xref: /openbmc/linux/drivers/block/drbd/drbd_main.c (revision d4a96be65423296e42091b0b79973b8d446e7798)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3    drbd.c
4 
5    This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
6 
7    Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
8    Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
9    Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
10 
11    Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev
12    from Logicworks, Inc. for making SDP replication support possible.
13 
14 
15  */
16 
17 #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
18 
19 #include <linux/module.h>
20 #include <linux/jiffies.h>
21 #include <linux/drbd.h>
22 #include <linux/uaccess.h>
23 #include <asm/types.h>
24 #include <net/sock.h>
25 #include <linux/ctype.h>
26 #include <linux/mutex.h>
27 #include <linux/fs.h>
28 #include <linux/file.h>
29 #include <linux/proc_fs.h>
30 #include <linux/init.h>
31 #include <linux/mm.h>
32 #include <linux/memcontrol.h>
33 #include <linux/mm_inline.h>
34 #include <linux/slab.h>
35 #include <linux/random.h>
36 #include <linux/reboot.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/workqueue.h>
40 #define __KERNEL_SYSCALLS__
41 #include <linux/unistd.h>
42 #include <linux/vmalloc.h>
43 #include <linux/sched/signal.h>
44 
45 #include <linux/drbd_limits.h>
46 #include "drbd_int.h"
47 #include "drbd_protocol.h"
48 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */
49 #include "drbd_vli.h"
50 #include "drbd_debugfs.h"
51 
52 static DEFINE_MUTEX(drbd_main_mutex);
53 static int drbd_open(struct block_device *bdev, fmode_t mode);
54 static void drbd_release(struct gendisk *gd, fmode_t mode);
55 static void md_sync_timer_fn(struct timer_list *t);
56 static int w_bitmap_io(struct drbd_work *w, int unused);
57 
58 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, "
59 	      "Lars Ellenberg <lars@linbit.com>");
60 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION);
61 MODULE_VERSION(REL_VERSION);
62 MODULE_LICENSE("GPL");
63 MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices ("
64 		 __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")");
65 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR);
66 
67 #include <linux/moduleparam.h>
68 /* thanks to these macros, if compiled into the kernel (not-module),
69  * these become boot parameters (e.g., drbd.minor_count) */
70 
71 #ifdef CONFIG_DRBD_FAULT_INJECTION
72 int drbd_enable_faults;
73 int drbd_fault_rate;
74 static int drbd_fault_count;
75 static int drbd_fault_devs;
76 /* bitmap of enabled faults */
77 module_param_named(enable_faults, drbd_enable_faults, int, 0664);
78 /* fault rate % value - applies to all enabled faults */
79 module_param_named(fault_rate, drbd_fault_rate, int, 0664);
80 /* count of faults inserted */
81 module_param_named(fault_count, drbd_fault_count, int, 0664);
82 /* bitmap of devices to insert faults on */
83 module_param_named(fault_devs, drbd_fault_devs, int, 0644);
84 #endif
85 
86 /* module parameters we can keep static */
87 static bool drbd_allow_oos; /* allow_open_on_secondary */
88 static bool drbd_disable_sendpage;
89 MODULE_PARM_DESC(allow_oos, "DONT USE!");
90 module_param_named(allow_oos, drbd_allow_oos, bool, 0);
91 module_param_named(disable_sendpage, drbd_disable_sendpage, bool, 0644);
92 
93 /* module parameters we share */
94 int drbd_proc_details; /* Detail level in proc drbd*/
95 module_param_named(proc_details, drbd_proc_details, int, 0644);
96 /* module parameters shared with defaults */
97 unsigned int drbd_minor_count = DRBD_MINOR_COUNT_DEF;
98 /* Module parameter for setting the user mode helper program
99  * to run. Default is /sbin/drbdadm */
100 char drbd_usermode_helper[80] = "/sbin/drbdadm";
101 module_param_named(minor_count, drbd_minor_count, uint, 0444);
102 module_param_string(usermode_helper, drbd_usermode_helper, sizeof(drbd_usermode_helper), 0644);
103 
104 /* in 2.6.x, our device mapping and config info contains our virtual gendisks
105  * as member "struct gendisk *vdisk;"
106  */
107 struct idr drbd_devices;
108 struct list_head drbd_resources;
109 struct mutex resources_mutex;
110 
111 struct kmem_cache *drbd_request_cache;
112 struct kmem_cache *drbd_ee_cache;	/* peer requests */
113 struct kmem_cache *drbd_bm_ext_cache;	/* bitmap extents */
114 struct kmem_cache *drbd_al_ext_cache;	/* activity log extents */
115 mempool_t drbd_request_mempool;
116 mempool_t drbd_ee_mempool;
117 mempool_t drbd_md_io_page_pool;
118 struct bio_set drbd_md_io_bio_set;
119 struct bio_set drbd_io_bio_set;
120 
121 /* I do not use a standard mempool, because:
122    1) I want to hand out the pre-allocated objects first.
123    2) I want to be able to interrupt sleeping allocation with a signal.
124    Note: This is a single linked list, the next pointer is the private
125 	 member of struct page.
126  */
127 struct page *drbd_pp_pool;
128 spinlock_t   drbd_pp_lock;
129 int          drbd_pp_vacant;
130 wait_queue_head_t drbd_pp_wait;
131 
132 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5);
133 
134 static const struct block_device_operations drbd_ops = {
135 	.owner		= THIS_MODULE,
136 	.submit_bio	= drbd_submit_bio,
137 	.open		= drbd_open,
138 	.release	= drbd_release,
139 };
140 
141 #ifdef __CHECKER__
142 /* When checking with sparse, and this is an inline function, sparse will
143    give tons of false positives. When this is a real functions sparse works.
144  */
145 int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins)
146 {
147 	int io_allowed;
148 
149 	atomic_inc(&device->local_cnt);
150 	io_allowed = (device->state.disk >= mins);
151 	if (!io_allowed) {
152 		if (atomic_dec_and_test(&device->local_cnt))
153 			wake_up(&device->misc_wait);
154 	}
155 	return io_allowed;
156 }
157 
158 #endif
159 
160 /**
161  * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch
162  * @connection:	DRBD connection.
163  * @barrier_nr:	Expected identifier of the DRBD write barrier packet.
164  * @set_size:	Expected number of requests before that barrier.
165  *
166  * In case the passed barrier_nr or set_size does not match the oldest
167  * epoch of not yet barrier-acked requests, this function will cause a
168  * termination of the connection.
169  */
170 void tl_release(struct drbd_connection *connection, unsigned int barrier_nr,
171 		unsigned int set_size)
172 {
173 	struct drbd_request *r;
174 	struct drbd_request *req = NULL;
175 	int expect_epoch = 0;
176 	int expect_size = 0;
177 
178 	spin_lock_irq(&connection->resource->req_lock);
179 
180 	/* find oldest not yet barrier-acked write request,
181 	 * count writes in its epoch. */
182 	list_for_each_entry(r, &connection->transfer_log, tl_requests) {
183 		const unsigned s = r->rq_state;
184 		if (!req) {
185 			if (!(s & RQ_WRITE))
186 				continue;
187 			if (!(s & RQ_NET_MASK))
188 				continue;
189 			if (s & RQ_NET_DONE)
190 				continue;
191 			req = r;
192 			expect_epoch = req->epoch;
193 			expect_size ++;
194 		} else {
195 			if (r->epoch != expect_epoch)
196 				break;
197 			if (!(s & RQ_WRITE))
198 				continue;
199 			/* if (s & RQ_DONE): not expected */
200 			/* if (!(s & RQ_NET_MASK)): not expected */
201 			expect_size++;
202 		}
203 	}
204 
205 	/* first some paranoia code */
206 	if (req == NULL) {
207 		drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n",
208 			 barrier_nr);
209 		goto bail;
210 	}
211 	if (expect_epoch != barrier_nr) {
212 		drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n",
213 			 barrier_nr, expect_epoch);
214 		goto bail;
215 	}
216 
217 	if (expect_size != set_size) {
218 		drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n",
219 			 barrier_nr, set_size, expect_size);
220 		goto bail;
221 	}
222 
223 	/* Clean up list of requests processed during current epoch. */
224 	/* this extra list walk restart is paranoia,
225 	 * to catch requests being barrier-acked "unexpectedly".
226 	 * It usually should find the same req again, or some READ preceding it. */
227 	list_for_each_entry(req, &connection->transfer_log, tl_requests)
228 		if (req->epoch == expect_epoch)
229 			break;
230 	list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) {
231 		if (req->epoch != expect_epoch)
232 			break;
233 		_req_mod(req, BARRIER_ACKED);
234 	}
235 	spin_unlock_irq(&connection->resource->req_lock);
236 
237 	return;
238 
239 bail:
240 	spin_unlock_irq(&connection->resource->req_lock);
241 	conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
242 }
243 
244 
245 /**
246  * _tl_restart() - Walks the transfer log, and applies an action to all requests
247  * @connection:	DRBD connection to operate on.
248  * @what:       The action/event to perform with all request objects
249  *
250  * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO,
251  * RESTART_FROZEN_DISK_IO.
252  */
253 /* must hold resource->req_lock */
254 void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
255 {
256 	struct drbd_request *req, *r;
257 
258 	list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests)
259 		_req_mod(req, what);
260 }
261 
262 void tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
263 {
264 	spin_lock_irq(&connection->resource->req_lock);
265 	_tl_restart(connection, what);
266 	spin_unlock_irq(&connection->resource->req_lock);
267 }
268 
269 /**
270  * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL
271  * @device:	DRBD device.
272  *
273  * This is called after the connection to the peer was lost. The storage covered
274  * by the requests on the transfer gets marked as our of sync. Called from the
275  * receiver thread and the worker thread.
276  */
277 void tl_clear(struct drbd_connection *connection)
278 {
279 	tl_restart(connection, CONNECTION_LOST_WHILE_PENDING);
280 }
281 
282 /**
283  * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL
284  * @device:	DRBD device.
285  */
286 void tl_abort_disk_io(struct drbd_device *device)
287 {
288 	struct drbd_connection *connection = first_peer_device(device)->connection;
289 	struct drbd_request *req, *r;
290 
291 	spin_lock_irq(&connection->resource->req_lock);
292 	list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) {
293 		if (!(req->rq_state & RQ_LOCAL_PENDING))
294 			continue;
295 		if (req->device != device)
296 			continue;
297 		_req_mod(req, ABORT_DISK_IO);
298 	}
299 	spin_unlock_irq(&connection->resource->req_lock);
300 }
301 
302 static int drbd_thread_setup(void *arg)
303 {
304 	struct drbd_thread *thi = (struct drbd_thread *) arg;
305 	struct drbd_resource *resource = thi->resource;
306 	unsigned long flags;
307 	int retval;
308 
309 	snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s",
310 		 thi->name[0],
311 		 resource->name);
312 
313 	allow_kernel_signal(DRBD_SIGKILL);
314 	allow_kernel_signal(SIGXCPU);
315 restart:
316 	retval = thi->function(thi);
317 
318 	spin_lock_irqsave(&thi->t_lock, flags);
319 
320 	/* if the receiver has been "EXITING", the last thing it did
321 	 * was set the conn state to "StandAlone",
322 	 * if now a re-connect request comes in, conn state goes C_UNCONNECTED,
323 	 * and receiver thread will be "started".
324 	 * drbd_thread_start needs to set "RESTARTING" in that case.
325 	 * t_state check and assignment needs to be within the same spinlock,
326 	 * so either thread_start sees EXITING, and can remap to RESTARTING,
327 	 * or thread_start see NONE, and can proceed as normal.
328 	 */
329 
330 	if (thi->t_state == RESTARTING) {
331 		drbd_info(resource, "Restarting %s thread\n", thi->name);
332 		thi->t_state = RUNNING;
333 		spin_unlock_irqrestore(&thi->t_lock, flags);
334 		goto restart;
335 	}
336 
337 	thi->task = NULL;
338 	thi->t_state = NONE;
339 	smp_mb();
340 	complete_all(&thi->stop);
341 	spin_unlock_irqrestore(&thi->t_lock, flags);
342 
343 	drbd_info(resource, "Terminating %s\n", current->comm);
344 
345 	/* Release mod reference taken when thread was started */
346 
347 	if (thi->connection)
348 		kref_put(&thi->connection->kref, drbd_destroy_connection);
349 	kref_put(&resource->kref, drbd_destroy_resource);
350 	module_put(THIS_MODULE);
351 	return retval;
352 }
353 
354 static void drbd_thread_init(struct drbd_resource *resource, struct drbd_thread *thi,
355 			     int (*func) (struct drbd_thread *), const char *name)
356 {
357 	spin_lock_init(&thi->t_lock);
358 	thi->task    = NULL;
359 	thi->t_state = NONE;
360 	thi->function = func;
361 	thi->resource = resource;
362 	thi->connection = NULL;
363 	thi->name = name;
364 }
365 
366 int drbd_thread_start(struct drbd_thread *thi)
367 {
368 	struct drbd_resource *resource = thi->resource;
369 	struct task_struct *nt;
370 	unsigned long flags;
371 
372 	/* is used from state engine doing drbd_thread_stop_nowait,
373 	 * while holding the req lock irqsave */
374 	spin_lock_irqsave(&thi->t_lock, flags);
375 
376 	switch (thi->t_state) {
377 	case NONE:
378 		drbd_info(resource, "Starting %s thread (from %s [%d])\n",
379 			 thi->name, current->comm, current->pid);
380 
381 		/* Get ref on module for thread - this is released when thread exits */
382 		if (!try_module_get(THIS_MODULE)) {
383 			drbd_err(resource, "Failed to get module reference in drbd_thread_start\n");
384 			spin_unlock_irqrestore(&thi->t_lock, flags);
385 			return false;
386 		}
387 
388 		kref_get(&resource->kref);
389 		if (thi->connection)
390 			kref_get(&thi->connection->kref);
391 
392 		init_completion(&thi->stop);
393 		thi->reset_cpu_mask = 1;
394 		thi->t_state = RUNNING;
395 		spin_unlock_irqrestore(&thi->t_lock, flags);
396 		flush_signals(current); /* otherw. may get -ERESTARTNOINTR */
397 
398 		nt = kthread_create(drbd_thread_setup, (void *) thi,
399 				    "drbd_%c_%s", thi->name[0], thi->resource->name);
400 
401 		if (IS_ERR(nt)) {
402 			drbd_err(resource, "Couldn't start thread\n");
403 
404 			if (thi->connection)
405 				kref_put(&thi->connection->kref, drbd_destroy_connection);
406 			kref_put(&resource->kref, drbd_destroy_resource);
407 			module_put(THIS_MODULE);
408 			return false;
409 		}
410 		spin_lock_irqsave(&thi->t_lock, flags);
411 		thi->task = nt;
412 		thi->t_state = RUNNING;
413 		spin_unlock_irqrestore(&thi->t_lock, flags);
414 		wake_up_process(nt);
415 		break;
416 	case EXITING:
417 		thi->t_state = RESTARTING;
418 		drbd_info(resource, "Restarting %s thread (from %s [%d])\n",
419 				thi->name, current->comm, current->pid);
420 		fallthrough;
421 	case RUNNING:
422 	case RESTARTING:
423 	default:
424 		spin_unlock_irqrestore(&thi->t_lock, flags);
425 		break;
426 	}
427 
428 	return true;
429 }
430 
431 
432 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait)
433 {
434 	unsigned long flags;
435 
436 	enum drbd_thread_state ns = restart ? RESTARTING : EXITING;
437 
438 	/* may be called from state engine, holding the req lock irqsave */
439 	spin_lock_irqsave(&thi->t_lock, flags);
440 
441 	if (thi->t_state == NONE) {
442 		spin_unlock_irqrestore(&thi->t_lock, flags);
443 		if (restart)
444 			drbd_thread_start(thi);
445 		return;
446 	}
447 
448 	if (thi->t_state != ns) {
449 		if (thi->task == NULL) {
450 			spin_unlock_irqrestore(&thi->t_lock, flags);
451 			return;
452 		}
453 
454 		thi->t_state = ns;
455 		smp_mb();
456 		init_completion(&thi->stop);
457 		if (thi->task != current)
458 			send_sig(DRBD_SIGKILL, thi->task, 1);
459 	}
460 
461 	spin_unlock_irqrestore(&thi->t_lock, flags);
462 
463 	if (wait)
464 		wait_for_completion(&thi->stop);
465 }
466 
467 int conn_lowest_minor(struct drbd_connection *connection)
468 {
469 	struct drbd_peer_device *peer_device;
470 	int vnr = 0, minor = -1;
471 
472 	rcu_read_lock();
473 	peer_device = idr_get_next(&connection->peer_devices, &vnr);
474 	if (peer_device)
475 		minor = device_to_minor(peer_device->device);
476 	rcu_read_unlock();
477 
478 	return minor;
479 }
480 
481 #ifdef CONFIG_SMP
482 /**
483  * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs
484  *
485  * Forces all threads of a resource onto the same CPU. This is beneficial for
486  * DRBD's performance. May be overwritten by user's configuration.
487  */
488 static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask)
489 {
490 	unsigned int *resources_per_cpu, min_index = ~0;
491 
492 	resources_per_cpu = kcalloc(nr_cpu_ids, sizeof(*resources_per_cpu),
493 				    GFP_KERNEL);
494 	if (resources_per_cpu) {
495 		struct drbd_resource *resource;
496 		unsigned int cpu, min = ~0;
497 
498 		rcu_read_lock();
499 		for_each_resource_rcu(resource, &drbd_resources) {
500 			for_each_cpu(cpu, resource->cpu_mask)
501 				resources_per_cpu[cpu]++;
502 		}
503 		rcu_read_unlock();
504 		for_each_online_cpu(cpu) {
505 			if (resources_per_cpu[cpu] < min) {
506 				min = resources_per_cpu[cpu];
507 				min_index = cpu;
508 			}
509 		}
510 		kfree(resources_per_cpu);
511 	}
512 	if (min_index == ~0) {
513 		cpumask_setall(*cpu_mask);
514 		return;
515 	}
516 	cpumask_set_cpu(min_index, *cpu_mask);
517 }
518 
519 /**
520  * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread
521  * @device:	DRBD device.
522  * @thi:	drbd_thread object
523  *
524  * call in the "main loop" of _all_ threads, no need for any mutex, current won't die
525  * prematurely.
526  */
527 void drbd_thread_current_set_cpu(struct drbd_thread *thi)
528 {
529 	struct drbd_resource *resource = thi->resource;
530 	struct task_struct *p = current;
531 
532 	if (!thi->reset_cpu_mask)
533 		return;
534 	thi->reset_cpu_mask = 0;
535 	set_cpus_allowed_ptr(p, resource->cpu_mask);
536 }
537 #else
538 #define drbd_calc_cpu_mask(A) ({})
539 #endif
540 
541 /**
542  * drbd_header_size  -  size of a packet header
543  *
544  * The header size is a multiple of 8, so any payload following the header is
545  * word aligned on 64-bit architectures.  (The bitmap send and receive code
546  * relies on this.)
547  */
548 unsigned int drbd_header_size(struct drbd_connection *connection)
549 {
550 	if (connection->agreed_pro_version >= 100) {
551 		BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8));
552 		return sizeof(struct p_header100);
553 	} else {
554 		BUILD_BUG_ON(sizeof(struct p_header80) !=
555 			     sizeof(struct p_header95));
556 		BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8));
557 		return sizeof(struct p_header80);
558 	}
559 }
560 
561 static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size)
562 {
563 	h->magic   = cpu_to_be32(DRBD_MAGIC);
564 	h->command = cpu_to_be16(cmd);
565 	h->length  = cpu_to_be16(size);
566 	return sizeof(struct p_header80);
567 }
568 
569 static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size)
570 {
571 	h->magic   = cpu_to_be16(DRBD_MAGIC_BIG);
572 	h->command = cpu_to_be16(cmd);
573 	h->length = cpu_to_be32(size);
574 	return sizeof(struct p_header95);
575 }
576 
577 static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd,
578 				      int size, int vnr)
579 {
580 	h->magic = cpu_to_be32(DRBD_MAGIC_100);
581 	h->volume = cpu_to_be16(vnr);
582 	h->command = cpu_to_be16(cmd);
583 	h->length = cpu_to_be32(size);
584 	h->pad = 0;
585 	return sizeof(struct p_header100);
586 }
587 
588 static unsigned int prepare_header(struct drbd_connection *connection, int vnr,
589 				   void *buffer, enum drbd_packet cmd, int size)
590 {
591 	if (connection->agreed_pro_version >= 100)
592 		return prepare_header100(buffer, cmd, size, vnr);
593 	else if (connection->agreed_pro_version >= 95 &&
594 		 size > DRBD_MAX_SIZE_H80_PACKET)
595 		return prepare_header95(buffer, cmd, size);
596 	else
597 		return prepare_header80(buffer, cmd, size);
598 }
599 
600 static void *__conn_prepare_command(struct drbd_connection *connection,
601 				    struct drbd_socket *sock)
602 {
603 	if (!sock->socket)
604 		return NULL;
605 	return sock->sbuf + drbd_header_size(connection);
606 }
607 
608 void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock)
609 {
610 	void *p;
611 
612 	mutex_lock(&sock->mutex);
613 	p = __conn_prepare_command(connection, sock);
614 	if (!p)
615 		mutex_unlock(&sock->mutex);
616 
617 	return p;
618 }
619 
620 void *drbd_prepare_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock)
621 {
622 	return conn_prepare_command(peer_device->connection, sock);
623 }
624 
625 static int __send_command(struct drbd_connection *connection, int vnr,
626 			  struct drbd_socket *sock, enum drbd_packet cmd,
627 			  unsigned int header_size, void *data,
628 			  unsigned int size)
629 {
630 	int msg_flags;
631 	int err;
632 
633 	/*
634 	 * Called with @data == NULL and the size of the data blocks in @size
635 	 * for commands that send data blocks.  For those commands, omit the
636 	 * MSG_MORE flag: this will increase the likelihood that data blocks
637 	 * which are page aligned on the sender will end up page aligned on the
638 	 * receiver.
639 	 */
640 	msg_flags = data ? MSG_MORE : 0;
641 
642 	header_size += prepare_header(connection, vnr, sock->sbuf, cmd,
643 				      header_size + size);
644 	err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size,
645 			    msg_flags);
646 	if (data && !err)
647 		err = drbd_send_all(connection, sock->socket, data, size, 0);
648 	/* DRBD protocol "pings" are latency critical.
649 	 * This is supposed to trigger tcp_push_pending_frames() */
650 	if (!err && (cmd == P_PING || cmd == P_PING_ACK))
651 		tcp_sock_set_nodelay(sock->socket->sk);
652 
653 	return err;
654 }
655 
656 static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
657 			       enum drbd_packet cmd, unsigned int header_size,
658 			       void *data, unsigned int size)
659 {
660 	return __send_command(connection, 0, sock, cmd, header_size, data, size);
661 }
662 
663 int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
664 		      enum drbd_packet cmd, unsigned int header_size,
665 		      void *data, unsigned int size)
666 {
667 	int err;
668 
669 	err = __conn_send_command(connection, sock, cmd, header_size, data, size);
670 	mutex_unlock(&sock->mutex);
671 	return err;
672 }
673 
674 int drbd_send_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock,
675 		      enum drbd_packet cmd, unsigned int header_size,
676 		      void *data, unsigned int size)
677 {
678 	int err;
679 
680 	err = __send_command(peer_device->connection, peer_device->device->vnr,
681 			     sock, cmd, header_size, data, size);
682 	mutex_unlock(&sock->mutex);
683 	return err;
684 }
685 
686 int drbd_send_ping(struct drbd_connection *connection)
687 {
688 	struct drbd_socket *sock;
689 
690 	sock = &connection->meta;
691 	if (!conn_prepare_command(connection, sock))
692 		return -EIO;
693 	return conn_send_command(connection, sock, P_PING, 0, NULL, 0);
694 }
695 
696 int drbd_send_ping_ack(struct drbd_connection *connection)
697 {
698 	struct drbd_socket *sock;
699 
700 	sock = &connection->meta;
701 	if (!conn_prepare_command(connection, sock))
702 		return -EIO;
703 	return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0);
704 }
705 
706 int drbd_send_sync_param(struct drbd_peer_device *peer_device)
707 {
708 	struct drbd_socket *sock;
709 	struct p_rs_param_95 *p;
710 	int size;
711 	const int apv = peer_device->connection->agreed_pro_version;
712 	enum drbd_packet cmd;
713 	struct net_conf *nc;
714 	struct disk_conf *dc;
715 
716 	sock = &peer_device->connection->data;
717 	p = drbd_prepare_command(peer_device, sock);
718 	if (!p)
719 		return -EIO;
720 
721 	rcu_read_lock();
722 	nc = rcu_dereference(peer_device->connection->net_conf);
723 
724 	size = apv <= 87 ? sizeof(struct p_rs_param)
725 		: apv == 88 ? sizeof(struct p_rs_param)
726 			+ strlen(nc->verify_alg) + 1
727 		: apv <= 94 ? sizeof(struct p_rs_param_89)
728 		: /* apv >= 95 */ sizeof(struct p_rs_param_95);
729 
730 	cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM;
731 
732 	/* initialize verify_alg and csums_alg */
733 	memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX);
734 
735 	if (get_ldev(peer_device->device)) {
736 		dc = rcu_dereference(peer_device->device->ldev->disk_conf);
737 		p->resync_rate = cpu_to_be32(dc->resync_rate);
738 		p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead);
739 		p->c_delay_target = cpu_to_be32(dc->c_delay_target);
740 		p->c_fill_target = cpu_to_be32(dc->c_fill_target);
741 		p->c_max_rate = cpu_to_be32(dc->c_max_rate);
742 		put_ldev(peer_device->device);
743 	} else {
744 		p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF);
745 		p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF);
746 		p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF);
747 		p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF);
748 		p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF);
749 	}
750 
751 	if (apv >= 88)
752 		strcpy(p->verify_alg, nc->verify_alg);
753 	if (apv >= 89)
754 		strcpy(p->csums_alg, nc->csums_alg);
755 	rcu_read_unlock();
756 
757 	return drbd_send_command(peer_device, sock, cmd, size, NULL, 0);
758 }
759 
760 int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd)
761 {
762 	struct drbd_socket *sock;
763 	struct p_protocol *p;
764 	struct net_conf *nc;
765 	int size, cf;
766 
767 	sock = &connection->data;
768 	p = __conn_prepare_command(connection, sock);
769 	if (!p)
770 		return -EIO;
771 
772 	rcu_read_lock();
773 	nc = rcu_dereference(connection->net_conf);
774 
775 	if (nc->tentative && connection->agreed_pro_version < 92) {
776 		rcu_read_unlock();
777 		drbd_err(connection, "--dry-run is not supported by peer");
778 		return -EOPNOTSUPP;
779 	}
780 
781 	size = sizeof(*p);
782 	if (connection->agreed_pro_version >= 87)
783 		size += strlen(nc->integrity_alg) + 1;
784 
785 	p->protocol      = cpu_to_be32(nc->wire_protocol);
786 	p->after_sb_0p   = cpu_to_be32(nc->after_sb_0p);
787 	p->after_sb_1p   = cpu_to_be32(nc->after_sb_1p);
788 	p->after_sb_2p   = cpu_to_be32(nc->after_sb_2p);
789 	p->two_primaries = cpu_to_be32(nc->two_primaries);
790 	cf = 0;
791 	if (nc->discard_my_data)
792 		cf |= CF_DISCARD_MY_DATA;
793 	if (nc->tentative)
794 		cf |= CF_DRY_RUN;
795 	p->conn_flags    = cpu_to_be32(cf);
796 
797 	if (connection->agreed_pro_version >= 87)
798 		strcpy(p->integrity_alg, nc->integrity_alg);
799 	rcu_read_unlock();
800 
801 	return __conn_send_command(connection, sock, cmd, size, NULL, 0);
802 }
803 
804 int drbd_send_protocol(struct drbd_connection *connection)
805 {
806 	int err;
807 
808 	mutex_lock(&connection->data.mutex);
809 	err = __drbd_send_protocol(connection, P_PROTOCOL);
810 	mutex_unlock(&connection->data.mutex);
811 
812 	return err;
813 }
814 
815 static int _drbd_send_uuids(struct drbd_peer_device *peer_device, u64 uuid_flags)
816 {
817 	struct drbd_device *device = peer_device->device;
818 	struct drbd_socket *sock;
819 	struct p_uuids *p;
820 	int i;
821 
822 	if (!get_ldev_if_state(device, D_NEGOTIATING))
823 		return 0;
824 
825 	sock = &peer_device->connection->data;
826 	p = drbd_prepare_command(peer_device, sock);
827 	if (!p) {
828 		put_ldev(device);
829 		return -EIO;
830 	}
831 	spin_lock_irq(&device->ldev->md.uuid_lock);
832 	for (i = UI_CURRENT; i < UI_SIZE; i++)
833 		p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
834 	spin_unlock_irq(&device->ldev->md.uuid_lock);
835 
836 	device->comm_bm_set = drbd_bm_total_weight(device);
837 	p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set);
838 	rcu_read_lock();
839 	uuid_flags |= rcu_dereference(peer_device->connection->net_conf)->discard_my_data ? 1 : 0;
840 	rcu_read_unlock();
841 	uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0;
842 	uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0;
843 	p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags);
844 
845 	put_ldev(device);
846 	return drbd_send_command(peer_device, sock, P_UUIDS, sizeof(*p), NULL, 0);
847 }
848 
849 int drbd_send_uuids(struct drbd_peer_device *peer_device)
850 {
851 	return _drbd_send_uuids(peer_device, 0);
852 }
853 
854 int drbd_send_uuids_skip_initial_sync(struct drbd_peer_device *peer_device)
855 {
856 	return _drbd_send_uuids(peer_device, 8);
857 }
858 
859 void drbd_print_uuids(struct drbd_device *device, const char *text)
860 {
861 	if (get_ldev_if_state(device, D_NEGOTIATING)) {
862 		u64 *uuid = device->ldev->md.uuid;
863 		drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n",
864 		     text,
865 		     (unsigned long long)uuid[UI_CURRENT],
866 		     (unsigned long long)uuid[UI_BITMAP],
867 		     (unsigned long long)uuid[UI_HISTORY_START],
868 		     (unsigned long long)uuid[UI_HISTORY_END]);
869 		put_ldev(device);
870 	} else {
871 		drbd_info(device, "%s effective data uuid: %016llX\n",
872 				text,
873 				(unsigned long long)device->ed_uuid);
874 	}
875 }
876 
877 void drbd_gen_and_send_sync_uuid(struct drbd_peer_device *peer_device)
878 {
879 	struct drbd_device *device = peer_device->device;
880 	struct drbd_socket *sock;
881 	struct p_rs_uuid *p;
882 	u64 uuid;
883 
884 	D_ASSERT(device, device->state.disk == D_UP_TO_DATE);
885 
886 	uuid = device->ldev->md.uuid[UI_BITMAP];
887 	if (uuid && uuid != UUID_JUST_CREATED)
888 		uuid = uuid + UUID_NEW_BM_OFFSET;
889 	else
890 		get_random_bytes(&uuid, sizeof(u64));
891 	drbd_uuid_set(device, UI_BITMAP, uuid);
892 	drbd_print_uuids(device, "updated sync UUID");
893 	drbd_md_sync(device);
894 
895 	sock = &peer_device->connection->data;
896 	p = drbd_prepare_command(peer_device, sock);
897 	if (p) {
898 		p->uuid = cpu_to_be64(uuid);
899 		drbd_send_command(peer_device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0);
900 	}
901 }
902 
903 /* communicated if (agreed_features & DRBD_FF_WSAME) */
904 static void
905 assign_p_sizes_qlim(struct drbd_device *device, struct p_sizes *p,
906 					struct request_queue *q)
907 {
908 	if (q) {
909 		p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q));
910 		p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q));
911 		p->qlim->alignment_offset = cpu_to_be32(queue_alignment_offset(q));
912 		p->qlim->io_min = cpu_to_be32(queue_io_min(q));
913 		p->qlim->io_opt = cpu_to_be32(queue_io_opt(q));
914 		p->qlim->discard_enabled = blk_queue_discard(q);
915 		p->qlim->write_same_capable = !!q->limits.max_write_same_sectors;
916 	} else {
917 		q = device->rq_queue;
918 		p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q));
919 		p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q));
920 		p->qlim->alignment_offset = 0;
921 		p->qlim->io_min = cpu_to_be32(queue_io_min(q));
922 		p->qlim->io_opt = cpu_to_be32(queue_io_opt(q));
923 		p->qlim->discard_enabled = 0;
924 		p->qlim->write_same_capable = 0;
925 	}
926 }
927 
928 int drbd_send_sizes(struct drbd_peer_device *peer_device, int trigger_reply, enum dds_flags flags)
929 {
930 	struct drbd_device *device = peer_device->device;
931 	struct drbd_socket *sock;
932 	struct p_sizes *p;
933 	sector_t d_size, u_size;
934 	int q_order_type;
935 	unsigned int max_bio_size;
936 	unsigned int packet_size;
937 
938 	sock = &peer_device->connection->data;
939 	p = drbd_prepare_command(peer_device, sock);
940 	if (!p)
941 		return -EIO;
942 
943 	packet_size = sizeof(*p);
944 	if (peer_device->connection->agreed_features & DRBD_FF_WSAME)
945 		packet_size += sizeof(p->qlim[0]);
946 
947 	memset(p, 0, packet_size);
948 	if (get_ldev_if_state(device, D_NEGOTIATING)) {
949 		struct request_queue *q = bdev_get_queue(device->ldev->backing_bdev);
950 		d_size = drbd_get_max_capacity(device->ldev);
951 		rcu_read_lock();
952 		u_size = rcu_dereference(device->ldev->disk_conf)->disk_size;
953 		rcu_read_unlock();
954 		q_order_type = drbd_queue_order_type(device);
955 		max_bio_size = queue_max_hw_sectors(q) << 9;
956 		max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE);
957 		assign_p_sizes_qlim(device, p, q);
958 		put_ldev(device);
959 	} else {
960 		d_size = 0;
961 		u_size = 0;
962 		q_order_type = QUEUE_ORDERED_NONE;
963 		max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */
964 		assign_p_sizes_qlim(device, p, NULL);
965 	}
966 
967 	if (peer_device->connection->agreed_pro_version <= 94)
968 		max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET);
969 	else if (peer_device->connection->agreed_pro_version < 100)
970 		max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95);
971 
972 	p->d_size = cpu_to_be64(d_size);
973 	p->u_size = cpu_to_be64(u_size);
974 	if (trigger_reply)
975 		p->c_size = 0;
976 	else
977 		p->c_size = cpu_to_be64(get_capacity(device->vdisk));
978 	p->max_bio_size = cpu_to_be32(max_bio_size);
979 	p->queue_order_type = cpu_to_be16(q_order_type);
980 	p->dds_flags = cpu_to_be16(flags);
981 
982 	return drbd_send_command(peer_device, sock, P_SIZES, packet_size, NULL, 0);
983 }
984 
985 /**
986  * drbd_send_current_state() - Sends the drbd state to the peer
987  * @peer_device:	DRBD peer device.
988  */
989 int drbd_send_current_state(struct drbd_peer_device *peer_device)
990 {
991 	struct drbd_socket *sock;
992 	struct p_state *p;
993 
994 	sock = &peer_device->connection->data;
995 	p = drbd_prepare_command(peer_device, sock);
996 	if (!p)
997 		return -EIO;
998 	p->state = cpu_to_be32(peer_device->device->state.i); /* Within the send mutex */
999 	return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1000 }
1001 
1002 /**
1003  * drbd_send_state() - After a state change, sends the new state to the peer
1004  * @peer_device:      DRBD peer device.
1005  * @state:     the state to send, not necessarily the current state.
1006  *
1007  * Each state change queues an "after_state_ch" work, which will eventually
1008  * send the resulting new state to the peer. If more state changes happen
1009  * between queuing and processing of the after_state_ch work, we still
1010  * want to send each intermediary state in the order it occurred.
1011  */
1012 int drbd_send_state(struct drbd_peer_device *peer_device, union drbd_state state)
1013 {
1014 	struct drbd_socket *sock;
1015 	struct p_state *p;
1016 
1017 	sock = &peer_device->connection->data;
1018 	p = drbd_prepare_command(peer_device, sock);
1019 	if (!p)
1020 		return -EIO;
1021 	p->state = cpu_to_be32(state.i); /* Within the send mutex */
1022 	return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1023 }
1024 
1025 int drbd_send_state_req(struct drbd_peer_device *peer_device, union drbd_state mask, union drbd_state val)
1026 {
1027 	struct drbd_socket *sock;
1028 	struct p_req_state *p;
1029 
1030 	sock = &peer_device->connection->data;
1031 	p = drbd_prepare_command(peer_device, sock);
1032 	if (!p)
1033 		return -EIO;
1034 	p->mask = cpu_to_be32(mask.i);
1035 	p->val = cpu_to_be32(val.i);
1036 	return drbd_send_command(peer_device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0);
1037 }
1038 
1039 int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val)
1040 {
1041 	enum drbd_packet cmd;
1042 	struct drbd_socket *sock;
1043 	struct p_req_state *p;
1044 
1045 	cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ;
1046 	sock = &connection->data;
1047 	p = conn_prepare_command(connection, sock);
1048 	if (!p)
1049 		return -EIO;
1050 	p->mask = cpu_to_be32(mask.i);
1051 	p->val = cpu_to_be32(val.i);
1052 	return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1053 }
1054 
1055 void drbd_send_sr_reply(struct drbd_peer_device *peer_device, enum drbd_state_rv retcode)
1056 {
1057 	struct drbd_socket *sock;
1058 	struct p_req_state_reply *p;
1059 
1060 	sock = &peer_device->connection->meta;
1061 	p = drbd_prepare_command(peer_device, sock);
1062 	if (p) {
1063 		p->retcode = cpu_to_be32(retcode);
1064 		drbd_send_command(peer_device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0);
1065 	}
1066 }
1067 
1068 void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode)
1069 {
1070 	struct drbd_socket *sock;
1071 	struct p_req_state_reply *p;
1072 	enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY;
1073 
1074 	sock = &connection->meta;
1075 	p = conn_prepare_command(connection, sock);
1076 	if (p) {
1077 		p->retcode = cpu_to_be32(retcode);
1078 		conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1079 	}
1080 }
1081 
1082 static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code)
1083 {
1084 	BUG_ON(code & ~0xf);
1085 	p->encoding = (p->encoding & ~0xf) | code;
1086 }
1087 
1088 static void dcbp_set_start(struct p_compressed_bm *p, int set)
1089 {
1090 	p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0);
1091 }
1092 
1093 static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n)
1094 {
1095 	BUG_ON(n & ~0x7);
1096 	p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4);
1097 }
1098 
1099 static int fill_bitmap_rle_bits(struct drbd_device *device,
1100 			 struct p_compressed_bm *p,
1101 			 unsigned int size,
1102 			 struct bm_xfer_ctx *c)
1103 {
1104 	struct bitstream bs;
1105 	unsigned long plain_bits;
1106 	unsigned long tmp;
1107 	unsigned long rl;
1108 	unsigned len;
1109 	unsigned toggle;
1110 	int bits, use_rle;
1111 
1112 	/* may we use this feature? */
1113 	rcu_read_lock();
1114 	use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle;
1115 	rcu_read_unlock();
1116 	if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90)
1117 		return 0;
1118 
1119 	if (c->bit_offset >= c->bm_bits)
1120 		return 0; /* nothing to do. */
1121 
1122 	/* use at most thus many bytes */
1123 	bitstream_init(&bs, p->code, size, 0);
1124 	memset(p->code, 0, size);
1125 	/* plain bits covered in this code string */
1126 	plain_bits = 0;
1127 
1128 	/* p->encoding & 0x80 stores whether the first run length is set.
1129 	 * bit offset is implicit.
1130 	 * start with toggle == 2 to be able to tell the first iteration */
1131 	toggle = 2;
1132 
1133 	/* see how much plain bits we can stuff into one packet
1134 	 * using RLE and VLI. */
1135 	do {
1136 		tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset)
1137 				    : _drbd_bm_find_next(device, c->bit_offset);
1138 		if (tmp == -1UL)
1139 			tmp = c->bm_bits;
1140 		rl = tmp - c->bit_offset;
1141 
1142 		if (toggle == 2) { /* first iteration */
1143 			if (rl == 0) {
1144 				/* the first checked bit was set,
1145 				 * store start value, */
1146 				dcbp_set_start(p, 1);
1147 				/* but skip encoding of zero run length */
1148 				toggle = !toggle;
1149 				continue;
1150 			}
1151 			dcbp_set_start(p, 0);
1152 		}
1153 
1154 		/* paranoia: catch zero runlength.
1155 		 * can only happen if bitmap is modified while we scan it. */
1156 		if (rl == 0) {
1157 			drbd_err(device, "unexpected zero runlength while encoding bitmap "
1158 			    "t:%u bo:%lu\n", toggle, c->bit_offset);
1159 			return -1;
1160 		}
1161 
1162 		bits = vli_encode_bits(&bs, rl);
1163 		if (bits == -ENOBUFS) /* buffer full */
1164 			break;
1165 		if (bits <= 0) {
1166 			drbd_err(device, "error while encoding bitmap: %d\n", bits);
1167 			return 0;
1168 		}
1169 
1170 		toggle = !toggle;
1171 		plain_bits += rl;
1172 		c->bit_offset = tmp;
1173 	} while (c->bit_offset < c->bm_bits);
1174 
1175 	len = bs.cur.b - p->code + !!bs.cur.bit;
1176 
1177 	if (plain_bits < (len << 3)) {
1178 		/* incompressible with this method.
1179 		 * we need to rewind both word and bit position. */
1180 		c->bit_offset -= plain_bits;
1181 		bm_xfer_ctx_bit_to_word_offset(c);
1182 		c->bit_offset = c->word_offset * BITS_PER_LONG;
1183 		return 0;
1184 	}
1185 
1186 	/* RLE + VLI was able to compress it just fine.
1187 	 * update c->word_offset. */
1188 	bm_xfer_ctx_bit_to_word_offset(c);
1189 
1190 	/* store pad_bits */
1191 	dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7);
1192 
1193 	return len;
1194 }
1195 
1196 /**
1197  * send_bitmap_rle_or_plain
1198  *
1199  * Return 0 when done, 1 when another iteration is needed, and a negative error
1200  * code upon failure.
1201  */
1202 static int
1203 send_bitmap_rle_or_plain(struct drbd_device *device, struct bm_xfer_ctx *c)
1204 {
1205 	struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1206 	unsigned int header_size = drbd_header_size(first_peer_device(device)->connection);
1207 	struct p_compressed_bm *p = sock->sbuf + header_size;
1208 	int len, err;
1209 
1210 	len = fill_bitmap_rle_bits(device, p,
1211 			DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c);
1212 	if (len < 0)
1213 		return -EIO;
1214 
1215 	if (len) {
1216 		dcbp_set_code(p, RLE_VLI_Bits);
1217 		err = __send_command(first_peer_device(device)->connection, device->vnr, sock,
1218 				     P_COMPRESSED_BITMAP, sizeof(*p) + len,
1219 				     NULL, 0);
1220 		c->packets[0]++;
1221 		c->bytes[0] += header_size + sizeof(*p) + len;
1222 
1223 		if (c->bit_offset >= c->bm_bits)
1224 			len = 0; /* DONE */
1225 	} else {
1226 		/* was not compressible.
1227 		 * send a buffer full of plain text bits instead. */
1228 		unsigned int data_size;
1229 		unsigned long num_words;
1230 		unsigned long *p = sock->sbuf + header_size;
1231 
1232 		data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
1233 		num_words = min_t(size_t, data_size / sizeof(*p),
1234 				  c->bm_words - c->word_offset);
1235 		len = num_words * sizeof(*p);
1236 		if (len)
1237 			drbd_bm_get_lel(device, c->word_offset, num_words, p);
1238 		err = __send_command(first_peer_device(device)->connection, device->vnr, sock, P_BITMAP, len, NULL, 0);
1239 		c->word_offset += num_words;
1240 		c->bit_offset = c->word_offset * BITS_PER_LONG;
1241 
1242 		c->packets[1]++;
1243 		c->bytes[1] += header_size + len;
1244 
1245 		if (c->bit_offset > c->bm_bits)
1246 			c->bit_offset = c->bm_bits;
1247 	}
1248 	if (!err) {
1249 		if (len == 0) {
1250 			INFO_bm_xfer_stats(device, "send", c);
1251 			return 0;
1252 		} else
1253 			return 1;
1254 	}
1255 	return -EIO;
1256 }
1257 
1258 /* See the comment at receive_bitmap() */
1259 static int _drbd_send_bitmap(struct drbd_device *device)
1260 {
1261 	struct bm_xfer_ctx c;
1262 	int err;
1263 
1264 	if (!expect(device->bitmap))
1265 		return false;
1266 
1267 	if (get_ldev(device)) {
1268 		if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) {
1269 			drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n");
1270 			drbd_bm_set_all(device);
1271 			if (drbd_bm_write(device)) {
1272 				/* write_bm did fail! Leave full sync flag set in Meta P_DATA
1273 				 * but otherwise process as per normal - need to tell other
1274 				 * side that a full resync is required! */
1275 				drbd_err(device, "Failed to write bitmap to disk!\n");
1276 			} else {
1277 				drbd_md_clear_flag(device, MDF_FULL_SYNC);
1278 				drbd_md_sync(device);
1279 			}
1280 		}
1281 		put_ldev(device);
1282 	}
1283 
1284 	c = (struct bm_xfer_ctx) {
1285 		.bm_bits = drbd_bm_bits(device),
1286 		.bm_words = drbd_bm_words(device),
1287 	};
1288 
1289 	do {
1290 		err = send_bitmap_rle_or_plain(device, &c);
1291 	} while (err > 0);
1292 
1293 	return err == 0;
1294 }
1295 
1296 int drbd_send_bitmap(struct drbd_device *device)
1297 {
1298 	struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1299 	int err = -1;
1300 
1301 	mutex_lock(&sock->mutex);
1302 	if (sock->socket)
1303 		err = !_drbd_send_bitmap(device);
1304 	mutex_unlock(&sock->mutex);
1305 	return err;
1306 }
1307 
1308 void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size)
1309 {
1310 	struct drbd_socket *sock;
1311 	struct p_barrier_ack *p;
1312 
1313 	if (connection->cstate < C_WF_REPORT_PARAMS)
1314 		return;
1315 
1316 	sock = &connection->meta;
1317 	p = conn_prepare_command(connection, sock);
1318 	if (!p)
1319 		return;
1320 	p->barrier = barrier_nr;
1321 	p->set_size = cpu_to_be32(set_size);
1322 	conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0);
1323 }
1324 
1325 /**
1326  * _drbd_send_ack() - Sends an ack packet
1327  * @device:	DRBD device.
1328  * @cmd:	Packet command code.
1329  * @sector:	sector, needs to be in big endian byte order
1330  * @blksize:	size in byte, needs to be in big endian byte order
1331  * @block_id:	Id, big endian byte order
1332  */
1333 static int _drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1334 			  u64 sector, u32 blksize, u64 block_id)
1335 {
1336 	struct drbd_socket *sock;
1337 	struct p_block_ack *p;
1338 
1339 	if (peer_device->device->state.conn < C_CONNECTED)
1340 		return -EIO;
1341 
1342 	sock = &peer_device->connection->meta;
1343 	p = drbd_prepare_command(peer_device, sock);
1344 	if (!p)
1345 		return -EIO;
1346 	p->sector = sector;
1347 	p->block_id = block_id;
1348 	p->blksize = blksize;
1349 	p->seq_num = cpu_to_be32(atomic_inc_return(&peer_device->device->packet_seq));
1350 	return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1351 }
1352 
1353 /* dp->sector and dp->block_id already/still in network byte order,
1354  * data_size is payload size according to dp->head,
1355  * and may need to be corrected for digest size. */
1356 void drbd_send_ack_dp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1357 		      struct p_data *dp, int data_size)
1358 {
1359 	if (peer_device->connection->peer_integrity_tfm)
1360 		data_size -= crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm);
1361 	_drbd_send_ack(peer_device, cmd, dp->sector, cpu_to_be32(data_size),
1362 		       dp->block_id);
1363 }
1364 
1365 void drbd_send_ack_rp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1366 		      struct p_block_req *rp)
1367 {
1368 	_drbd_send_ack(peer_device, cmd, rp->sector, rp->blksize, rp->block_id);
1369 }
1370 
1371 /**
1372  * drbd_send_ack() - Sends an ack packet
1373  * @device:	DRBD device
1374  * @cmd:	packet command code
1375  * @peer_req:	peer request
1376  */
1377 int drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1378 		  struct drbd_peer_request *peer_req)
1379 {
1380 	return _drbd_send_ack(peer_device, cmd,
1381 			      cpu_to_be64(peer_req->i.sector),
1382 			      cpu_to_be32(peer_req->i.size),
1383 			      peer_req->block_id);
1384 }
1385 
1386 /* This function misuses the block_id field to signal if the blocks
1387  * are is sync or not. */
1388 int drbd_send_ack_ex(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1389 		     sector_t sector, int blksize, u64 block_id)
1390 {
1391 	return _drbd_send_ack(peer_device, cmd,
1392 			      cpu_to_be64(sector),
1393 			      cpu_to_be32(blksize),
1394 			      cpu_to_be64(block_id));
1395 }
1396 
1397 int drbd_send_rs_deallocated(struct drbd_peer_device *peer_device,
1398 			     struct drbd_peer_request *peer_req)
1399 {
1400 	struct drbd_socket *sock;
1401 	struct p_block_desc *p;
1402 
1403 	sock = &peer_device->connection->data;
1404 	p = drbd_prepare_command(peer_device, sock);
1405 	if (!p)
1406 		return -EIO;
1407 	p->sector = cpu_to_be64(peer_req->i.sector);
1408 	p->blksize = cpu_to_be32(peer_req->i.size);
1409 	p->pad = 0;
1410 	return drbd_send_command(peer_device, sock, P_RS_DEALLOCATED, sizeof(*p), NULL, 0);
1411 }
1412 
1413 int drbd_send_drequest(struct drbd_peer_device *peer_device, int cmd,
1414 		       sector_t sector, int size, u64 block_id)
1415 {
1416 	struct drbd_socket *sock;
1417 	struct p_block_req *p;
1418 
1419 	sock = &peer_device->connection->data;
1420 	p = drbd_prepare_command(peer_device, sock);
1421 	if (!p)
1422 		return -EIO;
1423 	p->sector = cpu_to_be64(sector);
1424 	p->block_id = block_id;
1425 	p->blksize = cpu_to_be32(size);
1426 	return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1427 }
1428 
1429 int drbd_send_drequest_csum(struct drbd_peer_device *peer_device, sector_t sector, int size,
1430 			    void *digest, int digest_size, enum drbd_packet cmd)
1431 {
1432 	struct drbd_socket *sock;
1433 	struct p_block_req *p;
1434 
1435 	/* FIXME: Put the digest into the preallocated socket buffer.  */
1436 
1437 	sock = &peer_device->connection->data;
1438 	p = drbd_prepare_command(peer_device, sock);
1439 	if (!p)
1440 		return -EIO;
1441 	p->sector = cpu_to_be64(sector);
1442 	p->block_id = ID_SYNCER /* unused */;
1443 	p->blksize = cpu_to_be32(size);
1444 	return drbd_send_command(peer_device, sock, cmd, sizeof(*p), digest, digest_size);
1445 }
1446 
1447 int drbd_send_ov_request(struct drbd_peer_device *peer_device, sector_t sector, int size)
1448 {
1449 	struct drbd_socket *sock;
1450 	struct p_block_req *p;
1451 
1452 	sock = &peer_device->connection->data;
1453 	p = drbd_prepare_command(peer_device, sock);
1454 	if (!p)
1455 		return -EIO;
1456 	p->sector = cpu_to_be64(sector);
1457 	p->block_id = ID_SYNCER /* unused */;
1458 	p->blksize = cpu_to_be32(size);
1459 	return drbd_send_command(peer_device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0);
1460 }
1461 
1462 /* called on sndtimeo
1463  * returns false if we should retry,
1464  * true if we think connection is dead
1465  */
1466 static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock)
1467 {
1468 	int drop_it;
1469 	/* long elapsed = (long)(jiffies - device->last_received); */
1470 
1471 	drop_it =   connection->meta.socket == sock
1472 		|| !connection->ack_receiver.task
1473 		|| get_t_state(&connection->ack_receiver) != RUNNING
1474 		|| connection->cstate < C_WF_REPORT_PARAMS;
1475 
1476 	if (drop_it)
1477 		return true;
1478 
1479 	drop_it = !--connection->ko_count;
1480 	if (!drop_it) {
1481 		drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n",
1482 			 current->comm, current->pid, connection->ko_count);
1483 		request_ping(connection);
1484 	}
1485 
1486 	return drop_it; /* && (device->state == R_PRIMARY) */;
1487 }
1488 
1489 static void drbd_update_congested(struct drbd_connection *connection)
1490 {
1491 	struct sock *sk = connection->data.socket->sk;
1492 	if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5)
1493 		set_bit(NET_CONGESTED, &connection->flags);
1494 }
1495 
1496 /* The idea of sendpage seems to be to put some kind of reference
1497  * to the page into the skb, and to hand it over to the NIC. In
1498  * this process get_page() gets called.
1499  *
1500  * As soon as the page was really sent over the network put_page()
1501  * gets called by some part of the network layer. [ NIC driver? ]
1502  *
1503  * [ get_page() / put_page() increment/decrement the count. If count
1504  *   reaches 0 the page will be freed. ]
1505  *
1506  * This works nicely with pages from FSs.
1507  * But this means that in protocol A we might signal IO completion too early!
1508  *
1509  * In order not to corrupt data during a resync we must make sure
1510  * that we do not reuse our own buffer pages (EEs) to early, therefore
1511  * we have the net_ee list.
1512  *
1513  * XFS seems to have problems, still, it submits pages with page_count == 0!
1514  * As a workaround, we disable sendpage on pages
1515  * with page_count == 0 or PageSlab.
1516  */
1517 static int _drbd_no_send_page(struct drbd_peer_device *peer_device, struct page *page,
1518 			      int offset, size_t size, unsigned msg_flags)
1519 {
1520 	struct socket *socket;
1521 	void *addr;
1522 	int err;
1523 
1524 	socket = peer_device->connection->data.socket;
1525 	addr = kmap(page) + offset;
1526 	err = drbd_send_all(peer_device->connection, socket, addr, size, msg_flags);
1527 	kunmap(page);
1528 	if (!err)
1529 		peer_device->device->send_cnt += size >> 9;
1530 	return err;
1531 }
1532 
1533 static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *page,
1534 		    int offset, size_t size, unsigned msg_flags)
1535 {
1536 	struct socket *socket = peer_device->connection->data.socket;
1537 	int len = size;
1538 	int err = -EIO;
1539 
1540 	/* e.g. XFS meta- & log-data is in slab pages, which have a
1541 	 * page_count of 0 and/or have PageSlab() set.
1542 	 * we cannot use send_page for those, as that does get_page();
1543 	 * put_page(); and would cause either a VM_BUG directly, or
1544 	 * __page_cache_release a page that would actually still be referenced
1545 	 * by someone, leading to some obscure delayed Oops somewhere else. */
1546 	if (drbd_disable_sendpage || !sendpage_ok(page))
1547 		return _drbd_no_send_page(peer_device, page, offset, size, msg_flags);
1548 
1549 	msg_flags |= MSG_NOSIGNAL;
1550 	drbd_update_congested(peer_device->connection);
1551 	do {
1552 		int sent;
1553 
1554 		sent = socket->ops->sendpage(socket, page, offset, len, msg_flags);
1555 		if (sent <= 0) {
1556 			if (sent == -EAGAIN) {
1557 				if (we_should_drop_the_connection(peer_device->connection, socket))
1558 					break;
1559 				continue;
1560 			}
1561 			drbd_warn(peer_device->device, "%s: size=%d len=%d sent=%d\n",
1562 			     __func__, (int)size, len, sent);
1563 			if (sent < 0)
1564 				err = sent;
1565 			break;
1566 		}
1567 		len    -= sent;
1568 		offset += sent;
1569 	} while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/);
1570 	clear_bit(NET_CONGESTED, &peer_device->connection->flags);
1571 
1572 	if (len == 0) {
1573 		err = 0;
1574 		peer_device->device->send_cnt += size >> 9;
1575 	}
1576 	return err;
1577 }
1578 
1579 static int _drbd_send_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1580 {
1581 	struct bio_vec bvec;
1582 	struct bvec_iter iter;
1583 
1584 	/* hint all but last page with MSG_MORE */
1585 	bio_for_each_segment(bvec, bio, iter) {
1586 		int err;
1587 
1588 		err = _drbd_no_send_page(peer_device, bvec.bv_page,
1589 					 bvec.bv_offset, bvec.bv_len,
1590 					 bio_iter_last(bvec, iter)
1591 					 ? 0 : MSG_MORE);
1592 		if (err)
1593 			return err;
1594 		/* REQ_OP_WRITE_SAME has only one segment */
1595 		if (bio_op(bio) == REQ_OP_WRITE_SAME)
1596 			break;
1597 	}
1598 	return 0;
1599 }
1600 
1601 static int _drbd_send_zc_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1602 {
1603 	struct bio_vec bvec;
1604 	struct bvec_iter iter;
1605 
1606 	/* hint all but last page with MSG_MORE */
1607 	bio_for_each_segment(bvec, bio, iter) {
1608 		int err;
1609 
1610 		err = _drbd_send_page(peer_device, bvec.bv_page,
1611 				      bvec.bv_offset, bvec.bv_len,
1612 				      bio_iter_last(bvec, iter) ? 0 : MSG_MORE);
1613 		if (err)
1614 			return err;
1615 		/* REQ_OP_WRITE_SAME has only one segment */
1616 		if (bio_op(bio) == REQ_OP_WRITE_SAME)
1617 			break;
1618 	}
1619 	return 0;
1620 }
1621 
1622 static int _drbd_send_zc_ee(struct drbd_peer_device *peer_device,
1623 			    struct drbd_peer_request *peer_req)
1624 {
1625 	struct page *page = peer_req->pages;
1626 	unsigned len = peer_req->i.size;
1627 	int err;
1628 
1629 	/* hint all but last page with MSG_MORE */
1630 	page_chain_for_each(page) {
1631 		unsigned l = min_t(unsigned, len, PAGE_SIZE);
1632 
1633 		err = _drbd_send_page(peer_device, page, 0, l,
1634 				      page_chain_next(page) ? MSG_MORE : 0);
1635 		if (err)
1636 			return err;
1637 		len -= l;
1638 	}
1639 	return 0;
1640 }
1641 
1642 static u32 bio_flags_to_wire(struct drbd_connection *connection,
1643 			     struct bio *bio)
1644 {
1645 	if (connection->agreed_pro_version >= 95)
1646 		return  (bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0) |
1647 			(bio->bi_opf & REQ_FUA ? DP_FUA : 0) |
1648 			(bio->bi_opf & REQ_PREFLUSH ? DP_FLUSH : 0) |
1649 			(bio_op(bio) == REQ_OP_WRITE_SAME ? DP_WSAME : 0) |
1650 			(bio_op(bio) == REQ_OP_DISCARD ? DP_DISCARD : 0) |
1651 			(bio_op(bio) == REQ_OP_WRITE_ZEROES ?
1652 			  ((connection->agreed_features & DRBD_FF_WZEROES) ?
1653 			   (DP_ZEROES |(!(bio->bi_opf & REQ_NOUNMAP) ? DP_DISCARD : 0))
1654 			   : DP_DISCARD)
1655 			: 0);
1656 	else
1657 		return bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0;
1658 }
1659 
1660 /* Used to send write or TRIM aka REQ_OP_DISCARD requests
1661  * R_PRIMARY -> Peer	(P_DATA, P_TRIM)
1662  */
1663 int drbd_send_dblock(struct drbd_peer_device *peer_device, struct drbd_request *req)
1664 {
1665 	struct drbd_device *device = peer_device->device;
1666 	struct drbd_socket *sock;
1667 	struct p_data *p;
1668 	struct p_wsame *wsame = NULL;
1669 	void *digest_out;
1670 	unsigned int dp_flags = 0;
1671 	int digest_size;
1672 	int err;
1673 
1674 	sock = &peer_device->connection->data;
1675 	p = drbd_prepare_command(peer_device, sock);
1676 	digest_size = peer_device->connection->integrity_tfm ?
1677 		      crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0;
1678 
1679 	if (!p)
1680 		return -EIO;
1681 	p->sector = cpu_to_be64(req->i.sector);
1682 	p->block_id = (unsigned long)req;
1683 	p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq));
1684 	dp_flags = bio_flags_to_wire(peer_device->connection, req->master_bio);
1685 	if (device->state.conn >= C_SYNC_SOURCE &&
1686 	    device->state.conn <= C_PAUSED_SYNC_T)
1687 		dp_flags |= DP_MAY_SET_IN_SYNC;
1688 	if (peer_device->connection->agreed_pro_version >= 100) {
1689 		if (req->rq_state & RQ_EXP_RECEIVE_ACK)
1690 			dp_flags |= DP_SEND_RECEIVE_ACK;
1691 		/* During resync, request an explicit write ack,
1692 		 * even in protocol != C */
1693 		if (req->rq_state & RQ_EXP_WRITE_ACK
1694 		|| (dp_flags & DP_MAY_SET_IN_SYNC))
1695 			dp_flags |= DP_SEND_WRITE_ACK;
1696 	}
1697 	p->dp_flags = cpu_to_be32(dp_flags);
1698 
1699 	if (dp_flags & (DP_DISCARD|DP_ZEROES)) {
1700 		enum drbd_packet cmd = (dp_flags & DP_ZEROES) ? P_ZEROES : P_TRIM;
1701 		struct p_trim *t = (struct p_trim*)p;
1702 		t->size = cpu_to_be32(req->i.size);
1703 		err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*t), NULL, 0);
1704 		goto out;
1705 	}
1706 	if (dp_flags & DP_WSAME) {
1707 		/* this will only work if DRBD_FF_WSAME is set AND the
1708 		 * handshake agreed that all nodes and backend devices are
1709 		 * WRITE_SAME capable and agree on logical_block_size */
1710 		wsame = (struct p_wsame*)p;
1711 		digest_out = wsame + 1;
1712 		wsame->size = cpu_to_be32(req->i.size);
1713 	} else
1714 		digest_out = p + 1;
1715 
1716 	/* our digest is still only over the payload.
1717 	 * TRIM does not carry any payload. */
1718 	if (digest_size)
1719 		drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest_out);
1720 	if (wsame) {
1721 		err =
1722 		    __send_command(peer_device->connection, device->vnr, sock, P_WSAME,
1723 				   sizeof(*wsame) + digest_size, NULL,
1724 				   bio_iovec(req->master_bio).bv_len);
1725 	} else
1726 		err =
1727 		    __send_command(peer_device->connection, device->vnr, sock, P_DATA,
1728 				   sizeof(*p) + digest_size, NULL, req->i.size);
1729 	if (!err) {
1730 		/* For protocol A, we have to memcpy the payload into
1731 		 * socket buffers, as we may complete right away
1732 		 * as soon as we handed it over to tcp, at which point the data
1733 		 * pages may become invalid.
1734 		 *
1735 		 * For data-integrity enabled, we copy it as well, so we can be
1736 		 * sure that even if the bio pages may still be modified, it
1737 		 * won't change the data on the wire, thus if the digest checks
1738 		 * out ok after sending on this side, but does not fit on the
1739 		 * receiving side, we sure have detected corruption elsewhere.
1740 		 */
1741 		if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || digest_size)
1742 			err = _drbd_send_bio(peer_device, req->master_bio);
1743 		else
1744 			err = _drbd_send_zc_bio(peer_device, req->master_bio);
1745 
1746 		/* double check digest, sometimes buffers have been modified in flight. */
1747 		if (digest_size > 0 && digest_size <= 64) {
1748 			/* 64 byte, 512 bit, is the largest digest size
1749 			 * currently supported in kernel crypto. */
1750 			unsigned char digest[64];
1751 			drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest);
1752 			if (memcmp(p + 1, digest, digest_size)) {
1753 				drbd_warn(device,
1754 					"Digest mismatch, buffer modified by upper layers during write: %llus +%u\n",
1755 					(unsigned long long)req->i.sector, req->i.size);
1756 			}
1757 		} /* else if (digest_size > 64) {
1758 		     ... Be noisy about digest too large ...
1759 		} */
1760 	}
1761 out:
1762 	mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1763 
1764 	return err;
1765 }
1766 
1767 /* answer packet, used to send data back for read requests:
1768  *  Peer       -> (diskless) R_PRIMARY   (P_DATA_REPLY)
1769  *  C_SYNC_SOURCE -> C_SYNC_TARGET         (P_RS_DATA_REPLY)
1770  */
1771 int drbd_send_block(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1772 		    struct drbd_peer_request *peer_req)
1773 {
1774 	struct drbd_device *device = peer_device->device;
1775 	struct drbd_socket *sock;
1776 	struct p_data *p;
1777 	int err;
1778 	int digest_size;
1779 
1780 	sock = &peer_device->connection->data;
1781 	p = drbd_prepare_command(peer_device, sock);
1782 
1783 	digest_size = peer_device->connection->integrity_tfm ?
1784 		      crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0;
1785 
1786 	if (!p)
1787 		return -EIO;
1788 	p->sector = cpu_to_be64(peer_req->i.sector);
1789 	p->block_id = peer_req->block_id;
1790 	p->seq_num = 0;  /* unused */
1791 	p->dp_flags = 0;
1792 	if (digest_size)
1793 		drbd_csum_ee(peer_device->connection->integrity_tfm, peer_req, p + 1);
1794 	err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*p) + digest_size, NULL, peer_req->i.size);
1795 	if (!err)
1796 		err = _drbd_send_zc_ee(peer_device, peer_req);
1797 	mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1798 
1799 	return err;
1800 }
1801 
1802 int drbd_send_out_of_sync(struct drbd_peer_device *peer_device, struct drbd_request *req)
1803 {
1804 	struct drbd_socket *sock;
1805 	struct p_block_desc *p;
1806 
1807 	sock = &peer_device->connection->data;
1808 	p = drbd_prepare_command(peer_device, sock);
1809 	if (!p)
1810 		return -EIO;
1811 	p->sector = cpu_to_be64(req->i.sector);
1812 	p->blksize = cpu_to_be32(req->i.size);
1813 	return drbd_send_command(peer_device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0);
1814 }
1815 
1816 /*
1817   drbd_send distinguishes two cases:
1818 
1819   Packets sent via the data socket "sock"
1820   and packets sent via the meta data socket "msock"
1821 
1822 		    sock                      msock
1823   -----------------+-------------------------+------------------------------
1824   timeout           conf.timeout / 2          conf.timeout / 2
1825   timeout action    send a ping via msock     Abort communication
1826 					      and close all sockets
1827 */
1828 
1829 /*
1830  * you must have down()ed the appropriate [m]sock_mutex elsewhere!
1831  */
1832 int drbd_send(struct drbd_connection *connection, struct socket *sock,
1833 	      void *buf, size_t size, unsigned msg_flags)
1834 {
1835 	struct kvec iov = {.iov_base = buf, .iov_len = size};
1836 	struct msghdr msg = {.msg_flags = msg_flags | MSG_NOSIGNAL};
1837 	int rv, sent = 0;
1838 
1839 	if (!sock)
1840 		return -EBADR;
1841 
1842 	/* THINK  if (signal_pending) return ... ? */
1843 
1844 	iov_iter_kvec(&msg.msg_iter, WRITE, &iov, 1, size);
1845 
1846 	if (sock == connection->data.socket) {
1847 		rcu_read_lock();
1848 		connection->ko_count = rcu_dereference(connection->net_conf)->ko_count;
1849 		rcu_read_unlock();
1850 		drbd_update_congested(connection);
1851 	}
1852 	do {
1853 		rv = sock_sendmsg(sock, &msg);
1854 		if (rv == -EAGAIN) {
1855 			if (we_should_drop_the_connection(connection, sock))
1856 				break;
1857 			else
1858 				continue;
1859 		}
1860 		if (rv == -EINTR) {
1861 			flush_signals(current);
1862 			rv = 0;
1863 		}
1864 		if (rv < 0)
1865 			break;
1866 		sent += rv;
1867 	} while (sent < size);
1868 
1869 	if (sock == connection->data.socket)
1870 		clear_bit(NET_CONGESTED, &connection->flags);
1871 
1872 	if (rv <= 0) {
1873 		if (rv != -EAGAIN) {
1874 			drbd_err(connection, "%s_sendmsg returned %d\n",
1875 				 sock == connection->meta.socket ? "msock" : "sock",
1876 				 rv);
1877 			conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD);
1878 		} else
1879 			conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD);
1880 	}
1881 
1882 	return sent;
1883 }
1884 
1885 /**
1886  * drbd_send_all  -  Send an entire buffer
1887  *
1888  * Returns 0 upon success and a negative error value otherwise.
1889  */
1890 int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer,
1891 		  size_t size, unsigned msg_flags)
1892 {
1893 	int err;
1894 
1895 	err = drbd_send(connection, sock, buffer, size, msg_flags);
1896 	if (err < 0)
1897 		return err;
1898 	if (err != size)
1899 		return -EIO;
1900 	return 0;
1901 }
1902 
1903 static int drbd_open(struct block_device *bdev, fmode_t mode)
1904 {
1905 	struct drbd_device *device = bdev->bd_disk->private_data;
1906 	unsigned long flags;
1907 	int rv = 0;
1908 
1909 	mutex_lock(&drbd_main_mutex);
1910 	spin_lock_irqsave(&device->resource->req_lock, flags);
1911 	/* to have a stable device->state.role
1912 	 * and no race with updating open_cnt */
1913 
1914 	if (device->state.role != R_PRIMARY) {
1915 		if (mode & FMODE_WRITE)
1916 			rv = -EROFS;
1917 		else if (!drbd_allow_oos)
1918 			rv = -EMEDIUMTYPE;
1919 	}
1920 
1921 	if (!rv)
1922 		device->open_cnt++;
1923 	spin_unlock_irqrestore(&device->resource->req_lock, flags);
1924 	mutex_unlock(&drbd_main_mutex);
1925 
1926 	return rv;
1927 }
1928 
1929 static void drbd_release(struct gendisk *gd, fmode_t mode)
1930 {
1931 	struct drbd_device *device = gd->private_data;
1932 	mutex_lock(&drbd_main_mutex);
1933 	device->open_cnt--;
1934 	mutex_unlock(&drbd_main_mutex);
1935 }
1936 
1937 /* need to hold resource->req_lock */
1938 void drbd_queue_unplug(struct drbd_device *device)
1939 {
1940 	if (device->state.pdsk >= D_INCONSISTENT && device->state.conn >= C_CONNECTED) {
1941 		D_ASSERT(device, device->state.role == R_PRIMARY);
1942 		if (test_and_clear_bit(UNPLUG_REMOTE, &device->flags)) {
1943 			drbd_queue_work_if_unqueued(
1944 				&first_peer_device(device)->connection->sender_work,
1945 				&device->unplug_work);
1946 		}
1947 	}
1948 }
1949 
1950 static void drbd_set_defaults(struct drbd_device *device)
1951 {
1952 	/* Beware! The actual layout differs
1953 	 * between big endian and little endian */
1954 	device->state = (union drbd_dev_state) {
1955 		{ .role = R_SECONDARY,
1956 		  .peer = R_UNKNOWN,
1957 		  .conn = C_STANDALONE,
1958 		  .disk = D_DISKLESS,
1959 		  .pdsk = D_UNKNOWN,
1960 		} };
1961 }
1962 
1963 void drbd_init_set_defaults(struct drbd_device *device)
1964 {
1965 	/* the memset(,0,) did most of this.
1966 	 * note: only assignments, no allocation in here */
1967 
1968 	drbd_set_defaults(device);
1969 
1970 	atomic_set(&device->ap_bio_cnt, 0);
1971 	atomic_set(&device->ap_actlog_cnt, 0);
1972 	atomic_set(&device->ap_pending_cnt, 0);
1973 	atomic_set(&device->rs_pending_cnt, 0);
1974 	atomic_set(&device->unacked_cnt, 0);
1975 	atomic_set(&device->local_cnt, 0);
1976 	atomic_set(&device->pp_in_use_by_net, 0);
1977 	atomic_set(&device->rs_sect_in, 0);
1978 	atomic_set(&device->rs_sect_ev, 0);
1979 	atomic_set(&device->ap_in_flight, 0);
1980 	atomic_set(&device->md_io.in_use, 0);
1981 
1982 	mutex_init(&device->own_state_mutex);
1983 	device->state_mutex = &device->own_state_mutex;
1984 
1985 	spin_lock_init(&device->al_lock);
1986 	spin_lock_init(&device->peer_seq_lock);
1987 
1988 	INIT_LIST_HEAD(&device->active_ee);
1989 	INIT_LIST_HEAD(&device->sync_ee);
1990 	INIT_LIST_HEAD(&device->done_ee);
1991 	INIT_LIST_HEAD(&device->read_ee);
1992 	INIT_LIST_HEAD(&device->net_ee);
1993 	INIT_LIST_HEAD(&device->resync_reads);
1994 	INIT_LIST_HEAD(&device->resync_work.list);
1995 	INIT_LIST_HEAD(&device->unplug_work.list);
1996 	INIT_LIST_HEAD(&device->bm_io_work.w.list);
1997 	INIT_LIST_HEAD(&device->pending_master_completion[0]);
1998 	INIT_LIST_HEAD(&device->pending_master_completion[1]);
1999 	INIT_LIST_HEAD(&device->pending_completion[0]);
2000 	INIT_LIST_HEAD(&device->pending_completion[1]);
2001 
2002 	device->resync_work.cb  = w_resync_timer;
2003 	device->unplug_work.cb  = w_send_write_hint;
2004 	device->bm_io_work.w.cb = w_bitmap_io;
2005 
2006 	timer_setup(&device->resync_timer, resync_timer_fn, 0);
2007 	timer_setup(&device->md_sync_timer, md_sync_timer_fn, 0);
2008 	timer_setup(&device->start_resync_timer, start_resync_timer_fn, 0);
2009 	timer_setup(&device->request_timer, request_timer_fn, 0);
2010 
2011 	init_waitqueue_head(&device->misc_wait);
2012 	init_waitqueue_head(&device->state_wait);
2013 	init_waitqueue_head(&device->ee_wait);
2014 	init_waitqueue_head(&device->al_wait);
2015 	init_waitqueue_head(&device->seq_wait);
2016 
2017 	device->resync_wenr = LC_FREE;
2018 	device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
2019 	device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
2020 }
2021 
2022 void drbd_set_my_capacity(struct drbd_device *device, sector_t size)
2023 {
2024 	char ppb[10];
2025 
2026 	set_capacity_and_notify(device->vdisk, size);
2027 
2028 	drbd_info(device, "size = %s (%llu KB)\n",
2029 		ppsize(ppb, size>>1), (unsigned long long)size>>1);
2030 }
2031 
2032 void drbd_device_cleanup(struct drbd_device *device)
2033 {
2034 	int i;
2035 	if (first_peer_device(device)->connection->receiver.t_state != NONE)
2036 		drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n",
2037 				first_peer_device(device)->connection->receiver.t_state);
2038 
2039 	device->al_writ_cnt  =
2040 	device->bm_writ_cnt  =
2041 	device->read_cnt     =
2042 	device->recv_cnt     =
2043 	device->send_cnt     =
2044 	device->writ_cnt     =
2045 	device->p_size       =
2046 	device->rs_start     =
2047 	device->rs_total     =
2048 	device->rs_failed    = 0;
2049 	device->rs_last_events = 0;
2050 	device->rs_last_sect_ev = 0;
2051 	for (i = 0; i < DRBD_SYNC_MARKS; i++) {
2052 		device->rs_mark_left[i] = 0;
2053 		device->rs_mark_time[i] = 0;
2054 	}
2055 	D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL);
2056 
2057 	set_capacity_and_notify(device->vdisk, 0);
2058 	if (device->bitmap) {
2059 		/* maybe never allocated. */
2060 		drbd_bm_resize(device, 0, 1);
2061 		drbd_bm_cleanup(device);
2062 	}
2063 
2064 	drbd_backing_dev_free(device, device->ldev);
2065 	device->ldev = NULL;
2066 
2067 	clear_bit(AL_SUSPENDED, &device->flags);
2068 
2069 	D_ASSERT(device, list_empty(&device->active_ee));
2070 	D_ASSERT(device, list_empty(&device->sync_ee));
2071 	D_ASSERT(device, list_empty(&device->done_ee));
2072 	D_ASSERT(device, list_empty(&device->read_ee));
2073 	D_ASSERT(device, list_empty(&device->net_ee));
2074 	D_ASSERT(device, list_empty(&device->resync_reads));
2075 	D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q));
2076 	D_ASSERT(device, list_empty(&device->resync_work.list));
2077 	D_ASSERT(device, list_empty(&device->unplug_work.list));
2078 
2079 	drbd_set_defaults(device);
2080 }
2081 
2082 
2083 static void drbd_destroy_mempools(void)
2084 {
2085 	struct page *page;
2086 
2087 	while (drbd_pp_pool) {
2088 		page = drbd_pp_pool;
2089 		drbd_pp_pool = (struct page *)page_private(page);
2090 		__free_page(page);
2091 		drbd_pp_vacant--;
2092 	}
2093 
2094 	/* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */
2095 
2096 	bioset_exit(&drbd_io_bio_set);
2097 	bioset_exit(&drbd_md_io_bio_set);
2098 	mempool_exit(&drbd_md_io_page_pool);
2099 	mempool_exit(&drbd_ee_mempool);
2100 	mempool_exit(&drbd_request_mempool);
2101 	kmem_cache_destroy(drbd_ee_cache);
2102 	kmem_cache_destroy(drbd_request_cache);
2103 	kmem_cache_destroy(drbd_bm_ext_cache);
2104 	kmem_cache_destroy(drbd_al_ext_cache);
2105 
2106 	drbd_ee_cache        = NULL;
2107 	drbd_request_cache   = NULL;
2108 	drbd_bm_ext_cache    = NULL;
2109 	drbd_al_ext_cache    = NULL;
2110 
2111 	return;
2112 }
2113 
2114 static int drbd_create_mempools(void)
2115 {
2116 	struct page *page;
2117 	const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * drbd_minor_count;
2118 	int i, ret;
2119 
2120 	/* caches */
2121 	drbd_request_cache = kmem_cache_create(
2122 		"drbd_req", sizeof(struct drbd_request), 0, 0, NULL);
2123 	if (drbd_request_cache == NULL)
2124 		goto Enomem;
2125 
2126 	drbd_ee_cache = kmem_cache_create(
2127 		"drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL);
2128 	if (drbd_ee_cache == NULL)
2129 		goto Enomem;
2130 
2131 	drbd_bm_ext_cache = kmem_cache_create(
2132 		"drbd_bm", sizeof(struct bm_extent), 0, 0, NULL);
2133 	if (drbd_bm_ext_cache == NULL)
2134 		goto Enomem;
2135 
2136 	drbd_al_ext_cache = kmem_cache_create(
2137 		"drbd_al", sizeof(struct lc_element), 0, 0, NULL);
2138 	if (drbd_al_ext_cache == NULL)
2139 		goto Enomem;
2140 
2141 	/* mempools */
2142 	ret = bioset_init(&drbd_io_bio_set, BIO_POOL_SIZE, 0, 0);
2143 	if (ret)
2144 		goto Enomem;
2145 
2146 	ret = bioset_init(&drbd_md_io_bio_set, DRBD_MIN_POOL_PAGES, 0,
2147 			  BIOSET_NEED_BVECS);
2148 	if (ret)
2149 		goto Enomem;
2150 
2151 	ret = mempool_init_page_pool(&drbd_md_io_page_pool, DRBD_MIN_POOL_PAGES, 0);
2152 	if (ret)
2153 		goto Enomem;
2154 
2155 	ret = mempool_init_slab_pool(&drbd_request_mempool, number,
2156 				     drbd_request_cache);
2157 	if (ret)
2158 		goto Enomem;
2159 
2160 	ret = mempool_init_slab_pool(&drbd_ee_mempool, number, drbd_ee_cache);
2161 	if (ret)
2162 		goto Enomem;
2163 
2164 	/* drbd's page pool */
2165 	spin_lock_init(&drbd_pp_lock);
2166 
2167 	for (i = 0; i < number; i++) {
2168 		page = alloc_page(GFP_HIGHUSER);
2169 		if (!page)
2170 			goto Enomem;
2171 		set_page_private(page, (unsigned long)drbd_pp_pool);
2172 		drbd_pp_pool = page;
2173 	}
2174 	drbd_pp_vacant = number;
2175 
2176 	return 0;
2177 
2178 Enomem:
2179 	drbd_destroy_mempools(); /* in case we allocated some */
2180 	return -ENOMEM;
2181 }
2182 
2183 static void drbd_release_all_peer_reqs(struct drbd_device *device)
2184 {
2185 	int rr;
2186 
2187 	rr = drbd_free_peer_reqs(device, &device->active_ee);
2188 	if (rr)
2189 		drbd_err(device, "%d EEs in active list found!\n", rr);
2190 
2191 	rr = drbd_free_peer_reqs(device, &device->sync_ee);
2192 	if (rr)
2193 		drbd_err(device, "%d EEs in sync list found!\n", rr);
2194 
2195 	rr = drbd_free_peer_reqs(device, &device->read_ee);
2196 	if (rr)
2197 		drbd_err(device, "%d EEs in read list found!\n", rr);
2198 
2199 	rr = drbd_free_peer_reqs(device, &device->done_ee);
2200 	if (rr)
2201 		drbd_err(device, "%d EEs in done list found!\n", rr);
2202 
2203 	rr = drbd_free_peer_reqs(device, &device->net_ee);
2204 	if (rr)
2205 		drbd_err(device, "%d EEs in net list found!\n", rr);
2206 }
2207 
2208 /* caution. no locking. */
2209 void drbd_destroy_device(struct kref *kref)
2210 {
2211 	struct drbd_device *device = container_of(kref, struct drbd_device, kref);
2212 	struct drbd_resource *resource = device->resource;
2213 	struct drbd_peer_device *peer_device, *tmp_peer_device;
2214 
2215 	del_timer_sync(&device->request_timer);
2216 
2217 	/* paranoia asserts */
2218 	D_ASSERT(device, device->open_cnt == 0);
2219 	/* end paranoia asserts */
2220 
2221 	/* cleanup stuff that may have been allocated during
2222 	 * device (re-)configuration or state changes */
2223 
2224 	drbd_backing_dev_free(device, device->ldev);
2225 	device->ldev = NULL;
2226 
2227 	drbd_release_all_peer_reqs(device);
2228 
2229 	lc_destroy(device->act_log);
2230 	lc_destroy(device->resync);
2231 
2232 	kfree(device->p_uuid);
2233 	/* device->p_uuid = NULL; */
2234 
2235 	if (device->bitmap) /* should no longer be there. */
2236 		drbd_bm_cleanup(device);
2237 	__free_page(device->md_io.page);
2238 	put_disk(device->vdisk);
2239 	blk_cleanup_queue(device->rq_queue);
2240 	kfree(device->rs_plan_s);
2241 
2242 	/* not for_each_connection(connection, resource):
2243 	 * those may have been cleaned up and disassociated already.
2244 	 */
2245 	for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2246 		kref_put(&peer_device->connection->kref, drbd_destroy_connection);
2247 		kfree(peer_device);
2248 	}
2249 	memset(device, 0xfd, sizeof(*device));
2250 	kfree(device);
2251 	kref_put(&resource->kref, drbd_destroy_resource);
2252 }
2253 
2254 /* One global retry thread, if we need to push back some bio and have it
2255  * reinserted through our make request function.
2256  */
2257 static struct retry_worker {
2258 	struct workqueue_struct *wq;
2259 	struct work_struct worker;
2260 
2261 	spinlock_t lock;
2262 	struct list_head writes;
2263 } retry;
2264 
2265 static void do_retry(struct work_struct *ws)
2266 {
2267 	struct retry_worker *retry = container_of(ws, struct retry_worker, worker);
2268 	LIST_HEAD(writes);
2269 	struct drbd_request *req, *tmp;
2270 
2271 	spin_lock_irq(&retry->lock);
2272 	list_splice_init(&retry->writes, &writes);
2273 	spin_unlock_irq(&retry->lock);
2274 
2275 	list_for_each_entry_safe(req, tmp, &writes, tl_requests) {
2276 		struct drbd_device *device = req->device;
2277 		struct bio *bio = req->master_bio;
2278 		bool expected;
2279 
2280 		expected =
2281 			expect(atomic_read(&req->completion_ref) == 0) &&
2282 			expect(req->rq_state & RQ_POSTPONED) &&
2283 			expect((req->rq_state & RQ_LOCAL_PENDING) == 0 ||
2284 				(req->rq_state & RQ_LOCAL_ABORTED) != 0);
2285 
2286 		if (!expected)
2287 			drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n",
2288 				req, atomic_read(&req->completion_ref),
2289 				req->rq_state);
2290 
2291 		/* We still need to put one kref associated with the
2292 		 * "completion_ref" going zero in the code path that queued it
2293 		 * here.  The request object may still be referenced by a
2294 		 * frozen local req->private_bio, in case we force-detached.
2295 		 */
2296 		kref_put(&req->kref, drbd_req_destroy);
2297 
2298 		/* A single suspended or otherwise blocking device may stall
2299 		 * all others as well.  Fortunately, this code path is to
2300 		 * recover from a situation that "should not happen":
2301 		 * concurrent writes in multi-primary setup.
2302 		 * In a "normal" lifecycle, this workqueue is supposed to be
2303 		 * destroyed without ever doing anything.
2304 		 * If it turns out to be an issue anyways, we can do per
2305 		 * resource (replication group) or per device (minor) retry
2306 		 * workqueues instead.
2307 		 */
2308 
2309 		/* We are not just doing submit_bio_noacct(),
2310 		 * as we want to keep the start_time information. */
2311 		inc_ap_bio(device);
2312 		__drbd_make_request(device, bio);
2313 	}
2314 }
2315 
2316 /* called via drbd_req_put_completion_ref(),
2317  * holds resource->req_lock */
2318 void drbd_restart_request(struct drbd_request *req)
2319 {
2320 	unsigned long flags;
2321 	spin_lock_irqsave(&retry.lock, flags);
2322 	list_move_tail(&req->tl_requests, &retry.writes);
2323 	spin_unlock_irqrestore(&retry.lock, flags);
2324 
2325 	/* Drop the extra reference that would otherwise
2326 	 * have been dropped by complete_master_bio.
2327 	 * do_retry() needs to grab a new one. */
2328 	dec_ap_bio(req->device);
2329 
2330 	queue_work(retry.wq, &retry.worker);
2331 }
2332 
2333 void drbd_destroy_resource(struct kref *kref)
2334 {
2335 	struct drbd_resource *resource =
2336 		container_of(kref, struct drbd_resource, kref);
2337 
2338 	idr_destroy(&resource->devices);
2339 	free_cpumask_var(resource->cpu_mask);
2340 	kfree(resource->name);
2341 	memset(resource, 0xf2, sizeof(*resource));
2342 	kfree(resource);
2343 }
2344 
2345 void drbd_free_resource(struct drbd_resource *resource)
2346 {
2347 	struct drbd_connection *connection, *tmp;
2348 
2349 	for_each_connection_safe(connection, tmp, resource) {
2350 		list_del(&connection->connections);
2351 		drbd_debugfs_connection_cleanup(connection);
2352 		kref_put(&connection->kref, drbd_destroy_connection);
2353 	}
2354 	drbd_debugfs_resource_cleanup(resource);
2355 	kref_put(&resource->kref, drbd_destroy_resource);
2356 }
2357 
2358 static void drbd_cleanup(void)
2359 {
2360 	unsigned int i;
2361 	struct drbd_device *device;
2362 	struct drbd_resource *resource, *tmp;
2363 
2364 	/* first remove proc,
2365 	 * drbdsetup uses it's presence to detect
2366 	 * whether DRBD is loaded.
2367 	 * If we would get stuck in proc removal,
2368 	 * but have netlink already deregistered,
2369 	 * some drbdsetup commands may wait forever
2370 	 * for an answer.
2371 	 */
2372 	if (drbd_proc)
2373 		remove_proc_entry("drbd", NULL);
2374 
2375 	if (retry.wq)
2376 		destroy_workqueue(retry.wq);
2377 
2378 	drbd_genl_unregister();
2379 
2380 	idr_for_each_entry(&drbd_devices, device, i)
2381 		drbd_delete_device(device);
2382 
2383 	/* not _rcu since, no other updater anymore. Genl already unregistered */
2384 	for_each_resource_safe(resource, tmp, &drbd_resources) {
2385 		list_del(&resource->resources);
2386 		drbd_free_resource(resource);
2387 	}
2388 
2389 	drbd_debugfs_cleanup();
2390 
2391 	drbd_destroy_mempools();
2392 	unregister_blkdev(DRBD_MAJOR, "drbd");
2393 
2394 	idr_destroy(&drbd_devices);
2395 
2396 	pr_info("module cleanup done.\n");
2397 }
2398 
2399 static void drbd_init_workqueue(struct drbd_work_queue* wq)
2400 {
2401 	spin_lock_init(&wq->q_lock);
2402 	INIT_LIST_HEAD(&wq->q);
2403 	init_waitqueue_head(&wq->q_wait);
2404 }
2405 
2406 struct completion_work {
2407 	struct drbd_work w;
2408 	struct completion done;
2409 };
2410 
2411 static int w_complete(struct drbd_work *w, int cancel)
2412 {
2413 	struct completion_work *completion_work =
2414 		container_of(w, struct completion_work, w);
2415 
2416 	complete(&completion_work->done);
2417 	return 0;
2418 }
2419 
2420 void drbd_flush_workqueue(struct drbd_work_queue *work_queue)
2421 {
2422 	struct completion_work completion_work;
2423 
2424 	completion_work.w.cb = w_complete;
2425 	init_completion(&completion_work.done);
2426 	drbd_queue_work(work_queue, &completion_work.w);
2427 	wait_for_completion(&completion_work.done);
2428 }
2429 
2430 struct drbd_resource *drbd_find_resource(const char *name)
2431 {
2432 	struct drbd_resource *resource;
2433 
2434 	if (!name || !name[0])
2435 		return NULL;
2436 
2437 	rcu_read_lock();
2438 	for_each_resource_rcu(resource, &drbd_resources) {
2439 		if (!strcmp(resource->name, name)) {
2440 			kref_get(&resource->kref);
2441 			goto found;
2442 		}
2443 	}
2444 	resource = NULL;
2445 found:
2446 	rcu_read_unlock();
2447 	return resource;
2448 }
2449 
2450 struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len,
2451 				     void *peer_addr, int peer_addr_len)
2452 {
2453 	struct drbd_resource *resource;
2454 	struct drbd_connection *connection;
2455 
2456 	rcu_read_lock();
2457 	for_each_resource_rcu(resource, &drbd_resources) {
2458 		for_each_connection_rcu(connection, resource) {
2459 			if (connection->my_addr_len == my_addr_len &&
2460 			    connection->peer_addr_len == peer_addr_len &&
2461 			    !memcmp(&connection->my_addr, my_addr, my_addr_len) &&
2462 			    !memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) {
2463 				kref_get(&connection->kref);
2464 				goto found;
2465 			}
2466 		}
2467 	}
2468 	connection = NULL;
2469 found:
2470 	rcu_read_unlock();
2471 	return connection;
2472 }
2473 
2474 static int drbd_alloc_socket(struct drbd_socket *socket)
2475 {
2476 	socket->rbuf = (void *) __get_free_page(GFP_KERNEL);
2477 	if (!socket->rbuf)
2478 		return -ENOMEM;
2479 	socket->sbuf = (void *) __get_free_page(GFP_KERNEL);
2480 	if (!socket->sbuf)
2481 		return -ENOMEM;
2482 	return 0;
2483 }
2484 
2485 static void drbd_free_socket(struct drbd_socket *socket)
2486 {
2487 	free_page((unsigned long) socket->sbuf);
2488 	free_page((unsigned long) socket->rbuf);
2489 }
2490 
2491 void conn_free_crypto(struct drbd_connection *connection)
2492 {
2493 	drbd_free_sock(connection);
2494 
2495 	crypto_free_shash(connection->csums_tfm);
2496 	crypto_free_shash(connection->verify_tfm);
2497 	crypto_free_shash(connection->cram_hmac_tfm);
2498 	crypto_free_shash(connection->integrity_tfm);
2499 	crypto_free_shash(connection->peer_integrity_tfm);
2500 	kfree(connection->int_dig_in);
2501 	kfree(connection->int_dig_vv);
2502 
2503 	connection->csums_tfm = NULL;
2504 	connection->verify_tfm = NULL;
2505 	connection->cram_hmac_tfm = NULL;
2506 	connection->integrity_tfm = NULL;
2507 	connection->peer_integrity_tfm = NULL;
2508 	connection->int_dig_in = NULL;
2509 	connection->int_dig_vv = NULL;
2510 }
2511 
2512 int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts)
2513 {
2514 	struct drbd_connection *connection;
2515 	cpumask_var_t new_cpu_mask;
2516 	int err;
2517 
2518 	if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL))
2519 		return -ENOMEM;
2520 
2521 	/* silently ignore cpu mask on UP kernel */
2522 	if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) {
2523 		err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE,
2524 				   cpumask_bits(new_cpu_mask), nr_cpu_ids);
2525 		if (err == -EOVERFLOW) {
2526 			/* So what. mask it out. */
2527 			cpumask_var_t tmp_cpu_mask;
2528 			if (zalloc_cpumask_var(&tmp_cpu_mask, GFP_KERNEL)) {
2529 				cpumask_setall(tmp_cpu_mask);
2530 				cpumask_and(new_cpu_mask, new_cpu_mask, tmp_cpu_mask);
2531 				drbd_warn(resource, "Overflow in bitmap_parse(%.12s%s), truncating to %u bits\n",
2532 					res_opts->cpu_mask,
2533 					strlen(res_opts->cpu_mask) > 12 ? "..." : "",
2534 					nr_cpu_ids);
2535 				free_cpumask_var(tmp_cpu_mask);
2536 				err = 0;
2537 			}
2538 		}
2539 		if (err) {
2540 			drbd_warn(resource, "bitmap_parse() failed with %d\n", err);
2541 			/* retcode = ERR_CPU_MASK_PARSE; */
2542 			goto fail;
2543 		}
2544 	}
2545 	resource->res_opts = *res_opts;
2546 	if (cpumask_empty(new_cpu_mask))
2547 		drbd_calc_cpu_mask(&new_cpu_mask);
2548 	if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) {
2549 		cpumask_copy(resource->cpu_mask, new_cpu_mask);
2550 		for_each_connection_rcu(connection, resource) {
2551 			connection->receiver.reset_cpu_mask = 1;
2552 			connection->ack_receiver.reset_cpu_mask = 1;
2553 			connection->worker.reset_cpu_mask = 1;
2554 		}
2555 	}
2556 	err = 0;
2557 
2558 fail:
2559 	free_cpumask_var(new_cpu_mask);
2560 	return err;
2561 
2562 }
2563 
2564 struct drbd_resource *drbd_create_resource(const char *name)
2565 {
2566 	struct drbd_resource *resource;
2567 
2568 	resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL);
2569 	if (!resource)
2570 		goto fail;
2571 	resource->name = kstrdup(name, GFP_KERNEL);
2572 	if (!resource->name)
2573 		goto fail_free_resource;
2574 	if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL))
2575 		goto fail_free_name;
2576 	kref_init(&resource->kref);
2577 	idr_init(&resource->devices);
2578 	INIT_LIST_HEAD(&resource->connections);
2579 	resource->write_ordering = WO_BDEV_FLUSH;
2580 	list_add_tail_rcu(&resource->resources, &drbd_resources);
2581 	mutex_init(&resource->conf_update);
2582 	mutex_init(&resource->adm_mutex);
2583 	spin_lock_init(&resource->req_lock);
2584 	drbd_debugfs_resource_add(resource);
2585 	return resource;
2586 
2587 fail_free_name:
2588 	kfree(resource->name);
2589 fail_free_resource:
2590 	kfree(resource);
2591 fail:
2592 	return NULL;
2593 }
2594 
2595 /* caller must be under adm_mutex */
2596 struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts)
2597 {
2598 	struct drbd_resource *resource;
2599 	struct drbd_connection *connection;
2600 
2601 	connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL);
2602 	if (!connection)
2603 		return NULL;
2604 
2605 	if (drbd_alloc_socket(&connection->data))
2606 		goto fail;
2607 	if (drbd_alloc_socket(&connection->meta))
2608 		goto fail;
2609 
2610 	connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL);
2611 	if (!connection->current_epoch)
2612 		goto fail;
2613 
2614 	INIT_LIST_HEAD(&connection->transfer_log);
2615 
2616 	INIT_LIST_HEAD(&connection->current_epoch->list);
2617 	connection->epochs = 1;
2618 	spin_lock_init(&connection->epoch_lock);
2619 
2620 	connection->send.seen_any_write_yet = false;
2621 	connection->send.current_epoch_nr = 0;
2622 	connection->send.current_epoch_writes = 0;
2623 
2624 	resource = drbd_create_resource(name);
2625 	if (!resource)
2626 		goto fail;
2627 
2628 	connection->cstate = C_STANDALONE;
2629 	mutex_init(&connection->cstate_mutex);
2630 	init_waitqueue_head(&connection->ping_wait);
2631 	idr_init(&connection->peer_devices);
2632 
2633 	drbd_init_workqueue(&connection->sender_work);
2634 	mutex_init(&connection->data.mutex);
2635 	mutex_init(&connection->meta.mutex);
2636 
2637 	drbd_thread_init(resource, &connection->receiver, drbd_receiver, "receiver");
2638 	connection->receiver.connection = connection;
2639 	drbd_thread_init(resource, &connection->worker, drbd_worker, "worker");
2640 	connection->worker.connection = connection;
2641 	drbd_thread_init(resource, &connection->ack_receiver, drbd_ack_receiver, "ack_recv");
2642 	connection->ack_receiver.connection = connection;
2643 
2644 	kref_init(&connection->kref);
2645 
2646 	connection->resource = resource;
2647 
2648 	if (set_resource_options(resource, res_opts))
2649 		goto fail_resource;
2650 
2651 	kref_get(&resource->kref);
2652 	list_add_tail_rcu(&connection->connections, &resource->connections);
2653 	drbd_debugfs_connection_add(connection);
2654 	return connection;
2655 
2656 fail_resource:
2657 	list_del(&resource->resources);
2658 	drbd_free_resource(resource);
2659 fail:
2660 	kfree(connection->current_epoch);
2661 	drbd_free_socket(&connection->meta);
2662 	drbd_free_socket(&connection->data);
2663 	kfree(connection);
2664 	return NULL;
2665 }
2666 
2667 void drbd_destroy_connection(struct kref *kref)
2668 {
2669 	struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref);
2670 	struct drbd_resource *resource = connection->resource;
2671 
2672 	if (atomic_read(&connection->current_epoch->epoch_size) !=  0)
2673 		drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size));
2674 	kfree(connection->current_epoch);
2675 
2676 	idr_destroy(&connection->peer_devices);
2677 
2678 	drbd_free_socket(&connection->meta);
2679 	drbd_free_socket(&connection->data);
2680 	kfree(connection->int_dig_in);
2681 	kfree(connection->int_dig_vv);
2682 	memset(connection, 0xfc, sizeof(*connection));
2683 	kfree(connection);
2684 	kref_put(&resource->kref, drbd_destroy_resource);
2685 }
2686 
2687 static int init_submitter(struct drbd_device *device)
2688 {
2689 	/* opencoded create_singlethread_workqueue(),
2690 	 * to be able to say "drbd%d", ..., minor */
2691 	device->submit.wq =
2692 		alloc_ordered_workqueue("drbd%u_submit", WQ_MEM_RECLAIM, device->minor);
2693 	if (!device->submit.wq)
2694 		return -ENOMEM;
2695 
2696 	INIT_WORK(&device->submit.worker, do_submit);
2697 	INIT_LIST_HEAD(&device->submit.writes);
2698 	return 0;
2699 }
2700 
2701 enum drbd_ret_code drbd_create_device(struct drbd_config_context *adm_ctx, unsigned int minor)
2702 {
2703 	struct drbd_resource *resource = adm_ctx->resource;
2704 	struct drbd_connection *connection;
2705 	struct drbd_device *device;
2706 	struct drbd_peer_device *peer_device, *tmp_peer_device;
2707 	struct gendisk *disk;
2708 	struct request_queue *q;
2709 	int id;
2710 	int vnr = adm_ctx->volume;
2711 	enum drbd_ret_code err = ERR_NOMEM;
2712 
2713 	device = minor_to_device(minor);
2714 	if (device)
2715 		return ERR_MINOR_OR_VOLUME_EXISTS;
2716 
2717 	/* GFP_KERNEL, we are outside of all write-out paths */
2718 	device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL);
2719 	if (!device)
2720 		return ERR_NOMEM;
2721 	kref_init(&device->kref);
2722 
2723 	kref_get(&resource->kref);
2724 	device->resource = resource;
2725 	device->minor = minor;
2726 	device->vnr = vnr;
2727 
2728 	drbd_init_set_defaults(device);
2729 
2730 	q = blk_alloc_queue(NUMA_NO_NODE);
2731 	if (!q)
2732 		goto out_no_q;
2733 	device->rq_queue = q;
2734 
2735 	disk = alloc_disk(1);
2736 	if (!disk)
2737 		goto out_no_disk;
2738 	device->vdisk = disk;
2739 
2740 	set_disk_ro(disk, true);
2741 
2742 	disk->queue = q;
2743 	disk->major = DRBD_MAJOR;
2744 	disk->first_minor = minor;
2745 	disk->fops = &drbd_ops;
2746 	sprintf(disk->disk_name, "drbd%d", minor);
2747 	disk->private_data = device;
2748 
2749 	blk_queue_write_cache(q, true, true);
2750 	/* Setting the max_hw_sectors to an odd value of 8kibyte here
2751 	   This triggers a max_bio_size message upon first attach or connect */
2752 	blk_queue_max_hw_sectors(q, DRBD_MAX_BIO_SIZE_SAFE >> 8);
2753 
2754 	device->md_io.page = alloc_page(GFP_KERNEL);
2755 	if (!device->md_io.page)
2756 		goto out_no_io_page;
2757 
2758 	if (drbd_bm_init(device))
2759 		goto out_no_bitmap;
2760 	device->read_requests = RB_ROOT;
2761 	device->write_requests = RB_ROOT;
2762 
2763 	id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL);
2764 	if (id < 0) {
2765 		if (id == -ENOSPC)
2766 			err = ERR_MINOR_OR_VOLUME_EXISTS;
2767 		goto out_no_minor_idr;
2768 	}
2769 	kref_get(&device->kref);
2770 
2771 	id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL);
2772 	if (id < 0) {
2773 		if (id == -ENOSPC)
2774 			err = ERR_MINOR_OR_VOLUME_EXISTS;
2775 		goto out_idr_remove_minor;
2776 	}
2777 	kref_get(&device->kref);
2778 
2779 	INIT_LIST_HEAD(&device->peer_devices);
2780 	INIT_LIST_HEAD(&device->pending_bitmap_io);
2781 	for_each_connection(connection, resource) {
2782 		peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL);
2783 		if (!peer_device)
2784 			goto out_idr_remove_from_resource;
2785 		peer_device->connection = connection;
2786 		peer_device->device = device;
2787 
2788 		list_add(&peer_device->peer_devices, &device->peer_devices);
2789 		kref_get(&device->kref);
2790 
2791 		id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL);
2792 		if (id < 0) {
2793 			if (id == -ENOSPC)
2794 				err = ERR_INVALID_REQUEST;
2795 			goto out_idr_remove_from_resource;
2796 		}
2797 		kref_get(&connection->kref);
2798 		INIT_WORK(&peer_device->send_acks_work, drbd_send_acks_wf);
2799 	}
2800 
2801 	if (init_submitter(device)) {
2802 		err = ERR_NOMEM;
2803 		goto out_idr_remove_vol;
2804 	}
2805 
2806 	add_disk(disk);
2807 
2808 	/* inherit the connection state */
2809 	device->state.conn = first_connection(resource)->cstate;
2810 	if (device->state.conn == C_WF_REPORT_PARAMS) {
2811 		for_each_peer_device(peer_device, device)
2812 			drbd_connected(peer_device);
2813 	}
2814 	/* move to create_peer_device() */
2815 	for_each_peer_device(peer_device, device)
2816 		drbd_debugfs_peer_device_add(peer_device);
2817 	drbd_debugfs_device_add(device);
2818 	return NO_ERROR;
2819 
2820 out_idr_remove_vol:
2821 	idr_remove(&connection->peer_devices, vnr);
2822 out_idr_remove_from_resource:
2823 	for_each_connection(connection, resource) {
2824 		peer_device = idr_remove(&connection->peer_devices, vnr);
2825 		if (peer_device)
2826 			kref_put(&connection->kref, drbd_destroy_connection);
2827 	}
2828 	for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2829 		list_del(&peer_device->peer_devices);
2830 		kfree(peer_device);
2831 	}
2832 	idr_remove(&resource->devices, vnr);
2833 out_idr_remove_minor:
2834 	idr_remove(&drbd_devices, minor);
2835 	synchronize_rcu();
2836 out_no_minor_idr:
2837 	drbd_bm_cleanup(device);
2838 out_no_bitmap:
2839 	__free_page(device->md_io.page);
2840 out_no_io_page:
2841 	put_disk(disk);
2842 out_no_disk:
2843 	blk_cleanup_queue(q);
2844 out_no_q:
2845 	kref_put(&resource->kref, drbd_destroy_resource);
2846 	kfree(device);
2847 	return err;
2848 }
2849 
2850 void drbd_delete_device(struct drbd_device *device)
2851 {
2852 	struct drbd_resource *resource = device->resource;
2853 	struct drbd_connection *connection;
2854 	struct drbd_peer_device *peer_device;
2855 
2856 	/* move to free_peer_device() */
2857 	for_each_peer_device(peer_device, device)
2858 		drbd_debugfs_peer_device_cleanup(peer_device);
2859 	drbd_debugfs_device_cleanup(device);
2860 	for_each_connection(connection, resource) {
2861 		idr_remove(&connection->peer_devices, device->vnr);
2862 		kref_put(&device->kref, drbd_destroy_device);
2863 	}
2864 	idr_remove(&resource->devices, device->vnr);
2865 	kref_put(&device->kref, drbd_destroy_device);
2866 	idr_remove(&drbd_devices, device_to_minor(device));
2867 	kref_put(&device->kref, drbd_destroy_device);
2868 	del_gendisk(device->vdisk);
2869 	synchronize_rcu();
2870 	kref_put(&device->kref, drbd_destroy_device);
2871 }
2872 
2873 static int __init drbd_init(void)
2874 {
2875 	int err;
2876 
2877 	if (drbd_minor_count < DRBD_MINOR_COUNT_MIN || drbd_minor_count > DRBD_MINOR_COUNT_MAX) {
2878 		pr_err("invalid minor_count (%d)\n", drbd_minor_count);
2879 #ifdef MODULE
2880 		return -EINVAL;
2881 #else
2882 		drbd_minor_count = DRBD_MINOR_COUNT_DEF;
2883 #endif
2884 	}
2885 
2886 	err = register_blkdev(DRBD_MAJOR, "drbd");
2887 	if (err) {
2888 		pr_err("unable to register block device major %d\n",
2889 		       DRBD_MAJOR);
2890 		return err;
2891 	}
2892 
2893 	/*
2894 	 * allocate all necessary structs
2895 	 */
2896 	init_waitqueue_head(&drbd_pp_wait);
2897 
2898 	drbd_proc = NULL; /* play safe for drbd_cleanup */
2899 	idr_init(&drbd_devices);
2900 
2901 	mutex_init(&resources_mutex);
2902 	INIT_LIST_HEAD(&drbd_resources);
2903 
2904 	err = drbd_genl_register();
2905 	if (err) {
2906 		pr_err("unable to register generic netlink family\n");
2907 		goto fail;
2908 	}
2909 
2910 	err = drbd_create_mempools();
2911 	if (err)
2912 		goto fail;
2913 
2914 	err = -ENOMEM;
2915 	drbd_proc = proc_create_single("drbd", S_IFREG | 0444 , NULL, drbd_seq_show);
2916 	if (!drbd_proc)	{
2917 		pr_err("unable to register proc file\n");
2918 		goto fail;
2919 	}
2920 
2921 	retry.wq = create_singlethread_workqueue("drbd-reissue");
2922 	if (!retry.wq) {
2923 		pr_err("unable to create retry workqueue\n");
2924 		goto fail;
2925 	}
2926 	INIT_WORK(&retry.worker, do_retry);
2927 	spin_lock_init(&retry.lock);
2928 	INIT_LIST_HEAD(&retry.writes);
2929 
2930 	drbd_debugfs_init();
2931 
2932 	pr_info("initialized. "
2933 	       "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n",
2934 	       API_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX);
2935 	pr_info("%s\n", drbd_buildtag());
2936 	pr_info("registered as block device major %d\n", DRBD_MAJOR);
2937 	return 0; /* Success! */
2938 
2939 fail:
2940 	drbd_cleanup();
2941 	if (err == -ENOMEM)
2942 		pr_err("ran out of memory\n");
2943 	else
2944 		pr_err("initialization failure\n");
2945 	return err;
2946 }
2947 
2948 static void drbd_free_one_sock(struct drbd_socket *ds)
2949 {
2950 	struct socket *s;
2951 	mutex_lock(&ds->mutex);
2952 	s = ds->socket;
2953 	ds->socket = NULL;
2954 	mutex_unlock(&ds->mutex);
2955 	if (s) {
2956 		/* so debugfs does not need to mutex_lock() */
2957 		synchronize_rcu();
2958 		kernel_sock_shutdown(s, SHUT_RDWR);
2959 		sock_release(s);
2960 	}
2961 }
2962 
2963 void drbd_free_sock(struct drbd_connection *connection)
2964 {
2965 	if (connection->data.socket)
2966 		drbd_free_one_sock(&connection->data);
2967 	if (connection->meta.socket)
2968 		drbd_free_one_sock(&connection->meta);
2969 }
2970 
2971 /* meta data management */
2972 
2973 void conn_md_sync(struct drbd_connection *connection)
2974 {
2975 	struct drbd_peer_device *peer_device;
2976 	int vnr;
2977 
2978 	rcu_read_lock();
2979 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
2980 		struct drbd_device *device = peer_device->device;
2981 
2982 		kref_get(&device->kref);
2983 		rcu_read_unlock();
2984 		drbd_md_sync(device);
2985 		kref_put(&device->kref, drbd_destroy_device);
2986 		rcu_read_lock();
2987 	}
2988 	rcu_read_unlock();
2989 }
2990 
2991 /* aligned 4kByte */
2992 struct meta_data_on_disk {
2993 	u64 la_size_sect;      /* last agreed size. */
2994 	u64 uuid[UI_SIZE];   /* UUIDs. */
2995 	u64 device_uuid;
2996 	u64 reserved_u64_1;
2997 	u32 flags;             /* MDF */
2998 	u32 magic;
2999 	u32 md_size_sect;
3000 	u32 al_offset;         /* offset to this block */
3001 	u32 al_nr_extents;     /* important for restoring the AL (userspace) */
3002 	      /* `-- act_log->nr_elements <-- ldev->dc.al_extents */
3003 	u32 bm_offset;         /* offset to the bitmap, from here */
3004 	u32 bm_bytes_per_bit;  /* BM_BLOCK_SIZE */
3005 	u32 la_peer_max_bio_size;   /* last peer max_bio_size */
3006 
3007 	/* see al_tr_number_to_on_disk_sector() */
3008 	u32 al_stripes;
3009 	u32 al_stripe_size_4k;
3010 
3011 	u8 reserved_u8[4096 - (7*8 + 10*4)];
3012 } __packed;
3013 
3014 
3015 
3016 void drbd_md_write(struct drbd_device *device, void *b)
3017 {
3018 	struct meta_data_on_disk *buffer = b;
3019 	sector_t sector;
3020 	int i;
3021 
3022 	memset(buffer, 0, sizeof(*buffer));
3023 
3024 	buffer->la_size_sect = cpu_to_be64(get_capacity(device->vdisk));
3025 	for (i = UI_CURRENT; i < UI_SIZE; i++)
3026 		buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
3027 	buffer->flags = cpu_to_be32(device->ldev->md.flags);
3028 	buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN);
3029 
3030 	buffer->md_size_sect  = cpu_to_be32(device->ldev->md.md_size_sect);
3031 	buffer->al_offset     = cpu_to_be32(device->ldev->md.al_offset);
3032 	buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements);
3033 	buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE);
3034 	buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid);
3035 
3036 	buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset);
3037 	buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size);
3038 
3039 	buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes);
3040 	buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k);
3041 
3042 	D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset);
3043 	sector = device->ldev->md.md_offset;
3044 
3045 	if (drbd_md_sync_page_io(device, device->ldev, sector, REQ_OP_WRITE)) {
3046 		/* this was a try anyways ... */
3047 		drbd_err(device, "meta data update failed!\n");
3048 		drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR);
3049 	}
3050 }
3051 
3052 /**
3053  * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set
3054  * @device:	DRBD device.
3055  */
3056 void drbd_md_sync(struct drbd_device *device)
3057 {
3058 	struct meta_data_on_disk *buffer;
3059 
3060 	/* Don't accidentally change the DRBD meta data layout. */
3061 	BUILD_BUG_ON(UI_SIZE != 4);
3062 	BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096);
3063 
3064 	del_timer(&device->md_sync_timer);
3065 	/* timer may be rearmed by drbd_md_mark_dirty() now. */
3066 	if (!test_and_clear_bit(MD_DIRTY, &device->flags))
3067 		return;
3068 
3069 	/* We use here D_FAILED and not D_ATTACHING because we try to write
3070 	 * metadata even if we detach due to a disk failure! */
3071 	if (!get_ldev_if_state(device, D_FAILED))
3072 		return;
3073 
3074 	buffer = drbd_md_get_buffer(device, __func__);
3075 	if (!buffer)
3076 		goto out;
3077 
3078 	drbd_md_write(device, buffer);
3079 
3080 	/* Update device->ldev->md.la_size_sect,
3081 	 * since we updated it on metadata. */
3082 	device->ldev->md.la_size_sect = get_capacity(device->vdisk);
3083 
3084 	drbd_md_put_buffer(device);
3085 out:
3086 	put_ldev(device);
3087 }
3088 
3089 static int check_activity_log_stripe_size(struct drbd_device *device,
3090 		struct meta_data_on_disk *on_disk,
3091 		struct drbd_md *in_core)
3092 {
3093 	u32 al_stripes = be32_to_cpu(on_disk->al_stripes);
3094 	u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k);
3095 	u64 al_size_4k;
3096 
3097 	/* both not set: default to old fixed size activity log */
3098 	if (al_stripes == 0 && al_stripe_size_4k == 0) {
3099 		al_stripes = 1;
3100 		al_stripe_size_4k = MD_32kB_SECT/8;
3101 	}
3102 
3103 	/* some paranoia plausibility checks */
3104 
3105 	/* we need both values to be set */
3106 	if (al_stripes == 0 || al_stripe_size_4k == 0)
3107 		goto err;
3108 
3109 	al_size_4k = (u64)al_stripes * al_stripe_size_4k;
3110 
3111 	/* Upper limit of activity log area, to avoid potential overflow
3112 	 * problems in al_tr_number_to_on_disk_sector(). As right now, more
3113 	 * than 72 * 4k blocks total only increases the amount of history,
3114 	 * limiting this arbitrarily to 16 GB is not a real limitation ;-)  */
3115 	if (al_size_4k > (16 * 1024 * 1024/4))
3116 		goto err;
3117 
3118 	/* Lower limit: we need at least 8 transaction slots (32kB)
3119 	 * to not break existing setups */
3120 	if (al_size_4k < MD_32kB_SECT/8)
3121 		goto err;
3122 
3123 	in_core->al_stripe_size_4k = al_stripe_size_4k;
3124 	in_core->al_stripes = al_stripes;
3125 	in_core->al_size_4k = al_size_4k;
3126 
3127 	return 0;
3128 err:
3129 	drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n",
3130 			al_stripes, al_stripe_size_4k);
3131 	return -EINVAL;
3132 }
3133 
3134 static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev)
3135 {
3136 	sector_t capacity = drbd_get_capacity(bdev->md_bdev);
3137 	struct drbd_md *in_core = &bdev->md;
3138 	s32 on_disk_al_sect;
3139 	s32 on_disk_bm_sect;
3140 
3141 	/* The on-disk size of the activity log, calculated from offsets, and
3142 	 * the size of the activity log calculated from the stripe settings,
3143 	 * should match.
3144 	 * Though we could relax this a bit: it is ok, if the striped activity log
3145 	 * fits in the available on-disk activity log size.
3146 	 * Right now, that would break how resize is implemented.
3147 	 * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware
3148 	 * of possible unused padding space in the on disk layout. */
3149 	if (in_core->al_offset < 0) {
3150 		if (in_core->bm_offset > in_core->al_offset)
3151 			goto err;
3152 		on_disk_al_sect = -in_core->al_offset;
3153 		on_disk_bm_sect = in_core->al_offset - in_core->bm_offset;
3154 	} else {
3155 		if (in_core->al_offset != MD_4kB_SECT)
3156 			goto err;
3157 		if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT)
3158 			goto err;
3159 
3160 		on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT;
3161 		on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset;
3162 	}
3163 
3164 	/* old fixed size meta data is exactly that: fixed. */
3165 	if (in_core->meta_dev_idx >= 0) {
3166 		if (in_core->md_size_sect != MD_128MB_SECT
3167 		||  in_core->al_offset != MD_4kB_SECT
3168 		||  in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT
3169 		||  in_core->al_stripes != 1
3170 		||  in_core->al_stripe_size_4k != MD_32kB_SECT/8)
3171 			goto err;
3172 	}
3173 
3174 	if (capacity < in_core->md_size_sect)
3175 		goto err;
3176 	if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev))
3177 		goto err;
3178 
3179 	/* should be aligned, and at least 32k */
3180 	if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT))
3181 		goto err;
3182 
3183 	/* should fit (for now: exactly) into the available on-disk space;
3184 	 * overflow prevention is in check_activity_log_stripe_size() above. */
3185 	if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT)
3186 		goto err;
3187 
3188 	/* again, should be aligned */
3189 	if (in_core->bm_offset & 7)
3190 		goto err;
3191 
3192 	/* FIXME check for device grow with flex external meta data? */
3193 
3194 	/* can the available bitmap space cover the last agreed device size? */
3195 	if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512)
3196 		goto err;
3197 
3198 	return 0;
3199 
3200 err:
3201 	drbd_err(device, "meta data offsets don't make sense: idx=%d "
3202 			"al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, "
3203 			"md_size_sect=%u, la_size=%llu, md_capacity=%llu\n",
3204 			in_core->meta_dev_idx,
3205 			in_core->al_stripes, in_core->al_stripe_size_4k,
3206 			in_core->al_offset, in_core->bm_offset, in_core->md_size_sect,
3207 			(unsigned long long)in_core->la_size_sect,
3208 			(unsigned long long)capacity);
3209 
3210 	return -EINVAL;
3211 }
3212 
3213 
3214 /**
3215  * drbd_md_read() - Reads in the meta data super block
3216  * @device:	DRBD device.
3217  * @bdev:	Device from which the meta data should be read in.
3218  *
3219  * Return NO_ERROR on success, and an enum drbd_ret_code in case
3220  * something goes wrong.
3221  *
3222  * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS,
3223  * even before @bdev is assigned to @device->ldev.
3224  */
3225 int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev)
3226 {
3227 	struct meta_data_on_disk *buffer;
3228 	u32 magic, flags;
3229 	int i, rv = NO_ERROR;
3230 
3231 	if (device->state.disk != D_DISKLESS)
3232 		return ERR_DISK_CONFIGURED;
3233 
3234 	buffer = drbd_md_get_buffer(device, __func__);
3235 	if (!buffer)
3236 		return ERR_NOMEM;
3237 
3238 	/* First, figure out where our meta data superblock is located,
3239 	 * and read it. */
3240 	bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx;
3241 	bdev->md.md_offset = drbd_md_ss(bdev);
3242 	/* Even for (flexible or indexed) external meta data,
3243 	 * initially restrict us to the 4k superblock for now.
3244 	 * Affects the paranoia out-of-range access check in drbd_md_sync_page_io(). */
3245 	bdev->md.md_size_sect = 8;
3246 
3247 	if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset,
3248 				 REQ_OP_READ)) {
3249 		/* NOTE: can't do normal error processing here as this is
3250 		   called BEFORE disk is attached */
3251 		drbd_err(device, "Error while reading metadata.\n");
3252 		rv = ERR_IO_MD_DISK;
3253 		goto err;
3254 	}
3255 
3256 	magic = be32_to_cpu(buffer->magic);
3257 	flags = be32_to_cpu(buffer->flags);
3258 	if (magic == DRBD_MD_MAGIC_84_UNCLEAN ||
3259 	    (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) {
3260 			/* btw: that's Activity Log clean, not "all" clean. */
3261 		drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n");
3262 		rv = ERR_MD_UNCLEAN;
3263 		goto err;
3264 	}
3265 
3266 	rv = ERR_MD_INVALID;
3267 	if (magic != DRBD_MD_MAGIC_08) {
3268 		if (magic == DRBD_MD_MAGIC_07)
3269 			drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n");
3270 		else
3271 			drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n");
3272 		goto err;
3273 	}
3274 
3275 	if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) {
3276 		drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n",
3277 		    be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE);
3278 		goto err;
3279 	}
3280 
3281 
3282 	/* convert to in_core endian */
3283 	bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect);
3284 	for (i = UI_CURRENT; i < UI_SIZE; i++)
3285 		bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]);
3286 	bdev->md.flags = be32_to_cpu(buffer->flags);
3287 	bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid);
3288 
3289 	bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect);
3290 	bdev->md.al_offset = be32_to_cpu(buffer->al_offset);
3291 	bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset);
3292 
3293 	if (check_activity_log_stripe_size(device, buffer, &bdev->md))
3294 		goto err;
3295 	if (check_offsets_and_sizes(device, bdev))
3296 		goto err;
3297 
3298 	if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) {
3299 		drbd_err(device, "unexpected bm_offset: %d (expected %d)\n",
3300 		    be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset);
3301 		goto err;
3302 	}
3303 	if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) {
3304 		drbd_err(device, "unexpected md_size: %u (expected %u)\n",
3305 		    be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect);
3306 		goto err;
3307 	}
3308 
3309 	rv = NO_ERROR;
3310 
3311 	spin_lock_irq(&device->resource->req_lock);
3312 	if (device->state.conn < C_CONNECTED) {
3313 		unsigned int peer;
3314 		peer = be32_to_cpu(buffer->la_peer_max_bio_size);
3315 		peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE);
3316 		device->peer_max_bio_size = peer;
3317 	}
3318 	spin_unlock_irq(&device->resource->req_lock);
3319 
3320  err:
3321 	drbd_md_put_buffer(device);
3322 
3323 	return rv;
3324 }
3325 
3326 /**
3327  * drbd_md_mark_dirty() - Mark meta data super block as dirty
3328  * @device:	DRBD device.
3329  *
3330  * Call this function if you change anything that should be written to
3331  * the meta-data super block. This function sets MD_DIRTY, and starts a
3332  * timer that ensures that within five seconds you have to call drbd_md_sync().
3333  */
3334 void drbd_md_mark_dirty(struct drbd_device *device)
3335 {
3336 	if (!test_and_set_bit(MD_DIRTY, &device->flags))
3337 		mod_timer(&device->md_sync_timer, jiffies + 5*HZ);
3338 }
3339 
3340 void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local)
3341 {
3342 	int i;
3343 
3344 	for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++)
3345 		device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i];
3346 }
3347 
3348 void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3349 {
3350 	if (idx == UI_CURRENT) {
3351 		if (device->state.role == R_PRIMARY)
3352 			val |= 1;
3353 		else
3354 			val &= ~((u64)1);
3355 
3356 		drbd_set_ed_uuid(device, val);
3357 	}
3358 
3359 	device->ldev->md.uuid[idx] = val;
3360 	drbd_md_mark_dirty(device);
3361 }
3362 
3363 void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3364 {
3365 	unsigned long flags;
3366 	spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3367 	__drbd_uuid_set(device, idx, val);
3368 	spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3369 }
3370 
3371 void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3372 {
3373 	unsigned long flags;
3374 	spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3375 	if (device->ldev->md.uuid[idx]) {
3376 		drbd_uuid_move_history(device);
3377 		device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx];
3378 	}
3379 	__drbd_uuid_set(device, idx, val);
3380 	spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3381 }
3382 
3383 /**
3384  * drbd_uuid_new_current() - Creates a new current UUID
3385  * @device:	DRBD device.
3386  *
3387  * Creates a new current UUID, and rotates the old current UUID into
3388  * the bitmap slot. Causes an incremental resync upon next connect.
3389  */
3390 void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local)
3391 {
3392 	u64 val;
3393 	unsigned long long bm_uuid;
3394 
3395 	get_random_bytes(&val, sizeof(u64));
3396 
3397 	spin_lock_irq(&device->ldev->md.uuid_lock);
3398 	bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3399 
3400 	if (bm_uuid)
3401 		drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3402 
3403 	device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT];
3404 	__drbd_uuid_set(device, UI_CURRENT, val);
3405 	spin_unlock_irq(&device->ldev->md.uuid_lock);
3406 
3407 	drbd_print_uuids(device, "new current UUID");
3408 	/* get it to stable storage _now_ */
3409 	drbd_md_sync(device);
3410 }
3411 
3412 void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local)
3413 {
3414 	unsigned long flags;
3415 	if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0)
3416 		return;
3417 
3418 	spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3419 	if (val == 0) {
3420 		drbd_uuid_move_history(device);
3421 		device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP];
3422 		device->ldev->md.uuid[UI_BITMAP] = 0;
3423 	} else {
3424 		unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3425 		if (bm_uuid)
3426 			drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3427 
3428 		device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1);
3429 	}
3430 	spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3431 
3432 	drbd_md_mark_dirty(device);
3433 }
3434 
3435 /**
3436  * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3437  * @device:	DRBD device.
3438  *
3439  * Sets all bits in the bitmap and writes the whole bitmap to stable storage.
3440  */
3441 int drbd_bmio_set_n_write(struct drbd_device *device) __must_hold(local)
3442 {
3443 	int rv = -EIO;
3444 
3445 	drbd_md_set_flag(device, MDF_FULL_SYNC);
3446 	drbd_md_sync(device);
3447 	drbd_bm_set_all(device);
3448 
3449 	rv = drbd_bm_write(device);
3450 
3451 	if (!rv) {
3452 		drbd_md_clear_flag(device, MDF_FULL_SYNC);
3453 		drbd_md_sync(device);
3454 	}
3455 
3456 	return rv;
3457 }
3458 
3459 /**
3460  * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3461  * @device:	DRBD device.
3462  *
3463  * Clears all bits in the bitmap and writes the whole bitmap to stable storage.
3464  */
3465 int drbd_bmio_clear_n_write(struct drbd_device *device) __must_hold(local)
3466 {
3467 	drbd_resume_al(device);
3468 	drbd_bm_clear_all(device);
3469 	return drbd_bm_write(device);
3470 }
3471 
3472 static int w_bitmap_io(struct drbd_work *w, int unused)
3473 {
3474 	struct drbd_device *device =
3475 		container_of(w, struct drbd_device, bm_io_work.w);
3476 	struct bm_io_work *work = &device->bm_io_work;
3477 	int rv = -EIO;
3478 
3479 	if (work->flags != BM_LOCKED_CHANGE_ALLOWED) {
3480 		int cnt = atomic_read(&device->ap_bio_cnt);
3481 		if (cnt)
3482 			drbd_err(device, "FIXME: ap_bio_cnt %d, expected 0; queued for '%s'\n",
3483 					cnt, work->why);
3484 	}
3485 
3486 	if (get_ldev(device)) {
3487 		drbd_bm_lock(device, work->why, work->flags);
3488 		rv = work->io_fn(device);
3489 		drbd_bm_unlock(device);
3490 		put_ldev(device);
3491 	}
3492 
3493 	clear_bit_unlock(BITMAP_IO, &device->flags);
3494 	wake_up(&device->misc_wait);
3495 
3496 	if (work->done)
3497 		work->done(device, rv);
3498 
3499 	clear_bit(BITMAP_IO_QUEUED, &device->flags);
3500 	work->why = NULL;
3501 	work->flags = 0;
3502 
3503 	return 0;
3504 }
3505 
3506 /**
3507  * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap
3508  * @device:	DRBD device.
3509  * @io_fn:	IO callback to be called when bitmap IO is possible
3510  * @done:	callback to be called after the bitmap IO was performed
3511  * @why:	Descriptive text of the reason for doing the IO
3512  *
3513  * While IO on the bitmap happens we freeze application IO thus we ensure
3514  * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be
3515  * called from worker context. It MUST NOT be used while a previous such
3516  * work is still pending!
3517  *
3518  * Its worker function encloses the call of io_fn() by get_ldev() and
3519  * put_ldev().
3520  */
3521 void drbd_queue_bitmap_io(struct drbd_device *device,
3522 			  int (*io_fn)(struct drbd_device *),
3523 			  void (*done)(struct drbd_device *, int),
3524 			  char *why, enum bm_flag flags)
3525 {
3526 	D_ASSERT(device, current == first_peer_device(device)->connection->worker.task);
3527 
3528 	D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags));
3529 	D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags));
3530 	D_ASSERT(device, list_empty(&device->bm_io_work.w.list));
3531 	if (device->bm_io_work.why)
3532 		drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n",
3533 			why, device->bm_io_work.why);
3534 
3535 	device->bm_io_work.io_fn = io_fn;
3536 	device->bm_io_work.done = done;
3537 	device->bm_io_work.why = why;
3538 	device->bm_io_work.flags = flags;
3539 
3540 	spin_lock_irq(&device->resource->req_lock);
3541 	set_bit(BITMAP_IO, &device->flags);
3542 	/* don't wait for pending application IO if the caller indicates that
3543 	 * application IO does not conflict anyways. */
3544 	if (flags == BM_LOCKED_CHANGE_ALLOWED || atomic_read(&device->ap_bio_cnt) == 0) {
3545 		if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags))
3546 			drbd_queue_work(&first_peer_device(device)->connection->sender_work,
3547 					&device->bm_io_work.w);
3548 	}
3549 	spin_unlock_irq(&device->resource->req_lock);
3550 }
3551 
3552 /**
3553  * drbd_bitmap_io() -  Does an IO operation on the whole bitmap
3554  * @device:	DRBD device.
3555  * @io_fn:	IO callback to be called when bitmap IO is possible
3556  * @why:	Descriptive text of the reason for doing the IO
3557  *
3558  * freezes application IO while that the actual IO operations runs. This
3559  * functions MAY NOT be called from worker context.
3560  */
3561 int drbd_bitmap_io(struct drbd_device *device, int (*io_fn)(struct drbd_device *),
3562 		char *why, enum bm_flag flags)
3563 {
3564 	/* Only suspend io, if some operation is supposed to be locked out */
3565 	const bool do_suspend_io = flags & (BM_DONT_CLEAR|BM_DONT_SET|BM_DONT_TEST);
3566 	int rv;
3567 
3568 	D_ASSERT(device, current != first_peer_device(device)->connection->worker.task);
3569 
3570 	if (do_suspend_io)
3571 		drbd_suspend_io(device);
3572 
3573 	drbd_bm_lock(device, why, flags);
3574 	rv = io_fn(device);
3575 	drbd_bm_unlock(device);
3576 
3577 	if (do_suspend_io)
3578 		drbd_resume_io(device);
3579 
3580 	return rv;
3581 }
3582 
3583 void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local)
3584 {
3585 	if ((device->ldev->md.flags & flag) != flag) {
3586 		drbd_md_mark_dirty(device);
3587 		device->ldev->md.flags |= flag;
3588 	}
3589 }
3590 
3591 void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local)
3592 {
3593 	if ((device->ldev->md.flags & flag) != 0) {
3594 		drbd_md_mark_dirty(device);
3595 		device->ldev->md.flags &= ~flag;
3596 	}
3597 }
3598 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag)
3599 {
3600 	return (bdev->md.flags & flag) != 0;
3601 }
3602 
3603 static void md_sync_timer_fn(struct timer_list *t)
3604 {
3605 	struct drbd_device *device = from_timer(device, t, md_sync_timer);
3606 	drbd_device_post_work(device, MD_SYNC);
3607 }
3608 
3609 const char *cmdname(enum drbd_packet cmd)
3610 {
3611 	/* THINK may need to become several global tables
3612 	 * when we want to support more than
3613 	 * one PRO_VERSION */
3614 	static const char *cmdnames[] = {
3615 		[P_DATA]	        = "Data",
3616 		[P_WSAME]	        = "WriteSame",
3617 		[P_TRIM]	        = "Trim",
3618 		[P_DATA_REPLY]	        = "DataReply",
3619 		[P_RS_DATA_REPLY]	= "RSDataReply",
3620 		[P_BARRIER]	        = "Barrier",
3621 		[P_BITMAP]	        = "ReportBitMap",
3622 		[P_BECOME_SYNC_TARGET]  = "BecomeSyncTarget",
3623 		[P_BECOME_SYNC_SOURCE]  = "BecomeSyncSource",
3624 		[P_UNPLUG_REMOTE]	= "UnplugRemote",
3625 		[P_DATA_REQUEST]	= "DataRequest",
3626 		[P_RS_DATA_REQUEST]     = "RSDataRequest",
3627 		[P_SYNC_PARAM]	        = "SyncParam",
3628 		[P_SYNC_PARAM89]	= "SyncParam89",
3629 		[P_PROTOCOL]            = "ReportProtocol",
3630 		[P_UUIDS]	        = "ReportUUIDs",
3631 		[P_SIZES]	        = "ReportSizes",
3632 		[P_STATE]	        = "ReportState",
3633 		[P_SYNC_UUID]           = "ReportSyncUUID",
3634 		[P_AUTH_CHALLENGE]      = "AuthChallenge",
3635 		[P_AUTH_RESPONSE]	= "AuthResponse",
3636 		[P_PING]		= "Ping",
3637 		[P_PING_ACK]	        = "PingAck",
3638 		[P_RECV_ACK]	        = "RecvAck",
3639 		[P_WRITE_ACK]	        = "WriteAck",
3640 		[P_RS_WRITE_ACK]	= "RSWriteAck",
3641 		[P_SUPERSEDED]          = "Superseded",
3642 		[P_NEG_ACK]	        = "NegAck",
3643 		[P_NEG_DREPLY]	        = "NegDReply",
3644 		[P_NEG_RS_DREPLY]	= "NegRSDReply",
3645 		[P_BARRIER_ACK]	        = "BarrierAck",
3646 		[P_STATE_CHG_REQ]       = "StateChgRequest",
3647 		[P_STATE_CHG_REPLY]     = "StateChgReply",
3648 		[P_OV_REQUEST]          = "OVRequest",
3649 		[P_OV_REPLY]            = "OVReply",
3650 		[P_OV_RESULT]           = "OVResult",
3651 		[P_CSUM_RS_REQUEST]     = "CsumRSRequest",
3652 		[P_RS_IS_IN_SYNC]	= "CsumRSIsInSync",
3653 		[P_COMPRESSED_BITMAP]   = "CBitmap",
3654 		[P_DELAY_PROBE]         = "DelayProbe",
3655 		[P_OUT_OF_SYNC]		= "OutOfSync",
3656 		[P_RETRY_WRITE]		= "RetryWrite",
3657 		[P_RS_CANCEL]		= "RSCancel",
3658 		[P_CONN_ST_CHG_REQ]	= "conn_st_chg_req",
3659 		[P_CONN_ST_CHG_REPLY]	= "conn_st_chg_reply",
3660 		[P_RETRY_WRITE]		= "retry_write",
3661 		[P_PROTOCOL_UPDATE]	= "protocol_update",
3662 		[P_RS_THIN_REQ]         = "rs_thin_req",
3663 		[P_RS_DEALLOCATED]      = "rs_deallocated",
3664 
3665 		/* enum drbd_packet, but not commands - obsoleted flags:
3666 		 *	P_MAY_IGNORE
3667 		 *	P_MAX_OPT_CMD
3668 		 */
3669 	};
3670 
3671 	/* too big for the array: 0xfffX */
3672 	if (cmd == P_INITIAL_META)
3673 		return "InitialMeta";
3674 	if (cmd == P_INITIAL_DATA)
3675 		return "InitialData";
3676 	if (cmd == P_CONNECTION_FEATURES)
3677 		return "ConnectionFeatures";
3678 	if (cmd >= ARRAY_SIZE(cmdnames))
3679 		return "Unknown";
3680 	return cmdnames[cmd];
3681 }
3682 
3683 /**
3684  * drbd_wait_misc  -  wait for a request to make progress
3685  * @device:	device associated with the request
3686  * @i:		the struct drbd_interval embedded in struct drbd_request or
3687  *		struct drbd_peer_request
3688  */
3689 int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i)
3690 {
3691 	struct net_conf *nc;
3692 	DEFINE_WAIT(wait);
3693 	long timeout;
3694 
3695 	rcu_read_lock();
3696 	nc = rcu_dereference(first_peer_device(device)->connection->net_conf);
3697 	if (!nc) {
3698 		rcu_read_unlock();
3699 		return -ETIMEDOUT;
3700 	}
3701 	timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT;
3702 	rcu_read_unlock();
3703 
3704 	/* Indicate to wake up device->misc_wait on progress.  */
3705 	i->waiting = true;
3706 	prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE);
3707 	spin_unlock_irq(&device->resource->req_lock);
3708 	timeout = schedule_timeout(timeout);
3709 	finish_wait(&device->misc_wait, &wait);
3710 	spin_lock_irq(&device->resource->req_lock);
3711 	if (!timeout || device->state.conn < C_CONNECTED)
3712 		return -ETIMEDOUT;
3713 	if (signal_pending(current))
3714 		return -ERESTARTSYS;
3715 	return 0;
3716 }
3717 
3718 void lock_all_resources(void)
3719 {
3720 	struct drbd_resource *resource;
3721 	int __maybe_unused i = 0;
3722 
3723 	mutex_lock(&resources_mutex);
3724 	local_irq_disable();
3725 	for_each_resource(resource, &drbd_resources)
3726 		spin_lock_nested(&resource->req_lock, i++);
3727 }
3728 
3729 void unlock_all_resources(void)
3730 {
3731 	struct drbd_resource *resource;
3732 
3733 	for_each_resource(resource, &drbd_resources)
3734 		spin_unlock(&resource->req_lock);
3735 	local_irq_enable();
3736 	mutex_unlock(&resources_mutex);
3737 }
3738 
3739 #ifdef CONFIG_DRBD_FAULT_INJECTION
3740 /* Fault insertion support including random number generator shamelessly
3741  * stolen from kernel/rcutorture.c */
3742 struct fault_random_state {
3743 	unsigned long state;
3744 	unsigned long count;
3745 };
3746 
3747 #define FAULT_RANDOM_MULT 39916801  /* prime */
3748 #define FAULT_RANDOM_ADD	479001701 /* prime */
3749 #define FAULT_RANDOM_REFRESH 10000
3750 
3751 /*
3752  * Crude but fast random-number generator.  Uses a linear congruential
3753  * generator, with occasional help from get_random_bytes().
3754  */
3755 static unsigned long
3756 _drbd_fault_random(struct fault_random_state *rsp)
3757 {
3758 	long refresh;
3759 
3760 	if (!rsp->count--) {
3761 		get_random_bytes(&refresh, sizeof(refresh));
3762 		rsp->state += refresh;
3763 		rsp->count = FAULT_RANDOM_REFRESH;
3764 	}
3765 	rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD;
3766 	return swahw32(rsp->state);
3767 }
3768 
3769 static char *
3770 _drbd_fault_str(unsigned int type) {
3771 	static char *_faults[] = {
3772 		[DRBD_FAULT_MD_WR] = "Meta-data write",
3773 		[DRBD_FAULT_MD_RD] = "Meta-data read",
3774 		[DRBD_FAULT_RS_WR] = "Resync write",
3775 		[DRBD_FAULT_RS_RD] = "Resync read",
3776 		[DRBD_FAULT_DT_WR] = "Data write",
3777 		[DRBD_FAULT_DT_RD] = "Data read",
3778 		[DRBD_FAULT_DT_RA] = "Data read ahead",
3779 		[DRBD_FAULT_BM_ALLOC] = "BM allocation",
3780 		[DRBD_FAULT_AL_EE] = "EE allocation",
3781 		[DRBD_FAULT_RECEIVE] = "receive data corruption",
3782 	};
3783 
3784 	return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**";
3785 }
3786 
3787 unsigned int
3788 _drbd_insert_fault(struct drbd_device *device, unsigned int type)
3789 {
3790 	static struct fault_random_state rrs = {0, 0};
3791 
3792 	unsigned int ret = (
3793 		(drbd_fault_devs == 0 ||
3794 			((1 << device_to_minor(device)) & drbd_fault_devs) != 0) &&
3795 		(((_drbd_fault_random(&rrs) % 100) + 1) <= drbd_fault_rate));
3796 
3797 	if (ret) {
3798 		drbd_fault_count++;
3799 
3800 		if (__ratelimit(&drbd_ratelimit_state))
3801 			drbd_warn(device, "***Simulating %s failure\n",
3802 				_drbd_fault_str(type));
3803 	}
3804 
3805 	return ret;
3806 }
3807 #endif
3808 
3809 const char *drbd_buildtag(void)
3810 {
3811 	/* DRBD built from external sources has here a reference to the
3812 	   git hash of the source code. */
3813 
3814 	static char buildtag[38] = "\0uilt-in";
3815 
3816 	if (buildtag[0] == 0) {
3817 #ifdef MODULE
3818 		sprintf(buildtag, "srcversion: %-24s", THIS_MODULE->srcversion);
3819 #else
3820 		buildtag[0] = 'b';
3821 #endif
3822 	}
3823 
3824 	return buildtag;
3825 }
3826 
3827 module_init(drbd_init)
3828 module_exit(drbd_cleanup)
3829 
3830 EXPORT_SYMBOL(drbd_conn_str);
3831 EXPORT_SYMBOL(drbd_role_str);
3832 EXPORT_SYMBOL(drbd_disk_str);
3833 EXPORT_SYMBOL(drbd_set_st_err_str);
3834