1 /* 2 drbd.c 3 4 This file is part of DRBD by Philipp Reisner and Lars Ellenberg. 5 6 Copyright (C) 2001-2008, LINBIT Information Technologies GmbH. 7 Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>. 8 Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>. 9 10 Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev 11 from Logicworks, Inc. for making SDP replication support possible. 12 13 drbd is free software; you can redistribute it and/or modify 14 it under the terms of the GNU General Public License as published by 15 the Free Software Foundation; either version 2, or (at your option) 16 any later version. 17 18 drbd is distributed in the hope that it will be useful, 19 but WITHOUT ANY WARRANTY; without even the implied warranty of 20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 21 GNU General Public License for more details. 22 23 You should have received a copy of the GNU General Public License 24 along with drbd; see the file COPYING. If not, write to 25 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 26 27 */ 28 29 #include <linux/module.h> 30 #include <linux/drbd.h> 31 #include <asm/uaccess.h> 32 #include <asm/types.h> 33 #include <net/sock.h> 34 #include <linux/ctype.h> 35 #include <linux/mutex.h> 36 #include <linux/fs.h> 37 #include <linux/file.h> 38 #include <linux/proc_fs.h> 39 #include <linux/init.h> 40 #include <linux/mm.h> 41 #include <linux/memcontrol.h> 42 #include <linux/mm_inline.h> 43 #include <linux/slab.h> 44 #include <linux/random.h> 45 #include <linux/reboot.h> 46 #include <linux/notifier.h> 47 #include <linux/kthread.h> 48 #include <linux/workqueue.h> 49 #define __KERNEL_SYSCALLS__ 50 #include <linux/unistd.h> 51 #include <linux/vmalloc.h> 52 53 #include <linux/drbd_limits.h> 54 #include "drbd_int.h" 55 #include "drbd_protocol.h" 56 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */ 57 58 #include "drbd_vli.h" 59 60 static DEFINE_MUTEX(drbd_main_mutex); 61 static int drbd_open(struct block_device *bdev, fmode_t mode); 62 static void drbd_release(struct gendisk *gd, fmode_t mode); 63 static int w_md_sync(struct drbd_work *w, int unused); 64 static void md_sync_timer_fn(unsigned long data); 65 static int w_bitmap_io(struct drbd_work *w, int unused); 66 static int w_go_diskless(struct drbd_work *w, int unused); 67 68 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, " 69 "Lars Ellenberg <lars@linbit.com>"); 70 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION); 71 MODULE_VERSION(REL_VERSION); 72 MODULE_LICENSE("GPL"); 73 MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices (" 74 __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")"); 75 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR); 76 77 #include <linux/moduleparam.h> 78 /* allow_open_on_secondary */ 79 MODULE_PARM_DESC(allow_oos, "DONT USE!"); 80 /* thanks to these macros, if compiled into the kernel (not-module), 81 * this becomes the boot parameter drbd.minor_count */ 82 module_param(minor_count, uint, 0444); 83 module_param(disable_sendpage, bool, 0644); 84 module_param(allow_oos, bool, 0); 85 module_param(proc_details, int, 0644); 86 87 #ifdef CONFIG_DRBD_FAULT_INJECTION 88 int enable_faults; 89 int fault_rate; 90 static int fault_count; 91 int fault_devs; 92 /* bitmap of enabled faults */ 93 module_param(enable_faults, int, 0664); 94 /* fault rate % value - applies to all enabled faults */ 95 module_param(fault_rate, int, 0664); 96 /* count of faults inserted */ 97 module_param(fault_count, int, 0664); 98 /* bitmap of devices to insert faults on */ 99 module_param(fault_devs, int, 0644); 100 #endif 101 102 /* module parameter, defined */ 103 unsigned int minor_count = DRBD_MINOR_COUNT_DEF; 104 bool disable_sendpage; 105 bool allow_oos; 106 int proc_details; /* Detail level in proc drbd*/ 107 108 /* Module parameter for setting the user mode helper program 109 * to run. Default is /sbin/drbdadm */ 110 char usermode_helper[80] = "/sbin/drbdadm"; 111 112 module_param_string(usermode_helper, usermode_helper, sizeof(usermode_helper), 0644); 113 114 /* in 2.6.x, our device mapping and config info contains our virtual gendisks 115 * as member "struct gendisk *vdisk;" 116 */ 117 struct idr drbd_devices; 118 struct list_head drbd_resources; 119 120 struct kmem_cache *drbd_request_cache; 121 struct kmem_cache *drbd_ee_cache; /* peer requests */ 122 struct kmem_cache *drbd_bm_ext_cache; /* bitmap extents */ 123 struct kmem_cache *drbd_al_ext_cache; /* activity log extents */ 124 mempool_t *drbd_request_mempool; 125 mempool_t *drbd_ee_mempool; 126 mempool_t *drbd_md_io_page_pool; 127 struct bio_set *drbd_md_io_bio_set; 128 129 /* I do not use a standard mempool, because: 130 1) I want to hand out the pre-allocated objects first. 131 2) I want to be able to interrupt sleeping allocation with a signal. 132 Note: This is a single linked list, the next pointer is the private 133 member of struct page. 134 */ 135 struct page *drbd_pp_pool; 136 spinlock_t drbd_pp_lock; 137 int drbd_pp_vacant; 138 wait_queue_head_t drbd_pp_wait; 139 140 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5); 141 142 static const struct block_device_operations drbd_ops = { 143 .owner = THIS_MODULE, 144 .open = drbd_open, 145 .release = drbd_release, 146 }; 147 148 struct bio *bio_alloc_drbd(gfp_t gfp_mask) 149 { 150 struct bio *bio; 151 152 if (!drbd_md_io_bio_set) 153 return bio_alloc(gfp_mask, 1); 154 155 bio = bio_alloc_bioset(gfp_mask, 1, drbd_md_io_bio_set); 156 if (!bio) 157 return NULL; 158 return bio; 159 } 160 161 #ifdef __CHECKER__ 162 /* When checking with sparse, and this is an inline function, sparse will 163 give tons of false positives. When this is a real functions sparse works. 164 */ 165 int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins) 166 { 167 int io_allowed; 168 169 atomic_inc(&device->local_cnt); 170 io_allowed = (device->state.disk >= mins); 171 if (!io_allowed) { 172 if (atomic_dec_and_test(&device->local_cnt)) 173 wake_up(&device->misc_wait); 174 } 175 return io_allowed; 176 } 177 178 #endif 179 180 /** 181 * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch 182 * @connection: DRBD connection. 183 * @barrier_nr: Expected identifier of the DRBD write barrier packet. 184 * @set_size: Expected number of requests before that barrier. 185 * 186 * In case the passed barrier_nr or set_size does not match the oldest 187 * epoch of not yet barrier-acked requests, this function will cause a 188 * termination of the connection. 189 */ 190 void tl_release(struct drbd_connection *connection, unsigned int barrier_nr, 191 unsigned int set_size) 192 { 193 struct drbd_request *r; 194 struct drbd_request *req = NULL; 195 int expect_epoch = 0; 196 int expect_size = 0; 197 198 spin_lock_irq(&connection->resource->req_lock); 199 200 /* find oldest not yet barrier-acked write request, 201 * count writes in its epoch. */ 202 list_for_each_entry(r, &connection->transfer_log, tl_requests) { 203 const unsigned s = r->rq_state; 204 if (!req) { 205 if (!(s & RQ_WRITE)) 206 continue; 207 if (!(s & RQ_NET_MASK)) 208 continue; 209 if (s & RQ_NET_DONE) 210 continue; 211 req = r; 212 expect_epoch = req->epoch; 213 expect_size ++; 214 } else { 215 if (r->epoch != expect_epoch) 216 break; 217 if (!(s & RQ_WRITE)) 218 continue; 219 /* if (s & RQ_DONE): not expected */ 220 /* if (!(s & RQ_NET_MASK)): not expected */ 221 expect_size++; 222 } 223 } 224 225 /* first some paranoia code */ 226 if (req == NULL) { 227 drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n", 228 barrier_nr); 229 goto bail; 230 } 231 if (expect_epoch != barrier_nr) { 232 drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n", 233 barrier_nr, expect_epoch); 234 goto bail; 235 } 236 237 if (expect_size != set_size) { 238 drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n", 239 barrier_nr, set_size, expect_size); 240 goto bail; 241 } 242 243 /* Clean up list of requests processed during current epoch. */ 244 /* this extra list walk restart is paranoia, 245 * to catch requests being barrier-acked "unexpectedly". 246 * It usually should find the same req again, or some READ preceding it. */ 247 list_for_each_entry(req, &connection->transfer_log, tl_requests) 248 if (req->epoch == expect_epoch) 249 break; 250 list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) { 251 if (req->epoch != expect_epoch) 252 break; 253 _req_mod(req, BARRIER_ACKED); 254 } 255 spin_unlock_irq(&connection->resource->req_lock); 256 257 return; 258 259 bail: 260 spin_unlock_irq(&connection->resource->req_lock); 261 conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD); 262 } 263 264 265 /** 266 * _tl_restart() - Walks the transfer log, and applies an action to all requests 267 * @device: DRBD device. 268 * @what: The action/event to perform with all request objects 269 * 270 * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO, 271 * RESTART_FROZEN_DISK_IO. 272 */ 273 /* must hold resource->req_lock */ 274 void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what) 275 { 276 struct drbd_request *req, *r; 277 278 list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) 279 _req_mod(req, what); 280 } 281 282 void tl_restart(struct drbd_connection *connection, enum drbd_req_event what) 283 { 284 spin_lock_irq(&connection->resource->req_lock); 285 _tl_restart(connection, what); 286 spin_unlock_irq(&connection->resource->req_lock); 287 } 288 289 /** 290 * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL 291 * @device: DRBD device. 292 * 293 * This is called after the connection to the peer was lost. The storage covered 294 * by the requests on the transfer gets marked as our of sync. Called from the 295 * receiver thread and the worker thread. 296 */ 297 void tl_clear(struct drbd_connection *connection) 298 { 299 tl_restart(connection, CONNECTION_LOST_WHILE_PENDING); 300 } 301 302 /** 303 * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL 304 * @device: DRBD device. 305 */ 306 void tl_abort_disk_io(struct drbd_device *device) 307 { 308 struct drbd_connection *connection = first_peer_device(device)->connection; 309 struct drbd_request *req, *r; 310 311 spin_lock_irq(&connection->resource->req_lock); 312 list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) { 313 if (!(req->rq_state & RQ_LOCAL_PENDING)) 314 continue; 315 if (req->device != device) 316 continue; 317 _req_mod(req, ABORT_DISK_IO); 318 } 319 spin_unlock_irq(&connection->resource->req_lock); 320 } 321 322 static int drbd_thread_setup(void *arg) 323 { 324 struct drbd_thread *thi = (struct drbd_thread *) arg; 325 struct drbd_resource *resource = thi->resource; 326 unsigned long flags; 327 int retval; 328 329 snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s", 330 thi->name[0], 331 resource->name); 332 333 restart: 334 retval = thi->function(thi); 335 336 spin_lock_irqsave(&thi->t_lock, flags); 337 338 /* if the receiver has been "EXITING", the last thing it did 339 * was set the conn state to "StandAlone", 340 * if now a re-connect request comes in, conn state goes C_UNCONNECTED, 341 * and receiver thread will be "started". 342 * drbd_thread_start needs to set "RESTARTING" in that case. 343 * t_state check and assignment needs to be within the same spinlock, 344 * so either thread_start sees EXITING, and can remap to RESTARTING, 345 * or thread_start see NONE, and can proceed as normal. 346 */ 347 348 if (thi->t_state == RESTARTING) { 349 drbd_info(resource, "Restarting %s thread\n", thi->name); 350 thi->t_state = RUNNING; 351 spin_unlock_irqrestore(&thi->t_lock, flags); 352 goto restart; 353 } 354 355 thi->task = NULL; 356 thi->t_state = NONE; 357 smp_mb(); 358 complete_all(&thi->stop); 359 spin_unlock_irqrestore(&thi->t_lock, flags); 360 361 drbd_info(resource, "Terminating %s\n", current->comm); 362 363 /* Release mod reference taken when thread was started */ 364 365 if (thi->connection) 366 kref_put(&thi->connection->kref, drbd_destroy_connection); 367 kref_put(&resource->kref, drbd_destroy_resource); 368 module_put(THIS_MODULE); 369 return retval; 370 } 371 372 static void drbd_thread_init(struct drbd_resource *resource, struct drbd_thread *thi, 373 int (*func) (struct drbd_thread *), const char *name) 374 { 375 spin_lock_init(&thi->t_lock); 376 thi->task = NULL; 377 thi->t_state = NONE; 378 thi->function = func; 379 thi->resource = resource; 380 thi->connection = NULL; 381 thi->name = name; 382 } 383 384 int drbd_thread_start(struct drbd_thread *thi) 385 { 386 struct drbd_resource *resource = thi->resource; 387 struct task_struct *nt; 388 unsigned long flags; 389 390 /* is used from state engine doing drbd_thread_stop_nowait, 391 * while holding the req lock irqsave */ 392 spin_lock_irqsave(&thi->t_lock, flags); 393 394 switch (thi->t_state) { 395 case NONE: 396 drbd_info(resource, "Starting %s thread (from %s [%d])\n", 397 thi->name, current->comm, current->pid); 398 399 /* Get ref on module for thread - this is released when thread exits */ 400 if (!try_module_get(THIS_MODULE)) { 401 drbd_err(resource, "Failed to get module reference in drbd_thread_start\n"); 402 spin_unlock_irqrestore(&thi->t_lock, flags); 403 return false; 404 } 405 406 kref_get(&resource->kref); 407 if (thi->connection) 408 kref_get(&thi->connection->kref); 409 410 init_completion(&thi->stop); 411 thi->reset_cpu_mask = 1; 412 thi->t_state = RUNNING; 413 spin_unlock_irqrestore(&thi->t_lock, flags); 414 flush_signals(current); /* otherw. may get -ERESTARTNOINTR */ 415 416 nt = kthread_create(drbd_thread_setup, (void *) thi, 417 "drbd_%c_%s", thi->name[0], thi->resource->name); 418 419 if (IS_ERR(nt)) { 420 drbd_err(resource, "Couldn't start thread\n"); 421 422 if (thi->connection) 423 kref_put(&thi->connection->kref, drbd_destroy_connection); 424 kref_put(&resource->kref, drbd_destroy_resource); 425 module_put(THIS_MODULE); 426 return false; 427 } 428 spin_lock_irqsave(&thi->t_lock, flags); 429 thi->task = nt; 430 thi->t_state = RUNNING; 431 spin_unlock_irqrestore(&thi->t_lock, flags); 432 wake_up_process(nt); 433 break; 434 case EXITING: 435 thi->t_state = RESTARTING; 436 drbd_info(resource, "Restarting %s thread (from %s [%d])\n", 437 thi->name, current->comm, current->pid); 438 /* fall through */ 439 case RUNNING: 440 case RESTARTING: 441 default: 442 spin_unlock_irqrestore(&thi->t_lock, flags); 443 break; 444 } 445 446 return true; 447 } 448 449 450 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait) 451 { 452 unsigned long flags; 453 454 enum drbd_thread_state ns = restart ? RESTARTING : EXITING; 455 456 /* may be called from state engine, holding the req lock irqsave */ 457 spin_lock_irqsave(&thi->t_lock, flags); 458 459 if (thi->t_state == NONE) { 460 spin_unlock_irqrestore(&thi->t_lock, flags); 461 if (restart) 462 drbd_thread_start(thi); 463 return; 464 } 465 466 if (thi->t_state != ns) { 467 if (thi->task == NULL) { 468 spin_unlock_irqrestore(&thi->t_lock, flags); 469 return; 470 } 471 472 thi->t_state = ns; 473 smp_mb(); 474 init_completion(&thi->stop); 475 if (thi->task != current) 476 force_sig(DRBD_SIGKILL, thi->task); 477 } 478 479 spin_unlock_irqrestore(&thi->t_lock, flags); 480 481 if (wait) 482 wait_for_completion(&thi->stop); 483 } 484 485 int conn_lowest_minor(struct drbd_connection *connection) 486 { 487 struct drbd_peer_device *peer_device; 488 int vnr = 0, minor = -1; 489 490 rcu_read_lock(); 491 peer_device = idr_get_next(&connection->peer_devices, &vnr); 492 if (peer_device) 493 minor = device_to_minor(peer_device->device); 494 rcu_read_unlock(); 495 496 return minor; 497 } 498 499 #ifdef CONFIG_SMP 500 /** 501 * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs 502 * 503 * Forces all threads of a resource onto the same CPU. This is beneficial for 504 * DRBD's performance. May be overwritten by user's configuration. 505 */ 506 static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask) 507 { 508 unsigned int *resources_per_cpu, min_index = ~0; 509 510 resources_per_cpu = kzalloc(nr_cpu_ids * sizeof(*resources_per_cpu), GFP_KERNEL); 511 if (resources_per_cpu) { 512 struct drbd_resource *resource; 513 unsigned int cpu, min = ~0; 514 515 rcu_read_lock(); 516 for_each_resource_rcu(resource, &drbd_resources) { 517 for_each_cpu(cpu, resource->cpu_mask) 518 resources_per_cpu[cpu]++; 519 } 520 rcu_read_unlock(); 521 for_each_online_cpu(cpu) { 522 if (resources_per_cpu[cpu] < min) { 523 min = resources_per_cpu[cpu]; 524 min_index = cpu; 525 } 526 } 527 kfree(resources_per_cpu); 528 } 529 if (min_index == ~0) { 530 cpumask_setall(*cpu_mask); 531 return; 532 } 533 cpumask_set_cpu(min_index, *cpu_mask); 534 } 535 536 /** 537 * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread 538 * @device: DRBD device. 539 * @thi: drbd_thread object 540 * 541 * call in the "main loop" of _all_ threads, no need for any mutex, current won't die 542 * prematurely. 543 */ 544 void drbd_thread_current_set_cpu(struct drbd_thread *thi) 545 { 546 struct drbd_resource *resource = thi->resource; 547 struct task_struct *p = current; 548 549 if (!thi->reset_cpu_mask) 550 return; 551 thi->reset_cpu_mask = 0; 552 set_cpus_allowed_ptr(p, resource->cpu_mask); 553 } 554 #else 555 #define drbd_calc_cpu_mask(A) ({}) 556 #endif 557 558 /** 559 * drbd_header_size - size of a packet header 560 * 561 * The header size is a multiple of 8, so any payload following the header is 562 * word aligned on 64-bit architectures. (The bitmap send and receive code 563 * relies on this.) 564 */ 565 unsigned int drbd_header_size(struct drbd_connection *connection) 566 { 567 if (connection->agreed_pro_version >= 100) { 568 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8)); 569 return sizeof(struct p_header100); 570 } else { 571 BUILD_BUG_ON(sizeof(struct p_header80) != 572 sizeof(struct p_header95)); 573 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8)); 574 return sizeof(struct p_header80); 575 } 576 } 577 578 static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size) 579 { 580 h->magic = cpu_to_be32(DRBD_MAGIC); 581 h->command = cpu_to_be16(cmd); 582 h->length = cpu_to_be16(size); 583 return sizeof(struct p_header80); 584 } 585 586 static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size) 587 { 588 h->magic = cpu_to_be16(DRBD_MAGIC_BIG); 589 h->command = cpu_to_be16(cmd); 590 h->length = cpu_to_be32(size); 591 return sizeof(struct p_header95); 592 } 593 594 static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd, 595 int size, int vnr) 596 { 597 h->magic = cpu_to_be32(DRBD_MAGIC_100); 598 h->volume = cpu_to_be16(vnr); 599 h->command = cpu_to_be16(cmd); 600 h->length = cpu_to_be32(size); 601 h->pad = 0; 602 return sizeof(struct p_header100); 603 } 604 605 static unsigned int prepare_header(struct drbd_connection *connection, int vnr, 606 void *buffer, enum drbd_packet cmd, int size) 607 { 608 if (connection->agreed_pro_version >= 100) 609 return prepare_header100(buffer, cmd, size, vnr); 610 else if (connection->agreed_pro_version >= 95 && 611 size > DRBD_MAX_SIZE_H80_PACKET) 612 return prepare_header95(buffer, cmd, size); 613 else 614 return prepare_header80(buffer, cmd, size); 615 } 616 617 static void *__conn_prepare_command(struct drbd_connection *connection, 618 struct drbd_socket *sock) 619 { 620 if (!sock->socket) 621 return NULL; 622 return sock->sbuf + drbd_header_size(connection); 623 } 624 625 void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock) 626 { 627 void *p; 628 629 mutex_lock(&sock->mutex); 630 p = __conn_prepare_command(connection, sock); 631 if (!p) 632 mutex_unlock(&sock->mutex); 633 634 return p; 635 } 636 637 void *drbd_prepare_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock) 638 { 639 return conn_prepare_command(peer_device->connection, sock); 640 } 641 642 static int __send_command(struct drbd_connection *connection, int vnr, 643 struct drbd_socket *sock, enum drbd_packet cmd, 644 unsigned int header_size, void *data, 645 unsigned int size) 646 { 647 int msg_flags; 648 int err; 649 650 /* 651 * Called with @data == NULL and the size of the data blocks in @size 652 * for commands that send data blocks. For those commands, omit the 653 * MSG_MORE flag: this will increase the likelihood that data blocks 654 * which are page aligned on the sender will end up page aligned on the 655 * receiver. 656 */ 657 msg_flags = data ? MSG_MORE : 0; 658 659 header_size += prepare_header(connection, vnr, sock->sbuf, cmd, 660 header_size + size); 661 err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size, 662 msg_flags); 663 if (data && !err) 664 err = drbd_send_all(connection, sock->socket, data, size, 0); 665 return err; 666 } 667 668 static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock, 669 enum drbd_packet cmd, unsigned int header_size, 670 void *data, unsigned int size) 671 { 672 return __send_command(connection, 0, sock, cmd, header_size, data, size); 673 } 674 675 int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock, 676 enum drbd_packet cmd, unsigned int header_size, 677 void *data, unsigned int size) 678 { 679 int err; 680 681 err = __conn_send_command(connection, sock, cmd, header_size, data, size); 682 mutex_unlock(&sock->mutex); 683 return err; 684 } 685 686 int drbd_send_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock, 687 enum drbd_packet cmd, unsigned int header_size, 688 void *data, unsigned int size) 689 { 690 int err; 691 692 err = __send_command(peer_device->connection, peer_device->device->vnr, 693 sock, cmd, header_size, data, size); 694 mutex_unlock(&sock->mutex); 695 return err; 696 } 697 698 int drbd_send_ping(struct drbd_connection *connection) 699 { 700 struct drbd_socket *sock; 701 702 sock = &connection->meta; 703 if (!conn_prepare_command(connection, sock)) 704 return -EIO; 705 return conn_send_command(connection, sock, P_PING, 0, NULL, 0); 706 } 707 708 int drbd_send_ping_ack(struct drbd_connection *connection) 709 { 710 struct drbd_socket *sock; 711 712 sock = &connection->meta; 713 if (!conn_prepare_command(connection, sock)) 714 return -EIO; 715 return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0); 716 } 717 718 int drbd_send_sync_param(struct drbd_peer_device *peer_device) 719 { 720 struct drbd_socket *sock; 721 struct p_rs_param_95 *p; 722 int size; 723 const int apv = peer_device->connection->agreed_pro_version; 724 enum drbd_packet cmd; 725 struct net_conf *nc; 726 struct disk_conf *dc; 727 728 sock = &peer_device->connection->data; 729 p = drbd_prepare_command(peer_device, sock); 730 if (!p) 731 return -EIO; 732 733 rcu_read_lock(); 734 nc = rcu_dereference(peer_device->connection->net_conf); 735 736 size = apv <= 87 ? sizeof(struct p_rs_param) 737 : apv == 88 ? sizeof(struct p_rs_param) 738 + strlen(nc->verify_alg) + 1 739 : apv <= 94 ? sizeof(struct p_rs_param_89) 740 : /* apv >= 95 */ sizeof(struct p_rs_param_95); 741 742 cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM; 743 744 /* initialize verify_alg and csums_alg */ 745 memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX); 746 747 if (get_ldev(peer_device->device)) { 748 dc = rcu_dereference(peer_device->device->ldev->disk_conf); 749 p->resync_rate = cpu_to_be32(dc->resync_rate); 750 p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead); 751 p->c_delay_target = cpu_to_be32(dc->c_delay_target); 752 p->c_fill_target = cpu_to_be32(dc->c_fill_target); 753 p->c_max_rate = cpu_to_be32(dc->c_max_rate); 754 put_ldev(peer_device->device); 755 } else { 756 p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF); 757 p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF); 758 p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF); 759 p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF); 760 p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF); 761 } 762 763 if (apv >= 88) 764 strcpy(p->verify_alg, nc->verify_alg); 765 if (apv >= 89) 766 strcpy(p->csums_alg, nc->csums_alg); 767 rcu_read_unlock(); 768 769 return drbd_send_command(peer_device, sock, cmd, size, NULL, 0); 770 } 771 772 int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd) 773 { 774 struct drbd_socket *sock; 775 struct p_protocol *p; 776 struct net_conf *nc; 777 int size, cf; 778 779 sock = &connection->data; 780 p = __conn_prepare_command(connection, sock); 781 if (!p) 782 return -EIO; 783 784 rcu_read_lock(); 785 nc = rcu_dereference(connection->net_conf); 786 787 if (nc->tentative && connection->agreed_pro_version < 92) { 788 rcu_read_unlock(); 789 mutex_unlock(&sock->mutex); 790 drbd_err(connection, "--dry-run is not supported by peer"); 791 return -EOPNOTSUPP; 792 } 793 794 size = sizeof(*p); 795 if (connection->agreed_pro_version >= 87) 796 size += strlen(nc->integrity_alg) + 1; 797 798 p->protocol = cpu_to_be32(nc->wire_protocol); 799 p->after_sb_0p = cpu_to_be32(nc->after_sb_0p); 800 p->after_sb_1p = cpu_to_be32(nc->after_sb_1p); 801 p->after_sb_2p = cpu_to_be32(nc->after_sb_2p); 802 p->two_primaries = cpu_to_be32(nc->two_primaries); 803 cf = 0; 804 if (nc->discard_my_data) 805 cf |= CF_DISCARD_MY_DATA; 806 if (nc->tentative) 807 cf |= CF_DRY_RUN; 808 p->conn_flags = cpu_to_be32(cf); 809 810 if (connection->agreed_pro_version >= 87) 811 strcpy(p->integrity_alg, nc->integrity_alg); 812 rcu_read_unlock(); 813 814 return __conn_send_command(connection, sock, cmd, size, NULL, 0); 815 } 816 817 int drbd_send_protocol(struct drbd_connection *connection) 818 { 819 int err; 820 821 mutex_lock(&connection->data.mutex); 822 err = __drbd_send_protocol(connection, P_PROTOCOL); 823 mutex_unlock(&connection->data.mutex); 824 825 return err; 826 } 827 828 static int _drbd_send_uuids(struct drbd_peer_device *peer_device, u64 uuid_flags) 829 { 830 struct drbd_device *device = peer_device->device; 831 struct drbd_socket *sock; 832 struct p_uuids *p; 833 int i; 834 835 if (!get_ldev_if_state(device, D_NEGOTIATING)) 836 return 0; 837 838 sock = &peer_device->connection->data; 839 p = drbd_prepare_command(peer_device, sock); 840 if (!p) { 841 put_ldev(device); 842 return -EIO; 843 } 844 spin_lock_irq(&device->ldev->md.uuid_lock); 845 for (i = UI_CURRENT; i < UI_SIZE; i++) 846 p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]); 847 spin_unlock_irq(&device->ldev->md.uuid_lock); 848 849 device->comm_bm_set = drbd_bm_total_weight(device); 850 p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set); 851 rcu_read_lock(); 852 uuid_flags |= rcu_dereference(peer_device->connection->net_conf)->discard_my_data ? 1 : 0; 853 rcu_read_unlock(); 854 uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0; 855 uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0; 856 p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags); 857 858 put_ldev(device); 859 return drbd_send_command(peer_device, sock, P_UUIDS, sizeof(*p), NULL, 0); 860 } 861 862 int drbd_send_uuids(struct drbd_peer_device *peer_device) 863 { 864 return _drbd_send_uuids(peer_device, 0); 865 } 866 867 int drbd_send_uuids_skip_initial_sync(struct drbd_peer_device *peer_device) 868 { 869 return _drbd_send_uuids(peer_device, 8); 870 } 871 872 void drbd_print_uuids(struct drbd_device *device, const char *text) 873 { 874 if (get_ldev_if_state(device, D_NEGOTIATING)) { 875 u64 *uuid = device->ldev->md.uuid; 876 drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n", 877 text, 878 (unsigned long long)uuid[UI_CURRENT], 879 (unsigned long long)uuid[UI_BITMAP], 880 (unsigned long long)uuid[UI_HISTORY_START], 881 (unsigned long long)uuid[UI_HISTORY_END]); 882 put_ldev(device); 883 } else { 884 drbd_info(device, "%s effective data uuid: %016llX\n", 885 text, 886 (unsigned long long)device->ed_uuid); 887 } 888 } 889 890 void drbd_gen_and_send_sync_uuid(struct drbd_peer_device *peer_device) 891 { 892 struct drbd_device *device = peer_device->device; 893 struct drbd_socket *sock; 894 struct p_rs_uuid *p; 895 u64 uuid; 896 897 D_ASSERT(device, device->state.disk == D_UP_TO_DATE); 898 899 uuid = device->ldev->md.uuid[UI_BITMAP]; 900 if (uuid && uuid != UUID_JUST_CREATED) 901 uuid = uuid + UUID_NEW_BM_OFFSET; 902 else 903 get_random_bytes(&uuid, sizeof(u64)); 904 drbd_uuid_set(device, UI_BITMAP, uuid); 905 drbd_print_uuids(device, "updated sync UUID"); 906 drbd_md_sync(device); 907 908 sock = &peer_device->connection->data; 909 p = drbd_prepare_command(peer_device, sock); 910 if (p) { 911 p->uuid = cpu_to_be64(uuid); 912 drbd_send_command(peer_device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0); 913 } 914 } 915 916 int drbd_send_sizes(struct drbd_peer_device *peer_device, int trigger_reply, enum dds_flags flags) 917 { 918 struct drbd_device *device = peer_device->device; 919 struct drbd_socket *sock; 920 struct p_sizes *p; 921 sector_t d_size, u_size; 922 int q_order_type; 923 unsigned int max_bio_size; 924 925 if (get_ldev_if_state(device, D_NEGOTIATING)) { 926 D_ASSERT(device, device->ldev->backing_bdev); 927 d_size = drbd_get_max_capacity(device->ldev); 928 rcu_read_lock(); 929 u_size = rcu_dereference(device->ldev->disk_conf)->disk_size; 930 rcu_read_unlock(); 931 q_order_type = drbd_queue_order_type(device); 932 max_bio_size = queue_max_hw_sectors(device->ldev->backing_bdev->bd_disk->queue) << 9; 933 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE); 934 put_ldev(device); 935 } else { 936 d_size = 0; 937 u_size = 0; 938 q_order_type = QUEUE_ORDERED_NONE; 939 max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */ 940 } 941 942 sock = &peer_device->connection->data; 943 p = drbd_prepare_command(peer_device, sock); 944 if (!p) 945 return -EIO; 946 947 if (peer_device->connection->agreed_pro_version <= 94) 948 max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET); 949 else if (peer_device->connection->agreed_pro_version < 100) 950 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95); 951 952 p->d_size = cpu_to_be64(d_size); 953 p->u_size = cpu_to_be64(u_size); 954 p->c_size = cpu_to_be64(trigger_reply ? 0 : drbd_get_capacity(device->this_bdev)); 955 p->max_bio_size = cpu_to_be32(max_bio_size); 956 p->queue_order_type = cpu_to_be16(q_order_type); 957 p->dds_flags = cpu_to_be16(flags); 958 return drbd_send_command(peer_device, sock, P_SIZES, sizeof(*p), NULL, 0); 959 } 960 961 /** 962 * drbd_send_current_state() - Sends the drbd state to the peer 963 * @peer_device: DRBD peer device. 964 */ 965 int drbd_send_current_state(struct drbd_peer_device *peer_device) 966 { 967 struct drbd_socket *sock; 968 struct p_state *p; 969 970 sock = &peer_device->connection->data; 971 p = drbd_prepare_command(peer_device, sock); 972 if (!p) 973 return -EIO; 974 p->state = cpu_to_be32(peer_device->device->state.i); /* Within the send mutex */ 975 return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0); 976 } 977 978 /** 979 * drbd_send_state() - After a state change, sends the new state to the peer 980 * @peer_device: DRBD peer device. 981 * @state: the state to send, not necessarily the current state. 982 * 983 * Each state change queues an "after_state_ch" work, which will eventually 984 * send the resulting new state to the peer. If more state changes happen 985 * between queuing and processing of the after_state_ch work, we still 986 * want to send each intermediary state in the order it occurred. 987 */ 988 int drbd_send_state(struct drbd_peer_device *peer_device, union drbd_state state) 989 { 990 struct drbd_socket *sock; 991 struct p_state *p; 992 993 sock = &peer_device->connection->data; 994 p = drbd_prepare_command(peer_device, sock); 995 if (!p) 996 return -EIO; 997 p->state = cpu_to_be32(state.i); /* Within the send mutex */ 998 return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0); 999 } 1000 1001 int drbd_send_state_req(struct drbd_peer_device *peer_device, union drbd_state mask, union drbd_state val) 1002 { 1003 struct drbd_socket *sock; 1004 struct p_req_state *p; 1005 1006 sock = &peer_device->connection->data; 1007 p = drbd_prepare_command(peer_device, sock); 1008 if (!p) 1009 return -EIO; 1010 p->mask = cpu_to_be32(mask.i); 1011 p->val = cpu_to_be32(val.i); 1012 return drbd_send_command(peer_device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0); 1013 } 1014 1015 int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val) 1016 { 1017 enum drbd_packet cmd; 1018 struct drbd_socket *sock; 1019 struct p_req_state *p; 1020 1021 cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ; 1022 sock = &connection->data; 1023 p = conn_prepare_command(connection, sock); 1024 if (!p) 1025 return -EIO; 1026 p->mask = cpu_to_be32(mask.i); 1027 p->val = cpu_to_be32(val.i); 1028 return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0); 1029 } 1030 1031 void drbd_send_sr_reply(struct drbd_peer_device *peer_device, enum drbd_state_rv retcode) 1032 { 1033 struct drbd_socket *sock; 1034 struct p_req_state_reply *p; 1035 1036 sock = &peer_device->connection->meta; 1037 p = drbd_prepare_command(peer_device, sock); 1038 if (p) { 1039 p->retcode = cpu_to_be32(retcode); 1040 drbd_send_command(peer_device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0); 1041 } 1042 } 1043 1044 void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode) 1045 { 1046 struct drbd_socket *sock; 1047 struct p_req_state_reply *p; 1048 enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY; 1049 1050 sock = &connection->meta; 1051 p = conn_prepare_command(connection, sock); 1052 if (p) { 1053 p->retcode = cpu_to_be32(retcode); 1054 conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0); 1055 } 1056 } 1057 1058 static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code) 1059 { 1060 BUG_ON(code & ~0xf); 1061 p->encoding = (p->encoding & ~0xf) | code; 1062 } 1063 1064 static void dcbp_set_start(struct p_compressed_bm *p, int set) 1065 { 1066 p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0); 1067 } 1068 1069 static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n) 1070 { 1071 BUG_ON(n & ~0x7); 1072 p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4); 1073 } 1074 1075 static int fill_bitmap_rle_bits(struct drbd_device *device, 1076 struct p_compressed_bm *p, 1077 unsigned int size, 1078 struct bm_xfer_ctx *c) 1079 { 1080 struct bitstream bs; 1081 unsigned long plain_bits; 1082 unsigned long tmp; 1083 unsigned long rl; 1084 unsigned len; 1085 unsigned toggle; 1086 int bits, use_rle; 1087 1088 /* may we use this feature? */ 1089 rcu_read_lock(); 1090 use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle; 1091 rcu_read_unlock(); 1092 if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90) 1093 return 0; 1094 1095 if (c->bit_offset >= c->bm_bits) 1096 return 0; /* nothing to do. */ 1097 1098 /* use at most thus many bytes */ 1099 bitstream_init(&bs, p->code, size, 0); 1100 memset(p->code, 0, size); 1101 /* plain bits covered in this code string */ 1102 plain_bits = 0; 1103 1104 /* p->encoding & 0x80 stores whether the first run length is set. 1105 * bit offset is implicit. 1106 * start with toggle == 2 to be able to tell the first iteration */ 1107 toggle = 2; 1108 1109 /* see how much plain bits we can stuff into one packet 1110 * using RLE and VLI. */ 1111 do { 1112 tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset) 1113 : _drbd_bm_find_next(device, c->bit_offset); 1114 if (tmp == -1UL) 1115 tmp = c->bm_bits; 1116 rl = tmp - c->bit_offset; 1117 1118 if (toggle == 2) { /* first iteration */ 1119 if (rl == 0) { 1120 /* the first checked bit was set, 1121 * store start value, */ 1122 dcbp_set_start(p, 1); 1123 /* but skip encoding of zero run length */ 1124 toggle = !toggle; 1125 continue; 1126 } 1127 dcbp_set_start(p, 0); 1128 } 1129 1130 /* paranoia: catch zero runlength. 1131 * can only happen if bitmap is modified while we scan it. */ 1132 if (rl == 0) { 1133 drbd_err(device, "unexpected zero runlength while encoding bitmap " 1134 "t:%u bo:%lu\n", toggle, c->bit_offset); 1135 return -1; 1136 } 1137 1138 bits = vli_encode_bits(&bs, rl); 1139 if (bits == -ENOBUFS) /* buffer full */ 1140 break; 1141 if (bits <= 0) { 1142 drbd_err(device, "error while encoding bitmap: %d\n", bits); 1143 return 0; 1144 } 1145 1146 toggle = !toggle; 1147 plain_bits += rl; 1148 c->bit_offset = tmp; 1149 } while (c->bit_offset < c->bm_bits); 1150 1151 len = bs.cur.b - p->code + !!bs.cur.bit; 1152 1153 if (plain_bits < (len << 3)) { 1154 /* incompressible with this method. 1155 * we need to rewind both word and bit position. */ 1156 c->bit_offset -= plain_bits; 1157 bm_xfer_ctx_bit_to_word_offset(c); 1158 c->bit_offset = c->word_offset * BITS_PER_LONG; 1159 return 0; 1160 } 1161 1162 /* RLE + VLI was able to compress it just fine. 1163 * update c->word_offset. */ 1164 bm_xfer_ctx_bit_to_word_offset(c); 1165 1166 /* store pad_bits */ 1167 dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7); 1168 1169 return len; 1170 } 1171 1172 /** 1173 * send_bitmap_rle_or_plain 1174 * 1175 * Return 0 when done, 1 when another iteration is needed, and a negative error 1176 * code upon failure. 1177 */ 1178 static int 1179 send_bitmap_rle_or_plain(struct drbd_device *device, struct bm_xfer_ctx *c) 1180 { 1181 struct drbd_socket *sock = &first_peer_device(device)->connection->data; 1182 unsigned int header_size = drbd_header_size(first_peer_device(device)->connection); 1183 struct p_compressed_bm *p = sock->sbuf + header_size; 1184 int len, err; 1185 1186 len = fill_bitmap_rle_bits(device, p, 1187 DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c); 1188 if (len < 0) 1189 return -EIO; 1190 1191 if (len) { 1192 dcbp_set_code(p, RLE_VLI_Bits); 1193 err = __send_command(first_peer_device(device)->connection, device->vnr, sock, 1194 P_COMPRESSED_BITMAP, sizeof(*p) + len, 1195 NULL, 0); 1196 c->packets[0]++; 1197 c->bytes[0] += header_size + sizeof(*p) + len; 1198 1199 if (c->bit_offset >= c->bm_bits) 1200 len = 0; /* DONE */ 1201 } else { 1202 /* was not compressible. 1203 * send a buffer full of plain text bits instead. */ 1204 unsigned int data_size; 1205 unsigned long num_words; 1206 unsigned long *p = sock->sbuf + header_size; 1207 1208 data_size = DRBD_SOCKET_BUFFER_SIZE - header_size; 1209 num_words = min_t(size_t, data_size / sizeof(*p), 1210 c->bm_words - c->word_offset); 1211 len = num_words * sizeof(*p); 1212 if (len) 1213 drbd_bm_get_lel(device, c->word_offset, num_words, p); 1214 err = __send_command(first_peer_device(device)->connection, device->vnr, sock, P_BITMAP, len, NULL, 0); 1215 c->word_offset += num_words; 1216 c->bit_offset = c->word_offset * BITS_PER_LONG; 1217 1218 c->packets[1]++; 1219 c->bytes[1] += header_size + len; 1220 1221 if (c->bit_offset > c->bm_bits) 1222 c->bit_offset = c->bm_bits; 1223 } 1224 if (!err) { 1225 if (len == 0) { 1226 INFO_bm_xfer_stats(device, "send", c); 1227 return 0; 1228 } else 1229 return 1; 1230 } 1231 return -EIO; 1232 } 1233 1234 /* See the comment at receive_bitmap() */ 1235 static int _drbd_send_bitmap(struct drbd_device *device) 1236 { 1237 struct bm_xfer_ctx c; 1238 int err; 1239 1240 if (!expect(device->bitmap)) 1241 return false; 1242 1243 if (get_ldev(device)) { 1244 if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) { 1245 drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n"); 1246 drbd_bm_set_all(device); 1247 if (drbd_bm_write(device)) { 1248 /* write_bm did fail! Leave full sync flag set in Meta P_DATA 1249 * but otherwise process as per normal - need to tell other 1250 * side that a full resync is required! */ 1251 drbd_err(device, "Failed to write bitmap to disk!\n"); 1252 } else { 1253 drbd_md_clear_flag(device, MDF_FULL_SYNC); 1254 drbd_md_sync(device); 1255 } 1256 } 1257 put_ldev(device); 1258 } 1259 1260 c = (struct bm_xfer_ctx) { 1261 .bm_bits = drbd_bm_bits(device), 1262 .bm_words = drbd_bm_words(device), 1263 }; 1264 1265 do { 1266 err = send_bitmap_rle_or_plain(device, &c); 1267 } while (err > 0); 1268 1269 return err == 0; 1270 } 1271 1272 int drbd_send_bitmap(struct drbd_device *device) 1273 { 1274 struct drbd_socket *sock = &first_peer_device(device)->connection->data; 1275 int err = -1; 1276 1277 mutex_lock(&sock->mutex); 1278 if (sock->socket) 1279 err = !_drbd_send_bitmap(device); 1280 mutex_unlock(&sock->mutex); 1281 return err; 1282 } 1283 1284 void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size) 1285 { 1286 struct drbd_socket *sock; 1287 struct p_barrier_ack *p; 1288 1289 if (connection->cstate < C_WF_REPORT_PARAMS) 1290 return; 1291 1292 sock = &connection->meta; 1293 p = conn_prepare_command(connection, sock); 1294 if (!p) 1295 return; 1296 p->barrier = barrier_nr; 1297 p->set_size = cpu_to_be32(set_size); 1298 conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0); 1299 } 1300 1301 /** 1302 * _drbd_send_ack() - Sends an ack packet 1303 * @device: DRBD device. 1304 * @cmd: Packet command code. 1305 * @sector: sector, needs to be in big endian byte order 1306 * @blksize: size in byte, needs to be in big endian byte order 1307 * @block_id: Id, big endian byte order 1308 */ 1309 static int _drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1310 u64 sector, u32 blksize, u64 block_id) 1311 { 1312 struct drbd_socket *sock; 1313 struct p_block_ack *p; 1314 1315 if (peer_device->device->state.conn < C_CONNECTED) 1316 return -EIO; 1317 1318 sock = &peer_device->connection->meta; 1319 p = drbd_prepare_command(peer_device, sock); 1320 if (!p) 1321 return -EIO; 1322 p->sector = sector; 1323 p->block_id = block_id; 1324 p->blksize = blksize; 1325 p->seq_num = cpu_to_be32(atomic_inc_return(&peer_device->device->packet_seq)); 1326 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0); 1327 } 1328 1329 /* dp->sector and dp->block_id already/still in network byte order, 1330 * data_size is payload size according to dp->head, 1331 * and may need to be corrected for digest size. */ 1332 void drbd_send_ack_dp(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1333 struct p_data *dp, int data_size) 1334 { 1335 if (peer_device->connection->peer_integrity_tfm) 1336 data_size -= crypto_hash_digestsize(peer_device->connection->peer_integrity_tfm); 1337 _drbd_send_ack(peer_device, cmd, dp->sector, cpu_to_be32(data_size), 1338 dp->block_id); 1339 } 1340 1341 void drbd_send_ack_rp(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1342 struct p_block_req *rp) 1343 { 1344 _drbd_send_ack(peer_device, cmd, rp->sector, rp->blksize, rp->block_id); 1345 } 1346 1347 /** 1348 * drbd_send_ack() - Sends an ack packet 1349 * @device: DRBD device 1350 * @cmd: packet command code 1351 * @peer_req: peer request 1352 */ 1353 int drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1354 struct drbd_peer_request *peer_req) 1355 { 1356 return _drbd_send_ack(peer_device, cmd, 1357 cpu_to_be64(peer_req->i.sector), 1358 cpu_to_be32(peer_req->i.size), 1359 peer_req->block_id); 1360 } 1361 1362 /* This function misuses the block_id field to signal if the blocks 1363 * are is sync or not. */ 1364 int drbd_send_ack_ex(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1365 sector_t sector, int blksize, u64 block_id) 1366 { 1367 return _drbd_send_ack(peer_device, cmd, 1368 cpu_to_be64(sector), 1369 cpu_to_be32(blksize), 1370 cpu_to_be64(block_id)); 1371 } 1372 1373 int drbd_send_drequest(struct drbd_peer_device *peer_device, int cmd, 1374 sector_t sector, int size, u64 block_id) 1375 { 1376 struct drbd_socket *sock; 1377 struct p_block_req *p; 1378 1379 sock = &peer_device->connection->data; 1380 p = drbd_prepare_command(peer_device, sock); 1381 if (!p) 1382 return -EIO; 1383 p->sector = cpu_to_be64(sector); 1384 p->block_id = block_id; 1385 p->blksize = cpu_to_be32(size); 1386 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0); 1387 } 1388 1389 int drbd_send_drequest_csum(struct drbd_peer_device *peer_device, sector_t sector, int size, 1390 void *digest, int digest_size, enum drbd_packet cmd) 1391 { 1392 struct drbd_socket *sock; 1393 struct p_block_req *p; 1394 1395 /* FIXME: Put the digest into the preallocated socket buffer. */ 1396 1397 sock = &peer_device->connection->data; 1398 p = drbd_prepare_command(peer_device, sock); 1399 if (!p) 1400 return -EIO; 1401 p->sector = cpu_to_be64(sector); 1402 p->block_id = ID_SYNCER /* unused */; 1403 p->blksize = cpu_to_be32(size); 1404 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), digest, digest_size); 1405 } 1406 1407 int drbd_send_ov_request(struct drbd_peer_device *peer_device, sector_t sector, int size) 1408 { 1409 struct drbd_socket *sock; 1410 struct p_block_req *p; 1411 1412 sock = &peer_device->connection->data; 1413 p = drbd_prepare_command(peer_device, sock); 1414 if (!p) 1415 return -EIO; 1416 p->sector = cpu_to_be64(sector); 1417 p->block_id = ID_SYNCER /* unused */; 1418 p->blksize = cpu_to_be32(size); 1419 return drbd_send_command(peer_device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0); 1420 } 1421 1422 /* called on sndtimeo 1423 * returns false if we should retry, 1424 * true if we think connection is dead 1425 */ 1426 static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock) 1427 { 1428 int drop_it; 1429 /* long elapsed = (long)(jiffies - device->last_received); */ 1430 1431 drop_it = connection->meta.socket == sock 1432 || !connection->asender.task 1433 || get_t_state(&connection->asender) != RUNNING 1434 || connection->cstate < C_WF_REPORT_PARAMS; 1435 1436 if (drop_it) 1437 return true; 1438 1439 drop_it = !--connection->ko_count; 1440 if (!drop_it) { 1441 drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n", 1442 current->comm, current->pid, connection->ko_count); 1443 request_ping(connection); 1444 } 1445 1446 return drop_it; /* && (device->state == R_PRIMARY) */; 1447 } 1448 1449 static void drbd_update_congested(struct drbd_connection *connection) 1450 { 1451 struct sock *sk = connection->data.socket->sk; 1452 if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5) 1453 set_bit(NET_CONGESTED, &connection->flags); 1454 } 1455 1456 /* The idea of sendpage seems to be to put some kind of reference 1457 * to the page into the skb, and to hand it over to the NIC. In 1458 * this process get_page() gets called. 1459 * 1460 * As soon as the page was really sent over the network put_page() 1461 * gets called by some part of the network layer. [ NIC driver? ] 1462 * 1463 * [ get_page() / put_page() increment/decrement the count. If count 1464 * reaches 0 the page will be freed. ] 1465 * 1466 * This works nicely with pages from FSs. 1467 * But this means that in protocol A we might signal IO completion too early! 1468 * 1469 * In order not to corrupt data during a resync we must make sure 1470 * that we do not reuse our own buffer pages (EEs) to early, therefore 1471 * we have the net_ee list. 1472 * 1473 * XFS seems to have problems, still, it submits pages with page_count == 0! 1474 * As a workaround, we disable sendpage on pages 1475 * with page_count == 0 or PageSlab. 1476 */ 1477 static int _drbd_no_send_page(struct drbd_peer_device *peer_device, struct page *page, 1478 int offset, size_t size, unsigned msg_flags) 1479 { 1480 struct socket *socket; 1481 void *addr; 1482 int err; 1483 1484 socket = peer_device->connection->data.socket; 1485 addr = kmap(page) + offset; 1486 err = drbd_send_all(peer_device->connection, socket, addr, size, msg_flags); 1487 kunmap(page); 1488 if (!err) 1489 peer_device->device->send_cnt += size >> 9; 1490 return err; 1491 } 1492 1493 static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *page, 1494 int offset, size_t size, unsigned msg_flags) 1495 { 1496 struct socket *socket = peer_device->connection->data.socket; 1497 mm_segment_t oldfs = get_fs(); 1498 int len = size; 1499 int err = -EIO; 1500 1501 /* e.g. XFS meta- & log-data is in slab pages, which have a 1502 * page_count of 0 and/or have PageSlab() set. 1503 * we cannot use send_page for those, as that does get_page(); 1504 * put_page(); and would cause either a VM_BUG directly, or 1505 * __page_cache_release a page that would actually still be referenced 1506 * by someone, leading to some obscure delayed Oops somewhere else. */ 1507 if (disable_sendpage || (page_count(page) < 1) || PageSlab(page)) 1508 return _drbd_no_send_page(peer_device, page, offset, size, msg_flags); 1509 1510 msg_flags |= MSG_NOSIGNAL; 1511 drbd_update_congested(peer_device->connection); 1512 set_fs(KERNEL_DS); 1513 do { 1514 int sent; 1515 1516 sent = socket->ops->sendpage(socket, page, offset, len, msg_flags); 1517 if (sent <= 0) { 1518 if (sent == -EAGAIN) { 1519 if (we_should_drop_the_connection(peer_device->connection, socket)) 1520 break; 1521 continue; 1522 } 1523 drbd_warn(peer_device->device, "%s: size=%d len=%d sent=%d\n", 1524 __func__, (int)size, len, sent); 1525 if (sent < 0) 1526 err = sent; 1527 break; 1528 } 1529 len -= sent; 1530 offset += sent; 1531 } while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/); 1532 set_fs(oldfs); 1533 clear_bit(NET_CONGESTED, &peer_device->connection->flags); 1534 1535 if (len == 0) { 1536 err = 0; 1537 peer_device->device->send_cnt += size >> 9; 1538 } 1539 return err; 1540 } 1541 1542 static int _drbd_send_bio(struct drbd_peer_device *peer_device, struct bio *bio) 1543 { 1544 struct bio_vec bvec; 1545 struct bvec_iter iter; 1546 1547 /* hint all but last page with MSG_MORE */ 1548 bio_for_each_segment(bvec, bio, iter) { 1549 int err; 1550 1551 err = _drbd_no_send_page(peer_device, bvec.bv_page, 1552 bvec.bv_offset, bvec.bv_len, 1553 bio_iter_last(bvec, iter) 1554 ? 0 : MSG_MORE); 1555 if (err) 1556 return err; 1557 } 1558 return 0; 1559 } 1560 1561 static int _drbd_send_zc_bio(struct drbd_peer_device *peer_device, struct bio *bio) 1562 { 1563 struct bio_vec bvec; 1564 struct bvec_iter iter; 1565 1566 /* hint all but last page with MSG_MORE */ 1567 bio_for_each_segment(bvec, bio, iter) { 1568 int err; 1569 1570 err = _drbd_send_page(peer_device, bvec.bv_page, 1571 bvec.bv_offset, bvec.bv_len, 1572 bio_iter_last(bvec, iter) ? 0 : MSG_MORE); 1573 if (err) 1574 return err; 1575 } 1576 return 0; 1577 } 1578 1579 static int _drbd_send_zc_ee(struct drbd_peer_device *peer_device, 1580 struct drbd_peer_request *peer_req) 1581 { 1582 struct page *page = peer_req->pages; 1583 unsigned len = peer_req->i.size; 1584 int err; 1585 1586 /* hint all but last page with MSG_MORE */ 1587 page_chain_for_each(page) { 1588 unsigned l = min_t(unsigned, len, PAGE_SIZE); 1589 1590 err = _drbd_send_page(peer_device, page, 0, l, 1591 page_chain_next(page) ? MSG_MORE : 0); 1592 if (err) 1593 return err; 1594 len -= l; 1595 } 1596 return 0; 1597 } 1598 1599 static u32 bio_flags_to_wire(struct drbd_connection *connection, unsigned long bi_rw) 1600 { 1601 if (connection->agreed_pro_version >= 95) 1602 return (bi_rw & REQ_SYNC ? DP_RW_SYNC : 0) | 1603 (bi_rw & REQ_FUA ? DP_FUA : 0) | 1604 (bi_rw & REQ_FLUSH ? DP_FLUSH : 0) | 1605 (bi_rw & REQ_DISCARD ? DP_DISCARD : 0); 1606 else 1607 return bi_rw & REQ_SYNC ? DP_RW_SYNC : 0; 1608 } 1609 1610 /* Used to send write requests 1611 * R_PRIMARY -> Peer (P_DATA) 1612 */ 1613 int drbd_send_dblock(struct drbd_peer_device *peer_device, struct drbd_request *req) 1614 { 1615 struct drbd_device *device = peer_device->device; 1616 struct drbd_socket *sock; 1617 struct p_data *p; 1618 unsigned int dp_flags = 0; 1619 int dgs; 1620 int err; 1621 1622 sock = &peer_device->connection->data; 1623 p = drbd_prepare_command(peer_device, sock); 1624 dgs = peer_device->connection->integrity_tfm ? 1625 crypto_hash_digestsize(peer_device->connection->integrity_tfm) : 0; 1626 1627 if (!p) 1628 return -EIO; 1629 p->sector = cpu_to_be64(req->i.sector); 1630 p->block_id = (unsigned long)req; 1631 p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq)); 1632 dp_flags = bio_flags_to_wire(peer_device->connection, req->master_bio->bi_rw); 1633 if (device->state.conn >= C_SYNC_SOURCE && 1634 device->state.conn <= C_PAUSED_SYNC_T) 1635 dp_flags |= DP_MAY_SET_IN_SYNC; 1636 if (peer_device->connection->agreed_pro_version >= 100) { 1637 if (req->rq_state & RQ_EXP_RECEIVE_ACK) 1638 dp_flags |= DP_SEND_RECEIVE_ACK; 1639 if (req->rq_state & RQ_EXP_WRITE_ACK) 1640 dp_flags |= DP_SEND_WRITE_ACK; 1641 } 1642 p->dp_flags = cpu_to_be32(dp_flags); 1643 if (dgs) 1644 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, p + 1); 1645 err = __send_command(peer_device->connection, device->vnr, sock, P_DATA, sizeof(*p) + dgs, NULL, req->i.size); 1646 if (!err) { 1647 /* For protocol A, we have to memcpy the payload into 1648 * socket buffers, as we may complete right away 1649 * as soon as we handed it over to tcp, at which point the data 1650 * pages may become invalid. 1651 * 1652 * For data-integrity enabled, we copy it as well, so we can be 1653 * sure that even if the bio pages may still be modified, it 1654 * won't change the data on the wire, thus if the digest checks 1655 * out ok after sending on this side, but does not fit on the 1656 * receiving side, we sure have detected corruption elsewhere. 1657 */ 1658 if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || dgs) 1659 err = _drbd_send_bio(peer_device, req->master_bio); 1660 else 1661 err = _drbd_send_zc_bio(peer_device, req->master_bio); 1662 1663 /* double check digest, sometimes buffers have been modified in flight. */ 1664 if (dgs > 0 && dgs <= 64) { 1665 /* 64 byte, 512 bit, is the largest digest size 1666 * currently supported in kernel crypto. */ 1667 unsigned char digest[64]; 1668 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest); 1669 if (memcmp(p + 1, digest, dgs)) { 1670 drbd_warn(device, 1671 "Digest mismatch, buffer modified by upper layers during write: %llus +%u\n", 1672 (unsigned long long)req->i.sector, req->i.size); 1673 } 1674 } /* else if (dgs > 64) { 1675 ... Be noisy about digest too large ... 1676 } */ 1677 } 1678 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */ 1679 1680 return err; 1681 } 1682 1683 /* answer packet, used to send data back for read requests: 1684 * Peer -> (diskless) R_PRIMARY (P_DATA_REPLY) 1685 * C_SYNC_SOURCE -> C_SYNC_TARGET (P_RS_DATA_REPLY) 1686 */ 1687 int drbd_send_block(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1688 struct drbd_peer_request *peer_req) 1689 { 1690 struct drbd_device *device = peer_device->device; 1691 struct drbd_socket *sock; 1692 struct p_data *p; 1693 int err; 1694 int dgs; 1695 1696 sock = &peer_device->connection->data; 1697 p = drbd_prepare_command(peer_device, sock); 1698 1699 dgs = peer_device->connection->integrity_tfm ? 1700 crypto_hash_digestsize(peer_device->connection->integrity_tfm) : 0; 1701 1702 if (!p) 1703 return -EIO; 1704 p->sector = cpu_to_be64(peer_req->i.sector); 1705 p->block_id = peer_req->block_id; 1706 p->seq_num = 0; /* unused */ 1707 p->dp_flags = 0; 1708 if (dgs) 1709 drbd_csum_ee(peer_device->connection->integrity_tfm, peer_req, p + 1); 1710 err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*p) + dgs, NULL, peer_req->i.size); 1711 if (!err) 1712 err = _drbd_send_zc_ee(peer_device, peer_req); 1713 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */ 1714 1715 return err; 1716 } 1717 1718 int drbd_send_out_of_sync(struct drbd_peer_device *peer_device, struct drbd_request *req) 1719 { 1720 struct drbd_socket *sock; 1721 struct p_block_desc *p; 1722 1723 sock = &peer_device->connection->data; 1724 p = drbd_prepare_command(peer_device, sock); 1725 if (!p) 1726 return -EIO; 1727 p->sector = cpu_to_be64(req->i.sector); 1728 p->blksize = cpu_to_be32(req->i.size); 1729 return drbd_send_command(peer_device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0); 1730 } 1731 1732 /* 1733 drbd_send distinguishes two cases: 1734 1735 Packets sent via the data socket "sock" 1736 and packets sent via the meta data socket "msock" 1737 1738 sock msock 1739 -----------------+-------------------------+------------------------------ 1740 timeout conf.timeout / 2 conf.timeout / 2 1741 timeout action send a ping via msock Abort communication 1742 and close all sockets 1743 */ 1744 1745 /* 1746 * you must have down()ed the appropriate [m]sock_mutex elsewhere! 1747 */ 1748 int drbd_send(struct drbd_connection *connection, struct socket *sock, 1749 void *buf, size_t size, unsigned msg_flags) 1750 { 1751 struct kvec iov; 1752 struct msghdr msg; 1753 int rv, sent = 0; 1754 1755 if (!sock) 1756 return -EBADR; 1757 1758 /* THINK if (signal_pending) return ... ? */ 1759 1760 iov.iov_base = buf; 1761 iov.iov_len = size; 1762 1763 msg.msg_name = NULL; 1764 msg.msg_namelen = 0; 1765 msg.msg_control = NULL; 1766 msg.msg_controllen = 0; 1767 msg.msg_flags = msg_flags | MSG_NOSIGNAL; 1768 1769 if (sock == connection->data.socket) { 1770 rcu_read_lock(); 1771 connection->ko_count = rcu_dereference(connection->net_conf)->ko_count; 1772 rcu_read_unlock(); 1773 drbd_update_congested(connection); 1774 } 1775 do { 1776 /* STRANGE 1777 * tcp_sendmsg does _not_ use its size parameter at all ? 1778 * 1779 * -EAGAIN on timeout, -EINTR on signal. 1780 */ 1781 /* THINK 1782 * do we need to block DRBD_SIG if sock == &meta.socket ?? 1783 * otherwise wake_asender() might interrupt some send_*Ack ! 1784 */ 1785 rv = kernel_sendmsg(sock, &msg, &iov, 1, size); 1786 if (rv == -EAGAIN) { 1787 if (we_should_drop_the_connection(connection, sock)) 1788 break; 1789 else 1790 continue; 1791 } 1792 if (rv == -EINTR) { 1793 flush_signals(current); 1794 rv = 0; 1795 } 1796 if (rv < 0) 1797 break; 1798 sent += rv; 1799 iov.iov_base += rv; 1800 iov.iov_len -= rv; 1801 } while (sent < size); 1802 1803 if (sock == connection->data.socket) 1804 clear_bit(NET_CONGESTED, &connection->flags); 1805 1806 if (rv <= 0) { 1807 if (rv != -EAGAIN) { 1808 drbd_err(connection, "%s_sendmsg returned %d\n", 1809 sock == connection->meta.socket ? "msock" : "sock", 1810 rv); 1811 conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD); 1812 } else 1813 conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD); 1814 } 1815 1816 return sent; 1817 } 1818 1819 /** 1820 * drbd_send_all - Send an entire buffer 1821 * 1822 * Returns 0 upon success and a negative error value otherwise. 1823 */ 1824 int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer, 1825 size_t size, unsigned msg_flags) 1826 { 1827 int err; 1828 1829 err = drbd_send(connection, sock, buffer, size, msg_flags); 1830 if (err < 0) 1831 return err; 1832 if (err != size) 1833 return -EIO; 1834 return 0; 1835 } 1836 1837 static int drbd_open(struct block_device *bdev, fmode_t mode) 1838 { 1839 struct drbd_device *device = bdev->bd_disk->private_data; 1840 unsigned long flags; 1841 int rv = 0; 1842 1843 mutex_lock(&drbd_main_mutex); 1844 spin_lock_irqsave(&device->resource->req_lock, flags); 1845 /* to have a stable device->state.role 1846 * and no race with updating open_cnt */ 1847 1848 if (device->state.role != R_PRIMARY) { 1849 if (mode & FMODE_WRITE) 1850 rv = -EROFS; 1851 else if (!allow_oos) 1852 rv = -EMEDIUMTYPE; 1853 } 1854 1855 if (!rv) 1856 device->open_cnt++; 1857 spin_unlock_irqrestore(&device->resource->req_lock, flags); 1858 mutex_unlock(&drbd_main_mutex); 1859 1860 return rv; 1861 } 1862 1863 static void drbd_release(struct gendisk *gd, fmode_t mode) 1864 { 1865 struct drbd_device *device = gd->private_data; 1866 mutex_lock(&drbd_main_mutex); 1867 device->open_cnt--; 1868 mutex_unlock(&drbd_main_mutex); 1869 } 1870 1871 static void drbd_set_defaults(struct drbd_device *device) 1872 { 1873 /* Beware! The actual layout differs 1874 * between big endian and little endian */ 1875 device->state = (union drbd_dev_state) { 1876 { .role = R_SECONDARY, 1877 .peer = R_UNKNOWN, 1878 .conn = C_STANDALONE, 1879 .disk = D_DISKLESS, 1880 .pdsk = D_UNKNOWN, 1881 } }; 1882 } 1883 1884 void drbd_init_set_defaults(struct drbd_device *device) 1885 { 1886 /* the memset(,0,) did most of this. 1887 * note: only assignments, no allocation in here */ 1888 1889 drbd_set_defaults(device); 1890 1891 atomic_set(&device->ap_bio_cnt, 0); 1892 atomic_set(&device->ap_pending_cnt, 0); 1893 atomic_set(&device->rs_pending_cnt, 0); 1894 atomic_set(&device->unacked_cnt, 0); 1895 atomic_set(&device->local_cnt, 0); 1896 atomic_set(&device->pp_in_use_by_net, 0); 1897 atomic_set(&device->rs_sect_in, 0); 1898 atomic_set(&device->rs_sect_ev, 0); 1899 atomic_set(&device->ap_in_flight, 0); 1900 atomic_set(&device->md_io_in_use, 0); 1901 1902 mutex_init(&device->own_state_mutex); 1903 device->state_mutex = &device->own_state_mutex; 1904 1905 spin_lock_init(&device->al_lock); 1906 spin_lock_init(&device->peer_seq_lock); 1907 1908 INIT_LIST_HEAD(&device->active_ee); 1909 INIT_LIST_HEAD(&device->sync_ee); 1910 INIT_LIST_HEAD(&device->done_ee); 1911 INIT_LIST_HEAD(&device->read_ee); 1912 INIT_LIST_HEAD(&device->net_ee); 1913 INIT_LIST_HEAD(&device->resync_reads); 1914 INIT_LIST_HEAD(&device->resync_work.list); 1915 INIT_LIST_HEAD(&device->unplug_work.list); 1916 INIT_LIST_HEAD(&device->go_diskless.list); 1917 INIT_LIST_HEAD(&device->md_sync_work.list); 1918 INIT_LIST_HEAD(&device->start_resync_work.list); 1919 INIT_LIST_HEAD(&device->bm_io_work.w.list); 1920 1921 device->resync_work.cb = w_resync_timer; 1922 device->unplug_work.cb = w_send_write_hint; 1923 device->go_diskless.cb = w_go_diskless; 1924 device->md_sync_work.cb = w_md_sync; 1925 device->bm_io_work.w.cb = w_bitmap_io; 1926 device->start_resync_work.cb = w_start_resync; 1927 1928 init_timer(&device->resync_timer); 1929 init_timer(&device->md_sync_timer); 1930 init_timer(&device->start_resync_timer); 1931 init_timer(&device->request_timer); 1932 device->resync_timer.function = resync_timer_fn; 1933 device->resync_timer.data = (unsigned long) device; 1934 device->md_sync_timer.function = md_sync_timer_fn; 1935 device->md_sync_timer.data = (unsigned long) device; 1936 device->start_resync_timer.function = start_resync_timer_fn; 1937 device->start_resync_timer.data = (unsigned long) device; 1938 device->request_timer.function = request_timer_fn; 1939 device->request_timer.data = (unsigned long) device; 1940 1941 init_waitqueue_head(&device->misc_wait); 1942 init_waitqueue_head(&device->state_wait); 1943 init_waitqueue_head(&device->ee_wait); 1944 init_waitqueue_head(&device->al_wait); 1945 init_waitqueue_head(&device->seq_wait); 1946 1947 device->resync_wenr = LC_FREE; 1948 device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE; 1949 device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE; 1950 } 1951 1952 void drbd_device_cleanup(struct drbd_device *device) 1953 { 1954 int i; 1955 if (first_peer_device(device)->connection->receiver.t_state != NONE) 1956 drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n", 1957 first_peer_device(device)->connection->receiver.t_state); 1958 1959 device->al_writ_cnt = 1960 device->bm_writ_cnt = 1961 device->read_cnt = 1962 device->recv_cnt = 1963 device->send_cnt = 1964 device->writ_cnt = 1965 device->p_size = 1966 device->rs_start = 1967 device->rs_total = 1968 device->rs_failed = 0; 1969 device->rs_last_events = 0; 1970 device->rs_last_sect_ev = 0; 1971 for (i = 0; i < DRBD_SYNC_MARKS; i++) { 1972 device->rs_mark_left[i] = 0; 1973 device->rs_mark_time[i] = 0; 1974 } 1975 D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL); 1976 1977 drbd_set_my_capacity(device, 0); 1978 if (device->bitmap) { 1979 /* maybe never allocated. */ 1980 drbd_bm_resize(device, 0, 1); 1981 drbd_bm_cleanup(device); 1982 } 1983 1984 drbd_free_bc(device->ldev); 1985 device->ldev = NULL; 1986 1987 clear_bit(AL_SUSPENDED, &device->flags); 1988 1989 D_ASSERT(device, list_empty(&device->active_ee)); 1990 D_ASSERT(device, list_empty(&device->sync_ee)); 1991 D_ASSERT(device, list_empty(&device->done_ee)); 1992 D_ASSERT(device, list_empty(&device->read_ee)); 1993 D_ASSERT(device, list_empty(&device->net_ee)); 1994 D_ASSERT(device, list_empty(&device->resync_reads)); 1995 D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q)); 1996 D_ASSERT(device, list_empty(&device->resync_work.list)); 1997 D_ASSERT(device, list_empty(&device->unplug_work.list)); 1998 D_ASSERT(device, list_empty(&device->go_diskless.list)); 1999 2000 drbd_set_defaults(device); 2001 } 2002 2003 2004 static void drbd_destroy_mempools(void) 2005 { 2006 struct page *page; 2007 2008 while (drbd_pp_pool) { 2009 page = drbd_pp_pool; 2010 drbd_pp_pool = (struct page *)page_private(page); 2011 __free_page(page); 2012 drbd_pp_vacant--; 2013 } 2014 2015 /* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */ 2016 2017 if (drbd_md_io_bio_set) 2018 bioset_free(drbd_md_io_bio_set); 2019 if (drbd_md_io_page_pool) 2020 mempool_destroy(drbd_md_io_page_pool); 2021 if (drbd_ee_mempool) 2022 mempool_destroy(drbd_ee_mempool); 2023 if (drbd_request_mempool) 2024 mempool_destroy(drbd_request_mempool); 2025 if (drbd_ee_cache) 2026 kmem_cache_destroy(drbd_ee_cache); 2027 if (drbd_request_cache) 2028 kmem_cache_destroy(drbd_request_cache); 2029 if (drbd_bm_ext_cache) 2030 kmem_cache_destroy(drbd_bm_ext_cache); 2031 if (drbd_al_ext_cache) 2032 kmem_cache_destroy(drbd_al_ext_cache); 2033 2034 drbd_md_io_bio_set = NULL; 2035 drbd_md_io_page_pool = NULL; 2036 drbd_ee_mempool = NULL; 2037 drbd_request_mempool = NULL; 2038 drbd_ee_cache = NULL; 2039 drbd_request_cache = NULL; 2040 drbd_bm_ext_cache = NULL; 2041 drbd_al_ext_cache = NULL; 2042 2043 return; 2044 } 2045 2046 static int drbd_create_mempools(void) 2047 { 2048 struct page *page; 2049 const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * minor_count; 2050 int i; 2051 2052 /* prepare our caches and mempools */ 2053 drbd_request_mempool = NULL; 2054 drbd_ee_cache = NULL; 2055 drbd_request_cache = NULL; 2056 drbd_bm_ext_cache = NULL; 2057 drbd_al_ext_cache = NULL; 2058 drbd_pp_pool = NULL; 2059 drbd_md_io_page_pool = NULL; 2060 drbd_md_io_bio_set = NULL; 2061 2062 /* caches */ 2063 drbd_request_cache = kmem_cache_create( 2064 "drbd_req", sizeof(struct drbd_request), 0, 0, NULL); 2065 if (drbd_request_cache == NULL) 2066 goto Enomem; 2067 2068 drbd_ee_cache = kmem_cache_create( 2069 "drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL); 2070 if (drbd_ee_cache == NULL) 2071 goto Enomem; 2072 2073 drbd_bm_ext_cache = kmem_cache_create( 2074 "drbd_bm", sizeof(struct bm_extent), 0, 0, NULL); 2075 if (drbd_bm_ext_cache == NULL) 2076 goto Enomem; 2077 2078 drbd_al_ext_cache = kmem_cache_create( 2079 "drbd_al", sizeof(struct lc_element), 0, 0, NULL); 2080 if (drbd_al_ext_cache == NULL) 2081 goto Enomem; 2082 2083 /* mempools */ 2084 drbd_md_io_bio_set = bioset_create(DRBD_MIN_POOL_PAGES, 0); 2085 if (drbd_md_io_bio_set == NULL) 2086 goto Enomem; 2087 2088 drbd_md_io_page_pool = mempool_create_page_pool(DRBD_MIN_POOL_PAGES, 0); 2089 if (drbd_md_io_page_pool == NULL) 2090 goto Enomem; 2091 2092 drbd_request_mempool = mempool_create(number, 2093 mempool_alloc_slab, mempool_free_slab, drbd_request_cache); 2094 if (drbd_request_mempool == NULL) 2095 goto Enomem; 2096 2097 drbd_ee_mempool = mempool_create(number, 2098 mempool_alloc_slab, mempool_free_slab, drbd_ee_cache); 2099 if (drbd_ee_mempool == NULL) 2100 goto Enomem; 2101 2102 /* drbd's page pool */ 2103 spin_lock_init(&drbd_pp_lock); 2104 2105 for (i = 0; i < number; i++) { 2106 page = alloc_page(GFP_HIGHUSER); 2107 if (!page) 2108 goto Enomem; 2109 set_page_private(page, (unsigned long)drbd_pp_pool); 2110 drbd_pp_pool = page; 2111 } 2112 drbd_pp_vacant = number; 2113 2114 return 0; 2115 2116 Enomem: 2117 drbd_destroy_mempools(); /* in case we allocated some */ 2118 return -ENOMEM; 2119 } 2120 2121 static int drbd_notify_sys(struct notifier_block *this, unsigned long code, 2122 void *unused) 2123 { 2124 /* just so we have it. you never know what interesting things we 2125 * might want to do here some day... 2126 */ 2127 2128 return NOTIFY_DONE; 2129 } 2130 2131 static struct notifier_block drbd_notifier = { 2132 .notifier_call = drbd_notify_sys, 2133 }; 2134 2135 static void drbd_release_all_peer_reqs(struct drbd_device *device) 2136 { 2137 int rr; 2138 2139 rr = drbd_free_peer_reqs(device, &device->active_ee); 2140 if (rr) 2141 drbd_err(device, "%d EEs in active list found!\n", rr); 2142 2143 rr = drbd_free_peer_reqs(device, &device->sync_ee); 2144 if (rr) 2145 drbd_err(device, "%d EEs in sync list found!\n", rr); 2146 2147 rr = drbd_free_peer_reqs(device, &device->read_ee); 2148 if (rr) 2149 drbd_err(device, "%d EEs in read list found!\n", rr); 2150 2151 rr = drbd_free_peer_reqs(device, &device->done_ee); 2152 if (rr) 2153 drbd_err(device, "%d EEs in done list found!\n", rr); 2154 2155 rr = drbd_free_peer_reqs(device, &device->net_ee); 2156 if (rr) 2157 drbd_err(device, "%d EEs in net list found!\n", rr); 2158 } 2159 2160 /* caution. no locking. */ 2161 void drbd_destroy_device(struct kref *kref) 2162 { 2163 struct drbd_device *device = container_of(kref, struct drbd_device, kref); 2164 struct drbd_resource *resource = device->resource; 2165 struct drbd_connection *connection; 2166 2167 del_timer_sync(&device->request_timer); 2168 2169 /* paranoia asserts */ 2170 D_ASSERT(device, device->open_cnt == 0); 2171 /* end paranoia asserts */ 2172 2173 /* cleanup stuff that may have been allocated during 2174 * device (re-)configuration or state changes */ 2175 2176 if (device->this_bdev) 2177 bdput(device->this_bdev); 2178 2179 drbd_free_bc(device->ldev); 2180 device->ldev = NULL; 2181 2182 drbd_release_all_peer_reqs(device); 2183 2184 lc_destroy(device->act_log); 2185 lc_destroy(device->resync); 2186 2187 kfree(device->p_uuid); 2188 /* device->p_uuid = NULL; */ 2189 2190 if (device->bitmap) /* should no longer be there. */ 2191 drbd_bm_cleanup(device); 2192 __free_page(device->md_io_page); 2193 put_disk(device->vdisk); 2194 blk_cleanup_queue(device->rq_queue); 2195 kfree(device->rs_plan_s); 2196 kfree(first_peer_device(device)); 2197 kfree(device); 2198 2199 for_each_connection(connection, resource) 2200 kref_put(&connection->kref, drbd_destroy_connection); 2201 kref_put(&resource->kref, drbd_destroy_resource); 2202 } 2203 2204 /* One global retry thread, if we need to push back some bio and have it 2205 * reinserted through our make request function. 2206 */ 2207 static struct retry_worker { 2208 struct workqueue_struct *wq; 2209 struct work_struct worker; 2210 2211 spinlock_t lock; 2212 struct list_head writes; 2213 } retry; 2214 2215 static void do_retry(struct work_struct *ws) 2216 { 2217 struct retry_worker *retry = container_of(ws, struct retry_worker, worker); 2218 LIST_HEAD(writes); 2219 struct drbd_request *req, *tmp; 2220 2221 spin_lock_irq(&retry->lock); 2222 list_splice_init(&retry->writes, &writes); 2223 spin_unlock_irq(&retry->lock); 2224 2225 list_for_each_entry_safe(req, tmp, &writes, tl_requests) { 2226 struct drbd_device *device = req->device; 2227 struct bio *bio = req->master_bio; 2228 unsigned long start_time = req->start_time; 2229 bool expected; 2230 2231 expected = 2232 expect(atomic_read(&req->completion_ref) == 0) && 2233 expect(req->rq_state & RQ_POSTPONED) && 2234 expect((req->rq_state & RQ_LOCAL_PENDING) == 0 || 2235 (req->rq_state & RQ_LOCAL_ABORTED) != 0); 2236 2237 if (!expected) 2238 drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n", 2239 req, atomic_read(&req->completion_ref), 2240 req->rq_state); 2241 2242 /* We still need to put one kref associated with the 2243 * "completion_ref" going zero in the code path that queued it 2244 * here. The request object may still be referenced by a 2245 * frozen local req->private_bio, in case we force-detached. 2246 */ 2247 kref_put(&req->kref, drbd_req_destroy); 2248 2249 /* A single suspended or otherwise blocking device may stall 2250 * all others as well. Fortunately, this code path is to 2251 * recover from a situation that "should not happen": 2252 * concurrent writes in multi-primary setup. 2253 * In a "normal" lifecycle, this workqueue is supposed to be 2254 * destroyed without ever doing anything. 2255 * If it turns out to be an issue anyways, we can do per 2256 * resource (replication group) or per device (minor) retry 2257 * workqueues instead. 2258 */ 2259 2260 /* We are not just doing generic_make_request(), 2261 * as we want to keep the start_time information. */ 2262 inc_ap_bio(device); 2263 __drbd_make_request(device, bio, start_time); 2264 } 2265 } 2266 2267 void drbd_restart_request(struct drbd_request *req) 2268 { 2269 unsigned long flags; 2270 spin_lock_irqsave(&retry.lock, flags); 2271 list_move_tail(&req->tl_requests, &retry.writes); 2272 spin_unlock_irqrestore(&retry.lock, flags); 2273 2274 /* Drop the extra reference that would otherwise 2275 * have been dropped by complete_master_bio. 2276 * do_retry() needs to grab a new one. */ 2277 dec_ap_bio(req->device); 2278 2279 queue_work(retry.wq, &retry.worker); 2280 } 2281 2282 void drbd_destroy_resource(struct kref *kref) 2283 { 2284 struct drbd_resource *resource = 2285 container_of(kref, struct drbd_resource, kref); 2286 2287 idr_destroy(&resource->devices); 2288 free_cpumask_var(resource->cpu_mask); 2289 kfree(resource->name); 2290 kfree(resource); 2291 } 2292 2293 void drbd_free_resource(struct drbd_resource *resource) 2294 { 2295 struct drbd_connection *connection, *tmp; 2296 2297 for_each_connection_safe(connection, tmp, resource) { 2298 list_del(&connection->connections); 2299 kref_put(&connection->kref, drbd_destroy_connection); 2300 } 2301 kref_put(&resource->kref, drbd_destroy_resource); 2302 } 2303 2304 static void drbd_cleanup(void) 2305 { 2306 unsigned int i; 2307 struct drbd_device *device; 2308 struct drbd_resource *resource, *tmp; 2309 2310 unregister_reboot_notifier(&drbd_notifier); 2311 2312 /* first remove proc, 2313 * drbdsetup uses it's presence to detect 2314 * whether DRBD is loaded. 2315 * If we would get stuck in proc removal, 2316 * but have netlink already deregistered, 2317 * some drbdsetup commands may wait forever 2318 * for an answer. 2319 */ 2320 if (drbd_proc) 2321 remove_proc_entry("drbd", NULL); 2322 2323 if (retry.wq) 2324 destroy_workqueue(retry.wq); 2325 2326 drbd_genl_unregister(); 2327 2328 idr_for_each_entry(&drbd_devices, device, i) 2329 drbd_delete_device(device); 2330 2331 /* not _rcu since, no other updater anymore. Genl already unregistered */ 2332 for_each_resource_safe(resource, tmp, &drbd_resources) { 2333 list_del(&resource->resources); 2334 drbd_free_resource(resource); 2335 } 2336 2337 drbd_destroy_mempools(); 2338 unregister_blkdev(DRBD_MAJOR, "drbd"); 2339 2340 idr_destroy(&drbd_devices); 2341 2342 printk(KERN_INFO "drbd: module cleanup done.\n"); 2343 } 2344 2345 /** 2346 * drbd_congested() - Callback for the flusher thread 2347 * @congested_data: User data 2348 * @bdi_bits: Bits the BDI flusher thread is currently interested in 2349 * 2350 * Returns 1<<BDI_async_congested and/or 1<<BDI_sync_congested if we are congested. 2351 */ 2352 static int drbd_congested(void *congested_data, int bdi_bits) 2353 { 2354 struct drbd_device *device = congested_data; 2355 struct request_queue *q; 2356 char reason = '-'; 2357 int r = 0; 2358 2359 if (!may_inc_ap_bio(device)) { 2360 /* DRBD has frozen IO */ 2361 r = bdi_bits; 2362 reason = 'd'; 2363 goto out; 2364 } 2365 2366 if (test_bit(CALLBACK_PENDING, &first_peer_device(device)->connection->flags)) { 2367 r |= (1 << BDI_async_congested); 2368 /* Without good local data, we would need to read from remote, 2369 * and that would need the worker thread as well, which is 2370 * currently blocked waiting for that usermode helper to 2371 * finish. 2372 */ 2373 if (!get_ldev_if_state(device, D_UP_TO_DATE)) 2374 r |= (1 << BDI_sync_congested); 2375 else 2376 put_ldev(device); 2377 r &= bdi_bits; 2378 reason = 'c'; 2379 goto out; 2380 } 2381 2382 if (get_ldev(device)) { 2383 q = bdev_get_queue(device->ldev->backing_bdev); 2384 r = bdi_congested(&q->backing_dev_info, bdi_bits); 2385 put_ldev(device); 2386 if (r) 2387 reason = 'b'; 2388 } 2389 2390 if (bdi_bits & (1 << BDI_async_congested) && 2391 test_bit(NET_CONGESTED, &first_peer_device(device)->connection->flags)) { 2392 r |= (1 << BDI_async_congested); 2393 reason = reason == 'b' ? 'a' : 'n'; 2394 } 2395 2396 out: 2397 device->congestion_reason = reason; 2398 return r; 2399 } 2400 2401 static void drbd_init_workqueue(struct drbd_work_queue* wq) 2402 { 2403 spin_lock_init(&wq->q_lock); 2404 INIT_LIST_HEAD(&wq->q); 2405 init_waitqueue_head(&wq->q_wait); 2406 } 2407 2408 struct completion_work { 2409 struct drbd_work w; 2410 struct completion done; 2411 }; 2412 2413 static int w_complete(struct drbd_work *w, int cancel) 2414 { 2415 struct completion_work *completion_work = 2416 container_of(w, struct completion_work, w); 2417 2418 complete(&completion_work->done); 2419 return 0; 2420 } 2421 2422 void drbd_flush_workqueue(struct drbd_work_queue *work_queue) 2423 { 2424 struct completion_work completion_work; 2425 2426 completion_work.w.cb = w_complete; 2427 init_completion(&completion_work.done); 2428 drbd_queue_work(work_queue, &completion_work.w); 2429 wait_for_completion(&completion_work.done); 2430 } 2431 2432 struct drbd_resource *drbd_find_resource(const char *name) 2433 { 2434 struct drbd_resource *resource; 2435 2436 if (!name || !name[0]) 2437 return NULL; 2438 2439 rcu_read_lock(); 2440 for_each_resource_rcu(resource, &drbd_resources) { 2441 if (!strcmp(resource->name, name)) { 2442 kref_get(&resource->kref); 2443 goto found; 2444 } 2445 } 2446 resource = NULL; 2447 found: 2448 rcu_read_unlock(); 2449 return resource; 2450 } 2451 2452 struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len, 2453 void *peer_addr, int peer_addr_len) 2454 { 2455 struct drbd_resource *resource; 2456 struct drbd_connection *connection; 2457 2458 rcu_read_lock(); 2459 for_each_resource_rcu(resource, &drbd_resources) { 2460 for_each_connection_rcu(connection, resource) { 2461 if (connection->my_addr_len == my_addr_len && 2462 connection->peer_addr_len == peer_addr_len && 2463 !memcmp(&connection->my_addr, my_addr, my_addr_len) && 2464 !memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) { 2465 kref_get(&connection->kref); 2466 goto found; 2467 } 2468 } 2469 } 2470 connection = NULL; 2471 found: 2472 rcu_read_unlock(); 2473 return connection; 2474 } 2475 2476 static int drbd_alloc_socket(struct drbd_socket *socket) 2477 { 2478 socket->rbuf = (void *) __get_free_page(GFP_KERNEL); 2479 if (!socket->rbuf) 2480 return -ENOMEM; 2481 socket->sbuf = (void *) __get_free_page(GFP_KERNEL); 2482 if (!socket->sbuf) 2483 return -ENOMEM; 2484 return 0; 2485 } 2486 2487 static void drbd_free_socket(struct drbd_socket *socket) 2488 { 2489 free_page((unsigned long) socket->sbuf); 2490 free_page((unsigned long) socket->rbuf); 2491 } 2492 2493 void conn_free_crypto(struct drbd_connection *connection) 2494 { 2495 drbd_free_sock(connection); 2496 2497 crypto_free_hash(connection->csums_tfm); 2498 crypto_free_hash(connection->verify_tfm); 2499 crypto_free_hash(connection->cram_hmac_tfm); 2500 crypto_free_hash(connection->integrity_tfm); 2501 crypto_free_hash(connection->peer_integrity_tfm); 2502 kfree(connection->int_dig_in); 2503 kfree(connection->int_dig_vv); 2504 2505 connection->csums_tfm = NULL; 2506 connection->verify_tfm = NULL; 2507 connection->cram_hmac_tfm = NULL; 2508 connection->integrity_tfm = NULL; 2509 connection->peer_integrity_tfm = NULL; 2510 connection->int_dig_in = NULL; 2511 connection->int_dig_vv = NULL; 2512 } 2513 2514 int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts) 2515 { 2516 struct drbd_connection *connection; 2517 cpumask_var_t new_cpu_mask; 2518 int err; 2519 2520 if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL)) 2521 return -ENOMEM; 2522 /* 2523 retcode = ERR_NOMEM; 2524 drbd_msg_put_info("unable to allocate cpumask"); 2525 */ 2526 2527 /* silently ignore cpu mask on UP kernel */ 2528 if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) { 2529 err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE, 2530 cpumask_bits(new_cpu_mask), nr_cpu_ids); 2531 if (err) { 2532 drbd_warn(resource, "bitmap_parse() failed with %d\n", err); 2533 /* retcode = ERR_CPU_MASK_PARSE; */ 2534 goto fail; 2535 } 2536 } 2537 resource->res_opts = *res_opts; 2538 if (cpumask_empty(new_cpu_mask)) 2539 drbd_calc_cpu_mask(&new_cpu_mask); 2540 if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) { 2541 cpumask_copy(resource->cpu_mask, new_cpu_mask); 2542 for_each_connection_rcu(connection, resource) { 2543 connection->receiver.reset_cpu_mask = 1; 2544 connection->asender.reset_cpu_mask = 1; 2545 connection->worker.reset_cpu_mask = 1; 2546 } 2547 } 2548 err = 0; 2549 2550 fail: 2551 free_cpumask_var(new_cpu_mask); 2552 return err; 2553 2554 } 2555 2556 struct drbd_resource *drbd_create_resource(const char *name) 2557 { 2558 struct drbd_resource *resource; 2559 2560 resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL); 2561 if (!resource) 2562 goto fail; 2563 resource->name = kstrdup(name, GFP_KERNEL); 2564 if (!resource->name) 2565 goto fail_free_resource; 2566 if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL)) 2567 goto fail_free_name; 2568 kref_init(&resource->kref); 2569 idr_init(&resource->devices); 2570 INIT_LIST_HEAD(&resource->connections); 2571 list_add_tail_rcu(&resource->resources, &drbd_resources); 2572 mutex_init(&resource->conf_update); 2573 spin_lock_init(&resource->req_lock); 2574 return resource; 2575 2576 fail_free_name: 2577 kfree(resource->name); 2578 fail_free_resource: 2579 kfree(resource); 2580 fail: 2581 return NULL; 2582 } 2583 2584 /* caller must be under genl_lock() */ 2585 struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts) 2586 { 2587 struct drbd_resource *resource; 2588 struct drbd_connection *connection; 2589 2590 connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL); 2591 if (!connection) 2592 return NULL; 2593 2594 if (drbd_alloc_socket(&connection->data)) 2595 goto fail; 2596 if (drbd_alloc_socket(&connection->meta)) 2597 goto fail; 2598 2599 connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL); 2600 if (!connection->current_epoch) 2601 goto fail; 2602 2603 INIT_LIST_HEAD(&connection->transfer_log); 2604 2605 INIT_LIST_HEAD(&connection->current_epoch->list); 2606 connection->epochs = 1; 2607 spin_lock_init(&connection->epoch_lock); 2608 connection->write_ordering = WO_bdev_flush; 2609 2610 connection->send.seen_any_write_yet = false; 2611 connection->send.current_epoch_nr = 0; 2612 connection->send.current_epoch_writes = 0; 2613 2614 resource = drbd_create_resource(name); 2615 if (!resource) 2616 goto fail; 2617 2618 connection->cstate = C_STANDALONE; 2619 mutex_init(&connection->cstate_mutex); 2620 init_waitqueue_head(&connection->ping_wait); 2621 idr_init(&connection->peer_devices); 2622 2623 drbd_init_workqueue(&connection->sender_work); 2624 mutex_init(&connection->data.mutex); 2625 mutex_init(&connection->meta.mutex); 2626 2627 drbd_thread_init(resource, &connection->receiver, drbd_receiver, "receiver"); 2628 connection->receiver.connection = connection; 2629 drbd_thread_init(resource, &connection->worker, drbd_worker, "worker"); 2630 connection->worker.connection = connection; 2631 drbd_thread_init(resource, &connection->asender, drbd_asender, "asender"); 2632 connection->asender.connection = connection; 2633 2634 kref_init(&connection->kref); 2635 2636 connection->resource = resource; 2637 2638 if (set_resource_options(resource, res_opts)) 2639 goto fail_resource; 2640 2641 kref_get(&resource->kref); 2642 list_add_tail_rcu(&connection->connections, &resource->connections); 2643 return connection; 2644 2645 fail_resource: 2646 list_del(&resource->resources); 2647 drbd_free_resource(resource); 2648 fail: 2649 kfree(connection->current_epoch); 2650 drbd_free_socket(&connection->meta); 2651 drbd_free_socket(&connection->data); 2652 kfree(connection); 2653 return NULL; 2654 } 2655 2656 void drbd_destroy_connection(struct kref *kref) 2657 { 2658 struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref); 2659 struct drbd_resource *resource = connection->resource; 2660 2661 if (atomic_read(&connection->current_epoch->epoch_size) != 0) 2662 drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size)); 2663 kfree(connection->current_epoch); 2664 2665 idr_destroy(&connection->peer_devices); 2666 2667 drbd_free_socket(&connection->meta); 2668 drbd_free_socket(&connection->data); 2669 kfree(connection->int_dig_in); 2670 kfree(connection->int_dig_vv); 2671 kfree(connection); 2672 kref_put(&resource->kref, drbd_destroy_resource); 2673 } 2674 2675 static int init_submitter(struct drbd_device *device) 2676 { 2677 /* opencoded create_singlethread_workqueue(), 2678 * to be able to say "drbd%d", ..., minor */ 2679 device->submit.wq = alloc_workqueue("drbd%u_submit", 2680 WQ_UNBOUND | WQ_MEM_RECLAIM, 1, device->minor); 2681 if (!device->submit.wq) 2682 return -ENOMEM; 2683 2684 INIT_WORK(&device->submit.worker, do_submit); 2685 spin_lock_init(&device->submit.lock); 2686 INIT_LIST_HEAD(&device->submit.writes); 2687 return 0; 2688 } 2689 2690 enum drbd_ret_code drbd_create_device(struct drbd_resource *resource, unsigned int minor, int vnr) 2691 { 2692 struct drbd_connection *connection; 2693 struct drbd_device *device; 2694 struct drbd_peer_device *peer_device, *tmp_peer_device; 2695 struct gendisk *disk; 2696 struct request_queue *q; 2697 int id; 2698 enum drbd_ret_code err = ERR_NOMEM; 2699 2700 device = minor_to_device(minor); 2701 if (device) 2702 return ERR_MINOR_EXISTS; 2703 2704 /* GFP_KERNEL, we are outside of all write-out paths */ 2705 device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL); 2706 if (!device) 2707 return ERR_NOMEM; 2708 kref_init(&device->kref); 2709 2710 kref_get(&resource->kref); 2711 device->resource = resource; 2712 device->minor = minor; 2713 device->vnr = vnr; 2714 2715 drbd_init_set_defaults(device); 2716 2717 q = blk_alloc_queue(GFP_KERNEL); 2718 if (!q) 2719 goto out_no_q; 2720 device->rq_queue = q; 2721 q->queuedata = device; 2722 2723 disk = alloc_disk(1); 2724 if (!disk) 2725 goto out_no_disk; 2726 device->vdisk = disk; 2727 2728 set_disk_ro(disk, true); 2729 2730 disk->queue = q; 2731 disk->major = DRBD_MAJOR; 2732 disk->first_minor = minor; 2733 disk->fops = &drbd_ops; 2734 sprintf(disk->disk_name, "drbd%d", minor); 2735 disk->private_data = device; 2736 2737 device->this_bdev = bdget(MKDEV(DRBD_MAJOR, minor)); 2738 /* we have no partitions. we contain only ourselves. */ 2739 device->this_bdev->bd_contains = device->this_bdev; 2740 2741 q->backing_dev_info.congested_fn = drbd_congested; 2742 q->backing_dev_info.congested_data = device; 2743 2744 blk_queue_make_request(q, drbd_make_request); 2745 blk_queue_flush(q, REQ_FLUSH | REQ_FUA); 2746 /* Setting the max_hw_sectors to an odd value of 8kibyte here 2747 This triggers a max_bio_size message upon first attach or connect */ 2748 blk_queue_max_hw_sectors(q, DRBD_MAX_BIO_SIZE_SAFE >> 8); 2749 blk_queue_bounce_limit(q, BLK_BOUNCE_ANY); 2750 blk_queue_merge_bvec(q, drbd_merge_bvec); 2751 q->queue_lock = &resource->req_lock; 2752 2753 device->md_io_page = alloc_page(GFP_KERNEL); 2754 if (!device->md_io_page) 2755 goto out_no_io_page; 2756 2757 if (drbd_bm_init(device)) 2758 goto out_no_bitmap; 2759 device->read_requests = RB_ROOT; 2760 device->write_requests = RB_ROOT; 2761 2762 id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL); 2763 if (id < 0) { 2764 if (id == -ENOSPC) { 2765 err = ERR_MINOR_EXISTS; 2766 drbd_msg_put_info("requested minor exists already"); 2767 } 2768 goto out_no_minor_idr; 2769 } 2770 kref_get(&device->kref); 2771 2772 id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL); 2773 if (id < 0) { 2774 if (id == -ENOSPC) { 2775 err = ERR_MINOR_EXISTS; 2776 drbd_msg_put_info("requested minor exists already"); 2777 } 2778 goto out_idr_remove_minor; 2779 } 2780 kref_get(&device->kref); 2781 2782 INIT_LIST_HEAD(&device->peer_devices); 2783 for_each_connection(connection, resource) { 2784 peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL); 2785 if (!peer_device) 2786 goto out_idr_remove_from_resource; 2787 peer_device->connection = connection; 2788 peer_device->device = device; 2789 2790 list_add(&peer_device->peer_devices, &device->peer_devices); 2791 kref_get(&device->kref); 2792 2793 id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL); 2794 if (id < 0) { 2795 if (id == -ENOSPC) { 2796 err = ERR_INVALID_REQUEST; 2797 drbd_msg_put_info("requested volume exists already"); 2798 } 2799 goto out_idr_remove_from_resource; 2800 } 2801 kref_get(&connection->kref); 2802 } 2803 2804 if (init_submitter(device)) { 2805 err = ERR_NOMEM; 2806 drbd_msg_put_info("unable to create submit workqueue"); 2807 goto out_idr_remove_vol; 2808 } 2809 2810 add_disk(disk); 2811 2812 /* inherit the connection state */ 2813 device->state.conn = first_connection(resource)->cstate; 2814 if (device->state.conn == C_WF_REPORT_PARAMS) { 2815 for_each_peer_device(peer_device, device) 2816 drbd_connected(peer_device); 2817 } 2818 2819 return NO_ERROR; 2820 2821 out_idr_remove_vol: 2822 idr_remove(&connection->peer_devices, vnr); 2823 out_idr_remove_from_resource: 2824 for_each_connection(connection, resource) { 2825 peer_device = idr_find(&connection->peer_devices, vnr); 2826 if (peer_device) { 2827 idr_remove(&connection->peer_devices, vnr); 2828 kref_put(&connection->kref, drbd_destroy_connection); 2829 } 2830 } 2831 for_each_peer_device_safe(peer_device, tmp_peer_device, device) { 2832 list_del(&peer_device->peer_devices); 2833 kfree(peer_device); 2834 } 2835 idr_remove(&resource->devices, vnr); 2836 out_idr_remove_minor: 2837 idr_remove(&drbd_devices, minor); 2838 synchronize_rcu(); 2839 out_no_minor_idr: 2840 drbd_bm_cleanup(device); 2841 out_no_bitmap: 2842 __free_page(device->md_io_page); 2843 out_no_io_page: 2844 put_disk(disk); 2845 out_no_disk: 2846 blk_cleanup_queue(q); 2847 out_no_q: 2848 kref_put(&resource->kref, drbd_destroy_resource); 2849 kfree(device); 2850 return err; 2851 } 2852 2853 void drbd_delete_device(struct drbd_device *device) 2854 { 2855 struct drbd_resource *resource = device->resource; 2856 struct drbd_connection *connection; 2857 int refs = 3; 2858 2859 for_each_connection(connection, resource) { 2860 idr_remove(&connection->peer_devices, device->vnr); 2861 refs++; 2862 } 2863 idr_remove(&resource->devices, device->vnr); 2864 idr_remove(&drbd_devices, device_to_minor(device)); 2865 del_gendisk(device->vdisk); 2866 synchronize_rcu(); 2867 kref_sub(&device->kref, refs, drbd_destroy_device); 2868 } 2869 2870 int __init drbd_init(void) 2871 { 2872 int err; 2873 2874 if (minor_count < DRBD_MINOR_COUNT_MIN || minor_count > DRBD_MINOR_COUNT_MAX) { 2875 printk(KERN_ERR 2876 "drbd: invalid minor_count (%d)\n", minor_count); 2877 #ifdef MODULE 2878 return -EINVAL; 2879 #else 2880 minor_count = DRBD_MINOR_COUNT_DEF; 2881 #endif 2882 } 2883 2884 err = register_blkdev(DRBD_MAJOR, "drbd"); 2885 if (err) { 2886 printk(KERN_ERR 2887 "drbd: unable to register block device major %d\n", 2888 DRBD_MAJOR); 2889 return err; 2890 } 2891 2892 register_reboot_notifier(&drbd_notifier); 2893 2894 /* 2895 * allocate all necessary structs 2896 */ 2897 init_waitqueue_head(&drbd_pp_wait); 2898 2899 drbd_proc = NULL; /* play safe for drbd_cleanup */ 2900 idr_init(&drbd_devices); 2901 2902 rwlock_init(&global_state_lock); 2903 INIT_LIST_HEAD(&drbd_resources); 2904 2905 err = drbd_genl_register(); 2906 if (err) { 2907 printk(KERN_ERR "drbd: unable to register generic netlink family\n"); 2908 goto fail; 2909 } 2910 2911 err = drbd_create_mempools(); 2912 if (err) 2913 goto fail; 2914 2915 err = -ENOMEM; 2916 drbd_proc = proc_create_data("drbd", S_IFREG | S_IRUGO , NULL, &drbd_proc_fops, NULL); 2917 if (!drbd_proc) { 2918 printk(KERN_ERR "drbd: unable to register proc file\n"); 2919 goto fail; 2920 } 2921 2922 retry.wq = create_singlethread_workqueue("drbd-reissue"); 2923 if (!retry.wq) { 2924 printk(KERN_ERR "drbd: unable to create retry workqueue\n"); 2925 goto fail; 2926 } 2927 INIT_WORK(&retry.worker, do_retry); 2928 spin_lock_init(&retry.lock); 2929 INIT_LIST_HEAD(&retry.writes); 2930 2931 printk(KERN_INFO "drbd: initialized. " 2932 "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n", 2933 API_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX); 2934 printk(KERN_INFO "drbd: %s\n", drbd_buildtag()); 2935 printk(KERN_INFO "drbd: registered as block device major %d\n", 2936 DRBD_MAJOR); 2937 2938 return 0; /* Success! */ 2939 2940 fail: 2941 drbd_cleanup(); 2942 if (err == -ENOMEM) 2943 printk(KERN_ERR "drbd: ran out of memory\n"); 2944 else 2945 printk(KERN_ERR "drbd: initialization failure\n"); 2946 return err; 2947 } 2948 2949 void drbd_free_bc(struct drbd_backing_dev *ldev) 2950 { 2951 if (ldev == NULL) 2952 return; 2953 2954 blkdev_put(ldev->backing_bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2955 blkdev_put(ldev->md_bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2956 2957 kfree(ldev->disk_conf); 2958 kfree(ldev); 2959 } 2960 2961 void drbd_free_sock(struct drbd_connection *connection) 2962 { 2963 if (connection->data.socket) { 2964 mutex_lock(&connection->data.mutex); 2965 kernel_sock_shutdown(connection->data.socket, SHUT_RDWR); 2966 sock_release(connection->data.socket); 2967 connection->data.socket = NULL; 2968 mutex_unlock(&connection->data.mutex); 2969 } 2970 if (connection->meta.socket) { 2971 mutex_lock(&connection->meta.mutex); 2972 kernel_sock_shutdown(connection->meta.socket, SHUT_RDWR); 2973 sock_release(connection->meta.socket); 2974 connection->meta.socket = NULL; 2975 mutex_unlock(&connection->meta.mutex); 2976 } 2977 } 2978 2979 /* meta data management */ 2980 2981 void conn_md_sync(struct drbd_connection *connection) 2982 { 2983 struct drbd_peer_device *peer_device; 2984 int vnr; 2985 2986 rcu_read_lock(); 2987 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 2988 struct drbd_device *device = peer_device->device; 2989 2990 kref_get(&device->kref); 2991 rcu_read_unlock(); 2992 drbd_md_sync(device); 2993 kref_put(&device->kref, drbd_destroy_device); 2994 rcu_read_lock(); 2995 } 2996 rcu_read_unlock(); 2997 } 2998 2999 /* aligned 4kByte */ 3000 struct meta_data_on_disk { 3001 u64 la_size_sect; /* last agreed size. */ 3002 u64 uuid[UI_SIZE]; /* UUIDs. */ 3003 u64 device_uuid; 3004 u64 reserved_u64_1; 3005 u32 flags; /* MDF */ 3006 u32 magic; 3007 u32 md_size_sect; 3008 u32 al_offset; /* offset to this block */ 3009 u32 al_nr_extents; /* important for restoring the AL (userspace) */ 3010 /* `-- act_log->nr_elements <-- ldev->dc.al_extents */ 3011 u32 bm_offset; /* offset to the bitmap, from here */ 3012 u32 bm_bytes_per_bit; /* BM_BLOCK_SIZE */ 3013 u32 la_peer_max_bio_size; /* last peer max_bio_size */ 3014 3015 /* see al_tr_number_to_on_disk_sector() */ 3016 u32 al_stripes; 3017 u32 al_stripe_size_4k; 3018 3019 u8 reserved_u8[4096 - (7*8 + 10*4)]; 3020 } __packed; 3021 3022 3023 3024 void drbd_md_write(struct drbd_device *device, void *b) 3025 { 3026 struct meta_data_on_disk *buffer = b; 3027 sector_t sector; 3028 int i; 3029 3030 memset(buffer, 0, sizeof(*buffer)); 3031 3032 buffer->la_size_sect = cpu_to_be64(drbd_get_capacity(device->this_bdev)); 3033 for (i = UI_CURRENT; i < UI_SIZE; i++) 3034 buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]); 3035 buffer->flags = cpu_to_be32(device->ldev->md.flags); 3036 buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN); 3037 3038 buffer->md_size_sect = cpu_to_be32(device->ldev->md.md_size_sect); 3039 buffer->al_offset = cpu_to_be32(device->ldev->md.al_offset); 3040 buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements); 3041 buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE); 3042 buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid); 3043 3044 buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset); 3045 buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size); 3046 3047 buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes); 3048 buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k); 3049 3050 D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset); 3051 sector = device->ldev->md.md_offset; 3052 3053 if (drbd_md_sync_page_io(device, device->ldev, sector, WRITE)) { 3054 /* this was a try anyways ... */ 3055 drbd_err(device, "meta data update failed!\n"); 3056 drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR); 3057 } 3058 } 3059 3060 /** 3061 * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set 3062 * @device: DRBD device. 3063 */ 3064 void drbd_md_sync(struct drbd_device *device) 3065 { 3066 struct meta_data_on_disk *buffer; 3067 3068 /* Don't accidentally change the DRBD meta data layout. */ 3069 BUILD_BUG_ON(UI_SIZE != 4); 3070 BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096); 3071 3072 del_timer(&device->md_sync_timer); 3073 /* timer may be rearmed by drbd_md_mark_dirty() now. */ 3074 if (!test_and_clear_bit(MD_DIRTY, &device->flags)) 3075 return; 3076 3077 /* We use here D_FAILED and not D_ATTACHING because we try to write 3078 * metadata even if we detach due to a disk failure! */ 3079 if (!get_ldev_if_state(device, D_FAILED)) 3080 return; 3081 3082 buffer = drbd_md_get_buffer(device); 3083 if (!buffer) 3084 goto out; 3085 3086 drbd_md_write(device, buffer); 3087 3088 /* Update device->ldev->md.la_size_sect, 3089 * since we updated it on metadata. */ 3090 device->ldev->md.la_size_sect = drbd_get_capacity(device->this_bdev); 3091 3092 drbd_md_put_buffer(device); 3093 out: 3094 put_ldev(device); 3095 } 3096 3097 static int check_activity_log_stripe_size(struct drbd_device *device, 3098 struct meta_data_on_disk *on_disk, 3099 struct drbd_md *in_core) 3100 { 3101 u32 al_stripes = be32_to_cpu(on_disk->al_stripes); 3102 u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k); 3103 u64 al_size_4k; 3104 3105 /* both not set: default to old fixed size activity log */ 3106 if (al_stripes == 0 && al_stripe_size_4k == 0) { 3107 al_stripes = 1; 3108 al_stripe_size_4k = MD_32kB_SECT/8; 3109 } 3110 3111 /* some paranoia plausibility checks */ 3112 3113 /* we need both values to be set */ 3114 if (al_stripes == 0 || al_stripe_size_4k == 0) 3115 goto err; 3116 3117 al_size_4k = (u64)al_stripes * al_stripe_size_4k; 3118 3119 /* Upper limit of activity log area, to avoid potential overflow 3120 * problems in al_tr_number_to_on_disk_sector(). As right now, more 3121 * than 72 * 4k blocks total only increases the amount of history, 3122 * limiting this arbitrarily to 16 GB is not a real limitation ;-) */ 3123 if (al_size_4k > (16 * 1024 * 1024/4)) 3124 goto err; 3125 3126 /* Lower limit: we need at least 8 transaction slots (32kB) 3127 * to not break existing setups */ 3128 if (al_size_4k < MD_32kB_SECT/8) 3129 goto err; 3130 3131 in_core->al_stripe_size_4k = al_stripe_size_4k; 3132 in_core->al_stripes = al_stripes; 3133 in_core->al_size_4k = al_size_4k; 3134 3135 return 0; 3136 err: 3137 drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n", 3138 al_stripes, al_stripe_size_4k); 3139 return -EINVAL; 3140 } 3141 3142 static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev) 3143 { 3144 sector_t capacity = drbd_get_capacity(bdev->md_bdev); 3145 struct drbd_md *in_core = &bdev->md; 3146 s32 on_disk_al_sect; 3147 s32 on_disk_bm_sect; 3148 3149 /* The on-disk size of the activity log, calculated from offsets, and 3150 * the size of the activity log calculated from the stripe settings, 3151 * should match. 3152 * Though we could relax this a bit: it is ok, if the striped activity log 3153 * fits in the available on-disk activity log size. 3154 * Right now, that would break how resize is implemented. 3155 * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware 3156 * of possible unused padding space in the on disk layout. */ 3157 if (in_core->al_offset < 0) { 3158 if (in_core->bm_offset > in_core->al_offset) 3159 goto err; 3160 on_disk_al_sect = -in_core->al_offset; 3161 on_disk_bm_sect = in_core->al_offset - in_core->bm_offset; 3162 } else { 3163 if (in_core->al_offset != MD_4kB_SECT) 3164 goto err; 3165 if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT) 3166 goto err; 3167 3168 on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT; 3169 on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset; 3170 } 3171 3172 /* old fixed size meta data is exactly that: fixed. */ 3173 if (in_core->meta_dev_idx >= 0) { 3174 if (in_core->md_size_sect != MD_128MB_SECT 3175 || in_core->al_offset != MD_4kB_SECT 3176 || in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT 3177 || in_core->al_stripes != 1 3178 || in_core->al_stripe_size_4k != MD_32kB_SECT/8) 3179 goto err; 3180 } 3181 3182 if (capacity < in_core->md_size_sect) 3183 goto err; 3184 if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev)) 3185 goto err; 3186 3187 /* should be aligned, and at least 32k */ 3188 if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT)) 3189 goto err; 3190 3191 /* should fit (for now: exactly) into the available on-disk space; 3192 * overflow prevention is in check_activity_log_stripe_size() above. */ 3193 if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT) 3194 goto err; 3195 3196 /* again, should be aligned */ 3197 if (in_core->bm_offset & 7) 3198 goto err; 3199 3200 /* FIXME check for device grow with flex external meta data? */ 3201 3202 /* can the available bitmap space cover the last agreed device size? */ 3203 if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512) 3204 goto err; 3205 3206 return 0; 3207 3208 err: 3209 drbd_err(device, "meta data offsets don't make sense: idx=%d " 3210 "al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, " 3211 "md_size_sect=%u, la_size=%llu, md_capacity=%llu\n", 3212 in_core->meta_dev_idx, 3213 in_core->al_stripes, in_core->al_stripe_size_4k, 3214 in_core->al_offset, in_core->bm_offset, in_core->md_size_sect, 3215 (unsigned long long)in_core->la_size_sect, 3216 (unsigned long long)capacity); 3217 3218 return -EINVAL; 3219 } 3220 3221 3222 /** 3223 * drbd_md_read() - Reads in the meta data super block 3224 * @device: DRBD device. 3225 * @bdev: Device from which the meta data should be read in. 3226 * 3227 * Return NO_ERROR on success, and an enum drbd_ret_code in case 3228 * something goes wrong. 3229 * 3230 * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS, 3231 * even before @bdev is assigned to @device->ldev. 3232 */ 3233 int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev) 3234 { 3235 struct meta_data_on_disk *buffer; 3236 u32 magic, flags; 3237 int i, rv = NO_ERROR; 3238 3239 if (device->state.disk != D_DISKLESS) 3240 return ERR_DISK_CONFIGURED; 3241 3242 buffer = drbd_md_get_buffer(device); 3243 if (!buffer) 3244 return ERR_NOMEM; 3245 3246 /* First, figure out where our meta data superblock is located, 3247 * and read it. */ 3248 bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx; 3249 bdev->md.md_offset = drbd_md_ss(bdev); 3250 3251 if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset, READ)) { 3252 /* NOTE: can't do normal error processing here as this is 3253 called BEFORE disk is attached */ 3254 drbd_err(device, "Error while reading metadata.\n"); 3255 rv = ERR_IO_MD_DISK; 3256 goto err; 3257 } 3258 3259 magic = be32_to_cpu(buffer->magic); 3260 flags = be32_to_cpu(buffer->flags); 3261 if (magic == DRBD_MD_MAGIC_84_UNCLEAN || 3262 (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) { 3263 /* btw: that's Activity Log clean, not "all" clean. */ 3264 drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n"); 3265 rv = ERR_MD_UNCLEAN; 3266 goto err; 3267 } 3268 3269 rv = ERR_MD_INVALID; 3270 if (magic != DRBD_MD_MAGIC_08) { 3271 if (magic == DRBD_MD_MAGIC_07) 3272 drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n"); 3273 else 3274 drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n"); 3275 goto err; 3276 } 3277 3278 if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) { 3279 drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n", 3280 be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE); 3281 goto err; 3282 } 3283 3284 3285 /* convert to in_core endian */ 3286 bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect); 3287 for (i = UI_CURRENT; i < UI_SIZE; i++) 3288 bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]); 3289 bdev->md.flags = be32_to_cpu(buffer->flags); 3290 bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid); 3291 3292 bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect); 3293 bdev->md.al_offset = be32_to_cpu(buffer->al_offset); 3294 bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset); 3295 3296 if (check_activity_log_stripe_size(device, buffer, &bdev->md)) 3297 goto err; 3298 if (check_offsets_and_sizes(device, bdev)) 3299 goto err; 3300 3301 if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) { 3302 drbd_err(device, "unexpected bm_offset: %d (expected %d)\n", 3303 be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset); 3304 goto err; 3305 } 3306 if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) { 3307 drbd_err(device, "unexpected md_size: %u (expected %u)\n", 3308 be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect); 3309 goto err; 3310 } 3311 3312 rv = NO_ERROR; 3313 3314 spin_lock_irq(&device->resource->req_lock); 3315 if (device->state.conn < C_CONNECTED) { 3316 unsigned int peer; 3317 peer = be32_to_cpu(buffer->la_peer_max_bio_size); 3318 peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE); 3319 device->peer_max_bio_size = peer; 3320 } 3321 spin_unlock_irq(&device->resource->req_lock); 3322 3323 err: 3324 drbd_md_put_buffer(device); 3325 3326 return rv; 3327 } 3328 3329 /** 3330 * drbd_md_mark_dirty() - Mark meta data super block as dirty 3331 * @device: DRBD device. 3332 * 3333 * Call this function if you change anything that should be written to 3334 * the meta-data super block. This function sets MD_DIRTY, and starts a 3335 * timer that ensures that within five seconds you have to call drbd_md_sync(). 3336 */ 3337 #ifdef DEBUG 3338 void drbd_md_mark_dirty_(struct drbd_device *device, unsigned int line, const char *func) 3339 { 3340 if (!test_and_set_bit(MD_DIRTY, &device->flags)) { 3341 mod_timer(&device->md_sync_timer, jiffies + HZ); 3342 device->last_md_mark_dirty.line = line; 3343 device->last_md_mark_dirty.func = func; 3344 } 3345 } 3346 #else 3347 void drbd_md_mark_dirty(struct drbd_device *device) 3348 { 3349 if (!test_and_set_bit(MD_DIRTY, &device->flags)) 3350 mod_timer(&device->md_sync_timer, jiffies + 5*HZ); 3351 } 3352 #endif 3353 3354 void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local) 3355 { 3356 int i; 3357 3358 for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++) 3359 device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i]; 3360 } 3361 3362 void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local) 3363 { 3364 if (idx == UI_CURRENT) { 3365 if (device->state.role == R_PRIMARY) 3366 val |= 1; 3367 else 3368 val &= ~((u64)1); 3369 3370 drbd_set_ed_uuid(device, val); 3371 } 3372 3373 device->ldev->md.uuid[idx] = val; 3374 drbd_md_mark_dirty(device); 3375 } 3376 3377 void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local) 3378 { 3379 unsigned long flags; 3380 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags); 3381 __drbd_uuid_set(device, idx, val); 3382 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags); 3383 } 3384 3385 void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local) 3386 { 3387 unsigned long flags; 3388 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags); 3389 if (device->ldev->md.uuid[idx]) { 3390 drbd_uuid_move_history(device); 3391 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx]; 3392 } 3393 __drbd_uuid_set(device, idx, val); 3394 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags); 3395 } 3396 3397 /** 3398 * drbd_uuid_new_current() - Creates a new current UUID 3399 * @device: DRBD device. 3400 * 3401 * Creates a new current UUID, and rotates the old current UUID into 3402 * the bitmap slot. Causes an incremental resync upon next connect. 3403 */ 3404 void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local) 3405 { 3406 u64 val; 3407 unsigned long long bm_uuid; 3408 3409 get_random_bytes(&val, sizeof(u64)); 3410 3411 spin_lock_irq(&device->ldev->md.uuid_lock); 3412 bm_uuid = device->ldev->md.uuid[UI_BITMAP]; 3413 3414 if (bm_uuid) 3415 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid); 3416 3417 device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT]; 3418 __drbd_uuid_set(device, UI_CURRENT, val); 3419 spin_unlock_irq(&device->ldev->md.uuid_lock); 3420 3421 drbd_print_uuids(device, "new current UUID"); 3422 /* get it to stable storage _now_ */ 3423 drbd_md_sync(device); 3424 } 3425 3426 void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local) 3427 { 3428 unsigned long flags; 3429 if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0) 3430 return; 3431 3432 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags); 3433 if (val == 0) { 3434 drbd_uuid_move_history(device); 3435 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP]; 3436 device->ldev->md.uuid[UI_BITMAP] = 0; 3437 } else { 3438 unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP]; 3439 if (bm_uuid) 3440 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid); 3441 3442 device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1); 3443 } 3444 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags); 3445 3446 drbd_md_mark_dirty(device); 3447 } 3448 3449 /** 3450 * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io() 3451 * @device: DRBD device. 3452 * 3453 * Sets all bits in the bitmap and writes the whole bitmap to stable storage. 3454 */ 3455 int drbd_bmio_set_n_write(struct drbd_device *device) 3456 { 3457 int rv = -EIO; 3458 3459 if (get_ldev_if_state(device, D_ATTACHING)) { 3460 drbd_md_set_flag(device, MDF_FULL_SYNC); 3461 drbd_md_sync(device); 3462 drbd_bm_set_all(device); 3463 3464 rv = drbd_bm_write(device); 3465 3466 if (!rv) { 3467 drbd_md_clear_flag(device, MDF_FULL_SYNC); 3468 drbd_md_sync(device); 3469 } 3470 3471 put_ldev(device); 3472 } 3473 3474 return rv; 3475 } 3476 3477 /** 3478 * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io() 3479 * @device: DRBD device. 3480 * 3481 * Clears all bits in the bitmap and writes the whole bitmap to stable storage. 3482 */ 3483 int drbd_bmio_clear_n_write(struct drbd_device *device) 3484 { 3485 int rv = -EIO; 3486 3487 drbd_resume_al(device); 3488 if (get_ldev_if_state(device, D_ATTACHING)) { 3489 drbd_bm_clear_all(device); 3490 rv = drbd_bm_write(device); 3491 put_ldev(device); 3492 } 3493 3494 return rv; 3495 } 3496 3497 static int w_bitmap_io(struct drbd_work *w, int unused) 3498 { 3499 struct drbd_device *device = 3500 container_of(w, struct drbd_device, bm_io_work.w); 3501 struct bm_io_work *work = &device->bm_io_work; 3502 int rv = -EIO; 3503 3504 D_ASSERT(device, atomic_read(&device->ap_bio_cnt) == 0); 3505 3506 if (get_ldev(device)) { 3507 drbd_bm_lock(device, work->why, work->flags); 3508 rv = work->io_fn(device); 3509 drbd_bm_unlock(device); 3510 put_ldev(device); 3511 } 3512 3513 clear_bit_unlock(BITMAP_IO, &device->flags); 3514 wake_up(&device->misc_wait); 3515 3516 if (work->done) 3517 work->done(device, rv); 3518 3519 clear_bit(BITMAP_IO_QUEUED, &device->flags); 3520 work->why = NULL; 3521 work->flags = 0; 3522 3523 return 0; 3524 } 3525 3526 void drbd_ldev_destroy(struct drbd_device *device) 3527 { 3528 lc_destroy(device->resync); 3529 device->resync = NULL; 3530 lc_destroy(device->act_log); 3531 device->act_log = NULL; 3532 __no_warn(local, 3533 drbd_free_bc(device->ldev); 3534 device->ldev = NULL;); 3535 3536 clear_bit(GO_DISKLESS, &device->flags); 3537 } 3538 3539 static int w_go_diskless(struct drbd_work *w, int unused) 3540 { 3541 struct drbd_device *device = 3542 container_of(w, struct drbd_device, go_diskless); 3543 3544 D_ASSERT(device, device->state.disk == D_FAILED); 3545 /* we cannot assert local_cnt == 0 here, as get_ldev_if_state will 3546 * inc/dec it frequently. Once we are D_DISKLESS, no one will touch 3547 * the protected members anymore, though, so once put_ldev reaches zero 3548 * again, it will be safe to free them. */ 3549 3550 /* Try to write changed bitmap pages, read errors may have just 3551 * set some bits outside the area covered by the activity log. 3552 * 3553 * If we have an IO error during the bitmap writeout, 3554 * we will want a full sync next time, just in case. 3555 * (Do we want a specific meta data flag for this?) 3556 * 3557 * If that does not make it to stable storage either, 3558 * we cannot do anything about that anymore. 3559 * 3560 * We still need to check if both bitmap and ldev are present, we may 3561 * end up here after a failed attach, before ldev was even assigned. 3562 */ 3563 if (device->bitmap && device->ldev) { 3564 /* An interrupted resync or similar is allowed to recounts bits 3565 * while we detach. 3566 * Any modifications would not be expected anymore, though. 3567 */ 3568 if (drbd_bitmap_io_from_worker(device, drbd_bm_write, 3569 "detach", BM_LOCKED_TEST_ALLOWED)) { 3570 if (test_bit(WAS_READ_ERROR, &device->flags)) { 3571 drbd_md_set_flag(device, MDF_FULL_SYNC); 3572 drbd_md_sync(device); 3573 } 3574 } 3575 } 3576 3577 drbd_force_state(device, NS(disk, D_DISKLESS)); 3578 return 0; 3579 } 3580 3581 /** 3582 * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap 3583 * @device: DRBD device. 3584 * @io_fn: IO callback to be called when bitmap IO is possible 3585 * @done: callback to be called after the bitmap IO was performed 3586 * @why: Descriptive text of the reason for doing the IO 3587 * 3588 * While IO on the bitmap happens we freeze application IO thus we ensure 3589 * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be 3590 * called from worker context. It MUST NOT be used while a previous such 3591 * work is still pending! 3592 */ 3593 void drbd_queue_bitmap_io(struct drbd_device *device, 3594 int (*io_fn)(struct drbd_device *), 3595 void (*done)(struct drbd_device *, int), 3596 char *why, enum bm_flag flags) 3597 { 3598 D_ASSERT(device, current == first_peer_device(device)->connection->worker.task); 3599 3600 D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags)); 3601 D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags)); 3602 D_ASSERT(device, list_empty(&device->bm_io_work.w.list)); 3603 if (device->bm_io_work.why) 3604 drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n", 3605 why, device->bm_io_work.why); 3606 3607 device->bm_io_work.io_fn = io_fn; 3608 device->bm_io_work.done = done; 3609 device->bm_io_work.why = why; 3610 device->bm_io_work.flags = flags; 3611 3612 spin_lock_irq(&device->resource->req_lock); 3613 set_bit(BITMAP_IO, &device->flags); 3614 if (atomic_read(&device->ap_bio_cnt) == 0) { 3615 if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags)) 3616 drbd_queue_work(&first_peer_device(device)->connection->sender_work, 3617 &device->bm_io_work.w); 3618 } 3619 spin_unlock_irq(&device->resource->req_lock); 3620 } 3621 3622 /** 3623 * drbd_bitmap_io() - Does an IO operation on the whole bitmap 3624 * @device: DRBD device. 3625 * @io_fn: IO callback to be called when bitmap IO is possible 3626 * @why: Descriptive text of the reason for doing the IO 3627 * 3628 * freezes application IO while that the actual IO operations runs. This 3629 * functions MAY NOT be called from worker context. 3630 */ 3631 int drbd_bitmap_io(struct drbd_device *device, int (*io_fn)(struct drbd_device *), 3632 char *why, enum bm_flag flags) 3633 { 3634 int rv; 3635 3636 D_ASSERT(device, current != first_peer_device(device)->connection->worker.task); 3637 3638 if ((flags & BM_LOCKED_SET_ALLOWED) == 0) 3639 drbd_suspend_io(device); 3640 3641 drbd_bm_lock(device, why, flags); 3642 rv = io_fn(device); 3643 drbd_bm_unlock(device); 3644 3645 if ((flags & BM_LOCKED_SET_ALLOWED) == 0) 3646 drbd_resume_io(device); 3647 3648 return rv; 3649 } 3650 3651 void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local) 3652 { 3653 if ((device->ldev->md.flags & flag) != flag) { 3654 drbd_md_mark_dirty(device); 3655 device->ldev->md.flags |= flag; 3656 } 3657 } 3658 3659 void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local) 3660 { 3661 if ((device->ldev->md.flags & flag) != 0) { 3662 drbd_md_mark_dirty(device); 3663 device->ldev->md.flags &= ~flag; 3664 } 3665 } 3666 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag) 3667 { 3668 return (bdev->md.flags & flag) != 0; 3669 } 3670 3671 static void md_sync_timer_fn(unsigned long data) 3672 { 3673 struct drbd_device *device = (struct drbd_device *) data; 3674 3675 /* must not double-queue! */ 3676 if (list_empty(&device->md_sync_work.list)) 3677 drbd_queue_work_front(&first_peer_device(device)->connection->sender_work, 3678 &device->md_sync_work); 3679 } 3680 3681 static int w_md_sync(struct drbd_work *w, int unused) 3682 { 3683 struct drbd_device *device = 3684 container_of(w, struct drbd_device, md_sync_work); 3685 3686 drbd_warn(device, "md_sync_timer expired! Worker calls drbd_md_sync().\n"); 3687 #ifdef DEBUG 3688 drbd_warn(device, "last md_mark_dirty: %s:%u\n", 3689 device->last_md_mark_dirty.func, device->last_md_mark_dirty.line); 3690 #endif 3691 drbd_md_sync(device); 3692 return 0; 3693 } 3694 3695 const char *cmdname(enum drbd_packet cmd) 3696 { 3697 /* THINK may need to become several global tables 3698 * when we want to support more than 3699 * one PRO_VERSION */ 3700 static const char *cmdnames[] = { 3701 [P_DATA] = "Data", 3702 [P_DATA_REPLY] = "DataReply", 3703 [P_RS_DATA_REPLY] = "RSDataReply", 3704 [P_BARRIER] = "Barrier", 3705 [P_BITMAP] = "ReportBitMap", 3706 [P_BECOME_SYNC_TARGET] = "BecomeSyncTarget", 3707 [P_BECOME_SYNC_SOURCE] = "BecomeSyncSource", 3708 [P_UNPLUG_REMOTE] = "UnplugRemote", 3709 [P_DATA_REQUEST] = "DataRequest", 3710 [P_RS_DATA_REQUEST] = "RSDataRequest", 3711 [P_SYNC_PARAM] = "SyncParam", 3712 [P_SYNC_PARAM89] = "SyncParam89", 3713 [P_PROTOCOL] = "ReportProtocol", 3714 [P_UUIDS] = "ReportUUIDs", 3715 [P_SIZES] = "ReportSizes", 3716 [P_STATE] = "ReportState", 3717 [P_SYNC_UUID] = "ReportSyncUUID", 3718 [P_AUTH_CHALLENGE] = "AuthChallenge", 3719 [P_AUTH_RESPONSE] = "AuthResponse", 3720 [P_PING] = "Ping", 3721 [P_PING_ACK] = "PingAck", 3722 [P_RECV_ACK] = "RecvAck", 3723 [P_WRITE_ACK] = "WriteAck", 3724 [P_RS_WRITE_ACK] = "RSWriteAck", 3725 [P_SUPERSEDED] = "Superseded", 3726 [P_NEG_ACK] = "NegAck", 3727 [P_NEG_DREPLY] = "NegDReply", 3728 [P_NEG_RS_DREPLY] = "NegRSDReply", 3729 [P_BARRIER_ACK] = "BarrierAck", 3730 [P_STATE_CHG_REQ] = "StateChgRequest", 3731 [P_STATE_CHG_REPLY] = "StateChgReply", 3732 [P_OV_REQUEST] = "OVRequest", 3733 [P_OV_REPLY] = "OVReply", 3734 [P_OV_RESULT] = "OVResult", 3735 [P_CSUM_RS_REQUEST] = "CsumRSRequest", 3736 [P_RS_IS_IN_SYNC] = "CsumRSIsInSync", 3737 [P_COMPRESSED_BITMAP] = "CBitmap", 3738 [P_DELAY_PROBE] = "DelayProbe", 3739 [P_OUT_OF_SYNC] = "OutOfSync", 3740 [P_RETRY_WRITE] = "RetryWrite", 3741 [P_RS_CANCEL] = "RSCancel", 3742 [P_CONN_ST_CHG_REQ] = "conn_st_chg_req", 3743 [P_CONN_ST_CHG_REPLY] = "conn_st_chg_reply", 3744 [P_RETRY_WRITE] = "retry_write", 3745 [P_PROTOCOL_UPDATE] = "protocol_update", 3746 3747 /* enum drbd_packet, but not commands - obsoleted flags: 3748 * P_MAY_IGNORE 3749 * P_MAX_OPT_CMD 3750 */ 3751 }; 3752 3753 /* too big for the array: 0xfffX */ 3754 if (cmd == P_INITIAL_META) 3755 return "InitialMeta"; 3756 if (cmd == P_INITIAL_DATA) 3757 return "InitialData"; 3758 if (cmd == P_CONNECTION_FEATURES) 3759 return "ConnectionFeatures"; 3760 if (cmd >= ARRAY_SIZE(cmdnames)) 3761 return "Unknown"; 3762 return cmdnames[cmd]; 3763 } 3764 3765 /** 3766 * drbd_wait_misc - wait for a request to make progress 3767 * @device: device associated with the request 3768 * @i: the struct drbd_interval embedded in struct drbd_request or 3769 * struct drbd_peer_request 3770 */ 3771 int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i) 3772 { 3773 struct net_conf *nc; 3774 DEFINE_WAIT(wait); 3775 long timeout; 3776 3777 rcu_read_lock(); 3778 nc = rcu_dereference(first_peer_device(device)->connection->net_conf); 3779 if (!nc) { 3780 rcu_read_unlock(); 3781 return -ETIMEDOUT; 3782 } 3783 timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT; 3784 rcu_read_unlock(); 3785 3786 /* Indicate to wake up device->misc_wait on progress. */ 3787 i->waiting = true; 3788 prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE); 3789 spin_unlock_irq(&device->resource->req_lock); 3790 timeout = schedule_timeout(timeout); 3791 finish_wait(&device->misc_wait, &wait); 3792 spin_lock_irq(&device->resource->req_lock); 3793 if (!timeout || device->state.conn < C_CONNECTED) 3794 return -ETIMEDOUT; 3795 if (signal_pending(current)) 3796 return -ERESTARTSYS; 3797 return 0; 3798 } 3799 3800 #ifdef CONFIG_DRBD_FAULT_INJECTION 3801 /* Fault insertion support including random number generator shamelessly 3802 * stolen from kernel/rcutorture.c */ 3803 struct fault_random_state { 3804 unsigned long state; 3805 unsigned long count; 3806 }; 3807 3808 #define FAULT_RANDOM_MULT 39916801 /* prime */ 3809 #define FAULT_RANDOM_ADD 479001701 /* prime */ 3810 #define FAULT_RANDOM_REFRESH 10000 3811 3812 /* 3813 * Crude but fast random-number generator. Uses a linear congruential 3814 * generator, with occasional help from get_random_bytes(). 3815 */ 3816 static unsigned long 3817 _drbd_fault_random(struct fault_random_state *rsp) 3818 { 3819 long refresh; 3820 3821 if (!rsp->count--) { 3822 get_random_bytes(&refresh, sizeof(refresh)); 3823 rsp->state += refresh; 3824 rsp->count = FAULT_RANDOM_REFRESH; 3825 } 3826 rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD; 3827 return swahw32(rsp->state); 3828 } 3829 3830 static char * 3831 _drbd_fault_str(unsigned int type) { 3832 static char *_faults[] = { 3833 [DRBD_FAULT_MD_WR] = "Meta-data write", 3834 [DRBD_FAULT_MD_RD] = "Meta-data read", 3835 [DRBD_FAULT_RS_WR] = "Resync write", 3836 [DRBD_FAULT_RS_RD] = "Resync read", 3837 [DRBD_FAULT_DT_WR] = "Data write", 3838 [DRBD_FAULT_DT_RD] = "Data read", 3839 [DRBD_FAULT_DT_RA] = "Data read ahead", 3840 [DRBD_FAULT_BM_ALLOC] = "BM allocation", 3841 [DRBD_FAULT_AL_EE] = "EE allocation", 3842 [DRBD_FAULT_RECEIVE] = "receive data corruption", 3843 }; 3844 3845 return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**"; 3846 } 3847 3848 unsigned int 3849 _drbd_insert_fault(struct drbd_device *device, unsigned int type) 3850 { 3851 static struct fault_random_state rrs = {0, 0}; 3852 3853 unsigned int ret = ( 3854 (fault_devs == 0 || 3855 ((1 << device_to_minor(device)) & fault_devs) != 0) && 3856 (((_drbd_fault_random(&rrs) % 100) + 1) <= fault_rate)); 3857 3858 if (ret) { 3859 fault_count++; 3860 3861 if (__ratelimit(&drbd_ratelimit_state)) 3862 drbd_warn(device, "***Simulating %s failure\n", 3863 _drbd_fault_str(type)); 3864 } 3865 3866 return ret; 3867 } 3868 #endif 3869 3870 const char *drbd_buildtag(void) 3871 { 3872 /* DRBD built from external sources has here a reference to the 3873 git hash of the source code. */ 3874 3875 static char buildtag[38] = "\0uilt-in"; 3876 3877 if (buildtag[0] == 0) { 3878 #ifdef MODULE 3879 sprintf(buildtag, "srcversion: %-24s", THIS_MODULE->srcversion); 3880 #else 3881 buildtag[0] = 'b'; 3882 #endif 3883 } 3884 3885 return buildtag; 3886 } 3887 3888 module_init(drbd_init) 3889 module_exit(drbd_cleanup) 3890 3891 EXPORT_SYMBOL(drbd_conn_str); 3892 EXPORT_SYMBOL(drbd_role_str); 3893 EXPORT_SYMBOL(drbd_disk_str); 3894 EXPORT_SYMBOL(drbd_set_st_err_str); 3895