1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3    drbd_receiver.c
4 
5    This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
6 
7    Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
8    Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
9    Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
10 
11  */
12 
13 
14 #include <linux/module.h>
15 
16 #include <linux/uaccess.h>
17 #include <net/sock.h>
18 
19 #include <linux/drbd.h>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/in.h>
23 #include <linux/mm.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/slab.h>
27 #include <uapi/linux/sched/types.h>
28 #include <linux/sched/signal.h>
29 #include <linux/pkt_sched.h>
30 #define __KERNEL_SYSCALLS__
31 #include <linux/unistd.h>
32 #include <linux/vmalloc.h>
33 #include <linux/random.h>
34 #include <linux/string.h>
35 #include <linux/scatterlist.h>
36 #include <linux/part_stat.h>
37 #include "drbd_int.h"
38 #include "drbd_protocol.h"
39 #include "drbd_req.h"
40 #include "drbd_vli.h"
41 
42 #define PRO_FEATURES (DRBD_FF_TRIM|DRBD_FF_THIN_RESYNC|DRBD_FF_WSAME|DRBD_FF_WZEROES)
43 
44 struct packet_info {
45 	enum drbd_packet cmd;
46 	unsigned int size;
47 	unsigned int vnr;
48 	void *data;
49 };
50 
51 enum finish_epoch {
52 	FE_STILL_LIVE,
53 	FE_DESTROYED,
54 	FE_RECYCLED,
55 };
56 
57 static int drbd_do_features(struct drbd_connection *connection);
58 static int drbd_do_auth(struct drbd_connection *connection);
59 static int drbd_disconnected(struct drbd_peer_device *);
60 static void conn_wait_active_ee_empty(struct drbd_connection *connection);
61 static enum finish_epoch drbd_may_finish_epoch(struct drbd_connection *, struct drbd_epoch *, enum epoch_event);
62 static int e_end_block(struct drbd_work *, int);
63 
64 
65 #define GFP_TRY	(__GFP_HIGHMEM | __GFP_NOWARN)
66 
67 /*
68  * some helper functions to deal with single linked page lists,
69  * page->private being our "next" pointer.
70  */
71 
72 /* If at least n pages are linked at head, get n pages off.
73  * Otherwise, don't modify head, and return NULL.
74  * Locking is the responsibility of the caller.
75  */
76 static struct page *page_chain_del(struct page **head, int n)
77 {
78 	struct page *page;
79 	struct page *tmp;
80 
81 	BUG_ON(!n);
82 	BUG_ON(!head);
83 
84 	page = *head;
85 
86 	if (!page)
87 		return NULL;
88 
89 	while (page) {
90 		tmp = page_chain_next(page);
91 		if (--n == 0)
92 			break; /* found sufficient pages */
93 		if (tmp == NULL)
94 			/* insufficient pages, don't use any of them. */
95 			return NULL;
96 		page = tmp;
97 	}
98 
99 	/* add end of list marker for the returned list */
100 	set_page_private(page, 0);
101 	/* actual return value, and adjustment of head */
102 	page = *head;
103 	*head = tmp;
104 	return page;
105 }
106 
107 /* may be used outside of locks to find the tail of a (usually short)
108  * "private" page chain, before adding it back to a global chain head
109  * with page_chain_add() under a spinlock. */
110 static struct page *page_chain_tail(struct page *page, int *len)
111 {
112 	struct page *tmp;
113 	int i = 1;
114 	while ((tmp = page_chain_next(page))) {
115 		++i;
116 		page = tmp;
117 	}
118 	if (len)
119 		*len = i;
120 	return page;
121 }
122 
123 static int page_chain_free(struct page *page)
124 {
125 	struct page *tmp;
126 	int i = 0;
127 	page_chain_for_each_safe(page, tmp) {
128 		put_page(page);
129 		++i;
130 	}
131 	return i;
132 }
133 
134 static void page_chain_add(struct page **head,
135 		struct page *chain_first, struct page *chain_last)
136 {
137 #if 1
138 	struct page *tmp;
139 	tmp = page_chain_tail(chain_first, NULL);
140 	BUG_ON(tmp != chain_last);
141 #endif
142 
143 	/* add chain to head */
144 	set_page_private(chain_last, (unsigned long)*head);
145 	*head = chain_first;
146 }
147 
148 static struct page *__drbd_alloc_pages(struct drbd_device *device,
149 				       unsigned int number)
150 {
151 	struct page *page = NULL;
152 	struct page *tmp = NULL;
153 	unsigned int i = 0;
154 
155 	/* Yes, testing drbd_pp_vacant outside the lock is racy.
156 	 * So what. It saves a spin_lock. */
157 	if (drbd_pp_vacant >= number) {
158 		spin_lock(&drbd_pp_lock);
159 		page = page_chain_del(&drbd_pp_pool, number);
160 		if (page)
161 			drbd_pp_vacant -= number;
162 		spin_unlock(&drbd_pp_lock);
163 		if (page)
164 			return page;
165 	}
166 
167 	/* GFP_TRY, because we must not cause arbitrary write-out: in a DRBD
168 	 * "criss-cross" setup, that might cause write-out on some other DRBD,
169 	 * which in turn might block on the other node at this very place.  */
170 	for (i = 0; i < number; i++) {
171 		tmp = alloc_page(GFP_TRY);
172 		if (!tmp)
173 			break;
174 		set_page_private(tmp, (unsigned long)page);
175 		page = tmp;
176 	}
177 
178 	if (i == number)
179 		return page;
180 
181 	/* Not enough pages immediately available this time.
182 	 * No need to jump around here, drbd_alloc_pages will retry this
183 	 * function "soon". */
184 	if (page) {
185 		tmp = page_chain_tail(page, NULL);
186 		spin_lock(&drbd_pp_lock);
187 		page_chain_add(&drbd_pp_pool, page, tmp);
188 		drbd_pp_vacant += i;
189 		spin_unlock(&drbd_pp_lock);
190 	}
191 	return NULL;
192 }
193 
194 static void reclaim_finished_net_peer_reqs(struct drbd_device *device,
195 					   struct list_head *to_be_freed)
196 {
197 	struct drbd_peer_request *peer_req, *tmp;
198 
199 	/* The EEs are always appended to the end of the list. Since
200 	   they are sent in order over the wire, they have to finish
201 	   in order. As soon as we see the first not finished we can
202 	   stop to examine the list... */
203 
204 	list_for_each_entry_safe(peer_req, tmp, &device->net_ee, w.list) {
205 		if (drbd_peer_req_has_active_page(peer_req))
206 			break;
207 		list_move(&peer_req->w.list, to_be_freed);
208 	}
209 }
210 
211 static void drbd_reclaim_net_peer_reqs(struct drbd_device *device)
212 {
213 	LIST_HEAD(reclaimed);
214 	struct drbd_peer_request *peer_req, *t;
215 
216 	spin_lock_irq(&device->resource->req_lock);
217 	reclaim_finished_net_peer_reqs(device, &reclaimed);
218 	spin_unlock_irq(&device->resource->req_lock);
219 	list_for_each_entry_safe(peer_req, t, &reclaimed, w.list)
220 		drbd_free_net_peer_req(device, peer_req);
221 }
222 
223 static void conn_reclaim_net_peer_reqs(struct drbd_connection *connection)
224 {
225 	struct drbd_peer_device *peer_device;
226 	int vnr;
227 
228 	rcu_read_lock();
229 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
230 		struct drbd_device *device = peer_device->device;
231 		if (!atomic_read(&device->pp_in_use_by_net))
232 			continue;
233 
234 		kref_get(&device->kref);
235 		rcu_read_unlock();
236 		drbd_reclaim_net_peer_reqs(device);
237 		kref_put(&device->kref, drbd_destroy_device);
238 		rcu_read_lock();
239 	}
240 	rcu_read_unlock();
241 }
242 
243 /**
244  * drbd_alloc_pages() - Returns @number pages, retries forever (or until signalled)
245  * @peer_device:	DRBD device.
246  * @number:		number of pages requested
247  * @retry:		whether to retry, if not enough pages are available right now
248  *
249  * Tries to allocate number pages, first from our own page pool, then from
250  * the kernel.
251  * Possibly retry until DRBD frees sufficient pages somewhere else.
252  *
253  * If this allocation would exceed the max_buffers setting, we throttle
254  * allocation (schedule_timeout) to give the system some room to breathe.
255  *
256  * We do not use max-buffers as hard limit, because it could lead to
257  * congestion and further to a distributed deadlock during online-verify or
258  * (checksum based) resync, if the max-buffers, socket buffer sizes and
259  * resync-rate settings are mis-configured.
260  *
261  * Returns a page chain linked via page->private.
262  */
263 struct page *drbd_alloc_pages(struct drbd_peer_device *peer_device, unsigned int number,
264 			      bool retry)
265 {
266 	struct drbd_device *device = peer_device->device;
267 	struct page *page = NULL;
268 	struct net_conf *nc;
269 	DEFINE_WAIT(wait);
270 	unsigned int mxb;
271 
272 	rcu_read_lock();
273 	nc = rcu_dereference(peer_device->connection->net_conf);
274 	mxb = nc ? nc->max_buffers : 1000000;
275 	rcu_read_unlock();
276 
277 	if (atomic_read(&device->pp_in_use) < mxb)
278 		page = __drbd_alloc_pages(device, number);
279 
280 	/* Try to keep the fast path fast, but occasionally we need
281 	 * to reclaim the pages we lended to the network stack. */
282 	if (page && atomic_read(&device->pp_in_use_by_net) > 512)
283 		drbd_reclaim_net_peer_reqs(device);
284 
285 	while (page == NULL) {
286 		prepare_to_wait(&drbd_pp_wait, &wait, TASK_INTERRUPTIBLE);
287 
288 		drbd_reclaim_net_peer_reqs(device);
289 
290 		if (atomic_read(&device->pp_in_use) < mxb) {
291 			page = __drbd_alloc_pages(device, number);
292 			if (page)
293 				break;
294 		}
295 
296 		if (!retry)
297 			break;
298 
299 		if (signal_pending(current)) {
300 			drbd_warn(device, "drbd_alloc_pages interrupted!\n");
301 			break;
302 		}
303 
304 		if (schedule_timeout(HZ/10) == 0)
305 			mxb = UINT_MAX;
306 	}
307 	finish_wait(&drbd_pp_wait, &wait);
308 
309 	if (page)
310 		atomic_add(number, &device->pp_in_use);
311 	return page;
312 }
313 
314 /* Must not be used from irq, as that may deadlock: see drbd_alloc_pages.
315  * Is also used from inside an other spin_lock_irq(&resource->req_lock);
316  * Either links the page chain back to the global pool,
317  * or returns all pages to the system. */
318 static void drbd_free_pages(struct drbd_device *device, struct page *page, int is_net)
319 {
320 	atomic_t *a = is_net ? &device->pp_in_use_by_net : &device->pp_in_use;
321 	int i;
322 
323 	if (page == NULL)
324 		return;
325 
326 	if (drbd_pp_vacant > (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * drbd_minor_count)
327 		i = page_chain_free(page);
328 	else {
329 		struct page *tmp;
330 		tmp = page_chain_tail(page, &i);
331 		spin_lock(&drbd_pp_lock);
332 		page_chain_add(&drbd_pp_pool, page, tmp);
333 		drbd_pp_vacant += i;
334 		spin_unlock(&drbd_pp_lock);
335 	}
336 	i = atomic_sub_return(i, a);
337 	if (i < 0)
338 		drbd_warn(device, "ASSERTION FAILED: %s: %d < 0\n",
339 			is_net ? "pp_in_use_by_net" : "pp_in_use", i);
340 	wake_up(&drbd_pp_wait);
341 }
342 
343 /*
344 You need to hold the req_lock:
345  _drbd_wait_ee_list_empty()
346 
347 You must not have the req_lock:
348  drbd_free_peer_req()
349  drbd_alloc_peer_req()
350  drbd_free_peer_reqs()
351  drbd_ee_fix_bhs()
352  drbd_finish_peer_reqs()
353  drbd_clear_done_ee()
354  drbd_wait_ee_list_empty()
355 */
356 
357 /* normal: payload_size == request size (bi_size)
358  * w_same: payload_size == logical_block_size
359  * trim: payload_size == 0 */
360 struct drbd_peer_request *
361 drbd_alloc_peer_req(struct drbd_peer_device *peer_device, u64 id, sector_t sector,
362 		    unsigned int request_size, unsigned int payload_size, gfp_t gfp_mask) __must_hold(local)
363 {
364 	struct drbd_device *device = peer_device->device;
365 	struct drbd_peer_request *peer_req;
366 	struct page *page = NULL;
367 	unsigned nr_pages = (payload_size + PAGE_SIZE -1) >> PAGE_SHIFT;
368 
369 	if (drbd_insert_fault(device, DRBD_FAULT_AL_EE))
370 		return NULL;
371 
372 	peer_req = mempool_alloc(&drbd_ee_mempool, gfp_mask & ~__GFP_HIGHMEM);
373 	if (!peer_req) {
374 		if (!(gfp_mask & __GFP_NOWARN))
375 			drbd_err(device, "%s: allocation failed\n", __func__);
376 		return NULL;
377 	}
378 
379 	if (nr_pages) {
380 		page = drbd_alloc_pages(peer_device, nr_pages,
381 					gfpflags_allow_blocking(gfp_mask));
382 		if (!page)
383 			goto fail;
384 	}
385 
386 	memset(peer_req, 0, sizeof(*peer_req));
387 	INIT_LIST_HEAD(&peer_req->w.list);
388 	drbd_clear_interval(&peer_req->i);
389 	peer_req->i.size = request_size;
390 	peer_req->i.sector = sector;
391 	peer_req->submit_jif = jiffies;
392 	peer_req->peer_device = peer_device;
393 	peer_req->pages = page;
394 	/*
395 	 * The block_id is opaque to the receiver.  It is not endianness
396 	 * converted, and sent back to the sender unchanged.
397 	 */
398 	peer_req->block_id = id;
399 
400 	return peer_req;
401 
402  fail:
403 	mempool_free(peer_req, &drbd_ee_mempool);
404 	return NULL;
405 }
406 
407 void __drbd_free_peer_req(struct drbd_device *device, struct drbd_peer_request *peer_req,
408 		       int is_net)
409 {
410 	might_sleep();
411 	if (peer_req->flags & EE_HAS_DIGEST)
412 		kfree(peer_req->digest);
413 	drbd_free_pages(device, peer_req->pages, is_net);
414 	D_ASSERT(device, atomic_read(&peer_req->pending_bios) == 0);
415 	D_ASSERT(device, drbd_interval_empty(&peer_req->i));
416 	if (!expect(!(peer_req->flags & EE_CALL_AL_COMPLETE_IO))) {
417 		peer_req->flags &= ~EE_CALL_AL_COMPLETE_IO;
418 		drbd_al_complete_io(device, &peer_req->i);
419 	}
420 	mempool_free(peer_req, &drbd_ee_mempool);
421 }
422 
423 int drbd_free_peer_reqs(struct drbd_device *device, struct list_head *list)
424 {
425 	LIST_HEAD(work_list);
426 	struct drbd_peer_request *peer_req, *t;
427 	int count = 0;
428 	int is_net = list == &device->net_ee;
429 
430 	spin_lock_irq(&device->resource->req_lock);
431 	list_splice_init(list, &work_list);
432 	spin_unlock_irq(&device->resource->req_lock);
433 
434 	list_for_each_entry_safe(peer_req, t, &work_list, w.list) {
435 		__drbd_free_peer_req(device, peer_req, is_net);
436 		count++;
437 	}
438 	return count;
439 }
440 
441 /*
442  * See also comments in _req_mod(,BARRIER_ACKED) and receive_Barrier.
443  */
444 static int drbd_finish_peer_reqs(struct drbd_device *device)
445 {
446 	LIST_HEAD(work_list);
447 	LIST_HEAD(reclaimed);
448 	struct drbd_peer_request *peer_req, *t;
449 	int err = 0;
450 
451 	spin_lock_irq(&device->resource->req_lock);
452 	reclaim_finished_net_peer_reqs(device, &reclaimed);
453 	list_splice_init(&device->done_ee, &work_list);
454 	spin_unlock_irq(&device->resource->req_lock);
455 
456 	list_for_each_entry_safe(peer_req, t, &reclaimed, w.list)
457 		drbd_free_net_peer_req(device, peer_req);
458 
459 	/* possible callbacks here:
460 	 * e_end_block, and e_end_resync_block, e_send_superseded.
461 	 * all ignore the last argument.
462 	 */
463 	list_for_each_entry_safe(peer_req, t, &work_list, w.list) {
464 		int err2;
465 
466 		/* list_del not necessary, next/prev members not touched */
467 		err2 = peer_req->w.cb(&peer_req->w, !!err);
468 		if (!err)
469 			err = err2;
470 		drbd_free_peer_req(device, peer_req);
471 	}
472 	wake_up(&device->ee_wait);
473 
474 	return err;
475 }
476 
477 static void _drbd_wait_ee_list_empty(struct drbd_device *device,
478 				     struct list_head *head)
479 {
480 	DEFINE_WAIT(wait);
481 
482 	/* avoids spin_lock/unlock
483 	 * and calling prepare_to_wait in the fast path */
484 	while (!list_empty(head)) {
485 		prepare_to_wait(&device->ee_wait, &wait, TASK_UNINTERRUPTIBLE);
486 		spin_unlock_irq(&device->resource->req_lock);
487 		io_schedule();
488 		finish_wait(&device->ee_wait, &wait);
489 		spin_lock_irq(&device->resource->req_lock);
490 	}
491 }
492 
493 static void drbd_wait_ee_list_empty(struct drbd_device *device,
494 				    struct list_head *head)
495 {
496 	spin_lock_irq(&device->resource->req_lock);
497 	_drbd_wait_ee_list_empty(device, head);
498 	spin_unlock_irq(&device->resource->req_lock);
499 }
500 
501 static int drbd_recv_short(struct socket *sock, void *buf, size_t size, int flags)
502 {
503 	struct kvec iov = {
504 		.iov_base = buf,
505 		.iov_len = size,
506 	};
507 	struct msghdr msg = {
508 		.msg_flags = (flags ? flags : MSG_WAITALL | MSG_NOSIGNAL)
509 	};
510 	iov_iter_kvec(&msg.msg_iter, READ, &iov, 1, size);
511 	return sock_recvmsg(sock, &msg, msg.msg_flags);
512 }
513 
514 static int drbd_recv(struct drbd_connection *connection, void *buf, size_t size)
515 {
516 	int rv;
517 
518 	rv = drbd_recv_short(connection->data.socket, buf, size, 0);
519 
520 	if (rv < 0) {
521 		if (rv == -ECONNRESET)
522 			drbd_info(connection, "sock was reset by peer\n");
523 		else if (rv != -ERESTARTSYS)
524 			drbd_err(connection, "sock_recvmsg returned %d\n", rv);
525 	} else if (rv == 0) {
526 		if (test_bit(DISCONNECT_SENT, &connection->flags)) {
527 			long t;
528 			rcu_read_lock();
529 			t = rcu_dereference(connection->net_conf)->ping_timeo * HZ/10;
530 			rcu_read_unlock();
531 
532 			t = wait_event_timeout(connection->ping_wait, connection->cstate < C_WF_REPORT_PARAMS, t);
533 
534 			if (t)
535 				goto out;
536 		}
537 		drbd_info(connection, "sock was shut down by peer\n");
538 	}
539 
540 	if (rv != size)
541 		conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD);
542 
543 out:
544 	return rv;
545 }
546 
547 static int drbd_recv_all(struct drbd_connection *connection, void *buf, size_t size)
548 {
549 	int err;
550 
551 	err = drbd_recv(connection, buf, size);
552 	if (err != size) {
553 		if (err >= 0)
554 			err = -EIO;
555 	} else
556 		err = 0;
557 	return err;
558 }
559 
560 static int drbd_recv_all_warn(struct drbd_connection *connection, void *buf, size_t size)
561 {
562 	int err;
563 
564 	err = drbd_recv_all(connection, buf, size);
565 	if (err && !signal_pending(current))
566 		drbd_warn(connection, "short read (expected size %d)\n", (int)size);
567 	return err;
568 }
569 
570 /* quoting tcp(7):
571  *   On individual connections, the socket buffer size must be set prior to the
572  *   listen(2) or connect(2) calls in order to have it take effect.
573  * This is our wrapper to do so.
574  */
575 static void drbd_setbufsize(struct socket *sock, unsigned int snd,
576 		unsigned int rcv)
577 {
578 	/* open coded SO_SNDBUF, SO_RCVBUF */
579 	if (snd) {
580 		sock->sk->sk_sndbuf = snd;
581 		sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
582 	}
583 	if (rcv) {
584 		sock->sk->sk_rcvbuf = rcv;
585 		sock->sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
586 	}
587 }
588 
589 static struct socket *drbd_try_connect(struct drbd_connection *connection)
590 {
591 	const char *what;
592 	struct socket *sock;
593 	struct sockaddr_in6 src_in6;
594 	struct sockaddr_in6 peer_in6;
595 	struct net_conf *nc;
596 	int err, peer_addr_len, my_addr_len;
597 	int sndbuf_size, rcvbuf_size, connect_int;
598 	int disconnect_on_error = 1;
599 
600 	rcu_read_lock();
601 	nc = rcu_dereference(connection->net_conf);
602 	if (!nc) {
603 		rcu_read_unlock();
604 		return NULL;
605 	}
606 	sndbuf_size = nc->sndbuf_size;
607 	rcvbuf_size = nc->rcvbuf_size;
608 	connect_int = nc->connect_int;
609 	rcu_read_unlock();
610 
611 	my_addr_len = min_t(int, connection->my_addr_len, sizeof(src_in6));
612 	memcpy(&src_in6, &connection->my_addr, my_addr_len);
613 
614 	if (((struct sockaddr *)&connection->my_addr)->sa_family == AF_INET6)
615 		src_in6.sin6_port = 0;
616 	else
617 		((struct sockaddr_in *)&src_in6)->sin_port = 0; /* AF_INET & AF_SCI */
618 
619 	peer_addr_len = min_t(int, connection->peer_addr_len, sizeof(src_in6));
620 	memcpy(&peer_in6, &connection->peer_addr, peer_addr_len);
621 
622 	what = "sock_create_kern";
623 	err = sock_create_kern(&init_net, ((struct sockaddr *)&src_in6)->sa_family,
624 			       SOCK_STREAM, IPPROTO_TCP, &sock);
625 	if (err < 0) {
626 		sock = NULL;
627 		goto out;
628 	}
629 
630 	sock->sk->sk_rcvtimeo =
631 	sock->sk->sk_sndtimeo = connect_int * HZ;
632 	drbd_setbufsize(sock, sndbuf_size, rcvbuf_size);
633 
634        /* explicitly bind to the configured IP as source IP
635 	*  for the outgoing connections.
636 	*  This is needed for multihomed hosts and to be
637 	*  able to use lo: interfaces for drbd.
638 	* Make sure to use 0 as port number, so linux selects
639 	*  a free one dynamically.
640 	*/
641 	what = "bind before connect";
642 	err = sock->ops->bind(sock, (struct sockaddr *) &src_in6, my_addr_len);
643 	if (err < 0)
644 		goto out;
645 
646 	/* connect may fail, peer not yet available.
647 	 * stay C_WF_CONNECTION, don't go Disconnecting! */
648 	disconnect_on_error = 0;
649 	what = "connect";
650 	err = sock->ops->connect(sock, (struct sockaddr *) &peer_in6, peer_addr_len, 0);
651 
652 out:
653 	if (err < 0) {
654 		if (sock) {
655 			sock_release(sock);
656 			sock = NULL;
657 		}
658 		switch (-err) {
659 			/* timeout, busy, signal pending */
660 		case ETIMEDOUT: case EAGAIN: case EINPROGRESS:
661 		case EINTR: case ERESTARTSYS:
662 			/* peer not (yet) available, network problem */
663 		case ECONNREFUSED: case ENETUNREACH:
664 		case EHOSTDOWN:    case EHOSTUNREACH:
665 			disconnect_on_error = 0;
666 			break;
667 		default:
668 			drbd_err(connection, "%s failed, err = %d\n", what, err);
669 		}
670 		if (disconnect_on_error)
671 			conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
672 	}
673 
674 	return sock;
675 }
676 
677 struct accept_wait_data {
678 	struct drbd_connection *connection;
679 	struct socket *s_listen;
680 	struct completion door_bell;
681 	void (*original_sk_state_change)(struct sock *sk);
682 
683 };
684 
685 static void drbd_incoming_connection(struct sock *sk)
686 {
687 	struct accept_wait_data *ad = sk->sk_user_data;
688 	void (*state_change)(struct sock *sk);
689 
690 	state_change = ad->original_sk_state_change;
691 	if (sk->sk_state == TCP_ESTABLISHED)
692 		complete(&ad->door_bell);
693 	state_change(sk);
694 }
695 
696 static int prepare_listen_socket(struct drbd_connection *connection, struct accept_wait_data *ad)
697 {
698 	int err, sndbuf_size, rcvbuf_size, my_addr_len;
699 	struct sockaddr_in6 my_addr;
700 	struct socket *s_listen;
701 	struct net_conf *nc;
702 	const char *what;
703 
704 	rcu_read_lock();
705 	nc = rcu_dereference(connection->net_conf);
706 	if (!nc) {
707 		rcu_read_unlock();
708 		return -EIO;
709 	}
710 	sndbuf_size = nc->sndbuf_size;
711 	rcvbuf_size = nc->rcvbuf_size;
712 	rcu_read_unlock();
713 
714 	my_addr_len = min_t(int, connection->my_addr_len, sizeof(struct sockaddr_in6));
715 	memcpy(&my_addr, &connection->my_addr, my_addr_len);
716 
717 	what = "sock_create_kern";
718 	err = sock_create_kern(&init_net, ((struct sockaddr *)&my_addr)->sa_family,
719 			       SOCK_STREAM, IPPROTO_TCP, &s_listen);
720 	if (err) {
721 		s_listen = NULL;
722 		goto out;
723 	}
724 
725 	s_listen->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */
726 	drbd_setbufsize(s_listen, sndbuf_size, rcvbuf_size);
727 
728 	what = "bind before listen";
729 	err = s_listen->ops->bind(s_listen, (struct sockaddr *)&my_addr, my_addr_len);
730 	if (err < 0)
731 		goto out;
732 
733 	ad->s_listen = s_listen;
734 	write_lock_bh(&s_listen->sk->sk_callback_lock);
735 	ad->original_sk_state_change = s_listen->sk->sk_state_change;
736 	s_listen->sk->sk_state_change = drbd_incoming_connection;
737 	s_listen->sk->sk_user_data = ad;
738 	write_unlock_bh(&s_listen->sk->sk_callback_lock);
739 
740 	what = "listen";
741 	err = s_listen->ops->listen(s_listen, 5);
742 	if (err < 0)
743 		goto out;
744 
745 	return 0;
746 out:
747 	if (s_listen)
748 		sock_release(s_listen);
749 	if (err < 0) {
750 		if (err != -EAGAIN && err != -EINTR && err != -ERESTARTSYS) {
751 			drbd_err(connection, "%s failed, err = %d\n", what, err);
752 			conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
753 		}
754 	}
755 
756 	return -EIO;
757 }
758 
759 static void unregister_state_change(struct sock *sk, struct accept_wait_data *ad)
760 {
761 	write_lock_bh(&sk->sk_callback_lock);
762 	sk->sk_state_change = ad->original_sk_state_change;
763 	sk->sk_user_data = NULL;
764 	write_unlock_bh(&sk->sk_callback_lock);
765 }
766 
767 static struct socket *drbd_wait_for_connect(struct drbd_connection *connection, struct accept_wait_data *ad)
768 {
769 	int timeo, connect_int, err = 0;
770 	struct socket *s_estab = NULL;
771 	struct net_conf *nc;
772 
773 	rcu_read_lock();
774 	nc = rcu_dereference(connection->net_conf);
775 	if (!nc) {
776 		rcu_read_unlock();
777 		return NULL;
778 	}
779 	connect_int = nc->connect_int;
780 	rcu_read_unlock();
781 
782 	timeo = connect_int * HZ;
783 	/* 28.5% random jitter */
784 	timeo += (prandom_u32() & 1) ? timeo / 7 : -timeo / 7;
785 
786 	err = wait_for_completion_interruptible_timeout(&ad->door_bell, timeo);
787 	if (err <= 0)
788 		return NULL;
789 
790 	err = kernel_accept(ad->s_listen, &s_estab, 0);
791 	if (err < 0) {
792 		if (err != -EAGAIN && err != -EINTR && err != -ERESTARTSYS) {
793 			drbd_err(connection, "accept failed, err = %d\n", err);
794 			conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
795 		}
796 	}
797 
798 	if (s_estab)
799 		unregister_state_change(s_estab->sk, ad);
800 
801 	return s_estab;
802 }
803 
804 static int decode_header(struct drbd_connection *, void *, struct packet_info *);
805 
806 static int send_first_packet(struct drbd_connection *connection, struct drbd_socket *sock,
807 			     enum drbd_packet cmd)
808 {
809 	if (!conn_prepare_command(connection, sock))
810 		return -EIO;
811 	return conn_send_command(connection, sock, cmd, 0, NULL, 0);
812 }
813 
814 static int receive_first_packet(struct drbd_connection *connection, struct socket *sock)
815 {
816 	unsigned int header_size = drbd_header_size(connection);
817 	struct packet_info pi;
818 	struct net_conf *nc;
819 	int err;
820 
821 	rcu_read_lock();
822 	nc = rcu_dereference(connection->net_conf);
823 	if (!nc) {
824 		rcu_read_unlock();
825 		return -EIO;
826 	}
827 	sock->sk->sk_rcvtimeo = nc->ping_timeo * 4 * HZ / 10;
828 	rcu_read_unlock();
829 
830 	err = drbd_recv_short(sock, connection->data.rbuf, header_size, 0);
831 	if (err != header_size) {
832 		if (err >= 0)
833 			err = -EIO;
834 		return err;
835 	}
836 	err = decode_header(connection, connection->data.rbuf, &pi);
837 	if (err)
838 		return err;
839 	return pi.cmd;
840 }
841 
842 /**
843  * drbd_socket_okay() - Free the socket if its connection is not okay
844  * @sock:	pointer to the pointer to the socket.
845  */
846 static bool drbd_socket_okay(struct socket **sock)
847 {
848 	int rr;
849 	char tb[4];
850 
851 	if (!*sock)
852 		return false;
853 
854 	rr = drbd_recv_short(*sock, tb, 4, MSG_DONTWAIT | MSG_PEEK);
855 
856 	if (rr > 0 || rr == -EAGAIN) {
857 		return true;
858 	} else {
859 		sock_release(*sock);
860 		*sock = NULL;
861 		return false;
862 	}
863 }
864 
865 static bool connection_established(struct drbd_connection *connection,
866 				   struct socket **sock1,
867 				   struct socket **sock2)
868 {
869 	struct net_conf *nc;
870 	int timeout;
871 	bool ok;
872 
873 	if (!*sock1 || !*sock2)
874 		return false;
875 
876 	rcu_read_lock();
877 	nc = rcu_dereference(connection->net_conf);
878 	timeout = (nc->sock_check_timeo ?: nc->ping_timeo) * HZ / 10;
879 	rcu_read_unlock();
880 	schedule_timeout_interruptible(timeout);
881 
882 	ok = drbd_socket_okay(sock1);
883 	ok = drbd_socket_okay(sock2) && ok;
884 
885 	return ok;
886 }
887 
888 /* Gets called if a connection is established, or if a new minor gets created
889    in a connection */
890 int drbd_connected(struct drbd_peer_device *peer_device)
891 {
892 	struct drbd_device *device = peer_device->device;
893 	int err;
894 
895 	atomic_set(&device->packet_seq, 0);
896 	device->peer_seq = 0;
897 
898 	device->state_mutex = peer_device->connection->agreed_pro_version < 100 ?
899 		&peer_device->connection->cstate_mutex :
900 		&device->own_state_mutex;
901 
902 	err = drbd_send_sync_param(peer_device);
903 	if (!err)
904 		err = drbd_send_sizes(peer_device, 0, 0);
905 	if (!err)
906 		err = drbd_send_uuids(peer_device);
907 	if (!err)
908 		err = drbd_send_current_state(peer_device);
909 	clear_bit(USE_DEGR_WFC_T, &device->flags);
910 	clear_bit(RESIZE_PENDING, &device->flags);
911 	atomic_set(&device->ap_in_flight, 0);
912 	mod_timer(&device->request_timer, jiffies + HZ); /* just start it here. */
913 	return err;
914 }
915 
916 /*
917  * return values:
918  *   1 yes, we have a valid connection
919  *   0 oops, did not work out, please try again
920  *  -1 peer talks different language,
921  *     no point in trying again, please go standalone.
922  *  -2 We do not have a network config...
923  */
924 static int conn_connect(struct drbd_connection *connection)
925 {
926 	struct drbd_socket sock, msock;
927 	struct drbd_peer_device *peer_device;
928 	struct net_conf *nc;
929 	int vnr, timeout, h;
930 	bool discard_my_data, ok;
931 	enum drbd_state_rv rv;
932 	struct accept_wait_data ad = {
933 		.connection = connection,
934 		.door_bell = COMPLETION_INITIALIZER_ONSTACK(ad.door_bell),
935 	};
936 
937 	clear_bit(DISCONNECT_SENT, &connection->flags);
938 	if (conn_request_state(connection, NS(conn, C_WF_CONNECTION), CS_VERBOSE) < SS_SUCCESS)
939 		return -2;
940 
941 	mutex_init(&sock.mutex);
942 	sock.sbuf = connection->data.sbuf;
943 	sock.rbuf = connection->data.rbuf;
944 	sock.socket = NULL;
945 	mutex_init(&msock.mutex);
946 	msock.sbuf = connection->meta.sbuf;
947 	msock.rbuf = connection->meta.rbuf;
948 	msock.socket = NULL;
949 
950 	/* Assume that the peer only understands protocol 80 until we know better.  */
951 	connection->agreed_pro_version = 80;
952 
953 	if (prepare_listen_socket(connection, &ad))
954 		return 0;
955 
956 	do {
957 		struct socket *s;
958 
959 		s = drbd_try_connect(connection);
960 		if (s) {
961 			if (!sock.socket) {
962 				sock.socket = s;
963 				send_first_packet(connection, &sock, P_INITIAL_DATA);
964 			} else if (!msock.socket) {
965 				clear_bit(RESOLVE_CONFLICTS, &connection->flags);
966 				msock.socket = s;
967 				send_first_packet(connection, &msock, P_INITIAL_META);
968 			} else {
969 				drbd_err(connection, "Logic error in conn_connect()\n");
970 				goto out_release_sockets;
971 			}
972 		}
973 
974 		if (connection_established(connection, &sock.socket, &msock.socket))
975 			break;
976 
977 retry:
978 		s = drbd_wait_for_connect(connection, &ad);
979 		if (s) {
980 			int fp = receive_first_packet(connection, s);
981 			drbd_socket_okay(&sock.socket);
982 			drbd_socket_okay(&msock.socket);
983 			switch (fp) {
984 			case P_INITIAL_DATA:
985 				if (sock.socket) {
986 					drbd_warn(connection, "initial packet S crossed\n");
987 					sock_release(sock.socket);
988 					sock.socket = s;
989 					goto randomize;
990 				}
991 				sock.socket = s;
992 				break;
993 			case P_INITIAL_META:
994 				set_bit(RESOLVE_CONFLICTS, &connection->flags);
995 				if (msock.socket) {
996 					drbd_warn(connection, "initial packet M crossed\n");
997 					sock_release(msock.socket);
998 					msock.socket = s;
999 					goto randomize;
1000 				}
1001 				msock.socket = s;
1002 				break;
1003 			default:
1004 				drbd_warn(connection, "Error receiving initial packet\n");
1005 				sock_release(s);
1006 randomize:
1007 				if (prandom_u32() & 1)
1008 					goto retry;
1009 			}
1010 		}
1011 
1012 		if (connection->cstate <= C_DISCONNECTING)
1013 			goto out_release_sockets;
1014 		if (signal_pending(current)) {
1015 			flush_signals(current);
1016 			smp_rmb();
1017 			if (get_t_state(&connection->receiver) == EXITING)
1018 				goto out_release_sockets;
1019 		}
1020 
1021 		ok = connection_established(connection, &sock.socket, &msock.socket);
1022 	} while (!ok);
1023 
1024 	if (ad.s_listen)
1025 		sock_release(ad.s_listen);
1026 
1027 	sock.socket->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */
1028 	msock.socket->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */
1029 
1030 	sock.socket->sk->sk_allocation = GFP_NOIO;
1031 	msock.socket->sk->sk_allocation = GFP_NOIO;
1032 
1033 	sock.socket->sk->sk_priority = TC_PRIO_INTERACTIVE_BULK;
1034 	msock.socket->sk->sk_priority = TC_PRIO_INTERACTIVE;
1035 
1036 	/* NOT YET ...
1037 	 * sock.socket->sk->sk_sndtimeo = connection->net_conf->timeout*HZ/10;
1038 	 * sock.socket->sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
1039 	 * first set it to the P_CONNECTION_FEATURES timeout,
1040 	 * which we set to 4x the configured ping_timeout. */
1041 	rcu_read_lock();
1042 	nc = rcu_dereference(connection->net_conf);
1043 
1044 	sock.socket->sk->sk_sndtimeo =
1045 	sock.socket->sk->sk_rcvtimeo = nc->ping_timeo*4*HZ/10;
1046 
1047 	msock.socket->sk->sk_rcvtimeo = nc->ping_int*HZ;
1048 	timeout = nc->timeout * HZ / 10;
1049 	discard_my_data = nc->discard_my_data;
1050 	rcu_read_unlock();
1051 
1052 	msock.socket->sk->sk_sndtimeo = timeout;
1053 
1054 	/* we don't want delays.
1055 	 * we use TCP_CORK where appropriate, though */
1056 	tcp_sock_set_nodelay(sock.socket->sk);
1057 	tcp_sock_set_nodelay(msock.socket->sk);
1058 
1059 	connection->data.socket = sock.socket;
1060 	connection->meta.socket = msock.socket;
1061 	connection->last_received = jiffies;
1062 
1063 	h = drbd_do_features(connection);
1064 	if (h <= 0)
1065 		return h;
1066 
1067 	if (connection->cram_hmac_tfm) {
1068 		/* drbd_request_state(device, NS(conn, WFAuth)); */
1069 		switch (drbd_do_auth(connection)) {
1070 		case -1:
1071 			drbd_err(connection, "Authentication of peer failed\n");
1072 			return -1;
1073 		case 0:
1074 			drbd_err(connection, "Authentication of peer failed, trying again.\n");
1075 			return 0;
1076 		}
1077 	}
1078 
1079 	connection->data.socket->sk->sk_sndtimeo = timeout;
1080 	connection->data.socket->sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
1081 
1082 	if (drbd_send_protocol(connection) == -EOPNOTSUPP)
1083 		return -1;
1084 
1085 	/* Prevent a race between resync-handshake and
1086 	 * being promoted to Primary.
1087 	 *
1088 	 * Grab and release the state mutex, so we know that any current
1089 	 * drbd_set_role() is finished, and any incoming drbd_set_role
1090 	 * will see the STATE_SENT flag, and wait for it to be cleared.
1091 	 */
1092 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr)
1093 		mutex_lock(peer_device->device->state_mutex);
1094 
1095 	/* avoid a race with conn_request_state( C_DISCONNECTING ) */
1096 	spin_lock_irq(&connection->resource->req_lock);
1097 	set_bit(STATE_SENT, &connection->flags);
1098 	spin_unlock_irq(&connection->resource->req_lock);
1099 
1100 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr)
1101 		mutex_unlock(peer_device->device->state_mutex);
1102 
1103 	rcu_read_lock();
1104 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
1105 		struct drbd_device *device = peer_device->device;
1106 		kref_get(&device->kref);
1107 		rcu_read_unlock();
1108 
1109 		if (discard_my_data)
1110 			set_bit(DISCARD_MY_DATA, &device->flags);
1111 		else
1112 			clear_bit(DISCARD_MY_DATA, &device->flags);
1113 
1114 		drbd_connected(peer_device);
1115 		kref_put(&device->kref, drbd_destroy_device);
1116 		rcu_read_lock();
1117 	}
1118 	rcu_read_unlock();
1119 
1120 	rv = conn_request_state(connection, NS(conn, C_WF_REPORT_PARAMS), CS_VERBOSE);
1121 	if (rv < SS_SUCCESS || connection->cstate != C_WF_REPORT_PARAMS) {
1122 		clear_bit(STATE_SENT, &connection->flags);
1123 		return 0;
1124 	}
1125 
1126 	drbd_thread_start(&connection->ack_receiver);
1127 	/* opencoded create_singlethread_workqueue(),
1128 	 * to be able to use format string arguments */
1129 	connection->ack_sender =
1130 		alloc_ordered_workqueue("drbd_as_%s", WQ_MEM_RECLAIM, connection->resource->name);
1131 	if (!connection->ack_sender) {
1132 		drbd_err(connection, "Failed to create workqueue ack_sender\n");
1133 		return 0;
1134 	}
1135 
1136 	mutex_lock(&connection->resource->conf_update);
1137 	/* The discard_my_data flag is a single-shot modifier to the next
1138 	 * connection attempt, the handshake of which is now well underway.
1139 	 * No need for rcu style copying of the whole struct
1140 	 * just to clear a single value. */
1141 	connection->net_conf->discard_my_data = 0;
1142 	mutex_unlock(&connection->resource->conf_update);
1143 
1144 	return h;
1145 
1146 out_release_sockets:
1147 	if (ad.s_listen)
1148 		sock_release(ad.s_listen);
1149 	if (sock.socket)
1150 		sock_release(sock.socket);
1151 	if (msock.socket)
1152 		sock_release(msock.socket);
1153 	return -1;
1154 }
1155 
1156 static int decode_header(struct drbd_connection *connection, void *header, struct packet_info *pi)
1157 {
1158 	unsigned int header_size = drbd_header_size(connection);
1159 
1160 	if (header_size == sizeof(struct p_header100) &&
1161 	    *(__be32 *)header == cpu_to_be32(DRBD_MAGIC_100)) {
1162 		struct p_header100 *h = header;
1163 		if (h->pad != 0) {
1164 			drbd_err(connection, "Header padding is not zero\n");
1165 			return -EINVAL;
1166 		}
1167 		pi->vnr = be16_to_cpu(h->volume);
1168 		pi->cmd = be16_to_cpu(h->command);
1169 		pi->size = be32_to_cpu(h->length);
1170 	} else if (header_size == sizeof(struct p_header95) &&
1171 		   *(__be16 *)header == cpu_to_be16(DRBD_MAGIC_BIG)) {
1172 		struct p_header95 *h = header;
1173 		pi->cmd = be16_to_cpu(h->command);
1174 		pi->size = be32_to_cpu(h->length);
1175 		pi->vnr = 0;
1176 	} else if (header_size == sizeof(struct p_header80) &&
1177 		   *(__be32 *)header == cpu_to_be32(DRBD_MAGIC)) {
1178 		struct p_header80 *h = header;
1179 		pi->cmd = be16_to_cpu(h->command);
1180 		pi->size = be16_to_cpu(h->length);
1181 		pi->vnr = 0;
1182 	} else {
1183 		drbd_err(connection, "Wrong magic value 0x%08x in protocol version %d\n",
1184 			 be32_to_cpu(*(__be32 *)header),
1185 			 connection->agreed_pro_version);
1186 		return -EINVAL;
1187 	}
1188 	pi->data = header + header_size;
1189 	return 0;
1190 }
1191 
1192 static void drbd_unplug_all_devices(struct drbd_connection *connection)
1193 {
1194 	if (current->plug == &connection->receiver_plug) {
1195 		blk_finish_plug(&connection->receiver_plug);
1196 		blk_start_plug(&connection->receiver_plug);
1197 	} /* else: maybe just schedule() ?? */
1198 }
1199 
1200 static int drbd_recv_header(struct drbd_connection *connection, struct packet_info *pi)
1201 {
1202 	void *buffer = connection->data.rbuf;
1203 	int err;
1204 
1205 	err = drbd_recv_all_warn(connection, buffer, drbd_header_size(connection));
1206 	if (err)
1207 		return err;
1208 
1209 	err = decode_header(connection, buffer, pi);
1210 	connection->last_received = jiffies;
1211 
1212 	return err;
1213 }
1214 
1215 static int drbd_recv_header_maybe_unplug(struct drbd_connection *connection, struct packet_info *pi)
1216 {
1217 	void *buffer = connection->data.rbuf;
1218 	unsigned int size = drbd_header_size(connection);
1219 	int err;
1220 
1221 	err = drbd_recv_short(connection->data.socket, buffer, size, MSG_NOSIGNAL|MSG_DONTWAIT);
1222 	if (err != size) {
1223 		/* If we have nothing in the receive buffer now, to reduce
1224 		 * application latency, try to drain the backend queues as
1225 		 * quickly as possible, and let remote TCP know what we have
1226 		 * received so far. */
1227 		if (err == -EAGAIN) {
1228 			tcp_sock_set_quickack(connection->data.socket->sk, 2);
1229 			drbd_unplug_all_devices(connection);
1230 		}
1231 		if (err > 0) {
1232 			buffer += err;
1233 			size -= err;
1234 		}
1235 		err = drbd_recv_all_warn(connection, buffer, size);
1236 		if (err)
1237 			return err;
1238 	}
1239 
1240 	err = decode_header(connection, connection->data.rbuf, pi);
1241 	connection->last_received = jiffies;
1242 
1243 	return err;
1244 }
1245 /* This is blkdev_issue_flush, but asynchronous.
1246  * We want to submit to all component volumes in parallel,
1247  * then wait for all completions.
1248  */
1249 struct issue_flush_context {
1250 	atomic_t pending;
1251 	int error;
1252 	struct completion done;
1253 };
1254 struct one_flush_context {
1255 	struct drbd_device *device;
1256 	struct issue_flush_context *ctx;
1257 };
1258 
1259 static void one_flush_endio(struct bio *bio)
1260 {
1261 	struct one_flush_context *octx = bio->bi_private;
1262 	struct drbd_device *device = octx->device;
1263 	struct issue_flush_context *ctx = octx->ctx;
1264 
1265 	if (bio->bi_status) {
1266 		ctx->error = blk_status_to_errno(bio->bi_status);
1267 		drbd_info(device, "local disk FLUSH FAILED with status %d\n", bio->bi_status);
1268 	}
1269 	kfree(octx);
1270 	bio_put(bio);
1271 
1272 	clear_bit(FLUSH_PENDING, &device->flags);
1273 	put_ldev(device);
1274 	kref_put(&device->kref, drbd_destroy_device);
1275 
1276 	if (atomic_dec_and_test(&ctx->pending))
1277 		complete(&ctx->done);
1278 }
1279 
1280 static void submit_one_flush(struct drbd_device *device, struct issue_flush_context *ctx)
1281 {
1282 	struct bio *bio = bio_alloc(device->ldev->backing_bdev, 0,
1283 				    REQ_OP_FLUSH | REQ_PREFLUSH, GFP_NOIO);
1284 	struct one_flush_context *octx = kmalloc(sizeof(*octx), GFP_NOIO);
1285 
1286 	if (!octx) {
1287 		drbd_warn(device, "Could not allocate a octx, CANNOT ISSUE FLUSH\n");
1288 		/* FIXME: what else can I do now?  disconnecting or detaching
1289 		 * really does not help to improve the state of the world, either.
1290 		 */
1291 		bio_put(bio);
1292 
1293 		ctx->error = -ENOMEM;
1294 		put_ldev(device);
1295 		kref_put(&device->kref, drbd_destroy_device);
1296 		return;
1297 	}
1298 
1299 	octx->device = device;
1300 	octx->ctx = ctx;
1301 	bio->bi_private = octx;
1302 	bio->bi_end_io = one_flush_endio;
1303 
1304 	device->flush_jif = jiffies;
1305 	set_bit(FLUSH_PENDING, &device->flags);
1306 	atomic_inc(&ctx->pending);
1307 	submit_bio(bio);
1308 }
1309 
1310 static void drbd_flush(struct drbd_connection *connection)
1311 {
1312 	if (connection->resource->write_ordering >= WO_BDEV_FLUSH) {
1313 		struct drbd_peer_device *peer_device;
1314 		struct issue_flush_context ctx;
1315 		int vnr;
1316 
1317 		atomic_set(&ctx.pending, 1);
1318 		ctx.error = 0;
1319 		init_completion(&ctx.done);
1320 
1321 		rcu_read_lock();
1322 		idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
1323 			struct drbd_device *device = peer_device->device;
1324 
1325 			if (!get_ldev(device))
1326 				continue;
1327 			kref_get(&device->kref);
1328 			rcu_read_unlock();
1329 
1330 			submit_one_flush(device, &ctx);
1331 
1332 			rcu_read_lock();
1333 		}
1334 		rcu_read_unlock();
1335 
1336 		/* Do we want to add a timeout,
1337 		 * if disk-timeout is set? */
1338 		if (!atomic_dec_and_test(&ctx.pending))
1339 			wait_for_completion(&ctx.done);
1340 
1341 		if (ctx.error) {
1342 			/* would rather check on EOPNOTSUPP, but that is not reliable.
1343 			 * don't try again for ANY return value != 0
1344 			 * if (rv == -EOPNOTSUPP) */
1345 			/* Any error is already reported by bio_endio callback. */
1346 			drbd_bump_write_ordering(connection->resource, NULL, WO_DRAIN_IO);
1347 		}
1348 	}
1349 }
1350 
1351 /**
1352  * drbd_may_finish_epoch() - Applies an epoch_event to the epoch's state, eventually finishes it.
1353  * @connection:	DRBD connection.
1354  * @epoch:	Epoch object.
1355  * @ev:		Epoch event.
1356  */
1357 static enum finish_epoch drbd_may_finish_epoch(struct drbd_connection *connection,
1358 					       struct drbd_epoch *epoch,
1359 					       enum epoch_event ev)
1360 {
1361 	int epoch_size;
1362 	struct drbd_epoch *next_epoch;
1363 	enum finish_epoch rv = FE_STILL_LIVE;
1364 
1365 	spin_lock(&connection->epoch_lock);
1366 	do {
1367 		next_epoch = NULL;
1368 
1369 		epoch_size = atomic_read(&epoch->epoch_size);
1370 
1371 		switch (ev & ~EV_CLEANUP) {
1372 		case EV_PUT:
1373 			atomic_dec(&epoch->active);
1374 			break;
1375 		case EV_GOT_BARRIER_NR:
1376 			set_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags);
1377 			break;
1378 		case EV_BECAME_LAST:
1379 			/* nothing to do*/
1380 			break;
1381 		}
1382 
1383 		if (epoch_size != 0 &&
1384 		    atomic_read(&epoch->active) == 0 &&
1385 		    (test_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags) || ev & EV_CLEANUP)) {
1386 			if (!(ev & EV_CLEANUP)) {
1387 				spin_unlock(&connection->epoch_lock);
1388 				drbd_send_b_ack(epoch->connection, epoch->barrier_nr, epoch_size);
1389 				spin_lock(&connection->epoch_lock);
1390 			}
1391 #if 0
1392 			/* FIXME: dec unacked on connection, once we have
1393 			 * something to count pending connection packets in. */
1394 			if (test_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags))
1395 				dec_unacked(epoch->connection);
1396 #endif
1397 
1398 			if (connection->current_epoch != epoch) {
1399 				next_epoch = list_entry(epoch->list.next, struct drbd_epoch, list);
1400 				list_del(&epoch->list);
1401 				ev = EV_BECAME_LAST | (ev & EV_CLEANUP);
1402 				connection->epochs--;
1403 				kfree(epoch);
1404 
1405 				if (rv == FE_STILL_LIVE)
1406 					rv = FE_DESTROYED;
1407 			} else {
1408 				epoch->flags = 0;
1409 				atomic_set(&epoch->epoch_size, 0);
1410 				/* atomic_set(&epoch->active, 0); is already zero */
1411 				if (rv == FE_STILL_LIVE)
1412 					rv = FE_RECYCLED;
1413 			}
1414 		}
1415 
1416 		if (!next_epoch)
1417 			break;
1418 
1419 		epoch = next_epoch;
1420 	} while (1);
1421 
1422 	spin_unlock(&connection->epoch_lock);
1423 
1424 	return rv;
1425 }
1426 
1427 static enum write_ordering_e
1428 max_allowed_wo(struct drbd_backing_dev *bdev, enum write_ordering_e wo)
1429 {
1430 	struct disk_conf *dc;
1431 
1432 	dc = rcu_dereference(bdev->disk_conf);
1433 
1434 	if (wo == WO_BDEV_FLUSH && !dc->disk_flushes)
1435 		wo = WO_DRAIN_IO;
1436 	if (wo == WO_DRAIN_IO && !dc->disk_drain)
1437 		wo = WO_NONE;
1438 
1439 	return wo;
1440 }
1441 
1442 /*
1443  * drbd_bump_write_ordering() - Fall back to an other write ordering method
1444  * @wo:		Write ordering method to try.
1445  */
1446 void drbd_bump_write_ordering(struct drbd_resource *resource, struct drbd_backing_dev *bdev,
1447 			      enum write_ordering_e wo)
1448 {
1449 	struct drbd_device *device;
1450 	enum write_ordering_e pwo;
1451 	int vnr;
1452 	static char *write_ordering_str[] = {
1453 		[WO_NONE] = "none",
1454 		[WO_DRAIN_IO] = "drain",
1455 		[WO_BDEV_FLUSH] = "flush",
1456 	};
1457 
1458 	pwo = resource->write_ordering;
1459 	if (wo != WO_BDEV_FLUSH)
1460 		wo = min(pwo, wo);
1461 	rcu_read_lock();
1462 	idr_for_each_entry(&resource->devices, device, vnr) {
1463 		if (get_ldev(device)) {
1464 			wo = max_allowed_wo(device->ldev, wo);
1465 			if (device->ldev == bdev)
1466 				bdev = NULL;
1467 			put_ldev(device);
1468 		}
1469 	}
1470 
1471 	if (bdev)
1472 		wo = max_allowed_wo(bdev, wo);
1473 
1474 	rcu_read_unlock();
1475 
1476 	resource->write_ordering = wo;
1477 	if (pwo != resource->write_ordering || wo == WO_BDEV_FLUSH)
1478 		drbd_info(resource, "Method to ensure write ordering: %s\n", write_ordering_str[resource->write_ordering]);
1479 }
1480 
1481 /*
1482  * Mapping "discard" to ZEROOUT with UNMAP does not work for us:
1483  * Drivers have to "announce" q->limits.max_write_zeroes_sectors, or it
1484  * will directly go to fallback mode, submitting normal writes, and
1485  * never even try to UNMAP.
1486  *
1487  * And dm-thin does not do this (yet), mostly because in general it has
1488  * to assume that "skip_block_zeroing" is set.  See also:
1489  * https://www.mail-archive.com/dm-devel%40redhat.com/msg07965.html
1490  * https://www.redhat.com/archives/dm-devel/2018-January/msg00271.html
1491  *
1492  * We *may* ignore the discard-zeroes-data setting, if so configured.
1493  *
1494  * Assumption is that this "discard_zeroes_data=0" is only because the backend
1495  * may ignore partial unaligned discards.
1496  *
1497  * LVM/DM thin as of at least
1498  *   LVM version:     2.02.115(2)-RHEL7 (2015-01-28)
1499  *   Library version: 1.02.93-RHEL7 (2015-01-28)
1500  *   Driver version:  4.29.0
1501  * still behaves this way.
1502  *
1503  * For unaligned (wrt. alignment and granularity) or too small discards,
1504  * we zero-out the initial (and/or) trailing unaligned partial chunks,
1505  * but discard all the aligned full chunks.
1506  *
1507  * At least for LVM/DM thin, with skip_block_zeroing=false,
1508  * the result is effectively "discard_zeroes_data=1".
1509  */
1510 /* flags: EE_TRIM|EE_ZEROOUT */
1511 int drbd_issue_discard_or_zero_out(struct drbd_device *device, sector_t start, unsigned int nr_sectors, int flags)
1512 {
1513 	struct block_device *bdev = device->ldev->backing_bdev;
1514 	struct request_queue *q = bdev_get_queue(bdev);
1515 	sector_t tmp, nr;
1516 	unsigned int max_discard_sectors, granularity;
1517 	int alignment;
1518 	int err = 0;
1519 
1520 	if ((flags & EE_ZEROOUT) || !(flags & EE_TRIM))
1521 		goto zero_out;
1522 
1523 	/* Zero-sector (unknown) and one-sector granularities are the same.  */
1524 	granularity = max(q->limits.discard_granularity >> 9, 1U);
1525 	alignment = (bdev_discard_alignment(bdev) >> 9) % granularity;
1526 
1527 	max_discard_sectors = min(q->limits.max_discard_sectors, (1U << 22));
1528 	max_discard_sectors -= max_discard_sectors % granularity;
1529 	if (unlikely(!max_discard_sectors))
1530 		goto zero_out;
1531 
1532 	if (nr_sectors < granularity)
1533 		goto zero_out;
1534 
1535 	tmp = start;
1536 	if (sector_div(tmp, granularity) != alignment) {
1537 		if (nr_sectors < 2*granularity)
1538 			goto zero_out;
1539 		/* start + gran - (start + gran - align) % gran */
1540 		tmp = start + granularity - alignment;
1541 		tmp = start + granularity - sector_div(tmp, granularity);
1542 
1543 		nr = tmp - start;
1544 		/* don't flag BLKDEV_ZERO_NOUNMAP, we don't know how many
1545 		 * layers are below us, some may have smaller granularity */
1546 		err |= blkdev_issue_zeroout(bdev, start, nr, GFP_NOIO, 0);
1547 		nr_sectors -= nr;
1548 		start = tmp;
1549 	}
1550 	while (nr_sectors >= max_discard_sectors) {
1551 		err |= blkdev_issue_discard(bdev, start, max_discard_sectors, GFP_NOIO, 0);
1552 		nr_sectors -= max_discard_sectors;
1553 		start += max_discard_sectors;
1554 	}
1555 	if (nr_sectors) {
1556 		/* max_discard_sectors is unsigned int (and a multiple of
1557 		 * granularity, we made sure of that above already);
1558 		 * nr is < max_discard_sectors;
1559 		 * I don't need sector_div here, even though nr is sector_t */
1560 		nr = nr_sectors;
1561 		nr -= (unsigned int)nr % granularity;
1562 		if (nr) {
1563 			err |= blkdev_issue_discard(bdev, start, nr, GFP_NOIO, 0);
1564 			nr_sectors -= nr;
1565 			start += nr;
1566 		}
1567 	}
1568  zero_out:
1569 	if (nr_sectors) {
1570 		err |= blkdev_issue_zeroout(bdev, start, nr_sectors, GFP_NOIO,
1571 				(flags & EE_TRIM) ? 0 : BLKDEV_ZERO_NOUNMAP);
1572 	}
1573 	return err != 0;
1574 }
1575 
1576 static bool can_do_reliable_discards(struct drbd_device *device)
1577 {
1578 	struct request_queue *q = bdev_get_queue(device->ldev->backing_bdev);
1579 	struct disk_conf *dc;
1580 	bool can_do;
1581 
1582 	if (!blk_queue_discard(q))
1583 		return false;
1584 
1585 	rcu_read_lock();
1586 	dc = rcu_dereference(device->ldev->disk_conf);
1587 	can_do = dc->discard_zeroes_if_aligned;
1588 	rcu_read_unlock();
1589 	return can_do;
1590 }
1591 
1592 static void drbd_issue_peer_discard_or_zero_out(struct drbd_device *device, struct drbd_peer_request *peer_req)
1593 {
1594 	/* If the backend cannot discard, or does not guarantee
1595 	 * read-back zeroes in discarded ranges, we fall back to
1596 	 * zero-out.  Unless configuration specifically requested
1597 	 * otherwise. */
1598 	if (!can_do_reliable_discards(device))
1599 		peer_req->flags |= EE_ZEROOUT;
1600 
1601 	if (drbd_issue_discard_or_zero_out(device, peer_req->i.sector,
1602 	    peer_req->i.size >> 9, peer_req->flags & (EE_ZEROOUT|EE_TRIM)))
1603 		peer_req->flags |= EE_WAS_ERROR;
1604 	drbd_endio_write_sec_final(peer_req);
1605 }
1606 
1607 /**
1608  * drbd_submit_peer_request()
1609  * @device:	DRBD device.
1610  * @peer_req:	peer request
1611  *
1612  * May spread the pages to multiple bios,
1613  * depending on bio_add_page restrictions.
1614  *
1615  * Returns 0 if all bios have been submitted,
1616  * -ENOMEM if we could not allocate enough bios,
1617  * -ENOSPC (any better suggestion?) if we have not been able to bio_add_page a
1618  *  single page to an empty bio (which should never happen and likely indicates
1619  *  that the lower level IO stack is in some way broken). This has been observed
1620  *  on certain Xen deployments.
1621  */
1622 /* TODO allocate from our own bio_set. */
1623 int drbd_submit_peer_request(struct drbd_device *device,
1624 			     struct drbd_peer_request *peer_req,
1625 			     const unsigned op, const unsigned op_flags,
1626 			     const int fault_type)
1627 {
1628 	struct bio *bios = NULL;
1629 	struct bio *bio;
1630 	struct page *page = peer_req->pages;
1631 	sector_t sector = peer_req->i.sector;
1632 	unsigned data_size = peer_req->i.size;
1633 	unsigned n_bios = 0;
1634 	unsigned nr_pages = (data_size + PAGE_SIZE -1) >> PAGE_SHIFT;
1635 
1636 	/* TRIM/DISCARD: for now, always use the helper function
1637 	 * blkdev_issue_zeroout(..., discard=true).
1638 	 * It's synchronous, but it does the right thing wrt. bio splitting.
1639 	 * Correctness first, performance later.  Next step is to code an
1640 	 * asynchronous variant of the same.
1641 	 */
1642 	if (peer_req->flags & (EE_TRIM | EE_ZEROOUT)) {
1643 		/* wait for all pending IO completions, before we start
1644 		 * zeroing things out. */
1645 		conn_wait_active_ee_empty(peer_req->peer_device->connection);
1646 		/* add it to the active list now,
1647 		 * so we can find it to present it in debugfs */
1648 		peer_req->submit_jif = jiffies;
1649 		peer_req->flags |= EE_SUBMITTED;
1650 
1651 		/* If this was a resync request from receive_rs_deallocated(),
1652 		 * it is already on the sync_ee list */
1653 		if (list_empty(&peer_req->w.list)) {
1654 			spin_lock_irq(&device->resource->req_lock);
1655 			list_add_tail(&peer_req->w.list, &device->active_ee);
1656 			spin_unlock_irq(&device->resource->req_lock);
1657 		}
1658 
1659 		drbd_issue_peer_discard_or_zero_out(device, peer_req);
1660 		return 0;
1661 	}
1662 
1663 	/* In most cases, we will only need one bio.  But in case the lower
1664 	 * level restrictions happen to be different at this offset on this
1665 	 * side than those of the sending peer, we may need to submit the
1666 	 * request in more than one bio.
1667 	 *
1668 	 * Plain bio_alloc is good enough here, this is no DRBD internally
1669 	 * generated bio, but a bio allocated on behalf of the peer.
1670 	 */
1671 next_bio:
1672 	bio = bio_alloc(device->ldev->backing_bdev, nr_pages, op | op_flags,
1673 			GFP_NOIO);
1674 	/* > peer_req->i.sector, unless this is the first bio */
1675 	bio->bi_iter.bi_sector = sector;
1676 	bio->bi_private = peer_req;
1677 	bio->bi_end_io = drbd_peer_request_endio;
1678 
1679 	bio->bi_next = bios;
1680 	bios = bio;
1681 	++n_bios;
1682 
1683 	page_chain_for_each(page) {
1684 		unsigned len = min_t(unsigned, data_size, PAGE_SIZE);
1685 		if (!bio_add_page(bio, page, len, 0))
1686 			goto next_bio;
1687 		data_size -= len;
1688 		sector += len >> 9;
1689 		--nr_pages;
1690 	}
1691 	D_ASSERT(device, data_size == 0);
1692 	D_ASSERT(device, page == NULL);
1693 
1694 	atomic_set(&peer_req->pending_bios, n_bios);
1695 	/* for debugfs: update timestamp, mark as submitted */
1696 	peer_req->submit_jif = jiffies;
1697 	peer_req->flags |= EE_SUBMITTED;
1698 	do {
1699 		bio = bios;
1700 		bios = bios->bi_next;
1701 		bio->bi_next = NULL;
1702 
1703 		drbd_submit_bio_noacct(device, fault_type, bio);
1704 	} while (bios);
1705 	return 0;
1706 }
1707 
1708 static void drbd_remove_epoch_entry_interval(struct drbd_device *device,
1709 					     struct drbd_peer_request *peer_req)
1710 {
1711 	struct drbd_interval *i = &peer_req->i;
1712 
1713 	drbd_remove_interval(&device->write_requests, i);
1714 	drbd_clear_interval(i);
1715 
1716 	/* Wake up any processes waiting for this peer request to complete.  */
1717 	if (i->waiting)
1718 		wake_up(&device->misc_wait);
1719 }
1720 
1721 static void conn_wait_active_ee_empty(struct drbd_connection *connection)
1722 {
1723 	struct drbd_peer_device *peer_device;
1724 	int vnr;
1725 
1726 	rcu_read_lock();
1727 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
1728 		struct drbd_device *device = peer_device->device;
1729 
1730 		kref_get(&device->kref);
1731 		rcu_read_unlock();
1732 		drbd_wait_ee_list_empty(device, &device->active_ee);
1733 		kref_put(&device->kref, drbd_destroy_device);
1734 		rcu_read_lock();
1735 	}
1736 	rcu_read_unlock();
1737 }
1738 
1739 static int receive_Barrier(struct drbd_connection *connection, struct packet_info *pi)
1740 {
1741 	int rv;
1742 	struct p_barrier *p = pi->data;
1743 	struct drbd_epoch *epoch;
1744 
1745 	/* FIXME these are unacked on connection,
1746 	 * not a specific (peer)device.
1747 	 */
1748 	connection->current_epoch->barrier_nr = p->barrier;
1749 	connection->current_epoch->connection = connection;
1750 	rv = drbd_may_finish_epoch(connection, connection->current_epoch, EV_GOT_BARRIER_NR);
1751 
1752 	/* P_BARRIER_ACK may imply that the corresponding extent is dropped from
1753 	 * the activity log, which means it would not be resynced in case the
1754 	 * R_PRIMARY crashes now.
1755 	 * Therefore we must send the barrier_ack after the barrier request was
1756 	 * completed. */
1757 	switch (connection->resource->write_ordering) {
1758 	case WO_NONE:
1759 		if (rv == FE_RECYCLED)
1760 			return 0;
1761 
1762 		/* receiver context, in the writeout path of the other node.
1763 		 * avoid potential distributed deadlock */
1764 		epoch = kmalloc(sizeof(struct drbd_epoch), GFP_NOIO);
1765 		if (epoch)
1766 			break;
1767 		else
1768 			drbd_warn(connection, "Allocation of an epoch failed, slowing down\n");
1769 		fallthrough;
1770 
1771 	case WO_BDEV_FLUSH:
1772 	case WO_DRAIN_IO:
1773 		conn_wait_active_ee_empty(connection);
1774 		drbd_flush(connection);
1775 
1776 		if (atomic_read(&connection->current_epoch->epoch_size)) {
1777 			epoch = kmalloc(sizeof(struct drbd_epoch), GFP_NOIO);
1778 			if (epoch)
1779 				break;
1780 		}
1781 
1782 		return 0;
1783 	default:
1784 		drbd_err(connection, "Strangeness in connection->write_ordering %d\n",
1785 			 connection->resource->write_ordering);
1786 		return -EIO;
1787 	}
1788 
1789 	epoch->flags = 0;
1790 	atomic_set(&epoch->epoch_size, 0);
1791 	atomic_set(&epoch->active, 0);
1792 
1793 	spin_lock(&connection->epoch_lock);
1794 	if (atomic_read(&connection->current_epoch->epoch_size)) {
1795 		list_add(&epoch->list, &connection->current_epoch->list);
1796 		connection->current_epoch = epoch;
1797 		connection->epochs++;
1798 	} else {
1799 		/* The current_epoch got recycled while we allocated this one... */
1800 		kfree(epoch);
1801 	}
1802 	spin_unlock(&connection->epoch_lock);
1803 
1804 	return 0;
1805 }
1806 
1807 /* quick wrapper in case payload size != request_size (write same) */
1808 static void drbd_csum_ee_size(struct crypto_shash *h,
1809 			      struct drbd_peer_request *r, void *d,
1810 			      unsigned int payload_size)
1811 {
1812 	unsigned int tmp = r->i.size;
1813 	r->i.size = payload_size;
1814 	drbd_csum_ee(h, r, d);
1815 	r->i.size = tmp;
1816 }
1817 
1818 /* used from receive_RSDataReply (recv_resync_read)
1819  * and from receive_Data.
1820  * data_size: actual payload ("data in")
1821  * 	for normal writes that is bi_size.
1822  * 	for discards, that is zero.
1823  * 	for write same, it is logical_block_size.
1824  * both trim and write same have the bi_size ("data len to be affected")
1825  * as extra argument in the packet header.
1826  */
1827 static struct drbd_peer_request *
1828 read_in_block(struct drbd_peer_device *peer_device, u64 id, sector_t sector,
1829 	      struct packet_info *pi) __must_hold(local)
1830 {
1831 	struct drbd_device *device = peer_device->device;
1832 	const sector_t capacity = get_capacity(device->vdisk);
1833 	struct drbd_peer_request *peer_req;
1834 	struct page *page;
1835 	int digest_size, err;
1836 	unsigned int data_size = pi->size, ds;
1837 	void *dig_in = peer_device->connection->int_dig_in;
1838 	void *dig_vv = peer_device->connection->int_dig_vv;
1839 	unsigned long *data;
1840 	struct p_trim *trim = (pi->cmd == P_TRIM) ? pi->data : NULL;
1841 	struct p_trim *zeroes = (pi->cmd == P_ZEROES) ? pi->data : NULL;
1842 
1843 	digest_size = 0;
1844 	if (!trim && peer_device->connection->peer_integrity_tfm) {
1845 		digest_size = crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm);
1846 		/*
1847 		 * FIXME: Receive the incoming digest into the receive buffer
1848 		 *	  here, together with its struct p_data?
1849 		 */
1850 		err = drbd_recv_all_warn(peer_device->connection, dig_in, digest_size);
1851 		if (err)
1852 			return NULL;
1853 		data_size -= digest_size;
1854 	}
1855 
1856 	/* assume request_size == data_size, but special case trim. */
1857 	ds = data_size;
1858 	if (trim) {
1859 		if (!expect(data_size == 0))
1860 			return NULL;
1861 		ds = be32_to_cpu(trim->size);
1862 	} else if (zeroes) {
1863 		if (!expect(data_size == 0))
1864 			return NULL;
1865 		ds = be32_to_cpu(zeroes->size);
1866 	}
1867 
1868 	if (!expect(IS_ALIGNED(ds, 512)))
1869 		return NULL;
1870 	if (trim || zeroes) {
1871 		if (!expect(ds <= (DRBD_MAX_BBIO_SECTORS << 9)))
1872 			return NULL;
1873 	} else if (!expect(ds <= DRBD_MAX_BIO_SIZE))
1874 		return NULL;
1875 
1876 	/* even though we trust out peer,
1877 	 * we sometimes have to double check. */
1878 	if (sector + (ds>>9) > capacity) {
1879 		drbd_err(device, "request from peer beyond end of local disk: "
1880 			"capacity: %llus < sector: %llus + size: %u\n",
1881 			(unsigned long long)capacity,
1882 			(unsigned long long)sector, ds);
1883 		return NULL;
1884 	}
1885 
1886 	/* GFP_NOIO, because we must not cause arbitrary write-out: in a DRBD
1887 	 * "criss-cross" setup, that might cause write-out on some other DRBD,
1888 	 * which in turn might block on the other node at this very place.  */
1889 	peer_req = drbd_alloc_peer_req(peer_device, id, sector, ds, data_size, GFP_NOIO);
1890 	if (!peer_req)
1891 		return NULL;
1892 
1893 	peer_req->flags |= EE_WRITE;
1894 	if (trim) {
1895 		peer_req->flags |= EE_TRIM;
1896 		return peer_req;
1897 	}
1898 	if (zeroes) {
1899 		peer_req->flags |= EE_ZEROOUT;
1900 		return peer_req;
1901 	}
1902 
1903 	/* receive payload size bytes into page chain */
1904 	ds = data_size;
1905 	page = peer_req->pages;
1906 	page_chain_for_each(page) {
1907 		unsigned len = min_t(int, ds, PAGE_SIZE);
1908 		data = kmap(page);
1909 		err = drbd_recv_all_warn(peer_device->connection, data, len);
1910 		if (drbd_insert_fault(device, DRBD_FAULT_RECEIVE)) {
1911 			drbd_err(device, "Fault injection: Corrupting data on receive\n");
1912 			data[0] = data[0] ^ (unsigned long)-1;
1913 		}
1914 		kunmap(page);
1915 		if (err) {
1916 			drbd_free_peer_req(device, peer_req);
1917 			return NULL;
1918 		}
1919 		ds -= len;
1920 	}
1921 
1922 	if (digest_size) {
1923 		drbd_csum_ee_size(peer_device->connection->peer_integrity_tfm, peer_req, dig_vv, data_size);
1924 		if (memcmp(dig_in, dig_vv, digest_size)) {
1925 			drbd_err(device, "Digest integrity check FAILED: %llus +%u\n",
1926 				(unsigned long long)sector, data_size);
1927 			drbd_free_peer_req(device, peer_req);
1928 			return NULL;
1929 		}
1930 	}
1931 	device->recv_cnt += data_size >> 9;
1932 	return peer_req;
1933 }
1934 
1935 /* drbd_drain_block() just takes a data block
1936  * out of the socket input buffer, and discards it.
1937  */
1938 static int drbd_drain_block(struct drbd_peer_device *peer_device, int data_size)
1939 {
1940 	struct page *page;
1941 	int err = 0;
1942 	void *data;
1943 
1944 	if (!data_size)
1945 		return 0;
1946 
1947 	page = drbd_alloc_pages(peer_device, 1, 1);
1948 
1949 	data = kmap(page);
1950 	while (data_size) {
1951 		unsigned int len = min_t(int, data_size, PAGE_SIZE);
1952 
1953 		err = drbd_recv_all_warn(peer_device->connection, data, len);
1954 		if (err)
1955 			break;
1956 		data_size -= len;
1957 	}
1958 	kunmap(page);
1959 	drbd_free_pages(peer_device->device, page, 0);
1960 	return err;
1961 }
1962 
1963 static int recv_dless_read(struct drbd_peer_device *peer_device, struct drbd_request *req,
1964 			   sector_t sector, int data_size)
1965 {
1966 	struct bio_vec bvec;
1967 	struct bvec_iter iter;
1968 	struct bio *bio;
1969 	int digest_size, err, expect;
1970 	void *dig_in = peer_device->connection->int_dig_in;
1971 	void *dig_vv = peer_device->connection->int_dig_vv;
1972 
1973 	digest_size = 0;
1974 	if (peer_device->connection->peer_integrity_tfm) {
1975 		digest_size = crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm);
1976 		err = drbd_recv_all_warn(peer_device->connection, dig_in, digest_size);
1977 		if (err)
1978 			return err;
1979 		data_size -= digest_size;
1980 	}
1981 
1982 	/* optimistically update recv_cnt.  if receiving fails below,
1983 	 * we disconnect anyways, and counters will be reset. */
1984 	peer_device->device->recv_cnt += data_size>>9;
1985 
1986 	bio = req->master_bio;
1987 	D_ASSERT(peer_device->device, sector == bio->bi_iter.bi_sector);
1988 
1989 	bio_for_each_segment(bvec, bio, iter) {
1990 		void *mapped = bvec_kmap_local(&bvec);
1991 		expect = min_t(int, data_size, bvec.bv_len);
1992 		err = drbd_recv_all_warn(peer_device->connection, mapped, expect);
1993 		kunmap_local(mapped);
1994 		if (err)
1995 			return err;
1996 		data_size -= expect;
1997 	}
1998 
1999 	if (digest_size) {
2000 		drbd_csum_bio(peer_device->connection->peer_integrity_tfm, bio, dig_vv);
2001 		if (memcmp(dig_in, dig_vv, digest_size)) {
2002 			drbd_err(peer_device, "Digest integrity check FAILED. Broken NICs?\n");
2003 			return -EINVAL;
2004 		}
2005 	}
2006 
2007 	D_ASSERT(peer_device->device, data_size == 0);
2008 	return 0;
2009 }
2010 
2011 /*
2012  * e_end_resync_block() is called in ack_sender context via
2013  * drbd_finish_peer_reqs().
2014  */
2015 static int e_end_resync_block(struct drbd_work *w, int unused)
2016 {
2017 	struct drbd_peer_request *peer_req =
2018 		container_of(w, struct drbd_peer_request, w);
2019 	struct drbd_peer_device *peer_device = peer_req->peer_device;
2020 	struct drbd_device *device = peer_device->device;
2021 	sector_t sector = peer_req->i.sector;
2022 	int err;
2023 
2024 	D_ASSERT(device, drbd_interval_empty(&peer_req->i));
2025 
2026 	if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) {
2027 		drbd_set_in_sync(device, sector, peer_req->i.size);
2028 		err = drbd_send_ack(peer_device, P_RS_WRITE_ACK, peer_req);
2029 	} else {
2030 		/* Record failure to sync */
2031 		drbd_rs_failed_io(device, sector, peer_req->i.size);
2032 
2033 		err  = drbd_send_ack(peer_device, P_NEG_ACK, peer_req);
2034 	}
2035 	dec_unacked(device);
2036 
2037 	return err;
2038 }
2039 
2040 static int recv_resync_read(struct drbd_peer_device *peer_device, sector_t sector,
2041 			    struct packet_info *pi) __releases(local)
2042 {
2043 	struct drbd_device *device = peer_device->device;
2044 	struct drbd_peer_request *peer_req;
2045 
2046 	peer_req = read_in_block(peer_device, ID_SYNCER, sector, pi);
2047 	if (!peer_req)
2048 		goto fail;
2049 
2050 	dec_rs_pending(device);
2051 
2052 	inc_unacked(device);
2053 	/* corresponding dec_unacked() in e_end_resync_block()
2054 	 * respective _drbd_clear_done_ee */
2055 
2056 	peer_req->w.cb = e_end_resync_block;
2057 	peer_req->submit_jif = jiffies;
2058 
2059 	spin_lock_irq(&device->resource->req_lock);
2060 	list_add_tail(&peer_req->w.list, &device->sync_ee);
2061 	spin_unlock_irq(&device->resource->req_lock);
2062 
2063 	atomic_add(pi->size >> 9, &device->rs_sect_ev);
2064 	if (drbd_submit_peer_request(device, peer_req, REQ_OP_WRITE, 0,
2065 				     DRBD_FAULT_RS_WR) == 0)
2066 		return 0;
2067 
2068 	/* don't care for the reason here */
2069 	drbd_err(device, "submit failed, triggering re-connect\n");
2070 	spin_lock_irq(&device->resource->req_lock);
2071 	list_del(&peer_req->w.list);
2072 	spin_unlock_irq(&device->resource->req_lock);
2073 
2074 	drbd_free_peer_req(device, peer_req);
2075 fail:
2076 	put_ldev(device);
2077 	return -EIO;
2078 }
2079 
2080 static struct drbd_request *
2081 find_request(struct drbd_device *device, struct rb_root *root, u64 id,
2082 	     sector_t sector, bool missing_ok, const char *func)
2083 {
2084 	struct drbd_request *req;
2085 
2086 	/* Request object according to our peer */
2087 	req = (struct drbd_request *)(unsigned long)id;
2088 	if (drbd_contains_interval(root, sector, &req->i) && req->i.local)
2089 		return req;
2090 	if (!missing_ok) {
2091 		drbd_err(device, "%s: failed to find request 0x%lx, sector %llus\n", func,
2092 			(unsigned long)id, (unsigned long long)sector);
2093 	}
2094 	return NULL;
2095 }
2096 
2097 static int receive_DataReply(struct drbd_connection *connection, struct packet_info *pi)
2098 {
2099 	struct drbd_peer_device *peer_device;
2100 	struct drbd_device *device;
2101 	struct drbd_request *req;
2102 	sector_t sector;
2103 	int err;
2104 	struct p_data *p = pi->data;
2105 
2106 	peer_device = conn_peer_device(connection, pi->vnr);
2107 	if (!peer_device)
2108 		return -EIO;
2109 	device = peer_device->device;
2110 
2111 	sector = be64_to_cpu(p->sector);
2112 
2113 	spin_lock_irq(&device->resource->req_lock);
2114 	req = find_request(device, &device->read_requests, p->block_id, sector, false, __func__);
2115 	spin_unlock_irq(&device->resource->req_lock);
2116 	if (unlikely(!req))
2117 		return -EIO;
2118 
2119 	/* hlist_del(&req->collision) is done in _req_may_be_done, to avoid
2120 	 * special casing it there for the various failure cases.
2121 	 * still no race with drbd_fail_pending_reads */
2122 	err = recv_dless_read(peer_device, req, sector, pi->size);
2123 	if (!err)
2124 		req_mod(req, DATA_RECEIVED);
2125 	/* else: nothing. handled from drbd_disconnect...
2126 	 * I don't think we may complete this just yet
2127 	 * in case we are "on-disconnect: freeze" */
2128 
2129 	return err;
2130 }
2131 
2132 static int receive_RSDataReply(struct drbd_connection *connection, struct packet_info *pi)
2133 {
2134 	struct drbd_peer_device *peer_device;
2135 	struct drbd_device *device;
2136 	sector_t sector;
2137 	int err;
2138 	struct p_data *p = pi->data;
2139 
2140 	peer_device = conn_peer_device(connection, pi->vnr);
2141 	if (!peer_device)
2142 		return -EIO;
2143 	device = peer_device->device;
2144 
2145 	sector = be64_to_cpu(p->sector);
2146 	D_ASSERT(device, p->block_id == ID_SYNCER);
2147 
2148 	if (get_ldev(device)) {
2149 		/* data is submitted to disk within recv_resync_read.
2150 		 * corresponding put_ldev done below on error,
2151 		 * or in drbd_peer_request_endio. */
2152 		err = recv_resync_read(peer_device, sector, pi);
2153 	} else {
2154 		if (__ratelimit(&drbd_ratelimit_state))
2155 			drbd_err(device, "Can not write resync data to local disk.\n");
2156 
2157 		err = drbd_drain_block(peer_device, pi->size);
2158 
2159 		drbd_send_ack_dp(peer_device, P_NEG_ACK, p, pi->size);
2160 	}
2161 
2162 	atomic_add(pi->size >> 9, &device->rs_sect_in);
2163 
2164 	return err;
2165 }
2166 
2167 static void restart_conflicting_writes(struct drbd_device *device,
2168 				       sector_t sector, int size)
2169 {
2170 	struct drbd_interval *i;
2171 	struct drbd_request *req;
2172 
2173 	drbd_for_each_overlap(i, &device->write_requests, sector, size) {
2174 		if (!i->local)
2175 			continue;
2176 		req = container_of(i, struct drbd_request, i);
2177 		if (req->rq_state & RQ_LOCAL_PENDING ||
2178 		    !(req->rq_state & RQ_POSTPONED))
2179 			continue;
2180 		/* as it is RQ_POSTPONED, this will cause it to
2181 		 * be queued on the retry workqueue. */
2182 		__req_mod(req, CONFLICT_RESOLVED, NULL);
2183 	}
2184 }
2185 
2186 /*
2187  * e_end_block() is called in ack_sender context via drbd_finish_peer_reqs().
2188  */
2189 static int e_end_block(struct drbd_work *w, int cancel)
2190 {
2191 	struct drbd_peer_request *peer_req =
2192 		container_of(w, struct drbd_peer_request, w);
2193 	struct drbd_peer_device *peer_device = peer_req->peer_device;
2194 	struct drbd_device *device = peer_device->device;
2195 	sector_t sector = peer_req->i.sector;
2196 	int err = 0, pcmd;
2197 
2198 	if (peer_req->flags & EE_SEND_WRITE_ACK) {
2199 		if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) {
2200 			pcmd = (device->state.conn >= C_SYNC_SOURCE &&
2201 				device->state.conn <= C_PAUSED_SYNC_T &&
2202 				peer_req->flags & EE_MAY_SET_IN_SYNC) ?
2203 				P_RS_WRITE_ACK : P_WRITE_ACK;
2204 			err = drbd_send_ack(peer_device, pcmd, peer_req);
2205 			if (pcmd == P_RS_WRITE_ACK)
2206 				drbd_set_in_sync(device, sector, peer_req->i.size);
2207 		} else {
2208 			err = drbd_send_ack(peer_device, P_NEG_ACK, peer_req);
2209 			/* we expect it to be marked out of sync anyways...
2210 			 * maybe assert this?  */
2211 		}
2212 		dec_unacked(device);
2213 	}
2214 
2215 	/* we delete from the conflict detection hash _after_ we sent out the
2216 	 * P_WRITE_ACK / P_NEG_ACK, to get the sequence number right.  */
2217 	if (peer_req->flags & EE_IN_INTERVAL_TREE) {
2218 		spin_lock_irq(&device->resource->req_lock);
2219 		D_ASSERT(device, !drbd_interval_empty(&peer_req->i));
2220 		drbd_remove_epoch_entry_interval(device, peer_req);
2221 		if (peer_req->flags & EE_RESTART_REQUESTS)
2222 			restart_conflicting_writes(device, sector, peer_req->i.size);
2223 		spin_unlock_irq(&device->resource->req_lock);
2224 	} else
2225 		D_ASSERT(device, drbd_interval_empty(&peer_req->i));
2226 
2227 	drbd_may_finish_epoch(peer_device->connection, peer_req->epoch, EV_PUT + (cancel ? EV_CLEANUP : 0));
2228 
2229 	return err;
2230 }
2231 
2232 static int e_send_ack(struct drbd_work *w, enum drbd_packet ack)
2233 {
2234 	struct drbd_peer_request *peer_req =
2235 		container_of(w, struct drbd_peer_request, w);
2236 	struct drbd_peer_device *peer_device = peer_req->peer_device;
2237 	int err;
2238 
2239 	err = drbd_send_ack(peer_device, ack, peer_req);
2240 	dec_unacked(peer_device->device);
2241 
2242 	return err;
2243 }
2244 
2245 static int e_send_superseded(struct drbd_work *w, int unused)
2246 {
2247 	return e_send_ack(w, P_SUPERSEDED);
2248 }
2249 
2250 static int e_send_retry_write(struct drbd_work *w, int unused)
2251 {
2252 	struct drbd_peer_request *peer_req =
2253 		container_of(w, struct drbd_peer_request, w);
2254 	struct drbd_connection *connection = peer_req->peer_device->connection;
2255 
2256 	return e_send_ack(w, connection->agreed_pro_version >= 100 ?
2257 			     P_RETRY_WRITE : P_SUPERSEDED);
2258 }
2259 
2260 static bool seq_greater(u32 a, u32 b)
2261 {
2262 	/*
2263 	 * We assume 32-bit wrap-around here.
2264 	 * For 24-bit wrap-around, we would have to shift:
2265 	 *  a <<= 8; b <<= 8;
2266 	 */
2267 	return (s32)a - (s32)b > 0;
2268 }
2269 
2270 static u32 seq_max(u32 a, u32 b)
2271 {
2272 	return seq_greater(a, b) ? a : b;
2273 }
2274 
2275 static void update_peer_seq(struct drbd_peer_device *peer_device, unsigned int peer_seq)
2276 {
2277 	struct drbd_device *device = peer_device->device;
2278 	unsigned int newest_peer_seq;
2279 
2280 	if (test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags)) {
2281 		spin_lock(&device->peer_seq_lock);
2282 		newest_peer_seq = seq_max(device->peer_seq, peer_seq);
2283 		device->peer_seq = newest_peer_seq;
2284 		spin_unlock(&device->peer_seq_lock);
2285 		/* wake up only if we actually changed device->peer_seq */
2286 		if (peer_seq == newest_peer_seq)
2287 			wake_up(&device->seq_wait);
2288 	}
2289 }
2290 
2291 static inline int overlaps(sector_t s1, int l1, sector_t s2, int l2)
2292 {
2293 	return !((s1 + (l1>>9) <= s2) || (s1 >= s2 + (l2>>9)));
2294 }
2295 
2296 /* maybe change sync_ee into interval trees as well? */
2297 static bool overlapping_resync_write(struct drbd_device *device, struct drbd_peer_request *peer_req)
2298 {
2299 	struct drbd_peer_request *rs_req;
2300 	bool rv = false;
2301 
2302 	spin_lock_irq(&device->resource->req_lock);
2303 	list_for_each_entry(rs_req, &device->sync_ee, w.list) {
2304 		if (overlaps(peer_req->i.sector, peer_req->i.size,
2305 			     rs_req->i.sector, rs_req->i.size)) {
2306 			rv = true;
2307 			break;
2308 		}
2309 	}
2310 	spin_unlock_irq(&device->resource->req_lock);
2311 
2312 	return rv;
2313 }
2314 
2315 /* Called from receive_Data.
2316  * Synchronize packets on sock with packets on msock.
2317  *
2318  * This is here so even when a P_DATA packet traveling via sock overtook an Ack
2319  * packet traveling on msock, they are still processed in the order they have
2320  * been sent.
2321  *
2322  * Note: we don't care for Ack packets overtaking P_DATA packets.
2323  *
2324  * In case packet_seq is larger than device->peer_seq number, there are
2325  * outstanding packets on the msock. We wait for them to arrive.
2326  * In case we are the logically next packet, we update device->peer_seq
2327  * ourselves. Correctly handles 32bit wrap around.
2328  *
2329  * Assume we have a 10 GBit connection, that is about 1<<30 byte per second,
2330  * about 1<<21 sectors per second. So "worst" case, we have 1<<3 == 8 seconds
2331  * for the 24bit wrap (historical atomic_t guarantee on some archs), and we have
2332  * 1<<9 == 512 seconds aka ages for the 32bit wrap around...
2333  *
2334  * returns 0 if we may process the packet,
2335  * -ERESTARTSYS if we were interrupted (by disconnect signal). */
2336 static int wait_for_and_update_peer_seq(struct drbd_peer_device *peer_device, const u32 peer_seq)
2337 {
2338 	struct drbd_device *device = peer_device->device;
2339 	DEFINE_WAIT(wait);
2340 	long timeout;
2341 	int ret = 0, tp;
2342 
2343 	if (!test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags))
2344 		return 0;
2345 
2346 	spin_lock(&device->peer_seq_lock);
2347 	for (;;) {
2348 		if (!seq_greater(peer_seq - 1, device->peer_seq)) {
2349 			device->peer_seq = seq_max(device->peer_seq, peer_seq);
2350 			break;
2351 		}
2352 
2353 		if (signal_pending(current)) {
2354 			ret = -ERESTARTSYS;
2355 			break;
2356 		}
2357 
2358 		rcu_read_lock();
2359 		tp = rcu_dereference(peer_device->connection->net_conf)->two_primaries;
2360 		rcu_read_unlock();
2361 
2362 		if (!tp)
2363 			break;
2364 
2365 		/* Only need to wait if two_primaries is enabled */
2366 		prepare_to_wait(&device->seq_wait, &wait, TASK_INTERRUPTIBLE);
2367 		spin_unlock(&device->peer_seq_lock);
2368 		rcu_read_lock();
2369 		timeout = rcu_dereference(peer_device->connection->net_conf)->ping_timeo*HZ/10;
2370 		rcu_read_unlock();
2371 		timeout = schedule_timeout(timeout);
2372 		spin_lock(&device->peer_seq_lock);
2373 		if (!timeout) {
2374 			ret = -ETIMEDOUT;
2375 			drbd_err(device, "Timed out waiting for missing ack packets; disconnecting\n");
2376 			break;
2377 		}
2378 	}
2379 	spin_unlock(&device->peer_seq_lock);
2380 	finish_wait(&device->seq_wait, &wait);
2381 	return ret;
2382 }
2383 
2384 /* see also bio_flags_to_wire()
2385  * DRBD_REQ_*, because we need to semantically map the flags to data packet
2386  * flags and back. We may replicate to other kernel versions. */
2387 static unsigned long wire_flags_to_bio_flags(u32 dpf)
2388 {
2389 	return  (dpf & DP_RW_SYNC ? REQ_SYNC : 0) |
2390 		(dpf & DP_FUA ? REQ_FUA : 0) |
2391 		(dpf & DP_FLUSH ? REQ_PREFLUSH : 0);
2392 }
2393 
2394 static unsigned long wire_flags_to_bio_op(u32 dpf)
2395 {
2396 	if (dpf & DP_ZEROES)
2397 		return REQ_OP_WRITE_ZEROES;
2398 	if (dpf & DP_DISCARD)
2399 		return REQ_OP_DISCARD;
2400 	else
2401 		return REQ_OP_WRITE;
2402 }
2403 
2404 static void fail_postponed_requests(struct drbd_device *device, sector_t sector,
2405 				    unsigned int size)
2406 {
2407 	struct drbd_interval *i;
2408 
2409     repeat:
2410 	drbd_for_each_overlap(i, &device->write_requests, sector, size) {
2411 		struct drbd_request *req;
2412 		struct bio_and_error m;
2413 
2414 		if (!i->local)
2415 			continue;
2416 		req = container_of(i, struct drbd_request, i);
2417 		if (!(req->rq_state & RQ_POSTPONED))
2418 			continue;
2419 		req->rq_state &= ~RQ_POSTPONED;
2420 		__req_mod(req, NEG_ACKED, &m);
2421 		spin_unlock_irq(&device->resource->req_lock);
2422 		if (m.bio)
2423 			complete_master_bio(device, &m);
2424 		spin_lock_irq(&device->resource->req_lock);
2425 		goto repeat;
2426 	}
2427 }
2428 
2429 static int handle_write_conflicts(struct drbd_device *device,
2430 				  struct drbd_peer_request *peer_req)
2431 {
2432 	struct drbd_connection *connection = peer_req->peer_device->connection;
2433 	bool resolve_conflicts = test_bit(RESOLVE_CONFLICTS, &connection->flags);
2434 	sector_t sector = peer_req->i.sector;
2435 	const unsigned int size = peer_req->i.size;
2436 	struct drbd_interval *i;
2437 	bool equal;
2438 	int err;
2439 
2440 	/*
2441 	 * Inserting the peer request into the write_requests tree will prevent
2442 	 * new conflicting local requests from being added.
2443 	 */
2444 	drbd_insert_interval(&device->write_requests, &peer_req->i);
2445 
2446     repeat:
2447 	drbd_for_each_overlap(i, &device->write_requests, sector, size) {
2448 		if (i == &peer_req->i)
2449 			continue;
2450 		if (i->completed)
2451 			continue;
2452 
2453 		if (!i->local) {
2454 			/*
2455 			 * Our peer has sent a conflicting remote request; this
2456 			 * should not happen in a two-node setup.  Wait for the
2457 			 * earlier peer request to complete.
2458 			 */
2459 			err = drbd_wait_misc(device, i);
2460 			if (err)
2461 				goto out;
2462 			goto repeat;
2463 		}
2464 
2465 		equal = i->sector == sector && i->size == size;
2466 		if (resolve_conflicts) {
2467 			/*
2468 			 * If the peer request is fully contained within the
2469 			 * overlapping request, it can be considered overwritten
2470 			 * and thus superseded; otherwise, it will be retried
2471 			 * once all overlapping requests have completed.
2472 			 */
2473 			bool superseded = i->sector <= sector && i->sector +
2474 				       (i->size >> 9) >= sector + (size >> 9);
2475 
2476 			if (!equal)
2477 				drbd_alert(device, "Concurrent writes detected: "
2478 					       "local=%llus +%u, remote=%llus +%u, "
2479 					       "assuming %s came first\n",
2480 					  (unsigned long long)i->sector, i->size,
2481 					  (unsigned long long)sector, size,
2482 					  superseded ? "local" : "remote");
2483 
2484 			peer_req->w.cb = superseded ? e_send_superseded :
2485 						   e_send_retry_write;
2486 			list_add_tail(&peer_req->w.list, &device->done_ee);
2487 			queue_work(connection->ack_sender, &peer_req->peer_device->send_acks_work);
2488 
2489 			err = -ENOENT;
2490 			goto out;
2491 		} else {
2492 			struct drbd_request *req =
2493 				container_of(i, struct drbd_request, i);
2494 
2495 			if (!equal)
2496 				drbd_alert(device, "Concurrent writes detected: "
2497 					       "local=%llus +%u, remote=%llus +%u\n",
2498 					  (unsigned long long)i->sector, i->size,
2499 					  (unsigned long long)sector, size);
2500 
2501 			if (req->rq_state & RQ_LOCAL_PENDING ||
2502 			    !(req->rq_state & RQ_POSTPONED)) {
2503 				/*
2504 				 * Wait for the node with the discard flag to
2505 				 * decide if this request has been superseded
2506 				 * or needs to be retried.
2507 				 * Requests that have been superseded will
2508 				 * disappear from the write_requests tree.
2509 				 *
2510 				 * In addition, wait for the conflicting
2511 				 * request to finish locally before submitting
2512 				 * the conflicting peer request.
2513 				 */
2514 				err = drbd_wait_misc(device, &req->i);
2515 				if (err) {
2516 					_conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD);
2517 					fail_postponed_requests(device, sector, size);
2518 					goto out;
2519 				}
2520 				goto repeat;
2521 			}
2522 			/*
2523 			 * Remember to restart the conflicting requests after
2524 			 * the new peer request has completed.
2525 			 */
2526 			peer_req->flags |= EE_RESTART_REQUESTS;
2527 		}
2528 	}
2529 	err = 0;
2530 
2531     out:
2532 	if (err)
2533 		drbd_remove_epoch_entry_interval(device, peer_req);
2534 	return err;
2535 }
2536 
2537 /* mirrored write */
2538 static int receive_Data(struct drbd_connection *connection, struct packet_info *pi)
2539 {
2540 	struct drbd_peer_device *peer_device;
2541 	struct drbd_device *device;
2542 	struct net_conf *nc;
2543 	sector_t sector;
2544 	struct drbd_peer_request *peer_req;
2545 	struct p_data *p = pi->data;
2546 	u32 peer_seq = be32_to_cpu(p->seq_num);
2547 	int op, op_flags;
2548 	u32 dp_flags;
2549 	int err, tp;
2550 
2551 	peer_device = conn_peer_device(connection, pi->vnr);
2552 	if (!peer_device)
2553 		return -EIO;
2554 	device = peer_device->device;
2555 
2556 	if (!get_ldev(device)) {
2557 		int err2;
2558 
2559 		err = wait_for_and_update_peer_seq(peer_device, peer_seq);
2560 		drbd_send_ack_dp(peer_device, P_NEG_ACK, p, pi->size);
2561 		atomic_inc(&connection->current_epoch->epoch_size);
2562 		err2 = drbd_drain_block(peer_device, pi->size);
2563 		if (!err)
2564 			err = err2;
2565 		return err;
2566 	}
2567 
2568 	/*
2569 	 * Corresponding put_ldev done either below (on various errors), or in
2570 	 * drbd_peer_request_endio, if we successfully submit the data at the
2571 	 * end of this function.
2572 	 */
2573 
2574 	sector = be64_to_cpu(p->sector);
2575 	peer_req = read_in_block(peer_device, p->block_id, sector, pi);
2576 	if (!peer_req) {
2577 		put_ldev(device);
2578 		return -EIO;
2579 	}
2580 
2581 	peer_req->w.cb = e_end_block;
2582 	peer_req->submit_jif = jiffies;
2583 	peer_req->flags |= EE_APPLICATION;
2584 
2585 	dp_flags = be32_to_cpu(p->dp_flags);
2586 	op = wire_flags_to_bio_op(dp_flags);
2587 	op_flags = wire_flags_to_bio_flags(dp_flags);
2588 	if (pi->cmd == P_TRIM) {
2589 		D_ASSERT(peer_device, peer_req->i.size > 0);
2590 		D_ASSERT(peer_device, op == REQ_OP_DISCARD);
2591 		D_ASSERT(peer_device, peer_req->pages == NULL);
2592 		/* need to play safe: an older DRBD sender
2593 		 * may mean zero-out while sending P_TRIM. */
2594 		if (0 == (connection->agreed_features & DRBD_FF_WZEROES))
2595 			peer_req->flags |= EE_ZEROOUT;
2596 	} else if (pi->cmd == P_ZEROES) {
2597 		D_ASSERT(peer_device, peer_req->i.size > 0);
2598 		D_ASSERT(peer_device, op == REQ_OP_WRITE_ZEROES);
2599 		D_ASSERT(peer_device, peer_req->pages == NULL);
2600 		/* Do (not) pass down BLKDEV_ZERO_NOUNMAP? */
2601 		if (dp_flags & DP_DISCARD)
2602 			peer_req->flags |= EE_TRIM;
2603 	} else if (peer_req->pages == NULL) {
2604 		D_ASSERT(device, peer_req->i.size == 0);
2605 		D_ASSERT(device, dp_flags & DP_FLUSH);
2606 	}
2607 
2608 	if (dp_flags & DP_MAY_SET_IN_SYNC)
2609 		peer_req->flags |= EE_MAY_SET_IN_SYNC;
2610 
2611 	spin_lock(&connection->epoch_lock);
2612 	peer_req->epoch = connection->current_epoch;
2613 	atomic_inc(&peer_req->epoch->epoch_size);
2614 	atomic_inc(&peer_req->epoch->active);
2615 	spin_unlock(&connection->epoch_lock);
2616 
2617 	rcu_read_lock();
2618 	nc = rcu_dereference(peer_device->connection->net_conf);
2619 	tp = nc->two_primaries;
2620 	if (peer_device->connection->agreed_pro_version < 100) {
2621 		switch (nc->wire_protocol) {
2622 		case DRBD_PROT_C:
2623 			dp_flags |= DP_SEND_WRITE_ACK;
2624 			break;
2625 		case DRBD_PROT_B:
2626 			dp_flags |= DP_SEND_RECEIVE_ACK;
2627 			break;
2628 		}
2629 	}
2630 	rcu_read_unlock();
2631 
2632 	if (dp_flags & DP_SEND_WRITE_ACK) {
2633 		peer_req->flags |= EE_SEND_WRITE_ACK;
2634 		inc_unacked(device);
2635 		/* corresponding dec_unacked() in e_end_block()
2636 		 * respective _drbd_clear_done_ee */
2637 	}
2638 
2639 	if (dp_flags & DP_SEND_RECEIVE_ACK) {
2640 		/* I really don't like it that the receiver thread
2641 		 * sends on the msock, but anyways */
2642 		drbd_send_ack(peer_device, P_RECV_ACK, peer_req);
2643 	}
2644 
2645 	if (tp) {
2646 		/* two primaries implies protocol C */
2647 		D_ASSERT(device, dp_flags & DP_SEND_WRITE_ACK);
2648 		peer_req->flags |= EE_IN_INTERVAL_TREE;
2649 		err = wait_for_and_update_peer_seq(peer_device, peer_seq);
2650 		if (err)
2651 			goto out_interrupted;
2652 		spin_lock_irq(&device->resource->req_lock);
2653 		err = handle_write_conflicts(device, peer_req);
2654 		if (err) {
2655 			spin_unlock_irq(&device->resource->req_lock);
2656 			if (err == -ENOENT) {
2657 				put_ldev(device);
2658 				return 0;
2659 			}
2660 			goto out_interrupted;
2661 		}
2662 	} else {
2663 		update_peer_seq(peer_device, peer_seq);
2664 		spin_lock_irq(&device->resource->req_lock);
2665 	}
2666 	/* TRIM and is processed synchronously,
2667 	 * we wait for all pending requests, respectively wait for
2668 	 * active_ee to become empty in drbd_submit_peer_request();
2669 	 * better not add ourselves here. */
2670 	if ((peer_req->flags & (EE_TRIM | EE_ZEROOUT)) == 0)
2671 		list_add_tail(&peer_req->w.list, &device->active_ee);
2672 	spin_unlock_irq(&device->resource->req_lock);
2673 
2674 	if (device->state.conn == C_SYNC_TARGET)
2675 		wait_event(device->ee_wait, !overlapping_resync_write(device, peer_req));
2676 
2677 	if (device->state.pdsk < D_INCONSISTENT) {
2678 		/* In case we have the only disk of the cluster, */
2679 		drbd_set_out_of_sync(device, peer_req->i.sector, peer_req->i.size);
2680 		peer_req->flags &= ~EE_MAY_SET_IN_SYNC;
2681 		drbd_al_begin_io(device, &peer_req->i);
2682 		peer_req->flags |= EE_CALL_AL_COMPLETE_IO;
2683 	}
2684 
2685 	err = drbd_submit_peer_request(device, peer_req, op, op_flags,
2686 				       DRBD_FAULT_DT_WR);
2687 	if (!err)
2688 		return 0;
2689 
2690 	/* don't care for the reason here */
2691 	drbd_err(device, "submit failed, triggering re-connect\n");
2692 	spin_lock_irq(&device->resource->req_lock);
2693 	list_del(&peer_req->w.list);
2694 	drbd_remove_epoch_entry_interval(device, peer_req);
2695 	spin_unlock_irq(&device->resource->req_lock);
2696 	if (peer_req->flags & EE_CALL_AL_COMPLETE_IO) {
2697 		peer_req->flags &= ~EE_CALL_AL_COMPLETE_IO;
2698 		drbd_al_complete_io(device, &peer_req->i);
2699 	}
2700 
2701 out_interrupted:
2702 	drbd_may_finish_epoch(connection, peer_req->epoch, EV_PUT | EV_CLEANUP);
2703 	put_ldev(device);
2704 	drbd_free_peer_req(device, peer_req);
2705 	return err;
2706 }
2707 
2708 /* We may throttle resync, if the lower device seems to be busy,
2709  * and current sync rate is above c_min_rate.
2710  *
2711  * To decide whether or not the lower device is busy, we use a scheme similar
2712  * to MD RAID is_mddev_idle(): if the partition stats reveal "significant"
2713  * (more than 64 sectors) of activity we cannot account for with our own resync
2714  * activity, it obviously is "busy".
2715  *
2716  * The current sync rate used here uses only the most recent two step marks,
2717  * to have a short time average so we can react faster.
2718  */
2719 bool drbd_rs_should_slow_down(struct drbd_device *device, sector_t sector,
2720 		bool throttle_if_app_is_waiting)
2721 {
2722 	struct lc_element *tmp;
2723 	bool throttle = drbd_rs_c_min_rate_throttle(device);
2724 
2725 	if (!throttle || throttle_if_app_is_waiting)
2726 		return throttle;
2727 
2728 	spin_lock_irq(&device->al_lock);
2729 	tmp = lc_find(device->resync, BM_SECT_TO_EXT(sector));
2730 	if (tmp) {
2731 		struct bm_extent *bm_ext = lc_entry(tmp, struct bm_extent, lce);
2732 		if (test_bit(BME_PRIORITY, &bm_ext->flags))
2733 			throttle = false;
2734 		/* Do not slow down if app IO is already waiting for this extent,
2735 		 * and our progress is necessary for application IO to complete. */
2736 	}
2737 	spin_unlock_irq(&device->al_lock);
2738 
2739 	return throttle;
2740 }
2741 
2742 bool drbd_rs_c_min_rate_throttle(struct drbd_device *device)
2743 {
2744 	struct gendisk *disk = device->ldev->backing_bdev->bd_disk;
2745 	unsigned long db, dt, dbdt;
2746 	unsigned int c_min_rate;
2747 	int curr_events;
2748 
2749 	rcu_read_lock();
2750 	c_min_rate = rcu_dereference(device->ldev->disk_conf)->c_min_rate;
2751 	rcu_read_unlock();
2752 
2753 	/* feature disabled? */
2754 	if (c_min_rate == 0)
2755 		return false;
2756 
2757 	curr_events = (int)part_stat_read_accum(disk->part0, sectors) -
2758 			atomic_read(&device->rs_sect_ev);
2759 
2760 	if (atomic_read(&device->ap_actlog_cnt)
2761 	    || curr_events - device->rs_last_events > 64) {
2762 		unsigned long rs_left;
2763 		int i;
2764 
2765 		device->rs_last_events = curr_events;
2766 
2767 		/* sync speed average over the last 2*DRBD_SYNC_MARK_STEP,
2768 		 * approx. */
2769 		i = (device->rs_last_mark + DRBD_SYNC_MARKS-1) % DRBD_SYNC_MARKS;
2770 
2771 		if (device->state.conn == C_VERIFY_S || device->state.conn == C_VERIFY_T)
2772 			rs_left = device->ov_left;
2773 		else
2774 			rs_left = drbd_bm_total_weight(device) - device->rs_failed;
2775 
2776 		dt = ((long)jiffies - (long)device->rs_mark_time[i]) / HZ;
2777 		if (!dt)
2778 			dt++;
2779 		db = device->rs_mark_left[i] - rs_left;
2780 		dbdt = Bit2KB(db/dt);
2781 
2782 		if (dbdt > c_min_rate)
2783 			return true;
2784 	}
2785 	return false;
2786 }
2787 
2788 static int receive_DataRequest(struct drbd_connection *connection, struct packet_info *pi)
2789 {
2790 	struct drbd_peer_device *peer_device;
2791 	struct drbd_device *device;
2792 	sector_t sector;
2793 	sector_t capacity;
2794 	struct drbd_peer_request *peer_req;
2795 	struct digest_info *di = NULL;
2796 	int size, verb;
2797 	unsigned int fault_type;
2798 	struct p_block_req *p =	pi->data;
2799 
2800 	peer_device = conn_peer_device(connection, pi->vnr);
2801 	if (!peer_device)
2802 		return -EIO;
2803 	device = peer_device->device;
2804 	capacity = get_capacity(device->vdisk);
2805 
2806 	sector = be64_to_cpu(p->sector);
2807 	size   = be32_to_cpu(p->blksize);
2808 
2809 	if (size <= 0 || !IS_ALIGNED(size, 512) || size > DRBD_MAX_BIO_SIZE) {
2810 		drbd_err(device, "%s:%d: sector: %llus, size: %u\n", __FILE__, __LINE__,
2811 				(unsigned long long)sector, size);
2812 		return -EINVAL;
2813 	}
2814 	if (sector + (size>>9) > capacity) {
2815 		drbd_err(device, "%s:%d: sector: %llus, size: %u\n", __FILE__, __LINE__,
2816 				(unsigned long long)sector, size);
2817 		return -EINVAL;
2818 	}
2819 
2820 	if (!get_ldev_if_state(device, D_UP_TO_DATE)) {
2821 		verb = 1;
2822 		switch (pi->cmd) {
2823 		case P_DATA_REQUEST:
2824 			drbd_send_ack_rp(peer_device, P_NEG_DREPLY, p);
2825 			break;
2826 		case P_RS_THIN_REQ:
2827 		case P_RS_DATA_REQUEST:
2828 		case P_CSUM_RS_REQUEST:
2829 		case P_OV_REQUEST:
2830 			drbd_send_ack_rp(peer_device, P_NEG_RS_DREPLY , p);
2831 			break;
2832 		case P_OV_REPLY:
2833 			verb = 0;
2834 			dec_rs_pending(device);
2835 			drbd_send_ack_ex(peer_device, P_OV_RESULT, sector, size, ID_IN_SYNC);
2836 			break;
2837 		default:
2838 			BUG();
2839 		}
2840 		if (verb && __ratelimit(&drbd_ratelimit_state))
2841 			drbd_err(device, "Can not satisfy peer's read request, "
2842 			    "no local data.\n");
2843 
2844 		/* drain possibly payload */
2845 		return drbd_drain_block(peer_device, pi->size);
2846 	}
2847 
2848 	/* GFP_NOIO, because we must not cause arbitrary write-out: in a DRBD
2849 	 * "criss-cross" setup, that might cause write-out on some other DRBD,
2850 	 * which in turn might block on the other node at this very place.  */
2851 	peer_req = drbd_alloc_peer_req(peer_device, p->block_id, sector, size,
2852 			size, GFP_NOIO);
2853 	if (!peer_req) {
2854 		put_ldev(device);
2855 		return -ENOMEM;
2856 	}
2857 
2858 	switch (pi->cmd) {
2859 	case P_DATA_REQUEST:
2860 		peer_req->w.cb = w_e_end_data_req;
2861 		fault_type = DRBD_FAULT_DT_RD;
2862 		/* application IO, don't drbd_rs_begin_io */
2863 		peer_req->flags |= EE_APPLICATION;
2864 		goto submit;
2865 
2866 	case P_RS_THIN_REQ:
2867 		/* If at some point in the future we have a smart way to
2868 		   find out if this data block is completely deallocated,
2869 		   then we would do something smarter here than reading
2870 		   the block... */
2871 		peer_req->flags |= EE_RS_THIN_REQ;
2872 		fallthrough;
2873 	case P_RS_DATA_REQUEST:
2874 		peer_req->w.cb = w_e_end_rsdata_req;
2875 		fault_type = DRBD_FAULT_RS_RD;
2876 		/* used in the sector offset progress display */
2877 		device->bm_resync_fo = BM_SECT_TO_BIT(sector);
2878 		break;
2879 
2880 	case P_OV_REPLY:
2881 	case P_CSUM_RS_REQUEST:
2882 		fault_type = DRBD_FAULT_RS_RD;
2883 		di = kmalloc(sizeof(*di) + pi->size, GFP_NOIO);
2884 		if (!di)
2885 			goto out_free_e;
2886 
2887 		di->digest_size = pi->size;
2888 		di->digest = (((char *)di)+sizeof(struct digest_info));
2889 
2890 		peer_req->digest = di;
2891 		peer_req->flags |= EE_HAS_DIGEST;
2892 
2893 		if (drbd_recv_all(peer_device->connection, di->digest, pi->size))
2894 			goto out_free_e;
2895 
2896 		if (pi->cmd == P_CSUM_RS_REQUEST) {
2897 			D_ASSERT(device, peer_device->connection->agreed_pro_version >= 89);
2898 			peer_req->w.cb = w_e_end_csum_rs_req;
2899 			/* used in the sector offset progress display */
2900 			device->bm_resync_fo = BM_SECT_TO_BIT(sector);
2901 			/* remember to report stats in drbd_resync_finished */
2902 			device->use_csums = true;
2903 		} else if (pi->cmd == P_OV_REPLY) {
2904 			/* track progress, we may need to throttle */
2905 			atomic_add(size >> 9, &device->rs_sect_in);
2906 			peer_req->w.cb = w_e_end_ov_reply;
2907 			dec_rs_pending(device);
2908 			/* drbd_rs_begin_io done when we sent this request,
2909 			 * but accounting still needs to be done. */
2910 			goto submit_for_resync;
2911 		}
2912 		break;
2913 
2914 	case P_OV_REQUEST:
2915 		if (device->ov_start_sector == ~(sector_t)0 &&
2916 		    peer_device->connection->agreed_pro_version >= 90) {
2917 			unsigned long now = jiffies;
2918 			int i;
2919 			device->ov_start_sector = sector;
2920 			device->ov_position = sector;
2921 			device->ov_left = drbd_bm_bits(device) - BM_SECT_TO_BIT(sector);
2922 			device->rs_total = device->ov_left;
2923 			for (i = 0; i < DRBD_SYNC_MARKS; i++) {
2924 				device->rs_mark_left[i] = device->ov_left;
2925 				device->rs_mark_time[i] = now;
2926 			}
2927 			drbd_info(device, "Online Verify start sector: %llu\n",
2928 					(unsigned long long)sector);
2929 		}
2930 		peer_req->w.cb = w_e_end_ov_req;
2931 		fault_type = DRBD_FAULT_RS_RD;
2932 		break;
2933 
2934 	default:
2935 		BUG();
2936 	}
2937 
2938 	/* Throttle, drbd_rs_begin_io and submit should become asynchronous
2939 	 * wrt the receiver, but it is not as straightforward as it may seem.
2940 	 * Various places in the resync start and stop logic assume resync
2941 	 * requests are processed in order, requeuing this on the worker thread
2942 	 * introduces a bunch of new code for synchronization between threads.
2943 	 *
2944 	 * Unlimited throttling before drbd_rs_begin_io may stall the resync
2945 	 * "forever", throttling after drbd_rs_begin_io will lock that extent
2946 	 * for application writes for the same time.  For now, just throttle
2947 	 * here, where the rest of the code expects the receiver to sleep for
2948 	 * a while, anyways.
2949 	 */
2950 
2951 	/* Throttle before drbd_rs_begin_io, as that locks out application IO;
2952 	 * this defers syncer requests for some time, before letting at least
2953 	 * on request through.  The resync controller on the receiving side
2954 	 * will adapt to the incoming rate accordingly.
2955 	 *
2956 	 * We cannot throttle here if remote is Primary/SyncTarget:
2957 	 * we would also throttle its application reads.
2958 	 * In that case, throttling is done on the SyncTarget only.
2959 	 */
2960 
2961 	/* Even though this may be a resync request, we do add to "read_ee";
2962 	 * "sync_ee" is only used for resync WRITEs.
2963 	 * Add to list early, so debugfs can find this request
2964 	 * even if we have to sleep below. */
2965 	spin_lock_irq(&device->resource->req_lock);
2966 	list_add_tail(&peer_req->w.list, &device->read_ee);
2967 	spin_unlock_irq(&device->resource->req_lock);
2968 
2969 	update_receiver_timing_details(connection, drbd_rs_should_slow_down);
2970 	if (device->state.peer != R_PRIMARY
2971 	&& drbd_rs_should_slow_down(device, sector, false))
2972 		schedule_timeout_uninterruptible(HZ/10);
2973 	update_receiver_timing_details(connection, drbd_rs_begin_io);
2974 	if (drbd_rs_begin_io(device, sector))
2975 		goto out_free_e;
2976 
2977 submit_for_resync:
2978 	atomic_add(size >> 9, &device->rs_sect_ev);
2979 
2980 submit:
2981 	update_receiver_timing_details(connection, drbd_submit_peer_request);
2982 	inc_unacked(device);
2983 	if (drbd_submit_peer_request(device, peer_req, REQ_OP_READ, 0,
2984 				     fault_type) == 0)
2985 		return 0;
2986 
2987 	/* don't care for the reason here */
2988 	drbd_err(device, "submit failed, triggering re-connect\n");
2989 
2990 out_free_e:
2991 	spin_lock_irq(&device->resource->req_lock);
2992 	list_del(&peer_req->w.list);
2993 	spin_unlock_irq(&device->resource->req_lock);
2994 	/* no drbd_rs_complete_io(), we are dropping the connection anyways */
2995 
2996 	put_ldev(device);
2997 	drbd_free_peer_req(device, peer_req);
2998 	return -EIO;
2999 }
3000 
3001 /*
3002  * drbd_asb_recover_0p  -  Recover after split-brain with no remaining primaries
3003  */
3004 static int drbd_asb_recover_0p(struct drbd_peer_device *peer_device) __must_hold(local)
3005 {
3006 	struct drbd_device *device = peer_device->device;
3007 	int self, peer, rv = -100;
3008 	unsigned long ch_self, ch_peer;
3009 	enum drbd_after_sb_p after_sb_0p;
3010 
3011 	self = device->ldev->md.uuid[UI_BITMAP] & 1;
3012 	peer = device->p_uuid[UI_BITMAP] & 1;
3013 
3014 	ch_peer = device->p_uuid[UI_SIZE];
3015 	ch_self = device->comm_bm_set;
3016 
3017 	rcu_read_lock();
3018 	after_sb_0p = rcu_dereference(peer_device->connection->net_conf)->after_sb_0p;
3019 	rcu_read_unlock();
3020 	switch (after_sb_0p) {
3021 	case ASB_CONSENSUS:
3022 	case ASB_DISCARD_SECONDARY:
3023 	case ASB_CALL_HELPER:
3024 	case ASB_VIOLENTLY:
3025 		drbd_err(device, "Configuration error.\n");
3026 		break;
3027 	case ASB_DISCONNECT:
3028 		break;
3029 	case ASB_DISCARD_YOUNGER_PRI:
3030 		if (self == 0 && peer == 1) {
3031 			rv = -1;
3032 			break;
3033 		}
3034 		if (self == 1 && peer == 0) {
3035 			rv =  1;
3036 			break;
3037 		}
3038 		fallthrough;	/* to one of the other strategies */
3039 	case ASB_DISCARD_OLDER_PRI:
3040 		if (self == 0 && peer == 1) {
3041 			rv = 1;
3042 			break;
3043 		}
3044 		if (self == 1 && peer == 0) {
3045 			rv = -1;
3046 			break;
3047 		}
3048 		/* Else fall through to one of the other strategies... */
3049 		drbd_warn(device, "Discard younger/older primary did not find a decision\n"
3050 		     "Using discard-least-changes instead\n");
3051 		fallthrough;
3052 	case ASB_DISCARD_ZERO_CHG:
3053 		if (ch_peer == 0 && ch_self == 0) {
3054 			rv = test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags)
3055 				? -1 : 1;
3056 			break;
3057 		} else {
3058 			if (ch_peer == 0) { rv =  1; break; }
3059 			if (ch_self == 0) { rv = -1; break; }
3060 		}
3061 		if (after_sb_0p == ASB_DISCARD_ZERO_CHG)
3062 			break;
3063 		fallthrough;
3064 	case ASB_DISCARD_LEAST_CHG:
3065 		if	(ch_self < ch_peer)
3066 			rv = -1;
3067 		else if (ch_self > ch_peer)
3068 			rv =  1;
3069 		else /* ( ch_self == ch_peer ) */
3070 		     /* Well, then use something else. */
3071 			rv = test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags)
3072 				? -1 : 1;
3073 		break;
3074 	case ASB_DISCARD_LOCAL:
3075 		rv = -1;
3076 		break;
3077 	case ASB_DISCARD_REMOTE:
3078 		rv =  1;
3079 	}
3080 
3081 	return rv;
3082 }
3083 
3084 /*
3085  * drbd_asb_recover_1p  -  Recover after split-brain with one remaining primary
3086  */
3087 static int drbd_asb_recover_1p(struct drbd_peer_device *peer_device) __must_hold(local)
3088 {
3089 	struct drbd_device *device = peer_device->device;
3090 	int hg, rv = -100;
3091 	enum drbd_after_sb_p after_sb_1p;
3092 
3093 	rcu_read_lock();
3094 	after_sb_1p = rcu_dereference(peer_device->connection->net_conf)->after_sb_1p;
3095 	rcu_read_unlock();
3096 	switch (after_sb_1p) {
3097 	case ASB_DISCARD_YOUNGER_PRI:
3098 	case ASB_DISCARD_OLDER_PRI:
3099 	case ASB_DISCARD_LEAST_CHG:
3100 	case ASB_DISCARD_LOCAL:
3101 	case ASB_DISCARD_REMOTE:
3102 	case ASB_DISCARD_ZERO_CHG:
3103 		drbd_err(device, "Configuration error.\n");
3104 		break;
3105 	case ASB_DISCONNECT:
3106 		break;
3107 	case ASB_CONSENSUS:
3108 		hg = drbd_asb_recover_0p(peer_device);
3109 		if (hg == -1 && device->state.role == R_SECONDARY)
3110 			rv = hg;
3111 		if (hg == 1  && device->state.role == R_PRIMARY)
3112 			rv = hg;
3113 		break;
3114 	case ASB_VIOLENTLY:
3115 		rv = drbd_asb_recover_0p(peer_device);
3116 		break;
3117 	case ASB_DISCARD_SECONDARY:
3118 		return device->state.role == R_PRIMARY ? 1 : -1;
3119 	case ASB_CALL_HELPER:
3120 		hg = drbd_asb_recover_0p(peer_device);
3121 		if (hg == -1 && device->state.role == R_PRIMARY) {
3122 			enum drbd_state_rv rv2;
3123 
3124 			 /* drbd_change_state() does not sleep while in SS_IN_TRANSIENT_STATE,
3125 			  * we might be here in C_WF_REPORT_PARAMS which is transient.
3126 			  * we do not need to wait for the after state change work either. */
3127 			rv2 = drbd_change_state(device, CS_VERBOSE, NS(role, R_SECONDARY));
3128 			if (rv2 != SS_SUCCESS) {
3129 				drbd_khelper(device, "pri-lost-after-sb");
3130 			} else {
3131 				drbd_warn(device, "Successfully gave up primary role.\n");
3132 				rv = hg;
3133 			}
3134 		} else
3135 			rv = hg;
3136 	}
3137 
3138 	return rv;
3139 }
3140 
3141 /*
3142  * drbd_asb_recover_2p  -  Recover after split-brain with two remaining primaries
3143  */
3144 static int drbd_asb_recover_2p(struct drbd_peer_device *peer_device) __must_hold(local)
3145 {
3146 	struct drbd_device *device = peer_device->device;
3147 	int hg, rv = -100;
3148 	enum drbd_after_sb_p after_sb_2p;
3149 
3150 	rcu_read_lock();
3151 	after_sb_2p = rcu_dereference(peer_device->connection->net_conf)->after_sb_2p;
3152 	rcu_read_unlock();
3153 	switch (after_sb_2p) {
3154 	case ASB_DISCARD_YOUNGER_PRI:
3155 	case ASB_DISCARD_OLDER_PRI:
3156 	case ASB_DISCARD_LEAST_CHG:
3157 	case ASB_DISCARD_LOCAL:
3158 	case ASB_DISCARD_REMOTE:
3159 	case ASB_CONSENSUS:
3160 	case ASB_DISCARD_SECONDARY:
3161 	case ASB_DISCARD_ZERO_CHG:
3162 		drbd_err(device, "Configuration error.\n");
3163 		break;
3164 	case ASB_VIOLENTLY:
3165 		rv = drbd_asb_recover_0p(peer_device);
3166 		break;
3167 	case ASB_DISCONNECT:
3168 		break;
3169 	case ASB_CALL_HELPER:
3170 		hg = drbd_asb_recover_0p(peer_device);
3171 		if (hg == -1) {
3172 			enum drbd_state_rv rv2;
3173 
3174 			 /* drbd_change_state() does not sleep while in SS_IN_TRANSIENT_STATE,
3175 			  * we might be here in C_WF_REPORT_PARAMS which is transient.
3176 			  * we do not need to wait for the after state change work either. */
3177 			rv2 = drbd_change_state(device, CS_VERBOSE, NS(role, R_SECONDARY));
3178 			if (rv2 != SS_SUCCESS) {
3179 				drbd_khelper(device, "pri-lost-after-sb");
3180 			} else {
3181 				drbd_warn(device, "Successfully gave up primary role.\n");
3182 				rv = hg;
3183 			}
3184 		} else
3185 			rv = hg;
3186 	}
3187 
3188 	return rv;
3189 }
3190 
3191 static void drbd_uuid_dump(struct drbd_device *device, char *text, u64 *uuid,
3192 			   u64 bits, u64 flags)
3193 {
3194 	if (!uuid) {
3195 		drbd_info(device, "%s uuid info vanished while I was looking!\n", text);
3196 		return;
3197 	}
3198 	drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX bits:%llu flags:%llX\n",
3199 	     text,
3200 	     (unsigned long long)uuid[UI_CURRENT],
3201 	     (unsigned long long)uuid[UI_BITMAP],
3202 	     (unsigned long long)uuid[UI_HISTORY_START],
3203 	     (unsigned long long)uuid[UI_HISTORY_END],
3204 	     (unsigned long long)bits,
3205 	     (unsigned long long)flags);
3206 }
3207 
3208 /*
3209   100	after split brain try auto recover
3210     2	C_SYNC_SOURCE set BitMap
3211     1	C_SYNC_SOURCE use BitMap
3212     0	no Sync
3213    -1	C_SYNC_TARGET use BitMap
3214    -2	C_SYNC_TARGET set BitMap
3215  -100	after split brain, disconnect
3216 -1000	unrelated data
3217 -1091   requires proto 91
3218 -1096   requires proto 96
3219  */
3220 
3221 static int drbd_uuid_compare(struct drbd_device *const device, enum drbd_role const peer_role, int *rule_nr) __must_hold(local)
3222 {
3223 	struct drbd_peer_device *const peer_device = first_peer_device(device);
3224 	struct drbd_connection *const connection = peer_device ? peer_device->connection : NULL;
3225 	u64 self, peer;
3226 	int i, j;
3227 
3228 	self = device->ldev->md.uuid[UI_CURRENT] & ~((u64)1);
3229 	peer = device->p_uuid[UI_CURRENT] & ~((u64)1);
3230 
3231 	*rule_nr = 10;
3232 	if (self == UUID_JUST_CREATED && peer == UUID_JUST_CREATED)
3233 		return 0;
3234 
3235 	*rule_nr = 20;
3236 	if ((self == UUID_JUST_CREATED || self == (u64)0) &&
3237 	     peer != UUID_JUST_CREATED)
3238 		return -2;
3239 
3240 	*rule_nr = 30;
3241 	if (self != UUID_JUST_CREATED &&
3242 	    (peer == UUID_JUST_CREATED || peer == (u64)0))
3243 		return 2;
3244 
3245 	if (self == peer) {
3246 		int rct, dc; /* roles at crash time */
3247 
3248 		if (device->p_uuid[UI_BITMAP] == (u64)0 && device->ldev->md.uuid[UI_BITMAP] != (u64)0) {
3249 
3250 			if (connection->agreed_pro_version < 91)
3251 				return -1091;
3252 
3253 			if ((device->ldev->md.uuid[UI_BITMAP] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START] & ~((u64)1)) &&
3254 			    (device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START + 1] & ~((u64)1))) {
3255 				drbd_info(device, "was SyncSource, missed the resync finished event, corrected myself:\n");
3256 				drbd_uuid_move_history(device);
3257 				device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP];
3258 				device->ldev->md.uuid[UI_BITMAP] = 0;
3259 
3260 				drbd_uuid_dump(device, "self", device->ldev->md.uuid,
3261 					       device->state.disk >= D_NEGOTIATING ? drbd_bm_total_weight(device) : 0, 0);
3262 				*rule_nr = 34;
3263 			} else {
3264 				drbd_info(device, "was SyncSource (peer failed to write sync_uuid)\n");
3265 				*rule_nr = 36;
3266 			}
3267 
3268 			return 1;
3269 		}
3270 
3271 		if (device->ldev->md.uuid[UI_BITMAP] == (u64)0 && device->p_uuid[UI_BITMAP] != (u64)0) {
3272 
3273 			if (connection->agreed_pro_version < 91)
3274 				return -1091;
3275 
3276 			if ((device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == (device->p_uuid[UI_BITMAP] & ~((u64)1)) &&
3277 			    (device->ldev->md.uuid[UI_HISTORY_START + 1] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START] & ~((u64)1))) {
3278 				drbd_info(device, "was SyncTarget, peer missed the resync finished event, corrected peer:\n");
3279 
3280 				device->p_uuid[UI_HISTORY_START + 1] = device->p_uuid[UI_HISTORY_START];
3281 				device->p_uuid[UI_HISTORY_START] = device->p_uuid[UI_BITMAP];
3282 				device->p_uuid[UI_BITMAP] = 0UL;
3283 
3284 				drbd_uuid_dump(device, "peer", device->p_uuid, device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]);
3285 				*rule_nr = 35;
3286 			} else {
3287 				drbd_info(device, "was SyncTarget (failed to write sync_uuid)\n");
3288 				*rule_nr = 37;
3289 			}
3290 
3291 			return -1;
3292 		}
3293 
3294 		/* Common power [off|failure] */
3295 		rct = (test_bit(CRASHED_PRIMARY, &device->flags) ? 1 : 0) +
3296 			(device->p_uuid[UI_FLAGS] & 2);
3297 		/* lowest bit is set when we were primary,
3298 		 * next bit (weight 2) is set when peer was primary */
3299 		*rule_nr = 40;
3300 
3301 		/* Neither has the "crashed primary" flag set,
3302 		 * only a replication link hickup. */
3303 		if (rct == 0)
3304 			return 0;
3305 
3306 		/* Current UUID equal and no bitmap uuid; does not necessarily
3307 		 * mean this was a "simultaneous hard crash", maybe IO was
3308 		 * frozen, so no UUID-bump happened.
3309 		 * This is a protocol change, overload DRBD_FF_WSAME as flag
3310 		 * for "new-enough" peer DRBD version. */
3311 		if (device->state.role == R_PRIMARY || peer_role == R_PRIMARY) {
3312 			*rule_nr = 41;
3313 			if (!(connection->agreed_features & DRBD_FF_WSAME)) {
3314 				drbd_warn(peer_device, "Equivalent unrotated UUIDs, but current primary present.\n");
3315 				return -(0x10000 | PRO_VERSION_MAX | (DRBD_FF_WSAME << 8));
3316 			}
3317 			if (device->state.role == R_PRIMARY && peer_role == R_PRIMARY) {
3318 				/* At least one has the "crashed primary" bit set,
3319 				 * both are primary now, but neither has rotated its UUIDs?
3320 				 * "Can not happen." */
3321 				drbd_err(peer_device, "Equivalent unrotated UUIDs, but both are primary. Can not resolve this.\n");
3322 				return -100;
3323 			}
3324 			if (device->state.role == R_PRIMARY)
3325 				return 1;
3326 			return -1;
3327 		}
3328 
3329 		/* Both are secondary.
3330 		 * Really looks like recovery from simultaneous hard crash.
3331 		 * Check which had been primary before, and arbitrate. */
3332 		switch (rct) {
3333 		case 0: /* !self_pri && !peer_pri */ return 0; /* already handled */
3334 		case 1: /*  self_pri && !peer_pri */ return 1;
3335 		case 2: /* !self_pri &&  peer_pri */ return -1;
3336 		case 3: /*  self_pri &&  peer_pri */
3337 			dc = test_bit(RESOLVE_CONFLICTS, &connection->flags);
3338 			return dc ? -1 : 1;
3339 		}
3340 	}
3341 
3342 	*rule_nr = 50;
3343 	peer = device->p_uuid[UI_BITMAP] & ~((u64)1);
3344 	if (self == peer)
3345 		return -1;
3346 
3347 	*rule_nr = 51;
3348 	peer = device->p_uuid[UI_HISTORY_START] & ~((u64)1);
3349 	if (self == peer) {
3350 		if (connection->agreed_pro_version < 96 ?
3351 		    (device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) ==
3352 		    (device->p_uuid[UI_HISTORY_START + 1] & ~((u64)1)) :
3353 		    peer + UUID_NEW_BM_OFFSET == (device->p_uuid[UI_BITMAP] & ~((u64)1))) {
3354 			/* The last P_SYNC_UUID did not get though. Undo the last start of
3355 			   resync as sync source modifications of the peer's UUIDs. */
3356 
3357 			if (connection->agreed_pro_version < 91)
3358 				return -1091;
3359 
3360 			device->p_uuid[UI_BITMAP] = device->p_uuid[UI_HISTORY_START];
3361 			device->p_uuid[UI_HISTORY_START] = device->p_uuid[UI_HISTORY_START + 1];
3362 
3363 			drbd_info(device, "Lost last syncUUID packet, corrected:\n");
3364 			drbd_uuid_dump(device, "peer", device->p_uuid, device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]);
3365 
3366 			return -1;
3367 		}
3368 	}
3369 
3370 	*rule_nr = 60;
3371 	self = device->ldev->md.uuid[UI_CURRENT] & ~((u64)1);
3372 	for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) {
3373 		peer = device->p_uuid[i] & ~((u64)1);
3374 		if (self == peer)
3375 			return -2;
3376 	}
3377 
3378 	*rule_nr = 70;
3379 	self = device->ldev->md.uuid[UI_BITMAP] & ~((u64)1);
3380 	peer = device->p_uuid[UI_CURRENT] & ~((u64)1);
3381 	if (self == peer)
3382 		return 1;
3383 
3384 	*rule_nr = 71;
3385 	self = device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1);
3386 	if (self == peer) {
3387 		if (connection->agreed_pro_version < 96 ?
3388 		    (device->ldev->md.uuid[UI_HISTORY_START + 1] & ~((u64)1)) ==
3389 		    (device->p_uuid[UI_HISTORY_START] & ~((u64)1)) :
3390 		    self + UUID_NEW_BM_OFFSET == (device->ldev->md.uuid[UI_BITMAP] & ~((u64)1))) {
3391 			/* The last P_SYNC_UUID did not get though. Undo the last start of
3392 			   resync as sync source modifications of our UUIDs. */
3393 
3394 			if (connection->agreed_pro_version < 91)
3395 				return -1091;
3396 
3397 			__drbd_uuid_set(device, UI_BITMAP, device->ldev->md.uuid[UI_HISTORY_START]);
3398 			__drbd_uuid_set(device, UI_HISTORY_START, device->ldev->md.uuid[UI_HISTORY_START + 1]);
3399 
3400 			drbd_info(device, "Last syncUUID did not get through, corrected:\n");
3401 			drbd_uuid_dump(device, "self", device->ldev->md.uuid,
3402 				       device->state.disk >= D_NEGOTIATING ? drbd_bm_total_weight(device) : 0, 0);
3403 
3404 			return 1;
3405 		}
3406 	}
3407 
3408 
3409 	*rule_nr = 80;
3410 	peer = device->p_uuid[UI_CURRENT] & ~((u64)1);
3411 	for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) {
3412 		self = device->ldev->md.uuid[i] & ~((u64)1);
3413 		if (self == peer)
3414 			return 2;
3415 	}
3416 
3417 	*rule_nr = 90;
3418 	self = device->ldev->md.uuid[UI_BITMAP] & ~((u64)1);
3419 	peer = device->p_uuid[UI_BITMAP] & ~((u64)1);
3420 	if (self == peer && self != ((u64)0))
3421 		return 100;
3422 
3423 	*rule_nr = 100;
3424 	for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) {
3425 		self = device->ldev->md.uuid[i] & ~((u64)1);
3426 		for (j = UI_HISTORY_START; j <= UI_HISTORY_END; j++) {
3427 			peer = device->p_uuid[j] & ~((u64)1);
3428 			if (self == peer)
3429 				return -100;
3430 		}
3431 	}
3432 
3433 	return -1000;
3434 }
3435 
3436 /* drbd_sync_handshake() returns the new conn state on success, or
3437    CONN_MASK (-1) on failure.
3438  */
3439 static enum drbd_conns drbd_sync_handshake(struct drbd_peer_device *peer_device,
3440 					   enum drbd_role peer_role,
3441 					   enum drbd_disk_state peer_disk) __must_hold(local)
3442 {
3443 	struct drbd_device *device = peer_device->device;
3444 	enum drbd_conns rv = C_MASK;
3445 	enum drbd_disk_state mydisk;
3446 	struct net_conf *nc;
3447 	int hg, rule_nr, rr_conflict, tentative, always_asbp;
3448 
3449 	mydisk = device->state.disk;
3450 	if (mydisk == D_NEGOTIATING)
3451 		mydisk = device->new_state_tmp.disk;
3452 
3453 	drbd_info(device, "drbd_sync_handshake:\n");
3454 
3455 	spin_lock_irq(&device->ldev->md.uuid_lock);
3456 	drbd_uuid_dump(device, "self", device->ldev->md.uuid, device->comm_bm_set, 0);
3457 	drbd_uuid_dump(device, "peer", device->p_uuid,
3458 		       device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]);
3459 
3460 	hg = drbd_uuid_compare(device, peer_role, &rule_nr);
3461 	spin_unlock_irq(&device->ldev->md.uuid_lock);
3462 
3463 	drbd_info(device, "uuid_compare()=%d by rule %d\n", hg, rule_nr);
3464 
3465 	if (hg == -1000) {
3466 		drbd_alert(device, "Unrelated data, aborting!\n");
3467 		return C_MASK;
3468 	}
3469 	if (hg < -0x10000) {
3470 		int proto, fflags;
3471 		hg = -hg;
3472 		proto = hg & 0xff;
3473 		fflags = (hg >> 8) & 0xff;
3474 		drbd_alert(device, "To resolve this both sides have to support at least protocol %d and feature flags 0x%x\n",
3475 					proto, fflags);
3476 		return C_MASK;
3477 	}
3478 	if (hg < -1000) {
3479 		drbd_alert(device, "To resolve this both sides have to support at least protocol %d\n", -hg - 1000);
3480 		return C_MASK;
3481 	}
3482 
3483 	if    ((mydisk == D_INCONSISTENT && peer_disk > D_INCONSISTENT) ||
3484 	    (peer_disk == D_INCONSISTENT && mydisk    > D_INCONSISTENT)) {
3485 		int f = (hg == -100) || abs(hg) == 2;
3486 		hg = mydisk > D_INCONSISTENT ? 1 : -1;
3487 		if (f)
3488 			hg = hg*2;
3489 		drbd_info(device, "Becoming sync %s due to disk states.\n",
3490 		     hg > 0 ? "source" : "target");
3491 	}
3492 
3493 	if (abs(hg) == 100)
3494 		drbd_khelper(device, "initial-split-brain");
3495 
3496 	rcu_read_lock();
3497 	nc = rcu_dereference(peer_device->connection->net_conf);
3498 	always_asbp = nc->always_asbp;
3499 	rr_conflict = nc->rr_conflict;
3500 	tentative = nc->tentative;
3501 	rcu_read_unlock();
3502 
3503 	if (hg == 100 || (hg == -100 && always_asbp)) {
3504 		int pcount = (device->state.role == R_PRIMARY)
3505 			   + (peer_role == R_PRIMARY);
3506 		int forced = (hg == -100);
3507 
3508 		switch (pcount) {
3509 		case 0:
3510 			hg = drbd_asb_recover_0p(peer_device);
3511 			break;
3512 		case 1:
3513 			hg = drbd_asb_recover_1p(peer_device);
3514 			break;
3515 		case 2:
3516 			hg = drbd_asb_recover_2p(peer_device);
3517 			break;
3518 		}
3519 		if (abs(hg) < 100) {
3520 			drbd_warn(device, "Split-Brain detected, %d primaries, "
3521 			     "automatically solved. Sync from %s node\n",
3522 			     pcount, (hg < 0) ? "peer" : "this");
3523 			if (forced) {
3524 				drbd_warn(device, "Doing a full sync, since"
3525 				     " UUIDs where ambiguous.\n");
3526 				hg = hg*2;
3527 			}
3528 		}
3529 	}
3530 
3531 	if (hg == -100) {
3532 		if (test_bit(DISCARD_MY_DATA, &device->flags) && !(device->p_uuid[UI_FLAGS]&1))
3533 			hg = -1;
3534 		if (!test_bit(DISCARD_MY_DATA, &device->flags) && (device->p_uuid[UI_FLAGS]&1))
3535 			hg = 1;
3536 
3537 		if (abs(hg) < 100)
3538 			drbd_warn(device, "Split-Brain detected, manually solved. "
3539 			     "Sync from %s node\n",
3540 			     (hg < 0) ? "peer" : "this");
3541 	}
3542 
3543 	if (hg == -100) {
3544 		/* FIXME this log message is not correct if we end up here
3545 		 * after an attempted attach on a diskless node.
3546 		 * We just refuse to attach -- well, we drop the "connection"
3547 		 * to that disk, in a way... */
3548 		drbd_alert(device, "Split-Brain detected but unresolved, dropping connection!\n");
3549 		drbd_khelper(device, "split-brain");
3550 		return C_MASK;
3551 	}
3552 
3553 	if (hg > 0 && mydisk <= D_INCONSISTENT) {
3554 		drbd_err(device, "I shall become SyncSource, but I am inconsistent!\n");
3555 		return C_MASK;
3556 	}
3557 
3558 	if (hg < 0 && /* by intention we do not use mydisk here. */
3559 	    device->state.role == R_PRIMARY && device->state.disk >= D_CONSISTENT) {
3560 		switch (rr_conflict) {
3561 		case ASB_CALL_HELPER:
3562 			drbd_khelper(device, "pri-lost");
3563 			fallthrough;
3564 		case ASB_DISCONNECT:
3565 			drbd_err(device, "I shall become SyncTarget, but I am primary!\n");
3566 			return C_MASK;
3567 		case ASB_VIOLENTLY:
3568 			drbd_warn(device, "Becoming SyncTarget, violating the stable-data"
3569 			     "assumption\n");
3570 		}
3571 	}
3572 
3573 	if (tentative || test_bit(CONN_DRY_RUN, &peer_device->connection->flags)) {
3574 		if (hg == 0)
3575 			drbd_info(device, "dry-run connect: No resync, would become Connected immediately.\n");
3576 		else
3577 			drbd_info(device, "dry-run connect: Would become %s, doing a %s resync.",
3578 				 drbd_conn_str(hg > 0 ? C_SYNC_SOURCE : C_SYNC_TARGET),
3579 				 abs(hg) >= 2 ? "full" : "bit-map based");
3580 		return C_MASK;
3581 	}
3582 
3583 	if (abs(hg) >= 2) {
3584 		drbd_info(device, "Writing the whole bitmap, full sync required after drbd_sync_handshake.\n");
3585 		if (drbd_bitmap_io(device, &drbd_bmio_set_n_write, "set_n_write from sync_handshake",
3586 					BM_LOCKED_SET_ALLOWED))
3587 			return C_MASK;
3588 	}
3589 
3590 	if (hg > 0) { /* become sync source. */
3591 		rv = C_WF_BITMAP_S;
3592 	} else if (hg < 0) { /* become sync target */
3593 		rv = C_WF_BITMAP_T;
3594 	} else {
3595 		rv = C_CONNECTED;
3596 		if (drbd_bm_total_weight(device)) {
3597 			drbd_info(device, "No resync, but %lu bits in bitmap!\n",
3598 			     drbd_bm_total_weight(device));
3599 		}
3600 	}
3601 
3602 	return rv;
3603 }
3604 
3605 static enum drbd_after_sb_p convert_after_sb(enum drbd_after_sb_p peer)
3606 {
3607 	/* ASB_DISCARD_REMOTE - ASB_DISCARD_LOCAL is valid */
3608 	if (peer == ASB_DISCARD_REMOTE)
3609 		return ASB_DISCARD_LOCAL;
3610 
3611 	/* any other things with ASB_DISCARD_REMOTE or ASB_DISCARD_LOCAL are invalid */
3612 	if (peer == ASB_DISCARD_LOCAL)
3613 		return ASB_DISCARD_REMOTE;
3614 
3615 	/* everything else is valid if they are equal on both sides. */
3616 	return peer;
3617 }
3618 
3619 static int receive_protocol(struct drbd_connection *connection, struct packet_info *pi)
3620 {
3621 	struct p_protocol *p = pi->data;
3622 	enum drbd_after_sb_p p_after_sb_0p, p_after_sb_1p, p_after_sb_2p;
3623 	int p_proto, p_discard_my_data, p_two_primaries, cf;
3624 	struct net_conf *nc, *old_net_conf, *new_net_conf = NULL;
3625 	char integrity_alg[SHARED_SECRET_MAX] = "";
3626 	struct crypto_shash *peer_integrity_tfm = NULL;
3627 	void *int_dig_in = NULL, *int_dig_vv = NULL;
3628 
3629 	p_proto		= be32_to_cpu(p->protocol);
3630 	p_after_sb_0p	= be32_to_cpu(p->after_sb_0p);
3631 	p_after_sb_1p	= be32_to_cpu(p->after_sb_1p);
3632 	p_after_sb_2p	= be32_to_cpu(p->after_sb_2p);
3633 	p_two_primaries = be32_to_cpu(p->two_primaries);
3634 	cf		= be32_to_cpu(p->conn_flags);
3635 	p_discard_my_data = cf & CF_DISCARD_MY_DATA;
3636 
3637 	if (connection->agreed_pro_version >= 87) {
3638 		int err;
3639 
3640 		if (pi->size > sizeof(integrity_alg))
3641 			return -EIO;
3642 		err = drbd_recv_all(connection, integrity_alg, pi->size);
3643 		if (err)
3644 			return err;
3645 		integrity_alg[SHARED_SECRET_MAX - 1] = 0;
3646 	}
3647 
3648 	if (pi->cmd != P_PROTOCOL_UPDATE) {
3649 		clear_bit(CONN_DRY_RUN, &connection->flags);
3650 
3651 		if (cf & CF_DRY_RUN)
3652 			set_bit(CONN_DRY_RUN, &connection->flags);
3653 
3654 		rcu_read_lock();
3655 		nc = rcu_dereference(connection->net_conf);
3656 
3657 		if (p_proto != nc->wire_protocol) {
3658 			drbd_err(connection, "incompatible %s settings\n", "protocol");
3659 			goto disconnect_rcu_unlock;
3660 		}
3661 
3662 		if (convert_after_sb(p_after_sb_0p) != nc->after_sb_0p) {
3663 			drbd_err(connection, "incompatible %s settings\n", "after-sb-0pri");
3664 			goto disconnect_rcu_unlock;
3665 		}
3666 
3667 		if (convert_after_sb(p_after_sb_1p) != nc->after_sb_1p) {
3668 			drbd_err(connection, "incompatible %s settings\n", "after-sb-1pri");
3669 			goto disconnect_rcu_unlock;
3670 		}
3671 
3672 		if (convert_after_sb(p_after_sb_2p) != nc->after_sb_2p) {
3673 			drbd_err(connection, "incompatible %s settings\n", "after-sb-2pri");
3674 			goto disconnect_rcu_unlock;
3675 		}
3676 
3677 		if (p_discard_my_data && nc->discard_my_data) {
3678 			drbd_err(connection, "incompatible %s settings\n", "discard-my-data");
3679 			goto disconnect_rcu_unlock;
3680 		}
3681 
3682 		if (p_two_primaries != nc->two_primaries) {
3683 			drbd_err(connection, "incompatible %s settings\n", "allow-two-primaries");
3684 			goto disconnect_rcu_unlock;
3685 		}
3686 
3687 		if (strcmp(integrity_alg, nc->integrity_alg)) {
3688 			drbd_err(connection, "incompatible %s settings\n", "data-integrity-alg");
3689 			goto disconnect_rcu_unlock;
3690 		}
3691 
3692 		rcu_read_unlock();
3693 	}
3694 
3695 	if (integrity_alg[0]) {
3696 		int hash_size;
3697 
3698 		/*
3699 		 * We can only change the peer data integrity algorithm
3700 		 * here.  Changing our own data integrity algorithm
3701 		 * requires that we send a P_PROTOCOL_UPDATE packet at
3702 		 * the same time; otherwise, the peer has no way to
3703 		 * tell between which packets the algorithm should
3704 		 * change.
3705 		 */
3706 
3707 		peer_integrity_tfm = crypto_alloc_shash(integrity_alg, 0, 0);
3708 		if (IS_ERR(peer_integrity_tfm)) {
3709 			peer_integrity_tfm = NULL;
3710 			drbd_err(connection, "peer data-integrity-alg %s not supported\n",
3711 				 integrity_alg);
3712 			goto disconnect;
3713 		}
3714 
3715 		hash_size = crypto_shash_digestsize(peer_integrity_tfm);
3716 		int_dig_in = kmalloc(hash_size, GFP_KERNEL);
3717 		int_dig_vv = kmalloc(hash_size, GFP_KERNEL);
3718 		if (!(int_dig_in && int_dig_vv)) {
3719 			drbd_err(connection, "Allocation of buffers for data integrity checking failed\n");
3720 			goto disconnect;
3721 		}
3722 	}
3723 
3724 	new_net_conf = kmalloc(sizeof(struct net_conf), GFP_KERNEL);
3725 	if (!new_net_conf)
3726 		goto disconnect;
3727 
3728 	mutex_lock(&connection->data.mutex);
3729 	mutex_lock(&connection->resource->conf_update);
3730 	old_net_conf = connection->net_conf;
3731 	*new_net_conf = *old_net_conf;
3732 
3733 	new_net_conf->wire_protocol = p_proto;
3734 	new_net_conf->after_sb_0p = convert_after_sb(p_after_sb_0p);
3735 	new_net_conf->after_sb_1p = convert_after_sb(p_after_sb_1p);
3736 	new_net_conf->after_sb_2p = convert_after_sb(p_after_sb_2p);
3737 	new_net_conf->two_primaries = p_two_primaries;
3738 
3739 	rcu_assign_pointer(connection->net_conf, new_net_conf);
3740 	mutex_unlock(&connection->resource->conf_update);
3741 	mutex_unlock(&connection->data.mutex);
3742 
3743 	crypto_free_shash(connection->peer_integrity_tfm);
3744 	kfree(connection->int_dig_in);
3745 	kfree(connection->int_dig_vv);
3746 	connection->peer_integrity_tfm = peer_integrity_tfm;
3747 	connection->int_dig_in = int_dig_in;
3748 	connection->int_dig_vv = int_dig_vv;
3749 
3750 	if (strcmp(old_net_conf->integrity_alg, integrity_alg))
3751 		drbd_info(connection, "peer data-integrity-alg: %s\n",
3752 			  integrity_alg[0] ? integrity_alg : "(none)");
3753 
3754 	synchronize_rcu();
3755 	kfree(old_net_conf);
3756 	return 0;
3757 
3758 disconnect_rcu_unlock:
3759 	rcu_read_unlock();
3760 disconnect:
3761 	crypto_free_shash(peer_integrity_tfm);
3762 	kfree(int_dig_in);
3763 	kfree(int_dig_vv);
3764 	conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
3765 	return -EIO;
3766 }
3767 
3768 /* helper function
3769  * input: alg name, feature name
3770  * return: NULL (alg name was "")
3771  *         ERR_PTR(error) if something goes wrong
3772  *         or the crypto hash ptr, if it worked out ok. */
3773 static struct crypto_shash *drbd_crypto_alloc_digest_safe(
3774 		const struct drbd_device *device,
3775 		const char *alg, const char *name)
3776 {
3777 	struct crypto_shash *tfm;
3778 
3779 	if (!alg[0])
3780 		return NULL;
3781 
3782 	tfm = crypto_alloc_shash(alg, 0, 0);
3783 	if (IS_ERR(tfm)) {
3784 		drbd_err(device, "Can not allocate \"%s\" as %s (reason: %ld)\n",
3785 			alg, name, PTR_ERR(tfm));
3786 		return tfm;
3787 	}
3788 	return tfm;
3789 }
3790 
3791 static int ignore_remaining_packet(struct drbd_connection *connection, struct packet_info *pi)
3792 {
3793 	void *buffer = connection->data.rbuf;
3794 	int size = pi->size;
3795 
3796 	while (size) {
3797 		int s = min_t(int, size, DRBD_SOCKET_BUFFER_SIZE);
3798 		s = drbd_recv(connection, buffer, s);
3799 		if (s <= 0) {
3800 			if (s < 0)
3801 				return s;
3802 			break;
3803 		}
3804 		size -= s;
3805 	}
3806 	if (size)
3807 		return -EIO;
3808 	return 0;
3809 }
3810 
3811 /*
3812  * config_unknown_volume  -  device configuration command for unknown volume
3813  *
3814  * When a device is added to an existing connection, the node on which the
3815  * device is added first will send configuration commands to its peer but the
3816  * peer will not know about the device yet.  It will warn and ignore these
3817  * commands.  Once the device is added on the second node, the second node will
3818  * send the same device configuration commands, but in the other direction.
3819  *
3820  * (We can also end up here if drbd is misconfigured.)
3821  */
3822 static int config_unknown_volume(struct drbd_connection *connection, struct packet_info *pi)
3823 {
3824 	drbd_warn(connection, "%s packet received for volume %u, which is not configured locally\n",
3825 		  cmdname(pi->cmd), pi->vnr);
3826 	return ignore_remaining_packet(connection, pi);
3827 }
3828 
3829 static int receive_SyncParam(struct drbd_connection *connection, struct packet_info *pi)
3830 {
3831 	struct drbd_peer_device *peer_device;
3832 	struct drbd_device *device;
3833 	struct p_rs_param_95 *p;
3834 	unsigned int header_size, data_size, exp_max_sz;
3835 	struct crypto_shash *verify_tfm = NULL;
3836 	struct crypto_shash *csums_tfm = NULL;
3837 	struct net_conf *old_net_conf, *new_net_conf = NULL;
3838 	struct disk_conf *old_disk_conf = NULL, *new_disk_conf = NULL;
3839 	const int apv = connection->agreed_pro_version;
3840 	struct fifo_buffer *old_plan = NULL, *new_plan = NULL;
3841 	unsigned int fifo_size = 0;
3842 	int err;
3843 
3844 	peer_device = conn_peer_device(connection, pi->vnr);
3845 	if (!peer_device)
3846 		return config_unknown_volume(connection, pi);
3847 	device = peer_device->device;
3848 
3849 	exp_max_sz  = apv <= 87 ? sizeof(struct p_rs_param)
3850 		    : apv == 88 ? sizeof(struct p_rs_param)
3851 					+ SHARED_SECRET_MAX
3852 		    : apv <= 94 ? sizeof(struct p_rs_param_89)
3853 		    : /* apv >= 95 */ sizeof(struct p_rs_param_95);
3854 
3855 	if (pi->size > exp_max_sz) {
3856 		drbd_err(device, "SyncParam packet too long: received %u, expected <= %u bytes\n",
3857 		    pi->size, exp_max_sz);
3858 		return -EIO;
3859 	}
3860 
3861 	if (apv <= 88) {
3862 		header_size = sizeof(struct p_rs_param);
3863 		data_size = pi->size - header_size;
3864 	} else if (apv <= 94) {
3865 		header_size = sizeof(struct p_rs_param_89);
3866 		data_size = pi->size - header_size;
3867 		D_ASSERT(device, data_size == 0);
3868 	} else {
3869 		header_size = sizeof(struct p_rs_param_95);
3870 		data_size = pi->size - header_size;
3871 		D_ASSERT(device, data_size == 0);
3872 	}
3873 
3874 	/* initialize verify_alg and csums_alg */
3875 	p = pi->data;
3876 	BUILD_BUG_ON(sizeof(p->algs) != 2 * SHARED_SECRET_MAX);
3877 	memset(&p->algs, 0, sizeof(p->algs));
3878 
3879 	err = drbd_recv_all(peer_device->connection, p, header_size);
3880 	if (err)
3881 		return err;
3882 
3883 	mutex_lock(&connection->resource->conf_update);
3884 	old_net_conf = peer_device->connection->net_conf;
3885 	if (get_ldev(device)) {
3886 		new_disk_conf = kzalloc(sizeof(struct disk_conf), GFP_KERNEL);
3887 		if (!new_disk_conf) {
3888 			put_ldev(device);
3889 			mutex_unlock(&connection->resource->conf_update);
3890 			drbd_err(device, "Allocation of new disk_conf failed\n");
3891 			return -ENOMEM;
3892 		}
3893 
3894 		old_disk_conf = device->ldev->disk_conf;
3895 		*new_disk_conf = *old_disk_conf;
3896 
3897 		new_disk_conf->resync_rate = be32_to_cpu(p->resync_rate);
3898 	}
3899 
3900 	if (apv >= 88) {
3901 		if (apv == 88) {
3902 			if (data_size > SHARED_SECRET_MAX || data_size == 0) {
3903 				drbd_err(device, "verify-alg of wrong size, "
3904 					"peer wants %u, accepting only up to %u byte\n",
3905 					data_size, SHARED_SECRET_MAX);
3906 				err = -EIO;
3907 				goto reconnect;
3908 			}
3909 
3910 			err = drbd_recv_all(peer_device->connection, p->verify_alg, data_size);
3911 			if (err)
3912 				goto reconnect;
3913 			/* we expect NUL terminated string */
3914 			/* but just in case someone tries to be evil */
3915 			D_ASSERT(device, p->verify_alg[data_size-1] == 0);
3916 			p->verify_alg[data_size-1] = 0;
3917 
3918 		} else /* apv >= 89 */ {
3919 			/* we still expect NUL terminated strings */
3920 			/* but just in case someone tries to be evil */
3921 			D_ASSERT(device, p->verify_alg[SHARED_SECRET_MAX-1] == 0);
3922 			D_ASSERT(device, p->csums_alg[SHARED_SECRET_MAX-1] == 0);
3923 			p->verify_alg[SHARED_SECRET_MAX-1] = 0;
3924 			p->csums_alg[SHARED_SECRET_MAX-1] = 0;
3925 		}
3926 
3927 		if (strcmp(old_net_conf->verify_alg, p->verify_alg)) {
3928 			if (device->state.conn == C_WF_REPORT_PARAMS) {
3929 				drbd_err(device, "Different verify-alg settings. me=\"%s\" peer=\"%s\"\n",
3930 				    old_net_conf->verify_alg, p->verify_alg);
3931 				goto disconnect;
3932 			}
3933 			verify_tfm = drbd_crypto_alloc_digest_safe(device,
3934 					p->verify_alg, "verify-alg");
3935 			if (IS_ERR(verify_tfm)) {
3936 				verify_tfm = NULL;
3937 				goto disconnect;
3938 			}
3939 		}
3940 
3941 		if (apv >= 89 && strcmp(old_net_conf->csums_alg, p->csums_alg)) {
3942 			if (device->state.conn == C_WF_REPORT_PARAMS) {
3943 				drbd_err(device, "Different csums-alg settings. me=\"%s\" peer=\"%s\"\n",
3944 				    old_net_conf->csums_alg, p->csums_alg);
3945 				goto disconnect;
3946 			}
3947 			csums_tfm = drbd_crypto_alloc_digest_safe(device,
3948 					p->csums_alg, "csums-alg");
3949 			if (IS_ERR(csums_tfm)) {
3950 				csums_tfm = NULL;
3951 				goto disconnect;
3952 			}
3953 		}
3954 
3955 		if (apv > 94 && new_disk_conf) {
3956 			new_disk_conf->c_plan_ahead = be32_to_cpu(p->c_plan_ahead);
3957 			new_disk_conf->c_delay_target = be32_to_cpu(p->c_delay_target);
3958 			new_disk_conf->c_fill_target = be32_to_cpu(p->c_fill_target);
3959 			new_disk_conf->c_max_rate = be32_to_cpu(p->c_max_rate);
3960 
3961 			fifo_size = (new_disk_conf->c_plan_ahead * 10 * SLEEP_TIME) / HZ;
3962 			if (fifo_size != device->rs_plan_s->size) {
3963 				new_plan = fifo_alloc(fifo_size);
3964 				if (!new_plan) {
3965 					drbd_err(device, "kmalloc of fifo_buffer failed");
3966 					put_ldev(device);
3967 					goto disconnect;
3968 				}
3969 			}
3970 		}
3971 
3972 		if (verify_tfm || csums_tfm) {
3973 			new_net_conf = kzalloc(sizeof(struct net_conf), GFP_KERNEL);
3974 			if (!new_net_conf)
3975 				goto disconnect;
3976 
3977 			*new_net_conf = *old_net_conf;
3978 
3979 			if (verify_tfm) {
3980 				strcpy(new_net_conf->verify_alg, p->verify_alg);
3981 				new_net_conf->verify_alg_len = strlen(p->verify_alg) + 1;
3982 				crypto_free_shash(peer_device->connection->verify_tfm);
3983 				peer_device->connection->verify_tfm = verify_tfm;
3984 				drbd_info(device, "using verify-alg: \"%s\"\n", p->verify_alg);
3985 			}
3986 			if (csums_tfm) {
3987 				strcpy(new_net_conf->csums_alg, p->csums_alg);
3988 				new_net_conf->csums_alg_len = strlen(p->csums_alg) + 1;
3989 				crypto_free_shash(peer_device->connection->csums_tfm);
3990 				peer_device->connection->csums_tfm = csums_tfm;
3991 				drbd_info(device, "using csums-alg: \"%s\"\n", p->csums_alg);
3992 			}
3993 			rcu_assign_pointer(connection->net_conf, new_net_conf);
3994 		}
3995 	}
3996 
3997 	if (new_disk_conf) {
3998 		rcu_assign_pointer(device->ldev->disk_conf, new_disk_conf);
3999 		put_ldev(device);
4000 	}
4001 
4002 	if (new_plan) {
4003 		old_plan = device->rs_plan_s;
4004 		rcu_assign_pointer(device->rs_plan_s, new_plan);
4005 	}
4006 
4007 	mutex_unlock(&connection->resource->conf_update);
4008 	synchronize_rcu();
4009 	if (new_net_conf)
4010 		kfree(old_net_conf);
4011 	kfree(old_disk_conf);
4012 	kfree(old_plan);
4013 
4014 	return 0;
4015 
4016 reconnect:
4017 	if (new_disk_conf) {
4018 		put_ldev(device);
4019 		kfree(new_disk_conf);
4020 	}
4021 	mutex_unlock(&connection->resource->conf_update);
4022 	return -EIO;
4023 
4024 disconnect:
4025 	kfree(new_plan);
4026 	if (new_disk_conf) {
4027 		put_ldev(device);
4028 		kfree(new_disk_conf);
4029 	}
4030 	mutex_unlock(&connection->resource->conf_update);
4031 	/* just for completeness: actually not needed,
4032 	 * as this is not reached if csums_tfm was ok. */
4033 	crypto_free_shash(csums_tfm);
4034 	/* but free the verify_tfm again, if csums_tfm did not work out */
4035 	crypto_free_shash(verify_tfm);
4036 	conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4037 	return -EIO;
4038 }
4039 
4040 /* warn if the arguments differ by more than 12.5% */
4041 static void warn_if_differ_considerably(struct drbd_device *device,
4042 	const char *s, sector_t a, sector_t b)
4043 {
4044 	sector_t d;
4045 	if (a == 0 || b == 0)
4046 		return;
4047 	d = (a > b) ? (a - b) : (b - a);
4048 	if (d > (a>>3) || d > (b>>3))
4049 		drbd_warn(device, "Considerable difference in %s: %llus vs. %llus\n", s,
4050 		     (unsigned long long)a, (unsigned long long)b);
4051 }
4052 
4053 static int receive_sizes(struct drbd_connection *connection, struct packet_info *pi)
4054 {
4055 	struct drbd_peer_device *peer_device;
4056 	struct drbd_device *device;
4057 	struct p_sizes *p = pi->data;
4058 	struct o_qlim *o = (connection->agreed_features & DRBD_FF_WSAME) ? p->qlim : NULL;
4059 	enum determine_dev_size dd = DS_UNCHANGED;
4060 	sector_t p_size, p_usize, p_csize, my_usize;
4061 	sector_t new_size, cur_size;
4062 	int ldsc = 0; /* local disk size changed */
4063 	enum dds_flags ddsf;
4064 
4065 	peer_device = conn_peer_device(connection, pi->vnr);
4066 	if (!peer_device)
4067 		return config_unknown_volume(connection, pi);
4068 	device = peer_device->device;
4069 	cur_size = get_capacity(device->vdisk);
4070 
4071 	p_size = be64_to_cpu(p->d_size);
4072 	p_usize = be64_to_cpu(p->u_size);
4073 	p_csize = be64_to_cpu(p->c_size);
4074 
4075 	/* just store the peer's disk size for now.
4076 	 * we still need to figure out whether we accept that. */
4077 	device->p_size = p_size;
4078 
4079 	if (get_ldev(device)) {
4080 		rcu_read_lock();
4081 		my_usize = rcu_dereference(device->ldev->disk_conf)->disk_size;
4082 		rcu_read_unlock();
4083 
4084 		warn_if_differ_considerably(device, "lower level device sizes",
4085 			   p_size, drbd_get_max_capacity(device->ldev));
4086 		warn_if_differ_considerably(device, "user requested size",
4087 					    p_usize, my_usize);
4088 
4089 		/* if this is the first connect, or an otherwise expected
4090 		 * param exchange, choose the minimum */
4091 		if (device->state.conn == C_WF_REPORT_PARAMS)
4092 			p_usize = min_not_zero(my_usize, p_usize);
4093 
4094 		/* Never shrink a device with usable data during connect,
4095 		 * or "attach" on the peer.
4096 		 * But allow online shrinking if we are connected. */
4097 		new_size = drbd_new_dev_size(device, device->ldev, p_usize, 0);
4098 		if (new_size < cur_size &&
4099 		    device->state.disk >= D_OUTDATED &&
4100 		    (device->state.conn < C_CONNECTED || device->state.pdsk == D_DISKLESS)) {
4101 			drbd_err(device, "The peer's disk size is too small! (%llu < %llu sectors)\n",
4102 					(unsigned long long)new_size, (unsigned long long)cur_size);
4103 			conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4104 			put_ldev(device);
4105 			return -EIO;
4106 		}
4107 
4108 		if (my_usize != p_usize) {
4109 			struct disk_conf *old_disk_conf, *new_disk_conf = NULL;
4110 
4111 			new_disk_conf = kzalloc(sizeof(struct disk_conf), GFP_KERNEL);
4112 			if (!new_disk_conf) {
4113 				put_ldev(device);
4114 				return -ENOMEM;
4115 			}
4116 
4117 			mutex_lock(&connection->resource->conf_update);
4118 			old_disk_conf = device->ldev->disk_conf;
4119 			*new_disk_conf = *old_disk_conf;
4120 			new_disk_conf->disk_size = p_usize;
4121 
4122 			rcu_assign_pointer(device->ldev->disk_conf, new_disk_conf);
4123 			mutex_unlock(&connection->resource->conf_update);
4124 			synchronize_rcu();
4125 			kfree(old_disk_conf);
4126 
4127 			drbd_info(device, "Peer sets u_size to %lu sectors (old: %lu)\n",
4128 				 (unsigned long)p_usize, (unsigned long)my_usize);
4129 		}
4130 
4131 		put_ldev(device);
4132 	}
4133 
4134 	device->peer_max_bio_size = be32_to_cpu(p->max_bio_size);
4135 	/* Leave drbd_reconsider_queue_parameters() before drbd_determine_dev_size().
4136 	   In case we cleared the QUEUE_FLAG_DISCARD from our queue in
4137 	   drbd_reconsider_queue_parameters(), we can be sure that after
4138 	   drbd_determine_dev_size() no REQ_DISCARDs are in the queue. */
4139 
4140 	ddsf = be16_to_cpu(p->dds_flags);
4141 	if (get_ldev(device)) {
4142 		drbd_reconsider_queue_parameters(device, device->ldev, o);
4143 		dd = drbd_determine_dev_size(device, ddsf, NULL);
4144 		put_ldev(device);
4145 		if (dd == DS_ERROR)
4146 			return -EIO;
4147 		drbd_md_sync(device);
4148 	} else {
4149 		/*
4150 		 * I am diskless, need to accept the peer's *current* size.
4151 		 * I must NOT accept the peers backing disk size,
4152 		 * it may have been larger than mine all along...
4153 		 *
4154 		 * At this point, the peer knows more about my disk, or at
4155 		 * least about what we last agreed upon, than myself.
4156 		 * So if his c_size is less than his d_size, the most likely
4157 		 * reason is that *my* d_size was smaller last time we checked.
4158 		 *
4159 		 * However, if he sends a zero current size,
4160 		 * take his (user-capped or) backing disk size anyways.
4161 		 *
4162 		 * Unless of course he does not have a disk himself.
4163 		 * In which case we ignore this completely.
4164 		 */
4165 		sector_t new_size = p_csize ?: p_usize ?: p_size;
4166 		drbd_reconsider_queue_parameters(device, NULL, o);
4167 		if (new_size == 0) {
4168 			/* Ignore, peer does not know nothing. */
4169 		} else if (new_size == cur_size) {
4170 			/* nothing to do */
4171 		} else if (cur_size != 0 && p_size == 0) {
4172 			drbd_warn(device, "Ignored diskless peer device size (peer:%llu != me:%llu sectors)!\n",
4173 					(unsigned long long)new_size, (unsigned long long)cur_size);
4174 		} else if (new_size < cur_size && device->state.role == R_PRIMARY) {
4175 			drbd_err(device, "The peer's device size is too small! (%llu < %llu sectors); demote me first!\n",
4176 					(unsigned long long)new_size, (unsigned long long)cur_size);
4177 			conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4178 			return -EIO;
4179 		} else {
4180 			/* I believe the peer, if
4181 			 *  - I don't have a current size myself
4182 			 *  - we agree on the size anyways
4183 			 *  - I do have a current size, am Secondary,
4184 			 *    and he has the only disk
4185 			 *  - I do have a current size, am Primary,
4186 			 *    and he has the only disk,
4187 			 *    which is larger than my current size
4188 			 */
4189 			drbd_set_my_capacity(device, new_size);
4190 		}
4191 	}
4192 
4193 	if (get_ldev(device)) {
4194 		if (device->ldev->known_size != drbd_get_capacity(device->ldev->backing_bdev)) {
4195 			device->ldev->known_size = drbd_get_capacity(device->ldev->backing_bdev);
4196 			ldsc = 1;
4197 		}
4198 
4199 		put_ldev(device);
4200 	}
4201 
4202 	if (device->state.conn > C_WF_REPORT_PARAMS) {
4203 		if (be64_to_cpu(p->c_size) != get_capacity(device->vdisk) ||
4204 		    ldsc) {
4205 			/* we have different sizes, probably peer
4206 			 * needs to know my new size... */
4207 			drbd_send_sizes(peer_device, 0, ddsf);
4208 		}
4209 		if (test_and_clear_bit(RESIZE_PENDING, &device->flags) ||
4210 		    (dd == DS_GREW && device->state.conn == C_CONNECTED)) {
4211 			if (device->state.pdsk >= D_INCONSISTENT &&
4212 			    device->state.disk >= D_INCONSISTENT) {
4213 				if (ddsf & DDSF_NO_RESYNC)
4214 					drbd_info(device, "Resync of new storage suppressed with --assume-clean\n");
4215 				else
4216 					resync_after_online_grow(device);
4217 			} else
4218 				set_bit(RESYNC_AFTER_NEG, &device->flags);
4219 		}
4220 	}
4221 
4222 	return 0;
4223 }
4224 
4225 static int receive_uuids(struct drbd_connection *connection, struct packet_info *pi)
4226 {
4227 	struct drbd_peer_device *peer_device;
4228 	struct drbd_device *device;
4229 	struct p_uuids *p = pi->data;
4230 	u64 *p_uuid;
4231 	int i, updated_uuids = 0;
4232 
4233 	peer_device = conn_peer_device(connection, pi->vnr);
4234 	if (!peer_device)
4235 		return config_unknown_volume(connection, pi);
4236 	device = peer_device->device;
4237 
4238 	p_uuid = kmalloc_array(UI_EXTENDED_SIZE, sizeof(*p_uuid), GFP_NOIO);
4239 	if (!p_uuid)
4240 		return false;
4241 
4242 	for (i = UI_CURRENT; i < UI_EXTENDED_SIZE; i++)
4243 		p_uuid[i] = be64_to_cpu(p->uuid[i]);
4244 
4245 	kfree(device->p_uuid);
4246 	device->p_uuid = p_uuid;
4247 
4248 	if ((device->state.conn < C_CONNECTED || device->state.pdsk == D_DISKLESS) &&
4249 	    device->state.disk < D_INCONSISTENT &&
4250 	    device->state.role == R_PRIMARY &&
4251 	    (device->ed_uuid & ~((u64)1)) != (p_uuid[UI_CURRENT] & ~((u64)1))) {
4252 		drbd_err(device, "Can only connect to data with current UUID=%016llX\n",
4253 		    (unsigned long long)device->ed_uuid);
4254 		conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4255 		return -EIO;
4256 	}
4257 
4258 	if (get_ldev(device)) {
4259 		int skip_initial_sync =
4260 			device->state.conn == C_CONNECTED &&
4261 			peer_device->connection->agreed_pro_version >= 90 &&
4262 			device->ldev->md.uuid[UI_CURRENT] == UUID_JUST_CREATED &&
4263 			(p_uuid[UI_FLAGS] & 8);
4264 		if (skip_initial_sync) {
4265 			drbd_info(device, "Accepted new current UUID, preparing to skip initial sync\n");
4266 			drbd_bitmap_io(device, &drbd_bmio_clear_n_write,
4267 					"clear_n_write from receive_uuids",
4268 					BM_LOCKED_TEST_ALLOWED);
4269 			_drbd_uuid_set(device, UI_CURRENT, p_uuid[UI_CURRENT]);
4270 			_drbd_uuid_set(device, UI_BITMAP, 0);
4271 			_drbd_set_state(_NS2(device, disk, D_UP_TO_DATE, pdsk, D_UP_TO_DATE),
4272 					CS_VERBOSE, NULL);
4273 			drbd_md_sync(device);
4274 			updated_uuids = 1;
4275 		}
4276 		put_ldev(device);
4277 	} else if (device->state.disk < D_INCONSISTENT &&
4278 		   device->state.role == R_PRIMARY) {
4279 		/* I am a diskless primary, the peer just created a new current UUID
4280 		   for me. */
4281 		updated_uuids = drbd_set_ed_uuid(device, p_uuid[UI_CURRENT]);
4282 	}
4283 
4284 	/* Before we test for the disk state, we should wait until an eventually
4285 	   ongoing cluster wide state change is finished. That is important if
4286 	   we are primary and are detaching from our disk. We need to see the
4287 	   new disk state... */
4288 	mutex_lock(device->state_mutex);
4289 	mutex_unlock(device->state_mutex);
4290 	if (device->state.conn >= C_CONNECTED && device->state.disk < D_INCONSISTENT)
4291 		updated_uuids |= drbd_set_ed_uuid(device, p_uuid[UI_CURRENT]);
4292 
4293 	if (updated_uuids)
4294 		drbd_print_uuids(device, "receiver updated UUIDs to");
4295 
4296 	return 0;
4297 }
4298 
4299 /**
4300  * convert_state() - Converts the peer's view of the cluster state to our point of view
4301  * @ps:		The state as seen by the peer.
4302  */
4303 static union drbd_state convert_state(union drbd_state ps)
4304 {
4305 	union drbd_state ms;
4306 
4307 	static enum drbd_conns c_tab[] = {
4308 		[C_WF_REPORT_PARAMS] = C_WF_REPORT_PARAMS,
4309 		[C_CONNECTED] = C_CONNECTED,
4310 
4311 		[C_STARTING_SYNC_S] = C_STARTING_SYNC_T,
4312 		[C_STARTING_SYNC_T] = C_STARTING_SYNC_S,
4313 		[C_DISCONNECTING] = C_TEAR_DOWN, /* C_NETWORK_FAILURE, */
4314 		[C_VERIFY_S]       = C_VERIFY_T,
4315 		[C_MASK]   = C_MASK,
4316 	};
4317 
4318 	ms.i = ps.i;
4319 
4320 	ms.conn = c_tab[ps.conn];
4321 	ms.peer = ps.role;
4322 	ms.role = ps.peer;
4323 	ms.pdsk = ps.disk;
4324 	ms.disk = ps.pdsk;
4325 	ms.peer_isp = (ps.aftr_isp | ps.user_isp);
4326 
4327 	return ms;
4328 }
4329 
4330 static int receive_req_state(struct drbd_connection *connection, struct packet_info *pi)
4331 {
4332 	struct drbd_peer_device *peer_device;
4333 	struct drbd_device *device;
4334 	struct p_req_state *p = pi->data;
4335 	union drbd_state mask, val;
4336 	enum drbd_state_rv rv;
4337 
4338 	peer_device = conn_peer_device(connection, pi->vnr);
4339 	if (!peer_device)
4340 		return -EIO;
4341 	device = peer_device->device;
4342 
4343 	mask.i = be32_to_cpu(p->mask);
4344 	val.i = be32_to_cpu(p->val);
4345 
4346 	if (test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags) &&
4347 	    mutex_is_locked(device->state_mutex)) {
4348 		drbd_send_sr_reply(peer_device, SS_CONCURRENT_ST_CHG);
4349 		return 0;
4350 	}
4351 
4352 	mask = convert_state(mask);
4353 	val = convert_state(val);
4354 
4355 	rv = drbd_change_state(device, CS_VERBOSE, mask, val);
4356 	drbd_send_sr_reply(peer_device, rv);
4357 
4358 	drbd_md_sync(device);
4359 
4360 	return 0;
4361 }
4362 
4363 static int receive_req_conn_state(struct drbd_connection *connection, struct packet_info *pi)
4364 {
4365 	struct p_req_state *p = pi->data;
4366 	union drbd_state mask, val;
4367 	enum drbd_state_rv rv;
4368 
4369 	mask.i = be32_to_cpu(p->mask);
4370 	val.i = be32_to_cpu(p->val);
4371 
4372 	if (test_bit(RESOLVE_CONFLICTS, &connection->flags) &&
4373 	    mutex_is_locked(&connection->cstate_mutex)) {
4374 		conn_send_sr_reply(connection, SS_CONCURRENT_ST_CHG);
4375 		return 0;
4376 	}
4377 
4378 	mask = convert_state(mask);
4379 	val = convert_state(val);
4380 
4381 	rv = conn_request_state(connection, mask, val, CS_VERBOSE | CS_LOCAL_ONLY | CS_IGN_OUTD_FAIL);
4382 	conn_send_sr_reply(connection, rv);
4383 
4384 	return 0;
4385 }
4386 
4387 static int receive_state(struct drbd_connection *connection, struct packet_info *pi)
4388 {
4389 	struct drbd_peer_device *peer_device;
4390 	struct drbd_device *device;
4391 	struct p_state *p = pi->data;
4392 	union drbd_state os, ns, peer_state;
4393 	enum drbd_disk_state real_peer_disk;
4394 	enum chg_state_flags cs_flags;
4395 	int rv;
4396 
4397 	peer_device = conn_peer_device(connection, pi->vnr);
4398 	if (!peer_device)
4399 		return config_unknown_volume(connection, pi);
4400 	device = peer_device->device;
4401 
4402 	peer_state.i = be32_to_cpu(p->state);
4403 
4404 	real_peer_disk = peer_state.disk;
4405 	if (peer_state.disk == D_NEGOTIATING) {
4406 		real_peer_disk = device->p_uuid[UI_FLAGS] & 4 ? D_INCONSISTENT : D_CONSISTENT;
4407 		drbd_info(device, "real peer disk state = %s\n", drbd_disk_str(real_peer_disk));
4408 	}
4409 
4410 	spin_lock_irq(&device->resource->req_lock);
4411  retry:
4412 	os = ns = drbd_read_state(device);
4413 	spin_unlock_irq(&device->resource->req_lock);
4414 
4415 	/* If some other part of the code (ack_receiver thread, timeout)
4416 	 * already decided to close the connection again,
4417 	 * we must not "re-establish" it here. */
4418 	if (os.conn <= C_TEAR_DOWN)
4419 		return -ECONNRESET;
4420 
4421 	/* If this is the "end of sync" confirmation, usually the peer disk
4422 	 * transitions from D_INCONSISTENT to D_UP_TO_DATE. For empty (0 bits
4423 	 * set) resync started in PausedSyncT, or if the timing of pause-/
4424 	 * unpause-sync events has been "just right", the peer disk may
4425 	 * transition from D_CONSISTENT to D_UP_TO_DATE as well.
4426 	 */
4427 	if ((os.pdsk == D_INCONSISTENT || os.pdsk == D_CONSISTENT) &&
4428 	    real_peer_disk == D_UP_TO_DATE &&
4429 	    os.conn > C_CONNECTED && os.disk == D_UP_TO_DATE) {
4430 		/* If we are (becoming) SyncSource, but peer is still in sync
4431 		 * preparation, ignore its uptodate-ness to avoid flapping, it
4432 		 * will change to inconsistent once the peer reaches active
4433 		 * syncing states.
4434 		 * It may have changed syncer-paused flags, however, so we
4435 		 * cannot ignore this completely. */
4436 		if (peer_state.conn > C_CONNECTED &&
4437 		    peer_state.conn < C_SYNC_SOURCE)
4438 			real_peer_disk = D_INCONSISTENT;
4439 
4440 		/* if peer_state changes to connected at the same time,
4441 		 * it explicitly notifies us that it finished resync.
4442 		 * Maybe we should finish it up, too? */
4443 		else if (os.conn >= C_SYNC_SOURCE &&
4444 			 peer_state.conn == C_CONNECTED) {
4445 			if (drbd_bm_total_weight(device) <= device->rs_failed)
4446 				drbd_resync_finished(device);
4447 			return 0;
4448 		}
4449 	}
4450 
4451 	/* explicit verify finished notification, stop sector reached. */
4452 	if (os.conn == C_VERIFY_T && os.disk == D_UP_TO_DATE &&
4453 	    peer_state.conn == C_CONNECTED && real_peer_disk == D_UP_TO_DATE) {
4454 		ov_out_of_sync_print(device);
4455 		drbd_resync_finished(device);
4456 		return 0;
4457 	}
4458 
4459 	/* peer says his disk is inconsistent, while we think it is uptodate,
4460 	 * and this happens while the peer still thinks we have a sync going on,
4461 	 * but we think we are already done with the sync.
4462 	 * We ignore this to avoid flapping pdsk.
4463 	 * This should not happen, if the peer is a recent version of drbd. */
4464 	if (os.pdsk == D_UP_TO_DATE && real_peer_disk == D_INCONSISTENT &&
4465 	    os.conn == C_CONNECTED && peer_state.conn > C_SYNC_SOURCE)
4466 		real_peer_disk = D_UP_TO_DATE;
4467 
4468 	if (ns.conn == C_WF_REPORT_PARAMS)
4469 		ns.conn = C_CONNECTED;
4470 
4471 	if (peer_state.conn == C_AHEAD)
4472 		ns.conn = C_BEHIND;
4473 
4474 	/* TODO:
4475 	 * if (primary and diskless and peer uuid != effective uuid)
4476 	 *     abort attach on peer;
4477 	 *
4478 	 * If this node does not have good data, was already connected, but
4479 	 * the peer did a late attach only now, trying to "negotiate" with me,
4480 	 * AND I am currently Primary, possibly frozen, with some specific
4481 	 * "effective" uuid, this should never be reached, really, because
4482 	 * we first send the uuids, then the current state.
4483 	 *
4484 	 * In this scenario, we already dropped the connection hard
4485 	 * when we received the unsuitable uuids (receive_uuids().
4486 	 *
4487 	 * Should we want to change this, that is: not drop the connection in
4488 	 * receive_uuids() already, then we would need to add a branch here
4489 	 * that aborts the attach of "unsuitable uuids" on the peer in case
4490 	 * this node is currently Diskless Primary.
4491 	 */
4492 
4493 	if (device->p_uuid && peer_state.disk >= D_NEGOTIATING &&
4494 	    get_ldev_if_state(device, D_NEGOTIATING)) {
4495 		int cr; /* consider resync */
4496 
4497 		/* if we established a new connection */
4498 		cr  = (os.conn < C_CONNECTED);
4499 		/* if we had an established connection
4500 		 * and one of the nodes newly attaches a disk */
4501 		cr |= (os.conn == C_CONNECTED &&
4502 		       (peer_state.disk == D_NEGOTIATING ||
4503 			os.disk == D_NEGOTIATING));
4504 		/* if we have both been inconsistent, and the peer has been
4505 		 * forced to be UpToDate with --force */
4506 		cr |= test_bit(CONSIDER_RESYNC, &device->flags);
4507 		/* if we had been plain connected, and the admin requested to
4508 		 * start a sync by "invalidate" or "invalidate-remote" */
4509 		cr |= (os.conn == C_CONNECTED &&
4510 				(peer_state.conn >= C_STARTING_SYNC_S &&
4511 				 peer_state.conn <= C_WF_BITMAP_T));
4512 
4513 		if (cr)
4514 			ns.conn = drbd_sync_handshake(peer_device, peer_state.role, real_peer_disk);
4515 
4516 		put_ldev(device);
4517 		if (ns.conn == C_MASK) {
4518 			ns.conn = C_CONNECTED;
4519 			if (device->state.disk == D_NEGOTIATING) {
4520 				drbd_force_state(device, NS(disk, D_FAILED));
4521 			} else if (peer_state.disk == D_NEGOTIATING) {
4522 				drbd_err(device, "Disk attach process on the peer node was aborted.\n");
4523 				peer_state.disk = D_DISKLESS;
4524 				real_peer_disk = D_DISKLESS;
4525 			} else {
4526 				if (test_and_clear_bit(CONN_DRY_RUN, &peer_device->connection->flags))
4527 					return -EIO;
4528 				D_ASSERT(device, os.conn == C_WF_REPORT_PARAMS);
4529 				conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4530 				return -EIO;
4531 			}
4532 		}
4533 	}
4534 
4535 	spin_lock_irq(&device->resource->req_lock);
4536 	if (os.i != drbd_read_state(device).i)
4537 		goto retry;
4538 	clear_bit(CONSIDER_RESYNC, &device->flags);
4539 	ns.peer = peer_state.role;
4540 	ns.pdsk = real_peer_disk;
4541 	ns.peer_isp = (peer_state.aftr_isp | peer_state.user_isp);
4542 	if ((ns.conn == C_CONNECTED || ns.conn == C_WF_BITMAP_S) && ns.disk == D_NEGOTIATING)
4543 		ns.disk = device->new_state_tmp.disk;
4544 	cs_flags = CS_VERBOSE + (os.conn < C_CONNECTED && ns.conn >= C_CONNECTED ? 0 : CS_HARD);
4545 	if (ns.pdsk == D_CONSISTENT && drbd_suspended(device) && ns.conn == C_CONNECTED && os.conn < C_CONNECTED &&
4546 	    test_bit(NEW_CUR_UUID, &device->flags)) {
4547 		/* Do not allow tl_restart(RESEND) for a rebooted peer. We can only allow this
4548 		   for temporal network outages! */
4549 		spin_unlock_irq(&device->resource->req_lock);
4550 		drbd_err(device, "Aborting Connect, can not thaw IO with an only Consistent peer\n");
4551 		tl_clear(peer_device->connection);
4552 		drbd_uuid_new_current(device);
4553 		clear_bit(NEW_CUR_UUID, &device->flags);
4554 		conn_request_state(peer_device->connection, NS2(conn, C_PROTOCOL_ERROR, susp, 0), CS_HARD);
4555 		return -EIO;
4556 	}
4557 	rv = _drbd_set_state(device, ns, cs_flags, NULL);
4558 	ns = drbd_read_state(device);
4559 	spin_unlock_irq(&device->resource->req_lock);
4560 
4561 	if (rv < SS_SUCCESS) {
4562 		conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4563 		return -EIO;
4564 	}
4565 
4566 	if (os.conn > C_WF_REPORT_PARAMS) {
4567 		if (ns.conn > C_CONNECTED && peer_state.conn <= C_CONNECTED &&
4568 		    peer_state.disk != D_NEGOTIATING ) {
4569 			/* we want resync, peer has not yet decided to sync... */
4570 			/* Nowadays only used when forcing a node into primary role and
4571 			   setting its disk to UpToDate with that */
4572 			drbd_send_uuids(peer_device);
4573 			drbd_send_current_state(peer_device);
4574 		}
4575 	}
4576 
4577 	clear_bit(DISCARD_MY_DATA, &device->flags);
4578 
4579 	drbd_md_sync(device); /* update connected indicator, la_size_sect, ... */
4580 
4581 	return 0;
4582 }
4583 
4584 static int receive_sync_uuid(struct drbd_connection *connection, struct packet_info *pi)
4585 {
4586 	struct drbd_peer_device *peer_device;
4587 	struct drbd_device *device;
4588 	struct p_rs_uuid *p = pi->data;
4589 
4590 	peer_device = conn_peer_device(connection, pi->vnr);
4591 	if (!peer_device)
4592 		return -EIO;
4593 	device = peer_device->device;
4594 
4595 	wait_event(device->misc_wait,
4596 		   device->state.conn == C_WF_SYNC_UUID ||
4597 		   device->state.conn == C_BEHIND ||
4598 		   device->state.conn < C_CONNECTED ||
4599 		   device->state.disk < D_NEGOTIATING);
4600 
4601 	/* D_ASSERT(device,  device->state.conn == C_WF_SYNC_UUID ); */
4602 
4603 	/* Here the _drbd_uuid_ functions are right, current should
4604 	   _not_ be rotated into the history */
4605 	if (get_ldev_if_state(device, D_NEGOTIATING)) {
4606 		_drbd_uuid_set(device, UI_CURRENT, be64_to_cpu(p->uuid));
4607 		_drbd_uuid_set(device, UI_BITMAP, 0UL);
4608 
4609 		drbd_print_uuids(device, "updated sync uuid");
4610 		drbd_start_resync(device, C_SYNC_TARGET);
4611 
4612 		put_ldev(device);
4613 	} else
4614 		drbd_err(device, "Ignoring SyncUUID packet!\n");
4615 
4616 	return 0;
4617 }
4618 
4619 /*
4620  * receive_bitmap_plain
4621  *
4622  * Return 0 when done, 1 when another iteration is needed, and a negative error
4623  * code upon failure.
4624  */
4625 static int
4626 receive_bitmap_plain(struct drbd_peer_device *peer_device, unsigned int size,
4627 		     unsigned long *p, struct bm_xfer_ctx *c)
4628 {
4629 	unsigned int data_size = DRBD_SOCKET_BUFFER_SIZE -
4630 				 drbd_header_size(peer_device->connection);
4631 	unsigned int num_words = min_t(size_t, data_size / sizeof(*p),
4632 				       c->bm_words - c->word_offset);
4633 	unsigned int want = num_words * sizeof(*p);
4634 	int err;
4635 
4636 	if (want != size) {
4637 		drbd_err(peer_device, "%s:want (%u) != size (%u)\n", __func__, want, size);
4638 		return -EIO;
4639 	}
4640 	if (want == 0)
4641 		return 0;
4642 	err = drbd_recv_all(peer_device->connection, p, want);
4643 	if (err)
4644 		return err;
4645 
4646 	drbd_bm_merge_lel(peer_device->device, c->word_offset, num_words, p);
4647 
4648 	c->word_offset += num_words;
4649 	c->bit_offset = c->word_offset * BITS_PER_LONG;
4650 	if (c->bit_offset > c->bm_bits)
4651 		c->bit_offset = c->bm_bits;
4652 
4653 	return 1;
4654 }
4655 
4656 static enum drbd_bitmap_code dcbp_get_code(struct p_compressed_bm *p)
4657 {
4658 	return (enum drbd_bitmap_code)(p->encoding & 0x0f);
4659 }
4660 
4661 static int dcbp_get_start(struct p_compressed_bm *p)
4662 {
4663 	return (p->encoding & 0x80) != 0;
4664 }
4665 
4666 static int dcbp_get_pad_bits(struct p_compressed_bm *p)
4667 {
4668 	return (p->encoding >> 4) & 0x7;
4669 }
4670 
4671 /*
4672  * recv_bm_rle_bits
4673  *
4674  * Return 0 when done, 1 when another iteration is needed, and a negative error
4675  * code upon failure.
4676  */
4677 static int
4678 recv_bm_rle_bits(struct drbd_peer_device *peer_device,
4679 		struct p_compressed_bm *p,
4680 		 struct bm_xfer_ctx *c,
4681 		 unsigned int len)
4682 {
4683 	struct bitstream bs;
4684 	u64 look_ahead;
4685 	u64 rl;
4686 	u64 tmp;
4687 	unsigned long s = c->bit_offset;
4688 	unsigned long e;
4689 	int toggle = dcbp_get_start(p);
4690 	int have;
4691 	int bits;
4692 
4693 	bitstream_init(&bs, p->code, len, dcbp_get_pad_bits(p));
4694 
4695 	bits = bitstream_get_bits(&bs, &look_ahead, 64);
4696 	if (bits < 0)
4697 		return -EIO;
4698 
4699 	for (have = bits; have > 0; s += rl, toggle = !toggle) {
4700 		bits = vli_decode_bits(&rl, look_ahead);
4701 		if (bits <= 0)
4702 			return -EIO;
4703 
4704 		if (toggle) {
4705 			e = s + rl -1;
4706 			if (e >= c->bm_bits) {
4707 				drbd_err(peer_device, "bitmap overflow (e:%lu) while decoding bm RLE packet\n", e);
4708 				return -EIO;
4709 			}
4710 			_drbd_bm_set_bits(peer_device->device, s, e);
4711 		}
4712 
4713 		if (have < bits) {
4714 			drbd_err(peer_device, "bitmap decoding error: h:%d b:%d la:0x%08llx l:%u/%u\n",
4715 				have, bits, look_ahead,
4716 				(unsigned int)(bs.cur.b - p->code),
4717 				(unsigned int)bs.buf_len);
4718 			return -EIO;
4719 		}
4720 		/* if we consumed all 64 bits, assign 0; >> 64 is "undefined"; */
4721 		if (likely(bits < 64))
4722 			look_ahead >>= bits;
4723 		else
4724 			look_ahead = 0;
4725 		have -= bits;
4726 
4727 		bits = bitstream_get_bits(&bs, &tmp, 64 - have);
4728 		if (bits < 0)
4729 			return -EIO;
4730 		look_ahead |= tmp << have;
4731 		have += bits;
4732 	}
4733 
4734 	c->bit_offset = s;
4735 	bm_xfer_ctx_bit_to_word_offset(c);
4736 
4737 	return (s != c->bm_bits);
4738 }
4739 
4740 /*
4741  * decode_bitmap_c
4742  *
4743  * Return 0 when done, 1 when another iteration is needed, and a negative error
4744  * code upon failure.
4745  */
4746 static int
4747 decode_bitmap_c(struct drbd_peer_device *peer_device,
4748 		struct p_compressed_bm *p,
4749 		struct bm_xfer_ctx *c,
4750 		unsigned int len)
4751 {
4752 	if (dcbp_get_code(p) == RLE_VLI_Bits)
4753 		return recv_bm_rle_bits(peer_device, p, c, len - sizeof(*p));
4754 
4755 	/* other variants had been implemented for evaluation,
4756 	 * but have been dropped as this one turned out to be "best"
4757 	 * during all our tests. */
4758 
4759 	drbd_err(peer_device, "receive_bitmap_c: unknown encoding %u\n", p->encoding);
4760 	conn_request_state(peer_device->connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
4761 	return -EIO;
4762 }
4763 
4764 void INFO_bm_xfer_stats(struct drbd_device *device,
4765 		const char *direction, struct bm_xfer_ctx *c)
4766 {
4767 	/* what would it take to transfer it "plaintext" */
4768 	unsigned int header_size = drbd_header_size(first_peer_device(device)->connection);
4769 	unsigned int data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
4770 	unsigned int plain =
4771 		header_size * (DIV_ROUND_UP(c->bm_words, data_size) + 1) +
4772 		c->bm_words * sizeof(unsigned long);
4773 	unsigned int total = c->bytes[0] + c->bytes[1];
4774 	unsigned int r;
4775 
4776 	/* total can not be zero. but just in case: */
4777 	if (total == 0)
4778 		return;
4779 
4780 	/* don't report if not compressed */
4781 	if (total >= plain)
4782 		return;
4783 
4784 	/* total < plain. check for overflow, still */
4785 	r = (total > UINT_MAX/1000) ? (total / (plain/1000))
4786 		                    : (1000 * total / plain);
4787 
4788 	if (r > 1000)
4789 		r = 1000;
4790 
4791 	r = 1000 - r;
4792 	drbd_info(device, "%s bitmap stats [Bytes(packets)]: plain %u(%u), RLE %u(%u), "
4793 	     "total %u; compression: %u.%u%%\n",
4794 			direction,
4795 			c->bytes[1], c->packets[1],
4796 			c->bytes[0], c->packets[0],
4797 			total, r/10, r % 10);
4798 }
4799 
4800 /* Since we are processing the bitfield from lower addresses to higher,
4801    it does not matter if the process it in 32 bit chunks or 64 bit
4802    chunks as long as it is little endian. (Understand it as byte stream,
4803    beginning with the lowest byte...) If we would use big endian
4804    we would need to process it from the highest address to the lowest,
4805    in order to be agnostic to the 32 vs 64 bits issue.
4806 
4807    returns 0 on failure, 1 if we successfully received it. */
4808 static int receive_bitmap(struct drbd_connection *connection, struct packet_info *pi)
4809 {
4810 	struct drbd_peer_device *peer_device;
4811 	struct drbd_device *device;
4812 	struct bm_xfer_ctx c;
4813 	int err;
4814 
4815 	peer_device = conn_peer_device(connection, pi->vnr);
4816 	if (!peer_device)
4817 		return -EIO;
4818 	device = peer_device->device;
4819 
4820 	drbd_bm_lock(device, "receive bitmap", BM_LOCKED_SET_ALLOWED);
4821 	/* you are supposed to send additional out-of-sync information
4822 	 * if you actually set bits during this phase */
4823 
4824 	c = (struct bm_xfer_ctx) {
4825 		.bm_bits = drbd_bm_bits(device),
4826 		.bm_words = drbd_bm_words(device),
4827 	};
4828 
4829 	for(;;) {
4830 		if (pi->cmd == P_BITMAP)
4831 			err = receive_bitmap_plain(peer_device, pi->size, pi->data, &c);
4832 		else if (pi->cmd == P_COMPRESSED_BITMAP) {
4833 			/* MAYBE: sanity check that we speak proto >= 90,
4834 			 * and the feature is enabled! */
4835 			struct p_compressed_bm *p = pi->data;
4836 
4837 			if (pi->size > DRBD_SOCKET_BUFFER_SIZE - drbd_header_size(connection)) {
4838 				drbd_err(device, "ReportCBitmap packet too large\n");
4839 				err = -EIO;
4840 				goto out;
4841 			}
4842 			if (pi->size <= sizeof(*p)) {
4843 				drbd_err(device, "ReportCBitmap packet too small (l:%u)\n", pi->size);
4844 				err = -EIO;
4845 				goto out;
4846 			}
4847 			err = drbd_recv_all(peer_device->connection, p, pi->size);
4848 			if (err)
4849 			       goto out;
4850 			err = decode_bitmap_c(peer_device, p, &c, pi->size);
4851 		} else {
4852 			drbd_warn(device, "receive_bitmap: cmd neither ReportBitMap nor ReportCBitMap (is 0x%x)", pi->cmd);
4853 			err = -EIO;
4854 			goto out;
4855 		}
4856 
4857 		c.packets[pi->cmd == P_BITMAP]++;
4858 		c.bytes[pi->cmd == P_BITMAP] += drbd_header_size(connection) + pi->size;
4859 
4860 		if (err <= 0) {
4861 			if (err < 0)
4862 				goto out;
4863 			break;
4864 		}
4865 		err = drbd_recv_header(peer_device->connection, pi);
4866 		if (err)
4867 			goto out;
4868 	}
4869 
4870 	INFO_bm_xfer_stats(device, "receive", &c);
4871 
4872 	if (device->state.conn == C_WF_BITMAP_T) {
4873 		enum drbd_state_rv rv;
4874 
4875 		err = drbd_send_bitmap(device);
4876 		if (err)
4877 			goto out;
4878 		/* Omit CS_ORDERED with this state transition to avoid deadlocks. */
4879 		rv = _drbd_request_state(device, NS(conn, C_WF_SYNC_UUID), CS_VERBOSE);
4880 		D_ASSERT(device, rv == SS_SUCCESS);
4881 	} else if (device->state.conn != C_WF_BITMAP_S) {
4882 		/* admin may have requested C_DISCONNECTING,
4883 		 * other threads may have noticed network errors */
4884 		drbd_info(device, "unexpected cstate (%s) in receive_bitmap\n",
4885 		    drbd_conn_str(device->state.conn));
4886 	}
4887 	err = 0;
4888 
4889  out:
4890 	drbd_bm_unlock(device);
4891 	if (!err && device->state.conn == C_WF_BITMAP_S)
4892 		drbd_start_resync(device, C_SYNC_SOURCE);
4893 	return err;
4894 }
4895 
4896 static int receive_skip(struct drbd_connection *connection, struct packet_info *pi)
4897 {
4898 	drbd_warn(connection, "skipping unknown optional packet type %d, l: %d!\n",
4899 		 pi->cmd, pi->size);
4900 
4901 	return ignore_remaining_packet(connection, pi);
4902 }
4903 
4904 static int receive_UnplugRemote(struct drbd_connection *connection, struct packet_info *pi)
4905 {
4906 	/* Make sure we've acked all the TCP data associated
4907 	 * with the data requests being unplugged */
4908 	tcp_sock_set_quickack(connection->data.socket->sk, 2);
4909 	return 0;
4910 }
4911 
4912 static int receive_out_of_sync(struct drbd_connection *connection, struct packet_info *pi)
4913 {
4914 	struct drbd_peer_device *peer_device;
4915 	struct drbd_device *device;
4916 	struct p_block_desc *p = pi->data;
4917 
4918 	peer_device = conn_peer_device(connection, pi->vnr);
4919 	if (!peer_device)
4920 		return -EIO;
4921 	device = peer_device->device;
4922 
4923 	switch (device->state.conn) {
4924 	case C_WF_SYNC_UUID:
4925 	case C_WF_BITMAP_T:
4926 	case C_BEHIND:
4927 			break;
4928 	default:
4929 		drbd_err(device, "ASSERT FAILED cstate = %s, expected: WFSyncUUID|WFBitMapT|Behind\n",
4930 				drbd_conn_str(device->state.conn));
4931 	}
4932 
4933 	drbd_set_out_of_sync(device, be64_to_cpu(p->sector), be32_to_cpu(p->blksize));
4934 
4935 	return 0;
4936 }
4937 
4938 static int receive_rs_deallocated(struct drbd_connection *connection, struct packet_info *pi)
4939 {
4940 	struct drbd_peer_device *peer_device;
4941 	struct p_block_desc *p = pi->data;
4942 	struct drbd_device *device;
4943 	sector_t sector;
4944 	int size, err = 0;
4945 
4946 	peer_device = conn_peer_device(connection, pi->vnr);
4947 	if (!peer_device)
4948 		return -EIO;
4949 	device = peer_device->device;
4950 
4951 	sector = be64_to_cpu(p->sector);
4952 	size = be32_to_cpu(p->blksize);
4953 
4954 	dec_rs_pending(device);
4955 
4956 	if (get_ldev(device)) {
4957 		struct drbd_peer_request *peer_req;
4958 		const int op = REQ_OP_WRITE_ZEROES;
4959 
4960 		peer_req = drbd_alloc_peer_req(peer_device, ID_SYNCER, sector,
4961 					       size, 0, GFP_NOIO);
4962 		if (!peer_req) {
4963 			put_ldev(device);
4964 			return -ENOMEM;
4965 		}
4966 
4967 		peer_req->w.cb = e_end_resync_block;
4968 		peer_req->submit_jif = jiffies;
4969 		peer_req->flags |= EE_TRIM;
4970 
4971 		spin_lock_irq(&device->resource->req_lock);
4972 		list_add_tail(&peer_req->w.list, &device->sync_ee);
4973 		spin_unlock_irq(&device->resource->req_lock);
4974 
4975 		atomic_add(pi->size >> 9, &device->rs_sect_ev);
4976 		err = drbd_submit_peer_request(device, peer_req, op, 0, DRBD_FAULT_RS_WR);
4977 
4978 		if (err) {
4979 			spin_lock_irq(&device->resource->req_lock);
4980 			list_del(&peer_req->w.list);
4981 			spin_unlock_irq(&device->resource->req_lock);
4982 
4983 			drbd_free_peer_req(device, peer_req);
4984 			put_ldev(device);
4985 			err = 0;
4986 			goto fail;
4987 		}
4988 
4989 		inc_unacked(device);
4990 
4991 		/* No put_ldev() here. Gets called in drbd_endio_write_sec_final(),
4992 		   as well as drbd_rs_complete_io() */
4993 	} else {
4994 	fail:
4995 		drbd_rs_complete_io(device, sector);
4996 		drbd_send_ack_ex(peer_device, P_NEG_ACK, sector, size, ID_SYNCER);
4997 	}
4998 
4999 	atomic_add(size >> 9, &device->rs_sect_in);
5000 
5001 	return err;
5002 }
5003 
5004 struct data_cmd {
5005 	int expect_payload;
5006 	unsigned int pkt_size;
5007 	int (*fn)(struct drbd_connection *, struct packet_info *);
5008 };
5009 
5010 static struct data_cmd drbd_cmd_handler[] = {
5011 	[P_DATA]	    = { 1, sizeof(struct p_data), receive_Data },
5012 	[P_DATA_REPLY]	    = { 1, sizeof(struct p_data), receive_DataReply },
5013 	[P_RS_DATA_REPLY]   = { 1, sizeof(struct p_data), receive_RSDataReply } ,
5014 	[P_BARRIER]	    = { 0, sizeof(struct p_barrier), receive_Barrier } ,
5015 	[P_BITMAP]	    = { 1, 0, receive_bitmap } ,
5016 	[P_COMPRESSED_BITMAP] = { 1, 0, receive_bitmap } ,
5017 	[P_UNPLUG_REMOTE]   = { 0, 0, receive_UnplugRemote },
5018 	[P_DATA_REQUEST]    = { 0, sizeof(struct p_block_req), receive_DataRequest },
5019 	[P_RS_DATA_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest },
5020 	[P_SYNC_PARAM]	    = { 1, 0, receive_SyncParam },
5021 	[P_SYNC_PARAM89]    = { 1, 0, receive_SyncParam },
5022 	[P_PROTOCOL]        = { 1, sizeof(struct p_protocol), receive_protocol },
5023 	[P_UUIDS]	    = { 0, sizeof(struct p_uuids), receive_uuids },
5024 	[P_SIZES]	    = { 0, sizeof(struct p_sizes), receive_sizes },
5025 	[P_STATE]	    = { 0, sizeof(struct p_state), receive_state },
5026 	[P_STATE_CHG_REQ]   = { 0, sizeof(struct p_req_state), receive_req_state },
5027 	[P_SYNC_UUID]       = { 0, sizeof(struct p_rs_uuid), receive_sync_uuid },
5028 	[P_OV_REQUEST]      = { 0, sizeof(struct p_block_req), receive_DataRequest },
5029 	[P_OV_REPLY]        = { 1, sizeof(struct p_block_req), receive_DataRequest },
5030 	[P_CSUM_RS_REQUEST] = { 1, sizeof(struct p_block_req), receive_DataRequest },
5031 	[P_RS_THIN_REQ]     = { 0, sizeof(struct p_block_req), receive_DataRequest },
5032 	[P_DELAY_PROBE]     = { 0, sizeof(struct p_delay_probe93), receive_skip },
5033 	[P_OUT_OF_SYNC]     = { 0, sizeof(struct p_block_desc), receive_out_of_sync },
5034 	[P_CONN_ST_CHG_REQ] = { 0, sizeof(struct p_req_state), receive_req_conn_state },
5035 	[P_PROTOCOL_UPDATE] = { 1, sizeof(struct p_protocol), receive_protocol },
5036 	[P_TRIM]	    = { 0, sizeof(struct p_trim), receive_Data },
5037 	[P_ZEROES]	    = { 0, sizeof(struct p_trim), receive_Data },
5038 	[P_RS_DEALLOCATED]  = { 0, sizeof(struct p_block_desc), receive_rs_deallocated },
5039 };
5040 
5041 static void drbdd(struct drbd_connection *connection)
5042 {
5043 	struct packet_info pi;
5044 	size_t shs; /* sub header size */
5045 	int err;
5046 
5047 	while (get_t_state(&connection->receiver) == RUNNING) {
5048 		struct data_cmd const *cmd;
5049 
5050 		drbd_thread_current_set_cpu(&connection->receiver);
5051 		update_receiver_timing_details(connection, drbd_recv_header_maybe_unplug);
5052 		if (drbd_recv_header_maybe_unplug(connection, &pi))
5053 			goto err_out;
5054 
5055 		cmd = &drbd_cmd_handler[pi.cmd];
5056 		if (unlikely(pi.cmd >= ARRAY_SIZE(drbd_cmd_handler) || !cmd->fn)) {
5057 			drbd_err(connection, "Unexpected data packet %s (0x%04x)",
5058 				 cmdname(pi.cmd), pi.cmd);
5059 			goto err_out;
5060 		}
5061 
5062 		shs = cmd->pkt_size;
5063 		if (pi.cmd == P_SIZES && connection->agreed_features & DRBD_FF_WSAME)
5064 			shs += sizeof(struct o_qlim);
5065 		if (pi.size > shs && !cmd->expect_payload) {
5066 			drbd_err(connection, "No payload expected %s l:%d\n",
5067 				 cmdname(pi.cmd), pi.size);
5068 			goto err_out;
5069 		}
5070 		if (pi.size < shs) {
5071 			drbd_err(connection, "%s: unexpected packet size, expected:%d received:%d\n",
5072 				 cmdname(pi.cmd), (int)shs, pi.size);
5073 			goto err_out;
5074 		}
5075 
5076 		if (shs) {
5077 			update_receiver_timing_details(connection, drbd_recv_all_warn);
5078 			err = drbd_recv_all_warn(connection, pi.data, shs);
5079 			if (err)
5080 				goto err_out;
5081 			pi.size -= shs;
5082 		}
5083 
5084 		update_receiver_timing_details(connection, cmd->fn);
5085 		err = cmd->fn(connection, &pi);
5086 		if (err) {
5087 			drbd_err(connection, "error receiving %s, e: %d l: %d!\n",
5088 				 cmdname(pi.cmd), err, pi.size);
5089 			goto err_out;
5090 		}
5091 	}
5092 	return;
5093 
5094     err_out:
5095 	conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
5096 }
5097 
5098 static void conn_disconnect(struct drbd_connection *connection)
5099 {
5100 	struct drbd_peer_device *peer_device;
5101 	enum drbd_conns oc;
5102 	int vnr;
5103 
5104 	if (connection->cstate == C_STANDALONE)
5105 		return;
5106 
5107 	/* We are about to start the cleanup after connection loss.
5108 	 * Make sure drbd_make_request knows about that.
5109 	 * Usually we should be in some network failure state already,
5110 	 * but just in case we are not, we fix it up here.
5111 	 */
5112 	conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD);
5113 
5114 	/* ack_receiver does not clean up anything. it must not interfere, either */
5115 	drbd_thread_stop(&connection->ack_receiver);
5116 	if (connection->ack_sender) {
5117 		destroy_workqueue(connection->ack_sender);
5118 		connection->ack_sender = NULL;
5119 	}
5120 	drbd_free_sock(connection);
5121 
5122 	rcu_read_lock();
5123 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
5124 		struct drbd_device *device = peer_device->device;
5125 		kref_get(&device->kref);
5126 		rcu_read_unlock();
5127 		drbd_disconnected(peer_device);
5128 		kref_put(&device->kref, drbd_destroy_device);
5129 		rcu_read_lock();
5130 	}
5131 	rcu_read_unlock();
5132 
5133 	if (!list_empty(&connection->current_epoch->list))
5134 		drbd_err(connection, "ASSERTION FAILED: connection->current_epoch->list not empty\n");
5135 	/* ok, no more ee's on the fly, it is safe to reset the epoch_size */
5136 	atomic_set(&connection->current_epoch->epoch_size, 0);
5137 	connection->send.seen_any_write_yet = false;
5138 
5139 	drbd_info(connection, "Connection closed\n");
5140 
5141 	if (conn_highest_role(connection) == R_PRIMARY && conn_highest_pdsk(connection) >= D_UNKNOWN)
5142 		conn_try_outdate_peer_async(connection);
5143 
5144 	spin_lock_irq(&connection->resource->req_lock);
5145 	oc = connection->cstate;
5146 	if (oc >= C_UNCONNECTED)
5147 		_conn_request_state(connection, NS(conn, C_UNCONNECTED), CS_VERBOSE);
5148 
5149 	spin_unlock_irq(&connection->resource->req_lock);
5150 
5151 	if (oc == C_DISCONNECTING)
5152 		conn_request_state(connection, NS(conn, C_STANDALONE), CS_VERBOSE | CS_HARD);
5153 }
5154 
5155 static int drbd_disconnected(struct drbd_peer_device *peer_device)
5156 {
5157 	struct drbd_device *device = peer_device->device;
5158 	unsigned int i;
5159 
5160 	/* wait for current activity to cease. */
5161 	spin_lock_irq(&device->resource->req_lock);
5162 	_drbd_wait_ee_list_empty(device, &device->active_ee);
5163 	_drbd_wait_ee_list_empty(device, &device->sync_ee);
5164 	_drbd_wait_ee_list_empty(device, &device->read_ee);
5165 	spin_unlock_irq(&device->resource->req_lock);
5166 
5167 	/* We do not have data structures that would allow us to
5168 	 * get the rs_pending_cnt down to 0 again.
5169 	 *  * On C_SYNC_TARGET we do not have any data structures describing
5170 	 *    the pending RSDataRequest's we have sent.
5171 	 *  * On C_SYNC_SOURCE there is no data structure that tracks
5172 	 *    the P_RS_DATA_REPLY blocks that we sent to the SyncTarget.
5173 	 *  And no, it is not the sum of the reference counts in the
5174 	 *  resync_LRU. The resync_LRU tracks the whole operation including
5175 	 *  the disk-IO, while the rs_pending_cnt only tracks the blocks
5176 	 *  on the fly. */
5177 	drbd_rs_cancel_all(device);
5178 	device->rs_total = 0;
5179 	device->rs_failed = 0;
5180 	atomic_set(&device->rs_pending_cnt, 0);
5181 	wake_up(&device->misc_wait);
5182 
5183 	del_timer_sync(&device->resync_timer);
5184 	resync_timer_fn(&device->resync_timer);
5185 
5186 	/* wait for all w_e_end_data_req, w_e_end_rsdata_req, w_send_barrier,
5187 	 * w_make_resync_request etc. which may still be on the worker queue
5188 	 * to be "canceled" */
5189 	drbd_flush_workqueue(&peer_device->connection->sender_work);
5190 
5191 	drbd_finish_peer_reqs(device);
5192 
5193 	/* This second workqueue flush is necessary, since drbd_finish_peer_reqs()
5194 	   might have issued a work again. The one before drbd_finish_peer_reqs() is
5195 	   necessary to reclain net_ee in drbd_finish_peer_reqs(). */
5196 	drbd_flush_workqueue(&peer_device->connection->sender_work);
5197 
5198 	/* need to do it again, drbd_finish_peer_reqs() may have populated it
5199 	 * again via drbd_try_clear_on_disk_bm(). */
5200 	drbd_rs_cancel_all(device);
5201 
5202 	kfree(device->p_uuid);
5203 	device->p_uuid = NULL;
5204 
5205 	if (!drbd_suspended(device))
5206 		tl_clear(peer_device->connection);
5207 
5208 	drbd_md_sync(device);
5209 
5210 	if (get_ldev(device)) {
5211 		drbd_bitmap_io(device, &drbd_bm_write_copy_pages,
5212 				"write from disconnected", BM_LOCKED_CHANGE_ALLOWED);
5213 		put_ldev(device);
5214 	}
5215 
5216 	/* tcp_close and release of sendpage pages can be deferred.  I don't
5217 	 * want to use SO_LINGER, because apparently it can be deferred for
5218 	 * more than 20 seconds (longest time I checked).
5219 	 *
5220 	 * Actually we don't care for exactly when the network stack does its
5221 	 * put_page(), but release our reference on these pages right here.
5222 	 */
5223 	i = drbd_free_peer_reqs(device, &device->net_ee);
5224 	if (i)
5225 		drbd_info(device, "net_ee not empty, killed %u entries\n", i);
5226 	i = atomic_read(&device->pp_in_use_by_net);
5227 	if (i)
5228 		drbd_info(device, "pp_in_use_by_net = %d, expected 0\n", i);
5229 	i = atomic_read(&device->pp_in_use);
5230 	if (i)
5231 		drbd_info(device, "pp_in_use = %d, expected 0\n", i);
5232 
5233 	D_ASSERT(device, list_empty(&device->read_ee));
5234 	D_ASSERT(device, list_empty(&device->active_ee));
5235 	D_ASSERT(device, list_empty(&device->sync_ee));
5236 	D_ASSERT(device, list_empty(&device->done_ee));
5237 
5238 	return 0;
5239 }
5240 
5241 /*
5242  * We support PRO_VERSION_MIN to PRO_VERSION_MAX. The protocol version
5243  * we can agree on is stored in agreed_pro_version.
5244  *
5245  * feature flags and the reserved array should be enough room for future
5246  * enhancements of the handshake protocol, and possible plugins...
5247  *
5248  * for now, they are expected to be zero, but ignored.
5249  */
5250 static int drbd_send_features(struct drbd_connection *connection)
5251 {
5252 	struct drbd_socket *sock;
5253 	struct p_connection_features *p;
5254 
5255 	sock = &connection->data;
5256 	p = conn_prepare_command(connection, sock);
5257 	if (!p)
5258 		return -EIO;
5259 	memset(p, 0, sizeof(*p));
5260 	p->protocol_min = cpu_to_be32(PRO_VERSION_MIN);
5261 	p->protocol_max = cpu_to_be32(PRO_VERSION_MAX);
5262 	p->feature_flags = cpu_to_be32(PRO_FEATURES);
5263 	return conn_send_command(connection, sock, P_CONNECTION_FEATURES, sizeof(*p), NULL, 0);
5264 }
5265 
5266 /*
5267  * return values:
5268  *   1 yes, we have a valid connection
5269  *   0 oops, did not work out, please try again
5270  *  -1 peer talks different language,
5271  *     no point in trying again, please go standalone.
5272  */
5273 static int drbd_do_features(struct drbd_connection *connection)
5274 {
5275 	/* ASSERT current == connection->receiver ... */
5276 	struct p_connection_features *p;
5277 	const int expect = sizeof(struct p_connection_features);
5278 	struct packet_info pi;
5279 	int err;
5280 
5281 	err = drbd_send_features(connection);
5282 	if (err)
5283 		return 0;
5284 
5285 	err = drbd_recv_header(connection, &pi);
5286 	if (err)
5287 		return 0;
5288 
5289 	if (pi.cmd != P_CONNECTION_FEATURES) {
5290 		drbd_err(connection, "expected ConnectionFeatures packet, received: %s (0x%04x)\n",
5291 			 cmdname(pi.cmd), pi.cmd);
5292 		return -1;
5293 	}
5294 
5295 	if (pi.size != expect) {
5296 		drbd_err(connection, "expected ConnectionFeatures length: %u, received: %u\n",
5297 		     expect, pi.size);
5298 		return -1;
5299 	}
5300 
5301 	p = pi.data;
5302 	err = drbd_recv_all_warn(connection, p, expect);
5303 	if (err)
5304 		return 0;
5305 
5306 	p->protocol_min = be32_to_cpu(p->protocol_min);
5307 	p->protocol_max = be32_to_cpu(p->protocol_max);
5308 	if (p->protocol_max == 0)
5309 		p->protocol_max = p->protocol_min;
5310 
5311 	if (PRO_VERSION_MAX < p->protocol_min ||
5312 	    PRO_VERSION_MIN > p->protocol_max)
5313 		goto incompat;
5314 
5315 	connection->agreed_pro_version = min_t(int, PRO_VERSION_MAX, p->protocol_max);
5316 	connection->agreed_features = PRO_FEATURES & be32_to_cpu(p->feature_flags);
5317 
5318 	drbd_info(connection, "Handshake successful: "
5319 	     "Agreed network protocol version %d\n", connection->agreed_pro_version);
5320 
5321 	drbd_info(connection, "Feature flags enabled on protocol level: 0x%x%s%s%s%s.\n",
5322 		  connection->agreed_features,
5323 		  connection->agreed_features & DRBD_FF_TRIM ? " TRIM" : "",
5324 		  connection->agreed_features & DRBD_FF_THIN_RESYNC ? " THIN_RESYNC" : "",
5325 		  connection->agreed_features & DRBD_FF_WSAME ? " WRITE_SAME" : "",
5326 		  connection->agreed_features & DRBD_FF_WZEROES ? " WRITE_ZEROES" :
5327 		  connection->agreed_features ? "" : " none");
5328 
5329 	return 1;
5330 
5331  incompat:
5332 	drbd_err(connection, "incompatible DRBD dialects: "
5333 	    "I support %d-%d, peer supports %d-%d\n",
5334 	    PRO_VERSION_MIN, PRO_VERSION_MAX,
5335 	    p->protocol_min, p->protocol_max);
5336 	return -1;
5337 }
5338 
5339 #if !defined(CONFIG_CRYPTO_HMAC) && !defined(CONFIG_CRYPTO_HMAC_MODULE)
5340 static int drbd_do_auth(struct drbd_connection *connection)
5341 {
5342 	drbd_err(connection, "This kernel was build without CONFIG_CRYPTO_HMAC.\n");
5343 	drbd_err(connection, "You need to disable 'cram-hmac-alg' in drbd.conf.\n");
5344 	return -1;
5345 }
5346 #else
5347 #define CHALLENGE_LEN 64
5348 
5349 /* Return value:
5350 	1 - auth succeeded,
5351 	0 - failed, try again (network error),
5352 	-1 - auth failed, don't try again.
5353 */
5354 
5355 static int drbd_do_auth(struct drbd_connection *connection)
5356 {
5357 	struct drbd_socket *sock;
5358 	char my_challenge[CHALLENGE_LEN];  /* 64 Bytes... */
5359 	char *response = NULL;
5360 	char *right_response = NULL;
5361 	char *peers_ch = NULL;
5362 	unsigned int key_len;
5363 	char secret[SHARED_SECRET_MAX]; /* 64 byte */
5364 	unsigned int resp_size;
5365 	struct shash_desc *desc;
5366 	struct packet_info pi;
5367 	struct net_conf *nc;
5368 	int err, rv;
5369 
5370 	/* FIXME: Put the challenge/response into the preallocated socket buffer.  */
5371 
5372 	rcu_read_lock();
5373 	nc = rcu_dereference(connection->net_conf);
5374 	key_len = strlen(nc->shared_secret);
5375 	memcpy(secret, nc->shared_secret, key_len);
5376 	rcu_read_unlock();
5377 
5378 	desc = kmalloc(sizeof(struct shash_desc) +
5379 		       crypto_shash_descsize(connection->cram_hmac_tfm),
5380 		       GFP_KERNEL);
5381 	if (!desc) {
5382 		rv = -1;
5383 		goto fail;
5384 	}
5385 	desc->tfm = connection->cram_hmac_tfm;
5386 
5387 	rv = crypto_shash_setkey(connection->cram_hmac_tfm, (u8 *)secret, key_len);
5388 	if (rv) {
5389 		drbd_err(connection, "crypto_shash_setkey() failed with %d\n", rv);
5390 		rv = -1;
5391 		goto fail;
5392 	}
5393 
5394 	get_random_bytes(my_challenge, CHALLENGE_LEN);
5395 
5396 	sock = &connection->data;
5397 	if (!conn_prepare_command(connection, sock)) {
5398 		rv = 0;
5399 		goto fail;
5400 	}
5401 	rv = !conn_send_command(connection, sock, P_AUTH_CHALLENGE, 0,
5402 				my_challenge, CHALLENGE_LEN);
5403 	if (!rv)
5404 		goto fail;
5405 
5406 	err = drbd_recv_header(connection, &pi);
5407 	if (err) {
5408 		rv = 0;
5409 		goto fail;
5410 	}
5411 
5412 	if (pi.cmd != P_AUTH_CHALLENGE) {
5413 		drbd_err(connection, "expected AuthChallenge packet, received: %s (0x%04x)\n",
5414 			 cmdname(pi.cmd), pi.cmd);
5415 		rv = -1;
5416 		goto fail;
5417 	}
5418 
5419 	if (pi.size > CHALLENGE_LEN * 2) {
5420 		drbd_err(connection, "expected AuthChallenge payload too big.\n");
5421 		rv = -1;
5422 		goto fail;
5423 	}
5424 
5425 	if (pi.size < CHALLENGE_LEN) {
5426 		drbd_err(connection, "AuthChallenge payload too small.\n");
5427 		rv = -1;
5428 		goto fail;
5429 	}
5430 
5431 	peers_ch = kmalloc(pi.size, GFP_NOIO);
5432 	if (!peers_ch) {
5433 		rv = -1;
5434 		goto fail;
5435 	}
5436 
5437 	err = drbd_recv_all_warn(connection, peers_ch, pi.size);
5438 	if (err) {
5439 		rv = 0;
5440 		goto fail;
5441 	}
5442 
5443 	if (!memcmp(my_challenge, peers_ch, CHALLENGE_LEN)) {
5444 		drbd_err(connection, "Peer presented the same challenge!\n");
5445 		rv = -1;
5446 		goto fail;
5447 	}
5448 
5449 	resp_size = crypto_shash_digestsize(connection->cram_hmac_tfm);
5450 	response = kmalloc(resp_size, GFP_NOIO);
5451 	if (!response) {
5452 		rv = -1;
5453 		goto fail;
5454 	}
5455 
5456 	rv = crypto_shash_digest(desc, peers_ch, pi.size, response);
5457 	if (rv) {
5458 		drbd_err(connection, "crypto_hash_digest() failed with %d\n", rv);
5459 		rv = -1;
5460 		goto fail;
5461 	}
5462 
5463 	if (!conn_prepare_command(connection, sock)) {
5464 		rv = 0;
5465 		goto fail;
5466 	}
5467 	rv = !conn_send_command(connection, sock, P_AUTH_RESPONSE, 0,
5468 				response, resp_size);
5469 	if (!rv)
5470 		goto fail;
5471 
5472 	err = drbd_recv_header(connection, &pi);
5473 	if (err) {
5474 		rv = 0;
5475 		goto fail;
5476 	}
5477 
5478 	if (pi.cmd != P_AUTH_RESPONSE) {
5479 		drbd_err(connection, "expected AuthResponse packet, received: %s (0x%04x)\n",
5480 			 cmdname(pi.cmd), pi.cmd);
5481 		rv = 0;
5482 		goto fail;
5483 	}
5484 
5485 	if (pi.size != resp_size) {
5486 		drbd_err(connection, "expected AuthResponse payload of wrong size\n");
5487 		rv = 0;
5488 		goto fail;
5489 	}
5490 
5491 	err = drbd_recv_all_warn(connection, response , resp_size);
5492 	if (err) {
5493 		rv = 0;
5494 		goto fail;
5495 	}
5496 
5497 	right_response = kmalloc(resp_size, GFP_NOIO);
5498 	if (!right_response) {
5499 		rv = -1;
5500 		goto fail;
5501 	}
5502 
5503 	rv = crypto_shash_digest(desc, my_challenge, CHALLENGE_LEN,
5504 				 right_response);
5505 	if (rv) {
5506 		drbd_err(connection, "crypto_hash_digest() failed with %d\n", rv);
5507 		rv = -1;
5508 		goto fail;
5509 	}
5510 
5511 	rv = !memcmp(response, right_response, resp_size);
5512 
5513 	if (rv)
5514 		drbd_info(connection, "Peer authenticated using %d bytes HMAC\n",
5515 		     resp_size);
5516 	else
5517 		rv = -1;
5518 
5519  fail:
5520 	kfree(peers_ch);
5521 	kfree(response);
5522 	kfree(right_response);
5523 	if (desc) {
5524 		shash_desc_zero(desc);
5525 		kfree(desc);
5526 	}
5527 
5528 	return rv;
5529 }
5530 #endif
5531 
5532 int drbd_receiver(struct drbd_thread *thi)
5533 {
5534 	struct drbd_connection *connection = thi->connection;
5535 	int h;
5536 
5537 	drbd_info(connection, "receiver (re)started\n");
5538 
5539 	do {
5540 		h = conn_connect(connection);
5541 		if (h == 0) {
5542 			conn_disconnect(connection);
5543 			schedule_timeout_interruptible(HZ);
5544 		}
5545 		if (h == -1) {
5546 			drbd_warn(connection, "Discarding network configuration.\n");
5547 			conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
5548 		}
5549 	} while (h == 0);
5550 
5551 	if (h > 0) {
5552 		blk_start_plug(&connection->receiver_plug);
5553 		drbdd(connection);
5554 		blk_finish_plug(&connection->receiver_plug);
5555 	}
5556 
5557 	conn_disconnect(connection);
5558 
5559 	drbd_info(connection, "receiver terminated\n");
5560 	return 0;
5561 }
5562 
5563 /* ********* acknowledge sender ******** */
5564 
5565 static int got_conn_RqSReply(struct drbd_connection *connection, struct packet_info *pi)
5566 {
5567 	struct p_req_state_reply *p = pi->data;
5568 	int retcode = be32_to_cpu(p->retcode);
5569 
5570 	if (retcode >= SS_SUCCESS) {
5571 		set_bit(CONN_WD_ST_CHG_OKAY, &connection->flags);
5572 	} else {
5573 		set_bit(CONN_WD_ST_CHG_FAIL, &connection->flags);
5574 		drbd_err(connection, "Requested state change failed by peer: %s (%d)\n",
5575 			 drbd_set_st_err_str(retcode), retcode);
5576 	}
5577 	wake_up(&connection->ping_wait);
5578 
5579 	return 0;
5580 }
5581 
5582 static int got_RqSReply(struct drbd_connection *connection, struct packet_info *pi)
5583 {
5584 	struct drbd_peer_device *peer_device;
5585 	struct drbd_device *device;
5586 	struct p_req_state_reply *p = pi->data;
5587 	int retcode = be32_to_cpu(p->retcode);
5588 
5589 	peer_device = conn_peer_device(connection, pi->vnr);
5590 	if (!peer_device)
5591 		return -EIO;
5592 	device = peer_device->device;
5593 
5594 	if (test_bit(CONN_WD_ST_CHG_REQ, &connection->flags)) {
5595 		D_ASSERT(device, connection->agreed_pro_version < 100);
5596 		return got_conn_RqSReply(connection, pi);
5597 	}
5598 
5599 	if (retcode >= SS_SUCCESS) {
5600 		set_bit(CL_ST_CHG_SUCCESS, &device->flags);
5601 	} else {
5602 		set_bit(CL_ST_CHG_FAIL, &device->flags);
5603 		drbd_err(device, "Requested state change failed by peer: %s (%d)\n",
5604 			drbd_set_st_err_str(retcode), retcode);
5605 	}
5606 	wake_up(&device->state_wait);
5607 
5608 	return 0;
5609 }
5610 
5611 static int got_Ping(struct drbd_connection *connection, struct packet_info *pi)
5612 {
5613 	return drbd_send_ping_ack(connection);
5614 
5615 }
5616 
5617 static int got_PingAck(struct drbd_connection *connection, struct packet_info *pi)
5618 {
5619 	/* restore idle timeout */
5620 	connection->meta.socket->sk->sk_rcvtimeo = connection->net_conf->ping_int*HZ;
5621 	if (!test_and_set_bit(GOT_PING_ACK, &connection->flags))
5622 		wake_up(&connection->ping_wait);
5623 
5624 	return 0;
5625 }
5626 
5627 static int got_IsInSync(struct drbd_connection *connection, struct packet_info *pi)
5628 {
5629 	struct drbd_peer_device *peer_device;
5630 	struct drbd_device *device;
5631 	struct p_block_ack *p = pi->data;
5632 	sector_t sector = be64_to_cpu(p->sector);
5633 	int blksize = be32_to_cpu(p->blksize);
5634 
5635 	peer_device = conn_peer_device(connection, pi->vnr);
5636 	if (!peer_device)
5637 		return -EIO;
5638 	device = peer_device->device;
5639 
5640 	D_ASSERT(device, peer_device->connection->agreed_pro_version >= 89);
5641 
5642 	update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5643 
5644 	if (get_ldev(device)) {
5645 		drbd_rs_complete_io(device, sector);
5646 		drbd_set_in_sync(device, sector, blksize);
5647 		/* rs_same_csums is supposed to count in units of BM_BLOCK_SIZE */
5648 		device->rs_same_csum += (blksize >> BM_BLOCK_SHIFT);
5649 		put_ldev(device);
5650 	}
5651 	dec_rs_pending(device);
5652 	atomic_add(blksize >> 9, &device->rs_sect_in);
5653 
5654 	return 0;
5655 }
5656 
5657 static int
5658 validate_req_change_req_state(struct drbd_device *device, u64 id, sector_t sector,
5659 			      struct rb_root *root, const char *func,
5660 			      enum drbd_req_event what, bool missing_ok)
5661 {
5662 	struct drbd_request *req;
5663 	struct bio_and_error m;
5664 
5665 	spin_lock_irq(&device->resource->req_lock);
5666 	req = find_request(device, root, id, sector, missing_ok, func);
5667 	if (unlikely(!req)) {
5668 		spin_unlock_irq(&device->resource->req_lock);
5669 		return -EIO;
5670 	}
5671 	__req_mod(req, what, &m);
5672 	spin_unlock_irq(&device->resource->req_lock);
5673 
5674 	if (m.bio)
5675 		complete_master_bio(device, &m);
5676 	return 0;
5677 }
5678 
5679 static int got_BlockAck(struct drbd_connection *connection, struct packet_info *pi)
5680 {
5681 	struct drbd_peer_device *peer_device;
5682 	struct drbd_device *device;
5683 	struct p_block_ack *p = pi->data;
5684 	sector_t sector = be64_to_cpu(p->sector);
5685 	int blksize = be32_to_cpu(p->blksize);
5686 	enum drbd_req_event what;
5687 
5688 	peer_device = conn_peer_device(connection, pi->vnr);
5689 	if (!peer_device)
5690 		return -EIO;
5691 	device = peer_device->device;
5692 
5693 	update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5694 
5695 	if (p->block_id == ID_SYNCER) {
5696 		drbd_set_in_sync(device, sector, blksize);
5697 		dec_rs_pending(device);
5698 		return 0;
5699 	}
5700 	switch (pi->cmd) {
5701 	case P_RS_WRITE_ACK:
5702 		what = WRITE_ACKED_BY_PEER_AND_SIS;
5703 		break;
5704 	case P_WRITE_ACK:
5705 		what = WRITE_ACKED_BY_PEER;
5706 		break;
5707 	case P_RECV_ACK:
5708 		what = RECV_ACKED_BY_PEER;
5709 		break;
5710 	case P_SUPERSEDED:
5711 		what = CONFLICT_RESOLVED;
5712 		break;
5713 	case P_RETRY_WRITE:
5714 		what = POSTPONE_WRITE;
5715 		break;
5716 	default:
5717 		BUG();
5718 	}
5719 
5720 	return validate_req_change_req_state(device, p->block_id, sector,
5721 					     &device->write_requests, __func__,
5722 					     what, false);
5723 }
5724 
5725 static int got_NegAck(struct drbd_connection *connection, struct packet_info *pi)
5726 {
5727 	struct drbd_peer_device *peer_device;
5728 	struct drbd_device *device;
5729 	struct p_block_ack *p = pi->data;
5730 	sector_t sector = be64_to_cpu(p->sector);
5731 	int size = be32_to_cpu(p->blksize);
5732 	int err;
5733 
5734 	peer_device = conn_peer_device(connection, pi->vnr);
5735 	if (!peer_device)
5736 		return -EIO;
5737 	device = peer_device->device;
5738 
5739 	update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5740 
5741 	if (p->block_id == ID_SYNCER) {
5742 		dec_rs_pending(device);
5743 		drbd_rs_failed_io(device, sector, size);
5744 		return 0;
5745 	}
5746 
5747 	err = validate_req_change_req_state(device, p->block_id, sector,
5748 					    &device->write_requests, __func__,
5749 					    NEG_ACKED, true);
5750 	if (err) {
5751 		/* Protocol A has no P_WRITE_ACKs, but has P_NEG_ACKs.
5752 		   The master bio might already be completed, therefore the
5753 		   request is no longer in the collision hash. */
5754 		/* In Protocol B we might already have got a P_RECV_ACK
5755 		   but then get a P_NEG_ACK afterwards. */
5756 		drbd_set_out_of_sync(device, sector, size);
5757 	}
5758 	return 0;
5759 }
5760 
5761 static int got_NegDReply(struct drbd_connection *connection, struct packet_info *pi)
5762 {
5763 	struct drbd_peer_device *peer_device;
5764 	struct drbd_device *device;
5765 	struct p_block_ack *p = pi->data;
5766 	sector_t sector = be64_to_cpu(p->sector);
5767 
5768 	peer_device = conn_peer_device(connection, pi->vnr);
5769 	if (!peer_device)
5770 		return -EIO;
5771 	device = peer_device->device;
5772 
5773 	update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5774 
5775 	drbd_err(device, "Got NegDReply; Sector %llus, len %u.\n",
5776 	    (unsigned long long)sector, be32_to_cpu(p->blksize));
5777 
5778 	return validate_req_change_req_state(device, p->block_id, sector,
5779 					     &device->read_requests, __func__,
5780 					     NEG_ACKED, false);
5781 }
5782 
5783 static int got_NegRSDReply(struct drbd_connection *connection, struct packet_info *pi)
5784 {
5785 	struct drbd_peer_device *peer_device;
5786 	struct drbd_device *device;
5787 	sector_t sector;
5788 	int size;
5789 	struct p_block_ack *p = pi->data;
5790 
5791 	peer_device = conn_peer_device(connection, pi->vnr);
5792 	if (!peer_device)
5793 		return -EIO;
5794 	device = peer_device->device;
5795 
5796 	sector = be64_to_cpu(p->sector);
5797 	size = be32_to_cpu(p->blksize);
5798 
5799 	update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5800 
5801 	dec_rs_pending(device);
5802 
5803 	if (get_ldev_if_state(device, D_FAILED)) {
5804 		drbd_rs_complete_io(device, sector);
5805 		switch (pi->cmd) {
5806 		case P_NEG_RS_DREPLY:
5807 			drbd_rs_failed_io(device, sector, size);
5808 			break;
5809 		case P_RS_CANCEL:
5810 			break;
5811 		default:
5812 			BUG();
5813 		}
5814 		put_ldev(device);
5815 	}
5816 
5817 	return 0;
5818 }
5819 
5820 static int got_BarrierAck(struct drbd_connection *connection, struct packet_info *pi)
5821 {
5822 	struct p_barrier_ack *p = pi->data;
5823 	struct drbd_peer_device *peer_device;
5824 	int vnr;
5825 
5826 	tl_release(connection, p->barrier, be32_to_cpu(p->set_size));
5827 
5828 	rcu_read_lock();
5829 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
5830 		struct drbd_device *device = peer_device->device;
5831 
5832 		if (device->state.conn == C_AHEAD &&
5833 		    atomic_read(&device->ap_in_flight) == 0 &&
5834 		    !test_and_set_bit(AHEAD_TO_SYNC_SOURCE, &device->flags)) {
5835 			device->start_resync_timer.expires = jiffies + HZ;
5836 			add_timer(&device->start_resync_timer);
5837 		}
5838 	}
5839 	rcu_read_unlock();
5840 
5841 	return 0;
5842 }
5843 
5844 static int got_OVResult(struct drbd_connection *connection, struct packet_info *pi)
5845 {
5846 	struct drbd_peer_device *peer_device;
5847 	struct drbd_device *device;
5848 	struct p_block_ack *p = pi->data;
5849 	struct drbd_device_work *dw;
5850 	sector_t sector;
5851 	int size;
5852 
5853 	peer_device = conn_peer_device(connection, pi->vnr);
5854 	if (!peer_device)
5855 		return -EIO;
5856 	device = peer_device->device;
5857 
5858 	sector = be64_to_cpu(p->sector);
5859 	size = be32_to_cpu(p->blksize);
5860 
5861 	update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5862 
5863 	if (be64_to_cpu(p->block_id) == ID_OUT_OF_SYNC)
5864 		drbd_ov_out_of_sync_found(device, sector, size);
5865 	else
5866 		ov_out_of_sync_print(device);
5867 
5868 	if (!get_ldev(device))
5869 		return 0;
5870 
5871 	drbd_rs_complete_io(device, sector);
5872 	dec_rs_pending(device);
5873 
5874 	--device->ov_left;
5875 
5876 	/* let's advance progress step marks only for every other megabyte */
5877 	if ((device->ov_left & 0x200) == 0x200)
5878 		drbd_advance_rs_marks(device, device->ov_left);
5879 
5880 	if (device->ov_left == 0) {
5881 		dw = kmalloc(sizeof(*dw), GFP_NOIO);
5882 		if (dw) {
5883 			dw->w.cb = w_ov_finished;
5884 			dw->device = device;
5885 			drbd_queue_work(&peer_device->connection->sender_work, &dw->w);
5886 		} else {
5887 			drbd_err(device, "kmalloc(dw) failed.");
5888 			ov_out_of_sync_print(device);
5889 			drbd_resync_finished(device);
5890 		}
5891 	}
5892 	put_ldev(device);
5893 	return 0;
5894 }
5895 
5896 static int got_skip(struct drbd_connection *connection, struct packet_info *pi)
5897 {
5898 	return 0;
5899 }
5900 
5901 struct meta_sock_cmd {
5902 	size_t pkt_size;
5903 	int (*fn)(struct drbd_connection *connection, struct packet_info *);
5904 };
5905 
5906 static void set_rcvtimeo(struct drbd_connection *connection, bool ping_timeout)
5907 {
5908 	long t;
5909 	struct net_conf *nc;
5910 
5911 	rcu_read_lock();
5912 	nc = rcu_dereference(connection->net_conf);
5913 	t = ping_timeout ? nc->ping_timeo : nc->ping_int;
5914 	rcu_read_unlock();
5915 
5916 	t *= HZ;
5917 	if (ping_timeout)
5918 		t /= 10;
5919 
5920 	connection->meta.socket->sk->sk_rcvtimeo = t;
5921 }
5922 
5923 static void set_ping_timeout(struct drbd_connection *connection)
5924 {
5925 	set_rcvtimeo(connection, 1);
5926 }
5927 
5928 static void set_idle_timeout(struct drbd_connection *connection)
5929 {
5930 	set_rcvtimeo(connection, 0);
5931 }
5932 
5933 static struct meta_sock_cmd ack_receiver_tbl[] = {
5934 	[P_PING]	    = { 0, got_Ping },
5935 	[P_PING_ACK]	    = { 0, got_PingAck },
5936 	[P_RECV_ACK]	    = { sizeof(struct p_block_ack), got_BlockAck },
5937 	[P_WRITE_ACK]	    = { sizeof(struct p_block_ack), got_BlockAck },
5938 	[P_RS_WRITE_ACK]    = { sizeof(struct p_block_ack), got_BlockAck },
5939 	[P_SUPERSEDED]   = { sizeof(struct p_block_ack), got_BlockAck },
5940 	[P_NEG_ACK]	    = { sizeof(struct p_block_ack), got_NegAck },
5941 	[P_NEG_DREPLY]	    = { sizeof(struct p_block_ack), got_NegDReply },
5942 	[P_NEG_RS_DREPLY]   = { sizeof(struct p_block_ack), got_NegRSDReply },
5943 	[P_OV_RESULT]	    = { sizeof(struct p_block_ack), got_OVResult },
5944 	[P_BARRIER_ACK]	    = { sizeof(struct p_barrier_ack), got_BarrierAck },
5945 	[P_STATE_CHG_REPLY] = { sizeof(struct p_req_state_reply), got_RqSReply },
5946 	[P_RS_IS_IN_SYNC]   = { sizeof(struct p_block_ack), got_IsInSync },
5947 	[P_DELAY_PROBE]     = { sizeof(struct p_delay_probe93), got_skip },
5948 	[P_RS_CANCEL]       = { sizeof(struct p_block_ack), got_NegRSDReply },
5949 	[P_CONN_ST_CHG_REPLY]={ sizeof(struct p_req_state_reply), got_conn_RqSReply },
5950 	[P_RETRY_WRITE]	    = { sizeof(struct p_block_ack), got_BlockAck },
5951 };
5952 
5953 int drbd_ack_receiver(struct drbd_thread *thi)
5954 {
5955 	struct drbd_connection *connection = thi->connection;
5956 	struct meta_sock_cmd *cmd = NULL;
5957 	struct packet_info pi;
5958 	unsigned long pre_recv_jif;
5959 	int rv;
5960 	void *buf    = connection->meta.rbuf;
5961 	int received = 0;
5962 	unsigned int header_size = drbd_header_size(connection);
5963 	int expect   = header_size;
5964 	bool ping_timeout_active = false;
5965 
5966 	sched_set_fifo_low(current);
5967 
5968 	while (get_t_state(thi) == RUNNING) {
5969 		drbd_thread_current_set_cpu(thi);
5970 
5971 		conn_reclaim_net_peer_reqs(connection);
5972 
5973 		if (test_and_clear_bit(SEND_PING, &connection->flags)) {
5974 			if (drbd_send_ping(connection)) {
5975 				drbd_err(connection, "drbd_send_ping has failed\n");
5976 				goto reconnect;
5977 			}
5978 			set_ping_timeout(connection);
5979 			ping_timeout_active = true;
5980 		}
5981 
5982 		pre_recv_jif = jiffies;
5983 		rv = drbd_recv_short(connection->meta.socket, buf, expect-received, 0);
5984 
5985 		/* Note:
5986 		 * -EINTR	 (on meta) we got a signal
5987 		 * -EAGAIN	 (on meta) rcvtimeo expired
5988 		 * -ECONNRESET	 other side closed the connection
5989 		 * -ERESTARTSYS  (on data) we got a signal
5990 		 * rv <  0	 other than above: unexpected error!
5991 		 * rv == expected: full header or command
5992 		 * rv <  expected: "woken" by signal during receive
5993 		 * rv == 0	 : "connection shut down by peer"
5994 		 */
5995 		if (likely(rv > 0)) {
5996 			received += rv;
5997 			buf	 += rv;
5998 		} else if (rv == 0) {
5999 			if (test_bit(DISCONNECT_SENT, &connection->flags)) {
6000 				long t;
6001 				rcu_read_lock();
6002 				t = rcu_dereference(connection->net_conf)->ping_timeo * HZ/10;
6003 				rcu_read_unlock();
6004 
6005 				t = wait_event_timeout(connection->ping_wait,
6006 						       connection->cstate < C_WF_REPORT_PARAMS,
6007 						       t);
6008 				if (t)
6009 					break;
6010 			}
6011 			drbd_err(connection, "meta connection shut down by peer.\n");
6012 			goto reconnect;
6013 		} else if (rv == -EAGAIN) {
6014 			/* If the data socket received something meanwhile,
6015 			 * that is good enough: peer is still alive. */
6016 			if (time_after(connection->last_received, pre_recv_jif))
6017 				continue;
6018 			if (ping_timeout_active) {
6019 				drbd_err(connection, "PingAck did not arrive in time.\n");
6020 				goto reconnect;
6021 			}
6022 			set_bit(SEND_PING, &connection->flags);
6023 			continue;
6024 		} else if (rv == -EINTR) {
6025 			/* maybe drbd_thread_stop(): the while condition will notice.
6026 			 * maybe woken for send_ping: we'll send a ping above,
6027 			 * and change the rcvtimeo */
6028 			flush_signals(current);
6029 			continue;
6030 		} else {
6031 			drbd_err(connection, "sock_recvmsg returned %d\n", rv);
6032 			goto reconnect;
6033 		}
6034 
6035 		if (received == expect && cmd == NULL) {
6036 			if (decode_header(connection, connection->meta.rbuf, &pi))
6037 				goto reconnect;
6038 			cmd = &ack_receiver_tbl[pi.cmd];
6039 			if (pi.cmd >= ARRAY_SIZE(ack_receiver_tbl) || !cmd->fn) {
6040 				drbd_err(connection, "Unexpected meta packet %s (0x%04x)\n",
6041 					 cmdname(pi.cmd), pi.cmd);
6042 				goto disconnect;
6043 			}
6044 			expect = header_size + cmd->pkt_size;
6045 			if (pi.size != expect - header_size) {
6046 				drbd_err(connection, "Wrong packet size on meta (c: %d, l: %d)\n",
6047 					pi.cmd, pi.size);
6048 				goto reconnect;
6049 			}
6050 		}
6051 		if (received == expect) {
6052 			bool err;
6053 
6054 			err = cmd->fn(connection, &pi);
6055 			if (err) {
6056 				drbd_err(connection, "%ps failed\n", cmd->fn);
6057 				goto reconnect;
6058 			}
6059 
6060 			connection->last_received = jiffies;
6061 
6062 			if (cmd == &ack_receiver_tbl[P_PING_ACK]) {
6063 				set_idle_timeout(connection);
6064 				ping_timeout_active = false;
6065 			}
6066 
6067 			buf	 = connection->meta.rbuf;
6068 			received = 0;
6069 			expect	 = header_size;
6070 			cmd	 = NULL;
6071 		}
6072 	}
6073 
6074 	if (0) {
6075 reconnect:
6076 		conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD);
6077 		conn_md_sync(connection);
6078 	}
6079 	if (0) {
6080 disconnect:
6081 		conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
6082 	}
6083 
6084 	drbd_info(connection, "ack_receiver terminated\n");
6085 
6086 	return 0;
6087 }
6088 
6089 void drbd_send_acks_wf(struct work_struct *ws)
6090 {
6091 	struct drbd_peer_device *peer_device =
6092 		container_of(ws, struct drbd_peer_device, send_acks_work);
6093 	struct drbd_connection *connection = peer_device->connection;
6094 	struct drbd_device *device = peer_device->device;
6095 	struct net_conf *nc;
6096 	int tcp_cork, err;
6097 
6098 	rcu_read_lock();
6099 	nc = rcu_dereference(connection->net_conf);
6100 	tcp_cork = nc->tcp_cork;
6101 	rcu_read_unlock();
6102 
6103 	if (tcp_cork)
6104 		tcp_sock_set_cork(connection->meta.socket->sk, true);
6105 
6106 	err = drbd_finish_peer_reqs(device);
6107 	kref_put(&device->kref, drbd_destroy_device);
6108 	/* get is in drbd_endio_write_sec_final(). That is necessary to keep the
6109 	   struct work_struct send_acks_work alive, which is in the peer_device object */
6110 
6111 	if (err) {
6112 		conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD);
6113 		return;
6114 	}
6115 
6116 	if (tcp_cork)
6117 		tcp_sock_set_cork(connection->meta.socket->sk, false);
6118 
6119 	return;
6120 }
6121