    (peer_disk == D_INCONSISTENT && mydisk    > D_INCONSISTENT)) {
3496 		int f = (hg == -100) || abs(hg) == 2;
3497 		hg = mydisk > D_INCONSISTENT ? 1 : -1;
3498 		if (f)
3499 			hg = hg*2;
3500 		drbd_info(device, "Becoming sync %s due to disk states.\n",
3501 		     hg > 0 ? "source" : "target");
3502 	}
3503 
3504 	if (abs(hg) == 100)
3505 		drbd_khelper(device, "initial-split-brain");
3506 
3507 	rcu_read_lock();
3508 	nc = rcu_dereference(peer_device->connection->net_conf);
3509 	always_asbp = nc->always_asbp;
3510 	rr_conflict = nc->rr_conflict;
3511 	tentative = nc->tentative;
3512 	rcu_read_unlock();
3513 
3514 	if (hg == 100 || (hg == -100 && always_asbp)) {
3515 		int pcount = (device->state.role == R_PRIMARY)
3516 			   + (peer_role == R_PRIMARY);
3517 		int forced = (hg == -100);
3518 
3519 		switch (pcount) {
3520 		case 0:
3521 			hg = drbd_asb_recover_0p(peer_device);
3522 			break;
3523 		case 1:
3524 			hg = drbd_asb_recover_1p(peer_device);
3525 			break;
3526 		case 2:
3527 			hg = drbd_asb_recover_2p(peer_device);
3528 			break;
3529 		}
3530 		if (abs(hg) < 100) {
3531 			drbd_warn(device, "Split-Brain detected, %d primaries, "
3532 			     "automatically solved. Sync from %s node\n",
3533 			     pcount, (hg < 0) ? "peer" : "this");
3534 			if (forced) {
3535 				drbd_warn(device, "Doing a full sync, since"
3536 				     " UUIDs where ambiguous.\n");
3537 				hg = hg*2;
3538 			}
3539 		}
3540 	}
3541 
3542 	if (hg == -100) {
3543 		if (test_bit(DISCARD_MY_DATA, &device->flags) && !(device->p_uuid[UI_FLAGS]&1))
3544 			hg = -1;
3545 		if (!test_bit(DISCARD_MY_DATA, &device->flags) && (device->p_uuid[UI_FLAGS]&1))
3546 			hg = 1;
3547 
3548 		if (abs(hg) < 100)
3549 			drbd_warn(device, "Split-Brain detected, manually solved. "
3550 			     "Sync from %s node\n",
3551 			     (hg < 0) ? "peer" : "this");
3552 	}
3553 
3554 	if (hg == -100) {
3555 		/* FIXME this log message is not correct if we end up here
3556 		 * after an attempted attach on a diskless node.
3557 		 * We just refuse to attach -- well, we drop the "connection"
3558 		 * to that disk, in a way... */
3559 		drbd_alert(device, "Split-Brain detected but unresolved, dropping connection!\n");
3560 		drbd_khelper(device, "split-brain");
3561 		return C_MASK;
3562 	}
3563 
3564 	if (hg > 0 && mydisk <= D_INCONSISTENT) {
3565 		drbd_err(device, "I shall become SyncSource, but I am inconsistent!\n");
3566 		return C_MASK;
3567 	}
3568 
3569 	if (hg < 0 && /* by intention we do not use mydisk here. */
3570 	    device->state.role == R_PRIMARY && device->state.disk >= D_CONSISTENT) {
3571 		switch (rr_conflict) {
3572 		case ASB_CALL_HELPER:
3573 			drbd_khelper(device, "pri-lost");
3574 			fallthrough;
3575 		case ASB_DISCONNECT:
3576 			drbd_err(device, "I shall become SyncTarget, but I am primary!\n");
3577 			return C_MASK;
3578 		case ASB_VIOLENTLY:
3579 			drbd_warn(device, "Becoming SyncTarget, violating the stable-data"
3580 			     "assumption\n");
3581 		}
3582 	}
3583 
3584 	if (tentative || test_bit(CONN_DRY_RUN, &peer_device->connection->flags)) {
3585 		if (hg == 0)
3586 			drbd_info(device, "dry-run connect: No resync, would become Connected immediately.\n");
3587 		else
3588 			drbd_info(device, "dry-run connect: Would become %s, doing a %s resync.",
3589 				 drbd_conn_str(hg > 0 ? C_SYNC_SOURCE : C_SYNC_TARGET),
3590 				 abs(hg) >= 2 ? "full" : "bit-map based");
3591 		return C_MASK;
3592 	}
3593 
3594 	if (abs(hg) >= 2) {
3595 		drbd_info(device, "Writing the whole bitmap, full sync required after drbd_sync_handshake.\n");
3596 		if (drbd_bitmap_io(device, &drbd_bmio_set_n_write, "set_n_write from sync_handshake",
3597 					BM_LOCKED_SET_ALLOWED, NULL))
3598 			return C_MASK;
3599 	}
3600 
3601 	if (hg > 0) { /* become sync source. */
3602 		rv = C_WF_BITMAP_S;
3603 	} else if (hg < 0) { /* become sync target */
3604 		rv = C_WF_BITMAP_T;
3605 	} else {
3606 		rv = C_CONNECTED;
3607 		if (drbd_bm_total_weight(device)) {
3608 			drbd_info(device, "No resync, but %lu bits in bitmap!\n",
3609 			     drbd_bm_total_weight(device));
3610 		}
3611 	}
3612 
3613 	return rv;
3614 }
3615 
3616 static enum drbd_after_sb_p convert_after_sb(enum drbd_after_sb_p peer)
3617 {
3618 	/* ASB_DISCARD_REMOTE - ASB_DISCARD_LOCAL is valid */
3619 	if (peer == ASB_DISCARD_REMOTE)
3620 		return ASB_DISCARD_LOCAL;
3621 
3622 	/* any other things with ASB_DISCARD_REMOTE or ASB_DISCARD_LOCAL are invalid */
3623 	if (peer == ASB_DISCARD_LOCAL)
3624 		return ASB_DISCARD_REMOTE;
3625 
3626 	/* everything else is valid if they are equal on both sides. */
3627 	return peer;
3628 }
3629 
3630 static int receive_protocol(struct drbd_connection *connection, struct packet_info *pi)
3631 {
3632 	struct p_protocol *p = pi->data;
3633 	enum drbd_after_sb_p p_after_sb_0p, p_after_sb_1p, p_after_sb_2p;
3634 	int p_proto, p_discard_my_data, p_two_primaries, cf;
3635 	struct net_conf *nc, *old_net_conf, *new_net_conf = NULL;
3636 	char integrity_alg[SHARED_SECRET_MAX] = "";
3637 	struct crypto_shash *peer_integrity_tfm = NULL;
3638 	void *int_dig_in = NULL, *int_dig_vv = NULL;
3639 
3640 	p_proto		= be32_to_cpu(p->protocol);
3641 	p_after_sb_0p	= be32_to_cpu(p->after_sb_0p);
3642 	p_after_sb_1p	= be32_to_cpu(p->after_sb_1p);
3643 	p_after_sb_2p	= be32_to_cpu(p->after_sb_2p);
3644 	p_two_primaries = be32_to_cpu(p->two_primaries);
3645 	cf		= be32_to_cpu(p->conn_flags);
3646 	p_discard_my_data = cf & CF_DISCARD_MY_DATA;
3647 
3648 	if (connection->agreed_pro_version >= 87) {
3649 		int err;
3650 
3651 		if (pi->size > sizeof(integrity_alg))
3652 			return -EIO;
3653 		err = drbd_recv_all(connection, integrity_alg, pi->size);
3654 		if (err)
3655 			return err;
3656 		integrity_alg[SHARED_SECRET_MAX - 1] = 0;
3657 	}
3658 
3659 	if (pi->cmd != P_PROTOCOL_UPDATE) {
3660 		clear_bit(CONN_DRY_RUN, &connection->flags);
3661 
3662 		if (cf & CF_DRY_RUN)
3663 			set_bit(CONN_DRY_RUN, &connection->flags);
3664 
3665 		rcu_read_lock();
3666 		nc = rcu_dereference(connection->net_conf);
3667 
3668 		if (p_proto != nc->wire_protocol) {
3669 			drbd_err(connection, "incompatible %s settings\n", "protocol");
3670 			goto disconnect_rcu_unlock;
3671 		}
3672 
3673 		if (convert_after_sb(p_after_sb_0p) != nc->after_sb_0p) {
3674 			drbd_err(connection, "incompatible %s settings\n", "after-sb-0pri");
3675 			goto disconnect_rcu_unlock;
3676 		}
3677 
3678 		if (convert_after_sb(p_after_sb_1p) != nc->after_sb_1p) {
3679 			drbd_err(connection, "incompatible %s settings\n", "after-sb-1pri");
3680 			goto disconnect_rcu_unlock;
3681 		}
3682 
3683 		if (convert_after_sb(p_after_sb_2p) != nc->after_sb_2p) {
3684 			drbd_err(connection, "incompatible %s settings\n", "after-sb-2pri");
3685 			goto disconnect_rcu_unlock;
3686 		}
3687 
3688 		if (p_discard_my_data && nc->discard_my_data) {
3689 			drbd_err(connection, "incompatible %s settings\n", "discard-my-data");
3690 			goto disconnect_rcu_unlock;
3691 		}
3692 
3693 		if (p_two_primaries != nc->two_primaries) {
3694 			drbd_err(connection, "incompatible %s settings\n", "allow-two-primaries");
3695 			goto disconnect_rcu_unlock;
3696 		}
3697 
3698 		if (strcmp(integrity_alg, nc->integrity_alg)) {
3699 			drbd_err(connection, "incompatible %s settings\n", "data-integrity-alg");
3700 			goto disconnect_rcu_unlock;
3701 		}
3702 
3703 		rcu_read_unlock();
3704 	}
3705 
3706 	if (integrity_alg[0]) {
3707 		int hash_size;
3708 
3709 		/*
3710 		 * We can only change the peer data integrity algorithm
3711 		 * here.  Changing our own data integrity algorithm
3712 		 * requires that we send a P_PROTOCOL_UPDATE packet at
3713 		 * the same time; otherwise, the peer has no way to
3714 		 * tell between which packets the algorithm should
3715 		 * change.
3716 		 */
3717 
3718 		peer_integrity_tfm = crypto_alloc_shash(integrity_alg, 0, 0);
3719 		if (IS_ERR(peer_integrity_tfm)) {
3720 			peer_integrity_tfm = NULL;
3721 			drbd_err(connection, "peer data-integrity-alg %s not supported\n",
3722 				 integrity_alg);
3723 			goto disconnect;
3724 		}
3725 
3726 		hash_size = crypto_shash_digestsize(peer_integrity_tfm);
3727 		int_dig_in = kmalloc(hash_size, GFP_KERNEL);
3728 		int_dig_vv = kmalloc(hash_size, GFP_KERNEL);
3729 		if (!(int_dig_in && int_dig_vv)) {
3730 			drbd_err(connection, "Allocation of buffers for data integrity checking failed\n");
3731 			goto disconnect;
3732 		}
3733 	}
3734 
3735 	new_net_conf = kmalloc(sizeof(struct net_conf), GFP_KERNEL);
3736 	if (!new_net_conf)
3737 		goto disconnect;
3738 
3739 	mutex_lock(&connection->data.mutex);
3740 	mutex_lock(&connection->resource->conf_update);
3741 	old_net_conf = connection->net_conf;
3742 	*new_net_conf = *old_net_conf;
3743 
3744 	new_net_conf->wire_protocol = p_proto;
3745 	new_net_conf->after_sb_0p = convert_after_sb(p_after_sb_0p);
3746 	new_net_conf->after_sb_1p = convert_after_sb(p_after_sb_1p);
3747 	new_net_conf->after_sb_2p = convert_after_sb(p_after_sb_2p);
3748 	new_net_conf->two_primaries = p_two_primaries;
3749 
3750 	rcu_assign_pointer(connection->net_conf, new_net_conf);
3751 	mutex_unlock(&connection->resource->conf_update);
3752 	mutex_unlock(&connection->data.mutex);
3753 
3754 	crypto_free_shash(connection->peer_integrity_tfm);
3755 	kfree(connection->int_dig_in);
3756 	kfree(connection->int_dig_vv);
3757 	connection->peer_integrity_tfm = peer_integrity_tfm;
3758 	connection->int_dig_in = int_dig_in;
3759 	connection->int_dig_vv = int_dig_vv;
3760 
3761 	if (strcmp(old_net_conf->integrity_alg, integrity_alg))
3762 		drbd_info(connection, "peer data-integrity-alg: %s\n",
3763 			  integrity_alg[0] ? integrity_alg : "(none)");
3764 
3765 	kvfree_rcu_mightsleep(old_net_conf);
3766 	return 0;
3767 
3768 disconnect_rcu_unlock:
3769 	rcu_read_unlock();
3770 disconnect:
3771 	crypto_free_shash(peer_integrity_tfm);
3772 	kfree(int_dig_in);
3773 	kfree(int_dig_vv);
3774 	conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
3775 	return -EIO;
3776 }
3777 
3778 /* helper function
3779  * input: alg name, feature name
3780  * return: NULL (alg name was "")
3781  *         ERR_PTR(error) if something goes wrong
3782  *         or the crypto hash ptr, if it worked out ok. */
3783 static struct crypto_shash *drbd_crypto_alloc_digest_safe(
3784 		const struct drbd_device *device,
3785 		const char *alg, const char *name)
3786 {
3787 	struct crypto_shash *tfm;
3788 
3789 	if (!alg[0])
3790 		return NULL;
3791 
3792 	tfm = crypto_alloc_shash(alg, 0, 0);
3793 	if (IS_ERR(tfm)) {
3794 		drbd_err(device, "Can not allocate \"%s\" as %s (reason: %ld)\n",
3795 			alg, name, PTR_ERR(tfm));
3796 		return tfm;
3797 	}
3798 	return tfm;
3799 }
3800 
3801 static int ignore_remaining_packet(struct drbd_connection *connection, struct packet_info *pi)
3802 {
3803 	void *buffer = connection->data.rbuf;
3804 	int size = pi->size;
3805 
3806 	while (size) {
3807 		int s = min_t(int, size, DRBD_SOCKET_BUFFER_SIZE);
3808 		s = drbd_recv(connection, buffer, s);
3809 		if (s <= 0) {
3810 			if (s < 0)
3811 				return s;
3812 			break;
3813 		}
3814 		size -= s;
3815 	}
3816 	if (size)
3817 		return -EIO;
3818 	return 0;
3819 }
3820 
3821 /*
3822  * config_unknown_volume  -  device configuration command for unknown volume
3823  *
3824  * When a device is added to an existing connection, the node on which the
3825  * device is added first will send configuration commands to its peer but the
3826  * peer will not know about the device yet.  It will warn and ignore these
3827  * commands.  Once the device is added on the second node, the second node will
3828  * send the same device configuration commands, but in the other direction.
3829  *
3830  * (We can also end up here if drbd is misconfigured.)
3831  */
3832 static int config_unknown_volume(struct drbd_connection *connection, struct packet_info *pi)
3833 {
3834 	drbd_warn(connection, "%s packet received for volume %u, which is not configured locally\n",
3835 		  cmdname(pi->cmd), pi->vnr);
3836 	return ignore_remaining_packet(connection, pi);
3837 }
3838 
3839 static int receive_SyncParam(struct drbd_connection *connection, struct packet_info *pi)
3840 {
3841 	struct drbd_peer_device *peer_device;
3842 	struct drbd_device *device;
3843 	struct p_rs_param_95 *p;
3844 	unsigned int header_size, data_size, exp_max_sz;
3845 	struct crypto_shash *verify_tfm = NULL;
3846 	struct crypto_shash *csums_tfm = NULL;
3847 	struct net_conf *old_net_conf, *new_net_conf = NULL;
3848 	struct disk_conf *old_disk_conf = NULL, *new_disk_conf = NULL;
3849 	const int apv = connection->agreed_pro_version;
3850 	struct fifo_buffer *old_plan = NULL, *new_plan = NULL;
3851 	unsigned int fifo_size = 0;
3852 	int err;
3853 
3854 	peer_device = conn_peer_device(connection, pi->vnr);
3855 	if (!peer_device)
3856 		return config_unknown_volume(connection, pi);
3857 	device = peer_device->device;
3858 
3859 	exp_max_sz  = apv <= 87 ? sizeof(struct p_rs_param)
3860 		    : apv == 88 ? sizeof(struct p_rs_param)
3861 					+ SHARED_SECRET_MAX
3862 		    : apv <= 94 ? sizeof(struct p_rs_param_89)
3863 		    : /* apv >= 95 */ sizeof(struct p_rs_param_95);
3864 
3865 	if (pi->size > exp_max_sz) {
3866 		drbd_err(device, "SyncParam packet too long: received %u, expected <= %u bytes\n",
3867 		    pi->size, exp_max_sz);
3868 		return -EIO;
3869 	}
3870 
3871 	if (apv <= 88) {
3872 		header_size = sizeof(struct p_rs_param);
3873 		data_size = pi->size - header_size;
3874 	} else if (apv <= 94) {
3875 		header_size = sizeof(struct p_rs_param_89);
3876 		data_size = pi->size - header_size;
3877 		D_ASSERT(device, data_size == 0);
3878 	} else {
3879 		header_size = sizeof(struct p_rs_param_95);
3880 		data_size = pi->size - header_size;
3881 		D_ASSERT(device, data_size == 0);
3882 	}
3883 
3884 	/* initialize verify_alg and csums_alg */
3885 	p = pi->data;
3886 	BUILD_BUG_ON(sizeof(p->algs) != 2 * SHARED_SECRET_MAX);
3887 	memset(&p->algs, 0, sizeof(p->algs));
3888 
3889 	err = drbd_recv_all(peer_device->connection, p, header_size);
3890 	if (err)
3891 		return err;
3892 
3893 	mutex_lock(&connection->resource->conf_update);
3894 	old_net_conf = peer_device->connection->net_conf;
3895 	if (get_ldev(device)) {
3896 		new_disk_conf = kzalloc(sizeof(struct disk_conf), GFP_KERNEL);
3897 		if (!new_disk_conf) {
3898 			put_ldev(device);
3899 			mutex_unlock(&connection->resource->conf_update);
3900 			drbd_err(device, "Allocation of new disk_conf failed\n");
3901 			return -ENOMEM;
3902 		}
3903 
3904 		old_disk_conf = device->ldev->disk_conf;
3905 		*new_disk_conf = *old_disk_conf;
3906 
3907 		new_disk_conf->resync_rate = be32_to_cpu(p->resync_rate);
3908 	}
3909 
3910 	if (apv >= 88) {
3911 		if (apv == 88) {
3912 			if (data_size > SHARED_SECRET_MAX || data_size == 0) {
3913 				drbd_err(device, "verify-alg of wrong size, "
3914 					"peer wants %u, accepting only up to %u byte\n",
3915 					data_size, SHARED_SECRET_MAX);
3916 				goto reconnect;
3917 			}
3918 
3919 			err = drbd_recv_all(peer_device->connection, p->verify_alg, data_size);
3920 			if (err)
3921 				goto reconnect;
3922 			/* we expect NUL terminated string */
3923 			/* but just in case someone tries to be evil */
3924 			D_ASSERT(device, p->verify_alg[data_size-1] == 0);
3925 			p->verify_alg[data_size-1] = 0;
3926 
3927 		} else /* apv >= 89 */ {
3928 			/* we still expect NUL terminated strings */
3929 			/* but just in case someone tries to be evil */
3930 			D_ASSERT(device, p->verify_alg[SHARED_SECRET_MAX-1] == 0);
3931 			D_ASSERT(device, p->csums_alg[SHARED_SECRET_MAX-1] == 0);
3932 			p->verify_alg[SHARED_SECRET_MAX-1] = 0;
3933 			p->csums_alg[SHARED_SECRET_MAX-1] = 0;
3934 		}
3935 
3936 		if (strcmp(old_net_conf->verify_alg, p->verify_alg)) {
3937 			if (device->state.conn == C_WF_REPORT_PARAMS) {
3938 				drbd_err(device, "Different verify-alg settings. me=\"%s\" peer=\"%s\"\n",
3939 				    old_net_conf->verify_alg, p->verify_alg);
3940 				goto disconnect;
3941 			}
3942 			verify_tfm = drbd_crypto_alloc_digest_safe(device,
3943 					p->verify_alg, "verify-alg");
3944 			if (IS_ERR(verify_tfm)) {
3945 				verify_tfm = NULL;
3946 				goto disconnect;
3947 			}
3948 		}
3949 
3950 		if (apv >= 89 && strcmp(old_net_conf->csums_alg, p->csums_alg)) {
3951 			if (device->state.conn == C_WF_REPORT_PARAMS) {
3952 				drbd_err(device, "Different csums-alg settings. me=\"%s\" peer=\"%s\"\n",
3953 				    old_net_conf->csums_alg, p->csums_alg);
3954 				goto disconnect;
3955 			}
3956 			csums_tfm = drbd_crypto_alloc_digest_safe(device,
3957 					p->csums_alg, "csums-alg");
3958 			if (IS_ERR(csums_tfm)) {
3959 				csums_tfm = NULL;
3960 				goto disconnect;
3961 			}
3962 		}
3963 
3964 		if (apv > 94 && new_disk_conf) {
3965 			new_disk_conf->c_plan_ahead = be32_to_cpu(p->c_plan_ahead);
3966 			new_disk_conf->c_delay_target = be32_to_cpu(p->c_delay_target);
3967 			new_disk_conf->c_fill_target = be32_to_cpu(p->c_fill_target);
3968 			new_disk_conf->c_max_rate = be32_to_cpu(p->c_max_rate);
3969 
3970 			fifo_size = (new_disk_conf->c_plan_ahead * 10 * SLEEP_TIME) / HZ;
3971 			if (fifo_size != device->rs_plan_s->size) {
3972 				new_plan = fifo_alloc(fifo_size);
3973 				if (!new_plan) {
3974 					drbd_err(device, "kmalloc of fifo_buffer failed");
3975 					put_ldev(device);
3976 					goto disconnect;
3977 				}
3978 			}
3979 		}
3980 
3981 		if (verify_tfm || csums_tfm) {
3982 			new_net_conf = kzalloc(sizeof(struct net_conf), GFP_KERNEL);
3983 			if (!new_net_conf)
3984 				goto disconnect;
3985 
3986 			*new_net_conf = *old_net_conf;
3987 
3988 			if (verify_tfm) {
3989 				strcpy(new_net_conf->verify_alg, p->verify_alg);
3990 				new_net_conf->verify_alg_len = strlen(p->verify_alg) + 1;
3991 				crypto_free_shash(peer_device->connection->verify_tfm);
3992 				peer_device->connection->verify_tfm = verify_tfm;
3993 				drbd_info(device, "using verify-alg: \"%s\"\n", p->verify_alg);
3994 			}
3995 			if (csums_tfm) {
3996 				strcpy(new_net_conf->csums_alg, p->csums_alg);
3997 				new_net_conf->csums_alg_len = strlen(p->csums_alg) + 1;
3998 				crypto_free_shash(peer_device->connection->csums_tfm);
3999 				peer_device->connection->csums_tfm = csums_tfm;
4000 				drbd_info(device, "using csums-alg: \"%s\"\n", p->csums_alg);
4001 			}
4002 			rcu_assign_pointer(connection->net_conf, new_net_conf);
4003 		}
4004 	}
4005 
4006 	if (new_disk_conf) {
4007 		rcu_assign_pointer(device->ldev->disk_conf, new_disk_conf);
4008 		put_ldev(device);
4009 	}
4010 
4011 	if (new_plan) {
4012 		old_plan = device->rs_plan_s;
4013 		rcu_assign_pointer(device->rs_plan_s, new_plan);
4014 	}
4015 
4016 	mutex_unlock(&connection->resource->conf_update);
4017 	synchronize_rcu();
4018 	if (new_net_conf)
4019 		kfree(old_net_conf);
4020 	kfree(old_disk_conf);
4021 	kfree(old_plan);
4022 
4023 	return 0;
4024 
4025 reconnect:
4026 	if (new_disk_conf) {
4027 		put_ldev(device);
4028 		kfree(new_disk_conf);
4029 	}
4030 	mutex_unlock(&connection->resource->conf_update);
4031 	return -EIO;
4032 
4033 disconnect:
4034 	kfree(new_plan);
4035 	if (new_disk_conf) {
4036 		put_ldev(device);
4037 		kfree(new_disk_conf);
4038 	}
4039 	mutex_unlock(&connection->resource->conf_update);
4040 	/* just for completeness: actually not needed,
4041 	 * as this is not reached if csums_tfm was ok. */
4042 	crypto_free_shash(csums_tfm);
4043 	/* but free the verify_tfm again, if csums_tfm did not work out */
4044 	crypto_free_shash(verify_tfm);
4045 	conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4046 	return -EIO;
4047 }
4048 
4049 /* warn if the arguments differ by more than 12.5% */
4050 static void warn_if_differ_considerably(struct drbd_device *device,
4051 	const char *s, sector_t a, sector_t b)
4052 {
4053 	sector_t d;
4054 	if (a == 0 || b == 0)
4055 		return;
4056 	d = (a > b) ? (a - b) : (b - a);
4057 	if (d > (a>>3) || d > (b>>3))
4058 		drbd_warn(device, "Considerable difference in %s: %llus vs. %llus\n", s,
4059 		     (unsigned long long)a, (unsigned long long)b);
4060 }
4061 
4062 static int receive_sizes(struct drbd_connection *connection, struct packet_info *pi)
4063 {
4064 	struct drbd_peer_device *peer_device;
4065 	struct drbd_device *device;
4066 	struct p_sizes *p = pi->data;
4067 	struct o_qlim *o = (connection->agreed_features & DRBD_FF_WSAME) ? p->qlim : NULL;
4068 	enum determine_dev_size dd = DS_UNCHANGED;
4069 	sector_t p_size, p_usize, p_csize, my_usize;
4070 	sector_t new_size, cur_size;
4071 	int ldsc = 0; /* local disk size changed */
4072 	enum dds_flags ddsf;
4073 
4074 	peer_device = conn_peer_device(connection, pi->vnr);
4075 	if (!peer_device)
4076 		return config_unknown_volume(connection, pi);
4077 	device = peer_device->device;
4078 	cur_size = get_capacity(device->vdisk);
4079 
4080 	p_size = be64_to_cpu(p->d_size);
4081 	p_usize = be64_to_cpu(p->u_size);
4082 	p_csize = be64_to_cpu(p->c_size);
4083 
4084 	/* just store the peer's disk size for now.
4085 	 * we still need to figure out whether we accept that. */
4086 	device->p_size = p_size;
4087 
4088 	if (get_ldev(device)) {
4089 		rcu_read_lock();
4090 		my_usize = rcu_dereference(device->ldev->disk_conf)->disk_size;
4091 		rcu_read_unlock();
4092 
4093 		warn_if_differ_considerably(device, "lower level device sizes",
4094 			   p_size, drbd_get_max_capacity(device->ldev));
4095 		warn_if_differ_considerably(device, "user requested size",
4096 					    p_usize, my_usize);
4097 
4098 		/* if this is the first connect, or an otherwise expected
4099 		 * param exchange, choose the minimum */
4100 		if (device->state.conn == C_WF_REPORT_PARAMS)
4101 			p_usize = min_not_zero(my_usize, p_usize);
4102 
4103 		/* Never shrink a device with usable data during connect,
4104 		 * or "attach" on the peer.
4105 		 * But allow online shrinking if we are connected. */
4106 		new_size = drbd_new_dev_size(device, device->ldev, p_usize, 0);
4107 		if (new_size < cur_size &&
4108 		    device->state.disk >= D_OUTDATED &&
4109 		    (device->state.conn < C_CONNECTED || device->state.pdsk == D_DISKLESS)) {
4110 			drbd_err(device, "The peer's disk size is too small! (%llu < %llu sectors)\n",
4111 					(unsigned long long)new_size, (unsigned long long)cur_size);
4112 			conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4113 			put_ldev(device);
4114 			return -EIO;
4115 		}
4116 
4117 		if (my_usize != p_usize) {
4118 			struct disk_conf *old_disk_conf, *new_disk_conf = NULL;
4119 
4120 			new_disk_conf = kzalloc(sizeof(struct disk_conf), GFP_KERNEL);
4121 			if (!new_disk_conf) {
4122 				put_ldev(device);
4123 				return -ENOMEM;
4124 			}
4125 
4126 			mutex_lock(&connection->resource->conf_update);
4127 			old_disk_conf = device->ldev->disk_conf;
4128 			*new_disk_conf = *old_disk_conf;
4129 			new_disk_conf->disk_size = p_usize;
4130 
4131 			rcu_assign_pointer(device->ldev->disk_conf, new_disk_conf);
4132 			mutex_unlock(&connection->resource->conf_update);
4133 			kvfree_rcu_mightsleep(old_disk_conf);
4134 
4135 			drbd_info(device, "Peer sets u_size to %lu sectors (old: %lu)\n",
4136 				 (unsigned long)p_usize, (unsigned long)my_usize);
4137 		}
4138 
4139 		put_ldev(device);
4140 	}
4141 
4142 	device->peer_max_bio_size = be32_to_cpu(p->max_bio_size);
4143 	/* Leave drbd_reconsider_queue_parameters() before drbd_determine_dev_size().
4144 	   In case we cleared the QUEUE_FLAG_DISCARD from our queue in
4145 	   drbd_reconsider_queue_parameters(), we can be sure that after
4146 	   drbd_determine_dev_size() no REQ_DISCARDs are in the queue. */
4147 
4148 	ddsf = be16_to_cpu(p->dds_flags);
4149 	if (get_ldev(device)) {
4150 		drbd_reconsider_queue_parameters(device, device->ldev, o);
4151 		dd = drbd_determine_dev_size(device, ddsf, NULL);
4152 		put_ldev(device);
4153 		if (dd == DS_ERROR)
4154 			return -EIO;
4155 		drbd_md_sync(device);
4156 	} else {
4157 		/*
4158 		 * I am diskless, need to accept the peer's *current* size.
4159 		 * I must NOT accept the peers backing disk size,
4160 		 * it may have been larger than mine all along...
4161 		 *
4162 		 * At this point, the peer knows more about my disk, or at
4163 		 * least about what we last agreed upon, than myself.
4164 		 * So if his c_size is less than his d_size, the most likely
4165 		 * reason is that *my* d_size was smaller last time we checked.
4166 		 *
4167 		 * However, if he sends a zero current size,
4168 		 * take his (user-capped or) backing disk size anyways.
4169 		 *
4170 		 * Unless of course he does not have a disk himself.
4171 		 * In which case we ignore this completely.
4172 		 */
4173 		sector_t new_size = p_csize ?: p_usize ?: p_size;
4174 		drbd_reconsider_queue_parameters(device, NULL, o);
4175 		if (new_size == 0) {
4176 			/* Ignore, peer does not know nothing. */
4177 		} else if (new_size == cur_size) {
4178 			/* nothing to do */
4179 		} else if (cur_size != 0 && p_size == 0) {
4180 			drbd_warn(device, "Ignored diskless peer device size (peer:%llu != me:%llu sectors)!\n",
4181 					(unsigned long long)new_size, (unsigned long long)cur_size);
4182 		} else if (new_size < cur_size && device->state.role == R_PRIMARY) {
4183 			drbd_err(device, "The peer's device size is too small! (%llu < %llu sectors); demote me first!\n",
4184 					(unsigned long long)new_size, (unsigned long long)cur_size);
4185 			conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4186 			return -EIO;
4187 		} else {
4188 			/* I believe the peer, if
4189 			 *  - I don't have a current size myself
4190 			 *  - we agree on the size anyways
4191 			 *  - I do have a current size, am Secondary,
4192 			 *    and he has the only disk
4193 			 *  - I do have a current size, am Primary,
4194 			 *    and he has the only disk,
4195 			 *    which is larger than my current size
4196 			 */
4197 			drbd_set_my_capacity(device, new_size);
4198 		}
4199 	}
4200 
4201 	if (get_ldev(device)) {
4202 		if (device->ldev->known_size != drbd_get_capacity(device->ldev->backing_bdev)) {
4203 			device->ldev->known_size = drbd_get_capacity(device->ldev->backing_bdev);
4204 			ldsc = 1;
4205 		}
4206 
4207 		put_ldev(device);
4208 	}
4209 
4210 	if (device->state.conn > C_WF_REPORT_PARAMS) {
4211 		if (be64_to_cpu(p->c_size) != get_capacity(device->vdisk) ||
4212 		    ldsc) {
4213 			/* we have different sizes, probably peer
4214 			 * needs to know my new size... */
4215 			drbd_send_sizes(peer_device, 0, ddsf);
4216 		}
4217 		if (test_and_clear_bit(RESIZE_PENDING, &device->flags) ||
4218 		    (dd == DS_GREW && device->state.conn == C_CONNECTED)) {
4219 			if (device->state.pdsk >= D_INCONSISTENT &&
4220 			    device->state.disk >= D_INCONSISTENT) {
4221 				if (ddsf & DDSF_NO_RESYNC)
4222 					drbd_info(device, "Resync of new storage suppressed with --assume-clean\n");
4223 				else
4224 					resync_after_online_grow(device);
4225 			} else
4226 				set_bit(RESYNC_AFTER_NEG, &device->flags);
4227 		}
4228 	}
4229 
4230 	return 0;
4231 }
4232 
4233 static int receive_uuids(struct drbd_connection *connection, struct packet_info *pi)
4234 {
4235 	struct drbd_peer_device *peer_device;
4236 	struct drbd_device *device;
4237 	struct p_uuids *p = pi->data;
4238 	u64 *p_uuid;
4239 	int i, updated_uuids = 0;
4240 
4241 	peer_device = conn_peer_device(connection, pi->vnr);
4242 	if (!peer_device)
4243 		return config_unknown_volume(connection, pi);
4244 	device = peer_device->device;
4245 
4246 	p_uuid = kmalloc_array(UI_EXTENDED_SIZE, sizeof(*p_uuid), GFP_NOIO);
4247 	if (!p_uuid)
4248 		return false;
4249 
4250 	for (i = UI_CURRENT; i < UI_EXTENDED_SIZE; i++)
4251 		p_uuid[i] = be64_to_cpu(p->uuid[i]);
4252 
4253 	kfree(device->p_uuid);
4254 	device->p_uuid = p_uuid;
4255 
4256 	if ((device->state.conn < C_CONNECTED || device->state.pdsk == D_DISKLESS) &&
4257 	    device->state.disk < D_INCONSISTENT &&
4258 	    device->state.role == R_PRIMARY &&
4259 	    (device->ed_uuid & ~((u64)1)) != (p_uuid[UI_CURRENT] & ~((u64)1))) {
4260 		drbd_err(device, "Can only connect to data with current UUID=%016llX\n",
4261 		    (unsigned long long)device->ed_uuid);
4262 		conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4263 		return -EIO;
4264 	}
4265 
4266 	if (get_ldev(device)) {
4267 		int skip_initial_sync =
4268 			device->state.conn == C_CONNECTED &&
4269 			peer_device->connection->agreed_pro_version >= 90 &&
4270 			device->ldev->md.uuid[UI_CURRENT] == UUID_JUST_CREATED &&
4271 			(p_uuid[UI_FLAGS] & 8);
4272 		if (skip_initial_sync) {
4273 			drbd_info(device, "Accepted new current UUID, preparing to skip initial sync\n");
4274 			drbd_bitmap_io(device, &drbd_bmio_clear_n_write,
4275 					"clear_n_write from receive_uuids",
4276 					BM_LOCKED_TEST_ALLOWED, NULL);
4277 			_drbd_uuid_set(device, UI_CURRENT, p_uuid[UI_CURRENT]);
4278 			_drbd_uuid_set(device, UI_BITMAP, 0);
4279 			_drbd_set_state(_NS2(device, disk, D_UP_TO_DATE, pdsk, D_UP_TO_DATE),
4280 					CS_VERBOSE, NULL);
4281 			drbd_md_sync(device);
4282 			updated_uuids = 1;
4283 		}
4284 		put_ldev(device);
4285 	} else if (device->state.disk < D_INCONSISTENT &&
4286 		   device->state.role == R_PRIMARY) {
4287 		/* I am a diskless primary, the peer just created a new current UUID
4288 		   for me. */
4289 		updated_uuids = drbd_set_ed_uuid(device, p_uuid[UI_CURRENT]);
4290 	}
4291 
4292 	/* Before we test for the disk state, we should wait until an eventually
4293 	   ongoing cluster wide state change is finished. That is important if
4294 	   we are primary and are detaching from our disk. We need to see the
4295 	   new disk state... */
4296 	mutex_lock(device->state_mutex);
4297 	mutex_unlock(device->state_mutex);
4298 	if (device->state.conn >= C_CONNECTED && device->state.disk < D_INCONSISTENT)
4299 		updated_uuids |= drbd_set_ed_uuid(device, p_uuid[UI_CURRENT]);
4300 
4301 	if (updated_uuids)
4302 		drbd_print_uuids(device, "receiver updated UUIDs to");
4303 
4304 	return 0;
4305 }
4306 
4307 /**
4308  * convert_state() - Converts the peer's view of the cluster state to our point of view
4309  * @ps:		The state as seen by the peer.
4310  */
4311 static union drbd_state convert_state(union drbd_state ps)
4312 {
4313 	union drbd_state ms;
4314 
4315 	static enum drbd_conns c_tab[] = {
4316 		[C_WF_REPORT_PARAMS] = C_WF_REPORT_PARAMS,
4317 		[C_CONNECTED] = C_CONNECTED,
4318 
4319 		[C_STARTING_SYNC_S] = C_STARTING_SYNC_T,
4320 		[C_STARTING_SYNC_T] = C_STARTING_SYNC_S,
4321 		[C_DISCONNECTING] = C_TEAR_DOWN, /* C_NETWORK_FAILURE, */
4322 		[C_VERIFY_S]       = C_VERIFY_T,
4323 		[C_MASK]   = C_MASK,
4324 	};
4325 
4326 	ms.i = ps.i;
4327 
4328 	ms.conn = c_tab[ps.conn];
4329 	ms.peer = ps.role;
4330 	ms.role = ps.peer;
4331 	ms.pdsk = ps.disk;
4332 	ms.disk = ps.pdsk;
4333 	ms.peer_isp = (ps.aftr_isp | ps.user_isp);
4334 
4335 	return ms;
4336 }
4337 
4338 static int receive_req_state(struct drbd_connection *connection, struct packet_info *pi)
4339 {
4340 	struct drbd_peer_device *peer_device;
4341 	struct drbd_device *device;
4342 	struct p_req_state *p = pi->data;
4343 	union drbd_state mask, val;
4344 	enum drbd_state_rv rv;
4345 
4346 	peer_device = conn_peer_device(connection, pi->vnr);
4347 	if (!peer_device)
4348 		return -EIO;
4349 	device = peer_device->device;
4350 
4351 	mask.i = be32_to_cpu(p->mask);
4352 	val.i = be32_to_cpu(p->val);
4353 
4354 	if (test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags) &&
4355 	    mutex_is_locked(device->state_mutex)) {
4356 		drbd_send_sr_reply(peer_device, SS_CONCURRENT_ST_CHG);
4357 		return 0;
4358 	}
4359 
4360 	mask = convert_state(mask);
4361 	val = convert_state(val);
4362 
4363 	rv = drbd_change_state(device, CS_VERBOSE, mask, val);
4364 	drbd_send_sr_reply(peer_device, rv);
4365 
4366 	drbd_md_sync(device);
4367 
4368 	return 0;
4369 }
4370 
4371 static int receive_req_conn_state(struct drbd_connection *connection, struct packet_info *pi)
4372 {
4373 	struct p_req_state *p = pi->data;
4374 	union drbd_state mask, val;
4375 	enum drbd_state_rv rv;
4376 
4377 	mask.i = be32_to_cpu(p->mask);
4378 	val.i = be32_to_cpu(p->val);
4379 
4380 	if (test_bit(RESOLVE_CONFLICTS, &connection->flags) &&
4381 	    mutex_is_locked(&connection->cstate_mutex)) {
4382 		conn_send_sr_reply(connection, SS_CONCURRENT_ST_CHG);
4383 		return 0;
4384 	}
4385 
4386 	mask = convert_state(mask);
4387 	val = convert_state(val);
4388 
4389 	rv = conn_request_state(connection, mask, val, CS_VERBOSE | CS_LOCAL_ONLY | CS_IGN_OUTD_FAIL);
4390 	conn_send_sr_reply(connection, rv);
4391 
4392 	return 0;
4393 }
4394 
4395 static int receive_state(struct drbd_connection *connection, struct packet_info *pi)
4396 {
4397 	struct drbd_peer_device *peer_device;
4398 	struct drbd_device *device;
4399 	struct p_state *p = pi->data;
4400 	union drbd_state os, ns, peer_state;
4401 	enum drbd_disk_state real_peer_disk;
4402 	enum chg_state_flags cs_flags;
4403 	int rv;
4404 
4405 	peer_device = conn_peer_device(connection, pi->vnr);
4406 	if (!peer_device)
4407 		return config_unknown_volume(connection, pi);
4408 	device = peer_device->device;
4409 
4410 	peer_state.i = be32_to_cpu(p->state);
4411 
4412 	real_peer_disk = peer_state.disk;
4413 	if (peer_state.disk == D_NEGOTIATING) {
4414 		real_peer_disk = device->p_uuid[UI_FLAGS] & 4 ? D_INCONSISTENT : D_CONSISTENT;
4415 		drbd_info(device, "real peer disk state = %s\n", drbd_disk_str(real_peer_disk));
4416 	}
4417 
4418 	spin_lock_irq(&device->resource->req_lock);
4419  retry:
4420 	os = ns = drbd_read_state(device);
4421 	spin_unlock_irq(&device->resource->req_lock);
4422 
4423 	/* If some other part of the code (ack_receiver thread, timeout)
4424 	 * already decided to close the connection again,
4425 	 * we must not "re-establish" it here. */
4426 	if (os.conn <= C_TEAR_DOWN)
4427 		return -ECONNRESET;
4428 
4429 	/* If this is the "end of sync" confirmation, usually the peer disk
4430 	 * transitions from D_INCONSISTENT to D_UP_TO_DATE. For empty (0 bits
4431 	 * set) resync started in PausedSyncT, or if the timing of pause-/
4432 	 * unpause-sync events has been "just right", the peer disk may
4433 	 * transition from D_CONSISTENT to D_UP_TO_DATE as well.
4434 	 */
4435 	if ((os.pdsk == D_INCONSISTENT || os.pdsk == D_CONSISTENT) &&
4436 	    real_peer_disk == D_UP_TO_DATE &&
4437 	    os.conn > C_CONNECTED && os.disk == D_UP_TO_DATE) {
4438 		/* If we are (becoming) SyncSource, but peer is still in sync
4439 		 * preparation, ignore its uptodate-ness to avoid flapping, it
4440 		 * will change to inconsistent once the peer reaches active
4441 		 * syncing states.
4442 		 * It may have changed syncer-paused flags, however, so we
4443 		 * cannot ignore this completely. */
4444 		if (peer_state.conn > C_CONNECTED &&
4445 		    peer_state.conn < C_SYNC_SOURCE)
4446 			real_peer_disk = D_INCONSISTENT;
4447 
4448 		/* if peer_state changes to connected at the same time,
4449 		 * it explicitly notifies us that it finished resync.
4450 		 * Maybe we should finish it up, too? */
4451 		else if (os.conn >= C_SYNC_SOURCE &&
4452 			 peer_state.conn == C_CONNECTED) {
4453 			if (drbd_bm_total_weight(device) <= device->rs_failed)
4454 				drbd_resync_finished(peer_device);
4455 			return 0;
4456 		}
4457 	}
4458 
4459 	/* explicit verify finished notification, stop sector reached. */
4460 	if (os.conn == C_VERIFY_T && os.disk == D_UP_TO_DATE &&
4461 	    peer_state.conn == C_CONNECTED && real_peer_disk == D_UP_TO_DATE) {
4462 		ov_out_of_sync_print(peer_device);
4463 		drbd_resync_finished(peer_device);
4464 		return 0;
4465 	}
4466 
4467 	/* peer says his disk is inconsistent, while we think it is uptodate,
4468 	 * and this happens while the peer still thinks we have a sync going on,
4469 	 * but we think we are already done with the sync.
4470 	 * We ignore this to avoid flapping pdsk.
4471 	 * This should not happen, if the peer is a recent version of drbd. */
4472 	if (os.pdsk == D_UP_TO_DATE && real_peer_disk == D_INCONSISTENT &&
4473 	    os.conn == C_CONNECTED && peer_state.conn > C_SYNC_SOURCE)
4474 		real_peer_disk = D_UP_TO_DATE;
4475 
4476 	if (ns.conn == C_WF_REPORT_PARAMS)
4477 		ns.conn = C_CONNECTED;
4478 
4479 	if (peer_state.conn == C_AHEAD)
4480 		ns.conn = C_BEHIND;
4481 
4482 	/* TODO:
4483 	 * if (primary and diskless and peer uuid != effective uuid)
4484 	 *     abort attach on peer;
4485 	 *
4486 	 * If this node does not have good data, was already connected, but
4487 	 * the peer did a late attach only now, trying to "negotiate" with me,
4488 	 * AND I am currently Primary, possibly frozen, with some specific
4489 	 * "effective" uuid, this should never be reached, really, because
4490 	 * we first send the uuids, then the current state.
4491 	 *
4492 	 * In this scenario, we already dropped the connection hard
4493 	 * when we received the unsuitable uuids (receive_uuids().
4494 	 *
4495 	 * Should we want to change this, that is: not drop the connection in
4496 	 * receive_uuids() already, then we would need to add a branch here
4497 	 * that aborts the attach of "unsuitable uuids" on the peer in case
4498 	 * this node is currently Diskless Primary.
4499 	 */
4500 
4501 	if (device->p_uuid && peer_state.disk >= D_NEGOTIATING &&
4502 	    get_ldev_if_state(device, D_NEGOTIATING)) {
4503 		int cr; /* consider resync */
4504 
4505 		/* if we established a new connection */
4506 		cr  = (os.conn < C_CONNECTED);
4507 		/* if we had an established connection
4508 		 * and one of the nodes newly attaches a disk */
4509 		cr |= (os.conn == C_CONNECTED &&
4510 		       (peer_state.disk == D_NEGOTIATING ||
4511 			os.disk == D_NEGOTIATING));
4512 		/* if we have both been inconsistent, and the peer has been
4513 		 * forced to be UpToDate with --force */
4514 		cr |= test_bit(CONSIDER_RESYNC, &device->flags);
4515 		/* if we had been plain connected, and the admin requested to
4516 		 * start a sync by "invalidate" or "invalidate-remote" */
4517 		cr |= (os.conn == C_CONNECTED &&
4518 				(peer_state.conn >= C_STARTING_SYNC_S &&
4519 				 peer_state.conn <= C_WF_BITMAP_T));
4520 
4521 		if (cr)
4522 			ns.conn = drbd_sync_handshake(peer_device, peer_state.role, real_peer_disk);
4523 
4524 		put_ldev(device);
4525 		if (ns.conn == C_MASK) {
4526 			ns.conn = C_CONNECTED;
4527 			if (device->state.disk == D_NEGOTIATING) {
4528 				drbd_force_state(device, NS(disk, D_FAILED));
4529 			} else if (peer_state.disk == D_NEGOTIATING) {
4530 				drbd_err(device, "Disk attach process on the peer node was aborted.\n");
4531 				peer_state.disk = D_DISKLESS;
4532 				real_peer_disk = D_DISKLESS;
4533 			} else {
4534 				if (test_and_clear_bit(CONN_DRY_RUN, &peer_device->connection->flags))
4535 					return -EIO;
4536 				D_ASSERT(device, os.conn == C_WF_REPORT_PARAMS);
4537 				conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4538 				return -EIO;
4539 			}
4540 		}
4541 	}
4542 
4543 	spin_lock_irq(&device->resource->req_lock);
4544 	if (os.i != drbd_read_state(device).i)
4545 		goto retry;
4546 	clear_bit(CONSIDER_RESYNC, &device->flags);
4547 	ns.peer = peer_state.role;
4548 	ns.pdsk = real_peer_disk;
4549 	ns.peer_isp = (peer_state.aftr_isp | peer_state.user_isp);
4550 	if ((ns.conn == C_CONNECTED || ns.conn == C_WF_BITMAP_S) && ns.disk == D_NEGOTIATING)
4551 		ns.disk = device->new_state_tmp.disk;
4552 	cs_flags = CS_VERBOSE + (os.conn < C_CONNECTED && ns.conn >= C_CONNECTED ? 0 : CS_HARD);
4553 	if (ns.pdsk == D_CONSISTENT && drbd_suspended(device) && ns.conn == C_CONNECTED && os.conn < C_CONNECTED &&
4554 	    test_bit(NEW_CUR_UUID, &device->flags)) {
4555 		/* Do not allow tl_restart(RESEND) for a rebooted peer. We can only allow this
4556 		   for temporal network outages! */
4557 		spin_unlock_irq(&device->resource->req_lock);
4558 		drbd_err(device, "Aborting Connect, can not thaw IO with an only Consistent peer\n");
4559 		tl_clear(peer_device->connection);
4560 		drbd_uuid_new_current(device);
4561 		clear_bit(NEW_CUR_UUID, &device->flags);
4562 		conn_request_state(peer_device->connection, NS2(conn, C_PROTOCOL_ERROR, susp, 0), CS_HARD);
4563 		return -EIO;
4564 	}
4565 	rv = _drbd_set_state(device, ns, cs_flags, NULL);
4566 	ns = drbd_read_state(device);
4567 	spin_unlock_irq(&device->resource->req_lock);
4568 
4569 	if (rv < SS_SUCCESS) {
4570 		conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4571 		return -EIO;
4572 	}
4573 
4574 	if (os.conn > C_WF_REPORT_PARAMS) {
4575 		if (ns.conn > C_CONNECTED && peer_state.conn <= C_CONNECTED &&
4576 		    peer_state.disk != D_NEGOTIATING ) {
4577 			/* we want resync, peer has not yet decided to sync... */
4578 			/* Nowadays only used when forcing a node into primary role and
4579 			   setting its disk to UpToDate with that */
4580 			drbd_send_uuids(peer_device);
4581 			drbd_send_current_state(peer_device);
4582 		}
4583 	}
4584 
4585 	clear_bit(DISCARD_MY_DATA, &device->flags);
4586 
4587 	drbd_md_sync(device); /* update connected indicator, la_size_sect, ... */
4588 
4589 	return 0;
4590 }
4591 
4592 static int receive_sync_uuid(struct drbd_connection *connection, struct packet_info *pi)
4593 {
4594 	struct drbd_peer_device *peer_device;
4595 	struct drbd_device *device;
4596 	struct p_rs_uuid *p = pi->data;
4597 
4598 	peer_device = conn_peer_device(connection, pi->vnr);
4599 	if (!peer_device)
4600 		return -EIO;
4601 	device = peer_device->device;
4602 
4603 	wait_event(device->misc_wait,
4604 		   device->state.conn == C_WF_SYNC_UUID ||
4605 		   device->state.conn == C_BEHIND ||
4606 		   device->state.conn < C_CONNECTED ||
4607 		   device->state.disk < D_NEGOTIATING);
4608 
4609 	/* D_ASSERT(device,  device->state.conn == C_WF_SYNC_UUID ); */
4610 
4611 	/* Here the _drbd_uuid_ functions are right, current should
4612 	   _not_ be rotated into the history */
4613 	if (get_ldev_if_state(device, D_NEGOTIATING)) {
4614 		_drbd_uuid_set(device, UI_CURRENT, be64_to_cpu(p->uuid));
4615 		_drbd_uuid_set(device, UI_BITMAP, 0UL);
4616 
4617 		drbd_print_uuids(device, "updated sync uuid");
4618 		drbd_start_resync(device, C_SYNC_TARGET);
4619 
4620 		put_ldev(device);
4621 	} else
4622 		drbd_err(device, "Ignoring SyncUUID packet!\n");
4623 
4624 	return 0;
4625 }
4626 
4627 /*
4628  * receive_bitmap_plain
4629  *
4630  * Return 0 when done, 1 when another iteration is needed, and a negative error
4631  * code upon failure.
4632  */
4633 static int
4634 receive_bitmap_plain(struct drbd_peer_device *peer_device, unsigned int size,
4635 		     unsigned long *p, struct bm_xfer_ctx *c)
4636 {
4637 	unsigned int data_size = DRBD_SOCKET_BUFFER_SIZE -
4638 				 drbd_header_size(peer_device->connection);
4639 	unsigned int num_words = min_t(size_t, data_size / sizeof(*p),
4640 				       c->bm_words - c->word_offset);
4641 	unsigned int want = num_words * sizeof(*p);
4642 	int err;
4643 
4644 	if (want != size) {
4645 		drbd_err(peer_device, "%s:want (%u) != size (%u)\n", __func__, want, size);
4646 		return -EIO;
4647 	}
4648 	if (want == 0)
4649 		return 0;
4650 	err = drbd_recv_all(peer_device->connection, p, want);
4651 	if (err)
4652 		return err;
4653 
4654 	drbd_bm_merge_lel(peer_device->device, c->word_offset, num_words, p);
4655 
4656 	c->word_offset += num_words;
4657 	c->bit_offset = c->word_offset * BITS_PER_LONG;
4658 	if (c->bit_offset > c->bm_bits)
4659 		c->bit_offset = c->bm_bits;
4660 
4661 	return 1;
4662 }
4663 
4664 static enum drbd_bitmap_code dcbp_get_code(struct p_compressed_bm *p)
4665 {
4666 	return (enum drbd_bitmap_code)(p->encoding & 0x0f);
4667 }
4668 
4669 static int dcbp_get_start(struct p_compressed_bm *p)
4670 {
4671 	return (p->encoding & 0x80) != 0;
4672 }
4673 
4674 static int dcbp_get_pad_bits(struct p_compressed_bm *p)
4675 {
4676 	return (p->encoding >> 4) & 0x7;
4677 }
4678 
4679 /*
4680  * recv_bm_rle_bits
4681  *
4682  * Return 0 when done, 1 when another iteration is needed, and a negative error
4683  * code upon failure.
4684  */
4685 static int
4686 recv_bm_rle_bits(struct drbd_peer_device *peer_device,
4687 		struct p_compressed_bm *p,
4688 		 struct bm_xfer_ctx *c,
4689 		 unsigned int len)
4690 {
4691 	struct bitstream bs;
4692 	u64 look_ahead;
4693 	u64 rl;
4694 	u64 tmp;
4695 	unsigned long s = c->bit_offset;
4696 	unsigned long e;
4697 	int toggle = dcbp_get_start(p);
4698 	int have;
4699 	int bits;
4700 
4701 	bitstream_init(&bs, p->code, len, dcbp_get_pad_bits(p));
4702 
4703 	bits = bitstream_get_bits(&bs, &look_ahead, 64);
4704 	if (bits < 0)
4705 		return -EIO;
4706 
4707 	for (have = bits; have > 0; s += rl, toggle = !toggle) {
4708 		bits = vli_decode_bits(&rl, look_ahead);
4709 		if (bits <= 0)
4710 			return -EIO;
4711 
4712 		if (toggle) {
4713 			e = s + rl -1;
4714 			if (e >= c->bm_bits) {
4715 				drbd_err(peer_device, "bitmap overflow (e:%lu) while decoding bm RLE packet\n", e);
4716 				return -EIO;
4717 			}
4718 			_drbd_bm_set_bits(peer_device->device, s, e);
4719 		}
4720 
4721 		if (have < bits) {
4722 			drbd_err(peer_device, "bitmap decoding error: h:%d b:%d la:0x%08llx l:%u/%u\n",
4723 				have, bits, look_ahead,
4724 				(unsigned int)(bs.cur.b - p->code),
4725 				(unsigned int)bs.buf_len);
4726 			return -EIO;
4727 		}
4728 		/* if we consumed all 64 bits, assign 0; >> 64 is "undefined"; */
4729 		if (likely(bits < 64))
4730 			look_ahead >>= bits;
4731 		else
4732 			look_ahead = 0;
4733 		have -= bits;
4734 
4735 		bits = bitstream_get_bits(&bs, &tmp, 64 - have);
4736 		if (bits < 0)
4737 			return -EIO;
4738 		look_ahead |= tmp << have;
4739 		have += bits;
4740 	}
4741 
4742 	c->bit_offset = s;
4743 	bm_xfer_ctx_bit_to_word_offset(c);
4744 
4745 	return (s != c->bm_bits);
4746 }
4747 
4748 /*
4749  * decode_bitmap_c
4750  *
4751  * Return 0 when done, 1 when another iteration is needed, and a negative error
4752  * code upon failure.
4753  */
4754 static int
4755 decode_bitmap_c(struct drbd_peer_device *peer_device,
4756 		struct p_compressed_bm *p,
4757 		struct bm_xfer_ctx *c,
4758 		unsigned int len)
4759 {
4760 	if (dcbp_get_code(p) == RLE_VLI_Bits)
4761 		return recv_bm_rle_bits(peer_device, p, c, len - sizeof(*p));
4762 
4763 	/* other variants had been implemented for evaluation,
4764 	 * but have been dropped as this one turned out to be "best"
4765 	 * during all our tests. */
4766 
4767 	drbd_err(peer_device, "receive_bitmap_c: unknown encoding %u\n", p->encoding);
4768 	conn_request_state(peer_device->connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
4769 	return -EIO;
4770 }
4771 
4772 void INFO_bm_xfer_stats(struct drbd_peer_device *peer_device,
4773 		const char *direction, struct bm_xfer_ctx *c)
4774 {
4775 	/* what would it take to transfer it "plaintext" */
4776 	unsigned int header_size = drbd_header_size(peer_device->connection);
4777 	unsigned int data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
4778 	unsigned int plain =
4779 		header_size * (DIV_ROUND_UP(c->bm_words, data_size) + 1) +
4780 		c->bm_words * sizeof(unsigned long);
4781 	unsigned int total = c->bytes[0] + c->bytes[1];
4782 	unsigned int r;
4783 
4784 	/* total can not be zero. but just in case: */
4785 	if (total == 0)
4786 		return;
4787 
4788 	/* don't report if not compressed */
4789 	if (total >= plain)
4790 		return;
4791 
4792 	/* total < plain. check for overflow, still */
4793 	r = (total > UINT_MAX/1000) ? (total / (plain/1000))
4794 		                    : (1000 * total / plain);
4795 
4796 	if (r > 1000)
4797 		r = 1000;
4798 
4799 	r = 1000 - r;
4800 	drbd_info(peer_device, "%s bitmap stats [Bytes(packets)]: plain %u(%u), RLE %u(%u), "
4801 	     "total %u; compression: %u.%u%%\n",
4802 			direction,
4803 			c->bytes[1], c->packets[1],
4804 			c->bytes[0], c->packets[0],
4805 			total, r/10, r % 10);
4806 }
4807 
4808 /* Since we are processing the bitfield from lower addresses to higher,
4809    it does not matter if the process it in 32 bit chunks or 64 bit
4810    chunks as long as it is little endian. (Understand it as byte stream,
4811    beginning with the lowest byte...) If we would use big endian
4812    we would need to process it from the highest address to the lowest,
4813    in order to be agnostic to the 32 vs 64 bits issue.
4814 
4815    returns 0 on failure, 1 if we successfully received it. */
4816 static int receive_bitmap(struct drbd_connection *connection, struct packet_info *pi)
4817 {
4818 	struct drbd_peer_device *peer_device;
4819 	struct drbd_device *device;
4820 	struct bm_xfer_ctx c;
4821 	int err;
4822 
4823 	peer_device = conn_peer_device(connection, pi->vnr);
4824 	if (!peer_device)
4825 		return -EIO;
4826 	device = peer_device->device;
4827 
4828 	drbd_bm_lock(device, "receive bitmap", BM_LOCKED_SET_ALLOWED);
4829 	/* you are supposed to send additional out-of-sync information
4830 	 * if you actually set bits during this phase */
4831 
4832 	c = (struct bm_xfer_ctx) {
4833 		.bm_bits = drbd_bm_bits(device),
4834 		.bm_words = drbd_bm_words(device),
4835 	};
4836 
4837 	for(;;) {
4838 		if (pi->cmd == P_BITMAP)
4839 			err = receive_bitmap_plain(peer_device, pi->size, pi->data, &c);
4840 		else if (pi->cmd == P_COMPRESSED_BITMAP) {
4841 			/* MAYBE: sanity check that we speak proto >= 90,
4842 			 * and the feature is enabled! */
4843 			struct p_compressed_bm *p = pi->data;
4844 
4845 			if (pi->size > DRBD_SOCKET_BUFFER_SIZE - drbd_header_size(connection)) {
4846 				drbd_err(device, "ReportCBitmap packet too large\n");
4847 				err = -EIO;
4848 				goto out;
4849 			}
4850 			if (pi->size <= sizeof(*p)) {
4851 				drbd_err(device, "ReportCBitmap packet too small (l:%u)\n", pi->size);
4852 				err = -EIO;
4853 				goto out;
4854 			}
4855 			err = drbd_recv_all(peer_device->connection, p, pi->size);
4856 			if (err)
4857 			       goto out;
4858 			err = decode_bitmap_c(peer_device, p, &c, pi->size);
4859 		} else {
4860 			drbd_warn(device, "receive_bitmap: cmd neither ReportBitMap nor ReportCBitMap (is 0x%x)", pi->cmd);
4861 			err = -EIO;
4862 			goto out;
4863 		}
4864 
4865 		c.packets[pi->cmd == P_BITMAP]++;
4866 		c.bytes[pi->cmd == P_BITMAP] += drbd_header_size(connection) + pi->size;
4867 
4868 		if (err <= 0) {
4869 			if (err < 0)
4870 				goto out;
4871 			break;
4872 		}
4873 		err = drbd_recv_header(peer_device->connection, pi);
4874 		if (err)
4875 			goto out;
4876 	}
4877 
4878 	INFO_bm_xfer_stats(peer_device, "receive", &c);
4879 
4880 	if (device->state.conn == C_WF_BITMAP_T) {
4881 		enum drbd_state_rv rv;
4882 
4883 		err = drbd_send_bitmap(device, peer_device);
4884 		if (err)
4885 			goto out;
4886 		/* Omit CS_ORDERED with this state transition to avoid deadlocks. */
4887 		rv = _drbd_request_state(device, NS(conn, C_WF_SYNC_UUID), CS_VERBOSE);
4888 		D_ASSERT(device, rv == SS_SUCCESS);
4889 	} else if (device->state.conn != C_WF_BITMAP_S) {
4890 		/* admin may have requested C_DISCONNECTING,
4891 		 * other threads may have noticed network errors */
4892 		drbd_info(device, "unexpected cstate (%s) in receive_bitmap\n",
4893 		    drbd_conn_str(device->state.conn));
4894 	}
4895 	err = 0;
4896 
4897  out:
4898 	drbd_bm_unlock(device);
4899 	if (!err && device->state.conn == C_WF_BITMAP_S)
4900 		drbd_start_resync(device, C_SYNC_SOURCE);
4901 	return err;
4902 }
4903 
4904 static int receive_skip(struct drbd_connection *connection, struct packet_info *pi)
4905 {
4906 	drbd_warn(connection, "skipping unknown optional packet type %d, l: %d!\n",
4907 		 pi->cmd, pi->size);
4908 
4909 	return ignore_remaining_packet(connection, pi);
4910 }
4911 
4912 static int receive_UnplugRemote(struct drbd_connection *connection, struct packet_info *pi)
4913 {
4914 	/* Make sure we've acked all the TCP data associated
4915 	 * with the data requests being unplugged */
4916 	tcp_sock_set_quickack(connection->data.socket->sk, 2);
4917 	return 0;
4918 }
4919 
4920 static int receive_out_of_sync(struct drbd_connection *connection, struct packet_info *pi)
4921 {
4922 	struct drbd_peer_device *peer_device;
4923 	struct drbd_device *device;
4924 	struct p_block_desc *p = pi->data;
4925 
4926 	peer_device = conn_peer_device(connection, pi->vnr);
4927 	if (!peer_device)
4928 		return -EIO;
4929 	device = peer_device->device;
4930 
4931 	switch (device->state.conn) {
4932 	case C_WF_SYNC_UUID:
4933 	case C_WF_BITMAP_T:
4934 	case C_BEHIND:
4935 			break;
4936 	default:
4937 		drbd_err(device, "ASSERT FAILED cstate = %s, expected: WFSyncUUID|WFBitMapT|Behind\n",
4938 				drbd_conn_str(device->state.conn));
4939 	}
4940 
4941 	drbd_set_out_of_sync(peer_device, be64_to_cpu(p->sector), be32_to_cpu(p->blksize));
4942 
4943 	return 0;
4944 }
4945 
4946 static int receive_rs_deallocated(struct drbd_connection *connection, struct packet_info *pi)
4947 {
4948 	struct drbd_peer_device *peer_device;
4949 	struct p_block_desc *p = pi->data;
4950 	struct drbd_device *device;
4951 	sector_t sector;
4952 	int size, err = 0;
4953 
4954 	peer_device = conn_peer_device(connection, pi->vnr);
4955 	if (!peer_device)
4956 		return -EIO;
4957 	device = peer_device->device;
4958 
4959 	sector = be64_to_cpu(p->sector);
4960 	size = be32_to_cpu(p->blksize);
4961 
4962 	dec_rs_pending(peer_device);
4963 
4964 	if (get_ldev(device)) {
4965 		struct drbd_peer_request *peer_req;
4966 
4967 		peer_req = drbd_alloc_peer_req(peer_device, ID_SYNCER, sector,
4968 					       size, 0, GFP_NOIO);
4969 		if (!peer_req) {
4970 			put_ldev(device);
4971 			return -ENOMEM;
4972 		}
4973 
4974 		peer_req->w.cb = e_end_resync_block;
4975 		peer_req->opf = REQ_OP_DISCARD;
4976 		peer_req->submit_jif = jiffies;
4977 		peer_req->flags |= EE_TRIM;
4978 
4979 		spin_lock_irq(&device->resource->req_lock);
4980 		list_add_tail(&peer_req->w.list, &device->sync_ee);
4981 		spin_unlock_irq(&device->resource->req_lock);
4982 
4983 		atomic_add(pi->size >> 9, &device->rs_sect_ev);
4984 		err = drbd_submit_peer_request(peer_req);
4985 
4986 		if (err) {
4987 			spin_lock_irq(&device->resource->req_lock);
4988 			list_del(&peer_req->w.list);
4989 			spin_unlock_irq(&device->resource->req_lock);
4990 
4991 			drbd_free_peer_req(device, peer_req);
4992 			put_ldev(device);
4993 			err = 0;
4994 			goto fail;
4995 		}
4996 
4997 		inc_unacked(device);
4998 
4999 		/* No put_ldev() here. Gets called in drbd_endio_write_sec_final(),
5000 		   as well as drbd_rs_complete_io() */
5001 	} else {
5002 	fail:
5003 		drbd_rs_complete_io(device, sector);
5004 		drbd_send_ack_ex(peer_device, P_NEG_ACK, sector, size, ID_SYNCER);
5005 	}
5006 
5007 	atomic_add(size >> 9, &device->rs_sect_in);
5008 
5009 	return err;
5010 }
5011 
5012 struct data_cmd {
5013 	int expect_payload;
5014 	unsigned int pkt_size;
5015 	int (*fn)(struct drbd_connection *, struct packet_info *);
5016 };
5017 
5018 static struct data_cmd drbd_cmd_handler[] = {
5019 	[P_DATA]	    = { 1, sizeof(struct p_data), receive_Data },
5020 	[P_DATA_REPLY]	    = { 1, sizeof(struct p_data), receive_DataReply },
5021 	[P_RS_DATA_REPLY]   = { 1, sizeof(struct p_data), receive_RSDataReply } ,
5022 	[P_BARRIER]	    = { 0, sizeof(struct p_barrier), receive_Barrier } ,
5023 	[P_BITMAP]	    = { 1, 0, receive_bitmap } ,
5024 	[P_COMPRESSED_BITMAP] = { 1, 0, receive_bitmap } ,
5025 	[P_UNPLUG_REMOTE]   = { 0, 0, receive_UnplugRemote },
5026 	[P_DATA_REQUEST]    = { 0, sizeof(struct p_block_req), receive_DataRequest },
5027 	[P_RS_DATA_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest },
5028 	[P_SYNC_PARAM]	    = { 1, 0, receive_SyncParam },
5029 	[P_SYNC_PARAM89]    = { 1, 0, receive_SyncParam },
5030 	[P_PROTOCOL]        = { 1, sizeof(struct p_protocol), receive_protocol },
5031 	[P_UUIDS]	    = { 0, sizeof(struct p_uuids), receive_uuids },
5032 	[P_SIZES]	    = { 0, sizeof(struct p_sizes), receive_sizes },
5033 	[P_STATE]	    = { 0, sizeof(struct p_state), receive_state },
5034 	[P_STATE_CHG_REQ]   = { 0, sizeof(struct p_req_state), receive_req_state },
5035 	[P_SYNC_UUID]       = { 0, sizeof(struct p_rs_uuid), receive_sync_uuid },
5036 	[P_OV_REQUEST]      = { 0, sizeof(struct p_block_req), receive_DataRequest },
5037 	[P_OV_REPLY]        = { 1, sizeof(struct p_block_req), receive_DataRequest },
5038 	[P_CSUM_RS_REQUEST] = { 1, sizeof(struct p_block_req), receive_DataRequest },
5039 	[P_RS_THIN_REQ]     = { 0, sizeof(struct p_block_req), receive_DataRequest },
5040 	[P_DELAY_PROBE]     = { 0, sizeof(struct p_delay_probe93), receive_skip },
5041 	[P_OUT_OF_SYNC]     = { 0, sizeof(struct p_block_desc), receive_out_of_sync },
5042 	[P_CONN_ST_CHG_REQ] = { 0, sizeof(struct p_req_state), receive_req_conn_state },
5043 	[P_PROTOCOL_UPDATE] = { 1, sizeof(struct p_protocol), receive_protocol },
5044 	[P_TRIM]	    = { 0, sizeof(struct p_trim), receive_Data },
5045 	[P_ZEROES]	    = { 0, sizeof(struct p_trim), receive_Data },
5046 	[P_RS_DEALLOCATED]  = { 0, sizeof(struct p_block_desc), receive_rs_deallocated },
5047 };
5048 
5049 static void drbdd(struct drbd_connection *connection)
5050 {
5051 	struct packet_info pi;
5052 	size_t shs; /* sub header size */
5053 	int err;
5054 
5055 	while (get_t_state(&connection->receiver) == RUNNING) {
5056 		struct data_cmd const *cmd;
5057 
5058 		drbd_thread_current_set_cpu(&connection->receiver);
5059 		update_receiver_timing_details(connection, drbd_recv_header_maybe_unplug);
5060 		if (drbd_recv_header_maybe_unplug(connection, &pi))
5061 			goto err_out;
5062 
5063 		cmd = &drbd_cmd_handler[pi.cmd];
5064 		if (unlikely(pi.cmd >= ARRAY_SIZE(drbd_cmd_handler) || !cmd->fn)) {
5065 			drbd_err(connection, "Unexpected data packet %s (0x%04x)",
5066 				 cmdname(pi.cmd), pi.cmd);
5067 			goto err_out;
5068 		}
5069 
5070 		shs = cmd->pkt_size;
5071 		if (pi.cmd == P_SIZES && connection->agreed_features & DRBD_FF_WSAME)
5072 			shs += sizeof(struct o_qlim);
5073 		if (pi.size > shs && !cmd->expect_payload) {
5074 			drbd_err(connection, "No payload expected %s l:%d\n",
5075 				 cmdname(pi.cmd), pi.size);
5076 			goto err_out;
5077 		}
5078 		if (pi.size < shs) {
5079 			drbd_err(connection, "%s: unexpected packet size, expected:%d received:%d\n",
5080 				 cmdname(pi.cmd), (int)shs, pi.size);
5081 			goto err_out;
5082 		}
5083 
5084 		if (shs) {
5085 			update_receiver_timing_details(connection, drbd_recv_all_warn);
5086 			err = drbd_recv_all_warn(connection, pi.data, shs);
5087 			if (err)
5088 				goto err_out;
5089 			pi.size -= shs;
5090 		}
5091 
5092 		update_receiver_timing_details(connection, cmd->fn);
5093 		err = cmd->fn(connection, &pi);
5094 		if (err) {
5095 			drbd_err(connection, "error receiving %s, e: %d l: %d!\n",
5096 				 cmdname(pi.cmd), err, pi.size);
5097 			goto err_out;
5098 		}
5099 	}
5100 	return;
5101 
5102     err_out:
5103 	conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
5104 }
5105 
5106 static void conn_disconnect(struct drbd_connection *connection)
5107 {
5108 	struct drbd_peer_device *peer_device;
5109 	enum drbd_conns oc;
5110 	int vnr;
5111 
5112 	if (connection->cstate == C_STANDALONE)
5113 		return;
5114 
5115 	/* We are about to start the cleanup after connection loss.
5116 	 * Make sure drbd_make_request knows about that.
5117 	 * Usually we should be in some network failure state already,
5118 	 * but just in case we are not, we fix it up here.
5119 	 */
5120 	conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD);
5121 
5122 	/* ack_receiver does not clean up anything. it must not interfere, either */
5123 	drbd_thread_stop(&connection->ack_receiver);
5124 	if (connection->ack_sender) {
5125 		destroy_workqueue(connection->ack_sender);
5126 		connection->ack_sender = NULL;
5127 	}
5128 	drbd_free_sock(connection);
5129 
5130 	rcu_read_lock();
5131 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
5132 		struct drbd_device *device = peer_device->device;
5133 		kref_get(&device->kref);
5134 		rcu_read_unlock();
5135 		drbd_disconnected(peer_device);
5136 		kref_put(&device->kref, drbd_destroy_device);
5137 		rcu_read_lock();
5138 	}
5139 	rcu_read_unlock();
5140 
5141 	if (!list_empty(&connection->current_epoch->list))
5142 		drbd_err(connection, "ASSERTION FAILED: connection->current_epoch->list not empty\n");
5143 	/* ok, no more ee's on the fly, it is safe to reset the epoch_size */
5144 	atomic_set(&connection->current_epoch->epoch_size, 0);
5145 	connection->send.seen_any_write_yet = false;
5146 
5147 	drbd_info(connection, "Connection closed\n");
5148 
5149 	if (conn_highest_role(connection) == R_PRIMARY && conn_highest_pdsk(connection) >= D_UNKNOWN)
5150 		conn_try_outdate_peer_async(connection);
5151 
5152 	spin_lock_irq(&connection->resource->req_lock);
5153 	oc = connection->cstate;
5154 	if (oc >= C_UNCONNECTED)
5155 		_conn_request_state(connection, NS(conn, C_UNCONNECTED), CS_VERBOSE);
5156 
5157 	spin_unlock_irq(&connection->resource->req_lock);
5158 
5159 	if (oc == C_DISCONNECTING)
5160 		conn_request_state(connection, NS(conn, C_STANDALONE), CS_VERBOSE | CS_HARD);
5161 }
5162 
5163 static int drbd_disconnected(struct drbd_peer_device *peer_device)
5164 {
5165 	struct drbd_device *device = peer_device->device;
5166 	unsigned int i;
5167 
5168 	/* wait for current activity to cease. */
5169 	spin_lock_irq(&device->resource->req_lock);
5170 	_drbd_wait_ee_list_empty(device, &device->active_ee);
5171 	_drbd_wait_ee_list_empty(device, &device->sync_ee);
5172 	_drbd_wait_ee_list_empty(device, &device->read_ee);
5173 	spin_unlock_irq(&device->resource->req_lock);
5174 
5175 	/* We do not have data structures that would allow us to
5176 	 * get the rs_pending_cnt down to 0 again.
5177 	 *  * On C_SYNC_TARGET we do not have any data structures describing
5178 	 *    the pending RSDataRequest's we have sent.
5179 	 *  * On C_SYNC_SOURCE there is no data structure that tracks
5180 	 *    the P_RS_DATA_REPLY blocks that we sent to the SyncTarget.
5181 	 *  And no, it is not the sum of the reference counts in the
5182 	 *  resync_LRU. The resync_LRU tracks the whole operation including
5183 	 *  the disk-IO, while the rs_pending_cnt only tracks the blocks
5184 	 *  on the fly. */
5185 	drbd_rs_cancel_all(device);
5186 	device->rs_total = 0;
5187 	device->rs_failed = 0;
5188 	atomic_set(&device->rs_pending_cnt, 0);
5189 	wake_up(&device->misc_wait);
5190 
5191 	del_timer_sync(&device->resync_timer);
5192 	resync_timer_fn(&device->resync_timer);
5193 
5194 	/* wait for all w_e_end_data_req, w_e_end_rsdata_req, w_send_barrier,
5195 	 * w_make_resync_request etc. which may still be on the worker queue
5196 	 * to be "canceled" */
5197 	drbd_flush_workqueue(&peer_device->connection->sender_work);
5198 
5199 	drbd_finish_peer_reqs(device);
5200 
5201 	/* This second workqueue flush is necessary, since drbd_finish_peer_reqs()
5202 	   might have issued a work again. The one before drbd_finish_peer_reqs() is
5203 	   necessary to reclain net_ee in drbd_finish_peer_reqs(). */
5204 	drbd_flush_workqueue(&peer_device->connection->sender_work);
5205 
5206 	/* need to do it again, drbd_finish_peer_reqs() may have populated it
5207 	 * again via drbd_try_clear_on_disk_bm(). */
5208 	drbd_rs_cancel_all(device);
5209 
5210 	kfree(device->p_uuid);
5211 	device->p_uuid = NULL;
5212 
5213 	if (!drbd_suspended(device))
5214 		tl_clear(peer_device->connection);
5215 
5216 	drbd_md_sync(device);
5217 
5218 	if (get_ldev(device)) {
5219 		drbd_bitmap_io(device, &drbd_bm_write_copy_pages,
5220 				"write from disconnected", BM_LOCKED_CHANGE_ALLOWED, NULL);
5221 		put_ldev(device);
5222 	}
5223 
5224 	/* tcp_close and release of sendpage pages can be deferred.  I don't
5225 	 * want to use SO_LINGER, because apparently it can be deferred for
5226 	 * more than 20 seconds (longest time I checked).
5227 	 *
5228 	 * Actually we don't care for exactly when the network stack does its
5229 	 * put_page(), but release our reference on these pages right here.
5230 	 */
5231 	i = drbd_free_peer_reqs(device, &device->net_ee);
5232 	if (i)
5233 		drbd_info(device, "net_ee not empty, killed %u entries\n", i);
5234 	i = atomic_read(&device->pp_in_use_by_net);
5235 	if (i)
5236 		drbd_info(device, "pp_in_use_by_net = %d, expected 0\n", i);
5237 	i = atomic_read(&device->pp_in_use);
5238 	if (i)
5239 		drbd_info(device, "pp_in_use = %d, expected 0\n", i);
5240 
5241 	D_ASSERT(device, list_empty(&device->read_ee));
5242 	D_ASSERT(device, list_empty(&device->active_ee));
5243 	D_ASSERT(device, list_empty(&device->sync_ee));
5244 	D_ASSERT(device, list_empty(&device->done_ee));
5245 
5246 	return 0;
5247 }
5248 
5249 /*
5250  * We support PRO_VERSION_MIN to PRO_VERSION_MAX. The protocol version
5251  * we can agree on is stored in agreed_pro_version.
5252  *
5253  * feature flags and the reserved array should be enough room for future
5254  * enhancements of the handshake protocol, and possible plugins...
5255  *
5256  * for now, they are expected to be zero, but ignored.
5257  */
5258 static int drbd_send_features(struct drbd_connection *connection)
5259 {
5260 	struct drbd_socket *sock;
5261 	struct p_connection_features *p;
5262 
5263 	sock = &connection->data;
5264 	p = conn_prepare_command(connection, sock);
5265 	if (!p)
5266 		return -EIO;
5267 	memset(p, 0, sizeof(*p));
5268 	p->protocol_min = cpu_to_be32(PRO_VERSION_MIN);
5269 	p->protocol_max = cpu_to_be32(PRO_VERSION_MAX);
5270 	p->feature_flags = cpu_to_be32(PRO_FEATURES);
5271 	return conn_send_command(connection, sock, P_CONNECTION_FEATURES, sizeof(*p), NULL, 0);
5272 }
5273 
5274 /*
5275  * return values:
5276  *   1 yes, we have a valid connection
5277  *   0 oops, did not work out, please try again
5278  *  -1 peer talks different language,
5279  *     no point in trying again, please go standalone.
5280  */
5281 static int drbd_do_features(struct drbd_connection *connection)
5282 {
5283 	/* ASSERT current == connection->receiver ... */
5284 	struct p_connection_features *p;
5285 	const int expect = sizeof(struct p_connection_features);
5286 	struct packet_info pi;
5287 	int err;
5288 
5289 	err = drbd_send_features(connection);
5290 	if (err)
5291 		return 0;
5292 
5293 	err = drbd_recv_header(connection, &pi);
5294 	if (err)
5295 		return 0;
5296 
5297 	if (pi.cmd != P_CONNECTION_FEATURES) {
5298 		drbd_err(connection, "expected ConnectionFeatures packet, received: %s (0x%04x)\n",
5299 			 cmdname(pi.cmd), pi.cmd);
5300 		return -1;
5301 	}
5302 
5303 	if (pi.size != expect) {
5304 		drbd_err(connection, "expected ConnectionFeatures length: %u, received: %u\n",
5305 		     expect, pi.size);
5306 		return -1;
5307 	}
5308 
5309 	p = pi.data;
5310 	err = drbd_recv_all_warn(connection, p, expect);
5311 	if (err)
5312 		return 0;
5313 
5314 	p->protocol_min = be32_to_cpu(p->protocol_min);
5315 	p->protocol_max = be32_to_cpu(p->protocol_max);
5316 	if (p->protocol_max == 0)
5317 		p->protocol_max = p->protocol_min;
5318 
5319 	if (PRO_VERSION_MAX < p->protocol_min ||
5320 	    PRO_VERSION_MIN > p->protocol_max)
5321 		goto incompat;
5322 
5323 	connection->agreed_pro_version = min_t(int, PRO_VERSION_MAX, p->protocol_max);
5324 	connection->agreed_features = PRO_FEATURES & be32_to_cpu(p->feature_flags);
5325 
5326 	drbd_info(connection, "Handshake successful: "
5327 	     "Agreed network protocol version %d\n", connection->agreed_pro_version);
5328 
5329 	drbd_info(connection, "Feature flags enabled on protocol level: 0x%x%s%s%s%s.\n",
5330 		  connection->agreed_features,
5331 		  connection->agreed_features & DRBD_FF_TRIM ? " TRIM" : "",
5332 		  connection->agreed_features & DRBD_FF_THIN_RESYNC ? " THIN_RESYNC" : "",
5333 		  connection->agreed_features & DRBD_FF_WSAME ? " WRITE_SAME" : "",
5334 		  connection->agreed_features & DRBD_FF_WZEROES ? " WRITE_ZEROES" :
5335 		  connection->agreed_features ? "" : " none");
5336 
5337 	return 1;
5338 
5339  incompat:
5340 	drbd_err(connection, "incompatible DRBD dialects: "
5341 	    "I support %d-%d, peer supports %d-%d\n",
5342 	    PRO_VERSION_MIN, PRO_VERSION_MAX,
5343 	    p->protocol_min, p->protocol_max);
5344 	return -1;
5345 }
5346 
5347 #if !defined(CONFIG_CRYPTO_HMAC) && !defined(CONFIG_CRYPTO_HMAC_MODULE)
5348 static int drbd_do_auth(struct drbd_connection *connection)
5349 {
5350 	drbd_err(connection, "This kernel was build without CONFIG_CRYPTO_HMAC.\n");
5351 	drbd_err(connection, "You need to disable 'cram-hmac-alg' in drbd.conf.\n");
5352 	return -1;
5353 }
5354 #else
5355 #define CHALLENGE_LEN 64
5356 
5357 /* Return value:
5358 	1 - auth succeeded,
5359 	0 - failed, try again (network error),
5360 	-1 - auth failed, don't try again.
5361 */
5362 
5363 static int drbd_do_auth(struct drbd_connection *connection)
5364 {
5365 	struct drbd_socket *sock;
5366 	char my_challenge[CHALLENGE_LEN];  /* 64 Bytes... */
5367 	char *response = NULL;
5368 	char *right_response = NULL;
5369 	char *peers_ch = NULL;
5370 	unsigned int key_len;
5371 	char secret[SHARED_SECRET_MAX]; /* 64 byte */
5372 	unsigned int resp_size;
5373 	struct shash_desc *desc;
5374 	struct packet_info pi;
5375 	struct net_conf *nc;
5376 	int err, rv;
5377 
5378 	/* FIXME: Put the challenge/response into the preallocated socket buffer.  */
5379 
5380 	rcu_read_lock();
5381 	nc = rcu_dereference(connection->net_conf);
5382 	key_len = strlen(nc->shared_secret);
5383 	memcpy(secret, nc->shared_secret, key_len);
5384 	rcu_read_unlock();
5385 
5386 	desc = kmalloc(sizeof(struct shash_desc) +
5387 		       crypto_shash_descsize(connection->cram_hmac_tfm),
5388 		       GFP_KERNEL);
5389 	if (!desc) {
5390 		rv = -1;
5391 		goto fail;
5392 	}
5393 	desc->tfm = connection->cram_hmac_tfm;
5394 
5395 	rv = crypto_shash_setkey(connection->cram_hmac_tfm, (u8 *)secret, key_len);
5396 	if (rv) {
5397 		drbd_err(connection, "crypto_shash_setkey() failed with %d\n", rv);
5398 		rv = -1;
5399 		goto fail;
5400 	}
5401 
5402 	get_random_bytes(my_challenge, CHALLENGE_LEN);
5403 
5404 	sock = &connection->data;
5405 	if (!conn_prepare_command(connection, sock)) {
5406 		rv = 0;
5407 		goto fail;
5408 	}
5409 	rv = !conn_send_command(connection, sock, P_AUTH_CHALLENGE, 0,
5410 				my_challenge, CHALLENGE_LEN);
5411 	if (!rv)
5412 		goto fail;
5413 
5414 	err = drbd_recv_header(connection, &pi);
5415 	if (err) {
5416 		rv = 0;
5417 		goto fail;
5418 	}
5419 
5420 	if (pi.cmd != P_AUTH_CHALLENGE) {
5421 		drbd_err(connection, "expected AuthChallenge packet, received: %s (0x%04x)\n",
5422 			 cmdname(pi.cmd), pi.cmd);
5423 		rv = -1;
5424 		goto fail;
5425 	}
5426 
5427 	if (pi.size > CHALLENGE_LEN * 2) {
5428 		drbd_err(connection, "expected AuthChallenge payload too big.\n");
5429 		rv = -1;
5430 		goto fail;
5431 	}
5432 
5433 	if (pi.size < CHALLENGE_LEN) {
5434 		drbd_err(connection, "AuthChallenge payload too small.\n");
5435 		rv = -1;
5436 		goto fail;
5437 	}
5438 
5439 	peers_ch = kmalloc(pi.size, GFP_NOIO);
5440 	if (!peers_ch) {
5441 		rv = -1;
5442 		goto fail;
5443 	}
5444 
5445 	err = drbd_recv_all_warn(connection, peers_ch, pi.size);
5446 	if (err) {
5447 		rv = 0;
5448 		goto fail;
5449 	}
5450 
5451 	if (!memcmp(my_challenge, peers_ch, CHALLENGE_LEN)) {
5452 		drbd_err(connection, "Peer presented the same challenge!\n");
5453 		rv = -1;
5454 		goto fail;
5455 	}
5456 
5457 	resp_size = crypto_shash_digestsize(connection->cram_hmac_tfm);
5458 	response = kmalloc(resp_size, GFP_NOIO);
5459 	if (!response) {
5460 		rv = -1;
5461 		goto fail;
5462 	}
5463 
5464 	rv = crypto_shash_digest(desc, peers_ch, pi.size, response);
5465 	if (rv) {
5466 		drbd_err(connection, "crypto_hash_digest() failed with %d\n", rv);
5467 		rv = -1;
5468 		goto fail;
5469 	}
5470 
5471 	if (!conn_prepare_command(connection, sock)) {
5472 		rv = 0;
5473 		goto fail;
5474 	}
5475 	rv = !conn_send_command(connection, sock, P_AUTH_RESPONSE, 0,
5476 				response, resp_size);
5477 	if (!rv)
5478 		goto fail;
5479 
5480 	err = drbd_recv_header(connection, &pi);
5481 	if (err) {
5482 		rv = 0;
5483 		goto fail;
5484 	}
5485 
5486 	if (pi.cmd != P_AUTH_RESPONSE) {
5487 		drbd_err(connection, "expected AuthResponse packet, received: %s (0x%04x)\n",
5488 			 cmdname(pi.cmd), pi.cmd);
5489 		rv = 0;
5490 		goto fail;
5491 	}
5492 
5493 	if (pi.size != resp_size) {
5494 		drbd_err(connection, "expected AuthResponse payload of wrong size\n");
5495 		rv = 0;
5496 		goto fail;
5497 	}
5498 
5499 	err = drbd_recv_all_warn(connection, response , resp_size);
5500 	if (err) {
5501 		rv = 0;
5502 		goto fail;
5503 	}
5504 
5505 	right_response = kmalloc(resp_size, GFP_NOIO);
5506 	if (!right_response) {
5507 		rv = -1;
5508 		goto fail;
5509 	}
5510 
5511 	rv = crypto_shash_digest(desc, my_challenge, CHALLENGE_LEN,
5512 				 right_response);
5513 	if (rv) {
5514 		drbd_err(connection, "crypto_hash_digest() failed with %d\n", rv);
5515 		rv = -1;
5516 		goto fail;
5517 	}
5518 
5519 	rv = !memcmp(response, right_response, resp_size);
5520 
5521 	if (rv)
5522 		drbd_info(connection, "Peer authenticated using %d bytes HMAC\n",
5523 		     resp_size);
5524 	else
5525 		rv = -1;
5526 
5527  fail:
5528 	kfree(peers_ch);
5529 	kfree(response);
5530 	kfree(right_response);
5531 	if (desc) {
5532 		shash_desc_zero(desc);
5533 		kfree(desc);
5534 	}
5535 
5536 	return rv;
5537 }
5538 #endif
5539 
5540 int drbd_receiver(struct drbd_thread *thi)
5541 {
5542 	struct drbd_connection *connection = thi->connection;
5543 	int h;
5544 
5545 	drbd_info(connection, "receiver (re)started\n");
5546 
5547 	do {
5548 		h = conn_connect(connection);
5549 		if (h == 0) {
5550 			conn_disconnect(connection);
5551 			schedule_timeout_interruptible(HZ);
5552 		}
5553 		if (h == -1) {
5554 			drbd_warn(connection, "Discarding network configuration.\n");
5555 			conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
5556 		}
5557 	} while (h == 0);
5558 
5559 	if (h > 0) {
5560 		blk_start_plug(&connection->receiver_plug);
5561 		drbdd(connection);
5562 		blk_finish_plug(&connection->receiver_plug);
5563 	}
5564 
5565 	conn_disconnect(connection);
5566 
5567 	drbd_info(connection, "receiver terminated\n");
5568 	return 0;
5569 }
5570 
5571 /* ********* acknowledge sender ******** */
5572 
5573 static int got_conn_RqSReply(struct drbd_connection *connection, struct packet_info *pi)
5574 {
5575 	struct p_req_state_reply *p = pi->data;
5576 	int retcode = be32_to_cpu(p->retcode);
5577 
5578 	if (retcode >= SS_SUCCESS) {
5579 		set_bit(CONN_WD_ST_CHG_OKAY, &connection->flags);
5580 	} else {
5581 		set_bit(CONN_WD_ST_CHG_FAIL, &connection->flags);
5582 		drbd_err(connection, "Requested state change failed by peer: %s (%d)\n",
5583 			 drbd_set_st_err_str(retcode), retcode);
5584 	}
5585 	wake_up(&connection->ping_wait);
5586 
5587 	return 0;
5588 }
5589 
5590 static int got_RqSReply(struct drbd_connection *connection, struct packet_info *pi)
5591 {
5592 	struct drbd_peer_device *peer_device;
5593 	struct drbd_device *device;
5594 	struct p_req_state_reply *p = pi->data;
5595 	int retcode = be32_to_cpu(p->retcode);
5596 
5597 	peer_device = conn_peer_device(connection, pi->vnr);
5598 	if (!peer_device)
5599 		return -EIO;
5600 	device = peer_device->device;
5601 
5602 	if (test_bit(CONN_WD_ST_CHG_REQ, &connection->flags)) {
5603 		D_ASSERT(device, connection->agreed_pro_version < 100);
5604 		return got_conn_RqSReply(connection, pi);
5605 	}
5606 
5607 	if (retcode >= SS_SUCCESS) {
5608 		set_bit(CL_ST_CHG_SUCCESS, &device->flags);
5609 	} else {
5610 		set_bit(CL_ST_CHG_FAIL, &device->flags);
5611 		drbd_err(device, "Requested state change failed by peer: %s (%d)\n",
5612 			drbd_set_st_err_str(retcode), retcode);
5613 	}
5614 	wake_up(&device->state_wait);
5615 
5616 	return 0;
5617 }
5618 
5619 static int got_Ping(struct drbd_connection *connection, struct packet_info *pi)
5620 {
5621 	return drbd_send_ping_ack(connection);
5622 
5623 }
5624 
5625 static int got_PingAck(struct drbd_connection *connection, struct packet_info *pi)
5626 {
5627 	/* restore idle timeout */
5628 	connection->meta.socket->sk->sk_rcvtimeo = connection->net_conf->ping_int*HZ;
5629 	if (!test_and_set_bit(GOT_PING_ACK, &connection->flags))
5630 		wake_up(&connection->ping_wait);
5631 
5632 	return 0;
5633 }
5634 
5635 static int got_IsInSync(struct drbd_connection *connection, struct packet_info *pi)
5636 {
5637 	struct drbd_peer_device *peer_device;
5638 	struct drbd_device *device;
5639 	struct p_block_ack *p = pi->data;
5640 	sector_t sector = be64_to_cpu(p->sector);
5641 	int blksize = be32_to_cpu(p->blksize);
5642 
5643 	peer_device = conn_peer_device(connection, pi->vnr);
5644 	if (!peer_device)
5645 		return -EIO;
5646 	device = peer_device->device;
5647 
5648 	D_ASSERT(device, peer_device->connection->agreed_pro_version >= 89);
5649 
5650 	update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5651 
5652 	if (get_ldev(device)) {
5653 		drbd_rs_complete_io(device, sector);
5654 		drbd_set_in_sync(peer_device, sector, blksize);
5655 		/* rs_same_csums is supposed to count in units of BM_BLOCK_SIZE */
5656 		device->rs_same_csum += (blksize >> BM_BLOCK_SHIFT);
5657 		put_ldev(device);
5658 	}
5659 	dec_rs_pending(peer_device);
5660 	atomic_add(blksize >> 9, &device->rs_sect_in);
5661 
5662 	return 0;
5663 }
5664 
5665 static int
5666 validate_req_change_req_state(struct drbd_peer_device *peer_device, u64 id, sector_t sector,
5667 			      struct rb_root *root, const char *func,
5668 			      enum drbd_req_event what, bool missing_ok)
5669 {
5670 	struct drbd_device *device = peer_device->device;
5671 	struct drbd_request *req;
5672 	struct bio_and_error m;
5673 
5674 	spin_lock_irq(&device->resource->req_lock);
5675 	req = find_request(device, root, id, sector, missing_ok, func);
5676 	if (unlikely(!req)) {
5677 		spin_unlock_irq(&device->resource->req_lock);
5678 		return -EIO;
5679 	}
5680 	__req_mod(req, what, peer_device, &m);
5681 	spin_unlock_irq(&device->resource->req_lock);
5682 
5683 	if (m.bio)
5684 		complete_master_bio(device, &m);
5685 	return 0;
5686 }
5687 
5688 static int got_BlockAck(struct drbd_connection *connection, struct packet_info *pi)
5689 {
5690 	struct drbd_peer_device *peer_device;
5691 	struct drbd_device *device;
5692 	struct p_block_ack *p = pi->data;
5693 	sector_t sector = be64_to_cpu(p->sector);
5694 	int blksize = be32_to_cpu(p->blksize);
5695 	enum drbd_req_event what;
5696 
5697 	peer_device = conn_peer_device(connection, pi->vnr);
5698 	if (!peer_device)
5699 		return -EIO;
5700 	device = peer_device->device;
5701 
5702 	update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5703 
5704 	if (p->block_id == ID_SYNCER) {
5705 		drbd_set_in_sync(peer_device, sector, blksize);
5706 		dec_rs_pending(peer_device);
5707 		return 0;
5708 	}
5709 	switch (pi->cmd) {
5710 	case P_RS_WRITE_ACK:
5711 		what = WRITE_ACKED_BY_PEER_AND_SIS;
5712 		break;
5713 	case P_WRITE_ACK:
5714 		what = WRITE_ACKED_BY_PEER;
5715 		break;
5716 	case P_RECV_ACK:
5717 		what = RECV_ACKED_BY_PEER;
5718 		break;
5719 	case P_SUPERSEDED:
5720 		what = CONFLICT_RESOLVED;
5721 		break;
5722 	case P_RETRY_WRITE:
5723 		what = POSTPONE_WRITE;
5724 		break;
5725 	default:
5726 		BUG();
5727 	}
5728 
5729 	return validate_req_change_req_state(peer_device, p->block_id, sector,
5730 					     &device->write_requests, __func__,
5731 					     what, false);
5732 }
5733 
5734 static int got_NegAck(struct drbd_connection *connection, struct packet_info *pi)
5735 {
5736 	struct drbd_peer_device *peer_device;
5737 	struct drbd_device *device;
5738 	struct p_block_ack *p = pi->data;
5739 	sector_t sector = be64_to_cpu(p->sector);
5740 	int size = be32_to_cpu(p->blksize);
5741 	int err;
5742 
5743 	peer_device = conn_peer_device(connection, pi->vnr);
5744 	if (!peer_device)
5745 		return -EIO;
5746 	device = peer_device->device;
5747 
5748 	update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5749 
5750 	if (p->block_id == ID_SYNCER) {
5751 		dec_rs_pending(peer_device);
5752 		drbd_rs_failed_io(peer_device, sector, size);
5753 		return 0;
5754 	}
5755 
5756 	err = validate_req_change_req_state(peer_device, p->block_id, sector,
5757 					    &device->write_requests, __func__,
5758 					    NEG_ACKED, true);
5759 	if (err) {
5760 		/* Protocol A has no P_WRITE_ACKs, but has P_NEG_ACKs.
5761 		   The master bio might already be completed, therefore the
5762 		   request is no longer in the collision hash. */
5763 		/* In Protocol B we might already have got a P_RECV_ACK
5764 		   but then get a P_NEG_ACK afterwards. */
5765 		drbd_set_out_of_sync(peer_device, sector, size);
5766 	}
5767 	return 0;
5768 }
5769 
5770 static int got_NegDReply(struct drbd_connection *connection, struct packet_info *pi)
5771 {
5772 	struct drbd_peer_device *peer_device;
5773 	struct drbd_device *device;
5774 	struct p_block_ack *p = pi->data;
5775 	sector_t sector = be64_to_cpu(p->sector);
5776 
5777 	peer_device = conn_peer_device(connection, pi->vnr);
5778 	if (!peer_device)
5779 		return -EIO;
5780 	device = peer_device->device;
5781 
5782 	update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5783 
5784 	drbd_err(device, "Got NegDReply; Sector %llus, len %u.\n",
5785 	    (unsigned long long)sector, be32_to_cpu(p->blksize));
5786 
5787 	return validate_req_change_req_state(peer_device, p->block_id, sector,
5788 					     &device->read_requests, __func__,
5789 					     NEG_ACKED, false);
5790 }
5791 
5792 static int got_NegRSDReply(struct drbd_connection *connection, struct packet_info *pi)
5793 {
5794 	struct drbd_peer_device *peer_device;
5795 	struct drbd_device *device;
5796 	sector_t sector;
5797 	int size;
5798 	struct p_block_ack *p = pi->data;
5799 
5800 	peer_device = conn_peer_device(connection, pi->vnr);
5801 	if (!peer_device)
5802 		return -EIO;
5803 	device = peer_device->device;
5804 
5805 	sector = be64_to_cpu(p->sector);
5806 	size = be32_to_cpu(p->blksize);
5807 
5808 	update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5809 
5810 	dec_rs_pending(peer_device);
5811 
5812 	if (get_ldev_if_state(device, D_FAILED)) {
5813 		drbd_rs_complete_io(device, sector);
5814 		switch (pi->cmd) {
5815 		case P_NEG_RS_DREPLY:
5816 			drbd_rs_failed_io(peer_device, sector, size);
5817 			break;
5818 		case P_RS_CANCEL:
5819 			break;
5820 		default:
5821 			BUG();
5822 		}
5823 		put_ldev(device);
5824 	}
5825 
5826 	return 0;
5827 }
5828 
5829 static int got_BarrierAck(struct drbd_connection *connection, struct packet_info *pi)
5830 {
5831 	struct p_barrier_ack *p = pi->data;
5832 	struct drbd_peer_device *peer_device;
5833 	int vnr;
5834 
5835 	tl_release(connection, p->barrier, be32_to_cpu(p->set_size));
5836 
5837 	rcu_read_lock();
5838 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
5839 		struct drbd_device *device = peer_device->device;
5840 
5841 		if (device->state.conn == C_AHEAD &&
5842 		    atomic_read(&device->ap_in_flight) == 0 &&
5843 		    !test_and_set_bit(AHEAD_TO_SYNC_SOURCE, &device->flags)) {
5844 			device->start_resync_timer.expires = jiffies + HZ;
5845 			add_timer(&device->start_resync_timer);
5846 		}
5847 	}
5848 	rcu_read_unlock();
5849 
5850 	return 0;
5851 }
5852 
5853 static int got_OVResult(struct drbd_connection *connection, struct packet_info *pi)
5854 {
5855 	struct drbd_peer_device *peer_device;
5856 	struct drbd_device *device;
5857 	struct p_block_ack *p = pi->data;
5858 	struct drbd_device_work *dw;
5859 	sector_t sector;
5860 	int size;
5861 
5862 	peer_device = conn_peer_device(connection, pi->vnr);
5863 	if (!peer_device)
5864 		return -EIO;
5865 	device = peer_device->device;
5866 
5867 	sector = be64_to_cpu(p->sector);
5868 	size = be32_to_cpu(p->blksize);
5869 
5870 	update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5871 
5872 	if (be64_to_cpu(p->block_id) == ID_OUT_OF_SYNC)
5873 		drbd_ov_out_of_sync_found(peer_device, sector, size);
5874 	else
5875 		ov_out_of_sync_print(peer_device);
5876 
5877 	if (!get_ldev(device))
5878 		return 0;
5879 
5880 	drbd_rs_complete_io(device, sector);
5881 	dec_rs_pending(peer_device);
5882 
5883 	--device->ov_left;
5884 
5885 	/* let's advance progress step marks only for every other megabyte */
5886 	if ((device->ov_left & 0x200) == 0x200)
5887 		drbd_advance_rs_marks(peer_device, device->ov_left);
5888 
5889 	if (device->ov_left == 0) {
5890 		dw = kmalloc(sizeof(*dw), GFP_NOIO);
5891 		if (dw) {
5892 			dw->w.cb = w_ov_finished;
5893 			dw->device = device;
5894 			drbd_queue_work(&peer_device->connection->sender_work, &dw->w);
5895 		} else {
5896 			drbd_err(device, "kmalloc(dw) failed.");
5897 			ov_out_of_sync_print(peer_device);
5898 			drbd_resync_finished(peer_device);
5899 		}
5900 	}
5901 	put_ldev(device);
5902 	return 0;
5903 }
5904 
5905 static int got_skip(struct drbd_connection *connection, struct packet_info *pi)
5906 {
5907 	return 0;
5908 }
5909 
5910 struct meta_sock_cmd {
5911 	size_t pkt_size;
5912 	int (*fn)(struct drbd_connection *connection, struct packet_info *);
5913 };
5914 
5915 static void set_rcvtimeo(struct drbd_connection *connection, bool ping_timeout)
5916 {
5917 	long t;
5918 	struct net_conf *nc;
5919 
5920 	rcu_read_lock();
5921 	nc = rcu_dereference(connection->net_conf);
5922 	t = ping_timeout ? nc->ping_timeo : nc->ping_int;
5923 	rcu_read_unlock();
5924 
5925 	t *= HZ;
5926 	if (ping_timeout)
5927 		t /= 10;
5928 
5929 	connection->meta.socket->sk->sk_rcvtimeo = t;
5930 }
5931 
5932 static void set_ping_timeout(struct drbd_connection *connection)
5933 {
5934 	set_rcvtimeo(connection, 1);
5935 }
5936 
5937 static void set_idle_timeout(struct drbd_connection *connection)
5938 {
5939 	set_rcvtimeo(connection, 0);
5940 }
5941 
5942 static struct meta_sock_cmd ack_receiver_tbl[] = {
5943 	[P_PING]	    = { 0, got_Ping },
5944 	[P_PING_ACK]	    = { 0, got_PingAck },
5945 	[P_RECV_ACK]	    = { sizeof(struct p_block_ack), got_BlockAck },
5946 	[P_WRITE_ACK]	    = { sizeof(struct p_block_ack), got_BlockAck },
5947 	[P_RS_WRITE_ACK]    = { sizeof(struct p_block_ack), got_BlockAck },
5948 	[P_SUPERSEDED]   = { sizeof(struct p_block_ack), got_BlockAck },
5949 	[P_NEG_ACK]	    = { sizeof(struct p_block_ack), got_NegAck },
5950 	[P_NEG_DREPLY]	    = { sizeof(struct p_block_ack), got_NegDReply },
5951 	[P_NEG_RS_DREPLY]   = { sizeof(struct p_block_ack), got_NegRSDReply },
5952 	[P_OV_RESULT]	    = { sizeof(struct p_block_ack), got_OVResult },
5953 	[P_BARRIER_ACK]	    = { sizeof(struct p_barrier_ack), got_BarrierAck },
5954 	[P_STATE_CHG_REPLY] = { sizeof(struct p_req_state_reply), got_RqSReply },
5955 	[P_RS_IS_IN_SYNC]   = { sizeof(struct p_block_ack), got_IsInSync },
5956 	[P_DELAY_PROBE]     = { sizeof(struct p_delay_probe93), got_skip },
5957 	[P_RS_CANCEL]       = { sizeof(struct p_block_ack), got_NegRSDReply },
5958 	[P_CONN_ST_CHG_REPLY]={ sizeof(struct p_req_state_reply), got_conn_RqSReply },
5959 	[P_RETRY_WRITE]	    = { sizeof(struct p_block_ack), got_BlockAck },
5960 };
5961 
5962 int drbd_ack_receiver(struct drbd_thread *thi)
5963 {
5964 	struct drbd_connection *connection = thi->connection;
5965 	struct meta_sock_cmd *cmd = NULL;
5966 	struct packet_info pi;
5967 	unsigned long pre_recv_jif;
5968 	int rv;
5969 	void *buf    = connection->meta.rbuf;
5970 	int received = 0;
5971 	unsigned int header_size = drbd_header_size(connection);
5972 	int expect   = header_size;
5973 	bool ping_timeout_active = false;
5974 
5975 	sched_set_fifo_low(current);
5976 
5977 	while (get_t_state(thi) == RUNNING) {
5978 		drbd_thread_current_set_cpu(thi);
5979 
5980 		conn_reclaim_net_peer_reqs(connection);
5981 
5982 		if (test_and_clear_bit(SEND_PING, &connection->flags)) {
5983 			if (drbd_send_ping(connection)) {
5984 				drbd_err(connection, "drbd_send_ping has failed\n");
5985 				goto reconnect;
5986 			}
5987 			set_ping_timeout(connection);
5988 			ping_timeout_active = true;
5989 		}
5990 
5991 		pre_recv_jif = jiffies;
5992 		rv = drbd_recv_short(connection->meta.socket, buf, expect-received, 0);
5993 
5994 		/* Note:
5995 		 * -EINTR	 (on meta) we got a signal
5996 		 * -EAGAIN	 (on meta) rcvtimeo expired
5997 		 * -ECONNRESET	 other side closed the connection
5998 		 * -ERESTARTSYS  (on data) we got a signal
5999 		 * rv <  0	 other than above: unexpected error!
6000 		 * rv == expected: full header or command
6001 		 * rv <  expected: "woken" by signal during receive
6002 		 * rv == 0	 : "connection shut down by peer"
6003 		 */
6004 		if (likely(rv > 0)) {
6005 			received += rv;
6006 			buf	 += rv;
6007 		} else if (rv == 0) {
6008 			if (test_bit(DISCONNECT_SENT, &connection->flags)) {
6009 				long t;
6010 				rcu_read_lock();
6011 				t = rcu_dereference(connection->net_conf)->ping_timeo * HZ/10;
6012 				rcu_read_unlock();
6013 
6014 				t = wait_event_timeout(connection->ping_wait,
6015 						       connection->cstate < C_WF_REPORT_PARAMS,
6016 						       t);
6017 				if (t)
6018 					break;
6019 			}
6020 			drbd_err(connection, "meta connection shut down by peer.\n");
6021 			goto reconnect;
6022 		} else if (rv == -EAGAIN) {
6023 			/* If the data socket received something meanwhile,
6024 			 * that is good enough: peer is still alive. */
6025 			if (time_after(connection->last_received, pre_recv_jif))
6026 				continue;
6027 			if (ping_timeout_active) {
6028 				drbd_err(connection, "PingAck did not arrive in time.\n");
6029 				goto reconnect;
6030 			}
6031 			set_bit(SEND_PING, &connection->flags);
6032 			continue;
6033 		} else if (rv == -EINTR) {
6034 			/* maybe drbd_thread_stop(): the while condition will notice.
6035 			 * maybe woken for send_ping: we'll send a ping above,
6036 			 * and change the rcvtimeo */
6037 			flush_signals(current);
6038 			continue;
6039 		} else {
6040 			drbd_err(connection, "sock_recvmsg returned %d\n", rv);
6041 			goto reconnect;
6042 		}
6043 
6044 		if (received == expect && cmd == NULL) {
6045 			if (decode_header(connection, connection->meta.rbuf, &pi))
6046 				goto reconnect;
6047 			cmd = &ack_receiver_tbl[pi.cmd];
6048 			if (pi.cmd >= ARRAY_SIZE(ack_receiver_tbl) || !cmd->fn) {
6049 				drbd_err(connection, "Unexpected meta packet %s (0x%04x)\n",
6050 					 cmdname(pi.cmd), pi.cmd);
6051 				goto disconnect;
6052 			}
6053 			expect = header_size + cmd->pkt_size;
6054 			if (pi.size != expect - header_size) {
6055 				drbd_err(connection, "Wrong packet size on meta (c: %d, l: %d)\n",
6056 					pi.cmd, pi.size);
6057 				goto reconnect;
6058 			}
6059 		}
6060 		if (received == expect) {
6061 			bool err;
6062 
6063 			err = cmd->fn(connection, &pi);
6064 			if (err) {
6065 				drbd_err(connection, "%ps failed\n", cmd->fn);
6066 				goto reconnect;
6067 			}
6068 
6069 			connection->last_received = jiffies;
6070 
6071 			if (cmd == &ack_receiver_tbl[P_PING_ACK]) {
6072 				set_idle_timeout(connection);
6073 				ping_timeout_active = false;
6074 			}
6075 
6076 			buf	 = connection->meta.rbuf;
6077 			received = 0;
6078 			expect	 = header_size;
6079 			cmd	 = NULL;
6080 		}
6081 	}
6082 
6083 	if (0) {
6084 reconnect:
6085 		conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD);
6086 		conn_md_sync(connection);
6087 	}
6088 	if (0) {
6089 disconnect:
6090 		conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
6091 	}
6092 
6093 	drbd_info(connection, "ack_receiver terminated\n");
6094 
6095 	return 0;
6096 }
6097 
6098 void drbd_send_acks_wf(struct work_struct *ws)
6099 {
6100 	struct drbd_peer_device *peer_device =
6101 		container_of(ws, struct drbd_peer_device, send_acks_work);
6102 	struct drbd_connection *connection = peer_device->connection;
6103 	struct drbd_device *device = peer_device->device;
6104 	struct net_conf *nc;
6105 	int tcp_cork, err;
6106 
6107 	rcu_read_lock();
6108 	nc = rcu_dereference(connection->net_conf);
6109 	tcp_cork = nc->tcp_cork;
6110 	rcu_read_unlock();
6111 
6112 	if (tcp_cork)
6113 		tcp_sock_set_cork(connection->meta.socket->sk, true);
6114 
6115 	err = drbd_finish_peer_reqs(device);
6116 	kref_put(&device->kref, drbd_destroy_device);
6117 	/* get is in drbd_endio_write_sec_final(). That is necessary to keep the
6118 	   struct work_struct send_acks_work alive, which is in the peer_device object */
6119 
6120 	if (err) {
6121 		conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD);
6122 		return;
6123 	}
6124 
6125 	if (tcp_cork)
6126 		tcp_sock_set_cork(connection->meta.socket->sk, false);
6127 
6128 	return;
6129 }
6130