1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 drbd.c 4 5 This file is part of DRBD by Philipp Reisner and Lars Ellenberg. 6 7 Copyright (C) 2001-2008, LINBIT Information Technologies GmbH. 8 Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>. 9 Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>. 10 11 Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev 12 from Logicworks, Inc. for making SDP replication support possible. 13 14 15 */ 16 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include <linux/module.h> 20 #include <linux/jiffies.h> 21 #include <linux/drbd.h> 22 #include <linux/uaccess.h> 23 #include <asm/types.h> 24 #include <net/sock.h> 25 #include <linux/ctype.h> 26 #include <linux/mutex.h> 27 #include <linux/fs.h> 28 #include <linux/file.h> 29 #include <linux/proc_fs.h> 30 #include <linux/init.h> 31 #include <linux/mm.h> 32 #include <linux/memcontrol.h> 33 #include <linux/mm_inline.h> 34 #include <linux/slab.h> 35 #include <linux/random.h> 36 #include <linux/reboot.h> 37 #include <linux/notifier.h> 38 #include <linux/kthread.h> 39 #include <linux/workqueue.h> 40 #define __KERNEL_SYSCALLS__ 41 #include <linux/unistd.h> 42 #include <linux/vmalloc.h> 43 #include <linux/sched/signal.h> 44 45 #include <linux/drbd_limits.h> 46 #include "drbd_int.h" 47 #include "drbd_protocol.h" 48 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */ 49 #include "drbd_vli.h" 50 #include "drbd_debugfs.h" 51 52 static DEFINE_MUTEX(drbd_main_mutex); 53 static int drbd_open(struct block_device *bdev, fmode_t mode); 54 static void drbd_release(struct gendisk *gd, fmode_t mode); 55 static void md_sync_timer_fn(struct timer_list *t); 56 static int w_bitmap_io(struct drbd_work *w, int unused); 57 58 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, " 59 "Lars Ellenberg <lars@linbit.com>"); 60 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION); 61 MODULE_VERSION(REL_VERSION); 62 MODULE_LICENSE("GPL"); 63 MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices (" 64 __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")"); 65 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR); 66 67 #include <linux/moduleparam.h> 68 /* thanks to these macros, if compiled into the kernel (not-module), 69 * these become boot parameters (e.g., drbd.minor_count) */ 70 71 #ifdef CONFIG_DRBD_FAULT_INJECTION 72 int drbd_enable_faults; 73 int drbd_fault_rate; 74 static int drbd_fault_count; 75 static int drbd_fault_devs; 76 /* bitmap of enabled faults */ 77 module_param_named(enable_faults, drbd_enable_faults, int, 0664); 78 /* fault rate % value - applies to all enabled faults */ 79 module_param_named(fault_rate, drbd_fault_rate, int, 0664); 80 /* count of faults inserted */ 81 module_param_named(fault_count, drbd_fault_count, int, 0664); 82 /* bitmap of devices to insert faults on */ 83 module_param_named(fault_devs, drbd_fault_devs, int, 0644); 84 #endif 85 86 /* module parameters we can keep static */ 87 static bool drbd_allow_oos; /* allow_open_on_secondary */ 88 static bool drbd_disable_sendpage; 89 MODULE_PARM_DESC(allow_oos, "DONT USE!"); 90 module_param_named(allow_oos, drbd_allow_oos, bool, 0); 91 module_param_named(disable_sendpage, drbd_disable_sendpage, bool, 0644); 92 93 /* module parameters we share */ 94 int drbd_proc_details; /* Detail level in proc drbd*/ 95 module_param_named(proc_details, drbd_proc_details, int, 0644); 96 /* module parameters shared with defaults */ 97 unsigned int drbd_minor_count = DRBD_MINOR_COUNT_DEF; 98 /* Module parameter for setting the user mode helper program 99 * to run. Default is /sbin/drbdadm */ 100 char drbd_usermode_helper[80] = "/sbin/drbdadm"; 101 module_param_named(minor_count, drbd_minor_count, uint, 0444); 102 module_param_string(usermode_helper, drbd_usermode_helper, sizeof(drbd_usermode_helper), 0644); 103 104 /* in 2.6.x, our device mapping and config info contains our virtual gendisks 105 * as member "struct gendisk *vdisk;" 106 */ 107 struct idr drbd_devices; 108 struct list_head drbd_resources; 109 struct mutex resources_mutex; 110 111 struct kmem_cache *drbd_request_cache; 112 struct kmem_cache *drbd_ee_cache; /* peer requests */ 113 struct kmem_cache *drbd_bm_ext_cache; /* bitmap extents */ 114 struct kmem_cache *drbd_al_ext_cache; /* activity log extents */ 115 mempool_t drbd_request_mempool; 116 mempool_t drbd_ee_mempool; 117 mempool_t drbd_md_io_page_pool; 118 struct bio_set drbd_md_io_bio_set; 119 struct bio_set drbd_io_bio_set; 120 121 /* I do not use a standard mempool, because: 122 1) I want to hand out the pre-allocated objects first. 123 2) I want to be able to interrupt sleeping allocation with a signal. 124 Note: This is a single linked list, the next pointer is the private 125 member of struct page. 126 */ 127 struct page *drbd_pp_pool; 128 spinlock_t drbd_pp_lock; 129 int drbd_pp_vacant; 130 wait_queue_head_t drbd_pp_wait; 131 132 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5); 133 134 static const struct block_device_operations drbd_ops = { 135 .owner = THIS_MODULE, 136 .open = drbd_open, 137 .release = drbd_release, 138 }; 139 140 struct bio *bio_alloc_drbd(gfp_t gfp_mask) 141 { 142 struct bio *bio; 143 144 if (!bioset_initialized(&drbd_md_io_bio_set)) 145 return bio_alloc(gfp_mask, 1); 146 147 bio = bio_alloc_bioset(gfp_mask, 1, &drbd_md_io_bio_set); 148 if (!bio) 149 return NULL; 150 return bio; 151 } 152 153 #ifdef __CHECKER__ 154 /* When checking with sparse, and this is an inline function, sparse will 155 give tons of false positives. When this is a real functions sparse works. 156 */ 157 int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins) 158 { 159 int io_allowed; 160 161 atomic_inc(&device->local_cnt); 162 io_allowed = (device->state.disk >= mins); 163 if (!io_allowed) { 164 if (atomic_dec_and_test(&device->local_cnt)) 165 wake_up(&device->misc_wait); 166 } 167 return io_allowed; 168 } 169 170 #endif 171 172 /** 173 * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch 174 * @connection: DRBD connection. 175 * @barrier_nr: Expected identifier of the DRBD write barrier packet. 176 * @set_size: Expected number of requests before that barrier. 177 * 178 * In case the passed barrier_nr or set_size does not match the oldest 179 * epoch of not yet barrier-acked requests, this function will cause a 180 * termination of the connection. 181 */ 182 void tl_release(struct drbd_connection *connection, unsigned int barrier_nr, 183 unsigned int set_size) 184 { 185 struct drbd_request *r; 186 struct drbd_request *req = NULL; 187 int expect_epoch = 0; 188 int expect_size = 0; 189 190 spin_lock_irq(&connection->resource->req_lock); 191 192 /* find oldest not yet barrier-acked write request, 193 * count writes in its epoch. */ 194 list_for_each_entry(r, &connection->transfer_log, tl_requests) { 195 const unsigned s = r->rq_state; 196 if (!req) { 197 if (!(s & RQ_WRITE)) 198 continue; 199 if (!(s & RQ_NET_MASK)) 200 continue; 201 if (s & RQ_NET_DONE) 202 continue; 203 req = r; 204 expect_epoch = req->epoch; 205 expect_size ++; 206 } else { 207 if (r->epoch != expect_epoch) 208 break; 209 if (!(s & RQ_WRITE)) 210 continue; 211 /* if (s & RQ_DONE): not expected */ 212 /* if (!(s & RQ_NET_MASK)): not expected */ 213 expect_size++; 214 } 215 } 216 217 /* first some paranoia code */ 218 if (req == NULL) { 219 drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n", 220 barrier_nr); 221 goto bail; 222 } 223 if (expect_epoch != barrier_nr) { 224 drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n", 225 barrier_nr, expect_epoch); 226 goto bail; 227 } 228 229 if (expect_size != set_size) { 230 drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n", 231 barrier_nr, set_size, expect_size); 232 goto bail; 233 } 234 235 /* Clean up list of requests processed during current epoch. */ 236 /* this extra list walk restart is paranoia, 237 * to catch requests being barrier-acked "unexpectedly". 238 * It usually should find the same req again, or some READ preceding it. */ 239 list_for_each_entry(req, &connection->transfer_log, tl_requests) 240 if (req->epoch == expect_epoch) 241 break; 242 list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) { 243 if (req->epoch != expect_epoch) 244 break; 245 _req_mod(req, BARRIER_ACKED); 246 } 247 spin_unlock_irq(&connection->resource->req_lock); 248 249 return; 250 251 bail: 252 spin_unlock_irq(&connection->resource->req_lock); 253 conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD); 254 } 255 256 257 /** 258 * _tl_restart() - Walks the transfer log, and applies an action to all requests 259 * @connection: DRBD connection to operate on. 260 * @what: The action/event to perform with all request objects 261 * 262 * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO, 263 * RESTART_FROZEN_DISK_IO. 264 */ 265 /* must hold resource->req_lock */ 266 void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what) 267 { 268 struct drbd_request *req, *r; 269 270 list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) 271 _req_mod(req, what); 272 } 273 274 void tl_restart(struct drbd_connection *connection, enum drbd_req_event what) 275 { 276 spin_lock_irq(&connection->resource->req_lock); 277 _tl_restart(connection, what); 278 spin_unlock_irq(&connection->resource->req_lock); 279 } 280 281 /** 282 * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL 283 * @device: DRBD device. 284 * 285 * This is called after the connection to the peer was lost. The storage covered 286 * by the requests on the transfer gets marked as our of sync. Called from the 287 * receiver thread and the worker thread. 288 */ 289 void tl_clear(struct drbd_connection *connection) 290 { 291 tl_restart(connection, CONNECTION_LOST_WHILE_PENDING); 292 } 293 294 /** 295 * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL 296 * @device: DRBD device. 297 */ 298 void tl_abort_disk_io(struct drbd_device *device) 299 { 300 struct drbd_connection *connection = first_peer_device(device)->connection; 301 struct drbd_request *req, *r; 302 303 spin_lock_irq(&connection->resource->req_lock); 304 list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) { 305 if (!(req->rq_state & RQ_LOCAL_PENDING)) 306 continue; 307 if (req->device != device) 308 continue; 309 _req_mod(req, ABORT_DISK_IO); 310 } 311 spin_unlock_irq(&connection->resource->req_lock); 312 } 313 314 static int drbd_thread_setup(void *arg) 315 { 316 struct drbd_thread *thi = (struct drbd_thread *) arg; 317 struct drbd_resource *resource = thi->resource; 318 unsigned long flags; 319 int retval; 320 321 snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s", 322 thi->name[0], 323 resource->name); 324 325 allow_kernel_signal(DRBD_SIGKILL); 326 allow_kernel_signal(SIGXCPU); 327 restart: 328 retval = thi->function(thi); 329 330 spin_lock_irqsave(&thi->t_lock, flags); 331 332 /* if the receiver has been "EXITING", the last thing it did 333 * was set the conn state to "StandAlone", 334 * if now a re-connect request comes in, conn state goes C_UNCONNECTED, 335 * and receiver thread will be "started". 336 * drbd_thread_start needs to set "RESTARTING" in that case. 337 * t_state check and assignment needs to be within the same spinlock, 338 * so either thread_start sees EXITING, and can remap to RESTARTING, 339 * or thread_start see NONE, and can proceed as normal. 340 */ 341 342 if (thi->t_state == RESTARTING) { 343 drbd_info(resource, "Restarting %s thread\n", thi->name); 344 thi->t_state = RUNNING; 345 spin_unlock_irqrestore(&thi->t_lock, flags); 346 goto restart; 347 } 348 349 thi->task = NULL; 350 thi->t_state = NONE; 351 smp_mb(); 352 complete_all(&thi->stop); 353 spin_unlock_irqrestore(&thi->t_lock, flags); 354 355 drbd_info(resource, "Terminating %s\n", current->comm); 356 357 /* Release mod reference taken when thread was started */ 358 359 if (thi->connection) 360 kref_put(&thi->connection->kref, drbd_destroy_connection); 361 kref_put(&resource->kref, drbd_destroy_resource); 362 module_put(THIS_MODULE); 363 return retval; 364 } 365 366 static void drbd_thread_init(struct drbd_resource *resource, struct drbd_thread *thi, 367 int (*func) (struct drbd_thread *), const char *name) 368 { 369 spin_lock_init(&thi->t_lock); 370 thi->task = NULL; 371 thi->t_state = NONE; 372 thi->function = func; 373 thi->resource = resource; 374 thi->connection = NULL; 375 thi->name = name; 376 } 377 378 int drbd_thread_start(struct drbd_thread *thi) 379 { 380 struct drbd_resource *resource = thi->resource; 381 struct task_struct *nt; 382 unsigned long flags; 383 384 /* is used from state engine doing drbd_thread_stop_nowait, 385 * while holding the req lock irqsave */ 386 spin_lock_irqsave(&thi->t_lock, flags); 387 388 switch (thi->t_state) { 389 case NONE: 390 drbd_info(resource, "Starting %s thread (from %s [%d])\n", 391 thi->name, current->comm, current->pid); 392 393 /* Get ref on module for thread - this is released when thread exits */ 394 if (!try_module_get(THIS_MODULE)) { 395 drbd_err(resource, "Failed to get module reference in drbd_thread_start\n"); 396 spin_unlock_irqrestore(&thi->t_lock, flags); 397 return false; 398 } 399 400 kref_get(&resource->kref); 401 if (thi->connection) 402 kref_get(&thi->connection->kref); 403 404 init_completion(&thi->stop); 405 thi->reset_cpu_mask = 1; 406 thi->t_state = RUNNING; 407 spin_unlock_irqrestore(&thi->t_lock, flags); 408 flush_signals(current); /* otherw. may get -ERESTARTNOINTR */ 409 410 nt = kthread_create(drbd_thread_setup, (void *) thi, 411 "drbd_%c_%s", thi->name[0], thi->resource->name); 412 413 if (IS_ERR(nt)) { 414 drbd_err(resource, "Couldn't start thread\n"); 415 416 if (thi->connection) 417 kref_put(&thi->connection->kref, drbd_destroy_connection); 418 kref_put(&resource->kref, drbd_destroy_resource); 419 module_put(THIS_MODULE); 420 return false; 421 } 422 spin_lock_irqsave(&thi->t_lock, flags); 423 thi->task = nt; 424 thi->t_state = RUNNING; 425 spin_unlock_irqrestore(&thi->t_lock, flags); 426 wake_up_process(nt); 427 break; 428 case EXITING: 429 thi->t_state = RESTARTING; 430 drbd_info(resource, "Restarting %s thread (from %s [%d])\n", 431 thi->name, current->comm, current->pid); 432 /* fall through */ 433 case RUNNING: 434 case RESTARTING: 435 default: 436 spin_unlock_irqrestore(&thi->t_lock, flags); 437 break; 438 } 439 440 return true; 441 } 442 443 444 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait) 445 { 446 unsigned long flags; 447 448 enum drbd_thread_state ns = restart ? RESTARTING : EXITING; 449 450 /* may be called from state engine, holding the req lock irqsave */ 451 spin_lock_irqsave(&thi->t_lock, flags); 452 453 if (thi->t_state == NONE) { 454 spin_unlock_irqrestore(&thi->t_lock, flags); 455 if (restart) 456 drbd_thread_start(thi); 457 return; 458 } 459 460 if (thi->t_state != ns) { 461 if (thi->task == NULL) { 462 spin_unlock_irqrestore(&thi->t_lock, flags); 463 return; 464 } 465 466 thi->t_state = ns; 467 smp_mb(); 468 init_completion(&thi->stop); 469 if (thi->task != current) 470 send_sig(DRBD_SIGKILL, thi->task, 1); 471 } 472 473 spin_unlock_irqrestore(&thi->t_lock, flags); 474 475 if (wait) 476 wait_for_completion(&thi->stop); 477 } 478 479 int conn_lowest_minor(struct drbd_connection *connection) 480 { 481 struct drbd_peer_device *peer_device; 482 int vnr = 0, minor = -1; 483 484 rcu_read_lock(); 485 peer_device = idr_get_next(&connection->peer_devices, &vnr); 486 if (peer_device) 487 minor = device_to_minor(peer_device->device); 488 rcu_read_unlock(); 489 490 return minor; 491 } 492 493 #ifdef CONFIG_SMP 494 /** 495 * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs 496 * 497 * Forces all threads of a resource onto the same CPU. This is beneficial for 498 * DRBD's performance. May be overwritten by user's configuration. 499 */ 500 static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask) 501 { 502 unsigned int *resources_per_cpu, min_index = ~0; 503 504 resources_per_cpu = kcalloc(nr_cpu_ids, sizeof(*resources_per_cpu), 505 GFP_KERNEL); 506 if (resources_per_cpu) { 507 struct drbd_resource *resource; 508 unsigned int cpu, min = ~0; 509 510 rcu_read_lock(); 511 for_each_resource_rcu(resource, &drbd_resources) { 512 for_each_cpu(cpu, resource->cpu_mask) 513 resources_per_cpu[cpu]++; 514 } 515 rcu_read_unlock(); 516 for_each_online_cpu(cpu) { 517 if (resources_per_cpu[cpu] < min) { 518 min = resources_per_cpu[cpu]; 519 min_index = cpu; 520 } 521 } 522 kfree(resources_per_cpu); 523 } 524 if (min_index == ~0) { 525 cpumask_setall(*cpu_mask); 526 return; 527 } 528 cpumask_set_cpu(min_index, *cpu_mask); 529 } 530 531 /** 532 * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread 533 * @device: DRBD device. 534 * @thi: drbd_thread object 535 * 536 * call in the "main loop" of _all_ threads, no need for any mutex, current won't die 537 * prematurely. 538 */ 539 void drbd_thread_current_set_cpu(struct drbd_thread *thi) 540 { 541 struct drbd_resource *resource = thi->resource; 542 struct task_struct *p = current; 543 544 if (!thi->reset_cpu_mask) 545 return; 546 thi->reset_cpu_mask = 0; 547 set_cpus_allowed_ptr(p, resource->cpu_mask); 548 } 549 #else 550 #define drbd_calc_cpu_mask(A) ({}) 551 #endif 552 553 /** 554 * drbd_header_size - size of a packet header 555 * 556 * The header size is a multiple of 8, so any payload following the header is 557 * word aligned on 64-bit architectures. (The bitmap send and receive code 558 * relies on this.) 559 */ 560 unsigned int drbd_header_size(struct drbd_connection *connection) 561 { 562 if (connection->agreed_pro_version >= 100) { 563 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8)); 564 return sizeof(struct p_header100); 565 } else { 566 BUILD_BUG_ON(sizeof(struct p_header80) != 567 sizeof(struct p_header95)); 568 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8)); 569 return sizeof(struct p_header80); 570 } 571 } 572 573 static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size) 574 { 575 h->magic = cpu_to_be32(DRBD_MAGIC); 576 h->command = cpu_to_be16(cmd); 577 h->length = cpu_to_be16(size); 578 return sizeof(struct p_header80); 579 } 580 581 static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size) 582 { 583 h->magic = cpu_to_be16(DRBD_MAGIC_BIG); 584 h->command = cpu_to_be16(cmd); 585 h->length = cpu_to_be32(size); 586 return sizeof(struct p_header95); 587 } 588 589 static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd, 590 int size, int vnr) 591 { 592 h->magic = cpu_to_be32(DRBD_MAGIC_100); 593 h->volume = cpu_to_be16(vnr); 594 h->command = cpu_to_be16(cmd); 595 h->length = cpu_to_be32(size); 596 h->pad = 0; 597 return sizeof(struct p_header100); 598 } 599 600 static unsigned int prepare_header(struct drbd_connection *connection, int vnr, 601 void *buffer, enum drbd_packet cmd, int size) 602 { 603 if (connection->agreed_pro_version >= 100) 604 return prepare_header100(buffer, cmd, size, vnr); 605 else if (connection->agreed_pro_version >= 95 && 606 size > DRBD_MAX_SIZE_H80_PACKET) 607 return prepare_header95(buffer, cmd, size); 608 else 609 return prepare_header80(buffer, cmd, size); 610 } 611 612 static void *__conn_prepare_command(struct drbd_connection *connection, 613 struct drbd_socket *sock) 614 { 615 if (!sock->socket) 616 return NULL; 617 return sock->sbuf + drbd_header_size(connection); 618 } 619 620 void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock) 621 { 622 void *p; 623 624 mutex_lock(&sock->mutex); 625 p = __conn_prepare_command(connection, sock); 626 if (!p) 627 mutex_unlock(&sock->mutex); 628 629 return p; 630 } 631 632 void *drbd_prepare_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock) 633 { 634 return conn_prepare_command(peer_device->connection, sock); 635 } 636 637 static int __send_command(struct drbd_connection *connection, int vnr, 638 struct drbd_socket *sock, enum drbd_packet cmd, 639 unsigned int header_size, void *data, 640 unsigned int size) 641 { 642 int msg_flags; 643 int err; 644 645 /* 646 * Called with @data == NULL and the size of the data blocks in @size 647 * for commands that send data blocks. For those commands, omit the 648 * MSG_MORE flag: this will increase the likelihood that data blocks 649 * which are page aligned on the sender will end up page aligned on the 650 * receiver. 651 */ 652 msg_flags = data ? MSG_MORE : 0; 653 654 header_size += prepare_header(connection, vnr, sock->sbuf, cmd, 655 header_size + size); 656 err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size, 657 msg_flags); 658 if (data && !err) 659 err = drbd_send_all(connection, sock->socket, data, size, 0); 660 /* DRBD protocol "pings" are latency critical. 661 * This is supposed to trigger tcp_push_pending_frames() */ 662 if (!err && (cmd == P_PING || cmd == P_PING_ACK)) 663 drbd_tcp_nodelay(sock->socket); 664 665 return err; 666 } 667 668 static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock, 669 enum drbd_packet cmd, unsigned int header_size, 670 void *data, unsigned int size) 671 { 672 return __send_command(connection, 0, sock, cmd, header_size, data, size); 673 } 674 675 int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock, 676 enum drbd_packet cmd, unsigned int header_size, 677 void *data, unsigned int size) 678 { 679 int err; 680 681 err = __conn_send_command(connection, sock, cmd, header_size, data, size); 682 mutex_unlock(&sock->mutex); 683 return err; 684 } 685 686 int drbd_send_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock, 687 enum drbd_packet cmd, unsigned int header_size, 688 void *data, unsigned int size) 689 { 690 int err; 691 692 err = __send_command(peer_device->connection, peer_device->device->vnr, 693 sock, cmd, header_size, data, size); 694 mutex_unlock(&sock->mutex); 695 return err; 696 } 697 698 int drbd_send_ping(struct drbd_connection *connection) 699 { 700 struct drbd_socket *sock; 701 702 sock = &connection->meta; 703 if (!conn_prepare_command(connection, sock)) 704 return -EIO; 705 return conn_send_command(connection, sock, P_PING, 0, NULL, 0); 706 } 707 708 int drbd_send_ping_ack(struct drbd_connection *connection) 709 { 710 struct drbd_socket *sock; 711 712 sock = &connection->meta; 713 if (!conn_prepare_command(connection, sock)) 714 return -EIO; 715 return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0); 716 } 717 718 int drbd_send_sync_param(struct drbd_peer_device *peer_device) 719 { 720 struct drbd_socket *sock; 721 struct p_rs_param_95 *p; 722 int size; 723 const int apv = peer_device->connection->agreed_pro_version; 724 enum drbd_packet cmd; 725 struct net_conf *nc; 726 struct disk_conf *dc; 727 728 sock = &peer_device->connection->data; 729 p = drbd_prepare_command(peer_device, sock); 730 if (!p) 731 return -EIO; 732 733 rcu_read_lock(); 734 nc = rcu_dereference(peer_device->connection->net_conf); 735 736 size = apv <= 87 ? sizeof(struct p_rs_param) 737 : apv == 88 ? sizeof(struct p_rs_param) 738 + strlen(nc->verify_alg) + 1 739 : apv <= 94 ? sizeof(struct p_rs_param_89) 740 : /* apv >= 95 */ sizeof(struct p_rs_param_95); 741 742 cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM; 743 744 /* initialize verify_alg and csums_alg */ 745 memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX); 746 747 if (get_ldev(peer_device->device)) { 748 dc = rcu_dereference(peer_device->device->ldev->disk_conf); 749 p->resync_rate = cpu_to_be32(dc->resync_rate); 750 p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead); 751 p->c_delay_target = cpu_to_be32(dc->c_delay_target); 752 p->c_fill_target = cpu_to_be32(dc->c_fill_target); 753 p->c_max_rate = cpu_to_be32(dc->c_max_rate); 754 put_ldev(peer_device->device); 755 } else { 756 p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF); 757 p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF); 758 p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF); 759 p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF); 760 p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF); 761 } 762 763 if (apv >= 88) 764 strcpy(p->verify_alg, nc->verify_alg); 765 if (apv >= 89) 766 strcpy(p->csums_alg, nc->csums_alg); 767 rcu_read_unlock(); 768 769 return drbd_send_command(peer_device, sock, cmd, size, NULL, 0); 770 } 771 772 int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd) 773 { 774 struct drbd_socket *sock; 775 struct p_protocol *p; 776 struct net_conf *nc; 777 int size, cf; 778 779 sock = &connection->data; 780 p = __conn_prepare_command(connection, sock); 781 if (!p) 782 return -EIO; 783 784 rcu_read_lock(); 785 nc = rcu_dereference(connection->net_conf); 786 787 if (nc->tentative && connection->agreed_pro_version < 92) { 788 rcu_read_unlock(); 789 mutex_unlock(&sock->mutex); 790 drbd_err(connection, "--dry-run is not supported by peer"); 791 return -EOPNOTSUPP; 792 } 793 794 size = sizeof(*p); 795 if (connection->agreed_pro_version >= 87) 796 size += strlen(nc->integrity_alg) + 1; 797 798 p->protocol = cpu_to_be32(nc->wire_protocol); 799 p->after_sb_0p = cpu_to_be32(nc->after_sb_0p); 800 p->after_sb_1p = cpu_to_be32(nc->after_sb_1p); 801 p->after_sb_2p = cpu_to_be32(nc->after_sb_2p); 802 p->two_primaries = cpu_to_be32(nc->two_primaries); 803 cf = 0; 804 if (nc->discard_my_data) 805 cf |= CF_DISCARD_MY_DATA; 806 if (nc->tentative) 807 cf |= CF_DRY_RUN; 808 p->conn_flags = cpu_to_be32(cf); 809 810 if (connection->agreed_pro_version >= 87) 811 strcpy(p->integrity_alg, nc->integrity_alg); 812 rcu_read_unlock(); 813 814 return __conn_send_command(connection, sock, cmd, size, NULL, 0); 815 } 816 817 int drbd_send_protocol(struct drbd_connection *connection) 818 { 819 int err; 820 821 mutex_lock(&connection->data.mutex); 822 err = __drbd_send_protocol(connection, P_PROTOCOL); 823 mutex_unlock(&connection->data.mutex); 824 825 return err; 826 } 827 828 static int _drbd_send_uuids(struct drbd_peer_device *peer_device, u64 uuid_flags) 829 { 830 struct drbd_device *device = peer_device->device; 831 struct drbd_socket *sock; 832 struct p_uuids *p; 833 int i; 834 835 if (!get_ldev_if_state(device, D_NEGOTIATING)) 836 return 0; 837 838 sock = &peer_device->connection->data; 839 p = drbd_prepare_command(peer_device, sock); 840 if (!p) { 841 put_ldev(device); 842 return -EIO; 843 } 844 spin_lock_irq(&device->ldev->md.uuid_lock); 845 for (i = UI_CURRENT; i < UI_SIZE; i++) 846 p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]); 847 spin_unlock_irq(&device->ldev->md.uuid_lock); 848 849 device->comm_bm_set = drbd_bm_total_weight(device); 850 p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set); 851 rcu_read_lock(); 852 uuid_flags |= rcu_dereference(peer_device->connection->net_conf)->discard_my_data ? 1 : 0; 853 rcu_read_unlock(); 854 uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0; 855 uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0; 856 p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags); 857 858 put_ldev(device); 859 return drbd_send_command(peer_device, sock, P_UUIDS, sizeof(*p), NULL, 0); 860 } 861 862 int drbd_send_uuids(struct drbd_peer_device *peer_device) 863 { 864 return _drbd_send_uuids(peer_device, 0); 865 } 866 867 int drbd_send_uuids_skip_initial_sync(struct drbd_peer_device *peer_device) 868 { 869 return _drbd_send_uuids(peer_device, 8); 870 } 871 872 void drbd_print_uuids(struct drbd_device *device, const char *text) 873 { 874 if (get_ldev_if_state(device, D_NEGOTIATING)) { 875 u64 *uuid = device->ldev->md.uuid; 876 drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n", 877 text, 878 (unsigned long long)uuid[UI_CURRENT], 879 (unsigned long long)uuid[UI_BITMAP], 880 (unsigned long long)uuid[UI_HISTORY_START], 881 (unsigned long long)uuid[UI_HISTORY_END]); 882 put_ldev(device); 883 } else { 884 drbd_info(device, "%s effective data uuid: %016llX\n", 885 text, 886 (unsigned long long)device->ed_uuid); 887 } 888 } 889 890 void drbd_gen_and_send_sync_uuid(struct drbd_peer_device *peer_device) 891 { 892 struct drbd_device *device = peer_device->device; 893 struct drbd_socket *sock; 894 struct p_rs_uuid *p; 895 u64 uuid; 896 897 D_ASSERT(device, device->state.disk == D_UP_TO_DATE); 898 899 uuid = device->ldev->md.uuid[UI_BITMAP]; 900 if (uuid && uuid != UUID_JUST_CREATED) 901 uuid = uuid + UUID_NEW_BM_OFFSET; 902 else 903 get_random_bytes(&uuid, sizeof(u64)); 904 drbd_uuid_set(device, UI_BITMAP, uuid); 905 drbd_print_uuids(device, "updated sync UUID"); 906 drbd_md_sync(device); 907 908 sock = &peer_device->connection->data; 909 p = drbd_prepare_command(peer_device, sock); 910 if (p) { 911 p->uuid = cpu_to_be64(uuid); 912 drbd_send_command(peer_device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0); 913 } 914 } 915 916 /* communicated if (agreed_features & DRBD_FF_WSAME) */ 917 static void 918 assign_p_sizes_qlim(struct drbd_device *device, struct p_sizes *p, 919 struct request_queue *q) 920 { 921 if (q) { 922 p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q)); 923 p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q)); 924 p->qlim->alignment_offset = cpu_to_be32(queue_alignment_offset(q)); 925 p->qlim->io_min = cpu_to_be32(queue_io_min(q)); 926 p->qlim->io_opt = cpu_to_be32(queue_io_opt(q)); 927 p->qlim->discard_enabled = blk_queue_discard(q); 928 p->qlim->write_same_capable = !!q->limits.max_write_same_sectors; 929 } else { 930 q = device->rq_queue; 931 p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q)); 932 p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q)); 933 p->qlim->alignment_offset = 0; 934 p->qlim->io_min = cpu_to_be32(queue_io_min(q)); 935 p->qlim->io_opt = cpu_to_be32(queue_io_opt(q)); 936 p->qlim->discard_enabled = 0; 937 p->qlim->write_same_capable = 0; 938 } 939 } 940 941 int drbd_send_sizes(struct drbd_peer_device *peer_device, int trigger_reply, enum dds_flags flags) 942 { 943 struct drbd_device *device = peer_device->device; 944 struct drbd_socket *sock; 945 struct p_sizes *p; 946 sector_t d_size, u_size; 947 int q_order_type; 948 unsigned int max_bio_size; 949 unsigned int packet_size; 950 951 sock = &peer_device->connection->data; 952 p = drbd_prepare_command(peer_device, sock); 953 if (!p) 954 return -EIO; 955 956 packet_size = sizeof(*p); 957 if (peer_device->connection->agreed_features & DRBD_FF_WSAME) 958 packet_size += sizeof(p->qlim[0]); 959 960 memset(p, 0, packet_size); 961 if (get_ldev_if_state(device, D_NEGOTIATING)) { 962 struct request_queue *q = bdev_get_queue(device->ldev->backing_bdev); 963 d_size = drbd_get_max_capacity(device->ldev); 964 rcu_read_lock(); 965 u_size = rcu_dereference(device->ldev->disk_conf)->disk_size; 966 rcu_read_unlock(); 967 q_order_type = drbd_queue_order_type(device); 968 max_bio_size = queue_max_hw_sectors(q) << 9; 969 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE); 970 assign_p_sizes_qlim(device, p, q); 971 put_ldev(device); 972 } else { 973 d_size = 0; 974 u_size = 0; 975 q_order_type = QUEUE_ORDERED_NONE; 976 max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */ 977 assign_p_sizes_qlim(device, p, NULL); 978 } 979 980 if (peer_device->connection->agreed_pro_version <= 94) 981 max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET); 982 else if (peer_device->connection->agreed_pro_version < 100) 983 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95); 984 985 p->d_size = cpu_to_be64(d_size); 986 p->u_size = cpu_to_be64(u_size); 987 p->c_size = cpu_to_be64(trigger_reply ? 0 : drbd_get_capacity(device->this_bdev)); 988 p->max_bio_size = cpu_to_be32(max_bio_size); 989 p->queue_order_type = cpu_to_be16(q_order_type); 990 p->dds_flags = cpu_to_be16(flags); 991 992 return drbd_send_command(peer_device, sock, P_SIZES, packet_size, NULL, 0); 993 } 994 995 /** 996 * drbd_send_current_state() - Sends the drbd state to the peer 997 * @peer_device: DRBD peer device. 998 */ 999 int drbd_send_current_state(struct drbd_peer_device *peer_device) 1000 { 1001 struct drbd_socket *sock; 1002 struct p_state *p; 1003 1004 sock = &peer_device->connection->data; 1005 p = drbd_prepare_command(peer_device, sock); 1006 if (!p) 1007 return -EIO; 1008 p->state = cpu_to_be32(peer_device->device->state.i); /* Within the send mutex */ 1009 return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0); 1010 } 1011 1012 /** 1013 * drbd_send_state() - After a state change, sends the new state to the peer 1014 * @peer_device: DRBD peer device. 1015 * @state: the state to send, not necessarily the current state. 1016 * 1017 * Each state change queues an "after_state_ch" work, which will eventually 1018 * send the resulting new state to the peer. If more state changes happen 1019 * between queuing and processing of the after_state_ch work, we still 1020 * want to send each intermediary state in the order it occurred. 1021 */ 1022 int drbd_send_state(struct drbd_peer_device *peer_device, union drbd_state state) 1023 { 1024 struct drbd_socket *sock; 1025 struct p_state *p; 1026 1027 sock = &peer_device->connection->data; 1028 p = drbd_prepare_command(peer_device, sock); 1029 if (!p) 1030 return -EIO; 1031 p->state = cpu_to_be32(state.i); /* Within the send mutex */ 1032 return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0); 1033 } 1034 1035 int drbd_send_state_req(struct drbd_peer_device *peer_device, union drbd_state mask, union drbd_state val) 1036 { 1037 struct drbd_socket *sock; 1038 struct p_req_state *p; 1039 1040 sock = &peer_device->connection->data; 1041 p = drbd_prepare_command(peer_device, sock); 1042 if (!p) 1043 return -EIO; 1044 p->mask = cpu_to_be32(mask.i); 1045 p->val = cpu_to_be32(val.i); 1046 return drbd_send_command(peer_device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0); 1047 } 1048 1049 int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val) 1050 { 1051 enum drbd_packet cmd; 1052 struct drbd_socket *sock; 1053 struct p_req_state *p; 1054 1055 cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ; 1056 sock = &connection->data; 1057 p = conn_prepare_command(connection, sock); 1058 if (!p) 1059 return -EIO; 1060 p->mask = cpu_to_be32(mask.i); 1061 p->val = cpu_to_be32(val.i); 1062 return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0); 1063 } 1064 1065 void drbd_send_sr_reply(struct drbd_peer_device *peer_device, enum drbd_state_rv retcode) 1066 { 1067 struct drbd_socket *sock; 1068 struct p_req_state_reply *p; 1069 1070 sock = &peer_device->connection->meta; 1071 p = drbd_prepare_command(peer_device, sock); 1072 if (p) { 1073 p->retcode = cpu_to_be32(retcode); 1074 drbd_send_command(peer_device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0); 1075 } 1076 } 1077 1078 void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode) 1079 { 1080 struct drbd_socket *sock; 1081 struct p_req_state_reply *p; 1082 enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY; 1083 1084 sock = &connection->meta; 1085 p = conn_prepare_command(connection, sock); 1086 if (p) { 1087 p->retcode = cpu_to_be32(retcode); 1088 conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0); 1089 } 1090 } 1091 1092 static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code) 1093 { 1094 BUG_ON(code & ~0xf); 1095 p->encoding = (p->encoding & ~0xf) | code; 1096 } 1097 1098 static void dcbp_set_start(struct p_compressed_bm *p, int set) 1099 { 1100 p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0); 1101 } 1102 1103 static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n) 1104 { 1105 BUG_ON(n & ~0x7); 1106 p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4); 1107 } 1108 1109 static int fill_bitmap_rle_bits(struct drbd_device *device, 1110 struct p_compressed_bm *p, 1111 unsigned int size, 1112 struct bm_xfer_ctx *c) 1113 { 1114 struct bitstream bs; 1115 unsigned long plain_bits; 1116 unsigned long tmp; 1117 unsigned long rl; 1118 unsigned len; 1119 unsigned toggle; 1120 int bits, use_rle; 1121 1122 /* may we use this feature? */ 1123 rcu_read_lock(); 1124 use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle; 1125 rcu_read_unlock(); 1126 if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90) 1127 return 0; 1128 1129 if (c->bit_offset >= c->bm_bits) 1130 return 0; /* nothing to do. */ 1131 1132 /* use at most thus many bytes */ 1133 bitstream_init(&bs, p->code, size, 0); 1134 memset(p->code, 0, size); 1135 /* plain bits covered in this code string */ 1136 plain_bits = 0; 1137 1138 /* p->encoding & 0x80 stores whether the first run length is set. 1139 * bit offset is implicit. 1140 * start with toggle == 2 to be able to tell the first iteration */ 1141 toggle = 2; 1142 1143 /* see how much plain bits we can stuff into one packet 1144 * using RLE and VLI. */ 1145 do { 1146 tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset) 1147 : _drbd_bm_find_next(device, c->bit_offset); 1148 if (tmp == -1UL) 1149 tmp = c->bm_bits; 1150 rl = tmp - c->bit_offset; 1151 1152 if (toggle == 2) { /* first iteration */ 1153 if (rl == 0) { 1154 /* the first checked bit was set, 1155 * store start value, */ 1156 dcbp_set_start(p, 1); 1157 /* but skip encoding of zero run length */ 1158 toggle = !toggle; 1159 continue; 1160 } 1161 dcbp_set_start(p, 0); 1162 } 1163 1164 /* paranoia: catch zero runlength. 1165 * can only happen if bitmap is modified while we scan it. */ 1166 if (rl == 0) { 1167 drbd_err(device, "unexpected zero runlength while encoding bitmap " 1168 "t:%u bo:%lu\n", toggle, c->bit_offset); 1169 return -1; 1170 } 1171 1172 bits = vli_encode_bits(&bs, rl); 1173 if (bits == -ENOBUFS) /* buffer full */ 1174 break; 1175 if (bits <= 0) { 1176 drbd_err(device, "error while encoding bitmap: %d\n", bits); 1177 return 0; 1178 } 1179 1180 toggle = !toggle; 1181 plain_bits += rl; 1182 c->bit_offset = tmp; 1183 } while (c->bit_offset < c->bm_bits); 1184 1185 len = bs.cur.b - p->code + !!bs.cur.bit; 1186 1187 if (plain_bits < (len << 3)) { 1188 /* incompressible with this method. 1189 * we need to rewind both word and bit position. */ 1190 c->bit_offset -= plain_bits; 1191 bm_xfer_ctx_bit_to_word_offset(c); 1192 c->bit_offset = c->word_offset * BITS_PER_LONG; 1193 return 0; 1194 } 1195 1196 /* RLE + VLI was able to compress it just fine. 1197 * update c->word_offset. */ 1198 bm_xfer_ctx_bit_to_word_offset(c); 1199 1200 /* store pad_bits */ 1201 dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7); 1202 1203 return len; 1204 } 1205 1206 /** 1207 * send_bitmap_rle_or_plain 1208 * 1209 * Return 0 when done, 1 when another iteration is needed, and a negative error 1210 * code upon failure. 1211 */ 1212 static int 1213 send_bitmap_rle_or_plain(struct drbd_device *device, struct bm_xfer_ctx *c) 1214 { 1215 struct drbd_socket *sock = &first_peer_device(device)->connection->data; 1216 unsigned int header_size = drbd_header_size(first_peer_device(device)->connection); 1217 struct p_compressed_bm *p = sock->sbuf + header_size; 1218 int len, err; 1219 1220 len = fill_bitmap_rle_bits(device, p, 1221 DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c); 1222 if (len < 0) 1223 return -EIO; 1224 1225 if (len) { 1226 dcbp_set_code(p, RLE_VLI_Bits); 1227 err = __send_command(first_peer_device(device)->connection, device->vnr, sock, 1228 P_COMPRESSED_BITMAP, sizeof(*p) + len, 1229 NULL, 0); 1230 c->packets[0]++; 1231 c->bytes[0] += header_size + sizeof(*p) + len; 1232 1233 if (c->bit_offset >= c->bm_bits) 1234 len = 0; /* DONE */ 1235 } else { 1236 /* was not compressible. 1237 * send a buffer full of plain text bits instead. */ 1238 unsigned int data_size; 1239 unsigned long num_words; 1240 unsigned long *p = sock->sbuf + header_size; 1241 1242 data_size = DRBD_SOCKET_BUFFER_SIZE - header_size; 1243 num_words = min_t(size_t, data_size / sizeof(*p), 1244 c->bm_words - c->word_offset); 1245 len = num_words * sizeof(*p); 1246 if (len) 1247 drbd_bm_get_lel(device, c->word_offset, num_words, p); 1248 err = __send_command(first_peer_device(device)->connection, device->vnr, sock, P_BITMAP, len, NULL, 0); 1249 c->word_offset += num_words; 1250 c->bit_offset = c->word_offset * BITS_PER_LONG; 1251 1252 c->packets[1]++; 1253 c->bytes[1] += header_size + len; 1254 1255 if (c->bit_offset > c->bm_bits) 1256 c->bit_offset = c->bm_bits; 1257 } 1258 if (!err) { 1259 if (len == 0) { 1260 INFO_bm_xfer_stats(device, "send", c); 1261 return 0; 1262 } else 1263 return 1; 1264 } 1265 return -EIO; 1266 } 1267 1268 /* See the comment at receive_bitmap() */ 1269 static int _drbd_send_bitmap(struct drbd_device *device) 1270 { 1271 struct bm_xfer_ctx c; 1272 int err; 1273 1274 if (!expect(device->bitmap)) 1275 return false; 1276 1277 if (get_ldev(device)) { 1278 if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) { 1279 drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n"); 1280 drbd_bm_set_all(device); 1281 if (drbd_bm_write(device)) { 1282 /* write_bm did fail! Leave full sync flag set in Meta P_DATA 1283 * but otherwise process as per normal - need to tell other 1284 * side that a full resync is required! */ 1285 drbd_err(device, "Failed to write bitmap to disk!\n"); 1286 } else { 1287 drbd_md_clear_flag(device, MDF_FULL_SYNC); 1288 drbd_md_sync(device); 1289 } 1290 } 1291 put_ldev(device); 1292 } 1293 1294 c = (struct bm_xfer_ctx) { 1295 .bm_bits = drbd_bm_bits(device), 1296 .bm_words = drbd_bm_words(device), 1297 }; 1298 1299 do { 1300 err = send_bitmap_rle_or_plain(device, &c); 1301 } while (err > 0); 1302 1303 return err == 0; 1304 } 1305 1306 int drbd_send_bitmap(struct drbd_device *device) 1307 { 1308 struct drbd_socket *sock = &first_peer_device(device)->connection->data; 1309 int err = -1; 1310 1311 mutex_lock(&sock->mutex); 1312 if (sock->socket) 1313 err = !_drbd_send_bitmap(device); 1314 mutex_unlock(&sock->mutex); 1315 return err; 1316 } 1317 1318 void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size) 1319 { 1320 struct drbd_socket *sock; 1321 struct p_barrier_ack *p; 1322 1323 if (connection->cstate < C_WF_REPORT_PARAMS) 1324 return; 1325 1326 sock = &connection->meta; 1327 p = conn_prepare_command(connection, sock); 1328 if (!p) 1329 return; 1330 p->barrier = barrier_nr; 1331 p->set_size = cpu_to_be32(set_size); 1332 conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0); 1333 } 1334 1335 /** 1336 * _drbd_send_ack() - Sends an ack packet 1337 * @device: DRBD device. 1338 * @cmd: Packet command code. 1339 * @sector: sector, needs to be in big endian byte order 1340 * @blksize: size in byte, needs to be in big endian byte order 1341 * @block_id: Id, big endian byte order 1342 */ 1343 static int _drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1344 u64 sector, u32 blksize, u64 block_id) 1345 { 1346 struct drbd_socket *sock; 1347 struct p_block_ack *p; 1348 1349 if (peer_device->device->state.conn < C_CONNECTED) 1350 return -EIO; 1351 1352 sock = &peer_device->connection->meta; 1353 p = drbd_prepare_command(peer_device, sock); 1354 if (!p) 1355 return -EIO; 1356 p->sector = sector; 1357 p->block_id = block_id; 1358 p->blksize = blksize; 1359 p->seq_num = cpu_to_be32(atomic_inc_return(&peer_device->device->packet_seq)); 1360 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0); 1361 } 1362 1363 /* dp->sector and dp->block_id already/still in network byte order, 1364 * data_size is payload size according to dp->head, 1365 * and may need to be corrected for digest size. */ 1366 void drbd_send_ack_dp(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1367 struct p_data *dp, int data_size) 1368 { 1369 if (peer_device->connection->peer_integrity_tfm) 1370 data_size -= crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm); 1371 _drbd_send_ack(peer_device, cmd, dp->sector, cpu_to_be32(data_size), 1372 dp->block_id); 1373 } 1374 1375 void drbd_send_ack_rp(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1376 struct p_block_req *rp) 1377 { 1378 _drbd_send_ack(peer_device, cmd, rp->sector, rp->blksize, rp->block_id); 1379 } 1380 1381 /** 1382 * drbd_send_ack() - Sends an ack packet 1383 * @device: DRBD device 1384 * @cmd: packet command code 1385 * @peer_req: peer request 1386 */ 1387 int drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1388 struct drbd_peer_request *peer_req) 1389 { 1390 return _drbd_send_ack(peer_device, cmd, 1391 cpu_to_be64(peer_req->i.sector), 1392 cpu_to_be32(peer_req->i.size), 1393 peer_req->block_id); 1394 } 1395 1396 /* This function misuses the block_id field to signal if the blocks 1397 * are is sync or not. */ 1398 int drbd_send_ack_ex(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1399 sector_t sector, int blksize, u64 block_id) 1400 { 1401 return _drbd_send_ack(peer_device, cmd, 1402 cpu_to_be64(sector), 1403 cpu_to_be32(blksize), 1404 cpu_to_be64(block_id)); 1405 } 1406 1407 int drbd_send_rs_deallocated(struct drbd_peer_device *peer_device, 1408 struct drbd_peer_request *peer_req) 1409 { 1410 struct drbd_socket *sock; 1411 struct p_block_desc *p; 1412 1413 sock = &peer_device->connection->data; 1414 p = drbd_prepare_command(peer_device, sock); 1415 if (!p) 1416 return -EIO; 1417 p->sector = cpu_to_be64(peer_req->i.sector); 1418 p->blksize = cpu_to_be32(peer_req->i.size); 1419 p->pad = 0; 1420 return drbd_send_command(peer_device, sock, P_RS_DEALLOCATED, sizeof(*p), NULL, 0); 1421 } 1422 1423 int drbd_send_drequest(struct drbd_peer_device *peer_device, int cmd, 1424 sector_t sector, int size, u64 block_id) 1425 { 1426 struct drbd_socket *sock; 1427 struct p_block_req *p; 1428 1429 sock = &peer_device->connection->data; 1430 p = drbd_prepare_command(peer_device, sock); 1431 if (!p) 1432 return -EIO; 1433 p->sector = cpu_to_be64(sector); 1434 p->block_id = block_id; 1435 p->blksize = cpu_to_be32(size); 1436 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0); 1437 } 1438 1439 int drbd_send_drequest_csum(struct drbd_peer_device *peer_device, sector_t sector, int size, 1440 void *digest, int digest_size, enum drbd_packet cmd) 1441 { 1442 struct drbd_socket *sock; 1443 struct p_block_req *p; 1444 1445 /* FIXME: Put the digest into the preallocated socket buffer. */ 1446 1447 sock = &peer_device->connection->data; 1448 p = drbd_prepare_command(peer_device, sock); 1449 if (!p) 1450 return -EIO; 1451 p->sector = cpu_to_be64(sector); 1452 p->block_id = ID_SYNCER /* unused */; 1453 p->blksize = cpu_to_be32(size); 1454 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), digest, digest_size); 1455 } 1456 1457 int drbd_send_ov_request(struct drbd_peer_device *peer_device, sector_t sector, int size) 1458 { 1459 struct drbd_socket *sock; 1460 struct p_block_req *p; 1461 1462 sock = &peer_device->connection->data; 1463 p = drbd_prepare_command(peer_device, sock); 1464 if (!p) 1465 return -EIO; 1466 p->sector = cpu_to_be64(sector); 1467 p->block_id = ID_SYNCER /* unused */; 1468 p->blksize = cpu_to_be32(size); 1469 return drbd_send_command(peer_device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0); 1470 } 1471 1472 /* called on sndtimeo 1473 * returns false if we should retry, 1474 * true if we think connection is dead 1475 */ 1476 static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock) 1477 { 1478 int drop_it; 1479 /* long elapsed = (long)(jiffies - device->last_received); */ 1480 1481 drop_it = connection->meta.socket == sock 1482 || !connection->ack_receiver.task 1483 || get_t_state(&connection->ack_receiver) != RUNNING 1484 || connection->cstate < C_WF_REPORT_PARAMS; 1485 1486 if (drop_it) 1487 return true; 1488 1489 drop_it = !--connection->ko_count; 1490 if (!drop_it) { 1491 drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n", 1492 current->comm, current->pid, connection->ko_count); 1493 request_ping(connection); 1494 } 1495 1496 return drop_it; /* && (device->state == R_PRIMARY) */; 1497 } 1498 1499 static void drbd_update_congested(struct drbd_connection *connection) 1500 { 1501 struct sock *sk = connection->data.socket->sk; 1502 if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5) 1503 set_bit(NET_CONGESTED, &connection->flags); 1504 } 1505 1506 /* The idea of sendpage seems to be to put some kind of reference 1507 * to the page into the skb, and to hand it over to the NIC. In 1508 * this process get_page() gets called. 1509 * 1510 * As soon as the page was really sent over the network put_page() 1511 * gets called by some part of the network layer. [ NIC driver? ] 1512 * 1513 * [ get_page() / put_page() increment/decrement the count. If count 1514 * reaches 0 the page will be freed. ] 1515 * 1516 * This works nicely with pages from FSs. 1517 * But this means that in protocol A we might signal IO completion too early! 1518 * 1519 * In order not to corrupt data during a resync we must make sure 1520 * that we do not reuse our own buffer pages (EEs) to early, therefore 1521 * we have the net_ee list. 1522 * 1523 * XFS seems to have problems, still, it submits pages with page_count == 0! 1524 * As a workaround, we disable sendpage on pages 1525 * with page_count == 0 or PageSlab. 1526 */ 1527 static int _drbd_no_send_page(struct drbd_peer_device *peer_device, struct page *page, 1528 int offset, size_t size, unsigned msg_flags) 1529 { 1530 struct socket *socket; 1531 void *addr; 1532 int err; 1533 1534 socket = peer_device->connection->data.socket; 1535 addr = kmap(page) + offset; 1536 err = drbd_send_all(peer_device->connection, socket, addr, size, msg_flags); 1537 kunmap(page); 1538 if (!err) 1539 peer_device->device->send_cnt += size >> 9; 1540 return err; 1541 } 1542 1543 static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *page, 1544 int offset, size_t size, unsigned msg_flags) 1545 { 1546 struct socket *socket = peer_device->connection->data.socket; 1547 int len = size; 1548 int err = -EIO; 1549 1550 /* e.g. XFS meta- & log-data is in slab pages, which have a 1551 * page_count of 0 and/or have PageSlab() set. 1552 * we cannot use send_page for those, as that does get_page(); 1553 * put_page(); and would cause either a VM_BUG directly, or 1554 * __page_cache_release a page that would actually still be referenced 1555 * by someone, leading to some obscure delayed Oops somewhere else. */ 1556 if (drbd_disable_sendpage || (page_count(page) < 1) || PageSlab(page)) 1557 return _drbd_no_send_page(peer_device, page, offset, size, msg_flags); 1558 1559 msg_flags |= MSG_NOSIGNAL; 1560 drbd_update_congested(peer_device->connection); 1561 do { 1562 int sent; 1563 1564 sent = socket->ops->sendpage(socket, page, offset, len, msg_flags); 1565 if (sent <= 0) { 1566 if (sent == -EAGAIN) { 1567 if (we_should_drop_the_connection(peer_device->connection, socket)) 1568 break; 1569 continue; 1570 } 1571 drbd_warn(peer_device->device, "%s: size=%d len=%d sent=%d\n", 1572 __func__, (int)size, len, sent); 1573 if (sent < 0) 1574 err = sent; 1575 break; 1576 } 1577 len -= sent; 1578 offset += sent; 1579 } while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/); 1580 clear_bit(NET_CONGESTED, &peer_device->connection->flags); 1581 1582 if (len == 0) { 1583 err = 0; 1584 peer_device->device->send_cnt += size >> 9; 1585 } 1586 return err; 1587 } 1588 1589 static int _drbd_send_bio(struct drbd_peer_device *peer_device, struct bio *bio) 1590 { 1591 struct bio_vec bvec; 1592 struct bvec_iter iter; 1593 1594 /* hint all but last page with MSG_MORE */ 1595 bio_for_each_segment(bvec, bio, iter) { 1596 int err; 1597 1598 err = _drbd_no_send_page(peer_device, bvec.bv_page, 1599 bvec.bv_offset, bvec.bv_len, 1600 bio_iter_last(bvec, iter) 1601 ? 0 : MSG_MORE); 1602 if (err) 1603 return err; 1604 /* REQ_OP_WRITE_SAME has only one segment */ 1605 if (bio_op(bio) == REQ_OP_WRITE_SAME) 1606 break; 1607 } 1608 return 0; 1609 } 1610 1611 static int _drbd_send_zc_bio(struct drbd_peer_device *peer_device, struct bio *bio) 1612 { 1613 struct bio_vec bvec; 1614 struct bvec_iter iter; 1615 1616 /* hint all but last page with MSG_MORE */ 1617 bio_for_each_segment(bvec, bio, iter) { 1618 int err; 1619 1620 err = _drbd_send_page(peer_device, bvec.bv_page, 1621 bvec.bv_offset, bvec.bv_len, 1622 bio_iter_last(bvec, iter) ? 0 : MSG_MORE); 1623 if (err) 1624 return err; 1625 /* REQ_OP_WRITE_SAME has only one segment */ 1626 if (bio_op(bio) == REQ_OP_WRITE_SAME) 1627 break; 1628 } 1629 return 0; 1630 } 1631 1632 static int _drbd_send_zc_ee(struct drbd_peer_device *peer_device, 1633 struct drbd_peer_request *peer_req) 1634 { 1635 struct page *page = peer_req->pages; 1636 unsigned len = peer_req->i.size; 1637 int err; 1638 1639 /* hint all but last page with MSG_MORE */ 1640 page_chain_for_each(page) { 1641 unsigned l = min_t(unsigned, len, PAGE_SIZE); 1642 1643 err = _drbd_send_page(peer_device, page, 0, l, 1644 page_chain_next(page) ? MSG_MORE : 0); 1645 if (err) 1646 return err; 1647 len -= l; 1648 } 1649 return 0; 1650 } 1651 1652 static u32 bio_flags_to_wire(struct drbd_connection *connection, 1653 struct bio *bio) 1654 { 1655 if (connection->agreed_pro_version >= 95) 1656 return (bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0) | 1657 (bio->bi_opf & REQ_FUA ? DP_FUA : 0) | 1658 (bio->bi_opf & REQ_PREFLUSH ? DP_FLUSH : 0) | 1659 (bio_op(bio) == REQ_OP_WRITE_SAME ? DP_WSAME : 0) | 1660 (bio_op(bio) == REQ_OP_DISCARD ? DP_DISCARD : 0) | 1661 (bio_op(bio) == REQ_OP_WRITE_ZEROES ? 1662 ((connection->agreed_features & DRBD_FF_WZEROES) ? 1663 (DP_ZEROES |(!(bio->bi_opf & REQ_NOUNMAP) ? DP_DISCARD : 0)) 1664 : DP_DISCARD) 1665 : 0); 1666 else 1667 return bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0; 1668 } 1669 1670 /* Used to send write or TRIM aka REQ_OP_DISCARD requests 1671 * R_PRIMARY -> Peer (P_DATA, P_TRIM) 1672 */ 1673 int drbd_send_dblock(struct drbd_peer_device *peer_device, struct drbd_request *req) 1674 { 1675 struct drbd_device *device = peer_device->device; 1676 struct drbd_socket *sock; 1677 struct p_data *p; 1678 struct p_wsame *wsame = NULL; 1679 void *digest_out; 1680 unsigned int dp_flags = 0; 1681 int digest_size; 1682 int err; 1683 1684 sock = &peer_device->connection->data; 1685 p = drbd_prepare_command(peer_device, sock); 1686 digest_size = peer_device->connection->integrity_tfm ? 1687 crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0; 1688 1689 if (!p) 1690 return -EIO; 1691 p->sector = cpu_to_be64(req->i.sector); 1692 p->block_id = (unsigned long)req; 1693 p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq)); 1694 dp_flags = bio_flags_to_wire(peer_device->connection, req->master_bio); 1695 if (device->state.conn >= C_SYNC_SOURCE && 1696 device->state.conn <= C_PAUSED_SYNC_T) 1697 dp_flags |= DP_MAY_SET_IN_SYNC; 1698 if (peer_device->connection->agreed_pro_version >= 100) { 1699 if (req->rq_state & RQ_EXP_RECEIVE_ACK) 1700 dp_flags |= DP_SEND_RECEIVE_ACK; 1701 /* During resync, request an explicit write ack, 1702 * even in protocol != C */ 1703 if (req->rq_state & RQ_EXP_WRITE_ACK 1704 || (dp_flags & DP_MAY_SET_IN_SYNC)) 1705 dp_flags |= DP_SEND_WRITE_ACK; 1706 } 1707 p->dp_flags = cpu_to_be32(dp_flags); 1708 1709 if (dp_flags & (DP_DISCARD|DP_ZEROES)) { 1710 enum drbd_packet cmd = (dp_flags & DP_ZEROES) ? P_ZEROES : P_TRIM; 1711 struct p_trim *t = (struct p_trim*)p; 1712 t->size = cpu_to_be32(req->i.size); 1713 err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*t), NULL, 0); 1714 goto out; 1715 } 1716 if (dp_flags & DP_WSAME) { 1717 /* this will only work if DRBD_FF_WSAME is set AND the 1718 * handshake agreed that all nodes and backend devices are 1719 * WRITE_SAME capable and agree on logical_block_size */ 1720 wsame = (struct p_wsame*)p; 1721 digest_out = wsame + 1; 1722 wsame->size = cpu_to_be32(req->i.size); 1723 } else 1724 digest_out = p + 1; 1725 1726 /* our digest is still only over the payload. 1727 * TRIM does not carry any payload. */ 1728 if (digest_size) 1729 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest_out); 1730 if (wsame) { 1731 err = 1732 __send_command(peer_device->connection, device->vnr, sock, P_WSAME, 1733 sizeof(*wsame) + digest_size, NULL, 1734 bio_iovec(req->master_bio).bv_len); 1735 } else 1736 err = 1737 __send_command(peer_device->connection, device->vnr, sock, P_DATA, 1738 sizeof(*p) + digest_size, NULL, req->i.size); 1739 if (!err) { 1740 /* For protocol A, we have to memcpy the payload into 1741 * socket buffers, as we may complete right away 1742 * as soon as we handed it over to tcp, at which point the data 1743 * pages may become invalid. 1744 * 1745 * For data-integrity enabled, we copy it as well, so we can be 1746 * sure that even if the bio pages may still be modified, it 1747 * won't change the data on the wire, thus if the digest checks 1748 * out ok after sending on this side, but does not fit on the 1749 * receiving side, we sure have detected corruption elsewhere. 1750 */ 1751 if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || digest_size) 1752 err = _drbd_send_bio(peer_device, req->master_bio); 1753 else 1754 err = _drbd_send_zc_bio(peer_device, req->master_bio); 1755 1756 /* double check digest, sometimes buffers have been modified in flight. */ 1757 if (digest_size > 0 && digest_size <= 64) { 1758 /* 64 byte, 512 bit, is the largest digest size 1759 * currently supported in kernel crypto. */ 1760 unsigned char digest[64]; 1761 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest); 1762 if (memcmp(p + 1, digest, digest_size)) { 1763 drbd_warn(device, 1764 "Digest mismatch, buffer modified by upper layers during write: %llus +%u\n", 1765 (unsigned long long)req->i.sector, req->i.size); 1766 } 1767 } /* else if (digest_size > 64) { 1768 ... Be noisy about digest too large ... 1769 } */ 1770 } 1771 out: 1772 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */ 1773 1774 return err; 1775 } 1776 1777 /* answer packet, used to send data back for read requests: 1778 * Peer -> (diskless) R_PRIMARY (P_DATA_REPLY) 1779 * C_SYNC_SOURCE -> C_SYNC_TARGET (P_RS_DATA_REPLY) 1780 */ 1781 int drbd_send_block(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1782 struct drbd_peer_request *peer_req) 1783 { 1784 struct drbd_device *device = peer_device->device; 1785 struct drbd_socket *sock; 1786 struct p_data *p; 1787 int err; 1788 int digest_size; 1789 1790 sock = &peer_device->connection->data; 1791 p = drbd_prepare_command(peer_device, sock); 1792 1793 digest_size = peer_device->connection->integrity_tfm ? 1794 crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0; 1795 1796 if (!p) 1797 return -EIO; 1798 p->sector = cpu_to_be64(peer_req->i.sector); 1799 p->block_id = peer_req->block_id; 1800 p->seq_num = 0; /* unused */ 1801 p->dp_flags = 0; 1802 if (digest_size) 1803 drbd_csum_ee(peer_device->connection->integrity_tfm, peer_req, p + 1); 1804 err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*p) + digest_size, NULL, peer_req->i.size); 1805 if (!err) 1806 err = _drbd_send_zc_ee(peer_device, peer_req); 1807 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */ 1808 1809 return err; 1810 } 1811 1812 int drbd_send_out_of_sync(struct drbd_peer_device *peer_device, struct drbd_request *req) 1813 { 1814 struct drbd_socket *sock; 1815 struct p_block_desc *p; 1816 1817 sock = &peer_device->connection->data; 1818 p = drbd_prepare_command(peer_device, sock); 1819 if (!p) 1820 return -EIO; 1821 p->sector = cpu_to_be64(req->i.sector); 1822 p->blksize = cpu_to_be32(req->i.size); 1823 return drbd_send_command(peer_device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0); 1824 } 1825 1826 /* 1827 drbd_send distinguishes two cases: 1828 1829 Packets sent via the data socket "sock" 1830 and packets sent via the meta data socket "msock" 1831 1832 sock msock 1833 -----------------+-------------------------+------------------------------ 1834 timeout conf.timeout / 2 conf.timeout / 2 1835 timeout action send a ping via msock Abort communication 1836 and close all sockets 1837 */ 1838 1839 /* 1840 * you must have down()ed the appropriate [m]sock_mutex elsewhere! 1841 */ 1842 int drbd_send(struct drbd_connection *connection, struct socket *sock, 1843 void *buf, size_t size, unsigned msg_flags) 1844 { 1845 struct kvec iov = {.iov_base = buf, .iov_len = size}; 1846 struct msghdr msg = {.msg_flags = msg_flags | MSG_NOSIGNAL}; 1847 int rv, sent = 0; 1848 1849 if (!sock) 1850 return -EBADR; 1851 1852 /* THINK if (signal_pending) return ... ? */ 1853 1854 iov_iter_kvec(&msg.msg_iter, WRITE, &iov, 1, size); 1855 1856 if (sock == connection->data.socket) { 1857 rcu_read_lock(); 1858 connection->ko_count = rcu_dereference(connection->net_conf)->ko_count; 1859 rcu_read_unlock(); 1860 drbd_update_congested(connection); 1861 } 1862 do { 1863 rv = sock_sendmsg(sock, &msg); 1864 if (rv == -EAGAIN) { 1865 if (we_should_drop_the_connection(connection, sock)) 1866 break; 1867 else 1868 continue; 1869 } 1870 if (rv == -EINTR) { 1871 flush_signals(current); 1872 rv = 0; 1873 } 1874 if (rv < 0) 1875 break; 1876 sent += rv; 1877 } while (sent < size); 1878 1879 if (sock == connection->data.socket) 1880 clear_bit(NET_CONGESTED, &connection->flags); 1881 1882 if (rv <= 0) { 1883 if (rv != -EAGAIN) { 1884 drbd_err(connection, "%s_sendmsg returned %d\n", 1885 sock == connection->meta.socket ? "msock" : "sock", 1886 rv); 1887 conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD); 1888 } else 1889 conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD); 1890 } 1891 1892 return sent; 1893 } 1894 1895 /** 1896 * drbd_send_all - Send an entire buffer 1897 * 1898 * Returns 0 upon success and a negative error value otherwise. 1899 */ 1900 int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer, 1901 size_t size, unsigned msg_flags) 1902 { 1903 int err; 1904 1905 err = drbd_send(connection, sock, buffer, size, msg_flags); 1906 if (err < 0) 1907 return err; 1908 if (err != size) 1909 return -EIO; 1910 return 0; 1911 } 1912 1913 static int drbd_open(struct block_device *bdev, fmode_t mode) 1914 { 1915 struct drbd_device *device = bdev->bd_disk->private_data; 1916 unsigned long flags; 1917 int rv = 0; 1918 1919 mutex_lock(&drbd_main_mutex); 1920 spin_lock_irqsave(&device->resource->req_lock, flags); 1921 /* to have a stable device->state.role 1922 * and no race with updating open_cnt */ 1923 1924 if (device->state.role != R_PRIMARY) { 1925 if (mode & FMODE_WRITE) 1926 rv = -EROFS; 1927 else if (!drbd_allow_oos) 1928 rv = -EMEDIUMTYPE; 1929 } 1930 1931 if (!rv) 1932 device->open_cnt++; 1933 spin_unlock_irqrestore(&device->resource->req_lock, flags); 1934 mutex_unlock(&drbd_main_mutex); 1935 1936 return rv; 1937 } 1938 1939 static void drbd_release(struct gendisk *gd, fmode_t mode) 1940 { 1941 struct drbd_device *device = gd->private_data; 1942 mutex_lock(&drbd_main_mutex); 1943 device->open_cnt--; 1944 mutex_unlock(&drbd_main_mutex); 1945 } 1946 1947 /* need to hold resource->req_lock */ 1948 void drbd_queue_unplug(struct drbd_device *device) 1949 { 1950 if (device->state.pdsk >= D_INCONSISTENT && device->state.conn >= C_CONNECTED) { 1951 D_ASSERT(device, device->state.role == R_PRIMARY); 1952 if (test_and_clear_bit(UNPLUG_REMOTE, &device->flags)) { 1953 drbd_queue_work_if_unqueued( 1954 &first_peer_device(device)->connection->sender_work, 1955 &device->unplug_work); 1956 } 1957 } 1958 } 1959 1960 static void drbd_set_defaults(struct drbd_device *device) 1961 { 1962 /* Beware! The actual layout differs 1963 * between big endian and little endian */ 1964 device->state = (union drbd_dev_state) { 1965 { .role = R_SECONDARY, 1966 .peer = R_UNKNOWN, 1967 .conn = C_STANDALONE, 1968 .disk = D_DISKLESS, 1969 .pdsk = D_UNKNOWN, 1970 } }; 1971 } 1972 1973 void drbd_init_set_defaults(struct drbd_device *device) 1974 { 1975 /* the memset(,0,) did most of this. 1976 * note: only assignments, no allocation in here */ 1977 1978 drbd_set_defaults(device); 1979 1980 atomic_set(&device->ap_bio_cnt, 0); 1981 atomic_set(&device->ap_actlog_cnt, 0); 1982 atomic_set(&device->ap_pending_cnt, 0); 1983 atomic_set(&device->rs_pending_cnt, 0); 1984 atomic_set(&device->unacked_cnt, 0); 1985 atomic_set(&device->local_cnt, 0); 1986 atomic_set(&device->pp_in_use_by_net, 0); 1987 atomic_set(&device->rs_sect_in, 0); 1988 atomic_set(&device->rs_sect_ev, 0); 1989 atomic_set(&device->ap_in_flight, 0); 1990 atomic_set(&device->md_io.in_use, 0); 1991 1992 mutex_init(&device->own_state_mutex); 1993 device->state_mutex = &device->own_state_mutex; 1994 1995 spin_lock_init(&device->al_lock); 1996 spin_lock_init(&device->peer_seq_lock); 1997 1998 INIT_LIST_HEAD(&device->active_ee); 1999 INIT_LIST_HEAD(&device->sync_ee); 2000 INIT_LIST_HEAD(&device->done_ee); 2001 INIT_LIST_HEAD(&device->read_ee); 2002 INIT_LIST_HEAD(&device->net_ee); 2003 INIT_LIST_HEAD(&device->resync_reads); 2004 INIT_LIST_HEAD(&device->resync_work.list); 2005 INIT_LIST_HEAD(&device->unplug_work.list); 2006 INIT_LIST_HEAD(&device->bm_io_work.w.list); 2007 INIT_LIST_HEAD(&device->pending_master_completion[0]); 2008 INIT_LIST_HEAD(&device->pending_master_completion[1]); 2009 INIT_LIST_HEAD(&device->pending_completion[0]); 2010 INIT_LIST_HEAD(&device->pending_completion[1]); 2011 2012 device->resync_work.cb = w_resync_timer; 2013 device->unplug_work.cb = w_send_write_hint; 2014 device->bm_io_work.w.cb = w_bitmap_io; 2015 2016 timer_setup(&device->resync_timer, resync_timer_fn, 0); 2017 timer_setup(&device->md_sync_timer, md_sync_timer_fn, 0); 2018 timer_setup(&device->start_resync_timer, start_resync_timer_fn, 0); 2019 timer_setup(&device->request_timer, request_timer_fn, 0); 2020 2021 init_waitqueue_head(&device->misc_wait); 2022 init_waitqueue_head(&device->state_wait); 2023 init_waitqueue_head(&device->ee_wait); 2024 init_waitqueue_head(&device->al_wait); 2025 init_waitqueue_head(&device->seq_wait); 2026 2027 device->resync_wenr = LC_FREE; 2028 device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE; 2029 device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE; 2030 } 2031 2032 static void _drbd_set_my_capacity(struct drbd_device *device, sector_t size) 2033 { 2034 /* set_capacity(device->this_bdev->bd_disk, size); */ 2035 set_capacity(device->vdisk, size); 2036 device->this_bdev->bd_inode->i_size = (loff_t)size << 9; 2037 } 2038 2039 void drbd_set_my_capacity(struct drbd_device *device, sector_t size) 2040 { 2041 char ppb[10]; 2042 _drbd_set_my_capacity(device, size); 2043 drbd_info(device, "size = %s (%llu KB)\n", 2044 ppsize(ppb, size>>1), (unsigned long long)size>>1); 2045 } 2046 2047 void drbd_device_cleanup(struct drbd_device *device) 2048 { 2049 int i; 2050 if (first_peer_device(device)->connection->receiver.t_state != NONE) 2051 drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n", 2052 first_peer_device(device)->connection->receiver.t_state); 2053 2054 device->al_writ_cnt = 2055 device->bm_writ_cnt = 2056 device->read_cnt = 2057 device->recv_cnt = 2058 device->send_cnt = 2059 device->writ_cnt = 2060 device->p_size = 2061 device->rs_start = 2062 device->rs_total = 2063 device->rs_failed = 0; 2064 device->rs_last_events = 0; 2065 device->rs_last_sect_ev = 0; 2066 for (i = 0; i < DRBD_SYNC_MARKS; i++) { 2067 device->rs_mark_left[i] = 0; 2068 device->rs_mark_time[i] = 0; 2069 } 2070 D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL); 2071 2072 _drbd_set_my_capacity(device, 0); 2073 if (device->bitmap) { 2074 /* maybe never allocated. */ 2075 drbd_bm_resize(device, 0, 1); 2076 drbd_bm_cleanup(device); 2077 } 2078 2079 drbd_backing_dev_free(device, device->ldev); 2080 device->ldev = NULL; 2081 2082 clear_bit(AL_SUSPENDED, &device->flags); 2083 2084 D_ASSERT(device, list_empty(&device->active_ee)); 2085 D_ASSERT(device, list_empty(&device->sync_ee)); 2086 D_ASSERT(device, list_empty(&device->done_ee)); 2087 D_ASSERT(device, list_empty(&device->read_ee)); 2088 D_ASSERT(device, list_empty(&device->net_ee)); 2089 D_ASSERT(device, list_empty(&device->resync_reads)); 2090 D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q)); 2091 D_ASSERT(device, list_empty(&device->resync_work.list)); 2092 D_ASSERT(device, list_empty(&device->unplug_work.list)); 2093 2094 drbd_set_defaults(device); 2095 } 2096 2097 2098 static void drbd_destroy_mempools(void) 2099 { 2100 struct page *page; 2101 2102 while (drbd_pp_pool) { 2103 page = drbd_pp_pool; 2104 drbd_pp_pool = (struct page *)page_private(page); 2105 __free_page(page); 2106 drbd_pp_vacant--; 2107 } 2108 2109 /* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */ 2110 2111 bioset_exit(&drbd_io_bio_set); 2112 bioset_exit(&drbd_md_io_bio_set); 2113 mempool_exit(&drbd_md_io_page_pool); 2114 mempool_exit(&drbd_ee_mempool); 2115 mempool_exit(&drbd_request_mempool); 2116 kmem_cache_destroy(drbd_ee_cache); 2117 kmem_cache_destroy(drbd_request_cache); 2118 kmem_cache_destroy(drbd_bm_ext_cache); 2119 kmem_cache_destroy(drbd_al_ext_cache); 2120 2121 drbd_ee_cache = NULL; 2122 drbd_request_cache = NULL; 2123 drbd_bm_ext_cache = NULL; 2124 drbd_al_ext_cache = NULL; 2125 2126 return; 2127 } 2128 2129 static int drbd_create_mempools(void) 2130 { 2131 struct page *page; 2132 const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * drbd_minor_count; 2133 int i, ret; 2134 2135 /* caches */ 2136 drbd_request_cache = kmem_cache_create( 2137 "drbd_req", sizeof(struct drbd_request), 0, 0, NULL); 2138 if (drbd_request_cache == NULL) 2139 goto Enomem; 2140 2141 drbd_ee_cache = kmem_cache_create( 2142 "drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL); 2143 if (drbd_ee_cache == NULL) 2144 goto Enomem; 2145 2146 drbd_bm_ext_cache = kmem_cache_create( 2147 "drbd_bm", sizeof(struct bm_extent), 0, 0, NULL); 2148 if (drbd_bm_ext_cache == NULL) 2149 goto Enomem; 2150 2151 drbd_al_ext_cache = kmem_cache_create( 2152 "drbd_al", sizeof(struct lc_element), 0, 0, NULL); 2153 if (drbd_al_ext_cache == NULL) 2154 goto Enomem; 2155 2156 /* mempools */ 2157 ret = bioset_init(&drbd_io_bio_set, BIO_POOL_SIZE, 0, 0); 2158 if (ret) 2159 goto Enomem; 2160 2161 ret = bioset_init(&drbd_md_io_bio_set, DRBD_MIN_POOL_PAGES, 0, 2162 BIOSET_NEED_BVECS); 2163 if (ret) 2164 goto Enomem; 2165 2166 ret = mempool_init_page_pool(&drbd_md_io_page_pool, DRBD_MIN_POOL_PAGES, 0); 2167 if (ret) 2168 goto Enomem; 2169 2170 ret = mempool_init_slab_pool(&drbd_request_mempool, number, 2171 drbd_request_cache); 2172 if (ret) 2173 goto Enomem; 2174 2175 ret = mempool_init_slab_pool(&drbd_ee_mempool, number, drbd_ee_cache); 2176 if (ret) 2177 goto Enomem; 2178 2179 /* drbd's page pool */ 2180 spin_lock_init(&drbd_pp_lock); 2181 2182 for (i = 0; i < number; i++) { 2183 page = alloc_page(GFP_HIGHUSER); 2184 if (!page) 2185 goto Enomem; 2186 set_page_private(page, (unsigned long)drbd_pp_pool); 2187 drbd_pp_pool = page; 2188 } 2189 drbd_pp_vacant = number; 2190 2191 return 0; 2192 2193 Enomem: 2194 drbd_destroy_mempools(); /* in case we allocated some */ 2195 return -ENOMEM; 2196 } 2197 2198 static void drbd_release_all_peer_reqs(struct drbd_device *device) 2199 { 2200 int rr; 2201 2202 rr = drbd_free_peer_reqs(device, &device->active_ee); 2203 if (rr) 2204 drbd_err(device, "%d EEs in active list found!\n", rr); 2205 2206 rr = drbd_free_peer_reqs(device, &device->sync_ee); 2207 if (rr) 2208 drbd_err(device, "%d EEs in sync list found!\n", rr); 2209 2210 rr = drbd_free_peer_reqs(device, &device->read_ee); 2211 if (rr) 2212 drbd_err(device, "%d EEs in read list found!\n", rr); 2213 2214 rr = drbd_free_peer_reqs(device, &device->done_ee); 2215 if (rr) 2216 drbd_err(device, "%d EEs in done list found!\n", rr); 2217 2218 rr = drbd_free_peer_reqs(device, &device->net_ee); 2219 if (rr) 2220 drbd_err(device, "%d EEs in net list found!\n", rr); 2221 } 2222 2223 /* caution. no locking. */ 2224 void drbd_destroy_device(struct kref *kref) 2225 { 2226 struct drbd_device *device = container_of(kref, struct drbd_device, kref); 2227 struct drbd_resource *resource = device->resource; 2228 struct drbd_peer_device *peer_device, *tmp_peer_device; 2229 2230 del_timer_sync(&device->request_timer); 2231 2232 /* paranoia asserts */ 2233 D_ASSERT(device, device->open_cnt == 0); 2234 /* end paranoia asserts */ 2235 2236 /* cleanup stuff that may have been allocated during 2237 * device (re-)configuration or state changes */ 2238 2239 if (device->this_bdev) 2240 bdput(device->this_bdev); 2241 2242 drbd_backing_dev_free(device, device->ldev); 2243 device->ldev = NULL; 2244 2245 drbd_release_all_peer_reqs(device); 2246 2247 lc_destroy(device->act_log); 2248 lc_destroy(device->resync); 2249 2250 kfree(device->p_uuid); 2251 /* device->p_uuid = NULL; */ 2252 2253 if (device->bitmap) /* should no longer be there. */ 2254 drbd_bm_cleanup(device); 2255 __free_page(device->md_io.page); 2256 put_disk(device->vdisk); 2257 blk_cleanup_queue(device->rq_queue); 2258 kfree(device->rs_plan_s); 2259 2260 /* not for_each_connection(connection, resource): 2261 * those may have been cleaned up and disassociated already. 2262 */ 2263 for_each_peer_device_safe(peer_device, tmp_peer_device, device) { 2264 kref_put(&peer_device->connection->kref, drbd_destroy_connection); 2265 kfree(peer_device); 2266 } 2267 memset(device, 0xfd, sizeof(*device)); 2268 kfree(device); 2269 kref_put(&resource->kref, drbd_destroy_resource); 2270 } 2271 2272 /* One global retry thread, if we need to push back some bio and have it 2273 * reinserted through our make request function. 2274 */ 2275 static struct retry_worker { 2276 struct workqueue_struct *wq; 2277 struct work_struct worker; 2278 2279 spinlock_t lock; 2280 struct list_head writes; 2281 } retry; 2282 2283 static void do_retry(struct work_struct *ws) 2284 { 2285 struct retry_worker *retry = container_of(ws, struct retry_worker, worker); 2286 LIST_HEAD(writes); 2287 struct drbd_request *req, *tmp; 2288 2289 spin_lock_irq(&retry->lock); 2290 list_splice_init(&retry->writes, &writes); 2291 spin_unlock_irq(&retry->lock); 2292 2293 list_for_each_entry_safe(req, tmp, &writes, tl_requests) { 2294 struct drbd_device *device = req->device; 2295 struct bio *bio = req->master_bio; 2296 unsigned long start_jif = req->start_jif; 2297 bool expected; 2298 2299 expected = 2300 expect(atomic_read(&req->completion_ref) == 0) && 2301 expect(req->rq_state & RQ_POSTPONED) && 2302 expect((req->rq_state & RQ_LOCAL_PENDING) == 0 || 2303 (req->rq_state & RQ_LOCAL_ABORTED) != 0); 2304 2305 if (!expected) 2306 drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n", 2307 req, atomic_read(&req->completion_ref), 2308 req->rq_state); 2309 2310 /* We still need to put one kref associated with the 2311 * "completion_ref" going zero in the code path that queued it 2312 * here. The request object may still be referenced by a 2313 * frozen local req->private_bio, in case we force-detached. 2314 */ 2315 kref_put(&req->kref, drbd_req_destroy); 2316 2317 /* A single suspended or otherwise blocking device may stall 2318 * all others as well. Fortunately, this code path is to 2319 * recover from a situation that "should not happen": 2320 * concurrent writes in multi-primary setup. 2321 * In a "normal" lifecycle, this workqueue is supposed to be 2322 * destroyed without ever doing anything. 2323 * If it turns out to be an issue anyways, we can do per 2324 * resource (replication group) or per device (minor) retry 2325 * workqueues instead. 2326 */ 2327 2328 /* We are not just doing generic_make_request(), 2329 * as we want to keep the start_time information. */ 2330 inc_ap_bio(device); 2331 __drbd_make_request(device, bio, start_jif); 2332 } 2333 } 2334 2335 /* called via drbd_req_put_completion_ref(), 2336 * holds resource->req_lock */ 2337 void drbd_restart_request(struct drbd_request *req) 2338 { 2339 unsigned long flags; 2340 spin_lock_irqsave(&retry.lock, flags); 2341 list_move_tail(&req->tl_requests, &retry.writes); 2342 spin_unlock_irqrestore(&retry.lock, flags); 2343 2344 /* Drop the extra reference that would otherwise 2345 * have been dropped by complete_master_bio. 2346 * do_retry() needs to grab a new one. */ 2347 dec_ap_bio(req->device); 2348 2349 queue_work(retry.wq, &retry.worker); 2350 } 2351 2352 void drbd_destroy_resource(struct kref *kref) 2353 { 2354 struct drbd_resource *resource = 2355 container_of(kref, struct drbd_resource, kref); 2356 2357 idr_destroy(&resource->devices); 2358 free_cpumask_var(resource->cpu_mask); 2359 kfree(resource->name); 2360 memset(resource, 0xf2, sizeof(*resource)); 2361 kfree(resource); 2362 } 2363 2364 void drbd_free_resource(struct drbd_resource *resource) 2365 { 2366 struct drbd_connection *connection, *tmp; 2367 2368 for_each_connection_safe(connection, tmp, resource) { 2369 list_del(&connection->connections); 2370 drbd_debugfs_connection_cleanup(connection); 2371 kref_put(&connection->kref, drbd_destroy_connection); 2372 } 2373 drbd_debugfs_resource_cleanup(resource); 2374 kref_put(&resource->kref, drbd_destroy_resource); 2375 } 2376 2377 static void drbd_cleanup(void) 2378 { 2379 unsigned int i; 2380 struct drbd_device *device; 2381 struct drbd_resource *resource, *tmp; 2382 2383 /* first remove proc, 2384 * drbdsetup uses it's presence to detect 2385 * whether DRBD is loaded. 2386 * If we would get stuck in proc removal, 2387 * but have netlink already deregistered, 2388 * some drbdsetup commands may wait forever 2389 * for an answer. 2390 */ 2391 if (drbd_proc) 2392 remove_proc_entry("drbd", NULL); 2393 2394 if (retry.wq) 2395 destroy_workqueue(retry.wq); 2396 2397 drbd_genl_unregister(); 2398 2399 idr_for_each_entry(&drbd_devices, device, i) 2400 drbd_delete_device(device); 2401 2402 /* not _rcu since, no other updater anymore. Genl already unregistered */ 2403 for_each_resource_safe(resource, tmp, &drbd_resources) { 2404 list_del(&resource->resources); 2405 drbd_free_resource(resource); 2406 } 2407 2408 drbd_debugfs_cleanup(); 2409 2410 drbd_destroy_mempools(); 2411 unregister_blkdev(DRBD_MAJOR, "drbd"); 2412 2413 idr_destroy(&drbd_devices); 2414 2415 pr_info("module cleanup done.\n"); 2416 } 2417 2418 /** 2419 * drbd_congested() - Callback for the flusher thread 2420 * @congested_data: User data 2421 * @bdi_bits: Bits the BDI flusher thread is currently interested in 2422 * 2423 * Returns 1<<WB_async_congested and/or 1<<WB_sync_congested if we are congested. 2424 */ 2425 static int drbd_congested(void *congested_data, int bdi_bits) 2426 { 2427 struct drbd_device *device = congested_data; 2428 struct request_queue *q; 2429 char reason = '-'; 2430 int r = 0; 2431 2432 if (!may_inc_ap_bio(device)) { 2433 /* DRBD has frozen IO */ 2434 r = bdi_bits; 2435 reason = 'd'; 2436 goto out; 2437 } 2438 2439 if (test_bit(CALLBACK_PENDING, &first_peer_device(device)->connection->flags)) { 2440 r |= (1 << WB_async_congested); 2441 /* Without good local data, we would need to read from remote, 2442 * and that would need the worker thread as well, which is 2443 * currently blocked waiting for that usermode helper to 2444 * finish. 2445 */ 2446 if (!get_ldev_if_state(device, D_UP_TO_DATE)) 2447 r |= (1 << WB_sync_congested); 2448 else 2449 put_ldev(device); 2450 r &= bdi_bits; 2451 reason = 'c'; 2452 goto out; 2453 } 2454 2455 if (get_ldev(device)) { 2456 q = bdev_get_queue(device->ldev->backing_bdev); 2457 r = bdi_congested(q->backing_dev_info, bdi_bits); 2458 put_ldev(device); 2459 if (r) 2460 reason = 'b'; 2461 } 2462 2463 if (bdi_bits & (1 << WB_async_congested) && 2464 test_bit(NET_CONGESTED, &first_peer_device(device)->connection->flags)) { 2465 r |= (1 << WB_async_congested); 2466 reason = reason == 'b' ? 'a' : 'n'; 2467 } 2468 2469 out: 2470 device->congestion_reason = reason; 2471 return r; 2472 } 2473 2474 static void drbd_init_workqueue(struct drbd_work_queue* wq) 2475 { 2476 spin_lock_init(&wq->q_lock); 2477 INIT_LIST_HEAD(&wq->q); 2478 init_waitqueue_head(&wq->q_wait); 2479 } 2480 2481 struct completion_work { 2482 struct drbd_work w; 2483 struct completion done; 2484 }; 2485 2486 static int w_complete(struct drbd_work *w, int cancel) 2487 { 2488 struct completion_work *completion_work = 2489 container_of(w, struct completion_work, w); 2490 2491 complete(&completion_work->done); 2492 return 0; 2493 } 2494 2495 void drbd_flush_workqueue(struct drbd_work_queue *work_queue) 2496 { 2497 struct completion_work completion_work; 2498 2499 completion_work.w.cb = w_complete; 2500 init_completion(&completion_work.done); 2501 drbd_queue_work(work_queue, &completion_work.w); 2502 wait_for_completion(&completion_work.done); 2503 } 2504 2505 struct drbd_resource *drbd_find_resource(const char *name) 2506 { 2507 struct drbd_resource *resource; 2508 2509 if (!name || !name[0]) 2510 return NULL; 2511 2512 rcu_read_lock(); 2513 for_each_resource_rcu(resource, &drbd_resources) { 2514 if (!strcmp(resource->name, name)) { 2515 kref_get(&resource->kref); 2516 goto found; 2517 } 2518 } 2519 resource = NULL; 2520 found: 2521 rcu_read_unlock(); 2522 return resource; 2523 } 2524 2525 struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len, 2526 void *peer_addr, int peer_addr_len) 2527 { 2528 struct drbd_resource *resource; 2529 struct drbd_connection *connection; 2530 2531 rcu_read_lock(); 2532 for_each_resource_rcu(resource, &drbd_resources) { 2533 for_each_connection_rcu(connection, resource) { 2534 if (connection->my_addr_len == my_addr_len && 2535 connection->peer_addr_len == peer_addr_len && 2536 !memcmp(&connection->my_addr, my_addr, my_addr_len) && 2537 !memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) { 2538 kref_get(&connection->kref); 2539 goto found; 2540 } 2541 } 2542 } 2543 connection = NULL; 2544 found: 2545 rcu_read_unlock(); 2546 return connection; 2547 } 2548 2549 static int drbd_alloc_socket(struct drbd_socket *socket) 2550 { 2551 socket->rbuf = (void *) __get_free_page(GFP_KERNEL); 2552 if (!socket->rbuf) 2553 return -ENOMEM; 2554 socket->sbuf = (void *) __get_free_page(GFP_KERNEL); 2555 if (!socket->sbuf) 2556 return -ENOMEM; 2557 return 0; 2558 } 2559 2560 static void drbd_free_socket(struct drbd_socket *socket) 2561 { 2562 free_page((unsigned long) socket->sbuf); 2563 free_page((unsigned long) socket->rbuf); 2564 } 2565 2566 void conn_free_crypto(struct drbd_connection *connection) 2567 { 2568 drbd_free_sock(connection); 2569 2570 crypto_free_shash(connection->csums_tfm); 2571 crypto_free_shash(connection->verify_tfm); 2572 crypto_free_shash(connection->cram_hmac_tfm); 2573 crypto_free_shash(connection->integrity_tfm); 2574 crypto_free_shash(connection->peer_integrity_tfm); 2575 kfree(connection->int_dig_in); 2576 kfree(connection->int_dig_vv); 2577 2578 connection->csums_tfm = NULL; 2579 connection->verify_tfm = NULL; 2580 connection->cram_hmac_tfm = NULL; 2581 connection->integrity_tfm = NULL; 2582 connection->peer_integrity_tfm = NULL; 2583 connection->int_dig_in = NULL; 2584 connection->int_dig_vv = NULL; 2585 } 2586 2587 int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts) 2588 { 2589 struct drbd_connection *connection; 2590 cpumask_var_t new_cpu_mask; 2591 int err; 2592 2593 if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL)) 2594 return -ENOMEM; 2595 2596 /* silently ignore cpu mask on UP kernel */ 2597 if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) { 2598 err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE, 2599 cpumask_bits(new_cpu_mask), nr_cpu_ids); 2600 if (err == -EOVERFLOW) { 2601 /* So what. mask it out. */ 2602 cpumask_var_t tmp_cpu_mask; 2603 if (zalloc_cpumask_var(&tmp_cpu_mask, GFP_KERNEL)) { 2604 cpumask_setall(tmp_cpu_mask); 2605 cpumask_and(new_cpu_mask, new_cpu_mask, tmp_cpu_mask); 2606 drbd_warn(resource, "Overflow in bitmap_parse(%.12s%s), truncating to %u bits\n", 2607 res_opts->cpu_mask, 2608 strlen(res_opts->cpu_mask) > 12 ? "..." : "", 2609 nr_cpu_ids); 2610 free_cpumask_var(tmp_cpu_mask); 2611 err = 0; 2612 } 2613 } 2614 if (err) { 2615 drbd_warn(resource, "bitmap_parse() failed with %d\n", err); 2616 /* retcode = ERR_CPU_MASK_PARSE; */ 2617 goto fail; 2618 } 2619 } 2620 resource->res_opts = *res_opts; 2621 if (cpumask_empty(new_cpu_mask)) 2622 drbd_calc_cpu_mask(&new_cpu_mask); 2623 if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) { 2624 cpumask_copy(resource->cpu_mask, new_cpu_mask); 2625 for_each_connection_rcu(connection, resource) { 2626 connection->receiver.reset_cpu_mask = 1; 2627 connection->ack_receiver.reset_cpu_mask = 1; 2628 connection->worker.reset_cpu_mask = 1; 2629 } 2630 } 2631 err = 0; 2632 2633 fail: 2634 free_cpumask_var(new_cpu_mask); 2635 return err; 2636 2637 } 2638 2639 struct drbd_resource *drbd_create_resource(const char *name) 2640 { 2641 struct drbd_resource *resource; 2642 2643 resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL); 2644 if (!resource) 2645 goto fail; 2646 resource->name = kstrdup(name, GFP_KERNEL); 2647 if (!resource->name) 2648 goto fail_free_resource; 2649 if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL)) 2650 goto fail_free_name; 2651 kref_init(&resource->kref); 2652 idr_init(&resource->devices); 2653 INIT_LIST_HEAD(&resource->connections); 2654 resource->write_ordering = WO_BDEV_FLUSH; 2655 list_add_tail_rcu(&resource->resources, &drbd_resources); 2656 mutex_init(&resource->conf_update); 2657 mutex_init(&resource->adm_mutex); 2658 spin_lock_init(&resource->req_lock); 2659 drbd_debugfs_resource_add(resource); 2660 return resource; 2661 2662 fail_free_name: 2663 kfree(resource->name); 2664 fail_free_resource: 2665 kfree(resource); 2666 fail: 2667 return NULL; 2668 } 2669 2670 /* caller must be under adm_mutex */ 2671 struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts) 2672 { 2673 struct drbd_resource *resource; 2674 struct drbd_connection *connection; 2675 2676 connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL); 2677 if (!connection) 2678 return NULL; 2679 2680 if (drbd_alloc_socket(&connection->data)) 2681 goto fail; 2682 if (drbd_alloc_socket(&connection->meta)) 2683 goto fail; 2684 2685 connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL); 2686 if (!connection->current_epoch) 2687 goto fail; 2688 2689 INIT_LIST_HEAD(&connection->transfer_log); 2690 2691 INIT_LIST_HEAD(&connection->current_epoch->list); 2692 connection->epochs = 1; 2693 spin_lock_init(&connection->epoch_lock); 2694 2695 connection->send.seen_any_write_yet = false; 2696 connection->send.current_epoch_nr = 0; 2697 connection->send.current_epoch_writes = 0; 2698 2699 resource = drbd_create_resource(name); 2700 if (!resource) 2701 goto fail; 2702 2703 connection->cstate = C_STANDALONE; 2704 mutex_init(&connection->cstate_mutex); 2705 init_waitqueue_head(&connection->ping_wait); 2706 idr_init(&connection->peer_devices); 2707 2708 drbd_init_workqueue(&connection->sender_work); 2709 mutex_init(&connection->data.mutex); 2710 mutex_init(&connection->meta.mutex); 2711 2712 drbd_thread_init(resource, &connection->receiver, drbd_receiver, "receiver"); 2713 connection->receiver.connection = connection; 2714 drbd_thread_init(resource, &connection->worker, drbd_worker, "worker"); 2715 connection->worker.connection = connection; 2716 drbd_thread_init(resource, &connection->ack_receiver, drbd_ack_receiver, "ack_recv"); 2717 connection->ack_receiver.connection = connection; 2718 2719 kref_init(&connection->kref); 2720 2721 connection->resource = resource; 2722 2723 if (set_resource_options(resource, res_opts)) 2724 goto fail_resource; 2725 2726 kref_get(&resource->kref); 2727 list_add_tail_rcu(&connection->connections, &resource->connections); 2728 drbd_debugfs_connection_add(connection); 2729 return connection; 2730 2731 fail_resource: 2732 list_del(&resource->resources); 2733 drbd_free_resource(resource); 2734 fail: 2735 kfree(connection->current_epoch); 2736 drbd_free_socket(&connection->meta); 2737 drbd_free_socket(&connection->data); 2738 kfree(connection); 2739 return NULL; 2740 } 2741 2742 void drbd_destroy_connection(struct kref *kref) 2743 { 2744 struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref); 2745 struct drbd_resource *resource = connection->resource; 2746 2747 if (atomic_read(&connection->current_epoch->epoch_size) != 0) 2748 drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size)); 2749 kfree(connection->current_epoch); 2750 2751 idr_destroy(&connection->peer_devices); 2752 2753 drbd_free_socket(&connection->meta); 2754 drbd_free_socket(&connection->data); 2755 kfree(connection->int_dig_in); 2756 kfree(connection->int_dig_vv); 2757 memset(connection, 0xfc, sizeof(*connection)); 2758 kfree(connection); 2759 kref_put(&resource->kref, drbd_destroy_resource); 2760 } 2761 2762 static int init_submitter(struct drbd_device *device) 2763 { 2764 /* opencoded create_singlethread_workqueue(), 2765 * to be able to say "drbd%d", ..., minor */ 2766 device->submit.wq = 2767 alloc_ordered_workqueue("drbd%u_submit", WQ_MEM_RECLAIM, device->minor); 2768 if (!device->submit.wq) 2769 return -ENOMEM; 2770 2771 INIT_WORK(&device->submit.worker, do_submit); 2772 INIT_LIST_HEAD(&device->submit.writes); 2773 return 0; 2774 } 2775 2776 enum drbd_ret_code drbd_create_device(struct drbd_config_context *adm_ctx, unsigned int minor) 2777 { 2778 struct drbd_resource *resource = adm_ctx->resource; 2779 struct drbd_connection *connection; 2780 struct drbd_device *device; 2781 struct drbd_peer_device *peer_device, *tmp_peer_device; 2782 struct gendisk *disk; 2783 struct request_queue *q; 2784 int id; 2785 int vnr = adm_ctx->volume; 2786 enum drbd_ret_code err = ERR_NOMEM; 2787 2788 device = minor_to_device(minor); 2789 if (device) 2790 return ERR_MINOR_OR_VOLUME_EXISTS; 2791 2792 /* GFP_KERNEL, we are outside of all write-out paths */ 2793 device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL); 2794 if (!device) 2795 return ERR_NOMEM; 2796 kref_init(&device->kref); 2797 2798 kref_get(&resource->kref); 2799 device->resource = resource; 2800 device->minor = minor; 2801 device->vnr = vnr; 2802 2803 drbd_init_set_defaults(device); 2804 2805 q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE); 2806 if (!q) 2807 goto out_no_q; 2808 device->rq_queue = q; 2809 q->queuedata = device; 2810 2811 disk = alloc_disk(1); 2812 if (!disk) 2813 goto out_no_disk; 2814 device->vdisk = disk; 2815 2816 set_disk_ro(disk, true); 2817 2818 disk->queue = q; 2819 disk->major = DRBD_MAJOR; 2820 disk->first_minor = minor; 2821 disk->fops = &drbd_ops; 2822 sprintf(disk->disk_name, "drbd%d", minor); 2823 disk->private_data = device; 2824 2825 device->this_bdev = bdget(MKDEV(DRBD_MAJOR, minor)); 2826 /* we have no partitions. we contain only ourselves. */ 2827 device->this_bdev->bd_contains = device->this_bdev; 2828 2829 q->backing_dev_info->congested_fn = drbd_congested; 2830 q->backing_dev_info->congested_data = device; 2831 2832 blk_queue_make_request(q, drbd_make_request); 2833 blk_queue_write_cache(q, true, true); 2834 /* Setting the max_hw_sectors to an odd value of 8kibyte here 2835 This triggers a max_bio_size message upon first attach or connect */ 2836 blk_queue_max_hw_sectors(q, DRBD_MAX_BIO_SIZE_SAFE >> 8); 2837 2838 device->md_io.page = alloc_page(GFP_KERNEL); 2839 if (!device->md_io.page) 2840 goto out_no_io_page; 2841 2842 if (drbd_bm_init(device)) 2843 goto out_no_bitmap; 2844 device->read_requests = RB_ROOT; 2845 device->write_requests = RB_ROOT; 2846 2847 id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL); 2848 if (id < 0) { 2849 if (id == -ENOSPC) 2850 err = ERR_MINOR_OR_VOLUME_EXISTS; 2851 goto out_no_minor_idr; 2852 } 2853 kref_get(&device->kref); 2854 2855 id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL); 2856 if (id < 0) { 2857 if (id == -ENOSPC) 2858 err = ERR_MINOR_OR_VOLUME_EXISTS; 2859 goto out_idr_remove_minor; 2860 } 2861 kref_get(&device->kref); 2862 2863 INIT_LIST_HEAD(&device->peer_devices); 2864 INIT_LIST_HEAD(&device->pending_bitmap_io); 2865 for_each_connection(connection, resource) { 2866 peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL); 2867 if (!peer_device) 2868 goto out_idr_remove_from_resource; 2869 peer_device->connection = connection; 2870 peer_device->device = device; 2871 2872 list_add(&peer_device->peer_devices, &device->peer_devices); 2873 kref_get(&device->kref); 2874 2875 id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL); 2876 if (id < 0) { 2877 if (id == -ENOSPC) 2878 err = ERR_INVALID_REQUEST; 2879 goto out_idr_remove_from_resource; 2880 } 2881 kref_get(&connection->kref); 2882 INIT_WORK(&peer_device->send_acks_work, drbd_send_acks_wf); 2883 } 2884 2885 if (init_submitter(device)) { 2886 err = ERR_NOMEM; 2887 goto out_idr_remove_vol; 2888 } 2889 2890 add_disk(disk); 2891 2892 /* inherit the connection state */ 2893 device->state.conn = first_connection(resource)->cstate; 2894 if (device->state.conn == C_WF_REPORT_PARAMS) { 2895 for_each_peer_device(peer_device, device) 2896 drbd_connected(peer_device); 2897 } 2898 /* move to create_peer_device() */ 2899 for_each_peer_device(peer_device, device) 2900 drbd_debugfs_peer_device_add(peer_device); 2901 drbd_debugfs_device_add(device); 2902 return NO_ERROR; 2903 2904 out_idr_remove_vol: 2905 idr_remove(&connection->peer_devices, vnr); 2906 out_idr_remove_from_resource: 2907 for_each_connection(connection, resource) { 2908 peer_device = idr_remove(&connection->peer_devices, vnr); 2909 if (peer_device) 2910 kref_put(&connection->kref, drbd_destroy_connection); 2911 } 2912 for_each_peer_device_safe(peer_device, tmp_peer_device, device) { 2913 list_del(&peer_device->peer_devices); 2914 kfree(peer_device); 2915 } 2916 idr_remove(&resource->devices, vnr); 2917 out_idr_remove_minor: 2918 idr_remove(&drbd_devices, minor); 2919 synchronize_rcu(); 2920 out_no_minor_idr: 2921 drbd_bm_cleanup(device); 2922 out_no_bitmap: 2923 __free_page(device->md_io.page); 2924 out_no_io_page: 2925 put_disk(disk); 2926 out_no_disk: 2927 blk_cleanup_queue(q); 2928 out_no_q: 2929 kref_put(&resource->kref, drbd_destroy_resource); 2930 kfree(device); 2931 return err; 2932 } 2933 2934 void drbd_delete_device(struct drbd_device *device) 2935 { 2936 struct drbd_resource *resource = device->resource; 2937 struct drbd_connection *connection; 2938 struct drbd_peer_device *peer_device; 2939 2940 /* move to free_peer_device() */ 2941 for_each_peer_device(peer_device, device) 2942 drbd_debugfs_peer_device_cleanup(peer_device); 2943 drbd_debugfs_device_cleanup(device); 2944 for_each_connection(connection, resource) { 2945 idr_remove(&connection->peer_devices, device->vnr); 2946 kref_put(&device->kref, drbd_destroy_device); 2947 } 2948 idr_remove(&resource->devices, device->vnr); 2949 kref_put(&device->kref, drbd_destroy_device); 2950 idr_remove(&drbd_devices, device_to_minor(device)); 2951 kref_put(&device->kref, drbd_destroy_device); 2952 del_gendisk(device->vdisk); 2953 synchronize_rcu(); 2954 kref_put(&device->kref, drbd_destroy_device); 2955 } 2956 2957 static int __init drbd_init(void) 2958 { 2959 int err; 2960 2961 if (drbd_minor_count < DRBD_MINOR_COUNT_MIN || drbd_minor_count > DRBD_MINOR_COUNT_MAX) { 2962 pr_err("invalid minor_count (%d)\n", drbd_minor_count); 2963 #ifdef MODULE 2964 return -EINVAL; 2965 #else 2966 drbd_minor_count = DRBD_MINOR_COUNT_DEF; 2967 #endif 2968 } 2969 2970 err = register_blkdev(DRBD_MAJOR, "drbd"); 2971 if (err) { 2972 pr_err("unable to register block device major %d\n", 2973 DRBD_MAJOR); 2974 return err; 2975 } 2976 2977 /* 2978 * allocate all necessary structs 2979 */ 2980 init_waitqueue_head(&drbd_pp_wait); 2981 2982 drbd_proc = NULL; /* play safe for drbd_cleanup */ 2983 idr_init(&drbd_devices); 2984 2985 mutex_init(&resources_mutex); 2986 INIT_LIST_HEAD(&drbd_resources); 2987 2988 err = drbd_genl_register(); 2989 if (err) { 2990 pr_err("unable to register generic netlink family\n"); 2991 goto fail; 2992 } 2993 2994 err = drbd_create_mempools(); 2995 if (err) 2996 goto fail; 2997 2998 err = -ENOMEM; 2999 drbd_proc = proc_create_single("drbd", S_IFREG | 0444 , NULL, drbd_seq_show); 3000 if (!drbd_proc) { 3001 pr_err("unable to register proc file\n"); 3002 goto fail; 3003 } 3004 3005 retry.wq = create_singlethread_workqueue("drbd-reissue"); 3006 if (!retry.wq) { 3007 pr_err("unable to create retry workqueue\n"); 3008 goto fail; 3009 } 3010 INIT_WORK(&retry.worker, do_retry); 3011 spin_lock_init(&retry.lock); 3012 INIT_LIST_HEAD(&retry.writes); 3013 3014 drbd_debugfs_init(); 3015 3016 pr_info("initialized. " 3017 "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n", 3018 API_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX); 3019 pr_info("%s\n", drbd_buildtag()); 3020 pr_info("registered as block device major %d\n", DRBD_MAJOR); 3021 return 0; /* Success! */ 3022 3023 fail: 3024 drbd_cleanup(); 3025 if (err == -ENOMEM) 3026 pr_err("ran out of memory\n"); 3027 else 3028 pr_err("initialization failure\n"); 3029 return err; 3030 } 3031 3032 static void drbd_free_one_sock(struct drbd_socket *ds) 3033 { 3034 struct socket *s; 3035 mutex_lock(&ds->mutex); 3036 s = ds->socket; 3037 ds->socket = NULL; 3038 mutex_unlock(&ds->mutex); 3039 if (s) { 3040 /* so debugfs does not need to mutex_lock() */ 3041 synchronize_rcu(); 3042 kernel_sock_shutdown(s, SHUT_RDWR); 3043 sock_release(s); 3044 } 3045 } 3046 3047 void drbd_free_sock(struct drbd_connection *connection) 3048 { 3049 if (connection->data.socket) 3050 drbd_free_one_sock(&connection->data); 3051 if (connection->meta.socket) 3052 drbd_free_one_sock(&connection->meta); 3053 } 3054 3055 /* meta data management */ 3056 3057 void conn_md_sync(struct drbd_connection *connection) 3058 { 3059 struct drbd_peer_device *peer_device; 3060 int vnr; 3061 3062 rcu_read_lock(); 3063 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 3064 struct drbd_device *device = peer_device->device; 3065 3066 kref_get(&device->kref); 3067 rcu_read_unlock(); 3068 drbd_md_sync(device); 3069 kref_put(&device->kref, drbd_destroy_device); 3070 rcu_read_lock(); 3071 } 3072 rcu_read_unlock(); 3073 } 3074 3075 /* aligned 4kByte */ 3076 struct meta_data_on_disk { 3077 u64 la_size_sect; /* last agreed size. */ 3078 u64 uuid[UI_SIZE]; /* UUIDs. */ 3079 u64 device_uuid; 3080 u64 reserved_u64_1; 3081 u32 flags; /* MDF */ 3082 u32 magic; 3083 u32 md_size_sect; 3084 u32 al_offset; /* offset to this block */ 3085 u32 al_nr_extents; /* important for restoring the AL (userspace) */ 3086 /* `-- act_log->nr_elements <-- ldev->dc.al_extents */ 3087 u32 bm_offset; /* offset to the bitmap, from here */ 3088 u32 bm_bytes_per_bit; /* BM_BLOCK_SIZE */ 3089 u32 la_peer_max_bio_size; /* last peer max_bio_size */ 3090 3091 /* see al_tr_number_to_on_disk_sector() */ 3092 u32 al_stripes; 3093 u32 al_stripe_size_4k; 3094 3095 u8 reserved_u8[4096 - (7*8 + 10*4)]; 3096 } __packed; 3097 3098 3099 3100 void drbd_md_write(struct drbd_device *device, void *b) 3101 { 3102 struct meta_data_on_disk *buffer = b; 3103 sector_t sector; 3104 int i; 3105 3106 memset(buffer, 0, sizeof(*buffer)); 3107 3108 buffer->la_size_sect = cpu_to_be64(drbd_get_capacity(device->this_bdev)); 3109 for (i = UI_CURRENT; i < UI_SIZE; i++) 3110 buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]); 3111 buffer->flags = cpu_to_be32(device->ldev->md.flags); 3112 buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN); 3113 3114 buffer->md_size_sect = cpu_to_be32(device->ldev->md.md_size_sect); 3115 buffer->al_offset = cpu_to_be32(device->ldev->md.al_offset); 3116 buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements); 3117 buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE); 3118 buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid); 3119 3120 buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset); 3121 buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size); 3122 3123 buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes); 3124 buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k); 3125 3126 D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset); 3127 sector = device->ldev->md.md_offset; 3128 3129 if (drbd_md_sync_page_io(device, device->ldev, sector, REQ_OP_WRITE)) { 3130 /* this was a try anyways ... */ 3131 drbd_err(device, "meta data update failed!\n"); 3132 drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR); 3133 } 3134 } 3135 3136 /** 3137 * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set 3138 * @device: DRBD device. 3139 */ 3140 void drbd_md_sync(struct drbd_device *device) 3141 { 3142 struct meta_data_on_disk *buffer; 3143 3144 /* Don't accidentally change the DRBD meta data layout. */ 3145 BUILD_BUG_ON(UI_SIZE != 4); 3146 BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096); 3147 3148 del_timer(&device->md_sync_timer); 3149 /* timer may be rearmed by drbd_md_mark_dirty() now. */ 3150 if (!test_and_clear_bit(MD_DIRTY, &device->flags)) 3151 return; 3152 3153 /* We use here D_FAILED and not D_ATTACHING because we try to write 3154 * metadata even if we detach due to a disk failure! */ 3155 if (!get_ldev_if_state(device, D_FAILED)) 3156 return; 3157 3158 buffer = drbd_md_get_buffer(device, __func__); 3159 if (!buffer) 3160 goto out; 3161 3162 drbd_md_write(device, buffer); 3163 3164 /* Update device->ldev->md.la_size_sect, 3165 * since we updated it on metadata. */ 3166 device->ldev->md.la_size_sect = drbd_get_capacity(device->this_bdev); 3167 3168 drbd_md_put_buffer(device); 3169 out: 3170 put_ldev(device); 3171 } 3172 3173 static int check_activity_log_stripe_size(struct drbd_device *device, 3174 struct meta_data_on_disk *on_disk, 3175 struct drbd_md *in_core) 3176 { 3177 u32 al_stripes = be32_to_cpu(on_disk->al_stripes); 3178 u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k); 3179 u64 al_size_4k; 3180 3181 /* both not set: default to old fixed size activity log */ 3182 if (al_stripes == 0 && al_stripe_size_4k == 0) { 3183 al_stripes = 1; 3184 al_stripe_size_4k = MD_32kB_SECT/8; 3185 } 3186 3187 /* some paranoia plausibility checks */ 3188 3189 /* we need both values to be set */ 3190 if (al_stripes == 0 || al_stripe_size_4k == 0) 3191 goto err; 3192 3193 al_size_4k = (u64)al_stripes * al_stripe_size_4k; 3194 3195 /* Upper limit of activity log area, to avoid potential overflow 3196 * problems in al_tr_number_to_on_disk_sector(). As right now, more 3197 * than 72 * 4k blocks total only increases the amount of history, 3198 * limiting this arbitrarily to 16 GB is not a real limitation ;-) */ 3199 if (al_size_4k > (16 * 1024 * 1024/4)) 3200 goto err; 3201 3202 /* Lower limit: we need at least 8 transaction slots (32kB) 3203 * to not break existing setups */ 3204 if (al_size_4k < MD_32kB_SECT/8) 3205 goto err; 3206 3207 in_core->al_stripe_size_4k = al_stripe_size_4k; 3208 in_core->al_stripes = al_stripes; 3209 in_core->al_size_4k = al_size_4k; 3210 3211 return 0; 3212 err: 3213 drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n", 3214 al_stripes, al_stripe_size_4k); 3215 return -EINVAL; 3216 } 3217 3218 static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev) 3219 { 3220 sector_t capacity = drbd_get_capacity(bdev->md_bdev); 3221 struct drbd_md *in_core = &bdev->md; 3222 s32 on_disk_al_sect; 3223 s32 on_disk_bm_sect; 3224 3225 /* The on-disk size of the activity log, calculated from offsets, and 3226 * the size of the activity log calculated from the stripe settings, 3227 * should match. 3228 * Though we could relax this a bit: it is ok, if the striped activity log 3229 * fits in the available on-disk activity log size. 3230 * Right now, that would break how resize is implemented. 3231 * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware 3232 * of possible unused padding space in the on disk layout. */ 3233 if (in_core->al_offset < 0) { 3234 if (in_core->bm_offset > in_core->al_offset) 3235 goto err; 3236 on_disk_al_sect = -in_core->al_offset; 3237 on_disk_bm_sect = in_core->al_offset - in_core->bm_offset; 3238 } else { 3239 if (in_core->al_offset != MD_4kB_SECT) 3240 goto err; 3241 if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT) 3242 goto err; 3243 3244 on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT; 3245 on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset; 3246 } 3247 3248 /* old fixed size meta data is exactly that: fixed. */ 3249 if (in_core->meta_dev_idx >= 0) { 3250 if (in_core->md_size_sect != MD_128MB_SECT 3251 || in_core->al_offset != MD_4kB_SECT 3252 || in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT 3253 || in_core->al_stripes != 1 3254 || in_core->al_stripe_size_4k != MD_32kB_SECT/8) 3255 goto err; 3256 } 3257 3258 if (capacity < in_core->md_size_sect) 3259 goto err; 3260 if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev)) 3261 goto err; 3262 3263 /* should be aligned, and at least 32k */ 3264 if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT)) 3265 goto err; 3266 3267 /* should fit (for now: exactly) into the available on-disk space; 3268 * overflow prevention is in check_activity_log_stripe_size() above. */ 3269 if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT) 3270 goto err; 3271 3272 /* again, should be aligned */ 3273 if (in_core->bm_offset & 7) 3274 goto err; 3275 3276 /* FIXME check for device grow with flex external meta data? */ 3277 3278 /* can the available bitmap space cover the last agreed device size? */ 3279 if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512) 3280 goto err; 3281 3282 return 0; 3283 3284 err: 3285 drbd_err(device, "meta data offsets don't make sense: idx=%d " 3286 "al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, " 3287 "md_size_sect=%u, la_size=%llu, md_capacity=%llu\n", 3288 in_core->meta_dev_idx, 3289 in_core->al_stripes, in_core->al_stripe_size_4k, 3290 in_core->al_offset, in_core->bm_offset, in_core->md_size_sect, 3291 (unsigned long long)in_core->la_size_sect, 3292 (unsigned long long)capacity); 3293 3294 return -EINVAL; 3295 } 3296 3297 3298 /** 3299 * drbd_md_read() - Reads in the meta data super block 3300 * @device: DRBD device. 3301 * @bdev: Device from which the meta data should be read in. 3302 * 3303 * Return NO_ERROR on success, and an enum drbd_ret_code in case 3304 * something goes wrong. 3305 * 3306 * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS, 3307 * even before @bdev is assigned to @device->ldev. 3308 */ 3309 int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev) 3310 { 3311 struct meta_data_on_disk *buffer; 3312 u32 magic, flags; 3313 int i, rv = NO_ERROR; 3314 3315 if (device->state.disk != D_DISKLESS) 3316 return ERR_DISK_CONFIGURED; 3317 3318 buffer = drbd_md_get_buffer(device, __func__); 3319 if (!buffer) 3320 return ERR_NOMEM; 3321 3322 /* First, figure out where our meta data superblock is located, 3323 * and read it. */ 3324 bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx; 3325 bdev->md.md_offset = drbd_md_ss(bdev); 3326 /* Even for (flexible or indexed) external meta data, 3327 * initially restrict us to the 4k superblock for now. 3328 * Affects the paranoia out-of-range access check in drbd_md_sync_page_io(). */ 3329 bdev->md.md_size_sect = 8; 3330 3331 if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset, 3332 REQ_OP_READ)) { 3333 /* NOTE: can't do normal error processing here as this is 3334 called BEFORE disk is attached */ 3335 drbd_err(device, "Error while reading metadata.\n"); 3336 rv = ERR_IO_MD_DISK; 3337 goto err; 3338 } 3339 3340 magic = be32_to_cpu(buffer->magic); 3341 flags = be32_to_cpu(buffer->flags); 3342 if (magic == DRBD_MD_MAGIC_84_UNCLEAN || 3343 (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) { 3344 /* btw: that's Activity Log clean, not "all" clean. */ 3345 drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n"); 3346 rv = ERR_MD_UNCLEAN; 3347 goto err; 3348 } 3349 3350 rv = ERR_MD_INVALID; 3351 if (magic != DRBD_MD_MAGIC_08) { 3352 if (magic == DRBD_MD_MAGIC_07) 3353 drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n"); 3354 else 3355 drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n"); 3356 goto err; 3357 } 3358 3359 if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) { 3360 drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n", 3361 be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE); 3362 goto err; 3363 } 3364 3365 3366 /* convert to in_core endian */ 3367 bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect); 3368 for (i = UI_CURRENT; i < UI_SIZE; i++) 3369 bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]); 3370 bdev->md.flags = be32_to_cpu(buffer->flags); 3371 bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid); 3372 3373 bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect); 3374 bdev->md.al_offset = be32_to_cpu(buffer->al_offset); 3375 bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset); 3376 3377 if (check_activity_log_stripe_size(device, buffer, &bdev->md)) 3378 goto err; 3379 if (check_offsets_and_sizes(device, bdev)) 3380 goto err; 3381 3382 if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) { 3383 drbd_err(device, "unexpected bm_offset: %d (expected %d)\n", 3384 be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset); 3385 goto err; 3386 } 3387 if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) { 3388 drbd_err(device, "unexpected md_size: %u (expected %u)\n", 3389 be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect); 3390 goto err; 3391 } 3392 3393 rv = NO_ERROR; 3394 3395 spin_lock_irq(&device->resource->req_lock); 3396 if (device->state.conn < C_CONNECTED) { 3397 unsigned int peer; 3398 peer = be32_to_cpu(buffer->la_peer_max_bio_size); 3399 peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE); 3400 device->peer_max_bio_size = peer; 3401 } 3402 spin_unlock_irq(&device->resource->req_lock); 3403 3404 err: 3405 drbd_md_put_buffer(device); 3406 3407 return rv; 3408 } 3409 3410 /** 3411 * drbd_md_mark_dirty() - Mark meta data super block as dirty 3412 * @device: DRBD device. 3413 * 3414 * Call this function if you change anything that should be written to 3415 * the meta-data super block. This function sets MD_DIRTY, and starts a 3416 * timer that ensures that within five seconds you have to call drbd_md_sync(). 3417 */ 3418 #ifdef DEBUG 3419 void drbd_md_mark_dirty_(struct drbd_device *device, unsigned int line, const char *func) 3420 { 3421 if (!test_and_set_bit(MD_DIRTY, &device->flags)) { 3422 mod_timer(&device->md_sync_timer, jiffies + HZ); 3423 device->last_md_mark_dirty.line = line; 3424 device->last_md_mark_dirty.func = func; 3425 } 3426 } 3427 #else 3428 void drbd_md_mark_dirty(struct drbd_device *device) 3429 { 3430 if (!test_and_set_bit(MD_DIRTY, &device->flags)) 3431 mod_timer(&device->md_sync_timer, jiffies + 5*HZ); 3432 } 3433 #endif 3434 3435 void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local) 3436 { 3437 int i; 3438 3439 for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++) 3440 device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i]; 3441 } 3442 3443 void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local) 3444 { 3445 if (idx == UI_CURRENT) { 3446 if (device->state.role == R_PRIMARY) 3447 val |= 1; 3448 else 3449 val &= ~((u64)1); 3450 3451 drbd_set_ed_uuid(device, val); 3452 } 3453 3454 device->ldev->md.uuid[idx] = val; 3455 drbd_md_mark_dirty(device); 3456 } 3457 3458 void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local) 3459 { 3460 unsigned long flags; 3461 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags); 3462 __drbd_uuid_set(device, idx, val); 3463 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags); 3464 } 3465 3466 void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local) 3467 { 3468 unsigned long flags; 3469 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags); 3470 if (device->ldev->md.uuid[idx]) { 3471 drbd_uuid_move_history(device); 3472 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx]; 3473 } 3474 __drbd_uuid_set(device, idx, val); 3475 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags); 3476 } 3477 3478 /** 3479 * drbd_uuid_new_current() - Creates a new current UUID 3480 * @device: DRBD device. 3481 * 3482 * Creates a new current UUID, and rotates the old current UUID into 3483 * the bitmap slot. Causes an incremental resync upon next connect. 3484 */ 3485 void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local) 3486 { 3487 u64 val; 3488 unsigned long long bm_uuid; 3489 3490 get_random_bytes(&val, sizeof(u64)); 3491 3492 spin_lock_irq(&device->ldev->md.uuid_lock); 3493 bm_uuid = device->ldev->md.uuid[UI_BITMAP]; 3494 3495 if (bm_uuid) 3496 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid); 3497 3498 device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT]; 3499 __drbd_uuid_set(device, UI_CURRENT, val); 3500 spin_unlock_irq(&device->ldev->md.uuid_lock); 3501 3502 drbd_print_uuids(device, "new current UUID"); 3503 /* get it to stable storage _now_ */ 3504 drbd_md_sync(device); 3505 } 3506 3507 void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local) 3508 { 3509 unsigned long flags; 3510 if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0) 3511 return; 3512 3513 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags); 3514 if (val == 0) { 3515 drbd_uuid_move_history(device); 3516 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP]; 3517 device->ldev->md.uuid[UI_BITMAP] = 0; 3518 } else { 3519 unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP]; 3520 if (bm_uuid) 3521 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid); 3522 3523 device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1); 3524 } 3525 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags); 3526 3527 drbd_md_mark_dirty(device); 3528 } 3529 3530 /** 3531 * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io() 3532 * @device: DRBD device. 3533 * 3534 * Sets all bits in the bitmap and writes the whole bitmap to stable storage. 3535 */ 3536 int drbd_bmio_set_n_write(struct drbd_device *device) __must_hold(local) 3537 { 3538 int rv = -EIO; 3539 3540 drbd_md_set_flag(device, MDF_FULL_SYNC); 3541 drbd_md_sync(device); 3542 drbd_bm_set_all(device); 3543 3544 rv = drbd_bm_write(device); 3545 3546 if (!rv) { 3547 drbd_md_clear_flag(device, MDF_FULL_SYNC); 3548 drbd_md_sync(device); 3549 } 3550 3551 return rv; 3552 } 3553 3554 /** 3555 * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io() 3556 * @device: DRBD device. 3557 * 3558 * Clears all bits in the bitmap and writes the whole bitmap to stable storage. 3559 */ 3560 int drbd_bmio_clear_n_write(struct drbd_device *device) __must_hold(local) 3561 { 3562 drbd_resume_al(device); 3563 drbd_bm_clear_all(device); 3564 return drbd_bm_write(device); 3565 } 3566 3567 static int w_bitmap_io(struct drbd_work *w, int unused) 3568 { 3569 struct drbd_device *device = 3570 container_of(w, struct drbd_device, bm_io_work.w); 3571 struct bm_io_work *work = &device->bm_io_work; 3572 int rv = -EIO; 3573 3574 if (work->flags != BM_LOCKED_CHANGE_ALLOWED) { 3575 int cnt = atomic_read(&device->ap_bio_cnt); 3576 if (cnt) 3577 drbd_err(device, "FIXME: ap_bio_cnt %d, expected 0; queued for '%s'\n", 3578 cnt, work->why); 3579 } 3580 3581 if (get_ldev(device)) { 3582 drbd_bm_lock(device, work->why, work->flags); 3583 rv = work->io_fn(device); 3584 drbd_bm_unlock(device); 3585 put_ldev(device); 3586 } 3587 3588 clear_bit_unlock(BITMAP_IO, &device->flags); 3589 wake_up(&device->misc_wait); 3590 3591 if (work->done) 3592 work->done(device, rv); 3593 3594 clear_bit(BITMAP_IO_QUEUED, &device->flags); 3595 work->why = NULL; 3596 work->flags = 0; 3597 3598 return 0; 3599 } 3600 3601 /** 3602 * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap 3603 * @device: DRBD device. 3604 * @io_fn: IO callback to be called when bitmap IO is possible 3605 * @done: callback to be called after the bitmap IO was performed 3606 * @why: Descriptive text of the reason for doing the IO 3607 * 3608 * While IO on the bitmap happens we freeze application IO thus we ensure 3609 * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be 3610 * called from worker context. It MUST NOT be used while a previous such 3611 * work is still pending! 3612 * 3613 * Its worker function encloses the call of io_fn() by get_ldev() and 3614 * put_ldev(). 3615 */ 3616 void drbd_queue_bitmap_io(struct drbd_device *device, 3617 int (*io_fn)(struct drbd_device *), 3618 void (*done)(struct drbd_device *, int), 3619 char *why, enum bm_flag flags) 3620 { 3621 D_ASSERT(device, current == first_peer_device(device)->connection->worker.task); 3622 3623 D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags)); 3624 D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags)); 3625 D_ASSERT(device, list_empty(&device->bm_io_work.w.list)); 3626 if (device->bm_io_work.why) 3627 drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n", 3628 why, device->bm_io_work.why); 3629 3630 device->bm_io_work.io_fn = io_fn; 3631 device->bm_io_work.done = done; 3632 device->bm_io_work.why = why; 3633 device->bm_io_work.flags = flags; 3634 3635 spin_lock_irq(&device->resource->req_lock); 3636 set_bit(BITMAP_IO, &device->flags); 3637 /* don't wait for pending application IO if the caller indicates that 3638 * application IO does not conflict anyways. */ 3639 if (flags == BM_LOCKED_CHANGE_ALLOWED || atomic_read(&device->ap_bio_cnt) == 0) { 3640 if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags)) 3641 drbd_queue_work(&first_peer_device(device)->connection->sender_work, 3642 &device->bm_io_work.w); 3643 } 3644 spin_unlock_irq(&device->resource->req_lock); 3645 } 3646 3647 /** 3648 * drbd_bitmap_io() - Does an IO operation on the whole bitmap 3649 * @device: DRBD device. 3650 * @io_fn: IO callback to be called when bitmap IO is possible 3651 * @why: Descriptive text of the reason for doing the IO 3652 * 3653 * freezes application IO while that the actual IO operations runs. This 3654 * functions MAY NOT be called from worker context. 3655 */ 3656 int drbd_bitmap_io(struct drbd_device *device, int (*io_fn)(struct drbd_device *), 3657 char *why, enum bm_flag flags) 3658 { 3659 /* Only suspend io, if some operation is supposed to be locked out */ 3660 const bool do_suspend_io = flags & (BM_DONT_CLEAR|BM_DONT_SET|BM_DONT_TEST); 3661 int rv; 3662 3663 D_ASSERT(device, current != first_peer_device(device)->connection->worker.task); 3664 3665 if (do_suspend_io) 3666 drbd_suspend_io(device); 3667 3668 drbd_bm_lock(device, why, flags); 3669 rv = io_fn(device); 3670 drbd_bm_unlock(device); 3671 3672 if (do_suspend_io) 3673 drbd_resume_io(device); 3674 3675 return rv; 3676 } 3677 3678 void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local) 3679 { 3680 if ((device->ldev->md.flags & flag) != flag) { 3681 drbd_md_mark_dirty(device); 3682 device->ldev->md.flags |= flag; 3683 } 3684 } 3685 3686 void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local) 3687 { 3688 if ((device->ldev->md.flags & flag) != 0) { 3689 drbd_md_mark_dirty(device); 3690 device->ldev->md.flags &= ~flag; 3691 } 3692 } 3693 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag) 3694 { 3695 return (bdev->md.flags & flag) != 0; 3696 } 3697 3698 static void md_sync_timer_fn(struct timer_list *t) 3699 { 3700 struct drbd_device *device = from_timer(device, t, md_sync_timer); 3701 drbd_device_post_work(device, MD_SYNC); 3702 } 3703 3704 const char *cmdname(enum drbd_packet cmd) 3705 { 3706 /* THINK may need to become several global tables 3707 * when we want to support more than 3708 * one PRO_VERSION */ 3709 static const char *cmdnames[] = { 3710 [P_DATA] = "Data", 3711 [P_WSAME] = "WriteSame", 3712 [P_TRIM] = "Trim", 3713 [P_DATA_REPLY] = "DataReply", 3714 [P_RS_DATA_REPLY] = "RSDataReply", 3715 [P_BARRIER] = "Barrier", 3716 [P_BITMAP] = "ReportBitMap", 3717 [P_BECOME_SYNC_TARGET] = "BecomeSyncTarget", 3718 [P_BECOME_SYNC_SOURCE] = "BecomeSyncSource", 3719 [P_UNPLUG_REMOTE] = "UnplugRemote", 3720 [P_DATA_REQUEST] = "DataRequest", 3721 [P_RS_DATA_REQUEST] = "RSDataRequest", 3722 [P_SYNC_PARAM] = "SyncParam", 3723 [P_SYNC_PARAM89] = "SyncParam89", 3724 [P_PROTOCOL] = "ReportProtocol", 3725 [P_UUIDS] = "ReportUUIDs", 3726 [P_SIZES] = "ReportSizes", 3727 [P_STATE] = "ReportState", 3728 [P_SYNC_UUID] = "ReportSyncUUID", 3729 [P_AUTH_CHALLENGE] = "AuthChallenge", 3730 [P_AUTH_RESPONSE] = "AuthResponse", 3731 [P_PING] = "Ping", 3732 [P_PING_ACK] = "PingAck", 3733 [P_RECV_ACK] = "RecvAck", 3734 [P_WRITE_ACK] = "WriteAck", 3735 [P_RS_WRITE_ACK] = "RSWriteAck", 3736 [P_SUPERSEDED] = "Superseded", 3737 [P_NEG_ACK] = "NegAck", 3738 [P_NEG_DREPLY] = "NegDReply", 3739 [P_NEG_RS_DREPLY] = "NegRSDReply", 3740 [P_BARRIER_ACK] = "BarrierAck", 3741 [P_STATE_CHG_REQ] = "StateChgRequest", 3742 [P_STATE_CHG_REPLY] = "StateChgReply", 3743 [P_OV_REQUEST] = "OVRequest", 3744 [P_OV_REPLY] = "OVReply", 3745 [P_OV_RESULT] = "OVResult", 3746 [P_CSUM_RS_REQUEST] = "CsumRSRequest", 3747 [P_RS_IS_IN_SYNC] = "CsumRSIsInSync", 3748 [P_COMPRESSED_BITMAP] = "CBitmap", 3749 [P_DELAY_PROBE] = "DelayProbe", 3750 [P_OUT_OF_SYNC] = "OutOfSync", 3751 [P_RETRY_WRITE] = "RetryWrite", 3752 [P_RS_CANCEL] = "RSCancel", 3753 [P_CONN_ST_CHG_REQ] = "conn_st_chg_req", 3754 [P_CONN_ST_CHG_REPLY] = "conn_st_chg_reply", 3755 [P_RETRY_WRITE] = "retry_write", 3756 [P_PROTOCOL_UPDATE] = "protocol_update", 3757 [P_RS_THIN_REQ] = "rs_thin_req", 3758 [P_RS_DEALLOCATED] = "rs_deallocated", 3759 3760 /* enum drbd_packet, but not commands - obsoleted flags: 3761 * P_MAY_IGNORE 3762 * P_MAX_OPT_CMD 3763 */ 3764 }; 3765 3766 /* too big for the array: 0xfffX */ 3767 if (cmd == P_INITIAL_META) 3768 return "InitialMeta"; 3769 if (cmd == P_INITIAL_DATA) 3770 return "InitialData"; 3771 if (cmd == P_CONNECTION_FEATURES) 3772 return "ConnectionFeatures"; 3773 if (cmd >= ARRAY_SIZE(cmdnames)) 3774 return "Unknown"; 3775 return cmdnames[cmd]; 3776 } 3777 3778 /** 3779 * drbd_wait_misc - wait for a request to make progress 3780 * @device: device associated with the request 3781 * @i: the struct drbd_interval embedded in struct drbd_request or 3782 * struct drbd_peer_request 3783 */ 3784 int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i) 3785 { 3786 struct net_conf *nc; 3787 DEFINE_WAIT(wait); 3788 long timeout; 3789 3790 rcu_read_lock(); 3791 nc = rcu_dereference(first_peer_device(device)->connection->net_conf); 3792 if (!nc) { 3793 rcu_read_unlock(); 3794 return -ETIMEDOUT; 3795 } 3796 timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT; 3797 rcu_read_unlock(); 3798 3799 /* Indicate to wake up device->misc_wait on progress. */ 3800 i->waiting = true; 3801 prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE); 3802 spin_unlock_irq(&device->resource->req_lock); 3803 timeout = schedule_timeout(timeout); 3804 finish_wait(&device->misc_wait, &wait); 3805 spin_lock_irq(&device->resource->req_lock); 3806 if (!timeout || device->state.conn < C_CONNECTED) 3807 return -ETIMEDOUT; 3808 if (signal_pending(current)) 3809 return -ERESTARTSYS; 3810 return 0; 3811 } 3812 3813 void lock_all_resources(void) 3814 { 3815 struct drbd_resource *resource; 3816 int __maybe_unused i = 0; 3817 3818 mutex_lock(&resources_mutex); 3819 local_irq_disable(); 3820 for_each_resource(resource, &drbd_resources) 3821 spin_lock_nested(&resource->req_lock, i++); 3822 } 3823 3824 void unlock_all_resources(void) 3825 { 3826 struct drbd_resource *resource; 3827 3828 for_each_resource(resource, &drbd_resources) 3829 spin_unlock(&resource->req_lock); 3830 local_irq_enable(); 3831 mutex_unlock(&resources_mutex); 3832 } 3833 3834 #ifdef CONFIG_DRBD_FAULT_INJECTION 3835 /* Fault insertion support including random number generator shamelessly 3836 * stolen from kernel/rcutorture.c */ 3837 struct fault_random_state { 3838 unsigned long state; 3839 unsigned long count; 3840 }; 3841 3842 #define FAULT_RANDOM_MULT 39916801 /* prime */ 3843 #define FAULT_RANDOM_ADD 479001701 /* prime */ 3844 #define FAULT_RANDOM_REFRESH 10000 3845 3846 /* 3847 * Crude but fast random-number generator. Uses a linear congruential 3848 * generator, with occasional help from get_random_bytes(). 3849 */ 3850 static unsigned long 3851 _drbd_fault_random(struct fault_random_state *rsp) 3852 { 3853 long refresh; 3854 3855 if (!rsp->count--) { 3856 get_random_bytes(&refresh, sizeof(refresh)); 3857 rsp->state += refresh; 3858 rsp->count = FAULT_RANDOM_REFRESH; 3859 } 3860 rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD; 3861 return swahw32(rsp->state); 3862 } 3863 3864 static char * 3865 _drbd_fault_str(unsigned int type) { 3866 static char *_faults[] = { 3867 [DRBD_FAULT_MD_WR] = "Meta-data write", 3868 [DRBD_FAULT_MD_RD] = "Meta-data read", 3869 [DRBD_FAULT_RS_WR] = "Resync write", 3870 [DRBD_FAULT_RS_RD] = "Resync read", 3871 [DRBD_FAULT_DT_WR] = "Data write", 3872 [DRBD_FAULT_DT_RD] = "Data read", 3873 [DRBD_FAULT_DT_RA] = "Data read ahead", 3874 [DRBD_FAULT_BM_ALLOC] = "BM allocation", 3875 [DRBD_FAULT_AL_EE] = "EE allocation", 3876 [DRBD_FAULT_RECEIVE] = "receive data corruption", 3877 }; 3878 3879 return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**"; 3880 } 3881 3882 unsigned int 3883 _drbd_insert_fault(struct drbd_device *device, unsigned int type) 3884 { 3885 static struct fault_random_state rrs = {0, 0}; 3886 3887 unsigned int ret = ( 3888 (drbd_fault_devs == 0 || 3889 ((1 << device_to_minor(device)) & drbd_fault_devs) != 0) && 3890 (((_drbd_fault_random(&rrs) % 100) + 1) <= drbd_fault_rate)); 3891 3892 if (ret) { 3893 drbd_fault_count++; 3894 3895 if (__ratelimit(&drbd_ratelimit_state)) 3896 drbd_warn(device, "***Simulating %s failure\n", 3897 _drbd_fault_str(type)); 3898 } 3899 3900 return ret; 3901 } 3902 #endif 3903 3904 const char *drbd_buildtag(void) 3905 { 3906 /* DRBD built from external sources has here a reference to the 3907 git hash of the source code. */ 3908 3909 static char buildtag[38] = "\0uilt-in"; 3910 3911 if (buildtag[0] == 0) { 3912 #ifdef MODULE 3913 sprintf(buildtag, "srcversion: %-24s", THIS_MODULE->srcversion); 3914 #else 3915 buildtag[0] = 'b'; 3916 #endif 3917 } 3918 3919 return buildtag; 3920 } 3921 3922 module_init(drbd_init) 3923 module_exit(drbd_cleanup) 3924 3925 EXPORT_SYMBOL(drbd_conn_str); 3926 EXPORT_SYMBOL(drbd_role_str); 3927 EXPORT_SYMBOL(drbd_disk_str); 3928 EXPORT_SYMBOL(drbd_set_st_err_str); 3929