1 /* 2 drbd.c 3 4 This file is part of DRBD by Philipp Reisner and Lars Ellenberg. 5 6 Copyright (C) 2001-2008, LINBIT Information Technologies GmbH. 7 Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>. 8 Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>. 9 10 Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev 11 from Logicworks, Inc. for making SDP replication support possible. 12 13 drbd is free software; you can redistribute it and/or modify 14 it under the terms of the GNU General Public License as published by 15 the Free Software Foundation; either version 2, or (at your option) 16 any later version. 17 18 drbd is distributed in the hope that it will be useful, 19 but WITHOUT ANY WARRANTY; without even the implied warranty of 20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 21 GNU General Public License for more details. 22 23 You should have received a copy of the GNU General Public License 24 along with drbd; see the file COPYING. If not, write to 25 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 26 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include <linux/module.h> 32 #include <linux/jiffies.h> 33 #include <linux/drbd.h> 34 #include <linux/uaccess.h> 35 #include <asm/types.h> 36 #include <net/sock.h> 37 #include <linux/ctype.h> 38 #include <linux/mutex.h> 39 #include <linux/fs.h> 40 #include <linux/file.h> 41 #include <linux/proc_fs.h> 42 #include <linux/init.h> 43 #include <linux/mm.h> 44 #include <linux/memcontrol.h> 45 #include <linux/mm_inline.h> 46 #include <linux/slab.h> 47 #include <linux/random.h> 48 #include <linux/reboot.h> 49 #include <linux/notifier.h> 50 #include <linux/kthread.h> 51 #include <linux/workqueue.h> 52 #define __KERNEL_SYSCALLS__ 53 #include <linux/unistd.h> 54 #include <linux/vmalloc.h> 55 #include <linux/sched/signal.h> 56 57 #include <linux/drbd_limits.h> 58 #include "drbd_int.h" 59 #include "drbd_protocol.h" 60 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */ 61 #include "drbd_vli.h" 62 #include "drbd_debugfs.h" 63 64 static DEFINE_MUTEX(drbd_main_mutex); 65 static int drbd_open(struct block_device *bdev, fmode_t mode); 66 static void drbd_release(struct gendisk *gd, fmode_t mode); 67 static void md_sync_timer_fn(struct timer_list *t); 68 static int w_bitmap_io(struct drbd_work *w, int unused); 69 70 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, " 71 "Lars Ellenberg <lars@linbit.com>"); 72 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION); 73 MODULE_VERSION(REL_VERSION); 74 MODULE_LICENSE("GPL"); 75 MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices (" 76 __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")"); 77 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR); 78 79 #include <linux/moduleparam.h> 80 /* thanks to these macros, if compiled into the kernel (not-module), 81 * these become boot parameters (e.g., drbd.minor_count) */ 82 83 #ifdef CONFIG_DRBD_FAULT_INJECTION 84 int drbd_enable_faults; 85 int drbd_fault_rate; 86 static int drbd_fault_count; 87 static int drbd_fault_devs; 88 /* bitmap of enabled faults */ 89 module_param_named(enable_faults, drbd_enable_faults, int, 0664); 90 /* fault rate % value - applies to all enabled faults */ 91 module_param_named(fault_rate, drbd_fault_rate, int, 0664); 92 /* count of faults inserted */ 93 module_param_named(fault_count, drbd_fault_count, int, 0664); 94 /* bitmap of devices to insert faults on */ 95 module_param_named(fault_devs, drbd_fault_devs, int, 0644); 96 #endif 97 98 /* module parameters we can keep static */ 99 static bool drbd_allow_oos; /* allow_open_on_secondary */ 100 static bool drbd_disable_sendpage; 101 MODULE_PARM_DESC(allow_oos, "DONT USE!"); 102 module_param_named(allow_oos, drbd_allow_oos, bool, 0); 103 module_param_named(disable_sendpage, drbd_disable_sendpage, bool, 0644); 104 105 /* module parameters we share */ 106 int drbd_proc_details; /* Detail level in proc drbd*/ 107 module_param_named(proc_details, drbd_proc_details, int, 0644); 108 /* module parameters shared with defaults */ 109 unsigned int drbd_minor_count = DRBD_MINOR_COUNT_DEF; 110 /* Module parameter for setting the user mode helper program 111 * to run. Default is /sbin/drbdadm */ 112 char drbd_usermode_helper[80] = "/sbin/drbdadm"; 113 module_param_named(minor_count, drbd_minor_count, uint, 0444); 114 module_param_string(usermode_helper, drbd_usermode_helper, sizeof(drbd_usermode_helper), 0644); 115 116 /* in 2.6.x, our device mapping and config info contains our virtual gendisks 117 * as member "struct gendisk *vdisk;" 118 */ 119 struct idr drbd_devices; 120 struct list_head drbd_resources; 121 struct mutex resources_mutex; 122 123 struct kmem_cache *drbd_request_cache; 124 struct kmem_cache *drbd_ee_cache; /* peer requests */ 125 struct kmem_cache *drbd_bm_ext_cache; /* bitmap extents */ 126 struct kmem_cache *drbd_al_ext_cache; /* activity log extents */ 127 mempool_t drbd_request_mempool; 128 mempool_t drbd_ee_mempool; 129 mempool_t drbd_md_io_page_pool; 130 struct bio_set drbd_md_io_bio_set; 131 struct bio_set drbd_io_bio_set; 132 133 /* I do not use a standard mempool, because: 134 1) I want to hand out the pre-allocated objects first. 135 2) I want to be able to interrupt sleeping allocation with a signal. 136 Note: This is a single linked list, the next pointer is the private 137 member of struct page. 138 */ 139 struct page *drbd_pp_pool; 140 spinlock_t drbd_pp_lock; 141 int drbd_pp_vacant; 142 wait_queue_head_t drbd_pp_wait; 143 144 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5); 145 146 static const struct block_device_operations drbd_ops = { 147 .owner = THIS_MODULE, 148 .open = drbd_open, 149 .release = drbd_release, 150 }; 151 152 struct bio *bio_alloc_drbd(gfp_t gfp_mask) 153 { 154 struct bio *bio; 155 156 if (!bioset_initialized(&drbd_md_io_bio_set)) 157 return bio_alloc(gfp_mask, 1); 158 159 bio = bio_alloc_bioset(gfp_mask, 1, &drbd_md_io_bio_set); 160 if (!bio) 161 return NULL; 162 return bio; 163 } 164 165 #ifdef __CHECKER__ 166 /* When checking with sparse, and this is an inline function, sparse will 167 give tons of false positives. When this is a real functions sparse works. 168 */ 169 int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins) 170 { 171 int io_allowed; 172 173 atomic_inc(&device->local_cnt); 174 io_allowed = (device->state.disk >= mins); 175 if (!io_allowed) { 176 if (atomic_dec_and_test(&device->local_cnt)) 177 wake_up(&device->misc_wait); 178 } 179 return io_allowed; 180 } 181 182 #endif 183 184 /** 185 * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch 186 * @connection: DRBD connection. 187 * @barrier_nr: Expected identifier of the DRBD write barrier packet. 188 * @set_size: Expected number of requests before that barrier. 189 * 190 * In case the passed barrier_nr or set_size does not match the oldest 191 * epoch of not yet barrier-acked requests, this function will cause a 192 * termination of the connection. 193 */ 194 void tl_release(struct drbd_connection *connection, unsigned int barrier_nr, 195 unsigned int set_size) 196 { 197 struct drbd_request *r; 198 struct drbd_request *req = NULL; 199 int expect_epoch = 0; 200 int expect_size = 0; 201 202 spin_lock_irq(&connection->resource->req_lock); 203 204 /* find oldest not yet barrier-acked write request, 205 * count writes in its epoch. */ 206 list_for_each_entry(r, &connection->transfer_log, tl_requests) { 207 const unsigned s = r->rq_state; 208 if (!req) { 209 if (!(s & RQ_WRITE)) 210 continue; 211 if (!(s & RQ_NET_MASK)) 212 continue; 213 if (s & RQ_NET_DONE) 214 continue; 215 req = r; 216 expect_epoch = req->epoch; 217 expect_size ++; 218 } else { 219 if (r->epoch != expect_epoch) 220 break; 221 if (!(s & RQ_WRITE)) 222 continue; 223 /* if (s & RQ_DONE): not expected */ 224 /* if (!(s & RQ_NET_MASK)): not expected */ 225 expect_size++; 226 } 227 } 228 229 /* first some paranoia code */ 230 if (req == NULL) { 231 drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n", 232 barrier_nr); 233 goto bail; 234 } 235 if (expect_epoch != barrier_nr) { 236 drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n", 237 barrier_nr, expect_epoch); 238 goto bail; 239 } 240 241 if (expect_size != set_size) { 242 drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n", 243 barrier_nr, set_size, expect_size); 244 goto bail; 245 } 246 247 /* Clean up list of requests processed during current epoch. */ 248 /* this extra list walk restart is paranoia, 249 * to catch requests being barrier-acked "unexpectedly". 250 * It usually should find the same req again, or some READ preceding it. */ 251 list_for_each_entry(req, &connection->transfer_log, tl_requests) 252 if (req->epoch == expect_epoch) 253 break; 254 list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) { 255 if (req->epoch != expect_epoch) 256 break; 257 _req_mod(req, BARRIER_ACKED); 258 } 259 spin_unlock_irq(&connection->resource->req_lock); 260 261 return; 262 263 bail: 264 spin_unlock_irq(&connection->resource->req_lock); 265 conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD); 266 } 267 268 269 /** 270 * _tl_restart() - Walks the transfer log, and applies an action to all requests 271 * @connection: DRBD connection to operate on. 272 * @what: The action/event to perform with all request objects 273 * 274 * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO, 275 * RESTART_FROZEN_DISK_IO. 276 */ 277 /* must hold resource->req_lock */ 278 void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what) 279 { 280 struct drbd_request *req, *r; 281 282 list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) 283 _req_mod(req, what); 284 } 285 286 void tl_restart(struct drbd_connection *connection, enum drbd_req_event what) 287 { 288 spin_lock_irq(&connection->resource->req_lock); 289 _tl_restart(connection, what); 290 spin_unlock_irq(&connection->resource->req_lock); 291 } 292 293 /** 294 * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL 295 * @device: DRBD device. 296 * 297 * This is called after the connection to the peer was lost. The storage covered 298 * by the requests on the transfer gets marked as our of sync. Called from the 299 * receiver thread and the worker thread. 300 */ 301 void tl_clear(struct drbd_connection *connection) 302 { 303 tl_restart(connection, CONNECTION_LOST_WHILE_PENDING); 304 } 305 306 /** 307 * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL 308 * @device: DRBD device. 309 */ 310 void tl_abort_disk_io(struct drbd_device *device) 311 { 312 struct drbd_connection *connection = first_peer_device(device)->connection; 313 struct drbd_request *req, *r; 314 315 spin_lock_irq(&connection->resource->req_lock); 316 list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) { 317 if (!(req->rq_state & RQ_LOCAL_PENDING)) 318 continue; 319 if (req->device != device) 320 continue; 321 _req_mod(req, ABORT_DISK_IO); 322 } 323 spin_unlock_irq(&connection->resource->req_lock); 324 } 325 326 static int drbd_thread_setup(void *arg) 327 { 328 struct drbd_thread *thi = (struct drbd_thread *) arg; 329 struct drbd_resource *resource = thi->resource; 330 unsigned long flags; 331 int retval; 332 333 snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s", 334 thi->name[0], 335 resource->name); 336 337 restart: 338 retval = thi->function(thi); 339 340 spin_lock_irqsave(&thi->t_lock, flags); 341 342 /* if the receiver has been "EXITING", the last thing it did 343 * was set the conn state to "StandAlone", 344 * if now a re-connect request comes in, conn state goes C_UNCONNECTED, 345 * and receiver thread will be "started". 346 * drbd_thread_start needs to set "RESTARTING" in that case. 347 * t_state check and assignment needs to be within the same spinlock, 348 * so either thread_start sees EXITING, and can remap to RESTARTING, 349 * or thread_start see NONE, and can proceed as normal. 350 */ 351 352 if (thi->t_state == RESTARTING) { 353 drbd_info(resource, "Restarting %s thread\n", thi->name); 354 thi->t_state = RUNNING; 355 spin_unlock_irqrestore(&thi->t_lock, flags); 356 goto restart; 357 } 358 359 thi->task = NULL; 360 thi->t_state = NONE; 361 smp_mb(); 362 complete_all(&thi->stop); 363 spin_unlock_irqrestore(&thi->t_lock, flags); 364 365 drbd_info(resource, "Terminating %s\n", current->comm); 366 367 /* Release mod reference taken when thread was started */ 368 369 if (thi->connection) 370 kref_put(&thi->connection->kref, drbd_destroy_connection); 371 kref_put(&resource->kref, drbd_destroy_resource); 372 module_put(THIS_MODULE); 373 return retval; 374 } 375 376 static void drbd_thread_init(struct drbd_resource *resource, struct drbd_thread *thi, 377 int (*func) (struct drbd_thread *), const char *name) 378 { 379 spin_lock_init(&thi->t_lock); 380 thi->task = NULL; 381 thi->t_state = NONE; 382 thi->function = func; 383 thi->resource = resource; 384 thi->connection = NULL; 385 thi->name = name; 386 } 387 388 int drbd_thread_start(struct drbd_thread *thi) 389 { 390 struct drbd_resource *resource = thi->resource; 391 struct task_struct *nt; 392 unsigned long flags; 393 394 /* is used from state engine doing drbd_thread_stop_nowait, 395 * while holding the req lock irqsave */ 396 spin_lock_irqsave(&thi->t_lock, flags); 397 398 switch (thi->t_state) { 399 case NONE: 400 drbd_info(resource, "Starting %s thread (from %s [%d])\n", 401 thi->name, current->comm, current->pid); 402 403 /* Get ref on module for thread - this is released when thread exits */ 404 if (!try_module_get(THIS_MODULE)) { 405 drbd_err(resource, "Failed to get module reference in drbd_thread_start\n"); 406 spin_unlock_irqrestore(&thi->t_lock, flags); 407 return false; 408 } 409 410 kref_get(&resource->kref); 411 if (thi->connection) 412 kref_get(&thi->connection->kref); 413 414 init_completion(&thi->stop); 415 thi->reset_cpu_mask = 1; 416 thi->t_state = RUNNING; 417 spin_unlock_irqrestore(&thi->t_lock, flags); 418 flush_signals(current); /* otherw. may get -ERESTARTNOINTR */ 419 420 nt = kthread_create(drbd_thread_setup, (void *) thi, 421 "drbd_%c_%s", thi->name[0], thi->resource->name); 422 423 if (IS_ERR(nt)) { 424 drbd_err(resource, "Couldn't start thread\n"); 425 426 if (thi->connection) 427 kref_put(&thi->connection->kref, drbd_destroy_connection); 428 kref_put(&resource->kref, drbd_destroy_resource); 429 module_put(THIS_MODULE); 430 return false; 431 } 432 spin_lock_irqsave(&thi->t_lock, flags); 433 thi->task = nt; 434 thi->t_state = RUNNING; 435 spin_unlock_irqrestore(&thi->t_lock, flags); 436 wake_up_process(nt); 437 break; 438 case EXITING: 439 thi->t_state = RESTARTING; 440 drbd_info(resource, "Restarting %s thread (from %s [%d])\n", 441 thi->name, current->comm, current->pid); 442 /* fall through */ 443 case RUNNING: 444 case RESTARTING: 445 default: 446 spin_unlock_irqrestore(&thi->t_lock, flags); 447 break; 448 } 449 450 return true; 451 } 452 453 454 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait) 455 { 456 unsigned long flags; 457 458 enum drbd_thread_state ns = restart ? RESTARTING : EXITING; 459 460 /* may be called from state engine, holding the req lock irqsave */ 461 spin_lock_irqsave(&thi->t_lock, flags); 462 463 if (thi->t_state == NONE) { 464 spin_unlock_irqrestore(&thi->t_lock, flags); 465 if (restart) 466 drbd_thread_start(thi); 467 return; 468 } 469 470 if (thi->t_state != ns) { 471 if (thi->task == NULL) { 472 spin_unlock_irqrestore(&thi->t_lock, flags); 473 return; 474 } 475 476 thi->t_state = ns; 477 smp_mb(); 478 init_completion(&thi->stop); 479 if (thi->task != current) 480 force_sig(DRBD_SIGKILL, thi->task); 481 } 482 483 spin_unlock_irqrestore(&thi->t_lock, flags); 484 485 if (wait) 486 wait_for_completion(&thi->stop); 487 } 488 489 int conn_lowest_minor(struct drbd_connection *connection) 490 { 491 struct drbd_peer_device *peer_device; 492 int vnr = 0, minor = -1; 493 494 rcu_read_lock(); 495 peer_device = idr_get_next(&connection->peer_devices, &vnr); 496 if (peer_device) 497 minor = device_to_minor(peer_device->device); 498 rcu_read_unlock(); 499 500 return minor; 501 } 502 503 #ifdef CONFIG_SMP 504 /** 505 * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs 506 * 507 * Forces all threads of a resource onto the same CPU. This is beneficial for 508 * DRBD's performance. May be overwritten by user's configuration. 509 */ 510 static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask) 511 { 512 unsigned int *resources_per_cpu, min_index = ~0; 513 514 resources_per_cpu = kcalloc(nr_cpu_ids, sizeof(*resources_per_cpu), 515 GFP_KERNEL); 516 if (resources_per_cpu) { 517 struct drbd_resource *resource; 518 unsigned int cpu, min = ~0; 519 520 rcu_read_lock(); 521 for_each_resource_rcu(resource, &drbd_resources) { 522 for_each_cpu(cpu, resource->cpu_mask) 523 resources_per_cpu[cpu]++; 524 } 525 rcu_read_unlock(); 526 for_each_online_cpu(cpu) { 527 if (resources_per_cpu[cpu] < min) { 528 min = resources_per_cpu[cpu]; 529 min_index = cpu; 530 } 531 } 532 kfree(resources_per_cpu); 533 } 534 if (min_index == ~0) { 535 cpumask_setall(*cpu_mask); 536 return; 537 } 538 cpumask_set_cpu(min_index, *cpu_mask); 539 } 540 541 /** 542 * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread 543 * @device: DRBD device. 544 * @thi: drbd_thread object 545 * 546 * call in the "main loop" of _all_ threads, no need for any mutex, current won't die 547 * prematurely. 548 */ 549 void drbd_thread_current_set_cpu(struct drbd_thread *thi) 550 { 551 struct drbd_resource *resource = thi->resource; 552 struct task_struct *p = current; 553 554 if (!thi->reset_cpu_mask) 555 return; 556 thi->reset_cpu_mask = 0; 557 set_cpus_allowed_ptr(p, resource->cpu_mask); 558 } 559 #else 560 #define drbd_calc_cpu_mask(A) ({}) 561 #endif 562 563 /** 564 * drbd_header_size - size of a packet header 565 * 566 * The header size is a multiple of 8, so any payload following the header is 567 * word aligned on 64-bit architectures. (The bitmap send and receive code 568 * relies on this.) 569 */ 570 unsigned int drbd_header_size(struct drbd_connection *connection) 571 { 572 if (connection->agreed_pro_version >= 100) { 573 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8)); 574 return sizeof(struct p_header100); 575 } else { 576 BUILD_BUG_ON(sizeof(struct p_header80) != 577 sizeof(struct p_header95)); 578 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8)); 579 return sizeof(struct p_header80); 580 } 581 } 582 583 static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size) 584 { 585 h->magic = cpu_to_be32(DRBD_MAGIC); 586 h->command = cpu_to_be16(cmd); 587 h->length = cpu_to_be16(size); 588 return sizeof(struct p_header80); 589 } 590 591 static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size) 592 { 593 h->magic = cpu_to_be16(DRBD_MAGIC_BIG); 594 h->command = cpu_to_be16(cmd); 595 h->length = cpu_to_be32(size); 596 return sizeof(struct p_header95); 597 } 598 599 static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd, 600 int size, int vnr) 601 { 602 h->magic = cpu_to_be32(DRBD_MAGIC_100); 603 h->volume = cpu_to_be16(vnr); 604 h->command = cpu_to_be16(cmd); 605 h->length = cpu_to_be32(size); 606 h->pad = 0; 607 return sizeof(struct p_header100); 608 } 609 610 static unsigned int prepare_header(struct drbd_connection *connection, int vnr, 611 void *buffer, enum drbd_packet cmd, int size) 612 { 613 if (connection->agreed_pro_version >= 100) 614 return prepare_header100(buffer, cmd, size, vnr); 615 else if (connection->agreed_pro_version >= 95 && 616 size > DRBD_MAX_SIZE_H80_PACKET) 617 return prepare_header95(buffer, cmd, size); 618 else 619 return prepare_header80(buffer, cmd, size); 620 } 621 622 static void *__conn_prepare_command(struct drbd_connection *connection, 623 struct drbd_socket *sock) 624 { 625 if (!sock->socket) 626 return NULL; 627 return sock->sbuf + drbd_header_size(connection); 628 } 629 630 void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock) 631 { 632 void *p; 633 634 mutex_lock(&sock->mutex); 635 p = __conn_prepare_command(connection, sock); 636 if (!p) 637 mutex_unlock(&sock->mutex); 638 639 return p; 640 } 641 642 void *drbd_prepare_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock) 643 { 644 return conn_prepare_command(peer_device->connection, sock); 645 } 646 647 static int __send_command(struct drbd_connection *connection, int vnr, 648 struct drbd_socket *sock, enum drbd_packet cmd, 649 unsigned int header_size, void *data, 650 unsigned int size) 651 { 652 int msg_flags; 653 int err; 654 655 /* 656 * Called with @data == NULL and the size of the data blocks in @size 657 * for commands that send data blocks. For those commands, omit the 658 * MSG_MORE flag: this will increase the likelihood that data blocks 659 * which are page aligned on the sender will end up page aligned on the 660 * receiver. 661 */ 662 msg_flags = data ? MSG_MORE : 0; 663 664 header_size += prepare_header(connection, vnr, sock->sbuf, cmd, 665 header_size + size); 666 err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size, 667 msg_flags); 668 if (data && !err) 669 err = drbd_send_all(connection, sock->socket, data, size, 0); 670 /* DRBD protocol "pings" are latency critical. 671 * This is supposed to trigger tcp_push_pending_frames() */ 672 if (!err && (cmd == P_PING || cmd == P_PING_ACK)) 673 drbd_tcp_nodelay(sock->socket); 674 675 return err; 676 } 677 678 static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock, 679 enum drbd_packet cmd, unsigned int header_size, 680 void *data, unsigned int size) 681 { 682 return __send_command(connection, 0, sock, cmd, header_size, data, size); 683 } 684 685 int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock, 686 enum drbd_packet cmd, unsigned int header_size, 687 void *data, unsigned int size) 688 { 689 int err; 690 691 err = __conn_send_command(connection, sock, cmd, header_size, data, size); 692 mutex_unlock(&sock->mutex); 693 return err; 694 } 695 696 int drbd_send_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock, 697 enum drbd_packet cmd, unsigned int header_size, 698 void *data, unsigned int size) 699 { 700 int err; 701 702 err = __send_command(peer_device->connection, peer_device->device->vnr, 703 sock, cmd, header_size, data, size); 704 mutex_unlock(&sock->mutex); 705 return err; 706 } 707 708 int drbd_send_ping(struct drbd_connection *connection) 709 { 710 struct drbd_socket *sock; 711 712 sock = &connection->meta; 713 if (!conn_prepare_command(connection, sock)) 714 return -EIO; 715 return conn_send_command(connection, sock, P_PING, 0, NULL, 0); 716 } 717 718 int drbd_send_ping_ack(struct drbd_connection *connection) 719 { 720 struct drbd_socket *sock; 721 722 sock = &connection->meta; 723 if (!conn_prepare_command(connection, sock)) 724 return -EIO; 725 return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0); 726 } 727 728 int drbd_send_sync_param(struct drbd_peer_device *peer_device) 729 { 730 struct drbd_socket *sock; 731 struct p_rs_param_95 *p; 732 int size; 733 const int apv = peer_device->connection->agreed_pro_version; 734 enum drbd_packet cmd; 735 struct net_conf *nc; 736 struct disk_conf *dc; 737 738 sock = &peer_device->connection->data; 739 p = drbd_prepare_command(peer_device, sock); 740 if (!p) 741 return -EIO; 742 743 rcu_read_lock(); 744 nc = rcu_dereference(peer_device->connection->net_conf); 745 746 size = apv <= 87 ? sizeof(struct p_rs_param) 747 : apv == 88 ? sizeof(struct p_rs_param) 748 + strlen(nc->verify_alg) + 1 749 : apv <= 94 ? sizeof(struct p_rs_param_89) 750 : /* apv >= 95 */ sizeof(struct p_rs_param_95); 751 752 cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM; 753 754 /* initialize verify_alg and csums_alg */ 755 memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX); 756 757 if (get_ldev(peer_device->device)) { 758 dc = rcu_dereference(peer_device->device->ldev->disk_conf); 759 p->resync_rate = cpu_to_be32(dc->resync_rate); 760 p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead); 761 p->c_delay_target = cpu_to_be32(dc->c_delay_target); 762 p->c_fill_target = cpu_to_be32(dc->c_fill_target); 763 p->c_max_rate = cpu_to_be32(dc->c_max_rate); 764 put_ldev(peer_device->device); 765 } else { 766 p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF); 767 p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF); 768 p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF); 769 p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF); 770 p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF); 771 } 772 773 if (apv >= 88) 774 strcpy(p->verify_alg, nc->verify_alg); 775 if (apv >= 89) 776 strcpy(p->csums_alg, nc->csums_alg); 777 rcu_read_unlock(); 778 779 return drbd_send_command(peer_device, sock, cmd, size, NULL, 0); 780 } 781 782 int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd) 783 { 784 struct drbd_socket *sock; 785 struct p_protocol *p; 786 struct net_conf *nc; 787 int size, cf; 788 789 sock = &connection->data; 790 p = __conn_prepare_command(connection, sock); 791 if (!p) 792 return -EIO; 793 794 rcu_read_lock(); 795 nc = rcu_dereference(connection->net_conf); 796 797 if (nc->tentative && connection->agreed_pro_version < 92) { 798 rcu_read_unlock(); 799 mutex_unlock(&sock->mutex); 800 drbd_err(connection, "--dry-run is not supported by peer"); 801 return -EOPNOTSUPP; 802 } 803 804 size = sizeof(*p); 805 if (connection->agreed_pro_version >= 87) 806 size += strlen(nc->integrity_alg) + 1; 807 808 p->protocol = cpu_to_be32(nc->wire_protocol); 809 p->after_sb_0p = cpu_to_be32(nc->after_sb_0p); 810 p->after_sb_1p = cpu_to_be32(nc->after_sb_1p); 811 p->after_sb_2p = cpu_to_be32(nc->after_sb_2p); 812 p->two_primaries = cpu_to_be32(nc->two_primaries); 813 cf = 0; 814 if (nc->discard_my_data) 815 cf |= CF_DISCARD_MY_DATA; 816 if (nc->tentative) 817 cf |= CF_DRY_RUN; 818 p->conn_flags = cpu_to_be32(cf); 819 820 if (connection->agreed_pro_version >= 87) 821 strcpy(p->integrity_alg, nc->integrity_alg); 822 rcu_read_unlock(); 823 824 return __conn_send_command(connection, sock, cmd, size, NULL, 0); 825 } 826 827 int drbd_send_protocol(struct drbd_connection *connection) 828 { 829 int err; 830 831 mutex_lock(&connection->data.mutex); 832 err = __drbd_send_protocol(connection, P_PROTOCOL); 833 mutex_unlock(&connection->data.mutex); 834 835 return err; 836 } 837 838 static int _drbd_send_uuids(struct drbd_peer_device *peer_device, u64 uuid_flags) 839 { 840 struct drbd_device *device = peer_device->device; 841 struct drbd_socket *sock; 842 struct p_uuids *p; 843 int i; 844 845 if (!get_ldev_if_state(device, D_NEGOTIATING)) 846 return 0; 847 848 sock = &peer_device->connection->data; 849 p = drbd_prepare_command(peer_device, sock); 850 if (!p) { 851 put_ldev(device); 852 return -EIO; 853 } 854 spin_lock_irq(&device->ldev->md.uuid_lock); 855 for (i = UI_CURRENT; i < UI_SIZE; i++) 856 p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]); 857 spin_unlock_irq(&device->ldev->md.uuid_lock); 858 859 device->comm_bm_set = drbd_bm_total_weight(device); 860 p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set); 861 rcu_read_lock(); 862 uuid_flags |= rcu_dereference(peer_device->connection->net_conf)->discard_my_data ? 1 : 0; 863 rcu_read_unlock(); 864 uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0; 865 uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0; 866 p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags); 867 868 put_ldev(device); 869 return drbd_send_command(peer_device, sock, P_UUIDS, sizeof(*p), NULL, 0); 870 } 871 872 int drbd_send_uuids(struct drbd_peer_device *peer_device) 873 { 874 return _drbd_send_uuids(peer_device, 0); 875 } 876 877 int drbd_send_uuids_skip_initial_sync(struct drbd_peer_device *peer_device) 878 { 879 return _drbd_send_uuids(peer_device, 8); 880 } 881 882 void drbd_print_uuids(struct drbd_device *device, const char *text) 883 { 884 if (get_ldev_if_state(device, D_NEGOTIATING)) { 885 u64 *uuid = device->ldev->md.uuid; 886 drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n", 887 text, 888 (unsigned long long)uuid[UI_CURRENT], 889 (unsigned long long)uuid[UI_BITMAP], 890 (unsigned long long)uuid[UI_HISTORY_START], 891 (unsigned long long)uuid[UI_HISTORY_END]); 892 put_ldev(device); 893 } else { 894 drbd_info(device, "%s effective data uuid: %016llX\n", 895 text, 896 (unsigned long long)device->ed_uuid); 897 } 898 } 899 900 void drbd_gen_and_send_sync_uuid(struct drbd_peer_device *peer_device) 901 { 902 struct drbd_device *device = peer_device->device; 903 struct drbd_socket *sock; 904 struct p_rs_uuid *p; 905 u64 uuid; 906 907 D_ASSERT(device, device->state.disk == D_UP_TO_DATE); 908 909 uuid = device->ldev->md.uuid[UI_BITMAP]; 910 if (uuid && uuid != UUID_JUST_CREATED) 911 uuid = uuid + UUID_NEW_BM_OFFSET; 912 else 913 get_random_bytes(&uuid, sizeof(u64)); 914 drbd_uuid_set(device, UI_BITMAP, uuid); 915 drbd_print_uuids(device, "updated sync UUID"); 916 drbd_md_sync(device); 917 918 sock = &peer_device->connection->data; 919 p = drbd_prepare_command(peer_device, sock); 920 if (p) { 921 p->uuid = cpu_to_be64(uuid); 922 drbd_send_command(peer_device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0); 923 } 924 } 925 926 /* communicated if (agreed_features & DRBD_FF_WSAME) */ 927 static void 928 assign_p_sizes_qlim(struct drbd_device *device, struct p_sizes *p, 929 struct request_queue *q) 930 { 931 if (q) { 932 p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q)); 933 p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q)); 934 p->qlim->alignment_offset = cpu_to_be32(queue_alignment_offset(q)); 935 p->qlim->io_min = cpu_to_be32(queue_io_min(q)); 936 p->qlim->io_opt = cpu_to_be32(queue_io_opt(q)); 937 p->qlim->discard_enabled = blk_queue_discard(q); 938 p->qlim->write_same_capable = !!q->limits.max_write_same_sectors; 939 } else { 940 q = device->rq_queue; 941 p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q)); 942 p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q)); 943 p->qlim->alignment_offset = 0; 944 p->qlim->io_min = cpu_to_be32(queue_io_min(q)); 945 p->qlim->io_opt = cpu_to_be32(queue_io_opt(q)); 946 p->qlim->discard_enabled = 0; 947 p->qlim->write_same_capable = 0; 948 } 949 } 950 951 int drbd_send_sizes(struct drbd_peer_device *peer_device, int trigger_reply, enum dds_flags flags) 952 { 953 struct drbd_device *device = peer_device->device; 954 struct drbd_socket *sock; 955 struct p_sizes *p; 956 sector_t d_size, u_size; 957 int q_order_type; 958 unsigned int max_bio_size; 959 unsigned int packet_size; 960 961 sock = &peer_device->connection->data; 962 p = drbd_prepare_command(peer_device, sock); 963 if (!p) 964 return -EIO; 965 966 packet_size = sizeof(*p); 967 if (peer_device->connection->agreed_features & DRBD_FF_WSAME) 968 packet_size += sizeof(p->qlim[0]); 969 970 memset(p, 0, packet_size); 971 if (get_ldev_if_state(device, D_NEGOTIATING)) { 972 struct request_queue *q = bdev_get_queue(device->ldev->backing_bdev); 973 d_size = drbd_get_max_capacity(device->ldev); 974 rcu_read_lock(); 975 u_size = rcu_dereference(device->ldev->disk_conf)->disk_size; 976 rcu_read_unlock(); 977 q_order_type = drbd_queue_order_type(device); 978 max_bio_size = queue_max_hw_sectors(q) << 9; 979 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE); 980 assign_p_sizes_qlim(device, p, q); 981 put_ldev(device); 982 } else { 983 d_size = 0; 984 u_size = 0; 985 q_order_type = QUEUE_ORDERED_NONE; 986 max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */ 987 assign_p_sizes_qlim(device, p, NULL); 988 } 989 990 if (peer_device->connection->agreed_pro_version <= 94) 991 max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET); 992 else if (peer_device->connection->agreed_pro_version < 100) 993 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95); 994 995 p->d_size = cpu_to_be64(d_size); 996 p->u_size = cpu_to_be64(u_size); 997 p->c_size = cpu_to_be64(trigger_reply ? 0 : drbd_get_capacity(device->this_bdev)); 998 p->max_bio_size = cpu_to_be32(max_bio_size); 999 p->queue_order_type = cpu_to_be16(q_order_type); 1000 p->dds_flags = cpu_to_be16(flags); 1001 1002 return drbd_send_command(peer_device, sock, P_SIZES, packet_size, NULL, 0); 1003 } 1004 1005 /** 1006 * drbd_send_current_state() - Sends the drbd state to the peer 1007 * @peer_device: DRBD peer device. 1008 */ 1009 int drbd_send_current_state(struct drbd_peer_device *peer_device) 1010 { 1011 struct drbd_socket *sock; 1012 struct p_state *p; 1013 1014 sock = &peer_device->connection->data; 1015 p = drbd_prepare_command(peer_device, sock); 1016 if (!p) 1017 return -EIO; 1018 p->state = cpu_to_be32(peer_device->device->state.i); /* Within the send mutex */ 1019 return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0); 1020 } 1021 1022 /** 1023 * drbd_send_state() - After a state change, sends the new state to the peer 1024 * @peer_device: DRBD peer device. 1025 * @state: the state to send, not necessarily the current state. 1026 * 1027 * Each state change queues an "after_state_ch" work, which will eventually 1028 * send the resulting new state to the peer. If more state changes happen 1029 * between queuing and processing of the after_state_ch work, we still 1030 * want to send each intermediary state in the order it occurred. 1031 */ 1032 int drbd_send_state(struct drbd_peer_device *peer_device, union drbd_state state) 1033 { 1034 struct drbd_socket *sock; 1035 struct p_state *p; 1036 1037 sock = &peer_device->connection->data; 1038 p = drbd_prepare_command(peer_device, sock); 1039 if (!p) 1040 return -EIO; 1041 p->state = cpu_to_be32(state.i); /* Within the send mutex */ 1042 return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0); 1043 } 1044 1045 int drbd_send_state_req(struct drbd_peer_device *peer_device, union drbd_state mask, union drbd_state val) 1046 { 1047 struct drbd_socket *sock; 1048 struct p_req_state *p; 1049 1050 sock = &peer_device->connection->data; 1051 p = drbd_prepare_command(peer_device, sock); 1052 if (!p) 1053 return -EIO; 1054 p->mask = cpu_to_be32(mask.i); 1055 p->val = cpu_to_be32(val.i); 1056 return drbd_send_command(peer_device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0); 1057 } 1058 1059 int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val) 1060 { 1061 enum drbd_packet cmd; 1062 struct drbd_socket *sock; 1063 struct p_req_state *p; 1064 1065 cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ; 1066 sock = &connection->data; 1067 p = conn_prepare_command(connection, sock); 1068 if (!p) 1069 return -EIO; 1070 p->mask = cpu_to_be32(mask.i); 1071 p->val = cpu_to_be32(val.i); 1072 return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0); 1073 } 1074 1075 void drbd_send_sr_reply(struct drbd_peer_device *peer_device, enum drbd_state_rv retcode) 1076 { 1077 struct drbd_socket *sock; 1078 struct p_req_state_reply *p; 1079 1080 sock = &peer_device->connection->meta; 1081 p = drbd_prepare_command(peer_device, sock); 1082 if (p) { 1083 p->retcode = cpu_to_be32(retcode); 1084 drbd_send_command(peer_device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0); 1085 } 1086 } 1087 1088 void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode) 1089 { 1090 struct drbd_socket *sock; 1091 struct p_req_state_reply *p; 1092 enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY; 1093 1094 sock = &connection->meta; 1095 p = conn_prepare_command(connection, sock); 1096 if (p) { 1097 p->retcode = cpu_to_be32(retcode); 1098 conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0); 1099 } 1100 } 1101 1102 static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code) 1103 { 1104 BUG_ON(code & ~0xf); 1105 p->encoding = (p->encoding & ~0xf) | code; 1106 } 1107 1108 static void dcbp_set_start(struct p_compressed_bm *p, int set) 1109 { 1110 p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0); 1111 } 1112 1113 static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n) 1114 { 1115 BUG_ON(n & ~0x7); 1116 p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4); 1117 } 1118 1119 static int fill_bitmap_rle_bits(struct drbd_device *device, 1120 struct p_compressed_bm *p, 1121 unsigned int size, 1122 struct bm_xfer_ctx *c) 1123 { 1124 struct bitstream bs; 1125 unsigned long plain_bits; 1126 unsigned long tmp; 1127 unsigned long rl; 1128 unsigned len; 1129 unsigned toggle; 1130 int bits, use_rle; 1131 1132 /* may we use this feature? */ 1133 rcu_read_lock(); 1134 use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle; 1135 rcu_read_unlock(); 1136 if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90) 1137 return 0; 1138 1139 if (c->bit_offset >= c->bm_bits) 1140 return 0; /* nothing to do. */ 1141 1142 /* use at most thus many bytes */ 1143 bitstream_init(&bs, p->code, size, 0); 1144 memset(p->code, 0, size); 1145 /* plain bits covered in this code string */ 1146 plain_bits = 0; 1147 1148 /* p->encoding & 0x80 stores whether the first run length is set. 1149 * bit offset is implicit. 1150 * start with toggle == 2 to be able to tell the first iteration */ 1151 toggle = 2; 1152 1153 /* see how much plain bits we can stuff into one packet 1154 * using RLE and VLI. */ 1155 do { 1156 tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset) 1157 : _drbd_bm_find_next(device, c->bit_offset); 1158 if (tmp == -1UL) 1159 tmp = c->bm_bits; 1160 rl = tmp - c->bit_offset; 1161 1162 if (toggle == 2) { /* first iteration */ 1163 if (rl == 0) { 1164 /* the first checked bit was set, 1165 * store start value, */ 1166 dcbp_set_start(p, 1); 1167 /* but skip encoding of zero run length */ 1168 toggle = !toggle; 1169 continue; 1170 } 1171 dcbp_set_start(p, 0); 1172 } 1173 1174 /* paranoia: catch zero runlength. 1175 * can only happen if bitmap is modified while we scan it. */ 1176 if (rl == 0) { 1177 drbd_err(device, "unexpected zero runlength while encoding bitmap " 1178 "t:%u bo:%lu\n", toggle, c->bit_offset); 1179 return -1; 1180 } 1181 1182 bits = vli_encode_bits(&bs, rl); 1183 if (bits == -ENOBUFS) /* buffer full */ 1184 break; 1185 if (bits <= 0) { 1186 drbd_err(device, "error while encoding bitmap: %d\n", bits); 1187 return 0; 1188 } 1189 1190 toggle = !toggle; 1191 plain_bits += rl; 1192 c->bit_offset = tmp; 1193 } while (c->bit_offset < c->bm_bits); 1194 1195 len = bs.cur.b - p->code + !!bs.cur.bit; 1196 1197 if (plain_bits < (len << 3)) { 1198 /* incompressible with this method. 1199 * we need to rewind both word and bit position. */ 1200 c->bit_offset -= plain_bits; 1201 bm_xfer_ctx_bit_to_word_offset(c); 1202 c->bit_offset = c->word_offset * BITS_PER_LONG; 1203 return 0; 1204 } 1205 1206 /* RLE + VLI was able to compress it just fine. 1207 * update c->word_offset. */ 1208 bm_xfer_ctx_bit_to_word_offset(c); 1209 1210 /* store pad_bits */ 1211 dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7); 1212 1213 return len; 1214 } 1215 1216 /** 1217 * send_bitmap_rle_or_plain 1218 * 1219 * Return 0 when done, 1 when another iteration is needed, and a negative error 1220 * code upon failure. 1221 */ 1222 static int 1223 send_bitmap_rle_or_plain(struct drbd_device *device, struct bm_xfer_ctx *c) 1224 { 1225 struct drbd_socket *sock = &first_peer_device(device)->connection->data; 1226 unsigned int header_size = drbd_header_size(first_peer_device(device)->connection); 1227 struct p_compressed_bm *p = sock->sbuf + header_size; 1228 int len, err; 1229 1230 len = fill_bitmap_rle_bits(device, p, 1231 DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c); 1232 if (len < 0) 1233 return -EIO; 1234 1235 if (len) { 1236 dcbp_set_code(p, RLE_VLI_Bits); 1237 err = __send_command(first_peer_device(device)->connection, device->vnr, sock, 1238 P_COMPRESSED_BITMAP, sizeof(*p) + len, 1239 NULL, 0); 1240 c->packets[0]++; 1241 c->bytes[0] += header_size + sizeof(*p) + len; 1242 1243 if (c->bit_offset >= c->bm_bits) 1244 len = 0; /* DONE */ 1245 } else { 1246 /* was not compressible. 1247 * send a buffer full of plain text bits instead. */ 1248 unsigned int data_size; 1249 unsigned long num_words; 1250 unsigned long *p = sock->sbuf + header_size; 1251 1252 data_size = DRBD_SOCKET_BUFFER_SIZE - header_size; 1253 num_words = min_t(size_t, data_size / sizeof(*p), 1254 c->bm_words - c->word_offset); 1255 len = num_words * sizeof(*p); 1256 if (len) 1257 drbd_bm_get_lel(device, c->word_offset, num_words, p); 1258 err = __send_command(first_peer_device(device)->connection, device->vnr, sock, P_BITMAP, len, NULL, 0); 1259 c->word_offset += num_words; 1260 c->bit_offset = c->word_offset * BITS_PER_LONG; 1261 1262 c->packets[1]++; 1263 c->bytes[1] += header_size + len; 1264 1265 if (c->bit_offset > c->bm_bits) 1266 c->bit_offset = c->bm_bits; 1267 } 1268 if (!err) { 1269 if (len == 0) { 1270 INFO_bm_xfer_stats(device, "send", c); 1271 return 0; 1272 } else 1273 return 1; 1274 } 1275 return -EIO; 1276 } 1277 1278 /* See the comment at receive_bitmap() */ 1279 static int _drbd_send_bitmap(struct drbd_device *device) 1280 { 1281 struct bm_xfer_ctx c; 1282 int err; 1283 1284 if (!expect(device->bitmap)) 1285 return false; 1286 1287 if (get_ldev(device)) { 1288 if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) { 1289 drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n"); 1290 drbd_bm_set_all(device); 1291 if (drbd_bm_write(device)) { 1292 /* write_bm did fail! Leave full sync flag set in Meta P_DATA 1293 * but otherwise process as per normal - need to tell other 1294 * side that a full resync is required! */ 1295 drbd_err(device, "Failed to write bitmap to disk!\n"); 1296 } else { 1297 drbd_md_clear_flag(device, MDF_FULL_SYNC); 1298 drbd_md_sync(device); 1299 } 1300 } 1301 put_ldev(device); 1302 } 1303 1304 c = (struct bm_xfer_ctx) { 1305 .bm_bits = drbd_bm_bits(device), 1306 .bm_words = drbd_bm_words(device), 1307 }; 1308 1309 do { 1310 err = send_bitmap_rle_or_plain(device, &c); 1311 } while (err > 0); 1312 1313 return err == 0; 1314 } 1315 1316 int drbd_send_bitmap(struct drbd_device *device) 1317 { 1318 struct drbd_socket *sock = &first_peer_device(device)->connection->data; 1319 int err = -1; 1320 1321 mutex_lock(&sock->mutex); 1322 if (sock->socket) 1323 err = !_drbd_send_bitmap(device); 1324 mutex_unlock(&sock->mutex); 1325 return err; 1326 } 1327 1328 void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size) 1329 { 1330 struct drbd_socket *sock; 1331 struct p_barrier_ack *p; 1332 1333 if (connection->cstate < C_WF_REPORT_PARAMS) 1334 return; 1335 1336 sock = &connection->meta; 1337 p = conn_prepare_command(connection, sock); 1338 if (!p) 1339 return; 1340 p->barrier = barrier_nr; 1341 p->set_size = cpu_to_be32(set_size); 1342 conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0); 1343 } 1344 1345 /** 1346 * _drbd_send_ack() - Sends an ack packet 1347 * @device: DRBD device. 1348 * @cmd: Packet command code. 1349 * @sector: sector, needs to be in big endian byte order 1350 * @blksize: size in byte, needs to be in big endian byte order 1351 * @block_id: Id, big endian byte order 1352 */ 1353 static int _drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1354 u64 sector, u32 blksize, u64 block_id) 1355 { 1356 struct drbd_socket *sock; 1357 struct p_block_ack *p; 1358 1359 if (peer_device->device->state.conn < C_CONNECTED) 1360 return -EIO; 1361 1362 sock = &peer_device->connection->meta; 1363 p = drbd_prepare_command(peer_device, sock); 1364 if (!p) 1365 return -EIO; 1366 p->sector = sector; 1367 p->block_id = block_id; 1368 p->blksize = blksize; 1369 p->seq_num = cpu_to_be32(atomic_inc_return(&peer_device->device->packet_seq)); 1370 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0); 1371 } 1372 1373 /* dp->sector and dp->block_id already/still in network byte order, 1374 * data_size is payload size according to dp->head, 1375 * and may need to be corrected for digest size. */ 1376 void drbd_send_ack_dp(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1377 struct p_data *dp, int data_size) 1378 { 1379 if (peer_device->connection->peer_integrity_tfm) 1380 data_size -= crypto_ahash_digestsize(peer_device->connection->peer_integrity_tfm); 1381 _drbd_send_ack(peer_device, cmd, dp->sector, cpu_to_be32(data_size), 1382 dp->block_id); 1383 } 1384 1385 void drbd_send_ack_rp(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1386 struct p_block_req *rp) 1387 { 1388 _drbd_send_ack(peer_device, cmd, rp->sector, rp->blksize, rp->block_id); 1389 } 1390 1391 /** 1392 * drbd_send_ack() - Sends an ack packet 1393 * @device: DRBD device 1394 * @cmd: packet command code 1395 * @peer_req: peer request 1396 */ 1397 int drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1398 struct drbd_peer_request *peer_req) 1399 { 1400 return _drbd_send_ack(peer_device, cmd, 1401 cpu_to_be64(peer_req->i.sector), 1402 cpu_to_be32(peer_req->i.size), 1403 peer_req->block_id); 1404 } 1405 1406 /* This function misuses the block_id field to signal if the blocks 1407 * are is sync or not. */ 1408 int drbd_send_ack_ex(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1409 sector_t sector, int blksize, u64 block_id) 1410 { 1411 return _drbd_send_ack(peer_device, cmd, 1412 cpu_to_be64(sector), 1413 cpu_to_be32(blksize), 1414 cpu_to_be64(block_id)); 1415 } 1416 1417 int drbd_send_rs_deallocated(struct drbd_peer_device *peer_device, 1418 struct drbd_peer_request *peer_req) 1419 { 1420 struct drbd_socket *sock; 1421 struct p_block_desc *p; 1422 1423 sock = &peer_device->connection->data; 1424 p = drbd_prepare_command(peer_device, sock); 1425 if (!p) 1426 return -EIO; 1427 p->sector = cpu_to_be64(peer_req->i.sector); 1428 p->blksize = cpu_to_be32(peer_req->i.size); 1429 p->pad = 0; 1430 return drbd_send_command(peer_device, sock, P_RS_DEALLOCATED, sizeof(*p), NULL, 0); 1431 } 1432 1433 int drbd_send_drequest(struct drbd_peer_device *peer_device, int cmd, 1434 sector_t sector, int size, u64 block_id) 1435 { 1436 struct drbd_socket *sock; 1437 struct p_block_req *p; 1438 1439 sock = &peer_device->connection->data; 1440 p = drbd_prepare_command(peer_device, sock); 1441 if (!p) 1442 return -EIO; 1443 p->sector = cpu_to_be64(sector); 1444 p->block_id = block_id; 1445 p->blksize = cpu_to_be32(size); 1446 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0); 1447 } 1448 1449 int drbd_send_drequest_csum(struct drbd_peer_device *peer_device, sector_t sector, int size, 1450 void *digest, int digest_size, enum drbd_packet cmd) 1451 { 1452 struct drbd_socket *sock; 1453 struct p_block_req *p; 1454 1455 /* FIXME: Put the digest into the preallocated socket buffer. */ 1456 1457 sock = &peer_device->connection->data; 1458 p = drbd_prepare_command(peer_device, sock); 1459 if (!p) 1460 return -EIO; 1461 p->sector = cpu_to_be64(sector); 1462 p->block_id = ID_SYNCER /* unused */; 1463 p->blksize = cpu_to_be32(size); 1464 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), digest, digest_size); 1465 } 1466 1467 int drbd_send_ov_request(struct drbd_peer_device *peer_device, sector_t sector, int size) 1468 { 1469 struct drbd_socket *sock; 1470 struct p_block_req *p; 1471 1472 sock = &peer_device->connection->data; 1473 p = drbd_prepare_command(peer_device, sock); 1474 if (!p) 1475 return -EIO; 1476 p->sector = cpu_to_be64(sector); 1477 p->block_id = ID_SYNCER /* unused */; 1478 p->blksize = cpu_to_be32(size); 1479 return drbd_send_command(peer_device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0); 1480 } 1481 1482 /* called on sndtimeo 1483 * returns false if we should retry, 1484 * true if we think connection is dead 1485 */ 1486 static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock) 1487 { 1488 int drop_it; 1489 /* long elapsed = (long)(jiffies - device->last_received); */ 1490 1491 drop_it = connection->meta.socket == sock 1492 || !connection->ack_receiver.task 1493 || get_t_state(&connection->ack_receiver) != RUNNING 1494 || connection->cstate < C_WF_REPORT_PARAMS; 1495 1496 if (drop_it) 1497 return true; 1498 1499 drop_it = !--connection->ko_count; 1500 if (!drop_it) { 1501 drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n", 1502 current->comm, current->pid, connection->ko_count); 1503 request_ping(connection); 1504 } 1505 1506 return drop_it; /* && (device->state == R_PRIMARY) */; 1507 } 1508 1509 static void drbd_update_congested(struct drbd_connection *connection) 1510 { 1511 struct sock *sk = connection->data.socket->sk; 1512 if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5) 1513 set_bit(NET_CONGESTED, &connection->flags); 1514 } 1515 1516 /* The idea of sendpage seems to be to put some kind of reference 1517 * to the page into the skb, and to hand it over to the NIC. In 1518 * this process get_page() gets called. 1519 * 1520 * As soon as the page was really sent over the network put_page() 1521 * gets called by some part of the network layer. [ NIC driver? ] 1522 * 1523 * [ get_page() / put_page() increment/decrement the count. If count 1524 * reaches 0 the page will be freed. ] 1525 * 1526 * This works nicely with pages from FSs. 1527 * But this means that in protocol A we might signal IO completion too early! 1528 * 1529 * In order not to corrupt data during a resync we must make sure 1530 * that we do not reuse our own buffer pages (EEs) to early, therefore 1531 * we have the net_ee list. 1532 * 1533 * XFS seems to have problems, still, it submits pages with page_count == 0! 1534 * As a workaround, we disable sendpage on pages 1535 * with page_count == 0 or PageSlab. 1536 */ 1537 static int _drbd_no_send_page(struct drbd_peer_device *peer_device, struct page *page, 1538 int offset, size_t size, unsigned msg_flags) 1539 { 1540 struct socket *socket; 1541 void *addr; 1542 int err; 1543 1544 socket = peer_device->connection->data.socket; 1545 addr = kmap(page) + offset; 1546 err = drbd_send_all(peer_device->connection, socket, addr, size, msg_flags); 1547 kunmap(page); 1548 if (!err) 1549 peer_device->device->send_cnt += size >> 9; 1550 return err; 1551 } 1552 1553 static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *page, 1554 int offset, size_t size, unsigned msg_flags) 1555 { 1556 struct socket *socket = peer_device->connection->data.socket; 1557 int len = size; 1558 int err = -EIO; 1559 1560 /* e.g. XFS meta- & log-data is in slab pages, which have a 1561 * page_count of 0 and/or have PageSlab() set. 1562 * we cannot use send_page for those, as that does get_page(); 1563 * put_page(); and would cause either a VM_BUG directly, or 1564 * __page_cache_release a page that would actually still be referenced 1565 * by someone, leading to some obscure delayed Oops somewhere else. */ 1566 if (drbd_disable_sendpage || (page_count(page) < 1) || PageSlab(page)) 1567 return _drbd_no_send_page(peer_device, page, offset, size, msg_flags); 1568 1569 msg_flags |= MSG_NOSIGNAL; 1570 drbd_update_congested(peer_device->connection); 1571 do { 1572 int sent; 1573 1574 sent = socket->ops->sendpage(socket, page, offset, len, msg_flags); 1575 if (sent <= 0) { 1576 if (sent == -EAGAIN) { 1577 if (we_should_drop_the_connection(peer_device->connection, socket)) 1578 break; 1579 continue; 1580 } 1581 drbd_warn(peer_device->device, "%s: size=%d len=%d sent=%d\n", 1582 __func__, (int)size, len, sent); 1583 if (sent < 0) 1584 err = sent; 1585 break; 1586 } 1587 len -= sent; 1588 offset += sent; 1589 } while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/); 1590 clear_bit(NET_CONGESTED, &peer_device->connection->flags); 1591 1592 if (len == 0) { 1593 err = 0; 1594 peer_device->device->send_cnt += size >> 9; 1595 } 1596 return err; 1597 } 1598 1599 static int _drbd_send_bio(struct drbd_peer_device *peer_device, struct bio *bio) 1600 { 1601 struct bio_vec bvec; 1602 struct bvec_iter iter; 1603 1604 /* hint all but last page with MSG_MORE */ 1605 bio_for_each_segment(bvec, bio, iter) { 1606 int err; 1607 1608 err = _drbd_no_send_page(peer_device, bvec.bv_page, 1609 bvec.bv_offset, bvec.bv_len, 1610 bio_iter_last(bvec, iter) 1611 ? 0 : MSG_MORE); 1612 if (err) 1613 return err; 1614 /* REQ_OP_WRITE_SAME has only one segment */ 1615 if (bio_op(bio) == REQ_OP_WRITE_SAME) 1616 break; 1617 } 1618 return 0; 1619 } 1620 1621 static int _drbd_send_zc_bio(struct drbd_peer_device *peer_device, struct bio *bio) 1622 { 1623 struct bio_vec bvec; 1624 struct bvec_iter iter; 1625 1626 /* hint all but last page with MSG_MORE */ 1627 bio_for_each_segment(bvec, bio, iter) { 1628 int err; 1629 1630 err = _drbd_send_page(peer_device, bvec.bv_page, 1631 bvec.bv_offset, bvec.bv_len, 1632 bio_iter_last(bvec, iter) ? 0 : MSG_MORE); 1633 if (err) 1634 return err; 1635 /* REQ_OP_WRITE_SAME has only one segment */ 1636 if (bio_op(bio) == REQ_OP_WRITE_SAME) 1637 break; 1638 } 1639 return 0; 1640 } 1641 1642 static int _drbd_send_zc_ee(struct drbd_peer_device *peer_device, 1643 struct drbd_peer_request *peer_req) 1644 { 1645 struct page *page = peer_req->pages; 1646 unsigned len = peer_req->i.size; 1647 int err; 1648 1649 /* hint all but last page with MSG_MORE */ 1650 page_chain_for_each(page) { 1651 unsigned l = min_t(unsigned, len, PAGE_SIZE); 1652 1653 err = _drbd_send_page(peer_device, page, 0, l, 1654 page_chain_next(page) ? MSG_MORE : 0); 1655 if (err) 1656 return err; 1657 len -= l; 1658 } 1659 return 0; 1660 } 1661 1662 static u32 bio_flags_to_wire(struct drbd_connection *connection, 1663 struct bio *bio) 1664 { 1665 if (connection->agreed_pro_version >= 95) 1666 return (bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0) | 1667 (bio->bi_opf & REQ_FUA ? DP_FUA : 0) | 1668 (bio->bi_opf & REQ_PREFLUSH ? DP_FLUSH : 0) | 1669 (bio_op(bio) == REQ_OP_WRITE_SAME ? DP_WSAME : 0) | 1670 (bio_op(bio) == REQ_OP_DISCARD ? DP_DISCARD : 0) | 1671 (bio_op(bio) == REQ_OP_WRITE_ZEROES ? DP_DISCARD : 0); 1672 else 1673 return bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0; 1674 } 1675 1676 /* Used to send write or TRIM aka REQ_DISCARD requests 1677 * R_PRIMARY -> Peer (P_DATA, P_TRIM) 1678 */ 1679 int drbd_send_dblock(struct drbd_peer_device *peer_device, struct drbd_request *req) 1680 { 1681 struct drbd_device *device = peer_device->device; 1682 struct drbd_socket *sock; 1683 struct p_data *p; 1684 struct p_wsame *wsame = NULL; 1685 void *digest_out; 1686 unsigned int dp_flags = 0; 1687 int digest_size; 1688 int err; 1689 1690 sock = &peer_device->connection->data; 1691 p = drbd_prepare_command(peer_device, sock); 1692 digest_size = peer_device->connection->integrity_tfm ? 1693 crypto_ahash_digestsize(peer_device->connection->integrity_tfm) : 0; 1694 1695 if (!p) 1696 return -EIO; 1697 p->sector = cpu_to_be64(req->i.sector); 1698 p->block_id = (unsigned long)req; 1699 p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq)); 1700 dp_flags = bio_flags_to_wire(peer_device->connection, req->master_bio); 1701 if (device->state.conn >= C_SYNC_SOURCE && 1702 device->state.conn <= C_PAUSED_SYNC_T) 1703 dp_flags |= DP_MAY_SET_IN_SYNC; 1704 if (peer_device->connection->agreed_pro_version >= 100) { 1705 if (req->rq_state & RQ_EXP_RECEIVE_ACK) 1706 dp_flags |= DP_SEND_RECEIVE_ACK; 1707 /* During resync, request an explicit write ack, 1708 * even in protocol != C */ 1709 if (req->rq_state & RQ_EXP_WRITE_ACK 1710 || (dp_flags & DP_MAY_SET_IN_SYNC)) 1711 dp_flags |= DP_SEND_WRITE_ACK; 1712 } 1713 p->dp_flags = cpu_to_be32(dp_flags); 1714 1715 if (dp_flags & DP_DISCARD) { 1716 struct p_trim *t = (struct p_trim*)p; 1717 t->size = cpu_to_be32(req->i.size); 1718 err = __send_command(peer_device->connection, device->vnr, sock, P_TRIM, sizeof(*t), NULL, 0); 1719 goto out; 1720 } 1721 if (dp_flags & DP_WSAME) { 1722 /* this will only work if DRBD_FF_WSAME is set AND the 1723 * handshake agreed that all nodes and backend devices are 1724 * WRITE_SAME capable and agree on logical_block_size */ 1725 wsame = (struct p_wsame*)p; 1726 digest_out = wsame + 1; 1727 wsame->size = cpu_to_be32(req->i.size); 1728 } else 1729 digest_out = p + 1; 1730 1731 /* our digest is still only over the payload. 1732 * TRIM does not carry any payload. */ 1733 if (digest_size) 1734 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest_out); 1735 if (wsame) { 1736 err = 1737 __send_command(peer_device->connection, device->vnr, sock, P_WSAME, 1738 sizeof(*wsame) + digest_size, NULL, 1739 bio_iovec(req->master_bio).bv_len); 1740 } else 1741 err = 1742 __send_command(peer_device->connection, device->vnr, sock, P_DATA, 1743 sizeof(*p) + digest_size, NULL, req->i.size); 1744 if (!err) { 1745 /* For protocol A, we have to memcpy the payload into 1746 * socket buffers, as we may complete right away 1747 * as soon as we handed it over to tcp, at which point the data 1748 * pages may become invalid. 1749 * 1750 * For data-integrity enabled, we copy it as well, so we can be 1751 * sure that even if the bio pages may still be modified, it 1752 * won't change the data on the wire, thus if the digest checks 1753 * out ok after sending on this side, but does not fit on the 1754 * receiving side, we sure have detected corruption elsewhere. 1755 */ 1756 if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || digest_size) 1757 err = _drbd_send_bio(peer_device, req->master_bio); 1758 else 1759 err = _drbd_send_zc_bio(peer_device, req->master_bio); 1760 1761 /* double check digest, sometimes buffers have been modified in flight. */ 1762 if (digest_size > 0 && digest_size <= 64) { 1763 /* 64 byte, 512 bit, is the largest digest size 1764 * currently supported in kernel crypto. */ 1765 unsigned char digest[64]; 1766 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest); 1767 if (memcmp(p + 1, digest, digest_size)) { 1768 drbd_warn(device, 1769 "Digest mismatch, buffer modified by upper layers during write: %llus +%u\n", 1770 (unsigned long long)req->i.sector, req->i.size); 1771 } 1772 } /* else if (digest_size > 64) { 1773 ... Be noisy about digest too large ... 1774 } */ 1775 } 1776 out: 1777 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */ 1778 1779 return err; 1780 } 1781 1782 /* answer packet, used to send data back for read requests: 1783 * Peer -> (diskless) R_PRIMARY (P_DATA_REPLY) 1784 * C_SYNC_SOURCE -> C_SYNC_TARGET (P_RS_DATA_REPLY) 1785 */ 1786 int drbd_send_block(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1787 struct drbd_peer_request *peer_req) 1788 { 1789 struct drbd_device *device = peer_device->device; 1790 struct drbd_socket *sock; 1791 struct p_data *p; 1792 int err; 1793 int digest_size; 1794 1795 sock = &peer_device->connection->data; 1796 p = drbd_prepare_command(peer_device, sock); 1797 1798 digest_size = peer_device->connection->integrity_tfm ? 1799 crypto_ahash_digestsize(peer_device->connection->integrity_tfm) : 0; 1800 1801 if (!p) 1802 return -EIO; 1803 p->sector = cpu_to_be64(peer_req->i.sector); 1804 p->block_id = peer_req->block_id; 1805 p->seq_num = 0; /* unused */ 1806 p->dp_flags = 0; 1807 if (digest_size) 1808 drbd_csum_ee(peer_device->connection->integrity_tfm, peer_req, p + 1); 1809 err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*p) + digest_size, NULL, peer_req->i.size); 1810 if (!err) 1811 err = _drbd_send_zc_ee(peer_device, peer_req); 1812 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */ 1813 1814 return err; 1815 } 1816 1817 int drbd_send_out_of_sync(struct drbd_peer_device *peer_device, struct drbd_request *req) 1818 { 1819 struct drbd_socket *sock; 1820 struct p_block_desc *p; 1821 1822 sock = &peer_device->connection->data; 1823 p = drbd_prepare_command(peer_device, sock); 1824 if (!p) 1825 return -EIO; 1826 p->sector = cpu_to_be64(req->i.sector); 1827 p->blksize = cpu_to_be32(req->i.size); 1828 return drbd_send_command(peer_device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0); 1829 } 1830 1831 /* 1832 drbd_send distinguishes two cases: 1833 1834 Packets sent via the data socket "sock" 1835 and packets sent via the meta data socket "msock" 1836 1837 sock msock 1838 -----------------+-------------------------+------------------------------ 1839 timeout conf.timeout / 2 conf.timeout / 2 1840 timeout action send a ping via msock Abort communication 1841 and close all sockets 1842 */ 1843 1844 /* 1845 * you must have down()ed the appropriate [m]sock_mutex elsewhere! 1846 */ 1847 int drbd_send(struct drbd_connection *connection, struct socket *sock, 1848 void *buf, size_t size, unsigned msg_flags) 1849 { 1850 struct kvec iov = {.iov_base = buf, .iov_len = size}; 1851 struct msghdr msg = {.msg_flags = msg_flags | MSG_NOSIGNAL}; 1852 int rv, sent = 0; 1853 1854 if (!sock) 1855 return -EBADR; 1856 1857 /* THINK if (signal_pending) return ... ? */ 1858 1859 iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, &iov, 1, size); 1860 1861 if (sock == connection->data.socket) { 1862 rcu_read_lock(); 1863 connection->ko_count = rcu_dereference(connection->net_conf)->ko_count; 1864 rcu_read_unlock(); 1865 drbd_update_congested(connection); 1866 } 1867 do { 1868 rv = sock_sendmsg(sock, &msg); 1869 if (rv == -EAGAIN) { 1870 if (we_should_drop_the_connection(connection, sock)) 1871 break; 1872 else 1873 continue; 1874 } 1875 if (rv == -EINTR) { 1876 flush_signals(current); 1877 rv = 0; 1878 } 1879 if (rv < 0) 1880 break; 1881 sent += rv; 1882 } while (sent < size); 1883 1884 if (sock == connection->data.socket) 1885 clear_bit(NET_CONGESTED, &connection->flags); 1886 1887 if (rv <= 0) { 1888 if (rv != -EAGAIN) { 1889 drbd_err(connection, "%s_sendmsg returned %d\n", 1890 sock == connection->meta.socket ? "msock" : "sock", 1891 rv); 1892 conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD); 1893 } else 1894 conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD); 1895 } 1896 1897 return sent; 1898 } 1899 1900 /** 1901 * drbd_send_all - Send an entire buffer 1902 * 1903 * Returns 0 upon success and a negative error value otherwise. 1904 */ 1905 int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer, 1906 size_t size, unsigned msg_flags) 1907 { 1908 int err; 1909 1910 err = drbd_send(connection, sock, buffer, size, msg_flags); 1911 if (err < 0) 1912 return err; 1913 if (err != size) 1914 return -EIO; 1915 return 0; 1916 } 1917 1918 static int drbd_open(struct block_device *bdev, fmode_t mode) 1919 { 1920 struct drbd_device *device = bdev->bd_disk->private_data; 1921 unsigned long flags; 1922 int rv = 0; 1923 1924 mutex_lock(&drbd_main_mutex); 1925 spin_lock_irqsave(&device->resource->req_lock, flags); 1926 /* to have a stable device->state.role 1927 * and no race with updating open_cnt */ 1928 1929 if (device->state.role != R_PRIMARY) { 1930 if (mode & FMODE_WRITE) 1931 rv = -EROFS; 1932 else if (!drbd_allow_oos) 1933 rv = -EMEDIUMTYPE; 1934 } 1935 1936 if (!rv) 1937 device->open_cnt++; 1938 spin_unlock_irqrestore(&device->resource->req_lock, flags); 1939 mutex_unlock(&drbd_main_mutex); 1940 1941 return rv; 1942 } 1943 1944 static void drbd_release(struct gendisk *gd, fmode_t mode) 1945 { 1946 struct drbd_device *device = gd->private_data; 1947 mutex_lock(&drbd_main_mutex); 1948 device->open_cnt--; 1949 mutex_unlock(&drbd_main_mutex); 1950 } 1951 1952 /* need to hold resource->req_lock */ 1953 void drbd_queue_unplug(struct drbd_device *device) 1954 { 1955 if (device->state.pdsk >= D_INCONSISTENT && device->state.conn >= C_CONNECTED) { 1956 D_ASSERT(device, device->state.role == R_PRIMARY); 1957 if (test_and_clear_bit(UNPLUG_REMOTE, &device->flags)) { 1958 drbd_queue_work_if_unqueued( 1959 &first_peer_device(device)->connection->sender_work, 1960 &device->unplug_work); 1961 } 1962 } 1963 } 1964 1965 static void drbd_set_defaults(struct drbd_device *device) 1966 { 1967 /* Beware! The actual layout differs 1968 * between big endian and little endian */ 1969 device->state = (union drbd_dev_state) { 1970 { .role = R_SECONDARY, 1971 .peer = R_UNKNOWN, 1972 .conn = C_STANDALONE, 1973 .disk = D_DISKLESS, 1974 .pdsk = D_UNKNOWN, 1975 } }; 1976 } 1977 1978 void drbd_init_set_defaults(struct drbd_device *device) 1979 { 1980 /* the memset(,0,) did most of this. 1981 * note: only assignments, no allocation in here */ 1982 1983 drbd_set_defaults(device); 1984 1985 atomic_set(&device->ap_bio_cnt, 0); 1986 atomic_set(&device->ap_actlog_cnt, 0); 1987 atomic_set(&device->ap_pending_cnt, 0); 1988 atomic_set(&device->rs_pending_cnt, 0); 1989 atomic_set(&device->unacked_cnt, 0); 1990 atomic_set(&device->local_cnt, 0); 1991 atomic_set(&device->pp_in_use_by_net, 0); 1992 atomic_set(&device->rs_sect_in, 0); 1993 atomic_set(&device->rs_sect_ev, 0); 1994 atomic_set(&device->ap_in_flight, 0); 1995 atomic_set(&device->md_io.in_use, 0); 1996 1997 mutex_init(&device->own_state_mutex); 1998 device->state_mutex = &device->own_state_mutex; 1999 2000 spin_lock_init(&device->al_lock); 2001 spin_lock_init(&device->peer_seq_lock); 2002 2003 INIT_LIST_HEAD(&device->active_ee); 2004 INIT_LIST_HEAD(&device->sync_ee); 2005 INIT_LIST_HEAD(&device->done_ee); 2006 INIT_LIST_HEAD(&device->read_ee); 2007 INIT_LIST_HEAD(&device->net_ee); 2008 INIT_LIST_HEAD(&device->resync_reads); 2009 INIT_LIST_HEAD(&device->resync_work.list); 2010 INIT_LIST_HEAD(&device->unplug_work.list); 2011 INIT_LIST_HEAD(&device->bm_io_work.w.list); 2012 INIT_LIST_HEAD(&device->pending_master_completion[0]); 2013 INIT_LIST_HEAD(&device->pending_master_completion[1]); 2014 INIT_LIST_HEAD(&device->pending_completion[0]); 2015 INIT_LIST_HEAD(&device->pending_completion[1]); 2016 2017 device->resync_work.cb = w_resync_timer; 2018 device->unplug_work.cb = w_send_write_hint; 2019 device->bm_io_work.w.cb = w_bitmap_io; 2020 2021 timer_setup(&device->resync_timer, resync_timer_fn, 0); 2022 timer_setup(&device->md_sync_timer, md_sync_timer_fn, 0); 2023 timer_setup(&device->start_resync_timer, start_resync_timer_fn, 0); 2024 timer_setup(&device->request_timer, request_timer_fn, 0); 2025 2026 init_waitqueue_head(&device->misc_wait); 2027 init_waitqueue_head(&device->state_wait); 2028 init_waitqueue_head(&device->ee_wait); 2029 init_waitqueue_head(&device->al_wait); 2030 init_waitqueue_head(&device->seq_wait); 2031 2032 device->resync_wenr = LC_FREE; 2033 device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE; 2034 device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE; 2035 } 2036 2037 void drbd_device_cleanup(struct drbd_device *device) 2038 { 2039 int i; 2040 if (first_peer_device(device)->connection->receiver.t_state != NONE) 2041 drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n", 2042 first_peer_device(device)->connection->receiver.t_state); 2043 2044 device->al_writ_cnt = 2045 device->bm_writ_cnt = 2046 device->read_cnt = 2047 device->recv_cnt = 2048 device->send_cnt = 2049 device->writ_cnt = 2050 device->p_size = 2051 device->rs_start = 2052 device->rs_total = 2053 device->rs_failed = 0; 2054 device->rs_last_events = 0; 2055 device->rs_last_sect_ev = 0; 2056 for (i = 0; i < DRBD_SYNC_MARKS; i++) { 2057 device->rs_mark_left[i] = 0; 2058 device->rs_mark_time[i] = 0; 2059 } 2060 D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL); 2061 2062 drbd_set_my_capacity(device, 0); 2063 if (device->bitmap) { 2064 /* maybe never allocated. */ 2065 drbd_bm_resize(device, 0, 1); 2066 drbd_bm_cleanup(device); 2067 } 2068 2069 drbd_backing_dev_free(device, device->ldev); 2070 device->ldev = NULL; 2071 2072 clear_bit(AL_SUSPENDED, &device->flags); 2073 2074 D_ASSERT(device, list_empty(&device->active_ee)); 2075 D_ASSERT(device, list_empty(&device->sync_ee)); 2076 D_ASSERT(device, list_empty(&device->done_ee)); 2077 D_ASSERT(device, list_empty(&device->read_ee)); 2078 D_ASSERT(device, list_empty(&device->net_ee)); 2079 D_ASSERT(device, list_empty(&device->resync_reads)); 2080 D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q)); 2081 D_ASSERT(device, list_empty(&device->resync_work.list)); 2082 D_ASSERT(device, list_empty(&device->unplug_work.list)); 2083 2084 drbd_set_defaults(device); 2085 } 2086 2087 2088 static void drbd_destroy_mempools(void) 2089 { 2090 struct page *page; 2091 2092 while (drbd_pp_pool) { 2093 page = drbd_pp_pool; 2094 drbd_pp_pool = (struct page *)page_private(page); 2095 __free_page(page); 2096 drbd_pp_vacant--; 2097 } 2098 2099 /* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */ 2100 2101 bioset_exit(&drbd_io_bio_set); 2102 bioset_exit(&drbd_md_io_bio_set); 2103 mempool_exit(&drbd_md_io_page_pool); 2104 mempool_exit(&drbd_ee_mempool); 2105 mempool_exit(&drbd_request_mempool); 2106 if (drbd_ee_cache) 2107 kmem_cache_destroy(drbd_ee_cache); 2108 if (drbd_request_cache) 2109 kmem_cache_destroy(drbd_request_cache); 2110 if (drbd_bm_ext_cache) 2111 kmem_cache_destroy(drbd_bm_ext_cache); 2112 if (drbd_al_ext_cache) 2113 kmem_cache_destroy(drbd_al_ext_cache); 2114 2115 drbd_ee_cache = NULL; 2116 drbd_request_cache = NULL; 2117 drbd_bm_ext_cache = NULL; 2118 drbd_al_ext_cache = NULL; 2119 2120 return; 2121 } 2122 2123 static int drbd_create_mempools(void) 2124 { 2125 struct page *page; 2126 const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * drbd_minor_count; 2127 int i, ret; 2128 2129 /* caches */ 2130 drbd_request_cache = kmem_cache_create( 2131 "drbd_req", sizeof(struct drbd_request), 0, 0, NULL); 2132 if (drbd_request_cache == NULL) 2133 goto Enomem; 2134 2135 drbd_ee_cache = kmem_cache_create( 2136 "drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL); 2137 if (drbd_ee_cache == NULL) 2138 goto Enomem; 2139 2140 drbd_bm_ext_cache = kmem_cache_create( 2141 "drbd_bm", sizeof(struct bm_extent), 0, 0, NULL); 2142 if (drbd_bm_ext_cache == NULL) 2143 goto Enomem; 2144 2145 drbd_al_ext_cache = kmem_cache_create( 2146 "drbd_al", sizeof(struct lc_element), 0, 0, NULL); 2147 if (drbd_al_ext_cache == NULL) 2148 goto Enomem; 2149 2150 /* mempools */ 2151 ret = bioset_init(&drbd_io_bio_set, BIO_POOL_SIZE, 0, 0); 2152 if (ret) 2153 goto Enomem; 2154 2155 ret = bioset_init(&drbd_md_io_bio_set, DRBD_MIN_POOL_PAGES, 0, 2156 BIOSET_NEED_BVECS); 2157 if (ret) 2158 goto Enomem; 2159 2160 ret = mempool_init_page_pool(&drbd_md_io_page_pool, DRBD_MIN_POOL_PAGES, 0); 2161 if (ret) 2162 goto Enomem; 2163 2164 ret = mempool_init_slab_pool(&drbd_request_mempool, number, 2165 drbd_request_cache); 2166 if (ret) 2167 goto Enomem; 2168 2169 ret = mempool_init_slab_pool(&drbd_ee_mempool, number, drbd_ee_cache); 2170 if (ret) 2171 goto Enomem; 2172 2173 /* drbd's page pool */ 2174 spin_lock_init(&drbd_pp_lock); 2175 2176 for (i = 0; i < number; i++) { 2177 page = alloc_page(GFP_HIGHUSER); 2178 if (!page) 2179 goto Enomem; 2180 set_page_private(page, (unsigned long)drbd_pp_pool); 2181 drbd_pp_pool = page; 2182 } 2183 drbd_pp_vacant = number; 2184 2185 return 0; 2186 2187 Enomem: 2188 drbd_destroy_mempools(); /* in case we allocated some */ 2189 return -ENOMEM; 2190 } 2191 2192 static void drbd_release_all_peer_reqs(struct drbd_device *device) 2193 { 2194 int rr; 2195 2196 rr = drbd_free_peer_reqs(device, &device->active_ee); 2197 if (rr) 2198 drbd_err(device, "%d EEs in active list found!\n", rr); 2199 2200 rr = drbd_free_peer_reqs(device, &device->sync_ee); 2201 if (rr) 2202 drbd_err(device, "%d EEs in sync list found!\n", rr); 2203 2204 rr = drbd_free_peer_reqs(device, &device->read_ee); 2205 if (rr) 2206 drbd_err(device, "%d EEs in read list found!\n", rr); 2207 2208 rr = drbd_free_peer_reqs(device, &device->done_ee); 2209 if (rr) 2210 drbd_err(device, "%d EEs in done list found!\n", rr); 2211 2212 rr = drbd_free_peer_reqs(device, &device->net_ee); 2213 if (rr) 2214 drbd_err(device, "%d EEs in net list found!\n", rr); 2215 } 2216 2217 /* caution. no locking. */ 2218 void drbd_destroy_device(struct kref *kref) 2219 { 2220 struct drbd_device *device = container_of(kref, struct drbd_device, kref); 2221 struct drbd_resource *resource = device->resource; 2222 struct drbd_peer_device *peer_device, *tmp_peer_device; 2223 2224 del_timer_sync(&device->request_timer); 2225 2226 /* paranoia asserts */ 2227 D_ASSERT(device, device->open_cnt == 0); 2228 /* end paranoia asserts */ 2229 2230 /* cleanup stuff that may have been allocated during 2231 * device (re-)configuration or state changes */ 2232 2233 if (device->this_bdev) 2234 bdput(device->this_bdev); 2235 2236 drbd_backing_dev_free(device, device->ldev); 2237 device->ldev = NULL; 2238 2239 drbd_release_all_peer_reqs(device); 2240 2241 lc_destroy(device->act_log); 2242 lc_destroy(device->resync); 2243 2244 kfree(device->p_uuid); 2245 /* device->p_uuid = NULL; */ 2246 2247 if (device->bitmap) /* should no longer be there. */ 2248 drbd_bm_cleanup(device); 2249 __free_page(device->md_io.page); 2250 put_disk(device->vdisk); 2251 blk_cleanup_queue(device->rq_queue); 2252 kfree(device->rs_plan_s); 2253 2254 /* not for_each_connection(connection, resource): 2255 * those may have been cleaned up and disassociated already. 2256 */ 2257 for_each_peer_device_safe(peer_device, tmp_peer_device, device) { 2258 kref_put(&peer_device->connection->kref, drbd_destroy_connection); 2259 kfree(peer_device); 2260 } 2261 memset(device, 0xfd, sizeof(*device)); 2262 kfree(device); 2263 kref_put(&resource->kref, drbd_destroy_resource); 2264 } 2265 2266 /* One global retry thread, if we need to push back some bio and have it 2267 * reinserted through our make request function. 2268 */ 2269 static struct retry_worker { 2270 struct workqueue_struct *wq; 2271 struct work_struct worker; 2272 2273 spinlock_t lock; 2274 struct list_head writes; 2275 } retry; 2276 2277 static void do_retry(struct work_struct *ws) 2278 { 2279 struct retry_worker *retry = container_of(ws, struct retry_worker, worker); 2280 LIST_HEAD(writes); 2281 struct drbd_request *req, *tmp; 2282 2283 spin_lock_irq(&retry->lock); 2284 list_splice_init(&retry->writes, &writes); 2285 spin_unlock_irq(&retry->lock); 2286 2287 list_for_each_entry_safe(req, tmp, &writes, tl_requests) { 2288 struct drbd_device *device = req->device; 2289 struct bio *bio = req->master_bio; 2290 unsigned long start_jif = req->start_jif; 2291 bool expected; 2292 2293 expected = 2294 expect(atomic_read(&req->completion_ref) == 0) && 2295 expect(req->rq_state & RQ_POSTPONED) && 2296 expect((req->rq_state & RQ_LOCAL_PENDING) == 0 || 2297 (req->rq_state & RQ_LOCAL_ABORTED) != 0); 2298 2299 if (!expected) 2300 drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n", 2301 req, atomic_read(&req->completion_ref), 2302 req->rq_state); 2303 2304 /* We still need to put one kref associated with the 2305 * "completion_ref" going zero in the code path that queued it 2306 * here. The request object may still be referenced by a 2307 * frozen local req->private_bio, in case we force-detached. 2308 */ 2309 kref_put(&req->kref, drbd_req_destroy); 2310 2311 /* A single suspended or otherwise blocking device may stall 2312 * all others as well. Fortunately, this code path is to 2313 * recover from a situation that "should not happen": 2314 * concurrent writes in multi-primary setup. 2315 * In a "normal" lifecycle, this workqueue is supposed to be 2316 * destroyed without ever doing anything. 2317 * If it turns out to be an issue anyways, we can do per 2318 * resource (replication group) or per device (minor) retry 2319 * workqueues instead. 2320 */ 2321 2322 /* We are not just doing generic_make_request(), 2323 * as we want to keep the start_time information. */ 2324 inc_ap_bio(device); 2325 __drbd_make_request(device, bio, start_jif); 2326 } 2327 } 2328 2329 /* called via drbd_req_put_completion_ref(), 2330 * holds resource->req_lock */ 2331 void drbd_restart_request(struct drbd_request *req) 2332 { 2333 unsigned long flags; 2334 spin_lock_irqsave(&retry.lock, flags); 2335 list_move_tail(&req->tl_requests, &retry.writes); 2336 spin_unlock_irqrestore(&retry.lock, flags); 2337 2338 /* Drop the extra reference that would otherwise 2339 * have been dropped by complete_master_bio. 2340 * do_retry() needs to grab a new one. */ 2341 dec_ap_bio(req->device); 2342 2343 queue_work(retry.wq, &retry.worker); 2344 } 2345 2346 void drbd_destroy_resource(struct kref *kref) 2347 { 2348 struct drbd_resource *resource = 2349 container_of(kref, struct drbd_resource, kref); 2350 2351 idr_destroy(&resource->devices); 2352 free_cpumask_var(resource->cpu_mask); 2353 kfree(resource->name); 2354 memset(resource, 0xf2, sizeof(*resource)); 2355 kfree(resource); 2356 } 2357 2358 void drbd_free_resource(struct drbd_resource *resource) 2359 { 2360 struct drbd_connection *connection, *tmp; 2361 2362 for_each_connection_safe(connection, tmp, resource) { 2363 list_del(&connection->connections); 2364 drbd_debugfs_connection_cleanup(connection); 2365 kref_put(&connection->kref, drbd_destroy_connection); 2366 } 2367 drbd_debugfs_resource_cleanup(resource); 2368 kref_put(&resource->kref, drbd_destroy_resource); 2369 } 2370 2371 static void drbd_cleanup(void) 2372 { 2373 unsigned int i; 2374 struct drbd_device *device; 2375 struct drbd_resource *resource, *tmp; 2376 2377 /* first remove proc, 2378 * drbdsetup uses it's presence to detect 2379 * whether DRBD is loaded. 2380 * If we would get stuck in proc removal, 2381 * but have netlink already deregistered, 2382 * some drbdsetup commands may wait forever 2383 * for an answer. 2384 */ 2385 if (drbd_proc) 2386 remove_proc_entry("drbd", NULL); 2387 2388 if (retry.wq) 2389 destroy_workqueue(retry.wq); 2390 2391 drbd_genl_unregister(); 2392 2393 idr_for_each_entry(&drbd_devices, device, i) 2394 drbd_delete_device(device); 2395 2396 /* not _rcu since, no other updater anymore. Genl already unregistered */ 2397 for_each_resource_safe(resource, tmp, &drbd_resources) { 2398 list_del(&resource->resources); 2399 drbd_free_resource(resource); 2400 } 2401 2402 drbd_debugfs_cleanup(); 2403 2404 drbd_destroy_mempools(); 2405 unregister_blkdev(DRBD_MAJOR, "drbd"); 2406 2407 idr_destroy(&drbd_devices); 2408 2409 pr_info("module cleanup done.\n"); 2410 } 2411 2412 /** 2413 * drbd_congested() - Callback for the flusher thread 2414 * @congested_data: User data 2415 * @bdi_bits: Bits the BDI flusher thread is currently interested in 2416 * 2417 * Returns 1<<WB_async_congested and/or 1<<WB_sync_congested if we are congested. 2418 */ 2419 static int drbd_congested(void *congested_data, int bdi_bits) 2420 { 2421 struct drbd_device *device = congested_data; 2422 struct request_queue *q; 2423 char reason = '-'; 2424 int r = 0; 2425 2426 if (!may_inc_ap_bio(device)) { 2427 /* DRBD has frozen IO */ 2428 r = bdi_bits; 2429 reason = 'd'; 2430 goto out; 2431 } 2432 2433 if (test_bit(CALLBACK_PENDING, &first_peer_device(device)->connection->flags)) { 2434 r |= (1 << WB_async_congested); 2435 /* Without good local data, we would need to read from remote, 2436 * and that would need the worker thread as well, which is 2437 * currently blocked waiting for that usermode helper to 2438 * finish. 2439 */ 2440 if (!get_ldev_if_state(device, D_UP_TO_DATE)) 2441 r |= (1 << WB_sync_congested); 2442 else 2443 put_ldev(device); 2444 r &= bdi_bits; 2445 reason = 'c'; 2446 goto out; 2447 } 2448 2449 if (get_ldev(device)) { 2450 q = bdev_get_queue(device->ldev->backing_bdev); 2451 r = bdi_congested(q->backing_dev_info, bdi_bits); 2452 put_ldev(device); 2453 if (r) 2454 reason = 'b'; 2455 } 2456 2457 if (bdi_bits & (1 << WB_async_congested) && 2458 test_bit(NET_CONGESTED, &first_peer_device(device)->connection->flags)) { 2459 r |= (1 << WB_async_congested); 2460 reason = reason == 'b' ? 'a' : 'n'; 2461 } 2462 2463 out: 2464 device->congestion_reason = reason; 2465 return r; 2466 } 2467 2468 static void drbd_init_workqueue(struct drbd_work_queue* wq) 2469 { 2470 spin_lock_init(&wq->q_lock); 2471 INIT_LIST_HEAD(&wq->q); 2472 init_waitqueue_head(&wq->q_wait); 2473 } 2474 2475 struct completion_work { 2476 struct drbd_work w; 2477 struct completion done; 2478 }; 2479 2480 static int w_complete(struct drbd_work *w, int cancel) 2481 { 2482 struct completion_work *completion_work = 2483 container_of(w, struct completion_work, w); 2484 2485 complete(&completion_work->done); 2486 return 0; 2487 } 2488 2489 void drbd_flush_workqueue(struct drbd_work_queue *work_queue) 2490 { 2491 struct completion_work completion_work; 2492 2493 completion_work.w.cb = w_complete; 2494 init_completion(&completion_work.done); 2495 drbd_queue_work(work_queue, &completion_work.w); 2496 wait_for_completion(&completion_work.done); 2497 } 2498 2499 struct drbd_resource *drbd_find_resource(const char *name) 2500 { 2501 struct drbd_resource *resource; 2502 2503 if (!name || !name[0]) 2504 return NULL; 2505 2506 rcu_read_lock(); 2507 for_each_resource_rcu(resource, &drbd_resources) { 2508 if (!strcmp(resource->name, name)) { 2509 kref_get(&resource->kref); 2510 goto found; 2511 } 2512 } 2513 resource = NULL; 2514 found: 2515 rcu_read_unlock(); 2516 return resource; 2517 } 2518 2519 struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len, 2520 void *peer_addr, int peer_addr_len) 2521 { 2522 struct drbd_resource *resource; 2523 struct drbd_connection *connection; 2524 2525 rcu_read_lock(); 2526 for_each_resource_rcu(resource, &drbd_resources) { 2527 for_each_connection_rcu(connection, resource) { 2528 if (connection->my_addr_len == my_addr_len && 2529 connection->peer_addr_len == peer_addr_len && 2530 !memcmp(&connection->my_addr, my_addr, my_addr_len) && 2531 !memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) { 2532 kref_get(&connection->kref); 2533 goto found; 2534 } 2535 } 2536 } 2537 connection = NULL; 2538 found: 2539 rcu_read_unlock(); 2540 return connection; 2541 } 2542 2543 static int drbd_alloc_socket(struct drbd_socket *socket) 2544 { 2545 socket->rbuf = (void *) __get_free_page(GFP_KERNEL); 2546 if (!socket->rbuf) 2547 return -ENOMEM; 2548 socket->sbuf = (void *) __get_free_page(GFP_KERNEL); 2549 if (!socket->sbuf) 2550 return -ENOMEM; 2551 return 0; 2552 } 2553 2554 static void drbd_free_socket(struct drbd_socket *socket) 2555 { 2556 free_page((unsigned long) socket->sbuf); 2557 free_page((unsigned long) socket->rbuf); 2558 } 2559 2560 void conn_free_crypto(struct drbd_connection *connection) 2561 { 2562 drbd_free_sock(connection); 2563 2564 crypto_free_ahash(connection->csums_tfm); 2565 crypto_free_ahash(connection->verify_tfm); 2566 crypto_free_shash(connection->cram_hmac_tfm); 2567 crypto_free_ahash(connection->integrity_tfm); 2568 crypto_free_ahash(connection->peer_integrity_tfm); 2569 kfree(connection->int_dig_in); 2570 kfree(connection->int_dig_vv); 2571 2572 connection->csums_tfm = NULL; 2573 connection->verify_tfm = NULL; 2574 connection->cram_hmac_tfm = NULL; 2575 connection->integrity_tfm = NULL; 2576 connection->peer_integrity_tfm = NULL; 2577 connection->int_dig_in = NULL; 2578 connection->int_dig_vv = NULL; 2579 } 2580 2581 int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts) 2582 { 2583 struct drbd_connection *connection; 2584 cpumask_var_t new_cpu_mask; 2585 int err; 2586 2587 if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL)) 2588 return -ENOMEM; 2589 2590 /* silently ignore cpu mask on UP kernel */ 2591 if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) { 2592 err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE, 2593 cpumask_bits(new_cpu_mask), nr_cpu_ids); 2594 if (err == -EOVERFLOW) { 2595 /* So what. mask it out. */ 2596 cpumask_var_t tmp_cpu_mask; 2597 if (zalloc_cpumask_var(&tmp_cpu_mask, GFP_KERNEL)) { 2598 cpumask_setall(tmp_cpu_mask); 2599 cpumask_and(new_cpu_mask, new_cpu_mask, tmp_cpu_mask); 2600 drbd_warn(resource, "Overflow in bitmap_parse(%.12s%s), truncating to %u bits\n", 2601 res_opts->cpu_mask, 2602 strlen(res_opts->cpu_mask) > 12 ? "..." : "", 2603 nr_cpu_ids); 2604 free_cpumask_var(tmp_cpu_mask); 2605 err = 0; 2606 } 2607 } 2608 if (err) { 2609 drbd_warn(resource, "bitmap_parse() failed with %d\n", err); 2610 /* retcode = ERR_CPU_MASK_PARSE; */ 2611 goto fail; 2612 } 2613 } 2614 resource->res_opts = *res_opts; 2615 if (cpumask_empty(new_cpu_mask)) 2616 drbd_calc_cpu_mask(&new_cpu_mask); 2617 if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) { 2618 cpumask_copy(resource->cpu_mask, new_cpu_mask); 2619 for_each_connection_rcu(connection, resource) { 2620 connection->receiver.reset_cpu_mask = 1; 2621 connection->ack_receiver.reset_cpu_mask = 1; 2622 connection->worker.reset_cpu_mask = 1; 2623 } 2624 } 2625 err = 0; 2626 2627 fail: 2628 free_cpumask_var(new_cpu_mask); 2629 return err; 2630 2631 } 2632 2633 struct drbd_resource *drbd_create_resource(const char *name) 2634 { 2635 struct drbd_resource *resource; 2636 2637 resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL); 2638 if (!resource) 2639 goto fail; 2640 resource->name = kstrdup(name, GFP_KERNEL); 2641 if (!resource->name) 2642 goto fail_free_resource; 2643 if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL)) 2644 goto fail_free_name; 2645 kref_init(&resource->kref); 2646 idr_init(&resource->devices); 2647 INIT_LIST_HEAD(&resource->connections); 2648 resource->write_ordering = WO_BDEV_FLUSH; 2649 list_add_tail_rcu(&resource->resources, &drbd_resources); 2650 mutex_init(&resource->conf_update); 2651 mutex_init(&resource->adm_mutex); 2652 spin_lock_init(&resource->req_lock); 2653 drbd_debugfs_resource_add(resource); 2654 return resource; 2655 2656 fail_free_name: 2657 kfree(resource->name); 2658 fail_free_resource: 2659 kfree(resource); 2660 fail: 2661 return NULL; 2662 } 2663 2664 /* caller must be under adm_mutex */ 2665 struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts) 2666 { 2667 struct drbd_resource *resource; 2668 struct drbd_connection *connection; 2669 2670 connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL); 2671 if (!connection) 2672 return NULL; 2673 2674 if (drbd_alloc_socket(&connection->data)) 2675 goto fail; 2676 if (drbd_alloc_socket(&connection->meta)) 2677 goto fail; 2678 2679 connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL); 2680 if (!connection->current_epoch) 2681 goto fail; 2682 2683 INIT_LIST_HEAD(&connection->transfer_log); 2684 2685 INIT_LIST_HEAD(&connection->current_epoch->list); 2686 connection->epochs = 1; 2687 spin_lock_init(&connection->epoch_lock); 2688 2689 connection->send.seen_any_write_yet = false; 2690 connection->send.current_epoch_nr = 0; 2691 connection->send.current_epoch_writes = 0; 2692 2693 resource = drbd_create_resource(name); 2694 if (!resource) 2695 goto fail; 2696 2697 connection->cstate = C_STANDALONE; 2698 mutex_init(&connection->cstate_mutex); 2699 init_waitqueue_head(&connection->ping_wait); 2700 idr_init(&connection->peer_devices); 2701 2702 drbd_init_workqueue(&connection->sender_work); 2703 mutex_init(&connection->data.mutex); 2704 mutex_init(&connection->meta.mutex); 2705 2706 drbd_thread_init(resource, &connection->receiver, drbd_receiver, "receiver"); 2707 connection->receiver.connection = connection; 2708 drbd_thread_init(resource, &connection->worker, drbd_worker, "worker"); 2709 connection->worker.connection = connection; 2710 drbd_thread_init(resource, &connection->ack_receiver, drbd_ack_receiver, "ack_recv"); 2711 connection->ack_receiver.connection = connection; 2712 2713 kref_init(&connection->kref); 2714 2715 connection->resource = resource; 2716 2717 if (set_resource_options(resource, res_opts)) 2718 goto fail_resource; 2719 2720 kref_get(&resource->kref); 2721 list_add_tail_rcu(&connection->connections, &resource->connections); 2722 drbd_debugfs_connection_add(connection); 2723 return connection; 2724 2725 fail_resource: 2726 list_del(&resource->resources); 2727 drbd_free_resource(resource); 2728 fail: 2729 kfree(connection->current_epoch); 2730 drbd_free_socket(&connection->meta); 2731 drbd_free_socket(&connection->data); 2732 kfree(connection); 2733 return NULL; 2734 } 2735 2736 void drbd_destroy_connection(struct kref *kref) 2737 { 2738 struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref); 2739 struct drbd_resource *resource = connection->resource; 2740 2741 if (atomic_read(&connection->current_epoch->epoch_size) != 0) 2742 drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size)); 2743 kfree(connection->current_epoch); 2744 2745 idr_destroy(&connection->peer_devices); 2746 2747 drbd_free_socket(&connection->meta); 2748 drbd_free_socket(&connection->data); 2749 kfree(connection->int_dig_in); 2750 kfree(connection->int_dig_vv); 2751 memset(connection, 0xfc, sizeof(*connection)); 2752 kfree(connection); 2753 kref_put(&resource->kref, drbd_destroy_resource); 2754 } 2755 2756 static int init_submitter(struct drbd_device *device) 2757 { 2758 /* opencoded create_singlethread_workqueue(), 2759 * to be able to say "drbd%d", ..., minor */ 2760 device->submit.wq = 2761 alloc_ordered_workqueue("drbd%u_submit", WQ_MEM_RECLAIM, device->minor); 2762 if (!device->submit.wq) 2763 return -ENOMEM; 2764 2765 INIT_WORK(&device->submit.worker, do_submit); 2766 INIT_LIST_HEAD(&device->submit.writes); 2767 return 0; 2768 } 2769 2770 enum drbd_ret_code drbd_create_device(struct drbd_config_context *adm_ctx, unsigned int minor) 2771 { 2772 struct drbd_resource *resource = adm_ctx->resource; 2773 struct drbd_connection *connection; 2774 struct drbd_device *device; 2775 struct drbd_peer_device *peer_device, *tmp_peer_device; 2776 struct gendisk *disk; 2777 struct request_queue *q; 2778 int id; 2779 int vnr = adm_ctx->volume; 2780 enum drbd_ret_code err = ERR_NOMEM; 2781 2782 device = minor_to_device(minor); 2783 if (device) 2784 return ERR_MINOR_OR_VOLUME_EXISTS; 2785 2786 /* GFP_KERNEL, we are outside of all write-out paths */ 2787 device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL); 2788 if (!device) 2789 return ERR_NOMEM; 2790 kref_init(&device->kref); 2791 2792 kref_get(&resource->kref); 2793 device->resource = resource; 2794 device->minor = minor; 2795 device->vnr = vnr; 2796 2797 drbd_init_set_defaults(device); 2798 2799 q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE, &resource->req_lock); 2800 if (!q) 2801 goto out_no_q; 2802 device->rq_queue = q; 2803 q->queuedata = device; 2804 2805 disk = alloc_disk(1); 2806 if (!disk) 2807 goto out_no_disk; 2808 device->vdisk = disk; 2809 2810 set_disk_ro(disk, true); 2811 2812 disk->queue = q; 2813 disk->major = DRBD_MAJOR; 2814 disk->first_minor = minor; 2815 disk->fops = &drbd_ops; 2816 sprintf(disk->disk_name, "drbd%d", minor); 2817 disk->private_data = device; 2818 2819 device->this_bdev = bdget(MKDEV(DRBD_MAJOR, minor)); 2820 /* we have no partitions. we contain only ourselves. */ 2821 device->this_bdev->bd_contains = device->this_bdev; 2822 2823 q->backing_dev_info->congested_fn = drbd_congested; 2824 q->backing_dev_info->congested_data = device; 2825 2826 blk_queue_make_request(q, drbd_make_request); 2827 blk_queue_write_cache(q, true, true); 2828 /* Setting the max_hw_sectors to an odd value of 8kibyte here 2829 This triggers a max_bio_size message upon first attach or connect */ 2830 blk_queue_max_hw_sectors(q, DRBD_MAX_BIO_SIZE_SAFE >> 8); 2831 2832 device->md_io.page = alloc_page(GFP_KERNEL); 2833 if (!device->md_io.page) 2834 goto out_no_io_page; 2835 2836 if (drbd_bm_init(device)) 2837 goto out_no_bitmap; 2838 device->read_requests = RB_ROOT; 2839 device->write_requests = RB_ROOT; 2840 2841 id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL); 2842 if (id < 0) { 2843 if (id == -ENOSPC) 2844 err = ERR_MINOR_OR_VOLUME_EXISTS; 2845 goto out_no_minor_idr; 2846 } 2847 kref_get(&device->kref); 2848 2849 id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL); 2850 if (id < 0) { 2851 if (id == -ENOSPC) 2852 err = ERR_MINOR_OR_VOLUME_EXISTS; 2853 goto out_idr_remove_minor; 2854 } 2855 kref_get(&device->kref); 2856 2857 INIT_LIST_HEAD(&device->peer_devices); 2858 INIT_LIST_HEAD(&device->pending_bitmap_io); 2859 for_each_connection(connection, resource) { 2860 peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL); 2861 if (!peer_device) 2862 goto out_idr_remove_from_resource; 2863 peer_device->connection = connection; 2864 peer_device->device = device; 2865 2866 list_add(&peer_device->peer_devices, &device->peer_devices); 2867 kref_get(&device->kref); 2868 2869 id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL); 2870 if (id < 0) { 2871 if (id == -ENOSPC) 2872 err = ERR_INVALID_REQUEST; 2873 goto out_idr_remove_from_resource; 2874 } 2875 kref_get(&connection->kref); 2876 INIT_WORK(&peer_device->send_acks_work, drbd_send_acks_wf); 2877 } 2878 2879 if (init_submitter(device)) { 2880 err = ERR_NOMEM; 2881 goto out_idr_remove_vol; 2882 } 2883 2884 add_disk(disk); 2885 2886 /* inherit the connection state */ 2887 device->state.conn = first_connection(resource)->cstate; 2888 if (device->state.conn == C_WF_REPORT_PARAMS) { 2889 for_each_peer_device(peer_device, device) 2890 drbd_connected(peer_device); 2891 } 2892 /* move to create_peer_device() */ 2893 for_each_peer_device(peer_device, device) 2894 drbd_debugfs_peer_device_add(peer_device); 2895 drbd_debugfs_device_add(device); 2896 return NO_ERROR; 2897 2898 out_idr_remove_vol: 2899 idr_remove(&connection->peer_devices, vnr); 2900 out_idr_remove_from_resource: 2901 for_each_connection(connection, resource) { 2902 peer_device = idr_remove(&connection->peer_devices, vnr); 2903 if (peer_device) 2904 kref_put(&connection->kref, drbd_destroy_connection); 2905 } 2906 for_each_peer_device_safe(peer_device, tmp_peer_device, device) { 2907 list_del(&peer_device->peer_devices); 2908 kfree(peer_device); 2909 } 2910 idr_remove(&resource->devices, vnr); 2911 out_idr_remove_minor: 2912 idr_remove(&drbd_devices, minor); 2913 synchronize_rcu(); 2914 out_no_minor_idr: 2915 drbd_bm_cleanup(device); 2916 out_no_bitmap: 2917 __free_page(device->md_io.page); 2918 out_no_io_page: 2919 put_disk(disk); 2920 out_no_disk: 2921 blk_cleanup_queue(q); 2922 out_no_q: 2923 kref_put(&resource->kref, drbd_destroy_resource); 2924 kfree(device); 2925 return err; 2926 } 2927 2928 void drbd_delete_device(struct drbd_device *device) 2929 { 2930 struct drbd_resource *resource = device->resource; 2931 struct drbd_connection *connection; 2932 struct drbd_peer_device *peer_device; 2933 2934 /* move to free_peer_device() */ 2935 for_each_peer_device(peer_device, device) 2936 drbd_debugfs_peer_device_cleanup(peer_device); 2937 drbd_debugfs_device_cleanup(device); 2938 for_each_connection(connection, resource) { 2939 idr_remove(&connection->peer_devices, device->vnr); 2940 kref_put(&device->kref, drbd_destroy_device); 2941 } 2942 idr_remove(&resource->devices, device->vnr); 2943 kref_put(&device->kref, drbd_destroy_device); 2944 idr_remove(&drbd_devices, device_to_minor(device)); 2945 kref_put(&device->kref, drbd_destroy_device); 2946 del_gendisk(device->vdisk); 2947 synchronize_rcu(); 2948 kref_put(&device->kref, drbd_destroy_device); 2949 } 2950 2951 static int __init drbd_init(void) 2952 { 2953 int err; 2954 2955 if (drbd_minor_count < DRBD_MINOR_COUNT_MIN || drbd_minor_count > DRBD_MINOR_COUNT_MAX) { 2956 pr_err("invalid minor_count (%d)\n", drbd_minor_count); 2957 #ifdef MODULE 2958 return -EINVAL; 2959 #else 2960 drbd_minor_count = DRBD_MINOR_COUNT_DEF; 2961 #endif 2962 } 2963 2964 err = register_blkdev(DRBD_MAJOR, "drbd"); 2965 if (err) { 2966 pr_err("unable to register block device major %d\n", 2967 DRBD_MAJOR); 2968 return err; 2969 } 2970 2971 /* 2972 * allocate all necessary structs 2973 */ 2974 init_waitqueue_head(&drbd_pp_wait); 2975 2976 drbd_proc = NULL; /* play safe for drbd_cleanup */ 2977 idr_init(&drbd_devices); 2978 2979 mutex_init(&resources_mutex); 2980 INIT_LIST_HEAD(&drbd_resources); 2981 2982 err = drbd_genl_register(); 2983 if (err) { 2984 pr_err("unable to register generic netlink family\n"); 2985 goto fail; 2986 } 2987 2988 err = drbd_create_mempools(); 2989 if (err) 2990 goto fail; 2991 2992 err = -ENOMEM; 2993 drbd_proc = proc_create_single("drbd", S_IFREG | 0444 , NULL, drbd_seq_show); 2994 if (!drbd_proc) { 2995 pr_err("unable to register proc file\n"); 2996 goto fail; 2997 } 2998 2999 retry.wq = create_singlethread_workqueue("drbd-reissue"); 3000 if (!retry.wq) { 3001 pr_err("unable to create retry workqueue\n"); 3002 goto fail; 3003 } 3004 INIT_WORK(&retry.worker, do_retry); 3005 spin_lock_init(&retry.lock); 3006 INIT_LIST_HEAD(&retry.writes); 3007 3008 if (drbd_debugfs_init()) 3009 pr_notice("failed to initialize debugfs -- will not be available\n"); 3010 3011 pr_info("initialized. " 3012 "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n", 3013 API_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX); 3014 pr_info("%s\n", drbd_buildtag()); 3015 pr_info("registered as block device major %d\n", DRBD_MAJOR); 3016 return 0; /* Success! */ 3017 3018 fail: 3019 drbd_cleanup(); 3020 if (err == -ENOMEM) 3021 pr_err("ran out of memory\n"); 3022 else 3023 pr_err("initialization failure\n"); 3024 return err; 3025 } 3026 3027 static void drbd_free_one_sock(struct drbd_socket *ds) 3028 { 3029 struct socket *s; 3030 mutex_lock(&ds->mutex); 3031 s = ds->socket; 3032 ds->socket = NULL; 3033 mutex_unlock(&ds->mutex); 3034 if (s) { 3035 /* so debugfs does not need to mutex_lock() */ 3036 synchronize_rcu(); 3037 kernel_sock_shutdown(s, SHUT_RDWR); 3038 sock_release(s); 3039 } 3040 } 3041 3042 void drbd_free_sock(struct drbd_connection *connection) 3043 { 3044 if (connection->data.socket) 3045 drbd_free_one_sock(&connection->data); 3046 if (connection->meta.socket) 3047 drbd_free_one_sock(&connection->meta); 3048 } 3049 3050 /* meta data management */ 3051 3052 void conn_md_sync(struct drbd_connection *connection) 3053 { 3054 struct drbd_peer_device *peer_device; 3055 int vnr; 3056 3057 rcu_read_lock(); 3058 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 3059 struct drbd_device *device = peer_device->device; 3060 3061 kref_get(&device->kref); 3062 rcu_read_unlock(); 3063 drbd_md_sync(device); 3064 kref_put(&device->kref, drbd_destroy_device); 3065 rcu_read_lock(); 3066 } 3067 rcu_read_unlock(); 3068 } 3069 3070 /* aligned 4kByte */ 3071 struct meta_data_on_disk { 3072 u64 la_size_sect; /* last agreed size. */ 3073 u64 uuid[UI_SIZE]; /* UUIDs. */ 3074 u64 device_uuid; 3075 u64 reserved_u64_1; 3076 u32 flags; /* MDF */ 3077 u32 magic; 3078 u32 md_size_sect; 3079 u32 al_offset; /* offset to this block */ 3080 u32 al_nr_extents; /* important for restoring the AL (userspace) */ 3081 /* `-- act_log->nr_elements <-- ldev->dc.al_extents */ 3082 u32 bm_offset; /* offset to the bitmap, from here */ 3083 u32 bm_bytes_per_bit; /* BM_BLOCK_SIZE */ 3084 u32 la_peer_max_bio_size; /* last peer max_bio_size */ 3085 3086 /* see al_tr_number_to_on_disk_sector() */ 3087 u32 al_stripes; 3088 u32 al_stripe_size_4k; 3089 3090 u8 reserved_u8[4096 - (7*8 + 10*4)]; 3091 } __packed; 3092 3093 3094 3095 void drbd_md_write(struct drbd_device *device, void *b) 3096 { 3097 struct meta_data_on_disk *buffer = b; 3098 sector_t sector; 3099 int i; 3100 3101 memset(buffer, 0, sizeof(*buffer)); 3102 3103 buffer->la_size_sect = cpu_to_be64(drbd_get_capacity(device->this_bdev)); 3104 for (i = UI_CURRENT; i < UI_SIZE; i++) 3105 buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]); 3106 buffer->flags = cpu_to_be32(device->ldev->md.flags); 3107 buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN); 3108 3109 buffer->md_size_sect = cpu_to_be32(device->ldev->md.md_size_sect); 3110 buffer->al_offset = cpu_to_be32(device->ldev->md.al_offset); 3111 buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements); 3112 buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE); 3113 buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid); 3114 3115 buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset); 3116 buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size); 3117 3118 buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes); 3119 buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k); 3120 3121 D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset); 3122 sector = device->ldev->md.md_offset; 3123 3124 if (drbd_md_sync_page_io(device, device->ldev, sector, REQ_OP_WRITE)) { 3125 /* this was a try anyways ... */ 3126 drbd_err(device, "meta data update failed!\n"); 3127 drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR); 3128 } 3129 } 3130 3131 /** 3132 * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set 3133 * @device: DRBD device. 3134 */ 3135 void drbd_md_sync(struct drbd_device *device) 3136 { 3137 struct meta_data_on_disk *buffer; 3138 3139 /* Don't accidentally change the DRBD meta data layout. */ 3140 BUILD_BUG_ON(UI_SIZE != 4); 3141 BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096); 3142 3143 del_timer(&device->md_sync_timer); 3144 /* timer may be rearmed by drbd_md_mark_dirty() now. */ 3145 if (!test_and_clear_bit(MD_DIRTY, &device->flags)) 3146 return; 3147 3148 /* We use here D_FAILED and not D_ATTACHING because we try to write 3149 * metadata even if we detach due to a disk failure! */ 3150 if (!get_ldev_if_state(device, D_FAILED)) 3151 return; 3152 3153 buffer = drbd_md_get_buffer(device, __func__); 3154 if (!buffer) 3155 goto out; 3156 3157 drbd_md_write(device, buffer); 3158 3159 /* Update device->ldev->md.la_size_sect, 3160 * since we updated it on metadata. */ 3161 device->ldev->md.la_size_sect = drbd_get_capacity(device->this_bdev); 3162 3163 drbd_md_put_buffer(device); 3164 out: 3165 put_ldev(device); 3166 } 3167 3168 static int check_activity_log_stripe_size(struct drbd_device *device, 3169 struct meta_data_on_disk *on_disk, 3170 struct drbd_md *in_core) 3171 { 3172 u32 al_stripes = be32_to_cpu(on_disk->al_stripes); 3173 u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k); 3174 u64 al_size_4k; 3175 3176 /* both not set: default to old fixed size activity log */ 3177 if (al_stripes == 0 && al_stripe_size_4k == 0) { 3178 al_stripes = 1; 3179 al_stripe_size_4k = MD_32kB_SECT/8; 3180 } 3181 3182 /* some paranoia plausibility checks */ 3183 3184 /* we need both values to be set */ 3185 if (al_stripes == 0 || al_stripe_size_4k == 0) 3186 goto err; 3187 3188 al_size_4k = (u64)al_stripes * al_stripe_size_4k; 3189 3190 /* Upper limit of activity log area, to avoid potential overflow 3191 * problems in al_tr_number_to_on_disk_sector(). As right now, more 3192 * than 72 * 4k blocks total only increases the amount of history, 3193 * limiting this arbitrarily to 16 GB is not a real limitation ;-) */ 3194 if (al_size_4k > (16 * 1024 * 1024/4)) 3195 goto err; 3196 3197 /* Lower limit: we need at least 8 transaction slots (32kB) 3198 * to not break existing setups */ 3199 if (al_size_4k < MD_32kB_SECT/8) 3200 goto err; 3201 3202 in_core->al_stripe_size_4k = al_stripe_size_4k; 3203 in_core->al_stripes = al_stripes; 3204 in_core->al_size_4k = al_size_4k; 3205 3206 return 0; 3207 err: 3208 drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n", 3209 al_stripes, al_stripe_size_4k); 3210 return -EINVAL; 3211 } 3212 3213 static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev) 3214 { 3215 sector_t capacity = drbd_get_capacity(bdev->md_bdev); 3216 struct drbd_md *in_core = &bdev->md; 3217 s32 on_disk_al_sect; 3218 s32 on_disk_bm_sect; 3219 3220 /* The on-disk size of the activity log, calculated from offsets, and 3221 * the size of the activity log calculated from the stripe settings, 3222 * should match. 3223 * Though we could relax this a bit: it is ok, if the striped activity log 3224 * fits in the available on-disk activity log size. 3225 * Right now, that would break how resize is implemented. 3226 * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware 3227 * of possible unused padding space in the on disk layout. */ 3228 if (in_core->al_offset < 0) { 3229 if (in_core->bm_offset > in_core->al_offset) 3230 goto err; 3231 on_disk_al_sect = -in_core->al_offset; 3232 on_disk_bm_sect = in_core->al_offset - in_core->bm_offset; 3233 } else { 3234 if (in_core->al_offset != MD_4kB_SECT) 3235 goto err; 3236 if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT) 3237 goto err; 3238 3239 on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT; 3240 on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset; 3241 } 3242 3243 /* old fixed size meta data is exactly that: fixed. */ 3244 if (in_core->meta_dev_idx >= 0) { 3245 if (in_core->md_size_sect != MD_128MB_SECT 3246 || in_core->al_offset != MD_4kB_SECT 3247 || in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT 3248 || in_core->al_stripes != 1 3249 || in_core->al_stripe_size_4k != MD_32kB_SECT/8) 3250 goto err; 3251 } 3252 3253 if (capacity < in_core->md_size_sect) 3254 goto err; 3255 if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev)) 3256 goto err; 3257 3258 /* should be aligned, and at least 32k */ 3259 if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT)) 3260 goto err; 3261 3262 /* should fit (for now: exactly) into the available on-disk space; 3263 * overflow prevention is in check_activity_log_stripe_size() above. */ 3264 if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT) 3265 goto err; 3266 3267 /* again, should be aligned */ 3268 if (in_core->bm_offset & 7) 3269 goto err; 3270 3271 /* FIXME check for device grow with flex external meta data? */ 3272 3273 /* can the available bitmap space cover the last agreed device size? */ 3274 if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512) 3275 goto err; 3276 3277 return 0; 3278 3279 err: 3280 drbd_err(device, "meta data offsets don't make sense: idx=%d " 3281 "al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, " 3282 "md_size_sect=%u, la_size=%llu, md_capacity=%llu\n", 3283 in_core->meta_dev_idx, 3284 in_core->al_stripes, in_core->al_stripe_size_4k, 3285 in_core->al_offset, in_core->bm_offset, in_core->md_size_sect, 3286 (unsigned long long)in_core->la_size_sect, 3287 (unsigned long long)capacity); 3288 3289 return -EINVAL; 3290 } 3291 3292 3293 /** 3294 * drbd_md_read() - Reads in the meta data super block 3295 * @device: DRBD device. 3296 * @bdev: Device from which the meta data should be read in. 3297 * 3298 * Return NO_ERROR on success, and an enum drbd_ret_code in case 3299 * something goes wrong. 3300 * 3301 * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS, 3302 * even before @bdev is assigned to @device->ldev. 3303 */ 3304 int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev) 3305 { 3306 struct meta_data_on_disk *buffer; 3307 u32 magic, flags; 3308 int i, rv = NO_ERROR; 3309 3310 if (device->state.disk != D_DISKLESS) 3311 return ERR_DISK_CONFIGURED; 3312 3313 buffer = drbd_md_get_buffer(device, __func__); 3314 if (!buffer) 3315 return ERR_NOMEM; 3316 3317 /* First, figure out where our meta data superblock is located, 3318 * and read it. */ 3319 bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx; 3320 bdev->md.md_offset = drbd_md_ss(bdev); 3321 /* Even for (flexible or indexed) external meta data, 3322 * initially restrict us to the 4k superblock for now. 3323 * Affects the paranoia out-of-range access check in drbd_md_sync_page_io(). */ 3324 bdev->md.md_size_sect = 8; 3325 3326 if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset, 3327 REQ_OP_READ)) { 3328 /* NOTE: can't do normal error processing here as this is 3329 called BEFORE disk is attached */ 3330 drbd_err(device, "Error while reading metadata.\n"); 3331 rv = ERR_IO_MD_DISK; 3332 goto err; 3333 } 3334 3335 magic = be32_to_cpu(buffer->magic); 3336 flags = be32_to_cpu(buffer->flags); 3337 if (magic == DRBD_MD_MAGIC_84_UNCLEAN || 3338 (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) { 3339 /* btw: that's Activity Log clean, not "all" clean. */ 3340 drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n"); 3341 rv = ERR_MD_UNCLEAN; 3342 goto err; 3343 } 3344 3345 rv = ERR_MD_INVALID; 3346 if (magic != DRBD_MD_MAGIC_08) { 3347 if (magic == DRBD_MD_MAGIC_07) 3348 drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n"); 3349 else 3350 drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n"); 3351 goto err; 3352 } 3353 3354 if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) { 3355 drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n", 3356 be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE); 3357 goto err; 3358 } 3359 3360 3361 /* convert to in_core endian */ 3362 bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect); 3363 for (i = UI_CURRENT; i < UI_SIZE; i++) 3364 bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]); 3365 bdev->md.flags = be32_to_cpu(buffer->flags); 3366 bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid); 3367 3368 bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect); 3369 bdev->md.al_offset = be32_to_cpu(buffer->al_offset); 3370 bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset); 3371 3372 if (check_activity_log_stripe_size(device, buffer, &bdev->md)) 3373 goto err; 3374 if (check_offsets_and_sizes(device, bdev)) 3375 goto err; 3376 3377 if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) { 3378 drbd_err(device, "unexpected bm_offset: %d (expected %d)\n", 3379 be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset); 3380 goto err; 3381 } 3382 if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) { 3383 drbd_err(device, "unexpected md_size: %u (expected %u)\n", 3384 be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect); 3385 goto err; 3386 } 3387 3388 rv = NO_ERROR; 3389 3390 spin_lock_irq(&device->resource->req_lock); 3391 if (device->state.conn < C_CONNECTED) { 3392 unsigned int peer; 3393 peer = be32_to_cpu(buffer->la_peer_max_bio_size); 3394 peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE); 3395 device->peer_max_bio_size = peer; 3396 } 3397 spin_unlock_irq(&device->resource->req_lock); 3398 3399 err: 3400 drbd_md_put_buffer(device); 3401 3402 return rv; 3403 } 3404 3405 /** 3406 * drbd_md_mark_dirty() - Mark meta data super block as dirty 3407 * @device: DRBD device. 3408 * 3409 * Call this function if you change anything that should be written to 3410 * the meta-data super block. This function sets MD_DIRTY, and starts a 3411 * timer that ensures that within five seconds you have to call drbd_md_sync(). 3412 */ 3413 #ifdef DEBUG 3414 void drbd_md_mark_dirty_(struct drbd_device *device, unsigned int line, const char *func) 3415 { 3416 if (!test_and_set_bit(MD_DIRTY, &device->flags)) { 3417 mod_timer(&device->md_sync_timer, jiffies + HZ); 3418 device->last_md_mark_dirty.line = line; 3419 device->last_md_mark_dirty.func = func; 3420 } 3421 } 3422 #else 3423 void drbd_md_mark_dirty(struct drbd_device *device) 3424 { 3425 if (!test_and_set_bit(MD_DIRTY, &device->flags)) 3426 mod_timer(&device->md_sync_timer, jiffies + 5*HZ); 3427 } 3428 #endif 3429 3430 void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local) 3431 { 3432 int i; 3433 3434 for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++) 3435 device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i]; 3436 } 3437 3438 void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local) 3439 { 3440 if (idx == UI_CURRENT) { 3441 if (device->state.role == R_PRIMARY) 3442 val |= 1; 3443 else 3444 val &= ~((u64)1); 3445 3446 drbd_set_ed_uuid(device, val); 3447 } 3448 3449 device->ldev->md.uuid[idx] = val; 3450 drbd_md_mark_dirty(device); 3451 } 3452 3453 void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local) 3454 { 3455 unsigned long flags; 3456 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags); 3457 __drbd_uuid_set(device, idx, val); 3458 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags); 3459 } 3460 3461 void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local) 3462 { 3463 unsigned long flags; 3464 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags); 3465 if (device->ldev->md.uuid[idx]) { 3466 drbd_uuid_move_history(device); 3467 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx]; 3468 } 3469 __drbd_uuid_set(device, idx, val); 3470 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags); 3471 } 3472 3473 /** 3474 * drbd_uuid_new_current() - Creates a new current UUID 3475 * @device: DRBD device. 3476 * 3477 * Creates a new current UUID, and rotates the old current UUID into 3478 * the bitmap slot. Causes an incremental resync upon next connect. 3479 */ 3480 void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local) 3481 { 3482 u64 val; 3483 unsigned long long bm_uuid; 3484 3485 get_random_bytes(&val, sizeof(u64)); 3486 3487 spin_lock_irq(&device->ldev->md.uuid_lock); 3488 bm_uuid = device->ldev->md.uuid[UI_BITMAP]; 3489 3490 if (bm_uuid) 3491 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid); 3492 3493 device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT]; 3494 __drbd_uuid_set(device, UI_CURRENT, val); 3495 spin_unlock_irq(&device->ldev->md.uuid_lock); 3496 3497 drbd_print_uuids(device, "new current UUID"); 3498 /* get it to stable storage _now_ */ 3499 drbd_md_sync(device); 3500 } 3501 3502 void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local) 3503 { 3504 unsigned long flags; 3505 if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0) 3506 return; 3507 3508 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags); 3509 if (val == 0) { 3510 drbd_uuid_move_history(device); 3511 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP]; 3512 device->ldev->md.uuid[UI_BITMAP] = 0; 3513 } else { 3514 unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP]; 3515 if (bm_uuid) 3516 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid); 3517 3518 device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1); 3519 } 3520 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags); 3521 3522 drbd_md_mark_dirty(device); 3523 } 3524 3525 /** 3526 * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io() 3527 * @device: DRBD device. 3528 * 3529 * Sets all bits in the bitmap and writes the whole bitmap to stable storage. 3530 */ 3531 int drbd_bmio_set_n_write(struct drbd_device *device) __must_hold(local) 3532 { 3533 int rv = -EIO; 3534 3535 drbd_md_set_flag(device, MDF_FULL_SYNC); 3536 drbd_md_sync(device); 3537 drbd_bm_set_all(device); 3538 3539 rv = drbd_bm_write(device); 3540 3541 if (!rv) { 3542 drbd_md_clear_flag(device, MDF_FULL_SYNC); 3543 drbd_md_sync(device); 3544 } 3545 3546 return rv; 3547 } 3548 3549 /** 3550 * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io() 3551 * @device: DRBD device. 3552 * 3553 * Clears all bits in the bitmap and writes the whole bitmap to stable storage. 3554 */ 3555 int drbd_bmio_clear_n_write(struct drbd_device *device) __must_hold(local) 3556 { 3557 drbd_resume_al(device); 3558 drbd_bm_clear_all(device); 3559 return drbd_bm_write(device); 3560 } 3561 3562 static int w_bitmap_io(struct drbd_work *w, int unused) 3563 { 3564 struct drbd_device *device = 3565 container_of(w, struct drbd_device, bm_io_work.w); 3566 struct bm_io_work *work = &device->bm_io_work; 3567 int rv = -EIO; 3568 3569 if (work->flags != BM_LOCKED_CHANGE_ALLOWED) { 3570 int cnt = atomic_read(&device->ap_bio_cnt); 3571 if (cnt) 3572 drbd_err(device, "FIXME: ap_bio_cnt %d, expected 0; queued for '%s'\n", 3573 cnt, work->why); 3574 } 3575 3576 if (get_ldev(device)) { 3577 drbd_bm_lock(device, work->why, work->flags); 3578 rv = work->io_fn(device); 3579 drbd_bm_unlock(device); 3580 put_ldev(device); 3581 } 3582 3583 clear_bit_unlock(BITMAP_IO, &device->flags); 3584 wake_up(&device->misc_wait); 3585 3586 if (work->done) 3587 work->done(device, rv); 3588 3589 clear_bit(BITMAP_IO_QUEUED, &device->flags); 3590 work->why = NULL; 3591 work->flags = 0; 3592 3593 return 0; 3594 } 3595 3596 /** 3597 * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap 3598 * @device: DRBD device. 3599 * @io_fn: IO callback to be called when bitmap IO is possible 3600 * @done: callback to be called after the bitmap IO was performed 3601 * @why: Descriptive text of the reason for doing the IO 3602 * 3603 * While IO on the bitmap happens we freeze application IO thus we ensure 3604 * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be 3605 * called from worker context. It MUST NOT be used while a previous such 3606 * work is still pending! 3607 * 3608 * Its worker function encloses the call of io_fn() by get_ldev() and 3609 * put_ldev(). 3610 */ 3611 void drbd_queue_bitmap_io(struct drbd_device *device, 3612 int (*io_fn)(struct drbd_device *), 3613 void (*done)(struct drbd_device *, int), 3614 char *why, enum bm_flag flags) 3615 { 3616 D_ASSERT(device, current == first_peer_device(device)->connection->worker.task); 3617 3618 D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags)); 3619 D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags)); 3620 D_ASSERT(device, list_empty(&device->bm_io_work.w.list)); 3621 if (device->bm_io_work.why) 3622 drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n", 3623 why, device->bm_io_work.why); 3624 3625 device->bm_io_work.io_fn = io_fn; 3626 device->bm_io_work.done = done; 3627 device->bm_io_work.why = why; 3628 device->bm_io_work.flags = flags; 3629 3630 spin_lock_irq(&device->resource->req_lock); 3631 set_bit(BITMAP_IO, &device->flags); 3632 /* don't wait for pending application IO if the caller indicates that 3633 * application IO does not conflict anyways. */ 3634 if (flags == BM_LOCKED_CHANGE_ALLOWED || atomic_read(&device->ap_bio_cnt) == 0) { 3635 if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags)) 3636 drbd_queue_work(&first_peer_device(device)->connection->sender_work, 3637 &device->bm_io_work.w); 3638 } 3639 spin_unlock_irq(&device->resource->req_lock); 3640 } 3641 3642 /** 3643 * drbd_bitmap_io() - Does an IO operation on the whole bitmap 3644 * @device: DRBD device. 3645 * @io_fn: IO callback to be called when bitmap IO is possible 3646 * @why: Descriptive text of the reason for doing the IO 3647 * 3648 * freezes application IO while that the actual IO operations runs. This 3649 * functions MAY NOT be called from worker context. 3650 */ 3651 int drbd_bitmap_io(struct drbd_device *device, int (*io_fn)(struct drbd_device *), 3652 char *why, enum bm_flag flags) 3653 { 3654 /* Only suspend io, if some operation is supposed to be locked out */ 3655 const bool do_suspend_io = flags & (BM_DONT_CLEAR|BM_DONT_SET|BM_DONT_TEST); 3656 int rv; 3657 3658 D_ASSERT(device, current != first_peer_device(device)->connection->worker.task); 3659 3660 if (do_suspend_io) 3661 drbd_suspend_io(device); 3662 3663 drbd_bm_lock(device, why, flags); 3664 rv = io_fn(device); 3665 drbd_bm_unlock(device); 3666 3667 if (do_suspend_io) 3668 drbd_resume_io(device); 3669 3670 return rv; 3671 } 3672 3673 void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local) 3674 { 3675 if ((device->ldev->md.flags & flag) != flag) { 3676 drbd_md_mark_dirty(device); 3677 device->ldev->md.flags |= flag; 3678 } 3679 } 3680 3681 void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local) 3682 { 3683 if ((device->ldev->md.flags & flag) != 0) { 3684 drbd_md_mark_dirty(device); 3685 device->ldev->md.flags &= ~flag; 3686 } 3687 } 3688 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag) 3689 { 3690 return (bdev->md.flags & flag) != 0; 3691 } 3692 3693 static void md_sync_timer_fn(struct timer_list *t) 3694 { 3695 struct drbd_device *device = from_timer(device, t, md_sync_timer); 3696 drbd_device_post_work(device, MD_SYNC); 3697 } 3698 3699 const char *cmdname(enum drbd_packet cmd) 3700 { 3701 /* THINK may need to become several global tables 3702 * when we want to support more than 3703 * one PRO_VERSION */ 3704 static const char *cmdnames[] = { 3705 [P_DATA] = "Data", 3706 [P_WSAME] = "WriteSame", 3707 [P_TRIM] = "Trim", 3708 [P_DATA_REPLY] = "DataReply", 3709 [P_RS_DATA_REPLY] = "RSDataReply", 3710 [P_BARRIER] = "Barrier", 3711 [P_BITMAP] = "ReportBitMap", 3712 [P_BECOME_SYNC_TARGET] = "BecomeSyncTarget", 3713 [P_BECOME_SYNC_SOURCE] = "BecomeSyncSource", 3714 [P_UNPLUG_REMOTE] = "UnplugRemote", 3715 [P_DATA_REQUEST] = "DataRequest", 3716 [P_RS_DATA_REQUEST] = "RSDataRequest", 3717 [P_SYNC_PARAM] = "SyncParam", 3718 [P_SYNC_PARAM89] = "SyncParam89", 3719 [P_PROTOCOL] = "ReportProtocol", 3720 [P_UUIDS] = "ReportUUIDs", 3721 [P_SIZES] = "ReportSizes", 3722 [P_STATE] = "ReportState", 3723 [P_SYNC_UUID] = "ReportSyncUUID", 3724 [P_AUTH_CHALLENGE] = "AuthChallenge", 3725 [P_AUTH_RESPONSE] = "AuthResponse", 3726 [P_PING] = "Ping", 3727 [P_PING_ACK] = "PingAck", 3728 [P_RECV_ACK] = "RecvAck", 3729 [P_WRITE_ACK] = "WriteAck", 3730 [P_RS_WRITE_ACK] = "RSWriteAck", 3731 [P_SUPERSEDED] = "Superseded", 3732 [P_NEG_ACK] = "NegAck", 3733 [P_NEG_DREPLY] = "NegDReply", 3734 [P_NEG_RS_DREPLY] = "NegRSDReply", 3735 [P_BARRIER_ACK] = "BarrierAck", 3736 [P_STATE_CHG_REQ] = "StateChgRequest", 3737 [P_STATE_CHG_REPLY] = "StateChgReply", 3738 [P_OV_REQUEST] = "OVRequest", 3739 [P_OV_REPLY] = "OVReply", 3740 [P_OV_RESULT] = "OVResult", 3741 [P_CSUM_RS_REQUEST] = "CsumRSRequest", 3742 [P_RS_IS_IN_SYNC] = "CsumRSIsInSync", 3743 [P_COMPRESSED_BITMAP] = "CBitmap", 3744 [P_DELAY_PROBE] = "DelayProbe", 3745 [P_OUT_OF_SYNC] = "OutOfSync", 3746 [P_RETRY_WRITE] = "RetryWrite", 3747 [P_RS_CANCEL] = "RSCancel", 3748 [P_CONN_ST_CHG_REQ] = "conn_st_chg_req", 3749 [P_CONN_ST_CHG_REPLY] = "conn_st_chg_reply", 3750 [P_RETRY_WRITE] = "retry_write", 3751 [P_PROTOCOL_UPDATE] = "protocol_update", 3752 [P_RS_THIN_REQ] = "rs_thin_req", 3753 [P_RS_DEALLOCATED] = "rs_deallocated", 3754 3755 /* enum drbd_packet, but not commands - obsoleted flags: 3756 * P_MAY_IGNORE 3757 * P_MAX_OPT_CMD 3758 */ 3759 }; 3760 3761 /* too big for the array: 0xfffX */ 3762 if (cmd == P_INITIAL_META) 3763 return "InitialMeta"; 3764 if (cmd == P_INITIAL_DATA) 3765 return "InitialData"; 3766 if (cmd == P_CONNECTION_FEATURES) 3767 return "ConnectionFeatures"; 3768 if (cmd >= ARRAY_SIZE(cmdnames)) 3769 return "Unknown"; 3770 return cmdnames[cmd]; 3771 } 3772 3773 /** 3774 * drbd_wait_misc - wait for a request to make progress 3775 * @device: device associated with the request 3776 * @i: the struct drbd_interval embedded in struct drbd_request or 3777 * struct drbd_peer_request 3778 */ 3779 int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i) 3780 { 3781 struct net_conf *nc; 3782 DEFINE_WAIT(wait); 3783 long timeout; 3784 3785 rcu_read_lock(); 3786 nc = rcu_dereference(first_peer_device(device)->connection->net_conf); 3787 if (!nc) { 3788 rcu_read_unlock(); 3789 return -ETIMEDOUT; 3790 } 3791 timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT; 3792 rcu_read_unlock(); 3793 3794 /* Indicate to wake up device->misc_wait on progress. */ 3795 i->waiting = true; 3796 prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE); 3797 spin_unlock_irq(&device->resource->req_lock); 3798 timeout = schedule_timeout(timeout); 3799 finish_wait(&device->misc_wait, &wait); 3800 spin_lock_irq(&device->resource->req_lock); 3801 if (!timeout || device->state.conn < C_CONNECTED) 3802 return -ETIMEDOUT; 3803 if (signal_pending(current)) 3804 return -ERESTARTSYS; 3805 return 0; 3806 } 3807 3808 void lock_all_resources(void) 3809 { 3810 struct drbd_resource *resource; 3811 int __maybe_unused i = 0; 3812 3813 mutex_lock(&resources_mutex); 3814 local_irq_disable(); 3815 for_each_resource(resource, &drbd_resources) 3816 spin_lock_nested(&resource->req_lock, i++); 3817 } 3818 3819 void unlock_all_resources(void) 3820 { 3821 struct drbd_resource *resource; 3822 3823 for_each_resource(resource, &drbd_resources) 3824 spin_unlock(&resource->req_lock); 3825 local_irq_enable(); 3826 mutex_unlock(&resources_mutex); 3827 } 3828 3829 #ifdef CONFIG_DRBD_FAULT_INJECTION 3830 /* Fault insertion support including random number generator shamelessly 3831 * stolen from kernel/rcutorture.c */ 3832 struct fault_random_state { 3833 unsigned long state; 3834 unsigned long count; 3835 }; 3836 3837 #define FAULT_RANDOM_MULT 39916801 /* prime */ 3838 #define FAULT_RANDOM_ADD 479001701 /* prime */ 3839 #define FAULT_RANDOM_REFRESH 10000 3840 3841 /* 3842 * Crude but fast random-number generator. Uses a linear congruential 3843 * generator, with occasional help from get_random_bytes(). 3844 */ 3845 static unsigned long 3846 _drbd_fault_random(struct fault_random_state *rsp) 3847 { 3848 long refresh; 3849 3850 if (!rsp->count--) { 3851 get_random_bytes(&refresh, sizeof(refresh)); 3852 rsp->state += refresh; 3853 rsp->count = FAULT_RANDOM_REFRESH; 3854 } 3855 rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD; 3856 return swahw32(rsp->state); 3857 } 3858 3859 static char * 3860 _drbd_fault_str(unsigned int type) { 3861 static char *_faults[] = { 3862 [DRBD_FAULT_MD_WR] = "Meta-data write", 3863 [DRBD_FAULT_MD_RD] = "Meta-data read", 3864 [DRBD_FAULT_RS_WR] = "Resync write", 3865 [DRBD_FAULT_RS_RD] = "Resync read", 3866 [DRBD_FAULT_DT_WR] = "Data write", 3867 [DRBD_FAULT_DT_RD] = "Data read", 3868 [DRBD_FAULT_DT_RA] = "Data read ahead", 3869 [DRBD_FAULT_BM_ALLOC] = "BM allocation", 3870 [DRBD_FAULT_AL_EE] = "EE allocation", 3871 [DRBD_FAULT_RECEIVE] = "receive data corruption", 3872 }; 3873 3874 return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**"; 3875 } 3876 3877 unsigned int 3878 _drbd_insert_fault(struct drbd_device *device, unsigned int type) 3879 { 3880 static struct fault_random_state rrs = {0, 0}; 3881 3882 unsigned int ret = ( 3883 (drbd_fault_devs == 0 || 3884 ((1 << device_to_minor(device)) & drbd_fault_devs) != 0) && 3885 (((_drbd_fault_random(&rrs) % 100) + 1) <= drbd_fault_rate)); 3886 3887 if (ret) { 3888 drbd_fault_count++; 3889 3890 if (__ratelimit(&drbd_ratelimit_state)) 3891 drbd_warn(device, "***Simulating %s failure\n", 3892 _drbd_fault_str(type)); 3893 } 3894 3895 return ret; 3896 } 3897 #endif 3898 3899 const char *drbd_buildtag(void) 3900 { 3901 /* DRBD built from external sources has here a reference to the 3902 git hash of the source code. */ 3903 3904 static char buildtag[38] = "\0uilt-in"; 3905 3906 if (buildtag[0] == 0) { 3907 #ifdef MODULE 3908 sprintf(buildtag, "srcversion: %-24s", THIS_MODULE->srcversion); 3909 #else 3910 buildtag[0] = 'b'; 3911 #endif 3912 } 3913 3914 return buildtag; 3915 } 3916 3917 module_init(drbd_init) 3918 module_exit(drbd_cleanup) 3919 3920 EXPORT_SYMBOL(drbd_conn_str); 3921 EXPORT_SYMBOL(drbd_role_str); 3922 EXPORT_SYMBOL(drbd_disk_str); 3923 EXPORT_SYMBOL(drbd_set_st_err_str); 3924