1 /* 2 drbd_receiver.c 3 4 This file is part of DRBD by Philipp Reisner and Lars Ellenberg. 5 6 Copyright (C) 2001-2008, LINBIT Information Technologies GmbH. 7 Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>. 8 Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>. 9 10 drbd is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation; either version 2, or (at your option) 13 any later version. 14 15 drbd is distributed in the hope that it will be useful, 16 but WITHOUT ANY WARRANTY; without even the implied warranty of 17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 GNU General Public License for more details. 19 20 You should have received a copy of the GNU General Public License 21 along with drbd; see the file COPYING. If not, write to 22 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 23 */ 24 25 26 #include <linux/module.h> 27 28 #include <linux/uaccess.h> 29 #include <net/sock.h> 30 31 #include <linux/drbd.h> 32 #include <linux/fs.h> 33 #include <linux/file.h> 34 #include <linux/in.h> 35 #include <linux/mm.h> 36 #include <linux/memcontrol.h> 37 #include <linux/mm_inline.h> 38 #include <linux/slab.h> 39 #include <uapi/linux/sched/types.h> 40 #include <linux/sched/signal.h> 41 #include <linux/pkt_sched.h> 42 #define __KERNEL_SYSCALLS__ 43 #include <linux/unistd.h> 44 #include <linux/vmalloc.h> 45 #include <linux/random.h> 46 #include <linux/string.h> 47 #include <linux/scatterlist.h> 48 #include "drbd_int.h" 49 #include "drbd_protocol.h" 50 #include "drbd_req.h" 51 #include "drbd_vli.h" 52 53 #define PRO_FEATURES (DRBD_FF_TRIM|DRBD_FF_THIN_RESYNC|DRBD_FF_WSAME) 54 55 struct packet_info { 56 enum drbd_packet cmd; 57 unsigned int size; 58 unsigned int vnr; 59 void *data; 60 }; 61 62 enum finish_epoch { 63 FE_STILL_LIVE, 64 FE_DESTROYED, 65 FE_RECYCLED, 66 }; 67 68 static int drbd_do_features(struct drbd_connection *connection); 69 static int drbd_do_auth(struct drbd_connection *connection); 70 static int drbd_disconnected(struct drbd_peer_device *); 71 static void conn_wait_active_ee_empty(struct drbd_connection *connection); 72 static enum finish_epoch drbd_may_finish_epoch(struct drbd_connection *, struct drbd_epoch *, enum epoch_event); 73 static int e_end_block(struct drbd_work *, int); 74 75 76 #define GFP_TRY (__GFP_HIGHMEM | __GFP_NOWARN) 77 78 /* 79 * some helper functions to deal with single linked page lists, 80 * page->private being our "next" pointer. 81 */ 82 83 /* If at least n pages are linked at head, get n pages off. 84 * Otherwise, don't modify head, and return NULL. 85 * Locking is the responsibility of the caller. 86 */ 87 static struct page *page_chain_del(struct page **head, int n) 88 { 89 struct page *page; 90 struct page *tmp; 91 92 BUG_ON(!n); 93 BUG_ON(!head); 94 95 page = *head; 96 97 if (!page) 98 return NULL; 99 100 while (page) { 101 tmp = page_chain_next(page); 102 if (--n == 0) 103 break; /* found sufficient pages */ 104 if (tmp == NULL) 105 /* insufficient pages, don't use any of them. */ 106 return NULL; 107 page = tmp; 108 } 109 110 /* add end of list marker for the returned list */ 111 set_page_private(page, 0); 112 /* actual return value, and adjustment of head */ 113 page = *head; 114 *head = tmp; 115 return page; 116 } 117 118 /* may be used outside of locks to find the tail of a (usually short) 119 * "private" page chain, before adding it back to a global chain head 120 * with page_chain_add() under a spinlock. */ 121 static struct page *page_chain_tail(struct page *page, int *len) 122 { 123 struct page *tmp; 124 int i = 1; 125 while ((tmp = page_chain_next(page))) 126 ++i, page = tmp; 127 if (len) 128 *len = i; 129 return page; 130 } 131 132 static int page_chain_free(struct page *page) 133 { 134 struct page *tmp; 135 int i = 0; 136 page_chain_for_each_safe(page, tmp) { 137 put_page(page); 138 ++i; 139 } 140 return i; 141 } 142 143 static void page_chain_add(struct page **head, 144 struct page *chain_first, struct page *chain_last) 145 { 146 #if 1 147 struct page *tmp; 148 tmp = page_chain_tail(chain_first, NULL); 149 BUG_ON(tmp != chain_last); 150 #endif 151 152 /* add chain to head */ 153 set_page_private(chain_last, (unsigned long)*head); 154 *head = chain_first; 155 } 156 157 static struct page *__drbd_alloc_pages(struct drbd_device *device, 158 unsigned int number) 159 { 160 struct page *page = NULL; 161 struct page *tmp = NULL; 162 unsigned int i = 0; 163 164 /* Yes, testing drbd_pp_vacant outside the lock is racy. 165 * So what. It saves a spin_lock. */ 166 if (drbd_pp_vacant >= number) { 167 spin_lock(&drbd_pp_lock); 168 page = page_chain_del(&drbd_pp_pool, number); 169 if (page) 170 drbd_pp_vacant -= number; 171 spin_unlock(&drbd_pp_lock); 172 if (page) 173 return page; 174 } 175 176 /* GFP_TRY, because we must not cause arbitrary write-out: in a DRBD 177 * "criss-cross" setup, that might cause write-out on some other DRBD, 178 * which in turn might block on the other node at this very place. */ 179 for (i = 0; i < number; i++) { 180 tmp = alloc_page(GFP_TRY); 181 if (!tmp) 182 break; 183 set_page_private(tmp, (unsigned long)page); 184 page = tmp; 185 } 186 187 if (i == number) 188 return page; 189 190 /* Not enough pages immediately available this time. 191 * No need to jump around here, drbd_alloc_pages will retry this 192 * function "soon". */ 193 if (page) { 194 tmp = page_chain_tail(page, NULL); 195 spin_lock(&drbd_pp_lock); 196 page_chain_add(&drbd_pp_pool, page, tmp); 197 drbd_pp_vacant += i; 198 spin_unlock(&drbd_pp_lock); 199 } 200 return NULL; 201 } 202 203 static void reclaim_finished_net_peer_reqs(struct drbd_device *device, 204 struct list_head *to_be_freed) 205 { 206 struct drbd_peer_request *peer_req, *tmp; 207 208 /* The EEs are always appended to the end of the list. Since 209 they are sent in order over the wire, they have to finish 210 in order. As soon as we see the first not finished we can 211 stop to examine the list... */ 212 213 list_for_each_entry_safe(peer_req, tmp, &device->net_ee, w.list) { 214 if (drbd_peer_req_has_active_page(peer_req)) 215 break; 216 list_move(&peer_req->w.list, to_be_freed); 217 } 218 } 219 220 static void drbd_reclaim_net_peer_reqs(struct drbd_device *device) 221 { 222 LIST_HEAD(reclaimed); 223 struct drbd_peer_request *peer_req, *t; 224 225 spin_lock_irq(&device->resource->req_lock); 226 reclaim_finished_net_peer_reqs(device, &reclaimed); 227 spin_unlock_irq(&device->resource->req_lock); 228 list_for_each_entry_safe(peer_req, t, &reclaimed, w.list) 229 drbd_free_net_peer_req(device, peer_req); 230 } 231 232 static void conn_reclaim_net_peer_reqs(struct drbd_connection *connection) 233 { 234 struct drbd_peer_device *peer_device; 235 int vnr; 236 237 rcu_read_lock(); 238 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 239 struct drbd_device *device = peer_device->device; 240 if (!atomic_read(&device->pp_in_use_by_net)) 241 continue; 242 243 kref_get(&device->kref); 244 rcu_read_unlock(); 245 drbd_reclaim_net_peer_reqs(device); 246 kref_put(&device->kref, drbd_destroy_device); 247 rcu_read_lock(); 248 } 249 rcu_read_unlock(); 250 } 251 252 /** 253 * drbd_alloc_pages() - Returns @number pages, retries forever (or until signalled) 254 * @device: DRBD device. 255 * @number: number of pages requested 256 * @retry: whether to retry, if not enough pages are available right now 257 * 258 * Tries to allocate number pages, first from our own page pool, then from 259 * the kernel. 260 * Possibly retry until DRBD frees sufficient pages somewhere else. 261 * 262 * If this allocation would exceed the max_buffers setting, we throttle 263 * allocation (schedule_timeout) to give the system some room to breathe. 264 * 265 * We do not use max-buffers as hard limit, because it could lead to 266 * congestion and further to a distributed deadlock during online-verify or 267 * (checksum based) resync, if the max-buffers, socket buffer sizes and 268 * resync-rate settings are mis-configured. 269 * 270 * Returns a page chain linked via page->private. 271 */ 272 struct page *drbd_alloc_pages(struct drbd_peer_device *peer_device, unsigned int number, 273 bool retry) 274 { 275 struct drbd_device *device = peer_device->device; 276 struct page *page = NULL; 277 struct net_conf *nc; 278 DEFINE_WAIT(wait); 279 unsigned int mxb; 280 281 rcu_read_lock(); 282 nc = rcu_dereference(peer_device->connection->net_conf); 283 mxb = nc ? nc->max_buffers : 1000000; 284 rcu_read_unlock(); 285 286 if (atomic_read(&device->pp_in_use) < mxb) 287 page = __drbd_alloc_pages(device, number); 288 289 /* Try to keep the fast path fast, but occasionally we need 290 * to reclaim the pages we lended to the network stack. */ 291 if (page && atomic_read(&device->pp_in_use_by_net) > 512) 292 drbd_reclaim_net_peer_reqs(device); 293 294 while (page == NULL) { 295 prepare_to_wait(&drbd_pp_wait, &wait, TASK_INTERRUPTIBLE); 296 297 drbd_reclaim_net_peer_reqs(device); 298 299 if (atomic_read(&device->pp_in_use) < mxb) { 300 page = __drbd_alloc_pages(device, number); 301 if (page) 302 break; 303 } 304 305 if (!retry) 306 break; 307 308 if (signal_pending(current)) { 309 drbd_warn(device, "drbd_alloc_pages interrupted!\n"); 310 break; 311 } 312 313 if (schedule_timeout(HZ/10) == 0) 314 mxb = UINT_MAX; 315 } 316 finish_wait(&drbd_pp_wait, &wait); 317 318 if (page) 319 atomic_add(number, &device->pp_in_use); 320 return page; 321 } 322 323 /* Must not be used from irq, as that may deadlock: see drbd_alloc_pages. 324 * Is also used from inside an other spin_lock_irq(&resource->req_lock); 325 * Either links the page chain back to the global pool, 326 * or returns all pages to the system. */ 327 static void drbd_free_pages(struct drbd_device *device, struct page *page, int is_net) 328 { 329 atomic_t *a = is_net ? &device->pp_in_use_by_net : &device->pp_in_use; 330 int i; 331 332 if (page == NULL) 333 return; 334 335 if (drbd_pp_vacant > (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * minor_count) 336 i = page_chain_free(page); 337 else { 338 struct page *tmp; 339 tmp = page_chain_tail(page, &i); 340 spin_lock(&drbd_pp_lock); 341 page_chain_add(&drbd_pp_pool, page, tmp); 342 drbd_pp_vacant += i; 343 spin_unlock(&drbd_pp_lock); 344 } 345 i = atomic_sub_return(i, a); 346 if (i < 0) 347 drbd_warn(device, "ASSERTION FAILED: %s: %d < 0\n", 348 is_net ? "pp_in_use_by_net" : "pp_in_use", i); 349 wake_up(&drbd_pp_wait); 350 } 351 352 /* 353 You need to hold the req_lock: 354 _drbd_wait_ee_list_empty() 355 356 You must not have the req_lock: 357 drbd_free_peer_req() 358 drbd_alloc_peer_req() 359 drbd_free_peer_reqs() 360 drbd_ee_fix_bhs() 361 drbd_finish_peer_reqs() 362 drbd_clear_done_ee() 363 drbd_wait_ee_list_empty() 364 */ 365 366 /* normal: payload_size == request size (bi_size) 367 * w_same: payload_size == logical_block_size 368 * trim: payload_size == 0 */ 369 struct drbd_peer_request * 370 drbd_alloc_peer_req(struct drbd_peer_device *peer_device, u64 id, sector_t sector, 371 unsigned int request_size, unsigned int payload_size, gfp_t gfp_mask) __must_hold(local) 372 { 373 struct drbd_device *device = peer_device->device; 374 struct drbd_peer_request *peer_req; 375 struct page *page = NULL; 376 unsigned nr_pages = (payload_size + PAGE_SIZE -1) >> PAGE_SHIFT; 377 378 if (drbd_insert_fault(device, DRBD_FAULT_AL_EE)) 379 return NULL; 380 381 peer_req = mempool_alloc(drbd_ee_mempool, gfp_mask & ~__GFP_HIGHMEM); 382 if (!peer_req) { 383 if (!(gfp_mask & __GFP_NOWARN)) 384 drbd_err(device, "%s: allocation failed\n", __func__); 385 return NULL; 386 } 387 388 if (nr_pages) { 389 page = drbd_alloc_pages(peer_device, nr_pages, 390 gfpflags_allow_blocking(gfp_mask)); 391 if (!page) 392 goto fail; 393 } 394 395 memset(peer_req, 0, sizeof(*peer_req)); 396 INIT_LIST_HEAD(&peer_req->w.list); 397 drbd_clear_interval(&peer_req->i); 398 peer_req->i.size = request_size; 399 peer_req->i.sector = sector; 400 peer_req->submit_jif = jiffies; 401 peer_req->peer_device = peer_device; 402 peer_req->pages = page; 403 /* 404 * The block_id is opaque to the receiver. It is not endianness 405 * converted, and sent back to the sender unchanged. 406 */ 407 peer_req->block_id = id; 408 409 return peer_req; 410 411 fail: 412 mempool_free(peer_req, drbd_ee_mempool); 413 return NULL; 414 } 415 416 void __drbd_free_peer_req(struct drbd_device *device, struct drbd_peer_request *peer_req, 417 int is_net) 418 { 419 might_sleep(); 420 if (peer_req->flags & EE_HAS_DIGEST) 421 kfree(peer_req->digest); 422 drbd_free_pages(device, peer_req->pages, is_net); 423 D_ASSERT(device, atomic_read(&peer_req->pending_bios) == 0); 424 D_ASSERT(device, drbd_interval_empty(&peer_req->i)); 425 if (!expect(!(peer_req->flags & EE_CALL_AL_COMPLETE_IO))) { 426 peer_req->flags &= ~EE_CALL_AL_COMPLETE_IO; 427 drbd_al_complete_io(device, &peer_req->i); 428 } 429 mempool_free(peer_req, drbd_ee_mempool); 430 } 431 432 int drbd_free_peer_reqs(struct drbd_device *device, struct list_head *list) 433 { 434 LIST_HEAD(work_list); 435 struct drbd_peer_request *peer_req, *t; 436 int count = 0; 437 int is_net = list == &device->net_ee; 438 439 spin_lock_irq(&device->resource->req_lock); 440 list_splice_init(list, &work_list); 441 spin_unlock_irq(&device->resource->req_lock); 442 443 list_for_each_entry_safe(peer_req, t, &work_list, w.list) { 444 __drbd_free_peer_req(device, peer_req, is_net); 445 count++; 446 } 447 return count; 448 } 449 450 /* 451 * See also comments in _req_mod(,BARRIER_ACKED) and receive_Barrier. 452 */ 453 static int drbd_finish_peer_reqs(struct drbd_device *device) 454 { 455 LIST_HEAD(work_list); 456 LIST_HEAD(reclaimed); 457 struct drbd_peer_request *peer_req, *t; 458 int err = 0; 459 460 spin_lock_irq(&device->resource->req_lock); 461 reclaim_finished_net_peer_reqs(device, &reclaimed); 462 list_splice_init(&device->done_ee, &work_list); 463 spin_unlock_irq(&device->resource->req_lock); 464 465 list_for_each_entry_safe(peer_req, t, &reclaimed, w.list) 466 drbd_free_net_peer_req(device, peer_req); 467 468 /* possible callbacks here: 469 * e_end_block, and e_end_resync_block, e_send_superseded. 470 * all ignore the last argument. 471 */ 472 list_for_each_entry_safe(peer_req, t, &work_list, w.list) { 473 int err2; 474 475 /* list_del not necessary, next/prev members not touched */ 476 err2 = peer_req->w.cb(&peer_req->w, !!err); 477 if (!err) 478 err = err2; 479 drbd_free_peer_req(device, peer_req); 480 } 481 wake_up(&device->ee_wait); 482 483 return err; 484 } 485 486 static void _drbd_wait_ee_list_empty(struct drbd_device *device, 487 struct list_head *head) 488 { 489 DEFINE_WAIT(wait); 490 491 /* avoids spin_lock/unlock 492 * and calling prepare_to_wait in the fast path */ 493 while (!list_empty(head)) { 494 prepare_to_wait(&device->ee_wait, &wait, TASK_UNINTERRUPTIBLE); 495 spin_unlock_irq(&device->resource->req_lock); 496 io_schedule(); 497 finish_wait(&device->ee_wait, &wait); 498 spin_lock_irq(&device->resource->req_lock); 499 } 500 } 501 502 static void drbd_wait_ee_list_empty(struct drbd_device *device, 503 struct list_head *head) 504 { 505 spin_lock_irq(&device->resource->req_lock); 506 _drbd_wait_ee_list_empty(device, head); 507 spin_unlock_irq(&device->resource->req_lock); 508 } 509 510 static int drbd_recv_short(struct socket *sock, void *buf, size_t size, int flags) 511 { 512 struct kvec iov = { 513 .iov_base = buf, 514 .iov_len = size, 515 }; 516 struct msghdr msg = { 517 .msg_flags = (flags ? flags : MSG_WAITALL | MSG_NOSIGNAL) 518 }; 519 return kernel_recvmsg(sock, &msg, &iov, 1, size, msg.msg_flags); 520 } 521 522 static int drbd_recv(struct drbd_connection *connection, void *buf, size_t size) 523 { 524 int rv; 525 526 rv = drbd_recv_short(connection->data.socket, buf, size, 0); 527 528 if (rv < 0) { 529 if (rv == -ECONNRESET) 530 drbd_info(connection, "sock was reset by peer\n"); 531 else if (rv != -ERESTARTSYS) 532 drbd_err(connection, "sock_recvmsg returned %d\n", rv); 533 } else if (rv == 0) { 534 if (test_bit(DISCONNECT_SENT, &connection->flags)) { 535 long t; 536 rcu_read_lock(); 537 t = rcu_dereference(connection->net_conf)->ping_timeo * HZ/10; 538 rcu_read_unlock(); 539 540 t = wait_event_timeout(connection->ping_wait, connection->cstate < C_WF_REPORT_PARAMS, t); 541 542 if (t) 543 goto out; 544 } 545 drbd_info(connection, "sock was shut down by peer\n"); 546 } 547 548 if (rv != size) 549 conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD); 550 551 out: 552 return rv; 553 } 554 555 static int drbd_recv_all(struct drbd_connection *connection, void *buf, size_t size) 556 { 557 int err; 558 559 err = drbd_recv(connection, buf, size); 560 if (err != size) { 561 if (err >= 0) 562 err = -EIO; 563 } else 564 err = 0; 565 return err; 566 } 567 568 static int drbd_recv_all_warn(struct drbd_connection *connection, void *buf, size_t size) 569 { 570 int err; 571 572 err = drbd_recv_all(connection, buf, size); 573 if (err && !signal_pending(current)) 574 drbd_warn(connection, "short read (expected size %d)\n", (int)size); 575 return err; 576 } 577 578 /* quoting tcp(7): 579 * On individual connections, the socket buffer size must be set prior to the 580 * listen(2) or connect(2) calls in order to have it take effect. 581 * This is our wrapper to do so. 582 */ 583 static void drbd_setbufsize(struct socket *sock, unsigned int snd, 584 unsigned int rcv) 585 { 586 /* open coded SO_SNDBUF, SO_RCVBUF */ 587 if (snd) { 588 sock->sk->sk_sndbuf = snd; 589 sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 590 } 591 if (rcv) { 592 sock->sk->sk_rcvbuf = rcv; 593 sock->sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 594 } 595 } 596 597 static struct socket *drbd_try_connect(struct drbd_connection *connection) 598 { 599 const char *what; 600 struct socket *sock; 601 struct sockaddr_in6 src_in6; 602 struct sockaddr_in6 peer_in6; 603 struct net_conf *nc; 604 int err, peer_addr_len, my_addr_len; 605 int sndbuf_size, rcvbuf_size, connect_int; 606 int disconnect_on_error = 1; 607 608 rcu_read_lock(); 609 nc = rcu_dereference(connection->net_conf); 610 if (!nc) { 611 rcu_read_unlock(); 612 return NULL; 613 } 614 sndbuf_size = nc->sndbuf_size; 615 rcvbuf_size = nc->rcvbuf_size; 616 connect_int = nc->connect_int; 617 rcu_read_unlock(); 618 619 my_addr_len = min_t(int, connection->my_addr_len, sizeof(src_in6)); 620 memcpy(&src_in6, &connection->my_addr, my_addr_len); 621 622 if (((struct sockaddr *)&connection->my_addr)->sa_family == AF_INET6) 623 src_in6.sin6_port = 0; 624 else 625 ((struct sockaddr_in *)&src_in6)->sin_port = 0; /* AF_INET & AF_SCI */ 626 627 peer_addr_len = min_t(int, connection->peer_addr_len, sizeof(src_in6)); 628 memcpy(&peer_in6, &connection->peer_addr, peer_addr_len); 629 630 what = "sock_create_kern"; 631 err = sock_create_kern(&init_net, ((struct sockaddr *)&src_in6)->sa_family, 632 SOCK_STREAM, IPPROTO_TCP, &sock); 633 if (err < 0) { 634 sock = NULL; 635 goto out; 636 } 637 638 sock->sk->sk_rcvtimeo = 639 sock->sk->sk_sndtimeo = connect_int * HZ; 640 drbd_setbufsize(sock, sndbuf_size, rcvbuf_size); 641 642 /* explicitly bind to the configured IP as source IP 643 * for the outgoing connections. 644 * This is needed for multihomed hosts and to be 645 * able to use lo: interfaces for drbd. 646 * Make sure to use 0 as port number, so linux selects 647 * a free one dynamically. 648 */ 649 what = "bind before connect"; 650 err = sock->ops->bind(sock, (struct sockaddr *) &src_in6, my_addr_len); 651 if (err < 0) 652 goto out; 653 654 /* connect may fail, peer not yet available. 655 * stay C_WF_CONNECTION, don't go Disconnecting! */ 656 disconnect_on_error = 0; 657 what = "connect"; 658 err = sock->ops->connect(sock, (struct sockaddr *) &peer_in6, peer_addr_len, 0); 659 660 out: 661 if (err < 0) { 662 if (sock) { 663 sock_release(sock); 664 sock = NULL; 665 } 666 switch (-err) { 667 /* timeout, busy, signal pending */ 668 case ETIMEDOUT: case EAGAIN: case EINPROGRESS: 669 case EINTR: case ERESTARTSYS: 670 /* peer not (yet) available, network problem */ 671 case ECONNREFUSED: case ENETUNREACH: 672 case EHOSTDOWN: case EHOSTUNREACH: 673 disconnect_on_error = 0; 674 break; 675 default: 676 drbd_err(connection, "%s failed, err = %d\n", what, err); 677 } 678 if (disconnect_on_error) 679 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 680 } 681 682 return sock; 683 } 684 685 struct accept_wait_data { 686 struct drbd_connection *connection; 687 struct socket *s_listen; 688 struct completion door_bell; 689 void (*original_sk_state_change)(struct sock *sk); 690 691 }; 692 693 static void drbd_incoming_connection(struct sock *sk) 694 { 695 struct accept_wait_data *ad = sk->sk_user_data; 696 void (*state_change)(struct sock *sk); 697 698 state_change = ad->original_sk_state_change; 699 if (sk->sk_state == TCP_ESTABLISHED) 700 complete(&ad->door_bell); 701 state_change(sk); 702 } 703 704 static int prepare_listen_socket(struct drbd_connection *connection, struct accept_wait_data *ad) 705 { 706 int err, sndbuf_size, rcvbuf_size, my_addr_len; 707 struct sockaddr_in6 my_addr; 708 struct socket *s_listen; 709 struct net_conf *nc; 710 const char *what; 711 712 rcu_read_lock(); 713 nc = rcu_dereference(connection->net_conf); 714 if (!nc) { 715 rcu_read_unlock(); 716 return -EIO; 717 } 718 sndbuf_size = nc->sndbuf_size; 719 rcvbuf_size = nc->rcvbuf_size; 720 rcu_read_unlock(); 721 722 my_addr_len = min_t(int, connection->my_addr_len, sizeof(struct sockaddr_in6)); 723 memcpy(&my_addr, &connection->my_addr, my_addr_len); 724 725 what = "sock_create_kern"; 726 err = sock_create_kern(&init_net, ((struct sockaddr *)&my_addr)->sa_family, 727 SOCK_STREAM, IPPROTO_TCP, &s_listen); 728 if (err) { 729 s_listen = NULL; 730 goto out; 731 } 732 733 s_listen->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */ 734 drbd_setbufsize(s_listen, sndbuf_size, rcvbuf_size); 735 736 what = "bind before listen"; 737 err = s_listen->ops->bind(s_listen, (struct sockaddr *)&my_addr, my_addr_len); 738 if (err < 0) 739 goto out; 740 741 ad->s_listen = s_listen; 742 write_lock_bh(&s_listen->sk->sk_callback_lock); 743 ad->original_sk_state_change = s_listen->sk->sk_state_change; 744 s_listen->sk->sk_state_change = drbd_incoming_connection; 745 s_listen->sk->sk_user_data = ad; 746 write_unlock_bh(&s_listen->sk->sk_callback_lock); 747 748 what = "listen"; 749 err = s_listen->ops->listen(s_listen, 5); 750 if (err < 0) 751 goto out; 752 753 return 0; 754 out: 755 if (s_listen) 756 sock_release(s_listen); 757 if (err < 0) { 758 if (err != -EAGAIN && err != -EINTR && err != -ERESTARTSYS) { 759 drbd_err(connection, "%s failed, err = %d\n", what, err); 760 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 761 } 762 } 763 764 return -EIO; 765 } 766 767 static void unregister_state_change(struct sock *sk, struct accept_wait_data *ad) 768 { 769 write_lock_bh(&sk->sk_callback_lock); 770 sk->sk_state_change = ad->original_sk_state_change; 771 sk->sk_user_data = NULL; 772 write_unlock_bh(&sk->sk_callback_lock); 773 } 774 775 static struct socket *drbd_wait_for_connect(struct drbd_connection *connection, struct accept_wait_data *ad) 776 { 777 int timeo, connect_int, err = 0; 778 struct socket *s_estab = NULL; 779 struct net_conf *nc; 780 781 rcu_read_lock(); 782 nc = rcu_dereference(connection->net_conf); 783 if (!nc) { 784 rcu_read_unlock(); 785 return NULL; 786 } 787 connect_int = nc->connect_int; 788 rcu_read_unlock(); 789 790 timeo = connect_int * HZ; 791 /* 28.5% random jitter */ 792 timeo += (prandom_u32() & 1) ? timeo / 7 : -timeo / 7; 793 794 err = wait_for_completion_interruptible_timeout(&ad->door_bell, timeo); 795 if (err <= 0) 796 return NULL; 797 798 err = kernel_accept(ad->s_listen, &s_estab, 0); 799 if (err < 0) { 800 if (err != -EAGAIN && err != -EINTR && err != -ERESTARTSYS) { 801 drbd_err(connection, "accept failed, err = %d\n", err); 802 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 803 } 804 } 805 806 if (s_estab) 807 unregister_state_change(s_estab->sk, ad); 808 809 return s_estab; 810 } 811 812 static int decode_header(struct drbd_connection *, void *, struct packet_info *); 813 814 static int send_first_packet(struct drbd_connection *connection, struct drbd_socket *sock, 815 enum drbd_packet cmd) 816 { 817 if (!conn_prepare_command(connection, sock)) 818 return -EIO; 819 return conn_send_command(connection, sock, cmd, 0, NULL, 0); 820 } 821 822 static int receive_first_packet(struct drbd_connection *connection, struct socket *sock) 823 { 824 unsigned int header_size = drbd_header_size(connection); 825 struct packet_info pi; 826 struct net_conf *nc; 827 int err; 828 829 rcu_read_lock(); 830 nc = rcu_dereference(connection->net_conf); 831 if (!nc) { 832 rcu_read_unlock(); 833 return -EIO; 834 } 835 sock->sk->sk_rcvtimeo = nc->ping_timeo * 4 * HZ / 10; 836 rcu_read_unlock(); 837 838 err = drbd_recv_short(sock, connection->data.rbuf, header_size, 0); 839 if (err != header_size) { 840 if (err >= 0) 841 err = -EIO; 842 return err; 843 } 844 err = decode_header(connection, connection->data.rbuf, &pi); 845 if (err) 846 return err; 847 return pi.cmd; 848 } 849 850 /** 851 * drbd_socket_okay() - Free the socket if its connection is not okay 852 * @sock: pointer to the pointer to the socket. 853 */ 854 static bool drbd_socket_okay(struct socket **sock) 855 { 856 int rr; 857 char tb[4]; 858 859 if (!*sock) 860 return false; 861 862 rr = drbd_recv_short(*sock, tb, 4, MSG_DONTWAIT | MSG_PEEK); 863 864 if (rr > 0 || rr == -EAGAIN) { 865 return true; 866 } else { 867 sock_release(*sock); 868 *sock = NULL; 869 return false; 870 } 871 } 872 873 static bool connection_established(struct drbd_connection *connection, 874 struct socket **sock1, 875 struct socket **sock2) 876 { 877 struct net_conf *nc; 878 int timeout; 879 bool ok; 880 881 if (!*sock1 || !*sock2) 882 return false; 883 884 rcu_read_lock(); 885 nc = rcu_dereference(connection->net_conf); 886 timeout = (nc->sock_check_timeo ?: nc->ping_timeo) * HZ / 10; 887 rcu_read_unlock(); 888 schedule_timeout_interruptible(timeout); 889 890 ok = drbd_socket_okay(sock1); 891 ok = drbd_socket_okay(sock2) && ok; 892 893 return ok; 894 } 895 896 /* Gets called if a connection is established, or if a new minor gets created 897 in a connection */ 898 int drbd_connected(struct drbd_peer_device *peer_device) 899 { 900 struct drbd_device *device = peer_device->device; 901 int err; 902 903 atomic_set(&device->packet_seq, 0); 904 device->peer_seq = 0; 905 906 device->state_mutex = peer_device->connection->agreed_pro_version < 100 ? 907 &peer_device->connection->cstate_mutex : 908 &device->own_state_mutex; 909 910 err = drbd_send_sync_param(peer_device); 911 if (!err) 912 err = drbd_send_sizes(peer_device, 0, 0); 913 if (!err) 914 err = drbd_send_uuids(peer_device); 915 if (!err) 916 err = drbd_send_current_state(peer_device); 917 clear_bit(USE_DEGR_WFC_T, &device->flags); 918 clear_bit(RESIZE_PENDING, &device->flags); 919 atomic_set(&device->ap_in_flight, 0); 920 mod_timer(&device->request_timer, jiffies + HZ); /* just start it here. */ 921 return err; 922 } 923 924 /* 925 * return values: 926 * 1 yes, we have a valid connection 927 * 0 oops, did not work out, please try again 928 * -1 peer talks different language, 929 * no point in trying again, please go standalone. 930 * -2 We do not have a network config... 931 */ 932 static int conn_connect(struct drbd_connection *connection) 933 { 934 struct drbd_socket sock, msock; 935 struct drbd_peer_device *peer_device; 936 struct net_conf *nc; 937 int vnr, timeout, h; 938 bool discard_my_data, ok; 939 enum drbd_state_rv rv; 940 struct accept_wait_data ad = { 941 .connection = connection, 942 .door_bell = COMPLETION_INITIALIZER_ONSTACK(ad.door_bell), 943 }; 944 945 clear_bit(DISCONNECT_SENT, &connection->flags); 946 if (conn_request_state(connection, NS(conn, C_WF_CONNECTION), CS_VERBOSE) < SS_SUCCESS) 947 return -2; 948 949 mutex_init(&sock.mutex); 950 sock.sbuf = connection->data.sbuf; 951 sock.rbuf = connection->data.rbuf; 952 sock.socket = NULL; 953 mutex_init(&msock.mutex); 954 msock.sbuf = connection->meta.sbuf; 955 msock.rbuf = connection->meta.rbuf; 956 msock.socket = NULL; 957 958 /* Assume that the peer only understands protocol 80 until we know better. */ 959 connection->agreed_pro_version = 80; 960 961 if (prepare_listen_socket(connection, &ad)) 962 return 0; 963 964 do { 965 struct socket *s; 966 967 s = drbd_try_connect(connection); 968 if (s) { 969 if (!sock.socket) { 970 sock.socket = s; 971 send_first_packet(connection, &sock, P_INITIAL_DATA); 972 } else if (!msock.socket) { 973 clear_bit(RESOLVE_CONFLICTS, &connection->flags); 974 msock.socket = s; 975 send_first_packet(connection, &msock, P_INITIAL_META); 976 } else { 977 drbd_err(connection, "Logic error in conn_connect()\n"); 978 goto out_release_sockets; 979 } 980 } 981 982 if (connection_established(connection, &sock.socket, &msock.socket)) 983 break; 984 985 retry: 986 s = drbd_wait_for_connect(connection, &ad); 987 if (s) { 988 int fp = receive_first_packet(connection, s); 989 drbd_socket_okay(&sock.socket); 990 drbd_socket_okay(&msock.socket); 991 switch (fp) { 992 case P_INITIAL_DATA: 993 if (sock.socket) { 994 drbd_warn(connection, "initial packet S crossed\n"); 995 sock_release(sock.socket); 996 sock.socket = s; 997 goto randomize; 998 } 999 sock.socket = s; 1000 break; 1001 case P_INITIAL_META: 1002 set_bit(RESOLVE_CONFLICTS, &connection->flags); 1003 if (msock.socket) { 1004 drbd_warn(connection, "initial packet M crossed\n"); 1005 sock_release(msock.socket); 1006 msock.socket = s; 1007 goto randomize; 1008 } 1009 msock.socket = s; 1010 break; 1011 default: 1012 drbd_warn(connection, "Error receiving initial packet\n"); 1013 sock_release(s); 1014 randomize: 1015 if (prandom_u32() & 1) 1016 goto retry; 1017 } 1018 } 1019 1020 if (connection->cstate <= C_DISCONNECTING) 1021 goto out_release_sockets; 1022 if (signal_pending(current)) { 1023 flush_signals(current); 1024 smp_rmb(); 1025 if (get_t_state(&connection->receiver) == EXITING) 1026 goto out_release_sockets; 1027 } 1028 1029 ok = connection_established(connection, &sock.socket, &msock.socket); 1030 } while (!ok); 1031 1032 if (ad.s_listen) 1033 sock_release(ad.s_listen); 1034 1035 sock.socket->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */ 1036 msock.socket->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */ 1037 1038 sock.socket->sk->sk_allocation = GFP_NOIO; 1039 msock.socket->sk->sk_allocation = GFP_NOIO; 1040 1041 sock.socket->sk->sk_priority = TC_PRIO_INTERACTIVE_BULK; 1042 msock.socket->sk->sk_priority = TC_PRIO_INTERACTIVE; 1043 1044 /* NOT YET ... 1045 * sock.socket->sk->sk_sndtimeo = connection->net_conf->timeout*HZ/10; 1046 * sock.socket->sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 1047 * first set it to the P_CONNECTION_FEATURES timeout, 1048 * which we set to 4x the configured ping_timeout. */ 1049 rcu_read_lock(); 1050 nc = rcu_dereference(connection->net_conf); 1051 1052 sock.socket->sk->sk_sndtimeo = 1053 sock.socket->sk->sk_rcvtimeo = nc->ping_timeo*4*HZ/10; 1054 1055 msock.socket->sk->sk_rcvtimeo = nc->ping_int*HZ; 1056 timeout = nc->timeout * HZ / 10; 1057 discard_my_data = nc->discard_my_data; 1058 rcu_read_unlock(); 1059 1060 msock.socket->sk->sk_sndtimeo = timeout; 1061 1062 /* we don't want delays. 1063 * we use TCP_CORK where appropriate, though */ 1064 drbd_tcp_nodelay(sock.socket); 1065 drbd_tcp_nodelay(msock.socket); 1066 1067 connection->data.socket = sock.socket; 1068 connection->meta.socket = msock.socket; 1069 connection->last_received = jiffies; 1070 1071 h = drbd_do_features(connection); 1072 if (h <= 0) 1073 return h; 1074 1075 if (connection->cram_hmac_tfm) { 1076 /* drbd_request_state(device, NS(conn, WFAuth)); */ 1077 switch (drbd_do_auth(connection)) { 1078 case -1: 1079 drbd_err(connection, "Authentication of peer failed\n"); 1080 return -1; 1081 case 0: 1082 drbd_err(connection, "Authentication of peer failed, trying again.\n"); 1083 return 0; 1084 } 1085 } 1086 1087 connection->data.socket->sk->sk_sndtimeo = timeout; 1088 connection->data.socket->sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 1089 1090 if (drbd_send_protocol(connection) == -EOPNOTSUPP) 1091 return -1; 1092 1093 /* Prevent a race between resync-handshake and 1094 * being promoted to Primary. 1095 * 1096 * Grab and release the state mutex, so we know that any current 1097 * drbd_set_role() is finished, and any incoming drbd_set_role 1098 * will see the STATE_SENT flag, and wait for it to be cleared. 1099 */ 1100 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) 1101 mutex_lock(peer_device->device->state_mutex); 1102 1103 set_bit(STATE_SENT, &connection->flags); 1104 1105 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) 1106 mutex_unlock(peer_device->device->state_mutex); 1107 1108 rcu_read_lock(); 1109 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 1110 struct drbd_device *device = peer_device->device; 1111 kref_get(&device->kref); 1112 rcu_read_unlock(); 1113 1114 if (discard_my_data) 1115 set_bit(DISCARD_MY_DATA, &device->flags); 1116 else 1117 clear_bit(DISCARD_MY_DATA, &device->flags); 1118 1119 drbd_connected(peer_device); 1120 kref_put(&device->kref, drbd_destroy_device); 1121 rcu_read_lock(); 1122 } 1123 rcu_read_unlock(); 1124 1125 rv = conn_request_state(connection, NS(conn, C_WF_REPORT_PARAMS), CS_VERBOSE); 1126 if (rv < SS_SUCCESS || connection->cstate != C_WF_REPORT_PARAMS) { 1127 clear_bit(STATE_SENT, &connection->flags); 1128 return 0; 1129 } 1130 1131 drbd_thread_start(&connection->ack_receiver); 1132 /* opencoded create_singlethread_workqueue(), 1133 * to be able to use format string arguments */ 1134 connection->ack_sender = 1135 alloc_ordered_workqueue("drbd_as_%s", WQ_MEM_RECLAIM, connection->resource->name); 1136 if (!connection->ack_sender) { 1137 drbd_err(connection, "Failed to create workqueue ack_sender\n"); 1138 return 0; 1139 } 1140 1141 mutex_lock(&connection->resource->conf_update); 1142 /* The discard_my_data flag is a single-shot modifier to the next 1143 * connection attempt, the handshake of which is now well underway. 1144 * No need for rcu style copying of the whole struct 1145 * just to clear a single value. */ 1146 connection->net_conf->discard_my_data = 0; 1147 mutex_unlock(&connection->resource->conf_update); 1148 1149 return h; 1150 1151 out_release_sockets: 1152 if (ad.s_listen) 1153 sock_release(ad.s_listen); 1154 if (sock.socket) 1155 sock_release(sock.socket); 1156 if (msock.socket) 1157 sock_release(msock.socket); 1158 return -1; 1159 } 1160 1161 static int decode_header(struct drbd_connection *connection, void *header, struct packet_info *pi) 1162 { 1163 unsigned int header_size = drbd_header_size(connection); 1164 1165 if (header_size == sizeof(struct p_header100) && 1166 *(__be32 *)header == cpu_to_be32(DRBD_MAGIC_100)) { 1167 struct p_header100 *h = header; 1168 if (h->pad != 0) { 1169 drbd_err(connection, "Header padding is not zero\n"); 1170 return -EINVAL; 1171 } 1172 pi->vnr = be16_to_cpu(h->volume); 1173 pi->cmd = be16_to_cpu(h->command); 1174 pi->size = be32_to_cpu(h->length); 1175 } else if (header_size == sizeof(struct p_header95) && 1176 *(__be16 *)header == cpu_to_be16(DRBD_MAGIC_BIG)) { 1177 struct p_header95 *h = header; 1178 pi->cmd = be16_to_cpu(h->command); 1179 pi->size = be32_to_cpu(h->length); 1180 pi->vnr = 0; 1181 } else if (header_size == sizeof(struct p_header80) && 1182 *(__be32 *)header == cpu_to_be32(DRBD_MAGIC)) { 1183 struct p_header80 *h = header; 1184 pi->cmd = be16_to_cpu(h->command); 1185 pi->size = be16_to_cpu(h->length); 1186 pi->vnr = 0; 1187 } else { 1188 drbd_err(connection, "Wrong magic value 0x%08x in protocol version %d\n", 1189 be32_to_cpu(*(__be32 *)header), 1190 connection->agreed_pro_version); 1191 return -EINVAL; 1192 } 1193 pi->data = header + header_size; 1194 return 0; 1195 } 1196 1197 static int drbd_recv_header(struct drbd_connection *connection, struct packet_info *pi) 1198 { 1199 void *buffer = connection->data.rbuf; 1200 int err; 1201 1202 err = drbd_recv_all_warn(connection, buffer, drbd_header_size(connection)); 1203 if (err) 1204 return err; 1205 1206 err = decode_header(connection, buffer, pi); 1207 connection->last_received = jiffies; 1208 1209 return err; 1210 } 1211 1212 /* This is blkdev_issue_flush, but asynchronous. 1213 * We want to submit to all component volumes in parallel, 1214 * then wait for all completions. 1215 */ 1216 struct issue_flush_context { 1217 atomic_t pending; 1218 int error; 1219 struct completion done; 1220 }; 1221 struct one_flush_context { 1222 struct drbd_device *device; 1223 struct issue_flush_context *ctx; 1224 }; 1225 1226 void one_flush_endio(struct bio *bio) 1227 { 1228 struct one_flush_context *octx = bio->bi_private; 1229 struct drbd_device *device = octx->device; 1230 struct issue_flush_context *ctx = octx->ctx; 1231 1232 if (bio->bi_error) { 1233 ctx->error = bio->bi_error; 1234 drbd_info(device, "local disk FLUSH FAILED with status %d\n", bio->bi_error); 1235 } 1236 kfree(octx); 1237 bio_put(bio); 1238 1239 clear_bit(FLUSH_PENDING, &device->flags); 1240 put_ldev(device); 1241 kref_put(&device->kref, drbd_destroy_device); 1242 1243 if (atomic_dec_and_test(&ctx->pending)) 1244 complete(&ctx->done); 1245 } 1246 1247 static void submit_one_flush(struct drbd_device *device, struct issue_flush_context *ctx) 1248 { 1249 struct bio *bio = bio_alloc(GFP_NOIO, 0); 1250 struct one_flush_context *octx = kmalloc(sizeof(*octx), GFP_NOIO); 1251 if (!bio || !octx) { 1252 drbd_warn(device, "Could not allocate a bio, CANNOT ISSUE FLUSH\n"); 1253 /* FIXME: what else can I do now? disconnecting or detaching 1254 * really does not help to improve the state of the world, either. 1255 */ 1256 kfree(octx); 1257 if (bio) 1258 bio_put(bio); 1259 1260 ctx->error = -ENOMEM; 1261 put_ldev(device); 1262 kref_put(&device->kref, drbd_destroy_device); 1263 return; 1264 } 1265 1266 octx->device = device; 1267 octx->ctx = ctx; 1268 bio->bi_bdev = device->ldev->backing_bdev; 1269 bio->bi_private = octx; 1270 bio->bi_end_io = one_flush_endio; 1271 bio->bi_opf = REQ_OP_FLUSH | REQ_PREFLUSH; 1272 1273 device->flush_jif = jiffies; 1274 set_bit(FLUSH_PENDING, &device->flags); 1275 atomic_inc(&ctx->pending); 1276 submit_bio(bio); 1277 } 1278 1279 static void drbd_flush(struct drbd_connection *connection) 1280 { 1281 if (connection->resource->write_ordering >= WO_BDEV_FLUSH) { 1282 struct drbd_peer_device *peer_device; 1283 struct issue_flush_context ctx; 1284 int vnr; 1285 1286 atomic_set(&ctx.pending, 1); 1287 ctx.error = 0; 1288 init_completion(&ctx.done); 1289 1290 rcu_read_lock(); 1291 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 1292 struct drbd_device *device = peer_device->device; 1293 1294 if (!get_ldev(device)) 1295 continue; 1296 kref_get(&device->kref); 1297 rcu_read_unlock(); 1298 1299 submit_one_flush(device, &ctx); 1300 1301 rcu_read_lock(); 1302 } 1303 rcu_read_unlock(); 1304 1305 /* Do we want to add a timeout, 1306 * if disk-timeout is set? */ 1307 if (!atomic_dec_and_test(&ctx.pending)) 1308 wait_for_completion(&ctx.done); 1309 1310 if (ctx.error) { 1311 /* would rather check on EOPNOTSUPP, but that is not reliable. 1312 * don't try again for ANY return value != 0 1313 * if (rv == -EOPNOTSUPP) */ 1314 /* Any error is already reported by bio_endio callback. */ 1315 drbd_bump_write_ordering(connection->resource, NULL, WO_DRAIN_IO); 1316 } 1317 } 1318 } 1319 1320 /** 1321 * drbd_may_finish_epoch() - Applies an epoch_event to the epoch's state, eventually finishes it. 1322 * @device: DRBD device. 1323 * @epoch: Epoch object. 1324 * @ev: Epoch event. 1325 */ 1326 static enum finish_epoch drbd_may_finish_epoch(struct drbd_connection *connection, 1327 struct drbd_epoch *epoch, 1328 enum epoch_event ev) 1329 { 1330 int epoch_size; 1331 struct drbd_epoch *next_epoch; 1332 enum finish_epoch rv = FE_STILL_LIVE; 1333 1334 spin_lock(&connection->epoch_lock); 1335 do { 1336 next_epoch = NULL; 1337 1338 epoch_size = atomic_read(&epoch->epoch_size); 1339 1340 switch (ev & ~EV_CLEANUP) { 1341 case EV_PUT: 1342 atomic_dec(&epoch->active); 1343 break; 1344 case EV_GOT_BARRIER_NR: 1345 set_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags); 1346 break; 1347 case EV_BECAME_LAST: 1348 /* nothing to do*/ 1349 break; 1350 } 1351 1352 if (epoch_size != 0 && 1353 atomic_read(&epoch->active) == 0 && 1354 (test_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags) || ev & EV_CLEANUP)) { 1355 if (!(ev & EV_CLEANUP)) { 1356 spin_unlock(&connection->epoch_lock); 1357 drbd_send_b_ack(epoch->connection, epoch->barrier_nr, epoch_size); 1358 spin_lock(&connection->epoch_lock); 1359 } 1360 #if 0 1361 /* FIXME: dec unacked on connection, once we have 1362 * something to count pending connection packets in. */ 1363 if (test_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags)) 1364 dec_unacked(epoch->connection); 1365 #endif 1366 1367 if (connection->current_epoch != epoch) { 1368 next_epoch = list_entry(epoch->list.next, struct drbd_epoch, list); 1369 list_del(&epoch->list); 1370 ev = EV_BECAME_LAST | (ev & EV_CLEANUP); 1371 connection->epochs--; 1372 kfree(epoch); 1373 1374 if (rv == FE_STILL_LIVE) 1375 rv = FE_DESTROYED; 1376 } else { 1377 epoch->flags = 0; 1378 atomic_set(&epoch->epoch_size, 0); 1379 /* atomic_set(&epoch->active, 0); is already zero */ 1380 if (rv == FE_STILL_LIVE) 1381 rv = FE_RECYCLED; 1382 } 1383 } 1384 1385 if (!next_epoch) 1386 break; 1387 1388 epoch = next_epoch; 1389 } while (1); 1390 1391 spin_unlock(&connection->epoch_lock); 1392 1393 return rv; 1394 } 1395 1396 static enum write_ordering_e 1397 max_allowed_wo(struct drbd_backing_dev *bdev, enum write_ordering_e wo) 1398 { 1399 struct disk_conf *dc; 1400 1401 dc = rcu_dereference(bdev->disk_conf); 1402 1403 if (wo == WO_BDEV_FLUSH && !dc->disk_flushes) 1404 wo = WO_DRAIN_IO; 1405 if (wo == WO_DRAIN_IO && !dc->disk_drain) 1406 wo = WO_NONE; 1407 1408 return wo; 1409 } 1410 1411 /** 1412 * drbd_bump_write_ordering() - Fall back to an other write ordering method 1413 * @connection: DRBD connection. 1414 * @wo: Write ordering method to try. 1415 */ 1416 void drbd_bump_write_ordering(struct drbd_resource *resource, struct drbd_backing_dev *bdev, 1417 enum write_ordering_e wo) 1418 { 1419 struct drbd_device *device; 1420 enum write_ordering_e pwo; 1421 int vnr; 1422 static char *write_ordering_str[] = { 1423 [WO_NONE] = "none", 1424 [WO_DRAIN_IO] = "drain", 1425 [WO_BDEV_FLUSH] = "flush", 1426 }; 1427 1428 pwo = resource->write_ordering; 1429 if (wo != WO_BDEV_FLUSH) 1430 wo = min(pwo, wo); 1431 rcu_read_lock(); 1432 idr_for_each_entry(&resource->devices, device, vnr) { 1433 if (get_ldev(device)) { 1434 wo = max_allowed_wo(device->ldev, wo); 1435 if (device->ldev == bdev) 1436 bdev = NULL; 1437 put_ldev(device); 1438 } 1439 } 1440 1441 if (bdev) 1442 wo = max_allowed_wo(bdev, wo); 1443 1444 rcu_read_unlock(); 1445 1446 resource->write_ordering = wo; 1447 if (pwo != resource->write_ordering || wo == WO_BDEV_FLUSH) 1448 drbd_info(resource, "Method to ensure write ordering: %s\n", write_ordering_str[resource->write_ordering]); 1449 } 1450 1451 /* 1452 * We *may* ignore the discard-zeroes-data setting, if so configured. 1453 * 1454 * Assumption is that it "discard_zeroes_data=0" is only because the backend 1455 * may ignore partial unaligned discards. 1456 * 1457 * LVM/DM thin as of at least 1458 * LVM version: 2.02.115(2)-RHEL7 (2015-01-28) 1459 * Library version: 1.02.93-RHEL7 (2015-01-28) 1460 * Driver version: 4.29.0 1461 * still behaves this way. 1462 * 1463 * For unaligned (wrt. alignment and granularity) or too small discards, 1464 * we zero-out the initial (and/or) trailing unaligned partial chunks, 1465 * but discard all the aligned full chunks. 1466 * 1467 * At least for LVM/DM thin, the result is effectively "discard_zeroes_data=1". 1468 */ 1469 int drbd_issue_discard_or_zero_out(struct drbd_device *device, sector_t start, unsigned int nr_sectors, bool discard) 1470 { 1471 struct block_device *bdev = device->ldev->backing_bdev; 1472 struct request_queue *q = bdev_get_queue(bdev); 1473 sector_t tmp, nr; 1474 unsigned int max_discard_sectors, granularity; 1475 int alignment; 1476 int err = 0; 1477 1478 if (!discard) 1479 goto zero_out; 1480 1481 /* Zero-sector (unknown) and one-sector granularities are the same. */ 1482 granularity = max(q->limits.discard_granularity >> 9, 1U); 1483 alignment = (bdev_discard_alignment(bdev) >> 9) % granularity; 1484 1485 max_discard_sectors = min(q->limits.max_discard_sectors, (1U << 22)); 1486 max_discard_sectors -= max_discard_sectors % granularity; 1487 if (unlikely(!max_discard_sectors)) 1488 goto zero_out; 1489 1490 if (nr_sectors < granularity) 1491 goto zero_out; 1492 1493 tmp = start; 1494 if (sector_div(tmp, granularity) != alignment) { 1495 if (nr_sectors < 2*granularity) 1496 goto zero_out; 1497 /* start + gran - (start + gran - align) % gran */ 1498 tmp = start + granularity - alignment; 1499 tmp = start + granularity - sector_div(tmp, granularity); 1500 1501 nr = tmp - start; 1502 err |= blkdev_issue_zeroout(bdev, start, nr, GFP_NOIO, 0); 1503 nr_sectors -= nr; 1504 start = tmp; 1505 } 1506 while (nr_sectors >= granularity) { 1507 nr = min_t(sector_t, nr_sectors, max_discard_sectors); 1508 err |= blkdev_issue_discard(bdev, start, nr, GFP_NOIO, 0); 1509 nr_sectors -= nr; 1510 start += nr; 1511 } 1512 zero_out: 1513 if (nr_sectors) { 1514 err |= blkdev_issue_zeroout(bdev, start, nr_sectors, GFP_NOIO, 0); 1515 } 1516 return err != 0; 1517 } 1518 1519 static bool can_do_reliable_discards(struct drbd_device *device) 1520 { 1521 struct request_queue *q = bdev_get_queue(device->ldev->backing_bdev); 1522 struct disk_conf *dc; 1523 bool can_do; 1524 1525 if (!blk_queue_discard(q)) 1526 return false; 1527 1528 if (q->limits.discard_zeroes_data) 1529 return true; 1530 1531 rcu_read_lock(); 1532 dc = rcu_dereference(device->ldev->disk_conf); 1533 can_do = dc->discard_zeroes_if_aligned; 1534 rcu_read_unlock(); 1535 return can_do; 1536 } 1537 1538 static void drbd_issue_peer_discard(struct drbd_device *device, struct drbd_peer_request *peer_req) 1539 { 1540 /* If the backend cannot discard, or does not guarantee 1541 * read-back zeroes in discarded ranges, we fall back to 1542 * zero-out. Unless configuration specifically requested 1543 * otherwise. */ 1544 if (!can_do_reliable_discards(device)) 1545 peer_req->flags |= EE_IS_TRIM_USE_ZEROOUT; 1546 1547 if (drbd_issue_discard_or_zero_out(device, peer_req->i.sector, 1548 peer_req->i.size >> 9, !(peer_req->flags & EE_IS_TRIM_USE_ZEROOUT))) 1549 peer_req->flags |= EE_WAS_ERROR; 1550 drbd_endio_write_sec_final(peer_req); 1551 } 1552 1553 static void drbd_issue_peer_wsame(struct drbd_device *device, 1554 struct drbd_peer_request *peer_req) 1555 { 1556 struct block_device *bdev = device->ldev->backing_bdev; 1557 sector_t s = peer_req->i.sector; 1558 sector_t nr = peer_req->i.size >> 9; 1559 if (blkdev_issue_write_same(bdev, s, nr, GFP_NOIO, peer_req->pages)) 1560 peer_req->flags |= EE_WAS_ERROR; 1561 drbd_endio_write_sec_final(peer_req); 1562 } 1563 1564 1565 /** 1566 * drbd_submit_peer_request() 1567 * @device: DRBD device. 1568 * @peer_req: peer request 1569 * @rw: flag field, see bio->bi_opf 1570 * 1571 * May spread the pages to multiple bios, 1572 * depending on bio_add_page restrictions. 1573 * 1574 * Returns 0 if all bios have been submitted, 1575 * -ENOMEM if we could not allocate enough bios, 1576 * -ENOSPC (any better suggestion?) if we have not been able to bio_add_page a 1577 * single page to an empty bio (which should never happen and likely indicates 1578 * that the lower level IO stack is in some way broken). This has been observed 1579 * on certain Xen deployments. 1580 */ 1581 /* TODO allocate from our own bio_set. */ 1582 int drbd_submit_peer_request(struct drbd_device *device, 1583 struct drbd_peer_request *peer_req, 1584 const unsigned op, const unsigned op_flags, 1585 const int fault_type) 1586 { 1587 struct bio *bios = NULL; 1588 struct bio *bio; 1589 struct page *page = peer_req->pages; 1590 sector_t sector = peer_req->i.sector; 1591 unsigned data_size = peer_req->i.size; 1592 unsigned n_bios = 0; 1593 unsigned nr_pages = (data_size + PAGE_SIZE -1) >> PAGE_SHIFT; 1594 int err = -ENOMEM; 1595 1596 /* TRIM/DISCARD: for now, always use the helper function 1597 * blkdev_issue_zeroout(..., discard=true). 1598 * It's synchronous, but it does the right thing wrt. bio splitting. 1599 * Correctness first, performance later. Next step is to code an 1600 * asynchronous variant of the same. 1601 */ 1602 if (peer_req->flags & (EE_IS_TRIM|EE_WRITE_SAME)) { 1603 /* wait for all pending IO completions, before we start 1604 * zeroing things out. */ 1605 conn_wait_active_ee_empty(peer_req->peer_device->connection); 1606 /* add it to the active list now, 1607 * so we can find it to present it in debugfs */ 1608 peer_req->submit_jif = jiffies; 1609 peer_req->flags |= EE_SUBMITTED; 1610 1611 /* If this was a resync request from receive_rs_deallocated(), 1612 * it is already on the sync_ee list */ 1613 if (list_empty(&peer_req->w.list)) { 1614 spin_lock_irq(&device->resource->req_lock); 1615 list_add_tail(&peer_req->w.list, &device->active_ee); 1616 spin_unlock_irq(&device->resource->req_lock); 1617 } 1618 1619 if (peer_req->flags & EE_IS_TRIM) 1620 drbd_issue_peer_discard(device, peer_req); 1621 else /* EE_WRITE_SAME */ 1622 drbd_issue_peer_wsame(device, peer_req); 1623 return 0; 1624 } 1625 1626 /* In most cases, we will only need one bio. But in case the lower 1627 * level restrictions happen to be different at this offset on this 1628 * side than those of the sending peer, we may need to submit the 1629 * request in more than one bio. 1630 * 1631 * Plain bio_alloc is good enough here, this is no DRBD internally 1632 * generated bio, but a bio allocated on behalf of the peer. 1633 */ 1634 next_bio: 1635 bio = bio_alloc(GFP_NOIO, nr_pages); 1636 if (!bio) { 1637 drbd_err(device, "submit_ee: Allocation of a bio failed (nr_pages=%u)\n", nr_pages); 1638 goto fail; 1639 } 1640 /* > peer_req->i.sector, unless this is the first bio */ 1641 bio->bi_iter.bi_sector = sector; 1642 bio->bi_bdev = device->ldev->backing_bdev; 1643 bio_set_op_attrs(bio, op, op_flags); 1644 bio->bi_private = peer_req; 1645 bio->bi_end_io = drbd_peer_request_endio; 1646 1647 bio->bi_next = bios; 1648 bios = bio; 1649 ++n_bios; 1650 1651 page_chain_for_each(page) { 1652 unsigned len = min_t(unsigned, data_size, PAGE_SIZE); 1653 if (!bio_add_page(bio, page, len, 0)) 1654 goto next_bio; 1655 data_size -= len; 1656 sector += len >> 9; 1657 --nr_pages; 1658 } 1659 D_ASSERT(device, data_size == 0); 1660 D_ASSERT(device, page == NULL); 1661 1662 atomic_set(&peer_req->pending_bios, n_bios); 1663 /* for debugfs: update timestamp, mark as submitted */ 1664 peer_req->submit_jif = jiffies; 1665 peer_req->flags |= EE_SUBMITTED; 1666 do { 1667 bio = bios; 1668 bios = bios->bi_next; 1669 bio->bi_next = NULL; 1670 1671 drbd_generic_make_request(device, fault_type, bio); 1672 } while (bios); 1673 return 0; 1674 1675 fail: 1676 while (bios) { 1677 bio = bios; 1678 bios = bios->bi_next; 1679 bio_put(bio); 1680 } 1681 return err; 1682 } 1683 1684 static void drbd_remove_epoch_entry_interval(struct drbd_device *device, 1685 struct drbd_peer_request *peer_req) 1686 { 1687 struct drbd_interval *i = &peer_req->i; 1688 1689 drbd_remove_interval(&device->write_requests, i); 1690 drbd_clear_interval(i); 1691 1692 /* Wake up any processes waiting for this peer request to complete. */ 1693 if (i->waiting) 1694 wake_up(&device->misc_wait); 1695 } 1696 1697 static void conn_wait_active_ee_empty(struct drbd_connection *connection) 1698 { 1699 struct drbd_peer_device *peer_device; 1700 int vnr; 1701 1702 rcu_read_lock(); 1703 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 1704 struct drbd_device *device = peer_device->device; 1705 1706 kref_get(&device->kref); 1707 rcu_read_unlock(); 1708 drbd_wait_ee_list_empty(device, &device->active_ee); 1709 kref_put(&device->kref, drbd_destroy_device); 1710 rcu_read_lock(); 1711 } 1712 rcu_read_unlock(); 1713 } 1714 1715 static int receive_Barrier(struct drbd_connection *connection, struct packet_info *pi) 1716 { 1717 int rv; 1718 struct p_barrier *p = pi->data; 1719 struct drbd_epoch *epoch; 1720 1721 /* FIXME these are unacked on connection, 1722 * not a specific (peer)device. 1723 */ 1724 connection->current_epoch->barrier_nr = p->barrier; 1725 connection->current_epoch->connection = connection; 1726 rv = drbd_may_finish_epoch(connection, connection->current_epoch, EV_GOT_BARRIER_NR); 1727 1728 /* P_BARRIER_ACK may imply that the corresponding extent is dropped from 1729 * the activity log, which means it would not be resynced in case the 1730 * R_PRIMARY crashes now. 1731 * Therefore we must send the barrier_ack after the barrier request was 1732 * completed. */ 1733 switch (connection->resource->write_ordering) { 1734 case WO_NONE: 1735 if (rv == FE_RECYCLED) 1736 return 0; 1737 1738 /* receiver context, in the writeout path of the other node. 1739 * avoid potential distributed deadlock */ 1740 epoch = kmalloc(sizeof(struct drbd_epoch), GFP_NOIO); 1741 if (epoch) 1742 break; 1743 else 1744 drbd_warn(connection, "Allocation of an epoch failed, slowing down\n"); 1745 /* Fall through */ 1746 1747 case WO_BDEV_FLUSH: 1748 case WO_DRAIN_IO: 1749 conn_wait_active_ee_empty(connection); 1750 drbd_flush(connection); 1751 1752 if (atomic_read(&connection->current_epoch->epoch_size)) { 1753 epoch = kmalloc(sizeof(struct drbd_epoch), GFP_NOIO); 1754 if (epoch) 1755 break; 1756 } 1757 1758 return 0; 1759 default: 1760 drbd_err(connection, "Strangeness in connection->write_ordering %d\n", 1761 connection->resource->write_ordering); 1762 return -EIO; 1763 } 1764 1765 epoch->flags = 0; 1766 atomic_set(&epoch->epoch_size, 0); 1767 atomic_set(&epoch->active, 0); 1768 1769 spin_lock(&connection->epoch_lock); 1770 if (atomic_read(&connection->current_epoch->epoch_size)) { 1771 list_add(&epoch->list, &connection->current_epoch->list); 1772 connection->current_epoch = epoch; 1773 connection->epochs++; 1774 } else { 1775 /* The current_epoch got recycled while we allocated this one... */ 1776 kfree(epoch); 1777 } 1778 spin_unlock(&connection->epoch_lock); 1779 1780 return 0; 1781 } 1782 1783 /* quick wrapper in case payload size != request_size (write same) */ 1784 static void drbd_csum_ee_size(struct crypto_ahash *h, 1785 struct drbd_peer_request *r, void *d, 1786 unsigned int payload_size) 1787 { 1788 unsigned int tmp = r->i.size; 1789 r->i.size = payload_size; 1790 drbd_csum_ee(h, r, d); 1791 r->i.size = tmp; 1792 } 1793 1794 /* used from receive_RSDataReply (recv_resync_read) 1795 * and from receive_Data. 1796 * data_size: actual payload ("data in") 1797 * for normal writes that is bi_size. 1798 * for discards, that is zero. 1799 * for write same, it is logical_block_size. 1800 * both trim and write same have the bi_size ("data len to be affected") 1801 * as extra argument in the packet header. 1802 */ 1803 static struct drbd_peer_request * 1804 read_in_block(struct drbd_peer_device *peer_device, u64 id, sector_t sector, 1805 struct packet_info *pi) __must_hold(local) 1806 { 1807 struct drbd_device *device = peer_device->device; 1808 const sector_t capacity = drbd_get_capacity(device->this_bdev); 1809 struct drbd_peer_request *peer_req; 1810 struct page *page; 1811 int digest_size, err; 1812 unsigned int data_size = pi->size, ds; 1813 void *dig_in = peer_device->connection->int_dig_in; 1814 void *dig_vv = peer_device->connection->int_dig_vv; 1815 unsigned long *data; 1816 struct p_trim *trim = (pi->cmd == P_TRIM) ? pi->data : NULL; 1817 struct p_trim *wsame = (pi->cmd == P_WSAME) ? pi->data : NULL; 1818 1819 digest_size = 0; 1820 if (!trim && peer_device->connection->peer_integrity_tfm) { 1821 digest_size = crypto_ahash_digestsize(peer_device->connection->peer_integrity_tfm); 1822 /* 1823 * FIXME: Receive the incoming digest into the receive buffer 1824 * here, together with its struct p_data? 1825 */ 1826 err = drbd_recv_all_warn(peer_device->connection, dig_in, digest_size); 1827 if (err) 1828 return NULL; 1829 data_size -= digest_size; 1830 } 1831 1832 /* assume request_size == data_size, but special case trim and wsame. */ 1833 ds = data_size; 1834 if (trim) { 1835 if (!expect(data_size == 0)) 1836 return NULL; 1837 ds = be32_to_cpu(trim->size); 1838 } else if (wsame) { 1839 if (data_size != queue_logical_block_size(device->rq_queue)) { 1840 drbd_err(peer_device, "data size (%u) != drbd logical block size (%u)\n", 1841 data_size, queue_logical_block_size(device->rq_queue)); 1842 return NULL; 1843 } 1844 if (data_size != bdev_logical_block_size(device->ldev->backing_bdev)) { 1845 drbd_err(peer_device, "data size (%u) != backend logical block size (%u)\n", 1846 data_size, bdev_logical_block_size(device->ldev->backing_bdev)); 1847 return NULL; 1848 } 1849 ds = be32_to_cpu(wsame->size); 1850 } 1851 1852 if (!expect(IS_ALIGNED(ds, 512))) 1853 return NULL; 1854 if (trim || wsame) { 1855 if (!expect(ds <= (DRBD_MAX_BBIO_SECTORS << 9))) 1856 return NULL; 1857 } else if (!expect(ds <= DRBD_MAX_BIO_SIZE)) 1858 return NULL; 1859 1860 /* even though we trust out peer, 1861 * we sometimes have to double check. */ 1862 if (sector + (ds>>9) > capacity) { 1863 drbd_err(device, "request from peer beyond end of local disk: " 1864 "capacity: %llus < sector: %llus + size: %u\n", 1865 (unsigned long long)capacity, 1866 (unsigned long long)sector, ds); 1867 return NULL; 1868 } 1869 1870 /* GFP_NOIO, because we must not cause arbitrary write-out: in a DRBD 1871 * "criss-cross" setup, that might cause write-out on some other DRBD, 1872 * which in turn might block on the other node at this very place. */ 1873 peer_req = drbd_alloc_peer_req(peer_device, id, sector, ds, data_size, GFP_NOIO); 1874 if (!peer_req) 1875 return NULL; 1876 1877 peer_req->flags |= EE_WRITE; 1878 if (trim) { 1879 peer_req->flags |= EE_IS_TRIM; 1880 return peer_req; 1881 } 1882 if (wsame) 1883 peer_req->flags |= EE_WRITE_SAME; 1884 1885 /* receive payload size bytes into page chain */ 1886 ds = data_size; 1887 page = peer_req->pages; 1888 page_chain_for_each(page) { 1889 unsigned len = min_t(int, ds, PAGE_SIZE); 1890 data = kmap(page); 1891 err = drbd_recv_all_warn(peer_device->connection, data, len); 1892 if (drbd_insert_fault(device, DRBD_FAULT_RECEIVE)) { 1893 drbd_err(device, "Fault injection: Corrupting data on receive\n"); 1894 data[0] = data[0] ^ (unsigned long)-1; 1895 } 1896 kunmap(page); 1897 if (err) { 1898 drbd_free_peer_req(device, peer_req); 1899 return NULL; 1900 } 1901 ds -= len; 1902 } 1903 1904 if (digest_size) { 1905 drbd_csum_ee_size(peer_device->connection->peer_integrity_tfm, peer_req, dig_vv, data_size); 1906 if (memcmp(dig_in, dig_vv, digest_size)) { 1907 drbd_err(device, "Digest integrity check FAILED: %llus +%u\n", 1908 (unsigned long long)sector, data_size); 1909 drbd_free_peer_req(device, peer_req); 1910 return NULL; 1911 } 1912 } 1913 device->recv_cnt += data_size >> 9; 1914 return peer_req; 1915 } 1916 1917 /* drbd_drain_block() just takes a data block 1918 * out of the socket input buffer, and discards it. 1919 */ 1920 static int drbd_drain_block(struct drbd_peer_device *peer_device, int data_size) 1921 { 1922 struct page *page; 1923 int err = 0; 1924 void *data; 1925 1926 if (!data_size) 1927 return 0; 1928 1929 page = drbd_alloc_pages(peer_device, 1, 1); 1930 1931 data = kmap(page); 1932 while (data_size) { 1933 unsigned int len = min_t(int, data_size, PAGE_SIZE); 1934 1935 err = drbd_recv_all_warn(peer_device->connection, data, len); 1936 if (err) 1937 break; 1938 data_size -= len; 1939 } 1940 kunmap(page); 1941 drbd_free_pages(peer_device->device, page, 0); 1942 return err; 1943 } 1944 1945 static int recv_dless_read(struct drbd_peer_device *peer_device, struct drbd_request *req, 1946 sector_t sector, int data_size) 1947 { 1948 struct bio_vec bvec; 1949 struct bvec_iter iter; 1950 struct bio *bio; 1951 int digest_size, err, expect; 1952 void *dig_in = peer_device->connection->int_dig_in; 1953 void *dig_vv = peer_device->connection->int_dig_vv; 1954 1955 digest_size = 0; 1956 if (peer_device->connection->peer_integrity_tfm) { 1957 digest_size = crypto_ahash_digestsize(peer_device->connection->peer_integrity_tfm); 1958 err = drbd_recv_all_warn(peer_device->connection, dig_in, digest_size); 1959 if (err) 1960 return err; 1961 data_size -= digest_size; 1962 } 1963 1964 /* optimistically update recv_cnt. if receiving fails below, 1965 * we disconnect anyways, and counters will be reset. */ 1966 peer_device->device->recv_cnt += data_size>>9; 1967 1968 bio = req->master_bio; 1969 D_ASSERT(peer_device->device, sector == bio->bi_iter.bi_sector); 1970 1971 bio_for_each_segment(bvec, bio, iter) { 1972 void *mapped = kmap(bvec.bv_page) + bvec.bv_offset; 1973 expect = min_t(int, data_size, bvec.bv_len); 1974 err = drbd_recv_all_warn(peer_device->connection, mapped, expect); 1975 kunmap(bvec.bv_page); 1976 if (err) 1977 return err; 1978 data_size -= expect; 1979 } 1980 1981 if (digest_size) { 1982 drbd_csum_bio(peer_device->connection->peer_integrity_tfm, bio, dig_vv); 1983 if (memcmp(dig_in, dig_vv, digest_size)) { 1984 drbd_err(peer_device, "Digest integrity check FAILED. Broken NICs?\n"); 1985 return -EINVAL; 1986 } 1987 } 1988 1989 D_ASSERT(peer_device->device, data_size == 0); 1990 return 0; 1991 } 1992 1993 /* 1994 * e_end_resync_block() is called in ack_sender context via 1995 * drbd_finish_peer_reqs(). 1996 */ 1997 static int e_end_resync_block(struct drbd_work *w, int unused) 1998 { 1999 struct drbd_peer_request *peer_req = 2000 container_of(w, struct drbd_peer_request, w); 2001 struct drbd_peer_device *peer_device = peer_req->peer_device; 2002 struct drbd_device *device = peer_device->device; 2003 sector_t sector = peer_req->i.sector; 2004 int err; 2005 2006 D_ASSERT(device, drbd_interval_empty(&peer_req->i)); 2007 2008 if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) { 2009 drbd_set_in_sync(device, sector, peer_req->i.size); 2010 err = drbd_send_ack(peer_device, P_RS_WRITE_ACK, peer_req); 2011 } else { 2012 /* Record failure to sync */ 2013 drbd_rs_failed_io(device, sector, peer_req->i.size); 2014 2015 err = drbd_send_ack(peer_device, P_NEG_ACK, peer_req); 2016 } 2017 dec_unacked(device); 2018 2019 return err; 2020 } 2021 2022 static int recv_resync_read(struct drbd_peer_device *peer_device, sector_t sector, 2023 struct packet_info *pi) __releases(local) 2024 { 2025 struct drbd_device *device = peer_device->device; 2026 struct drbd_peer_request *peer_req; 2027 2028 peer_req = read_in_block(peer_device, ID_SYNCER, sector, pi); 2029 if (!peer_req) 2030 goto fail; 2031 2032 dec_rs_pending(device); 2033 2034 inc_unacked(device); 2035 /* corresponding dec_unacked() in e_end_resync_block() 2036 * respective _drbd_clear_done_ee */ 2037 2038 peer_req->w.cb = e_end_resync_block; 2039 peer_req->submit_jif = jiffies; 2040 2041 spin_lock_irq(&device->resource->req_lock); 2042 list_add_tail(&peer_req->w.list, &device->sync_ee); 2043 spin_unlock_irq(&device->resource->req_lock); 2044 2045 atomic_add(pi->size >> 9, &device->rs_sect_ev); 2046 if (drbd_submit_peer_request(device, peer_req, REQ_OP_WRITE, 0, 2047 DRBD_FAULT_RS_WR) == 0) 2048 return 0; 2049 2050 /* don't care for the reason here */ 2051 drbd_err(device, "submit failed, triggering re-connect\n"); 2052 spin_lock_irq(&device->resource->req_lock); 2053 list_del(&peer_req->w.list); 2054 spin_unlock_irq(&device->resource->req_lock); 2055 2056 drbd_free_peer_req(device, peer_req); 2057 fail: 2058 put_ldev(device); 2059 return -EIO; 2060 } 2061 2062 static struct drbd_request * 2063 find_request(struct drbd_device *device, struct rb_root *root, u64 id, 2064 sector_t sector, bool missing_ok, const char *func) 2065 { 2066 struct drbd_request *req; 2067 2068 /* Request object according to our peer */ 2069 req = (struct drbd_request *)(unsigned long)id; 2070 if (drbd_contains_interval(root, sector, &req->i) && req->i.local) 2071 return req; 2072 if (!missing_ok) { 2073 drbd_err(device, "%s: failed to find request 0x%lx, sector %llus\n", func, 2074 (unsigned long)id, (unsigned long long)sector); 2075 } 2076 return NULL; 2077 } 2078 2079 static int receive_DataReply(struct drbd_connection *connection, struct packet_info *pi) 2080 { 2081 struct drbd_peer_device *peer_device; 2082 struct drbd_device *device; 2083 struct drbd_request *req; 2084 sector_t sector; 2085 int err; 2086 struct p_data *p = pi->data; 2087 2088 peer_device = conn_peer_device(connection, pi->vnr); 2089 if (!peer_device) 2090 return -EIO; 2091 device = peer_device->device; 2092 2093 sector = be64_to_cpu(p->sector); 2094 2095 spin_lock_irq(&device->resource->req_lock); 2096 req = find_request(device, &device->read_requests, p->block_id, sector, false, __func__); 2097 spin_unlock_irq(&device->resource->req_lock); 2098 if (unlikely(!req)) 2099 return -EIO; 2100 2101 /* hlist_del(&req->collision) is done in _req_may_be_done, to avoid 2102 * special casing it there for the various failure cases. 2103 * still no race with drbd_fail_pending_reads */ 2104 err = recv_dless_read(peer_device, req, sector, pi->size); 2105 if (!err) 2106 req_mod(req, DATA_RECEIVED); 2107 /* else: nothing. handled from drbd_disconnect... 2108 * I don't think we may complete this just yet 2109 * in case we are "on-disconnect: freeze" */ 2110 2111 return err; 2112 } 2113 2114 static int receive_RSDataReply(struct drbd_connection *connection, struct packet_info *pi) 2115 { 2116 struct drbd_peer_device *peer_device; 2117 struct drbd_device *device; 2118 sector_t sector; 2119 int err; 2120 struct p_data *p = pi->data; 2121 2122 peer_device = conn_peer_device(connection, pi->vnr); 2123 if (!peer_device) 2124 return -EIO; 2125 device = peer_device->device; 2126 2127 sector = be64_to_cpu(p->sector); 2128 D_ASSERT(device, p->block_id == ID_SYNCER); 2129 2130 if (get_ldev(device)) { 2131 /* data is submitted to disk within recv_resync_read. 2132 * corresponding put_ldev done below on error, 2133 * or in drbd_peer_request_endio. */ 2134 err = recv_resync_read(peer_device, sector, pi); 2135 } else { 2136 if (__ratelimit(&drbd_ratelimit_state)) 2137 drbd_err(device, "Can not write resync data to local disk.\n"); 2138 2139 err = drbd_drain_block(peer_device, pi->size); 2140 2141 drbd_send_ack_dp(peer_device, P_NEG_ACK, p, pi->size); 2142 } 2143 2144 atomic_add(pi->size >> 9, &device->rs_sect_in); 2145 2146 return err; 2147 } 2148 2149 static void restart_conflicting_writes(struct drbd_device *device, 2150 sector_t sector, int size) 2151 { 2152 struct drbd_interval *i; 2153 struct drbd_request *req; 2154 2155 drbd_for_each_overlap(i, &device->write_requests, sector, size) { 2156 if (!i->local) 2157 continue; 2158 req = container_of(i, struct drbd_request, i); 2159 if (req->rq_state & RQ_LOCAL_PENDING || 2160 !(req->rq_state & RQ_POSTPONED)) 2161 continue; 2162 /* as it is RQ_POSTPONED, this will cause it to 2163 * be queued on the retry workqueue. */ 2164 __req_mod(req, CONFLICT_RESOLVED, NULL); 2165 } 2166 } 2167 2168 /* 2169 * e_end_block() is called in ack_sender context via drbd_finish_peer_reqs(). 2170 */ 2171 static int e_end_block(struct drbd_work *w, int cancel) 2172 { 2173 struct drbd_peer_request *peer_req = 2174 container_of(w, struct drbd_peer_request, w); 2175 struct drbd_peer_device *peer_device = peer_req->peer_device; 2176 struct drbd_device *device = peer_device->device; 2177 sector_t sector = peer_req->i.sector; 2178 int err = 0, pcmd; 2179 2180 if (peer_req->flags & EE_SEND_WRITE_ACK) { 2181 if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) { 2182 pcmd = (device->state.conn >= C_SYNC_SOURCE && 2183 device->state.conn <= C_PAUSED_SYNC_T && 2184 peer_req->flags & EE_MAY_SET_IN_SYNC) ? 2185 P_RS_WRITE_ACK : P_WRITE_ACK; 2186 err = drbd_send_ack(peer_device, pcmd, peer_req); 2187 if (pcmd == P_RS_WRITE_ACK) 2188 drbd_set_in_sync(device, sector, peer_req->i.size); 2189 } else { 2190 err = drbd_send_ack(peer_device, P_NEG_ACK, peer_req); 2191 /* we expect it to be marked out of sync anyways... 2192 * maybe assert this? */ 2193 } 2194 dec_unacked(device); 2195 } 2196 2197 /* we delete from the conflict detection hash _after_ we sent out the 2198 * P_WRITE_ACK / P_NEG_ACK, to get the sequence number right. */ 2199 if (peer_req->flags & EE_IN_INTERVAL_TREE) { 2200 spin_lock_irq(&device->resource->req_lock); 2201 D_ASSERT(device, !drbd_interval_empty(&peer_req->i)); 2202 drbd_remove_epoch_entry_interval(device, peer_req); 2203 if (peer_req->flags & EE_RESTART_REQUESTS) 2204 restart_conflicting_writes(device, sector, peer_req->i.size); 2205 spin_unlock_irq(&device->resource->req_lock); 2206 } else 2207 D_ASSERT(device, drbd_interval_empty(&peer_req->i)); 2208 2209 drbd_may_finish_epoch(peer_device->connection, peer_req->epoch, EV_PUT + (cancel ? EV_CLEANUP : 0)); 2210 2211 return err; 2212 } 2213 2214 static int e_send_ack(struct drbd_work *w, enum drbd_packet ack) 2215 { 2216 struct drbd_peer_request *peer_req = 2217 container_of(w, struct drbd_peer_request, w); 2218 struct drbd_peer_device *peer_device = peer_req->peer_device; 2219 int err; 2220 2221 err = drbd_send_ack(peer_device, ack, peer_req); 2222 dec_unacked(peer_device->device); 2223 2224 return err; 2225 } 2226 2227 static int e_send_superseded(struct drbd_work *w, int unused) 2228 { 2229 return e_send_ack(w, P_SUPERSEDED); 2230 } 2231 2232 static int e_send_retry_write(struct drbd_work *w, int unused) 2233 { 2234 struct drbd_peer_request *peer_req = 2235 container_of(w, struct drbd_peer_request, w); 2236 struct drbd_connection *connection = peer_req->peer_device->connection; 2237 2238 return e_send_ack(w, connection->agreed_pro_version >= 100 ? 2239 P_RETRY_WRITE : P_SUPERSEDED); 2240 } 2241 2242 static bool seq_greater(u32 a, u32 b) 2243 { 2244 /* 2245 * We assume 32-bit wrap-around here. 2246 * For 24-bit wrap-around, we would have to shift: 2247 * a <<= 8; b <<= 8; 2248 */ 2249 return (s32)a - (s32)b > 0; 2250 } 2251 2252 static u32 seq_max(u32 a, u32 b) 2253 { 2254 return seq_greater(a, b) ? a : b; 2255 } 2256 2257 static void update_peer_seq(struct drbd_peer_device *peer_device, unsigned int peer_seq) 2258 { 2259 struct drbd_device *device = peer_device->device; 2260 unsigned int newest_peer_seq; 2261 2262 if (test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags)) { 2263 spin_lock(&device->peer_seq_lock); 2264 newest_peer_seq = seq_max(device->peer_seq, peer_seq); 2265 device->peer_seq = newest_peer_seq; 2266 spin_unlock(&device->peer_seq_lock); 2267 /* wake up only if we actually changed device->peer_seq */ 2268 if (peer_seq == newest_peer_seq) 2269 wake_up(&device->seq_wait); 2270 } 2271 } 2272 2273 static inline int overlaps(sector_t s1, int l1, sector_t s2, int l2) 2274 { 2275 return !((s1 + (l1>>9) <= s2) || (s1 >= s2 + (l2>>9))); 2276 } 2277 2278 /* maybe change sync_ee into interval trees as well? */ 2279 static bool overlapping_resync_write(struct drbd_device *device, struct drbd_peer_request *peer_req) 2280 { 2281 struct drbd_peer_request *rs_req; 2282 bool rv = false; 2283 2284 spin_lock_irq(&device->resource->req_lock); 2285 list_for_each_entry(rs_req, &device->sync_ee, w.list) { 2286 if (overlaps(peer_req->i.sector, peer_req->i.size, 2287 rs_req->i.sector, rs_req->i.size)) { 2288 rv = true; 2289 break; 2290 } 2291 } 2292 spin_unlock_irq(&device->resource->req_lock); 2293 2294 return rv; 2295 } 2296 2297 /* Called from receive_Data. 2298 * Synchronize packets on sock with packets on msock. 2299 * 2300 * This is here so even when a P_DATA packet traveling via sock overtook an Ack 2301 * packet traveling on msock, they are still processed in the order they have 2302 * been sent. 2303 * 2304 * Note: we don't care for Ack packets overtaking P_DATA packets. 2305 * 2306 * In case packet_seq is larger than device->peer_seq number, there are 2307 * outstanding packets on the msock. We wait for them to arrive. 2308 * In case we are the logically next packet, we update device->peer_seq 2309 * ourselves. Correctly handles 32bit wrap around. 2310 * 2311 * Assume we have a 10 GBit connection, that is about 1<<30 byte per second, 2312 * about 1<<21 sectors per second. So "worst" case, we have 1<<3 == 8 seconds 2313 * for the 24bit wrap (historical atomic_t guarantee on some archs), and we have 2314 * 1<<9 == 512 seconds aka ages for the 32bit wrap around... 2315 * 2316 * returns 0 if we may process the packet, 2317 * -ERESTARTSYS if we were interrupted (by disconnect signal). */ 2318 static int wait_for_and_update_peer_seq(struct drbd_peer_device *peer_device, const u32 peer_seq) 2319 { 2320 struct drbd_device *device = peer_device->device; 2321 DEFINE_WAIT(wait); 2322 long timeout; 2323 int ret = 0, tp; 2324 2325 if (!test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags)) 2326 return 0; 2327 2328 spin_lock(&device->peer_seq_lock); 2329 for (;;) { 2330 if (!seq_greater(peer_seq - 1, device->peer_seq)) { 2331 device->peer_seq = seq_max(device->peer_seq, peer_seq); 2332 break; 2333 } 2334 2335 if (signal_pending(current)) { 2336 ret = -ERESTARTSYS; 2337 break; 2338 } 2339 2340 rcu_read_lock(); 2341 tp = rcu_dereference(peer_device->connection->net_conf)->two_primaries; 2342 rcu_read_unlock(); 2343 2344 if (!tp) 2345 break; 2346 2347 /* Only need to wait if two_primaries is enabled */ 2348 prepare_to_wait(&device->seq_wait, &wait, TASK_INTERRUPTIBLE); 2349 spin_unlock(&device->peer_seq_lock); 2350 rcu_read_lock(); 2351 timeout = rcu_dereference(peer_device->connection->net_conf)->ping_timeo*HZ/10; 2352 rcu_read_unlock(); 2353 timeout = schedule_timeout(timeout); 2354 spin_lock(&device->peer_seq_lock); 2355 if (!timeout) { 2356 ret = -ETIMEDOUT; 2357 drbd_err(device, "Timed out waiting for missing ack packets; disconnecting\n"); 2358 break; 2359 } 2360 } 2361 spin_unlock(&device->peer_seq_lock); 2362 finish_wait(&device->seq_wait, &wait); 2363 return ret; 2364 } 2365 2366 /* see also bio_flags_to_wire() 2367 * DRBD_REQ_*, because we need to semantically map the flags to data packet 2368 * flags and back. We may replicate to other kernel versions. */ 2369 static unsigned long wire_flags_to_bio_flags(u32 dpf) 2370 { 2371 return (dpf & DP_RW_SYNC ? REQ_SYNC : 0) | 2372 (dpf & DP_FUA ? REQ_FUA : 0) | 2373 (dpf & DP_FLUSH ? REQ_PREFLUSH : 0); 2374 } 2375 2376 static unsigned long wire_flags_to_bio_op(u32 dpf) 2377 { 2378 if (dpf & DP_DISCARD) 2379 return REQ_OP_DISCARD; 2380 else 2381 return REQ_OP_WRITE; 2382 } 2383 2384 static void fail_postponed_requests(struct drbd_device *device, sector_t sector, 2385 unsigned int size) 2386 { 2387 struct drbd_interval *i; 2388 2389 repeat: 2390 drbd_for_each_overlap(i, &device->write_requests, sector, size) { 2391 struct drbd_request *req; 2392 struct bio_and_error m; 2393 2394 if (!i->local) 2395 continue; 2396 req = container_of(i, struct drbd_request, i); 2397 if (!(req->rq_state & RQ_POSTPONED)) 2398 continue; 2399 req->rq_state &= ~RQ_POSTPONED; 2400 __req_mod(req, NEG_ACKED, &m); 2401 spin_unlock_irq(&device->resource->req_lock); 2402 if (m.bio) 2403 complete_master_bio(device, &m); 2404 spin_lock_irq(&device->resource->req_lock); 2405 goto repeat; 2406 } 2407 } 2408 2409 static int handle_write_conflicts(struct drbd_device *device, 2410 struct drbd_peer_request *peer_req) 2411 { 2412 struct drbd_connection *connection = peer_req->peer_device->connection; 2413 bool resolve_conflicts = test_bit(RESOLVE_CONFLICTS, &connection->flags); 2414 sector_t sector = peer_req->i.sector; 2415 const unsigned int size = peer_req->i.size; 2416 struct drbd_interval *i; 2417 bool equal; 2418 int err; 2419 2420 /* 2421 * Inserting the peer request into the write_requests tree will prevent 2422 * new conflicting local requests from being added. 2423 */ 2424 drbd_insert_interval(&device->write_requests, &peer_req->i); 2425 2426 repeat: 2427 drbd_for_each_overlap(i, &device->write_requests, sector, size) { 2428 if (i == &peer_req->i) 2429 continue; 2430 if (i->completed) 2431 continue; 2432 2433 if (!i->local) { 2434 /* 2435 * Our peer has sent a conflicting remote request; this 2436 * should not happen in a two-node setup. Wait for the 2437 * earlier peer request to complete. 2438 */ 2439 err = drbd_wait_misc(device, i); 2440 if (err) 2441 goto out; 2442 goto repeat; 2443 } 2444 2445 equal = i->sector == sector && i->size == size; 2446 if (resolve_conflicts) { 2447 /* 2448 * If the peer request is fully contained within the 2449 * overlapping request, it can be considered overwritten 2450 * and thus superseded; otherwise, it will be retried 2451 * once all overlapping requests have completed. 2452 */ 2453 bool superseded = i->sector <= sector && i->sector + 2454 (i->size >> 9) >= sector + (size >> 9); 2455 2456 if (!equal) 2457 drbd_alert(device, "Concurrent writes detected: " 2458 "local=%llus +%u, remote=%llus +%u, " 2459 "assuming %s came first\n", 2460 (unsigned long long)i->sector, i->size, 2461 (unsigned long long)sector, size, 2462 superseded ? "local" : "remote"); 2463 2464 peer_req->w.cb = superseded ? e_send_superseded : 2465 e_send_retry_write; 2466 list_add_tail(&peer_req->w.list, &device->done_ee); 2467 queue_work(connection->ack_sender, &peer_req->peer_device->send_acks_work); 2468 2469 err = -ENOENT; 2470 goto out; 2471 } else { 2472 struct drbd_request *req = 2473 container_of(i, struct drbd_request, i); 2474 2475 if (!equal) 2476 drbd_alert(device, "Concurrent writes detected: " 2477 "local=%llus +%u, remote=%llus +%u\n", 2478 (unsigned long long)i->sector, i->size, 2479 (unsigned long long)sector, size); 2480 2481 if (req->rq_state & RQ_LOCAL_PENDING || 2482 !(req->rq_state & RQ_POSTPONED)) { 2483 /* 2484 * Wait for the node with the discard flag to 2485 * decide if this request has been superseded 2486 * or needs to be retried. 2487 * Requests that have been superseded will 2488 * disappear from the write_requests tree. 2489 * 2490 * In addition, wait for the conflicting 2491 * request to finish locally before submitting 2492 * the conflicting peer request. 2493 */ 2494 err = drbd_wait_misc(device, &req->i); 2495 if (err) { 2496 _conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD); 2497 fail_postponed_requests(device, sector, size); 2498 goto out; 2499 } 2500 goto repeat; 2501 } 2502 /* 2503 * Remember to restart the conflicting requests after 2504 * the new peer request has completed. 2505 */ 2506 peer_req->flags |= EE_RESTART_REQUESTS; 2507 } 2508 } 2509 err = 0; 2510 2511 out: 2512 if (err) 2513 drbd_remove_epoch_entry_interval(device, peer_req); 2514 return err; 2515 } 2516 2517 /* mirrored write */ 2518 static int receive_Data(struct drbd_connection *connection, struct packet_info *pi) 2519 { 2520 struct drbd_peer_device *peer_device; 2521 struct drbd_device *device; 2522 struct net_conf *nc; 2523 sector_t sector; 2524 struct drbd_peer_request *peer_req; 2525 struct p_data *p = pi->data; 2526 u32 peer_seq = be32_to_cpu(p->seq_num); 2527 int op, op_flags; 2528 u32 dp_flags; 2529 int err, tp; 2530 2531 peer_device = conn_peer_device(connection, pi->vnr); 2532 if (!peer_device) 2533 return -EIO; 2534 device = peer_device->device; 2535 2536 if (!get_ldev(device)) { 2537 int err2; 2538 2539 err = wait_for_and_update_peer_seq(peer_device, peer_seq); 2540 drbd_send_ack_dp(peer_device, P_NEG_ACK, p, pi->size); 2541 atomic_inc(&connection->current_epoch->epoch_size); 2542 err2 = drbd_drain_block(peer_device, pi->size); 2543 if (!err) 2544 err = err2; 2545 return err; 2546 } 2547 2548 /* 2549 * Corresponding put_ldev done either below (on various errors), or in 2550 * drbd_peer_request_endio, if we successfully submit the data at the 2551 * end of this function. 2552 */ 2553 2554 sector = be64_to_cpu(p->sector); 2555 peer_req = read_in_block(peer_device, p->block_id, sector, pi); 2556 if (!peer_req) { 2557 put_ldev(device); 2558 return -EIO; 2559 } 2560 2561 peer_req->w.cb = e_end_block; 2562 peer_req->submit_jif = jiffies; 2563 peer_req->flags |= EE_APPLICATION; 2564 2565 dp_flags = be32_to_cpu(p->dp_flags); 2566 op = wire_flags_to_bio_op(dp_flags); 2567 op_flags = wire_flags_to_bio_flags(dp_flags); 2568 if (pi->cmd == P_TRIM) { 2569 D_ASSERT(peer_device, peer_req->i.size > 0); 2570 D_ASSERT(peer_device, op == REQ_OP_DISCARD); 2571 D_ASSERT(peer_device, peer_req->pages == NULL); 2572 } else if (peer_req->pages == NULL) { 2573 D_ASSERT(device, peer_req->i.size == 0); 2574 D_ASSERT(device, dp_flags & DP_FLUSH); 2575 } 2576 2577 if (dp_flags & DP_MAY_SET_IN_SYNC) 2578 peer_req->flags |= EE_MAY_SET_IN_SYNC; 2579 2580 spin_lock(&connection->epoch_lock); 2581 peer_req->epoch = connection->current_epoch; 2582 atomic_inc(&peer_req->epoch->epoch_size); 2583 atomic_inc(&peer_req->epoch->active); 2584 spin_unlock(&connection->epoch_lock); 2585 2586 rcu_read_lock(); 2587 nc = rcu_dereference(peer_device->connection->net_conf); 2588 tp = nc->two_primaries; 2589 if (peer_device->connection->agreed_pro_version < 100) { 2590 switch (nc->wire_protocol) { 2591 case DRBD_PROT_C: 2592 dp_flags |= DP_SEND_WRITE_ACK; 2593 break; 2594 case DRBD_PROT_B: 2595 dp_flags |= DP_SEND_RECEIVE_ACK; 2596 break; 2597 } 2598 } 2599 rcu_read_unlock(); 2600 2601 if (dp_flags & DP_SEND_WRITE_ACK) { 2602 peer_req->flags |= EE_SEND_WRITE_ACK; 2603 inc_unacked(device); 2604 /* corresponding dec_unacked() in e_end_block() 2605 * respective _drbd_clear_done_ee */ 2606 } 2607 2608 if (dp_flags & DP_SEND_RECEIVE_ACK) { 2609 /* I really don't like it that the receiver thread 2610 * sends on the msock, but anyways */ 2611 drbd_send_ack(peer_device, P_RECV_ACK, peer_req); 2612 } 2613 2614 if (tp) { 2615 /* two primaries implies protocol C */ 2616 D_ASSERT(device, dp_flags & DP_SEND_WRITE_ACK); 2617 peer_req->flags |= EE_IN_INTERVAL_TREE; 2618 err = wait_for_and_update_peer_seq(peer_device, peer_seq); 2619 if (err) 2620 goto out_interrupted; 2621 spin_lock_irq(&device->resource->req_lock); 2622 err = handle_write_conflicts(device, peer_req); 2623 if (err) { 2624 spin_unlock_irq(&device->resource->req_lock); 2625 if (err == -ENOENT) { 2626 put_ldev(device); 2627 return 0; 2628 } 2629 goto out_interrupted; 2630 } 2631 } else { 2632 update_peer_seq(peer_device, peer_seq); 2633 spin_lock_irq(&device->resource->req_lock); 2634 } 2635 /* TRIM and WRITE_SAME are processed synchronously, 2636 * we wait for all pending requests, respectively wait for 2637 * active_ee to become empty in drbd_submit_peer_request(); 2638 * better not add ourselves here. */ 2639 if ((peer_req->flags & (EE_IS_TRIM|EE_WRITE_SAME)) == 0) 2640 list_add_tail(&peer_req->w.list, &device->active_ee); 2641 spin_unlock_irq(&device->resource->req_lock); 2642 2643 if (device->state.conn == C_SYNC_TARGET) 2644 wait_event(device->ee_wait, !overlapping_resync_write(device, peer_req)); 2645 2646 if (device->state.pdsk < D_INCONSISTENT) { 2647 /* In case we have the only disk of the cluster, */ 2648 drbd_set_out_of_sync(device, peer_req->i.sector, peer_req->i.size); 2649 peer_req->flags &= ~EE_MAY_SET_IN_SYNC; 2650 drbd_al_begin_io(device, &peer_req->i); 2651 peer_req->flags |= EE_CALL_AL_COMPLETE_IO; 2652 } 2653 2654 err = drbd_submit_peer_request(device, peer_req, op, op_flags, 2655 DRBD_FAULT_DT_WR); 2656 if (!err) 2657 return 0; 2658 2659 /* don't care for the reason here */ 2660 drbd_err(device, "submit failed, triggering re-connect\n"); 2661 spin_lock_irq(&device->resource->req_lock); 2662 list_del(&peer_req->w.list); 2663 drbd_remove_epoch_entry_interval(device, peer_req); 2664 spin_unlock_irq(&device->resource->req_lock); 2665 if (peer_req->flags & EE_CALL_AL_COMPLETE_IO) { 2666 peer_req->flags &= ~EE_CALL_AL_COMPLETE_IO; 2667 drbd_al_complete_io(device, &peer_req->i); 2668 } 2669 2670 out_interrupted: 2671 drbd_may_finish_epoch(connection, peer_req->epoch, EV_PUT | EV_CLEANUP); 2672 put_ldev(device); 2673 drbd_free_peer_req(device, peer_req); 2674 return err; 2675 } 2676 2677 /* We may throttle resync, if the lower device seems to be busy, 2678 * and current sync rate is above c_min_rate. 2679 * 2680 * To decide whether or not the lower device is busy, we use a scheme similar 2681 * to MD RAID is_mddev_idle(): if the partition stats reveal "significant" 2682 * (more than 64 sectors) of activity we cannot account for with our own resync 2683 * activity, it obviously is "busy". 2684 * 2685 * The current sync rate used here uses only the most recent two step marks, 2686 * to have a short time average so we can react faster. 2687 */ 2688 bool drbd_rs_should_slow_down(struct drbd_device *device, sector_t sector, 2689 bool throttle_if_app_is_waiting) 2690 { 2691 struct lc_element *tmp; 2692 bool throttle = drbd_rs_c_min_rate_throttle(device); 2693 2694 if (!throttle || throttle_if_app_is_waiting) 2695 return throttle; 2696 2697 spin_lock_irq(&device->al_lock); 2698 tmp = lc_find(device->resync, BM_SECT_TO_EXT(sector)); 2699 if (tmp) { 2700 struct bm_extent *bm_ext = lc_entry(tmp, struct bm_extent, lce); 2701 if (test_bit(BME_PRIORITY, &bm_ext->flags)) 2702 throttle = false; 2703 /* Do not slow down if app IO is already waiting for this extent, 2704 * and our progress is necessary for application IO to complete. */ 2705 } 2706 spin_unlock_irq(&device->al_lock); 2707 2708 return throttle; 2709 } 2710 2711 bool drbd_rs_c_min_rate_throttle(struct drbd_device *device) 2712 { 2713 struct gendisk *disk = device->ldev->backing_bdev->bd_contains->bd_disk; 2714 unsigned long db, dt, dbdt; 2715 unsigned int c_min_rate; 2716 int curr_events; 2717 2718 rcu_read_lock(); 2719 c_min_rate = rcu_dereference(device->ldev->disk_conf)->c_min_rate; 2720 rcu_read_unlock(); 2721 2722 /* feature disabled? */ 2723 if (c_min_rate == 0) 2724 return false; 2725 2726 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) + 2727 (int)part_stat_read(&disk->part0, sectors[1]) - 2728 atomic_read(&device->rs_sect_ev); 2729 2730 if (atomic_read(&device->ap_actlog_cnt) 2731 || curr_events - device->rs_last_events > 64) { 2732 unsigned long rs_left; 2733 int i; 2734 2735 device->rs_last_events = curr_events; 2736 2737 /* sync speed average over the last 2*DRBD_SYNC_MARK_STEP, 2738 * approx. */ 2739 i = (device->rs_last_mark + DRBD_SYNC_MARKS-1) % DRBD_SYNC_MARKS; 2740 2741 if (device->state.conn == C_VERIFY_S || device->state.conn == C_VERIFY_T) 2742 rs_left = device->ov_left; 2743 else 2744 rs_left = drbd_bm_total_weight(device) - device->rs_failed; 2745 2746 dt = ((long)jiffies - (long)device->rs_mark_time[i]) / HZ; 2747 if (!dt) 2748 dt++; 2749 db = device->rs_mark_left[i] - rs_left; 2750 dbdt = Bit2KB(db/dt); 2751 2752 if (dbdt > c_min_rate) 2753 return true; 2754 } 2755 return false; 2756 } 2757 2758 static int receive_DataRequest(struct drbd_connection *connection, struct packet_info *pi) 2759 { 2760 struct drbd_peer_device *peer_device; 2761 struct drbd_device *device; 2762 sector_t sector; 2763 sector_t capacity; 2764 struct drbd_peer_request *peer_req; 2765 struct digest_info *di = NULL; 2766 int size, verb; 2767 unsigned int fault_type; 2768 struct p_block_req *p = pi->data; 2769 2770 peer_device = conn_peer_device(connection, pi->vnr); 2771 if (!peer_device) 2772 return -EIO; 2773 device = peer_device->device; 2774 capacity = drbd_get_capacity(device->this_bdev); 2775 2776 sector = be64_to_cpu(p->sector); 2777 size = be32_to_cpu(p->blksize); 2778 2779 if (size <= 0 || !IS_ALIGNED(size, 512) || size > DRBD_MAX_BIO_SIZE) { 2780 drbd_err(device, "%s:%d: sector: %llus, size: %u\n", __FILE__, __LINE__, 2781 (unsigned long long)sector, size); 2782 return -EINVAL; 2783 } 2784 if (sector + (size>>9) > capacity) { 2785 drbd_err(device, "%s:%d: sector: %llus, size: %u\n", __FILE__, __LINE__, 2786 (unsigned long long)sector, size); 2787 return -EINVAL; 2788 } 2789 2790 if (!get_ldev_if_state(device, D_UP_TO_DATE)) { 2791 verb = 1; 2792 switch (pi->cmd) { 2793 case P_DATA_REQUEST: 2794 drbd_send_ack_rp(peer_device, P_NEG_DREPLY, p); 2795 break; 2796 case P_RS_THIN_REQ: 2797 case P_RS_DATA_REQUEST: 2798 case P_CSUM_RS_REQUEST: 2799 case P_OV_REQUEST: 2800 drbd_send_ack_rp(peer_device, P_NEG_RS_DREPLY , p); 2801 break; 2802 case P_OV_REPLY: 2803 verb = 0; 2804 dec_rs_pending(device); 2805 drbd_send_ack_ex(peer_device, P_OV_RESULT, sector, size, ID_IN_SYNC); 2806 break; 2807 default: 2808 BUG(); 2809 } 2810 if (verb && __ratelimit(&drbd_ratelimit_state)) 2811 drbd_err(device, "Can not satisfy peer's read request, " 2812 "no local data.\n"); 2813 2814 /* drain possibly payload */ 2815 return drbd_drain_block(peer_device, pi->size); 2816 } 2817 2818 /* GFP_NOIO, because we must not cause arbitrary write-out: in a DRBD 2819 * "criss-cross" setup, that might cause write-out on some other DRBD, 2820 * which in turn might block on the other node at this very place. */ 2821 peer_req = drbd_alloc_peer_req(peer_device, p->block_id, sector, size, 2822 size, GFP_NOIO); 2823 if (!peer_req) { 2824 put_ldev(device); 2825 return -ENOMEM; 2826 } 2827 2828 switch (pi->cmd) { 2829 case P_DATA_REQUEST: 2830 peer_req->w.cb = w_e_end_data_req; 2831 fault_type = DRBD_FAULT_DT_RD; 2832 /* application IO, don't drbd_rs_begin_io */ 2833 peer_req->flags |= EE_APPLICATION; 2834 goto submit; 2835 2836 case P_RS_THIN_REQ: 2837 /* If at some point in the future we have a smart way to 2838 find out if this data block is completely deallocated, 2839 then we would do something smarter here than reading 2840 the block... */ 2841 peer_req->flags |= EE_RS_THIN_REQ; 2842 case P_RS_DATA_REQUEST: 2843 peer_req->w.cb = w_e_end_rsdata_req; 2844 fault_type = DRBD_FAULT_RS_RD; 2845 /* used in the sector offset progress display */ 2846 device->bm_resync_fo = BM_SECT_TO_BIT(sector); 2847 break; 2848 2849 case P_OV_REPLY: 2850 case P_CSUM_RS_REQUEST: 2851 fault_type = DRBD_FAULT_RS_RD; 2852 di = kmalloc(sizeof(*di) + pi->size, GFP_NOIO); 2853 if (!di) 2854 goto out_free_e; 2855 2856 di->digest_size = pi->size; 2857 di->digest = (((char *)di)+sizeof(struct digest_info)); 2858 2859 peer_req->digest = di; 2860 peer_req->flags |= EE_HAS_DIGEST; 2861 2862 if (drbd_recv_all(peer_device->connection, di->digest, pi->size)) 2863 goto out_free_e; 2864 2865 if (pi->cmd == P_CSUM_RS_REQUEST) { 2866 D_ASSERT(device, peer_device->connection->agreed_pro_version >= 89); 2867 peer_req->w.cb = w_e_end_csum_rs_req; 2868 /* used in the sector offset progress display */ 2869 device->bm_resync_fo = BM_SECT_TO_BIT(sector); 2870 /* remember to report stats in drbd_resync_finished */ 2871 device->use_csums = true; 2872 } else if (pi->cmd == P_OV_REPLY) { 2873 /* track progress, we may need to throttle */ 2874 atomic_add(size >> 9, &device->rs_sect_in); 2875 peer_req->w.cb = w_e_end_ov_reply; 2876 dec_rs_pending(device); 2877 /* drbd_rs_begin_io done when we sent this request, 2878 * but accounting still needs to be done. */ 2879 goto submit_for_resync; 2880 } 2881 break; 2882 2883 case P_OV_REQUEST: 2884 if (device->ov_start_sector == ~(sector_t)0 && 2885 peer_device->connection->agreed_pro_version >= 90) { 2886 unsigned long now = jiffies; 2887 int i; 2888 device->ov_start_sector = sector; 2889 device->ov_position = sector; 2890 device->ov_left = drbd_bm_bits(device) - BM_SECT_TO_BIT(sector); 2891 device->rs_total = device->ov_left; 2892 for (i = 0; i < DRBD_SYNC_MARKS; i++) { 2893 device->rs_mark_left[i] = device->ov_left; 2894 device->rs_mark_time[i] = now; 2895 } 2896 drbd_info(device, "Online Verify start sector: %llu\n", 2897 (unsigned long long)sector); 2898 } 2899 peer_req->w.cb = w_e_end_ov_req; 2900 fault_type = DRBD_FAULT_RS_RD; 2901 break; 2902 2903 default: 2904 BUG(); 2905 } 2906 2907 /* Throttle, drbd_rs_begin_io and submit should become asynchronous 2908 * wrt the receiver, but it is not as straightforward as it may seem. 2909 * Various places in the resync start and stop logic assume resync 2910 * requests are processed in order, requeuing this on the worker thread 2911 * introduces a bunch of new code for synchronization between threads. 2912 * 2913 * Unlimited throttling before drbd_rs_begin_io may stall the resync 2914 * "forever", throttling after drbd_rs_begin_io will lock that extent 2915 * for application writes for the same time. For now, just throttle 2916 * here, where the rest of the code expects the receiver to sleep for 2917 * a while, anyways. 2918 */ 2919 2920 /* Throttle before drbd_rs_begin_io, as that locks out application IO; 2921 * this defers syncer requests for some time, before letting at least 2922 * on request through. The resync controller on the receiving side 2923 * will adapt to the incoming rate accordingly. 2924 * 2925 * We cannot throttle here if remote is Primary/SyncTarget: 2926 * we would also throttle its application reads. 2927 * In that case, throttling is done on the SyncTarget only. 2928 */ 2929 2930 /* Even though this may be a resync request, we do add to "read_ee"; 2931 * "sync_ee" is only used for resync WRITEs. 2932 * Add to list early, so debugfs can find this request 2933 * even if we have to sleep below. */ 2934 spin_lock_irq(&device->resource->req_lock); 2935 list_add_tail(&peer_req->w.list, &device->read_ee); 2936 spin_unlock_irq(&device->resource->req_lock); 2937 2938 update_receiver_timing_details(connection, drbd_rs_should_slow_down); 2939 if (device->state.peer != R_PRIMARY 2940 && drbd_rs_should_slow_down(device, sector, false)) 2941 schedule_timeout_uninterruptible(HZ/10); 2942 update_receiver_timing_details(connection, drbd_rs_begin_io); 2943 if (drbd_rs_begin_io(device, sector)) 2944 goto out_free_e; 2945 2946 submit_for_resync: 2947 atomic_add(size >> 9, &device->rs_sect_ev); 2948 2949 submit: 2950 update_receiver_timing_details(connection, drbd_submit_peer_request); 2951 inc_unacked(device); 2952 if (drbd_submit_peer_request(device, peer_req, REQ_OP_READ, 0, 2953 fault_type) == 0) 2954 return 0; 2955 2956 /* don't care for the reason here */ 2957 drbd_err(device, "submit failed, triggering re-connect\n"); 2958 2959 out_free_e: 2960 spin_lock_irq(&device->resource->req_lock); 2961 list_del(&peer_req->w.list); 2962 spin_unlock_irq(&device->resource->req_lock); 2963 /* no drbd_rs_complete_io(), we are dropping the connection anyways */ 2964 2965 put_ldev(device); 2966 drbd_free_peer_req(device, peer_req); 2967 return -EIO; 2968 } 2969 2970 /** 2971 * drbd_asb_recover_0p - Recover after split-brain with no remaining primaries 2972 */ 2973 static int drbd_asb_recover_0p(struct drbd_peer_device *peer_device) __must_hold(local) 2974 { 2975 struct drbd_device *device = peer_device->device; 2976 int self, peer, rv = -100; 2977 unsigned long ch_self, ch_peer; 2978 enum drbd_after_sb_p after_sb_0p; 2979 2980 self = device->ldev->md.uuid[UI_BITMAP] & 1; 2981 peer = device->p_uuid[UI_BITMAP] & 1; 2982 2983 ch_peer = device->p_uuid[UI_SIZE]; 2984 ch_self = device->comm_bm_set; 2985 2986 rcu_read_lock(); 2987 after_sb_0p = rcu_dereference(peer_device->connection->net_conf)->after_sb_0p; 2988 rcu_read_unlock(); 2989 switch (after_sb_0p) { 2990 case ASB_CONSENSUS: 2991 case ASB_DISCARD_SECONDARY: 2992 case ASB_CALL_HELPER: 2993 case ASB_VIOLENTLY: 2994 drbd_err(device, "Configuration error.\n"); 2995 break; 2996 case ASB_DISCONNECT: 2997 break; 2998 case ASB_DISCARD_YOUNGER_PRI: 2999 if (self == 0 && peer == 1) { 3000 rv = -1; 3001 break; 3002 } 3003 if (self == 1 && peer == 0) { 3004 rv = 1; 3005 break; 3006 } 3007 /* Else fall through to one of the other strategies... */ 3008 case ASB_DISCARD_OLDER_PRI: 3009 if (self == 0 && peer == 1) { 3010 rv = 1; 3011 break; 3012 } 3013 if (self == 1 && peer == 0) { 3014 rv = -1; 3015 break; 3016 } 3017 /* Else fall through to one of the other strategies... */ 3018 drbd_warn(device, "Discard younger/older primary did not find a decision\n" 3019 "Using discard-least-changes instead\n"); 3020 case ASB_DISCARD_ZERO_CHG: 3021 if (ch_peer == 0 && ch_self == 0) { 3022 rv = test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags) 3023 ? -1 : 1; 3024 break; 3025 } else { 3026 if (ch_peer == 0) { rv = 1; break; } 3027 if (ch_self == 0) { rv = -1; break; } 3028 } 3029 if (after_sb_0p == ASB_DISCARD_ZERO_CHG) 3030 break; 3031 case ASB_DISCARD_LEAST_CHG: 3032 if (ch_self < ch_peer) 3033 rv = -1; 3034 else if (ch_self > ch_peer) 3035 rv = 1; 3036 else /* ( ch_self == ch_peer ) */ 3037 /* Well, then use something else. */ 3038 rv = test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags) 3039 ? -1 : 1; 3040 break; 3041 case ASB_DISCARD_LOCAL: 3042 rv = -1; 3043 break; 3044 case ASB_DISCARD_REMOTE: 3045 rv = 1; 3046 } 3047 3048 return rv; 3049 } 3050 3051 /** 3052 * drbd_asb_recover_1p - Recover after split-brain with one remaining primary 3053 */ 3054 static int drbd_asb_recover_1p(struct drbd_peer_device *peer_device) __must_hold(local) 3055 { 3056 struct drbd_device *device = peer_device->device; 3057 int hg, rv = -100; 3058 enum drbd_after_sb_p after_sb_1p; 3059 3060 rcu_read_lock(); 3061 after_sb_1p = rcu_dereference(peer_device->connection->net_conf)->after_sb_1p; 3062 rcu_read_unlock(); 3063 switch (after_sb_1p) { 3064 case ASB_DISCARD_YOUNGER_PRI: 3065 case ASB_DISCARD_OLDER_PRI: 3066 case ASB_DISCARD_LEAST_CHG: 3067 case ASB_DISCARD_LOCAL: 3068 case ASB_DISCARD_REMOTE: 3069 case ASB_DISCARD_ZERO_CHG: 3070 drbd_err(device, "Configuration error.\n"); 3071 break; 3072 case ASB_DISCONNECT: 3073 break; 3074 case ASB_CONSENSUS: 3075 hg = drbd_asb_recover_0p(peer_device); 3076 if (hg == -1 && device->state.role == R_SECONDARY) 3077 rv = hg; 3078 if (hg == 1 && device->state.role == R_PRIMARY) 3079 rv = hg; 3080 break; 3081 case ASB_VIOLENTLY: 3082 rv = drbd_asb_recover_0p(peer_device); 3083 break; 3084 case ASB_DISCARD_SECONDARY: 3085 return device->state.role == R_PRIMARY ? 1 : -1; 3086 case ASB_CALL_HELPER: 3087 hg = drbd_asb_recover_0p(peer_device); 3088 if (hg == -1 && device->state.role == R_PRIMARY) { 3089 enum drbd_state_rv rv2; 3090 3091 /* drbd_change_state() does not sleep while in SS_IN_TRANSIENT_STATE, 3092 * we might be here in C_WF_REPORT_PARAMS which is transient. 3093 * we do not need to wait for the after state change work either. */ 3094 rv2 = drbd_change_state(device, CS_VERBOSE, NS(role, R_SECONDARY)); 3095 if (rv2 != SS_SUCCESS) { 3096 drbd_khelper(device, "pri-lost-after-sb"); 3097 } else { 3098 drbd_warn(device, "Successfully gave up primary role.\n"); 3099 rv = hg; 3100 } 3101 } else 3102 rv = hg; 3103 } 3104 3105 return rv; 3106 } 3107 3108 /** 3109 * drbd_asb_recover_2p - Recover after split-brain with two remaining primaries 3110 */ 3111 static int drbd_asb_recover_2p(struct drbd_peer_device *peer_device) __must_hold(local) 3112 { 3113 struct drbd_device *device = peer_device->device; 3114 int hg, rv = -100; 3115 enum drbd_after_sb_p after_sb_2p; 3116 3117 rcu_read_lock(); 3118 after_sb_2p = rcu_dereference(peer_device->connection->net_conf)->after_sb_2p; 3119 rcu_read_unlock(); 3120 switch (after_sb_2p) { 3121 case ASB_DISCARD_YOUNGER_PRI: 3122 case ASB_DISCARD_OLDER_PRI: 3123 case ASB_DISCARD_LEAST_CHG: 3124 case ASB_DISCARD_LOCAL: 3125 case ASB_DISCARD_REMOTE: 3126 case ASB_CONSENSUS: 3127 case ASB_DISCARD_SECONDARY: 3128 case ASB_DISCARD_ZERO_CHG: 3129 drbd_err(device, "Configuration error.\n"); 3130 break; 3131 case ASB_VIOLENTLY: 3132 rv = drbd_asb_recover_0p(peer_device); 3133 break; 3134 case ASB_DISCONNECT: 3135 break; 3136 case ASB_CALL_HELPER: 3137 hg = drbd_asb_recover_0p(peer_device); 3138 if (hg == -1) { 3139 enum drbd_state_rv rv2; 3140 3141 /* drbd_change_state() does not sleep while in SS_IN_TRANSIENT_STATE, 3142 * we might be here in C_WF_REPORT_PARAMS which is transient. 3143 * we do not need to wait for the after state change work either. */ 3144 rv2 = drbd_change_state(device, CS_VERBOSE, NS(role, R_SECONDARY)); 3145 if (rv2 != SS_SUCCESS) { 3146 drbd_khelper(device, "pri-lost-after-sb"); 3147 } else { 3148 drbd_warn(device, "Successfully gave up primary role.\n"); 3149 rv = hg; 3150 } 3151 } else 3152 rv = hg; 3153 } 3154 3155 return rv; 3156 } 3157 3158 static void drbd_uuid_dump(struct drbd_device *device, char *text, u64 *uuid, 3159 u64 bits, u64 flags) 3160 { 3161 if (!uuid) { 3162 drbd_info(device, "%s uuid info vanished while I was looking!\n", text); 3163 return; 3164 } 3165 drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX bits:%llu flags:%llX\n", 3166 text, 3167 (unsigned long long)uuid[UI_CURRENT], 3168 (unsigned long long)uuid[UI_BITMAP], 3169 (unsigned long long)uuid[UI_HISTORY_START], 3170 (unsigned long long)uuid[UI_HISTORY_END], 3171 (unsigned long long)bits, 3172 (unsigned long long)flags); 3173 } 3174 3175 /* 3176 100 after split brain try auto recover 3177 2 C_SYNC_SOURCE set BitMap 3178 1 C_SYNC_SOURCE use BitMap 3179 0 no Sync 3180 -1 C_SYNC_TARGET use BitMap 3181 -2 C_SYNC_TARGET set BitMap 3182 -100 after split brain, disconnect 3183 -1000 unrelated data 3184 -1091 requires proto 91 3185 -1096 requires proto 96 3186 */ 3187 3188 static int drbd_uuid_compare(struct drbd_device *const device, enum drbd_role const peer_role, int *rule_nr) __must_hold(local) 3189 { 3190 struct drbd_peer_device *const peer_device = first_peer_device(device); 3191 struct drbd_connection *const connection = peer_device ? peer_device->connection : NULL; 3192 u64 self, peer; 3193 int i, j; 3194 3195 self = device->ldev->md.uuid[UI_CURRENT] & ~((u64)1); 3196 peer = device->p_uuid[UI_CURRENT] & ~((u64)1); 3197 3198 *rule_nr = 10; 3199 if (self == UUID_JUST_CREATED && peer == UUID_JUST_CREATED) 3200 return 0; 3201 3202 *rule_nr = 20; 3203 if ((self == UUID_JUST_CREATED || self == (u64)0) && 3204 peer != UUID_JUST_CREATED) 3205 return -2; 3206 3207 *rule_nr = 30; 3208 if (self != UUID_JUST_CREATED && 3209 (peer == UUID_JUST_CREATED || peer == (u64)0)) 3210 return 2; 3211 3212 if (self == peer) { 3213 int rct, dc; /* roles at crash time */ 3214 3215 if (device->p_uuid[UI_BITMAP] == (u64)0 && device->ldev->md.uuid[UI_BITMAP] != (u64)0) { 3216 3217 if (connection->agreed_pro_version < 91) 3218 return -1091; 3219 3220 if ((device->ldev->md.uuid[UI_BITMAP] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START] & ~((u64)1)) && 3221 (device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START + 1] & ~((u64)1))) { 3222 drbd_info(device, "was SyncSource, missed the resync finished event, corrected myself:\n"); 3223 drbd_uuid_move_history(device); 3224 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP]; 3225 device->ldev->md.uuid[UI_BITMAP] = 0; 3226 3227 drbd_uuid_dump(device, "self", device->ldev->md.uuid, 3228 device->state.disk >= D_NEGOTIATING ? drbd_bm_total_weight(device) : 0, 0); 3229 *rule_nr = 34; 3230 } else { 3231 drbd_info(device, "was SyncSource (peer failed to write sync_uuid)\n"); 3232 *rule_nr = 36; 3233 } 3234 3235 return 1; 3236 } 3237 3238 if (device->ldev->md.uuid[UI_BITMAP] == (u64)0 && device->p_uuid[UI_BITMAP] != (u64)0) { 3239 3240 if (connection->agreed_pro_version < 91) 3241 return -1091; 3242 3243 if ((device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == (device->p_uuid[UI_BITMAP] & ~((u64)1)) && 3244 (device->ldev->md.uuid[UI_HISTORY_START + 1] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START] & ~((u64)1))) { 3245 drbd_info(device, "was SyncTarget, peer missed the resync finished event, corrected peer:\n"); 3246 3247 device->p_uuid[UI_HISTORY_START + 1] = device->p_uuid[UI_HISTORY_START]; 3248 device->p_uuid[UI_HISTORY_START] = device->p_uuid[UI_BITMAP]; 3249 device->p_uuid[UI_BITMAP] = 0UL; 3250 3251 drbd_uuid_dump(device, "peer", device->p_uuid, device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]); 3252 *rule_nr = 35; 3253 } else { 3254 drbd_info(device, "was SyncTarget (failed to write sync_uuid)\n"); 3255 *rule_nr = 37; 3256 } 3257 3258 return -1; 3259 } 3260 3261 /* Common power [off|failure] */ 3262 rct = (test_bit(CRASHED_PRIMARY, &device->flags) ? 1 : 0) + 3263 (device->p_uuid[UI_FLAGS] & 2); 3264 /* lowest bit is set when we were primary, 3265 * next bit (weight 2) is set when peer was primary */ 3266 *rule_nr = 40; 3267 3268 /* Neither has the "crashed primary" flag set, 3269 * only a replication link hickup. */ 3270 if (rct == 0) 3271 return 0; 3272 3273 /* Current UUID equal and no bitmap uuid; does not necessarily 3274 * mean this was a "simultaneous hard crash", maybe IO was 3275 * frozen, so no UUID-bump happened. 3276 * This is a protocol change, overload DRBD_FF_WSAME as flag 3277 * for "new-enough" peer DRBD version. */ 3278 if (device->state.role == R_PRIMARY || peer_role == R_PRIMARY) { 3279 *rule_nr = 41; 3280 if (!(connection->agreed_features & DRBD_FF_WSAME)) { 3281 drbd_warn(peer_device, "Equivalent unrotated UUIDs, but current primary present.\n"); 3282 return -(0x10000 | PRO_VERSION_MAX | (DRBD_FF_WSAME << 8)); 3283 } 3284 if (device->state.role == R_PRIMARY && peer_role == R_PRIMARY) { 3285 /* At least one has the "crashed primary" bit set, 3286 * both are primary now, but neither has rotated its UUIDs? 3287 * "Can not happen." */ 3288 drbd_err(peer_device, "Equivalent unrotated UUIDs, but both are primary. Can not resolve this.\n"); 3289 return -100; 3290 } 3291 if (device->state.role == R_PRIMARY) 3292 return 1; 3293 return -1; 3294 } 3295 3296 /* Both are secondary. 3297 * Really looks like recovery from simultaneous hard crash. 3298 * Check which had been primary before, and arbitrate. */ 3299 switch (rct) { 3300 case 0: /* !self_pri && !peer_pri */ return 0; /* already handled */ 3301 case 1: /* self_pri && !peer_pri */ return 1; 3302 case 2: /* !self_pri && peer_pri */ return -1; 3303 case 3: /* self_pri && peer_pri */ 3304 dc = test_bit(RESOLVE_CONFLICTS, &connection->flags); 3305 return dc ? -1 : 1; 3306 } 3307 } 3308 3309 *rule_nr = 50; 3310 peer = device->p_uuid[UI_BITMAP] & ~((u64)1); 3311 if (self == peer) 3312 return -1; 3313 3314 *rule_nr = 51; 3315 peer = device->p_uuid[UI_HISTORY_START] & ~((u64)1); 3316 if (self == peer) { 3317 if (connection->agreed_pro_version < 96 ? 3318 (device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == 3319 (device->p_uuid[UI_HISTORY_START + 1] & ~((u64)1)) : 3320 peer + UUID_NEW_BM_OFFSET == (device->p_uuid[UI_BITMAP] & ~((u64)1))) { 3321 /* The last P_SYNC_UUID did not get though. Undo the last start of 3322 resync as sync source modifications of the peer's UUIDs. */ 3323 3324 if (connection->agreed_pro_version < 91) 3325 return -1091; 3326 3327 device->p_uuid[UI_BITMAP] = device->p_uuid[UI_HISTORY_START]; 3328 device->p_uuid[UI_HISTORY_START] = device->p_uuid[UI_HISTORY_START + 1]; 3329 3330 drbd_info(device, "Lost last syncUUID packet, corrected:\n"); 3331 drbd_uuid_dump(device, "peer", device->p_uuid, device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]); 3332 3333 return -1; 3334 } 3335 } 3336 3337 *rule_nr = 60; 3338 self = device->ldev->md.uuid[UI_CURRENT] & ~((u64)1); 3339 for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) { 3340 peer = device->p_uuid[i] & ~((u64)1); 3341 if (self == peer) 3342 return -2; 3343 } 3344 3345 *rule_nr = 70; 3346 self = device->ldev->md.uuid[UI_BITMAP] & ~((u64)1); 3347 peer = device->p_uuid[UI_CURRENT] & ~((u64)1); 3348 if (self == peer) 3349 return 1; 3350 3351 *rule_nr = 71; 3352 self = device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1); 3353 if (self == peer) { 3354 if (connection->agreed_pro_version < 96 ? 3355 (device->ldev->md.uuid[UI_HISTORY_START + 1] & ~((u64)1)) == 3356 (device->p_uuid[UI_HISTORY_START] & ~((u64)1)) : 3357 self + UUID_NEW_BM_OFFSET == (device->ldev->md.uuid[UI_BITMAP] & ~((u64)1))) { 3358 /* The last P_SYNC_UUID did not get though. Undo the last start of 3359 resync as sync source modifications of our UUIDs. */ 3360 3361 if (connection->agreed_pro_version < 91) 3362 return -1091; 3363 3364 __drbd_uuid_set(device, UI_BITMAP, device->ldev->md.uuid[UI_HISTORY_START]); 3365 __drbd_uuid_set(device, UI_HISTORY_START, device->ldev->md.uuid[UI_HISTORY_START + 1]); 3366 3367 drbd_info(device, "Last syncUUID did not get through, corrected:\n"); 3368 drbd_uuid_dump(device, "self", device->ldev->md.uuid, 3369 device->state.disk >= D_NEGOTIATING ? drbd_bm_total_weight(device) : 0, 0); 3370 3371 return 1; 3372 } 3373 } 3374 3375 3376 *rule_nr = 80; 3377 peer = device->p_uuid[UI_CURRENT] & ~((u64)1); 3378 for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) { 3379 self = device->ldev->md.uuid[i] & ~((u64)1); 3380 if (self == peer) 3381 return 2; 3382 } 3383 3384 *rule_nr = 90; 3385 self = device->ldev->md.uuid[UI_BITMAP] & ~((u64)1); 3386 peer = device->p_uuid[UI_BITMAP] & ~((u64)1); 3387 if (self == peer && self != ((u64)0)) 3388 return 100; 3389 3390 *rule_nr = 100; 3391 for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) { 3392 self = device->ldev->md.uuid[i] & ~((u64)1); 3393 for (j = UI_HISTORY_START; j <= UI_HISTORY_END; j++) { 3394 peer = device->p_uuid[j] & ~((u64)1); 3395 if (self == peer) 3396 return -100; 3397 } 3398 } 3399 3400 return -1000; 3401 } 3402 3403 /* drbd_sync_handshake() returns the new conn state on success, or 3404 CONN_MASK (-1) on failure. 3405 */ 3406 static enum drbd_conns drbd_sync_handshake(struct drbd_peer_device *peer_device, 3407 enum drbd_role peer_role, 3408 enum drbd_disk_state peer_disk) __must_hold(local) 3409 { 3410 struct drbd_device *device = peer_device->device; 3411 enum drbd_conns rv = C_MASK; 3412 enum drbd_disk_state mydisk; 3413 struct net_conf *nc; 3414 int hg, rule_nr, rr_conflict, tentative; 3415 3416 mydisk = device->state.disk; 3417 if (mydisk == D_NEGOTIATING) 3418 mydisk = device->new_state_tmp.disk; 3419 3420 drbd_info(device, "drbd_sync_handshake:\n"); 3421 3422 spin_lock_irq(&device->ldev->md.uuid_lock); 3423 drbd_uuid_dump(device, "self", device->ldev->md.uuid, device->comm_bm_set, 0); 3424 drbd_uuid_dump(device, "peer", device->p_uuid, 3425 device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]); 3426 3427 hg = drbd_uuid_compare(device, peer_role, &rule_nr); 3428 spin_unlock_irq(&device->ldev->md.uuid_lock); 3429 3430 drbd_info(device, "uuid_compare()=%d by rule %d\n", hg, rule_nr); 3431 3432 if (hg == -1000) { 3433 drbd_alert(device, "Unrelated data, aborting!\n"); 3434 return C_MASK; 3435 } 3436 if (hg < -0x10000) { 3437 int proto, fflags; 3438 hg = -hg; 3439 proto = hg & 0xff; 3440 fflags = (hg >> 8) & 0xff; 3441 drbd_alert(device, "To resolve this both sides have to support at least protocol %d and feature flags 0x%x\n", 3442 proto, fflags); 3443 return C_MASK; 3444 } 3445 if (hg < -1000) { 3446 drbd_alert(device, "To resolve this both sides have to support at least protocol %d\n", -hg - 1000); 3447 return C_MASK; 3448 } 3449 3450 if ((mydisk == D_INCONSISTENT && peer_disk > D_INCONSISTENT) || 3451 (peer_disk == D_INCONSISTENT && mydisk > D_INCONSISTENT)) { 3452 int f = (hg == -100) || abs(hg) == 2; 3453 hg = mydisk > D_INCONSISTENT ? 1 : -1; 3454 if (f) 3455 hg = hg*2; 3456 drbd_info(device, "Becoming sync %s due to disk states.\n", 3457 hg > 0 ? "source" : "target"); 3458 } 3459 3460 if (abs(hg) == 100) 3461 drbd_khelper(device, "initial-split-brain"); 3462 3463 rcu_read_lock(); 3464 nc = rcu_dereference(peer_device->connection->net_conf); 3465 3466 if (hg == 100 || (hg == -100 && nc->always_asbp)) { 3467 int pcount = (device->state.role == R_PRIMARY) 3468 + (peer_role == R_PRIMARY); 3469 int forced = (hg == -100); 3470 3471 switch (pcount) { 3472 case 0: 3473 hg = drbd_asb_recover_0p(peer_device); 3474 break; 3475 case 1: 3476 hg = drbd_asb_recover_1p(peer_device); 3477 break; 3478 case 2: 3479 hg = drbd_asb_recover_2p(peer_device); 3480 break; 3481 } 3482 if (abs(hg) < 100) { 3483 drbd_warn(device, "Split-Brain detected, %d primaries, " 3484 "automatically solved. Sync from %s node\n", 3485 pcount, (hg < 0) ? "peer" : "this"); 3486 if (forced) { 3487 drbd_warn(device, "Doing a full sync, since" 3488 " UUIDs where ambiguous.\n"); 3489 hg = hg*2; 3490 } 3491 } 3492 } 3493 3494 if (hg == -100) { 3495 if (test_bit(DISCARD_MY_DATA, &device->flags) && !(device->p_uuid[UI_FLAGS]&1)) 3496 hg = -1; 3497 if (!test_bit(DISCARD_MY_DATA, &device->flags) && (device->p_uuid[UI_FLAGS]&1)) 3498 hg = 1; 3499 3500 if (abs(hg) < 100) 3501 drbd_warn(device, "Split-Brain detected, manually solved. " 3502 "Sync from %s node\n", 3503 (hg < 0) ? "peer" : "this"); 3504 } 3505 rr_conflict = nc->rr_conflict; 3506 tentative = nc->tentative; 3507 rcu_read_unlock(); 3508 3509 if (hg == -100) { 3510 /* FIXME this log message is not correct if we end up here 3511 * after an attempted attach on a diskless node. 3512 * We just refuse to attach -- well, we drop the "connection" 3513 * to that disk, in a way... */ 3514 drbd_alert(device, "Split-Brain detected but unresolved, dropping connection!\n"); 3515 drbd_khelper(device, "split-brain"); 3516 return C_MASK; 3517 } 3518 3519 if (hg > 0 && mydisk <= D_INCONSISTENT) { 3520 drbd_err(device, "I shall become SyncSource, but I am inconsistent!\n"); 3521 return C_MASK; 3522 } 3523 3524 if (hg < 0 && /* by intention we do not use mydisk here. */ 3525 device->state.role == R_PRIMARY && device->state.disk >= D_CONSISTENT) { 3526 switch (rr_conflict) { 3527 case ASB_CALL_HELPER: 3528 drbd_khelper(device, "pri-lost"); 3529 /* fall through */ 3530 case ASB_DISCONNECT: 3531 drbd_err(device, "I shall become SyncTarget, but I am primary!\n"); 3532 return C_MASK; 3533 case ASB_VIOLENTLY: 3534 drbd_warn(device, "Becoming SyncTarget, violating the stable-data" 3535 "assumption\n"); 3536 } 3537 } 3538 3539 if (tentative || test_bit(CONN_DRY_RUN, &peer_device->connection->flags)) { 3540 if (hg == 0) 3541 drbd_info(device, "dry-run connect: No resync, would become Connected immediately.\n"); 3542 else 3543 drbd_info(device, "dry-run connect: Would become %s, doing a %s resync.", 3544 drbd_conn_str(hg > 0 ? C_SYNC_SOURCE : C_SYNC_TARGET), 3545 abs(hg) >= 2 ? "full" : "bit-map based"); 3546 return C_MASK; 3547 } 3548 3549 if (abs(hg) >= 2) { 3550 drbd_info(device, "Writing the whole bitmap, full sync required after drbd_sync_handshake.\n"); 3551 if (drbd_bitmap_io(device, &drbd_bmio_set_n_write, "set_n_write from sync_handshake", 3552 BM_LOCKED_SET_ALLOWED)) 3553 return C_MASK; 3554 } 3555 3556 if (hg > 0) { /* become sync source. */ 3557 rv = C_WF_BITMAP_S; 3558 } else if (hg < 0) { /* become sync target */ 3559 rv = C_WF_BITMAP_T; 3560 } else { 3561 rv = C_CONNECTED; 3562 if (drbd_bm_total_weight(device)) { 3563 drbd_info(device, "No resync, but %lu bits in bitmap!\n", 3564 drbd_bm_total_weight(device)); 3565 } 3566 } 3567 3568 return rv; 3569 } 3570 3571 static enum drbd_after_sb_p convert_after_sb(enum drbd_after_sb_p peer) 3572 { 3573 /* ASB_DISCARD_REMOTE - ASB_DISCARD_LOCAL is valid */ 3574 if (peer == ASB_DISCARD_REMOTE) 3575 return ASB_DISCARD_LOCAL; 3576 3577 /* any other things with ASB_DISCARD_REMOTE or ASB_DISCARD_LOCAL are invalid */ 3578 if (peer == ASB_DISCARD_LOCAL) 3579 return ASB_DISCARD_REMOTE; 3580 3581 /* everything else is valid if they are equal on both sides. */ 3582 return peer; 3583 } 3584 3585 static int receive_protocol(struct drbd_connection *connection, struct packet_info *pi) 3586 { 3587 struct p_protocol *p = pi->data; 3588 enum drbd_after_sb_p p_after_sb_0p, p_after_sb_1p, p_after_sb_2p; 3589 int p_proto, p_discard_my_data, p_two_primaries, cf; 3590 struct net_conf *nc, *old_net_conf, *new_net_conf = NULL; 3591 char integrity_alg[SHARED_SECRET_MAX] = ""; 3592 struct crypto_ahash *peer_integrity_tfm = NULL; 3593 void *int_dig_in = NULL, *int_dig_vv = NULL; 3594 3595 p_proto = be32_to_cpu(p->protocol); 3596 p_after_sb_0p = be32_to_cpu(p->after_sb_0p); 3597 p_after_sb_1p = be32_to_cpu(p->after_sb_1p); 3598 p_after_sb_2p = be32_to_cpu(p->after_sb_2p); 3599 p_two_primaries = be32_to_cpu(p->two_primaries); 3600 cf = be32_to_cpu(p->conn_flags); 3601 p_discard_my_data = cf & CF_DISCARD_MY_DATA; 3602 3603 if (connection->agreed_pro_version >= 87) { 3604 int err; 3605 3606 if (pi->size > sizeof(integrity_alg)) 3607 return -EIO; 3608 err = drbd_recv_all(connection, integrity_alg, pi->size); 3609 if (err) 3610 return err; 3611 integrity_alg[SHARED_SECRET_MAX - 1] = 0; 3612 } 3613 3614 if (pi->cmd != P_PROTOCOL_UPDATE) { 3615 clear_bit(CONN_DRY_RUN, &connection->flags); 3616 3617 if (cf & CF_DRY_RUN) 3618 set_bit(CONN_DRY_RUN, &connection->flags); 3619 3620 rcu_read_lock(); 3621 nc = rcu_dereference(connection->net_conf); 3622 3623 if (p_proto != nc->wire_protocol) { 3624 drbd_err(connection, "incompatible %s settings\n", "protocol"); 3625 goto disconnect_rcu_unlock; 3626 } 3627 3628 if (convert_after_sb(p_after_sb_0p) != nc->after_sb_0p) { 3629 drbd_err(connection, "incompatible %s settings\n", "after-sb-0pri"); 3630 goto disconnect_rcu_unlock; 3631 } 3632 3633 if (convert_after_sb(p_after_sb_1p) != nc->after_sb_1p) { 3634 drbd_err(connection, "incompatible %s settings\n", "after-sb-1pri"); 3635 goto disconnect_rcu_unlock; 3636 } 3637 3638 if (convert_after_sb(p_after_sb_2p) != nc->after_sb_2p) { 3639 drbd_err(connection, "incompatible %s settings\n", "after-sb-2pri"); 3640 goto disconnect_rcu_unlock; 3641 } 3642 3643 if (p_discard_my_data && nc->discard_my_data) { 3644 drbd_err(connection, "incompatible %s settings\n", "discard-my-data"); 3645 goto disconnect_rcu_unlock; 3646 } 3647 3648 if (p_two_primaries != nc->two_primaries) { 3649 drbd_err(connection, "incompatible %s settings\n", "allow-two-primaries"); 3650 goto disconnect_rcu_unlock; 3651 } 3652 3653 if (strcmp(integrity_alg, nc->integrity_alg)) { 3654 drbd_err(connection, "incompatible %s settings\n", "data-integrity-alg"); 3655 goto disconnect_rcu_unlock; 3656 } 3657 3658 rcu_read_unlock(); 3659 } 3660 3661 if (integrity_alg[0]) { 3662 int hash_size; 3663 3664 /* 3665 * We can only change the peer data integrity algorithm 3666 * here. Changing our own data integrity algorithm 3667 * requires that we send a P_PROTOCOL_UPDATE packet at 3668 * the same time; otherwise, the peer has no way to 3669 * tell between which packets the algorithm should 3670 * change. 3671 */ 3672 3673 peer_integrity_tfm = crypto_alloc_ahash(integrity_alg, 0, CRYPTO_ALG_ASYNC); 3674 if (IS_ERR(peer_integrity_tfm)) { 3675 peer_integrity_tfm = NULL; 3676 drbd_err(connection, "peer data-integrity-alg %s not supported\n", 3677 integrity_alg); 3678 goto disconnect; 3679 } 3680 3681 hash_size = crypto_ahash_digestsize(peer_integrity_tfm); 3682 int_dig_in = kmalloc(hash_size, GFP_KERNEL); 3683 int_dig_vv = kmalloc(hash_size, GFP_KERNEL); 3684 if (!(int_dig_in && int_dig_vv)) { 3685 drbd_err(connection, "Allocation of buffers for data integrity checking failed\n"); 3686 goto disconnect; 3687 } 3688 } 3689 3690 new_net_conf = kmalloc(sizeof(struct net_conf), GFP_KERNEL); 3691 if (!new_net_conf) { 3692 drbd_err(connection, "Allocation of new net_conf failed\n"); 3693 goto disconnect; 3694 } 3695 3696 mutex_lock(&connection->data.mutex); 3697 mutex_lock(&connection->resource->conf_update); 3698 old_net_conf = connection->net_conf; 3699 *new_net_conf = *old_net_conf; 3700 3701 new_net_conf->wire_protocol = p_proto; 3702 new_net_conf->after_sb_0p = convert_after_sb(p_after_sb_0p); 3703 new_net_conf->after_sb_1p = convert_after_sb(p_after_sb_1p); 3704 new_net_conf->after_sb_2p = convert_after_sb(p_after_sb_2p); 3705 new_net_conf->two_primaries = p_two_primaries; 3706 3707 rcu_assign_pointer(connection->net_conf, new_net_conf); 3708 mutex_unlock(&connection->resource->conf_update); 3709 mutex_unlock(&connection->data.mutex); 3710 3711 crypto_free_ahash(connection->peer_integrity_tfm); 3712 kfree(connection->int_dig_in); 3713 kfree(connection->int_dig_vv); 3714 connection->peer_integrity_tfm = peer_integrity_tfm; 3715 connection->int_dig_in = int_dig_in; 3716 connection->int_dig_vv = int_dig_vv; 3717 3718 if (strcmp(old_net_conf->integrity_alg, integrity_alg)) 3719 drbd_info(connection, "peer data-integrity-alg: %s\n", 3720 integrity_alg[0] ? integrity_alg : "(none)"); 3721 3722 synchronize_rcu(); 3723 kfree(old_net_conf); 3724 return 0; 3725 3726 disconnect_rcu_unlock: 3727 rcu_read_unlock(); 3728 disconnect: 3729 crypto_free_ahash(peer_integrity_tfm); 3730 kfree(int_dig_in); 3731 kfree(int_dig_vv); 3732 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 3733 return -EIO; 3734 } 3735 3736 /* helper function 3737 * input: alg name, feature name 3738 * return: NULL (alg name was "") 3739 * ERR_PTR(error) if something goes wrong 3740 * or the crypto hash ptr, if it worked out ok. */ 3741 static struct crypto_ahash *drbd_crypto_alloc_digest_safe(const struct drbd_device *device, 3742 const char *alg, const char *name) 3743 { 3744 struct crypto_ahash *tfm; 3745 3746 if (!alg[0]) 3747 return NULL; 3748 3749 tfm = crypto_alloc_ahash(alg, 0, CRYPTO_ALG_ASYNC); 3750 if (IS_ERR(tfm)) { 3751 drbd_err(device, "Can not allocate \"%s\" as %s (reason: %ld)\n", 3752 alg, name, PTR_ERR(tfm)); 3753 return tfm; 3754 } 3755 return tfm; 3756 } 3757 3758 static int ignore_remaining_packet(struct drbd_connection *connection, struct packet_info *pi) 3759 { 3760 void *buffer = connection->data.rbuf; 3761 int size = pi->size; 3762 3763 while (size) { 3764 int s = min_t(int, size, DRBD_SOCKET_BUFFER_SIZE); 3765 s = drbd_recv(connection, buffer, s); 3766 if (s <= 0) { 3767 if (s < 0) 3768 return s; 3769 break; 3770 } 3771 size -= s; 3772 } 3773 if (size) 3774 return -EIO; 3775 return 0; 3776 } 3777 3778 /* 3779 * config_unknown_volume - device configuration command for unknown volume 3780 * 3781 * When a device is added to an existing connection, the node on which the 3782 * device is added first will send configuration commands to its peer but the 3783 * peer will not know about the device yet. It will warn and ignore these 3784 * commands. Once the device is added on the second node, the second node will 3785 * send the same device configuration commands, but in the other direction. 3786 * 3787 * (We can also end up here if drbd is misconfigured.) 3788 */ 3789 static int config_unknown_volume(struct drbd_connection *connection, struct packet_info *pi) 3790 { 3791 drbd_warn(connection, "%s packet received for volume %u, which is not configured locally\n", 3792 cmdname(pi->cmd), pi->vnr); 3793 return ignore_remaining_packet(connection, pi); 3794 } 3795 3796 static int receive_SyncParam(struct drbd_connection *connection, struct packet_info *pi) 3797 { 3798 struct drbd_peer_device *peer_device; 3799 struct drbd_device *device; 3800 struct p_rs_param_95 *p; 3801 unsigned int header_size, data_size, exp_max_sz; 3802 struct crypto_ahash *verify_tfm = NULL; 3803 struct crypto_ahash *csums_tfm = NULL; 3804 struct net_conf *old_net_conf, *new_net_conf = NULL; 3805 struct disk_conf *old_disk_conf = NULL, *new_disk_conf = NULL; 3806 const int apv = connection->agreed_pro_version; 3807 struct fifo_buffer *old_plan = NULL, *new_plan = NULL; 3808 int fifo_size = 0; 3809 int err; 3810 3811 peer_device = conn_peer_device(connection, pi->vnr); 3812 if (!peer_device) 3813 return config_unknown_volume(connection, pi); 3814 device = peer_device->device; 3815 3816 exp_max_sz = apv <= 87 ? sizeof(struct p_rs_param) 3817 : apv == 88 ? sizeof(struct p_rs_param) 3818 + SHARED_SECRET_MAX 3819 : apv <= 94 ? sizeof(struct p_rs_param_89) 3820 : /* apv >= 95 */ sizeof(struct p_rs_param_95); 3821 3822 if (pi->size > exp_max_sz) { 3823 drbd_err(device, "SyncParam packet too long: received %u, expected <= %u bytes\n", 3824 pi->size, exp_max_sz); 3825 return -EIO; 3826 } 3827 3828 if (apv <= 88) { 3829 header_size = sizeof(struct p_rs_param); 3830 data_size = pi->size - header_size; 3831 } else if (apv <= 94) { 3832 header_size = sizeof(struct p_rs_param_89); 3833 data_size = pi->size - header_size; 3834 D_ASSERT(device, data_size == 0); 3835 } else { 3836 header_size = sizeof(struct p_rs_param_95); 3837 data_size = pi->size - header_size; 3838 D_ASSERT(device, data_size == 0); 3839 } 3840 3841 /* initialize verify_alg and csums_alg */ 3842 p = pi->data; 3843 memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX); 3844 3845 err = drbd_recv_all(peer_device->connection, p, header_size); 3846 if (err) 3847 return err; 3848 3849 mutex_lock(&connection->resource->conf_update); 3850 old_net_conf = peer_device->connection->net_conf; 3851 if (get_ldev(device)) { 3852 new_disk_conf = kzalloc(sizeof(struct disk_conf), GFP_KERNEL); 3853 if (!new_disk_conf) { 3854 put_ldev(device); 3855 mutex_unlock(&connection->resource->conf_update); 3856 drbd_err(device, "Allocation of new disk_conf failed\n"); 3857 return -ENOMEM; 3858 } 3859 3860 old_disk_conf = device->ldev->disk_conf; 3861 *new_disk_conf = *old_disk_conf; 3862 3863 new_disk_conf->resync_rate = be32_to_cpu(p->resync_rate); 3864 } 3865 3866 if (apv >= 88) { 3867 if (apv == 88) { 3868 if (data_size > SHARED_SECRET_MAX || data_size == 0) { 3869 drbd_err(device, "verify-alg of wrong size, " 3870 "peer wants %u, accepting only up to %u byte\n", 3871 data_size, SHARED_SECRET_MAX); 3872 err = -EIO; 3873 goto reconnect; 3874 } 3875 3876 err = drbd_recv_all(peer_device->connection, p->verify_alg, data_size); 3877 if (err) 3878 goto reconnect; 3879 /* we expect NUL terminated string */ 3880 /* but just in case someone tries to be evil */ 3881 D_ASSERT(device, p->verify_alg[data_size-1] == 0); 3882 p->verify_alg[data_size-1] = 0; 3883 3884 } else /* apv >= 89 */ { 3885 /* we still expect NUL terminated strings */ 3886 /* but just in case someone tries to be evil */ 3887 D_ASSERT(device, p->verify_alg[SHARED_SECRET_MAX-1] == 0); 3888 D_ASSERT(device, p->csums_alg[SHARED_SECRET_MAX-1] == 0); 3889 p->verify_alg[SHARED_SECRET_MAX-1] = 0; 3890 p->csums_alg[SHARED_SECRET_MAX-1] = 0; 3891 } 3892 3893 if (strcmp(old_net_conf->verify_alg, p->verify_alg)) { 3894 if (device->state.conn == C_WF_REPORT_PARAMS) { 3895 drbd_err(device, "Different verify-alg settings. me=\"%s\" peer=\"%s\"\n", 3896 old_net_conf->verify_alg, p->verify_alg); 3897 goto disconnect; 3898 } 3899 verify_tfm = drbd_crypto_alloc_digest_safe(device, 3900 p->verify_alg, "verify-alg"); 3901 if (IS_ERR(verify_tfm)) { 3902 verify_tfm = NULL; 3903 goto disconnect; 3904 } 3905 } 3906 3907 if (apv >= 89 && strcmp(old_net_conf->csums_alg, p->csums_alg)) { 3908 if (device->state.conn == C_WF_REPORT_PARAMS) { 3909 drbd_err(device, "Different csums-alg settings. me=\"%s\" peer=\"%s\"\n", 3910 old_net_conf->csums_alg, p->csums_alg); 3911 goto disconnect; 3912 } 3913 csums_tfm = drbd_crypto_alloc_digest_safe(device, 3914 p->csums_alg, "csums-alg"); 3915 if (IS_ERR(csums_tfm)) { 3916 csums_tfm = NULL; 3917 goto disconnect; 3918 } 3919 } 3920 3921 if (apv > 94 && new_disk_conf) { 3922 new_disk_conf->c_plan_ahead = be32_to_cpu(p->c_plan_ahead); 3923 new_disk_conf->c_delay_target = be32_to_cpu(p->c_delay_target); 3924 new_disk_conf->c_fill_target = be32_to_cpu(p->c_fill_target); 3925 new_disk_conf->c_max_rate = be32_to_cpu(p->c_max_rate); 3926 3927 fifo_size = (new_disk_conf->c_plan_ahead * 10 * SLEEP_TIME) / HZ; 3928 if (fifo_size != device->rs_plan_s->size) { 3929 new_plan = fifo_alloc(fifo_size); 3930 if (!new_plan) { 3931 drbd_err(device, "kmalloc of fifo_buffer failed"); 3932 put_ldev(device); 3933 goto disconnect; 3934 } 3935 } 3936 } 3937 3938 if (verify_tfm || csums_tfm) { 3939 new_net_conf = kzalloc(sizeof(struct net_conf), GFP_KERNEL); 3940 if (!new_net_conf) { 3941 drbd_err(device, "Allocation of new net_conf failed\n"); 3942 goto disconnect; 3943 } 3944 3945 *new_net_conf = *old_net_conf; 3946 3947 if (verify_tfm) { 3948 strcpy(new_net_conf->verify_alg, p->verify_alg); 3949 new_net_conf->verify_alg_len = strlen(p->verify_alg) + 1; 3950 crypto_free_ahash(peer_device->connection->verify_tfm); 3951 peer_device->connection->verify_tfm = verify_tfm; 3952 drbd_info(device, "using verify-alg: \"%s\"\n", p->verify_alg); 3953 } 3954 if (csums_tfm) { 3955 strcpy(new_net_conf->csums_alg, p->csums_alg); 3956 new_net_conf->csums_alg_len = strlen(p->csums_alg) + 1; 3957 crypto_free_ahash(peer_device->connection->csums_tfm); 3958 peer_device->connection->csums_tfm = csums_tfm; 3959 drbd_info(device, "using csums-alg: \"%s\"\n", p->csums_alg); 3960 } 3961 rcu_assign_pointer(connection->net_conf, new_net_conf); 3962 } 3963 } 3964 3965 if (new_disk_conf) { 3966 rcu_assign_pointer(device->ldev->disk_conf, new_disk_conf); 3967 put_ldev(device); 3968 } 3969 3970 if (new_plan) { 3971 old_plan = device->rs_plan_s; 3972 rcu_assign_pointer(device->rs_plan_s, new_plan); 3973 } 3974 3975 mutex_unlock(&connection->resource->conf_update); 3976 synchronize_rcu(); 3977 if (new_net_conf) 3978 kfree(old_net_conf); 3979 kfree(old_disk_conf); 3980 kfree(old_plan); 3981 3982 return 0; 3983 3984 reconnect: 3985 if (new_disk_conf) { 3986 put_ldev(device); 3987 kfree(new_disk_conf); 3988 } 3989 mutex_unlock(&connection->resource->conf_update); 3990 return -EIO; 3991 3992 disconnect: 3993 kfree(new_plan); 3994 if (new_disk_conf) { 3995 put_ldev(device); 3996 kfree(new_disk_conf); 3997 } 3998 mutex_unlock(&connection->resource->conf_update); 3999 /* just for completeness: actually not needed, 4000 * as this is not reached if csums_tfm was ok. */ 4001 crypto_free_ahash(csums_tfm); 4002 /* but free the verify_tfm again, if csums_tfm did not work out */ 4003 crypto_free_ahash(verify_tfm); 4004 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD); 4005 return -EIO; 4006 } 4007 4008 /* warn if the arguments differ by more than 12.5% */ 4009 static void warn_if_differ_considerably(struct drbd_device *device, 4010 const char *s, sector_t a, sector_t b) 4011 { 4012 sector_t d; 4013 if (a == 0 || b == 0) 4014 return; 4015 d = (a > b) ? (a - b) : (b - a); 4016 if (d > (a>>3) || d > (b>>3)) 4017 drbd_warn(device, "Considerable difference in %s: %llus vs. %llus\n", s, 4018 (unsigned long long)a, (unsigned long long)b); 4019 } 4020 4021 static int receive_sizes(struct drbd_connection *connection, struct packet_info *pi) 4022 { 4023 struct drbd_peer_device *peer_device; 4024 struct drbd_device *device; 4025 struct p_sizes *p = pi->data; 4026 struct o_qlim *o = (connection->agreed_features & DRBD_FF_WSAME) ? p->qlim : NULL; 4027 enum determine_dev_size dd = DS_UNCHANGED; 4028 sector_t p_size, p_usize, p_csize, my_usize; 4029 int ldsc = 0; /* local disk size changed */ 4030 enum dds_flags ddsf; 4031 4032 peer_device = conn_peer_device(connection, pi->vnr); 4033 if (!peer_device) 4034 return config_unknown_volume(connection, pi); 4035 device = peer_device->device; 4036 4037 p_size = be64_to_cpu(p->d_size); 4038 p_usize = be64_to_cpu(p->u_size); 4039 p_csize = be64_to_cpu(p->c_size); 4040 4041 /* just store the peer's disk size for now. 4042 * we still need to figure out whether we accept that. */ 4043 device->p_size = p_size; 4044 4045 if (get_ldev(device)) { 4046 sector_t new_size, cur_size; 4047 rcu_read_lock(); 4048 my_usize = rcu_dereference(device->ldev->disk_conf)->disk_size; 4049 rcu_read_unlock(); 4050 4051 warn_if_differ_considerably(device, "lower level device sizes", 4052 p_size, drbd_get_max_capacity(device->ldev)); 4053 warn_if_differ_considerably(device, "user requested size", 4054 p_usize, my_usize); 4055 4056 /* if this is the first connect, or an otherwise expected 4057 * param exchange, choose the minimum */ 4058 if (device->state.conn == C_WF_REPORT_PARAMS) 4059 p_usize = min_not_zero(my_usize, p_usize); 4060 4061 /* Never shrink a device with usable data during connect. 4062 But allow online shrinking if we are connected. */ 4063 new_size = drbd_new_dev_size(device, device->ldev, p_usize, 0); 4064 cur_size = drbd_get_capacity(device->this_bdev); 4065 if (new_size < cur_size && 4066 device->state.disk >= D_OUTDATED && 4067 device->state.conn < C_CONNECTED) { 4068 drbd_err(device, "The peer's disk size is too small! (%llu < %llu sectors)\n", 4069 (unsigned long long)new_size, (unsigned long long)cur_size); 4070 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD); 4071 put_ldev(device); 4072 return -EIO; 4073 } 4074 4075 if (my_usize != p_usize) { 4076 struct disk_conf *old_disk_conf, *new_disk_conf = NULL; 4077 4078 new_disk_conf = kzalloc(sizeof(struct disk_conf), GFP_KERNEL); 4079 if (!new_disk_conf) { 4080 drbd_err(device, "Allocation of new disk_conf failed\n"); 4081 put_ldev(device); 4082 return -ENOMEM; 4083 } 4084 4085 mutex_lock(&connection->resource->conf_update); 4086 old_disk_conf = device->ldev->disk_conf; 4087 *new_disk_conf = *old_disk_conf; 4088 new_disk_conf->disk_size = p_usize; 4089 4090 rcu_assign_pointer(device->ldev->disk_conf, new_disk_conf); 4091 mutex_unlock(&connection->resource->conf_update); 4092 synchronize_rcu(); 4093 kfree(old_disk_conf); 4094 4095 drbd_info(device, "Peer sets u_size to %lu sectors\n", 4096 (unsigned long)my_usize); 4097 } 4098 4099 put_ldev(device); 4100 } 4101 4102 device->peer_max_bio_size = be32_to_cpu(p->max_bio_size); 4103 /* Leave drbd_reconsider_queue_parameters() before drbd_determine_dev_size(). 4104 In case we cleared the QUEUE_FLAG_DISCARD from our queue in 4105 drbd_reconsider_queue_parameters(), we can be sure that after 4106 drbd_determine_dev_size() no REQ_DISCARDs are in the queue. */ 4107 4108 ddsf = be16_to_cpu(p->dds_flags); 4109 if (get_ldev(device)) { 4110 drbd_reconsider_queue_parameters(device, device->ldev, o); 4111 dd = drbd_determine_dev_size(device, ddsf, NULL); 4112 put_ldev(device); 4113 if (dd == DS_ERROR) 4114 return -EIO; 4115 drbd_md_sync(device); 4116 } else { 4117 /* 4118 * I am diskless, need to accept the peer's *current* size. 4119 * I must NOT accept the peers backing disk size, 4120 * it may have been larger than mine all along... 4121 * 4122 * At this point, the peer knows more about my disk, or at 4123 * least about what we last agreed upon, than myself. 4124 * So if his c_size is less than his d_size, the most likely 4125 * reason is that *my* d_size was smaller last time we checked. 4126 * 4127 * However, if he sends a zero current size, 4128 * take his (user-capped or) backing disk size anyways. 4129 */ 4130 drbd_reconsider_queue_parameters(device, NULL, o); 4131 drbd_set_my_capacity(device, p_csize ?: p_usize ?: p_size); 4132 } 4133 4134 if (get_ldev(device)) { 4135 if (device->ldev->known_size != drbd_get_capacity(device->ldev->backing_bdev)) { 4136 device->ldev->known_size = drbd_get_capacity(device->ldev->backing_bdev); 4137 ldsc = 1; 4138 } 4139 4140 put_ldev(device); 4141 } 4142 4143 if (device->state.conn > C_WF_REPORT_PARAMS) { 4144 if (be64_to_cpu(p->c_size) != 4145 drbd_get_capacity(device->this_bdev) || ldsc) { 4146 /* we have different sizes, probably peer 4147 * needs to know my new size... */ 4148 drbd_send_sizes(peer_device, 0, ddsf); 4149 } 4150 if (test_and_clear_bit(RESIZE_PENDING, &device->flags) || 4151 (dd == DS_GREW && device->state.conn == C_CONNECTED)) { 4152 if (device->state.pdsk >= D_INCONSISTENT && 4153 device->state.disk >= D_INCONSISTENT) { 4154 if (ddsf & DDSF_NO_RESYNC) 4155 drbd_info(device, "Resync of new storage suppressed with --assume-clean\n"); 4156 else 4157 resync_after_online_grow(device); 4158 } else 4159 set_bit(RESYNC_AFTER_NEG, &device->flags); 4160 } 4161 } 4162 4163 return 0; 4164 } 4165 4166 static int receive_uuids(struct drbd_connection *connection, struct packet_info *pi) 4167 { 4168 struct drbd_peer_device *peer_device; 4169 struct drbd_device *device; 4170 struct p_uuids *p = pi->data; 4171 u64 *p_uuid; 4172 int i, updated_uuids = 0; 4173 4174 peer_device = conn_peer_device(connection, pi->vnr); 4175 if (!peer_device) 4176 return config_unknown_volume(connection, pi); 4177 device = peer_device->device; 4178 4179 p_uuid = kmalloc(sizeof(u64)*UI_EXTENDED_SIZE, GFP_NOIO); 4180 if (!p_uuid) { 4181 drbd_err(device, "kmalloc of p_uuid failed\n"); 4182 return false; 4183 } 4184 4185 for (i = UI_CURRENT; i < UI_EXTENDED_SIZE; i++) 4186 p_uuid[i] = be64_to_cpu(p->uuid[i]); 4187 4188 kfree(device->p_uuid); 4189 device->p_uuid = p_uuid; 4190 4191 if (device->state.conn < C_CONNECTED && 4192 device->state.disk < D_INCONSISTENT && 4193 device->state.role == R_PRIMARY && 4194 (device->ed_uuid & ~((u64)1)) != (p_uuid[UI_CURRENT] & ~((u64)1))) { 4195 drbd_err(device, "Can only connect to data with current UUID=%016llX\n", 4196 (unsigned long long)device->ed_uuid); 4197 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD); 4198 return -EIO; 4199 } 4200 4201 if (get_ldev(device)) { 4202 int skip_initial_sync = 4203 device->state.conn == C_CONNECTED && 4204 peer_device->connection->agreed_pro_version >= 90 && 4205 device->ldev->md.uuid[UI_CURRENT] == UUID_JUST_CREATED && 4206 (p_uuid[UI_FLAGS] & 8); 4207 if (skip_initial_sync) { 4208 drbd_info(device, "Accepted new current UUID, preparing to skip initial sync\n"); 4209 drbd_bitmap_io(device, &drbd_bmio_clear_n_write, 4210 "clear_n_write from receive_uuids", 4211 BM_LOCKED_TEST_ALLOWED); 4212 _drbd_uuid_set(device, UI_CURRENT, p_uuid[UI_CURRENT]); 4213 _drbd_uuid_set(device, UI_BITMAP, 0); 4214 _drbd_set_state(_NS2(device, disk, D_UP_TO_DATE, pdsk, D_UP_TO_DATE), 4215 CS_VERBOSE, NULL); 4216 drbd_md_sync(device); 4217 updated_uuids = 1; 4218 } 4219 put_ldev(device); 4220 } else if (device->state.disk < D_INCONSISTENT && 4221 device->state.role == R_PRIMARY) { 4222 /* I am a diskless primary, the peer just created a new current UUID 4223 for me. */ 4224 updated_uuids = drbd_set_ed_uuid(device, p_uuid[UI_CURRENT]); 4225 } 4226 4227 /* Before we test for the disk state, we should wait until an eventually 4228 ongoing cluster wide state change is finished. That is important if 4229 we are primary and are detaching from our disk. We need to see the 4230 new disk state... */ 4231 mutex_lock(device->state_mutex); 4232 mutex_unlock(device->state_mutex); 4233 if (device->state.conn >= C_CONNECTED && device->state.disk < D_INCONSISTENT) 4234 updated_uuids |= drbd_set_ed_uuid(device, p_uuid[UI_CURRENT]); 4235 4236 if (updated_uuids) 4237 drbd_print_uuids(device, "receiver updated UUIDs to"); 4238 4239 return 0; 4240 } 4241 4242 /** 4243 * convert_state() - Converts the peer's view of the cluster state to our point of view 4244 * @ps: The state as seen by the peer. 4245 */ 4246 static union drbd_state convert_state(union drbd_state ps) 4247 { 4248 union drbd_state ms; 4249 4250 static enum drbd_conns c_tab[] = { 4251 [C_WF_REPORT_PARAMS] = C_WF_REPORT_PARAMS, 4252 [C_CONNECTED] = C_CONNECTED, 4253 4254 [C_STARTING_SYNC_S] = C_STARTING_SYNC_T, 4255 [C_STARTING_SYNC_T] = C_STARTING_SYNC_S, 4256 [C_DISCONNECTING] = C_TEAR_DOWN, /* C_NETWORK_FAILURE, */ 4257 [C_VERIFY_S] = C_VERIFY_T, 4258 [C_MASK] = C_MASK, 4259 }; 4260 4261 ms.i = ps.i; 4262 4263 ms.conn = c_tab[ps.conn]; 4264 ms.peer = ps.role; 4265 ms.role = ps.peer; 4266 ms.pdsk = ps.disk; 4267 ms.disk = ps.pdsk; 4268 ms.peer_isp = (ps.aftr_isp | ps.user_isp); 4269 4270 return ms; 4271 } 4272 4273 static int receive_req_state(struct drbd_connection *connection, struct packet_info *pi) 4274 { 4275 struct drbd_peer_device *peer_device; 4276 struct drbd_device *device; 4277 struct p_req_state *p = pi->data; 4278 union drbd_state mask, val; 4279 enum drbd_state_rv rv; 4280 4281 peer_device = conn_peer_device(connection, pi->vnr); 4282 if (!peer_device) 4283 return -EIO; 4284 device = peer_device->device; 4285 4286 mask.i = be32_to_cpu(p->mask); 4287 val.i = be32_to_cpu(p->val); 4288 4289 if (test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags) && 4290 mutex_is_locked(device->state_mutex)) { 4291 drbd_send_sr_reply(peer_device, SS_CONCURRENT_ST_CHG); 4292 return 0; 4293 } 4294 4295 mask = convert_state(mask); 4296 val = convert_state(val); 4297 4298 rv = drbd_change_state(device, CS_VERBOSE, mask, val); 4299 drbd_send_sr_reply(peer_device, rv); 4300 4301 drbd_md_sync(device); 4302 4303 return 0; 4304 } 4305 4306 static int receive_req_conn_state(struct drbd_connection *connection, struct packet_info *pi) 4307 { 4308 struct p_req_state *p = pi->data; 4309 union drbd_state mask, val; 4310 enum drbd_state_rv rv; 4311 4312 mask.i = be32_to_cpu(p->mask); 4313 val.i = be32_to_cpu(p->val); 4314 4315 if (test_bit(RESOLVE_CONFLICTS, &connection->flags) && 4316 mutex_is_locked(&connection->cstate_mutex)) { 4317 conn_send_sr_reply(connection, SS_CONCURRENT_ST_CHG); 4318 return 0; 4319 } 4320 4321 mask = convert_state(mask); 4322 val = convert_state(val); 4323 4324 rv = conn_request_state(connection, mask, val, CS_VERBOSE | CS_LOCAL_ONLY | CS_IGN_OUTD_FAIL); 4325 conn_send_sr_reply(connection, rv); 4326 4327 return 0; 4328 } 4329 4330 static int receive_state(struct drbd_connection *connection, struct packet_info *pi) 4331 { 4332 struct drbd_peer_device *peer_device; 4333 struct drbd_device *device; 4334 struct p_state *p = pi->data; 4335 union drbd_state os, ns, peer_state; 4336 enum drbd_disk_state real_peer_disk; 4337 enum chg_state_flags cs_flags; 4338 int rv; 4339 4340 peer_device = conn_peer_device(connection, pi->vnr); 4341 if (!peer_device) 4342 return config_unknown_volume(connection, pi); 4343 device = peer_device->device; 4344 4345 peer_state.i = be32_to_cpu(p->state); 4346 4347 real_peer_disk = peer_state.disk; 4348 if (peer_state.disk == D_NEGOTIATING) { 4349 real_peer_disk = device->p_uuid[UI_FLAGS] & 4 ? D_INCONSISTENT : D_CONSISTENT; 4350 drbd_info(device, "real peer disk state = %s\n", drbd_disk_str(real_peer_disk)); 4351 } 4352 4353 spin_lock_irq(&device->resource->req_lock); 4354 retry: 4355 os = ns = drbd_read_state(device); 4356 spin_unlock_irq(&device->resource->req_lock); 4357 4358 /* If some other part of the code (ack_receiver thread, timeout) 4359 * already decided to close the connection again, 4360 * we must not "re-establish" it here. */ 4361 if (os.conn <= C_TEAR_DOWN) 4362 return -ECONNRESET; 4363 4364 /* If this is the "end of sync" confirmation, usually the peer disk 4365 * transitions from D_INCONSISTENT to D_UP_TO_DATE. For empty (0 bits 4366 * set) resync started in PausedSyncT, or if the timing of pause-/ 4367 * unpause-sync events has been "just right", the peer disk may 4368 * transition from D_CONSISTENT to D_UP_TO_DATE as well. 4369 */ 4370 if ((os.pdsk == D_INCONSISTENT || os.pdsk == D_CONSISTENT) && 4371 real_peer_disk == D_UP_TO_DATE && 4372 os.conn > C_CONNECTED && os.disk == D_UP_TO_DATE) { 4373 /* If we are (becoming) SyncSource, but peer is still in sync 4374 * preparation, ignore its uptodate-ness to avoid flapping, it 4375 * will change to inconsistent once the peer reaches active 4376 * syncing states. 4377 * It may have changed syncer-paused flags, however, so we 4378 * cannot ignore this completely. */ 4379 if (peer_state.conn > C_CONNECTED && 4380 peer_state.conn < C_SYNC_SOURCE) 4381 real_peer_disk = D_INCONSISTENT; 4382 4383 /* if peer_state changes to connected at the same time, 4384 * it explicitly notifies us that it finished resync. 4385 * Maybe we should finish it up, too? */ 4386 else if (os.conn >= C_SYNC_SOURCE && 4387 peer_state.conn == C_CONNECTED) { 4388 if (drbd_bm_total_weight(device) <= device->rs_failed) 4389 drbd_resync_finished(device); 4390 return 0; 4391 } 4392 } 4393 4394 /* explicit verify finished notification, stop sector reached. */ 4395 if (os.conn == C_VERIFY_T && os.disk == D_UP_TO_DATE && 4396 peer_state.conn == C_CONNECTED && real_peer_disk == D_UP_TO_DATE) { 4397 ov_out_of_sync_print(device); 4398 drbd_resync_finished(device); 4399 return 0; 4400 } 4401 4402 /* peer says his disk is inconsistent, while we think it is uptodate, 4403 * and this happens while the peer still thinks we have a sync going on, 4404 * but we think we are already done with the sync. 4405 * We ignore this to avoid flapping pdsk. 4406 * This should not happen, if the peer is a recent version of drbd. */ 4407 if (os.pdsk == D_UP_TO_DATE && real_peer_disk == D_INCONSISTENT && 4408 os.conn == C_CONNECTED && peer_state.conn > C_SYNC_SOURCE) 4409 real_peer_disk = D_UP_TO_DATE; 4410 4411 if (ns.conn == C_WF_REPORT_PARAMS) 4412 ns.conn = C_CONNECTED; 4413 4414 if (peer_state.conn == C_AHEAD) 4415 ns.conn = C_BEHIND; 4416 4417 if (device->p_uuid && peer_state.disk >= D_NEGOTIATING && 4418 get_ldev_if_state(device, D_NEGOTIATING)) { 4419 int cr; /* consider resync */ 4420 4421 /* if we established a new connection */ 4422 cr = (os.conn < C_CONNECTED); 4423 /* if we had an established connection 4424 * and one of the nodes newly attaches a disk */ 4425 cr |= (os.conn == C_CONNECTED && 4426 (peer_state.disk == D_NEGOTIATING || 4427 os.disk == D_NEGOTIATING)); 4428 /* if we have both been inconsistent, and the peer has been 4429 * forced to be UpToDate with --overwrite-data */ 4430 cr |= test_bit(CONSIDER_RESYNC, &device->flags); 4431 /* if we had been plain connected, and the admin requested to 4432 * start a sync by "invalidate" or "invalidate-remote" */ 4433 cr |= (os.conn == C_CONNECTED && 4434 (peer_state.conn >= C_STARTING_SYNC_S && 4435 peer_state.conn <= C_WF_BITMAP_T)); 4436 4437 if (cr) 4438 ns.conn = drbd_sync_handshake(peer_device, peer_state.role, real_peer_disk); 4439 4440 put_ldev(device); 4441 if (ns.conn == C_MASK) { 4442 ns.conn = C_CONNECTED; 4443 if (device->state.disk == D_NEGOTIATING) { 4444 drbd_force_state(device, NS(disk, D_FAILED)); 4445 } else if (peer_state.disk == D_NEGOTIATING) { 4446 drbd_err(device, "Disk attach process on the peer node was aborted.\n"); 4447 peer_state.disk = D_DISKLESS; 4448 real_peer_disk = D_DISKLESS; 4449 } else { 4450 if (test_and_clear_bit(CONN_DRY_RUN, &peer_device->connection->flags)) 4451 return -EIO; 4452 D_ASSERT(device, os.conn == C_WF_REPORT_PARAMS); 4453 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD); 4454 return -EIO; 4455 } 4456 } 4457 } 4458 4459 spin_lock_irq(&device->resource->req_lock); 4460 if (os.i != drbd_read_state(device).i) 4461 goto retry; 4462 clear_bit(CONSIDER_RESYNC, &device->flags); 4463 ns.peer = peer_state.role; 4464 ns.pdsk = real_peer_disk; 4465 ns.peer_isp = (peer_state.aftr_isp | peer_state.user_isp); 4466 if ((ns.conn == C_CONNECTED || ns.conn == C_WF_BITMAP_S) && ns.disk == D_NEGOTIATING) 4467 ns.disk = device->new_state_tmp.disk; 4468 cs_flags = CS_VERBOSE + (os.conn < C_CONNECTED && ns.conn >= C_CONNECTED ? 0 : CS_HARD); 4469 if (ns.pdsk == D_CONSISTENT && drbd_suspended(device) && ns.conn == C_CONNECTED && os.conn < C_CONNECTED && 4470 test_bit(NEW_CUR_UUID, &device->flags)) { 4471 /* Do not allow tl_restart(RESEND) for a rebooted peer. We can only allow this 4472 for temporal network outages! */ 4473 spin_unlock_irq(&device->resource->req_lock); 4474 drbd_err(device, "Aborting Connect, can not thaw IO with an only Consistent peer\n"); 4475 tl_clear(peer_device->connection); 4476 drbd_uuid_new_current(device); 4477 clear_bit(NEW_CUR_UUID, &device->flags); 4478 conn_request_state(peer_device->connection, NS2(conn, C_PROTOCOL_ERROR, susp, 0), CS_HARD); 4479 return -EIO; 4480 } 4481 rv = _drbd_set_state(device, ns, cs_flags, NULL); 4482 ns = drbd_read_state(device); 4483 spin_unlock_irq(&device->resource->req_lock); 4484 4485 if (rv < SS_SUCCESS) { 4486 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD); 4487 return -EIO; 4488 } 4489 4490 if (os.conn > C_WF_REPORT_PARAMS) { 4491 if (ns.conn > C_CONNECTED && peer_state.conn <= C_CONNECTED && 4492 peer_state.disk != D_NEGOTIATING ) { 4493 /* we want resync, peer has not yet decided to sync... */ 4494 /* Nowadays only used when forcing a node into primary role and 4495 setting its disk to UpToDate with that */ 4496 drbd_send_uuids(peer_device); 4497 drbd_send_current_state(peer_device); 4498 } 4499 } 4500 4501 clear_bit(DISCARD_MY_DATA, &device->flags); 4502 4503 drbd_md_sync(device); /* update connected indicator, la_size_sect, ... */ 4504 4505 return 0; 4506 } 4507 4508 static int receive_sync_uuid(struct drbd_connection *connection, struct packet_info *pi) 4509 { 4510 struct drbd_peer_device *peer_device; 4511 struct drbd_device *device; 4512 struct p_rs_uuid *p = pi->data; 4513 4514 peer_device = conn_peer_device(connection, pi->vnr); 4515 if (!peer_device) 4516 return -EIO; 4517 device = peer_device->device; 4518 4519 wait_event(device->misc_wait, 4520 device->state.conn == C_WF_SYNC_UUID || 4521 device->state.conn == C_BEHIND || 4522 device->state.conn < C_CONNECTED || 4523 device->state.disk < D_NEGOTIATING); 4524 4525 /* D_ASSERT(device, device->state.conn == C_WF_SYNC_UUID ); */ 4526 4527 /* Here the _drbd_uuid_ functions are right, current should 4528 _not_ be rotated into the history */ 4529 if (get_ldev_if_state(device, D_NEGOTIATING)) { 4530 _drbd_uuid_set(device, UI_CURRENT, be64_to_cpu(p->uuid)); 4531 _drbd_uuid_set(device, UI_BITMAP, 0UL); 4532 4533 drbd_print_uuids(device, "updated sync uuid"); 4534 drbd_start_resync(device, C_SYNC_TARGET); 4535 4536 put_ldev(device); 4537 } else 4538 drbd_err(device, "Ignoring SyncUUID packet!\n"); 4539 4540 return 0; 4541 } 4542 4543 /** 4544 * receive_bitmap_plain 4545 * 4546 * Return 0 when done, 1 when another iteration is needed, and a negative error 4547 * code upon failure. 4548 */ 4549 static int 4550 receive_bitmap_plain(struct drbd_peer_device *peer_device, unsigned int size, 4551 unsigned long *p, struct bm_xfer_ctx *c) 4552 { 4553 unsigned int data_size = DRBD_SOCKET_BUFFER_SIZE - 4554 drbd_header_size(peer_device->connection); 4555 unsigned int num_words = min_t(size_t, data_size / sizeof(*p), 4556 c->bm_words - c->word_offset); 4557 unsigned int want = num_words * sizeof(*p); 4558 int err; 4559 4560 if (want != size) { 4561 drbd_err(peer_device, "%s:want (%u) != size (%u)\n", __func__, want, size); 4562 return -EIO; 4563 } 4564 if (want == 0) 4565 return 0; 4566 err = drbd_recv_all(peer_device->connection, p, want); 4567 if (err) 4568 return err; 4569 4570 drbd_bm_merge_lel(peer_device->device, c->word_offset, num_words, p); 4571 4572 c->word_offset += num_words; 4573 c->bit_offset = c->word_offset * BITS_PER_LONG; 4574 if (c->bit_offset > c->bm_bits) 4575 c->bit_offset = c->bm_bits; 4576 4577 return 1; 4578 } 4579 4580 static enum drbd_bitmap_code dcbp_get_code(struct p_compressed_bm *p) 4581 { 4582 return (enum drbd_bitmap_code)(p->encoding & 0x0f); 4583 } 4584 4585 static int dcbp_get_start(struct p_compressed_bm *p) 4586 { 4587 return (p->encoding & 0x80) != 0; 4588 } 4589 4590 static int dcbp_get_pad_bits(struct p_compressed_bm *p) 4591 { 4592 return (p->encoding >> 4) & 0x7; 4593 } 4594 4595 /** 4596 * recv_bm_rle_bits 4597 * 4598 * Return 0 when done, 1 when another iteration is needed, and a negative error 4599 * code upon failure. 4600 */ 4601 static int 4602 recv_bm_rle_bits(struct drbd_peer_device *peer_device, 4603 struct p_compressed_bm *p, 4604 struct bm_xfer_ctx *c, 4605 unsigned int len) 4606 { 4607 struct bitstream bs; 4608 u64 look_ahead; 4609 u64 rl; 4610 u64 tmp; 4611 unsigned long s = c->bit_offset; 4612 unsigned long e; 4613 int toggle = dcbp_get_start(p); 4614 int have; 4615 int bits; 4616 4617 bitstream_init(&bs, p->code, len, dcbp_get_pad_bits(p)); 4618 4619 bits = bitstream_get_bits(&bs, &look_ahead, 64); 4620 if (bits < 0) 4621 return -EIO; 4622 4623 for (have = bits; have > 0; s += rl, toggle = !toggle) { 4624 bits = vli_decode_bits(&rl, look_ahead); 4625 if (bits <= 0) 4626 return -EIO; 4627 4628 if (toggle) { 4629 e = s + rl -1; 4630 if (e >= c->bm_bits) { 4631 drbd_err(peer_device, "bitmap overflow (e:%lu) while decoding bm RLE packet\n", e); 4632 return -EIO; 4633 } 4634 _drbd_bm_set_bits(peer_device->device, s, e); 4635 } 4636 4637 if (have < bits) { 4638 drbd_err(peer_device, "bitmap decoding error: h:%d b:%d la:0x%08llx l:%u/%u\n", 4639 have, bits, look_ahead, 4640 (unsigned int)(bs.cur.b - p->code), 4641 (unsigned int)bs.buf_len); 4642 return -EIO; 4643 } 4644 /* if we consumed all 64 bits, assign 0; >> 64 is "undefined"; */ 4645 if (likely(bits < 64)) 4646 look_ahead >>= bits; 4647 else 4648 look_ahead = 0; 4649 have -= bits; 4650 4651 bits = bitstream_get_bits(&bs, &tmp, 64 - have); 4652 if (bits < 0) 4653 return -EIO; 4654 look_ahead |= tmp << have; 4655 have += bits; 4656 } 4657 4658 c->bit_offset = s; 4659 bm_xfer_ctx_bit_to_word_offset(c); 4660 4661 return (s != c->bm_bits); 4662 } 4663 4664 /** 4665 * decode_bitmap_c 4666 * 4667 * Return 0 when done, 1 when another iteration is needed, and a negative error 4668 * code upon failure. 4669 */ 4670 static int 4671 decode_bitmap_c(struct drbd_peer_device *peer_device, 4672 struct p_compressed_bm *p, 4673 struct bm_xfer_ctx *c, 4674 unsigned int len) 4675 { 4676 if (dcbp_get_code(p) == RLE_VLI_Bits) 4677 return recv_bm_rle_bits(peer_device, p, c, len - sizeof(*p)); 4678 4679 /* other variants had been implemented for evaluation, 4680 * but have been dropped as this one turned out to be "best" 4681 * during all our tests. */ 4682 4683 drbd_err(peer_device, "receive_bitmap_c: unknown encoding %u\n", p->encoding); 4684 conn_request_state(peer_device->connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD); 4685 return -EIO; 4686 } 4687 4688 void INFO_bm_xfer_stats(struct drbd_device *device, 4689 const char *direction, struct bm_xfer_ctx *c) 4690 { 4691 /* what would it take to transfer it "plaintext" */ 4692 unsigned int header_size = drbd_header_size(first_peer_device(device)->connection); 4693 unsigned int data_size = DRBD_SOCKET_BUFFER_SIZE - header_size; 4694 unsigned int plain = 4695 header_size * (DIV_ROUND_UP(c->bm_words, data_size) + 1) + 4696 c->bm_words * sizeof(unsigned long); 4697 unsigned int total = c->bytes[0] + c->bytes[1]; 4698 unsigned int r; 4699 4700 /* total can not be zero. but just in case: */ 4701 if (total == 0) 4702 return; 4703 4704 /* don't report if not compressed */ 4705 if (total >= plain) 4706 return; 4707 4708 /* total < plain. check for overflow, still */ 4709 r = (total > UINT_MAX/1000) ? (total / (plain/1000)) 4710 : (1000 * total / plain); 4711 4712 if (r > 1000) 4713 r = 1000; 4714 4715 r = 1000 - r; 4716 drbd_info(device, "%s bitmap stats [Bytes(packets)]: plain %u(%u), RLE %u(%u), " 4717 "total %u; compression: %u.%u%%\n", 4718 direction, 4719 c->bytes[1], c->packets[1], 4720 c->bytes[0], c->packets[0], 4721 total, r/10, r % 10); 4722 } 4723 4724 /* Since we are processing the bitfield from lower addresses to higher, 4725 it does not matter if the process it in 32 bit chunks or 64 bit 4726 chunks as long as it is little endian. (Understand it as byte stream, 4727 beginning with the lowest byte...) If we would use big endian 4728 we would need to process it from the highest address to the lowest, 4729 in order to be agnostic to the 32 vs 64 bits issue. 4730 4731 returns 0 on failure, 1 if we successfully received it. */ 4732 static int receive_bitmap(struct drbd_connection *connection, struct packet_info *pi) 4733 { 4734 struct drbd_peer_device *peer_device; 4735 struct drbd_device *device; 4736 struct bm_xfer_ctx c; 4737 int err; 4738 4739 peer_device = conn_peer_device(connection, pi->vnr); 4740 if (!peer_device) 4741 return -EIO; 4742 device = peer_device->device; 4743 4744 drbd_bm_lock(device, "receive bitmap", BM_LOCKED_SET_ALLOWED); 4745 /* you are supposed to send additional out-of-sync information 4746 * if you actually set bits during this phase */ 4747 4748 c = (struct bm_xfer_ctx) { 4749 .bm_bits = drbd_bm_bits(device), 4750 .bm_words = drbd_bm_words(device), 4751 }; 4752 4753 for(;;) { 4754 if (pi->cmd == P_BITMAP) 4755 err = receive_bitmap_plain(peer_device, pi->size, pi->data, &c); 4756 else if (pi->cmd == P_COMPRESSED_BITMAP) { 4757 /* MAYBE: sanity check that we speak proto >= 90, 4758 * and the feature is enabled! */ 4759 struct p_compressed_bm *p = pi->data; 4760 4761 if (pi->size > DRBD_SOCKET_BUFFER_SIZE - drbd_header_size(connection)) { 4762 drbd_err(device, "ReportCBitmap packet too large\n"); 4763 err = -EIO; 4764 goto out; 4765 } 4766 if (pi->size <= sizeof(*p)) { 4767 drbd_err(device, "ReportCBitmap packet too small (l:%u)\n", pi->size); 4768 err = -EIO; 4769 goto out; 4770 } 4771 err = drbd_recv_all(peer_device->connection, p, pi->size); 4772 if (err) 4773 goto out; 4774 err = decode_bitmap_c(peer_device, p, &c, pi->size); 4775 } else { 4776 drbd_warn(device, "receive_bitmap: cmd neither ReportBitMap nor ReportCBitMap (is 0x%x)", pi->cmd); 4777 err = -EIO; 4778 goto out; 4779 } 4780 4781 c.packets[pi->cmd == P_BITMAP]++; 4782 c.bytes[pi->cmd == P_BITMAP] += drbd_header_size(connection) + pi->size; 4783 4784 if (err <= 0) { 4785 if (err < 0) 4786 goto out; 4787 break; 4788 } 4789 err = drbd_recv_header(peer_device->connection, pi); 4790 if (err) 4791 goto out; 4792 } 4793 4794 INFO_bm_xfer_stats(device, "receive", &c); 4795 4796 if (device->state.conn == C_WF_BITMAP_T) { 4797 enum drbd_state_rv rv; 4798 4799 err = drbd_send_bitmap(device); 4800 if (err) 4801 goto out; 4802 /* Omit CS_ORDERED with this state transition to avoid deadlocks. */ 4803 rv = _drbd_request_state(device, NS(conn, C_WF_SYNC_UUID), CS_VERBOSE); 4804 D_ASSERT(device, rv == SS_SUCCESS); 4805 } else if (device->state.conn != C_WF_BITMAP_S) { 4806 /* admin may have requested C_DISCONNECTING, 4807 * other threads may have noticed network errors */ 4808 drbd_info(device, "unexpected cstate (%s) in receive_bitmap\n", 4809 drbd_conn_str(device->state.conn)); 4810 } 4811 err = 0; 4812 4813 out: 4814 drbd_bm_unlock(device); 4815 if (!err && device->state.conn == C_WF_BITMAP_S) 4816 drbd_start_resync(device, C_SYNC_SOURCE); 4817 return err; 4818 } 4819 4820 static int receive_skip(struct drbd_connection *connection, struct packet_info *pi) 4821 { 4822 drbd_warn(connection, "skipping unknown optional packet type %d, l: %d!\n", 4823 pi->cmd, pi->size); 4824 4825 return ignore_remaining_packet(connection, pi); 4826 } 4827 4828 static int receive_UnplugRemote(struct drbd_connection *connection, struct packet_info *pi) 4829 { 4830 /* Make sure we've acked all the TCP data associated 4831 * with the data requests being unplugged */ 4832 drbd_tcp_quickack(connection->data.socket); 4833 4834 return 0; 4835 } 4836 4837 static int receive_out_of_sync(struct drbd_connection *connection, struct packet_info *pi) 4838 { 4839 struct drbd_peer_device *peer_device; 4840 struct drbd_device *device; 4841 struct p_block_desc *p = pi->data; 4842 4843 peer_device = conn_peer_device(connection, pi->vnr); 4844 if (!peer_device) 4845 return -EIO; 4846 device = peer_device->device; 4847 4848 switch (device->state.conn) { 4849 case C_WF_SYNC_UUID: 4850 case C_WF_BITMAP_T: 4851 case C_BEHIND: 4852 break; 4853 default: 4854 drbd_err(device, "ASSERT FAILED cstate = %s, expected: WFSyncUUID|WFBitMapT|Behind\n", 4855 drbd_conn_str(device->state.conn)); 4856 } 4857 4858 drbd_set_out_of_sync(device, be64_to_cpu(p->sector), be32_to_cpu(p->blksize)); 4859 4860 return 0; 4861 } 4862 4863 static int receive_rs_deallocated(struct drbd_connection *connection, struct packet_info *pi) 4864 { 4865 struct drbd_peer_device *peer_device; 4866 struct p_block_desc *p = pi->data; 4867 struct drbd_device *device; 4868 sector_t sector; 4869 int size, err = 0; 4870 4871 peer_device = conn_peer_device(connection, pi->vnr); 4872 if (!peer_device) 4873 return -EIO; 4874 device = peer_device->device; 4875 4876 sector = be64_to_cpu(p->sector); 4877 size = be32_to_cpu(p->blksize); 4878 4879 dec_rs_pending(device); 4880 4881 if (get_ldev(device)) { 4882 struct drbd_peer_request *peer_req; 4883 const int op = REQ_OP_DISCARD; 4884 4885 peer_req = drbd_alloc_peer_req(peer_device, ID_SYNCER, sector, 4886 size, 0, GFP_NOIO); 4887 if (!peer_req) { 4888 put_ldev(device); 4889 return -ENOMEM; 4890 } 4891 4892 peer_req->w.cb = e_end_resync_block; 4893 peer_req->submit_jif = jiffies; 4894 peer_req->flags |= EE_IS_TRIM; 4895 4896 spin_lock_irq(&device->resource->req_lock); 4897 list_add_tail(&peer_req->w.list, &device->sync_ee); 4898 spin_unlock_irq(&device->resource->req_lock); 4899 4900 atomic_add(pi->size >> 9, &device->rs_sect_ev); 4901 err = drbd_submit_peer_request(device, peer_req, op, 0, DRBD_FAULT_RS_WR); 4902 4903 if (err) { 4904 spin_lock_irq(&device->resource->req_lock); 4905 list_del(&peer_req->w.list); 4906 spin_unlock_irq(&device->resource->req_lock); 4907 4908 drbd_free_peer_req(device, peer_req); 4909 put_ldev(device); 4910 err = 0; 4911 goto fail; 4912 } 4913 4914 inc_unacked(device); 4915 4916 /* No put_ldev() here. Gets called in drbd_endio_write_sec_final(), 4917 as well as drbd_rs_complete_io() */ 4918 } else { 4919 fail: 4920 drbd_rs_complete_io(device, sector); 4921 drbd_send_ack_ex(peer_device, P_NEG_ACK, sector, size, ID_SYNCER); 4922 } 4923 4924 atomic_add(size >> 9, &device->rs_sect_in); 4925 4926 return err; 4927 } 4928 4929 struct data_cmd { 4930 int expect_payload; 4931 unsigned int pkt_size; 4932 int (*fn)(struct drbd_connection *, struct packet_info *); 4933 }; 4934 4935 static struct data_cmd drbd_cmd_handler[] = { 4936 [P_DATA] = { 1, sizeof(struct p_data), receive_Data }, 4937 [P_DATA_REPLY] = { 1, sizeof(struct p_data), receive_DataReply }, 4938 [P_RS_DATA_REPLY] = { 1, sizeof(struct p_data), receive_RSDataReply } , 4939 [P_BARRIER] = { 0, sizeof(struct p_barrier), receive_Barrier } , 4940 [P_BITMAP] = { 1, 0, receive_bitmap } , 4941 [P_COMPRESSED_BITMAP] = { 1, 0, receive_bitmap } , 4942 [P_UNPLUG_REMOTE] = { 0, 0, receive_UnplugRemote }, 4943 [P_DATA_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest }, 4944 [P_RS_DATA_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest }, 4945 [P_SYNC_PARAM] = { 1, 0, receive_SyncParam }, 4946 [P_SYNC_PARAM89] = { 1, 0, receive_SyncParam }, 4947 [P_PROTOCOL] = { 1, sizeof(struct p_protocol), receive_protocol }, 4948 [P_UUIDS] = { 0, sizeof(struct p_uuids), receive_uuids }, 4949 [P_SIZES] = { 0, sizeof(struct p_sizes), receive_sizes }, 4950 [P_STATE] = { 0, sizeof(struct p_state), receive_state }, 4951 [P_STATE_CHG_REQ] = { 0, sizeof(struct p_req_state), receive_req_state }, 4952 [P_SYNC_UUID] = { 0, sizeof(struct p_rs_uuid), receive_sync_uuid }, 4953 [P_OV_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest }, 4954 [P_OV_REPLY] = { 1, sizeof(struct p_block_req), receive_DataRequest }, 4955 [P_CSUM_RS_REQUEST] = { 1, sizeof(struct p_block_req), receive_DataRequest }, 4956 [P_RS_THIN_REQ] = { 0, sizeof(struct p_block_req), receive_DataRequest }, 4957 [P_DELAY_PROBE] = { 0, sizeof(struct p_delay_probe93), receive_skip }, 4958 [P_OUT_OF_SYNC] = { 0, sizeof(struct p_block_desc), receive_out_of_sync }, 4959 [P_CONN_ST_CHG_REQ] = { 0, sizeof(struct p_req_state), receive_req_conn_state }, 4960 [P_PROTOCOL_UPDATE] = { 1, sizeof(struct p_protocol), receive_protocol }, 4961 [P_TRIM] = { 0, sizeof(struct p_trim), receive_Data }, 4962 [P_RS_DEALLOCATED] = { 0, sizeof(struct p_block_desc), receive_rs_deallocated }, 4963 [P_WSAME] = { 1, sizeof(struct p_wsame), receive_Data }, 4964 }; 4965 4966 static void drbdd(struct drbd_connection *connection) 4967 { 4968 struct packet_info pi; 4969 size_t shs; /* sub header size */ 4970 int err; 4971 4972 while (get_t_state(&connection->receiver) == RUNNING) { 4973 struct data_cmd const *cmd; 4974 4975 drbd_thread_current_set_cpu(&connection->receiver); 4976 update_receiver_timing_details(connection, drbd_recv_header); 4977 if (drbd_recv_header(connection, &pi)) 4978 goto err_out; 4979 4980 cmd = &drbd_cmd_handler[pi.cmd]; 4981 if (unlikely(pi.cmd >= ARRAY_SIZE(drbd_cmd_handler) || !cmd->fn)) { 4982 drbd_err(connection, "Unexpected data packet %s (0x%04x)", 4983 cmdname(pi.cmd), pi.cmd); 4984 goto err_out; 4985 } 4986 4987 shs = cmd->pkt_size; 4988 if (pi.cmd == P_SIZES && connection->agreed_features & DRBD_FF_WSAME) 4989 shs += sizeof(struct o_qlim); 4990 if (pi.size > shs && !cmd->expect_payload) { 4991 drbd_err(connection, "No payload expected %s l:%d\n", 4992 cmdname(pi.cmd), pi.size); 4993 goto err_out; 4994 } 4995 if (pi.size < shs) { 4996 drbd_err(connection, "%s: unexpected packet size, expected:%d received:%d\n", 4997 cmdname(pi.cmd), (int)shs, pi.size); 4998 goto err_out; 4999 } 5000 5001 if (shs) { 5002 update_receiver_timing_details(connection, drbd_recv_all_warn); 5003 err = drbd_recv_all_warn(connection, pi.data, shs); 5004 if (err) 5005 goto err_out; 5006 pi.size -= shs; 5007 } 5008 5009 update_receiver_timing_details(connection, cmd->fn); 5010 err = cmd->fn(connection, &pi); 5011 if (err) { 5012 drbd_err(connection, "error receiving %s, e: %d l: %d!\n", 5013 cmdname(pi.cmd), err, pi.size); 5014 goto err_out; 5015 } 5016 } 5017 return; 5018 5019 err_out: 5020 conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD); 5021 } 5022 5023 static void conn_disconnect(struct drbd_connection *connection) 5024 { 5025 struct drbd_peer_device *peer_device; 5026 enum drbd_conns oc; 5027 int vnr; 5028 5029 if (connection->cstate == C_STANDALONE) 5030 return; 5031 5032 /* We are about to start the cleanup after connection loss. 5033 * Make sure drbd_make_request knows about that. 5034 * Usually we should be in some network failure state already, 5035 * but just in case we are not, we fix it up here. 5036 */ 5037 conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD); 5038 5039 /* ack_receiver does not clean up anything. it must not interfere, either */ 5040 drbd_thread_stop(&connection->ack_receiver); 5041 if (connection->ack_sender) { 5042 destroy_workqueue(connection->ack_sender); 5043 connection->ack_sender = NULL; 5044 } 5045 drbd_free_sock(connection); 5046 5047 rcu_read_lock(); 5048 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 5049 struct drbd_device *device = peer_device->device; 5050 kref_get(&device->kref); 5051 rcu_read_unlock(); 5052 drbd_disconnected(peer_device); 5053 kref_put(&device->kref, drbd_destroy_device); 5054 rcu_read_lock(); 5055 } 5056 rcu_read_unlock(); 5057 5058 if (!list_empty(&connection->current_epoch->list)) 5059 drbd_err(connection, "ASSERTION FAILED: connection->current_epoch->list not empty\n"); 5060 /* ok, no more ee's on the fly, it is safe to reset the epoch_size */ 5061 atomic_set(&connection->current_epoch->epoch_size, 0); 5062 connection->send.seen_any_write_yet = false; 5063 5064 drbd_info(connection, "Connection closed\n"); 5065 5066 if (conn_highest_role(connection) == R_PRIMARY && conn_highest_pdsk(connection) >= D_UNKNOWN) 5067 conn_try_outdate_peer_async(connection); 5068 5069 spin_lock_irq(&connection->resource->req_lock); 5070 oc = connection->cstate; 5071 if (oc >= C_UNCONNECTED) 5072 _conn_request_state(connection, NS(conn, C_UNCONNECTED), CS_VERBOSE); 5073 5074 spin_unlock_irq(&connection->resource->req_lock); 5075 5076 if (oc == C_DISCONNECTING) 5077 conn_request_state(connection, NS(conn, C_STANDALONE), CS_VERBOSE | CS_HARD); 5078 } 5079 5080 static int drbd_disconnected(struct drbd_peer_device *peer_device) 5081 { 5082 struct drbd_device *device = peer_device->device; 5083 unsigned int i; 5084 5085 /* wait for current activity to cease. */ 5086 spin_lock_irq(&device->resource->req_lock); 5087 _drbd_wait_ee_list_empty(device, &device->active_ee); 5088 _drbd_wait_ee_list_empty(device, &device->sync_ee); 5089 _drbd_wait_ee_list_empty(device, &device->read_ee); 5090 spin_unlock_irq(&device->resource->req_lock); 5091 5092 /* We do not have data structures that would allow us to 5093 * get the rs_pending_cnt down to 0 again. 5094 * * On C_SYNC_TARGET we do not have any data structures describing 5095 * the pending RSDataRequest's we have sent. 5096 * * On C_SYNC_SOURCE there is no data structure that tracks 5097 * the P_RS_DATA_REPLY blocks that we sent to the SyncTarget. 5098 * And no, it is not the sum of the reference counts in the 5099 * resync_LRU. The resync_LRU tracks the whole operation including 5100 * the disk-IO, while the rs_pending_cnt only tracks the blocks 5101 * on the fly. */ 5102 drbd_rs_cancel_all(device); 5103 device->rs_total = 0; 5104 device->rs_failed = 0; 5105 atomic_set(&device->rs_pending_cnt, 0); 5106 wake_up(&device->misc_wait); 5107 5108 del_timer_sync(&device->resync_timer); 5109 resync_timer_fn((unsigned long)device); 5110 5111 /* wait for all w_e_end_data_req, w_e_end_rsdata_req, w_send_barrier, 5112 * w_make_resync_request etc. which may still be on the worker queue 5113 * to be "canceled" */ 5114 drbd_flush_workqueue(&peer_device->connection->sender_work); 5115 5116 drbd_finish_peer_reqs(device); 5117 5118 /* This second workqueue flush is necessary, since drbd_finish_peer_reqs() 5119 might have issued a work again. The one before drbd_finish_peer_reqs() is 5120 necessary to reclain net_ee in drbd_finish_peer_reqs(). */ 5121 drbd_flush_workqueue(&peer_device->connection->sender_work); 5122 5123 /* need to do it again, drbd_finish_peer_reqs() may have populated it 5124 * again via drbd_try_clear_on_disk_bm(). */ 5125 drbd_rs_cancel_all(device); 5126 5127 kfree(device->p_uuid); 5128 device->p_uuid = NULL; 5129 5130 if (!drbd_suspended(device)) 5131 tl_clear(peer_device->connection); 5132 5133 drbd_md_sync(device); 5134 5135 if (get_ldev(device)) { 5136 drbd_bitmap_io(device, &drbd_bm_write_copy_pages, 5137 "write from disconnected", BM_LOCKED_CHANGE_ALLOWED); 5138 put_ldev(device); 5139 } 5140 5141 /* tcp_close and release of sendpage pages can be deferred. I don't 5142 * want to use SO_LINGER, because apparently it can be deferred for 5143 * more than 20 seconds (longest time I checked). 5144 * 5145 * Actually we don't care for exactly when the network stack does its 5146 * put_page(), but release our reference on these pages right here. 5147 */ 5148 i = drbd_free_peer_reqs(device, &device->net_ee); 5149 if (i) 5150 drbd_info(device, "net_ee not empty, killed %u entries\n", i); 5151 i = atomic_read(&device->pp_in_use_by_net); 5152 if (i) 5153 drbd_info(device, "pp_in_use_by_net = %d, expected 0\n", i); 5154 i = atomic_read(&device->pp_in_use); 5155 if (i) 5156 drbd_info(device, "pp_in_use = %d, expected 0\n", i); 5157 5158 D_ASSERT(device, list_empty(&device->read_ee)); 5159 D_ASSERT(device, list_empty(&device->active_ee)); 5160 D_ASSERT(device, list_empty(&device->sync_ee)); 5161 D_ASSERT(device, list_empty(&device->done_ee)); 5162 5163 return 0; 5164 } 5165 5166 /* 5167 * We support PRO_VERSION_MIN to PRO_VERSION_MAX. The protocol version 5168 * we can agree on is stored in agreed_pro_version. 5169 * 5170 * feature flags and the reserved array should be enough room for future 5171 * enhancements of the handshake protocol, and possible plugins... 5172 * 5173 * for now, they are expected to be zero, but ignored. 5174 */ 5175 static int drbd_send_features(struct drbd_connection *connection) 5176 { 5177 struct drbd_socket *sock; 5178 struct p_connection_features *p; 5179 5180 sock = &connection->data; 5181 p = conn_prepare_command(connection, sock); 5182 if (!p) 5183 return -EIO; 5184 memset(p, 0, sizeof(*p)); 5185 p->protocol_min = cpu_to_be32(PRO_VERSION_MIN); 5186 p->protocol_max = cpu_to_be32(PRO_VERSION_MAX); 5187 p->feature_flags = cpu_to_be32(PRO_FEATURES); 5188 return conn_send_command(connection, sock, P_CONNECTION_FEATURES, sizeof(*p), NULL, 0); 5189 } 5190 5191 /* 5192 * return values: 5193 * 1 yes, we have a valid connection 5194 * 0 oops, did not work out, please try again 5195 * -1 peer talks different language, 5196 * no point in trying again, please go standalone. 5197 */ 5198 static int drbd_do_features(struct drbd_connection *connection) 5199 { 5200 /* ASSERT current == connection->receiver ... */ 5201 struct p_connection_features *p; 5202 const int expect = sizeof(struct p_connection_features); 5203 struct packet_info pi; 5204 int err; 5205 5206 err = drbd_send_features(connection); 5207 if (err) 5208 return 0; 5209 5210 err = drbd_recv_header(connection, &pi); 5211 if (err) 5212 return 0; 5213 5214 if (pi.cmd != P_CONNECTION_FEATURES) { 5215 drbd_err(connection, "expected ConnectionFeatures packet, received: %s (0x%04x)\n", 5216 cmdname(pi.cmd), pi.cmd); 5217 return -1; 5218 } 5219 5220 if (pi.size != expect) { 5221 drbd_err(connection, "expected ConnectionFeatures length: %u, received: %u\n", 5222 expect, pi.size); 5223 return -1; 5224 } 5225 5226 p = pi.data; 5227 err = drbd_recv_all_warn(connection, p, expect); 5228 if (err) 5229 return 0; 5230 5231 p->protocol_min = be32_to_cpu(p->protocol_min); 5232 p->protocol_max = be32_to_cpu(p->protocol_max); 5233 if (p->protocol_max == 0) 5234 p->protocol_max = p->protocol_min; 5235 5236 if (PRO_VERSION_MAX < p->protocol_min || 5237 PRO_VERSION_MIN > p->protocol_max) 5238 goto incompat; 5239 5240 connection->agreed_pro_version = min_t(int, PRO_VERSION_MAX, p->protocol_max); 5241 connection->agreed_features = PRO_FEATURES & be32_to_cpu(p->feature_flags); 5242 5243 drbd_info(connection, "Handshake successful: " 5244 "Agreed network protocol version %d\n", connection->agreed_pro_version); 5245 5246 drbd_info(connection, "Feature flags enabled on protocol level: 0x%x%s%s%s.\n", 5247 connection->agreed_features, 5248 connection->agreed_features & DRBD_FF_TRIM ? " TRIM" : "", 5249 connection->agreed_features & DRBD_FF_THIN_RESYNC ? " THIN_RESYNC" : "", 5250 connection->agreed_features & DRBD_FF_WSAME ? " WRITE_SAME" : 5251 connection->agreed_features ? "" : " none"); 5252 5253 return 1; 5254 5255 incompat: 5256 drbd_err(connection, "incompatible DRBD dialects: " 5257 "I support %d-%d, peer supports %d-%d\n", 5258 PRO_VERSION_MIN, PRO_VERSION_MAX, 5259 p->protocol_min, p->protocol_max); 5260 return -1; 5261 } 5262 5263 #if !defined(CONFIG_CRYPTO_HMAC) && !defined(CONFIG_CRYPTO_HMAC_MODULE) 5264 static int drbd_do_auth(struct drbd_connection *connection) 5265 { 5266 drbd_err(connection, "This kernel was build without CONFIG_CRYPTO_HMAC.\n"); 5267 drbd_err(connection, "You need to disable 'cram-hmac-alg' in drbd.conf.\n"); 5268 return -1; 5269 } 5270 #else 5271 #define CHALLENGE_LEN 64 5272 5273 /* Return value: 5274 1 - auth succeeded, 5275 0 - failed, try again (network error), 5276 -1 - auth failed, don't try again. 5277 */ 5278 5279 static int drbd_do_auth(struct drbd_connection *connection) 5280 { 5281 struct drbd_socket *sock; 5282 char my_challenge[CHALLENGE_LEN]; /* 64 Bytes... */ 5283 char *response = NULL; 5284 char *right_response = NULL; 5285 char *peers_ch = NULL; 5286 unsigned int key_len; 5287 char secret[SHARED_SECRET_MAX]; /* 64 byte */ 5288 unsigned int resp_size; 5289 SHASH_DESC_ON_STACK(desc, connection->cram_hmac_tfm); 5290 struct packet_info pi; 5291 struct net_conf *nc; 5292 int err, rv; 5293 5294 /* FIXME: Put the challenge/response into the preallocated socket buffer. */ 5295 5296 rcu_read_lock(); 5297 nc = rcu_dereference(connection->net_conf); 5298 key_len = strlen(nc->shared_secret); 5299 memcpy(secret, nc->shared_secret, key_len); 5300 rcu_read_unlock(); 5301 5302 desc->tfm = connection->cram_hmac_tfm; 5303 desc->flags = 0; 5304 5305 rv = crypto_shash_setkey(connection->cram_hmac_tfm, (u8 *)secret, key_len); 5306 if (rv) { 5307 drbd_err(connection, "crypto_shash_setkey() failed with %d\n", rv); 5308 rv = -1; 5309 goto fail; 5310 } 5311 5312 get_random_bytes(my_challenge, CHALLENGE_LEN); 5313 5314 sock = &connection->data; 5315 if (!conn_prepare_command(connection, sock)) { 5316 rv = 0; 5317 goto fail; 5318 } 5319 rv = !conn_send_command(connection, sock, P_AUTH_CHALLENGE, 0, 5320 my_challenge, CHALLENGE_LEN); 5321 if (!rv) 5322 goto fail; 5323 5324 err = drbd_recv_header(connection, &pi); 5325 if (err) { 5326 rv = 0; 5327 goto fail; 5328 } 5329 5330 if (pi.cmd != P_AUTH_CHALLENGE) { 5331 drbd_err(connection, "expected AuthChallenge packet, received: %s (0x%04x)\n", 5332 cmdname(pi.cmd), pi.cmd); 5333 rv = 0; 5334 goto fail; 5335 } 5336 5337 if (pi.size > CHALLENGE_LEN * 2) { 5338 drbd_err(connection, "expected AuthChallenge payload too big.\n"); 5339 rv = -1; 5340 goto fail; 5341 } 5342 5343 if (pi.size < CHALLENGE_LEN) { 5344 drbd_err(connection, "AuthChallenge payload too small.\n"); 5345 rv = -1; 5346 goto fail; 5347 } 5348 5349 peers_ch = kmalloc(pi.size, GFP_NOIO); 5350 if (peers_ch == NULL) { 5351 drbd_err(connection, "kmalloc of peers_ch failed\n"); 5352 rv = -1; 5353 goto fail; 5354 } 5355 5356 err = drbd_recv_all_warn(connection, peers_ch, pi.size); 5357 if (err) { 5358 rv = 0; 5359 goto fail; 5360 } 5361 5362 if (!memcmp(my_challenge, peers_ch, CHALLENGE_LEN)) { 5363 drbd_err(connection, "Peer presented the same challenge!\n"); 5364 rv = -1; 5365 goto fail; 5366 } 5367 5368 resp_size = crypto_shash_digestsize(connection->cram_hmac_tfm); 5369 response = kmalloc(resp_size, GFP_NOIO); 5370 if (response == NULL) { 5371 drbd_err(connection, "kmalloc of response failed\n"); 5372 rv = -1; 5373 goto fail; 5374 } 5375 5376 rv = crypto_shash_digest(desc, peers_ch, pi.size, response); 5377 if (rv) { 5378 drbd_err(connection, "crypto_hash_digest() failed with %d\n", rv); 5379 rv = -1; 5380 goto fail; 5381 } 5382 5383 if (!conn_prepare_command(connection, sock)) { 5384 rv = 0; 5385 goto fail; 5386 } 5387 rv = !conn_send_command(connection, sock, P_AUTH_RESPONSE, 0, 5388 response, resp_size); 5389 if (!rv) 5390 goto fail; 5391 5392 err = drbd_recv_header(connection, &pi); 5393 if (err) { 5394 rv = 0; 5395 goto fail; 5396 } 5397 5398 if (pi.cmd != P_AUTH_RESPONSE) { 5399 drbd_err(connection, "expected AuthResponse packet, received: %s (0x%04x)\n", 5400 cmdname(pi.cmd), pi.cmd); 5401 rv = 0; 5402 goto fail; 5403 } 5404 5405 if (pi.size != resp_size) { 5406 drbd_err(connection, "expected AuthResponse payload of wrong size\n"); 5407 rv = 0; 5408 goto fail; 5409 } 5410 5411 err = drbd_recv_all_warn(connection, response , resp_size); 5412 if (err) { 5413 rv = 0; 5414 goto fail; 5415 } 5416 5417 right_response = kmalloc(resp_size, GFP_NOIO); 5418 if (right_response == NULL) { 5419 drbd_err(connection, "kmalloc of right_response failed\n"); 5420 rv = -1; 5421 goto fail; 5422 } 5423 5424 rv = crypto_shash_digest(desc, my_challenge, CHALLENGE_LEN, 5425 right_response); 5426 if (rv) { 5427 drbd_err(connection, "crypto_hash_digest() failed with %d\n", rv); 5428 rv = -1; 5429 goto fail; 5430 } 5431 5432 rv = !memcmp(response, right_response, resp_size); 5433 5434 if (rv) 5435 drbd_info(connection, "Peer authenticated using %d bytes HMAC\n", 5436 resp_size); 5437 else 5438 rv = -1; 5439 5440 fail: 5441 kfree(peers_ch); 5442 kfree(response); 5443 kfree(right_response); 5444 shash_desc_zero(desc); 5445 5446 return rv; 5447 } 5448 #endif 5449 5450 int drbd_receiver(struct drbd_thread *thi) 5451 { 5452 struct drbd_connection *connection = thi->connection; 5453 int h; 5454 5455 drbd_info(connection, "receiver (re)started\n"); 5456 5457 do { 5458 h = conn_connect(connection); 5459 if (h == 0) { 5460 conn_disconnect(connection); 5461 schedule_timeout_interruptible(HZ); 5462 } 5463 if (h == -1) { 5464 drbd_warn(connection, "Discarding network configuration.\n"); 5465 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 5466 } 5467 } while (h == 0); 5468 5469 if (h > 0) 5470 drbdd(connection); 5471 5472 conn_disconnect(connection); 5473 5474 drbd_info(connection, "receiver terminated\n"); 5475 return 0; 5476 } 5477 5478 /* ********* acknowledge sender ******** */ 5479 5480 static int got_conn_RqSReply(struct drbd_connection *connection, struct packet_info *pi) 5481 { 5482 struct p_req_state_reply *p = pi->data; 5483 int retcode = be32_to_cpu(p->retcode); 5484 5485 if (retcode >= SS_SUCCESS) { 5486 set_bit(CONN_WD_ST_CHG_OKAY, &connection->flags); 5487 } else { 5488 set_bit(CONN_WD_ST_CHG_FAIL, &connection->flags); 5489 drbd_err(connection, "Requested state change failed by peer: %s (%d)\n", 5490 drbd_set_st_err_str(retcode), retcode); 5491 } 5492 wake_up(&connection->ping_wait); 5493 5494 return 0; 5495 } 5496 5497 static int got_RqSReply(struct drbd_connection *connection, struct packet_info *pi) 5498 { 5499 struct drbd_peer_device *peer_device; 5500 struct drbd_device *device; 5501 struct p_req_state_reply *p = pi->data; 5502 int retcode = be32_to_cpu(p->retcode); 5503 5504 peer_device = conn_peer_device(connection, pi->vnr); 5505 if (!peer_device) 5506 return -EIO; 5507 device = peer_device->device; 5508 5509 if (test_bit(CONN_WD_ST_CHG_REQ, &connection->flags)) { 5510 D_ASSERT(device, connection->agreed_pro_version < 100); 5511 return got_conn_RqSReply(connection, pi); 5512 } 5513 5514 if (retcode >= SS_SUCCESS) { 5515 set_bit(CL_ST_CHG_SUCCESS, &device->flags); 5516 } else { 5517 set_bit(CL_ST_CHG_FAIL, &device->flags); 5518 drbd_err(device, "Requested state change failed by peer: %s (%d)\n", 5519 drbd_set_st_err_str(retcode), retcode); 5520 } 5521 wake_up(&device->state_wait); 5522 5523 return 0; 5524 } 5525 5526 static int got_Ping(struct drbd_connection *connection, struct packet_info *pi) 5527 { 5528 return drbd_send_ping_ack(connection); 5529 5530 } 5531 5532 static int got_PingAck(struct drbd_connection *connection, struct packet_info *pi) 5533 { 5534 /* restore idle timeout */ 5535 connection->meta.socket->sk->sk_rcvtimeo = connection->net_conf->ping_int*HZ; 5536 if (!test_and_set_bit(GOT_PING_ACK, &connection->flags)) 5537 wake_up(&connection->ping_wait); 5538 5539 return 0; 5540 } 5541 5542 static int got_IsInSync(struct drbd_connection *connection, struct packet_info *pi) 5543 { 5544 struct drbd_peer_device *peer_device; 5545 struct drbd_device *device; 5546 struct p_block_ack *p = pi->data; 5547 sector_t sector = be64_to_cpu(p->sector); 5548 int blksize = be32_to_cpu(p->blksize); 5549 5550 peer_device = conn_peer_device(connection, pi->vnr); 5551 if (!peer_device) 5552 return -EIO; 5553 device = peer_device->device; 5554 5555 D_ASSERT(device, peer_device->connection->agreed_pro_version >= 89); 5556 5557 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5558 5559 if (get_ldev(device)) { 5560 drbd_rs_complete_io(device, sector); 5561 drbd_set_in_sync(device, sector, blksize); 5562 /* rs_same_csums is supposed to count in units of BM_BLOCK_SIZE */ 5563 device->rs_same_csum += (blksize >> BM_BLOCK_SHIFT); 5564 put_ldev(device); 5565 } 5566 dec_rs_pending(device); 5567 atomic_add(blksize >> 9, &device->rs_sect_in); 5568 5569 return 0; 5570 } 5571 5572 static int 5573 validate_req_change_req_state(struct drbd_device *device, u64 id, sector_t sector, 5574 struct rb_root *root, const char *func, 5575 enum drbd_req_event what, bool missing_ok) 5576 { 5577 struct drbd_request *req; 5578 struct bio_and_error m; 5579 5580 spin_lock_irq(&device->resource->req_lock); 5581 req = find_request(device, root, id, sector, missing_ok, func); 5582 if (unlikely(!req)) { 5583 spin_unlock_irq(&device->resource->req_lock); 5584 return -EIO; 5585 } 5586 __req_mod(req, what, &m); 5587 spin_unlock_irq(&device->resource->req_lock); 5588 5589 if (m.bio) 5590 complete_master_bio(device, &m); 5591 return 0; 5592 } 5593 5594 static int got_BlockAck(struct drbd_connection *connection, struct packet_info *pi) 5595 { 5596 struct drbd_peer_device *peer_device; 5597 struct drbd_device *device; 5598 struct p_block_ack *p = pi->data; 5599 sector_t sector = be64_to_cpu(p->sector); 5600 int blksize = be32_to_cpu(p->blksize); 5601 enum drbd_req_event what; 5602 5603 peer_device = conn_peer_device(connection, pi->vnr); 5604 if (!peer_device) 5605 return -EIO; 5606 device = peer_device->device; 5607 5608 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5609 5610 if (p->block_id == ID_SYNCER) { 5611 drbd_set_in_sync(device, sector, blksize); 5612 dec_rs_pending(device); 5613 return 0; 5614 } 5615 switch (pi->cmd) { 5616 case P_RS_WRITE_ACK: 5617 what = WRITE_ACKED_BY_PEER_AND_SIS; 5618 break; 5619 case P_WRITE_ACK: 5620 what = WRITE_ACKED_BY_PEER; 5621 break; 5622 case P_RECV_ACK: 5623 what = RECV_ACKED_BY_PEER; 5624 break; 5625 case P_SUPERSEDED: 5626 what = CONFLICT_RESOLVED; 5627 break; 5628 case P_RETRY_WRITE: 5629 what = POSTPONE_WRITE; 5630 break; 5631 default: 5632 BUG(); 5633 } 5634 5635 return validate_req_change_req_state(device, p->block_id, sector, 5636 &device->write_requests, __func__, 5637 what, false); 5638 } 5639 5640 static int got_NegAck(struct drbd_connection *connection, struct packet_info *pi) 5641 { 5642 struct drbd_peer_device *peer_device; 5643 struct drbd_device *device; 5644 struct p_block_ack *p = pi->data; 5645 sector_t sector = be64_to_cpu(p->sector); 5646 int size = be32_to_cpu(p->blksize); 5647 int err; 5648 5649 peer_device = conn_peer_device(connection, pi->vnr); 5650 if (!peer_device) 5651 return -EIO; 5652 device = peer_device->device; 5653 5654 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5655 5656 if (p->block_id == ID_SYNCER) { 5657 dec_rs_pending(device); 5658 drbd_rs_failed_io(device, sector, size); 5659 return 0; 5660 } 5661 5662 err = validate_req_change_req_state(device, p->block_id, sector, 5663 &device->write_requests, __func__, 5664 NEG_ACKED, true); 5665 if (err) { 5666 /* Protocol A has no P_WRITE_ACKs, but has P_NEG_ACKs. 5667 The master bio might already be completed, therefore the 5668 request is no longer in the collision hash. */ 5669 /* In Protocol B we might already have got a P_RECV_ACK 5670 but then get a P_NEG_ACK afterwards. */ 5671 drbd_set_out_of_sync(device, sector, size); 5672 } 5673 return 0; 5674 } 5675 5676 static int got_NegDReply(struct drbd_connection *connection, struct packet_info *pi) 5677 { 5678 struct drbd_peer_device *peer_device; 5679 struct drbd_device *device; 5680 struct p_block_ack *p = pi->data; 5681 sector_t sector = be64_to_cpu(p->sector); 5682 5683 peer_device = conn_peer_device(connection, pi->vnr); 5684 if (!peer_device) 5685 return -EIO; 5686 device = peer_device->device; 5687 5688 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5689 5690 drbd_err(device, "Got NegDReply; Sector %llus, len %u.\n", 5691 (unsigned long long)sector, be32_to_cpu(p->blksize)); 5692 5693 return validate_req_change_req_state(device, p->block_id, sector, 5694 &device->read_requests, __func__, 5695 NEG_ACKED, false); 5696 } 5697 5698 static int got_NegRSDReply(struct drbd_connection *connection, struct packet_info *pi) 5699 { 5700 struct drbd_peer_device *peer_device; 5701 struct drbd_device *device; 5702 sector_t sector; 5703 int size; 5704 struct p_block_ack *p = pi->data; 5705 5706 peer_device = conn_peer_device(connection, pi->vnr); 5707 if (!peer_device) 5708 return -EIO; 5709 device = peer_device->device; 5710 5711 sector = be64_to_cpu(p->sector); 5712 size = be32_to_cpu(p->blksize); 5713 5714 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5715 5716 dec_rs_pending(device); 5717 5718 if (get_ldev_if_state(device, D_FAILED)) { 5719 drbd_rs_complete_io(device, sector); 5720 switch (pi->cmd) { 5721 case P_NEG_RS_DREPLY: 5722 drbd_rs_failed_io(device, sector, size); 5723 case P_RS_CANCEL: 5724 break; 5725 default: 5726 BUG(); 5727 } 5728 put_ldev(device); 5729 } 5730 5731 return 0; 5732 } 5733 5734 static int got_BarrierAck(struct drbd_connection *connection, struct packet_info *pi) 5735 { 5736 struct p_barrier_ack *p = pi->data; 5737 struct drbd_peer_device *peer_device; 5738 int vnr; 5739 5740 tl_release(connection, p->barrier, be32_to_cpu(p->set_size)); 5741 5742 rcu_read_lock(); 5743 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 5744 struct drbd_device *device = peer_device->device; 5745 5746 if (device->state.conn == C_AHEAD && 5747 atomic_read(&device->ap_in_flight) == 0 && 5748 !test_and_set_bit(AHEAD_TO_SYNC_SOURCE, &device->flags)) { 5749 device->start_resync_timer.expires = jiffies + HZ; 5750 add_timer(&device->start_resync_timer); 5751 } 5752 } 5753 rcu_read_unlock(); 5754 5755 return 0; 5756 } 5757 5758 static int got_OVResult(struct drbd_connection *connection, struct packet_info *pi) 5759 { 5760 struct drbd_peer_device *peer_device; 5761 struct drbd_device *device; 5762 struct p_block_ack *p = pi->data; 5763 struct drbd_device_work *dw; 5764 sector_t sector; 5765 int size; 5766 5767 peer_device = conn_peer_device(connection, pi->vnr); 5768 if (!peer_device) 5769 return -EIO; 5770 device = peer_device->device; 5771 5772 sector = be64_to_cpu(p->sector); 5773 size = be32_to_cpu(p->blksize); 5774 5775 update_peer_seq(peer_device, be32_to_cpu(p->seq_num)); 5776 5777 if (be64_to_cpu(p->block_id) == ID_OUT_OF_SYNC) 5778 drbd_ov_out_of_sync_found(device, sector, size); 5779 else 5780 ov_out_of_sync_print(device); 5781 5782 if (!get_ldev(device)) 5783 return 0; 5784 5785 drbd_rs_complete_io(device, sector); 5786 dec_rs_pending(device); 5787 5788 --device->ov_left; 5789 5790 /* let's advance progress step marks only for every other megabyte */ 5791 if ((device->ov_left & 0x200) == 0x200) 5792 drbd_advance_rs_marks(device, device->ov_left); 5793 5794 if (device->ov_left == 0) { 5795 dw = kmalloc(sizeof(*dw), GFP_NOIO); 5796 if (dw) { 5797 dw->w.cb = w_ov_finished; 5798 dw->device = device; 5799 drbd_queue_work(&peer_device->connection->sender_work, &dw->w); 5800 } else { 5801 drbd_err(device, "kmalloc(dw) failed."); 5802 ov_out_of_sync_print(device); 5803 drbd_resync_finished(device); 5804 } 5805 } 5806 put_ldev(device); 5807 return 0; 5808 } 5809 5810 static int got_skip(struct drbd_connection *connection, struct packet_info *pi) 5811 { 5812 return 0; 5813 } 5814 5815 struct meta_sock_cmd { 5816 size_t pkt_size; 5817 int (*fn)(struct drbd_connection *connection, struct packet_info *); 5818 }; 5819 5820 static void set_rcvtimeo(struct drbd_connection *connection, bool ping_timeout) 5821 { 5822 long t; 5823 struct net_conf *nc; 5824 5825 rcu_read_lock(); 5826 nc = rcu_dereference(connection->net_conf); 5827 t = ping_timeout ? nc->ping_timeo : nc->ping_int; 5828 rcu_read_unlock(); 5829 5830 t *= HZ; 5831 if (ping_timeout) 5832 t /= 10; 5833 5834 connection->meta.socket->sk->sk_rcvtimeo = t; 5835 } 5836 5837 static void set_ping_timeout(struct drbd_connection *connection) 5838 { 5839 set_rcvtimeo(connection, 1); 5840 } 5841 5842 static void set_idle_timeout(struct drbd_connection *connection) 5843 { 5844 set_rcvtimeo(connection, 0); 5845 } 5846 5847 static struct meta_sock_cmd ack_receiver_tbl[] = { 5848 [P_PING] = { 0, got_Ping }, 5849 [P_PING_ACK] = { 0, got_PingAck }, 5850 [P_RECV_ACK] = { sizeof(struct p_block_ack), got_BlockAck }, 5851 [P_WRITE_ACK] = { sizeof(struct p_block_ack), got_BlockAck }, 5852 [P_RS_WRITE_ACK] = { sizeof(struct p_block_ack), got_BlockAck }, 5853 [P_SUPERSEDED] = { sizeof(struct p_block_ack), got_BlockAck }, 5854 [P_NEG_ACK] = { sizeof(struct p_block_ack), got_NegAck }, 5855 [P_NEG_DREPLY] = { sizeof(struct p_block_ack), got_NegDReply }, 5856 [P_NEG_RS_DREPLY] = { sizeof(struct p_block_ack), got_NegRSDReply }, 5857 [P_OV_RESULT] = { sizeof(struct p_block_ack), got_OVResult }, 5858 [P_BARRIER_ACK] = { sizeof(struct p_barrier_ack), got_BarrierAck }, 5859 [P_STATE_CHG_REPLY] = { sizeof(struct p_req_state_reply), got_RqSReply }, 5860 [P_RS_IS_IN_SYNC] = { sizeof(struct p_block_ack), got_IsInSync }, 5861 [P_DELAY_PROBE] = { sizeof(struct p_delay_probe93), got_skip }, 5862 [P_RS_CANCEL] = { sizeof(struct p_block_ack), got_NegRSDReply }, 5863 [P_CONN_ST_CHG_REPLY]={ sizeof(struct p_req_state_reply), got_conn_RqSReply }, 5864 [P_RETRY_WRITE] = { sizeof(struct p_block_ack), got_BlockAck }, 5865 }; 5866 5867 int drbd_ack_receiver(struct drbd_thread *thi) 5868 { 5869 struct drbd_connection *connection = thi->connection; 5870 struct meta_sock_cmd *cmd = NULL; 5871 struct packet_info pi; 5872 unsigned long pre_recv_jif; 5873 int rv; 5874 void *buf = connection->meta.rbuf; 5875 int received = 0; 5876 unsigned int header_size = drbd_header_size(connection); 5877 int expect = header_size; 5878 bool ping_timeout_active = false; 5879 struct sched_param param = { .sched_priority = 2 }; 5880 5881 rv = sched_setscheduler(current, SCHED_RR, ¶m); 5882 if (rv < 0) 5883 drbd_err(connection, "drbd_ack_receiver: ERROR set priority, ret=%d\n", rv); 5884 5885 while (get_t_state(thi) == RUNNING) { 5886 drbd_thread_current_set_cpu(thi); 5887 5888 conn_reclaim_net_peer_reqs(connection); 5889 5890 if (test_and_clear_bit(SEND_PING, &connection->flags)) { 5891 if (drbd_send_ping(connection)) { 5892 drbd_err(connection, "drbd_send_ping has failed\n"); 5893 goto reconnect; 5894 } 5895 set_ping_timeout(connection); 5896 ping_timeout_active = true; 5897 } 5898 5899 pre_recv_jif = jiffies; 5900 rv = drbd_recv_short(connection->meta.socket, buf, expect-received, 0); 5901 5902 /* Note: 5903 * -EINTR (on meta) we got a signal 5904 * -EAGAIN (on meta) rcvtimeo expired 5905 * -ECONNRESET other side closed the connection 5906 * -ERESTARTSYS (on data) we got a signal 5907 * rv < 0 other than above: unexpected error! 5908 * rv == expected: full header or command 5909 * rv < expected: "woken" by signal during receive 5910 * rv == 0 : "connection shut down by peer" 5911 */ 5912 if (likely(rv > 0)) { 5913 received += rv; 5914 buf += rv; 5915 } else if (rv == 0) { 5916 if (test_bit(DISCONNECT_SENT, &connection->flags)) { 5917 long t; 5918 rcu_read_lock(); 5919 t = rcu_dereference(connection->net_conf)->ping_timeo * HZ/10; 5920 rcu_read_unlock(); 5921 5922 t = wait_event_timeout(connection->ping_wait, 5923 connection->cstate < C_WF_REPORT_PARAMS, 5924 t); 5925 if (t) 5926 break; 5927 } 5928 drbd_err(connection, "meta connection shut down by peer.\n"); 5929 goto reconnect; 5930 } else if (rv == -EAGAIN) { 5931 /* If the data socket received something meanwhile, 5932 * that is good enough: peer is still alive. */ 5933 if (time_after(connection->last_received, pre_recv_jif)) 5934 continue; 5935 if (ping_timeout_active) { 5936 drbd_err(connection, "PingAck did not arrive in time.\n"); 5937 goto reconnect; 5938 } 5939 set_bit(SEND_PING, &connection->flags); 5940 continue; 5941 } else if (rv == -EINTR) { 5942 /* maybe drbd_thread_stop(): the while condition will notice. 5943 * maybe woken for send_ping: we'll send a ping above, 5944 * and change the rcvtimeo */ 5945 flush_signals(current); 5946 continue; 5947 } else { 5948 drbd_err(connection, "sock_recvmsg returned %d\n", rv); 5949 goto reconnect; 5950 } 5951 5952 if (received == expect && cmd == NULL) { 5953 if (decode_header(connection, connection->meta.rbuf, &pi)) 5954 goto reconnect; 5955 cmd = &ack_receiver_tbl[pi.cmd]; 5956 if (pi.cmd >= ARRAY_SIZE(ack_receiver_tbl) || !cmd->fn) { 5957 drbd_err(connection, "Unexpected meta packet %s (0x%04x)\n", 5958 cmdname(pi.cmd), pi.cmd); 5959 goto disconnect; 5960 } 5961 expect = header_size + cmd->pkt_size; 5962 if (pi.size != expect - header_size) { 5963 drbd_err(connection, "Wrong packet size on meta (c: %d, l: %d)\n", 5964 pi.cmd, pi.size); 5965 goto reconnect; 5966 } 5967 } 5968 if (received == expect) { 5969 bool err; 5970 5971 err = cmd->fn(connection, &pi); 5972 if (err) { 5973 drbd_err(connection, "%pf failed\n", cmd->fn); 5974 goto reconnect; 5975 } 5976 5977 connection->last_received = jiffies; 5978 5979 if (cmd == &ack_receiver_tbl[P_PING_ACK]) { 5980 set_idle_timeout(connection); 5981 ping_timeout_active = false; 5982 } 5983 5984 buf = connection->meta.rbuf; 5985 received = 0; 5986 expect = header_size; 5987 cmd = NULL; 5988 } 5989 } 5990 5991 if (0) { 5992 reconnect: 5993 conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD); 5994 conn_md_sync(connection); 5995 } 5996 if (0) { 5997 disconnect: 5998 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); 5999 } 6000 6001 drbd_info(connection, "ack_receiver terminated\n"); 6002 6003 return 0; 6004 } 6005 6006 void drbd_send_acks_wf(struct work_struct *ws) 6007 { 6008 struct drbd_peer_device *peer_device = 6009 container_of(ws, struct drbd_peer_device, send_acks_work); 6010 struct drbd_connection *connection = peer_device->connection; 6011 struct drbd_device *device = peer_device->device; 6012 struct net_conf *nc; 6013 int tcp_cork, err; 6014 6015 rcu_read_lock(); 6016 nc = rcu_dereference(connection->net_conf); 6017 tcp_cork = nc->tcp_cork; 6018 rcu_read_unlock(); 6019 6020 if (tcp_cork) 6021 drbd_tcp_cork(connection->meta.socket); 6022 6023 err = drbd_finish_peer_reqs(device); 6024 kref_put(&device->kref, drbd_destroy_device); 6025 /* get is in drbd_endio_write_sec_final(). That is necessary to keep the 6026 struct work_struct send_acks_work alive, which is in the peer_device object */ 6027 6028 if (err) { 6029 conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD); 6030 return; 6031 } 6032 6033 if (tcp_cork) 6034 drbd_tcp_uncork(connection->meta.socket); 6035 6036 return; 6037 } 6038