1 /* 2 drbd.c 3 4 This file is part of DRBD by Philipp Reisner and Lars Ellenberg. 5 6 Copyright (C) 2001-2008, LINBIT Information Technologies GmbH. 7 Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>. 8 Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>. 9 10 Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev 11 from Logicworks, Inc. for making SDP replication support possible. 12 13 drbd is free software; you can redistribute it and/or modify 14 it under the terms of the GNU General Public License as published by 15 the Free Software Foundation; either version 2, or (at your option) 16 any later version. 17 18 drbd is distributed in the hope that it will be useful, 19 but WITHOUT ANY WARRANTY; without even the implied warranty of 20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 21 GNU General Public License for more details. 22 23 You should have received a copy of the GNU General Public License 24 along with drbd; see the file COPYING. If not, write to 25 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 26 27 */ 28 29 #include <linux/module.h> 30 #include <linux/drbd.h> 31 #include <asm/uaccess.h> 32 #include <asm/types.h> 33 #include <net/sock.h> 34 #include <linux/ctype.h> 35 #include <linux/mutex.h> 36 #include <linux/fs.h> 37 #include <linux/file.h> 38 #include <linux/proc_fs.h> 39 #include <linux/init.h> 40 #include <linux/mm.h> 41 #include <linux/memcontrol.h> 42 #include <linux/mm_inline.h> 43 #include <linux/slab.h> 44 #include <linux/random.h> 45 #include <linux/reboot.h> 46 #include <linux/notifier.h> 47 #include <linux/kthread.h> 48 #include <linux/workqueue.h> 49 #define __KERNEL_SYSCALLS__ 50 #include <linux/unistd.h> 51 #include <linux/vmalloc.h> 52 53 #include <linux/drbd_limits.h> 54 #include "drbd_int.h" 55 #include "drbd_protocol.h" 56 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */ 57 58 #include "drbd_vli.h" 59 60 static DEFINE_MUTEX(drbd_main_mutex); 61 static int drbd_open(struct block_device *bdev, fmode_t mode); 62 static void drbd_release(struct gendisk *gd, fmode_t mode); 63 static int w_md_sync(struct drbd_work *w, int unused); 64 static void md_sync_timer_fn(unsigned long data); 65 static int w_bitmap_io(struct drbd_work *w, int unused); 66 static int w_go_diskless(struct drbd_work *w, int unused); 67 68 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, " 69 "Lars Ellenberg <lars@linbit.com>"); 70 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION); 71 MODULE_VERSION(REL_VERSION); 72 MODULE_LICENSE("GPL"); 73 MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices (" 74 __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")"); 75 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR); 76 77 #include <linux/moduleparam.h> 78 /* allow_open_on_secondary */ 79 MODULE_PARM_DESC(allow_oos, "DONT USE!"); 80 /* thanks to these macros, if compiled into the kernel (not-module), 81 * this becomes the boot parameter drbd.minor_count */ 82 module_param(minor_count, uint, 0444); 83 module_param(disable_sendpage, bool, 0644); 84 module_param(allow_oos, bool, 0); 85 module_param(proc_details, int, 0644); 86 87 #ifdef CONFIG_DRBD_FAULT_INJECTION 88 int enable_faults; 89 int fault_rate; 90 static int fault_count; 91 int fault_devs; 92 /* bitmap of enabled faults */ 93 module_param(enable_faults, int, 0664); 94 /* fault rate % value - applies to all enabled faults */ 95 module_param(fault_rate, int, 0664); 96 /* count of faults inserted */ 97 module_param(fault_count, int, 0664); 98 /* bitmap of devices to insert faults on */ 99 module_param(fault_devs, int, 0644); 100 #endif 101 102 /* module parameter, defined */ 103 unsigned int minor_count = DRBD_MINOR_COUNT_DEF; 104 bool disable_sendpage; 105 bool allow_oos; 106 int proc_details; /* Detail level in proc drbd*/ 107 108 /* Module parameter for setting the user mode helper program 109 * to run. Default is /sbin/drbdadm */ 110 char usermode_helper[80] = "/sbin/drbdadm"; 111 112 module_param_string(usermode_helper, usermode_helper, sizeof(usermode_helper), 0644); 113 114 /* in 2.6.x, our device mapping and config info contains our virtual gendisks 115 * as member "struct gendisk *vdisk;" 116 */ 117 struct idr drbd_devices; 118 struct list_head drbd_resources; 119 120 struct kmem_cache *drbd_request_cache; 121 struct kmem_cache *drbd_ee_cache; /* peer requests */ 122 struct kmem_cache *drbd_bm_ext_cache; /* bitmap extents */ 123 struct kmem_cache *drbd_al_ext_cache; /* activity log extents */ 124 mempool_t *drbd_request_mempool; 125 mempool_t *drbd_ee_mempool; 126 mempool_t *drbd_md_io_page_pool; 127 struct bio_set *drbd_md_io_bio_set; 128 129 /* I do not use a standard mempool, because: 130 1) I want to hand out the pre-allocated objects first. 131 2) I want to be able to interrupt sleeping allocation with a signal. 132 Note: This is a single linked list, the next pointer is the private 133 member of struct page. 134 */ 135 struct page *drbd_pp_pool; 136 spinlock_t drbd_pp_lock; 137 int drbd_pp_vacant; 138 wait_queue_head_t drbd_pp_wait; 139 140 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5); 141 142 static const struct block_device_operations drbd_ops = { 143 .owner = THIS_MODULE, 144 .open = drbd_open, 145 .release = drbd_release, 146 }; 147 148 struct bio *bio_alloc_drbd(gfp_t gfp_mask) 149 { 150 struct bio *bio; 151 152 if (!drbd_md_io_bio_set) 153 return bio_alloc(gfp_mask, 1); 154 155 bio = bio_alloc_bioset(gfp_mask, 1, drbd_md_io_bio_set); 156 if (!bio) 157 return NULL; 158 return bio; 159 } 160 161 #ifdef __CHECKER__ 162 /* When checking with sparse, and this is an inline function, sparse will 163 give tons of false positives. When this is a real functions sparse works. 164 */ 165 int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins) 166 { 167 int io_allowed; 168 169 atomic_inc(&device->local_cnt); 170 io_allowed = (device->state.disk >= mins); 171 if (!io_allowed) { 172 if (atomic_dec_and_test(&device->local_cnt)) 173 wake_up(&device->misc_wait); 174 } 175 return io_allowed; 176 } 177 178 #endif 179 180 /** 181 * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch 182 * @connection: DRBD connection. 183 * @barrier_nr: Expected identifier of the DRBD write barrier packet. 184 * @set_size: Expected number of requests before that barrier. 185 * 186 * In case the passed barrier_nr or set_size does not match the oldest 187 * epoch of not yet barrier-acked requests, this function will cause a 188 * termination of the connection. 189 */ 190 void tl_release(struct drbd_connection *connection, unsigned int barrier_nr, 191 unsigned int set_size) 192 { 193 struct drbd_request *r; 194 struct drbd_request *req = NULL; 195 int expect_epoch = 0; 196 int expect_size = 0; 197 198 spin_lock_irq(&connection->resource->req_lock); 199 200 /* find oldest not yet barrier-acked write request, 201 * count writes in its epoch. */ 202 list_for_each_entry(r, &connection->transfer_log, tl_requests) { 203 const unsigned s = r->rq_state; 204 if (!req) { 205 if (!(s & RQ_WRITE)) 206 continue; 207 if (!(s & RQ_NET_MASK)) 208 continue; 209 if (s & RQ_NET_DONE) 210 continue; 211 req = r; 212 expect_epoch = req->epoch; 213 expect_size ++; 214 } else { 215 if (r->epoch != expect_epoch) 216 break; 217 if (!(s & RQ_WRITE)) 218 continue; 219 /* if (s & RQ_DONE): not expected */ 220 /* if (!(s & RQ_NET_MASK)): not expected */ 221 expect_size++; 222 } 223 } 224 225 /* first some paranoia code */ 226 if (req == NULL) { 227 drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n", 228 barrier_nr); 229 goto bail; 230 } 231 if (expect_epoch != barrier_nr) { 232 drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n", 233 barrier_nr, expect_epoch); 234 goto bail; 235 } 236 237 if (expect_size != set_size) { 238 drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n", 239 barrier_nr, set_size, expect_size); 240 goto bail; 241 } 242 243 /* Clean up list of requests processed during current epoch. */ 244 /* this extra list walk restart is paranoia, 245 * to catch requests being barrier-acked "unexpectedly". 246 * It usually should find the same req again, or some READ preceding it. */ 247 list_for_each_entry(req, &connection->transfer_log, tl_requests) 248 if (req->epoch == expect_epoch) 249 break; 250 list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) { 251 if (req->epoch != expect_epoch) 252 break; 253 _req_mod(req, BARRIER_ACKED); 254 } 255 spin_unlock_irq(&connection->resource->req_lock); 256 257 return; 258 259 bail: 260 spin_unlock_irq(&connection->resource->req_lock); 261 conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD); 262 } 263 264 265 /** 266 * _tl_restart() - Walks the transfer log, and applies an action to all requests 267 * @device: DRBD device. 268 * @what: The action/event to perform with all request objects 269 * 270 * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO, 271 * RESTART_FROZEN_DISK_IO. 272 */ 273 /* must hold resource->req_lock */ 274 void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what) 275 { 276 struct drbd_request *req, *r; 277 278 list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) 279 _req_mod(req, what); 280 } 281 282 void tl_restart(struct drbd_connection *connection, enum drbd_req_event what) 283 { 284 spin_lock_irq(&connection->resource->req_lock); 285 _tl_restart(connection, what); 286 spin_unlock_irq(&connection->resource->req_lock); 287 } 288 289 /** 290 * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL 291 * @device: DRBD device. 292 * 293 * This is called after the connection to the peer was lost. The storage covered 294 * by the requests on the transfer gets marked as our of sync. Called from the 295 * receiver thread and the worker thread. 296 */ 297 void tl_clear(struct drbd_connection *connection) 298 { 299 tl_restart(connection, CONNECTION_LOST_WHILE_PENDING); 300 } 301 302 /** 303 * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL 304 * @device: DRBD device. 305 */ 306 void tl_abort_disk_io(struct drbd_device *device) 307 { 308 struct drbd_connection *connection = first_peer_device(device)->connection; 309 struct drbd_request *req, *r; 310 311 spin_lock_irq(&connection->resource->req_lock); 312 list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) { 313 if (!(req->rq_state & RQ_LOCAL_PENDING)) 314 continue; 315 if (req->device != device) 316 continue; 317 _req_mod(req, ABORT_DISK_IO); 318 } 319 spin_unlock_irq(&connection->resource->req_lock); 320 } 321 322 static int drbd_thread_setup(void *arg) 323 { 324 struct drbd_thread *thi = (struct drbd_thread *) arg; 325 struct drbd_resource *resource = thi->resource; 326 unsigned long flags; 327 int retval; 328 329 snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s", 330 thi->name[0], 331 resource->name); 332 333 restart: 334 retval = thi->function(thi); 335 336 spin_lock_irqsave(&thi->t_lock, flags); 337 338 /* if the receiver has been "EXITING", the last thing it did 339 * was set the conn state to "StandAlone", 340 * if now a re-connect request comes in, conn state goes C_UNCONNECTED, 341 * and receiver thread will be "started". 342 * drbd_thread_start needs to set "RESTARTING" in that case. 343 * t_state check and assignment needs to be within the same spinlock, 344 * so either thread_start sees EXITING, and can remap to RESTARTING, 345 * or thread_start see NONE, and can proceed as normal. 346 */ 347 348 if (thi->t_state == RESTARTING) { 349 drbd_info(resource, "Restarting %s thread\n", thi->name); 350 thi->t_state = RUNNING; 351 spin_unlock_irqrestore(&thi->t_lock, flags); 352 goto restart; 353 } 354 355 thi->task = NULL; 356 thi->t_state = NONE; 357 smp_mb(); 358 complete_all(&thi->stop); 359 spin_unlock_irqrestore(&thi->t_lock, flags); 360 361 drbd_info(resource, "Terminating %s\n", current->comm); 362 363 /* Release mod reference taken when thread was started */ 364 365 if (thi->connection) 366 kref_put(&thi->connection->kref, drbd_destroy_connection); 367 kref_put(&resource->kref, drbd_destroy_resource); 368 module_put(THIS_MODULE); 369 return retval; 370 } 371 372 static void drbd_thread_init(struct drbd_resource *resource, struct drbd_thread *thi, 373 int (*func) (struct drbd_thread *), const char *name) 374 { 375 spin_lock_init(&thi->t_lock); 376 thi->task = NULL; 377 thi->t_state = NONE; 378 thi->function = func; 379 thi->resource = resource; 380 thi->connection = NULL; 381 thi->name = name; 382 } 383 384 int drbd_thread_start(struct drbd_thread *thi) 385 { 386 struct drbd_resource *resource = thi->resource; 387 struct task_struct *nt; 388 unsigned long flags; 389 390 /* is used from state engine doing drbd_thread_stop_nowait, 391 * while holding the req lock irqsave */ 392 spin_lock_irqsave(&thi->t_lock, flags); 393 394 switch (thi->t_state) { 395 case NONE: 396 drbd_info(resource, "Starting %s thread (from %s [%d])\n", 397 thi->name, current->comm, current->pid); 398 399 /* Get ref on module for thread - this is released when thread exits */ 400 if (!try_module_get(THIS_MODULE)) { 401 drbd_err(resource, "Failed to get module reference in drbd_thread_start\n"); 402 spin_unlock_irqrestore(&thi->t_lock, flags); 403 return false; 404 } 405 406 kref_get(&resource->kref); 407 if (thi->connection) 408 kref_get(&thi->connection->kref); 409 410 init_completion(&thi->stop); 411 thi->reset_cpu_mask = 1; 412 thi->t_state = RUNNING; 413 spin_unlock_irqrestore(&thi->t_lock, flags); 414 flush_signals(current); /* otherw. may get -ERESTARTNOINTR */ 415 416 nt = kthread_create(drbd_thread_setup, (void *) thi, 417 "drbd_%c_%s", thi->name[0], thi->resource->name); 418 419 if (IS_ERR(nt)) { 420 drbd_err(resource, "Couldn't start thread\n"); 421 422 if (thi->connection) 423 kref_put(&thi->connection->kref, drbd_destroy_connection); 424 kref_put(&resource->kref, drbd_destroy_resource); 425 module_put(THIS_MODULE); 426 return false; 427 } 428 spin_lock_irqsave(&thi->t_lock, flags); 429 thi->task = nt; 430 thi->t_state = RUNNING; 431 spin_unlock_irqrestore(&thi->t_lock, flags); 432 wake_up_process(nt); 433 break; 434 case EXITING: 435 thi->t_state = RESTARTING; 436 drbd_info(resource, "Restarting %s thread (from %s [%d])\n", 437 thi->name, current->comm, current->pid); 438 /* fall through */ 439 case RUNNING: 440 case RESTARTING: 441 default: 442 spin_unlock_irqrestore(&thi->t_lock, flags); 443 break; 444 } 445 446 return true; 447 } 448 449 450 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait) 451 { 452 unsigned long flags; 453 454 enum drbd_thread_state ns = restart ? RESTARTING : EXITING; 455 456 /* may be called from state engine, holding the req lock irqsave */ 457 spin_lock_irqsave(&thi->t_lock, flags); 458 459 if (thi->t_state == NONE) { 460 spin_unlock_irqrestore(&thi->t_lock, flags); 461 if (restart) 462 drbd_thread_start(thi); 463 return; 464 } 465 466 if (thi->t_state != ns) { 467 if (thi->task == NULL) { 468 spin_unlock_irqrestore(&thi->t_lock, flags); 469 return; 470 } 471 472 thi->t_state = ns; 473 smp_mb(); 474 init_completion(&thi->stop); 475 if (thi->task != current) 476 force_sig(DRBD_SIGKILL, thi->task); 477 } 478 479 spin_unlock_irqrestore(&thi->t_lock, flags); 480 481 if (wait) 482 wait_for_completion(&thi->stop); 483 } 484 485 int conn_lowest_minor(struct drbd_connection *connection) 486 { 487 struct drbd_peer_device *peer_device; 488 int vnr = 0, minor = -1; 489 490 rcu_read_lock(); 491 peer_device = idr_get_next(&connection->peer_devices, &vnr); 492 if (peer_device) 493 minor = device_to_minor(peer_device->device); 494 rcu_read_unlock(); 495 496 return minor; 497 } 498 499 #ifdef CONFIG_SMP 500 /** 501 * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs 502 * 503 * Forces all threads of a resource onto the same CPU. This is beneficial for 504 * DRBD's performance. May be overwritten by user's configuration. 505 */ 506 static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask) 507 { 508 unsigned int *resources_per_cpu, min_index = ~0; 509 510 resources_per_cpu = kzalloc(nr_cpu_ids * sizeof(*resources_per_cpu), GFP_KERNEL); 511 if (resources_per_cpu) { 512 struct drbd_resource *resource; 513 unsigned int cpu, min = ~0; 514 515 rcu_read_lock(); 516 for_each_resource_rcu(resource, &drbd_resources) { 517 for_each_cpu(cpu, resource->cpu_mask) 518 resources_per_cpu[cpu]++; 519 } 520 rcu_read_unlock(); 521 for_each_online_cpu(cpu) { 522 if (resources_per_cpu[cpu] < min) { 523 min = resources_per_cpu[cpu]; 524 min_index = cpu; 525 } 526 } 527 kfree(resources_per_cpu); 528 } 529 if (min_index == ~0) { 530 cpumask_setall(*cpu_mask); 531 return; 532 } 533 cpumask_set_cpu(min_index, *cpu_mask); 534 } 535 536 /** 537 * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread 538 * @device: DRBD device. 539 * @thi: drbd_thread object 540 * 541 * call in the "main loop" of _all_ threads, no need for any mutex, current won't die 542 * prematurely. 543 */ 544 void drbd_thread_current_set_cpu(struct drbd_thread *thi) 545 { 546 struct drbd_resource *resource = thi->resource; 547 struct task_struct *p = current; 548 549 if (!thi->reset_cpu_mask) 550 return; 551 thi->reset_cpu_mask = 0; 552 set_cpus_allowed_ptr(p, resource->cpu_mask); 553 } 554 #else 555 #define drbd_calc_cpu_mask(A) ({}) 556 #endif 557 558 /** 559 * drbd_header_size - size of a packet header 560 * 561 * The header size is a multiple of 8, so any payload following the header is 562 * word aligned on 64-bit architectures. (The bitmap send and receive code 563 * relies on this.) 564 */ 565 unsigned int drbd_header_size(struct drbd_connection *connection) 566 { 567 if (connection->agreed_pro_version >= 100) { 568 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8)); 569 return sizeof(struct p_header100); 570 } else { 571 BUILD_BUG_ON(sizeof(struct p_header80) != 572 sizeof(struct p_header95)); 573 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8)); 574 return sizeof(struct p_header80); 575 } 576 } 577 578 static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size) 579 { 580 h->magic = cpu_to_be32(DRBD_MAGIC); 581 h->command = cpu_to_be16(cmd); 582 h->length = cpu_to_be16(size); 583 return sizeof(struct p_header80); 584 } 585 586 static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size) 587 { 588 h->magic = cpu_to_be16(DRBD_MAGIC_BIG); 589 h->command = cpu_to_be16(cmd); 590 h->length = cpu_to_be32(size); 591 return sizeof(struct p_header95); 592 } 593 594 static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd, 595 int size, int vnr) 596 { 597 h->magic = cpu_to_be32(DRBD_MAGIC_100); 598 h->volume = cpu_to_be16(vnr); 599 h->command = cpu_to_be16(cmd); 600 h->length = cpu_to_be32(size); 601 h->pad = 0; 602 return sizeof(struct p_header100); 603 } 604 605 static unsigned int prepare_header(struct drbd_connection *connection, int vnr, 606 void *buffer, enum drbd_packet cmd, int size) 607 { 608 if (connection->agreed_pro_version >= 100) 609 return prepare_header100(buffer, cmd, size, vnr); 610 else if (connection->agreed_pro_version >= 95 && 611 size > DRBD_MAX_SIZE_H80_PACKET) 612 return prepare_header95(buffer, cmd, size); 613 else 614 return prepare_header80(buffer, cmd, size); 615 } 616 617 static void *__conn_prepare_command(struct drbd_connection *connection, 618 struct drbd_socket *sock) 619 { 620 if (!sock->socket) 621 return NULL; 622 return sock->sbuf + drbd_header_size(connection); 623 } 624 625 void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock) 626 { 627 void *p; 628 629 mutex_lock(&sock->mutex); 630 p = __conn_prepare_command(connection, sock); 631 if (!p) 632 mutex_unlock(&sock->mutex); 633 634 return p; 635 } 636 637 void *drbd_prepare_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock) 638 { 639 return conn_prepare_command(peer_device->connection, sock); 640 } 641 642 static int __send_command(struct drbd_connection *connection, int vnr, 643 struct drbd_socket *sock, enum drbd_packet cmd, 644 unsigned int header_size, void *data, 645 unsigned int size) 646 { 647 int msg_flags; 648 int err; 649 650 /* 651 * Called with @data == NULL and the size of the data blocks in @size 652 * for commands that send data blocks. For those commands, omit the 653 * MSG_MORE flag: this will increase the likelihood that data blocks 654 * which are page aligned on the sender will end up page aligned on the 655 * receiver. 656 */ 657 msg_flags = data ? MSG_MORE : 0; 658 659 header_size += prepare_header(connection, vnr, sock->sbuf, cmd, 660 header_size + size); 661 err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size, 662 msg_flags); 663 if (data && !err) 664 err = drbd_send_all(connection, sock->socket, data, size, 0); 665 return err; 666 } 667 668 static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock, 669 enum drbd_packet cmd, unsigned int header_size, 670 void *data, unsigned int size) 671 { 672 return __send_command(connection, 0, sock, cmd, header_size, data, size); 673 } 674 675 int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock, 676 enum drbd_packet cmd, unsigned int header_size, 677 void *data, unsigned int size) 678 { 679 int err; 680 681 err = __conn_send_command(connection, sock, cmd, header_size, data, size); 682 mutex_unlock(&sock->mutex); 683 return err; 684 } 685 686 int drbd_send_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock, 687 enum drbd_packet cmd, unsigned int header_size, 688 void *data, unsigned int size) 689 { 690 int err; 691 692 err = __send_command(peer_device->connection, peer_device->device->vnr, 693 sock, cmd, header_size, data, size); 694 mutex_unlock(&sock->mutex); 695 return err; 696 } 697 698 int drbd_send_ping(struct drbd_connection *connection) 699 { 700 struct drbd_socket *sock; 701 702 sock = &connection->meta; 703 if (!conn_prepare_command(connection, sock)) 704 return -EIO; 705 return conn_send_command(connection, sock, P_PING, 0, NULL, 0); 706 } 707 708 int drbd_send_ping_ack(struct drbd_connection *connection) 709 { 710 struct drbd_socket *sock; 711 712 sock = &connection->meta; 713 if (!conn_prepare_command(connection, sock)) 714 return -EIO; 715 return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0); 716 } 717 718 int drbd_send_sync_param(struct drbd_peer_device *peer_device) 719 { 720 struct drbd_socket *sock; 721 struct p_rs_param_95 *p; 722 int size; 723 const int apv = peer_device->connection->agreed_pro_version; 724 enum drbd_packet cmd; 725 struct net_conf *nc; 726 struct disk_conf *dc; 727 728 sock = &peer_device->connection->data; 729 p = drbd_prepare_command(peer_device, sock); 730 if (!p) 731 return -EIO; 732 733 rcu_read_lock(); 734 nc = rcu_dereference(peer_device->connection->net_conf); 735 736 size = apv <= 87 ? sizeof(struct p_rs_param) 737 : apv == 88 ? sizeof(struct p_rs_param) 738 + strlen(nc->verify_alg) + 1 739 : apv <= 94 ? sizeof(struct p_rs_param_89) 740 : /* apv >= 95 */ sizeof(struct p_rs_param_95); 741 742 cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM; 743 744 /* initialize verify_alg and csums_alg */ 745 memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX); 746 747 if (get_ldev(peer_device->device)) { 748 dc = rcu_dereference(peer_device->device->ldev->disk_conf); 749 p->resync_rate = cpu_to_be32(dc->resync_rate); 750 p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead); 751 p->c_delay_target = cpu_to_be32(dc->c_delay_target); 752 p->c_fill_target = cpu_to_be32(dc->c_fill_target); 753 p->c_max_rate = cpu_to_be32(dc->c_max_rate); 754 put_ldev(peer_device->device); 755 } else { 756 p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF); 757 p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF); 758 p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF); 759 p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF); 760 p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF); 761 } 762 763 if (apv >= 88) 764 strcpy(p->verify_alg, nc->verify_alg); 765 if (apv >= 89) 766 strcpy(p->csums_alg, nc->csums_alg); 767 rcu_read_unlock(); 768 769 return drbd_send_command(peer_device, sock, cmd, size, NULL, 0); 770 } 771 772 int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd) 773 { 774 struct drbd_socket *sock; 775 struct p_protocol *p; 776 struct net_conf *nc; 777 int size, cf; 778 779 sock = &connection->data; 780 p = __conn_prepare_command(connection, sock); 781 if (!p) 782 return -EIO; 783 784 rcu_read_lock(); 785 nc = rcu_dereference(connection->net_conf); 786 787 if (nc->tentative && connection->agreed_pro_version < 92) { 788 rcu_read_unlock(); 789 mutex_unlock(&sock->mutex); 790 drbd_err(connection, "--dry-run is not supported by peer"); 791 return -EOPNOTSUPP; 792 } 793 794 size = sizeof(*p); 795 if (connection->agreed_pro_version >= 87) 796 size += strlen(nc->integrity_alg) + 1; 797 798 p->protocol = cpu_to_be32(nc->wire_protocol); 799 p->after_sb_0p = cpu_to_be32(nc->after_sb_0p); 800 p->after_sb_1p = cpu_to_be32(nc->after_sb_1p); 801 p->after_sb_2p = cpu_to_be32(nc->after_sb_2p); 802 p->two_primaries = cpu_to_be32(nc->two_primaries); 803 cf = 0; 804 if (nc->discard_my_data) 805 cf |= CF_DISCARD_MY_DATA; 806 if (nc->tentative) 807 cf |= CF_DRY_RUN; 808 p->conn_flags = cpu_to_be32(cf); 809 810 if (connection->agreed_pro_version >= 87) 811 strcpy(p->integrity_alg, nc->integrity_alg); 812 rcu_read_unlock(); 813 814 return __conn_send_command(connection, sock, cmd, size, NULL, 0); 815 } 816 817 int drbd_send_protocol(struct drbd_connection *connection) 818 { 819 int err; 820 821 mutex_lock(&connection->data.mutex); 822 err = __drbd_send_protocol(connection, P_PROTOCOL); 823 mutex_unlock(&connection->data.mutex); 824 825 return err; 826 } 827 828 static int _drbd_send_uuids(struct drbd_peer_device *peer_device, u64 uuid_flags) 829 { 830 struct drbd_device *device = peer_device->device; 831 struct drbd_socket *sock; 832 struct p_uuids *p; 833 int i; 834 835 if (!get_ldev_if_state(device, D_NEGOTIATING)) 836 return 0; 837 838 sock = &peer_device->connection->data; 839 p = drbd_prepare_command(peer_device, sock); 840 if (!p) { 841 put_ldev(device); 842 return -EIO; 843 } 844 spin_lock_irq(&device->ldev->md.uuid_lock); 845 for (i = UI_CURRENT; i < UI_SIZE; i++) 846 p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]); 847 spin_unlock_irq(&device->ldev->md.uuid_lock); 848 849 device->comm_bm_set = drbd_bm_total_weight(device); 850 p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set); 851 rcu_read_lock(); 852 uuid_flags |= rcu_dereference(peer_device->connection->net_conf)->discard_my_data ? 1 : 0; 853 rcu_read_unlock(); 854 uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0; 855 uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0; 856 p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags); 857 858 put_ldev(device); 859 return drbd_send_command(peer_device, sock, P_UUIDS, sizeof(*p), NULL, 0); 860 } 861 862 int drbd_send_uuids(struct drbd_peer_device *peer_device) 863 { 864 return _drbd_send_uuids(peer_device, 0); 865 } 866 867 int drbd_send_uuids_skip_initial_sync(struct drbd_peer_device *peer_device) 868 { 869 return _drbd_send_uuids(peer_device, 8); 870 } 871 872 void drbd_print_uuids(struct drbd_device *device, const char *text) 873 { 874 if (get_ldev_if_state(device, D_NEGOTIATING)) { 875 u64 *uuid = device->ldev->md.uuid; 876 drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n", 877 text, 878 (unsigned long long)uuid[UI_CURRENT], 879 (unsigned long long)uuid[UI_BITMAP], 880 (unsigned long long)uuid[UI_HISTORY_START], 881 (unsigned long long)uuid[UI_HISTORY_END]); 882 put_ldev(device); 883 } else { 884 drbd_info(device, "%s effective data uuid: %016llX\n", 885 text, 886 (unsigned long long)device->ed_uuid); 887 } 888 } 889 890 void drbd_gen_and_send_sync_uuid(struct drbd_peer_device *peer_device) 891 { 892 struct drbd_device *device = peer_device->device; 893 struct drbd_socket *sock; 894 struct p_rs_uuid *p; 895 u64 uuid; 896 897 D_ASSERT(device, device->state.disk == D_UP_TO_DATE); 898 899 uuid = device->ldev->md.uuid[UI_BITMAP]; 900 if (uuid && uuid != UUID_JUST_CREATED) 901 uuid = uuid + UUID_NEW_BM_OFFSET; 902 else 903 get_random_bytes(&uuid, sizeof(u64)); 904 drbd_uuid_set(device, UI_BITMAP, uuid); 905 drbd_print_uuids(device, "updated sync UUID"); 906 drbd_md_sync(device); 907 908 sock = &peer_device->connection->data; 909 p = drbd_prepare_command(peer_device, sock); 910 if (p) { 911 p->uuid = cpu_to_be64(uuid); 912 drbd_send_command(peer_device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0); 913 } 914 } 915 916 int drbd_send_sizes(struct drbd_peer_device *peer_device, int trigger_reply, enum dds_flags flags) 917 { 918 struct drbd_device *device = peer_device->device; 919 struct drbd_socket *sock; 920 struct p_sizes *p; 921 sector_t d_size, u_size; 922 int q_order_type; 923 unsigned int max_bio_size; 924 925 if (get_ldev_if_state(device, D_NEGOTIATING)) { 926 D_ASSERT(device, device->ldev->backing_bdev); 927 d_size = drbd_get_max_capacity(device->ldev); 928 rcu_read_lock(); 929 u_size = rcu_dereference(device->ldev->disk_conf)->disk_size; 930 rcu_read_unlock(); 931 q_order_type = drbd_queue_order_type(device); 932 max_bio_size = queue_max_hw_sectors(device->ldev->backing_bdev->bd_disk->queue) << 9; 933 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE); 934 put_ldev(device); 935 } else { 936 d_size = 0; 937 u_size = 0; 938 q_order_type = QUEUE_ORDERED_NONE; 939 max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */ 940 } 941 942 sock = &peer_device->connection->data; 943 p = drbd_prepare_command(peer_device, sock); 944 if (!p) 945 return -EIO; 946 947 if (peer_device->connection->agreed_pro_version <= 94) 948 max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET); 949 else if (peer_device->connection->agreed_pro_version < 100) 950 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95); 951 952 p->d_size = cpu_to_be64(d_size); 953 p->u_size = cpu_to_be64(u_size); 954 p->c_size = cpu_to_be64(trigger_reply ? 0 : drbd_get_capacity(device->this_bdev)); 955 p->max_bio_size = cpu_to_be32(max_bio_size); 956 p->queue_order_type = cpu_to_be16(q_order_type); 957 p->dds_flags = cpu_to_be16(flags); 958 return drbd_send_command(peer_device, sock, P_SIZES, sizeof(*p), NULL, 0); 959 } 960 961 /** 962 * drbd_send_current_state() - Sends the drbd state to the peer 963 * @peer_device: DRBD peer device. 964 */ 965 int drbd_send_current_state(struct drbd_peer_device *peer_device) 966 { 967 struct drbd_socket *sock; 968 struct p_state *p; 969 970 sock = &peer_device->connection->data; 971 p = drbd_prepare_command(peer_device, sock); 972 if (!p) 973 return -EIO; 974 p->state = cpu_to_be32(peer_device->device->state.i); /* Within the send mutex */ 975 return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0); 976 } 977 978 /** 979 * drbd_send_state() - After a state change, sends the new state to the peer 980 * @peer_device: DRBD peer device. 981 * @state: the state to send, not necessarily the current state. 982 * 983 * Each state change queues an "after_state_ch" work, which will eventually 984 * send the resulting new state to the peer. If more state changes happen 985 * between queuing and processing of the after_state_ch work, we still 986 * want to send each intermediary state in the order it occurred. 987 */ 988 int drbd_send_state(struct drbd_peer_device *peer_device, union drbd_state state) 989 { 990 struct drbd_socket *sock; 991 struct p_state *p; 992 993 sock = &peer_device->connection->data; 994 p = drbd_prepare_command(peer_device, sock); 995 if (!p) 996 return -EIO; 997 p->state = cpu_to_be32(state.i); /* Within the send mutex */ 998 return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0); 999 } 1000 1001 int drbd_send_state_req(struct drbd_peer_device *peer_device, union drbd_state mask, union drbd_state val) 1002 { 1003 struct drbd_socket *sock; 1004 struct p_req_state *p; 1005 1006 sock = &peer_device->connection->data; 1007 p = drbd_prepare_command(peer_device, sock); 1008 if (!p) 1009 return -EIO; 1010 p->mask = cpu_to_be32(mask.i); 1011 p->val = cpu_to_be32(val.i); 1012 return drbd_send_command(peer_device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0); 1013 } 1014 1015 int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val) 1016 { 1017 enum drbd_packet cmd; 1018 struct drbd_socket *sock; 1019 struct p_req_state *p; 1020 1021 cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ; 1022 sock = &connection->data; 1023 p = conn_prepare_command(connection, sock); 1024 if (!p) 1025 return -EIO; 1026 p->mask = cpu_to_be32(mask.i); 1027 p->val = cpu_to_be32(val.i); 1028 return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0); 1029 } 1030 1031 void drbd_send_sr_reply(struct drbd_peer_device *peer_device, enum drbd_state_rv retcode) 1032 { 1033 struct drbd_socket *sock; 1034 struct p_req_state_reply *p; 1035 1036 sock = &peer_device->connection->meta; 1037 p = drbd_prepare_command(peer_device, sock); 1038 if (p) { 1039 p->retcode = cpu_to_be32(retcode); 1040 drbd_send_command(peer_device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0); 1041 } 1042 } 1043 1044 void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode) 1045 { 1046 struct drbd_socket *sock; 1047 struct p_req_state_reply *p; 1048 enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY; 1049 1050 sock = &connection->meta; 1051 p = conn_prepare_command(connection, sock); 1052 if (p) { 1053 p->retcode = cpu_to_be32(retcode); 1054 conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0); 1055 } 1056 } 1057 1058 static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code) 1059 { 1060 BUG_ON(code & ~0xf); 1061 p->encoding = (p->encoding & ~0xf) | code; 1062 } 1063 1064 static void dcbp_set_start(struct p_compressed_bm *p, int set) 1065 { 1066 p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0); 1067 } 1068 1069 static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n) 1070 { 1071 BUG_ON(n & ~0x7); 1072 p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4); 1073 } 1074 1075 static int fill_bitmap_rle_bits(struct drbd_device *device, 1076 struct p_compressed_bm *p, 1077 unsigned int size, 1078 struct bm_xfer_ctx *c) 1079 { 1080 struct bitstream bs; 1081 unsigned long plain_bits; 1082 unsigned long tmp; 1083 unsigned long rl; 1084 unsigned len; 1085 unsigned toggle; 1086 int bits, use_rle; 1087 1088 /* may we use this feature? */ 1089 rcu_read_lock(); 1090 use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle; 1091 rcu_read_unlock(); 1092 if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90) 1093 return 0; 1094 1095 if (c->bit_offset >= c->bm_bits) 1096 return 0; /* nothing to do. */ 1097 1098 /* use at most thus many bytes */ 1099 bitstream_init(&bs, p->code, size, 0); 1100 memset(p->code, 0, size); 1101 /* plain bits covered in this code string */ 1102 plain_bits = 0; 1103 1104 /* p->encoding & 0x80 stores whether the first run length is set. 1105 * bit offset is implicit. 1106 * start with toggle == 2 to be able to tell the first iteration */ 1107 toggle = 2; 1108 1109 /* see how much plain bits we can stuff into one packet 1110 * using RLE and VLI. */ 1111 do { 1112 tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset) 1113 : _drbd_bm_find_next(device, c->bit_offset); 1114 if (tmp == -1UL) 1115 tmp = c->bm_bits; 1116 rl = tmp - c->bit_offset; 1117 1118 if (toggle == 2) { /* first iteration */ 1119 if (rl == 0) { 1120 /* the first checked bit was set, 1121 * store start value, */ 1122 dcbp_set_start(p, 1); 1123 /* but skip encoding of zero run length */ 1124 toggle = !toggle; 1125 continue; 1126 } 1127 dcbp_set_start(p, 0); 1128 } 1129 1130 /* paranoia: catch zero runlength. 1131 * can only happen if bitmap is modified while we scan it. */ 1132 if (rl == 0) { 1133 drbd_err(device, "unexpected zero runlength while encoding bitmap " 1134 "t:%u bo:%lu\n", toggle, c->bit_offset); 1135 return -1; 1136 } 1137 1138 bits = vli_encode_bits(&bs, rl); 1139 if (bits == -ENOBUFS) /* buffer full */ 1140 break; 1141 if (bits <= 0) { 1142 drbd_err(device, "error while encoding bitmap: %d\n", bits); 1143 return 0; 1144 } 1145 1146 toggle = !toggle; 1147 plain_bits += rl; 1148 c->bit_offset = tmp; 1149 } while (c->bit_offset < c->bm_bits); 1150 1151 len = bs.cur.b - p->code + !!bs.cur.bit; 1152 1153 if (plain_bits < (len << 3)) { 1154 /* incompressible with this method. 1155 * we need to rewind both word and bit position. */ 1156 c->bit_offset -= plain_bits; 1157 bm_xfer_ctx_bit_to_word_offset(c); 1158 c->bit_offset = c->word_offset * BITS_PER_LONG; 1159 return 0; 1160 } 1161 1162 /* RLE + VLI was able to compress it just fine. 1163 * update c->word_offset. */ 1164 bm_xfer_ctx_bit_to_word_offset(c); 1165 1166 /* store pad_bits */ 1167 dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7); 1168 1169 return len; 1170 } 1171 1172 /** 1173 * send_bitmap_rle_or_plain 1174 * 1175 * Return 0 when done, 1 when another iteration is needed, and a negative error 1176 * code upon failure. 1177 */ 1178 static int 1179 send_bitmap_rle_or_plain(struct drbd_device *device, struct bm_xfer_ctx *c) 1180 { 1181 struct drbd_socket *sock = &first_peer_device(device)->connection->data; 1182 unsigned int header_size = drbd_header_size(first_peer_device(device)->connection); 1183 struct p_compressed_bm *p = sock->sbuf + header_size; 1184 int len, err; 1185 1186 len = fill_bitmap_rle_bits(device, p, 1187 DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c); 1188 if (len < 0) 1189 return -EIO; 1190 1191 if (len) { 1192 dcbp_set_code(p, RLE_VLI_Bits); 1193 err = __send_command(first_peer_device(device)->connection, device->vnr, sock, 1194 P_COMPRESSED_BITMAP, sizeof(*p) + len, 1195 NULL, 0); 1196 c->packets[0]++; 1197 c->bytes[0] += header_size + sizeof(*p) + len; 1198 1199 if (c->bit_offset >= c->bm_bits) 1200 len = 0; /* DONE */ 1201 } else { 1202 /* was not compressible. 1203 * send a buffer full of plain text bits instead. */ 1204 unsigned int data_size; 1205 unsigned long num_words; 1206 unsigned long *p = sock->sbuf + header_size; 1207 1208 data_size = DRBD_SOCKET_BUFFER_SIZE - header_size; 1209 num_words = min_t(size_t, data_size / sizeof(*p), 1210 c->bm_words - c->word_offset); 1211 len = num_words * sizeof(*p); 1212 if (len) 1213 drbd_bm_get_lel(device, c->word_offset, num_words, p); 1214 err = __send_command(first_peer_device(device)->connection, device->vnr, sock, P_BITMAP, len, NULL, 0); 1215 c->word_offset += num_words; 1216 c->bit_offset = c->word_offset * BITS_PER_LONG; 1217 1218 c->packets[1]++; 1219 c->bytes[1] += header_size + len; 1220 1221 if (c->bit_offset > c->bm_bits) 1222 c->bit_offset = c->bm_bits; 1223 } 1224 if (!err) { 1225 if (len == 0) { 1226 INFO_bm_xfer_stats(device, "send", c); 1227 return 0; 1228 } else 1229 return 1; 1230 } 1231 return -EIO; 1232 } 1233 1234 /* See the comment at receive_bitmap() */ 1235 static int _drbd_send_bitmap(struct drbd_device *device) 1236 { 1237 struct bm_xfer_ctx c; 1238 int err; 1239 1240 if (!expect(device->bitmap)) 1241 return false; 1242 1243 if (get_ldev(device)) { 1244 if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) { 1245 drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n"); 1246 drbd_bm_set_all(device); 1247 if (drbd_bm_write(device)) { 1248 /* write_bm did fail! Leave full sync flag set in Meta P_DATA 1249 * but otherwise process as per normal - need to tell other 1250 * side that a full resync is required! */ 1251 drbd_err(device, "Failed to write bitmap to disk!\n"); 1252 } else { 1253 drbd_md_clear_flag(device, MDF_FULL_SYNC); 1254 drbd_md_sync(device); 1255 } 1256 } 1257 put_ldev(device); 1258 } 1259 1260 c = (struct bm_xfer_ctx) { 1261 .bm_bits = drbd_bm_bits(device), 1262 .bm_words = drbd_bm_words(device), 1263 }; 1264 1265 do { 1266 err = send_bitmap_rle_or_plain(device, &c); 1267 } while (err > 0); 1268 1269 return err == 0; 1270 } 1271 1272 int drbd_send_bitmap(struct drbd_device *device) 1273 { 1274 struct drbd_socket *sock = &first_peer_device(device)->connection->data; 1275 int err = -1; 1276 1277 mutex_lock(&sock->mutex); 1278 if (sock->socket) 1279 err = !_drbd_send_bitmap(device); 1280 mutex_unlock(&sock->mutex); 1281 return err; 1282 } 1283 1284 void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size) 1285 { 1286 struct drbd_socket *sock; 1287 struct p_barrier_ack *p; 1288 1289 if (connection->cstate < C_WF_REPORT_PARAMS) 1290 return; 1291 1292 sock = &connection->meta; 1293 p = conn_prepare_command(connection, sock); 1294 if (!p) 1295 return; 1296 p->barrier = barrier_nr; 1297 p->set_size = cpu_to_be32(set_size); 1298 conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0); 1299 } 1300 1301 /** 1302 * _drbd_send_ack() - Sends an ack packet 1303 * @device: DRBD device. 1304 * @cmd: Packet command code. 1305 * @sector: sector, needs to be in big endian byte order 1306 * @blksize: size in byte, needs to be in big endian byte order 1307 * @block_id: Id, big endian byte order 1308 */ 1309 static int _drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1310 u64 sector, u32 blksize, u64 block_id) 1311 { 1312 struct drbd_socket *sock; 1313 struct p_block_ack *p; 1314 1315 if (peer_device->device->state.conn < C_CONNECTED) 1316 return -EIO; 1317 1318 sock = &peer_device->connection->meta; 1319 p = drbd_prepare_command(peer_device, sock); 1320 if (!p) 1321 return -EIO; 1322 p->sector = sector; 1323 p->block_id = block_id; 1324 p->blksize = blksize; 1325 p->seq_num = cpu_to_be32(atomic_inc_return(&peer_device->device->packet_seq)); 1326 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0); 1327 } 1328 1329 /* dp->sector and dp->block_id already/still in network byte order, 1330 * data_size is payload size according to dp->head, 1331 * and may need to be corrected for digest size. */ 1332 void drbd_send_ack_dp(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1333 struct p_data *dp, int data_size) 1334 { 1335 if (peer_device->connection->peer_integrity_tfm) 1336 data_size -= crypto_hash_digestsize(peer_device->connection->peer_integrity_tfm); 1337 _drbd_send_ack(peer_device, cmd, dp->sector, cpu_to_be32(data_size), 1338 dp->block_id); 1339 } 1340 1341 void drbd_send_ack_rp(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1342 struct p_block_req *rp) 1343 { 1344 _drbd_send_ack(peer_device, cmd, rp->sector, rp->blksize, rp->block_id); 1345 } 1346 1347 /** 1348 * drbd_send_ack() - Sends an ack packet 1349 * @device: DRBD device 1350 * @cmd: packet command code 1351 * @peer_req: peer request 1352 */ 1353 int drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1354 struct drbd_peer_request *peer_req) 1355 { 1356 return _drbd_send_ack(peer_device, cmd, 1357 cpu_to_be64(peer_req->i.sector), 1358 cpu_to_be32(peer_req->i.size), 1359 peer_req->block_id); 1360 } 1361 1362 /* This function misuses the block_id field to signal if the blocks 1363 * are is sync or not. */ 1364 int drbd_send_ack_ex(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1365 sector_t sector, int blksize, u64 block_id) 1366 { 1367 return _drbd_send_ack(peer_device, cmd, 1368 cpu_to_be64(sector), 1369 cpu_to_be32(blksize), 1370 cpu_to_be64(block_id)); 1371 } 1372 1373 int drbd_send_drequest(struct drbd_peer_device *peer_device, int cmd, 1374 sector_t sector, int size, u64 block_id) 1375 { 1376 struct drbd_socket *sock; 1377 struct p_block_req *p; 1378 1379 sock = &peer_device->connection->data; 1380 p = drbd_prepare_command(peer_device, sock); 1381 if (!p) 1382 return -EIO; 1383 p->sector = cpu_to_be64(sector); 1384 p->block_id = block_id; 1385 p->blksize = cpu_to_be32(size); 1386 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0); 1387 } 1388 1389 int drbd_send_drequest_csum(struct drbd_peer_device *peer_device, sector_t sector, int size, 1390 void *digest, int digest_size, enum drbd_packet cmd) 1391 { 1392 struct drbd_socket *sock; 1393 struct p_block_req *p; 1394 1395 /* FIXME: Put the digest into the preallocated socket buffer. */ 1396 1397 sock = &peer_device->connection->data; 1398 p = drbd_prepare_command(peer_device, sock); 1399 if (!p) 1400 return -EIO; 1401 p->sector = cpu_to_be64(sector); 1402 p->block_id = ID_SYNCER /* unused */; 1403 p->blksize = cpu_to_be32(size); 1404 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), digest, digest_size); 1405 } 1406 1407 int drbd_send_ov_request(struct drbd_peer_device *peer_device, sector_t sector, int size) 1408 { 1409 struct drbd_socket *sock; 1410 struct p_block_req *p; 1411 1412 sock = &peer_device->connection->data; 1413 p = drbd_prepare_command(peer_device, sock); 1414 if (!p) 1415 return -EIO; 1416 p->sector = cpu_to_be64(sector); 1417 p->block_id = ID_SYNCER /* unused */; 1418 p->blksize = cpu_to_be32(size); 1419 return drbd_send_command(peer_device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0); 1420 } 1421 1422 /* called on sndtimeo 1423 * returns false if we should retry, 1424 * true if we think connection is dead 1425 */ 1426 static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock) 1427 { 1428 int drop_it; 1429 /* long elapsed = (long)(jiffies - device->last_received); */ 1430 1431 drop_it = connection->meta.socket == sock 1432 || !connection->asender.task 1433 || get_t_state(&connection->asender) != RUNNING 1434 || connection->cstate < C_WF_REPORT_PARAMS; 1435 1436 if (drop_it) 1437 return true; 1438 1439 drop_it = !--connection->ko_count; 1440 if (!drop_it) { 1441 drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n", 1442 current->comm, current->pid, connection->ko_count); 1443 request_ping(connection); 1444 } 1445 1446 return drop_it; /* && (device->state == R_PRIMARY) */; 1447 } 1448 1449 static void drbd_update_congested(struct drbd_connection *connection) 1450 { 1451 struct sock *sk = connection->data.socket->sk; 1452 if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5) 1453 set_bit(NET_CONGESTED, &connection->flags); 1454 } 1455 1456 /* The idea of sendpage seems to be to put some kind of reference 1457 * to the page into the skb, and to hand it over to the NIC. In 1458 * this process get_page() gets called. 1459 * 1460 * As soon as the page was really sent over the network put_page() 1461 * gets called by some part of the network layer. [ NIC driver? ] 1462 * 1463 * [ get_page() / put_page() increment/decrement the count. If count 1464 * reaches 0 the page will be freed. ] 1465 * 1466 * This works nicely with pages from FSs. 1467 * But this means that in protocol A we might signal IO completion too early! 1468 * 1469 * In order not to corrupt data during a resync we must make sure 1470 * that we do not reuse our own buffer pages (EEs) to early, therefore 1471 * we have the net_ee list. 1472 * 1473 * XFS seems to have problems, still, it submits pages with page_count == 0! 1474 * As a workaround, we disable sendpage on pages 1475 * with page_count == 0 or PageSlab. 1476 */ 1477 static int _drbd_no_send_page(struct drbd_peer_device *peer_device, struct page *page, 1478 int offset, size_t size, unsigned msg_flags) 1479 { 1480 struct socket *socket; 1481 void *addr; 1482 int err; 1483 1484 socket = peer_device->connection->data.socket; 1485 addr = kmap(page) + offset; 1486 err = drbd_send_all(peer_device->connection, socket, addr, size, msg_flags); 1487 kunmap(page); 1488 if (!err) 1489 peer_device->device->send_cnt += size >> 9; 1490 return err; 1491 } 1492 1493 static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *page, 1494 int offset, size_t size, unsigned msg_flags) 1495 { 1496 struct socket *socket = peer_device->connection->data.socket; 1497 mm_segment_t oldfs = get_fs(); 1498 int len = size; 1499 int err = -EIO; 1500 1501 /* e.g. XFS meta- & log-data is in slab pages, which have a 1502 * page_count of 0 and/or have PageSlab() set. 1503 * we cannot use send_page for those, as that does get_page(); 1504 * put_page(); and would cause either a VM_BUG directly, or 1505 * __page_cache_release a page that would actually still be referenced 1506 * by someone, leading to some obscure delayed Oops somewhere else. */ 1507 if (disable_sendpage || (page_count(page) < 1) || PageSlab(page)) 1508 return _drbd_no_send_page(peer_device, page, offset, size, msg_flags); 1509 1510 msg_flags |= MSG_NOSIGNAL; 1511 drbd_update_congested(peer_device->connection); 1512 set_fs(KERNEL_DS); 1513 do { 1514 int sent; 1515 1516 sent = socket->ops->sendpage(socket, page, offset, len, msg_flags); 1517 if (sent <= 0) { 1518 if (sent == -EAGAIN) { 1519 if (we_should_drop_the_connection(peer_device->connection, socket)) 1520 break; 1521 continue; 1522 } 1523 drbd_warn(peer_device->device, "%s: size=%d len=%d sent=%d\n", 1524 __func__, (int)size, len, sent); 1525 if (sent < 0) 1526 err = sent; 1527 break; 1528 } 1529 len -= sent; 1530 offset += sent; 1531 } while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/); 1532 set_fs(oldfs); 1533 clear_bit(NET_CONGESTED, &peer_device->connection->flags); 1534 1535 if (len == 0) { 1536 err = 0; 1537 peer_device->device->send_cnt += size >> 9; 1538 } 1539 return err; 1540 } 1541 1542 static int _drbd_send_bio(struct drbd_peer_device *peer_device, struct bio *bio) 1543 { 1544 struct bio_vec bvec; 1545 struct bvec_iter iter; 1546 1547 /* hint all but last page with MSG_MORE */ 1548 bio_for_each_segment(bvec, bio, iter) { 1549 int err; 1550 1551 err = _drbd_no_send_page(peer_device, bvec.bv_page, 1552 bvec.bv_offset, bvec.bv_len, 1553 bio_iter_last(bvec, iter) 1554 ? 0 : MSG_MORE); 1555 if (err) 1556 return err; 1557 } 1558 return 0; 1559 } 1560 1561 static int _drbd_send_zc_bio(struct drbd_peer_device *peer_device, struct bio *bio) 1562 { 1563 struct bio_vec bvec; 1564 struct bvec_iter iter; 1565 1566 /* hint all but last page with MSG_MORE */ 1567 bio_for_each_segment(bvec, bio, iter) { 1568 int err; 1569 1570 err = _drbd_send_page(peer_device, bvec.bv_page, 1571 bvec.bv_offset, bvec.bv_len, 1572 bio_iter_last(bvec, iter) ? 0 : MSG_MORE); 1573 if (err) 1574 return err; 1575 } 1576 return 0; 1577 } 1578 1579 static int _drbd_send_zc_ee(struct drbd_peer_device *peer_device, 1580 struct drbd_peer_request *peer_req) 1581 { 1582 struct page *page = peer_req->pages; 1583 unsigned len = peer_req->i.size; 1584 int err; 1585 1586 /* hint all but last page with MSG_MORE */ 1587 page_chain_for_each(page) { 1588 unsigned l = min_t(unsigned, len, PAGE_SIZE); 1589 1590 err = _drbd_send_page(peer_device, page, 0, l, 1591 page_chain_next(page) ? MSG_MORE : 0); 1592 if (err) 1593 return err; 1594 len -= l; 1595 } 1596 return 0; 1597 } 1598 1599 static u32 bio_flags_to_wire(struct drbd_connection *connection, unsigned long bi_rw) 1600 { 1601 if (connection->agreed_pro_version >= 95) 1602 return (bi_rw & REQ_SYNC ? DP_RW_SYNC : 0) | 1603 (bi_rw & REQ_FUA ? DP_FUA : 0) | 1604 (bi_rw & REQ_FLUSH ? DP_FLUSH : 0) | 1605 (bi_rw & REQ_DISCARD ? DP_DISCARD : 0); 1606 else 1607 return bi_rw & REQ_SYNC ? DP_RW_SYNC : 0; 1608 } 1609 1610 /* Used to send write or TRIM aka REQ_DISCARD requests 1611 * R_PRIMARY -> Peer (P_DATA, P_TRIM) 1612 */ 1613 int drbd_send_dblock(struct drbd_peer_device *peer_device, struct drbd_request *req) 1614 { 1615 struct drbd_device *device = peer_device->device; 1616 struct drbd_socket *sock; 1617 struct p_data *p; 1618 unsigned int dp_flags = 0; 1619 int dgs; 1620 int err; 1621 1622 sock = &peer_device->connection->data; 1623 p = drbd_prepare_command(peer_device, sock); 1624 dgs = peer_device->connection->integrity_tfm ? 1625 crypto_hash_digestsize(peer_device->connection->integrity_tfm) : 0; 1626 1627 if (!p) 1628 return -EIO; 1629 p->sector = cpu_to_be64(req->i.sector); 1630 p->block_id = (unsigned long)req; 1631 p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq)); 1632 dp_flags = bio_flags_to_wire(peer_device->connection, req->master_bio->bi_rw); 1633 if (device->state.conn >= C_SYNC_SOURCE && 1634 device->state.conn <= C_PAUSED_SYNC_T) 1635 dp_flags |= DP_MAY_SET_IN_SYNC; 1636 if (peer_device->connection->agreed_pro_version >= 100) { 1637 if (req->rq_state & RQ_EXP_RECEIVE_ACK) 1638 dp_flags |= DP_SEND_RECEIVE_ACK; 1639 if (req->rq_state & RQ_EXP_WRITE_ACK) 1640 dp_flags |= DP_SEND_WRITE_ACK; 1641 } 1642 p->dp_flags = cpu_to_be32(dp_flags); 1643 1644 if (dp_flags & DP_DISCARD) { 1645 struct p_trim *t = (struct p_trim*)p; 1646 t->size = cpu_to_be32(req->i.size); 1647 err = __send_command(peer_device->connection, device->vnr, sock, P_TRIM, sizeof(*t), NULL, 0); 1648 goto out; 1649 } 1650 1651 /* our digest is still only over the payload. 1652 * TRIM does not carry any payload. */ 1653 if (dgs) 1654 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, p + 1); 1655 err = __send_command(peer_device->connection, device->vnr, sock, P_DATA, sizeof(*p) + dgs, NULL, req->i.size); 1656 if (!err) { 1657 /* For protocol A, we have to memcpy the payload into 1658 * socket buffers, as we may complete right away 1659 * as soon as we handed it over to tcp, at which point the data 1660 * pages may become invalid. 1661 * 1662 * For data-integrity enabled, we copy it as well, so we can be 1663 * sure that even if the bio pages may still be modified, it 1664 * won't change the data on the wire, thus if the digest checks 1665 * out ok after sending on this side, but does not fit on the 1666 * receiving side, we sure have detected corruption elsewhere. 1667 */ 1668 if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || dgs) 1669 err = _drbd_send_bio(peer_device, req->master_bio); 1670 else 1671 err = _drbd_send_zc_bio(peer_device, req->master_bio); 1672 1673 /* double check digest, sometimes buffers have been modified in flight. */ 1674 if (dgs > 0 && dgs <= 64) { 1675 /* 64 byte, 512 bit, is the largest digest size 1676 * currently supported in kernel crypto. */ 1677 unsigned char digest[64]; 1678 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest); 1679 if (memcmp(p + 1, digest, dgs)) { 1680 drbd_warn(device, 1681 "Digest mismatch, buffer modified by upper layers during write: %llus +%u\n", 1682 (unsigned long long)req->i.sector, req->i.size); 1683 } 1684 } /* else if (dgs > 64) { 1685 ... Be noisy about digest too large ... 1686 } */ 1687 } 1688 out: 1689 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */ 1690 1691 return err; 1692 } 1693 1694 /* answer packet, used to send data back for read requests: 1695 * Peer -> (diskless) R_PRIMARY (P_DATA_REPLY) 1696 * C_SYNC_SOURCE -> C_SYNC_TARGET (P_RS_DATA_REPLY) 1697 */ 1698 int drbd_send_block(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1699 struct drbd_peer_request *peer_req) 1700 { 1701 struct drbd_device *device = peer_device->device; 1702 struct drbd_socket *sock; 1703 struct p_data *p; 1704 int err; 1705 int dgs; 1706 1707 sock = &peer_device->connection->data; 1708 p = drbd_prepare_command(peer_device, sock); 1709 1710 dgs = peer_device->connection->integrity_tfm ? 1711 crypto_hash_digestsize(peer_device->connection->integrity_tfm) : 0; 1712 1713 if (!p) 1714 return -EIO; 1715 p->sector = cpu_to_be64(peer_req->i.sector); 1716 p->block_id = peer_req->block_id; 1717 p->seq_num = 0; /* unused */ 1718 p->dp_flags = 0; 1719 if (dgs) 1720 drbd_csum_ee(peer_device->connection->integrity_tfm, peer_req, p + 1); 1721 err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*p) + dgs, NULL, peer_req->i.size); 1722 if (!err) 1723 err = _drbd_send_zc_ee(peer_device, peer_req); 1724 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */ 1725 1726 return err; 1727 } 1728 1729 int drbd_send_out_of_sync(struct drbd_peer_device *peer_device, struct drbd_request *req) 1730 { 1731 struct drbd_socket *sock; 1732 struct p_block_desc *p; 1733 1734 sock = &peer_device->connection->data; 1735 p = drbd_prepare_command(peer_device, sock); 1736 if (!p) 1737 return -EIO; 1738 p->sector = cpu_to_be64(req->i.sector); 1739 p->blksize = cpu_to_be32(req->i.size); 1740 return drbd_send_command(peer_device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0); 1741 } 1742 1743 /* 1744 drbd_send distinguishes two cases: 1745 1746 Packets sent via the data socket "sock" 1747 and packets sent via the meta data socket "msock" 1748 1749 sock msock 1750 -----------------+-------------------------+------------------------------ 1751 timeout conf.timeout / 2 conf.timeout / 2 1752 timeout action send a ping via msock Abort communication 1753 and close all sockets 1754 */ 1755 1756 /* 1757 * you must have down()ed the appropriate [m]sock_mutex elsewhere! 1758 */ 1759 int drbd_send(struct drbd_connection *connection, struct socket *sock, 1760 void *buf, size_t size, unsigned msg_flags) 1761 { 1762 struct kvec iov; 1763 struct msghdr msg; 1764 int rv, sent = 0; 1765 1766 if (!sock) 1767 return -EBADR; 1768 1769 /* THINK if (signal_pending) return ... ? */ 1770 1771 iov.iov_base = buf; 1772 iov.iov_len = size; 1773 1774 msg.msg_name = NULL; 1775 msg.msg_namelen = 0; 1776 msg.msg_control = NULL; 1777 msg.msg_controllen = 0; 1778 msg.msg_flags = msg_flags | MSG_NOSIGNAL; 1779 1780 if (sock == connection->data.socket) { 1781 rcu_read_lock(); 1782 connection->ko_count = rcu_dereference(connection->net_conf)->ko_count; 1783 rcu_read_unlock(); 1784 drbd_update_congested(connection); 1785 } 1786 do { 1787 /* STRANGE 1788 * tcp_sendmsg does _not_ use its size parameter at all ? 1789 * 1790 * -EAGAIN on timeout, -EINTR on signal. 1791 */ 1792 /* THINK 1793 * do we need to block DRBD_SIG if sock == &meta.socket ?? 1794 * otherwise wake_asender() might interrupt some send_*Ack ! 1795 */ 1796 rv = kernel_sendmsg(sock, &msg, &iov, 1, size); 1797 if (rv == -EAGAIN) { 1798 if (we_should_drop_the_connection(connection, sock)) 1799 break; 1800 else 1801 continue; 1802 } 1803 if (rv == -EINTR) { 1804 flush_signals(current); 1805 rv = 0; 1806 } 1807 if (rv < 0) 1808 break; 1809 sent += rv; 1810 iov.iov_base += rv; 1811 iov.iov_len -= rv; 1812 } while (sent < size); 1813 1814 if (sock == connection->data.socket) 1815 clear_bit(NET_CONGESTED, &connection->flags); 1816 1817 if (rv <= 0) { 1818 if (rv != -EAGAIN) { 1819 drbd_err(connection, "%s_sendmsg returned %d\n", 1820 sock == connection->meta.socket ? "msock" : "sock", 1821 rv); 1822 conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD); 1823 } else 1824 conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD); 1825 } 1826 1827 return sent; 1828 } 1829 1830 /** 1831 * drbd_send_all - Send an entire buffer 1832 * 1833 * Returns 0 upon success and a negative error value otherwise. 1834 */ 1835 int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer, 1836 size_t size, unsigned msg_flags) 1837 { 1838 int err; 1839 1840 err = drbd_send(connection, sock, buffer, size, msg_flags); 1841 if (err < 0) 1842 return err; 1843 if (err != size) 1844 return -EIO; 1845 return 0; 1846 } 1847 1848 static int drbd_open(struct block_device *bdev, fmode_t mode) 1849 { 1850 struct drbd_device *device = bdev->bd_disk->private_data; 1851 unsigned long flags; 1852 int rv = 0; 1853 1854 mutex_lock(&drbd_main_mutex); 1855 spin_lock_irqsave(&device->resource->req_lock, flags); 1856 /* to have a stable device->state.role 1857 * and no race with updating open_cnt */ 1858 1859 if (device->state.role != R_PRIMARY) { 1860 if (mode & FMODE_WRITE) 1861 rv = -EROFS; 1862 else if (!allow_oos) 1863 rv = -EMEDIUMTYPE; 1864 } 1865 1866 if (!rv) 1867 device->open_cnt++; 1868 spin_unlock_irqrestore(&device->resource->req_lock, flags); 1869 mutex_unlock(&drbd_main_mutex); 1870 1871 return rv; 1872 } 1873 1874 static void drbd_release(struct gendisk *gd, fmode_t mode) 1875 { 1876 struct drbd_device *device = gd->private_data; 1877 mutex_lock(&drbd_main_mutex); 1878 device->open_cnt--; 1879 mutex_unlock(&drbd_main_mutex); 1880 } 1881 1882 static void drbd_set_defaults(struct drbd_device *device) 1883 { 1884 /* Beware! The actual layout differs 1885 * between big endian and little endian */ 1886 device->state = (union drbd_dev_state) { 1887 { .role = R_SECONDARY, 1888 .peer = R_UNKNOWN, 1889 .conn = C_STANDALONE, 1890 .disk = D_DISKLESS, 1891 .pdsk = D_UNKNOWN, 1892 } }; 1893 } 1894 1895 void drbd_init_set_defaults(struct drbd_device *device) 1896 { 1897 /* the memset(,0,) did most of this. 1898 * note: only assignments, no allocation in here */ 1899 1900 drbd_set_defaults(device); 1901 1902 atomic_set(&device->ap_bio_cnt, 0); 1903 atomic_set(&device->ap_pending_cnt, 0); 1904 atomic_set(&device->rs_pending_cnt, 0); 1905 atomic_set(&device->unacked_cnt, 0); 1906 atomic_set(&device->local_cnt, 0); 1907 atomic_set(&device->pp_in_use_by_net, 0); 1908 atomic_set(&device->rs_sect_in, 0); 1909 atomic_set(&device->rs_sect_ev, 0); 1910 atomic_set(&device->ap_in_flight, 0); 1911 atomic_set(&device->md_io_in_use, 0); 1912 1913 mutex_init(&device->own_state_mutex); 1914 device->state_mutex = &device->own_state_mutex; 1915 1916 spin_lock_init(&device->al_lock); 1917 spin_lock_init(&device->peer_seq_lock); 1918 1919 INIT_LIST_HEAD(&device->active_ee); 1920 INIT_LIST_HEAD(&device->sync_ee); 1921 INIT_LIST_HEAD(&device->done_ee); 1922 INIT_LIST_HEAD(&device->read_ee); 1923 INIT_LIST_HEAD(&device->net_ee); 1924 INIT_LIST_HEAD(&device->resync_reads); 1925 INIT_LIST_HEAD(&device->resync_work.list); 1926 INIT_LIST_HEAD(&device->unplug_work.list); 1927 INIT_LIST_HEAD(&device->go_diskless.list); 1928 INIT_LIST_HEAD(&device->md_sync_work.list); 1929 INIT_LIST_HEAD(&device->start_resync_work.list); 1930 INIT_LIST_HEAD(&device->bm_io_work.w.list); 1931 1932 device->resync_work.cb = w_resync_timer; 1933 device->unplug_work.cb = w_send_write_hint; 1934 device->go_diskless.cb = w_go_diskless; 1935 device->md_sync_work.cb = w_md_sync; 1936 device->bm_io_work.w.cb = w_bitmap_io; 1937 device->start_resync_work.cb = w_start_resync; 1938 1939 init_timer(&device->resync_timer); 1940 init_timer(&device->md_sync_timer); 1941 init_timer(&device->start_resync_timer); 1942 init_timer(&device->request_timer); 1943 device->resync_timer.function = resync_timer_fn; 1944 device->resync_timer.data = (unsigned long) device; 1945 device->md_sync_timer.function = md_sync_timer_fn; 1946 device->md_sync_timer.data = (unsigned long) device; 1947 device->start_resync_timer.function = start_resync_timer_fn; 1948 device->start_resync_timer.data = (unsigned long) device; 1949 device->request_timer.function = request_timer_fn; 1950 device->request_timer.data = (unsigned long) device; 1951 1952 init_waitqueue_head(&device->misc_wait); 1953 init_waitqueue_head(&device->state_wait); 1954 init_waitqueue_head(&device->ee_wait); 1955 init_waitqueue_head(&device->al_wait); 1956 init_waitqueue_head(&device->seq_wait); 1957 1958 device->resync_wenr = LC_FREE; 1959 device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE; 1960 device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE; 1961 } 1962 1963 void drbd_device_cleanup(struct drbd_device *device) 1964 { 1965 int i; 1966 if (first_peer_device(device)->connection->receiver.t_state != NONE) 1967 drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n", 1968 first_peer_device(device)->connection->receiver.t_state); 1969 1970 device->al_writ_cnt = 1971 device->bm_writ_cnt = 1972 device->read_cnt = 1973 device->recv_cnt = 1974 device->send_cnt = 1975 device->writ_cnt = 1976 device->p_size = 1977 device->rs_start = 1978 device->rs_total = 1979 device->rs_failed = 0; 1980 device->rs_last_events = 0; 1981 device->rs_last_sect_ev = 0; 1982 for (i = 0; i < DRBD_SYNC_MARKS; i++) { 1983 device->rs_mark_left[i] = 0; 1984 device->rs_mark_time[i] = 0; 1985 } 1986 D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL); 1987 1988 drbd_set_my_capacity(device, 0); 1989 if (device->bitmap) { 1990 /* maybe never allocated. */ 1991 drbd_bm_resize(device, 0, 1); 1992 drbd_bm_cleanup(device); 1993 } 1994 1995 drbd_free_bc(device->ldev); 1996 device->ldev = NULL; 1997 1998 clear_bit(AL_SUSPENDED, &device->flags); 1999 2000 D_ASSERT(device, list_empty(&device->active_ee)); 2001 D_ASSERT(device, list_empty(&device->sync_ee)); 2002 D_ASSERT(device, list_empty(&device->done_ee)); 2003 D_ASSERT(device, list_empty(&device->read_ee)); 2004 D_ASSERT(device, list_empty(&device->net_ee)); 2005 D_ASSERT(device, list_empty(&device->resync_reads)); 2006 D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q)); 2007 D_ASSERT(device, list_empty(&device->resync_work.list)); 2008 D_ASSERT(device, list_empty(&device->unplug_work.list)); 2009 D_ASSERT(device, list_empty(&device->go_diskless.list)); 2010 2011 drbd_set_defaults(device); 2012 } 2013 2014 2015 static void drbd_destroy_mempools(void) 2016 { 2017 struct page *page; 2018 2019 while (drbd_pp_pool) { 2020 page = drbd_pp_pool; 2021 drbd_pp_pool = (struct page *)page_private(page); 2022 __free_page(page); 2023 drbd_pp_vacant--; 2024 } 2025 2026 /* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */ 2027 2028 if (drbd_md_io_bio_set) 2029 bioset_free(drbd_md_io_bio_set); 2030 if (drbd_md_io_page_pool) 2031 mempool_destroy(drbd_md_io_page_pool); 2032 if (drbd_ee_mempool) 2033 mempool_destroy(drbd_ee_mempool); 2034 if (drbd_request_mempool) 2035 mempool_destroy(drbd_request_mempool); 2036 if (drbd_ee_cache) 2037 kmem_cache_destroy(drbd_ee_cache); 2038 if (drbd_request_cache) 2039 kmem_cache_destroy(drbd_request_cache); 2040 if (drbd_bm_ext_cache) 2041 kmem_cache_destroy(drbd_bm_ext_cache); 2042 if (drbd_al_ext_cache) 2043 kmem_cache_destroy(drbd_al_ext_cache); 2044 2045 drbd_md_io_bio_set = NULL; 2046 drbd_md_io_page_pool = NULL; 2047 drbd_ee_mempool = NULL; 2048 drbd_request_mempool = NULL; 2049 drbd_ee_cache = NULL; 2050 drbd_request_cache = NULL; 2051 drbd_bm_ext_cache = NULL; 2052 drbd_al_ext_cache = NULL; 2053 2054 return; 2055 } 2056 2057 static int drbd_create_mempools(void) 2058 { 2059 struct page *page; 2060 const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * minor_count; 2061 int i; 2062 2063 /* prepare our caches and mempools */ 2064 drbd_request_mempool = NULL; 2065 drbd_ee_cache = NULL; 2066 drbd_request_cache = NULL; 2067 drbd_bm_ext_cache = NULL; 2068 drbd_al_ext_cache = NULL; 2069 drbd_pp_pool = NULL; 2070 drbd_md_io_page_pool = NULL; 2071 drbd_md_io_bio_set = NULL; 2072 2073 /* caches */ 2074 drbd_request_cache = kmem_cache_create( 2075 "drbd_req", sizeof(struct drbd_request), 0, 0, NULL); 2076 if (drbd_request_cache == NULL) 2077 goto Enomem; 2078 2079 drbd_ee_cache = kmem_cache_create( 2080 "drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL); 2081 if (drbd_ee_cache == NULL) 2082 goto Enomem; 2083 2084 drbd_bm_ext_cache = kmem_cache_create( 2085 "drbd_bm", sizeof(struct bm_extent), 0, 0, NULL); 2086 if (drbd_bm_ext_cache == NULL) 2087 goto Enomem; 2088 2089 drbd_al_ext_cache = kmem_cache_create( 2090 "drbd_al", sizeof(struct lc_element), 0, 0, NULL); 2091 if (drbd_al_ext_cache == NULL) 2092 goto Enomem; 2093 2094 /* mempools */ 2095 drbd_md_io_bio_set = bioset_create(DRBD_MIN_POOL_PAGES, 0); 2096 if (drbd_md_io_bio_set == NULL) 2097 goto Enomem; 2098 2099 drbd_md_io_page_pool = mempool_create_page_pool(DRBD_MIN_POOL_PAGES, 0); 2100 if (drbd_md_io_page_pool == NULL) 2101 goto Enomem; 2102 2103 drbd_request_mempool = mempool_create(number, 2104 mempool_alloc_slab, mempool_free_slab, drbd_request_cache); 2105 if (drbd_request_mempool == NULL) 2106 goto Enomem; 2107 2108 drbd_ee_mempool = mempool_create(number, 2109 mempool_alloc_slab, mempool_free_slab, drbd_ee_cache); 2110 if (drbd_ee_mempool == NULL) 2111 goto Enomem; 2112 2113 /* drbd's page pool */ 2114 spin_lock_init(&drbd_pp_lock); 2115 2116 for (i = 0; i < number; i++) { 2117 page = alloc_page(GFP_HIGHUSER); 2118 if (!page) 2119 goto Enomem; 2120 set_page_private(page, (unsigned long)drbd_pp_pool); 2121 drbd_pp_pool = page; 2122 } 2123 drbd_pp_vacant = number; 2124 2125 return 0; 2126 2127 Enomem: 2128 drbd_destroy_mempools(); /* in case we allocated some */ 2129 return -ENOMEM; 2130 } 2131 2132 static int drbd_notify_sys(struct notifier_block *this, unsigned long code, 2133 void *unused) 2134 { 2135 /* just so we have it. you never know what interesting things we 2136 * might want to do here some day... 2137 */ 2138 2139 return NOTIFY_DONE; 2140 } 2141 2142 static struct notifier_block drbd_notifier = { 2143 .notifier_call = drbd_notify_sys, 2144 }; 2145 2146 static void drbd_release_all_peer_reqs(struct drbd_device *device) 2147 { 2148 int rr; 2149 2150 rr = drbd_free_peer_reqs(device, &device->active_ee); 2151 if (rr) 2152 drbd_err(device, "%d EEs in active list found!\n", rr); 2153 2154 rr = drbd_free_peer_reqs(device, &device->sync_ee); 2155 if (rr) 2156 drbd_err(device, "%d EEs in sync list found!\n", rr); 2157 2158 rr = drbd_free_peer_reqs(device, &device->read_ee); 2159 if (rr) 2160 drbd_err(device, "%d EEs in read list found!\n", rr); 2161 2162 rr = drbd_free_peer_reqs(device, &device->done_ee); 2163 if (rr) 2164 drbd_err(device, "%d EEs in done list found!\n", rr); 2165 2166 rr = drbd_free_peer_reqs(device, &device->net_ee); 2167 if (rr) 2168 drbd_err(device, "%d EEs in net list found!\n", rr); 2169 } 2170 2171 /* caution. no locking. */ 2172 void drbd_destroy_device(struct kref *kref) 2173 { 2174 struct drbd_device *device = container_of(kref, struct drbd_device, kref); 2175 struct drbd_resource *resource = device->resource; 2176 struct drbd_connection *connection; 2177 2178 del_timer_sync(&device->request_timer); 2179 2180 /* paranoia asserts */ 2181 D_ASSERT(device, device->open_cnt == 0); 2182 /* end paranoia asserts */ 2183 2184 /* cleanup stuff that may have been allocated during 2185 * device (re-)configuration or state changes */ 2186 2187 if (device->this_bdev) 2188 bdput(device->this_bdev); 2189 2190 drbd_free_bc(device->ldev); 2191 device->ldev = NULL; 2192 2193 drbd_release_all_peer_reqs(device); 2194 2195 lc_destroy(device->act_log); 2196 lc_destroy(device->resync); 2197 2198 kfree(device->p_uuid); 2199 /* device->p_uuid = NULL; */ 2200 2201 if (device->bitmap) /* should no longer be there. */ 2202 drbd_bm_cleanup(device); 2203 __free_page(device->md_io_page); 2204 put_disk(device->vdisk); 2205 blk_cleanup_queue(device->rq_queue); 2206 kfree(device->rs_plan_s); 2207 kfree(first_peer_device(device)); 2208 kfree(device); 2209 2210 for_each_connection(connection, resource) 2211 kref_put(&connection->kref, drbd_destroy_connection); 2212 kref_put(&resource->kref, drbd_destroy_resource); 2213 } 2214 2215 /* One global retry thread, if we need to push back some bio and have it 2216 * reinserted through our make request function. 2217 */ 2218 static struct retry_worker { 2219 struct workqueue_struct *wq; 2220 struct work_struct worker; 2221 2222 spinlock_t lock; 2223 struct list_head writes; 2224 } retry; 2225 2226 static void do_retry(struct work_struct *ws) 2227 { 2228 struct retry_worker *retry = container_of(ws, struct retry_worker, worker); 2229 LIST_HEAD(writes); 2230 struct drbd_request *req, *tmp; 2231 2232 spin_lock_irq(&retry->lock); 2233 list_splice_init(&retry->writes, &writes); 2234 spin_unlock_irq(&retry->lock); 2235 2236 list_for_each_entry_safe(req, tmp, &writes, tl_requests) { 2237 struct drbd_device *device = req->device; 2238 struct bio *bio = req->master_bio; 2239 unsigned long start_time = req->start_time; 2240 bool expected; 2241 2242 expected = 2243 expect(atomic_read(&req->completion_ref) == 0) && 2244 expect(req->rq_state & RQ_POSTPONED) && 2245 expect((req->rq_state & RQ_LOCAL_PENDING) == 0 || 2246 (req->rq_state & RQ_LOCAL_ABORTED) != 0); 2247 2248 if (!expected) 2249 drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n", 2250 req, atomic_read(&req->completion_ref), 2251 req->rq_state); 2252 2253 /* We still need to put one kref associated with the 2254 * "completion_ref" going zero in the code path that queued it 2255 * here. The request object may still be referenced by a 2256 * frozen local req->private_bio, in case we force-detached. 2257 */ 2258 kref_put(&req->kref, drbd_req_destroy); 2259 2260 /* A single suspended or otherwise blocking device may stall 2261 * all others as well. Fortunately, this code path is to 2262 * recover from a situation that "should not happen": 2263 * concurrent writes in multi-primary setup. 2264 * In a "normal" lifecycle, this workqueue is supposed to be 2265 * destroyed without ever doing anything. 2266 * If it turns out to be an issue anyways, we can do per 2267 * resource (replication group) or per device (minor) retry 2268 * workqueues instead. 2269 */ 2270 2271 /* We are not just doing generic_make_request(), 2272 * as we want to keep the start_time information. */ 2273 inc_ap_bio(device); 2274 __drbd_make_request(device, bio, start_time); 2275 } 2276 } 2277 2278 void drbd_restart_request(struct drbd_request *req) 2279 { 2280 unsigned long flags; 2281 spin_lock_irqsave(&retry.lock, flags); 2282 list_move_tail(&req->tl_requests, &retry.writes); 2283 spin_unlock_irqrestore(&retry.lock, flags); 2284 2285 /* Drop the extra reference that would otherwise 2286 * have been dropped by complete_master_bio. 2287 * do_retry() needs to grab a new one. */ 2288 dec_ap_bio(req->device); 2289 2290 queue_work(retry.wq, &retry.worker); 2291 } 2292 2293 void drbd_destroy_resource(struct kref *kref) 2294 { 2295 struct drbd_resource *resource = 2296 container_of(kref, struct drbd_resource, kref); 2297 2298 idr_destroy(&resource->devices); 2299 free_cpumask_var(resource->cpu_mask); 2300 kfree(resource->name); 2301 kfree(resource); 2302 } 2303 2304 void drbd_free_resource(struct drbd_resource *resource) 2305 { 2306 struct drbd_connection *connection, *tmp; 2307 2308 for_each_connection_safe(connection, tmp, resource) { 2309 list_del(&connection->connections); 2310 kref_put(&connection->kref, drbd_destroy_connection); 2311 } 2312 kref_put(&resource->kref, drbd_destroy_resource); 2313 } 2314 2315 static void drbd_cleanup(void) 2316 { 2317 unsigned int i; 2318 struct drbd_device *device; 2319 struct drbd_resource *resource, *tmp; 2320 2321 unregister_reboot_notifier(&drbd_notifier); 2322 2323 /* first remove proc, 2324 * drbdsetup uses it's presence to detect 2325 * whether DRBD is loaded. 2326 * If we would get stuck in proc removal, 2327 * but have netlink already deregistered, 2328 * some drbdsetup commands may wait forever 2329 * for an answer. 2330 */ 2331 if (drbd_proc) 2332 remove_proc_entry("drbd", NULL); 2333 2334 if (retry.wq) 2335 destroy_workqueue(retry.wq); 2336 2337 drbd_genl_unregister(); 2338 2339 idr_for_each_entry(&drbd_devices, device, i) 2340 drbd_delete_device(device); 2341 2342 /* not _rcu since, no other updater anymore. Genl already unregistered */ 2343 for_each_resource_safe(resource, tmp, &drbd_resources) { 2344 list_del(&resource->resources); 2345 drbd_free_resource(resource); 2346 } 2347 2348 drbd_destroy_mempools(); 2349 unregister_blkdev(DRBD_MAJOR, "drbd"); 2350 2351 idr_destroy(&drbd_devices); 2352 2353 printk(KERN_INFO "drbd: module cleanup done.\n"); 2354 } 2355 2356 /** 2357 * drbd_congested() - Callback for the flusher thread 2358 * @congested_data: User data 2359 * @bdi_bits: Bits the BDI flusher thread is currently interested in 2360 * 2361 * Returns 1<<BDI_async_congested and/or 1<<BDI_sync_congested if we are congested. 2362 */ 2363 static int drbd_congested(void *congested_data, int bdi_bits) 2364 { 2365 struct drbd_device *device = congested_data; 2366 struct request_queue *q; 2367 char reason = '-'; 2368 int r = 0; 2369 2370 if (!may_inc_ap_bio(device)) { 2371 /* DRBD has frozen IO */ 2372 r = bdi_bits; 2373 reason = 'd'; 2374 goto out; 2375 } 2376 2377 if (test_bit(CALLBACK_PENDING, &first_peer_device(device)->connection->flags)) { 2378 r |= (1 << BDI_async_congested); 2379 /* Without good local data, we would need to read from remote, 2380 * and that would need the worker thread as well, which is 2381 * currently blocked waiting for that usermode helper to 2382 * finish. 2383 */ 2384 if (!get_ldev_if_state(device, D_UP_TO_DATE)) 2385 r |= (1 << BDI_sync_congested); 2386 else 2387 put_ldev(device); 2388 r &= bdi_bits; 2389 reason = 'c'; 2390 goto out; 2391 } 2392 2393 if (get_ldev(device)) { 2394 q = bdev_get_queue(device->ldev->backing_bdev); 2395 r = bdi_congested(&q->backing_dev_info, bdi_bits); 2396 put_ldev(device); 2397 if (r) 2398 reason = 'b'; 2399 } 2400 2401 if (bdi_bits & (1 << BDI_async_congested) && 2402 test_bit(NET_CONGESTED, &first_peer_device(device)->connection->flags)) { 2403 r |= (1 << BDI_async_congested); 2404 reason = reason == 'b' ? 'a' : 'n'; 2405 } 2406 2407 out: 2408 device->congestion_reason = reason; 2409 return r; 2410 } 2411 2412 static void drbd_init_workqueue(struct drbd_work_queue* wq) 2413 { 2414 spin_lock_init(&wq->q_lock); 2415 INIT_LIST_HEAD(&wq->q); 2416 init_waitqueue_head(&wq->q_wait); 2417 } 2418 2419 struct completion_work { 2420 struct drbd_work w; 2421 struct completion done; 2422 }; 2423 2424 static int w_complete(struct drbd_work *w, int cancel) 2425 { 2426 struct completion_work *completion_work = 2427 container_of(w, struct completion_work, w); 2428 2429 complete(&completion_work->done); 2430 return 0; 2431 } 2432 2433 void drbd_flush_workqueue(struct drbd_work_queue *work_queue) 2434 { 2435 struct completion_work completion_work; 2436 2437 completion_work.w.cb = w_complete; 2438 init_completion(&completion_work.done); 2439 drbd_queue_work(work_queue, &completion_work.w); 2440 wait_for_completion(&completion_work.done); 2441 } 2442 2443 struct drbd_resource *drbd_find_resource(const char *name) 2444 { 2445 struct drbd_resource *resource; 2446 2447 if (!name || !name[0]) 2448 return NULL; 2449 2450 rcu_read_lock(); 2451 for_each_resource_rcu(resource, &drbd_resources) { 2452 if (!strcmp(resource->name, name)) { 2453 kref_get(&resource->kref); 2454 goto found; 2455 } 2456 } 2457 resource = NULL; 2458 found: 2459 rcu_read_unlock(); 2460 return resource; 2461 } 2462 2463 struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len, 2464 void *peer_addr, int peer_addr_len) 2465 { 2466 struct drbd_resource *resource; 2467 struct drbd_connection *connection; 2468 2469 rcu_read_lock(); 2470 for_each_resource_rcu(resource, &drbd_resources) { 2471 for_each_connection_rcu(connection, resource) { 2472 if (connection->my_addr_len == my_addr_len && 2473 connection->peer_addr_len == peer_addr_len && 2474 !memcmp(&connection->my_addr, my_addr, my_addr_len) && 2475 !memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) { 2476 kref_get(&connection->kref); 2477 goto found; 2478 } 2479 } 2480 } 2481 connection = NULL; 2482 found: 2483 rcu_read_unlock(); 2484 return connection; 2485 } 2486 2487 static int drbd_alloc_socket(struct drbd_socket *socket) 2488 { 2489 socket->rbuf = (void *) __get_free_page(GFP_KERNEL); 2490 if (!socket->rbuf) 2491 return -ENOMEM; 2492 socket->sbuf = (void *) __get_free_page(GFP_KERNEL); 2493 if (!socket->sbuf) 2494 return -ENOMEM; 2495 return 0; 2496 } 2497 2498 static void drbd_free_socket(struct drbd_socket *socket) 2499 { 2500 free_page((unsigned long) socket->sbuf); 2501 free_page((unsigned long) socket->rbuf); 2502 } 2503 2504 void conn_free_crypto(struct drbd_connection *connection) 2505 { 2506 drbd_free_sock(connection); 2507 2508 crypto_free_hash(connection->csums_tfm); 2509 crypto_free_hash(connection->verify_tfm); 2510 crypto_free_hash(connection->cram_hmac_tfm); 2511 crypto_free_hash(connection->integrity_tfm); 2512 crypto_free_hash(connection->peer_integrity_tfm); 2513 kfree(connection->int_dig_in); 2514 kfree(connection->int_dig_vv); 2515 2516 connection->csums_tfm = NULL; 2517 connection->verify_tfm = NULL; 2518 connection->cram_hmac_tfm = NULL; 2519 connection->integrity_tfm = NULL; 2520 connection->peer_integrity_tfm = NULL; 2521 connection->int_dig_in = NULL; 2522 connection->int_dig_vv = NULL; 2523 } 2524 2525 int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts) 2526 { 2527 struct drbd_connection *connection; 2528 cpumask_var_t new_cpu_mask; 2529 int err; 2530 2531 if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL)) 2532 return -ENOMEM; 2533 /* 2534 retcode = ERR_NOMEM; 2535 drbd_msg_put_info("unable to allocate cpumask"); 2536 */ 2537 2538 /* silently ignore cpu mask on UP kernel */ 2539 if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) { 2540 err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE, 2541 cpumask_bits(new_cpu_mask), nr_cpu_ids); 2542 if (err) { 2543 drbd_warn(resource, "bitmap_parse() failed with %d\n", err); 2544 /* retcode = ERR_CPU_MASK_PARSE; */ 2545 goto fail; 2546 } 2547 } 2548 resource->res_opts = *res_opts; 2549 if (cpumask_empty(new_cpu_mask)) 2550 drbd_calc_cpu_mask(&new_cpu_mask); 2551 if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) { 2552 cpumask_copy(resource->cpu_mask, new_cpu_mask); 2553 for_each_connection_rcu(connection, resource) { 2554 connection->receiver.reset_cpu_mask = 1; 2555 connection->asender.reset_cpu_mask = 1; 2556 connection->worker.reset_cpu_mask = 1; 2557 } 2558 } 2559 err = 0; 2560 2561 fail: 2562 free_cpumask_var(new_cpu_mask); 2563 return err; 2564 2565 } 2566 2567 struct drbd_resource *drbd_create_resource(const char *name) 2568 { 2569 struct drbd_resource *resource; 2570 2571 resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL); 2572 if (!resource) 2573 goto fail; 2574 resource->name = kstrdup(name, GFP_KERNEL); 2575 if (!resource->name) 2576 goto fail_free_resource; 2577 if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL)) 2578 goto fail_free_name; 2579 kref_init(&resource->kref); 2580 idr_init(&resource->devices); 2581 INIT_LIST_HEAD(&resource->connections); 2582 list_add_tail_rcu(&resource->resources, &drbd_resources); 2583 mutex_init(&resource->conf_update); 2584 mutex_init(&resource->adm_mutex); 2585 spin_lock_init(&resource->req_lock); 2586 return resource; 2587 2588 fail_free_name: 2589 kfree(resource->name); 2590 fail_free_resource: 2591 kfree(resource); 2592 fail: 2593 return NULL; 2594 } 2595 2596 /* caller must be under genl_lock() */ 2597 struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts) 2598 { 2599 struct drbd_resource *resource; 2600 struct drbd_connection *connection; 2601 2602 connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL); 2603 if (!connection) 2604 return NULL; 2605 2606 if (drbd_alloc_socket(&connection->data)) 2607 goto fail; 2608 if (drbd_alloc_socket(&connection->meta)) 2609 goto fail; 2610 2611 connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL); 2612 if (!connection->current_epoch) 2613 goto fail; 2614 2615 INIT_LIST_HEAD(&connection->transfer_log); 2616 2617 INIT_LIST_HEAD(&connection->current_epoch->list); 2618 connection->epochs = 1; 2619 spin_lock_init(&connection->epoch_lock); 2620 connection->write_ordering = WO_bdev_flush; 2621 2622 connection->send.seen_any_write_yet = false; 2623 connection->send.current_epoch_nr = 0; 2624 connection->send.current_epoch_writes = 0; 2625 2626 resource = drbd_create_resource(name); 2627 if (!resource) 2628 goto fail; 2629 2630 connection->cstate = C_STANDALONE; 2631 mutex_init(&connection->cstate_mutex); 2632 init_waitqueue_head(&connection->ping_wait); 2633 idr_init(&connection->peer_devices); 2634 2635 drbd_init_workqueue(&connection->sender_work); 2636 mutex_init(&connection->data.mutex); 2637 mutex_init(&connection->meta.mutex); 2638 2639 drbd_thread_init(resource, &connection->receiver, drbd_receiver, "receiver"); 2640 connection->receiver.connection = connection; 2641 drbd_thread_init(resource, &connection->worker, drbd_worker, "worker"); 2642 connection->worker.connection = connection; 2643 drbd_thread_init(resource, &connection->asender, drbd_asender, "asender"); 2644 connection->asender.connection = connection; 2645 2646 kref_init(&connection->kref); 2647 2648 connection->resource = resource; 2649 2650 if (set_resource_options(resource, res_opts)) 2651 goto fail_resource; 2652 2653 kref_get(&resource->kref); 2654 list_add_tail_rcu(&connection->connections, &resource->connections); 2655 return connection; 2656 2657 fail_resource: 2658 list_del(&resource->resources); 2659 drbd_free_resource(resource); 2660 fail: 2661 kfree(connection->current_epoch); 2662 drbd_free_socket(&connection->meta); 2663 drbd_free_socket(&connection->data); 2664 kfree(connection); 2665 return NULL; 2666 } 2667 2668 void drbd_destroy_connection(struct kref *kref) 2669 { 2670 struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref); 2671 struct drbd_resource *resource = connection->resource; 2672 2673 if (atomic_read(&connection->current_epoch->epoch_size) != 0) 2674 drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size)); 2675 kfree(connection->current_epoch); 2676 2677 idr_destroy(&connection->peer_devices); 2678 2679 drbd_free_socket(&connection->meta); 2680 drbd_free_socket(&connection->data); 2681 kfree(connection->int_dig_in); 2682 kfree(connection->int_dig_vv); 2683 kfree(connection); 2684 kref_put(&resource->kref, drbd_destroy_resource); 2685 } 2686 2687 static int init_submitter(struct drbd_device *device) 2688 { 2689 /* opencoded create_singlethread_workqueue(), 2690 * to be able to say "drbd%d", ..., minor */ 2691 device->submit.wq = alloc_workqueue("drbd%u_submit", 2692 WQ_UNBOUND | WQ_MEM_RECLAIM, 1, device->minor); 2693 if (!device->submit.wq) 2694 return -ENOMEM; 2695 2696 INIT_WORK(&device->submit.worker, do_submit); 2697 spin_lock_init(&device->submit.lock); 2698 INIT_LIST_HEAD(&device->submit.writes); 2699 return 0; 2700 } 2701 2702 enum drbd_ret_code drbd_create_device(struct drbd_config_context *adm_ctx, unsigned int minor) 2703 { 2704 struct drbd_resource *resource = adm_ctx->resource; 2705 struct drbd_connection *connection; 2706 struct drbd_device *device; 2707 struct drbd_peer_device *peer_device, *tmp_peer_device; 2708 struct gendisk *disk; 2709 struct request_queue *q; 2710 int id; 2711 int vnr = adm_ctx->volume; 2712 enum drbd_ret_code err = ERR_NOMEM; 2713 2714 device = minor_to_device(minor); 2715 if (device) 2716 return ERR_MINOR_EXISTS; 2717 2718 /* GFP_KERNEL, we are outside of all write-out paths */ 2719 device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL); 2720 if (!device) 2721 return ERR_NOMEM; 2722 kref_init(&device->kref); 2723 2724 kref_get(&resource->kref); 2725 device->resource = resource; 2726 device->minor = minor; 2727 device->vnr = vnr; 2728 2729 drbd_init_set_defaults(device); 2730 2731 q = blk_alloc_queue(GFP_KERNEL); 2732 if (!q) 2733 goto out_no_q; 2734 device->rq_queue = q; 2735 q->queuedata = device; 2736 2737 disk = alloc_disk(1); 2738 if (!disk) 2739 goto out_no_disk; 2740 device->vdisk = disk; 2741 2742 set_disk_ro(disk, true); 2743 2744 disk->queue = q; 2745 disk->major = DRBD_MAJOR; 2746 disk->first_minor = minor; 2747 disk->fops = &drbd_ops; 2748 sprintf(disk->disk_name, "drbd%d", minor); 2749 disk->private_data = device; 2750 2751 device->this_bdev = bdget(MKDEV(DRBD_MAJOR, minor)); 2752 /* we have no partitions. we contain only ourselves. */ 2753 device->this_bdev->bd_contains = device->this_bdev; 2754 2755 q->backing_dev_info.congested_fn = drbd_congested; 2756 q->backing_dev_info.congested_data = device; 2757 2758 blk_queue_make_request(q, drbd_make_request); 2759 blk_queue_flush(q, REQ_FLUSH | REQ_FUA); 2760 /* Setting the max_hw_sectors to an odd value of 8kibyte here 2761 This triggers a max_bio_size message upon first attach or connect */ 2762 blk_queue_max_hw_sectors(q, DRBD_MAX_BIO_SIZE_SAFE >> 8); 2763 blk_queue_bounce_limit(q, BLK_BOUNCE_ANY); 2764 blk_queue_merge_bvec(q, drbd_merge_bvec); 2765 q->queue_lock = &resource->req_lock; 2766 2767 device->md_io_page = alloc_page(GFP_KERNEL); 2768 if (!device->md_io_page) 2769 goto out_no_io_page; 2770 2771 if (drbd_bm_init(device)) 2772 goto out_no_bitmap; 2773 device->read_requests = RB_ROOT; 2774 device->write_requests = RB_ROOT; 2775 2776 id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL); 2777 if (id < 0) { 2778 if (id == -ENOSPC) { 2779 err = ERR_MINOR_EXISTS; 2780 drbd_msg_put_info(adm_ctx->reply_skb, "requested minor exists already"); 2781 } 2782 goto out_no_minor_idr; 2783 } 2784 kref_get(&device->kref); 2785 2786 id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL); 2787 if (id < 0) { 2788 if (id == -ENOSPC) { 2789 err = ERR_MINOR_EXISTS; 2790 drbd_msg_put_info(adm_ctx->reply_skb, "requested minor exists already"); 2791 } 2792 goto out_idr_remove_minor; 2793 } 2794 kref_get(&device->kref); 2795 2796 INIT_LIST_HEAD(&device->peer_devices); 2797 for_each_connection(connection, resource) { 2798 peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL); 2799 if (!peer_device) 2800 goto out_idr_remove_from_resource; 2801 peer_device->connection = connection; 2802 peer_device->device = device; 2803 2804 list_add(&peer_device->peer_devices, &device->peer_devices); 2805 kref_get(&device->kref); 2806 2807 id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL); 2808 if (id < 0) { 2809 if (id == -ENOSPC) { 2810 err = ERR_INVALID_REQUEST; 2811 drbd_msg_put_info(adm_ctx->reply_skb, "requested volume exists already"); 2812 } 2813 goto out_idr_remove_from_resource; 2814 } 2815 kref_get(&connection->kref); 2816 } 2817 2818 if (init_submitter(device)) { 2819 err = ERR_NOMEM; 2820 drbd_msg_put_info(adm_ctx->reply_skb, "unable to create submit workqueue"); 2821 goto out_idr_remove_vol; 2822 } 2823 2824 add_disk(disk); 2825 2826 /* inherit the connection state */ 2827 device->state.conn = first_connection(resource)->cstate; 2828 if (device->state.conn == C_WF_REPORT_PARAMS) { 2829 for_each_peer_device(peer_device, device) 2830 drbd_connected(peer_device); 2831 } 2832 2833 return NO_ERROR; 2834 2835 out_idr_remove_vol: 2836 idr_remove(&connection->peer_devices, vnr); 2837 out_idr_remove_from_resource: 2838 for_each_connection(connection, resource) { 2839 peer_device = idr_find(&connection->peer_devices, vnr); 2840 if (peer_device) { 2841 idr_remove(&connection->peer_devices, vnr); 2842 kref_put(&connection->kref, drbd_destroy_connection); 2843 } 2844 } 2845 for_each_peer_device_safe(peer_device, tmp_peer_device, device) { 2846 list_del(&peer_device->peer_devices); 2847 kfree(peer_device); 2848 } 2849 idr_remove(&resource->devices, vnr); 2850 out_idr_remove_minor: 2851 idr_remove(&drbd_devices, minor); 2852 synchronize_rcu(); 2853 out_no_minor_idr: 2854 drbd_bm_cleanup(device); 2855 out_no_bitmap: 2856 __free_page(device->md_io_page); 2857 out_no_io_page: 2858 put_disk(disk); 2859 out_no_disk: 2860 blk_cleanup_queue(q); 2861 out_no_q: 2862 kref_put(&resource->kref, drbd_destroy_resource); 2863 kfree(device); 2864 return err; 2865 } 2866 2867 void drbd_delete_device(struct drbd_device *device) 2868 { 2869 struct drbd_resource *resource = device->resource; 2870 struct drbd_connection *connection; 2871 int refs = 3; 2872 2873 for_each_connection(connection, resource) { 2874 idr_remove(&connection->peer_devices, device->vnr); 2875 refs++; 2876 } 2877 idr_remove(&resource->devices, device->vnr); 2878 idr_remove(&drbd_devices, device_to_minor(device)); 2879 del_gendisk(device->vdisk); 2880 synchronize_rcu(); 2881 kref_sub(&device->kref, refs, drbd_destroy_device); 2882 } 2883 2884 int __init drbd_init(void) 2885 { 2886 int err; 2887 2888 if (minor_count < DRBD_MINOR_COUNT_MIN || minor_count > DRBD_MINOR_COUNT_MAX) { 2889 printk(KERN_ERR 2890 "drbd: invalid minor_count (%d)\n", minor_count); 2891 #ifdef MODULE 2892 return -EINVAL; 2893 #else 2894 minor_count = DRBD_MINOR_COUNT_DEF; 2895 #endif 2896 } 2897 2898 err = register_blkdev(DRBD_MAJOR, "drbd"); 2899 if (err) { 2900 printk(KERN_ERR 2901 "drbd: unable to register block device major %d\n", 2902 DRBD_MAJOR); 2903 return err; 2904 } 2905 2906 register_reboot_notifier(&drbd_notifier); 2907 2908 /* 2909 * allocate all necessary structs 2910 */ 2911 init_waitqueue_head(&drbd_pp_wait); 2912 2913 drbd_proc = NULL; /* play safe for drbd_cleanup */ 2914 idr_init(&drbd_devices); 2915 2916 rwlock_init(&global_state_lock); 2917 INIT_LIST_HEAD(&drbd_resources); 2918 2919 err = drbd_genl_register(); 2920 if (err) { 2921 printk(KERN_ERR "drbd: unable to register generic netlink family\n"); 2922 goto fail; 2923 } 2924 2925 err = drbd_create_mempools(); 2926 if (err) 2927 goto fail; 2928 2929 err = -ENOMEM; 2930 drbd_proc = proc_create_data("drbd", S_IFREG | S_IRUGO , NULL, &drbd_proc_fops, NULL); 2931 if (!drbd_proc) { 2932 printk(KERN_ERR "drbd: unable to register proc file\n"); 2933 goto fail; 2934 } 2935 2936 retry.wq = create_singlethread_workqueue("drbd-reissue"); 2937 if (!retry.wq) { 2938 printk(KERN_ERR "drbd: unable to create retry workqueue\n"); 2939 goto fail; 2940 } 2941 INIT_WORK(&retry.worker, do_retry); 2942 spin_lock_init(&retry.lock); 2943 INIT_LIST_HEAD(&retry.writes); 2944 2945 printk(KERN_INFO "drbd: initialized. " 2946 "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n", 2947 API_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX); 2948 printk(KERN_INFO "drbd: %s\n", drbd_buildtag()); 2949 printk(KERN_INFO "drbd: registered as block device major %d\n", 2950 DRBD_MAJOR); 2951 2952 return 0; /* Success! */ 2953 2954 fail: 2955 drbd_cleanup(); 2956 if (err == -ENOMEM) 2957 printk(KERN_ERR "drbd: ran out of memory\n"); 2958 else 2959 printk(KERN_ERR "drbd: initialization failure\n"); 2960 return err; 2961 } 2962 2963 void drbd_free_bc(struct drbd_backing_dev *ldev) 2964 { 2965 if (ldev == NULL) 2966 return; 2967 2968 blkdev_put(ldev->backing_bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2969 blkdev_put(ldev->md_bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2970 2971 kfree(ldev->disk_conf); 2972 kfree(ldev); 2973 } 2974 2975 void drbd_free_sock(struct drbd_connection *connection) 2976 { 2977 if (connection->data.socket) { 2978 mutex_lock(&connection->data.mutex); 2979 kernel_sock_shutdown(connection->data.socket, SHUT_RDWR); 2980 sock_release(connection->data.socket); 2981 connection->data.socket = NULL; 2982 mutex_unlock(&connection->data.mutex); 2983 } 2984 if (connection->meta.socket) { 2985 mutex_lock(&connection->meta.mutex); 2986 kernel_sock_shutdown(connection->meta.socket, SHUT_RDWR); 2987 sock_release(connection->meta.socket); 2988 connection->meta.socket = NULL; 2989 mutex_unlock(&connection->meta.mutex); 2990 } 2991 } 2992 2993 /* meta data management */ 2994 2995 void conn_md_sync(struct drbd_connection *connection) 2996 { 2997 struct drbd_peer_device *peer_device; 2998 int vnr; 2999 3000 rcu_read_lock(); 3001 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 3002 struct drbd_device *device = peer_device->device; 3003 3004 kref_get(&device->kref); 3005 rcu_read_unlock(); 3006 drbd_md_sync(device); 3007 kref_put(&device->kref, drbd_destroy_device); 3008 rcu_read_lock(); 3009 } 3010 rcu_read_unlock(); 3011 } 3012 3013 /* aligned 4kByte */ 3014 struct meta_data_on_disk { 3015 u64 la_size_sect; /* last agreed size. */ 3016 u64 uuid[UI_SIZE]; /* UUIDs. */ 3017 u64 device_uuid; 3018 u64 reserved_u64_1; 3019 u32 flags; /* MDF */ 3020 u32 magic; 3021 u32 md_size_sect; 3022 u32 al_offset; /* offset to this block */ 3023 u32 al_nr_extents; /* important for restoring the AL (userspace) */ 3024 /* `-- act_log->nr_elements <-- ldev->dc.al_extents */ 3025 u32 bm_offset; /* offset to the bitmap, from here */ 3026 u32 bm_bytes_per_bit; /* BM_BLOCK_SIZE */ 3027 u32 la_peer_max_bio_size; /* last peer max_bio_size */ 3028 3029 /* see al_tr_number_to_on_disk_sector() */ 3030 u32 al_stripes; 3031 u32 al_stripe_size_4k; 3032 3033 u8 reserved_u8[4096 - (7*8 + 10*4)]; 3034 } __packed; 3035 3036 3037 3038 void drbd_md_write(struct drbd_device *device, void *b) 3039 { 3040 struct meta_data_on_disk *buffer = b; 3041 sector_t sector; 3042 int i; 3043 3044 memset(buffer, 0, sizeof(*buffer)); 3045 3046 buffer->la_size_sect = cpu_to_be64(drbd_get_capacity(device->this_bdev)); 3047 for (i = UI_CURRENT; i < UI_SIZE; i++) 3048 buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]); 3049 buffer->flags = cpu_to_be32(device->ldev->md.flags); 3050 buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN); 3051 3052 buffer->md_size_sect = cpu_to_be32(device->ldev->md.md_size_sect); 3053 buffer->al_offset = cpu_to_be32(device->ldev->md.al_offset); 3054 buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements); 3055 buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE); 3056 buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid); 3057 3058 buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset); 3059 buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size); 3060 3061 buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes); 3062 buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k); 3063 3064 D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset); 3065 sector = device->ldev->md.md_offset; 3066 3067 if (drbd_md_sync_page_io(device, device->ldev, sector, WRITE)) { 3068 /* this was a try anyways ... */ 3069 drbd_err(device, "meta data update failed!\n"); 3070 drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR); 3071 } 3072 } 3073 3074 /** 3075 * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set 3076 * @device: DRBD device. 3077 */ 3078 void drbd_md_sync(struct drbd_device *device) 3079 { 3080 struct meta_data_on_disk *buffer; 3081 3082 /* Don't accidentally change the DRBD meta data layout. */ 3083 BUILD_BUG_ON(UI_SIZE != 4); 3084 BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096); 3085 3086 del_timer(&device->md_sync_timer); 3087 /* timer may be rearmed by drbd_md_mark_dirty() now. */ 3088 if (!test_and_clear_bit(MD_DIRTY, &device->flags)) 3089 return; 3090 3091 /* We use here D_FAILED and not D_ATTACHING because we try to write 3092 * metadata even if we detach due to a disk failure! */ 3093 if (!get_ldev_if_state(device, D_FAILED)) 3094 return; 3095 3096 buffer = drbd_md_get_buffer(device); 3097 if (!buffer) 3098 goto out; 3099 3100 drbd_md_write(device, buffer); 3101 3102 /* Update device->ldev->md.la_size_sect, 3103 * since we updated it on metadata. */ 3104 device->ldev->md.la_size_sect = drbd_get_capacity(device->this_bdev); 3105 3106 drbd_md_put_buffer(device); 3107 out: 3108 put_ldev(device); 3109 } 3110 3111 static int check_activity_log_stripe_size(struct drbd_device *device, 3112 struct meta_data_on_disk *on_disk, 3113 struct drbd_md *in_core) 3114 { 3115 u32 al_stripes = be32_to_cpu(on_disk->al_stripes); 3116 u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k); 3117 u64 al_size_4k; 3118 3119 /* both not set: default to old fixed size activity log */ 3120 if (al_stripes == 0 && al_stripe_size_4k == 0) { 3121 al_stripes = 1; 3122 al_stripe_size_4k = MD_32kB_SECT/8; 3123 } 3124 3125 /* some paranoia plausibility checks */ 3126 3127 /* we need both values to be set */ 3128 if (al_stripes == 0 || al_stripe_size_4k == 0) 3129 goto err; 3130 3131 al_size_4k = (u64)al_stripes * al_stripe_size_4k; 3132 3133 /* Upper limit of activity log area, to avoid potential overflow 3134 * problems in al_tr_number_to_on_disk_sector(). As right now, more 3135 * than 72 * 4k blocks total only increases the amount of history, 3136 * limiting this arbitrarily to 16 GB is not a real limitation ;-) */ 3137 if (al_size_4k > (16 * 1024 * 1024/4)) 3138 goto err; 3139 3140 /* Lower limit: we need at least 8 transaction slots (32kB) 3141 * to not break existing setups */ 3142 if (al_size_4k < MD_32kB_SECT/8) 3143 goto err; 3144 3145 in_core->al_stripe_size_4k = al_stripe_size_4k; 3146 in_core->al_stripes = al_stripes; 3147 in_core->al_size_4k = al_size_4k; 3148 3149 return 0; 3150 err: 3151 drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n", 3152 al_stripes, al_stripe_size_4k); 3153 return -EINVAL; 3154 } 3155 3156 static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev) 3157 { 3158 sector_t capacity = drbd_get_capacity(bdev->md_bdev); 3159 struct drbd_md *in_core = &bdev->md; 3160 s32 on_disk_al_sect; 3161 s32 on_disk_bm_sect; 3162 3163 /* The on-disk size of the activity log, calculated from offsets, and 3164 * the size of the activity log calculated from the stripe settings, 3165 * should match. 3166 * Though we could relax this a bit: it is ok, if the striped activity log 3167 * fits in the available on-disk activity log size. 3168 * Right now, that would break how resize is implemented. 3169 * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware 3170 * of possible unused padding space in the on disk layout. */ 3171 if (in_core->al_offset < 0) { 3172 if (in_core->bm_offset > in_core->al_offset) 3173 goto err; 3174 on_disk_al_sect = -in_core->al_offset; 3175 on_disk_bm_sect = in_core->al_offset - in_core->bm_offset; 3176 } else { 3177 if (in_core->al_offset != MD_4kB_SECT) 3178 goto err; 3179 if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT) 3180 goto err; 3181 3182 on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT; 3183 on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset; 3184 } 3185 3186 /* old fixed size meta data is exactly that: fixed. */ 3187 if (in_core->meta_dev_idx >= 0) { 3188 if (in_core->md_size_sect != MD_128MB_SECT 3189 || in_core->al_offset != MD_4kB_SECT 3190 || in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT 3191 || in_core->al_stripes != 1 3192 || in_core->al_stripe_size_4k != MD_32kB_SECT/8) 3193 goto err; 3194 } 3195 3196 if (capacity < in_core->md_size_sect) 3197 goto err; 3198 if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev)) 3199 goto err; 3200 3201 /* should be aligned, and at least 32k */ 3202 if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT)) 3203 goto err; 3204 3205 /* should fit (for now: exactly) into the available on-disk space; 3206 * overflow prevention is in check_activity_log_stripe_size() above. */ 3207 if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT) 3208 goto err; 3209 3210 /* again, should be aligned */ 3211 if (in_core->bm_offset & 7) 3212 goto err; 3213 3214 /* FIXME check for device grow with flex external meta data? */ 3215 3216 /* can the available bitmap space cover the last agreed device size? */ 3217 if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512) 3218 goto err; 3219 3220 return 0; 3221 3222 err: 3223 drbd_err(device, "meta data offsets don't make sense: idx=%d " 3224 "al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, " 3225 "md_size_sect=%u, la_size=%llu, md_capacity=%llu\n", 3226 in_core->meta_dev_idx, 3227 in_core->al_stripes, in_core->al_stripe_size_4k, 3228 in_core->al_offset, in_core->bm_offset, in_core->md_size_sect, 3229 (unsigned long long)in_core->la_size_sect, 3230 (unsigned long long)capacity); 3231 3232 return -EINVAL; 3233 } 3234 3235 3236 /** 3237 * drbd_md_read() - Reads in the meta data super block 3238 * @device: DRBD device. 3239 * @bdev: Device from which the meta data should be read in. 3240 * 3241 * Return NO_ERROR on success, and an enum drbd_ret_code in case 3242 * something goes wrong. 3243 * 3244 * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS, 3245 * even before @bdev is assigned to @device->ldev. 3246 */ 3247 int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev) 3248 { 3249 struct meta_data_on_disk *buffer; 3250 u32 magic, flags; 3251 int i, rv = NO_ERROR; 3252 3253 if (device->state.disk != D_DISKLESS) 3254 return ERR_DISK_CONFIGURED; 3255 3256 buffer = drbd_md_get_buffer(device); 3257 if (!buffer) 3258 return ERR_NOMEM; 3259 3260 /* First, figure out where our meta data superblock is located, 3261 * and read it. */ 3262 bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx; 3263 bdev->md.md_offset = drbd_md_ss(bdev); 3264 3265 if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset, READ)) { 3266 /* NOTE: can't do normal error processing here as this is 3267 called BEFORE disk is attached */ 3268 drbd_err(device, "Error while reading metadata.\n"); 3269 rv = ERR_IO_MD_DISK; 3270 goto err; 3271 } 3272 3273 magic = be32_to_cpu(buffer->magic); 3274 flags = be32_to_cpu(buffer->flags); 3275 if (magic == DRBD_MD_MAGIC_84_UNCLEAN || 3276 (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) { 3277 /* btw: that's Activity Log clean, not "all" clean. */ 3278 drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n"); 3279 rv = ERR_MD_UNCLEAN; 3280 goto err; 3281 } 3282 3283 rv = ERR_MD_INVALID; 3284 if (magic != DRBD_MD_MAGIC_08) { 3285 if (magic == DRBD_MD_MAGIC_07) 3286 drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n"); 3287 else 3288 drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n"); 3289 goto err; 3290 } 3291 3292 if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) { 3293 drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n", 3294 be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE); 3295 goto err; 3296 } 3297 3298 3299 /* convert to in_core endian */ 3300 bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect); 3301 for (i = UI_CURRENT; i < UI_SIZE; i++) 3302 bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]); 3303 bdev->md.flags = be32_to_cpu(buffer->flags); 3304 bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid); 3305 3306 bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect); 3307 bdev->md.al_offset = be32_to_cpu(buffer->al_offset); 3308 bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset); 3309 3310 if (check_activity_log_stripe_size(device, buffer, &bdev->md)) 3311 goto err; 3312 if (check_offsets_and_sizes(device, bdev)) 3313 goto err; 3314 3315 if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) { 3316 drbd_err(device, "unexpected bm_offset: %d (expected %d)\n", 3317 be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset); 3318 goto err; 3319 } 3320 if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) { 3321 drbd_err(device, "unexpected md_size: %u (expected %u)\n", 3322 be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect); 3323 goto err; 3324 } 3325 3326 rv = NO_ERROR; 3327 3328 spin_lock_irq(&device->resource->req_lock); 3329 if (device->state.conn < C_CONNECTED) { 3330 unsigned int peer; 3331 peer = be32_to_cpu(buffer->la_peer_max_bio_size); 3332 peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE); 3333 device->peer_max_bio_size = peer; 3334 } 3335 spin_unlock_irq(&device->resource->req_lock); 3336 3337 err: 3338 drbd_md_put_buffer(device); 3339 3340 return rv; 3341 } 3342 3343 /** 3344 * drbd_md_mark_dirty() - Mark meta data super block as dirty 3345 * @device: DRBD device. 3346 * 3347 * Call this function if you change anything that should be written to 3348 * the meta-data super block. This function sets MD_DIRTY, and starts a 3349 * timer that ensures that within five seconds you have to call drbd_md_sync(). 3350 */ 3351 #ifdef DEBUG 3352 void drbd_md_mark_dirty_(struct drbd_device *device, unsigned int line, const char *func) 3353 { 3354 if (!test_and_set_bit(MD_DIRTY, &device->flags)) { 3355 mod_timer(&device->md_sync_timer, jiffies + HZ); 3356 device->last_md_mark_dirty.line = line; 3357 device->last_md_mark_dirty.func = func; 3358 } 3359 } 3360 #else 3361 void drbd_md_mark_dirty(struct drbd_device *device) 3362 { 3363 if (!test_and_set_bit(MD_DIRTY, &device->flags)) 3364 mod_timer(&device->md_sync_timer, jiffies + 5*HZ); 3365 } 3366 #endif 3367 3368 void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local) 3369 { 3370 int i; 3371 3372 for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++) 3373 device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i]; 3374 } 3375 3376 void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local) 3377 { 3378 if (idx == UI_CURRENT) { 3379 if (device->state.role == R_PRIMARY) 3380 val |= 1; 3381 else 3382 val &= ~((u64)1); 3383 3384 drbd_set_ed_uuid(device, val); 3385 } 3386 3387 device->ldev->md.uuid[idx] = val; 3388 drbd_md_mark_dirty(device); 3389 } 3390 3391 void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local) 3392 { 3393 unsigned long flags; 3394 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags); 3395 __drbd_uuid_set(device, idx, val); 3396 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags); 3397 } 3398 3399 void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local) 3400 { 3401 unsigned long flags; 3402 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags); 3403 if (device->ldev->md.uuid[idx]) { 3404 drbd_uuid_move_history(device); 3405 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx]; 3406 } 3407 __drbd_uuid_set(device, idx, val); 3408 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags); 3409 } 3410 3411 /** 3412 * drbd_uuid_new_current() - Creates a new current UUID 3413 * @device: DRBD device. 3414 * 3415 * Creates a new current UUID, and rotates the old current UUID into 3416 * the bitmap slot. Causes an incremental resync upon next connect. 3417 */ 3418 void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local) 3419 { 3420 u64 val; 3421 unsigned long long bm_uuid; 3422 3423 get_random_bytes(&val, sizeof(u64)); 3424 3425 spin_lock_irq(&device->ldev->md.uuid_lock); 3426 bm_uuid = device->ldev->md.uuid[UI_BITMAP]; 3427 3428 if (bm_uuid) 3429 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid); 3430 3431 device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT]; 3432 __drbd_uuid_set(device, UI_CURRENT, val); 3433 spin_unlock_irq(&device->ldev->md.uuid_lock); 3434 3435 drbd_print_uuids(device, "new current UUID"); 3436 /* get it to stable storage _now_ */ 3437 drbd_md_sync(device); 3438 } 3439 3440 void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local) 3441 { 3442 unsigned long flags; 3443 if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0) 3444 return; 3445 3446 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags); 3447 if (val == 0) { 3448 drbd_uuid_move_history(device); 3449 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP]; 3450 device->ldev->md.uuid[UI_BITMAP] = 0; 3451 } else { 3452 unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP]; 3453 if (bm_uuid) 3454 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid); 3455 3456 device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1); 3457 } 3458 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags); 3459 3460 drbd_md_mark_dirty(device); 3461 } 3462 3463 /** 3464 * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io() 3465 * @device: DRBD device. 3466 * 3467 * Sets all bits in the bitmap and writes the whole bitmap to stable storage. 3468 */ 3469 int drbd_bmio_set_n_write(struct drbd_device *device) 3470 { 3471 int rv = -EIO; 3472 3473 if (get_ldev_if_state(device, D_ATTACHING)) { 3474 drbd_md_set_flag(device, MDF_FULL_SYNC); 3475 drbd_md_sync(device); 3476 drbd_bm_set_all(device); 3477 3478 rv = drbd_bm_write(device); 3479 3480 if (!rv) { 3481 drbd_md_clear_flag(device, MDF_FULL_SYNC); 3482 drbd_md_sync(device); 3483 } 3484 3485 put_ldev(device); 3486 } 3487 3488 return rv; 3489 } 3490 3491 /** 3492 * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io() 3493 * @device: DRBD device. 3494 * 3495 * Clears all bits in the bitmap and writes the whole bitmap to stable storage. 3496 */ 3497 int drbd_bmio_clear_n_write(struct drbd_device *device) 3498 { 3499 int rv = -EIO; 3500 3501 drbd_resume_al(device); 3502 if (get_ldev_if_state(device, D_ATTACHING)) { 3503 drbd_bm_clear_all(device); 3504 rv = drbd_bm_write(device); 3505 put_ldev(device); 3506 } 3507 3508 return rv; 3509 } 3510 3511 static int w_bitmap_io(struct drbd_work *w, int unused) 3512 { 3513 struct drbd_device *device = 3514 container_of(w, struct drbd_device, bm_io_work.w); 3515 struct bm_io_work *work = &device->bm_io_work; 3516 int rv = -EIO; 3517 3518 D_ASSERT(device, atomic_read(&device->ap_bio_cnt) == 0); 3519 3520 if (get_ldev(device)) { 3521 drbd_bm_lock(device, work->why, work->flags); 3522 rv = work->io_fn(device); 3523 drbd_bm_unlock(device); 3524 put_ldev(device); 3525 } 3526 3527 clear_bit_unlock(BITMAP_IO, &device->flags); 3528 wake_up(&device->misc_wait); 3529 3530 if (work->done) 3531 work->done(device, rv); 3532 3533 clear_bit(BITMAP_IO_QUEUED, &device->flags); 3534 work->why = NULL; 3535 work->flags = 0; 3536 3537 return 0; 3538 } 3539 3540 void drbd_ldev_destroy(struct drbd_device *device) 3541 { 3542 lc_destroy(device->resync); 3543 device->resync = NULL; 3544 lc_destroy(device->act_log); 3545 device->act_log = NULL; 3546 __no_warn(local, 3547 drbd_free_bc(device->ldev); 3548 device->ldev = NULL;); 3549 3550 clear_bit(GO_DISKLESS, &device->flags); 3551 } 3552 3553 static int w_go_diskless(struct drbd_work *w, int unused) 3554 { 3555 struct drbd_device *device = 3556 container_of(w, struct drbd_device, go_diskless); 3557 3558 D_ASSERT(device, device->state.disk == D_FAILED); 3559 /* we cannot assert local_cnt == 0 here, as get_ldev_if_state will 3560 * inc/dec it frequently. Once we are D_DISKLESS, no one will touch 3561 * the protected members anymore, though, so once put_ldev reaches zero 3562 * again, it will be safe to free them. */ 3563 3564 /* Try to write changed bitmap pages, read errors may have just 3565 * set some bits outside the area covered by the activity log. 3566 * 3567 * If we have an IO error during the bitmap writeout, 3568 * we will want a full sync next time, just in case. 3569 * (Do we want a specific meta data flag for this?) 3570 * 3571 * If that does not make it to stable storage either, 3572 * we cannot do anything about that anymore. 3573 * 3574 * We still need to check if both bitmap and ldev are present, we may 3575 * end up here after a failed attach, before ldev was even assigned. 3576 */ 3577 if (device->bitmap && device->ldev) { 3578 /* An interrupted resync or similar is allowed to recounts bits 3579 * while we detach. 3580 * Any modifications would not be expected anymore, though. 3581 */ 3582 if (drbd_bitmap_io_from_worker(device, drbd_bm_write, 3583 "detach", BM_LOCKED_TEST_ALLOWED)) { 3584 if (test_bit(WAS_READ_ERROR, &device->flags)) { 3585 drbd_md_set_flag(device, MDF_FULL_SYNC); 3586 drbd_md_sync(device); 3587 } 3588 } 3589 } 3590 3591 drbd_force_state(device, NS(disk, D_DISKLESS)); 3592 return 0; 3593 } 3594 3595 /** 3596 * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap 3597 * @device: DRBD device. 3598 * @io_fn: IO callback to be called when bitmap IO is possible 3599 * @done: callback to be called after the bitmap IO was performed 3600 * @why: Descriptive text of the reason for doing the IO 3601 * 3602 * While IO on the bitmap happens we freeze application IO thus we ensure 3603 * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be 3604 * called from worker context. It MUST NOT be used while a previous such 3605 * work is still pending! 3606 */ 3607 void drbd_queue_bitmap_io(struct drbd_device *device, 3608 int (*io_fn)(struct drbd_device *), 3609 void (*done)(struct drbd_device *, int), 3610 char *why, enum bm_flag flags) 3611 { 3612 D_ASSERT(device, current == first_peer_device(device)->connection->worker.task); 3613 3614 D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags)); 3615 D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags)); 3616 D_ASSERT(device, list_empty(&device->bm_io_work.w.list)); 3617 if (device->bm_io_work.why) 3618 drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n", 3619 why, device->bm_io_work.why); 3620 3621 device->bm_io_work.io_fn = io_fn; 3622 device->bm_io_work.done = done; 3623 device->bm_io_work.why = why; 3624 device->bm_io_work.flags = flags; 3625 3626 spin_lock_irq(&device->resource->req_lock); 3627 set_bit(BITMAP_IO, &device->flags); 3628 if (atomic_read(&device->ap_bio_cnt) == 0) { 3629 if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags)) 3630 drbd_queue_work(&first_peer_device(device)->connection->sender_work, 3631 &device->bm_io_work.w); 3632 } 3633 spin_unlock_irq(&device->resource->req_lock); 3634 } 3635 3636 /** 3637 * drbd_bitmap_io() - Does an IO operation on the whole bitmap 3638 * @device: DRBD device. 3639 * @io_fn: IO callback to be called when bitmap IO is possible 3640 * @why: Descriptive text of the reason for doing the IO 3641 * 3642 * freezes application IO while that the actual IO operations runs. This 3643 * functions MAY NOT be called from worker context. 3644 */ 3645 int drbd_bitmap_io(struct drbd_device *device, int (*io_fn)(struct drbd_device *), 3646 char *why, enum bm_flag flags) 3647 { 3648 int rv; 3649 3650 D_ASSERT(device, current != first_peer_device(device)->connection->worker.task); 3651 3652 if ((flags & BM_LOCKED_SET_ALLOWED) == 0) 3653 drbd_suspend_io(device); 3654 3655 drbd_bm_lock(device, why, flags); 3656 rv = io_fn(device); 3657 drbd_bm_unlock(device); 3658 3659 if ((flags & BM_LOCKED_SET_ALLOWED) == 0) 3660 drbd_resume_io(device); 3661 3662 return rv; 3663 } 3664 3665 void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local) 3666 { 3667 if ((device->ldev->md.flags & flag) != flag) { 3668 drbd_md_mark_dirty(device); 3669 device->ldev->md.flags |= flag; 3670 } 3671 } 3672 3673 void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local) 3674 { 3675 if ((device->ldev->md.flags & flag) != 0) { 3676 drbd_md_mark_dirty(device); 3677 device->ldev->md.flags &= ~flag; 3678 } 3679 } 3680 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag) 3681 { 3682 return (bdev->md.flags & flag) != 0; 3683 } 3684 3685 static void md_sync_timer_fn(unsigned long data) 3686 { 3687 struct drbd_device *device = (struct drbd_device *) data; 3688 3689 /* must not double-queue! */ 3690 if (list_empty(&device->md_sync_work.list)) 3691 drbd_queue_work_front(&first_peer_device(device)->connection->sender_work, 3692 &device->md_sync_work); 3693 } 3694 3695 static int w_md_sync(struct drbd_work *w, int unused) 3696 { 3697 struct drbd_device *device = 3698 container_of(w, struct drbd_device, md_sync_work); 3699 3700 drbd_warn(device, "md_sync_timer expired! Worker calls drbd_md_sync().\n"); 3701 #ifdef DEBUG 3702 drbd_warn(device, "last md_mark_dirty: %s:%u\n", 3703 device->last_md_mark_dirty.func, device->last_md_mark_dirty.line); 3704 #endif 3705 drbd_md_sync(device); 3706 return 0; 3707 } 3708 3709 const char *cmdname(enum drbd_packet cmd) 3710 { 3711 /* THINK may need to become several global tables 3712 * when we want to support more than 3713 * one PRO_VERSION */ 3714 static const char *cmdnames[] = { 3715 [P_DATA] = "Data", 3716 [P_DATA_REPLY] = "DataReply", 3717 [P_RS_DATA_REPLY] = "RSDataReply", 3718 [P_BARRIER] = "Barrier", 3719 [P_BITMAP] = "ReportBitMap", 3720 [P_BECOME_SYNC_TARGET] = "BecomeSyncTarget", 3721 [P_BECOME_SYNC_SOURCE] = "BecomeSyncSource", 3722 [P_UNPLUG_REMOTE] = "UnplugRemote", 3723 [P_DATA_REQUEST] = "DataRequest", 3724 [P_RS_DATA_REQUEST] = "RSDataRequest", 3725 [P_SYNC_PARAM] = "SyncParam", 3726 [P_SYNC_PARAM89] = "SyncParam89", 3727 [P_PROTOCOL] = "ReportProtocol", 3728 [P_UUIDS] = "ReportUUIDs", 3729 [P_SIZES] = "ReportSizes", 3730 [P_STATE] = "ReportState", 3731 [P_SYNC_UUID] = "ReportSyncUUID", 3732 [P_AUTH_CHALLENGE] = "AuthChallenge", 3733 [P_AUTH_RESPONSE] = "AuthResponse", 3734 [P_PING] = "Ping", 3735 [P_PING_ACK] = "PingAck", 3736 [P_RECV_ACK] = "RecvAck", 3737 [P_WRITE_ACK] = "WriteAck", 3738 [P_RS_WRITE_ACK] = "RSWriteAck", 3739 [P_SUPERSEDED] = "Superseded", 3740 [P_NEG_ACK] = "NegAck", 3741 [P_NEG_DREPLY] = "NegDReply", 3742 [P_NEG_RS_DREPLY] = "NegRSDReply", 3743 [P_BARRIER_ACK] = "BarrierAck", 3744 [P_STATE_CHG_REQ] = "StateChgRequest", 3745 [P_STATE_CHG_REPLY] = "StateChgReply", 3746 [P_OV_REQUEST] = "OVRequest", 3747 [P_OV_REPLY] = "OVReply", 3748 [P_OV_RESULT] = "OVResult", 3749 [P_CSUM_RS_REQUEST] = "CsumRSRequest", 3750 [P_RS_IS_IN_SYNC] = "CsumRSIsInSync", 3751 [P_COMPRESSED_BITMAP] = "CBitmap", 3752 [P_DELAY_PROBE] = "DelayProbe", 3753 [P_OUT_OF_SYNC] = "OutOfSync", 3754 [P_RETRY_WRITE] = "RetryWrite", 3755 [P_RS_CANCEL] = "RSCancel", 3756 [P_CONN_ST_CHG_REQ] = "conn_st_chg_req", 3757 [P_CONN_ST_CHG_REPLY] = "conn_st_chg_reply", 3758 [P_RETRY_WRITE] = "retry_write", 3759 [P_PROTOCOL_UPDATE] = "protocol_update", 3760 3761 /* enum drbd_packet, but not commands - obsoleted flags: 3762 * P_MAY_IGNORE 3763 * P_MAX_OPT_CMD 3764 */ 3765 }; 3766 3767 /* too big for the array: 0xfffX */ 3768 if (cmd == P_INITIAL_META) 3769 return "InitialMeta"; 3770 if (cmd == P_INITIAL_DATA) 3771 return "InitialData"; 3772 if (cmd == P_CONNECTION_FEATURES) 3773 return "ConnectionFeatures"; 3774 if (cmd >= ARRAY_SIZE(cmdnames)) 3775 return "Unknown"; 3776 return cmdnames[cmd]; 3777 } 3778 3779 /** 3780 * drbd_wait_misc - wait for a request to make progress 3781 * @device: device associated with the request 3782 * @i: the struct drbd_interval embedded in struct drbd_request or 3783 * struct drbd_peer_request 3784 */ 3785 int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i) 3786 { 3787 struct net_conf *nc; 3788 DEFINE_WAIT(wait); 3789 long timeout; 3790 3791 rcu_read_lock(); 3792 nc = rcu_dereference(first_peer_device(device)->connection->net_conf); 3793 if (!nc) { 3794 rcu_read_unlock(); 3795 return -ETIMEDOUT; 3796 } 3797 timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT; 3798 rcu_read_unlock(); 3799 3800 /* Indicate to wake up device->misc_wait on progress. */ 3801 i->waiting = true; 3802 prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE); 3803 spin_unlock_irq(&device->resource->req_lock); 3804 timeout = schedule_timeout(timeout); 3805 finish_wait(&device->misc_wait, &wait); 3806 spin_lock_irq(&device->resource->req_lock); 3807 if (!timeout || device->state.conn < C_CONNECTED) 3808 return -ETIMEDOUT; 3809 if (signal_pending(current)) 3810 return -ERESTARTSYS; 3811 return 0; 3812 } 3813 3814 #ifdef CONFIG_DRBD_FAULT_INJECTION 3815 /* Fault insertion support including random number generator shamelessly 3816 * stolen from kernel/rcutorture.c */ 3817 struct fault_random_state { 3818 unsigned long state; 3819 unsigned long count; 3820 }; 3821 3822 #define FAULT_RANDOM_MULT 39916801 /* prime */ 3823 #define FAULT_RANDOM_ADD 479001701 /* prime */ 3824 #define FAULT_RANDOM_REFRESH 10000 3825 3826 /* 3827 * Crude but fast random-number generator. Uses a linear congruential 3828 * generator, with occasional help from get_random_bytes(). 3829 */ 3830 static unsigned long 3831 _drbd_fault_random(struct fault_random_state *rsp) 3832 { 3833 long refresh; 3834 3835 if (!rsp->count--) { 3836 get_random_bytes(&refresh, sizeof(refresh)); 3837 rsp->state += refresh; 3838 rsp->count = FAULT_RANDOM_REFRESH; 3839 } 3840 rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD; 3841 return swahw32(rsp->state); 3842 } 3843 3844 static char * 3845 _drbd_fault_str(unsigned int type) { 3846 static char *_faults[] = { 3847 [DRBD_FAULT_MD_WR] = "Meta-data write", 3848 [DRBD_FAULT_MD_RD] = "Meta-data read", 3849 [DRBD_FAULT_RS_WR] = "Resync write", 3850 [DRBD_FAULT_RS_RD] = "Resync read", 3851 [DRBD_FAULT_DT_WR] = "Data write", 3852 [DRBD_FAULT_DT_RD] = "Data read", 3853 [DRBD_FAULT_DT_RA] = "Data read ahead", 3854 [DRBD_FAULT_BM_ALLOC] = "BM allocation", 3855 [DRBD_FAULT_AL_EE] = "EE allocation", 3856 [DRBD_FAULT_RECEIVE] = "receive data corruption", 3857 }; 3858 3859 return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**"; 3860 } 3861 3862 unsigned int 3863 _drbd_insert_fault(struct drbd_device *device, unsigned int type) 3864 { 3865 static struct fault_random_state rrs = {0, 0}; 3866 3867 unsigned int ret = ( 3868 (fault_devs == 0 || 3869 ((1 << device_to_minor(device)) & fault_devs) != 0) && 3870 (((_drbd_fault_random(&rrs) % 100) + 1) <= fault_rate)); 3871 3872 if (ret) { 3873 fault_count++; 3874 3875 if (__ratelimit(&drbd_ratelimit_state)) 3876 drbd_warn(device, "***Simulating %s failure\n", 3877 _drbd_fault_str(type)); 3878 } 3879 3880 return ret; 3881 } 3882 #endif 3883 3884 const char *drbd_buildtag(void) 3885 { 3886 /* DRBD built from external sources has here a reference to the 3887 git hash of the source code. */ 3888 3889 static char buildtag[38] = "\0uilt-in"; 3890 3891 if (buildtag[0] == 0) { 3892 #ifdef MODULE 3893 sprintf(buildtag, "srcversion: %-24s", THIS_MODULE->srcversion); 3894 #else 3895 buildtag[0] = 'b'; 3896 #endif 3897 } 3898 3899 return buildtag; 3900 } 3901 3902 module_init(drbd_init) 3903 module_exit(drbd_cleanup) 3904 3905 EXPORT_SYMBOL(drbd_conn_str); 3906 EXPORT_SYMBOL(drbd_role_str); 3907 EXPORT_SYMBOL(drbd_disk_str); 3908 EXPORT_SYMBOL(drbd_set_st_err_str); 3909