1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 drbd.c 4 5 This file is part of DRBD by Philipp Reisner and Lars Ellenberg. 6 7 Copyright (C) 2001-2008, LINBIT Information Technologies GmbH. 8 Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>. 9 Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>. 10 11 Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev 12 from Logicworks, Inc. for making SDP replication support possible. 13 14 15 */ 16 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include <linux/module.h> 20 #include <linux/jiffies.h> 21 #include <linux/drbd.h> 22 #include <linux/uaccess.h> 23 #include <asm/types.h> 24 #include <net/sock.h> 25 #include <linux/ctype.h> 26 #include <linux/mutex.h> 27 #include <linux/fs.h> 28 #include <linux/file.h> 29 #include <linux/proc_fs.h> 30 #include <linux/init.h> 31 #include <linux/mm.h> 32 #include <linux/memcontrol.h> 33 #include <linux/mm_inline.h> 34 #include <linux/slab.h> 35 #include <linux/random.h> 36 #include <linux/reboot.h> 37 #include <linux/notifier.h> 38 #include <linux/kthread.h> 39 #include <linux/workqueue.h> 40 #define __KERNEL_SYSCALLS__ 41 #include <linux/unistd.h> 42 #include <linux/vmalloc.h> 43 #include <linux/sched/signal.h> 44 45 #include <linux/drbd_limits.h> 46 #include "drbd_int.h" 47 #include "drbd_protocol.h" 48 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */ 49 #include "drbd_vli.h" 50 #include "drbd_debugfs.h" 51 52 static DEFINE_MUTEX(drbd_main_mutex); 53 static int drbd_open(struct block_device *bdev, fmode_t mode); 54 static void drbd_release(struct gendisk *gd, fmode_t mode); 55 static void md_sync_timer_fn(struct timer_list *t); 56 static int w_bitmap_io(struct drbd_work *w, int unused); 57 58 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, " 59 "Lars Ellenberg <lars@linbit.com>"); 60 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION); 61 MODULE_VERSION(REL_VERSION); 62 MODULE_LICENSE("GPL"); 63 MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices (" 64 __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")"); 65 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR); 66 67 #include <linux/moduleparam.h> 68 /* thanks to these macros, if compiled into the kernel (not-module), 69 * these become boot parameters (e.g., drbd.minor_count) */ 70 71 #ifdef CONFIG_DRBD_FAULT_INJECTION 72 int drbd_enable_faults; 73 int drbd_fault_rate; 74 static int drbd_fault_count; 75 static int drbd_fault_devs; 76 /* bitmap of enabled faults */ 77 module_param_named(enable_faults, drbd_enable_faults, int, 0664); 78 /* fault rate % value - applies to all enabled faults */ 79 module_param_named(fault_rate, drbd_fault_rate, int, 0664); 80 /* count of faults inserted */ 81 module_param_named(fault_count, drbd_fault_count, int, 0664); 82 /* bitmap of devices to insert faults on */ 83 module_param_named(fault_devs, drbd_fault_devs, int, 0644); 84 #endif 85 86 /* module parameters we can keep static */ 87 static bool drbd_allow_oos; /* allow_open_on_secondary */ 88 static bool drbd_disable_sendpage; 89 MODULE_PARM_DESC(allow_oos, "DONT USE!"); 90 module_param_named(allow_oos, drbd_allow_oos, bool, 0); 91 module_param_named(disable_sendpage, drbd_disable_sendpage, bool, 0644); 92 93 /* module parameters we share */ 94 int drbd_proc_details; /* Detail level in proc drbd*/ 95 module_param_named(proc_details, drbd_proc_details, int, 0644); 96 /* module parameters shared with defaults */ 97 unsigned int drbd_minor_count = DRBD_MINOR_COUNT_DEF; 98 /* Module parameter for setting the user mode helper program 99 * to run. Default is /sbin/drbdadm */ 100 char drbd_usermode_helper[80] = "/sbin/drbdadm"; 101 module_param_named(minor_count, drbd_minor_count, uint, 0444); 102 module_param_string(usermode_helper, drbd_usermode_helper, sizeof(drbd_usermode_helper), 0644); 103 104 /* in 2.6.x, our device mapping and config info contains our virtual gendisks 105 * as member "struct gendisk *vdisk;" 106 */ 107 struct idr drbd_devices; 108 struct list_head drbd_resources; 109 struct mutex resources_mutex; 110 111 struct kmem_cache *drbd_request_cache; 112 struct kmem_cache *drbd_ee_cache; /* peer requests */ 113 struct kmem_cache *drbd_bm_ext_cache; /* bitmap extents */ 114 struct kmem_cache *drbd_al_ext_cache; /* activity log extents */ 115 mempool_t drbd_request_mempool; 116 mempool_t drbd_ee_mempool; 117 mempool_t drbd_md_io_page_pool; 118 struct bio_set drbd_md_io_bio_set; 119 struct bio_set drbd_io_bio_set; 120 121 /* I do not use a standard mempool, because: 122 1) I want to hand out the pre-allocated objects first. 123 2) I want to be able to interrupt sleeping allocation with a signal. 124 Note: This is a single linked list, the next pointer is the private 125 member of struct page. 126 */ 127 struct page *drbd_pp_pool; 128 DEFINE_SPINLOCK(drbd_pp_lock); 129 int drbd_pp_vacant; 130 wait_queue_head_t drbd_pp_wait; 131 132 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5); 133 134 static const struct block_device_operations drbd_ops = { 135 .owner = THIS_MODULE, 136 .submit_bio = drbd_submit_bio, 137 .open = drbd_open, 138 .release = drbd_release, 139 }; 140 141 #ifdef __CHECKER__ 142 /* When checking with sparse, and this is an inline function, sparse will 143 give tons of false positives. When this is a real functions sparse works. 144 */ 145 int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins) 146 { 147 int io_allowed; 148 149 atomic_inc(&device->local_cnt); 150 io_allowed = (device->state.disk >= mins); 151 if (!io_allowed) { 152 if (atomic_dec_and_test(&device->local_cnt)) 153 wake_up(&device->misc_wait); 154 } 155 return io_allowed; 156 } 157 158 #endif 159 160 /** 161 * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch 162 * @connection: DRBD connection. 163 * @barrier_nr: Expected identifier of the DRBD write barrier packet. 164 * @set_size: Expected number of requests before that barrier. 165 * 166 * In case the passed barrier_nr or set_size does not match the oldest 167 * epoch of not yet barrier-acked requests, this function will cause a 168 * termination of the connection. 169 */ 170 void tl_release(struct drbd_connection *connection, unsigned int barrier_nr, 171 unsigned int set_size) 172 { 173 struct drbd_request *r; 174 struct drbd_request *req = NULL, *tmp = NULL; 175 int expect_epoch = 0; 176 int expect_size = 0; 177 178 spin_lock_irq(&connection->resource->req_lock); 179 180 /* find oldest not yet barrier-acked write request, 181 * count writes in its epoch. */ 182 list_for_each_entry(r, &connection->transfer_log, tl_requests) { 183 const unsigned s = r->rq_state; 184 if (!req) { 185 if (!(s & RQ_WRITE)) 186 continue; 187 if (!(s & RQ_NET_MASK)) 188 continue; 189 if (s & RQ_NET_DONE) 190 continue; 191 req = r; 192 expect_epoch = req->epoch; 193 expect_size ++; 194 } else { 195 if (r->epoch != expect_epoch) 196 break; 197 if (!(s & RQ_WRITE)) 198 continue; 199 /* if (s & RQ_DONE): not expected */ 200 /* if (!(s & RQ_NET_MASK)): not expected */ 201 expect_size++; 202 } 203 } 204 205 /* first some paranoia code */ 206 if (req == NULL) { 207 drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n", 208 barrier_nr); 209 goto bail; 210 } 211 if (expect_epoch != barrier_nr) { 212 drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n", 213 barrier_nr, expect_epoch); 214 goto bail; 215 } 216 217 if (expect_size != set_size) { 218 drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n", 219 barrier_nr, set_size, expect_size); 220 goto bail; 221 } 222 223 /* Clean up list of requests processed during current epoch. */ 224 /* this extra list walk restart is paranoia, 225 * to catch requests being barrier-acked "unexpectedly". 226 * It usually should find the same req again, or some READ preceding it. */ 227 list_for_each_entry(req, &connection->transfer_log, tl_requests) 228 if (req->epoch == expect_epoch) { 229 tmp = req; 230 break; 231 } 232 req = list_prepare_entry(tmp, &connection->transfer_log, tl_requests); 233 list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) { 234 if (req->epoch != expect_epoch) 235 break; 236 _req_mod(req, BARRIER_ACKED); 237 } 238 spin_unlock_irq(&connection->resource->req_lock); 239 240 return; 241 242 bail: 243 spin_unlock_irq(&connection->resource->req_lock); 244 conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD); 245 } 246 247 248 /** 249 * _tl_restart() - Walks the transfer log, and applies an action to all requests 250 * @connection: DRBD connection to operate on. 251 * @what: The action/event to perform with all request objects 252 * 253 * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO, 254 * RESTART_FROZEN_DISK_IO. 255 */ 256 /* must hold resource->req_lock */ 257 void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what) 258 { 259 struct drbd_request *req, *r; 260 261 list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) 262 _req_mod(req, what); 263 } 264 265 void tl_restart(struct drbd_connection *connection, enum drbd_req_event what) 266 { 267 spin_lock_irq(&connection->resource->req_lock); 268 _tl_restart(connection, what); 269 spin_unlock_irq(&connection->resource->req_lock); 270 } 271 272 /** 273 * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL 274 * @connection: DRBD connection. 275 * 276 * This is called after the connection to the peer was lost. The storage covered 277 * by the requests on the transfer gets marked as our of sync. Called from the 278 * receiver thread and the worker thread. 279 */ 280 void tl_clear(struct drbd_connection *connection) 281 { 282 tl_restart(connection, CONNECTION_LOST_WHILE_PENDING); 283 } 284 285 /** 286 * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL 287 * @device: DRBD device. 288 */ 289 void tl_abort_disk_io(struct drbd_device *device) 290 { 291 struct drbd_connection *connection = first_peer_device(device)->connection; 292 struct drbd_request *req, *r; 293 294 spin_lock_irq(&connection->resource->req_lock); 295 list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) { 296 if (!(req->rq_state & RQ_LOCAL_PENDING)) 297 continue; 298 if (req->device != device) 299 continue; 300 _req_mod(req, ABORT_DISK_IO); 301 } 302 spin_unlock_irq(&connection->resource->req_lock); 303 } 304 305 static int drbd_thread_setup(void *arg) 306 { 307 struct drbd_thread *thi = (struct drbd_thread *) arg; 308 struct drbd_resource *resource = thi->resource; 309 unsigned long flags; 310 int retval; 311 312 snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s", 313 thi->name[0], 314 resource->name); 315 316 allow_kernel_signal(DRBD_SIGKILL); 317 allow_kernel_signal(SIGXCPU); 318 restart: 319 retval = thi->function(thi); 320 321 spin_lock_irqsave(&thi->t_lock, flags); 322 323 /* if the receiver has been "EXITING", the last thing it did 324 * was set the conn state to "StandAlone", 325 * if now a re-connect request comes in, conn state goes C_UNCONNECTED, 326 * and receiver thread will be "started". 327 * drbd_thread_start needs to set "RESTARTING" in that case. 328 * t_state check and assignment needs to be within the same spinlock, 329 * so either thread_start sees EXITING, and can remap to RESTARTING, 330 * or thread_start see NONE, and can proceed as normal. 331 */ 332 333 if (thi->t_state == RESTARTING) { 334 drbd_info(resource, "Restarting %s thread\n", thi->name); 335 thi->t_state = RUNNING; 336 spin_unlock_irqrestore(&thi->t_lock, flags); 337 goto restart; 338 } 339 340 thi->task = NULL; 341 thi->t_state = NONE; 342 smp_mb(); 343 complete_all(&thi->stop); 344 spin_unlock_irqrestore(&thi->t_lock, flags); 345 346 drbd_info(resource, "Terminating %s\n", current->comm); 347 348 /* Release mod reference taken when thread was started */ 349 350 if (thi->connection) 351 kref_put(&thi->connection->kref, drbd_destroy_connection); 352 kref_put(&resource->kref, drbd_destroy_resource); 353 module_put(THIS_MODULE); 354 return retval; 355 } 356 357 static void drbd_thread_init(struct drbd_resource *resource, struct drbd_thread *thi, 358 int (*func) (struct drbd_thread *), const char *name) 359 { 360 spin_lock_init(&thi->t_lock); 361 thi->task = NULL; 362 thi->t_state = NONE; 363 thi->function = func; 364 thi->resource = resource; 365 thi->connection = NULL; 366 thi->name = name; 367 } 368 369 int drbd_thread_start(struct drbd_thread *thi) 370 { 371 struct drbd_resource *resource = thi->resource; 372 struct task_struct *nt; 373 unsigned long flags; 374 375 /* is used from state engine doing drbd_thread_stop_nowait, 376 * while holding the req lock irqsave */ 377 spin_lock_irqsave(&thi->t_lock, flags); 378 379 switch (thi->t_state) { 380 case NONE: 381 drbd_info(resource, "Starting %s thread (from %s [%d])\n", 382 thi->name, current->comm, current->pid); 383 384 /* Get ref on module for thread - this is released when thread exits */ 385 if (!try_module_get(THIS_MODULE)) { 386 drbd_err(resource, "Failed to get module reference in drbd_thread_start\n"); 387 spin_unlock_irqrestore(&thi->t_lock, flags); 388 return false; 389 } 390 391 kref_get(&resource->kref); 392 if (thi->connection) 393 kref_get(&thi->connection->kref); 394 395 init_completion(&thi->stop); 396 thi->reset_cpu_mask = 1; 397 thi->t_state = RUNNING; 398 spin_unlock_irqrestore(&thi->t_lock, flags); 399 flush_signals(current); /* otherw. may get -ERESTARTNOINTR */ 400 401 nt = kthread_create(drbd_thread_setup, (void *) thi, 402 "drbd_%c_%s", thi->name[0], thi->resource->name); 403 404 if (IS_ERR(nt)) { 405 drbd_err(resource, "Couldn't start thread\n"); 406 407 if (thi->connection) 408 kref_put(&thi->connection->kref, drbd_destroy_connection); 409 kref_put(&resource->kref, drbd_destroy_resource); 410 module_put(THIS_MODULE); 411 return false; 412 } 413 spin_lock_irqsave(&thi->t_lock, flags); 414 thi->task = nt; 415 thi->t_state = RUNNING; 416 spin_unlock_irqrestore(&thi->t_lock, flags); 417 wake_up_process(nt); 418 break; 419 case EXITING: 420 thi->t_state = RESTARTING; 421 drbd_info(resource, "Restarting %s thread (from %s [%d])\n", 422 thi->name, current->comm, current->pid); 423 fallthrough; 424 case RUNNING: 425 case RESTARTING: 426 default: 427 spin_unlock_irqrestore(&thi->t_lock, flags); 428 break; 429 } 430 431 return true; 432 } 433 434 435 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait) 436 { 437 unsigned long flags; 438 439 enum drbd_thread_state ns = restart ? RESTARTING : EXITING; 440 441 /* may be called from state engine, holding the req lock irqsave */ 442 spin_lock_irqsave(&thi->t_lock, flags); 443 444 if (thi->t_state == NONE) { 445 spin_unlock_irqrestore(&thi->t_lock, flags); 446 if (restart) 447 drbd_thread_start(thi); 448 return; 449 } 450 451 if (thi->t_state != ns) { 452 if (thi->task == NULL) { 453 spin_unlock_irqrestore(&thi->t_lock, flags); 454 return; 455 } 456 457 thi->t_state = ns; 458 smp_mb(); 459 init_completion(&thi->stop); 460 if (thi->task != current) 461 send_sig(DRBD_SIGKILL, thi->task, 1); 462 } 463 464 spin_unlock_irqrestore(&thi->t_lock, flags); 465 466 if (wait) 467 wait_for_completion(&thi->stop); 468 } 469 470 int conn_lowest_minor(struct drbd_connection *connection) 471 { 472 struct drbd_peer_device *peer_device; 473 int vnr = 0, minor = -1; 474 475 rcu_read_lock(); 476 peer_device = idr_get_next(&connection->peer_devices, &vnr); 477 if (peer_device) 478 minor = device_to_minor(peer_device->device); 479 rcu_read_unlock(); 480 481 return minor; 482 } 483 484 #ifdef CONFIG_SMP 485 /* 486 * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs 487 * 488 * Forces all threads of a resource onto the same CPU. This is beneficial for 489 * DRBD's performance. May be overwritten by user's configuration. 490 */ 491 static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask) 492 { 493 unsigned int *resources_per_cpu, min_index = ~0; 494 495 resources_per_cpu = kcalloc(nr_cpu_ids, sizeof(*resources_per_cpu), 496 GFP_KERNEL); 497 if (resources_per_cpu) { 498 struct drbd_resource *resource; 499 unsigned int cpu, min = ~0; 500 501 rcu_read_lock(); 502 for_each_resource_rcu(resource, &drbd_resources) { 503 for_each_cpu(cpu, resource->cpu_mask) 504 resources_per_cpu[cpu]++; 505 } 506 rcu_read_unlock(); 507 for_each_online_cpu(cpu) { 508 if (resources_per_cpu[cpu] < min) { 509 min = resources_per_cpu[cpu]; 510 min_index = cpu; 511 } 512 } 513 kfree(resources_per_cpu); 514 } 515 if (min_index == ~0) { 516 cpumask_setall(*cpu_mask); 517 return; 518 } 519 cpumask_set_cpu(min_index, *cpu_mask); 520 } 521 522 /** 523 * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread 524 * @thi: drbd_thread object 525 * 526 * call in the "main loop" of _all_ threads, no need for any mutex, current won't die 527 * prematurely. 528 */ 529 void drbd_thread_current_set_cpu(struct drbd_thread *thi) 530 { 531 struct drbd_resource *resource = thi->resource; 532 struct task_struct *p = current; 533 534 if (!thi->reset_cpu_mask) 535 return; 536 thi->reset_cpu_mask = 0; 537 set_cpus_allowed_ptr(p, resource->cpu_mask); 538 } 539 #else 540 #define drbd_calc_cpu_mask(A) ({}) 541 #endif 542 543 /* 544 * drbd_header_size - size of a packet header 545 * 546 * The header size is a multiple of 8, so any payload following the header is 547 * word aligned on 64-bit architectures. (The bitmap send and receive code 548 * relies on this.) 549 */ 550 unsigned int drbd_header_size(struct drbd_connection *connection) 551 { 552 if (connection->agreed_pro_version >= 100) { 553 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8)); 554 return sizeof(struct p_header100); 555 } else { 556 BUILD_BUG_ON(sizeof(struct p_header80) != 557 sizeof(struct p_header95)); 558 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8)); 559 return sizeof(struct p_header80); 560 } 561 } 562 563 static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size) 564 { 565 h->magic = cpu_to_be32(DRBD_MAGIC); 566 h->command = cpu_to_be16(cmd); 567 h->length = cpu_to_be16(size); 568 return sizeof(struct p_header80); 569 } 570 571 static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size) 572 { 573 h->magic = cpu_to_be16(DRBD_MAGIC_BIG); 574 h->command = cpu_to_be16(cmd); 575 h->length = cpu_to_be32(size); 576 return sizeof(struct p_header95); 577 } 578 579 static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd, 580 int size, int vnr) 581 { 582 h->magic = cpu_to_be32(DRBD_MAGIC_100); 583 h->volume = cpu_to_be16(vnr); 584 h->command = cpu_to_be16(cmd); 585 h->length = cpu_to_be32(size); 586 h->pad = 0; 587 return sizeof(struct p_header100); 588 } 589 590 static unsigned int prepare_header(struct drbd_connection *connection, int vnr, 591 void *buffer, enum drbd_packet cmd, int size) 592 { 593 if (connection->agreed_pro_version >= 100) 594 return prepare_header100(buffer, cmd, size, vnr); 595 else if (connection->agreed_pro_version >= 95 && 596 size > DRBD_MAX_SIZE_H80_PACKET) 597 return prepare_header95(buffer, cmd, size); 598 else 599 return prepare_header80(buffer, cmd, size); 600 } 601 602 static void *__conn_prepare_command(struct drbd_connection *connection, 603 struct drbd_socket *sock) 604 { 605 if (!sock->socket) 606 return NULL; 607 return sock->sbuf + drbd_header_size(connection); 608 } 609 610 void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock) 611 { 612 void *p; 613 614 mutex_lock(&sock->mutex); 615 p = __conn_prepare_command(connection, sock); 616 if (!p) 617 mutex_unlock(&sock->mutex); 618 619 return p; 620 } 621 622 void *drbd_prepare_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock) 623 { 624 return conn_prepare_command(peer_device->connection, sock); 625 } 626 627 static int __send_command(struct drbd_connection *connection, int vnr, 628 struct drbd_socket *sock, enum drbd_packet cmd, 629 unsigned int header_size, void *data, 630 unsigned int size) 631 { 632 int msg_flags; 633 int err; 634 635 /* 636 * Called with @data == NULL and the size of the data blocks in @size 637 * for commands that send data blocks. For those commands, omit the 638 * MSG_MORE flag: this will increase the likelihood that data blocks 639 * which are page aligned on the sender will end up page aligned on the 640 * receiver. 641 */ 642 msg_flags = data ? MSG_MORE : 0; 643 644 header_size += prepare_header(connection, vnr, sock->sbuf, cmd, 645 header_size + size); 646 err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size, 647 msg_flags); 648 if (data && !err) 649 err = drbd_send_all(connection, sock->socket, data, size, 0); 650 /* DRBD protocol "pings" are latency critical. 651 * This is supposed to trigger tcp_push_pending_frames() */ 652 if (!err && (cmd == P_PING || cmd == P_PING_ACK)) 653 tcp_sock_set_nodelay(sock->socket->sk); 654 655 return err; 656 } 657 658 static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock, 659 enum drbd_packet cmd, unsigned int header_size, 660 void *data, unsigned int size) 661 { 662 return __send_command(connection, 0, sock, cmd, header_size, data, size); 663 } 664 665 int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock, 666 enum drbd_packet cmd, unsigned int header_size, 667 void *data, unsigned int size) 668 { 669 int err; 670 671 err = __conn_send_command(connection, sock, cmd, header_size, data, size); 672 mutex_unlock(&sock->mutex); 673 return err; 674 } 675 676 int drbd_send_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock, 677 enum drbd_packet cmd, unsigned int header_size, 678 void *data, unsigned int size) 679 { 680 int err; 681 682 err = __send_command(peer_device->connection, peer_device->device->vnr, 683 sock, cmd, header_size, data, size); 684 mutex_unlock(&sock->mutex); 685 return err; 686 } 687 688 int drbd_send_ping(struct drbd_connection *connection) 689 { 690 struct drbd_socket *sock; 691 692 sock = &connection->meta; 693 if (!conn_prepare_command(connection, sock)) 694 return -EIO; 695 return conn_send_command(connection, sock, P_PING, 0, NULL, 0); 696 } 697 698 int drbd_send_ping_ack(struct drbd_connection *connection) 699 { 700 struct drbd_socket *sock; 701 702 sock = &connection->meta; 703 if (!conn_prepare_command(connection, sock)) 704 return -EIO; 705 return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0); 706 } 707 708 int drbd_send_sync_param(struct drbd_peer_device *peer_device) 709 { 710 struct drbd_socket *sock; 711 struct p_rs_param_95 *p; 712 int size; 713 const int apv = peer_device->connection->agreed_pro_version; 714 enum drbd_packet cmd; 715 struct net_conf *nc; 716 struct disk_conf *dc; 717 718 sock = &peer_device->connection->data; 719 p = drbd_prepare_command(peer_device, sock); 720 if (!p) 721 return -EIO; 722 723 rcu_read_lock(); 724 nc = rcu_dereference(peer_device->connection->net_conf); 725 726 size = apv <= 87 ? sizeof(struct p_rs_param) 727 : apv == 88 ? sizeof(struct p_rs_param) 728 + strlen(nc->verify_alg) + 1 729 : apv <= 94 ? sizeof(struct p_rs_param_89) 730 : /* apv >= 95 */ sizeof(struct p_rs_param_95); 731 732 cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM; 733 734 /* initialize verify_alg and csums_alg */ 735 BUILD_BUG_ON(sizeof(p->algs) != 2 * SHARED_SECRET_MAX); 736 memset(&p->algs, 0, sizeof(p->algs)); 737 738 if (get_ldev(peer_device->device)) { 739 dc = rcu_dereference(peer_device->device->ldev->disk_conf); 740 p->resync_rate = cpu_to_be32(dc->resync_rate); 741 p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead); 742 p->c_delay_target = cpu_to_be32(dc->c_delay_target); 743 p->c_fill_target = cpu_to_be32(dc->c_fill_target); 744 p->c_max_rate = cpu_to_be32(dc->c_max_rate); 745 put_ldev(peer_device->device); 746 } else { 747 p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF); 748 p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF); 749 p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF); 750 p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF); 751 p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF); 752 } 753 754 if (apv >= 88) 755 strcpy(p->verify_alg, nc->verify_alg); 756 if (apv >= 89) 757 strcpy(p->csums_alg, nc->csums_alg); 758 rcu_read_unlock(); 759 760 return drbd_send_command(peer_device, sock, cmd, size, NULL, 0); 761 } 762 763 int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd) 764 { 765 struct drbd_socket *sock; 766 struct p_protocol *p; 767 struct net_conf *nc; 768 int size, cf; 769 770 sock = &connection->data; 771 p = __conn_prepare_command(connection, sock); 772 if (!p) 773 return -EIO; 774 775 rcu_read_lock(); 776 nc = rcu_dereference(connection->net_conf); 777 778 if (nc->tentative && connection->agreed_pro_version < 92) { 779 rcu_read_unlock(); 780 drbd_err(connection, "--dry-run is not supported by peer"); 781 return -EOPNOTSUPP; 782 } 783 784 size = sizeof(*p); 785 if (connection->agreed_pro_version >= 87) 786 size += strlen(nc->integrity_alg) + 1; 787 788 p->protocol = cpu_to_be32(nc->wire_protocol); 789 p->after_sb_0p = cpu_to_be32(nc->after_sb_0p); 790 p->after_sb_1p = cpu_to_be32(nc->after_sb_1p); 791 p->after_sb_2p = cpu_to_be32(nc->after_sb_2p); 792 p->two_primaries = cpu_to_be32(nc->two_primaries); 793 cf = 0; 794 if (nc->discard_my_data) 795 cf |= CF_DISCARD_MY_DATA; 796 if (nc->tentative) 797 cf |= CF_DRY_RUN; 798 p->conn_flags = cpu_to_be32(cf); 799 800 if (connection->agreed_pro_version >= 87) 801 strcpy(p->integrity_alg, nc->integrity_alg); 802 rcu_read_unlock(); 803 804 return __conn_send_command(connection, sock, cmd, size, NULL, 0); 805 } 806 807 int drbd_send_protocol(struct drbd_connection *connection) 808 { 809 int err; 810 811 mutex_lock(&connection->data.mutex); 812 err = __drbd_send_protocol(connection, P_PROTOCOL); 813 mutex_unlock(&connection->data.mutex); 814 815 return err; 816 } 817 818 static int _drbd_send_uuids(struct drbd_peer_device *peer_device, u64 uuid_flags) 819 { 820 struct drbd_device *device = peer_device->device; 821 struct drbd_socket *sock; 822 struct p_uuids *p; 823 int i; 824 825 if (!get_ldev_if_state(device, D_NEGOTIATING)) 826 return 0; 827 828 sock = &peer_device->connection->data; 829 p = drbd_prepare_command(peer_device, sock); 830 if (!p) { 831 put_ldev(device); 832 return -EIO; 833 } 834 spin_lock_irq(&device->ldev->md.uuid_lock); 835 for (i = UI_CURRENT; i < UI_SIZE; i++) 836 p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]); 837 spin_unlock_irq(&device->ldev->md.uuid_lock); 838 839 device->comm_bm_set = drbd_bm_total_weight(device); 840 p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set); 841 rcu_read_lock(); 842 uuid_flags |= rcu_dereference(peer_device->connection->net_conf)->discard_my_data ? 1 : 0; 843 rcu_read_unlock(); 844 uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0; 845 uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0; 846 p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags); 847 848 put_ldev(device); 849 return drbd_send_command(peer_device, sock, P_UUIDS, sizeof(*p), NULL, 0); 850 } 851 852 int drbd_send_uuids(struct drbd_peer_device *peer_device) 853 { 854 return _drbd_send_uuids(peer_device, 0); 855 } 856 857 int drbd_send_uuids_skip_initial_sync(struct drbd_peer_device *peer_device) 858 { 859 return _drbd_send_uuids(peer_device, 8); 860 } 861 862 void drbd_print_uuids(struct drbd_device *device, const char *text) 863 { 864 if (get_ldev_if_state(device, D_NEGOTIATING)) { 865 u64 *uuid = device->ldev->md.uuid; 866 drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n", 867 text, 868 (unsigned long long)uuid[UI_CURRENT], 869 (unsigned long long)uuid[UI_BITMAP], 870 (unsigned long long)uuid[UI_HISTORY_START], 871 (unsigned long long)uuid[UI_HISTORY_END]); 872 put_ldev(device); 873 } else { 874 drbd_info(device, "%s effective data uuid: %016llX\n", 875 text, 876 (unsigned long long)device->ed_uuid); 877 } 878 } 879 880 void drbd_gen_and_send_sync_uuid(struct drbd_peer_device *peer_device) 881 { 882 struct drbd_device *device = peer_device->device; 883 struct drbd_socket *sock; 884 struct p_rs_uuid *p; 885 u64 uuid; 886 887 D_ASSERT(device, device->state.disk == D_UP_TO_DATE); 888 889 uuid = device->ldev->md.uuid[UI_BITMAP]; 890 if (uuid && uuid != UUID_JUST_CREATED) 891 uuid = uuid + UUID_NEW_BM_OFFSET; 892 else 893 get_random_bytes(&uuid, sizeof(u64)); 894 drbd_uuid_set(device, UI_BITMAP, uuid); 895 drbd_print_uuids(device, "updated sync UUID"); 896 drbd_md_sync(device); 897 898 sock = &peer_device->connection->data; 899 p = drbd_prepare_command(peer_device, sock); 900 if (p) { 901 p->uuid = cpu_to_be64(uuid); 902 drbd_send_command(peer_device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0); 903 } 904 } 905 906 /* communicated if (agreed_features & DRBD_FF_WSAME) */ 907 static void 908 assign_p_sizes_qlim(struct drbd_device *device, struct p_sizes *p, 909 struct request_queue *q) 910 { 911 if (q) { 912 p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q)); 913 p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q)); 914 p->qlim->alignment_offset = cpu_to_be32(queue_alignment_offset(q)); 915 p->qlim->io_min = cpu_to_be32(queue_io_min(q)); 916 p->qlim->io_opt = cpu_to_be32(queue_io_opt(q)); 917 p->qlim->discard_enabled = blk_queue_discard(q); 918 p->qlim->write_same_capable = 0; 919 } else { 920 q = device->rq_queue; 921 p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q)); 922 p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q)); 923 p->qlim->alignment_offset = 0; 924 p->qlim->io_min = cpu_to_be32(queue_io_min(q)); 925 p->qlim->io_opt = cpu_to_be32(queue_io_opt(q)); 926 p->qlim->discard_enabled = 0; 927 p->qlim->write_same_capable = 0; 928 } 929 } 930 931 int drbd_send_sizes(struct drbd_peer_device *peer_device, int trigger_reply, enum dds_flags flags) 932 { 933 struct drbd_device *device = peer_device->device; 934 struct drbd_socket *sock; 935 struct p_sizes *p; 936 sector_t d_size, u_size; 937 int q_order_type; 938 unsigned int max_bio_size; 939 unsigned int packet_size; 940 941 sock = &peer_device->connection->data; 942 p = drbd_prepare_command(peer_device, sock); 943 if (!p) 944 return -EIO; 945 946 packet_size = sizeof(*p); 947 if (peer_device->connection->agreed_features & DRBD_FF_WSAME) 948 packet_size += sizeof(p->qlim[0]); 949 950 memset(p, 0, packet_size); 951 if (get_ldev_if_state(device, D_NEGOTIATING)) { 952 struct request_queue *q = bdev_get_queue(device->ldev->backing_bdev); 953 d_size = drbd_get_max_capacity(device->ldev); 954 rcu_read_lock(); 955 u_size = rcu_dereference(device->ldev->disk_conf)->disk_size; 956 rcu_read_unlock(); 957 q_order_type = drbd_queue_order_type(device); 958 max_bio_size = queue_max_hw_sectors(q) << 9; 959 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE); 960 assign_p_sizes_qlim(device, p, q); 961 put_ldev(device); 962 } else { 963 d_size = 0; 964 u_size = 0; 965 q_order_type = QUEUE_ORDERED_NONE; 966 max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */ 967 assign_p_sizes_qlim(device, p, NULL); 968 } 969 970 if (peer_device->connection->agreed_pro_version <= 94) 971 max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET); 972 else if (peer_device->connection->agreed_pro_version < 100) 973 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95); 974 975 p->d_size = cpu_to_be64(d_size); 976 p->u_size = cpu_to_be64(u_size); 977 if (trigger_reply) 978 p->c_size = 0; 979 else 980 p->c_size = cpu_to_be64(get_capacity(device->vdisk)); 981 p->max_bio_size = cpu_to_be32(max_bio_size); 982 p->queue_order_type = cpu_to_be16(q_order_type); 983 p->dds_flags = cpu_to_be16(flags); 984 985 return drbd_send_command(peer_device, sock, P_SIZES, packet_size, NULL, 0); 986 } 987 988 /** 989 * drbd_send_current_state() - Sends the drbd state to the peer 990 * @peer_device: DRBD peer device. 991 */ 992 int drbd_send_current_state(struct drbd_peer_device *peer_device) 993 { 994 struct drbd_socket *sock; 995 struct p_state *p; 996 997 sock = &peer_device->connection->data; 998 p = drbd_prepare_command(peer_device, sock); 999 if (!p) 1000 return -EIO; 1001 p->state = cpu_to_be32(peer_device->device->state.i); /* Within the send mutex */ 1002 return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0); 1003 } 1004 1005 /** 1006 * drbd_send_state() - After a state change, sends the new state to the peer 1007 * @peer_device: DRBD peer device. 1008 * @state: the state to send, not necessarily the current state. 1009 * 1010 * Each state change queues an "after_state_ch" work, which will eventually 1011 * send the resulting new state to the peer. If more state changes happen 1012 * between queuing and processing of the after_state_ch work, we still 1013 * want to send each intermediary state in the order it occurred. 1014 */ 1015 int drbd_send_state(struct drbd_peer_device *peer_device, union drbd_state state) 1016 { 1017 struct drbd_socket *sock; 1018 struct p_state *p; 1019 1020 sock = &peer_device->connection->data; 1021 p = drbd_prepare_command(peer_device, sock); 1022 if (!p) 1023 return -EIO; 1024 p->state = cpu_to_be32(state.i); /* Within the send mutex */ 1025 return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0); 1026 } 1027 1028 int drbd_send_state_req(struct drbd_peer_device *peer_device, union drbd_state mask, union drbd_state val) 1029 { 1030 struct drbd_socket *sock; 1031 struct p_req_state *p; 1032 1033 sock = &peer_device->connection->data; 1034 p = drbd_prepare_command(peer_device, sock); 1035 if (!p) 1036 return -EIO; 1037 p->mask = cpu_to_be32(mask.i); 1038 p->val = cpu_to_be32(val.i); 1039 return drbd_send_command(peer_device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0); 1040 } 1041 1042 int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val) 1043 { 1044 enum drbd_packet cmd; 1045 struct drbd_socket *sock; 1046 struct p_req_state *p; 1047 1048 cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ; 1049 sock = &connection->data; 1050 p = conn_prepare_command(connection, sock); 1051 if (!p) 1052 return -EIO; 1053 p->mask = cpu_to_be32(mask.i); 1054 p->val = cpu_to_be32(val.i); 1055 return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0); 1056 } 1057 1058 void drbd_send_sr_reply(struct drbd_peer_device *peer_device, enum drbd_state_rv retcode) 1059 { 1060 struct drbd_socket *sock; 1061 struct p_req_state_reply *p; 1062 1063 sock = &peer_device->connection->meta; 1064 p = drbd_prepare_command(peer_device, sock); 1065 if (p) { 1066 p->retcode = cpu_to_be32(retcode); 1067 drbd_send_command(peer_device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0); 1068 } 1069 } 1070 1071 void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode) 1072 { 1073 struct drbd_socket *sock; 1074 struct p_req_state_reply *p; 1075 enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY; 1076 1077 sock = &connection->meta; 1078 p = conn_prepare_command(connection, sock); 1079 if (p) { 1080 p->retcode = cpu_to_be32(retcode); 1081 conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0); 1082 } 1083 } 1084 1085 static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code) 1086 { 1087 BUG_ON(code & ~0xf); 1088 p->encoding = (p->encoding & ~0xf) | code; 1089 } 1090 1091 static void dcbp_set_start(struct p_compressed_bm *p, int set) 1092 { 1093 p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0); 1094 } 1095 1096 static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n) 1097 { 1098 BUG_ON(n & ~0x7); 1099 p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4); 1100 } 1101 1102 static int fill_bitmap_rle_bits(struct drbd_device *device, 1103 struct p_compressed_bm *p, 1104 unsigned int size, 1105 struct bm_xfer_ctx *c) 1106 { 1107 struct bitstream bs; 1108 unsigned long plain_bits; 1109 unsigned long tmp; 1110 unsigned long rl; 1111 unsigned len; 1112 unsigned toggle; 1113 int bits, use_rle; 1114 1115 /* may we use this feature? */ 1116 rcu_read_lock(); 1117 use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle; 1118 rcu_read_unlock(); 1119 if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90) 1120 return 0; 1121 1122 if (c->bit_offset >= c->bm_bits) 1123 return 0; /* nothing to do. */ 1124 1125 /* use at most thus many bytes */ 1126 bitstream_init(&bs, p->code, size, 0); 1127 memset(p->code, 0, size); 1128 /* plain bits covered in this code string */ 1129 plain_bits = 0; 1130 1131 /* p->encoding & 0x80 stores whether the first run length is set. 1132 * bit offset is implicit. 1133 * start with toggle == 2 to be able to tell the first iteration */ 1134 toggle = 2; 1135 1136 /* see how much plain bits we can stuff into one packet 1137 * using RLE and VLI. */ 1138 do { 1139 tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset) 1140 : _drbd_bm_find_next(device, c->bit_offset); 1141 if (tmp == -1UL) 1142 tmp = c->bm_bits; 1143 rl = tmp - c->bit_offset; 1144 1145 if (toggle == 2) { /* first iteration */ 1146 if (rl == 0) { 1147 /* the first checked bit was set, 1148 * store start value, */ 1149 dcbp_set_start(p, 1); 1150 /* but skip encoding of zero run length */ 1151 toggle = !toggle; 1152 continue; 1153 } 1154 dcbp_set_start(p, 0); 1155 } 1156 1157 /* paranoia: catch zero runlength. 1158 * can only happen if bitmap is modified while we scan it. */ 1159 if (rl == 0) { 1160 drbd_err(device, "unexpected zero runlength while encoding bitmap " 1161 "t:%u bo:%lu\n", toggle, c->bit_offset); 1162 return -1; 1163 } 1164 1165 bits = vli_encode_bits(&bs, rl); 1166 if (bits == -ENOBUFS) /* buffer full */ 1167 break; 1168 if (bits <= 0) { 1169 drbd_err(device, "error while encoding bitmap: %d\n", bits); 1170 return 0; 1171 } 1172 1173 toggle = !toggle; 1174 plain_bits += rl; 1175 c->bit_offset = tmp; 1176 } while (c->bit_offset < c->bm_bits); 1177 1178 len = bs.cur.b - p->code + !!bs.cur.bit; 1179 1180 if (plain_bits < (len << 3)) { 1181 /* incompressible with this method. 1182 * we need to rewind both word and bit position. */ 1183 c->bit_offset -= plain_bits; 1184 bm_xfer_ctx_bit_to_word_offset(c); 1185 c->bit_offset = c->word_offset * BITS_PER_LONG; 1186 return 0; 1187 } 1188 1189 /* RLE + VLI was able to compress it just fine. 1190 * update c->word_offset. */ 1191 bm_xfer_ctx_bit_to_word_offset(c); 1192 1193 /* store pad_bits */ 1194 dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7); 1195 1196 return len; 1197 } 1198 1199 /* 1200 * send_bitmap_rle_or_plain 1201 * 1202 * Return 0 when done, 1 when another iteration is needed, and a negative error 1203 * code upon failure. 1204 */ 1205 static int 1206 send_bitmap_rle_or_plain(struct drbd_device *device, struct bm_xfer_ctx *c) 1207 { 1208 struct drbd_socket *sock = &first_peer_device(device)->connection->data; 1209 unsigned int header_size = drbd_header_size(first_peer_device(device)->connection); 1210 struct p_compressed_bm *p = sock->sbuf + header_size; 1211 int len, err; 1212 1213 len = fill_bitmap_rle_bits(device, p, 1214 DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c); 1215 if (len < 0) 1216 return -EIO; 1217 1218 if (len) { 1219 dcbp_set_code(p, RLE_VLI_Bits); 1220 err = __send_command(first_peer_device(device)->connection, device->vnr, sock, 1221 P_COMPRESSED_BITMAP, sizeof(*p) + len, 1222 NULL, 0); 1223 c->packets[0]++; 1224 c->bytes[0] += header_size + sizeof(*p) + len; 1225 1226 if (c->bit_offset >= c->bm_bits) 1227 len = 0; /* DONE */ 1228 } else { 1229 /* was not compressible. 1230 * send a buffer full of plain text bits instead. */ 1231 unsigned int data_size; 1232 unsigned long num_words; 1233 unsigned long *p = sock->sbuf + header_size; 1234 1235 data_size = DRBD_SOCKET_BUFFER_SIZE - header_size; 1236 num_words = min_t(size_t, data_size / sizeof(*p), 1237 c->bm_words - c->word_offset); 1238 len = num_words * sizeof(*p); 1239 if (len) 1240 drbd_bm_get_lel(device, c->word_offset, num_words, p); 1241 err = __send_command(first_peer_device(device)->connection, device->vnr, sock, P_BITMAP, len, NULL, 0); 1242 c->word_offset += num_words; 1243 c->bit_offset = c->word_offset * BITS_PER_LONG; 1244 1245 c->packets[1]++; 1246 c->bytes[1] += header_size + len; 1247 1248 if (c->bit_offset > c->bm_bits) 1249 c->bit_offset = c->bm_bits; 1250 } 1251 if (!err) { 1252 if (len == 0) { 1253 INFO_bm_xfer_stats(device, "send", c); 1254 return 0; 1255 } else 1256 return 1; 1257 } 1258 return -EIO; 1259 } 1260 1261 /* See the comment at receive_bitmap() */ 1262 static int _drbd_send_bitmap(struct drbd_device *device) 1263 { 1264 struct bm_xfer_ctx c; 1265 int err; 1266 1267 if (!expect(device->bitmap)) 1268 return false; 1269 1270 if (get_ldev(device)) { 1271 if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) { 1272 drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n"); 1273 drbd_bm_set_all(device); 1274 if (drbd_bm_write(device)) { 1275 /* write_bm did fail! Leave full sync flag set in Meta P_DATA 1276 * but otherwise process as per normal - need to tell other 1277 * side that a full resync is required! */ 1278 drbd_err(device, "Failed to write bitmap to disk!\n"); 1279 } else { 1280 drbd_md_clear_flag(device, MDF_FULL_SYNC); 1281 drbd_md_sync(device); 1282 } 1283 } 1284 put_ldev(device); 1285 } 1286 1287 c = (struct bm_xfer_ctx) { 1288 .bm_bits = drbd_bm_bits(device), 1289 .bm_words = drbd_bm_words(device), 1290 }; 1291 1292 do { 1293 err = send_bitmap_rle_or_plain(device, &c); 1294 } while (err > 0); 1295 1296 return err == 0; 1297 } 1298 1299 int drbd_send_bitmap(struct drbd_device *device) 1300 { 1301 struct drbd_socket *sock = &first_peer_device(device)->connection->data; 1302 int err = -1; 1303 1304 mutex_lock(&sock->mutex); 1305 if (sock->socket) 1306 err = !_drbd_send_bitmap(device); 1307 mutex_unlock(&sock->mutex); 1308 return err; 1309 } 1310 1311 void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size) 1312 { 1313 struct drbd_socket *sock; 1314 struct p_barrier_ack *p; 1315 1316 if (connection->cstate < C_WF_REPORT_PARAMS) 1317 return; 1318 1319 sock = &connection->meta; 1320 p = conn_prepare_command(connection, sock); 1321 if (!p) 1322 return; 1323 p->barrier = barrier_nr; 1324 p->set_size = cpu_to_be32(set_size); 1325 conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0); 1326 } 1327 1328 /** 1329 * _drbd_send_ack() - Sends an ack packet 1330 * @peer_device: DRBD peer device. 1331 * @cmd: Packet command code. 1332 * @sector: sector, needs to be in big endian byte order 1333 * @blksize: size in byte, needs to be in big endian byte order 1334 * @block_id: Id, big endian byte order 1335 */ 1336 static int _drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1337 u64 sector, u32 blksize, u64 block_id) 1338 { 1339 struct drbd_socket *sock; 1340 struct p_block_ack *p; 1341 1342 if (peer_device->device->state.conn < C_CONNECTED) 1343 return -EIO; 1344 1345 sock = &peer_device->connection->meta; 1346 p = drbd_prepare_command(peer_device, sock); 1347 if (!p) 1348 return -EIO; 1349 p->sector = sector; 1350 p->block_id = block_id; 1351 p->blksize = blksize; 1352 p->seq_num = cpu_to_be32(atomic_inc_return(&peer_device->device->packet_seq)); 1353 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0); 1354 } 1355 1356 /* dp->sector and dp->block_id already/still in network byte order, 1357 * data_size is payload size according to dp->head, 1358 * and may need to be corrected for digest size. */ 1359 void drbd_send_ack_dp(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1360 struct p_data *dp, int data_size) 1361 { 1362 if (peer_device->connection->peer_integrity_tfm) 1363 data_size -= crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm); 1364 _drbd_send_ack(peer_device, cmd, dp->sector, cpu_to_be32(data_size), 1365 dp->block_id); 1366 } 1367 1368 void drbd_send_ack_rp(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1369 struct p_block_req *rp) 1370 { 1371 _drbd_send_ack(peer_device, cmd, rp->sector, rp->blksize, rp->block_id); 1372 } 1373 1374 /** 1375 * drbd_send_ack() - Sends an ack packet 1376 * @peer_device: DRBD peer device 1377 * @cmd: packet command code 1378 * @peer_req: peer request 1379 */ 1380 int drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1381 struct drbd_peer_request *peer_req) 1382 { 1383 return _drbd_send_ack(peer_device, cmd, 1384 cpu_to_be64(peer_req->i.sector), 1385 cpu_to_be32(peer_req->i.size), 1386 peer_req->block_id); 1387 } 1388 1389 /* This function misuses the block_id field to signal if the blocks 1390 * are is sync or not. */ 1391 int drbd_send_ack_ex(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1392 sector_t sector, int blksize, u64 block_id) 1393 { 1394 return _drbd_send_ack(peer_device, cmd, 1395 cpu_to_be64(sector), 1396 cpu_to_be32(blksize), 1397 cpu_to_be64(block_id)); 1398 } 1399 1400 int drbd_send_rs_deallocated(struct drbd_peer_device *peer_device, 1401 struct drbd_peer_request *peer_req) 1402 { 1403 struct drbd_socket *sock; 1404 struct p_block_desc *p; 1405 1406 sock = &peer_device->connection->data; 1407 p = drbd_prepare_command(peer_device, sock); 1408 if (!p) 1409 return -EIO; 1410 p->sector = cpu_to_be64(peer_req->i.sector); 1411 p->blksize = cpu_to_be32(peer_req->i.size); 1412 p->pad = 0; 1413 return drbd_send_command(peer_device, sock, P_RS_DEALLOCATED, sizeof(*p), NULL, 0); 1414 } 1415 1416 int drbd_send_drequest(struct drbd_peer_device *peer_device, int cmd, 1417 sector_t sector, int size, u64 block_id) 1418 { 1419 struct drbd_socket *sock; 1420 struct p_block_req *p; 1421 1422 sock = &peer_device->connection->data; 1423 p = drbd_prepare_command(peer_device, sock); 1424 if (!p) 1425 return -EIO; 1426 p->sector = cpu_to_be64(sector); 1427 p->block_id = block_id; 1428 p->blksize = cpu_to_be32(size); 1429 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0); 1430 } 1431 1432 int drbd_send_drequest_csum(struct drbd_peer_device *peer_device, sector_t sector, int size, 1433 void *digest, int digest_size, enum drbd_packet cmd) 1434 { 1435 struct drbd_socket *sock; 1436 struct p_block_req *p; 1437 1438 /* FIXME: Put the digest into the preallocated socket buffer. */ 1439 1440 sock = &peer_device->connection->data; 1441 p = drbd_prepare_command(peer_device, sock); 1442 if (!p) 1443 return -EIO; 1444 p->sector = cpu_to_be64(sector); 1445 p->block_id = ID_SYNCER /* unused */; 1446 p->blksize = cpu_to_be32(size); 1447 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), digest, digest_size); 1448 } 1449 1450 int drbd_send_ov_request(struct drbd_peer_device *peer_device, sector_t sector, int size) 1451 { 1452 struct drbd_socket *sock; 1453 struct p_block_req *p; 1454 1455 sock = &peer_device->connection->data; 1456 p = drbd_prepare_command(peer_device, sock); 1457 if (!p) 1458 return -EIO; 1459 p->sector = cpu_to_be64(sector); 1460 p->block_id = ID_SYNCER /* unused */; 1461 p->blksize = cpu_to_be32(size); 1462 return drbd_send_command(peer_device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0); 1463 } 1464 1465 /* called on sndtimeo 1466 * returns false if we should retry, 1467 * true if we think connection is dead 1468 */ 1469 static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock) 1470 { 1471 int drop_it; 1472 /* long elapsed = (long)(jiffies - device->last_received); */ 1473 1474 drop_it = connection->meta.socket == sock 1475 || !connection->ack_receiver.task 1476 || get_t_state(&connection->ack_receiver) != RUNNING 1477 || connection->cstate < C_WF_REPORT_PARAMS; 1478 1479 if (drop_it) 1480 return true; 1481 1482 drop_it = !--connection->ko_count; 1483 if (!drop_it) { 1484 drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n", 1485 current->comm, current->pid, connection->ko_count); 1486 request_ping(connection); 1487 } 1488 1489 return drop_it; /* && (device->state == R_PRIMARY) */; 1490 } 1491 1492 static void drbd_update_congested(struct drbd_connection *connection) 1493 { 1494 struct sock *sk = connection->data.socket->sk; 1495 if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5) 1496 set_bit(NET_CONGESTED, &connection->flags); 1497 } 1498 1499 /* The idea of sendpage seems to be to put some kind of reference 1500 * to the page into the skb, and to hand it over to the NIC. In 1501 * this process get_page() gets called. 1502 * 1503 * As soon as the page was really sent over the network put_page() 1504 * gets called by some part of the network layer. [ NIC driver? ] 1505 * 1506 * [ get_page() / put_page() increment/decrement the count. If count 1507 * reaches 0 the page will be freed. ] 1508 * 1509 * This works nicely with pages from FSs. 1510 * But this means that in protocol A we might signal IO completion too early! 1511 * 1512 * In order not to corrupt data during a resync we must make sure 1513 * that we do not reuse our own buffer pages (EEs) to early, therefore 1514 * we have the net_ee list. 1515 * 1516 * XFS seems to have problems, still, it submits pages with page_count == 0! 1517 * As a workaround, we disable sendpage on pages 1518 * with page_count == 0 or PageSlab. 1519 */ 1520 static int _drbd_no_send_page(struct drbd_peer_device *peer_device, struct page *page, 1521 int offset, size_t size, unsigned msg_flags) 1522 { 1523 struct socket *socket; 1524 void *addr; 1525 int err; 1526 1527 socket = peer_device->connection->data.socket; 1528 addr = kmap(page) + offset; 1529 err = drbd_send_all(peer_device->connection, socket, addr, size, msg_flags); 1530 kunmap(page); 1531 if (!err) 1532 peer_device->device->send_cnt += size >> 9; 1533 return err; 1534 } 1535 1536 static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *page, 1537 int offset, size_t size, unsigned msg_flags) 1538 { 1539 struct socket *socket = peer_device->connection->data.socket; 1540 int len = size; 1541 int err = -EIO; 1542 1543 /* e.g. XFS meta- & log-data is in slab pages, which have a 1544 * page_count of 0 and/or have PageSlab() set. 1545 * we cannot use send_page for those, as that does get_page(); 1546 * put_page(); and would cause either a VM_BUG directly, or 1547 * __page_cache_release a page that would actually still be referenced 1548 * by someone, leading to some obscure delayed Oops somewhere else. */ 1549 if (drbd_disable_sendpage || !sendpage_ok(page)) 1550 return _drbd_no_send_page(peer_device, page, offset, size, msg_flags); 1551 1552 msg_flags |= MSG_NOSIGNAL; 1553 drbd_update_congested(peer_device->connection); 1554 do { 1555 int sent; 1556 1557 sent = socket->ops->sendpage(socket, page, offset, len, msg_flags); 1558 if (sent <= 0) { 1559 if (sent == -EAGAIN) { 1560 if (we_should_drop_the_connection(peer_device->connection, socket)) 1561 break; 1562 continue; 1563 } 1564 drbd_warn(peer_device->device, "%s: size=%d len=%d sent=%d\n", 1565 __func__, (int)size, len, sent); 1566 if (sent < 0) 1567 err = sent; 1568 break; 1569 } 1570 len -= sent; 1571 offset += sent; 1572 } while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/); 1573 clear_bit(NET_CONGESTED, &peer_device->connection->flags); 1574 1575 if (len == 0) { 1576 err = 0; 1577 peer_device->device->send_cnt += size >> 9; 1578 } 1579 return err; 1580 } 1581 1582 static int _drbd_send_bio(struct drbd_peer_device *peer_device, struct bio *bio) 1583 { 1584 struct bio_vec bvec; 1585 struct bvec_iter iter; 1586 1587 /* hint all but last page with MSG_MORE */ 1588 bio_for_each_segment(bvec, bio, iter) { 1589 int err; 1590 1591 err = _drbd_no_send_page(peer_device, bvec.bv_page, 1592 bvec.bv_offset, bvec.bv_len, 1593 bio_iter_last(bvec, iter) 1594 ? 0 : MSG_MORE); 1595 if (err) 1596 return err; 1597 } 1598 return 0; 1599 } 1600 1601 static int _drbd_send_zc_bio(struct drbd_peer_device *peer_device, struct bio *bio) 1602 { 1603 struct bio_vec bvec; 1604 struct bvec_iter iter; 1605 1606 /* hint all but last page with MSG_MORE */ 1607 bio_for_each_segment(bvec, bio, iter) { 1608 int err; 1609 1610 err = _drbd_send_page(peer_device, bvec.bv_page, 1611 bvec.bv_offset, bvec.bv_len, 1612 bio_iter_last(bvec, iter) ? 0 : MSG_MORE); 1613 if (err) 1614 return err; 1615 } 1616 return 0; 1617 } 1618 1619 static int _drbd_send_zc_ee(struct drbd_peer_device *peer_device, 1620 struct drbd_peer_request *peer_req) 1621 { 1622 struct page *page = peer_req->pages; 1623 unsigned len = peer_req->i.size; 1624 int err; 1625 1626 /* hint all but last page with MSG_MORE */ 1627 page_chain_for_each(page) { 1628 unsigned l = min_t(unsigned, len, PAGE_SIZE); 1629 1630 err = _drbd_send_page(peer_device, page, 0, l, 1631 page_chain_next(page) ? MSG_MORE : 0); 1632 if (err) 1633 return err; 1634 len -= l; 1635 } 1636 return 0; 1637 } 1638 1639 static u32 bio_flags_to_wire(struct drbd_connection *connection, 1640 struct bio *bio) 1641 { 1642 if (connection->agreed_pro_version >= 95) 1643 return (bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0) | 1644 (bio->bi_opf & REQ_FUA ? DP_FUA : 0) | 1645 (bio->bi_opf & REQ_PREFLUSH ? DP_FLUSH : 0) | 1646 (bio_op(bio) == REQ_OP_DISCARD ? DP_DISCARD : 0) | 1647 (bio_op(bio) == REQ_OP_WRITE_ZEROES ? 1648 ((connection->agreed_features & DRBD_FF_WZEROES) ? 1649 (DP_ZEROES |(!(bio->bi_opf & REQ_NOUNMAP) ? DP_DISCARD : 0)) 1650 : DP_DISCARD) 1651 : 0); 1652 else 1653 return bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0; 1654 } 1655 1656 /* Used to send write or TRIM aka REQ_OP_DISCARD requests 1657 * R_PRIMARY -> Peer (P_DATA, P_TRIM) 1658 */ 1659 int drbd_send_dblock(struct drbd_peer_device *peer_device, struct drbd_request *req) 1660 { 1661 struct drbd_device *device = peer_device->device; 1662 struct drbd_socket *sock; 1663 struct p_data *p; 1664 void *digest_out; 1665 unsigned int dp_flags = 0; 1666 int digest_size; 1667 int err; 1668 1669 sock = &peer_device->connection->data; 1670 p = drbd_prepare_command(peer_device, sock); 1671 digest_size = peer_device->connection->integrity_tfm ? 1672 crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0; 1673 1674 if (!p) 1675 return -EIO; 1676 p->sector = cpu_to_be64(req->i.sector); 1677 p->block_id = (unsigned long)req; 1678 p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq)); 1679 dp_flags = bio_flags_to_wire(peer_device->connection, req->master_bio); 1680 if (device->state.conn >= C_SYNC_SOURCE && 1681 device->state.conn <= C_PAUSED_SYNC_T) 1682 dp_flags |= DP_MAY_SET_IN_SYNC; 1683 if (peer_device->connection->agreed_pro_version >= 100) { 1684 if (req->rq_state & RQ_EXP_RECEIVE_ACK) 1685 dp_flags |= DP_SEND_RECEIVE_ACK; 1686 /* During resync, request an explicit write ack, 1687 * even in protocol != C */ 1688 if (req->rq_state & RQ_EXP_WRITE_ACK 1689 || (dp_flags & DP_MAY_SET_IN_SYNC)) 1690 dp_flags |= DP_SEND_WRITE_ACK; 1691 } 1692 p->dp_flags = cpu_to_be32(dp_flags); 1693 1694 if (dp_flags & (DP_DISCARD|DP_ZEROES)) { 1695 enum drbd_packet cmd = (dp_flags & DP_ZEROES) ? P_ZEROES : P_TRIM; 1696 struct p_trim *t = (struct p_trim*)p; 1697 t->size = cpu_to_be32(req->i.size); 1698 err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*t), NULL, 0); 1699 goto out; 1700 } 1701 digest_out = p + 1; 1702 1703 /* our digest is still only over the payload. 1704 * TRIM does not carry any payload. */ 1705 if (digest_size) 1706 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest_out); 1707 err = __send_command(peer_device->connection, device->vnr, sock, P_DATA, 1708 sizeof(*p) + digest_size, NULL, req->i.size); 1709 if (!err) { 1710 /* For protocol A, we have to memcpy the payload into 1711 * socket buffers, as we may complete right away 1712 * as soon as we handed it over to tcp, at which point the data 1713 * pages may become invalid. 1714 * 1715 * For data-integrity enabled, we copy it as well, so we can be 1716 * sure that even if the bio pages may still be modified, it 1717 * won't change the data on the wire, thus if the digest checks 1718 * out ok after sending on this side, but does not fit on the 1719 * receiving side, we sure have detected corruption elsewhere. 1720 */ 1721 if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || digest_size) 1722 err = _drbd_send_bio(peer_device, req->master_bio); 1723 else 1724 err = _drbd_send_zc_bio(peer_device, req->master_bio); 1725 1726 /* double check digest, sometimes buffers have been modified in flight. */ 1727 if (digest_size > 0 && digest_size <= 64) { 1728 /* 64 byte, 512 bit, is the largest digest size 1729 * currently supported in kernel crypto. */ 1730 unsigned char digest[64]; 1731 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest); 1732 if (memcmp(p + 1, digest, digest_size)) { 1733 drbd_warn(device, 1734 "Digest mismatch, buffer modified by upper layers during write: %llus +%u\n", 1735 (unsigned long long)req->i.sector, req->i.size); 1736 } 1737 } /* else if (digest_size > 64) { 1738 ... Be noisy about digest too large ... 1739 } */ 1740 } 1741 out: 1742 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */ 1743 1744 return err; 1745 } 1746 1747 /* answer packet, used to send data back for read requests: 1748 * Peer -> (diskless) R_PRIMARY (P_DATA_REPLY) 1749 * C_SYNC_SOURCE -> C_SYNC_TARGET (P_RS_DATA_REPLY) 1750 */ 1751 int drbd_send_block(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1752 struct drbd_peer_request *peer_req) 1753 { 1754 struct drbd_device *device = peer_device->device; 1755 struct drbd_socket *sock; 1756 struct p_data *p; 1757 int err; 1758 int digest_size; 1759 1760 sock = &peer_device->connection->data; 1761 p = drbd_prepare_command(peer_device, sock); 1762 1763 digest_size = peer_device->connection->integrity_tfm ? 1764 crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0; 1765 1766 if (!p) 1767 return -EIO; 1768 p->sector = cpu_to_be64(peer_req->i.sector); 1769 p->block_id = peer_req->block_id; 1770 p->seq_num = 0; /* unused */ 1771 p->dp_flags = 0; 1772 if (digest_size) 1773 drbd_csum_ee(peer_device->connection->integrity_tfm, peer_req, p + 1); 1774 err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*p) + digest_size, NULL, peer_req->i.size); 1775 if (!err) 1776 err = _drbd_send_zc_ee(peer_device, peer_req); 1777 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */ 1778 1779 return err; 1780 } 1781 1782 int drbd_send_out_of_sync(struct drbd_peer_device *peer_device, struct drbd_request *req) 1783 { 1784 struct drbd_socket *sock; 1785 struct p_block_desc *p; 1786 1787 sock = &peer_device->connection->data; 1788 p = drbd_prepare_command(peer_device, sock); 1789 if (!p) 1790 return -EIO; 1791 p->sector = cpu_to_be64(req->i.sector); 1792 p->blksize = cpu_to_be32(req->i.size); 1793 return drbd_send_command(peer_device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0); 1794 } 1795 1796 /* 1797 drbd_send distinguishes two cases: 1798 1799 Packets sent via the data socket "sock" 1800 and packets sent via the meta data socket "msock" 1801 1802 sock msock 1803 -----------------+-------------------------+------------------------------ 1804 timeout conf.timeout / 2 conf.timeout / 2 1805 timeout action send a ping via msock Abort communication 1806 and close all sockets 1807 */ 1808 1809 /* 1810 * you must have down()ed the appropriate [m]sock_mutex elsewhere! 1811 */ 1812 int drbd_send(struct drbd_connection *connection, struct socket *sock, 1813 void *buf, size_t size, unsigned msg_flags) 1814 { 1815 struct kvec iov = {.iov_base = buf, .iov_len = size}; 1816 struct msghdr msg = {.msg_flags = msg_flags | MSG_NOSIGNAL}; 1817 int rv, sent = 0; 1818 1819 if (!sock) 1820 return -EBADR; 1821 1822 /* THINK if (signal_pending) return ... ? */ 1823 1824 iov_iter_kvec(&msg.msg_iter, WRITE, &iov, 1, size); 1825 1826 if (sock == connection->data.socket) { 1827 rcu_read_lock(); 1828 connection->ko_count = rcu_dereference(connection->net_conf)->ko_count; 1829 rcu_read_unlock(); 1830 drbd_update_congested(connection); 1831 } 1832 do { 1833 rv = sock_sendmsg(sock, &msg); 1834 if (rv == -EAGAIN) { 1835 if (we_should_drop_the_connection(connection, sock)) 1836 break; 1837 else 1838 continue; 1839 } 1840 if (rv == -EINTR) { 1841 flush_signals(current); 1842 rv = 0; 1843 } 1844 if (rv < 0) 1845 break; 1846 sent += rv; 1847 } while (sent < size); 1848 1849 if (sock == connection->data.socket) 1850 clear_bit(NET_CONGESTED, &connection->flags); 1851 1852 if (rv <= 0) { 1853 if (rv != -EAGAIN) { 1854 drbd_err(connection, "%s_sendmsg returned %d\n", 1855 sock == connection->meta.socket ? "msock" : "sock", 1856 rv); 1857 conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD); 1858 } else 1859 conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD); 1860 } 1861 1862 return sent; 1863 } 1864 1865 /* 1866 * drbd_send_all - Send an entire buffer 1867 * 1868 * Returns 0 upon success and a negative error value otherwise. 1869 */ 1870 int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer, 1871 size_t size, unsigned msg_flags) 1872 { 1873 int err; 1874 1875 err = drbd_send(connection, sock, buffer, size, msg_flags); 1876 if (err < 0) 1877 return err; 1878 if (err != size) 1879 return -EIO; 1880 return 0; 1881 } 1882 1883 static int drbd_open(struct block_device *bdev, fmode_t mode) 1884 { 1885 struct drbd_device *device = bdev->bd_disk->private_data; 1886 unsigned long flags; 1887 int rv = 0; 1888 1889 mutex_lock(&drbd_main_mutex); 1890 spin_lock_irqsave(&device->resource->req_lock, flags); 1891 /* to have a stable device->state.role 1892 * and no race with updating open_cnt */ 1893 1894 if (device->state.role != R_PRIMARY) { 1895 if (mode & FMODE_WRITE) 1896 rv = -EROFS; 1897 else if (!drbd_allow_oos) 1898 rv = -EMEDIUMTYPE; 1899 } 1900 1901 if (!rv) 1902 device->open_cnt++; 1903 spin_unlock_irqrestore(&device->resource->req_lock, flags); 1904 mutex_unlock(&drbd_main_mutex); 1905 1906 return rv; 1907 } 1908 1909 static void drbd_release(struct gendisk *gd, fmode_t mode) 1910 { 1911 struct drbd_device *device = gd->private_data; 1912 mutex_lock(&drbd_main_mutex); 1913 device->open_cnt--; 1914 mutex_unlock(&drbd_main_mutex); 1915 } 1916 1917 /* need to hold resource->req_lock */ 1918 void drbd_queue_unplug(struct drbd_device *device) 1919 { 1920 if (device->state.pdsk >= D_INCONSISTENT && device->state.conn >= C_CONNECTED) { 1921 D_ASSERT(device, device->state.role == R_PRIMARY); 1922 if (test_and_clear_bit(UNPLUG_REMOTE, &device->flags)) { 1923 drbd_queue_work_if_unqueued( 1924 &first_peer_device(device)->connection->sender_work, 1925 &device->unplug_work); 1926 } 1927 } 1928 } 1929 1930 static void drbd_set_defaults(struct drbd_device *device) 1931 { 1932 /* Beware! The actual layout differs 1933 * between big endian and little endian */ 1934 device->state = (union drbd_dev_state) { 1935 { .role = R_SECONDARY, 1936 .peer = R_UNKNOWN, 1937 .conn = C_STANDALONE, 1938 .disk = D_DISKLESS, 1939 .pdsk = D_UNKNOWN, 1940 } }; 1941 } 1942 1943 void drbd_init_set_defaults(struct drbd_device *device) 1944 { 1945 /* the memset(,0,) did most of this. 1946 * note: only assignments, no allocation in here */ 1947 1948 drbd_set_defaults(device); 1949 1950 atomic_set(&device->ap_bio_cnt, 0); 1951 atomic_set(&device->ap_actlog_cnt, 0); 1952 atomic_set(&device->ap_pending_cnt, 0); 1953 atomic_set(&device->rs_pending_cnt, 0); 1954 atomic_set(&device->unacked_cnt, 0); 1955 atomic_set(&device->local_cnt, 0); 1956 atomic_set(&device->pp_in_use_by_net, 0); 1957 atomic_set(&device->rs_sect_in, 0); 1958 atomic_set(&device->rs_sect_ev, 0); 1959 atomic_set(&device->ap_in_flight, 0); 1960 atomic_set(&device->md_io.in_use, 0); 1961 1962 mutex_init(&device->own_state_mutex); 1963 device->state_mutex = &device->own_state_mutex; 1964 1965 spin_lock_init(&device->al_lock); 1966 spin_lock_init(&device->peer_seq_lock); 1967 1968 INIT_LIST_HEAD(&device->active_ee); 1969 INIT_LIST_HEAD(&device->sync_ee); 1970 INIT_LIST_HEAD(&device->done_ee); 1971 INIT_LIST_HEAD(&device->read_ee); 1972 INIT_LIST_HEAD(&device->net_ee); 1973 INIT_LIST_HEAD(&device->resync_reads); 1974 INIT_LIST_HEAD(&device->resync_work.list); 1975 INIT_LIST_HEAD(&device->unplug_work.list); 1976 INIT_LIST_HEAD(&device->bm_io_work.w.list); 1977 INIT_LIST_HEAD(&device->pending_master_completion[0]); 1978 INIT_LIST_HEAD(&device->pending_master_completion[1]); 1979 INIT_LIST_HEAD(&device->pending_completion[0]); 1980 INIT_LIST_HEAD(&device->pending_completion[1]); 1981 1982 device->resync_work.cb = w_resync_timer; 1983 device->unplug_work.cb = w_send_write_hint; 1984 device->bm_io_work.w.cb = w_bitmap_io; 1985 1986 timer_setup(&device->resync_timer, resync_timer_fn, 0); 1987 timer_setup(&device->md_sync_timer, md_sync_timer_fn, 0); 1988 timer_setup(&device->start_resync_timer, start_resync_timer_fn, 0); 1989 timer_setup(&device->request_timer, request_timer_fn, 0); 1990 1991 init_waitqueue_head(&device->misc_wait); 1992 init_waitqueue_head(&device->state_wait); 1993 init_waitqueue_head(&device->ee_wait); 1994 init_waitqueue_head(&device->al_wait); 1995 init_waitqueue_head(&device->seq_wait); 1996 1997 device->resync_wenr = LC_FREE; 1998 device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE; 1999 device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE; 2000 } 2001 2002 void drbd_set_my_capacity(struct drbd_device *device, sector_t size) 2003 { 2004 char ppb[10]; 2005 2006 set_capacity_and_notify(device->vdisk, size); 2007 2008 drbd_info(device, "size = %s (%llu KB)\n", 2009 ppsize(ppb, size>>1), (unsigned long long)size>>1); 2010 } 2011 2012 void drbd_device_cleanup(struct drbd_device *device) 2013 { 2014 int i; 2015 if (first_peer_device(device)->connection->receiver.t_state != NONE) 2016 drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n", 2017 first_peer_device(device)->connection->receiver.t_state); 2018 2019 device->al_writ_cnt = 2020 device->bm_writ_cnt = 2021 device->read_cnt = 2022 device->recv_cnt = 2023 device->send_cnt = 2024 device->writ_cnt = 2025 device->p_size = 2026 device->rs_start = 2027 device->rs_total = 2028 device->rs_failed = 0; 2029 device->rs_last_events = 0; 2030 device->rs_last_sect_ev = 0; 2031 for (i = 0; i < DRBD_SYNC_MARKS; i++) { 2032 device->rs_mark_left[i] = 0; 2033 device->rs_mark_time[i] = 0; 2034 } 2035 D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL); 2036 2037 set_capacity_and_notify(device->vdisk, 0); 2038 if (device->bitmap) { 2039 /* maybe never allocated. */ 2040 drbd_bm_resize(device, 0, 1); 2041 drbd_bm_cleanup(device); 2042 } 2043 2044 drbd_backing_dev_free(device, device->ldev); 2045 device->ldev = NULL; 2046 2047 clear_bit(AL_SUSPENDED, &device->flags); 2048 2049 D_ASSERT(device, list_empty(&device->active_ee)); 2050 D_ASSERT(device, list_empty(&device->sync_ee)); 2051 D_ASSERT(device, list_empty(&device->done_ee)); 2052 D_ASSERT(device, list_empty(&device->read_ee)); 2053 D_ASSERT(device, list_empty(&device->net_ee)); 2054 D_ASSERT(device, list_empty(&device->resync_reads)); 2055 D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q)); 2056 D_ASSERT(device, list_empty(&device->resync_work.list)); 2057 D_ASSERT(device, list_empty(&device->unplug_work.list)); 2058 2059 drbd_set_defaults(device); 2060 } 2061 2062 2063 static void drbd_destroy_mempools(void) 2064 { 2065 struct page *page; 2066 2067 while (drbd_pp_pool) { 2068 page = drbd_pp_pool; 2069 drbd_pp_pool = (struct page *)page_private(page); 2070 __free_page(page); 2071 drbd_pp_vacant--; 2072 } 2073 2074 /* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */ 2075 2076 bioset_exit(&drbd_io_bio_set); 2077 bioset_exit(&drbd_md_io_bio_set); 2078 mempool_exit(&drbd_md_io_page_pool); 2079 mempool_exit(&drbd_ee_mempool); 2080 mempool_exit(&drbd_request_mempool); 2081 kmem_cache_destroy(drbd_ee_cache); 2082 kmem_cache_destroy(drbd_request_cache); 2083 kmem_cache_destroy(drbd_bm_ext_cache); 2084 kmem_cache_destroy(drbd_al_ext_cache); 2085 2086 drbd_ee_cache = NULL; 2087 drbd_request_cache = NULL; 2088 drbd_bm_ext_cache = NULL; 2089 drbd_al_ext_cache = NULL; 2090 2091 return; 2092 } 2093 2094 static int drbd_create_mempools(void) 2095 { 2096 struct page *page; 2097 const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * drbd_minor_count; 2098 int i, ret; 2099 2100 /* caches */ 2101 drbd_request_cache = kmem_cache_create( 2102 "drbd_req", sizeof(struct drbd_request), 0, 0, NULL); 2103 if (drbd_request_cache == NULL) 2104 goto Enomem; 2105 2106 drbd_ee_cache = kmem_cache_create( 2107 "drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL); 2108 if (drbd_ee_cache == NULL) 2109 goto Enomem; 2110 2111 drbd_bm_ext_cache = kmem_cache_create( 2112 "drbd_bm", sizeof(struct bm_extent), 0, 0, NULL); 2113 if (drbd_bm_ext_cache == NULL) 2114 goto Enomem; 2115 2116 drbd_al_ext_cache = kmem_cache_create( 2117 "drbd_al", sizeof(struct lc_element), 0, 0, NULL); 2118 if (drbd_al_ext_cache == NULL) 2119 goto Enomem; 2120 2121 /* mempools */ 2122 ret = bioset_init(&drbd_io_bio_set, BIO_POOL_SIZE, 0, 0); 2123 if (ret) 2124 goto Enomem; 2125 2126 ret = bioset_init(&drbd_md_io_bio_set, DRBD_MIN_POOL_PAGES, 0, 2127 BIOSET_NEED_BVECS); 2128 if (ret) 2129 goto Enomem; 2130 2131 ret = mempool_init_page_pool(&drbd_md_io_page_pool, DRBD_MIN_POOL_PAGES, 0); 2132 if (ret) 2133 goto Enomem; 2134 2135 ret = mempool_init_slab_pool(&drbd_request_mempool, number, 2136 drbd_request_cache); 2137 if (ret) 2138 goto Enomem; 2139 2140 ret = mempool_init_slab_pool(&drbd_ee_mempool, number, drbd_ee_cache); 2141 if (ret) 2142 goto Enomem; 2143 2144 for (i = 0; i < number; i++) { 2145 page = alloc_page(GFP_HIGHUSER); 2146 if (!page) 2147 goto Enomem; 2148 set_page_private(page, (unsigned long)drbd_pp_pool); 2149 drbd_pp_pool = page; 2150 } 2151 drbd_pp_vacant = number; 2152 2153 return 0; 2154 2155 Enomem: 2156 drbd_destroy_mempools(); /* in case we allocated some */ 2157 return -ENOMEM; 2158 } 2159 2160 static void drbd_release_all_peer_reqs(struct drbd_device *device) 2161 { 2162 int rr; 2163 2164 rr = drbd_free_peer_reqs(device, &device->active_ee); 2165 if (rr) 2166 drbd_err(device, "%d EEs in active list found!\n", rr); 2167 2168 rr = drbd_free_peer_reqs(device, &device->sync_ee); 2169 if (rr) 2170 drbd_err(device, "%d EEs in sync list found!\n", rr); 2171 2172 rr = drbd_free_peer_reqs(device, &device->read_ee); 2173 if (rr) 2174 drbd_err(device, "%d EEs in read list found!\n", rr); 2175 2176 rr = drbd_free_peer_reqs(device, &device->done_ee); 2177 if (rr) 2178 drbd_err(device, "%d EEs in done list found!\n", rr); 2179 2180 rr = drbd_free_peer_reqs(device, &device->net_ee); 2181 if (rr) 2182 drbd_err(device, "%d EEs in net list found!\n", rr); 2183 } 2184 2185 /* caution. no locking. */ 2186 void drbd_destroy_device(struct kref *kref) 2187 { 2188 struct drbd_device *device = container_of(kref, struct drbd_device, kref); 2189 struct drbd_resource *resource = device->resource; 2190 struct drbd_peer_device *peer_device, *tmp_peer_device; 2191 2192 del_timer_sync(&device->request_timer); 2193 2194 /* paranoia asserts */ 2195 D_ASSERT(device, device->open_cnt == 0); 2196 /* end paranoia asserts */ 2197 2198 /* cleanup stuff that may have been allocated during 2199 * device (re-)configuration or state changes */ 2200 2201 drbd_backing_dev_free(device, device->ldev); 2202 device->ldev = NULL; 2203 2204 drbd_release_all_peer_reqs(device); 2205 2206 lc_destroy(device->act_log); 2207 lc_destroy(device->resync); 2208 2209 kfree(device->p_uuid); 2210 /* device->p_uuid = NULL; */ 2211 2212 if (device->bitmap) /* should no longer be there. */ 2213 drbd_bm_cleanup(device); 2214 __free_page(device->md_io.page); 2215 blk_cleanup_disk(device->vdisk); 2216 kfree(device->rs_plan_s); 2217 2218 /* not for_each_connection(connection, resource): 2219 * those may have been cleaned up and disassociated already. 2220 */ 2221 for_each_peer_device_safe(peer_device, tmp_peer_device, device) { 2222 kref_put(&peer_device->connection->kref, drbd_destroy_connection); 2223 kfree(peer_device); 2224 } 2225 memset(device, 0xfd, sizeof(*device)); 2226 kfree(device); 2227 kref_put(&resource->kref, drbd_destroy_resource); 2228 } 2229 2230 /* One global retry thread, if we need to push back some bio and have it 2231 * reinserted through our make request function. 2232 */ 2233 static struct retry_worker { 2234 struct workqueue_struct *wq; 2235 struct work_struct worker; 2236 2237 spinlock_t lock; 2238 struct list_head writes; 2239 } retry; 2240 2241 static void do_retry(struct work_struct *ws) 2242 { 2243 struct retry_worker *retry = container_of(ws, struct retry_worker, worker); 2244 LIST_HEAD(writes); 2245 struct drbd_request *req, *tmp; 2246 2247 spin_lock_irq(&retry->lock); 2248 list_splice_init(&retry->writes, &writes); 2249 spin_unlock_irq(&retry->lock); 2250 2251 list_for_each_entry_safe(req, tmp, &writes, tl_requests) { 2252 struct drbd_device *device = req->device; 2253 struct bio *bio = req->master_bio; 2254 bool expected; 2255 2256 expected = 2257 expect(atomic_read(&req->completion_ref) == 0) && 2258 expect(req->rq_state & RQ_POSTPONED) && 2259 expect((req->rq_state & RQ_LOCAL_PENDING) == 0 || 2260 (req->rq_state & RQ_LOCAL_ABORTED) != 0); 2261 2262 if (!expected) 2263 drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n", 2264 req, atomic_read(&req->completion_ref), 2265 req->rq_state); 2266 2267 /* We still need to put one kref associated with the 2268 * "completion_ref" going zero in the code path that queued it 2269 * here. The request object may still be referenced by a 2270 * frozen local req->private_bio, in case we force-detached. 2271 */ 2272 kref_put(&req->kref, drbd_req_destroy); 2273 2274 /* A single suspended or otherwise blocking device may stall 2275 * all others as well. Fortunately, this code path is to 2276 * recover from a situation that "should not happen": 2277 * concurrent writes in multi-primary setup. 2278 * In a "normal" lifecycle, this workqueue is supposed to be 2279 * destroyed without ever doing anything. 2280 * If it turns out to be an issue anyways, we can do per 2281 * resource (replication group) or per device (minor) retry 2282 * workqueues instead. 2283 */ 2284 2285 /* We are not just doing submit_bio_noacct(), 2286 * as we want to keep the start_time information. */ 2287 inc_ap_bio(device); 2288 __drbd_make_request(device, bio); 2289 } 2290 } 2291 2292 /* called via drbd_req_put_completion_ref(), 2293 * holds resource->req_lock */ 2294 void drbd_restart_request(struct drbd_request *req) 2295 { 2296 unsigned long flags; 2297 spin_lock_irqsave(&retry.lock, flags); 2298 list_move_tail(&req->tl_requests, &retry.writes); 2299 spin_unlock_irqrestore(&retry.lock, flags); 2300 2301 /* Drop the extra reference that would otherwise 2302 * have been dropped by complete_master_bio. 2303 * do_retry() needs to grab a new one. */ 2304 dec_ap_bio(req->device); 2305 2306 queue_work(retry.wq, &retry.worker); 2307 } 2308 2309 void drbd_destroy_resource(struct kref *kref) 2310 { 2311 struct drbd_resource *resource = 2312 container_of(kref, struct drbd_resource, kref); 2313 2314 idr_destroy(&resource->devices); 2315 free_cpumask_var(resource->cpu_mask); 2316 kfree(resource->name); 2317 memset(resource, 0xf2, sizeof(*resource)); 2318 kfree(resource); 2319 } 2320 2321 void drbd_free_resource(struct drbd_resource *resource) 2322 { 2323 struct drbd_connection *connection, *tmp; 2324 2325 for_each_connection_safe(connection, tmp, resource) { 2326 list_del(&connection->connections); 2327 drbd_debugfs_connection_cleanup(connection); 2328 kref_put(&connection->kref, drbd_destroy_connection); 2329 } 2330 drbd_debugfs_resource_cleanup(resource); 2331 kref_put(&resource->kref, drbd_destroy_resource); 2332 } 2333 2334 static void drbd_cleanup(void) 2335 { 2336 unsigned int i; 2337 struct drbd_device *device; 2338 struct drbd_resource *resource, *tmp; 2339 2340 /* first remove proc, 2341 * drbdsetup uses it's presence to detect 2342 * whether DRBD is loaded. 2343 * If we would get stuck in proc removal, 2344 * but have netlink already deregistered, 2345 * some drbdsetup commands may wait forever 2346 * for an answer. 2347 */ 2348 if (drbd_proc) 2349 remove_proc_entry("drbd", NULL); 2350 2351 if (retry.wq) 2352 destroy_workqueue(retry.wq); 2353 2354 drbd_genl_unregister(); 2355 2356 idr_for_each_entry(&drbd_devices, device, i) 2357 drbd_delete_device(device); 2358 2359 /* not _rcu since, no other updater anymore. Genl already unregistered */ 2360 for_each_resource_safe(resource, tmp, &drbd_resources) { 2361 list_del(&resource->resources); 2362 drbd_free_resource(resource); 2363 } 2364 2365 drbd_debugfs_cleanup(); 2366 2367 drbd_destroy_mempools(); 2368 unregister_blkdev(DRBD_MAJOR, "drbd"); 2369 2370 idr_destroy(&drbd_devices); 2371 2372 pr_info("module cleanup done.\n"); 2373 } 2374 2375 static void drbd_init_workqueue(struct drbd_work_queue* wq) 2376 { 2377 spin_lock_init(&wq->q_lock); 2378 INIT_LIST_HEAD(&wq->q); 2379 init_waitqueue_head(&wq->q_wait); 2380 } 2381 2382 struct completion_work { 2383 struct drbd_work w; 2384 struct completion done; 2385 }; 2386 2387 static int w_complete(struct drbd_work *w, int cancel) 2388 { 2389 struct completion_work *completion_work = 2390 container_of(w, struct completion_work, w); 2391 2392 complete(&completion_work->done); 2393 return 0; 2394 } 2395 2396 void drbd_flush_workqueue(struct drbd_work_queue *work_queue) 2397 { 2398 struct completion_work completion_work; 2399 2400 completion_work.w.cb = w_complete; 2401 init_completion(&completion_work.done); 2402 drbd_queue_work(work_queue, &completion_work.w); 2403 wait_for_completion(&completion_work.done); 2404 } 2405 2406 struct drbd_resource *drbd_find_resource(const char *name) 2407 { 2408 struct drbd_resource *resource; 2409 2410 if (!name || !name[0]) 2411 return NULL; 2412 2413 rcu_read_lock(); 2414 for_each_resource_rcu(resource, &drbd_resources) { 2415 if (!strcmp(resource->name, name)) { 2416 kref_get(&resource->kref); 2417 goto found; 2418 } 2419 } 2420 resource = NULL; 2421 found: 2422 rcu_read_unlock(); 2423 return resource; 2424 } 2425 2426 struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len, 2427 void *peer_addr, int peer_addr_len) 2428 { 2429 struct drbd_resource *resource; 2430 struct drbd_connection *connection; 2431 2432 rcu_read_lock(); 2433 for_each_resource_rcu(resource, &drbd_resources) { 2434 for_each_connection_rcu(connection, resource) { 2435 if (connection->my_addr_len == my_addr_len && 2436 connection->peer_addr_len == peer_addr_len && 2437 !memcmp(&connection->my_addr, my_addr, my_addr_len) && 2438 !memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) { 2439 kref_get(&connection->kref); 2440 goto found; 2441 } 2442 } 2443 } 2444 connection = NULL; 2445 found: 2446 rcu_read_unlock(); 2447 return connection; 2448 } 2449 2450 static int drbd_alloc_socket(struct drbd_socket *socket) 2451 { 2452 socket->rbuf = (void *) __get_free_page(GFP_KERNEL); 2453 if (!socket->rbuf) 2454 return -ENOMEM; 2455 socket->sbuf = (void *) __get_free_page(GFP_KERNEL); 2456 if (!socket->sbuf) 2457 return -ENOMEM; 2458 return 0; 2459 } 2460 2461 static void drbd_free_socket(struct drbd_socket *socket) 2462 { 2463 free_page((unsigned long) socket->sbuf); 2464 free_page((unsigned long) socket->rbuf); 2465 } 2466 2467 void conn_free_crypto(struct drbd_connection *connection) 2468 { 2469 drbd_free_sock(connection); 2470 2471 crypto_free_shash(connection->csums_tfm); 2472 crypto_free_shash(connection->verify_tfm); 2473 crypto_free_shash(connection->cram_hmac_tfm); 2474 crypto_free_shash(connection->integrity_tfm); 2475 crypto_free_shash(connection->peer_integrity_tfm); 2476 kfree(connection->int_dig_in); 2477 kfree(connection->int_dig_vv); 2478 2479 connection->csums_tfm = NULL; 2480 connection->verify_tfm = NULL; 2481 connection->cram_hmac_tfm = NULL; 2482 connection->integrity_tfm = NULL; 2483 connection->peer_integrity_tfm = NULL; 2484 connection->int_dig_in = NULL; 2485 connection->int_dig_vv = NULL; 2486 } 2487 2488 int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts) 2489 { 2490 struct drbd_connection *connection; 2491 cpumask_var_t new_cpu_mask; 2492 int err; 2493 2494 if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL)) 2495 return -ENOMEM; 2496 2497 /* silently ignore cpu mask on UP kernel */ 2498 if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) { 2499 err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE, 2500 cpumask_bits(new_cpu_mask), nr_cpu_ids); 2501 if (err == -EOVERFLOW) { 2502 /* So what. mask it out. */ 2503 cpumask_var_t tmp_cpu_mask; 2504 if (zalloc_cpumask_var(&tmp_cpu_mask, GFP_KERNEL)) { 2505 cpumask_setall(tmp_cpu_mask); 2506 cpumask_and(new_cpu_mask, new_cpu_mask, tmp_cpu_mask); 2507 drbd_warn(resource, "Overflow in bitmap_parse(%.12s%s), truncating to %u bits\n", 2508 res_opts->cpu_mask, 2509 strlen(res_opts->cpu_mask) > 12 ? "..." : "", 2510 nr_cpu_ids); 2511 free_cpumask_var(tmp_cpu_mask); 2512 err = 0; 2513 } 2514 } 2515 if (err) { 2516 drbd_warn(resource, "bitmap_parse() failed with %d\n", err); 2517 /* retcode = ERR_CPU_MASK_PARSE; */ 2518 goto fail; 2519 } 2520 } 2521 resource->res_opts = *res_opts; 2522 if (cpumask_empty(new_cpu_mask)) 2523 drbd_calc_cpu_mask(&new_cpu_mask); 2524 if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) { 2525 cpumask_copy(resource->cpu_mask, new_cpu_mask); 2526 for_each_connection_rcu(connection, resource) { 2527 connection->receiver.reset_cpu_mask = 1; 2528 connection->ack_receiver.reset_cpu_mask = 1; 2529 connection->worker.reset_cpu_mask = 1; 2530 } 2531 } 2532 err = 0; 2533 2534 fail: 2535 free_cpumask_var(new_cpu_mask); 2536 return err; 2537 2538 } 2539 2540 struct drbd_resource *drbd_create_resource(const char *name) 2541 { 2542 struct drbd_resource *resource; 2543 2544 resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL); 2545 if (!resource) 2546 goto fail; 2547 resource->name = kstrdup(name, GFP_KERNEL); 2548 if (!resource->name) 2549 goto fail_free_resource; 2550 if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL)) 2551 goto fail_free_name; 2552 kref_init(&resource->kref); 2553 idr_init(&resource->devices); 2554 INIT_LIST_HEAD(&resource->connections); 2555 resource->write_ordering = WO_BDEV_FLUSH; 2556 list_add_tail_rcu(&resource->resources, &drbd_resources); 2557 mutex_init(&resource->conf_update); 2558 mutex_init(&resource->adm_mutex); 2559 spin_lock_init(&resource->req_lock); 2560 drbd_debugfs_resource_add(resource); 2561 return resource; 2562 2563 fail_free_name: 2564 kfree(resource->name); 2565 fail_free_resource: 2566 kfree(resource); 2567 fail: 2568 return NULL; 2569 } 2570 2571 /* caller must be under adm_mutex */ 2572 struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts) 2573 { 2574 struct drbd_resource *resource; 2575 struct drbd_connection *connection; 2576 2577 connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL); 2578 if (!connection) 2579 return NULL; 2580 2581 if (drbd_alloc_socket(&connection->data)) 2582 goto fail; 2583 if (drbd_alloc_socket(&connection->meta)) 2584 goto fail; 2585 2586 connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL); 2587 if (!connection->current_epoch) 2588 goto fail; 2589 2590 INIT_LIST_HEAD(&connection->transfer_log); 2591 2592 INIT_LIST_HEAD(&connection->current_epoch->list); 2593 connection->epochs = 1; 2594 spin_lock_init(&connection->epoch_lock); 2595 2596 connection->send.seen_any_write_yet = false; 2597 connection->send.current_epoch_nr = 0; 2598 connection->send.current_epoch_writes = 0; 2599 2600 resource = drbd_create_resource(name); 2601 if (!resource) 2602 goto fail; 2603 2604 connection->cstate = C_STANDALONE; 2605 mutex_init(&connection->cstate_mutex); 2606 init_waitqueue_head(&connection->ping_wait); 2607 idr_init(&connection->peer_devices); 2608 2609 drbd_init_workqueue(&connection->sender_work); 2610 mutex_init(&connection->data.mutex); 2611 mutex_init(&connection->meta.mutex); 2612 2613 drbd_thread_init(resource, &connection->receiver, drbd_receiver, "receiver"); 2614 connection->receiver.connection = connection; 2615 drbd_thread_init(resource, &connection->worker, drbd_worker, "worker"); 2616 connection->worker.connection = connection; 2617 drbd_thread_init(resource, &connection->ack_receiver, drbd_ack_receiver, "ack_recv"); 2618 connection->ack_receiver.connection = connection; 2619 2620 kref_init(&connection->kref); 2621 2622 connection->resource = resource; 2623 2624 if (set_resource_options(resource, res_opts)) 2625 goto fail_resource; 2626 2627 kref_get(&resource->kref); 2628 list_add_tail_rcu(&connection->connections, &resource->connections); 2629 drbd_debugfs_connection_add(connection); 2630 return connection; 2631 2632 fail_resource: 2633 list_del(&resource->resources); 2634 drbd_free_resource(resource); 2635 fail: 2636 kfree(connection->current_epoch); 2637 drbd_free_socket(&connection->meta); 2638 drbd_free_socket(&connection->data); 2639 kfree(connection); 2640 return NULL; 2641 } 2642 2643 void drbd_destroy_connection(struct kref *kref) 2644 { 2645 struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref); 2646 struct drbd_resource *resource = connection->resource; 2647 2648 if (atomic_read(&connection->current_epoch->epoch_size) != 0) 2649 drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size)); 2650 kfree(connection->current_epoch); 2651 2652 idr_destroy(&connection->peer_devices); 2653 2654 drbd_free_socket(&connection->meta); 2655 drbd_free_socket(&connection->data); 2656 kfree(connection->int_dig_in); 2657 kfree(connection->int_dig_vv); 2658 memset(connection, 0xfc, sizeof(*connection)); 2659 kfree(connection); 2660 kref_put(&resource->kref, drbd_destroy_resource); 2661 } 2662 2663 static int init_submitter(struct drbd_device *device) 2664 { 2665 /* opencoded create_singlethread_workqueue(), 2666 * to be able to say "drbd%d", ..., minor */ 2667 device->submit.wq = 2668 alloc_ordered_workqueue("drbd%u_submit", WQ_MEM_RECLAIM, device->minor); 2669 if (!device->submit.wq) 2670 return -ENOMEM; 2671 2672 INIT_WORK(&device->submit.worker, do_submit); 2673 INIT_LIST_HEAD(&device->submit.writes); 2674 return 0; 2675 } 2676 2677 enum drbd_ret_code drbd_create_device(struct drbd_config_context *adm_ctx, unsigned int minor) 2678 { 2679 struct drbd_resource *resource = adm_ctx->resource; 2680 struct drbd_connection *connection; 2681 struct drbd_device *device; 2682 struct drbd_peer_device *peer_device, *tmp_peer_device; 2683 struct gendisk *disk; 2684 int id; 2685 int vnr = adm_ctx->volume; 2686 enum drbd_ret_code err = ERR_NOMEM; 2687 2688 device = minor_to_device(minor); 2689 if (device) 2690 return ERR_MINOR_OR_VOLUME_EXISTS; 2691 2692 /* GFP_KERNEL, we are outside of all write-out paths */ 2693 device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL); 2694 if (!device) 2695 return ERR_NOMEM; 2696 kref_init(&device->kref); 2697 2698 kref_get(&resource->kref); 2699 device->resource = resource; 2700 device->minor = minor; 2701 device->vnr = vnr; 2702 2703 drbd_init_set_defaults(device); 2704 2705 disk = blk_alloc_disk(NUMA_NO_NODE); 2706 if (!disk) 2707 goto out_no_disk; 2708 2709 device->vdisk = disk; 2710 device->rq_queue = disk->queue; 2711 2712 set_disk_ro(disk, true); 2713 2714 disk->major = DRBD_MAJOR; 2715 disk->first_minor = minor; 2716 disk->minors = 1; 2717 disk->fops = &drbd_ops; 2718 disk->flags |= GENHD_FL_NO_PART; 2719 sprintf(disk->disk_name, "drbd%d", minor); 2720 disk->private_data = device; 2721 2722 blk_queue_write_cache(disk->queue, true, true); 2723 /* Setting the max_hw_sectors to an odd value of 8kibyte here 2724 This triggers a max_bio_size message upon first attach or connect */ 2725 blk_queue_max_hw_sectors(disk->queue, DRBD_MAX_BIO_SIZE_SAFE >> 8); 2726 2727 device->md_io.page = alloc_page(GFP_KERNEL); 2728 if (!device->md_io.page) 2729 goto out_no_io_page; 2730 2731 if (drbd_bm_init(device)) 2732 goto out_no_bitmap; 2733 device->read_requests = RB_ROOT; 2734 device->write_requests = RB_ROOT; 2735 2736 id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL); 2737 if (id < 0) { 2738 if (id == -ENOSPC) 2739 err = ERR_MINOR_OR_VOLUME_EXISTS; 2740 goto out_no_minor_idr; 2741 } 2742 kref_get(&device->kref); 2743 2744 id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL); 2745 if (id < 0) { 2746 if (id == -ENOSPC) 2747 err = ERR_MINOR_OR_VOLUME_EXISTS; 2748 goto out_idr_remove_minor; 2749 } 2750 kref_get(&device->kref); 2751 2752 INIT_LIST_HEAD(&device->peer_devices); 2753 INIT_LIST_HEAD(&device->pending_bitmap_io); 2754 for_each_connection(connection, resource) { 2755 peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL); 2756 if (!peer_device) 2757 goto out_idr_remove_from_resource; 2758 peer_device->connection = connection; 2759 peer_device->device = device; 2760 2761 list_add(&peer_device->peer_devices, &device->peer_devices); 2762 kref_get(&device->kref); 2763 2764 id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL); 2765 if (id < 0) { 2766 if (id == -ENOSPC) 2767 err = ERR_INVALID_REQUEST; 2768 goto out_idr_remove_from_resource; 2769 } 2770 kref_get(&connection->kref); 2771 INIT_WORK(&peer_device->send_acks_work, drbd_send_acks_wf); 2772 } 2773 2774 if (init_submitter(device)) { 2775 err = ERR_NOMEM; 2776 goto out_idr_remove_vol; 2777 } 2778 2779 err = add_disk(disk); 2780 if (err) 2781 goto out_idr_remove_vol; 2782 2783 /* inherit the connection state */ 2784 device->state.conn = first_connection(resource)->cstate; 2785 if (device->state.conn == C_WF_REPORT_PARAMS) { 2786 for_each_peer_device(peer_device, device) 2787 drbd_connected(peer_device); 2788 } 2789 /* move to create_peer_device() */ 2790 for_each_peer_device(peer_device, device) 2791 drbd_debugfs_peer_device_add(peer_device); 2792 drbd_debugfs_device_add(device); 2793 return NO_ERROR; 2794 2795 out_idr_remove_vol: 2796 idr_remove(&connection->peer_devices, vnr); 2797 out_idr_remove_from_resource: 2798 for_each_connection(connection, resource) { 2799 peer_device = idr_remove(&connection->peer_devices, vnr); 2800 if (peer_device) 2801 kref_put(&connection->kref, drbd_destroy_connection); 2802 } 2803 for_each_peer_device_safe(peer_device, tmp_peer_device, device) { 2804 list_del(&peer_device->peer_devices); 2805 kfree(peer_device); 2806 } 2807 idr_remove(&resource->devices, vnr); 2808 out_idr_remove_minor: 2809 idr_remove(&drbd_devices, minor); 2810 synchronize_rcu(); 2811 out_no_minor_idr: 2812 drbd_bm_cleanup(device); 2813 out_no_bitmap: 2814 __free_page(device->md_io.page); 2815 out_no_io_page: 2816 blk_cleanup_disk(disk); 2817 out_no_disk: 2818 kref_put(&resource->kref, drbd_destroy_resource); 2819 kfree(device); 2820 return err; 2821 } 2822 2823 void drbd_delete_device(struct drbd_device *device) 2824 { 2825 struct drbd_resource *resource = device->resource; 2826 struct drbd_connection *connection; 2827 struct drbd_peer_device *peer_device; 2828 2829 /* move to free_peer_device() */ 2830 for_each_peer_device(peer_device, device) 2831 drbd_debugfs_peer_device_cleanup(peer_device); 2832 drbd_debugfs_device_cleanup(device); 2833 for_each_connection(connection, resource) { 2834 idr_remove(&connection->peer_devices, device->vnr); 2835 kref_put(&device->kref, drbd_destroy_device); 2836 } 2837 idr_remove(&resource->devices, device->vnr); 2838 kref_put(&device->kref, drbd_destroy_device); 2839 idr_remove(&drbd_devices, device_to_minor(device)); 2840 kref_put(&device->kref, drbd_destroy_device); 2841 del_gendisk(device->vdisk); 2842 synchronize_rcu(); 2843 kref_put(&device->kref, drbd_destroy_device); 2844 } 2845 2846 static int __init drbd_init(void) 2847 { 2848 int err; 2849 2850 if (drbd_minor_count < DRBD_MINOR_COUNT_MIN || drbd_minor_count > DRBD_MINOR_COUNT_MAX) { 2851 pr_err("invalid minor_count (%d)\n", drbd_minor_count); 2852 #ifdef MODULE 2853 return -EINVAL; 2854 #else 2855 drbd_minor_count = DRBD_MINOR_COUNT_DEF; 2856 #endif 2857 } 2858 2859 err = register_blkdev(DRBD_MAJOR, "drbd"); 2860 if (err) { 2861 pr_err("unable to register block device major %d\n", 2862 DRBD_MAJOR); 2863 return err; 2864 } 2865 2866 /* 2867 * allocate all necessary structs 2868 */ 2869 init_waitqueue_head(&drbd_pp_wait); 2870 2871 drbd_proc = NULL; /* play safe for drbd_cleanup */ 2872 idr_init(&drbd_devices); 2873 2874 mutex_init(&resources_mutex); 2875 INIT_LIST_HEAD(&drbd_resources); 2876 2877 err = drbd_genl_register(); 2878 if (err) { 2879 pr_err("unable to register generic netlink family\n"); 2880 goto fail; 2881 } 2882 2883 err = drbd_create_mempools(); 2884 if (err) 2885 goto fail; 2886 2887 err = -ENOMEM; 2888 drbd_proc = proc_create_single("drbd", S_IFREG | 0444 , NULL, drbd_seq_show); 2889 if (!drbd_proc) { 2890 pr_err("unable to register proc file\n"); 2891 goto fail; 2892 } 2893 2894 retry.wq = create_singlethread_workqueue("drbd-reissue"); 2895 if (!retry.wq) { 2896 pr_err("unable to create retry workqueue\n"); 2897 goto fail; 2898 } 2899 INIT_WORK(&retry.worker, do_retry); 2900 spin_lock_init(&retry.lock); 2901 INIT_LIST_HEAD(&retry.writes); 2902 2903 drbd_debugfs_init(); 2904 2905 pr_info("initialized. " 2906 "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n", 2907 API_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX); 2908 pr_info("%s\n", drbd_buildtag()); 2909 pr_info("registered as block device major %d\n", DRBD_MAJOR); 2910 return 0; /* Success! */ 2911 2912 fail: 2913 drbd_cleanup(); 2914 if (err == -ENOMEM) 2915 pr_err("ran out of memory\n"); 2916 else 2917 pr_err("initialization failure\n"); 2918 return err; 2919 } 2920 2921 static void drbd_free_one_sock(struct drbd_socket *ds) 2922 { 2923 struct socket *s; 2924 mutex_lock(&ds->mutex); 2925 s = ds->socket; 2926 ds->socket = NULL; 2927 mutex_unlock(&ds->mutex); 2928 if (s) { 2929 /* so debugfs does not need to mutex_lock() */ 2930 synchronize_rcu(); 2931 kernel_sock_shutdown(s, SHUT_RDWR); 2932 sock_release(s); 2933 } 2934 } 2935 2936 void drbd_free_sock(struct drbd_connection *connection) 2937 { 2938 if (connection->data.socket) 2939 drbd_free_one_sock(&connection->data); 2940 if (connection->meta.socket) 2941 drbd_free_one_sock(&connection->meta); 2942 } 2943 2944 /* meta data management */ 2945 2946 void conn_md_sync(struct drbd_connection *connection) 2947 { 2948 struct drbd_peer_device *peer_device; 2949 int vnr; 2950 2951 rcu_read_lock(); 2952 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 2953 struct drbd_device *device = peer_device->device; 2954 2955 kref_get(&device->kref); 2956 rcu_read_unlock(); 2957 drbd_md_sync(device); 2958 kref_put(&device->kref, drbd_destroy_device); 2959 rcu_read_lock(); 2960 } 2961 rcu_read_unlock(); 2962 } 2963 2964 /* aligned 4kByte */ 2965 struct meta_data_on_disk { 2966 u64 la_size_sect; /* last agreed size. */ 2967 u64 uuid[UI_SIZE]; /* UUIDs. */ 2968 u64 device_uuid; 2969 u64 reserved_u64_1; 2970 u32 flags; /* MDF */ 2971 u32 magic; 2972 u32 md_size_sect; 2973 u32 al_offset; /* offset to this block */ 2974 u32 al_nr_extents; /* important for restoring the AL (userspace) */ 2975 /* `-- act_log->nr_elements <-- ldev->dc.al_extents */ 2976 u32 bm_offset; /* offset to the bitmap, from here */ 2977 u32 bm_bytes_per_bit; /* BM_BLOCK_SIZE */ 2978 u32 la_peer_max_bio_size; /* last peer max_bio_size */ 2979 2980 /* see al_tr_number_to_on_disk_sector() */ 2981 u32 al_stripes; 2982 u32 al_stripe_size_4k; 2983 2984 u8 reserved_u8[4096 - (7*8 + 10*4)]; 2985 } __packed; 2986 2987 2988 2989 void drbd_md_write(struct drbd_device *device, void *b) 2990 { 2991 struct meta_data_on_disk *buffer = b; 2992 sector_t sector; 2993 int i; 2994 2995 memset(buffer, 0, sizeof(*buffer)); 2996 2997 buffer->la_size_sect = cpu_to_be64(get_capacity(device->vdisk)); 2998 for (i = UI_CURRENT; i < UI_SIZE; i++) 2999 buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]); 3000 buffer->flags = cpu_to_be32(device->ldev->md.flags); 3001 buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN); 3002 3003 buffer->md_size_sect = cpu_to_be32(device->ldev->md.md_size_sect); 3004 buffer->al_offset = cpu_to_be32(device->ldev->md.al_offset); 3005 buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements); 3006 buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE); 3007 buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid); 3008 3009 buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset); 3010 buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size); 3011 3012 buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes); 3013 buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k); 3014 3015 D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset); 3016 sector = device->ldev->md.md_offset; 3017 3018 if (drbd_md_sync_page_io(device, device->ldev, sector, REQ_OP_WRITE)) { 3019 /* this was a try anyways ... */ 3020 drbd_err(device, "meta data update failed!\n"); 3021 drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR); 3022 } 3023 } 3024 3025 /** 3026 * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set 3027 * @device: DRBD device. 3028 */ 3029 void drbd_md_sync(struct drbd_device *device) 3030 { 3031 struct meta_data_on_disk *buffer; 3032 3033 /* Don't accidentally change the DRBD meta data layout. */ 3034 BUILD_BUG_ON(UI_SIZE != 4); 3035 BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096); 3036 3037 del_timer(&device->md_sync_timer); 3038 /* timer may be rearmed by drbd_md_mark_dirty() now. */ 3039 if (!test_and_clear_bit(MD_DIRTY, &device->flags)) 3040 return; 3041 3042 /* We use here D_FAILED and not D_ATTACHING because we try to write 3043 * metadata even if we detach due to a disk failure! */ 3044 if (!get_ldev_if_state(device, D_FAILED)) 3045 return; 3046 3047 buffer = drbd_md_get_buffer(device, __func__); 3048 if (!buffer) 3049 goto out; 3050 3051 drbd_md_write(device, buffer); 3052 3053 /* Update device->ldev->md.la_size_sect, 3054 * since we updated it on metadata. */ 3055 device->ldev->md.la_size_sect = get_capacity(device->vdisk); 3056 3057 drbd_md_put_buffer(device); 3058 out: 3059 put_ldev(device); 3060 } 3061 3062 static int check_activity_log_stripe_size(struct drbd_device *device, 3063 struct meta_data_on_disk *on_disk, 3064 struct drbd_md *in_core) 3065 { 3066 u32 al_stripes = be32_to_cpu(on_disk->al_stripes); 3067 u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k); 3068 u64 al_size_4k; 3069 3070 /* both not set: default to old fixed size activity log */ 3071 if (al_stripes == 0 && al_stripe_size_4k == 0) { 3072 al_stripes = 1; 3073 al_stripe_size_4k = MD_32kB_SECT/8; 3074 } 3075 3076 /* some paranoia plausibility checks */ 3077 3078 /* we need both values to be set */ 3079 if (al_stripes == 0 || al_stripe_size_4k == 0) 3080 goto err; 3081 3082 al_size_4k = (u64)al_stripes * al_stripe_size_4k; 3083 3084 /* Upper limit of activity log area, to avoid potential overflow 3085 * problems in al_tr_number_to_on_disk_sector(). As right now, more 3086 * than 72 * 4k blocks total only increases the amount of history, 3087 * limiting this arbitrarily to 16 GB is not a real limitation ;-) */ 3088 if (al_size_4k > (16 * 1024 * 1024/4)) 3089 goto err; 3090 3091 /* Lower limit: we need at least 8 transaction slots (32kB) 3092 * to not break existing setups */ 3093 if (al_size_4k < MD_32kB_SECT/8) 3094 goto err; 3095 3096 in_core->al_stripe_size_4k = al_stripe_size_4k; 3097 in_core->al_stripes = al_stripes; 3098 in_core->al_size_4k = al_size_4k; 3099 3100 return 0; 3101 err: 3102 drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n", 3103 al_stripes, al_stripe_size_4k); 3104 return -EINVAL; 3105 } 3106 3107 static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev) 3108 { 3109 sector_t capacity = drbd_get_capacity(bdev->md_bdev); 3110 struct drbd_md *in_core = &bdev->md; 3111 s32 on_disk_al_sect; 3112 s32 on_disk_bm_sect; 3113 3114 /* The on-disk size of the activity log, calculated from offsets, and 3115 * the size of the activity log calculated from the stripe settings, 3116 * should match. 3117 * Though we could relax this a bit: it is ok, if the striped activity log 3118 * fits in the available on-disk activity log size. 3119 * Right now, that would break how resize is implemented. 3120 * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware 3121 * of possible unused padding space in the on disk layout. */ 3122 if (in_core->al_offset < 0) { 3123 if (in_core->bm_offset > in_core->al_offset) 3124 goto err; 3125 on_disk_al_sect = -in_core->al_offset; 3126 on_disk_bm_sect = in_core->al_offset - in_core->bm_offset; 3127 } else { 3128 if (in_core->al_offset != MD_4kB_SECT) 3129 goto err; 3130 if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT) 3131 goto err; 3132 3133 on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT; 3134 on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset; 3135 } 3136 3137 /* old fixed size meta data is exactly that: fixed. */ 3138 if (in_core->meta_dev_idx >= 0) { 3139 if (in_core->md_size_sect != MD_128MB_SECT 3140 || in_core->al_offset != MD_4kB_SECT 3141 || in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT 3142 || in_core->al_stripes != 1 3143 || in_core->al_stripe_size_4k != MD_32kB_SECT/8) 3144 goto err; 3145 } 3146 3147 if (capacity < in_core->md_size_sect) 3148 goto err; 3149 if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev)) 3150 goto err; 3151 3152 /* should be aligned, and at least 32k */ 3153 if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT)) 3154 goto err; 3155 3156 /* should fit (for now: exactly) into the available on-disk space; 3157 * overflow prevention is in check_activity_log_stripe_size() above. */ 3158 if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT) 3159 goto err; 3160 3161 /* again, should be aligned */ 3162 if (in_core->bm_offset & 7) 3163 goto err; 3164 3165 /* FIXME check for device grow with flex external meta data? */ 3166 3167 /* can the available bitmap space cover the last agreed device size? */ 3168 if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512) 3169 goto err; 3170 3171 return 0; 3172 3173 err: 3174 drbd_err(device, "meta data offsets don't make sense: idx=%d " 3175 "al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, " 3176 "md_size_sect=%u, la_size=%llu, md_capacity=%llu\n", 3177 in_core->meta_dev_idx, 3178 in_core->al_stripes, in_core->al_stripe_size_4k, 3179 in_core->al_offset, in_core->bm_offset, in_core->md_size_sect, 3180 (unsigned long long)in_core->la_size_sect, 3181 (unsigned long long)capacity); 3182 3183 return -EINVAL; 3184 } 3185 3186 3187 /** 3188 * drbd_md_read() - Reads in the meta data super block 3189 * @device: DRBD device. 3190 * @bdev: Device from which the meta data should be read in. 3191 * 3192 * Return NO_ERROR on success, and an enum drbd_ret_code in case 3193 * something goes wrong. 3194 * 3195 * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS, 3196 * even before @bdev is assigned to @device->ldev. 3197 */ 3198 int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev) 3199 { 3200 struct meta_data_on_disk *buffer; 3201 u32 magic, flags; 3202 int i, rv = NO_ERROR; 3203 3204 if (device->state.disk != D_DISKLESS) 3205 return ERR_DISK_CONFIGURED; 3206 3207 buffer = drbd_md_get_buffer(device, __func__); 3208 if (!buffer) 3209 return ERR_NOMEM; 3210 3211 /* First, figure out where our meta data superblock is located, 3212 * and read it. */ 3213 bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx; 3214 bdev->md.md_offset = drbd_md_ss(bdev); 3215 /* Even for (flexible or indexed) external meta data, 3216 * initially restrict us to the 4k superblock for now. 3217 * Affects the paranoia out-of-range access check in drbd_md_sync_page_io(). */ 3218 bdev->md.md_size_sect = 8; 3219 3220 if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset, 3221 REQ_OP_READ)) { 3222 /* NOTE: can't do normal error processing here as this is 3223 called BEFORE disk is attached */ 3224 drbd_err(device, "Error while reading metadata.\n"); 3225 rv = ERR_IO_MD_DISK; 3226 goto err; 3227 } 3228 3229 magic = be32_to_cpu(buffer->magic); 3230 flags = be32_to_cpu(buffer->flags); 3231 if (magic == DRBD_MD_MAGIC_84_UNCLEAN || 3232 (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) { 3233 /* btw: that's Activity Log clean, not "all" clean. */ 3234 drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n"); 3235 rv = ERR_MD_UNCLEAN; 3236 goto err; 3237 } 3238 3239 rv = ERR_MD_INVALID; 3240 if (magic != DRBD_MD_MAGIC_08) { 3241 if (magic == DRBD_MD_MAGIC_07) 3242 drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n"); 3243 else 3244 drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n"); 3245 goto err; 3246 } 3247 3248 if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) { 3249 drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n", 3250 be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE); 3251 goto err; 3252 } 3253 3254 3255 /* convert to in_core endian */ 3256 bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect); 3257 for (i = UI_CURRENT; i < UI_SIZE; i++) 3258 bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]); 3259 bdev->md.flags = be32_to_cpu(buffer->flags); 3260 bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid); 3261 3262 bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect); 3263 bdev->md.al_offset = be32_to_cpu(buffer->al_offset); 3264 bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset); 3265 3266 if (check_activity_log_stripe_size(device, buffer, &bdev->md)) 3267 goto err; 3268 if (check_offsets_and_sizes(device, bdev)) 3269 goto err; 3270 3271 if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) { 3272 drbd_err(device, "unexpected bm_offset: %d (expected %d)\n", 3273 be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset); 3274 goto err; 3275 } 3276 if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) { 3277 drbd_err(device, "unexpected md_size: %u (expected %u)\n", 3278 be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect); 3279 goto err; 3280 } 3281 3282 rv = NO_ERROR; 3283 3284 spin_lock_irq(&device->resource->req_lock); 3285 if (device->state.conn < C_CONNECTED) { 3286 unsigned int peer; 3287 peer = be32_to_cpu(buffer->la_peer_max_bio_size); 3288 peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE); 3289 device->peer_max_bio_size = peer; 3290 } 3291 spin_unlock_irq(&device->resource->req_lock); 3292 3293 err: 3294 drbd_md_put_buffer(device); 3295 3296 return rv; 3297 } 3298 3299 /** 3300 * drbd_md_mark_dirty() - Mark meta data super block as dirty 3301 * @device: DRBD device. 3302 * 3303 * Call this function if you change anything that should be written to 3304 * the meta-data super block. This function sets MD_DIRTY, and starts a 3305 * timer that ensures that within five seconds you have to call drbd_md_sync(). 3306 */ 3307 void drbd_md_mark_dirty(struct drbd_device *device) 3308 { 3309 if (!test_and_set_bit(MD_DIRTY, &device->flags)) 3310 mod_timer(&device->md_sync_timer, jiffies + 5*HZ); 3311 } 3312 3313 void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local) 3314 { 3315 int i; 3316 3317 for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++) 3318 device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i]; 3319 } 3320 3321 void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local) 3322 { 3323 if (idx == UI_CURRENT) { 3324 if (device->state.role == R_PRIMARY) 3325 val |= 1; 3326 else 3327 val &= ~((u64)1); 3328 3329 drbd_set_ed_uuid(device, val); 3330 } 3331 3332 device->ldev->md.uuid[idx] = val; 3333 drbd_md_mark_dirty(device); 3334 } 3335 3336 void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local) 3337 { 3338 unsigned long flags; 3339 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags); 3340 __drbd_uuid_set(device, idx, val); 3341 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags); 3342 } 3343 3344 void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local) 3345 { 3346 unsigned long flags; 3347 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags); 3348 if (device->ldev->md.uuid[idx]) { 3349 drbd_uuid_move_history(device); 3350 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx]; 3351 } 3352 __drbd_uuid_set(device, idx, val); 3353 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags); 3354 } 3355 3356 /** 3357 * drbd_uuid_new_current() - Creates a new current UUID 3358 * @device: DRBD device. 3359 * 3360 * Creates a new current UUID, and rotates the old current UUID into 3361 * the bitmap slot. Causes an incremental resync upon next connect. 3362 */ 3363 void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local) 3364 { 3365 u64 val; 3366 unsigned long long bm_uuid; 3367 3368 get_random_bytes(&val, sizeof(u64)); 3369 3370 spin_lock_irq(&device->ldev->md.uuid_lock); 3371 bm_uuid = device->ldev->md.uuid[UI_BITMAP]; 3372 3373 if (bm_uuid) 3374 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid); 3375 3376 device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT]; 3377 __drbd_uuid_set(device, UI_CURRENT, val); 3378 spin_unlock_irq(&device->ldev->md.uuid_lock); 3379 3380 drbd_print_uuids(device, "new current UUID"); 3381 /* get it to stable storage _now_ */ 3382 drbd_md_sync(device); 3383 } 3384 3385 void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local) 3386 { 3387 unsigned long flags; 3388 if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0) 3389 return; 3390 3391 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags); 3392 if (val == 0) { 3393 drbd_uuid_move_history(device); 3394 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP]; 3395 device->ldev->md.uuid[UI_BITMAP] = 0; 3396 } else { 3397 unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP]; 3398 if (bm_uuid) 3399 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid); 3400 3401 device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1); 3402 } 3403 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags); 3404 3405 drbd_md_mark_dirty(device); 3406 } 3407 3408 /** 3409 * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io() 3410 * @device: DRBD device. 3411 * 3412 * Sets all bits in the bitmap and writes the whole bitmap to stable storage. 3413 */ 3414 int drbd_bmio_set_n_write(struct drbd_device *device) __must_hold(local) 3415 { 3416 int rv = -EIO; 3417 3418 drbd_md_set_flag(device, MDF_FULL_SYNC); 3419 drbd_md_sync(device); 3420 drbd_bm_set_all(device); 3421 3422 rv = drbd_bm_write(device); 3423 3424 if (!rv) { 3425 drbd_md_clear_flag(device, MDF_FULL_SYNC); 3426 drbd_md_sync(device); 3427 } 3428 3429 return rv; 3430 } 3431 3432 /** 3433 * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io() 3434 * @device: DRBD device. 3435 * 3436 * Clears all bits in the bitmap and writes the whole bitmap to stable storage. 3437 */ 3438 int drbd_bmio_clear_n_write(struct drbd_device *device) __must_hold(local) 3439 { 3440 drbd_resume_al(device); 3441 drbd_bm_clear_all(device); 3442 return drbd_bm_write(device); 3443 } 3444 3445 static int w_bitmap_io(struct drbd_work *w, int unused) 3446 { 3447 struct drbd_device *device = 3448 container_of(w, struct drbd_device, bm_io_work.w); 3449 struct bm_io_work *work = &device->bm_io_work; 3450 int rv = -EIO; 3451 3452 if (work->flags != BM_LOCKED_CHANGE_ALLOWED) { 3453 int cnt = atomic_read(&device->ap_bio_cnt); 3454 if (cnt) 3455 drbd_err(device, "FIXME: ap_bio_cnt %d, expected 0; queued for '%s'\n", 3456 cnt, work->why); 3457 } 3458 3459 if (get_ldev(device)) { 3460 drbd_bm_lock(device, work->why, work->flags); 3461 rv = work->io_fn(device); 3462 drbd_bm_unlock(device); 3463 put_ldev(device); 3464 } 3465 3466 clear_bit_unlock(BITMAP_IO, &device->flags); 3467 wake_up(&device->misc_wait); 3468 3469 if (work->done) 3470 work->done(device, rv); 3471 3472 clear_bit(BITMAP_IO_QUEUED, &device->flags); 3473 work->why = NULL; 3474 work->flags = 0; 3475 3476 return 0; 3477 } 3478 3479 /** 3480 * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap 3481 * @device: DRBD device. 3482 * @io_fn: IO callback to be called when bitmap IO is possible 3483 * @done: callback to be called after the bitmap IO was performed 3484 * @why: Descriptive text of the reason for doing the IO 3485 * @flags: Bitmap flags 3486 * 3487 * While IO on the bitmap happens we freeze application IO thus we ensure 3488 * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be 3489 * called from worker context. It MUST NOT be used while a previous such 3490 * work is still pending! 3491 * 3492 * Its worker function encloses the call of io_fn() by get_ldev() and 3493 * put_ldev(). 3494 */ 3495 void drbd_queue_bitmap_io(struct drbd_device *device, 3496 int (*io_fn)(struct drbd_device *), 3497 void (*done)(struct drbd_device *, int), 3498 char *why, enum bm_flag flags) 3499 { 3500 D_ASSERT(device, current == first_peer_device(device)->connection->worker.task); 3501 3502 D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags)); 3503 D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags)); 3504 D_ASSERT(device, list_empty(&device->bm_io_work.w.list)); 3505 if (device->bm_io_work.why) 3506 drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n", 3507 why, device->bm_io_work.why); 3508 3509 device->bm_io_work.io_fn = io_fn; 3510 device->bm_io_work.done = done; 3511 device->bm_io_work.why = why; 3512 device->bm_io_work.flags = flags; 3513 3514 spin_lock_irq(&device->resource->req_lock); 3515 set_bit(BITMAP_IO, &device->flags); 3516 /* don't wait for pending application IO if the caller indicates that 3517 * application IO does not conflict anyways. */ 3518 if (flags == BM_LOCKED_CHANGE_ALLOWED || atomic_read(&device->ap_bio_cnt) == 0) { 3519 if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags)) 3520 drbd_queue_work(&first_peer_device(device)->connection->sender_work, 3521 &device->bm_io_work.w); 3522 } 3523 spin_unlock_irq(&device->resource->req_lock); 3524 } 3525 3526 /** 3527 * drbd_bitmap_io() - Does an IO operation on the whole bitmap 3528 * @device: DRBD device. 3529 * @io_fn: IO callback to be called when bitmap IO is possible 3530 * @why: Descriptive text of the reason for doing the IO 3531 * @flags: Bitmap flags 3532 * 3533 * freezes application IO while that the actual IO operations runs. This 3534 * functions MAY NOT be called from worker context. 3535 */ 3536 int drbd_bitmap_io(struct drbd_device *device, int (*io_fn)(struct drbd_device *), 3537 char *why, enum bm_flag flags) 3538 { 3539 /* Only suspend io, if some operation is supposed to be locked out */ 3540 const bool do_suspend_io = flags & (BM_DONT_CLEAR|BM_DONT_SET|BM_DONT_TEST); 3541 int rv; 3542 3543 D_ASSERT(device, current != first_peer_device(device)->connection->worker.task); 3544 3545 if (do_suspend_io) 3546 drbd_suspend_io(device); 3547 3548 drbd_bm_lock(device, why, flags); 3549 rv = io_fn(device); 3550 drbd_bm_unlock(device); 3551 3552 if (do_suspend_io) 3553 drbd_resume_io(device); 3554 3555 return rv; 3556 } 3557 3558 void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local) 3559 { 3560 if ((device->ldev->md.flags & flag) != flag) { 3561 drbd_md_mark_dirty(device); 3562 device->ldev->md.flags |= flag; 3563 } 3564 } 3565 3566 void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local) 3567 { 3568 if ((device->ldev->md.flags & flag) != 0) { 3569 drbd_md_mark_dirty(device); 3570 device->ldev->md.flags &= ~flag; 3571 } 3572 } 3573 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag) 3574 { 3575 return (bdev->md.flags & flag) != 0; 3576 } 3577 3578 static void md_sync_timer_fn(struct timer_list *t) 3579 { 3580 struct drbd_device *device = from_timer(device, t, md_sync_timer); 3581 drbd_device_post_work(device, MD_SYNC); 3582 } 3583 3584 const char *cmdname(enum drbd_packet cmd) 3585 { 3586 /* THINK may need to become several global tables 3587 * when we want to support more than 3588 * one PRO_VERSION */ 3589 static const char *cmdnames[] = { 3590 [P_DATA] = "Data", 3591 [P_WSAME] = "WriteSame", 3592 [P_TRIM] = "Trim", 3593 [P_DATA_REPLY] = "DataReply", 3594 [P_RS_DATA_REPLY] = "RSDataReply", 3595 [P_BARRIER] = "Barrier", 3596 [P_BITMAP] = "ReportBitMap", 3597 [P_BECOME_SYNC_TARGET] = "BecomeSyncTarget", 3598 [P_BECOME_SYNC_SOURCE] = "BecomeSyncSource", 3599 [P_UNPLUG_REMOTE] = "UnplugRemote", 3600 [P_DATA_REQUEST] = "DataRequest", 3601 [P_RS_DATA_REQUEST] = "RSDataRequest", 3602 [P_SYNC_PARAM] = "SyncParam", 3603 [P_SYNC_PARAM89] = "SyncParam89", 3604 [P_PROTOCOL] = "ReportProtocol", 3605 [P_UUIDS] = "ReportUUIDs", 3606 [P_SIZES] = "ReportSizes", 3607 [P_STATE] = "ReportState", 3608 [P_SYNC_UUID] = "ReportSyncUUID", 3609 [P_AUTH_CHALLENGE] = "AuthChallenge", 3610 [P_AUTH_RESPONSE] = "AuthResponse", 3611 [P_PING] = "Ping", 3612 [P_PING_ACK] = "PingAck", 3613 [P_RECV_ACK] = "RecvAck", 3614 [P_WRITE_ACK] = "WriteAck", 3615 [P_RS_WRITE_ACK] = "RSWriteAck", 3616 [P_SUPERSEDED] = "Superseded", 3617 [P_NEG_ACK] = "NegAck", 3618 [P_NEG_DREPLY] = "NegDReply", 3619 [P_NEG_RS_DREPLY] = "NegRSDReply", 3620 [P_BARRIER_ACK] = "BarrierAck", 3621 [P_STATE_CHG_REQ] = "StateChgRequest", 3622 [P_STATE_CHG_REPLY] = "StateChgReply", 3623 [P_OV_REQUEST] = "OVRequest", 3624 [P_OV_REPLY] = "OVReply", 3625 [P_OV_RESULT] = "OVResult", 3626 [P_CSUM_RS_REQUEST] = "CsumRSRequest", 3627 [P_RS_IS_IN_SYNC] = "CsumRSIsInSync", 3628 [P_COMPRESSED_BITMAP] = "CBitmap", 3629 [P_DELAY_PROBE] = "DelayProbe", 3630 [P_OUT_OF_SYNC] = "OutOfSync", 3631 [P_RETRY_WRITE] = "RetryWrite", 3632 [P_RS_CANCEL] = "RSCancel", 3633 [P_CONN_ST_CHG_REQ] = "conn_st_chg_req", 3634 [P_CONN_ST_CHG_REPLY] = "conn_st_chg_reply", 3635 [P_PROTOCOL_UPDATE] = "protocol_update", 3636 [P_RS_THIN_REQ] = "rs_thin_req", 3637 [P_RS_DEALLOCATED] = "rs_deallocated", 3638 3639 /* enum drbd_packet, but not commands - obsoleted flags: 3640 * P_MAY_IGNORE 3641 * P_MAX_OPT_CMD 3642 */ 3643 }; 3644 3645 /* too big for the array: 0xfffX */ 3646 if (cmd == P_INITIAL_META) 3647 return "InitialMeta"; 3648 if (cmd == P_INITIAL_DATA) 3649 return "InitialData"; 3650 if (cmd == P_CONNECTION_FEATURES) 3651 return "ConnectionFeatures"; 3652 if (cmd >= ARRAY_SIZE(cmdnames)) 3653 return "Unknown"; 3654 return cmdnames[cmd]; 3655 } 3656 3657 /** 3658 * drbd_wait_misc - wait for a request to make progress 3659 * @device: device associated with the request 3660 * @i: the struct drbd_interval embedded in struct drbd_request or 3661 * struct drbd_peer_request 3662 */ 3663 int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i) 3664 { 3665 struct net_conf *nc; 3666 DEFINE_WAIT(wait); 3667 long timeout; 3668 3669 rcu_read_lock(); 3670 nc = rcu_dereference(first_peer_device(device)->connection->net_conf); 3671 if (!nc) { 3672 rcu_read_unlock(); 3673 return -ETIMEDOUT; 3674 } 3675 timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT; 3676 rcu_read_unlock(); 3677 3678 /* Indicate to wake up device->misc_wait on progress. */ 3679 i->waiting = true; 3680 prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE); 3681 spin_unlock_irq(&device->resource->req_lock); 3682 timeout = schedule_timeout(timeout); 3683 finish_wait(&device->misc_wait, &wait); 3684 spin_lock_irq(&device->resource->req_lock); 3685 if (!timeout || device->state.conn < C_CONNECTED) 3686 return -ETIMEDOUT; 3687 if (signal_pending(current)) 3688 return -ERESTARTSYS; 3689 return 0; 3690 } 3691 3692 void lock_all_resources(void) 3693 { 3694 struct drbd_resource *resource; 3695 int __maybe_unused i = 0; 3696 3697 mutex_lock(&resources_mutex); 3698 local_irq_disable(); 3699 for_each_resource(resource, &drbd_resources) 3700 spin_lock_nested(&resource->req_lock, i++); 3701 } 3702 3703 void unlock_all_resources(void) 3704 { 3705 struct drbd_resource *resource; 3706 3707 for_each_resource(resource, &drbd_resources) 3708 spin_unlock(&resource->req_lock); 3709 local_irq_enable(); 3710 mutex_unlock(&resources_mutex); 3711 } 3712 3713 #ifdef CONFIG_DRBD_FAULT_INJECTION 3714 /* Fault insertion support including random number generator shamelessly 3715 * stolen from kernel/rcutorture.c */ 3716 struct fault_random_state { 3717 unsigned long state; 3718 unsigned long count; 3719 }; 3720 3721 #define FAULT_RANDOM_MULT 39916801 /* prime */ 3722 #define FAULT_RANDOM_ADD 479001701 /* prime */ 3723 #define FAULT_RANDOM_REFRESH 10000 3724 3725 /* 3726 * Crude but fast random-number generator. Uses a linear congruential 3727 * generator, with occasional help from get_random_bytes(). 3728 */ 3729 static unsigned long 3730 _drbd_fault_random(struct fault_random_state *rsp) 3731 { 3732 long refresh; 3733 3734 if (!rsp->count--) { 3735 get_random_bytes(&refresh, sizeof(refresh)); 3736 rsp->state += refresh; 3737 rsp->count = FAULT_RANDOM_REFRESH; 3738 } 3739 rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD; 3740 return swahw32(rsp->state); 3741 } 3742 3743 static char * 3744 _drbd_fault_str(unsigned int type) { 3745 static char *_faults[] = { 3746 [DRBD_FAULT_MD_WR] = "Meta-data write", 3747 [DRBD_FAULT_MD_RD] = "Meta-data read", 3748 [DRBD_FAULT_RS_WR] = "Resync write", 3749 [DRBD_FAULT_RS_RD] = "Resync read", 3750 [DRBD_FAULT_DT_WR] = "Data write", 3751 [DRBD_FAULT_DT_RD] = "Data read", 3752 [DRBD_FAULT_DT_RA] = "Data read ahead", 3753 [DRBD_FAULT_BM_ALLOC] = "BM allocation", 3754 [DRBD_FAULT_AL_EE] = "EE allocation", 3755 [DRBD_FAULT_RECEIVE] = "receive data corruption", 3756 }; 3757 3758 return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**"; 3759 } 3760 3761 unsigned int 3762 _drbd_insert_fault(struct drbd_device *device, unsigned int type) 3763 { 3764 static struct fault_random_state rrs = {0, 0}; 3765 3766 unsigned int ret = ( 3767 (drbd_fault_devs == 0 || 3768 ((1 << device_to_minor(device)) & drbd_fault_devs) != 0) && 3769 (((_drbd_fault_random(&rrs) % 100) + 1) <= drbd_fault_rate)); 3770 3771 if (ret) { 3772 drbd_fault_count++; 3773 3774 if (__ratelimit(&drbd_ratelimit_state)) 3775 drbd_warn(device, "***Simulating %s failure\n", 3776 _drbd_fault_str(type)); 3777 } 3778 3779 return ret; 3780 } 3781 #endif 3782 3783 const char *drbd_buildtag(void) 3784 { 3785 /* DRBD built from external sources has here a reference to the 3786 git hash of the source code. */ 3787 3788 static char buildtag[38] = "\0uilt-in"; 3789 3790 if (buildtag[0] == 0) { 3791 #ifdef MODULE 3792 sprintf(buildtag, "srcversion: %-24s", THIS_MODULE->srcversion); 3793 #else 3794 buildtag[0] = 'b'; 3795 #endif 3796 } 3797 3798 return buildtag; 3799 } 3800 3801 module_init(drbd_init) 3802 module_exit(drbd_cleanup) 3803 3804 EXPORT_SYMBOL(drbd_conn_str); 3805 EXPORT_SYMBOL(drbd_role_str); 3806 EXPORT_SYMBOL(drbd_disk_str); 3807 EXPORT_SYMBOL(drbd_set_st_err_str); 3808