xref: /openbmc/linux/drivers/block/drbd/drbd_main.c (revision ee21014b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3    drbd.c
4 
5    This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
6 
7    Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
8    Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
9    Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
10 
11    Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev
12    from Logicworks, Inc. for making SDP replication support possible.
13 
14 
15  */
16 
17 #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
18 
19 #include <linux/module.h>
20 #include <linux/jiffies.h>
21 #include <linux/drbd.h>
22 #include <linux/uaccess.h>
23 #include <asm/types.h>
24 #include <net/sock.h>
25 #include <linux/ctype.h>
26 #include <linux/mutex.h>
27 #include <linux/fs.h>
28 #include <linux/file.h>
29 #include <linux/proc_fs.h>
30 #include <linux/init.h>
31 #include <linux/mm.h>
32 #include <linux/memcontrol.h>
33 #include <linux/mm_inline.h>
34 #include <linux/slab.h>
35 #include <linux/random.h>
36 #include <linux/reboot.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/workqueue.h>
40 #define __KERNEL_SYSCALLS__
41 #include <linux/unistd.h>
42 #include <linux/vmalloc.h>
43 #include <linux/sched/signal.h>
44 
45 #include <linux/drbd_limits.h>
46 #include "drbd_int.h"
47 #include "drbd_protocol.h"
48 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */
49 #include "drbd_vli.h"
50 #include "drbd_debugfs.h"
51 
52 static DEFINE_MUTEX(drbd_main_mutex);
53 static int drbd_open(struct block_device *bdev, fmode_t mode);
54 static void drbd_release(struct gendisk *gd, fmode_t mode);
55 static void md_sync_timer_fn(struct timer_list *t);
56 static int w_bitmap_io(struct drbd_work *w, int unused);
57 
58 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, "
59 	      "Lars Ellenberg <lars@linbit.com>");
60 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION);
61 MODULE_VERSION(REL_VERSION);
62 MODULE_LICENSE("GPL");
63 MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices ("
64 		 __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")");
65 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR);
66 
67 #include <linux/moduleparam.h>
68 /* thanks to these macros, if compiled into the kernel (not-module),
69  * these become boot parameters (e.g., drbd.minor_count) */
70 
71 #ifdef CONFIG_DRBD_FAULT_INJECTION
72 int drbd_enable_faults;
73 int drbd_fault_rate;
74 static int drbd_fault_count;
75 static int drbd_fault_devs;
76 /* bitmap of enabled faults */
77 module_param_named(enable_faults, drbd_enable_faults, int, 0664);
78 /* fault rate % value - applies to all enabled faults */
79 module_param_named(fault_rate, drbd_fault_rate, int, 0664);
80 /* count of faults inserted */
81 module_param_named(fault_count, drbd_fault_count, int, 0664);
82 /* bitmap of devices to insert faults on */
83 module_param_named(fault_devs, drbd_fault_devs, int, 0644);
84 #endif
85 
86 /* module parameters we can keep static */
87 static bool drbd_allow_oos; /* allow_open_on_secondary */
88 static bool drbd_disable_sendpage;
89 MODULE_PARM_DESC(allow_oos, "DONT USE!");
90 module_param_named(allow_oos, drbd_allow_oos, bool, 0);
91 module_param_named(disable_sendpage, drbd_disable_sendpage, bool, 0644);
92 
93 /* module parameters we share */
94 int drbd_proc_details; /* Detail level in proc drbd*/
95 module_param_named(proc_details, drbd_proc_details, int, 0644);
96 /* module parameters shared with defaults */
97 unsigned int drbd_minor_count = DRBD_MINOR_COUNT_DEF;
98 /* Module parameter for setting the user mode helper program
99  * to run. Default is /sbin/drbdadm */
100 char drbd_usermode_helper[80] = "/sbin/drbdadm";
101 module_param_named(minor_count, drbd_minor_count, uint, 0444);
102 module_param_string(usermode_helper, drbd_usermode_helper, sizeof(drbd_usermode_helper), 0644);
103 
104 /* in 2.6.x, our device mapping and config info contains our virtual gendisks
105  * as member "struct gendisk *vdisk;"
106  */
107 struct idr drbd_devices;
108 struct list_head drbd_resources;
109 struct mutex resources_mutex;
110 
111 struct kmem_cache *drbd_request_cache;
112 struct kmem_cache *drbd_ee_cache;	/* peer requests */
113 struct kmem_cache *drbd_bm_ext_cache;	/* bitmap extents */
114 struct kmem_cache *drbd_al_ext_cache;	/* activity log extents */
115 mempool_t drbd_request_mempool;
116 mempool_t drbd_ee_mempool;
117 mempool_t drbd_md_io_page_pool;
118 struct bio_set drbd_md_io_bio_set;
119 struct bio_set drbd_io_bio_set;
120 
121 /* I do not use a standard mempool, because:
122    1) I want to hand out the pre-allocated objects first.
123    2) I want to be able to interrupt sleeping allocation with a signal.
124    Note: This is a single linked list, the next pointer is the private
125 	 member of struct page.
126  */
127 struct page *drbd_pp_pool;
128 spinlock_t   drbd_pp_lock;
129 int          drbd_pp_vacant;
130 wait_queue_head_t drbd_pp_wait;
131 
132 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5);
133 
134 static const struct block_device_operations drbd_ops = {
135 	.owner		= THIS_MODULE,
136 	.submit_bio	= drbd_submit_bio,
137 	.open		= drbd_open,
138 	.release	= drbd_release,
139 };
140 
141 struct bio *bio_alloc_drbd(gfp_t gfp_mask)
142 {
143 	struct bio *bio;
144 
145 	if (!bioset_initialized(&drbd_md_io_bio_set))
146 		return bio_alloc(gfp_mask, 1);
147 
148 	bio = bio_alloc_bioset(gfp_mask, 1, &drbd_md_io_bio_set);
149 	if (!bio)
150 		return NULL;
151 	return bio;
152 }
153 
154 #ifdef __CHECKER__
155 /* When checking with sparse, and this is an inline function, sparse will
156    give tons of false positives. When this is a real functions sparse works.
157  */
158 int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins)
159 {
160 	int io_allowed;
161 
162 	atomic_inc(&device->local_cnt);
163 	io_allowed = (device->state.disk >= mins);
164 	if (!io_allowed) {
165 		if (atomic_dec_and_test(&device->local_cnt))
166 			wake_up(&device->misc_wait);
167 	}
168 	return io_allowed;
169 }
170 
171 #endif
172 
173 /**
174  * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch
175  * @connection:	DRBD connection.
176  * @barrier_nr:	Expected identifier of the DRBD write barrier packet.
177  * @set_size:	Expected number of requests before that barrier.
178  *
179  * In case the passed barrier_nr or set_size does not match the oldest
180  * epoch of not yet barrier-acked requests, this function will cause a
181  * termination of the connection.
182  */
183 void tl_release(struct drbd_connection *connection, unsigned int barrier_nr,
184 		unsigned int set_size)
185 {
186 	struct drbd_request *r;
187 	struct drbd_request *req = NULL;
188 	int expect_epoch = 0;
189 	int expect_size = 0;
190 
191 	spin_lock_irq(&connection->resource->req_lock);
192 
193 	/* find oldest not yet barrier-acked write request,
194 	 * count writes in its epoch. */
195 	list_for_each_entry(r, &connection->transfer_log, tl_requests) {
196 		const unsigned s = r->rq_state;
197 		if (!req) {
198 			if (!(s & RQ_WRITE))
199 				continue;
200 			if (!(s & RQ_NET_MASK))
201 				continue;
202 			if (s & RQ_NET_DONE)
203 				continue;
204 			req = r;
205 			expect_epoch = req->epoch;
206 			expect_size ++;
207 		} else {
208 			if (r->epoch != expect_epoch)
209 				break;
210 			if (!(s & RQ_WRITE))
211 				continue;
212 			/* if (s & RQ_DONE): not expected */
213 			/* if (!(s & RQ_NET_MASK)): not expected */
214 			expect_size++;
215 		}
216 	}
217 
218 	/* first some paranoia code */
219 	if (req == NULL) {
220 		drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n",
221 			 barrier_nr);
222 		goto bail;
223 	}
224 	if (expect_epoch != barrier_nr) {
225 		drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n",
226 			 barrier_nr, expect_epoch);
227 		goto bail;
228 	}
229 
230 	if (expect_size != set_size) {
231 		drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n",
232 			 barrier_nr, set_size, expect_size);
233 		goto bail;
234 	}
235 
236 	/* Clean up list of requests processed during current epoch. */
237 	/* this extra list walk restart is paranoia,
238 	 * to catch requests being barrier-acked "unexpectedly".
239 	 * It usually should find the same req again, or some READ preceding it. */
240 	list_for_each_entry(req, &connection->transfer_log, tl_requests)
241 		if (req->epoch == expect_epoch)
242 			break;
243 	list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) {
244 		if (req->epoch != expect_epoch)
245 			break;
246 		_req_mod(req, BARRIER_ACKED);
247 	}
248 	spin_unlock_irq(&connection->resource->req_lock);
249 
250 	return;
251 
252 bail:
253 	spin_unlock_irq(&connection->resource->req_lock);
254 	conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
255 }
256 
257 
258 /**
259  * _tl_restart() - Walks the transfer log, and applies an action to all requests
260  * @connection:	DRBD connection to operate on.
261  * @what:       The action/event to perform with all request objects
262  *
263  * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO,
264  * RESTART_FROZEN_DISK_IO.
265  */
266 /* must hold resource->req_lock */
267 void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
268 {
269 	struct drbd_request *req, *r;
270 
271 	list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests)
272 		_req_mod(req, what);
273 }
274 
275 void tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
276 {
277 	spin_lock_irq(&connection->resource->req_lock);
278 	_tl_restart(connection, what);
279 	spin_unlock_irq(&connection->resource->req_lock);
280 }
281 
282 /**
283  * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL
284  * @device:	DRBD device.
285  *
286  * This is called after the connection to the peer was lost. The storage covered
287  * by the requests on the transfer gets marked as our of sync. Called from the
288  * receiver thread and the worker thread.
289  */
290 void tl_clear(struct drbd_connection *connection)
291 {
292 	tl_restart(connection, CONNECTION_LOST_WHILE_PENDING);
293 }
294 
295 /**
296  * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL
297  * @device:	DRBD device.
298  */
299 void tl_abort_disk_io(struct drbd_device *device)
300 {
301 	struct drbd_connection *connection = first_peer_device(device)->connection;
302 	struct drbd_request *req, *r;
303 
304 	spin_lock_irq(&connection->resource->req_lock);
305 	list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) {
306 		if (!(req->rq_state & RQ_LOCAL_PENDING))
307 			continue;
308 		if (req->device != device)
309 			continue;
310 		_req_mod(req, ABORT_DISK_IO);
311 	}
312 	spin_unlock_irq(&connection->resource->req_lock);
313 }
314 
315 static int drbd_thread_setup(void *arg)
316 {
317 	struct drbd_thread *thi = (struct drbd_thread *) arg;
318 	struct drbd_resource *resource = thi->resource;
319 	unsigned long flags;
320 	int retval;
321 
322 	snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s",
323 		 thi->name[0],
324 		 resource->name);
325 
326 	allow_kernel_signal(DRBD_SIGKILL);
327 	allow_kernel_signal(SIGXCPU);
328 restart:
329 	retval = thi->function(thi);
330 
331 	spin_lock_irqsave(&thi->t_lock, flags);
332 
333 	/* if the receiver has been "EXITING", the last thing it did
334 	 * was set the conn state to "StandAlone",
335 	 * if now a re-connect request comes in, conn state goes C_UNCONNECTED,
336 	 * and receiver thread will be "started".
337 	 * drbd_thread_start needs to set "RESTARTING" in that case.
338 	 * t_state check and assignment needs to be within the same spinlock,
339 	 * so either thread_start sees EXITING, and can remap to RESTARTING,
340 	 * or thread_start see NONE, and can proceed as normal.
341 	 */
342 
343 	if (thi->t_state == RESTARTING) {
344 		drbd_info(resource, "Restarting %s thread\n", thi->name);
345 		thi->t_state = RUNNING;
346 		spin_unlock_irqrestore(&thi->t_lock, flags);
347 		goto restart;
348 	}
349 
350 	thi->task = NULL;
351 	thi->t_state = NONE;
352 	smp_mb();
353 	complete_all(&thi->stop);
354 	spin_unlock_irqrestore(&thi->t_lock, flags);
355 
356 	drbd_info(resource, "Terminating %s\n", current->comm);
357 
358 	/* Release mod reference taken when thread was started */
359 
360 	if (thi->connection)
361 		kref_put(&thi->connection->kref, drbd_destroy_connection);
362 	kref_put(&resource->kref, drbd_destroy_resource);
363 	module_put(THIS_MODULE);
364 	return retval;
365 }
366 
367 static void drbd_thread_init(struct drbd_resource *resource, struct drbd_thread *thi,
368 			     int (*func) (struct drbd_thread *), const char *name)
369 {
370 	spin_lock_init(&thi->t_lock);
371 	thi->task    = NULL;
372 	thi->t_state = NONE;
373 	thi->function = func;
374 	thi->resource = resource;
375 	thi->connection = NULL;
376 	thi->name = name;
377 }
378 
379 int drbd_thread_start(struct drbd_thread *thi)
380 {
381 	struct drbd_resource *resource = thi->resource;
382 	struct task_struct *nt;
383 	unsigned long flags;
384 
385 	/* is used from state engine doing drbd_thread_stop_nowait,
386 	 * while holding the req lock irqsave */
387 	spin_lock_irqsave(&thi->t_lock, flags);
388 
389 	switch (thi->t_state) {
390 	case NONE:
391 		drbd_info(resource, "Starting %s thread (from %s [%d])\n",
392 			 thi->name, current->comm, current->pid);
393 
394 		/* Get ref on module for thread - this is released when thread exits */
395 		if (!try_module_get(THIS_MODULE)) {
396 			drbd_err(resource, "Failed to get module reference in drbd_thread_start\n");
397 			spin_unlock_irqrestore(&thi->t_lock, flags);
398 			return false;
399 		}
400 
401 		kref_get(&resource->kref);
402 		if (thi->connection)
403 			kref_get(&thi->connection->kref);
404 
405 		init_completion(&thi->stop);
406 		thi->reset_cpu_mask = 1;
407 		thi->t_state = RUNNING;
408 		spin_unlock_irqrestore(&thi->t_lock, flags);
409 		flush_signals(current); /* otherw. may get -ERESTARTNOINTR */
410 
411 		nt = kthread_create(drbd_thread_setup, (void *) thi,
412 				    "drbd_%c_%s", thi->name[0], thi->resource->name);
413 
414 		if (IS_ERR(nt)) {
415 			drbd_err(resource, "Couldn't start thread\n");
416 
417 			if (thi->connection)
418 				kref_put(&thi->connection->kref, drbd_destroy_connection);
419 			kref_put(&resource->kref, drbd_destroy_resource);
420 			module_put(THIS_MODULE);
421 			return false;
422 		}
423 		spin_lock_irqsave(&thi->t_lock, flags);
424 		thi->task = nt;
425 		thi->t_state = RUNNING;
426 		spin_unlock_irqrestore(&thi->t_lock, flags);
427 		wake_up_process(nt);
428 		break;
429 	case EXITING:
430 		thi->t_state = RESTARTING;
431 		drbd_info(resource, "Restarting %s thread (from %s [%d])\n",
432 				thi->name, current->comm, current->pid);
433 		/* fall through */
434 	case RUNNING:
435 	case RESTARTING:
436 	default:
437 		spin_unlock_irqrestore(&thi->t_lock, flags);
438 		break;
439 	}
440 
441 	return true;
442 }
443 
444 
445 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait)
446 {
447 	unsigned long flags;
448 
449 	enum drbd_thread_state ns = restart ? RESTARTING : EXITING;
450 
451 	/* may be called from state engine, holding the req lock irqsave */
452 	spin_lock_irqsave(&thi->t_lock, flags);
453 
454 	if (thi->t_state == NONE) {
455 		spin_unlock_irqrestore(&thi->t_lock, flags);
456 		if (restart)
457 			drbd_thread_start(thi);
458 		return;
459 	}
460 
461 	if (thi->t_state != ns) {
462 		if (thi->task == NULL) {
463 			spin_unlock_irqrestore(&thi->t_lock, flags);
464 			return;
465 		}
466 
467 		thi->t_state = ns;
468 		smp_mb();
469 		init_completion(&thi->stop);
470 		if (thi->task != current)
471 			send_sig(DRBD_SIGKILL, thi->task, 1);
472 	}
473 
474 	spin_unlock_irqrestore(&thi->t_lock, flags);
475 
476 	if (wait)
477 		wait_for_completion(&thi->stop);
478 }
479 
480 int conn_lowest_minor(struct drbd_connection *connection)
481 {
482 	struct drbd_peer_device *peer_device;
483 	int vnr = 0, minor = -1;
484 
485 	rcu_read_lock();
486 	peer_device = idr_get_next(&connection->peer_devices, &vnr);
487 	if (peer_device)
488 		minor = device_to_minor(peer_device->device);
489 	rcu_read_unlock();
490 
491 	return minor;
492 }
493 
494 #ifdef CONFIG_SMP
495 /**
496  * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs
497  *
498  * Forces all threads of a resource onto the same CPU. This is beneficial for
499  * DRBD's performance. May be overwritten by user's configuration.
500  */
501 static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask)
502 {
503 	unsigned int *resources_per_cpu, min_index = ~0;
504 
505 	resources_per_cpu = kcalloc(nr_cpu_ids, sizeof(*resources_per_cpu),
506 				    GFP_KERNEL);
507 	if (resources_per_cpu) {
508 		struct drbd_resource *resource;
509 		unsigned int cpu, min = ~0;
510 
511 		rcu_read_lock();
512 		for_each_resource_rcu(resource, &drbd_resources) {
513 			for_each_cpu(cpu, resource->cpu_mask)
514 				resources_per_cpu[cpu]++;
515 		}
516 		rcu_read_unlock();
517 		for_each_online_cpu(cpu) {
518 			if (resources_per_cpu[cpu] < min) {
519 				min = resources_per_cpu[cpu];
520 				min_index = cpu;
521 			}
522 		}
523 		kfree(resources_per_cpu);
524 	}
525 	if (min_index == ~0) {
526 		cpumask_setall(*cpu_mask);
527 		return;
528 	}
529 	cpumask_set_cpu(min_index, *cpu_mask);
530 }
531 
532 /**
533  * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread
534  * @device:	DRBD device.
535  * @thi:	drbd_thread object
536  *
537  * call in the "main loop" of _all_ threads, no need for any mutex, current won't die
538  * prematurely.
539  */
540 void drbd_thread_current_set_cpu(struct drbd_thread *thi)
541 {
542 	struct drbd_resource *resource = thi->resource;
543 	struct task_struct *p = current;
544 
545 	if (!thi->reset_cpu_mask)
546 		return;
547 	thi->reset_cpu_mask = 0;
548 	set_cpus_allowed_ptr(p, resource->cpu_mask);
549 }
550 #else
551 #define drbd_calc_cpu_mask(A) ({})
552 #endif
553 
554 /**
555  * drbd_header_size  -  size of a packet header
556  *
557  * The header size is a multiple of 8, so any payload following the header is
558  * word aligned on 64-bit architectures.  (The bitmap send and receive code
559  * relies on this.)
560  */
561 unsigned int drbd_header_size(struct drbd_connection *connection)
562 {
563 	if (connection->agreed_pro_version >= 100) {
564 		BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8));
565 		return sizeof(struct p_header100);
566 	} else {
567 		BUILD_BUG_ON(sizeof(struct p_header80) !=
568 			     sizeof(struct p_header95));
569 		BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8));
570 		return sizeof(struct p_header80);
571 	}
572 }
573 
574 static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size)
575 {
576 	h->magic   = cpu_to_be32(DRBD_MAGIC);
577 	h->command = cpu_to_be16(cmd);
578 	h->length  = cpu_to_be16(size);
579 	return sizeof(struct p_header80);
580 }
581 
582 static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size)
583 {
584 	h->magic   = cpu_to_be16(DRBD_MAGIC_BIG);
585 	h->command = cpu_to_be16(cmd);
586 	h->length = cpu_to_be32(size);
587 	return sizeof(struct p_header95);
588 }
589 
590 static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd,
591 				      int size, int vnr)
592 {
593 	h->magic = cpu_to_be32(DRBD_MAGIC_100);
594 	h->volume = cpu_to_be16(vnr);
595 	h->command = cpu_to_be16(cmd);
596 	h->length = cpu_to_be32(size);
597 	h->pad = 0;
598 	return sizeof(struct p_header100);
599 }
600 
601 static unsigned int prepare_header(struct drbd_connection *connection, int vnr,
602 				   void *buffer, enum drbd_packet cmd, int size)
603 {
604 	if (connection->agreed_pro_version >= 100)
605 		return prepare_header100(buffer, cmd, size, vnr);
606 	else if (connection->agreed_pro_version >= 95 &&
607 		 size > DRBD_MAX_SIZE_H80_PACKET)
608 		return prepare_header95(buffer, cmd, size);
609 	else
610 		return prepare_header80(buffer, cmd, size);
611 }
612 
613 static void *__conn_prepare_command(struct drbd_connection *connection,
614 				    struct drbd_socket *sock)
615 {
616 	if (!sock->socket)
617 		return NULL;
618 	return sock->sbuf + drbd_header_size(connection);
619 }
620 
621 void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock)
622 {
623 	void *p;
624 
625 	mutex_lock(&sock->mutex);
626 	p = __conn_prepare_command(connection, sock);
627 	if (!p)
628 		mutex_unlock(&sock->mutex);
629 
630 	return p;
631 }
632 
633 void *drbd_prepare_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock)
634 {
635 	return conn_prepare_command(peer_device->connection, sock);
636 }
637 
638 static int __send_command(struct drbd_connection *connection, int vnr,
639 			  struct drbd_socket *sock, enum drbd_packet cmd,
640 			  unsigned int header_size, void *data,
641 			  unsigned int size)
642 {
643 	int msg_flags;
644 	int err;
645 
646 	/*
647 	 * Called with @data == NULL and the size of the data blocks in @size
648 	 * for commands that send data blocks.  For those commands, omit the
649 	 * MSG_MORE flag: this will increase the likelihood that data blocks
650 	 * which are page aligned on the sender will end up page aligned on the
651 	 * receiver.
652 	 */
653 	msg_flags = data ? MSG_MORE : 0;
654 
655 	header_size += prepare_header(connection, vnr, sock->sbuf, cmd,
656 				      header_size + size);
657 	err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size,
658 			    msg_flags);
659 	if (data && !err)
660 		err = drbd_send_all(connection, sock->socket, data, size, 0);
661 	/* DRBD protocol "pings" are latency critical.
662 	 * This is supposed to trigger tcp_push_pending_frames() */
663 	if (!err && (cmd == P_PING || cmd == P_PING_ACK))
664 		tcp_sock_set_nodelay(sock->socket->sk);
665 
666 	return err;
667 }
668 
669 static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
670 			       enum drbd_packet cmd, unsigned int header_size,
671 			       void *data, unsigned int size)
672 {
673 	return __send_command(connection, 0, sock, cmd, header_size, data, size);
674 }
675 
676 int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
677 		      enum drbd_packet cmd, unsigned int header_size,
678 		      void *data, unsigned int size)
679 {
680 	int err;
681 
682 	err = __conn_send_command(connection, sock, cmd, header_size, data, size);
683 	mutex_unlock(&sock->mutex);
684 	return err;
685 }
686 
687 int drbd_send_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock,
688 		      enum drbd_packet cmd, unsigned int header_size,
689 		      void *data, unsigned int size)
690 {
691 	int err;
692 
693 	err = __send_command(peer_device->connection, peer_device->device->vnr,
694 			     sock, cmd, header_size, data, size);
695 	mutex_unlock(&sock->mutex);
696 	return err;
697 }
698 
699 int drbd_send_ping(struct drbd_connection *connection)
700 {
701 	struct drbd_socket *sock;
702 
703 	sock = &connection->meta;
704 	if (!conn_prepare_command(connection, sock))
705 		return -EIO;
706 	return conn_send_command(connection, sock, P_PING, 0, NULL, 0);
707 }
708 
709 int drbd_send_ping_ack(struct drbd_connection *connection)
710 {
711 	struct drbd_socket *sock;
712 
713 	sock = &connection->meta;
714 	if (!conn_prepare_command(connection, sock))
715 		return -EIO;
716 	return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0);
717 }
718 
719 int drbd_send_sync_param(struct drbd_peer_device *peer_device)
720 {
721 	struct drbd_socket *sock;
722 	struct p_rs_param_95 *p;
723 	int size;
724 	const int apv = peer_device->connection->agreed_pro_version;
725 	enum drbd_packet cmd;
726 	struct net_conf *nc;
727 	struct disk_conf *dc;
728 
729 	sock = &peer_device->connection->data;
730 	p = drbd_prepare_command(peer_device, sock);
731 	if (!p)
732 		return -EIO;
733 
734 	rcu_read_lock();
735 	nc = rcu_dereference(peer_device->connection->net_conf);
736 
737 	size = apv <= 87 ? sizeof(struct p_rs_param)
738 		: apv == 88 ? sizeof(struct p_rs_param)
739 			+ strlen(nc->verify_alg) + 1
740 		: apv <= 94 ? sizeof(struct p_rs_param_89)
741 		: /* apv >= 95 */ sizeof(struct p_rs_param_95);
742 
743 	cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM;
744 
745 	/* initialize verify_alg and csums_alg */
746 	memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX);
747 
748 	if (get_ldev(peer_device->device)) {
749 		dc = rcu_dereference(peer_device->device->ldev->disk_conf);
750 		p->resync_rate = cpu_to_be32(dc->resync_rate);
751 		p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead);
752 		p->c_delay_target = cpu_to_be32(dc->c_delay_target);
753 		p->c_fill_target = cpu_to_be32(dc->c_fill_target);
754 		p->c_max_rate = cpu_to_be32(dc->c_max_rate);
755 		put_ldev(peer_device->device);
756 	} else {
757 		p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF);
758 		p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF);
759 		p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF);
760 		p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF);
761 		p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF);
762 	}
763 
764 	if (apv >= 88)
765 		strcpy(p->verify_alg, nc->verify_alg);
766 	if (apv >= 89)
767 		strcpy(p->csums_alg, nc->csums_alg);
768 	rcu_read_unlock();
769 
770 	return drbd_send_command(peer_device, sock, cmd, size, NULL, 0);
771 }
772 
773 int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd)
774 {
775 	struct drbd_socket *sock;
776 	struct p_protocol *p;
777 	struct net_conf *nc;
778 	int size, cf;
779 
780 	sock = &connection->data;
781 	p = __conn_prepare_command(connection, sock);
782 	if (!p)
783 		return -EIO;
784 
785 	rcu_read_lock();
786 	nc = rcu_dereference(connection->net_conf);
787 
788 	if (nc->tentative && connection->agreed_pro_version < 92) {
789 		rcu_read_unlock();
790 		drbd_err(connection, "--dry-run is not supported by peer");
791 		return -EOPNOTSUPP;
792 	}
793 
794 	size = sizeof(*p);
795 	if (connection->agreed_pro_version >= 87)
796 		size += strlen(nc->integrity_alg) + 1;
797 
798 	p->protocol      = cpu_to_be32(nc->wire_protocol);
799 	p->after_sb_0p   = cpu_to_be32(nc->after_sb_0p);
800 	p->after_sb_1p   = cpu_to_be32(nc->after_sb_1p);
801 	p->after_sb_2p   = cpu_to_be32(nc->after_sb_2p);
802 	p->two_primaries = cpu_to_be32(nc->two_primaries);
803 	cf = 0;
804 	if (nc->discard_my_data)
805 		cf |= CF_DISCARD_MY_DATA;
806 	if (nc->tentative)
807 		cf |= CF_DRY_RUN;
808 	p->conn_flags    = cpu_to_be32(cf);
809 
810 	if (connection->agreed_pro_version >= 87)
811 		strcpy(p->integrity_alg, nc->integrity_alg);
812 	rcu_read_unlock();
813 
814 	return __conn_send_command(connection, sock, cmd, size, NULL, 0);
815 }
816 
817 int drbd_send_protocol(struct drbd_connection *connection)
818 {
819 	int err;
820 
821 	mutex_lock(&connection->data.mutex);
822 	err = __drbd_send_protocol(connection, P_PROTOCOL);
823 	mutex_unlock(&connection->data.mutex);
824 
825 	return err;
826 }
827 
828 static int _drbd_send_uuids(struct drbd_peer_device *peer_device, u64 uuid_flags)
829 {
830 	struct drbd_device *device = peer_device->device;
831 	struct drbd_socket *sock;
832 	struct p_uuids *p;
833 	int i;
834 
835 	if (!get_ldev_if_state(device, D_NEGOTIATING))
836 		return 0;
837 
838 	sock = &peer_device->connection->data;
839 	p = drbd_prepare_command(peer_device, sock);
840 	if (!p) {
841 		put_ldev(device);
842 		return -EIO;
843 	}
844 	spin_lock_irq(&device->ldev->md.uuid_lock);
845 	for (i = UI_CURRENT; i < UI_SIZE; i++)
846 		p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
847 	spin_unlock_irq(&device->ldev->md.uuid_lock);
848 
849 	device->comm_bm_set = drbd_bm_total_weight(device);
850 	p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set);
851 	rcu_read_lock();
852 	uuid_flags |= rcu_dereference(peer_device->connection->net_conf)->discard_my_data ? 1 : 0;
853 	rcu_read_unlock();
854 	uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0;
855 	uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0;
856 	p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags);
857 
858 	put_ldev(device);
859 	return drbd_send_command(peer_device, sock, P_UUIDS, sizeof(*p), NULL, 0);
860 }
861 
862 int drbd_send_uuids(struct drbd_peer_device *peer_device)
863 {
864 	return _drbd_send_uuids(peer_device, 0);
865 }
866 
867 int drbd_send_uuids_skip_initial_sync(struct drbd_peer_device *peer_device)
868 {
869 	return _drbd_send_uuids(peer_device, 8);
870 }
871 
872 void drbd_print_uuids(struct drbd_device *device, const char *text)
873 {
874 	if (get_ldev_if_state(device, D_NEGOTIATING)) {
875 		u64 *uuid = device->ldev->md.uuid;
876 		drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n",
877 		     text,
878 		     (unsigned long long)uuid[UI_CURRENT],
879 		     (unsigned long long)uuid[UI_BITMAP],
880 		     (unsigned long long)uuid[UI_HISTORY_START],
881 		     (unsigned long long)uuid[UI_HISTORY_END]);
882 		put_ldev(device);
883 	} else {
884 		drbd_info(device, "%s effective data uuid: %016llX\n",
885 				text,
886 				(unsigned long long)device->ed_uuid);
887 	}
888 }
889 
890 void drbd_gen_and_send_sync_uuid(struct drbd_peer_device *peer_device)
891 {
892 	struct drbd_device *device = peer_device->device;
893 	struct drbd_socket *sock;
894 	struct p_rs_uuid *p;
895 	u64 uuid;
896 
897 	D_ASSERT(device, device->state.disk == D_UP_TO_DATE);
898 
899 	uuid = device->ldev->md.uuid[UI_BITMAP];
900 	if (uuid && uuid != UUID_JUST_CREATED)
901 		uuid = uuid + UUID_NEW_BM_OFFSET;
902 	else
903 		get_random_bytes(&uuid, sizeof(u64));
904 	drbd_uuid_set(device, UI_BITMAP, uuid);
905 	drbd_print_uuids(device, "updated sync UUID");
906 	drbd_md_sync(device);
907 
908 	sock = &peer_device->connection->data;
909 	p = drbd_prepare_command(peer_device, sock);
910 	if (p) {
911 		p->uuid = cpu_to_be64(uuid);
912 		drbd_send_command(peer_device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0);
913 	}
914 }
915 
916 /* communicated if (agreed_features & DRBD_FF_WSAME) */
917 static void
918 assign_p_sizes_qlim(struct drbd_device *device, struct p_sizes *p,
919 					struct request_queue *q)
920 {
921 	if (q) {
922 		p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q));
923 		p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q));
924 		p->qlim->alignment_offset = cpu_to_be32(queue_alignment_offset(q));
925 		p->qlim->io_min = cpu_to_be32(queue_io_min(q));
926 		p->qlim->io_opt = cpu_to_be32(queue_io_opt(q));
927 		p->qlim->discard_enabled = blk_queue_discard(q);
928 		p->qlim->write_same_capable = !!q->limits.max_write_same_sectors;
929 	} else {
930 		q = device->rq_queue;
931 		p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q));
932 		p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q));
933 		p->qlim->alignment_offset = 0;
934 		p->qlim->io_min = cpu_to_be32(queue_io_min(q));
935 		p->qlim->io_opt = cpu_to_be32(queue_io_opt(q));
936 		p->qlim->discard_enabled = 0;
937 		p->qlim->write_same_capable = 0;
938 	}
939 }
940 
941 int drbd_send_sizes(struct drbd_peer_device *peer_device, int trigger_reply, enum dds_flags flags)
942 {
943 	struct drbd_device *device = peer_device->device;
944 	struct drbd_socket *sock;
945 	struct p_sizes *p;
946 	sector_t d_size, u_size;
947 	int q_order_type;
948 	unsigned int max_bio_size;
949 	unsigned int packet_size;
950 
951 	sock = &peer_device->connection->data;
952 	p = drbd_prepare_command(peer_device, sock);
953 	if (!p)
954 		return -EIO;
955 
956 	packet_size = sizeof(*p);
957 	if (peer_device->connection->agreed_features & DRBD_FF_WSAME)
958 		packet_size += sizeof(p->qlim[0]);
959 
960 	memset(p, 0, packet_size);
961 	if (get_ldev_if_state(device, D_NEGOTIATING)) {
962 		struct request_queue *q = bdev_get_queue(device->ldev->backing_bdev);
963 		d_size = drbd_get_max_capacity(device->ldev);
964 		rcu_read_lock();
965 		u_size = rcu_dereference(device->ldev->disk_conf)->disk_size;
966 		rcu_read_unlock();
967 		q_order_type = drbd_queue_order_type(device);
968 		max_bio_size = queue_max_hw_sectors(q) << 9;
969 		max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE);
970 		assign_p_sizes_qlim(device, p, q);
971 		put_ldev(device);
972 	} else {
973 		d_size = 0;
974 		u_size = 0;
975 		q_order_type = QUEUE_ORDERED_NONE;
976 		max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */
977 		assign_p_sizes_qlim(device, p, NULL);
978 	}
979 
980 	if (peer_device->connection->agreed_pro_version <= 94)
981 		max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET);
982 	else if (peer_device->connection->agreed_pro_version < 100)
983 		max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95);
984 
985 	p->d_size = cpu_to_be64(d_size);
986 	p->u_size = cpu_to_be64(u_size);
987 	p->c_size = cpu_to_be64(trigger_reply ? 0 : drbd_get_capacity(device->this_bdev));
988 	p->max_bio_size = cpu_to_be32(max_bio_size);
989 	p->queue_order_type = cpu_to_be16(q_order_type);
990 	p->dds_flags = cpu_to_be16(flags);
991 
992 	return drbd_send_command(peer_device, sock, P_SIZES, packet_size, NULL, 0);
993 }
994 
995 /**
996  * drbd_send_current_state() - Sends the drbd state to the peer
997  * @peer_device:	DRBD peer device.
998  */
999 int drbd_send_current_state(struct drbd_peer_device *peer_device)
1000 {
1001 	struct drbd_socket *sock;
1002 	struct p_state *p;
1003 
1004 	sock = &peer_device->connection->data;
1005 	p = drbd_prepare_command(peer_device, sock);
1006 	if (!p)
1007 		return -EIO;
1008 	p->state = cpu_to_be32(peer_device->device->state.i); /* Within the send mutex */
1009 	return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1010 }
1011 
1012 /**
1013  * drbd_send_state() - After a state change, sends the new state to the peer
1014  * @peer_device:      DRBD peer device.
1015  * @state:     the state to send, not necessarily the current state.
1016  *
1017  * Each state change queues an "after_state_ch" work, which will eventually
1018  * send the resulting new state to the peer. If more state changes happen
1019  * between queuing and processing of the after_state_ch work, we still
1020  * want to send each intermediary state in the order it occurred.
1021  */
1022 int drbd_send_state(struct drbd_peer_device *peer_device, union drbd_state state)
1023 {
1024 	struct drbd_socket *sock;
1025 	struct p_state *p;
1026 
1027 	sock = &peer_device->connection->data;
1028 	p = drbd_prepare_command(peer_device, sock);
1029 	if (!p)
1030 		return -EIO;
1031 	p->state = cpu_to_be32(state.i); /* Within the send mutex */
1032 	return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1033 }
1034 
1035 int drbd_send_state_req(struct drbd_peer_device *peer_device, union drbd_state mask, union drbd_state val)
1036 {
1037 	struct drbd_socket *sock;
1038 	struct p_req_state *p;
1039 
1040 	sock = &peer_device->connection->data;
1041 	p = drbd_prepare_command(peer_device, sock);
1042 	if (!p)
1043 		return -EIO;
1044 	p->mask = cpu_to_be32(mask.i);
1045 	p->val = cpu_to_be32(val.i);
1046 	return drbd_send_command(peer_device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0);
1047 }
1048 
1049 int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val)
1050 {
1051 	enum drbd_packet cmd;
1052 	struct drbd_socket *sock;
1053 	struct p_req_state *p;
1054 
1055 	cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ;
1056 	sock = &connection->data;
1057 	p = conn_prepare_command(connection, sock);
1058 	if (!p)
1059 		return -EIO;
1060 	p->mask = cpu_to_be32(mask.i);
1061 	p->val = cpu_to_be32(val.i);
1062 	return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1063 }
1064 
1065 void drbd_send_sr_reply(struct drbd_peer_device *peer_device, enum drbd_state_rv retcode)
1066 {
1067 	struct drbd_socket *sock;
1068 	struct p_req_state_reply *p;
1069 
1070 	sock = &peer_device->connection->meta;
1071 	p = drbd_prepare_command(peer_device, sock);
1072 	if (p) {
1073 		p->retcode = cpu_to_be32(retcode);
1074 		drbd_send_command(peer_device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0);
1075 	}
1076 }
1077 
1078 void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode)
1079 {
1080 	struct drbd_socket *sock;
1081 	struct p_req_state_reply *p;
1082 	enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY;
1083 
1084 	sock = &connection->meta;
1085 	p = conn_prepare_command(connection, sock);
1086 	if (p) {
1087 		p->retcode = cpu_to_be32(retcode);
1088 		conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1089 	}
1090 }
1091 
1092 static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code)
1093 {
1094 	BUG_ON(code & ~0xf);
1095 	p->encoding = (p->encoding & ~0xf) | code;
1096 }
1097 
1098 static void dcbp_set_start(struct p_compressed_bm *p, int set)
1099 {
1100 	p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0);
1101 }
1102 
1103 static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n)
1104 {
1105 	BUG_ON(n & ~0x7);
1106 	p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4);
1107 }
1108 
1109 static int fill_bitmap_rle_bits(struct drbd_device *device,
1110 			 struct p_compressed_bm *p,
1111 			 unsigned int size,
1112 			 struct bm_xfer_ctx *c)
1113 {
1114 	struct bitstream bs;
1115 	unsigned long plain_bits;
1116 	unsigned long tmp;
1117 	unsigned long rl;
1118 	unsigned len;
1119 	unsigned toggle;
1120 	int bits, use_rle;
1121 
1122 	/* may we use this feature? */
1123 	rcu_read_lock();
1124 	use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle;
1125 	rcu_read_unlock();
1126 	if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90)
1127 		return 0;
1128 
1129 	if (c->bit_offset >= c->bm_bits)
1130 		return 0; /* nothing to do. */
1131 
1132 	/* use at most thus many bytes */
1133 	bitstream_init(&bs, p->code, size, 0);
1134 	memset(p->code, 0, size);
1135 	/* plain bits covered in this code string */
1136 	plain_bits = 0;
1137 
1138 	/* p->encoding & 0x80 stores whether the first run length is set.
1139 	 * bit offset is implicit.
1140 	 * start with toggle == 2 to be able to tell the first iteration */
1141 	toggle = 2;
1142 
1143 	/* see how much plain bits we can stuff into one packet
1144 	 * using RLE and VLI. */
1145 	do {
1146 		tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset)
1147 				    : _drbd_bm_find_next(device, c->bit_offset);
1148 		if (tmp == -1UL)
1149 			tmp = c->bm_bits;
1150 		rl = tmp - c->bit_offset;
1151 
1152 		if (toggle == 2) { /* first iteration */
1153 			if (rl == 0) {
1154 				/* the first checked bit was set,
1155 				 * store start value, */
1156 				dcbp_set_start(p, 1);
1157 				/* but skip encoding of zero run length */
1158 				toggle = !toggle;
1159 				continue;
1160 			}
1161 			dcbp_set_start(p, 0);
1162 		}
1163 
1164 		/* paranoia: catch zero runlength.
1165 		 * can only happen if bitmap is modified while we scan it. */
1166 		if (rl == 0) {
1167 			drbd_err(device, "unexpected zero runlength while encoding bitmap "
1168 			    "t:%u bo:%lu\n", toggle, c->bit_offset);
1169 			return -1;
1170 		}
1171 
1172 		bits = vli_encode_bits(&bs, rl);
1173 		if (bits == -ENOBUFS) /* buffer full */
1174 			break;
1175 		if (bits <= 0) {
1176 			drbd_err(device, "error while encoding bitmap: %d\n", bits);
1177 			return 0;
1178 		}
1179 
1180 		toggle = !toggle;
1181 		plain_bits += rl;
1182 		c->bit_offset = tmp;
1183 	} while (c->bit_offset < c->bm_bits);
1184 
1185 	len = bs.cur.b - p->code + !!bs.cur.bit;
1186 
1187 	if (plain_bits < (len << 3)) {
1188 		/* incompressible with this method.
1189 		 * we need to rewind both word and bit position. */
1190 		c->bit_offset -= plain_bits;
1191 		bm_xfer_ctx_bit_to_word_offset(c);
1192 		c->bit_offset = c->word_offset * BITS_PER_LONG;
1193 		return 0;
1194 	}
1195 
1196 	/* RLE + VLI was able to compress it just fine.
1197 	 * update c->word_offset. */
1198 	bm_xfer_ctx_bit_to_word_offset(c);
1199 
1200 	/* store pad_bits */
1201 	dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7);
1202 
1203 	return len;
1204 }
1205 
1206 /**
1207  * send_bitmap_rle_or_plain
1208  *
1209  * Return 0 when done, 1 when another iteration is needed, and a negative error
1210  * code upon failure.
1211  */
1212 static int
1213 send_bitmap_rle_or_plain(struct drbd_device *device, struct bm_xfer_ctx *c)
1214 {
1215 	struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1216 	unsigned int header_size = drbd_header_size(first_peer_device(device)->connection);
1217 	struct p_compressed_bm *p = sock->sbuf + header_size;
1218 	int len, err;
1219 
1220 	len = fill_bitmap_rle_bits(device, p,
1221 			DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c);
1222 	if (len < 0)
1223 		return -EIO;
1224 
1225 	if (len) {
1226 		dcbp_set_code(p, RLE_VLI_Bits);
1227 		err = __send_command(first_peer_device(device)->connection, device->vnr, sock,
1228 				     P_COMPRESSED_BITMAP, sizeof(*p) + len,
1229 				     NULL, 0);
1230 		c->packets[0]++;
1231 		c->bytes[0] += header_size + sizeof(*p) + len;
1232 
1233 		if (c->bit_offset >= c->bm_bits)
1234 			len = 0; /* DONE */
1235 	} else {
1236 		/* was not compressible.
1237 		 * send a buffer full of plain text bits instead. */
1238 		unsigned int data_size;
1239 		unsigned long num_words;
1240 		unsigned long *p = sock->sbuf + header_size;
1241 
1242 		data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
1243 		num_words = min_t(size_t, data_size / sizeof(*p),
1244 				  c->bm_words - c->word_offset);
1245 		len = num_words * sizeof(*p);
1246 		if (len)
1247 			drbd_bm_get_lel(device, c->word_offset, num_words, p);
1248 		err = __send_command(first_peer_device(device)->connection, device->vnr, sock, P_BITMAP, len, NULL, 0);
1249 		c->word_offset += num_words;
1250 		c->bit_offset = c->word_offset * BITS_PER_LONG;
1251 
1252 		c->packets[1]++;
1253 		c->bytes[1] += header_size + len;
1254 
1255 		if (c->bit_offset > c->bm_bits)
1256 			c->bit_offset = c->bm_bits;
1257 	}
1258 	if (!err) {
1259 		if (len == 0) {
1260 			INFO_bm_xfer_stats(device, "send", c);
1261 			return 0;
1262 		} else
1263 			return 1;
1264 	}
1265 	return -EIO;
1266 }
1267 
1268 /* See the comment at receive_bitmap() */
1269 static int _drbd_send_bitmap(struct drbd_device *device)
1270 {
1271 	struct bm_xfer_ctx c;
1272 	int err;
1273 
1274 	if (!expect(device->bitmap))
1275 		return false;
1276 
1277 	if (get_ldev(device)) {
1278 		if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) {
1279 			drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n");
1280 			drbd_bm_set_all(device);
1281 			if (drbd_bm_write(device)) {
1282 				/* write_bm did fail! Leave full sync flag set in Meta P_DATA
1283 				 * but otherwise process as per normal - need to tell other
1284 				 * side that a full resync is required! */
1285 				drbd_err(device, "Failed to write bitmap to disk!\n");
1286 			} else {
1287 				drbd_md_clear_flag(device, MDF_FULL_SYNC);
1288 				drbd_md_sync(device);
1289 			}
1290 		}
1291 		put_ldev(device);
1292 	}
1293 
1294 	c = (struct bm_xfer_ctx) {
1295 		.bm_bits = drbd_bm_bits(device),
1296 		.bm_words = drbd_bm_words(device),
1297 	};
1298 
1299 	do {
1300 		err = send_bitmap_rle_or_plain(device, &c);
1301 	} while (err > 0);
1302 
1303 	return err == 0;
1304 }
1305 
1306 int drbd_send_bitmap(struct drbd_device *device)
1307 {
1308 	struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1309 	int err = -1;
1310 
1311 	mutex_lock(&sock->mutex);
1312 	if (sock->socket)
1313 		err = !_drbd_send_bitmap(device);
1314 	mutex_unlock(&sock->mutex);
1315 	return err;
1316 }
1317 
1318 void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size)
1319 {
1320 	struct drbd_socket *sock;
1321 	struct p_barrier_ack *p;
1322 
1323 	if (connection->cstate < C_WF_REPORT_PARAMS)
1324 		return;
1325 
1326 	sock = &connection->meta;
1327 	p = conn_prepare_command(connection, sock);
1328 	if (!p)
1329 		return;
1330 	p->barrier = barrier_nr;
1331 	p->set_size = cpu_to_be32(set_size);
1332 	conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0);
1333 }
1334 
1335 /**
1336  * _drbd_send_ack() - Sends an ack packet
1337  * @device:	DRBD device.
1338  * @cmd:	Packet command code.
1339  * @sector:	sector, needs to be in big endian byte order
1340  * @blksize:	size in byte, needs to be in big endian byte order
1341  * @block_id:	Id, big endian byte order
1342  */
1343 static int _drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1344 			  u64 sector, u32 blksize, u64 block_id)
1345 {
1346 	struct drbd_socket *sock;
1347 	struct p_block_ack *p;
1348 
1349 	if (peer_device->device->state.conn < C_CONNECTED)
1350 		return -EIO;
1351 
1352 	sock = &peer_device->connection->meta;
1353 	p = drbd_prepare_command(peer_device, sock);
1354 	if (!p)
1355 		return -EIO;
1356 	p->sector = sector;
1357 	p->block_id = block_id;
1358 	p->blksize = blksize;
1359 	p->seq_num = cpu_to_be32(atomic_inc_return(&peer_device->device->packet_seq));
1360 	return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1361 }
1362 
1363 /* dp->sector and dp->block_id already/still in network byte order,
1364  * data_size is payload size according to dp->head,
1365  * and may need to be corrected for digest size. */
1366 void drbd_send_ack_dp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1367 		      struct p_data *dp, int data_size)
1368 {
1369 	if (peer_device->connection->peer_integrity_tfm)
1370 		data_size -= crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm);
1371 	_drbd_send_ack(peer_device, cmd, dp->sector, cpu_to_be32(data_size),
1372 		       dp->block_id);
1373 }
1374 
1375 void drbd_send_ack_rp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1376 		      struct p_block_req *rp)
1377 {
1378 	_drbd_send_ack(peer_device, cmd, rp->sector, rp->blksize, rp->block_id);
1379 }
1380 
1381 /**
1382  * drbd_send_ack() - Sends an ack packet
1383  * @device:	DRBD device
1384  * @cmd:	packet command code
1385  * @peer_req:	peer request
1386  */
1387 int drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1388 		  struct drbd_peer_request *peer_req)
1389 {
1390 	return _drbd_send_ack(peer_device, cmd,
1391 			      cpu_to_be64(peer_req->i.sector),
1392 			      cpu_to_be32(peer_req->i.size),
1393 			      peer_req->block_id);
1394 }
1395 
1396 /* This function misuses the block_id field to signal if the blocks
1397  * are is sync or not. */
1398 int drbd_send_ack_ex(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1399 		     sector_t sector, int blksize, u64 block_id)
1400 {
1401 	return _drbd_send_ack(peer_device, cmd,
1402 			      cpu_to_be64(sector),
1403 			      cpu_to_be32(blksize),
1404 			      cpu_to_be64(block_id));
1405 }
1406 
1407 int drbd_send_rs_deallocated(struct drbd_peer_device *peer_device,
1408 			     struct drbd_peer_request *peer_req)
1409 {
1410 	struct drbd_socket *sock;
1411 	struct p_block_desc *p;
1412 
1413 	sock = &peer_device->connection->data;
1414 	p = drbd_prepare_command(peer_device, sock);
1415 	if (!p)
1416 		return -EIO;
1417 	p->sector = cpu_to_be64(peer_req->i.sector);
1418 	p->blksize = cpu_to_be32(peer_req->i.size);
1419 	p->pad = 0;
1420 	return drbd_send_command(peer_device, sock, P_RS_DEALLOCATED, sizeof(*p), NULL, 0);
1421 }
1422 
1423 int drbd_send_drequest(struct drbd_peer_device *peer_device, int cmd,
1424 		       sector_t sector, int size, u64 block_id)
1425 {
1426 	struct drbd_socket *sock;
1427 	struct p_block_req *p;
1428 
1429 	sock = &peer_device->connection->data;
1430 	p = drbd_prepare_command(peer_device, sock);
1431 	if (!p)
1432 		return -EIO;
1433 	p->sector = cpu_to_be64(sector);
1434 	p->block_id = block_id;
1435 	p->blksize = cpu_to_be32(size);
1436 	return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1437 }
1438 
1439 int drbd_send_drequest_csum(struct drbd_peer_device *peer_device, sector_t sector, int size,
1440 			    void *digest, int digest_size, enum drbd_packet cmd)
1441 {
1442 	struct drbd_socket *sock;
1443 	struct p_block_req *p;
1444 
1445 	/* FIXME: Put the digest into the preallocated socket buffer.  */
1446 
1447 	sock = &peer_device->connection->data;
1448 	p = drbd_prepare_command(peer_device, sock);
1449 	if (!p)
1450 		return -EIO;
1451 	p->sector = cpu_to_be64(sector);
1452 	p->block_id = ID_SYNCER /* unused */;
1453 	p->blksize = cpu_to_be32(size);
1454 	return drbd_send_command(peer_device, sock, cmd, sizeof(*p), digest, digest_size);
1455 }
1456 
1457 int drbd_send_ov_request(struct drbd_peer_device *peer_device, sector_t sector, int size)
1458 {
1459 	struct drbd_socket *sock;
1460 	struct p_block_req *p;
1461 
1462 	sock = &peer_device->connection->data;
1463 	p = drbd_prepare_command(peer_device, sock);
1464 	if (!p)
1465 		return -EIO;
1466 	p->sector = cpu_to_be64(sector);
1467 	p->block_id = ID_SYNCER /* unused */;
1468 	p->blksize = cpu_to_be32(size);
1469 	return drbd_send_command(peer_device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0);
1470 }
1471 
1472 /* called on sndtimeo
1473  * returns false if we should retry,
1474  * true if we think connection is dead
1475  */
1476 static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock)
1477 {
1478 	int drop_it;
1479 	/* long elapsed = (long)(jiffies - device->last_received); */
1480 
1481 	drop_it =   connection->meta.socket == sock
1482 		|| !connection->ack_receiver.task
1483 		|| get_t_state(&connection->ack_receiver) != RUNNING
1484 		|| connection->cstate < C_WF_REPORT_PARAMS;
1485 
1486 	if (drop_it)
1487 		return true;
1488 
1489 	drop_it = !--connection->ko_count;
1490 	if (!drop_it) {
1491 		drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n",
1492 			 current->comm, current->pid, connection->ko_count);
1493 		request_ping(connection);
1494 	}
1495 
1496 	return drop_it; /* && (device->state == R_PRIMARY) */;
1497 }
1498 
1499 static void drbd_update_congested(struct drbd_connection *connection)
1500 {
1501 	struct sock *sk = connection->data.socket->sk;
1502 	if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5)
1503 		set_bit(NET_CONGESTED, &connection->flags);
1504 }
1505 
1506 /* The idea of sendpage seems to be to put some kind of reference
1507  * to the page into the skb, and to hand it over to the NIC. In
1508  * this process get_page() gets called.
1509  *
1510  * As soon as the page was really sent over the network put_page()
1511  * gets called by some part of the network layer. [ NIC driver? ]
1512  *
1513  * [ get_page() / put_page() increment/decrement the count. If count
1514  *   reaches 0 the page will be freed. ]
1515  *
1516  * This works nicely with pages from FSs.
1517  * But this means that in protocol A we might signal IO completion too early!
1518  *
1519  * In order not to corrupt data during a resync we must make sure
1520  * that we do not reuse our own buffer pages (EEs) to early, therefore
1521  * we have the net_ee list.
1522  *
1523  * XFS seems to have problems, still, it submits pages with page_count == 0!
1524  * As a workaround, we disable sendpage on pages
1525  * with page_count == 0 or PageSlab.
1526  */
1527 static int _drbd_no_send_page(struct drbd_peer_device *peer_device, struct page *page,
1528 			      int offset, size_t size, unsigned msg_flags)
1529 {
1530 	struct socket *socket;
1531 	void *addr;
1532 	int err;
1533 
1534 	socket = peer_device->connection->data.socket;
1535 	addr = kmap(page) + offset;
1536 	err = drbd_send_all(peer_device->connection, socket, addr, size, msg_flags);
1537 	kunmap(page);
1538 	if (!err)
1539 		peer_device->device->send_cnt += size >> 9;
1540 	return err;
1541 }
1542 
1543 static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *page,
1544 		    int offset, size_t size, unsigned msg_flags)
1545 {
1546 	struct socket *socket = peer_device->connection->data.socket;
1547 	int len = size;
1548 	int err = -EIO;
1549 
1550 	/* e.g. XFS meta- & log-data is in slab pages, which have a
1551 	 * page_count of 0 and/or have PageSlab() set.
1552 	 * we cannot use send_page for those, as that does get_page();
1553 	 * put_page(); and would cause either a VM_BUG directly, or
1554 	 * __page_cache_release a page that would actually still be referenced
1555 	 * by someone, leading to some obscure delayed Oops somewhere else. */
1556 	if (drbd_disable_sendpage || (page_count(page) < 1) || PageSlab(page))
1557 		return _drbd_no_send_page(peer_device, page, offset, size, msg_flags);
1558 
1559 	msg_flags |= MSG_NOSIGNAL;
1560 	drbd_update_congested(peer_device->connection);
1561 	do {
1562 		int sent;
1563 
1564 		sent = socket->ops->sendpage(socket, page, offset, len, msg_flags);
1565 		if (sent <= 0) {
1566 			if (sent == -EAGAIN) {
1567 				if (we_should_drop_the_connection(peer_device->connection, socket))
1568 					break;
1569 				continue;
1570 			}
1571 			drbd_warn(peer_device->device, "%s: size=%d len=%d sent=%d\n",
1572 			     __func__, (int)size, len, sent);
1573 			if (sent < 0)
1574 				err = sent;
1575 			break;
1576 		}
1577 		len    -= sent;
1578 		offset += sent;
1579 	} while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/);
1580 	clear_bit(NET_CONGESTED, &peer_device->connection->flags);
1581 
1582 	if (len == 0) {
1583 		err = 0;
1584 		peer_device->device->send_cnt += size >> 9;
1585 	}
1586 	return err;
1587 }
1588 
1589 static int _drbd_send_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1590 {
1591 	struct bio_vec bvec;
1592 	struct bvec_iter iter;
1593 
1594 	/* hint all but last page with MSG_MORE */
1595 	bio_for_each_segment(bvec, bio, iter) {
1596 		int err;
1597 
1598 		err = _drbd_no_send_page(peer_device, bvec.bv_page,
1599 					 bvec.bv_offset, bvec.bv_len,
1600 					 bio_iter_last(bvec, iter)
1601 					 ? 0 : MSG_MORE);
1602 		if (err)
1603 			return err;
1604 		/* REQ_OP_WRITE_SAME has only one segment */
1605 		if (bio_op(bio) == REQ_OP_WRITE_SAME)
1606 			break;
1607 	}
1608 	return 0;
1609 }
1610 
1611 static int _drbd_send_zc_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1612 {
1613 	struct bio_vec bvec;
1614 	struct bvec_iter iter;
1615 
1616 	/* hint all but last page with MSG_MORE */
1617 	bio_for_each_segment(bvec, bio, iter) {
1618 		int err;
1619 
1620 		err = _drbd_send_page(peer_device, bvec.bv_page,
1621 				      bvec.bv_offset, bvec.bv_len,
1622 				      bio_iter_last(bvec, iter) ? 0 : MSG_MORE);
1623 		if (err)
1624 			return err;
1625 		/* REQ_OP_WRITE_SAME has only one segment */
1626 		if (bio_op(bio) == REQ_OP_WRITE_SAME)
1627 			break;
1628 	}
1629 	return 0;
1630 }
1631 
1632 static int _drbd_send_zc_ee(struct drbd_peer_device *peer_device,
1633 			    struct drbd_peer_request *peer_req)
1634 {
1635 	struct page *page = peer_req->pages;
1636 	unsigned len = peer_req->i.size;
1637 	int err;
1638 
1639 	/* hint all but last page with MSG_MORE */
1640 	page_chain_for_each(page) {
1641 		unsigned l = min_t(unsigned, len, PAGE_SIZE);
1642 
1643 		err = _drbd_send_page(peer_device, page, 0, l,
1644 				      page_chain_next(page) ? MSG_MORE : 0);
1645 		if (err)
1646 			return err;
1647 		len -= l;
1648 	}
1649 	return 0;
1650 }
1651 
1652 static u32 bio_flags_to_wire(struct drbd_connection *connection,
1653 			     struct bio *bio)
1654 {
1655 	if (connection->agreed_pro_version >= 95)
1656 		return  (bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0) |
1657 			(bio->bi_opf & REQ_FUA ? DP_FUA : 0) |
1658 			(bio->bi_opf & REQ_PREFLUSH ? DP_FLUSH : 0) |
1659 			(bio_op(bio) == REQ_OP_WRITE_SAME ? DP_WSAME : 0) |
1660 			(bio_op(bio) == REQ_OP_DISCARD ? DP_DISCARD : 0) |
1661 			(bio_op(bio) == REQ_OP_WRITE_ZEROES ?
1662 			  ((connection->agreed_features & DRBD_FF_WZEROES) ?
1663 			   (DP_ZEROES |(!(bio->bi_opf & REQ_NOUNMAP) ? DP_DISCARD : 0))
1664 			   : DP_DISCARD)
1665 			: 0);
1666 	else
1667 		return bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0;
1668 }
1669 
1670 /* Used to send write or TRIM aka REQ_OP_DISCARD requests
1671  * R_PRIMARY -> Peer	(P_DATA, P_TRIM)
1672  */
1673 int drbd_send_dblock(struct drbd_peer_device *peer_device, struct drbd_request *req)
1674 {
1675 	struct drbd_device *device = peer_device->device;
1676 	struct drbd_socket *sock;
1677 	struct p_data *p;
1678 	struct p_wsame *wsame = NULL;
1679 	void *digest_out;
1680 	unsigned int dp_flags = 0;
1681 	int digest_size;
1682 	int err;
1683 
1684 	sock = &peer_device->connection->data;
1685 	p = drbd_prepare_command(peer_device, sock);
1686 	digest_size = peer_device->connection->integrity_tfm ?
1687 		      crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0;
1688 
1689 	if (!p)
1690 		return -EIO;
1691 	p->sector = cpu_to_be64(req->i.sector);
1692 	p->block_id = (unsigned long)req;
1693 	p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq));
1694 	dp_flags = bio_flags_to_wire(peer_device->connection, req->master_bio);
1695 	if (device->state.conn >= C_SYNC_SOURCE &&
1696 	    device->state.conn <= C_PAUSED_SYNC_T)
1697 		dp_flags |= DP_MAY_SET_IN_SYNC;
1698 	if (peer_device->connection->agreed_pro_version >= 100) {
1699 		if (req->rq_state & RQ_EXP_RECEIVE_ACK)
1700 			dp_flags |= DP_SEND_RECEIVE_ACK;
1701 		/* During resync, request an explicit write ack,
1702 		 * even in protocol != C */
1703 		if (req->rq_state & RQ_EXP_WRITE_ACK
1704 		|| (dp_flags & DP_MAY_SET_IN_SYNC))
1705 			dp_flags |= DP_SEND_WRITE_ACK;
1706 	}
1707 	p->dp_flags = cpu_to_be32(dp_flags);
1708 
1709 	if (dp_flags & (DP_DISCARD|DP_ZEROES)) {
1710 		enum drbd_packet cmd = (dp_flags & DP_ZEROES) ? P_ZEROES : P_TRIM;
1711 		struct p_trim *t = (struct p_trim*)p;
1712 		t->size = cpu_to_be32(req->i.size);
1713 		err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*t), NULL, 0);
1714 		goto out;
1715 	}
1716 	if (dp_flags & DP_WSAME) {
1717 		/* this will only work if DRBD_FF_WSAME is set AND the
1718 		 * handshake agreed that all nodes and backend devices are
1719 		 * WRITE_SAME capable and agree on logical_block_size */
1720 		wsame = (struct p_wsame*)p;
1721 		digest_out = wsame + 1;
1722 		wsame->size = cpu_to_be32(req->i.size);
1723 	} else
1724 		digest_out = p + 1;
1725 
1726 	/* our digest is still only over the payload.
1727 	 * TRIM does not carry any payload. */
1728 	if (digest_size)
1729 		drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest_out);
1730 	if (wsame) {
1731 		err =
1732 		    __send_command(peer_device->connection, device->vnr, sock, P_WSAME,
1733 				   sizeof(*wsame) + digest_size, NULL,
1734 				   bio_iovec(req->master_bio).bv_len);
1735 	} else
1736 		err =
1737 		    __send_command(peer_device->connection, device->vnr, sock, P_DATA,
1738 				   sizeof(*p) + digest_size, NULL, req->i.size);
1739 	if (!err) {
1740 		/* For protocol A, we have to memcpy the payload into
1741 		 * socket buffers, as we may complete right away
1742 		 * as soon as we handed it over to tcp, at which point the data
1743 		 * pages may become invalid.
1744 		 *
1745 		 * For data-integrity enabled, we copy it as well, so we can be
1746 		 * sure that even if the bio pages may still be modified, it
1747 		 * won't change the data on the wire, thus if the digest checks
1748 		 * out ok after sending on this side, but does not fit on the
1749 		 * receiving side, we sure have detected corruption elsewhere.
1750 		 */
1751 		if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || digest_size)
1752 			err = _drbd_send_bio(peer_device, req->master_bio);
1753 		else
1754 			err = _drbd_send_zc_bio(peer_device, req->master_bio);
1755 
1756 		/* double check digest, sometimes buffers have been modified in flight. */
1757 		if (digest_size > 0 && digest_size <= 64) {
1758 			/* 64 byte, 512 bit, is the largest digest size
1759 			 * currently supported in kernel crypto. */
1760 			unsigned char digest[64];
1761 			drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest);
1762 			if (memcmp(p + 1, digest, digest_size)) {
1763 				drbd_warn(device,
1764 					"Digest mismatch, buffer modified by upper layers during write: %llus +%u\n",
1765 					(unsigned long long)req->i.sector, req->i.size);
1766 			}
1767 		} /* else if (digest_size > 64) {
1768 		     ... Be noisy about digest too large ...
1769 		} */
1770 	}
1771 out:
1772 	mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1773 
1774 	return err;
1775 }
1776 
1777 /* answer packet, used to send data back for read requests:
1778  *  Peer       -> (diskless) R_PRIMARY   (P_DATA_REPLY)
1779  *  C_SYNC_SOURCE -> C_SYNC_TARGET         (P_RS_DATA_REPLY)
1780  */
1781 int drbd_send_block(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1782 		    struct drbd_peer_request *peer_req)
1783 {
1784 	struct drbd_device *device = peer_device->device;
1785 	struct drbd_socket *sock;
1786 	struct p_data *p;
1787 	int err;
1788 	int digest_size;
1789 
1790 	sock = &peer_device->connection->data;
1791 	p = drbd_prepare_command(peer_device, sock);
1792 
1793 	digest_size = peer_device->connection->integrity_tfm ?
1794 		      crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0;
1795 
1796 	if (!p)
1797 		return -EIO;
1798 	p->sector = cpu_to_be64(peer_req->i.sector);
1799 	p->block_id = peer_req->block_id;
1800 	p->seq_num = 0;  /* unused */
1801 	p->dp_flags = 0;
1802 	if (digest_size)
1803 		drbd_csum_ee(peer_device->connection->integrity_tfm, peer_req, p + 1);
1804 	err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*p) + digest_size, NULL, peer_req->i.size);
1805 	if (!err)
1806 		err = _drbd_send_zc_ee(peer_device, peer_req);
1807 	mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1808 
1809 	return err;
1810 }
1811 
1812 int drbd_send_out_of_sync(struct drbd_peer_device *peer_device, struct drbd_request *req)
1813 {
1814 	struct drbd_socket *sock;
1815 	struct p_block_desc *p;
1816 
1817 	sock = &peer_device->connection->data;
1818 	p = drbd_prepare_command(peer_device, sock);
1819 	if (!p)
1820 		return -EIO;
1821 	p->sector = cpu_to_be64(req->i.sector);
1822 	p->blksize = cpu_to_be32(req->i.size);
1823 	return drbd_send_command(peer_device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0);
1824 }
1825 
1826 /*
1827   drbd_send distinguishes two cases:
1828 
1829   Packets sent via the data socket "sock"
1830   and packets sent via the meta data socket "msock"
1831 
1832 		    sock                      msock
1833   -----------------+-------------------------+------------------------------
1834   timeout           conf.timeout / 2          conf.timeout / 2
1835   timeout action    send a ping via msock     Abort communication
1836 					      and close all sockets
1837 */
1838 
1839 /*
1840  * you must have down()ed the appropriate [m]sock_mutex elsewhere!
1841  */
1842 int drbd_send(struct drbd_connection *connection, struct socket *sock,
1843 	      void *buf, size_t size, unsigned msg_flags)
1844 {
1845 	struct kvec iov = {.iov_base = buf, .iov_len = size};
1846 	struct msghdr msg = {.msg_flags = msg_flags | MSG_NOSIGNAL};
1847 	int rv, sent = 0;
1848 
1849 	if (!sock)
1850 		return -EBADR;
1851 
1852 	/* THINK  if (signal_pending) return ... ? */
1853 
1854 	iov_iter_kvec(&msg.msg_iter, WRITE, &iov, 1, size);
1855 
1856 	if (sock == connection->data.socket) {
1857 		rcu_read_lock();
1858 		connection->ko_count = rcu_dereference(connection->net_conf)->ko_count;
1859 		rcu_read_unlock();
1860 		drbd_update_congested(connection);
1861 	}
1862 	do {
1863 		rv = sock_sendmsg(sock, &msg);
1864 		if (rv == -EAGAIN) {
1865 			if (we_should_drop_the_connection(connection, sock))
1866 				break;
1867 			else
1868 				continue;
1869 		}
1870 		if (rv == -EINTR) {
1871 			flush_signals(current);
1872 			rv = 0;
1873 		}
1874 		if (rv < 0)
1875 			break;
1876 		sent += rv;
1877 	} while (sent < size);
1878 
1879 	if (sock == connection->data.socket)
1880 		clear_bit(NET_CONGESTED, &connection->flags);
1881 
1882 	if (rv <= 0) {
1883 		if (rv != -EAGAIN) {
1884 			drbd_err(connection, "%s_sendmsg returned %d\n",
1885 				 sock == connection->meta.socket ? "msock" : "sock",
1886 				 rv);
1887 			conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD);
1888 		} else
1889 			conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD);
1890 	}
1891 
1892 	return sent;
1893 }
1894 
1895 /**
1896  * drbd_send_all  -  Send an entire buffer
1897  *
1898  * Returns 0 upon success and a negative error value otherwise.
1899  */
1900 int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer,
1901 		  size_t size, unsigned msg_flags)
1902 {
1903 	int err;
1904 
1905 	err = drbd_send(connection, sock, buffer, size, msg_flags);
1906 	if (err < 0)
1907 		return err;
1908 	if (err != size)
1909 		return -EIO;
1910 	return 0;
1911 }
1912 
1913 static int drbd_open(struct block_device *bdev, fmode_t mode)
1914 {
1915 	struct drbd_device *device = bdev->bd_disk->private_data;
1916 	unsigned long flags;
1917 	int rv = 0;
1918 
1919 	mutex_lock(&drbd_main_mutex);
1920 	spin_lock_irqsave(&device->resource->req_lock, flags);
1921 	/* to have a stable device->state.role
1922 	 * and no race with updating open_cnt */
1923 
1924 	if (device->state.role != R_PRIMARY) {
1925 		if (mode & FMODE_WRITE)
1926 			rv = -EROFS;
1927 		else if (!drbd_allow_oos)
1928 			rv = -EMEDIUMTYPE;
1929 	}
1930 
1931 	if (!rv)
1932 		device->open_cnt++;
1933 	spin_unlock_irqrestore(&device->resource->req_lock, flags);
1934 	mutex_unlock(&drbd_main_mutex);
1935 
1936 	return rv;
1937 }
1938 
1939 static void drbd_release(struct gendisk *gd, fmode_t mode)
1940 {
1941 	struct drbd_device *device = gd->private_data;
1942 	mutex_lock(&drbd_main_mutex);
1943 	device->open_cnt--;
1944 	mutex_unlock(&drbd_main_mutex);
1945 }
1946 
1947 /* need to hold resource->req_lock */
1948 void drbd_queue_unplug(struct drbd_device *device)
1949 {
1950 	if (device->state.pdsk >= D_INCONSISTENT && device->state.conn >= C_CONNECTED) {
1951 		D_ASSERT(device, device->state.role == R_PRIMARY);
1952 		if (test_and_clear_bit(UNPLUG_REMOTE, &device->flags)) {
1953 			drbd_queue_work_if_unqueued(
1954 				&first_peer_device(device)->connection->sender_work,
1955 				&device->unplug_work);
1956 		}
1957 	}
1958 }
1959 
1960 static void drbd_set_defaults(struct drbd_device *device)
1961 {
1962 	/* Beware! The actual layout differs
1963 	 * between big endian and little endian */
1964 	device->state = (union drbd_dev_state) {
1965 		{ .role = R_SECONDARY,
1966 		  .peer = R_UNKNOWN,
1967 		  .conn = C_STANDALONE,
1968 		  .disk = D_DISKLESS,
1969 		  .pdsk = D_UNKNOWN,
1970 		} };
1971 }
1972 
1973 void drbd_init_set_defaults(struct drbd_device *device)
1974 {
1975 	/* the memset(,0,) did most of this.
1976 	 * note: only assignments, no allocation in here */
1977 
1978 	drbd_set_defaults(device);
1979 
1980 	atomic_set(&device->ap_bio_cnt, 0);
1981 	atomic_set(&device->ap_actlog_cnt, 0);
1982 	atomic_set(&device->ap_pending_cnt, 0);
1983 	atomic_set(&device->rs_pending_cnt, 0);
1984 	atomic_set(&device->unacked_cnt, 0);
1985 	atomic_set(&device->local_cnt, 0);
1986 	atomic_set(&device->pp_in_use_by_net, 0);
1987 	atomic_set(&device->rs_sect_in, 0);
1988 	atomic_set(&device->rs_sect_ev, 0);
1989 	atomic_set(&device->ap_in_flight, 0);
1990 	atomic_set(&device->md_io.in_use, 0);
1991 
1992 	mutex_init(&device->own_state_mutex);
1993 	device->state_mutex = &device->own_state_mutex;
1994 
1995 	spin_lock_init(&device->al_lock);
1996 	spin_lock_init(&device->peer_seq_lock);
1997 
1998 	INIT_LIST_HEAD(&device->active_ee);
1999 	INIT_LIST_HEAD(&device->sync_ee);
2000 	INIT_LIST_HEAD(&device->done_ee);
2001 	INIT_LIST_HEAD(&device->read_ee);
2002 	INIT_LIST_HEAD(&device->net_ee);
2003 	INIT_LIST_HEAD(&device->resync_reads);
2004 	INIT_LIST_HEAD(&device->resync_work.list);
2005 	INIT_LIST_HEAD(&device->unplug_work.list);
2006 	INIT_LIST_HEAD(&device->bm_io_work.w.list);
2007 	INIT_LIST_HEAD(&device->pending_master_completion[0]);
2008 	INIT_LIST_HEAD(&device->pending_master_completion[1]);
2009 	INIT_LIST_HEAD(&device->pending_completion[0]);
2010 	INIT_LIST_HEAD(&device->pending_completion[1]);
2011 
2012 	device->resync_work.cb  = w_resync_timer;
2013 	device->unplug_work.cb  = w_send_write_hint;
2014 	device->bm_io_work.w.cb = w_bitmap_io;
2015 
2016 	timer_setup(&device->resync_timer, resync_timer_fn, 0);
2017 	timer_setup(&device->md_sync_timer, md_sync_timer_fn, 0);
2018 	timer_setup(&device->start_resync_timer, start_resync_timer_fn, 0);
2019 	timer_setup(&device->request_timer, request_timer_fn, 0);
2020 
2021 	init_waitqueue_head(&device->misc_wait);
2022 	init_waitqueue_head(&device->state_wait);
2023 	init_waitqueue_head(&device->ee_wait);
2024 	init_waitqueue_head(&device->al_wait);
2025 	init_waitqueue_head(&device->seq_wait);
2026 
2027 	device->resync_wenr = LC_FREE;
2028 	device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
2029 	device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
2030 }
2031 
2032 static void _drbd_set_my_capacity(struct drbd_device *device, sector_t size)
2033 {
2034 	/* set_capacity(device->this_bdev->bd_disk, size); */
2035 	set_capacity(device->vdisk, size);
2036 	device->this_bdev->bd_inode->i_size = (loff_t)size << 9;
2037 }
2038 
2039 void drbd_set_my_capacity(struct drbd_device *device, sector_t size)
2040 {
2041 	char ppb[10];
2042 	_drbd_set_my_capacity(device, size);
2043 	drbd_info(device, "size = %s (%llu KB)\n",
2044 		ppsize(ppb, size>>1), (unsigned long long)size>>1);
2045 }
2046 
2047 void drbd_device_cleanup(struct drbd_device *device)
2048 {
2049 	int i;
2050 	if (first_peer_device(device)->connection->receiver.t_state != NONE)
2051 		drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n",
2052 				first_peer_device(device)->connection->receiver.t_state);
2053 
2054 	device->al_writ_cnt  =
2055 	device->bm_writ_cnt  =
2056 	device->read_cnt     =
2057 	device->recv_cnt     =
2058 	device->send_cnt     =
2059 	device->writ_cnt     =
2060 	device->p_size       =
2061 	device->rs_start     =
2062 	device->rs_total     =
2063 	device->rs_failed    = 0;
2064 	device->rs_last_events = 0;
2065 	device->rs_last_sect_ev = 0;
2066 	for (i = 0; i < DRBD_SYNC_MARKS; i++) {
2067 		device->rs_mark_left[i] = 0;
2068 		device->rs_mark_time[i] = 0;
2069 	}
2070 	D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL);
2071 
2072 	_drbd_set_my_capacity(device, 0);
2073 	if (device->bitmap) {
2074 		/* maybe never allocated. */
2075 		drbd_bm_resize(device, 0, 1);
2076 		drbd_bm_cleanup(device);
2077 	}
2078 
2079 	drbd_backing_dev_free(device, device->ldev);
2080 	device->ldev = NULL;
2081 
2082 	clear_bit(AL_SUSPENDED, &device->flags);
2083 
2084 	D_ASSERT(device, list_empty(&device->active_ee));
2085 	D_ASSERT(device, list_empty(&device->sync_ee));
2086 	D_ASSERT(device, list_empty(&device->done_ee));
2087 	D_ASSERT(device, list_empty(&device->read_ee));
2088 	D_ASSERT(device, list_empty(&device->net_ee));
2089 	D_ASSERT(device, list_empty(&device->resync_reads));
2090 	D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q));
2091 	D_ASSERT(device, list_empty(&device->resync_work.list));
2092 	D_ASSERT(device, list_empty(&device->unplug_work.list));
2093 
2094 	drbd_set_defaults(device);
2095 }
2096 
2097 
2098 static void drbd_destroy_mempools(void)
2099 {
2100 	struct page *page;
2101 
2102 	while (drbd_pp_pool) {
2103 		page = drbd_pp_pool;
2104 		drbd_pp_pool = (struct page *)page_private(page);
2105 		__free_page(page);
2106 		drbd_pp_vacant--;
2107 	}
2108 
2109 	/* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */
2110 
2111 	bioset_exit(&drbd_io_bio_set);
2112 	bioset_exit(&drbd_md_io_bio_set);
2113 	mempool_exit(&drbd_md_io_page_pool);
2114 	mempool_exit(&drbd_ee_mempool);
2115 	mempool_exit(&drbd_request_mempool);
2116 	kmem_cache_destroy(drbd_ee_cache);
2117 	kmem_cache_destroy(drbd_request_cache);
2118 	kmem_cache_destroy(drbd_bm_ext_cache);
2119 	kmem_cache_destroy(drbd_al_ext_cache);
2120 
2121 	drbd_ee_cache        = NULL;
2122 	drbd_request_cache   = NULL;
2123 	drbd_bm_ext_cache    = NULL;
2124 	drbd_al_ext_cache    = NULL;
2125 
2126 	return;
2127 }
2128 
2129 static int drbd_create_mempools(void)
2130 {
2131 	struct page *page;
2132 	const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * drbd_minor_count;
2133 	int i, ret;
2134 
2135 	/* caches */
2136 	drbd_request_cache = kmem_cache_create(
2137 		"drbd_req", sizeof(struct drbd_request), 0, 0, NULL);
2138 	if (drbd_request_cache == NULL)
2139 		goto Enomem;
2140 
2141 	drbd_ee_cache = kmem_cache_create(
2142 		"drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL);
2143 	if (drbd_ee_cache == NULL)
2144 		goto Enomem;
2145 
2146 	drbd_bm_ext_cache = kmem_cache_create(
2147 		"drbd_bm", sizeof(struct bm_extent), 0, 0, NULL);
2148 	if (drbd_bm_ext_cache == NULL)
2149 		goto Enomem;
2150 
2151 	drbd_al_ext_cache = kmem_cache_create(
2152 		"drbd_al", sizeof(struct lc_element), 0, 0, NULL);
2153 	if (drbd_al_ext_cache == NULL)
2154 		goto Enomem;
2155 
2156 	/* mempools */
2157 	ret = bioset_init(&drbd_io_bio_set, BIO_POOL_SIZE, 0, 0);
2158 	if (ret)
2159 		goto Enomem;
2160 
2161 	ret = bioset_init(&drbd_md_io_bio_set, DRBD_MIN_POOL_PAGES, 0,
2162 			  BIOSET_NEED_BVECS);
2163 	if (ret)
2164 		goto Enomem;
2165 
2166 	ret = mempool_init_page_pool(&drbd_md_io_page_pool, DRBD_MIN_POOL_PAGES, 0);
2167 	if (ret)
2168 		goto Enomem;
2169 
2170 	ret = mempool_init_slab_pool(&drbd_request_mempool, number,
2171 				     drbd_request_cache);
2172 	if (ret)
2173 		goto Enomem;
2174 
2175 	ret = mempool_init_slab_pool(&drbd_ee_mempool, number, drbd_ee_cache);
2176 	if (ret)
2177 		goto Enomem;
2178 
2179 	/* drbd's page pool */
2180 	spin_lock_init(&drbd_pp_lock);
2181 
2182 	for (i = 0; i < number; i++) {
2183 		page = alloc_page(GFP_HIGHUSER);
2184 		if (!page)
2185 			goto Enomem;
2186 		set_page_private(page, (unsigned long)drbd_pp_pool);
2187 		drbd_pp_pool = page;
2188 	}
2189 	drbd_pp_vacant = number;
2190 
2191 	return 0;
2192 
2193 Enomem:
2194 	drbd_destroy_mempools(); /* in case we allocated some */
2195 	return -ENOMEM;
2196 }
2197 
2198 static void drbd_release_all_peer_reqs(struct drbd_device *device)
2199 {
2200 	int rr;
2201 
2202 	rr = drbd_free_peer_reqs(device, &device->active_ee);
2203 	if (rr)
2204 		drbd_err(device, "%d EEs in active list found!\n", rr);
2205 
2206 	rr = drbd_free_peer_reqs(device, &device->sync_ee);
2207 	if (rr)
2208 		drbd_err(device, "%d EEs in sync list found!\n", rr);
2209 
2210 	rr = drbd_free_peer_reqs(device, &device->read_ee);
2211 	if (rr)
2212 		drbd_err(device, "%d EEs in read list found!\n", rr);
2213 
2214 	rr = drbd_free_peer_reqs(device, &device->done_ee);
2215 	if (rr)
2216 		drbd_err(device, "%d EEs in done list found!\n", rr);
2217 
2218 	rr = drbd_free_peer_reqs(device, &device->net_ee);
2219 	if (rr)
2220 		drbd_err(device, "%d EEs in net list found!\n", rr);
2221 }
2222 
2223 /* caution. no locking. */
2224 void drbd_destroy_device(struct kref *kref)
2225 {
2226 	struct drbd_device *device = container_of(kref, struct drbd_device, kref);
2227 	struct drbd_resource *resource = device->resource;
2228 	struct drbd_peer_device *peer_device, *tmp_peer_device;
2229 
2230 	del_timer_sync(&device->request_timer);
2231 
2232 	/* paranoia asserts */
2233 	D_ASSERT(device, device->open_cnt == 0);
2234 	/* end paranoia asserts */
2235 
2236 	/* cleanup stuff that may have been allocated during
2237 	 * device (re-)configuration or state changes */
2238 
2239 	if (device->this_bdev)
2240 		bdput(device->this_bdev);
2241 
2242 	drbd_backing_dev_free(device, device->ldev);
2243 	device->ldev = NULL;
2244 
2245 	drbd_release_all_peer_reqs(device);
2246 
2247 	lc_destroy(device->act_log);
2248 	lc_destroy(device->resync);
2249 
2250 	kfree(device->p_uuid);
2251 	/* device->p_uuid = NULL; */
2252 
2253 	if (device->bitmap) /* should no longer be there. */
2254 		drbd_bm_cleanup(device);
2255 	__free_page(device->md_io.page);
2256 	put_disk(device->vdisk);
2257 	blk_cleanup_queue(device->rq_queue);
2258 	kfree(device->rs_plan_s);
2259 
2260 	/* not for_each_connection(connection, resource):
2261 	 * those may have been cleaned up and disassociated already.
2262 	 */
2263 	for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2264 		kref_put(&peer_device->connection->kref, drbd_destroy_connection);
2265 		kfree(peer_device);
2266 	}
2267 	memset(device, 0xfd, sizeof(*device));
2268 	kfree(device);
2269 	kref_put(&resource->kref, drbd_destroy_resource);
2270 }
2271 
2272 /* One global retry thread, if we need to push back some bio and have it
2273  * reinserted through our make request function.
2274  */
2275 static struct retry_worker {
2276 	struct workqueue_struct *wq;
2277 	struct work_struct worker;
2278 
2279 	spinlock_t lock;
2280 	struct list_head writes;
2281 } retry;
2282 
2283 static void do_retry(struct work_struct *ws)
2284 {
2285 	struct retry_worker *retry = container_of(ws, struct retry_worker, worker);
2286 	LIST_HEAD(writes);
2287 	struct drbd_request *req, *tmp;
2288 
2289 	spin_lock_irq(&retry->lock);
2290 	list_splice_init(&retry->writes, &writes);
2291 	spin_unlock_irq(&retry->lock);
2292 
2293 	list_for_each_entry_safe(req, tmp, &writes, tl_requests) {
2294 		struct drbd_device *device = req->device;
2295 		struct bio *bio = req->master_bio;
2296 		unsigned long start_jif = req->start_jif;
2297 		bool expected;
2298 
2299 		expected =
2300 			expect(atomic_read(&req->completion_ref) == 0) &&
2301 			expect(req->rq_state & RQ_POSTPONED) &&
2302 			expect((req->rq_state & RQ_LOCAL_PENDING) == 0 ||
2303 				(req->rq_state & RQ_LOCAL_ABORTED) != 0);
2304 
2305 		if (!expected)
2306 			drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n",
2307 				req, atomic_read(&req->completion_ref),
2308 				req->rq_state);
2309 
2310 		/* We still need to put one kref associated with the
2311 		 * "completion_ref" going zero in the code path that queued it
2312 		 * here.  The request object may still be referenced by a
2313 		 * frozen local req->private_bio, in case we force-detached.
2314 		 */
2315 		kref_put(&req->kref, drbd_req_destroy);
2316 
2317 		/* A single suspended or otherwise blocking device may stall
2318 		 * all others as well.  Fortunately, this code path is to
2319 		 * recover from a situation that "should not happen":
2320 		 * concurrent writes in multi-primary setup.
2321 		 * In a "normal" lifecycle, this workqueue is supposed to be
2322 		 * destroyed without ever doing anything.
2323 		 * If it turns out to be an issue anyways, we can do per
2324 		 * resource (replication group) or per device (minor) retry
2325 		 * workqueues instead.
2326 		 */
2327 
2328 		/* We are not just doing submit_bio_noacct(),
2329 		 * as we want to keep the start_time information. */
2330 		inc_ap_bio(device);
2331 		__drbd_make_request(device, bio, start_jif);
2332 	}
2333 }
2334 
2335 /* called via drbd_req_put_completion_ref(),
2336  * holds resource->req_lock */
2337 void drbd_restart_request(struct drbd_request *req)
2338 {
2339 	unsigned long flags;
2340 	spin_lock_irqsave(&retry.lock, flags);
2341 	list_move_tail(&req->tl_requests, &retry.writes);
2342 	spin_unlock_irqrestore(&retry.lock, flags);
2343 
2344 	/* Drop the extra reference that would otherwise
2345 	 * have been dropped by complete_master_bio.
2346 	 * do_retry() needs to grab a new one. */
2347 	dec_ap_bio(req->device);
2348 
2349 	queue_work(retry.wq, &retry.worker);
2350 }
2351 
2352 void drbd_destroy_resource(struct kref *kref)
2353 {
2354 	struct drbd_resource *resource =
2355 		container_of(kref, struct drbd_resource, kref);
2356 
2357 	idr_destroy(&resource->devices);
2358 	free_cpumask_var(resource->cpu_mask);
2359 	kfree(resource->name);
2360 	memset(resource, 0xf2, sizeof(*resource));
2361 	kfree(resource);
2362 }
2363 
2364 void drbd_free_resource(struct drbd_resource *resource)
2365 {
2366 	struct drbd_connection *connection, *tmp;
2367 
2368 	for_each_connection_safe(connection, tmp, resource) {
2369 		list_del(&connection->connections);
2370 		drbd_debugfs_connection_cleanup(connection);
2371 		kref_put(&connection->kref, drbd_destroy_connection);
2372 	}
2373 	drbd_debugfs_resource_cleanup(resource);
2374 	kref_put(&resource->kref, drbd_destroy_resource);
2375 }
2376 
2377 static void drbd_cleanup(void)
2378 {
2379 	unsigned int i;
2380 	struct drbd_device *device;
2381 	struct drbd_resource *resource, *tmp;
2382 
2383 	/* first remove proc,
2384 	 * drbdsetup uses it's presence to detect
2385 	 * whether DRBD is loaded.
2386 	 * If we would get stuck in proc removal,
2387 	 * but have netlink already deregistered,
2388 	 * some drbdsetup commands may wait forever
2389 	 * for an answer.
2390 	 */
2391 	if (drbd_proc)
2392 		remove_proc_entry("drbd", NULL);
2393 
2394 	if (retry.wq)
2395 		destroy_workqueue(retry.wq);
2396 
2397 	drbd_genl_unregister();
2398 
2399 	idr_for_each_entry(&drbd_devices, device, i)
2400 		drbd_delete_device(device);
2401 
2402 	/* not _rcu since, no other updater anymore. Genl already unregistered */
2403 	for_each_resource_safe(resource, tmp, &drbd_resources) {
2404 		list_del(&resource->resources);
2405 		drbd_free_resource(resource);
2406 	}
2407 
2408 	drbd_debugfs_cleanup();
2409 
2410 	drbd_destroy_mempools();
2411 	unregister_blkdev(DRBD_MAJOR, "drbd");
2412 
2413 	idr_destroy(&drbd_devices);
2414 
2415 	pr_info("module cleanup done.\n");
2416 }
2417 
2418 static void drbd_init_workqueue(struct drbd_work_queue* wq)
2419 {
2420 	spin_lock_init(&wq->q_lock);
2421 	INIT_LIST_HEAD(&wq->q);
2422 	init_waitqueue_head(&wq->q_wait);
2423 }
2424 
2425 struct completion_work {
2426 	struct drbd_work w;
2427 	struct completion done;
2428 };
2429 
2430 static int w_complete(struct drbd_work *w, int cancel)
2431 {
2432 	struct completion_work *completion_work =
2433 		container_of(w, struct completion_work, w);
2434 
2435 	complete(&completion_work->done);
2436 	return 0;
2437 }
2438 
2439 void drbd_flush_workqueue(struct drbd_work_queue *work_queue)
2440 {
2441 	struct completion_work completion_work;
2442 
2443 	completion_work.w.cb = w_complete;
2444 	init_completion(&completion_work.done);
2445 	drbd_queue_work(work_queue, &completion_work.w);
2446 	wait_for_completion(&completion_work.done);
2447 }
2448 
2449 struct drbd_resource *drbd_find_resource(const char *name)
2450 {
2451 	struct drbd_resource *resource;
2452 
2453 	if (!name || !name[0])
2454 		return NULL;
2455 
2456 	rcu_read_lock();
2457 	for_each_resource_rcu(resource, &drbd_resources) {
2458 		if (!strcmp(resource->name, name)) {
2459 			kref_get(&resource->kref);
2460 			goto found;
2461 		}
2462 	}
2463 	resource = NULL;
2464 found:
2465 	rcu_read_unlock();
2466 	return resource;
2467 }
2468 
2469 struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len,
2470 				     void *peer_addr, int peer_addr_len)
2471 {
2472 	struct drbd_resource *resource;
2473 	struct drbd_connection *connection;
2474 
2475 	rcu_read_lock();
2476 	for_each_resource_rcu(resource, &drbd_resources) {
2477 		for_each_connection_rcu(connection, resource) {
2478 			if (connection->my_addr_len == my_addr_len &&
2479 			    connection->peer_addr_len == peer_addr_len &&
2480 			    !memcmp(&connection->my_addr, my_addr, my_addr_len) &&
2481 			    !memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) {
2482 				kref_get(&connection->kref);
2483 				goto found;
2484 			}
2485 		}
2486 	}
2487 	connection = NULL;
2488 found:
2489 	rcu_read_unlock();
2490 	return connection;
2491 }
2492 
2493 static int drbd_alloc_socket(struct drbd_socket *socket)
2494 {
2495 	socket->rbuf = (void *) __get_free_page(GFP_KERNEL);
2496 	if (!socket->rbuf)
2497 		return -ENOMEM;
2498 	socket->sbuf = (void *) __get_free_page(GFP_KERNEL);
2499 	if (!socket->sbuf)
2500 		return -ENOMEM;
2501 	return 0;
2502 }
2503 
2504 static void drbd_free_socket(struct drbd_socket *socket)
2505 {
2506 	free_page((unsigned long) socket->sbuf);
2507 	free_page((unsigned long) socket->rbuf);
2508 }
2509 
2510 void conn_free_crypto(struct drbd_connection *connection)
2511 {
2512 	drbd_free_sock(connection);
2513 
2514 	crypto_free_shash(connection->csums_tfm);
2515 	crypto_free_shash(connection->verify_tfm);
2516 	crypto_free_shash(connection->cram_hmac_tfm);
2517 	crypto_free_shash(connection->integrity_tfm);
2518 	crypto_free_shash(connection->peer_integrity_tfm);
2519 	kfree(connection->int_dig_in);
2520 	kfree(connection->int_dig_vv);
2521 
2522 	connection->csums_tfm = NULL;
2523 	connection->verify_tfm = NULL;
2524 	connection->cram_hmac_tfm = NULL;
2525 	connection->integrity_tfm = NULL;
2526 	connection->peer_integrity_tfm = NULL;
2527 	connection->int_dig_in = NULL;
2528 	connection->int_dig_vv = NULL;
2529 }
2530 
2531 int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts)
2532 {
2533 	struct drbd_connection *connection;
2534 	cpumask_var_t new_cpu_mask;
2535 	int err;
2536 
2537 	if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL))
2538 		return -ENOMEM;
2539 
2540 	/* silently ignore cpu mask on UP kernel */
2541 	if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) {
2542 		err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE,
2543 				   cpumask_bits(new_cpu_mask), nr_cpu_ids);
2544 		if (err == -EOVERFLOW) {
2545 			/* So what. mask it out. */
2546 			cpumask_var_t tmp_cpu_mask;
2547 			if (zalloc_cpumask_var(&tmp_cpu_mask, GFP_KERNEL)) {
2548 				cpumask_setall(tmp_cpu_mask);
2549 				cpumask_and(new_cpu_mask, new_cpu_mask, tmp_cpu_mask);
2550 				drbd_warn(resource, "Overflow in bitmap_parse(%.12s%s), truncating to %u bits\n",
2551 					res_opts->cpu_mask,
2552 					strlen(res_opts->cpu_mask) > 12 ? "..." : "",
2553 					nr_cpu_ids);
2554 				free_cpumask_var(tmp_cpu_mask);
2555 				err = 0;
2556 			}
2557 		}
2558 		if (err) {
2559 			drbd_warn(resource, "bitmap_parse() failed with %d\n", err);
2560 			/* retcode = ERR_CPU_MASK_PARSE; */
2561 			goto fail;
2562 		}
2563 	}
2564 	resource->res_opts = *res_opts;
2565 	if (cpumask_empty(new_cpu_mask))
2566 		drbd_calc_cpu_mask(&new_cpu_mask);
2567 	if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) {
2568 		cpumask_copy(resource->cpu_mask, new_cpu_mask);
2569 		for_each_connection_rcu(connection, resource) {
2570 			connection->receiver.reset_cpu_mask = 1;
2571 			connection->ack_receiver.reset_cpu_mask = 1;
2572 			connection->worker.reset_cpu_mask = 1;
2573 		}
2574 	}
2575 	err = 0;
2576 
2577 fail:
2578 	free_cpumask_var(new_cpu_mask);
2579 	return err;
2580 
2581 }
2582 
2583 struct drbd_resource *drbd_create_resource(const char *name)
2584 {
2585 	struct drbd_resource *resource;
2586 
2587 	resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL);
2588 	if (!resource)
2589 		goto fail;
2590 	resource->name = kstrdup(name, GFP_KERNEL);
2591 	if (!resource->name)
2592 		goto fail_free_resource;
2593 	if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL))
2594 		goto fail_free_name;
2595 	kref_init(&resource->kref);
2596 	idr_init(&resource->devices);
2597 	INIT_LIST_HEAD(&resource->connections);
2598 	resource->write_ordering = WO_BDEV_FLUSH;
2599 	list_add_tail_rcu(&resource->resources, &drbd_resources);
2600 	mutex_init(&resource->conf_update);
2601 	mutex_init(&resource->adm_mutex);
2602 	spin_lock_init(&resource->req_lock);
2603 	drbd_debugfs_resource_add(resource);
2604 	return resource;
2605 
2606 fail_free_name:
2607 	kfree(resource->name);
2608 fail_free_resource:
2609 	kfree(resource);
2610 fail:
2611 	return NULL;
2612 }
2613 
2614 /* caller must be under adm_mutex */
2615 struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts)
2616 {
2617 	struct drbd_resource *resource;
2618 	struct drbd_connection *connection;
2619 
2620 	connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL);
2621 	if (!connection)
2622 		return NULL;
2623 
2624 	if (drbd_alloc_socket(&connection->data))
2625 		goto fail;
2626 	if (drbd_alloc_socket(&connection->meta))
2627 		goto fail;
2628 
2629 	connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL);
2630 	if (!connection->current_epoch)
2631 		goto fail;
2632 
2633 	INIT_LIST_HEAD(&connection->transfer_log);
2634 
2635 	INIT_LIST_HEAD(&connection->current_epoch->list);
2636 	connection->epochs = 1;
2637 	spin_lock_init(&connection->epoch_lock);
2638 
2639 	connection->send.seen_any_write_yet = false;
2640 	connection->send.current_epoch_nr = 0;
2641 	connection->send.current_epoch_writes = 0;
2642 
2643 	resource = drbd_create_resource(name);
2644 	if (!resource)
2645 		goto fail;
2646 
2647 	connection->cstate = C_STANDALONE;
2648 	mutex_init(&connection->cstate_mutex);
2649 	init_waitqueue_head(&connection->ping_wait);
2650 	idr_init(&connection->peer_devices);
2651 
2652 	drbd_init_workqueue(&connection->sender_work);
2653 	mutex_init(&connection->data.mutex);
2654 	mutex_init(&connection->meta.mutex);
2655 
2656 	drbd_thread_init(resource, &connection->receiver, drbd_receiver, "receiver");
2657 	connection->receiver.connection = connection;
2658 	drbd_thread_init(resource, &connection->worker, drbd_worker, "worker");
2659 	connection->worker.connection = connection;
2660 	drbd_thread_init(resource, &connection->ack_receiver, drbd_ack_receiver, "ack_recv");
2661 	connection->ack_receiver.connection = connection;
2662 
2663 	kref_init(&connection->kref);
2664 
2665 	connection->resource = resource;
2666 
2667 	if (set_resource_options(resource, res_opts))
2668 		goto fail_resource;
2669 
2670 	kref_get(&resource->kref);
2671 	list_add_tail_rcu(&connection->connections, &resource->connections);
2672 	drbd_debugfs_connection_add(connection);
2673 	return connection;
2674 
2675 fail_resource:
2676 	list_del(&resource->resources);
2677 	drbd_free_resource(resource);
2678 fail:
2679 	kfree(connection->current_epoch);
2680 	drbd_free_socket(&connection->meta);
2681 	drbd_free_socket(&connection->data);
2682 	kfree(connection);
2683 	return NULL;
2684 }
2685 
2686 void drbd_destroy_connection(struct kref *kref)
2687 {
2688 	struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref);
2689 	struct drbd_resource *resource = connection->resource;
2690 
2691 	if (atomic_read(&connection->current_epoch->epoch_size) !=  0)
2692 		drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size));
2693 	kfree(connection->current_epoch);
2694 
2695 	idr_destroy(&connection->peer_devices);
2696 
2697 	drbd_free_socket(&connection->meta);
2698 	drbd_free_socket(&connection->data);
2699 	kfree(connection->int_dig_in);
2700 	kfree(connection->int_dig_vv);
2701 	memset(connection, 0xfc, sizeof(*connection));
2702 	kfree(connection);
2703 	kref_put(&resource->kref, drbd_destroy_resource);
2704 }
2705 
2706 static int init_submitter(struct drbd_device *device)
2707 {
2708 	/* opencoded create_singlethread_workqueue(),
2709 	 * to be able to say "drbd%d", ..., minor */
2710 	device->submit.wq =
2711 		alloc_ordered_workqueue("drbd%u_submit", WQ_MEM_RECLAIM, device->minor);
2712 	if (!device->submit.wq)
2713 		return -ENOMEM;
2714 
2715 	INIT_WORK(&device->submit.worker, do_submit);
2716 	INIT_LIST_HEAD(&device->submit.writes);
2717 	return 0;
2718 }
2719 
2720 enum drbd_ret_code drbd_create_device(struct drbd_config_context *adm_ctx, unsigned int minor)
2721 {
2722 	struct drbd_resource *resource = adm_ctx->resource;
2723 	struct drbd_connection *connection;
2724 	struct drbd_device *device;
2725 	struct drbd_peer_device *peer_device, *tmp_peer_device;
2726 	struct gendisk *disk;
2727 	struct request_queue *q;
2728 	int id;
2729 	int vnr = adm_ctx->volume;
2730 	enum drbd_ret_code err = ERR_NOMEM;
2731 
2732 	device = minor_to_device(minor);
2733 	if (device)
2734 		return ERR_MINOR_OR_VOLUME_EXISTS;
2735 
2736 	/* GFP_KERNEL, we are outside of all write-out paths */
2737 	device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL);
2738 	if (!device)
2739 		return ERR_NOMEM;
2740 	kref_init(&device->kref);
2741 
2742 	kref_get(&resource->kref);
2743 	device->resource = resource;
2744 	device->minor = minor;
2745 	device->vnr = vnr;
2746 
2747 	drbd_init_set_defaults(device);
2748 
2749 	q = blk_alloc_queue(NUMA_NO_NODE);
2750 	if (!q)
2751 		goto out_no_q;
2752 	device->rq_queue = q;
2753 
2754 	disk = alloc_disk(1);
2755 	if (!disk)
2756 		goto out_no_disk;
2757 	device->vdisk = disk;
2758 
2759 	set_disk_ro(disk, true);
2760 
2761 	disk->queue = q;
2762 	disk->major = DRBD_MAJOR;
2763 	disk->first_minor = minor;
2764 	disk->fops = &drbd_ops;
2765 	sprintf(disk->disk_name, "drbd%d", minor);
2766 	disk->private_data = device;
2767 
2768 	device->this_bdev = bdget(MKDEV(DRBD_MAJOR, minor));
2769 	/* we have no partitions. we contain only ourselves. */
2770 	device->this_bdev->bd_contains = device->this_bdev;
2771 
2772 	blk_queue_write_cache(q, true, true);
2773 	/* Setting the max_hw_sectors to an odd value of 8kibyte here
2774 	   This triggers a max_bio_size message upon first attach or connect */
2775 	blk_queue_max_hw_sectors(q, DRBD_MAX_BIO_SIZE_SAFE >> 8);
2776 
2777 	device->md_io.page = alloc_page(GFP_KERNEL);
2778 	if (!device->md_io.page)
2779 		goto out_no_io_page;
2780 
2781 	if (drbd_bm_init(device))
2782 		goto out_no_bitmap;
2783 	device->read_requests = RB_ROOT;
2784 	device->write_requests = RB_ROOT;
2785 
2786 	id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL);
2787 	if (id < 0) {
2788 		if (id == -ENOSPC)
2789 			err = ERR_MINOR_OR_VOLUME_EXISTS;
2790 		goto out_no_minor_idr;
2791 	}
2792 	kref_get(&device->kref);
2793 
2794 	id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL);
2795 	if (id < 0) {
2796 		if (id == -ENOSPC)
2797 			err = ERR_MINOR_OR_VOLUME_EXISTS;
2798 		goto out_idr_remove_minor;
2799 	}
2800 	kref_get(&device->kref);
2801 
2802 	INIT_LIST_HEAD(&device->peer_devices);
2803 	INIT_LIST_HEAD(&device->pending_bitmap_io);
2804 	for_each_connection(connection, resource) {
2805 		peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL);
2806 		if (!peer_device)
2807 			goto out_idr_remove_from_resource;
2808 		peer_device->connection = connection;
2809 		peer_device->device = device;
2810 
2811 		list_add(&peer_device->peer_devices, &device->peer_devices);
2812 		kref_get(&device->kref);
2813 
2814 		id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL);
2815 		if (id < 0) {
2816 			if (id == -ENOSPC)
2817 				err = ERR_INVALID_REQUEST;
2818 			goto out_idr_remove_from_resource;
2819 		}
2820 		kref_get(&connection->kref);
2821 		INIT_WORK(&peer_device->send_acks_work, drbd_send_acks_wf);
2822 	}
2823 
2824 	if (init_submitter(device)) {
2825 		err = ERR_NOMEM;
2826 		goto out_idr_remove_vol;
2827 	}
2828 
2829 	add_disk(disk);
2830 
2831 	/* inherit the connection state */
2832 	device->state.conn = first_connection(resource)->cstate;
2833 	if (device->state.conn == C_WF_REPORT_PARAMS) {
2834 		for_each_peer_device(peer_device, device)
2835 			drbd_connected(peer_device);
2836 	}
2837 	/* move to create_peer_device() */
2838 	for_each_peer_device(peer_device, device)
2839 		drbd_debugfs_peer_device_add(peer_device);
2840 	drbd_debugfs_device_add(device);
2841 	return NO_ERROR;
2842 
2843 out_idr_remove_vol:
2844 	idr_remove(&connection->peer_devices, vnr);
2845 out_idr_remove_from_resource:
2846 	for_each_connection(connection, resource) {
2847 		peer_device = idr_remove(&connection->peer_devices, vnr);
2848 		if (peer_device)
2849 			kref_put(&connection->kref, drbd_destroy_connection);
2850 	}
2851 	for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2852 		list_del(&peer_device->peer_devices);
2853 		kfree(peer_device);
2854 	}
2855 	idr_remove(&resource->devices, vnr);
2856 out_idr_remove_minor:
2857 	idr_remove(&drbd_devices, minor);
2858 	synchronize_rcu();
2859 out_no_minor_idr:
2860 	drbd_bm_cleanup(device);
2861 out_no_bitmap:
2862 	__free_page(device->md_io.page);
2863 out_no_io_page:
2864 	put_disk(disk);
2865 out_no_disk:
2866 	blk_cleanup_queue(q);
2867 out_no_q:
2868 	kref_put(&resource->kref, drbd_destroy_resource);
2869 	kfree(device);
2870 	return err;
2871 }
2872 
2873 void drbd_delete_device(struct drbd_device *device)
2874 {
2875 	struct drbd_resource *resource = device->resource;
2876 	struct drbd_connection *connection;
2877 	struct drbd_peer_device *peer_device;
2878 
2879 	/* move to free_peer_device() */
2880 	for_each_peer_device(peer_device, device)
2881 		drbd_debugfs_peer_device_cleanup(peer_device);
2882 	drbd_debugfs_device_cleanup(device);
2883 	for_each_connection(connection, resource) {
2884 		idr_remove(&connection->peer_devices, device->vnr);
2885 		kref_put(&device->kref, drbd_destroy_device);
2886 	}
2887 	idr_remove(&resource->devices, device->vnr);
2888 	kref_put(&device->kref, drbd_destroy_device);
2889 	idr_remove(&drbd_devices, device_to_minor(device));
2890 	kref_put(&device->kref, drbd_destroy_device);
2891 	del_gendisk(device->vdisk);
2892 	synchronize_rcu();
2893 	kref_put(&device->kref, drbd_destroy_device);
2894 }
2895 
2896 static int __init drbd_init(void)
2897 {
2898 	int err;
2899 
2900 	if (drbd_minor_count < DRBD_MINOR_COUNT_MIN || drbd_minor_count > DRBD_MINOR_COUNT_MAX) {
2901 		pr_err("invalid minor_count (%d)\n", drbd_minor_count);
2902 #ifdef MODULE
2903 		return -EINVAL;
2904 #else
2905 		drbd_minor_count = DRBD_MINOR_COUNT_DEF;
2906 #endif
2907 	}
2908 
2909 	err = register_blkdev(DRBD_MAJOR, "drbd");
2910 	if (err) {
2911 		pr_err("unable to register block device major %d\n",
2912 		       DRBD_MAJOR);
2913 		return err;
2914 	}
2915 
2916 	/*
2917 	 * allocate all necessary structs
2918 	 */
2919 	init_waitqueue_head(&drbd_pp_wait);
2920 
2921 	drbd_proc = NULL; /* play safe for drbd_cleanup */
2922 	idr_init(&drbd_devices);
2923 
2924 	mutex_init(&resources_mutex);
2925 	INIT_LIST_HEAD(&drbd_resources);
2926 
2927 	err = drbd_genl_register();
2928 	if (err) {
2929 		pr_err("unable to register generic netlink family\n");
2930 		goto fail;
2931 	}
2932 
2933 	err = drbd_create_mempools();
2934 	if (err)
2935 		goto fail;
2936 
2937 	err = -ENOMEM;
2938 	drbd_proc = proc_create_single("drbd", S_IFREG | 0444 , NULL, drbd_seq_show);
2939 	if (!drbd_proc)	{
2940 		pr_err("unable to register proc file\n");
2941 		goto fail;
2942 	}
2943 
2944 	retry.wq = create_singlethread_workqueue("drbd-reissue");
2945 	if (!retry.wq) {
2946 		pr_err("unable to create retry workqueue\n");
2947 		goto fail;
2948 	}
2949 	INIT_WORK(&retry.worker, do_retry);
2950 	spin_lock_init(&retry.lock);
2951 	INIT_LIST_HEAD(&retry.writes);
2952 
2953 	drbd_debugfs_init();
2954 
2955 	pr_info("initialized. "
2956 	       "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n",
2957 	       API_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX);
2958 	pr_info("%s\n", drbd_buildtag());
2959 	pr_info("registered as block device major %d\n", DRBD_MAJOR);
2960 	return 0; /* Success! */
2961 
2962 fail:
2963 	drbd_cleanup();
2964 	if (err == -ENOMEM)
2965 		pr_err("ran out of memory\n");
2966 	else
2967 		pr_err("initialization failure\n");
2968 	return err;
2969 }
2970 
2971 static void drbd_free_one_sock(struct drbd_socket *ds)
2972 {
2973 	struct socket *s;
2974 	mutex_lock(&ds->mutex);
2975 	s = ds->socket;
2976 	ds->socket = NULL;
2977 	mutex_unlock(&ds->mutex);
2978 	if (s) {
2979 		/* so debugfs does not need to mutex_lock() */
2980 		synchronize_rcu();
2981 		kernel_sock_shutdown(s, SHUT_RDWR);
2982 		sock_release(s);
2983 	}
2984 }
2985 
2986 void drbd_free_sock(struct drbd_connection *connection)
2987 {
2988 	if (connection->data.socket)
2989 		drbd_free_one_sock(&connection->data);
2990 	if (connection->meta.socket)
2991 		drbd_free_one_sock(&connection->meta);
2992 }
2993 
2994 /* meta data management */
2995 
2996 void conn_md_sync(struct drbd_connection *connection)
2997 {
2998 	struct drbd_peer_device *peer_device;
2999 	int vnr;
3000 
3001 	rcu_read_lock();
3002 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
3003 		struct drbd_device *device = peer_device->device;
3004 
3005 		kref_get(&device->kref);
3006 		rcu_read_unlock();
3007 		drbd_md_sync(device);
3008 		kref_put(&device->kref, drbd_destroy_device);
3009 		rcu_read_lock();
3010 	}
3011 	rcu_read_unlock();
3012 }
3013 
3014 /* aligned 4kByte */
3015 struct meta_data_on_disk {
3016 	u64 la_size_sect;      /* last agreed size. */
3017 	u64 uuid[UI_SIZE];   /* UUIDs. */
3018 	u64 device_uuid;
3019 	u64 reserved_u64_1;
3020 	u32 flags;             /* MDF */
3021 	u32 magic;
3022 	u32 md_size_sect;
3023 	u32 al_offset;         /* offset to this block */
3024 	u32 al_nr_extents;     /* important for restoring the AL (userspace) */
3025 	      /* `-- act_log->nr_elements <-- ldev->dc.al_extents */
3026 	u32 bm_offset;         /* offset to the bitmap, from here */
3027 	u32 bm_bytes_per_bit;  /* BM_BLOCK_SIZE */
3028 	u32 la_peer_max_bio_size;   /* last peer max_bio_size */
3029 
3030 	/* see al_tr_number_to_on_disk_sector() */
3031 	u32 al_stripes;
3032 	u32 al_stripe_size_4k;
3033 
3034 	u8 reserved_u8[4096 - (7*8 + 10*4)];
3035 } __packed;
3036 
3037 
3038 
3039 void drbd_md_write(struct drbd_device *device, void *b)
3040 {
3041 	struct meta_data_on_disk *buffer = b;
3042 	sector_t sector;
3043 	int i;
3044 
3045 	memset(buffer, 0, sizeof(*buffer));
3046 
3047 	buffer->la_size_sect = cpu_to_be64(drbd_get_capacity(device->this_bdev));
3048 	for (i = UI_CURRENT; i < UI_SIZE; i++)
3049 		buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
3050 	buffer->flags = cpu_to_be32(device->ldev->md.flags);
3051 	buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN);
3052 
3053 	buffer->md_size_sect  = cpu_to_be32(device->ldev->md.md_size_sect);
3054 	buffer->al_offset     = cpu_to_be32(device->ldev->md.al_offset);
3055 	buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements);
3056 	buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE);
3057 	buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid);
3058 
3059 	buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset);
3060 	buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size);
3061 
3062 	buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes);
3063 	buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k);
3064 
3065 	D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset);
3066 	sector = device->ldev->md.md_offset;
3067 
3068 	if (drbd_md_sync_page_io(device, device->ldev, sector, REQ_OP_WRITE)) {
3069 		/* this was a try anyways ... */
3070 		drbd_err(device, "meta data update failed!\n");
3071 		drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR);
3072 	}
3073 }
3074 
3075 /**
3076  * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set
3077  * @device:	DRBD device.
3078  */
3079 void drbd_md_sync(struct drbd_device *device)
3080 {
3081 	struct meta_data_on_disk *buffer;
3082 
3083 	/* Don't accidentally change the DRBD meta data layout. */
3084 	BUILD_BUG_ON(UI_SIZE != 4);
3085 	BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096);
3086 
3087 	del_timer(&device->md_sync_timer);
3088 	/* timer may be rearmed by drbd_md_mark_dirty() now. */
3089 	if (!test_and_clear_bit(MD_DIRTY, &device->flags))
3090 		return;
3091 
3092 	/* We use here D_FAILED and not D_ATTACHING because we try to write
3093 	 * metadata even if we detach due to a disk failure! */
3094 	if (!get_ldev_if_state(device, D_FAILED))
3095 		return;
3096 
3097 	buffer = drbd_md_get_buffer(device, __func__);
3098 	if (!buffer)
3099 		goto out;
3100 
3101 	drbd_md_write(device, buffer);
3102 
3103 	/* Update device->ldev->md.la_size_sect,
3104 	 * since we updated it on metadata. */
3105 	device->ldev->md.la_size_sect = drbd_get_capacity(device->this_bdev);
3106 
3107 	drbd_md_put_buffer(device);
3108 out:
3109 	put_ldev(device);
3110 }
3111 
3112 static int check_activity_log_stripe_size(struct drbd_device *device,
3113 		struct meta_data_on_disk *on_disk,
3114 		struct drbd_md *in_core)
3115 {
3116 	u32 al_stripes = be32_to_cpu(on_disk->al_stripes);
3117 	u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k);
3118 	u64 al_size_4k;
3119 
3120 	/* both not set: default to old fixed size activity log */
3121 	if (al_stripes == 0 && al_stripe_size_4k == 0) {
3122 		al_stripes = 1;
3123 		al_stripe_size_4k = MD_32kB_SECT/8;
3124 	}
3125 
3126 	/* some paranoia plausibility checks */
3127 
3128 	/* we need both values to be set */
3129 	if (al_stripes == 0 || al_stripe_size_4k == 0)
3130 		goto err;
3131 
3132 	al_size_4k = (u64)al_stripes * al_stripe_size_4k;
3133 
3134 	/* Upper limit of activity log area, to avoid potential overflow
3135 	 * problems in al_tr_number_to_on_disk_sector(). As right now, more
3136 	 * than 72 * 4k blocks total only increases the amount of history,
3137 	 * limiting this arbitrarily to 16 GB is not a real limitation ;-)  */
3138 	if (al_size_4k > (16 * 1024 * 1024/4))
3139 		goto err;
3140 
3141 	/* Lower limit: we need at least 8 transaction slots (32kB)
3142 	 * to not break existing setups */
3143 	if (al_size_4k < MD_32kB_SECT/8)
3144 		goto err;
3145 
3146 	in_core->al_stripe_size_4k = al_stripe_size_4k;
3147 	in_core->al_stripes = al_stripes;
3148 	in_core->al_size_4k = al_size_4k;
3149 
3150 	return 0;
3151 err:
3152 	drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n",
3153 			al_stripes, al_stripe_size_4k);
3154 	return -EINVAL;
3155 }
3156 
3157 static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev)
3158 {
3159 	sector_t capacity = drbd_get_capacity(bdev->md_bdev);
3160 	struct drbd_md *in_core = &bdev->md;
3161 	s32 on_disk_al_sect;
3162 	s32 on_disk_bm_sect;
3163 
3164 	/* The on-disk size of the activity log, calculated from offsets, and
3165 	 * the size of the activity log calculated from the stripe settings,
3166 	 * should match.
3167 	 * Though we could relax this a bit: it is ok, if the striped activity log
3168 	 * fits in the available on-disk activity log size.
3169 	 * Right now, that would break how resize is implemented.
3170 	 * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware
3171 	 * of possible unused padding space in the on disk layout. */
3172 	if (in_core->al_offset < 0) {
3173 		if (in_core->bm_offset > in_core->al_offset)
3174 			goto err;
3175 		on_disk_al_sect = -in_core->al_offset;
3176 		on_disk_bm_sect = in_core->al_offset - in_core->bm_offset;
3177 	} else {
3178 		if (in_core->al_offset != MD_4kB_SECT)
3179 			goto err;
3180 		if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT)
3181 			goto err;
3182 
3183 		on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT;
3184 		on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset;
3185 	}
3186 
3187 	/* old fixed size meta data is exactly that: fixed. */
3188 	if (in_core->meta_dev_idx >= 0) {
3189 		if (in_core->md_size_sect != MD_128MB_SECT
3190 		||  in_core->al_offset != MD_4kB_SECT
3191 		||  in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT
3192 		||  in_core->al_stripes != 1
3193 		||  in_core->al_stripe_size_4k != MD_32kB_SECT/8)
3194 			goto err;
3195 	}
3196 
3197 	if (capacity < in_core->md_size_sect)
3198 		goto err;
3199 	if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev))
3200 		goto err;
3201 
3202 	/* should be aligned, and at least 32k */
3203 	if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT))
3204 		goto err;
3205 
3206 	/* should fit (for now: exactly) into the available on-disk space;
3207 	 * overflow prevention is in check_activity_log_stripe_size() above. */
3208 	if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT)
3209 		goto err;
3210 
3211 	/* again, should be aligned */
3212 	if (in_core->bm_offset & 7)
3213 		goto err;
3214 
3215 	/* FIXME check for device grow with flex external meta data? */
3216 
3217 	/* can the available bitmap space cover the last agreed device size? */
3218 	if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512)
3219 		goto err;
3220 
3221 	return 0;
3222 
3223 err:
3224 	drbd_err(device, "meta data offsets don't make sense: idx=%d "
3225 			"al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, "
3226 			"md_size_sect=%u, la_size=%llu, md_capacity=%llu\n",
3227 			in_core->meta_dev_idx,
3228 			in_core->al_stripes, in_core->al_stripe_size_4k,
3229 			in_core->al_offset, in_core->bm_offset, in_core->md_size_sect,
3230 			(unsigned long long)in_core->la_size_sect,
3231 			(unsigned long long)capacity);
3232 
3233 	return -EINVAL;
3234 }
3235 
3236 
3237 /**
3238  * drbd_md_read() - Reads in the meta data super block
3239  * @device:	DRBD device.
3240  * @bdev:	Device from which the meta data should be read in.
3241  *
3242  * Return NO_ERROR on success, and an enum drbd_ret_code in case
3243  * something goes wrong.
3244  *
3245  * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS,
3246  * even before @bdev is assigned to @device->ldev.
3247  */
3248 int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev)
3249 {
3250 	struct meta_data_on_disk *buffer;
3251 	u32 magic, flags;
3252 	int i, rv = NO_ERROR;
3253 
3254 	if (device->state.disk != D_DISKLESS)
3255 		return ERR_DISK_CONFIGURED;
3256 
3257 	buffer = drbd_md_get_buffer(device, __func__);
3258 	if (!buffer)
3259 		return ERR_NOMEM;
3260 
3261 	/* First, figure out where our meta data superblock is located,
3262 	 * and read it. */
3263 	bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx;
3264 	bdev->md.md_offset = drbd_md_ss(bdev);
3265 	/* Even for (flexible or indexed) external meta data,
3266 	 * initially restrict us to the 4k superblock for now.
3267 	 * Affects the paranoia out-of-range access check in drbd_md_sync_page_io(). */
3268 	bdev->md.md_size_sect = 8;
3269 
3270 	if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset,
3271 				 REQ_OP_READ)) {
3272 		/* NOTE: can't do normal error processing here as this is
3273 		   called BEFORE disk is attached */
3274 		drbd_err(device, "Error while reading metadata.\n");
3275 		rv = ERR_IO_MD_DISK;
3276 		goto err;
3277 	}
3278 
3279 	magic = be32_to_cpu(buffer->magic);
3280 	flags = be32_to_cpu(buffer->flags);
3281 	if (magic == DRBD_MD_MAGIC_84_UNCLEAN ||
3282 	    (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) {
3283 			/* btw: that's Activity Log clean, not "all" clean. */
3284 		drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n");
3285 		rv = ERR_MD_UNCLEAN;
3286 		goto err;
3287 	}
3288 
3289 	rv = ERR_MD_INVALID;
3290 	if (magic != DRBD_MD_MAGIC_08) {
3291 		if (magic == DRBD_MD_MAGIC_07)
3292 			drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n");
3293 		else
3294 			drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n");
3295 		goto err;
3296 	}
3297 
3298 	if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) {
3299 		drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n",
3300 		    be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE);
3301 		goto err;
3302 	}
3303 
3304 
3305 	/* convert to in_core endian */
3306 	bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect);
3307 	for (i = UI_CURRENT; i < UI_SIZE; i++)
3308 		bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]);
3309 	bdev->md.flags = be32_to_cpu(buffer->flags);
3310 	bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid);
3311 
3312 	bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect);
3313 	bdev->md.al_offset = be32_to_cpu(buffer->al_offset);
3314 	bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset);
3315 
3316 	if (check_activity_log_stripe_size(device, buffer, &bdev->md))
3317 		goto err;
3318 	if (check_offsets_and_sizes(device, bdev))
3319 		goto err;
3320 
3321 	if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) {
3322 		drbd_err(device, "unexpected bm_offset: %d (expected %d)\n",
3323 		    be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset);
3324 		goto err;
3325 	}
3326 	if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) {
3327 		drbd_err(device, "unexpected md_size: %u (expected %u)\n",
3328 		    be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect);
3329 		goto err;
3330 	}
3331 
3332 	rv = NO_ERROR;
3333 
3334 	spin_lock_irq(&device->resource->req_lock);
3335 	if (device->state.conn < C_CONNECTED) {
3336 		unsigned int peer;
3337 		peer = be32_to_cpu(buffer->la_peer_max_bio_size);
3338 		peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE);
3339 		device->peer_max_bio_size = peer;
3340 	}
3341 	spin_unlock_irq(&device->resource->req_lock);
3342 
3343  err:
3344 	drbd_md_put_buffer(device);
3345 
3346 	return rv;
3347 }
3348 
3349 /**
3350  * drbd_md_mark_dirty() - Mark meta data super block as dirty
3351  * @device:	DRBD device.
3352  *
3353  * Call this function if you change anything that should be written to
3354  * the meta-data super block. This function sets MD_DIRTY, and starts a
3355  * timer that ensures that within five seconds you have to call drbd_md_sync().
3356  */
3357 void drbd_md_mark_dirty(struct drbd_device *device)
3358 {
3359 	if (!test_and_set_bit(MD_DIRTY, &device->flags))
3360 		mod_timer(&device->md_sync_timer, jiffies + 5*HZ);
3361 }
3362 
3363 void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local)
3364 {
3365 	int i;
3366 
3367 	for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++)
3368 		device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i];
3369 }
3370 
3371 void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3372 {
3373 	if (idx == UI_CURRENT) {
3374 		if (device->state.role == R_PRIMARY)
3375 			val |= 1;
3376 		else
3377 			val &= ~((u64)1);
3378 
3379 		drbd_set_ed_uuid(device, val);
3380 	}
3381 
3382 	device->ldev->md.uuid[idx] = val;
3383 	drbd_md_mark_dirty(device);
3384 }
3385 
3386 void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3387 {
3388 	unsigned long flags;
3389 	spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3390 	__drbd_uuid_set(device, idx, val);
3391 	spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3392 }
3393 
3394 void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3395 {
3396 	unsigned long flags;
3397 	spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3398 	if (device->ldev->md.uuid[idx]) {
3399 		drbd_uuid_move_history(device);
3400 		device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx];
3401 	}
3402 	__drbd_uuid_set(device, idx, val);
3403 	spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3404 }
3405 
3406 /**
3407  * drbd_uuid_new_current() - Creates a new current UUID
3408  * @device:	DRBD device.
3409  *
3410  * Creates a new current UUID, and rotates the old current UUID into
3411  * the bitmap slot. Causes an incremental resync upon next connect.
3412  */
3413 void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local)
3414 {
3415 	u64 val;
3416 	unsigned long long bm_uuid;
3417 
3418 	get_random_bytes(&val, sizeof(u64));
3419 
3420 	spin_lock_irq(&device->ldev->md.uuid_lock);
3421 	bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3422 
3423 	if (bm_uuid)
3424 		drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3425 
3426 	device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT];
3427 	__drbd_uuid_set(device, UI_CURRENT, val);
3428 	spin_unlock_irq(&device->ldev->md.uuid_lock);
3429 
3430 	drbd_print_uuids(device, "new current UUID");
3431 	/* get it to stable storage _now_ */
3432 	drbd_md_sync(device);
3433 }
3434 
3435 void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local)
3436 {
3437 	unsigned long flags;
3438 	if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0)
3439 		return;
3440 
3441 	spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3442 	if (val == 0) {
3443 		drbd_uuid_move_history(device);
3444 		device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP];
3445 		device->ldev->md.uuid[UI_BITMAP] = 0;
3446 	} else {
3447 		unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3448 		if (bm_uuid)
3449 			drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3450 
3451 		device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1);
3452 	}
3453 	spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3454 
3455 	drbd_md_mark_dirty(device);
3456 }
3457 
3458 /**
3459  * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3460  * @device:	DRBD device.
3461  *
3462  * Sets all bits in the bitmap and writes the whole bitmap to stable storage.
3463  */
3464 int drbd_bmio_set_n_write(struct drbd_device *device) __must_hold(local)
3465 {
3466 	int rv = -EIO;
3467 
3468 	drbd_md_set_flag(device, MDF_FULL_SYNC);
3469 	drbd_md_sync(device);
3470 	drbd_bm_set_all(device);
3471 
3472 	rv = drbd_bm_write(device);
3473 
3474 	if (!rv) {
3475 		drbd_md_clear_flag(device, MDF_FULL_SYNC);
3476 		drbd_md_sync(device);
3477 	}
3478 
3479 	return rv;
3480 }
3481 
3482 /**
3483  * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3484  * @device:	DRBD device.
3485  *
3486  * Clears all bits in the bitmap and writes the whole bitmap to stable storage.
3487  */
3488 int drbd_bmio_clear_n_write(struct drbd_device *device) __must_hold(local)
3489 {
3490 	drbd_resume_al(device);
3491 	drbd_bm_clear_all(device);
3492 	return drbd_bm_write(device);
3493 }
3494 
3495 static int w_bitmap_io(struct drbd_work *w, int unused)
3496 {
3497 	struct drbd_device *device =
3498 		container_of(w, struct drbd_device, bm_io_work.w);
3499 	struct bm_io_work *work = &device->bm_io_work;
3500 	int rv = -EIO;
3501 
3502 	if (work->flags != BM_LOCKED_CHANGE_ALLOWED) {
3503 		int cnt = atomic_read(&device->ap_bio_cnt);
3504 		if (cnt)
3505 			drbd_err(device, "FIXME: ap_bio_cnt %d, expected 0; queued for '%s'\n",
3506 					cnt, work->why);
3507 	}
3508 
3509 	if (get_ldev(device)) {
3510 		drbd_bm_lock(device, work->why, work->flags);
3511 		rv = work->io_fn(device);
3512 		drbd_bm_unlock(device);
3513 		put_ldev(device);
3514 	}
3515 
3516 	clear_bit_unlock(BITMAP_IO, &device->flags);
3517 	wake_up(&device->misc_wait);
3518 
3519 	if (work->done)
3520 		work->done(device, rv);
3521 
3522 	clear_bit(BITMAP_IO_QUEUED, &device->flags);
3523 	work->why = NULL;
3524 	work->flags = 0;
3525 
3526 	return 0;
3527 }
3528 
3529 /**
3530  * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap
3531  * @device:	DRBD device.
3532  * @io_fn:	IO callback to be called when bitmap IO is possible
3533  * @done:	callback to be called after the bitmap IO was performed
3534  * @why:	Descriptive text of the reason for doing the IO
3535  *
3536  * While IO on the bitmap happens we freeze application IO thus we ensure
3537  * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be
3538  * called from worker context. It MUST NOT be used while a previous such
3539  * work is still pending!
3540  *
3541  * Its worker function encloses the call of io_fn() by get_ldev() and
3542  * put_ldev().
3543  */
3544 void drbd_queue_bitmap_io(struct drbd_device *device,
3545 			  int (*io_fn)(struct drbd_device *),
3546 			  void (*done)(struct drbd_device *, int),
3547 			  char *why, enum bm_flag flags)
3548 {
3549 	D_ASSERT(device, current == first_peer_device(device)->connection->worker.task);
3550 
3551 	D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags));
3552 	D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags));
3553 	D_ASSERT(device, list_empty(&device->bm_io_work.w.list));
3554 	if (device->bm_io_work.why)
3555 		drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n",
3556 			why, device->bm_io_work.why);
3557 
3558 	device->bm_io_work.io_fn = io_fn;
3559 	device->bm_io_work.done = done;
3560 	device->bm_io_work.why = why;
3561 	device->bm_io_work.flags = flags;
3562 
3563 	spin_lock_irq(&device->resource->req_lock);
3564 	set_bit(BITMAP_IO, &device->flags);
3565 	/* don't wait for pending application IO if the caller indicates that
3566 	 * application IO does not conflict anyways. */
3567 	if (flags == BM_LOCKED_CHANGE_ALLOWED || atomic_read(&device->ap_bio_cnt) == 0) {
3568 		if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags))
3569 			drbd_queue_work(&first_peer_device(device)->connection->sender_work,
3570 					&device->bm_io_work.w);
3571 	}
3572 	spin_unlock_irq(&device->resource->req_lock);
3573 }
3574 
3575 /**
3576  * drbd_bitmap_io() -  Does an IO operation on the whole bitmap
3577  * @device:	DRBD device.
3578  * @io_fn:	IO callback to be called when bitmap IO is possible
3579  * @why:	Descriptive text of the reason for doing the IO
3580  *
3581  * freezes application IO while that the actual IO operations runs. This
3582  * functions MAY NOT be called from worker context.
3583  */
3584 int drbd_bitmap_io(struct drbd_device *device, int (*io_fn)(struct drbd_device *),
3585 		char *why, enum bm_flag flags)
3586 {
3587 	/* Only suspend io, if some operation is supposed to be locked out */
3588 	const bool do_suspend_io = flags & (BM_DONT_CLEAR|BM_DONT_SET|BM_DONT_TEST);
3589 	int rv;
3590 
3591 	D_ASSERT(device, current != first_peer_device(device)->connection->worker.task);
3592 
3593 	if (do_suspend_io)
3594 		drbd_suspend_io(device);
3595 
3596 	drbd_bm_lock(device, why, flags);
3597 	rv = io_fn(device);
3598 	drbd_bm_unlock(device);
3599 
3600 	if (do_suspend_io)
3601 		drbd_resume_io(device);
3602 
3603 	return rv;
3604 }
3605 
3606 void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local)
3607 {
3608 	if ((device->ldev->md.flags & flag) != flag) {
3609 		drbd_md_mark_dirty(device);
3610 		device->ldev->md.flags |= flag;
3611 	}
3612 }
3613 
3614 void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local)
3615 {
3616 	if ((device->ldev->md.flags & flag) != 0) {
3617 		drbd_md_mark_dirty(device);
3618 		device->ldev->md.flags &= ~flag;
3619 	}
3620 }
3621 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag)
3622 {
3623 	return (bdev->md.flags & flag) != 0;
3624 }
3625 
3626 static void md_sync_timer_fn(struct timer_list *t)
3627 {
3628 	struct drbd_device *device = from_timer(device, t, md_sync_timer);
3629 	drbd_device_post_work(device, MD_SYNC);
3630 }
3631 
3632 const char *cmdname(enum drbd_packet cmd)
3633 {
3634 	/* THINK may need to become several global tables
3635 	 * when we want to support more than
3636 	 * one PRO_VERSION */
3637 	static const char *cmdnames[] = {
3638 		[P_DATA]	        = "Data",
3639 		[P_WSAME]	        = "WriteSame",
3640 		[P_TRIM]	        = "Trim",
3641 		[P_DATA_REPLY]	        = "DataReply",
3642 		[P_RS_DATA_REPLY]	= "RSDataReply",
3643 		[P_BARRIER]	        = "Barrier",
3644 		[P_BITMAP]	        = "ReportBitMap",
3645 		[P_BECOME_SYNC_TARGET]  = "BecomeSyncTarget",
3646 		[P_BECOME_SYNC_SOURCE]  = "BecomeSyncSource",
3647 		[P_UNPLUG_REMOTE]	= "UnplugRemote",
3648 		[P_DATA_REQUEST]	= "DataRequest",
3649 		[P_RS_DATA_REQUEST]     = "RSDataRequest",
3650 		[P_SYNC_PARAM]	        = "SyncParam",
3651 		[P_SYNC_PARAM89]	= "SyncParam89",
3652 		[P_PROTOCOL]            = "ReportProtocol",
3653 		[P_UUIDS]	        = "ReportUUIDs",
3654 		[P_SIZES]	        = "ReportSizes",
3655 		[P_STATE]	        = "ReportState",
3656 		[P_SYNC_UUID]           = "ReportSyncUUID",
3657 		[P_AUTH_CHALLENGE]      = "AuthChallenge",
3658 		[P_AUTH_RESPONSE]	= "AuthResponse",
3659 		[P_PING]		= "Ping",
3660 		[P_PING_ACK]	        = "PingAck",
3661 		[P_RECV_ACK]	        = "RecvAck",
3662 		[P_WRITE_ACK]	        = "WriteAck",
3663 		[P_RS_WRITE_ACK]	= "RSWriteAck",
3664 		[P_SUPERSEDED]          = "Superseded",
3665 		[P_NEG_ACK]	        = "NegAck",
3666 		[P_NEG_DREPLY]	        = "NegDReply",
3667 		[P_NEG_RS_DREPLY]	= "NegRSDReply",
3668 		[P_BARRIER_ACK]	        = "BarrierAck",
3669 		[P_STATE_CHG_REQ]       = "StateChgRequest",
3670 		[P_STATE_CHG_REPLY]     = "StateChgReply",
3671 		[P_OV_REQUEST]          = "OVRequest",
3672 		[P_OV_REPLY]            = "OVReply",
3673 		[P_OV_RESULT]           = "OVResult",
3674 		[P_CSUM_RS_REQUEST]     = "CsumRSRequest",
3675 		[P_RS_IS_IN_SYNC]	= "CsumRSIsInSync",
3676 		[P_COMPRESSED_BITMAP]   = "CBitmap",
3677 		[P_DELAY_PROBE]         = "DelayProbe",
3678 		[P_OUT_OF_SYNC]		= "OutOfSync",
3679 		[P_RETRY_WRITE]		= "RetryWrite",
3680 		[P_RS_CANCEL]		= "RSCancel",
3681 		[P_CONN_ST_CHG_REQ]	= "conn_st_chg_req",
3682 		[P_CONN_ST_CHG_REPLY]	= "conn_st_chg_reply",
3683 		[P_RETRY_WRITE]		= "retry_write",
3684 		[P_PROTOCOL_UPDATE]	= "protocol_update",
3685 		[P_RS_THIN_REQ]         = "rs_thin_req",
3686 		[P_RS_DEALLOCATED]      = "rs_deallocated",
3687 
3688 		/* enum drbd_packet, but not commands - obsoleted flags:
3689 		 *	P_MAY_IGNORE
3690 		 *	P_MAX_OPT_CMD
3691 		 */
3692 	};
3693 
3694 	/* too big for the array: 0xfffX */
3695 	if (cmd == P_INITIAL_META)
3696 		return "InitialMeta";
3697 	if (cmd == P_INITIAL_DATA)
3698 		return "InitialData";
3699 	if (cmd == P_CONNECTION_FEATURES)
3700 		return "ConnectionFeatures";
3701 	if (cmd >= ARRAY_SIZE(cmdnames))
3702 		return "Unknown";
3703 	return cmdnames[cmd];
3704 }
3705 
3706 /**
3707  * drbd_wait_misc  -  wait for a request to make progress
3708  * @device:	device associated with the request
3709  * @i:		the struct drbd_interval embedded in struct drbd_request or
3710  *		struct drbd_peer_request
3711  */
3712 int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i)
3713 {
3714 	struct net_conf *nc;
3715 	DEFINE_WAIT(wait);
3716 	long timeout;
3717 
3718 	rcu_read_lock();
3719 	nc = rcu_dereference(first_peer_device(device)->connection->net_conf);
3720 	if (!nc) {
3721 		rcu_read_unlock();
3722 		return -ETIMEDOUT;
3723 	}
3724 	timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT;
3725 	rcu_read_unlock();
3726 
3727 	/* Indicate to wake up device->misc_wait on progress.  */
3728 	i->waiting = true;
3729 	prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE);
3730 	spin_unlock_irq(&device->resource->req_lock);
3731 	timeout = schedule_timeout(timeout);
3732 	finish_wait(&device->misc_wait, &wait);
3733 	spin_lock_irq(&device->resource->req_lock);
3734 	if (!timeout || device->state.conn < C_CONNECTED)
3735 		return -ETIMEDOUT;
3736 	if (signal_pending(current))
3737 		return -ERESTARTSYS;
3738 	return 0;
3739 }
3740 
3741 void lock_all_resources(void)
3742 {
3743 	struct drbd_resource *resource;
3744 	int __maybe_unused i = 0;
3745 
3746 	mutex_lock(&resources_mutex);
3747 	local_irq_disable();
3748 	for_each_resource(resource, &drbd_resources)
3749 		spin_lock_nested(&resource->req_lock, i++);
3750 }
3751 
3752 void unlock_all_resources(void)
3753 {
3754 	struct drbd_resource *resource;
3755 
3756 	for_each_resource(resource, &drbd_resources)
3757 		spin_unlock(&resource->req_lock);
3758 	local_irq_enable();
3759 	mutex_unlock(&resources_mutex);
3760 }
3761 
3762 #ifdef CONFIG_DRBD_FAULT_INJECTION
3763 /* Fault insertion support including random number generator shamelessly
3764  * stolen from kernel/rcutorture.c */
3765 struct fault_random_state {
3766 	unsigned long state;
3767 	unsigned long count;
3768 };
3769 
3770 #define FAULT_RANDOM_MULT 39916801  /* prime */
3771 #define FAULT_RANDOM_ADD	479001701 /* prime */
3772 #define FAULT_RANDOM_REFRESH 10000
3773 
3774 /*
3775  * Crude but fast random-number generator.  Uses a linear congruential
3776  * generator, with occasional help from get_random_bytes().
3777  */
3778 static unsigned long
3779 _drbd_fault_random(struct fault_random_state *rsp)
3780 {
3781 	long refresh;
3782 
3783 	if (!rsp->count--) {
3784 		get_random_bytes(&refresh, sizeof(refresh));
3785 		rsp->state += refresh;
3786 		rsp->count = FAULT_RANDOM_REFRESH;
3787 	}
3788 	rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD;
3789 	return swahw32(rsp->state);
3790 }
3791 
3792 static char *
3793 _drbd_fault_str(unsigned int type) {
3794 	static char *_faults[] = {
3795 		[DRBD_FAULT_MD_WR] = "Meta-data write",
3796 		[DRBD_FAULT_MD_RD] = "Meta-data read",
3797 		[DRBD_FAULT_RS_WR] = "Resync write",
3798 		[DRBD_FAULT_RS_RD] = "Resync read",
3799 		[DRBD_FAULT_DT_WR] = "Data write",
3800 		[DRBD_FAULT_DT_RD] = "Data read",
3801 		[DRBD_FAULT_DT_RA] = "Data read ahead",
3802 		[DRBD_FAULT_BM_ALLOC] = "BM allocation",
3803 		[DRBD_FAULT_AL_EE] = "EE allocation",
3804 		[DRBD_FAULT_RECEIVE] = "receive data corruption",
3805 	};
3806 
3807 	return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**";
3808 }
3809 
3810 unsigned int
3811 _drbd_insert_fault(struct drbd_device *device, unsigned int type)
3812 {
3813 	static struct fault_random_state rrs = {0, 0};
3814 
3815 	unsigned int ret = (
3816 		(drbd_fault_devs == 0 ||
3817 			((1 << device_to_minor(device)) & drbd_fault_devs) != 0) &&
3818 		(((_drbd_fault_random(&rrs) % 100) + 1) <= drbd_fault_rate));
3819 
3820 	if (ret) {
3821 		drbd_fault_count++;
3822 
3823 		if (__ratelimit(&drbd_ratelimit_state))
3824 			drbd_warn(device, "***Simulating %s failure\n",
3825 				_drbd_fault_str(type));
3826 	}
3827 
3828 	return ret;
3829 }
3830 #endif
3831 
3832 const char *drbd_buildtag(void)
3833 {
3834 	/* DRBD built from external sources has here a reference to the
3835 	   git hash of the source code. */
3836 
3837 	static char buildtag[38] = "\0uilt-in";
3838 
3839 	if (buildtag[0] == 0) {
3840 #ifdef MODULE
3841 		sprintf(buildtag, "srcversion: %-24s", THIS_MODULE->srcversion);
3842 #else
3843 		buildtag[0] = 'b';
3844 #endif
3845 	}
3846 
3847 	return buildtag;
3848 }
3849 
3850 module_init(drbd_init)
3851 module_exit(drbd_cleanup)
3852 
3853 EXPORT_SYMBOL(drbd_conn_str);
3854 EXPORT_SYMBOL(drbd_role_str);
3855 EXPORT_SYMBOL(drbd_disk_str);
3856 EXPORT_SYMBOL(drbd_set_st_err_str);
3857