1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 drbd.c 4 5 This file is part of DRBD by Philipp Reisner and Lars Ellenberg. 6 7 Copyright (C) 2001-2008, LINBIT Information Technologies GmbH. 8 Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>. 9 Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>. 10 11 Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev 12 from Logicworks, Inc. for making SDP replication support possible. 13 14 15 */ 16 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include <linux/module.h> 20 #include <linux/jiffies.h> 21 #include <linux/drbd.h> 22 #include <linux/uaccess.h> 23 #include <asm/types.h> 24 #include <net/sock.h> 25 #include <linux/ctype.h> 26 #include <linux/mutex.h> 27 #include <linux/fs.h> 28 #include <linux/file.h> 29 #include <linux/proc_fs.h> 30 #include <linux/init.h> 31 #include <linux/mm.h> 32 #include <linux/memcontrol.h> 33 #include <linux/mm_inline.h> 34 #include <linux/slab.h> 35 #include <linux/random.h> 36 #include <linux/reboot.h> 37 #include <linux/notifier.h> 38 #include <linux/kthread.h> 39 #include <linux/workqueue.h> 40 #define __KERNEL_SYSCALLS__ 41 #include <linux/unistd.h> 42 #include <linux/vmalloc.h> 43 #include <linux/sched/signal.h> 44 45 #include <linux/drbd_limits.h> 46 #include "drbd_int.h" 47 #include "drbd_protocol.h" 48 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */ 49 #include "drbd_vli.h" 50 #include "drbd_debugfs.h" 51 52 static DEFINE_MUTEX(drbd_main_mutex); 53 static int drbd_open(struct block_device *bdev, fmode_t mode); 54 static void drbd_release(struct gendisk *gd, fmode_t mode); 55 static void md_sync_timer_fn(struct timer_list *t); 56 static int w_bitmap_io(struct drbd_work *w, int unused); 57 58 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, " 59 "Lars Ellenberg <lars@linbit.com>"); 60 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION); 61 MODULE_VERSION(REL_VERSION); 62 MODULE_LICENSE("GPL"); 63 MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices (" 64 __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")"); 65 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR); 66 67 #include <linux/moduleparam.h> 68 /* thanks to these macros, if compiled into the kernel (not-module), 69 * these become boot parameters (e.g., drbd.minor_count) */ 70 71 #ifdef CONFIG_DRBD_FAULT_INJECTION 72 int drbd_enable_faults; 73 int drbd_fault_rate; 74 static int drbd_fault_count; 75 static int drbd_fault_devs; 76 /* bitmap of enabled faults */ 77 module_param_named(enable_faults, drbd_enable_faults, int, 0664); 78 /* fault rate % value - applies to all enabled faults */ 79 module_param_named(fault_rate, drbd_fault_rate, int, 0664); 80 /* count of faults inserted */ 81 module_param_named(fault_count, drbd_fault_count, int, 0664); 82 /* bitmap of devices to insert faults on */ 83 module_param_named(fault_devs, drbd_fault_devs, int, 0644); 84 #endif 85 86 /* module parameters we can keep static */ 87 static bool drbd_allow_oos; /* allow_open_on_secondary */ 88 static bool drbd_disable_sendpage; 89 MODULE_PARM_DESC(allow_oos, "DONT USE!"); 90 module_param_named(allow_oos, drbd_allow_oos, bool, 0); 91 module_param_named(disable_sendpage, drbd_disable_sendpage, bool, 0644); 92 93 /* module parameters we share */ 94 int drbd_proc_details; /* Detail level in proc drbd*/ 95 module_param_named(proc_details, drbd_proc_details, int, 0644); 96 /* module parameters shared with defaults */ 97 unsigned int drbd_minor_count = DRBD_MINOR_COUNT_DEF; 98 /* Module parameter for setting the user mode helper program 99 * to run. Default is /sbin/drbdadm */ 100 char drbd_usermode_helper[80] = "/sbin/drbdadm"; 101 module_param_named(minor_count, drbd_minor_count, uint, 0444); 102 module_param_string(usermode_helper, drbd_usermode_helper, sizeof(drbd_usermode_helper), 0644); 103 104 /* in 2.6.x, our device mapping and config info contains our virtual gendisks 105 * as member "struct gendisk *vdisk;" 106 */ 107 struct idr drbd_devices; 108 struct list_head drbd_resources; 109 struct mutex resources_mutex; 110 111 struct kmem_cache *drbd_request_cache; 112 struct kmem_cache *drbd_ee_cache; /* peer requests */ 113 struct kmem_cache *drbd_bm_ext_cache; /* bitmap extents */ 114 struct kmem_cache *drbd_al_ext_cache; /* activity log extents */ 115 mempool_t drbd_request_mempool; 116 mempool_t drbd_ee_mempool; 117 mempool_t drbd_md_io_page_pool; 118 struct bio_set drbd_md_io_bio_set; 119 struct bio_set drbd_io_bio_set; 120 121 /* I do not use a standard mempool, because: 122 1) I want to hand out the pre-allocated objects first. 123 2) I want to be able to interrupt sleeping allocation with a signal. 124 Note: This is a single linked list, the next pointer is the private 125 member of struct page. 126 */ 127 struct page *drbd_pp_pool; 128 spinlock_t drbd_pp_lock; 129 int drbd_pp_vacant; 130 wait_queue_head_t drbd_pp_wait; 131 132 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5); 133 134 static const struct block_device_operations drbd_ops = { 135 .owner = THIS_MODULE, 136 .submit_bio = drbd_submit_bio, 137 .open = drbd_open, 138 .release = drbd_release, 139 }; 140 141 struct bio *bio_alloc_drbd(gfp_t gfp_mask) 142 { 143 struct bio *bio; 144 145 if (!bioset_initialized(&drbd_md_io_bio_set)) 146 return bio_alloc(gfp_mask, 1); 147 148 bio = bio_alloc_bioset(gfp_mask, 1, &drbd_md_io_bio_set); 149 if (!bio) 150 return NULL; 151 return bio; 152 } 153 154 #ifdef __CHECKER__ 155 /* When checking with sparse, and this is an inline function, sparse will 156 give tons of false positives. When this is a real functions sparse works. 157 */ 158 int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins) 159 { 160 int io_allowed; 161 162 atomic_inc(&device->local_cnt); 163 io_allowed = (device->state.disk >= mins); 164 if (!io_allowed) { 165 if (atomic_dec_and_test(&device->local_cnt)) 166 wake_up(&device->misc_wait); 167 } 168 return io_allowed; 169 } 170 171 #endif 172 173 /** 174 * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch 175 * @connection: DRBD connection. 176 * @barrier_nr: Expected identifier of the DRBD write barrier packet. 177 * @set_size: Expected number of requests before that barrier. 178 * 179 * In case the passed barrier_nr or set_size does not match the oldest 180 * epoch of not yet barrier-acked requests, this function will cause a 181 * termination of the connection. 182 */ 183 void tl_release(struct drbd_connection *connection, unsigned int barrier_nr, 184 unsigned int set_size) 185 { 186 struct drbd_request *r; 187 struct drbd_request *req = NULL; 188 int expect_epoch = 0; 189 int expect_size = 0; 190 191 spin_lock_irq(&connection->resource->req_lock); 192 193 /* find oldest not yet barrier-acked write request, 194 * count writes in its epoch. */ 195 list_for_each_entry(r, &connection->transfer_log, tl_requests) { 196 const unsigned s = r->rq_state; 197 if (!req) { 198 if (!(s & RQ_WRITE)) 199 continue; 200 if (!(s & RQ_NET_MASK)) 201 continue; 202 if (s & RQ_NET_DONE) 203 continue; 204 req = r; 205 expect_epoch = req->epoch; 206 expect_size ++; 207 } else { 208 if (r->epoch != expect_epoch) 209 break; 210 if (!(s & RQ_WRITE)) 211 continue; 212 /* if (s & RQ_DONE): not expected */ 213 /* if (!(s & RQ_NET_MASK)): not expected */ 214 expect_size++; 215 } 216 } 217 218 /* first some paranoia code */ 219 if (req == NULL) { 220 drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n", 221 barrier_nr); 222 goto bail; 223 } 224 if (expect_epoch != barrier_nr) { 225 drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n", 226 barrier_nr, expect_epoch); 227 goto bail; 228 } 229 230 if (expect_size != set_size) { 231 drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n", 232 barrier_nr, set_size, expect_size); 233 goto bail; 234 } 235 236 /* Clean up list of requests processed during current epoch. */ 237 /* this extra list walk restart is paranoia, 238 * to catch requests being barrier-acked "unexpectedly". 239 * It usually should find the same req again, or some READ preceding it. */ 240 list_for_each_entry(req, &connection->transfer_log, tl_requests) 241 if (req->epoch == expect_epoch) 242 break; 243 list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) { 244 if (req->epoch != expect_epoch) 245 break; 246 _req_mod(req, BARRIER_ACKED); 247 } 248 spin_unlock_irq(&connection->resource->req_lock); 249 250 return; 251 252 bail: 253 spin_unlock_irq(&connection->resource->req_lock); 254 conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD); 255 } 256 257 258 /** 259 * _tl_restart() - Walks the transfer log, and applies an action to all requests 260 * @connection: DRBD connection to operate on. 261 * @what: The action/event to perform with all request objects 262 * 263 * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO, 264 * RESTART_FROZEN_DISK_IO. 265 */ 266 /* must hold resource->req_lock */ 267 void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what) 268 { 269 struct drbd_request *req, *r; 270 271 list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) 272 _req_mod(req, what); 273 } 274 275 void tl_restart(struct drbd_connection *connection, enum drbd_req_event what) 276 { 277 spin_lock_irq(&connection->resource->req_lock); 278 _tl_restart(connection, what); 279 spin_unlock_irq(&connection->resource->req_lock); 280 } 281 282 /** 283 * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL 284 * @device: DRBD device. 285 * 286 * This is called after the connection to the peer was lost. The storage covered 287 * by the requests on the transfer gets marked as our of sync. Called from the 288 * receiver thread and the worker thread. 289 */ 290 void tl_clear(struct drbd_connection *connection) 291 { 292 tl_restart(connection, CONNECTION_LOST_WHILE_PENDING); 293 } 294 295 /** 296 * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL 297 * @device: DRBD device. 298 */ 299 void tl_abort_disk_io(struct drbd_device *device) 300 { 301 struct drbd_connection *connection = first_peer_device(device)->connection; 302 struct drbd_request *req, *r; 303 304 spin_lock_irq(&connection->resource->req_lock); 305 list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) { 306 if (!(req->rq_state & RQ_LOCAL_PENDING)) 307 continue; 308 if (req->device != device) 309 continue; 310 _req_mod(req, ABORT_DISK_IO); 311 } 312 spin_unlock_irq(&connection->resource->req_lock); 313 } 314 315 static int drbd_thread_setup(void *arg) 316 { 317 struct drbd_thread *thi = (struct drbd_thread *) arg; 318 struct drbd_resource *resource = thi->resource; 319 unsigned long flags; 320 int retval; 321 322 snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s", 323 thi->name[0], 324 resource->name); 325 326 allow_kernel_signal(DRBD_SIGKILL); 327 allow_kernel_signal(SIGXCPU); 328 restart: 329 retval = thi->function(thi); 330 331 spin_lock_irqsave(&thi->t_lock, flags); 332 333 /* if the receiver has been "EXITING", the last thing it did 334 * was set the conn state to "StandAlone", 335 * if now a re-connect request comes in, conn state goes C_UNCONNECTED, 336 * and receiver thread will be "started". 337 * drbd_thread_start needs to set "RESTARTING" in that case. 338 * t_state check and assignment needs to be within the same spinlock, 339 * so either thread_start sees EXITING, and can remap to RESTARTING, 340 * or thread_start see NONE, and can proceed as normal. 341 */ 342 343 if (thi->t_state == RESTARTING) { 344 drbd_info(resource, "Restarting %s thread\n", thi->name); 345 thi->t_state = RUNNING; 346 spin_unlock_irqrestore(&thi->t_lock, flags); 347 goto restart; 348 } 349 350 thi->task = NULL; 351 thi->t_state = NONE; 352 smp_mb(); 353 complete_all(&thi->stop); 354 spin_unlock_irqrestore(&thi->t_lock, flags); 355 356 drbd_info(resource, "Terminating %s\n", current->comm); 357 358 /* Release mod reference taken when thread was started */ 359 360 if (thi->connection) 361 kref_put(&thi->connection->kref, drbd_destroy_connection); 362 kref_put(&resource->kref, drbd_destroy_resource); 363 module_put(THIS_MODULE); 364 return retval; 365 } 366 367 static void drbd_thread_init(struct drbd_resource *resource, struct drbd_thread *thi, 368 int (*func) (struct drbd_thread *), const char *name) 369 { 370 spin_lock_init(&thi->t_lock); 371 thi->task = NULL; 372 thi->t_state = NONE; 373 thi->function = func; 374 thi->resource = resource; 375 thi->connection = NULL; 376 thi->name = name; 377 } 378 379 int drbd_thread_start(struct drbd_thread *thi) 380 { 381 struct drbd_resource *resource = thi->resource; 382 struct task_struct *nt; 383 unsigned long flags; 384 385 /* is used from state engine doing drbd_thread_stop_nowait, 386 * while holding the req lock irqsave */ 387 spin_lock_irqsave(&thi->t_lock, flags); 388 389 switch (thi->t_state) { 390 case NONE: 391 drbd_info(resource, "Starting %s thread (from %s [%d])\n", 392 thi->name, current->comm, current->pid); 393 394 /* Get ref on module for thread - this is released when thread exits */ 395 if (!try_module_get(THIS_MODULE)) { 396 drbd_err(resource, "Failed to get module reference in drbd_thread_start\n"); 397 spin_unlock_irqrestore(&thi->t_lock, flags); 398 return false; 399 } 400 401 kref_get(&resource->kref); 402 if (thi->connection) 403 kref_get(&thi->connection->kref); 404 405 init_completion(&thi->stop); 406 thi->reset_cpu_mask = 1; 407 thi->t_state = RUNNING; 408 spin_unlock_irqrestore(&thi->t_lock, flags); 409 flush_signals(current); /* otherw. may get -ERESTARTNOINTR */ 410 411 nt = kthread_create(drbd_thread_setup, (void *) thi, 412 "drbd_%c_%s", thi->name[0], thi->resource->name); 413 414 if (IS_ERR(nt)) { 415 drbd_err(resource, "Couldn't start thread\n"); 416 417 if (thi->connection) 418 kref_put(&thi->connection->kref, drbd_destroy_connection); 419 kref_put(&resource->kref, drbd_destroy_resource); 420 module_put(THIS_MODULE); 421 return false; 422 } 423 spin_lock_irqsave(&thi->t_lock, flags); 424 thi->task = nt; 425 thi->t_state = RUNNING; 426 spin_unlock_irqrestore(&thi->t_lock, flags); 427 wake_up_process(nt); 428 break; 429 case EXITING: 430 thi->t_state = RESTARTING; 431 drbd_info(resource, "Restarting %s thread (from %s [%d])\n", 432 thi->name, current->comm, current->pid); 433 fallthrough; 434 case RUNNING: 435 case RESTARTING: 436 default: 437 spin_unlock_irqrestore(&thi->t_lock, flags); 438 break; 439 } 440 441 return true; 442 } 443 444 445 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait) 446 { 447 unsigned long flags; 448 449 enum drbd_thread_state ns = restart ? RESTARTING : EXITING; 450 451 /* may be called from state engine, holding the req lock irqsave */ 452 spin_lock_irqsave(&thi->t_lock, flags); 453 454 if (thi->t_state == NONE) { 455 spin_unlock_irqrestore(&thi->t_lock, flags); 456 if (restart) 457 drbd_thread_start(thi); 458 return; 459 } 460 461 if (thi->t_state != ns) { 462 if (thi->task == NULL) { 463 spin_unlock_irqrestore(&thi->t_lock, flags); 464 return; 465 } 466 467 thi->t_state = ns; 468 smp_mb(); 469 init_completion(&thi->stop); 470 if (thi->task != current) 471 send_sig(DRBD_SIGKILL, thi->task, 1); 472 } 473 474 spin_unlock_irqrestore(&thi->t_lock, flags); 475 476 if (wait) 477 wait_for_completion(&thi->stop); 478 } 479 480 int conn_lowest_minor(struct drbd_connection *connection) 481 { 482 struct drbd_peer_device *peer_device; 483 int vnr = 0, minor = -1; 484 485 rcu_read_lock(); 486 peer_device = idr_get_next(&connection->peer_devices, &vnr); 487 if (peer_device) 488 minor = device_to_minor(peer_device->device); 489 rcu_read_unlock(); 490 491 return minor; 492 } 493 494 #ifdef CONFIG_SMP 495 /** 496 * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs 497 * 498 * Forces all threads of a resource onto the same CPU. This is beneficial for 499 * DRBD's performance. May be overwritten by user's configuration. 500 */ 501 static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask) 502 { 503 unsigned int *resources_per_cpu, min_index = ~0; 504 505 resources_per_cpu = kcalloc(nr_cpu_ids, sizeof(*resources_per_cpu), 506 GFP_KERNEL); 507 if (resources_per_cpu) { 508 struct drbd_resource *resource; 509 unsigned int cpu, min = ~0; 510 511 rcu_read_lock(); 512 for_each_resource_rcu(resource, &drbd_resources) { 513 for_each_cpu(cpu, resource->cpu_mask) 514 resources_per_cpu[cpu]++; 515 } 516 rcu_read_unlock(); 517 for_each_online_cpu(cpu) { 518 if (resources_per_cpu[cpu] < min) { 519 min = resources_per_cpu[cpu]; 520 min_index = cpu; 521 } 522 } 523 kfree(resources_per_cpu); 524 } 525 if (min_index == ~0) { 526 cpumask_setall(*cpu_mask); 527 return; 528 } 529 cpumask_set_cpu(min_index, *cpu_mask); 530 } 531 532 /** 533 * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread 534 * @device: DRBD device. 535 * @thi: drbd_thread object 536 * 537 * call in the "main loop" of _all_ threads, no need for any mutex, current won't die 538 * prematurely. 539 */ 540 void drbd_thread_current_set_cpu(struct drbd_thread *thi) 541 { 542 struct drbd_resource *resource = thi->resource; 543 struct task_struct *p = current; 544 545 if (!thi->reset_cpu_mask) 546 return; 547 thi->reset_cpu_mask = 0; 548 set_cpus_allowed_ptr(p, resource->cpu_mask); 549 } 550 #else 551 #define drbd_calc_cpu_mask(A) ({}) 552 #endif 553 554 /** 555 * drbd_header_size - size of a packet header 556 * 557 * The header size is a multiple of 8, so any payload following the header is 558 * word aligned on 64-bit architectures. (The bitmap send and receive code 559 * relies on this.) 560 */ 561 unsigned int drbd_header_size(struct drbd_connection *connection) 562 { 563 if (connection->agreed_pro_version >= 100) { 564 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8)); 565 return sizeof(struct p_header100); 566 } else { 567 BUILD_BUG_ON(sizeof(struct p_header80) != 568 sizeof(struct p_header95)); 569 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8)); 570 return sizeof(struct p_header80); 571 } 572 } 573 574 static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size) 575 { 576 h->magic = cpu_to_be32(DRBD_MAGIC); 577 h->command = cpu_to_be16(cmd); 578 h->length = cpu_to_be16(size); 579 return sizeof(struct p_header80); 580 } 581 582 static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size) 583 { 584 h->magic = cpu_to_be16(DRBD_MAGIC_BIG); 585 h->command = cpu_to_be16(cmd); 586 h->length = cpu_to_be32(size); 587 return sizeof(struct p_header95); 588 } 589 590 static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd, 591 int size, int vnr) 592 { 593 h->magic = cpu_to_be32(DRBD_MAGIC_100); 594 h->volume = cpu_to_be16(vnr); 595 h->command = cpu_to_be16(cmd); 596 h->length = cpu_to_be32(size); 597 h->pad = 0; 598 return sizeof(struct p_header100); 599 } 600 601 static unsigned int prepare_header(struct drbd_connection *connection, int vnr, 602 void *buffer, enum drbd_packet cmd, int size) 603 { 604 if (connection->agreed_pro_version >= 100) 605 return prepare_header100(buffer, cmd, size, vnr); 606 else if (connection->agreed_pro_version >= 95 && 607 size > DRBD_MAX_SIZE_H80_PACKET) 608 return prepare_header95(buffer, cmd, size); 609 else 610 return prepare_header80(buffer, cmd, size); 611 } 612 613 static void *__conn_prepare_command(struct drbd_connection *connection, 614 struct drbd_socket *sock) 615 { 616 if (!sock->socket) 617 return NULL; 618 return sock->sbuf + drbd_header_size(connection); 619 } 620 621 void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock) 622 { 623 void *p; 624 625 mutex_lock(&sock->mutex); 626 p = __conn_prepare_command(connection, sock); 627 if (!p) 628 mutex_unlock(&sock->mutex); 629 630 return p; 631 } 632 633 void *drbd_prepare_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock) 634 { 635 return conn_prepare_command(peer_device->connection, sock); 636 } 637 638 static int __send_command(struct drbd_connection *connection, int vnr, 639 struct drbd_socket *sock, enum drbd_packet cmd, 640 unsigned int header_size, void *data, 641 unsigned int size) 642 { 643 int msg_flags; 644 int err; 645 646 /* 647 * Called with @data == NULL and the size of the data blocks in @size 648 * for commands that send data blocks. For those commands, omit the 649 * MSG_MORE flag: this will increase the likelihood that data blocks 650 * which are page aligned on the sender will end up page aligned on the 651 * receiver. 652 */ 653 msg_flags = data ? MSG_MORE : 0; 654 655 header_size += prepare_header(connection, vnr, sock->sbuf, cmd, 656 header_size + size); 657 err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size, 658 msg_flags); 659 if (data && !err) 660 err = drbd_send_all(connection, sock->socket, data, size, 0); 661 /* DRBD protocol "pings" are latency critical. 662 * This is supposed to trigger tcp_push_pending_frames() */ 663 if (!err && (cmd == P_PING || cmd == P_PING_ACK)) 664 tcp_sock_set_nodelay(sock->socket->sk); 665 666 return err; 667 } 668 669 static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock, 670 enum drbd_packet cmd, unsigned int header_size, 671 void *data, unsigned int size) 672 { 673 return __send_command(connection, 0, sock, cmd, header_size, data, size); 674 } 675 676 int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock, 677 enum drbd_packet cmd, unsigned int header_size, 678 void *data, unsigned int size) 679 { 680 int err; 681 682 err = __conn_send_command(connection, sock, cmd, header_size, data, size); 683 mutex_unlock(&sock->mutex); 684 return err; 685 } 686 687 int drbd_send_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock, 688 enum drbd_packet cmd, unsigned int header_size, 689 void *data, unsigned int size) 690 { 691 int err; 692 693 err = __send_command(peer_device->connection, peer_device->device->vnr, 694 sock, cmd, header_size, data, size); 695 mutex_unlock(&sock->mutex); 696 return err; 697 } 698 699 int drbd_send_ping(struct drbd_connection *connection) 700 { 701 struct drbd_socket *sock; 702 703 sock = &connection->meta; 704 if (!conn_prepare_command(connection, sock)) 705 return -EIO; 706 return conn_send_command(connection, sock, P_PING, 0, NULL, 0); 707 } 708 709 int drbd_send_ping_ack(struct drbd_connection *connection) 710 { 711 struct drbd_socket *sock; 712 713 sock = &connection->meta; 714 if (!conn_prepare_command(connection, sock)) 715 return -EIO; 716 return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0); 717 } 718 719 int drbd_send_sync_param(struct drbd_peer_device *peer_device) 720 { 721 struct drbd_socket *sock; 722 struct p_rs_param_95 *p; 723 int size; 724 const int apv = peer_device->connection->agreed_pro_version; 725 enum drbd_packet cmd; 726 struct net_conf *nc; 727 struct disk_conf *dc; 728 729 sock = &peer_device->connection->data; 730 p = drbd_prepare_command(peer_device, sock); 731 if (!p) 732 return -EIO; 733 734 rcu_read_lock(); 735 nc = rcu_dereference(peer_device->connection->net_conf); 736 737 size = apv <= 87 ? sizeof(struct p_rs_param) 738 : apv == 88 ? sizeof(struct p_rs_param) 739 + strlen(nc->verify_alg) + 1 740 : apv <= 94 ? sizeof(struct p_rs_param_89) 741 : /* apv >= 95 */ sizeof(struct p_rs_param_95); 742 743 cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM; 744 745 /* initialize verify_alg and csums_alg */ 746 memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX); 747 748 if (get_ldev(peer_device->device)) { 749 dc = rcu_dereference(peer_device->device->ldev->disk_conf); 750 p->resync_rate = cpu_to_be32(dc->resync_rate); 751 p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead); 752 p->c_delay_target = cpu_to_be32(dc->c_delay_target); 753 p->c_fill_target = cpu_to_be32(dc->c_fill_target); 754 p->c_max_rate = cpu_to_be32(dc->c_max_rate); 755 put_ldev(peer_device->device); 756 } else { 757 p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF); 758 p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF); 759 p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF); 760 p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF); 761 p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF); 762 } 763 764 if (apv >= 88) 765 strcpy(p->verify_alg, nc->verify_alg); 766 if (apv >= 89) 767 strcpy(p->csums_alg, nc->csums_alg); 768 rcu_read_unlock(); 769 770 return drbd_send_command(peer_device, sock, cmd, size, NULL, 0); 771 } 772 773 int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd) 774 { 775 struct drbd_socket *sock; 776 struct p_protocol *p; 777 struct net_conf *nc; 778 int size, cf; 779 780 sock = &connection->data; 781 p = __conn_prepare_command(connection, sock); 782 if (!p) 783 return -EIO; 784 785 rcu_read_lock(); 786 nc = rcu_dereference(connection->net_conf); 787 788 if (nc->tentative && connection->agreed_pro_version < 92) { 789 rcu_read_unlock(); 790 drbd_err(connection, "--dry-run is not supported by peer"); 791 return -EOPNOTSUPP; 792 } 793 794 size = sizeof(*p); 795 if (connection->agreed_pro_version >= 87) 796 size += strlen(nc->integrity_alg) + 1; 797 798 p->protocol = cpu_to_be32(nc->wire_protocol); 799 p->after_sb_0p = cpu_to_be32(nc->after_sb_0p); 800 p->after_sb_1p = cpu_to_be32(nc->after_sb_1p); 801 p->after_sb_2p = cpu_to_be32(nc->after_sb_2p); 802 p->two_primaries = cpu_to_be32(nc->two_primaries); 803 cf = 0; 804 if (nc->discard_my_data) 805 cf |= CF_DISCARD_MY_DATA; 806 if (nc->tentative) 807 cf |= CF_DRY_RUN; 808 p->conn_flags = cpu_to_be32(cf); 809 810 if (connection->agreed_pro_version >= 87) 811 strcpy(p->integrity_alg, nc->integrity_alg); 812 rcu_read_unlock(); 813 814 return __conn_send_command(connection, sock, cmd, size, NULL, 0); 815 } 816 817 int drbd_send_protocol(struct drbd_connection *connection) 818 { 819 int err; 820 821 mutex_lock(&connection->data.mutex); 822 err = __drbd_send_protocol(connection, P_PROTOCOL); 823 mutex_unlock(&connection->data.mutex); 824 825 return err; 826 } 827 828 static int _drbd_send_uuids(struct drbd_peer_device *peer_device, u64 uuid_flags) 829 { 830 struct drbd_device *device = peer_device->device; 831 struct drbd_socket *sock; 832 struct p_uuids *p; 833 int i; 834 835 if (!get_ldev_if_state(device, D_NEGOTIATING)) 836 return 0; 837 838 sock = &peer_device->connection->data; 839 p = drbd_prepare_command(peer_device, sock); 840 if (!p) { 841 put_ldev(device); 842 return -EIO; 843 } 844 spin_lock_irq(&device->ldev->md.uuid_lock); 845 for (i = UI_CURRENT; i < UI_SIZE; i++) 846 p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]); 847 spin_unlock_irq(&device->ldev->md.uuid_lock); 848 849 device->comm_bm_set = drbd_bm_total_weight(device); 850 p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set); 851 rcu_read_lock(); 852 uuid_flags |= rcu_dereference(peer_device->connection->net_conf)->discard_my_data ? 1 : 0; 853 rcu_read_unlock(); 854 uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0; 855 uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0; 856 p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags); 857 858 put_ldev(device); 859 return drbd_send_command(peer_device, sock, P_UUIDS, sizeof(*p), NULL, 0); 860 } 861 862 int drbd_send_uuids(struct drbd_peer_device *peer_device) 863 { 864 return _drbd_send_uuids(peer_device, 0); 865 } 866 867 int drbd_send_uuids_skip_initial_sync(struct drbd_peer_device *peer_device) 868 { 869 return _drbd_send_uuids(peer_device, 8); 870 } 871 872 void drbd_print_uuids(struct drbd_device *device, const char *text) 873 { 874 if (get_ldev_if_state(device, D_NEGOTIATING)) { 875 u64 *uuid = device->ldev->md.uuid; 876 drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n", 877 text, 878 (unsigned long long)uuid[UI_CURRENT], 879 (unsigned long long)uuid[UI_BITMAP], 880 (unsigned long long)uuid[UI_HISTORY_START], 881 (unsigned long long)uuid[UI_HISTORY_END]); 882 put_ldev(device); 883 } else { 884 drbd_info(device, "%s effective data uuid: %016llX\n", 885 text, 886 (unsigned long long)device->ed_uuid); 887 } 888 } 889 890 void drbd_gen_and_send_sync_uuid(struct drbd_peer_device *peer_device) 891 { 892 struct drbd_device *device = peer_device->device; 893 struct drbd_socket *sock; 894 struct p_rs_uuid *p; 895 u64 uuid; 896 897 D_ASSERT(device, device->state.disk == D_UP_TO_DATE); 898 899 uuid = device->ldev->md.uuid[UI_BITMAP]; 900 if (uuid && uuid != UUID_JUST_CREATED) 901 uuid = uuid + UUID_NEW_BM_OFFSET; 902 else 903 get_random_bytes(&uuid, sizeof(u64)); 904 drbd_uuid_set(device, UI_BITMAP, uuid); 905 drbd_print_uuids(device, "updated sync UUID"); 906 drbd_md_sync(device); 907 908 sock = &peer_device->connection->data; 909 p = drbd_prepare_command(peer_device, sock); 910 if (p) { 911 p->uuid = cpu_to_be64(uuid); 912 drbd_send_command(peer_device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0); 913 } 914 } 915 916 /* communicated if (agreed_features & DRBD_FF_WSAME) */ 917 static void 918 assign_p_sizes_qlim(struct drbd_device *device, struct p_sizes *p, 919 struct request_queue *q) 920 { 921 if (q) { 922 p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q)); 923 p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q)); 924 p->qlim->alignment_offset = cpu_to_be32(queue_alignment_offset(q)); 925 p->qlim->io_min = cpu_to_be32(queue_io_min(q)); 926 p->qlim->io_opt = cpu_to_be32(queue_io_opt(q)); 927 p->qlim->discard_enabled = blk_queue_discard(q); 928 p->qlim->write_same_capable = !!q->limits.max_write_same_sectors; 929 } else { 930 q = device->rq_queue; 931 p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q)); 932 p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q)); 933 p->qlim->alignment_offset = 0; 934 p->qlim->io_min = cpu_to_be32(queue_io_min(q)); 935 p->qlim->io_opt = cpu_to_be32(queue_io_opt(q)); 936 p->qlim->discard_enabled = 0; 937 p->qlim->write_same_capable = 0; 938 } 939 } 940 941 int drbd_send_sizes(struct drbd_peer_device *peer_device, int trigger_reply, enum dds_flags flags) 942 { 943 struct drbd_device *device = peer_device->device; 944 struct drbd_socket *sock; 945 struct p_sizes *p; 946 sector_t d_size, u_size; 947 int q_order_type; 948 unsigned int max_bio_size; 949 unsigned int packet_size; 950 951 sock = &peer_device->connection->data; 952 p = drbd_prepare_command(peer_device, sock); 953 if (!p) 954 return -EIO; 955 956 packet_size = sizeof(*p); 957 if (peer_device->connection->agreed_features & DRBD_FF_WSAME) 958 packet_size += sizeof(p->qlim[0]); 959 960 memset(p, 0, packet_size); 961 if (get_ldev_if_state(device, D_NEGOTIATING)) { 962 struct request_queue *q = bdev_get_queue(device->ldev->backing_bdev); 963 d_size = drbd_get_max_capacity(device->ldev); 964 rcu_read_lock(); 965 u_size = rcu_dereference(device->ldev->disk_conf)->disk_size; 966 rcu_read_unlock(); 967 q_order_type = drbd_queue_order_type(device); 968 max_bio_size = queue_max_hw_sectors(q) << 9; 969 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE); 970 assign_p_sizes_qlim(device, p, q); 971 put_ldev(device); 972 } else { 973 d_size = 0; 974 u_size = 0; 975 q_order_type = QUEUE_ORDERED_NONE; 976 max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */ 977 assign_p_sizes_qlim(device, p, NULL); 978 } 979 980 if (peer_device->connection->agreed_pro_version <= 94) 981 max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET); 982 else if (peer_device->connection->agreed_pro_version < 100) 983 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95); 984 985 p->d_size = cpu_to_be64(d_size); 986 p->u_size = cpu_to_be64(u_size); 987 p->c_size = cpu_to_be64(trigger_reply ? 0 : drbd_get_capacity(device->this_bdev)); 988 p->max_bio_size = cpu_to_be32(max_bio_size); 989 p->queue_order_type = cpu_to_be16(q_order_type); 990 p->dds_flags = cpu_to_be16(flags); 991 992 return drbd_send_command(peer_device, sock, P_SIZES, packet_size, NULL, 0); 993 } 994 995 /** 996 * drbd_send_current_state() - Sends the drbd state to the peer 997 * @peer_device: DRBD peer device. 998 */ 999 int drbd_send_current_state(struct drbd_peer_device *peer_device) 1000 { 1001 struct drbd_socket *sock; 1002 struct p_state *p; 1003 1004 sock = &peer_device->connection->data; 1005 p = drbd_prepare_command(peer_device, sock); 1006 if (!p) 1007 return -EIO; 1008 p->state = cpu_to_be32(peer_device->device->state.i); /* Within the send mutex */ 1009 return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0); 1010 } 1011 1012 /** 1013 * drbd_send_state() - After a state change, sends the new state to the peer 1014 * @peer_device: DRBD peer device. 1015 * @state: the state to send, not necessarily the current state. 1016 * 1017 * Each state change queues an "after_state_ch" work, which will eventually 1018 * send the resulting new state to the peer. If more state changes happen 1019 * between queuing and processing of the after_state_ch work, we still 1020 * want to send each intermediary state in the order it occurred. 1021 */ 1022 int drbd_send_state(struct drbd_peer_device *peer_device, union drbd_state state) 1023 { 1024 struct drbd_socket *sock; 1025 struct p_state *p; 1026 1027 sock = &peer_device->connection->data; 1028 p = drbd_prepare_command(peer_device, sock); 1029 if (!p) 1030 return -EIO; 1031 p->state = cpu_to_be32(state.i); /* Within the send mutex */ 1032 return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0); 1033 } 1034 1035 int drbd_send_state_req(struct drbd_peer_device *peer_device, union drbd_state mask, union drbd_state val) 1036 { 1037 struct drbd_socket *sock; 1038 struct p_req_state *p; 1039 1040 sock = &peer_device->connection->data; 1041 p = drbd_prepare_command(peer_device, sock); 1042 if (!p) 1043 return -EIO; 1044 p->mask = cpu_to_be32(mask.i); 1045 p->val = cpu_to_be32(val.i); 1046 return drbd_send_command(peer_device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0); 1047 } 1048 1049 int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val) 1050 { 1051 enum drbd_packet cmd; 1052 struct drbd_socket *sock; 1053 struct p_req_state *p; 1054 1055 cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ; 1056 sock = &connection->data; 1057 p = conn_prepare_command(connection, sock); 1058 if (!p) 1059 return -EIO; 1060 p->mask = cpu_to_be32(mask.i); 1061 p->val = cpu_to_be32(val.i); 1062 return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0); 1063 } 1064 1065 void drbd_send_sr_reply(struct drbd_peer_device *peer_device, enum drbd_state_rv retcode) 1066 { 1067 struct drbd_socket *sock; 1068 struct p_req_state_reply *p; 1069 1070 sock = &peer_device->connection->meta; 1071 p = drbd_prepare_command(peer_device, sock); 1072 if (p) { 1073 p->retcode = cpu_to_be32(retcode); 1074 drbd_send_command(peer_device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0); 1075 } 1076 } 1077 1078 void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode) 1079 { 1080 struct drbd_socket *sock; 1081 struct p_req_state_reply *p; 1082 enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY; 1083 1084 sock = &connection->meta; 1085 p = conn_prepare_command(connection, sock); 1086 if (p) { 1087 p->retcode = cpu_to_be32(retcode); 1088 conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0); 1089 } 1090 } 1091 1092 static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code) 1093 { 1094 BUG_ON(code & ~0xf); 1095 p->encoding = (p->encoding & ~0xf) | code; 1096 } 1097 1098 static void dcbp_set_start(struct p_compressed_bm *p, int set) 1099 { 1100 p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0); 1101 } 1102 1103 static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n) 1104 { 1105 BUG_ON(n & ~0x7); 1106 p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4); 1107 } 1108 1109 static int fill_bitmap_rle_bits(struct drbd_device *device, 1110 struct p_compressed_bm *p, 1111 unsigned int size, 1112 struct bm_xfer_ctx *c) 1113 { 1114 struct bitstream bs; 1115 unsigned long plain_bits; 1116 unsigned long tmp; 1117 unsigned long rl; 1118 unsigned len; 1119 unsigned toggle; 1120 int bits, use_rle; 1121 1122 /* may we use this feature? */ 1123 rcu_read_lock(); 1124 use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle; 1125 rcu_read_unlock(); 1126 if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90) 1127 return 0; 1128 1129 if (c->bit_offset >= c->bm_bits) 1130 return 0; /* nothing to do. */ 1131 1132 /* use at most thus many bytes */ 1133 bitstream_init(&bs, p->code, size, 0); 1134 memset(p->code, 0, size); 1135 /* plain bits covered in this code string */ 1136 plain_bits = 0; 1137 1138 /* p->encoding & 0x80 stores whether the first run length is set. 1139 * bit offset is implicit. 1140 * start with toggle == 2 to be able to tell the first iteration */ 1141 toggle = 2; 1142 1143 /* see how much plain bits we can stuff into one packet 1144 * using RLE and VLI. */ 1145 do { 1146 tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset) 1147 : _drbd_bm_find_next(device, c->bit_offset); 1148 if (tmp == -1UL) 1149 tmp = c->bm_bits; 1150 rl = tmp - c->bit_offset; 1151 1152 if (toggle == 2) { /* first iteration */ 1153 if (rl == 0) { 1154 /* the first checked bit was set, 1155 * store start value, */ 1156 dcbp_set_start(p, 1); 1157 /* but skip encoding of zero run length */ 1158 toggle = !toggle; 1159 continue; 1160 } 1161 dcbp_set_start(p, 0); 1162 } 1163 1164 /* paranoia: catch zero runlength. 1165 * can only happen if bitmap is modified while we scan it. */ 1166 if (rl == 0) { 1167 drbd_err(device, "unexpected zero runlength while encoding bitmap " 1168 "t:%u bo:%lu\n", toggle, c->bit_offset); 1169 return -1; 1170 } 1171 1172 bits = vli_encode_bits(&bs, rl); 1173 if (bits == -ENOBUFS) /* buffer full */ 1174 break; 1175 if (bits <= 0) { 1176 drbd_err(device, "error while encoding bitmap: %d\n", bits); 1177 return 0; 1178 } 1179 1180 toggle = !toggle; 1181 plain_bits += rl; 1182 c->bit_offset = tmp; 1183 } while (c->bit_offset < c->bm_bits); 1184 1185 len = bs.cur.b - p->code + !!bs.cur.bit; 1186 1187 if (plain_bits < (len << 3)) { 1188 /* incompressible with this method. 1189 * we need to rewind both word and bit position. */ 1190 c->bit_offset -= plain_bits; 1191 bm_xfer_ctx_bit_to_word_offset(c); 1192 c->bit_offset = c->word_offset * BITS_PER_LONG; 1193 return 0; 1194 } 1195 1196 /* RLE + VLI was able to compress it just fine. 1197 * update c->word_offset. */ 1198 bm_xfer_ctx_bit_to_word_offset(c); 1199 1200 /* store pad_bits */ 1201 dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7); 1202 1203 return len; 1204 } 1205 1206 /** 1207 * send_bitmap_rle_or_plain 1208 * 1209 * Return 0 when done, 1 when another iteration is needed, and a negative error 1210 * code upon failure. 1211 */ 1212 static int 1213 send_bitmap_rle_or_plain(struct drbd_device *device, struct bm_xfer_ctx *c) 1214 { 1215 struct drbd_socket *sock = &first_peer_device(device)->connection->data; 1216 unsigned int header_size = drbd_header_size(first_peer_device(device)->connection); 1217 struct p_compressed_bm *p = sock->sbuf + header_size; 1218 int len, err; 1219 1220 len = fill_bitmap_rle_bits(device, p, 1221 DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c); 1222 if (len < 0) 1223 return -EIO; 1224 1225 if (len) { 1226 dcbp_set_code(p, RLE_VLI_Bits); 1227 err = __send_command(first_peer_device(device)->connection, device->vnr, sock, 1228 P_COMPRESSED_BITMAP, sizeof(*p) + len, 1229 NULL, 0); 1230 c->packets[0]++; 1231 c->bytes[0] += header_size + sizeof(*p) + len; 1232 1233 if (c->bit_offset >= c->bm_bits) 1234 len = 0; /* DONE */ 1235 } else { 1236 /* was not compressible. 1237 * send a buffer full of plain text bits instead. */ 1238 unsigned int data_size; 1239 unsigned long num_words; 1240 unsigned long *p = sock->sbuf + header_size; 1241 1242 data_size = DRBD_SOCKET_BUFFER_SIZE - header_size; 1243 num_words = min_t(size_t, data_size / sizeof(*p), 1244 c->bm_words - c->word_offset); 1245 len = num_words * sizeof(*p); 1246 if (len) 1247 drbd_bm_get_lel(device, c->word_offset, num_words, p); 1248 err = __send_command(first_peer_device(device)->connection, device->vnr, sock, P_BITMAP, len, NULL, 0); 1249 c->word_offset += num_words; 1250 c->bit_offset = c->word_offset * BITS_PER_LONG; 1251 1252 c->packets[1]++; 1253 c->bytes[1] += header_size + len; 1254 1255 if (c->bit_offset > c->bm_bits) 1256 c->bit_offset = c->bm_bits; 1257 } 1258 if (!err) { 1259 if (len == 0) { 1260 INFO_bm_xfer_stats(device, "send", c); 1261 return 0; 1262 } else 1263 return 1; 1264 } 1265 return -EIO; 1266 } 1267 1268 /* See the comment at receive_bitmap() */ 1269 static int _drbd_send_bitmap(struct drbd_device *device) 1270 { 1271 struct bm_xfer_ctx c; 1272 int err; 1273 1274 if (!expect(device->bitmap)) 1275 return false; 1276 1277 if (get_ldev(device)) { 1278 if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) { 1279 drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n"); 1280 drbd_bm_set_all(device); 1281 if (drbd_bm_write(device)) { 1282 /* write_bm did fail! Leave full sync flag set in Meta P_DATA 1283 * but otherwise process as per normal - need to tell other 1284 * side that a full resync is required! */ 1285 drbd_err(device, "Failed to write bitmap to disk!\n"); 1286 } else { 1287 drbd_md_clear_flag(device, MDF_FULL_SYNC); 1288 drbd_md_sync(device); 1289 } 1290 } 1291 put_ldev(device); 1292 } 1293 1294 c = (struct bm_xfer_ctx) { 1295 .bm_bits = drbd_bm_bits(device), 1296 .bm_words = drbd_bm_words(device), 1297 }; 1298 1299 do { 1300 err = send_bitmap_rle_or_plain(device, &c); 1301 } while (err > 0); 1302 1303 return err == 0; 1304 } 1305 1306 int drbd_send_bitmap(struct drbd_device *device) 1307 { 1308 struct drbd_socket *sock = &first_peer_device(device)->connection->data; 1309 int err = -1; 1310 1311 mutex_lock(&sock->mutex); 1312 if (sock->socket) 1313 err = !_drbd_send_bitmap(device); 1314 mutex_unlock(&sock->mutex); 1315 return err; 1316 } 1317 1318 void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size) 1319 { 1320 struct drbd_socket *sock; 1321 struct p_barrier_ack *p; 1322 1323 if (connection->cstate < C_WF_REPORT_PARAMS) 1324 return; 1325 1326 sock = &connection->meta; 1327 p = conn_prepare_command(connection, sock); 1328 if (!p) 1329 return; 1330 p->barrier = barrier_nr; 1331 p->set_size = cpu_to_be32(set_size); 1332 conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0); 1333 } 1334 1335 /** 1336 * _drbd_send_ack() - Sends an ack packet 1337 * @device: DRBD device. 1338 * @cmd: Packet command code. 1339 * @sector: sector, needs to be in big endian byte order 1340 * @blksize: size in byte, needs to be in big endian byte order 1341 * @block_id: Id, big endian byte order 1342 */ 1343 static int _drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1344 u64 sector, u32 blksize, u64 block_id) 1345 { 1346 struct drbd_socket *sock; 1347 struct p_block_ack *p; 1348 1349 if (peer_device->device->state.conn < C_CONNECTED) 1350 return -EIO; 1351 1352 sock = &peer_device->connection->meta; 1353 p = drbd_prepare_command(peer_device, sock); 1354 if (!p) 1355 return -EIO; 1356 p->sector = sector; 1357 p->block_id = block_id; 1358 p->blksize = blksize; 1359 p->seq_num = cpu_to_be32(atomic_inc_return(&peer_device->device->packet_seq)); 1360 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0); 1361 } 1362 1363 /* dp->sector and dp->block_id already/still in network byte order, 1364 * data_size is payload size according to dp->head, 1365 * and may need to be corrected for digest size. */ 1366 void drbd_send_ack_dp(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1367 struct p_data *dp, int data_size) 1368 { 1369 if (peer_device->connection->peer_integrity_tfm) 1370 data_size -= crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm); 1371 _drbd_send_ack(peer_device, cmd, dp->sector, cpu_to_be32(data_size), 1372 dp->block_id); 1373 } 1374 1375 void drbd_send_ack_rp(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1376 struct p_block_req *rp) 1377 { 1378 _drbd_send_ack(peer_device, cmd, rp->sector, rp->blksize, rp->block_id); 1379 } 1380 1381 /** 1382 * drbd_send_ack() - Sends an ack packet 1383 * @device: DRBD device 1384 * @cmd: packet command code 1385 * @peer_req: peer request 1386 */ 1387 int drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1388 struct drbd_peer_request *peer_req) 1389 { 1390 return _drbd_send_ack(peer_device, cmd, 1391 cpu_to_be64(peer_req->i.sector), 1392 cpu_to_be32(peer_req->i.size), 1393 peer_req->block_id); 1394 } 1395 1396 /* This function misuses the block_id field to signal if the blocks 1397 * are is sync or not. */ 1398 int drbd_send_ack_ex(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1399 sector_t sector, int blksize, u64 block_id) 1400 { 1401 return _drbd_send_ack(peer_device, cmd, 1402 cpu_to_be64(sector), 1403 cpu_to_be32(blksize), 1404 cpu_to_be64(block_id)); 1405 } 1406 1407 int drbd_send_rs_deallocated(struct drbd_peer_device *peer_device, 1408 struct drbd_peer_request *peer_req) 1409 { 1410 struct drbd_socket *sock; 1411 struct p_block_desc *p; 1412 1413 sock = &peer_device->connection->data; 1414 p = drbd_prepare_command(peer_device, sock); 1415 if (!p) 1416 return -EIO; 1417 p->sector = cpu_to_be64(peer_req->i.sector); 1418 p->blksize = cpu_to_be32(peer_req->i.size); 1419 p->pad = 0; 1420 return drbd_send_command(peer_device, sock, P_RS_DEALLOCATED, sizeof(*p), NULL, 0); 1421 } 1422 1423 int drbd_send_drequest(struct drbd_peer_device *peer_device, int cmd, 1424 sector_t sector, int size, u64 block_id) 1425 { 1426 struct drbd_socket *sock; 1427 struct p_block_req *p; 1428 1429 sock = &peer_device->connection->data; 1430 p = drbd_prepare_command(peer_device, sock); 1431 if (!p) 1432 return -EIO; 1433 p->sector = cpu_to_be64(sector); 1434 p->block_id = block_id; 1435 p->blksize = cpu_to_be32(size); 1436 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0); 1437 } 1438 1439 int drbd_send_drequest_csum(struct drbd_peer_device *peer_device, sector_t sector, int size, 1440 void *digest, int digest_size, enum drbd_packet cmd) 1441 { 1442 struct drbd_socket *sock; 1443 struct p_block_req *p; 1444 1445 /* FIXME: Put the digest into the preallocated socket buffer. */ 1446 1447 sock = &peer_device->connection->data; 1448 p = drbd_prepare_command(peer_device, sock); 1449 if (!p) 1450 return -EIO; 1451 p->sector = cpu_to_be64(sector); 1452 p->block_id = ID_SYNCER /* unused */; 1453 p->blksize = cpu_to_be32(size); 1454 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), digest, digest_size); 1455 } 1456 1457 int drbd_send_ov_request(struct drbd_peer_device *peer_device, sector_t sector, int size) 1458 { 1459 struct drbd_socket *sock; 1460 struct p_block_req *p; 1461 1462 sock = &peer_device->connection->data; 1463 p = drbd_prepare_command(peer_device, sock); 1464 if (!p) 1465 return -EIO; 1466 p->sector = cpu_to_be64(sector); 1467 p->block_id = ID_SYNCER /* unused */; 1468 p->blksize = cpu_to_be32(size); 1469 return drbd_send_command(peer_device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0); 1470 } 1471 1472 /* called on sndtimeo 1473 * returns false if we should retry, 1474 * true if we think connection is dead 1475 */ 1476 static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock) 1477 { 1478 int drop_it; 1479 /* long elapsed = (long)(jiffies - device->last_received); */ 1480 1481 drop_it = connection->meta.socket == sock 1482 || !connection->ack_receiver.task 1483 || get_t_state(&connection->ack_receiver) != RUNNING 1484 || connection->cstate < C_WF_REPORT_PARAMS; 1485 1486 if (drop_it) 1487 return true; 1488 1489 drop_it = !--connection->ko_count; 1490 if (!drop_it) { 1491 drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n", 1492 current->comm, current->pid, connection->ko_count); 1493 request_ping(connection); 1494 } 1495 1496 return drop_it; /* && (device->state == R_PRIMARY) */; 1497 } 1498 1499 static void drbd_update_congested(struct drbd_connection *connection) 1500 { 1501 struct sock *sk = connection->data.socket->sk; 1502 if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5) 1503 set_bit(NET_CONGESTED, &connection->flags); 1504 } 1505 1506 /* The idea of sendpage seems to be to put some kind of reference 1507 * to the page into the skb, and to hand it over to the NIC. In 1508 * this process get_page() gets called. 1509 * 1510 * As soon as the page was really sent over the network put_page() 1511 * gets called by some part of the network layer. [ NIC driver? ] 1512 * 1513 * [ get_page() / put_page() increment/decrement the count. If count 1514 * reaches 0 the page will be freed. ] 1515 * 1516 * This works nicely with pages from FSs. 1517 * But this means that in protocol A we might signal IO completion too early! 1518 * 1519 * In order not to corrupt data during a resync we must make sure 1520 * that we do not reuse our own buffer pages (EEs) to early, therefore 1521 * we have the net_ee list. 1522 * 1523 * XFS seems to have problems, still, it submits pages with page_count == 0! 1524 * As a workaround, we disable sendpage on pages 1525 * with page_count == 0 or PageSlab. 1526 */ 1527 static int _drbd_no_send_page(struct drbd_peer_device *peer_device, struct page *page, 1528 int offset, size_t size, unsigned msg_flags) 1529 { 1530 struct socket *socket; 1531 void *addr; 1532 int err; 1533 1534 socket = peer_device->connection->data.socket; 1535 addr = kmap(page) + offset; 1536 err = drbd_send_all(peer_device->connection, socket, addr, size, msg_flags); 1537 kunmap(page); 1538 if (!err) 1539 peer_device->device->send_cnt += size >> 9; 1540 return err; 1541 } 1542 1543 static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *page, 1544 int offset, size_t size, unsigned msg_flags) 1545 { 1546 struct socket *socket = peer_device->connection->data.socket; 1547 int len = size; 1548 int err = -EIO; 1549 1550 /* e.g. XFS meta- & log-data is in slab pages, which have a 1551 * page_count of 0 and/or have PageSlab() set. 1552 * we cannot use send_page for those, as that does get_page(); 1553 * put_page(); and would cause either a VM_BUG directly, or 1554 * __page_cache_release a page that would actually still be referenced 1555 * by someone, leading to some obscure delayed Oops somewhere else. */ 1556 if (drbd_disable_sendpage || (page_count(page) < 1) || PageSlab(page)) 1557 return _drbd_no_send_page(peer_device, page, offset, size, msg_flags); 1558 1559 msg_flags |= MSG_NOSIGNAL; 1560 drbd_update_congested(peer_device->connection); 1561 do { 1562 int sent; 1563 1564 sent = socket->ops->sendpage(socket, page, offset, len, msg_flags); 1565 if (sent <= 0) { 1566 if (sent == -EAGAIN) { 1567 if (we_should_drop_the_connection(peer_device->connection, socket)) 1568 break; 1569 continue; 1570 } 1571 drbd_warn(peer_device->device, "%s: size=%d len=%d sent=%d\n", 1572 __func__, (int)size, len, sent); 1573 if (sent < 0) 1574 err = sent; 1575 break; 1576 } 1577 len -= sent; 1578 offset += sent; 1579 } while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/); 1580 clear_bit(NET_CONGESTED, &peer_device->connection->flags); 1581 1582 if (len == 0) { 1583 err = 0; 1584 peer_device->device->send_cnt += size >> 9; 1585 } 1586 return err; 1587 } 1588 1589 static int _drbd_send_bio(struct drbd_peer_device *peer_device, struct bio *bio) 1590 { 1591 struct bio_vec bvec; 1592 struct bvec_iter iter; 1593 1594 /* hint all but last page with MSG_MORE */ 1595 bio_for_each_segment(bvec, bio, iter) { 1596 int err; 1597 1598 err = _drbd_no_send_page(peer_device, bvec.bv_page, 1599 bvec.bv_offset, bvec.bv_len, 1600 bio_iter_last(bvec, iter) 1601 ? 0 : MSG_MORE); 1602 if (err) 1603 return err; 1604 /* REQ_OP_WRITE_SAME has only one segment */ 1605 if (bio_op(bio) == REQ_OP_WRITE_SAME) 1606 break; 1607 } 1608 return 0; 1609 } 1610 1611 static int _drbd_send_zc_bio(struct drbd_peer_device *peer_device, struct bio *bio) 1612 { 1613 struct bio_vec bvec; 1614 struct bvec_iter iter; 1615 1616 /* hint all but last page with MSG_MORE */ 1617 bio_for_each_segment(bvec, bio, iter) { 1618 int err; 1619 1620 err = _drbd_send_page(peer_device, bvec.bv_page, 1621 bvec.bv_offset, bvec.bv_len, 1622 bio_iter_last(bvec, iter) ? 0 : MSG_MORE); 1623 if (err) 1624 return err; 1625 /* REQ_OP_WRITE_SAME has only one segment */ 1626 if (bio_op(bio) == REQ_OP_WRITE_SAME) 1627 break; 1628 } 1629 return 0; 1630 } 1631 1632 static int _drbd_send_zc_ee(struct drbd_peer_device *peer_device, 1633 struct drbd_peer_request *peer_req) 1634 { 1635 struct page *page = peer_req->pages; 1636 unsigned len = peer_req->i.size; 1637 int err; 1638 1639 /* hint all but last page with MSG_MORE */ 1640 page_chain_for_each(page) { 1641 unsigned l = min_t(unsigned, len, PAGE_SIZE); 1642 1643 err = _drbd_send_page(peer_device, page, 0, l, 1644 page_chain_next(page) ? MSG_MORE : 0); 1645 if (err) 1646 return err; 1647 len -= l; 1648 } 1649 return 0; 1650 } 1651 1652 static u32 bio_flags_to_wire(struct drbd_connection *connection, 1653 struct bio *bio) 1654 { 1655 if (connection->agreed_pro_version >= 95) 1656 return (bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0) | 1657 (bio->bi_opf & REQ_FUA ? DP_FUA : 0) | 1658 (bio->bi_opf & REQ_PREFLUSH ? DP_FLUSH : 0) | 1659 (bio_op(bio) == REQ_OP_WRITE_SAME ? DP_WSAME : 0) | 1660 (bio_op(bio) == REQ_OP_DISCARD ? DP_DISCARD : 0) | 1661 (bio_op(bio) == REQ_OP_WRITE_ZEROES ? 1662 ((connection->agreed_features & DRBD_FF_WZEROES) ? 1663 (DP_ZEROES |(!(bio->bi_opf & REQ_NOUNMAP) ? DP_DISCARD : 0)) 1664 : DP_DISCARD) 1665 : 0); 1666 else 1667 return bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0; 1668 } 1669 1670 /* Used to send write or TRIM aka REQ_OP_DISCARD requests 1671 * R_PRIMARY -> Peer (P_DATA, P_TRIM) 1672 */ 1673 int drbd_send_dblock(struct drbd_peer_device *peer_device, struct drbd_request *req) 1674 { 1675 struct drbd_device *device = peer_device->device; 1676 struct drbd_socket *sock; 1677 struct p_data *p; 1678 struct p_wsame *wsame = NULL; 1679 void *digest_out; 1680 unsigned int dp_flags = 0; 1681 int digest_size; 1682 int err; 1683 1684 sock = &peer_device->connection->data; 1685 p = drbd_prepare_command(peer_device, sock); 1686 digest_size = peer_device->connection->integrity_tfm ? 1687 crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0; 1688 1689 if (!p) 1690 return -EIO; 1691 p->sector = cpu_to_be64(req->i.sector); 1692 p->block_id = (unsigned long)req; 1693 p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq)); 1694 dp_flags = bio_flags_to_wire(peer_device->connection, req->master_bio); 1695 if (device->state.conn >= C_SYNC_SOURCE && 1696 device->state.conn <= C_PAUSED_SYNC_T) 1697 dp_flags |= DP_MAY_SET_IN_SYNC; 1698 if (peer_device->connection->agreed_pro_version >= 100) { 1699 if (req->rq_state & RQ_EXP_RECEIVE_ACK) 1700 dp_flags |= DP_SEND_RECEIVE_ACK; 1701 /* During resync, request an explicit write ack, 1702 * even in protocol != C */ 1703 if (req->rq_state & RQ_EXP_WRITE_ACK 1704 || (dp_flags & DP_MAY_SET_IN_SYNC)) 1705 dp_flags |= DP_SEND_WRITE_ACK; 1706 } 1707 p->dp_flags = cpu_to_be32(dp_flags); 1708 1709 if (dp_flags & (DP_DISCARD|DP_ZEROES)) { 1710 enum drbd_packet cmd = (dp_flags & DP_ZEROES) ? P_ZEROES : P_TRIM; 1711 struct p_trim *t = (struct p_trim*)p; 1712 t->size = cpu_to_be32(req->i.size); 1713 err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*t), NULL, 0); 1714 goto out; 1715 } 1716 if (dp_flags & DP_WSAME) { 1717 /* this will only work if DRBD_FF_WSAME is set AND the 1718 * handshake agreed that all nodes and backend devices are 1719 * WRITE_SAME capable and agree on logical_block_size */ 1720 wsame = (struct p_wsame*)p; 1721 digest_out = wsame + 1; 1722 wsame->size = cpu_to_be32(req->i.size); 1723 } else 1724 digest_out = p + 1; 1725 1726 /* our digest is still only over the payload. 1727 * TRIM does not carry any payload. */ 1728 if (digest_size) 1729 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest_out); 1730 if (wsame) { 1731 err = 1732 __send_command(peer_device->connection, device->vnr, sock, P_WSAME, 1733 sizeof(*wsame) + digest_size, NULL, 1734 bio_iovec(req->master_bio).bv_len); 1735 } else 1736 err = 1737 __send_command(peer_device->connection, device->vnr, sock, P_DATA, 1738 sizeof(*p) + digest_size, NULL, req->i.size); 1739 if (!err) { 1740 /* For protocol A, we have to memcpy the payload into 1741 * socket buffers, as we may complete right away 1742 * as soon as we handed it over to tcp, at which point the data 1743 * pages may become invalid. 1744 * 1745 * For data-integrity enabled, we copy it as well, so we can be 1746 * sure that even if the bio pages may still be modified, it 1747 * won't change the data on the wire, thus if the digest checks 1748 * out ok after sending on this side, but does not fit on the 1749 * receiving side, we sure have detected corruption elsewhere. 1750 */ 1751 if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || digest_size) 1752 err = _drbd_send_bio(peer_device, req->master_bio); 1753 else 1754 err = _drbd_send_zc_bio(peer_device, req->master_bio); 1755 1756 /* double check digest, sometimes buffers have been modified in flight. */ 1757 if (digest_size > 0 && digest_size <= 64) { 1758 /* 64 byte, 512 bit, is the largest digest size 1759 * currently supported in kernel crypto. */ 1760 unsigned char digest[64]; 1761 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest); 1762 if (memcmp(p + 1, digest, digest_size)) { 1763 drbd_warn(device, 1764 "Digest mismatch, buffer modified by upper layers during write: %llus +%u\n", 1765 (unsigned long long)req->i.sector, req->i.size); 1766 } 1767 } /* else if (digest_size > 64) { 1768 ... Be noisy about digest too large ... 1769 } */ 1770 } 1771 out: 1772 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */ 1773 1774 return err; 1775 } 1776 1777 /* answer packet, used to send data back for read requests: 1778 * Peer -> (diskless) R_PRIMARY (P_DATA_REPLY) 1779 * C_SYNC_SOURCE -> C_SYNC_TARGET (P_RS_DATA_REPLY) 1780 */ 1781 int drbd_send_block(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1782 struct drbd_peer_request *peer_req) 1783 { 1784 struct drbd_device *device = peer_device->device; 1785 struct drbd_socket *sock; 1786 struct p_data *p; 1787 int err; 1788 int digest_size; 1789 1790 sock = &peer_device->connection->data; 1791 p = drbd_prepare_command(peer_device, sock); 1792 1793 digest_size = peer_device->connection->integrity_tfm ? 1794 crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0; 1795 1796 if (!p) 1797 return -EIO; 1798 p->sector = cpu_to_be64(peer_req->i.sector); 1799 p->block_id = peer_req->block_id; 1800 p->seq_num = 0; /* unused */ 1801 p->dp_flags = 0; 1802 if (digest_size) 1803 drbd_csum_ee(peer_device->connection->integrity_tfm, peer_req, p + 1); 1804 err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*p) + digest_size, NULL, peer_req->i.size); 1805 if (!err) 1806 err = _drbd_send_zc_ee(peer_device, peer_req); 1807 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */ 1808 1809 return err; 1810 } 1811 1812 int drbd_send_out_of_sync(struct drbd_peer_device *peer_device, struct drbd_request *req) 1813 { 1814 struct drbd_socket *sock; 1815 struct p_block_desc *p; 1816 1817 sock = &peer_device->connection->data; 1818 p = drbd_prepare_command(peer_device, sock); 1819 if (!p) 1820 return -EIO; 1821 p->sector = cpu_to_be64(req->i.sector); 1822 p->blksize = cpu_to_be32(req->i.size); 1823 return drbd_send_command(peer_device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0); 1824 } 1825 1826 /* 1827 drbd_send distinguishes two cases: 1828 1829 Packets sent via the data socket "sock" 1830 and packets sent via the meta data socket "msock" 1831 1832 sock msock 1833 -----------------+-------------------------+------------------------------ 1834 timeout conf.timeout / 2 conf.timeout / 2 1835 timeout action send a ping via msock Abort communication 1836 and close all sockets 1837 */ 1838 1839 /* 1840 * you must have down()ed the appropriate [m]sock_mutex elsewhere! 1841 */ 1842 int drbd_send(struct drbd_connection *connection, struct socket *sock, 1843 void *buf, size_t size, unsigned msg_flags) 1844 { 1845 struct kvec iov = {.iov_base = buf, .iov_len = size}; 1846 struct msghdr msg = {.msg_flags = msg_flags | MSG_NOSIGNAL}; 1847 int rv, sent = 0; 1848 1849 if (!sock) 1850 return -EBADR; 1851 1852 /* THINK if (signal_pending) return ... ? */ 1853 1854 iov_iter_kvec(&msg.msg_iter, WRITE, &iov, 1, size); 1855 1856 if (sock == connection->data.socket) { 1857 rcu_read_lock(); 1858 connection->ko_count = rcu_dereference(connection->net_conf)->ko_count; 1859 rcu_read_unlock(); 1860 drbd_update_congested(connection); 1861 } 1862 do { 1863 rv = sock_sendmsg(sock, &msg); 1864 if (rv == -EAGAIN) { 1865 if (we_should_drop_the_connection(connection, sock)) 1866 break; 1867 else 1868 continue; 1869 } 1870 if (rv == -EINTR) { 1871 flush_signals(current); 1872 rv = 0; 1873 } 1874 if (rv < 0) 1875 break; 1876 sent += rv; 1877 } while (sent < size); 1878 1879 if (sock == connection->data.socket) 1880 clear_bit(NET_CONGESTED, &connection->flags); 1881 1882 if (rv <= 0) { 1883 if (rv != -EAGAIN) { 1884 drbd_err(connection, "%s_sendmsg returned %d\n", 1885 sock == connection->meta.socket ? "msock" : "sock", 1886 rv); 1887 conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD); 1888 } else 1889 conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD); 1890 } 1891 1892 return sent; 1893 } 1894 1895 /** 1896 * drbd_send_all - Send an entire buffer 1897 * 1898 * Returns 0 upon success and a negative error value otherwise. 1899 */ 1900 int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer, 1901 size_t size, unsigned msg_flags) 1902 { 1903 int err; 1904 1905 err = drbd_send(connection, sock, buffer, size, msg_flags); 1906 if (err < 0) 1907 return err; 1908 if (err != size) 1909 return -EIO; 1910 return 0; 1911 } 1912 1913 static int drbd_open(struct block_device *bdev, fmode_t mode) 1914 { 1915 struct drbd_device *device = bdev->bd_disk->private_data; 1916 unsigned long flags; 1917 int rv = 0; 1918 1919 mutex_lock(&drbd_main_mutex); 1920 spin_lock_irqsave(&device->resource->req_lock, flags); 1921 /* to have a stable device->state.role 1922 * and no race with updating open_cnt */ 1923 1924 if (device->state.role != R_PRIMARY) { 1925 if (mode & FMODE_WRITE) 1926 rv = -EROFS; 1927 else if (!drbd_allow_oos) 1928 rv = -EMEDIUMTYPE; 1929 } 1930 1931 if (!rv) 1932 device->open_cnt++; 1933 spin_unlock_irqrestore(&device->resource->req_lock, flags); 1934 mutex_unlock(&drbd_main_mutex); 1935 1936 return rv; 1937 } 1938 1939 static void drbd_release(struct gendisk *gd, fmode_t mode) 1940 { 1941 struct drbd_device *device = gd->private_data; 1942 mutex_lock(&drbd_main_mutex); 1943 device->open_cnt--; 1944 mutex_unlock(&drbd_main_mutex); 1945 } 1946 1947 /* need to hold resource->req_lock */ 1948 void drbd_queue_unplug(struct drbd_device *device) 1949 { 1950 if (device->state.pdsk >= D_INCONSISTENT && device->state.conn >= C_CONNECTED) { 1951 D_ASSERT(device, device->state.role == R_PRIMARY); 1952 if (test_and_clear_bit(UNPLUG_REMOTE, &device->flags)) { 1953 drbd_queue_work_if_unqueued( 1954 &first_peer_device(device)->connection->sender_work, 1955 &device->unplug_work); 1956 } 1957 } 1958 } 1959 1960 static void drbd_set_defaults(struct drbd_device *device) 1961 { 1962 /* Beware! The actual layout differs 1963 * between big endian and little endian */ 1964 device->state = (union drbd_dev_state) { 1965 { .role = R_SECONDARY, 1966 .peer = R_UNKNOWN, 1967 .conn = C_STANDALONE, 1968 .disk = D_DISKLESS, 1969 .pdsk = D_UNKNOWN, 1970 } }; 1971 } 1972 1973 void drbd_init_set_defaults(struct drbd_device *device) 1974 { 1975 /* the memset(,0,) did most of this. 1976 * note: only assignments, no allocation in here */ 1977 1978 drbd_set_defaults(device); 1979 1980 atomic_set(&device->ap_bio_cnt, 0); 1981 atomic_set(&device->ap_actlog_cnt, 0); 1982 atomic_set(&device->ap_pending_cnt, 0); 1983 atomic_set(&device->rs_pending_cnt, 0); 1984 atomic_set(&device->unacked_cnt, 0); 1985 atomic_set(&device->local_cnt, 0); 1986 atomic_set(&device->pp_in_use_by_net, 0); 1987 atomic_set(&device->rs_sect_in, 0); 1988 atomic_set(&device->rs_sect_ev, 0); 1989 atomic_set(&device->ap_in_flight, 0); 1990 atomic_set(&device->md_io.in_use, 0); 1991 1992 mutex_init(&device->own_state_mutex); 1993 device->state_mutex = &device->own_state_mutex; 1994 1995 spin_lock_init(&device->al_lock); 1996 spin_lock_init(&device->peer_seq_lock); 1997 1998 INIT_LIST_HEAD(&device->active_ee); 1999 INIT_LIST_HEAD(&device->sync_ee); 2000 INIT_LIST_HEAD(&device->done_ee); 2001 INIT_LIST_HEAD(&device->read_ee); 2002 INIT_LIST_HEAD(&device->net_ee); 2003 INIT_LIST_HEAD(&device->resync_reads); 2004 INIT_LIST_HEAD(&device->resync_work.list); 2005 INIT_LIST_HEAD(&device->unplug_work.list); 2006 INIT_LIST_HEAD(&device->bm_io_work.w.list); 2007 INIT_LIST_HEAD(&device->pending_master_completion[0]); 2008 INIT_LIST_HEAD(&device->pending_master_completion[1]); 2009 INIT_LIST_HEAD(&device->pending_completion[0]); 2010 INIT_LIST_HEAD(&device->pending_completion[1]); 2011 2012 device->resync_work.cb = w_resync_timer; 2013 device->unplug_work.cb = w_send_write_hint; 2014 device->bm_io_work.w.cb = w_bitmap_io; 2015 2016 timer_setup(&device->resync_timer, resync_timer_fn, 0); 2017 timer_setup(&device->md_sync_timer, md_sync_timer_fn, 0); 2018 timer_setup(&device->start_resync_timer, start_resync_timer_fn, 0); 2019 timer_setup(&device->request_timer, request_timer_fn, 0); 2020 2021 init_waitqueue_head(&device->misc_wait); 2022 init_waitqueue_head(&device->state_wait); 2023 init_waitqueue_head(&device->ee_wait); 2024 init_waitqueue_head(&device->al_wait); 2025 init_waitqueue_head(&device->seq_wait); 2026 2027 device->resync_wenr = LC_FREE; 2028 device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE; 2029 device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE; 2030 } 2031 2032 static void _drbd_set_my_capacity(struct drbd_device *device, sector_t size) 2033 { 2034 /* set_capacity(device->this_bdev->bd_disk, size); */ 2035 set_capacity(device->vdisk, size); 2036 device->this_bdev->bd_inode->i_size = (loff_t)size << 9; 2037 } 2038 2039 void drbd_set_my_capacity(struct drbd_device *device, sector_t size) 2040 { 2041 char ppb[10]; 2042 _drbd_set_my_capacity(device, size); 2043 drbd_info(device, "size = %s (%llu KB)\n", 2044 ppsize(ppb, size>>1), (unsigned long long)size>>1); 2045 } 2046 2047 void drbd_device_cleanup(struct drbd_device *device) 2048 { 2049 int i; 2050 if (first_peer_device(device)->connection->receiver.t_state != NONE) 2051 drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n", 2052 first_peer_device(device)->connection->receiver.t_state); 2053 2054 device->al_writ_cnt = 2055 device->bm_writ_cnt = 2056 device->read_cnt = 2057 device->recv_cnt = 2058 device->send_cnt = 2059 device->writ_cnt = 2060 device->p_size = 2061 device->rs_start = 2062 device->rs_total = 2063 device->rs_failed = 0; 2064 device->rs_last_events = 0; 2065 device->rs_last_sect_ev = 0; 2066 for (i = 0; i < DRBD_SYNC_MARKS; i++) { 2067 device->rs_mark_left[i] = 0; 2068 device->rs_mark_time[i] = 0; 2069 } 2070 D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL); 2071 2072 _drbd_set_my_capacity(device, 0); 2073 if (device->bitmap) { 2074 /* maybe never allocated. */ 2075 drbd_bm_resize(device, 0, 1); 2076 drbd_bm_cleanup(device); 2077 } 2078 2079 drbd_backing_dev_free(device, device->ldev); 2080 device->ldev = NULL; 2081 2082 clear_bit(AL_SUSPENDED, &device->flags); 2083 2084 D_ASSERT(device, list_empty(&device->active_ee)); 2085 D_ASSERT(device, list_empty(&device->sync_ee)); 2086 D_ASSERT(device, list_empty(&device->done_ee)); 2087 D_ASSERT(device, list_empty(&device->read_ee)); 2088 D_ASSERT(device, list_empty(&device->net_ee)); 2089 D_ASSERT(device, list_empty(&device->resync_reads)); 2090 D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q)); 2091 D_ASSERT(device, list_empty(&device->resync_work.list)); 2092 D_ASSERT(device, list_empty(&device->unplug_work.list)); 2093 2094 drbd_set_defaults(device); 2095 } 2096 2097 2098 static void drbd_destroy_mempools(void) 2099 { 2100 struct page *page; 2101 2102 while (drbd_pp_pool) { 2103 page = drbd_pp_pool; 2104 drbd_pp_pool = (struct page *)page_private(page); 2105 __free_page(page); 2106 drbd_pp_vacant--; 2107 } 2108 2109 /* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */ 2110 2111 bioset_exit(&drbd_io_bio_set); 2112 bioset_exit(&drbd_md_io_bio_set); 2113 mempool_exit(&drbd_md_io_page_pool); 2114 mempool_exit(&drbd_ee_mempool); 2115 mempool_exit(&drbd_request_mempool); 2116 kmem_cache_destroy(drbd_ee_cache); 2117 kmem_cache_destroy(drbd_request_cache); 2118 kmem_cache_destroy(drbd_bm_ext_cache); 2119 kmem_cache_destroy(drbd_al_ext_cache); 2120 2121 drbd_ee_cache = NULL; 2122 drbd_request_cache = NULL; 2123 drbd_bm_ext_cache = NULL; 2124 drbd_al_ext_cache = NULL; 2125 2126 return; 2127 } 2128 2129 static int drbd_create_mempools(void) 2130 { 2131 struct page *page; 2132 const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * drbd_minor_count; 2133 int i, ret; 2134 2135 /* caches */ 2136 drbd_request_cache = kmem_cache_create( 2137 "drbd_req", sizeof(struct drbd_request), 0, 0, NULL); 2138 if (drbd_request_cache == NULL) 2139 goto Enomem; 2140 2141 drbd_ee_cache = kmem_cache_create( 2142 "drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL); 2143 if (drbd_ee_cache == NULL) 2144 goto Enomem; 2145 2146 drbd_bm_ext_cache = kmem_cache_create( 2147 "drbd_bm", sizeof(struct bm_extent), 0, 0, NULL); 2148 if (drbd_bm_ext_cache == NULL) 2149 goto Enomem; 2150 2151 drbd_al_ext_cache = kmem_cache_create( 2152 "drbd_al", sizeof(struct lc_element), 0, 0, NULL); 2153 if (drbd_al_ext_cache == NULL) 2154 goto Enomem; 2155 2156 /* mempools */ 2157 ret = bioset_init(&drbd_io_bio_set, BIO_POOL_SIZE, 0, 0); 2158 if (ret) 2159 goto Enomem; 2160 2161 ret = bioset_init(&drbd_md_io_bio_set, DRBD_MIN_POOL_PAGES, 0, 2162 BIOSET_NEED_BVECS); 2163 if (ret) 2164 goto Enomem; 2165 2166 ret = mempool_init_page_pool(&drbd_md_io_page_pool, DRBD_MIN_POOL_PAGES, 0); 2167 if (ret) 2168 goto Enomem; 2169 2170 ret = mempool_init_slab_pool(&drbd_request_mempool, number, 2171 drbd_request_cache); 2172 if (ret) 2173 goto Enomem; 2174 2175 ret = mempool_init_slab_pool(&drbd_ee_mempool, number, drbd_ee_cache); 2176 if (ret) 2177 goto Enomem; 2178 2179 /* drbd's page pool */ 2180 spin_lock_init(&drbd_pp_lock); 2181 2182 for (i = 0; i < number; i++) { 2183 page = alloc_page(GFP_HIGHUSER); 2184 if (!page) 2185 goto Enomem; 2186 set_page_private(page, (unsigned long)drbd_pp_pool); 2187 drbd_pp_pool = page; 2188 } 2189 drbd_pp_vacant = number; 2190 2191 return 0; 2192 2193 Enomem: 2194 drbd_destroy_mempools(); /* in case we allocated some */ 2195 return -ENOMEM; 2196 } 2197 2198 static void drbd_release_all_peer_reqs(struct drbd_device *device) 2199 { 2200 int rr; 2201 2202 rr = drbd_free_peer_reqs(device, &device->active_ee); 2203 if (rr) 2204 drbd_err(device, "%d EEs in active list found!\n", rr); 2205 2206 rr = drbd_free_peer_reqs(device, &device->sync_ee); 2207 if (rr) 2208 drbd_err(device, "%d EEs in sync list found!\n", rr); 2209 2210 rr = drbd_free_peer_reqs(device, &device->read_ee); 2211 if (rr) 2212 drbd_err(device, "%d EEs in read list found!\n", rr); 2213 2214 rr = drbd_free_peer_reqs(device, &device->done_ee); 2215 if (rr) 2216 drbd_err(device, "%d EEs in done list found!\n", rr); 2217 2218 rr = drbd_free_peer_reqs(device, &device->net_ee); 2219 if (rr) 2220 drbd_err(device, "%d EEs in net list found!\n", rr); 2221 } 2222 2223 /* caution. no locking. */ 2224 void drbd_destroy_device(struct kref *kref) 2225 { 2226 struct drbd_device *device = container_of(kref, struct drbd_device, kref); 2227 struct drbd_resource *resource = device->resource; 2228 struct drbd_peer_device *peer_device, *tmp_peer_device; 2229 2230 del_timer_sync(&device->request_timer); 2231 2232 /* paranoia asserts */ 2233 D_ASSERT(device, device->open_cnt == 0); 2234 /* end paranoia asserts */ 2235 2236 /* cleanup stuff that may have been allocated during 2237 * device (re-)configuration or state changes */ 2238 2239 if (device->this_bdev) 2240 bdput(device->this_bdev); 2241 2242 drbd_backing_dev_free(device, device->ldev); 2243 device->ldev = NULL; 2244 2245 drbd_release_all_peer_reqs(device); 2246 2247 lc_destroy(device->act_log); 2248 lc_destroy(device->resync); 2249 2250 kfree(device->p_uuid); 2251 /* device->p_uuid = NULL; */ 2252 2253 if (device->bitmap) /* should no longer be there. */ 2254 drbd_bm_cleanup(device); 2255 __free_page(device->md_io.page); 2256 put_disk(device->vdisk); 2257 blk_cleanup_queue(device->rq_queue); 2258 kfree(device->rs_plan_s); 2259 2260 /* not for_each_connection(connection, resource): 2261 * those may have been cleaned up and disassociated already. 2262 */ 2263 for_each_peer_device_safe(peer_device, tmp_peer_device, device) { 2264 kref_put(&peer_device->connection->kref, drbd_destroy_connection); 2265 kfree(peer_device); 2266 } 2267 memset(device, 0xfd, sizeof(*device)); 2268 kfree(device); 2269 kref_put(&resource->kref, drbd_destroy_resource); 2270 } 2271 2272 /* One global retry thread, if we need to push back some bio and have it 2273 * reinserted through our make request function. 2274 */ 2275 static struct retry_worker { 2276 struct workqueue_struct *wq; 2277 struct work_struct worker; 2278 2279 spinlock_t lock; 2280 struct list_head writes; 2281 } retry; 2282 2283 static void do_retry(struct work_struct *ws) 2284 { 2285 struct retry_worker *retry = container_of(ws, struct retry_worker, worker); 2286 LIST_HEAD(writes); 2287 struct drbd_request *req, *tmp; 2288 2289 spin_lock_irq(&retry->lock); 2290 list_splice_init(&retry->writes, &writes); 2291 spin_unlock_irq(&retry->lock); 2292 2293 list_for_each_entry_safe(req, tmp, &writes, tl_requests) { 2294 struct drbd_device *device = req->device; 2295 struct bio *bio = req->master_bio; 2296 unsigned long start_jif = req->start_jif; 2297 bool expected; 2298 2299 expected = 2300 expect(atomic_read(&req->completion_ref) == 0) && 2301 expect(req->rq_state & RQ_POSTPONED) && 2302 expect((req->rq_state & RQ_LOCAL_PENDING) == 0 || 2303 (req->rq_state & RQ_LOCAL_ABORTED) != 0); 2304 2305 if (!expected) 2306 drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n", 2307 req, atomic_read(&req->completion_ref), 2308 req->rq_state); 2309 2310 /* We still need to put one kref associated with the 2311 * "completion_ref" going zero in the code path that queued it 2312 * here. The request object may still be referenced by a 2313 * frozen local req->private_bio, in case we force-detached. 2314 */ 2315 kref_put(&req->kref, drbd_req_destroy); 2316 2317 /* A single suspended or otherwise blocking device may stall 2318 * all others as well. Fortunately, this code path is to 2319 * recover from a situation that "should not happen": 2320 * concurrent writes in multi-primary setup. 2321 * In a "normal" lifecycle, this workqueue is supposed to be 2322 * destroyed without ever doing anything. 2323 * If it turns out to be an issue anyways, we can do per 2324 * resource (replication group) or per device (minor) retry 2325 * workqueues instead. 2326 */ 2327 2328 /* We are not just doing submit_bio_noacct(), 2329 * as we want to keep the start_time information. */ 2330 inc_ap_bio(device); 2331 __drbd_make_request(device, bio, start_jif); 2332 } 2333 } 2334 2335 /* called via drbd_req_put_completion_ref(), 2336 * holds resource->req_lock */ 2337 void drbd_restart_request(struct drbd_request *req) 2338 { 2339 unsigned long flags; 2340 spin_lock_irqsave(&retry.lock, flags); 2341 list_move_tail(&req->tl_requests, &retry.writes); 2342 spin_unlock_irqrestore(&retry.lock, flags); 2343 2344 /* Drop the extra reference that would otherwise 2345 * have been dropped by complete_master_bio. 2346 * do_retry() needs to grab a new one. */ 2347 dec_ap_bio(req->device); 2348 2349 queue_work(retry.wq, &retry.worker); 2350 } 2351 2352 void drbd_destroy_resource(struct kref *kref) 2353 { 2354 struct drbd_resource *resource = 2355 container_of(kref, struct drbd_resource, kref); 2356 2357 idr_destroy(&resource->devices); 2358 free_cpumask_var(resource->cpu_mask); 2359 kfree(resource->name); 2360 memset(resource, 0xf2, sizeof(*resource)); 2361 kfree(resource); 2362 } 2363 2364 void drbd_free_resource(struct drbd_resource *resource) 2365 { 2366 struct drbd_connection *connection, *tmp; 2367 2368 for_each_connection_safe(connection, tmp, resource) { 2369 list_del(&connection->connections); 2370 drbd_debugfs_connection_cleanup(connection); 2371 kref_put(&connection->kref, drbd_destroy_connection); 2372 } 2373 drbd_debugfs_resource_cleanup(resource); 2374 kref_put(&resource->kref, drbd_destroy_resource); 2375 } 2376 2377 static void drbd_cleanup(void) 2378 { 2379 unsigned int i; 2380 struct drbd_device *device; 2381 struct drbd_resource *resource, *tmp; 2382 2383 /* first remove proc, 2384 * drbdsetup uses it's presence to detect 2385 * whether DRBD is loaded. 2386 * If we would get stuck in proc removal, 2387 * but have netlink already deregistered, 2388 * some drbdsetup commands may wait forever 2389 * for an answer. 2390 */ 2391 if (drbd_proc) 2392 remove_proc_entry("drbd", NULL); 2393 2394 if (retry.wq) 2395 destroy_workqueue(retry.wq); 2396 2397 drbd_genl_unregister(); 2398 2399 idr_for_each_entry(&drbd_devices, device, i) 2400 drbd_delete_device(device); 2401 2402 /* not _rcu since, no other updater anymore. Genl already unregistered */ 2403 for_each_resource_safe(resource, tmp, &drbd_resources) { 2404 list_del(&resource->resources); 2405 drbd_free_resource(resource); 2406 } 2407 2408 drbd_debugfs_cleanup(); 2409 2410 drbd_destroy_mempools(); 2411 unregister_blkdev(DRBD_MAJOR, "drbd"); 2412 2413 idr_destroy(&drbd_devices); 2414 2415 pr_info("module cleanup done.\n"); 2416 } 2417 2418 static void drbd_init_workqueue(struct drbd_work_queue* wq) 2419 { 2420 spin_lock_init(&wq->q_lock); 2421 INIT_LIST_HEAD(&wq->q); 2422 init_waitqueue_head(&wq->q_wait); 2423 } 2424 2425 struct completion_work { 2426 struct drbd_work w; 2427 struct completion done; 2428 }; 2429 2430 static int w_complete(struct drbd_work *w, int cancel) 2431 { 2432 struct completion_work *completion_work = 2433 container_of(w, struct completion_work, w); 2434 2435 complete(&completion_work->done); 2436 return 0; 2437 } 2438 2439 void drbd_flush_workqueue(struct drbd_work_queue *work_queue) 2440 { 2441 struct completion_work completion_work; 2442 2443 completion_work.w.cb = w_complete; 2444 init_completion(&completion_work.done); 2445 drbd_queue_work(work_queue, &completion_work.w); 2446 wait_for_completion(&completion_work.done); 2447 } 2448 2449 struct drbd_resource *drbd_find_resource(const char *name) 2450 { 2451 struct drbd_resource *resource; 2452 2453 if (!name || !name[0]) 2454 return NULL; 2455 2456 rcu_read_lock(); 2457 for_each_resource_rcu(resource, &drbd_resources) { 2458 if (!strcmp(resource->name, name)) { 2459 kref_get(&resource->kref); 2460 goto found; 2461 } 2462 } 2463 resource = NULL; 2464 found: 2465 rcu_read_unlock(); 2466 return resource; 2467 } 2468 2469 struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len, 2470 void *peer_addr, int peer_addr_len) 2471 { 2472 struct drbd_resource *resource; 2473 struct drbd_connection *connection; 2474 2475 rcu_read_lock(); 2476 for_each_resource_rcu(resource, &drbd_resources) { 2477 for_each_connection_rcu(connection, resource) { 2478 if (connection->my_addr_len == my_addr_len && 2479 connection->peer_addr_len == peer_addr_len && 2480 !memcmp(&connection->my_addr, my_addr, my_addr_len) && 2481 !memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) { 2482 kref_get(&connection->kref); 2483 goto found; 2484 } 2485 } 2486 } 2487 connection = NULL; 2488 found: 2489 rcu_read_unlock(); 2490 return connection; 2491 } 2492 2493 static int drbd_alloc_socket(struct drbd_socket *socket) 2494 { 2495 socket->rbuf = (void *) __get_free_page(GFP_KERNEL); 2496 if (!socket->rbuf) 2497 return -ENOMEM; 2498 socket->sbuf = (void *) __get_free_page(GFP_KERNEL); 2499 if (!socket->sbuf) 2500 return -ENOMEM; 2501 return 0; 2502 } 2503 2504 static void drbd_free_socket(struct drbd_socket *socket) 2505 { 2506 free_page((unsigned long) socket->sbuf); 2507 free_page((unsigned long) socket->rbuf); 2508 } 2509 2510 void conn_free_crypto(struct drbd_connection *connection) 2511 { 2512 drbd_free_sock(connection); 2513 2514 crypto_free_shash(connection->csums_tfm); 2515 crypto_free_shash(connection->verify_tfm); 2516 crypto_free_shash(connection->cram_hmac_tfm); 2517 crypto_free_shash(connection->integrity_tfm); 2518 crypto_free_shash(connection->peer_integrity_tfm); 2519 kfree(connection->int_dig_in); 2520 kfree(connection->int_dig_vv); 2521 2522 connection->csums_tfm = NULL; 2523 connection->verify_tfm = NULL; 2524 connection->cram_hmac_tfm = NULL; 2525 connection->integrity_tfm = NULL; 2526 connection->peer_integrity_tfm = NULL; 2527 connection->int_dig_in = NULL; 2528 connection->int_dig_vv = NULL; 2529 } 2530 2531 int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts) 2532 { 2533 struct drbd_connection *connection; 2534 cpumask_var_t new_cpu_mask; 2535 int err; 2536 2537 if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL)) 2538 return -ENOMEM; 2539 2540 /* silently ignore cpu mask on UP kernel */ 2541 if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) { 2542 err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE, 2543 cpumask_bits(new_cpu_mask), nr_cpu_ids); 2544 if (err == -EOVERFLOW) { 2545 /* So what. mask it out. */ 2546 cpumask_var_t tmp_cpu_mask; 2547 if (zalloc_cpumask_var(&tmp_cpu_mask, GFP_KERNEL)) { 2548 cpumask_setall(tmp_cpu_mask); 2549 cpumask_and(new_cpu_mask, new_cpu_mask, tmp_cpu_mask); 2550 drbd_warn(resource, "Overflow in bitmap_parse(%.12s%s), truncating to %u bits\n", 2551 res_opts->cpu_mask, 2552 strlen(res_opts->cpu_mask) > 12 ? "..." : "", 2553 nr_cpu_ids); 2554 free_cpumask_var(tmp_cpu_mask); 2555 err = 0; 2556 } 2557 } 2558 if (err) { 2559 drbd_warn(resource, "bitmap_parse() failed with %d\n", err); 2560 /* retcode = ERR_CPU_MASK_PARSE; */ 2561 goto fail; 2562 } 2563 } 2564 resource->res_opts = *res_opts; 2565 if (cpumask_empty(new_cpu_mask)) 2566 drbd_calc_cpu_mask(&new_cpu_mask); 2567 if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) { 2568 cpumask_copy(resource->cpu_mask, new_cpu_mask); 2569 for_each_connection_rcu(connection, resource) { 2570 connection->receiver.reset_cpu_mask = 1; 2571 connection->ack_receiver.reset_cpu_mask = 1; 2572 connection->worker.reset_cpu_mask = 1; 2573 } 2574 } 2575 err = 0; 2576 2577 fail: 2578 free_cpumask_var(new_cpu_mask); 2579 return err; 2580 2581 } 2582 2583 struct drbd_resource *drbd_create_resource(const char *name) 2584 { 2585 struct drbd_resource *resource; 2586 2587 resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL); 2588 if (!resource) 2589 goto fail; 2590 resource->name = kstrdup(name, GFP_KERNEL); 2591 if (!resource->name) 2592 goto fail_free_resource; 2593 if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL)) 2594 goto fail_free_name; 2595 kref_init(&resource->kref); 2596 idr_init(&resource->devices); 2597 INIT_LIST_HEAD(&resource->connections); 2598 resource->write_ordering = WO_BDEV_FLUSH; 2599 list_add_tail_rcu(&resource->resources, &drbd_resources); 2600 mutex_init(&resource->conf_update); 2601 mutex_init(&resource->adm_mutex); 2602 spin_lock_init(&resource->req_lock); 2603 drbd_debugfs_resource_add(resource); 2604 return resource; 2605 2606 fail_free_name: 2607 kfree(resource->name); 2608 fail_free_resource: 2609 kfree(resource); 2610 fail: 2611 return NULL; 2612 } 2613 2614 /* caller must be under adm_mutex */ 2615 struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts) 2616 { 2617 struct drbd_resource *resource; 2618 struct drbd_connection *connection; 2619 2620 connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL); 2621 if (!connection) 2622 return NULL; 2623 2624 if (drbd_alloc_socket(&connection->data)) 2625 goto fail; 2626 if (drbd_alloc_socket(&connection->meta)) 2627 goto fail; 2628 2629 connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL); 2630 if (!connection->current_epoch) 2631 goto fail; 2632 2633 INIT_LIST_HEAD(&connection->transfer_log); 2634 2635 INIT_LIST_HEAD(&connection->current_epoch->list); 2636 connection->epochs = 1; 2637 spin_lock_init(&connection->epoch_lock); 2638 2639 connection->send.seen_any_write_yet = false; 2640 connection->send.current_epoch_nr = 0; 2641 connection->send.current_epoch_writes = 0; 2642 2643 resource = drbd_create_resource(name); 2644 if (!resource) 2645 goto fail; 2646 2647 connection->cstate = C_STANDALONE; 2648 mutex_init(&connection->cstate_mutex); 2649 init_waitqueue_head(&connection->ping_wait); 2650 idr_init(&connection->peer_devices); 2651 2652 drbd_init_workqueue(&connection->sender_work); 2653 mutex_init(&connection->data.mutex); 2654 mutex_init(&connection->meta.mutex); 2655 2656 drbd_thread_init(resource, &connection->receiver, drbd_receiver, "receiver"); 2657 connection->receiver.connection = connection; 2658 drbd_thread_init(resource, &connection->worker, drbd_worker, "worker"); 2659 connection->worker.connection = connection; 2660 drbd_thread_init(resource, &connection->ack_receiver, drbd_ack_receiver, "ack_recv"); 2661 connection->ack_receiver.connection = connection; 2662 2663 kref_init(&connection->kref); 2664 2665 connection->resource = resource; 2666 2667 if (set_resource_options(resource, res_opts)) 2668 goto fail_resource; 2669 2670 kref_get(&resource->kref); 2671 list_add_tail_rcu(&connection->connections, &resource->connections); 2672 drbd_debugfs_connection_add(connection); 2673 return connection; 2674 2675 fail_resource: 2676 list_del(&resource->resources); 2677 drbd_free_resource(resource); 2678 fail: 2679 kfree(connection->current_epoch); 2680 drbd_free_socket(&connection->meta); 2681 drbd_free_socket(&connection->data); 2682 kfree(connection); 2683 return NULL; 2684 } 2685 2686 void drbd_destroy_connection(struct kref *kref) 2687 { 2688 struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref); 2689 struct drbd_resource *resource = connection->resource; 2690 2691 if (atomic_read(&connection->current_epoch->epoch_size) != 0) 2692 drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size)); 2693 kfree(connection->current_epoch); 2694 2695 idr_destroy(&connection->peer_devices); 2696 2697 drbd_free_socket(&connection->meta); 2698 drbd_free_socket(&connection->data); 2699 kfree(connection->int_dig_in); 2700 kfree(connection->int_dig_vv); 2701 memset(connection, 0xfc, sizeof(*connection)); 2702 kfree(connection); 2703 kref_put(&resource->kref, drbd_destroy_resource); 2704 } 2705 2706 static int init_submitter(struct drbd_device *device) 2707 { 2708 /* opencoded create_singlethread_workqueue(), 2709 * to be able to say "drbd%d", ..., minor */ 2710 device->submit.wq = 2711 alloc_ordered_workqueue("drbd%u_submit", WQ_MEM_RECLAIM, device->minor); 2712 if (!device->submit.wq) 2713 return -ENOMEM; 2714 2715 INIT_WORK(&device->submit.worker, do_submit); 2716 INIT_LIST_HEAD(&device->submit.writes); 2717 return 0; 2718 } 2719 2720 enum drbd_ret_code drbd_create_device(struct drbd_config_context *adm_ctx, unsigned int minor) 2721 { 2722 struct drbd_resource *resource = adm_ctx->resource; 2723 struct drbd_connection *connection; 2724 struct drbd_device *device; 2725 struct drbd_peer_device *peer_device, *tmp_peer_device; 2726 struct gendisk *disk; 2727 struct request_queue *q; 2728 int id; 2729 int vnr = adm_ctx->volume; 2730 enum drbd_ret_code err = ERR_NOMEM; 2731 2732 device = minor_to_device(minor); 2733 if (device) 2734 return ERR_MINOR_OR_VOLUME_EXISTS; 2735 2736 /* GFP_KERNEL, we are outside of all write-out paths */ 2737 device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL); 2738 if (!device) 2739 return ERR_NOMEM; 2740 kref_init(&device->kref); 2741 2742 kref_get(&resource->kref); 2743 device->resource = resource; 2744 device->minor = minor; 2745 device->vnr = vnr; 2746 2747 drbd_init_set_defaults(device); 2748 2749 q = blk_alloc_queue(NUMA_NO_NODE); 2750 if (!q) 2751 goto out_no_q; 2752 device->rq_queue = q; 2753 2754 disk = alloc_disk(1); 2755 if (!disk) 2756 goto out_no_disk; 2757 device->vdisk = disk; 2758 2759 set_disk_ro(disk, true); 2760 2761 disk->queue = q; 2762 disk->major = DRBD_MAJOR; 2763 disk->first_minor = minor; 2764 disk->fops = &drbd_ops; 2765 sprintf(disk->disk_name, "drbd%d", minor); 2766 disk->private_data = device; 2767 2768 device->this_bdev = bdget(MKDEV(DRBD_MAJOR, minor)); 2769 /* we have no partitions. we contain only ourselves. */ 2770 device->this_bdev->bd_contains = device->this_bdev; 2771 2772 blk_queue_write_cache(q, true, true); 2773 /* Setting the max_hw_sectors to an odd value of 8kibyte here 2774 This triggers a max_bio_size message upon first attach or connect */ 2775 blk_queue_max_hw_sectors(q, DRBD_MAX_BIO_SIZE_SAFE >> 8); 2776 2777 device->md_io.page = alloc_page(GFP_KERNEL); 2778 if (!device->md_io.page) 2779 goto out_no_io_page; 2780 2781 if (drbd_bm_init(device)) 2782 goto out_no_bitmap; 2783 device->read_requests = RB_ROOT; 2784 device->write_requests = RB_ROOT; 2785 2786 id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL); 2787 if (id < 0) { 2788 if (id == -ENOSPC) 2789 err = ERR_MINOR_OR_VOLUME_EXISTS; 2790 goto out_no_minor_idr; 2791 } 2792 kref_get(&device->kref); 2793 2794 id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL); 2795 if (id < 0) { 2796 if (id == -ENOSPC) 2797 err = ERR_MINOR_OR_VOLUME_EXISTS; 2798 goto out_idr_remove_minor; 2799 } 2800 kref_get(&device->kref); 2801 2802 INIT_LIST_HEAD(&device->peer_devices); 2803 INIT_LIST_HEAD(&device->pending_bitmap_io); 2804 for_each_connection(connection, resource) { 2805 peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL); 2806 if (!peer_device) 2807 goto out_idr_remove_from_resource; 2808 peer_device->connection = connection; 2809 peer_device->device = device; 2810 2811 list_add(&peer_device->peer_devices, &device->peer_devices); 2812 kref_get(&device->kref); 2813 2814 id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL); 2815 if (id < 0) { 2816 if (id == -ENOSPC) 2817 err = ERR_INVALID_REQUEST; 2818 goto out_idr_remove_from_resource; 2819 } 2820 kref_get(&connection->kref); 2821 INIT_WORK(&peer_device->send_acks_work, drbd_send_acks_wf); 2822 } 2823 2824 if (init_submitter(device)) { 2825 err = ERR_NOMEM; 2826 goto out_idr_remove_vol; 2827 } 2828 2829 add_disk(disk); 2830 2831 /* inherit the connection state */ 2832 device->state.conn = first_connection(resource)->cstate; 2833 if (device->state.conn == C_WF_REPORT_PARAMS) { 2834 for_each_peer_device(peer_device, device) 2835 drbd_connected(peer_device); 2836 } 2837 /* move to create_peer_device() */ 2838 for_each_peer_device(peer_device, device) 2839 drbd_debugfs_peer_device_add(peer_device); 2840 drbd_debugfs_device_add(device); 2841 return NO_ERROR; 2842 2843 out_idr_remove_vol: 2844 idr_remove(&connection->peer_devices, vnr); 2845 out_idr_remove_from_resource: 2846 for_each_connection(connection, resource) { 2847 peer_device = idr_remove(&connection->peer_devices, vnr); 2848 if (peer_device) 2849 kref_put(&connection->kref, drbd_destroy_connection); 2850 } 2851 for_each_peer_device_safe(peer_device, tmp_peer_device, device) { 2852 list_del(&peer_device->peer_devices); 2853 kfree(peer_device); 2854 } 2855 idr_remove(&resource->devices, vnr); 2856 out_idr_remove_minor: 2857 idr_remove(&drbd_devices, minor); 2858 synchronize_rcu(); 2859 out_no_minor_idr: 2860 drbd_bm_cleanup(device); 2861 out_no_bitmap: 2862 __free_page(device->md_io.page); 2863 out_no_io_page: 2864 put_disk(disk); 2865 out_no_disk: 2866 blk_cleanup_queue(q); 2867 out_no_q: 2868 kref_put(&resource->kref, drbd_destroy_resource); 2869 kfree(device); 2870 return err; 2871 } 2872 2873 void drbd_delete_device(struct drbd_device *device) 2874 { 2875 struct drbd_resource *resource = device->resource; 2876 struct drbd_connection *connection; 2877 struct drbd_peer_device *peer_device; 2878 2879 /* move to free_peer_device() */ 2880 for_each_peer_device(peer_device, device) 2881 drbd_debugfs_peer_device_cleanup(peer_device); 2882 drbd_debugfs_device_cleanup(device); 2883 for_each_connection(connection, resource) { 2884 idr_remove(&connection->peer_devices, device->vnr); 2885 kref_put(&device->kref, drbd_destroy_device); 2886 } 2887 idr_remove(&resource->devices, device->vnr); 2888 kref_put(&device->kref, drbd_destroy_device); 2889 idr_remove(&drbd_devices, device_to_minor(device)); 2890 kref_put(&device->kref, drbd_destroy_device); 2891 del_gendisk(device->vdisk); 2892 synchronize_rcu(); 2893 kref_put(&device->kref, drbd_destroy_device); 2894 } 2895 2896 static int __init drbd_init(void) 2897 { 2898 int err; 2899 2900 if (drbd_minor_count < DRBD_MINOR_COUNT_MIN || drbd_minor_count > DRBD_MINOR_COUNT_MAX) { 2901 pr_err("invalid minor_count (%d)\n", drbd_minor_count); 2902 #ifdef MODULE 2903 return -EINVAL; 2904 #else 2905 drbd_minor_count = DRBD_MINOR_COUNT_DEF; 2906 #endif 2907 } 2908 2909 err = register_blkdev(DRBD_MAJOR, "drbd"); 2910 if (err) { 2911 pr_err("unable to register block device major %d\n", 2912 DRBD_MAJOR); 2913 return err; 2914 } 2915 2916 /* 2917 * allocate all necessary structs 2918 */ 2919 init_waitqueue_head(&drbd_pp_wait); 2920 2921 drbd_proc = NULL; /* play safe for drbd_cleanup */ 2922 idr_init(&drbd_devices); 2923 2924 mutex_init(&resources_mutex); 2925 INIT_LIST_HEAD(&drbd_resources); 2926 2927 err = drbd_genl_register(); 2928 if (err) { 2929 pr_err("unable to register generic netlink family\n"); 2930 goto fail; 2931 } 2932 2933 err = drbd_create_mempools(); 2934 if (err) 2935 goto fail; 2936 2937 err = -ENOMEM; 2938 drbd_proc = proc_create_single("drbd", S_IFREG | 0444 , NULL, drbd_seq_show); 2939 if (!drbd_proc) { 2940 pr_err("unable to register proc file\n"); 2941 goto fail; 2942 } 2943 2944 retry.wq = create_singlethread_workqueue("drbd-reissue"); 2945 if (!retry.wq) { 2946 pr_err("unable to create retry workqueue\n"); 2947 goto fail; 2948 } 2949 INIT_WORK(&retry.worker, do_retry); 2950 spin_lock_init(&retry.lock); 2951 INIT_LIST_HEAD(&retry.writes); 2952 2953 drbd_debugfs_init(); 2954 2955 pr_info("initialized. " 2956 "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n", 2957 API_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX); 2958 pr_info("%s\n", drbd_buildtag()); 2959 pr_info("registered as block device major %d\n", DRBD_MAJOR); 2960 return 0; /* Success! */ 2961 2962 fail: 2963 drbd_cleanup(); 2964 if (err == -ENOMEM) 2965 pr_err("ran out of memory\n"); 2966 else 2967 pr_err("initialization failure\n"); 2968 return err; 2969 } 2970 2971 static void drbd_free_one_sock(struct drbd_socket *ds) 2972 { 2973 struct socket *s; 2974 mutex_lock(&ds->mutex); 2975 s = ds->socket; 2976 ds->socket = NULL; 2977 mutex_unlock(&ds->mutex); 2978 if (s) { 2979 /* so debugfs does not need to mutex_lock() */ 2980 synchronize_rcu(); 2981 kernel_sock_shutdown(s, SHUT_RDWR); 2982 sock_release(s); 2983 } 2984 } 2985 2986 void drbd_free_sock(struct drbd_connection *connection) 2987 { 2988 if (connection->data.socket) 2989 drbd_free_one_sock(&connection->data); 2990 if (connection->meta.socket) 2991 drbd_free_one_sock(&connection->meta); 2992 } 2993 2994 /* meta data management */ 2995 2996 void conn_md_sync(struct drbd_connection *connection) 2997 { 2998 struct drbd_peer_device *peer_device; 2999 int vnr; 3000 3001 rcu_read_lock(); 3002 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 3003 struct drbd_device *device = peer_device->device; 3004 3005 kref_get(&device->kref); 3006 rcu_read_unlock(); 3007 drbd_md_sync(device); 3008 kref_put(&device->kref, drbd_destroy_device); 3009 rcu_read_lock(); 3010 } 3011 rcu_read_unlock(); 3012 } 3013 3014 /* aligned 4kByte */ 3015 struct meta_data_on_disk { 3016 u64 la_size_sect; /* last agreed size. */ 3017 u64 uuid[UI_SIZE]; /* UUIDs. */ 3018 u64 device_uuid; 3019 u64 reserved_u64_1; 3020 u32 flags; /* MDF */ 3021 u32 magic; 3022 u32 md_size_sect; 3023 u32 al_offset; /* offset to this block */ 3024 u32 al_nr_extents; /* important for restoring the AL (userspace) */ 3025 /* `-- act_log->nr_elements <-- ldev->dc.al_extents */ 3026 u32 bm_offset; /* offset to the bitmap, from here */ 3027 u32 bm_bytes_per_bit; /* BM_BLOCK_SIZE */ 3028 u32 la_peer_max_bio_size; /* last peer max_bio_size */ 3029 3030 /* see al_tr_number_to_on_disk_sector() */ 3031 u32 al_stripes; 3032 u32 al_stripe_size_4k; 3033 3034 u8 reserved_u8[4096 - (7*8 + 10*4)]; 3035 } __packed; 3036 3037 3038 3039 void drbd_md_write(struct drbd_device *device, void *b) 3040 { 3041 struct meta_data_on_disk *buffer = b; 3042 sector_t sector; 3043 int i; 3044 3045 memset(buffer, 0, sizeof(*buffer)); 3046 3047 buffer->la_size_sect = cpu_to_be64(drbd_get_capacity(device->this_bdev)); 3048 for (i = UI_CURRENT; i < UI_SIZE; i++) 3049 buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]); 3050 buffer->flags = cpu_to_be32(device->ldev->md.flags); 3051 buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN); 3052 3053 buffer->md_size_sect = cpu_to_be32(device->ldev->md.md_size_sect); 3054 buffer->al_offset = cpu_to_be32(device->ldev->md.al_offset); 3055 buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements); 3056 buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE); 3057 buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid); 3058 3059 buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset); 3060 buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size); 3061 3062 buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes); 3063 buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k); 3064 3065 D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset); 3066 sector = device->ldev->md.md_offset; 3067 3068 if (drbd_md_sync_page_io(device, device->ldev, sector, REQ_OP_WRITE)) { 3069 /* this was a try anyways ... */ 3070 drbd_err(device, "meta data update failed!\n"); 3071 drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR); 3072 } 3073 } 3074 3075 /** 3076 * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set 3077 * @device: DRBD device. 3078 */ 3079 void drbd_md_sync(struct drbd_device *device) 3080 { 3081 struct meta_data_on_disk *buffer; 3082 3083 /* Don't accidentally change the DRBD meta data layout. */ 3084 BUILD_BUG_ON(UI_SIZE != 4); 3085 BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096); 3086 3087 del_timer(&device->md_sync_timer); 3088 /* timer may be rearmed by drbd_md_mark_dirty() now. */ 3089 if (!test_and_clear_bit(MD_DIRTY, &device->flags)) 3090 return; 3091 3092 /* We use here D_FAILED and not D_ATTACHING because we try to write 3093 * metadata even if we detach due to a disk failure! */ 3094 if (!get_ldev_if_state(device, D_FAILED)) 3095 return; 3096 3097 buffer = drbd_md_get_buffer(device, __func__); 3098 if (!buffer) 3099 goto out; 3100 3101 drbd_md_write(device, buffer); 3102 3103 /* Update device->ldev->md.la_size_sect, 3104 * since we updated it on metadata. */ 3105 device->ldev->md.la_size_sect = drbd_get_capacity(device->this_bdev); 3106 3107 drbd_md_put_buffer(device); 3108 out: 3109 put_ldev(device); 3110 } 3111 3112 static int check_activity_log_stripe_size(struct drbd_device *device, 3113 struct meta_data_on_disk *on_disk, 3114 struct drbd_md *in_core) 3115 { 3116 u32 al_stripes = be32_to_cpu(on_disk->al_stripes); 3117 u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k); 3118 u64 al_size_4k; 3119 3120 /* both not set: default to old fixed size activity log */ 3121 if (al_stripes == 0 && al_stripe_size_4k == 0) { 3122 al_stripes = 1; 3123 al_stripe_size_4k = MD_32kB_SECT/8; 3124 } 3125 3126 /* some paranoia plausibility checks */ 3127 3128 /* we need both values to be set */ 3129 if (al_stripes == 0 || al_stripe_size_4k == 0) 3130 goto err; 3131 3132 al_size_4k = (u64)al_stripes * al_stripe_size_4k; 3133 3134 /* Upper limit of activity log area, to avoid potential overflow 3135 * problems in al_tr_number_to_on_disk_sector(). As right now, more 3136 * than 72 * 4k blocks total only increases the amount of history, 3137 * limiting this arbitrarily to 16 GB is not a real limitation ;-) */ 3138 if (al_size_4k > (16 * 1024 * 1024/4)) 3139 goto err; 3140 3141 /* Lower limit: we need at least 8 transaction slots (32kB) 3142 * to not break existing setups */ 3143 if (al_size_4k < MD_32kB_SECT/8) 3144 goto err; 3145 3146 in_core->al_stripe_size_4k = al_stripe_size_4k; 3147 in_core->al_stripes = al_stripes; 3148 in_core->al_size_4k = al_size_4k; 3149 3150 return 0; 3151 err: 3152 drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n", 3153 al_stripes, al_stripe_size_4k); 3154 return -EINVAL; 3155 } 3156 3157 static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev) 3158 { 3159 sector_t capacity = drbd_get_capacity(bdev->md_bdev); 3160 struct drbd_md *in_core = &bdev->md; 3161 s32 on_disk_al_sect; 3162 s32 on_disk_bm_sect; 3163 3164 /* The on-disk size of the activity log, calculated from offsets, and 3165 * the size of the activity log calculated from the stripe settings, 3166 * should match. 3167 * Though we could relax this a bit: it is ok, if the striped activity log 3168 * fits in the available on-disk activity log size. 3169 * Right now, that would break how resize is implemented. 3170 * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware 3171 * of possible unused padding space in the on disk layout. */ 3172 if (in_core->al_offset < 0) { 3173 if (in_core->bm_offset > in_core->al_offset) 3174 goto err; 3175 on_disk_al_sect = -in_core->al_offset; 3176 on_disk_bm_sect = in_core->al_offset - in_core->bm_offset; 3177 } else { 3178 if (in_core->al_offset != MD_4kB_SECT) 3179 goto err; 3180 if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT) 3181 goto err; 3182 3183 on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT; 3184 on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset; 3185 } 3186 3187 /* old fixed size meta data is exactly that: fixed. */ 3188 if (in_core->meta_dev_idx >= 0) { 3189 if (in_core->md_size_sect != MD_128MB_SECT 3190 || in_core->al_offset != MD_4kB_SECT 3191 || in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT 3192 || in_core->al_stripes != 1 3193 || in_core->al_stripe_size_4k != MD_32kB_SECT/8) 3194 goto err; 3195 } 3196 3197 if (capacity < in_core->md_size_sect) 3198 goto err; 3199 if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev)) 3200 goto err; 3201 3202 /* should be aligned, and at least 32k */ 3203 if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT)) 3204 goto err; 3205 3206 /* should fit (for now: exactly) into the available on-disk space; 3207 * overflow prevention is in check_activity_log_stripe_size() above. */ 3208 if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT) 3209 goto err; 3210 3211 /* again, should be aligned */ 3212 if (in_core->bm_offset & 7) 3213 goto err; 3214 3215 /* FIXME check for device grow with flex external meta data? */ 3216 3217 /* can the available bitmap space cover the last agreed device size? */ 3218 if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512) 3219 goto err; 3220 3221 return 0; 3222 3223 err: 3224 drbd_err(device, "meta data offsets don't make sense: idx=%d " 3225 "al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, " 3226 "md_size_sect=%u, la_size=%llu, md_capacity=%llu\n", 3227 in_core->meta_dev_idx, 3228 in_core->al_stripes, in_core->al_stripe_size_4k, 3229 in_core->al_offset, in_core->bm_offset, in_core->md_size_sect, 3230 (unsigned long long)in_core->la_size_sect, 3231 (unsigned long long)capacity); 3232 3233 return -EINVAL; 3234 } 3235 3236 3237 /** 3238 * drbd_md_read() - Reads in the meta data super block 3239 * @device: DRBD device. 3240 * @bdev: Device from which the meta data should be read in. 3241 * 3242 * Return NO_ERROR on success, and an enum drbd_ret_code in case 3243 * something goes wrong. 3244 * 3245 * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS, 3246 * even before @bdev is assigned to @device->ldev. 3247 */ 3248 int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev) 3249 { 3250 struct meta_data_on_disk *buffer; 3251 u32 magic, flags; 3252 int i, rv = NO_ERROR; 3253 3254 if (device->state.disk != D_DISKLESS) 3255 return ERR_DISK_CONFIGURED; 3256 3257 buffer = drbd_md_get_buffer(device, __func__); 3258 if (!buffer) 3259 return ERR_NOMEM; 3260 3261 /* First, figure out where our meta data superblock is located, 3262 * and read it. */ 3263 bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx; 3264 bdev->md.md_offset = drbd_md_ss(bdev); 3265 /* Even for (flexible or indexed) external meta data, 3266 * initially restrict us to the 4k superblock for now. 3267 * Affects the paranoia out-of-range access check in drbd_md_sync_page_io(). */ 3268 bdev->md.md_size_sect = 8; 3269 3270 if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset, 3271 REQ_OP_READ)) { 3272 /* NOTE: can't do normal error processing here as this is 3273 called BEFORE disk is attached */ 3274 drbd_err(device, "Error while reading metadata.\n"); 3275 rv = ERR_IO_MD_DISK; 3276 goto err; 3277 } 3278 3279 magic = be32_to_cpu(buffer->magic); 3280 flags = be32_to_cpu(buffer->flags); 3281 if (magic == DRBD_MD_MAGIC_84_UNCLEAN || 3282 (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) { 3283 /* btw: that's Activity Log clean, not "all" clean. */ 3284 drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n"); 3285 rv = ERR_MD_UNCLEAN; 3286 goto err; 3287 } 3288 3289 rv = ERR_MD_INVALID; 3290 if (magic != DRBD_MD_MAGIC_08) { 3291 if (magic == DRBD_MD_MAGIC_07) 3292 drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n"); 3293 else 3294 drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n"); 3295 goto err; 3296 } 3297 3298 if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) { 3299 drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n", 3300 be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE); 3301 goto err; 3302 } 3303 3304 3305 /* convert to in_core endian */ 3306 bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect); 3307 for (i = UI_CURRENT; i < UI_SIZE; i++) 3308 bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]); 3309 bdev->md.flags = be32_to_cpu(buffer->flags); 3310 bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid); 3311 3312 bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect); 3313 bdev->md.al_offset = be32_to_cpu(buffer->al_offset); 3314 bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset); 3315 3316 if (check_activity_log_stripe_size(device, buffer, &bdev->md)) 3317 goto err; 3318 if (check_offsets_and_sizes(device, bdev)) 3319 goto err; 3320 3321 if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) { 3322 drbd_err(device, "unexpected bm_offset: %d (expected %d)\n", 3323 be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset); 3324 goto err; 3325 } 3326 if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) { 3327 drbd_err(device, "unexpected md_size: %u (expected %u)\n", 3328 be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect); 3329 goto err; 3330 } 3331 3332 rv = NO_ERROR; 3333 3334 spin_lock_irq(&device->resource->req_lock); 3335 if (device->state.conn < C_CONNECTED) { 3336 unsigned int peer; 3337 peer = be32_to_cpu(buffer->la_peer_max_bio_size); 3338 peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE); 3339 device->peer_max_bio_size = peer; 3340 } 3341 spin_unlock_irq(&device->resource->req_lock); 3342 3343 err: 3344 drbd_md_put_buffer(device); 3345 3346 return rv; 3347 } 3348 3349 /** 3350 * drbd_md_mark_dirty() - Mark meta data super block as dirty 3351 * @device: DRBD device. 3352 * 3353 * Call this function if you change anything that should be written to 3354 * the meta-data super block. This function sets MD_DIRTY, and starts a 3355 * timer that ensures that within five seconds you have to call drbd_md_sync(). 3356 */ 3357 void drbd_md_mark_dirty(struct drbd_device *device) 3358 { 3359 if (!test_and_set_bit(MD_DIRTY, &device->flags)) 3360 mod_timer(&device->md_sync_timer, jiffies + 5*HZ); 3361 } 3362 3363 void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local) 3364 { 3365 int i; 3366 3367 for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++) 3368 device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i]; 3369 } 3370 3371 void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local) 3372 { 3373 if (idx == UI_CURRENT) { 3374 if (device->state.role == R_PRIMARY) 3375 val |= 1; 3376 else 3377 val &= ~((u64)1); 3378 3379 drbd_set_ed_uuid(device, val); 3380 } 3381 3382 device->ldev->md.uuid[idx] = val; 3383 drbd_md_mark_dirty(device); 3384 } 3385 3386 void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local) 3387 { 3388 unsigned long flags; 3389 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags); 3390 __drbd_uuid_set(device, idx, val); 3391 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags); 3392 } 3393 3394 void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local) 3395 { 3396 unsigned long flags; 3397 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags); 3398 if (device->ldev->md.uuid[idx]) { 3399 drbd_uuid_move_history(device); 3400 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx]; 3401 } 3402 __drbd_uuid_set(device, idx, val); 3403 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags); 3404 } 3405 3406 /** 3407 * drbd_uuid_new_current() - Creates a new current UUID 3408 * @device: DRBD device. 3409 * 3410 * Creates a new current UUID, and rotates the old current UUID into 3411 * the bitmap slot. Causes an incremental resync upon next connect. 3412 */ 3413 void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local) 3414 { 3415 u64 val; 3416 unsigned long long bm_uuid; 3417 3418 get_random_bytes(&val, sizeof(u64)); 3419 3420 spin_lock_irq(&device->ldev->md.uuid_lock); 3421 bm_uuid = device->ldev->md.uuid[UI_BITMAP]; 3422 3423 if (bm_uuid) 3424 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid); 3425 3426 device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT]; 3427 __drbd_uuid_set(device, UI_CURRENT, val); 3428 spin_unlock_irq(&device->ldev->md.uuid_lock); 3429 3430 drbd_print_uuids(device, "new current UUID"); 3431 /* get it to stable storage _now_ */ 3432 drbd_md_sync(device); 3433 } 3434 3435 void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local) 3436 { 3437 unsigned long flags; 3438 if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0) 3439 return; 3440 3441 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags); 3442 if (val == 0) { 3443 drbd_uuid_move_history(device); 3444 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP]; 3445 device->ldev->md.uuid[UI_BITMAP] = 0; 3446 } else { 3447 unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP]; 3448 if (bm_uuid) 3449 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid); 3450 3451 device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1); 3452 } 3453 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags); 3454 3455 drbd_md_mark_dirty(device); 3456 } 3457 3458 /** 3459 * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io() 3460 * @device: DRBD device. 3461 * 3462 * Sets all bits in the bitmap and writes the whole bitmap to stable storage. 3463 */ 3464 int drbd_bmio_set_n_write(struct drbd_device *device) __must_hold(local) 3465 { 3466 int rv = -EIO; 3467 3468 drbd_md_set_flag(device, MDF_FULL_SYNC); 3469 drbd_md_sync(device); 3470 drbd_bm_set_all(device); 3471 3472 rv = drbd_bm_write(device); 3473 3474 if (!rv) { 3475 drbd_md_clear_flag(device, MDF_FULL_SYNC); 3476 drbd_md_sync(device); 3477 } 3478 3479 return rv; 3480 } 3481 3482 /** 3483 * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io() 3484 * @device: DRBD device. 3485 * 3486 * Clears all bits in the bitmap and writes the whole bitmap to stable storage. 3487 */ 3488 int drbd_bmio_clear_n_write(struct drbd_device *device) __must_hold(local) 3489 { 3490 drbd_resume_al(device); 3491 drbd_bm_clear_all(device); 3492 return drbd_bm_write(device); 3493 } 3494 3495 static int w_bitmap_io(struct drbd_work *w, int unused) 3496 { 3497 struct drbd_device *device = 3498 container_of(w, struct drbd_device, bm_io_work.w); 3499 struct bm_io_work *work = &device->bm_io_work; 3500 int rv = -EIO; 3501 3502 if (work->flags != BM_LOCKED_CHANGE_ALLOWED) { 3503 int cnt = atomic_read(&device->ap_bio_cnt); 3504 if (cnt) 3505 drbd_err(device, "FIXME: ap_bio_cnt %d, expected 0; queued for '%s'\n", 3506 cnt, work->why); 3507 } 3508 3509 if (get_ldev(device)) { 3510 drbd_bm_lock(device, work->why, work->flags); 3511 rv = work->io_fn(device); 3512 drbd_bm_unlock(device); 3513 put_ldev(device); 3514 } 3515 3516 clear_bit_unlock(BITMAP_IO, &device->flags); 3517 wake_up(&device->misc_wait); 3518 3519 if (work->done) 3520 work->done(device, rv); 3521 3522 clear_bit(BITMAP_IO_QUEUED, &device->flags); 3523 work->why = NULL; 3524 work->flags = 0; 3525 3526 return 0; 3527 } 3528 3529 /** 3530 * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap 3531 * @device: DRBD device. 3532 * @io_fn: IO callback to be called when bitmap IO is possible 3533 * @done: callback to be called after the bitmap IO was performed 3534 * @why: Descriptive text of the reason for doing the IO 3535 * 3536 * While IO on the bitmap happens we freeze application IO thus we ensure 3537 * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be 3538 * called from worker context. It MUST NOT be used while a previous such 3539 * work is still pending! 3540 * 3541 * Its worker function encloses the call of io_fn() by get_ldev() and 3542 * put_ldev(). 3543 */ 3544 void drbd_queue_bitmap_io(struct drbd_device *device, 3545 int (*io_fn)(struct drbd_device *), 3546 void (*done)(struct drbd_device *, int), 3547 char *why, enum bm_flag flags) 3548 { 3549 D_ASSERT(device, current == first_peer_device(device)->connection->worker.task); 3550 3551 D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags)); 3552 D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags)); 3553 D_ASSERT(device, list_empty(&device->bm_io_work.w.list)); 3554 if (device->bm_io_work.why) 3555 drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n", 3556 why, device->bm_io_work.why); 3557 3558 device->bm_io_work.io_fn = io_fn; 3559 device->bm_io_work.done = done; 3560 device->bm_io_work.why = why; 3561 device->bm_io_work.flags = flags; 3562 3563 spin_lock_irq(&device->resource->req_lock); 3564 set_bit(BITMAP_IO, &device->flags); 3565 /* don't wait for pending application IO if the caller indicates that 3566 * application IO does not conflict anyways. */ 3567 if (flags == BM_LOCKED_CHANGE_ALLOWED || atomic_read(&device->ap_bio_cnt) == 0) { 3568 if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags)) 3569 drbd_queue_work(&first_peer_device(device)->connection->sender_work, 3570 &device->bm_io_work.w); 3571 } 3572 spin_unlock_irq(&device->resource->req_lock); 3573 } 3574 3575 /** 3576 * drbd_bitmap_io() - Does an IO operation on the whole bitmap 3577 * @device: DRBD device. 3578 * @io_fn: IO callback to be called when bitmap IO is possible 3579 * @why: Descriptive text of the reason for doing the IO 3580 * 3581 * freezes application IO while that the actual IO operations runs. This 3582 * functions MAY NOT be called from worker context. 3583 */ 3584 int drbd_bitmap_io(struct drbd_device *device, int (*io_fn)(struct drbd_device *), 3585 char *why, enum bm_flag flags) 3586 { 3587 /* Only suspend io, if some operation is supposed to be locked out */ 3588 const bool do_suspend_io = flags & (BM_DONT_CLEAR|BM_DONT_SET|BM_DONT_TEST); 3589 int rv; 3590 3591 D_ASSERT(device, current != first_peer_device(device)->connection->worker.task); 3592 3593 if (do_suspend_io) 3594 drbd_suspend_io(device); 3595 3596 drbd_bm_lock(device, why, flags); 3597 rv = io_fn(device); 3598 drbd_bm_unlock(device); 3599 3600 if (do_suspend_io) 3601 drbd_resume_io(device); 3602 3603 return rv; 3604 } 3605 3606 void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local) 3607 { 3608 if ((device->ldev->md.flags & flag) != flag) { 3609 drbd_md_mark_dirty(device); 3610 device->ldev->md.flags |= flag; 3611 } 3612 } 3613 3614 void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local) 3615 { 3616 if ((device->ldev->md.flags & flag) != 0) { 3617 drbd_md_mark_dirty(device); 3618 device->ldev->md.flags &= ~flag; 3619 } 3620 } 3621 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag) 3622 { 3623 return (bdev->md.flags & flag) != 0; 3624 } 3625 3626 static void md_sync_timer_fn(struct timer_list *t) 3627 { 3628 struct drbd_device *device = from_timer(device, t, md_sync_timer); 3629 drbd_device_post_work(device, MD_SYNC); 3630 } 3631 3632 const char *cmdname(enum drbd_packet cmd) 3633 { 3634 /* THINK may need to become several global tables 3635 * when we want to support more than 3636 * one PRO_VERSION */ 3637 static const char *cmdnames[] = { 3638 [P_DATA] = "Data", 3639 [P_WSAME] = "WriteSame", 3640 [P_TRIM] = "Trim", 3641 [P_DATA_REPLY] = "DataReply", 3642 [P_RS_DATA_REPLY] = "RSDataReply", 3643 [P_BARRIER] = "Barrier", 3644 [P_BITMAP] = "ReportBitMap", 3645 [P_BECOME_SYNC_TARGET] = "BecomeSyncTarget", 3646 [P_BECOME_SYNC_SOURCE] = "BecomeSyncSource", 3647 [P_UNPLUG_REMOTE] = "UnplugRemote", 3648 [P_DATA_REQUEST] = "DataRequest", 3649 [P_RS_DATA_REQUEST] = "RSDataRequest", 3650 [P_SYNC_PARAM] = "SyncParam", 3651 [P_SYNC_PARAM89] = "SyncParam89", 3652 [P_PROTOCOL] = "ReportProtocol", 3653 [P_UUIDS] = "ReportUUIDs", 3654 [P_SIZES] = "ReportSizes", 3655 [P_STATE] = "ReportState", 3656 [P_SYNC_UUID] = "ReportSyncUUID", 3657 [P_AUTH_CHALLENGE] = "AuthChallenge", 3658 [P_AUTH_RESPONSE] = "AuthResponse", 3659 [P_PING] = "Ping", 3660 [P_PING_ACK] = "PingAck", 3661 [P_RECV_ACK] = "RecvAck", 3662 [P_WRITE_ACK] = "WriteAck", 3663 [P_RS_WRITE_ACK] = "RSWriteAck", 3664 [P_SUPERSEDED] = "Superseded", 3665 [P_NEG_ACK] = "NegAck", 3666 [P_NEG_DREPLY] = "NegDReply", 3667 [P_NEG_RS_DREPLY] = "NegRSDReply", 3668 [P_BARRIER_ACK] = "BarrierAck", 3669 [P_STATE_CHG_REQ] = "StateChgRequest", 3670 [P_STATE_CHG_REPLY] = "StateChgReply", 3671 [P_OV_REQUEST] = "OVRequest", 3672 [P_OV_REPLY] = "OVReply", 3673 [P_OV_RESULT] = "OVResult", 3674 [P_CSUM_RS_REQUEST] = "CsumRSRequest", 3675 [P_RS_IS_IN_SYNC] = "CsumRSIsInSync", 3676 [P_COMPRESSED_BITMAP] = "CBitmap", 3677 [P_DELAY_PROBE] = "DelayProbe", 3678 [P_OUT_OF_SYNC] = "OutOfSync", 3679 [P_RETRY_WRITE] = "RetryWrite", 3680 [P_RS_CANCEL] = "RSCancel", 3681 [P_CONN_ST_CHG_REQ] = "conn_st_chg_req", 3682 [P_CONN_ST_CHG_REPLY] = "conn_st_chg_reply", 3683 [P_RETRY_WRITE] = "retry_write", 3684 [P_PROTOCOL_UPDATE] = "protocol_update", 3685 [P_RS_THIN_REQ] = "rs_thin_req", 3686 [P_RS_DEALLOCATED] = "rs_deallocated", 3687 3688 /* enum drbd_packet, but not commands - obsoleted flags: 3689 * P_MAY_IGNORE 3690 * P_MAX_OPT_CMD 3691 */ 3692 }; 3693 3694 /* too big for the array: 0xfffX */ 3695 if (cmd == P_INITIAL_META) 3696 return "InitialMeta"; 3697 if (cmd == P_INITIAL_DATA) 3698 return "InitialData"; 3699 if (cmd == P_CONNECTION_FEATURES) 3700 return "ConnectionFeatures"; 3701 if (cmd >= ARRAY_SIZE(cmdnames)) 3702 return "Unknown"; 3703 return cmdnames[cmd]; 3704 } 3705 3706 /** 3707 * drbd_wait_misc - wait for a request to make progress 3708 * @device: device associated with the request 3709 * @i: the struct drbd_interval embedded in struct drbd_request or 3710 * struct drbd_peer_request 3711 */ 3712 int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i) 3713 { 3714 struct net_conf *nc; 3715 DEFINE_WAIT(wait); 3716 long timeout; 3717 3718 rcu_read_lock(); 3719 nc = rcu_dereference(first_peer_device(device)->connection->net_conf); 3720 if (!nc) { 3721 rcu_read_unlock(); 3722 return -ETIMEDOUT; 3723 } 3724 timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT; 3725 rcu_read_unlock(); 3726 3727 /* Indicate to wake up device->misc_wait on progress. */ 3728 i->waiting = true; 3729 prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE); 3730 spin_unlock_irq(&device->resource->req_lock); 3731 timeout = schedule_timeout(timeout); 3732 finish_wait(&device->misc_wait, &wait); 3733 spin_lock_irq(&device->resource->req_lock); 3734 if (!timeout || device->state.conn < C_CONNECTED) 3735 return -ETIMEDOUT; 3736 if (signal_pending(current)) 3737 return -ERESTARTSYS; 3738 return 0; 3739 } 3740 3741 void lock_all_resources(void) 3742 { 3743 struct drbd_resource *resource; 3744 int __maybe_unused i = 0; 3745 3746 mutex_lock(&resources_mutex); 3747 local_irq_disable(); 3748 for_each_resource(resource, &drbd_resources) 3749 spin_lock_nested(&resource->req_lock, i++); 3750 } 3751 3752 void unlock_all_resources(void) 3753 { 3754 struct drbd_resource *resource; 3755 3756 for_each_resource(resource, &drbd_resources) 3757 spin_unlock(&resource->req_lock); 3758 local_irq_enable(); 3759 mutex_unlock(&resources_mutex); 3760 } 3761 3762 #ifdef CONFIG_DRBD_FAULT_INJECTION 3763 /* Fault insertion support including random number generator shamelessly 3764 * stolen from kernel/rcutorture.c */ 3765 struct fault_random_state { 3766 unsigned long state; 3767 unsigned long count; 3768 }; 3769 3770 #define FAULT_RANDOM_MULT 39916801 /* prime */ 3771 #define FAULT_RANDOM_ADD 479001701 /* prime */ 3772 #define FAULT_RANDOM_REFRESH 10000 3773 3774 /* 3775 * Crude but fast random-number generator. Uses a linear congruential 3776 * generator, with occasional help from get_random_bytes(). 3777 */ 3778 static unsigned long 3779 _drbd_fault_random(struct fault_random_state *rsp) 3780 { 3781 long refresh; 3782 3783 if (!rsp->count--) { 3784 get_random_bytes(&refresh, sizeof(refresh)); 3785 rsp->state += refresh; 3786 rsp->count = FAULT_RANDOM_REFRESH; 3787 } 3788 rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD; 3789 return swahw32(rsp->state); 3790 } 3791 3792 static char * 3793 _drbd_fault_str(unsigned int type) { 3794 static char *_faults[] = { 3795 [DRBD_FAULT_MD_WR] = "Meta-data write", 3796 [DRBD_FAULT_MD_RD] = "Meta-data read", 3797 [DRBD_FAULT_RS_WR] = "Resync write", 3798 [DRBD_FAULT_RS_RD] = "Resync read", 3799 [DRBD_FAULT_DT_WR] = "Data write", 3800 [DRBD_FAULT_DT_RD] = "Data read", 3801 [DRBD_FAULT_DT_RA] = "Data read ahead", 3802 [DRBD_FAULT_BM_ALLOC] = "BM allocation", 3803 [DRBD_FAULT_AL_EE] = "EE allocation", 3804 [DRBD_FAULT_RECEIVE] = "receive data corruption", 3805 }; 3806 3807 return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**"; 3808 } 3809 3810 unsigned int 3811 _drbd_insert_fault(struct drbd_device *device, unsigned int type) 3812 { 3813 static struct fault_random_state rrs = {0, 0}; 3814 3815 unsigned int ret = ( 3816 (drbd_fault_devs == 0 || 3817 ((1 << device_to_minor(device)) & drbd_fault_devs) != 0) && 3818 (((_drbd_fault_random(&rrs) % 100) + 1) <= drbd_fault_rate)); 3819 3820 if (ret) { 3821 drbd_fault_count++; 3822 3823 if (__ratelimit(&drbd_ratelimit_state)) 3824 drbd_warn(device, "***Simulating %s failure\n", 3825 _drbd_fault_str(type)); 3826 } 3827 3828 return ret; 3829 } 3830 #endif 3831 3832 const char *drbd_buildtag(void) 3833 { 3834 /* DRBD built from external sources has here a reference to the 3835 git hash of the source code. */ 3836 3837 static char buildtag[38] = "\0uilt-in"; 3838 3839 if (buildtag[0] == 0) { 3840 #ifdef MODULE 3841 sprintf(buildtag, "srcversion: %-24s", THIS_MODULE->srcversion); 3842 #else 3843 buildtag[0] = 'b'; 3844 #endif 3845 } 3846 3847 return buildtag; 3848 } 3849 3850 module_init(drbd_init) 3851 module_exit(drbd_cleanup) 3852 3853 EXPORT_SYMBOL(drbd_conn_str); 3854 EXPORT_SYMBOL(drbd_role_str); 3855 EXPORT_SYMBOL(drbd_disk_str); 3856 EXPORT_SYMBOL(drbd_set_st_err_str); 3857