xref: /openbmc/linux/drivers/block/drbd/drbd_main.c (revision afb46f79)
1 /*
2    drbd.c
3 
4    This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
5 
6    Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
7    Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
8    Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
9 
10    Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev
11    from Logicworks, Inc. for making SDP replication support possible.
12 
13    drbd is free software; you can redistribute it and/or modify
14    it under the terms of the GNU General Public License as published by
15    the Free Software Foundation; either version 2, or (at your option)
16    any later version.
17 
18    drbd is distributed in the hope that it will be useful,
19    but WITHOUT ANY WARRANTY; without even the implied warranty of
20    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21    GNU General Public License for more details.
22 
23    You should have received a copy of the GNU General Public License
24    along with drbd; see the file COPYING.  If not, write to
25    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
26 
27  */
28 
29 #include <linux/module.h>
30 #include <linux/drbd.h>
31 #include <asm/uaccess.h>
32 #include <asm/types.h>
33 #include <net/sock.h>
34 #include <linux/ctype.h>
35 #include <linux/mutex.h>
36 #include <linux/fs.h>
37 #include <linux/file.h>
38 #include <linux/proc_fs.h>
39 #include <linux/init.h>
40 #include <linux/mm.h>
41 #include <linux/memcontrol.h>
42 #include <linux/mm_inline.h>
43 #include <linux/slab.h>
44 #include <linux/random.h>
45 #include <linux/reboot.h>
46 #include <linux/notifier.h>
47 #include <linux/kthread.h>
48 #include <linux/workqueue.h>
49 #define __KERNEL_SYSCALLS__
50 #include <linux/unistd.h>
51 #include <linux/vmalloc.h>
52 
53 #include <linux/drbd_limits.h>
54 #include "drbd_int.h"
55 #include "drbd_protocol.h"
56 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */
57 
58 #include "drbd_vli.h"
59 
60 static DEFINE_MUTEX(drbd_main_mutex);
61 static int drbd_open(struct block_device *bdev, fmode_t mode);
62 static void drbd_release(struct gendisk *gd, fmode_t mode);
63 static int w_md_sync(struct drbd_work *w, int unused);
64 static void md_sync_timer_fn(unsigned long data);
65 static int w_bitmap_io(struct drbd_work *w, int unused);
66 static int w_go_diskless(struct drbd_work *w, int unused);
67 
68 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, "
69 	      "Lars Ellenberg <lars@linbit.com>");
70 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION);
71 MODULE_VERSION(REL_VERSION);
72 MODULE_LICENSE("GPL");
73 MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices ("
74 		 __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")");
75 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR);
76 
77 #include <linux/moduleparam.h>
78 /* allow_open_on_secondary */
79 MODULE_PARM_DESC(allow_oos, "DONT USE!");
80 /* thanks to these macros, if compiled into the kernel (not-module),
81  * this becomes the boot parameter drbd.minor_count */
82 module_param(minor_count, uint, 0444);
83 module_param(disable_sendpage, bool, 0644);
84 module_param(allow_oos, bool, 0);
85 module_param(proc_details, int, 0644);
86 
87 #ifdef CONFIG_DRBD_FAULT_INJECTION
88 int enable_faults;
89 int fault_rate;
90 static int fault_count;
91 int fault_devs;
92 /* bitmap of enabled faults */
93 module_param(enable_faults, int, 0664);
94 /* fault rate % value - applies to all enabled faults */
95 module_param(fault_rate, int, 0664);
96 /* count of faults inserted */
97 module_param(fault_count, int, 0664);
98 /* bitmap of devices to insert faults on */
99 module_param(fault_devs, int, 0644);
100 #endif
101 
102 /* module parameter, defined */
103 unsigned int minor_count = DRBD_MINOR_COUNT_DEF;
104 bool disable_sendpage;
105 bool allow_oos;
106 int proc_details;       /* Detail level in proc drbd*/
107 
108 /* Module parameter for setting the user mode helper program
109  * to run. Default is /sbin/drbdadm */
110 char usermode_helper[80] = "/sbin/drbdadm";
111 
112 module_param_string(usermode_helper, usermode_helper, sizeof(usermode_helper), 0644);
113 
114 /* in 2.6.x, our device mapping and config info contains our virtual gendisks
115  * as member "struct gendisk *vdisk;"
116  */
117 struct idr drbd_devices;
118 struct list_head drbd_resources;
119 
120 struct kmem_cache *drbd_request_cache;
121 struct kmem_cache *drbd_ee_cache;	/* peer requests */
122 struct kmem_cache *drbd_bm_ext_cache;	/* bitmap extents */
123 struct kmem_cache *drbd_al_ext_cache;	/* activity log extents */
124 mempool_t *drbd_request_mempool;
125 mempool_t *drbd_ee_mempool;
126 mempool_t *drbd_md_io_page_pool;
127 struct bio_set *drbd_md_io_bio_set;
128 
129 /* I do not use a standard mempool, because:
130    1) I want to hand out the pre-allocated objects first.
131    2) I want to be able to interrupt sleeping allocation with a signal.
132    Note: This is a single linked list, the next pointer is the private
133 	 member of struct page.
134  */
135 struct page *drbd_pp_pool;
136 spinlock_t   drbd_pp_lock;
137 int          drbd_pp_vacant;
138 wait_queue_head_t drbd_pp_wait;
139 
140 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5);
141 
142 static const struct block_device_operations drbd_ops = {
143 	.owner =   THIS_MODULE,
144 	.open =    drbd_open,
145 	.release = drbd_release,
146 };
147 
148 struct bio *bio_alloc_drbd(gfp_t gfp_mask)
149 {
150 	struct bio *bio;
151 
152 	if (!drbd_md_io_bio_set)
153 		return bio_alloc(gfp_mask, 1);
154 
155 	bio = bio_alloc_bioset(gfp_mask, 1, drbd_md_io_bio_set);
156 	if (!bio)
157 		return NULL;
158 	return bio;
159 }
160 
161 #ifdef __CHECKER__
162 /* When checking with sparse, and this is an inline function, sparse will
163    give tons of false positives. When this is a real functions sparse works.
164  */
165 int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins)
166 {
167 	int io_allowed;
168 
169 	atomic_inc(&device->local_cnt);
170 	io_allowed = (device->state.disk >= mins);
171 	if (!io_allowed) {
172 		if (atomic_dec_and_test(&device->local_cnt))
173 			wake_up(&device->misc_wait);
174 	}
175 	return io_allowed;
176 }
177 
178 #endif
179 
180 /**
181  * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch
182  * @connection:	DRBD connection.
183  * @barrier_nr:	Expected identifier of the DRBD write barrier packet.
184  * @set_size:	Expected number of requests before that barrier.
185  *
186  * In case the passed barrier_nr or set_size does not match the oldest
187  * epoch of not yet barrier-acked requests, this function will cause a
188  * termination of the connection.
189  */
190 void tl_release(struct drbd_connection *connection, unsigned int barrier_nr,
191 		unsigned int set_size)
192 {
193 	struct drbd_request *r;
194 	struct drbd_request *req = NULL;
195 	int expect_epoch = 0;
196 	int expect_size = 0;
197 
198 	spin_lock_irq(&connection->resource->req_lock);
199 
200 	/* find oldest not yet barrier-acked write request,
201 	 * count writes in its epoch. */
202 	list_for_each_entry(r, &connection->transfer_log, tl_requests) {
203 		const unsigned s = r->rq_state;
204 		if (!req) {
205 			if (!(s & RQ_WRITE))
206 				continue;
207 			if (!(s & RQ_NET_MASK))
208 				continue;
209 			if (s & RQ_NET_DONE)
210 				continue;
211 			req = r;
212 			expect_epoch = req->epoch;
213 			expect_size ++;
214 		} else {
215 			if (r->epoch != expect_epoch)
216 				break;
217 			if (!(s & RQ_WRITE))
218 				continue;
219 			/* if (s & RQ_DONE): not expected */
220 			/* if (!(s & RQ_NET_MASK)): not expected */
221 			expect_size++;
222 		}
223 	}
224 
225 	/* first some paranoia code */
226 	if (req == NULL) {
227 		drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n",
228 			 barrier_nr);
229 		goto bail;
230 	}
231 	if (expect_epoch != barrier_nr) {
232 		drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n",
233 			 barrier_nr, expect_epoch);
234 		goto bail;
235 	}
236 
237 	if (expect_size != set_size) {
238 		drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n",
239 			 barrier_nr, set_size, expect_size);
240 		goto bail;
241 	}
242 
243 	/* Clean up list of requests processed during current epoch. */
244 	/* this extra list walk restart is paranoia,
245 	 * to catch requests being barrier-acked "unexpectedly".
246 	 * It usually should find the same req again, or some READ preceding it. */
247 	list_for_each_entry(req, &connection->transfer_log, tl_requests)
248 		if (req->epoch == expect_epoch)
249 			break;
250 	list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) {
251 		if (req->epoch != expect_epoch)
252 			break;
253 		_req_mod(req, BARRIER_ACKED);
254 	}
255 	spin_unlock_irq(&connection->resource->req_lock);
256 
257 	return;
258 
259 bail:
260 	spin_unlock_irq(&connection->resource->req_lock);
261 	conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
262 }
263 
264 
265 /**
266  * _tl_restart() - Walks the transfer log, and applies an action to all requests
267  * @device:	DRBD device.
268  * @what:       The action/event to perform with all request objects
269  *
270  * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO,
271  * RESTART_FROZEN_DISK_IO.
272  */
273 /* must hold resource->req_lock */
274 void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
275 {
276 	struct drbd_request *req, *r;
277 
278 	list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests)
279 		_req_mod(req, what);
280 }
281 
282 void tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
283 {
284 	spin_lock_irq(&connection->resource->req_lock);
285 	_tl_restart(connection, what);
286 	spin_unlock_irq(&connection->resource->req_lock);
287 }
288 
289 /**
290  * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL
291  * @device:	DRBD device.
292  *
293  * This is called after the connection to the peer was lost. The storage covered
294  * by the requests on the transfer gets marked as our of sync. Called from the
295  * receiver thread and the worker thread.
296  */
297 void tl_clear(struct drbd_connection *connection)
298 {
299 	tl_restart(connection, CONNECTION_LOST_WHILE_PENDING);
300 }
301 
302 /**
303  * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL
304  * @device:	DRBD device.
305  */
306 void tl_abort_disk_io(struct drbd_device *device)
307 {
308 	struct drbd_connection *connection = first_peer_device(device)->connection;
309 	struct drbd_request *req, *r;
310 
311 	spin_lock_irq(&connection->resource->req_lock);
312 	list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) {
313 		if (!(req->rq_state & RQ_LOCAL_PENDING))
314 			continue;
315 		if (req->device != device)
316 			continue;
317 		_req_mod(req, ABORT_DISK_IO);
318 	}
319 	spin_unlock_irq(&connection->resource->req_lock);
320 }
321 
322 static int drbd_thread_setup(void *arg)
323 {
324 	struct drbd_thread *thi = (struct drbd_thread *) arg;
325 	struct drbd_resource *resource = thi->resource;
326 	unsigned long flags;
327 	int retval;
328 
329 	snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s",
330 		 thi->name[0],
331 		 resource->name);
332 
333 restart:
334 	retval = thi->function(thi);
335 
336 	spin_lock_irqsave(&thi->t_lock, flags);
337 
338 	/* if the receiver has been "EXITING", the last thing it did
339 	 * was set the conn state to "StandAlone",
340 	 * if now a re-connect request comes in, conn state goes C_UNCONNECTED,
341 	 * and receiver thread will be "started".
342 	 * drbd_thread_start needs to set "RESTARTING" in that case.
343 	 * t_state check and assignment needs to be within the same spinlock,
344 	 * so either thread_start sees EXITING, and can remap to RESTARTING,
345 	 * or thread_start see NONE, and can proceed as normal.
346 	 */
347 
348 	if (thi->t_state == RESTARTING) {
349 		drbd_info(resource, "Restarting %s thread\n", thi->name);
350 		thi->t_state = RUNNING;
351 		spin_unlock_irqrestore(&thi->t_lock, flags);
352 		goto restart;
353 	}
354 
355 	thi->task = NULL;
356 	thi->t_state = NONE;
357 	smp_mb();
358 	complete_all(&thi->stop);
359 	spin_unlock_irqrestore(&thi->t_lock, flags);
360 
361 	drbd_info(resource, "Terminating %s\n", current->comm);
362 
363 	/* Release mod reference taken when thread was started */
364 
365 	if (thi->connection)
366 		kref_put(&thi->connection->kref, drbd_destroy_connection);
367 	kref_put(&resource->kref, drbd_destroy_resource);
368 	module_put(THIS_MODULE);
369 	return retval;
370 }
371 
372 static void drbd_thread_init(struct drbd_resource *resource, struct drbd_thread *thi,
373 			     int (*func) (struct drbd_thread *), const char *name)
374 {
375 	spin_lock_init(&thi->t_lock);
376 	thi->task    = NULL;
377 	thi->t_state = NONE;
378 	thi->function = func;
379 	thi->resource = resource;
380 	thi->connection = NULL;
381 	thi->name = name;
382 }
383 
384 int drbd_thread_start(struct drbd_thread *thi)
385 {
386 	struct drbd_resource *resource = thi->resource;
387 	struct task_struct *nt;
388 	unsigned long flags;
389 
390 	/* is used from state engine doing drbd_thread_stop_nowait,
391 	 * while holding the req lock irqsave */
392 	spin_lock_irqsave(&thi->t_lock, flags);
393 
394 	switch (thi->t_state) {
395 	case NONE:
396 		drbd_info(resource, "Starting %s thread (from %s [%d])\n",
397 			 thi->name, current->comm, current->pid);
398 
399 		/* Get ref on module for thread - this is released when thread exits */
400 		if (!try_module_get(THIS_MODULE)) {
401 			drbd_err(resource, "Failed to get module reference in drbd_thread_start\n");
402 			spin_unlock_irqrestore(&thi->t_lock, flags);
403 			return false;
404 		}
405 
406 		kref_get(&resource->kref);
407 		if (thi->connection)
408 			kref_get(&thi->connection->kref);
409 
410 		init_completion(&thi->stop);
411 		thi->reset_cpu_mask = 1;
412 		thi->t_state = RUNNING;
413 		spin_unlock_irqrestore(&thi->t_lock, flags);
414 		flush_signals(current); /* otherw. may get -ERESTARTNOINTR */
415 
416 		nt = kthread_create(drbd_thread_setup, (void *) thi,
417 				    "drbd_%c_%s", thi->name[0], thi->resource->name);
418 
419 		if (IS_ERR(nt)) {
420 			drbd_err(resource, "Couldn't start thread\n");
421 
422 			if (thi->connection)
423 				kref_put(&thi->connection->kref, drbd_destroy_connection);
424 			kref_put(&resource->kref, drbd_destroy_resource);
425 			module_put(THIS_MODULE);
426 			return false;
427 		}
428 		spin_lock_irqsave(&thi->t_lock, flags);
429 		thi->task = nt;
430 		thi->t_state = RUNNING;
431 		spin_unlock_irqrestore(&thi->t_lock, flags);
432 		wake_up_process(nt);
433 		break;
434 	case EXITING:
435 		thi->t_state = RESTARTING;
436 		drbd_info(resource, "Restarting %s thread (from %s [%d])\n",
437 				thi->name, current->comm, current->pid);
438 		/* fall through */
439 	case RUNNING:
440 	case RESTARTING:
441 	default:
442 		spin_unlock_irqrestore(&thi->t_lock, flags);
443 		break;
444 	}
445 
446 	return true;
447 }
448 
449 
450 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait)
451 {
452 	unsigned long flags;
453 
454 	enum drbd_thread_state ns = restart ? RESTARTING : EXITING;
455 
456 	/* may be called from state engine, holding the req lock irqsave */
457 	spin_lock_irqsave(&thi->t_lock, flags);
458 
459 	if (thi->t_state == NONE) {
460 		spin_unlock_irqrestore(&thi->t_lock, flags);
461 		if (restart)
462 			drbd_thread_start(thi);
463 		return;
464 	}
465 
466 	if (thi->t_state != ns) {
467 		if (thi->task == NULL) {
468 			spin_unlock_irqrestore(&thi->t_lock, flags);
469 			return;
470 		}
471 
472 		thi->t_state = ns;
473 		smp_mb();
474 		init_completion(&thi->stop);
475 		if (thi->task != current)
476 			force_sig(DRBD_SIGKILL, thi->task);
477 	}
478 
479 	spin_unlock_irqrestore(&thi->t_lock, flags);
480 
481 	if (wait)
482 		wait_for_completion(&thi->stop);
483 }
484 
485 int conn_lowest_minor(struct drbd_connection *connection)
486 {
487 	struct drbd_peer_device *peer_device;
488 	int vnr = 0, minor = -1;
489 
490 	rcu_read_lock();
491 	peer_device = idr_get_next(&connection->peer_devices, &vnr);
492 	if (peer_device)
493 		minor = device_to_minor(peer_device->device);
494 	rcu_read_unlock();
495 
496 	return minor;
497 }
498 
499 #ifdef CONFIG_SMP
500 /**
501  * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs
502  *
503  * Forces all threads of a resource onto the same CPU. This is beneficial for
504  * DRBD's performance. May be overwritten by user's configuration.
505  */
506 static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask)
507 {
508 	unsigned int *resources_per_cpu, min_index = ~0;
509 
510 	resources_per_cpu = kzalloc(nr_cpu_ids * sizeof(*resources_per_cpu), GFP_KERNEL);
511 	if (resources_per_cpu) {
512 		struct drbd_resource *resource;
513 		unsigned int cpu, min = ~0;
514 
515 		rcu_read_lock();
516 		for_each_resource_rcu(resource, &drbd_resources) {
517 			for_each_cpu(cpu, resource->cpu_mask)
518 				resources_per_cpu[cpu]++;
519 		}
520 		rcu_read_unlock();
521 		for_each_online_cpu(cpu) {
522 			if (resources_per_cpu[cpu] < min) {
523 				min = resources_per_cpu[cpu];
524 				min_index = cpu;
525 			}
526 		}
527 		kfree(resources_per_cpu);
528 	}
529 	if (min_index == ~0) {
530 		cpumask_setall(*cpu_mask);
531 		return;
532 	}
533 	cpumask_set_cpu(min_index, *cpu_mask);
534 }
535 
536 /**
537  * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread
538  * @device:	DRBD device.
539  * @thi:	drbd_thread object
540  *
541  * call in the "main loop" of _all_ threads, no need for any mutex, current won't die
542  * prematurely.
543  */
544 void drbd_thread_current_set_cpu(struct drbd_thread *thi)
545 {
546 	struct drbd_resource *resource = thi->resource;
547 	struct task_struct *p = current;
548 
549 	if (!thi->reset_cpu_mask)
550 		return;
551 	thi->reset_cpu_mask = 0;
552 	set_cpus_allowed_ptr(p, resource->cpu_mask);
553 }
554 #else
555 #define drbd_calc_cpu_mask(A) ({})
556 #endif
557 
558 /**
559  * drbd_header_size  -  size of a packet header
560  *
561  * The header size is a multiple of 8, so any payload following the header is
562  * word aligned on 64-bit architectures.  (The bitmap send and receive code
563  * relies on this.)
564  */
565 unsigned int drbd_header_size(struct drbd_connection *connection)
566 {
567 	if (connection->agreed_pro_version >= 100) {
568 		BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8));
569 		return sizeof(struct p_header100);
570 	} else {
571 		BUILD_BUG_ON(sizeof(struct p_header80) !=
572 			     sizeof(struct p_header95));
573 		BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8));
574 		return sizeof(struct p_header80);
575 	}
576 }
577 
578 static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size)
579 {
580 	h->magic   = cpu_to_be32(DRBD_MAGIC);
581 	h->command = cpu_to_be16(cmd);
582 	h->length  = cpu_to_be16(size);
583 	return sizeof(struct p_header80);
584 }
585 
586 static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size)
587 {
588 	h->magic   = cpu_to_be16(DRBD_MAGIC_BIG);
589 	h->command = cpu_to_be16(cmd);
590 	h->length = cpu_to_be32(size);
591 	return sizeof(struct p_header95);
592 }
593 
594 static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd,
595 				      int size, int vnr)
596 {
597 	h->magic = cpu_to_be32(DRBD_MAGIC_100);
598 	h->volume = cpu_to_be16(vnr);
599 	h->command = cpu_to_be16(cmd);
600 	h->length = cpu_to_be32(size);
601 	h->pad = 0;
602 	return sizeof(struct p_header100);
603 }
604 
605 static unsigned int prepare_header(struct drbd_connection *connection, int vnr,
606 				   void *buffer, enum drbd_packet cmd, int size)
607 {
608 	if (connection->agreed_pro_version >= 100)
609 		return prepare_header100(buffer, cmd, size, vnr);
610 	else if (connection->agreed_pro_version >= 95 &&
611 		 size > DRBD_MAX_SIZE_H80_PACKET)
612 		return prepare_header95(buffer, cmd, size);
613 	else
614 		return prepare_header80(buffer, cmd, size);
615 }
616 
617 static void *__conn_prepare_command(struct drbd_connection *connection,
618 				    struct drbd_socket *sock)
619 {
620 	if (!sock->socket)
621 		return NULL;
622 	return sock->sbuf + drbd_header_size(connection);
623 }
624 
625 void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock)
626 {
627 	void *p;
628 
629 	mutex_lock(&sock->mutex);
630 	p = __conn_prepare_command(connection, sock);
631 	if (!p)
632 		mutex_unlock(&sock->mutex);
633 
634 	return p;
635 }
636 
637 void *drbd_prepare_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock)
638 {
639 	return conn_prepare_command(peer_device->connection, sock);
640 }
641 
642 static int __send_command(struct drbd_connection *connection, int vnr,
643 			  struct drbd_socket *sock, enum drbd_packet cmd,
644 			  unsigned int header_size, void *data,
645 			  unsigned int size)
646 {
647 	int msg_flags;
648 	int err;
649 
650 	/*
651 	 * Called with @data == NULL and the size of the data blocks in @size
652 	 * for commands that send data blocks.  For those commands, omit the
653 	 * MSG_MORE flag: this will increase the likelihood that data blocks
654 	 * which are page aligned on the sender will end up page aligned on the
655 	 * receiver.
656 	 */
657 	msg_flags = data ? MSG_MORE : 0;
658 
659 	header_size += prepare_header(connection, vnr, sock->sbuf, cmd,
660 				      header_size + size);
661 	err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size,
662 			    msg_flags);
663 	if (data && !err)
664 		err = drbd_send_all(connection, sock->socket, data, size, 0);
665 	return err;
666 }
667 
668 static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
669 			       enum drbd_packet cmd, unsigned int header_size,
670 			       void *data, unsigned int size)
671 {
672 	return __send_command(connection, 0, sock, cmd, header_size, data, size);
673 }
674 
675 int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
676 		      enum drbd_packet cmd, unsigned int header_size,
677 		      void *data, unsigned int size)
678 {
679 	int err;
680 
681 	err = __conn_send_command(connection, sock, cmd, header_size, data, size);
682 	mutex_unlock(&sock->mutex);
683 	return err;
684 }
685 
686 int drbd_send_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock,
687 		      enum drbd_packet cmd, unsigned int header_size,
688 		      void *data, unsigned int size)
689 {
690 	int err;
691 
692 	err = __send_command(peer_device->connection, peer_device->device->vnr,
693 			     sock, cmd, header_size, data, size);
694 	mutex_unlock(&sock->mutex);
695 	return err;
696 }
697 
698 int drbd_send_ping(struct drbd_connection *connection)
699 {
700 	struct drbd_socket *sock;
701 
702 	sock = &connection->meta;
703 	if (!conn_prepare_command(connection, sock))
704 		return -EIO;
705 	return conn_send_command(connection, sock, P_PING, 0, NULL, 0);
706 }
707 
708 int drbd_send_ping_ack(struct drbd_connection *connection)
709 {
710 	struct drbd_socket *sock;
711 
712 	sock = &connection->meta;
713 	if (!conn_prepare_command(connection, sock))
714 		return -EIO;
715 	return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0);
716 }
717 
718 int drbd_send_sync_param(struct drbd_peer_device *peer_device)
719 {
720 	struct drbd_socket *sock;
721 	struct p_rs_param_95 *p;
722 	int size;
723 	const int apv = peer_device->connection->agreed_pro_version;
724 	enum drbd_packet cmd;
725 	struct net_conf *nc;
726 	struct disk_conf *dc;
727 
728 	sock = &peer_device->connection->data;
729 	p = drbd_prepare_command(peer_device, sock);
730 	if (!p)
731 		return -EIO;
732 
733 	rcu_read_lock();
734 	nc = rcu_dereference(peer_device->connection->net_conf);
735 
736 	size = apv <= 87 ? sizeof(struct p_rs_param)
737 		: apv == 88 ? sizeof(struct p_rs_param)
738 			+ strlen(nc->verify_alg) + 1
739 		: apv <= 94 ? sizeof(struct p_rs_param_89)
740 		: /* apv >= 95 */ sizeof(struct p_rs_param_95);
741 
742 	cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM;
743 
744 	/* initialize verify_alg and csums_alg */
745 	memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX);
746 
747 	if (get_ldev(peer_device->device)) {
748 		dc = rcu_dereference(peer_device->device->ldev->disk_conf);
749 		p->resync_rate = cpu_to_be32(dc->resync_rate);
750 		p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead);
751 		p->c_delay_target = cpu_to_be32(dc->c_delay_target);
752 		p->c_fill_target = cpu_to_be32(dc->c_fill_target);
753 		p->c_max_rate = cpu_to_be32(dc->c_max_rate);
754 		put_ldev(peer_device->device);
755 	} else {
756 		p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF);
757 		p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF);
758 		p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF);
759 		p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF);
760 		p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF);
761 	}
762 
763 	if (apv >= 88)
764 		strcpy(p->verify_alg, nc->verify_alg);
765 	if (apv >= 89)
766 		strcpy(p->csums_alg, nc->csums_alg);
767 	rcu_read_unlock();
768 
769 	return drbd_send_command(peer_device, sock, cmd, size, NULL, 0);
770 }
771 
772 int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd)
773 {
774 	struct drbd_socket *sock;
775 	struct p_protocol *p;
776 	struct net_conf *nc;
777 	int size, cf;
778 
779 	sock = &connection->data;
780 	p = __conn_prepare_command(connection, sock);
781 	if (!p)
782 		return -EIO;
783 
784 	rcu_read_lock();
785 	nc = rcu_dereference(connection->net_conf);
786 
787 	if (nc->tentative && connection->agreed_pro_version < 92) {
788 		rcu_read_unlock();
789 		mutex_unlock(&sock->mutex);
790 		drbd_err(connection, "--dry-run is not supported by peer");
791 		return -EOPNOTSUPP;
792 	}
793 
794 	size = sizeof(*p);
795 	if (connection->agreed_pro_version >= 87)
796 		size += strlen(nc->integrity_alg) + 1;
797 
798 	p->protocol      = cpu_to_be32(nc->wire_protocol);
799 	p->after_sb_0p   = cpu_to_be32(nc->after_sb_0p);
800 	p->after_sb_1p   = cpu_to_be32(nc->after_sb_1p);
801 	p->after_sb_2p   = cpu_to_be32(nc->after_sb_2p);
802 	p->two_primaries = cpu_to_be32(nc->two_primaries);
803 	cf = 0;
804 	if (nc->discard_my_data)
805 		cf |= CF_DISCARD_MY_DATA;
806 	if (nc->tentative)
807 		cf |= CF_DRY_RUN;
808 	p->conn_flags    = cpu_to_be32(cf);
809 
810 	if (connection->agreed_pro_version >= 87)
811 		strcpy(p->integrity_alg, nc->integrity_alg);
812 	rcu_read_unlock();
813 
814 	return __conn_send_command(connection, sock, cmd, size, NULL, 0);
815 }
816 
817 int drbd_send_protocol(struct drbd_connection *connection)
818 {
819 	int err;
820 
821 	mutex_lock(&connection->data.mutex);
822 	err = __drbd_send_protocol(connection, P_PROTOCOL);
823 	mutex_unlock(&connection->data.mutex);
824 
825 	return err;
826 }
827 
828 static int _drbd_send_uuids(struct drbd_peer_device *peer_device, u64 uuid_flags)
829 {
830 	struct drbd_device *device = peer_device->device;
831 	struct drbd_socket *sock;
832 	struct p_uuids *p;
833 	int i;
834 
835 	if (!get_ldev_if_state(device, D_NEGOTIATING))
836 		return 0;
837 
838 	sock = &peer_device->connection->data;
839 	p = drbd_prepare_command(peer_device, sock);
840 	if (!p) {
841 		put_ldev(device);
842 		return -EIO;
843 	}
844 	spin_lock_irq(&device->ldev->md.uuid_lock);
845 	for (i = UI_CURRENT; i < UI_SIZE; i++)
846 		p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
847 	spin_unlock_irq(&device->ldev->md.uuid_lock);
848 
849 	device->comm_bm_set = drbd_bm_total_weight(device);
850 	p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set);
851 	rcu_read_lock();
852 	uuid_flags |= rcu_dereference(peer_device->connection->net_conf)->discard_my_data ? 1 : 0;
853 	rcu_read_unlock();
854 	uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0;
855 	uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0;
856 	p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags);
857 
858 	put_ldev(device);
859 	return drbd_send_command(peer_device, sock, P_UUIDS, sizeof(*p), NULL, 0);
860 }
861 
862 int drbd_send_uuids(struct drbd_peer_device *peer_device)
863 {
864 	return _drbd_send_uuids(peer_device, 0);
865 }
866 
867 int drbd_send_uuids_skip_initial_sync(struct drbd_peer_device *peer_device)
868 {
869 	return _drbd_send_uuids(peer_device, 8);
870 }
871 
872 void drbd_print_uuids(struct drbd_device *device, const char *text)
873 {
874 	if (get_ldev_if_state(device, D_NEGOTIATING)) {
875 		u64 *uuid = device->ldev->md.uuid;
876 		drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n",
877 		     text,
878 		     (unsigned long long)uuid[UI_CURRENT],
879 		     (unsigned long long)uuid[UI_BITMAP],
880 		     (unsigned long long)uuid[UI_HISTORY_START],
881 		     (unsigned long long)uuid[UI_HISTORY_END]);
882 		put_ldev(device);
883 	} else {
884 		drbd_info(device, "%s effective data uuid: %016llX\n",
885 				text,
886 				(unsigned long long)device->ed_uuid);
887 	}
888 }
889 
890 void drbd_gen_and_send_sync_uuid(struct drbd_peer_device *peer_device)
891 {
892 	struct drbd_device *device = peer_device->device;
893 	struct drbd_socket *sock;
894 	struct p_rs_uuid *p;
895 	u64 uuid;
896 
897 	D_ASSERT(device, device->state.disk == D_UP_TO_DATE);
898 
899 	uuid = device->ldev->md.uuid[UI_BITMAP];
900 	if (uuid && uuid != UUID_JUST_CREATED)
901 		uuid = uuid + UUID_NEW_BM_OFFSET;
902 	else
903 		get_random_bytes(&uuid, sizeof(u64));
904 	drbd_uuid_set(device, UI_BITMAP, uuid);
905 	drbd_print_uuids(device, "updated sync UUID");
906 	drbd_md_sync(device);
907 
908 	sock = &peer_device->connection->data;
909 	p = drbd_prepare_command(peer_device, sock);
910 	if (p) {
911 		p->uuid = cpu_to_be64(uuid);
912 		drbd_send_command(peer_device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0);
913 	}
914 }
915 
916 int drbd_send_sizes(struct drbd_peer_device *peer_device, int trigger_reply, enum dds_flags flags)
917 {
918 	struct drbd_device *device = peer_device->device;
919 	struct drbd_socket *sock;
920 	struct p_sizes *p;
921 	sector_t d_size, u_size;
922 	int q_order_type;
923 	unsigned int max_bio_size;
924 
925 	if (get_ldev_if_state(device, D_NEGOTIATING)) {
926 		D_ASSERT(device, device->ldev->backing_bdev);
927 		d_size = drbd_get_max_capacity(device->ldev);
928 		rcu_read_lock();
929 		u_size = rcu_dereference(device->ldev->disk_conf)->disk_size;
930 		rcu_read_unlock();
931 		q_order_type = drbd_queue_order_type(device);
932 		max_bio_size = queue_max_hw_sectors(device->ldev->backing_bdev->bd_disk->queue) << 9;
933 		max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE);
934 		put_ldev(device);
935 	} else {
936 		d_size = 0;
937 		u_size = 0;
938 		q_order_type = QUEUE_ORDERED_NONE;
939 		max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */
940 	}
941 
942 	sock = &peer_device->connection->data;
943 	p = drbd_prepare_command(peer_device, sock);
944 	if (!p)
945 		return -EIO;
946 
947 	if (peer_device->connection->agreed_pro_version <= 94)
948 		max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET);
949 	else if (peer_device->connection->agreed_pro_version < 100)
950 		max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95);
951 
952 	p->d_size = cpu_to_be64(d_size);
953 	p->u_size = cpu_to_be64(u_size);
954 	p->c_size = cpu_to_be64(trigger_reply ? 0 : drbd_get_capacity(device->this_bdev));
955 	p->max_bio_size = cpu_to_be32(max_bio_size);
956 	p->queue_order_type = cpu_to_be16(q_order_type);
957 	p->dds_flags = cpu_to_be16(flags);
958 	return drbd_send_command(peer_device, sock, P_SIZES, sizeof(*p), NULL, 0);
959 }
960 
961 /**
962  * drbd_send_current_state() - Sends the drbd state to the peer
963  * @peer_device:	DRBD peer device.
964  */
965 int drbd_send_current_state(struct drbd_peer_device *peer_device)
966 {
967 	struct drbd_socket *sock;
968 	struct p_state *p;
969 
970 	sock = &peer_device->connection->data;
971 	p = drbd_prepare_command(peer_device, sock);
972 	if (!p)
973 		return -EIO;
974 	p->state = cpu_to_be32(peer_device->device->state.i); /* Within the send mutex */
975 	return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
976 }
977 
978 /**
979  * drbd_send_state() - After a state change, sends the new state to the peer
980  * @peer_device:      DRBD peer device.
981  * @state:     the state to send, not necessarily the current state.
982  *
983  * Each state change queues an "after_state_ch" work, which will eventually
984  * send the resulting new state to the peer. If more state changes happen
985  * between queuing and processing of the after_state_ch work, we still
986  * want to send each intermediary state in the order it occurred.
987  */
988 int drbd_send_state(struct drbd_peer_device *peer_device, union drbd_state state)
989 {
990 	struct drbd_socket *sock;
991 	struct p_state *p;
992 
993 	sock = &peer_device->connection->data;
994 	p = drbd_prepare_command(peer_device, sock);
995 	if (!p)
996 		return -EIO;
997 	p->state = cpu_to_be32(state.i); /* Within the send mutex */
998 	return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
999 }
1000 
1001 int drbd_send_state_req(struct drbd_peer_device *peer_device, union drbd_state mask, union drbd_state val)
1002 {
1003 	struct drbd_socket *sock;
1004 	struct p_req_state *p;
1005 
1006 	sock = &peer_device->connection->data;
1007 	p = drbd_prepare_command(peer_device, sock);
1008 	if (!p)
1009 		return -EIO;
1010 	p->mask = cpu_to_be32(mask.i);
1011 	p->val = cpu_to_be32(val.i);
1012 	return drbd_send_command(peer_device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0);
1013 }
1014 
1015 int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val)
1016 {
1017 	enum drbd_packet cmd;
1018 	struct drbd_socket *sock;
1019 	struct p_req_state *p;
1020 
1021 	cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ;
1022 	sock = &connection->data;
1023 	p = conn_prepare_command(connection, sock);
1024 	if (!p)
1025 		return -EIO;
1026 	p->mask = cpu_to_be32(mask.i);
1027 	p->val = cpu_to_be32(val.i);
1028 	return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1029 }
1030 
1031 void drbd_send_sr_reply(struct drbd_peer_device *peer_device, enum drbd_state_rv retcode)
1032 {
1033 	struct drbd_socket *sock;
1034 	struct p_req_state_reply *p;
1035 
1036 	sock = &peer_device->connection->meta;
1037 	p = drbd_prepare_command(peer_device, sock);
1038 	if (p) {
1039 		p->retcode = cpu_to_be32(retcode);
1040 		drbd_send_command(peer_device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0);
1041 	}
1042 }
1043 
1044 void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode)
1045 {
1046 	struct drbd_socket *sock;
1047 	struct p_req_state_reply *p;
1048 	enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY;
1049 
1050 	sock = &connection->meta;
1051 	p = conn_prepare_command(connection, sock);
1052 	if (p) {
1053 		p->retcode = cpu_to_be32(retcode);
1054 		conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1055 	}
1056 }
1057 
1058 static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code)
1059 {
1060 	BUG_ON(code & ~0xf);
1061 	p->encoding = (p->encoding & ~0xf) | code;
1062 }
1063 
1064 static void dcbp_set_start(struct p_compressed_bm *p, int set)
1065 {
1066 	p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0);
1067 }
1068 
1069 static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n)
1070 {
1071 	BUG_ON(n & ~0x7);
1072 	p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4);
1073 }
1074 
1075 static int fill_bitmap_rle_bits(struct drbd_device *device,
1076 			 struct p_compressed_bm *p,
1077 			 unsigned int size,
1078 			 struct bm_xfer_ctx *c)
1079 {
1080 	struct bitstream bs;
1081 	unsigned long plain_bits;
1082 	unsigned long tmp;
1083 	unsigned long rl;
1084 	unsigned len;
1085 	unsigned toggle;
1086 	int bits, use_rle;
1087 
1088 	/* may we use this feature? */
1089 	rcu_read_lock();
1090 	use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle;
1091 	rcu_read_unlock();
1092 	if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90)
1093 		return 0;
1094 
1095 	if (c->bit_offset >= c->bm_bits)
1096 		return 0; /* nothing to do. */
1097 
1098 	/* use at most thus many bytes */
1099 	bitstream_init(&bs, p->code, size, 0);
1100 	memset(p->code, 0, size);
1101 	/* plain bits covered in this code string */
1102 	plain_bits = 0;
1103 
1104 	/* p->encoding & 0x80 stores whether the first run length is set.
1105 	 * bit offset is implicit.
1106 	 * start with toggle == 2 to be able to tell the first iteration */
1107 	toggle = 2;
1108 
1109 	/* see how much plain bits we can stuff into one packet
1110 	 * using RLE and VLI. */
1111 	do {
1112 		tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset)
1113 				    : _drbd_bm_find_next(device, c->bit_offset);
1114 		if (tmp == -1UL)
1115 			tmp = c->bm_bits;
1116 		rl = tmp - c->bit_offset;
1117 
1118 		if (toggle == 2) { /* first iteration */
1119 			if (rl == 0) {
1120 				/* the first checked bit was set,
1121 				 * store start value, */
1122 				dcbp_set_start(p, 1);
1123 				/* but skip encoding of zero run length */
1124 				toggle = !toggle;
1125 				continue;
1126 			}
1127 			dcbp_set_start(p, 0);
1128 		}
1129 
1130 		/* paranoia: catch zero runlength.
1131 		 * can only happen if bitmap is modified while we scan it. */
1132 		if (rl == 0) {
1133 			drbd_err(device, "unexpected zero runlength while encoding bitmap "
1134 			    "t:%u bo:%lu\n", toggle, c->bit_offset);
1135 			return -1;
1136 		}
1137 
1138 		bits = vli_encode_bits(&bs, rl);
1139 		if (bits == -ENOBUFS) /* buffer full */
1140 			break;
1141 		if (bits <= 0) {
1142 			drbd_err(device, "error while encoding bitmap: %d\n", bits);
1143 			return 0;
1144 		}
1145 
1146 		toggle = !toggle;
1147 		plain_bits += rl;
1148 		c->bit_offset = tmp;
1149 	} while (c->bit_offset < c->bm_bits);
1150 
1151 	len = bs.cur.b - p->code + !!bs.cur.bit;
1152 
1153 	if (plain_bits < (len << 3)) {
1154 		/* incompressible with this method.
1155 		 * we need to rewind both word and bit position. */
1156 		c->bit_offset -= plain_bits;
1157 		bm_xfer_ctx_bit_to_word_offset(c);
1158 		c->bit_offset = c->word_offset * BITS_PER_LONG;
1159 		return 0;
1160 	}
1161 
1162 	/* RLE + VLI was able to compress it just fine.
1163 	 * update c->word_offset. */
1164 	bm_xfer_ctx_bit_to_word_offset(c);
1165 
1166 	/* store pad_bits */
1167 	dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7);
1168 
1169 	return len;
1170 }
1171 
1172 /**
1173  * send_bitmap_rle_or_plain
1174  *
1175  * Return 0 when done, 1 when another iteration is needed, and a negative error
1176  * code upon failure.
1177  */
1178 static int
1179 send_bitmap_rle_or_plain(struct drbd_device *device, struct bm_xfer_ctx *c)
1180 {
1181 	struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1182 	unsigned int header_size = drbd_header_size(first_peer_device(device)->connection);
1183 	struct p_compressed_bm *p = sock->sbuf + header_size;
1184 	int len, err;
1185 
1186 	len = fill_bitmap_rle_bits(device, p,
1187 			DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c);
1188 	if (len < 0)
1189 		return -EIO;
1190 
1191 	if (len) {
1192 		dcbp_set_code(p, RLE_VLI_Bits);
1193 		err = __send_command(first_peer_device(device)->connection, device->vnr, sock,
1194 				     P_COMPRESSED_BITMAP, sizeof(*p) + len,
1195 				     NULL, 0);
1196 		c->packets[0]++;
1197 		c->bytes[0] += header_size + sizeof(*p) + len;
1198 
1199 		if (c->bit_offset >= c->bm_bits)
1200 			len = 0; /* DONE */
1201 	} else {
1202 		/* was not compressible.
1203 		 * send a buffer full of plain text bits instead. */
1204 		unsigned int data_size;
1205 		unsigned long num_words;
1206 		unsigned long *p = sock->sbuf + header_size;
1207 
1208 		data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
1209 		num_words = min_t(size_t, data_size / sizeof(*p),
1210 				  c->bm_words - c->word_offset);
1211 		len = num_words * sizeof(*p);
1212 		if (len)
1213 			drbd_bm_get_lel(device, c->word_offset, num_words, p);
1214 		err = __send_command(first_peer_device(device)->connection, device->vnr, sock, P_BITMAP, len, NULL, 0);
1215 		c->word_offset += num_words;
1216 		c->bit_offset = c->word_offset * BITS_PER_LONG;
1217 
1218 		c->packets[1]++;
1219 		c->bytes[1] += header_size + len;
1220 
1221 		if (c->bit_offset > c->bm_bits)
1222 			c->bit_offset = c->bm_bits;
1223 	}
1224 	if (!err) {
1225 		if (len == 0) {
1226 			INFO_bm_xfer_stats(device, "send", c);
1227 			return 0;
1228 		} else
1229 			return 1;
1230 	}
1231 	return -EIO;
1232 }
1233 
1234 /* See the comment at receive_bitmap() */
1235 static int _drbd_send_bitmap(struct drbd_device *device)
1236 {
1237 	struct bm_xfer_ctx c;
1238 	int err;
1239 
1240 	if (!expect(device->bitmap))
1241 		return false;
1242 
1243 	if (get_ldev(device)) {
1244 		if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) {
1245 			drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n");
1246 			drbd_bm_set_all(device);
1247 			if (drbd_bm_write(device)) {
1248 				/* write_bm did fail! Leave full sync flag set in Meta P_DATA
1249 				 * but otherwise process as per normal - need to tell other
1250 				 * side that a full resync is required! */
1251 				drbd_err(device, "Failed to write bitmap to disk!\n");
1252 			} else {
1253 				drbd_md_clear_flag(device, MDF_FULL_SYNC);
1254 				drbd_md_sync(device);
1255 			}
1256 		}
1257 		put_ldev(device);
1258 	}
1259 
1260 	c = (struct bm_xfer_ctx) {
1261 		.bm_bits = drbd_bm_bits(device),
1262 		.bm_words = drbd_bm_words(device),
1263 	};
1264 
1265 	do {
1266 		err = send_bitmap_rle_or_plain(device, &c);
1267 	} while (err > 0);
1268 
1269 	return err == 0;
1270 }
1271 
1272 int drbd_send_bitmap(struct drbd_device *device)
1273 {
1274 	struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1275 	int err = -1;
1276 
1277 	mutex_lock(&sock->mutex);
1278 	if (sock->socket)
1279 		err = !_drbd_send_bitmap(device);
1280 	mutex_unlock(&sock->mutex);
1281 	return err;
1282 }
1283 
1284 void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size)
1285 {
1286 	struct drbd_socket *sock;
1287 	struct p_barrier_ack *p;
1288 
1289 	if (connection->cstate < C_WF_REPORT_PARAMS)
1290 		return;
1291 
1292 	sock = &connection->meta;
1293 	p = conn_prepare_command(connection, sock);
1294 	if (!p)
1295 		return;
1296 	p->barrier = barrier_nr;
1297 	p->set_size = cpu_to_be32(set_size);
1298 	conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0);
1299 }
1300 
1301 /**
1302  * _drbd_send_ack() - Sends an ack packet
1303  * @device:	DRBD device.
1304  * @cmd:	Packet command code.
1305  * @sector:	sector, needs to be in big endian byte order
1306  * @blksize:	size in byte, needs to be in big endian byte order
1307  * @block_id:	Id, big endian byte order
1308  */
1309 static int _drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1310 			  u64 sector, u32 blksize, u64 block_id)
1311 {
1312 	struct drbd_socket *sock;
1313 	struct p_block_ack *p;
1314 
1315 	if (peer_device->device->state.conn < C_CONNECTED)
1316 		return -EIO;
1317 
1318 	sock = &peer_device->connection->meta;
1319 	p = drbd_prepare_command(peer_device, sock);
1320 	if (!p)
1321 		return -EIO;
1322 	p->sector = sector;
1323 	p->block_id = block_id;
1324 	p->blksize = blksize;
1325 	p->seq_num = cpu_to_be32(atomic_inc_return(&peer_device->device->packet_seq));
1326 	return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1327 }
1328 
1329 /* dp->sector and dp->block_id already/still in network byte order,
1330  * data_size is payload size according to dp->head,
1331  * and may need to be corrected for digest size. */
1332 void drbd_send_ack_dp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1333 		      struct p_data *dp, int data_size)
1334 {
1335 	if (peer_device->connection->peer_integrity_tfm)
1336 		data_size -= crypto_hash_digestsize(peer_device->connection->peer_integrity_tfm);
1337 	_drbd_send_ack(peer_device, cmd, dp->sector, cpu_to_be32(data_size),
1338 		       dp->block_id);
1339 }
1340 
1341 void drbd_send_ack_rp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1342 		      struct p_block_req *rp)
1343 {
1344 	_drbd_send_ack(peer_device, cmd, rp->sector, rp->blksize, rp->block_id);
1345 }
1346 
1347 /**
1348  * drbd_send_ack() - Sends an ack packet
1349  * @device:	DRBD device
1350  * @cmd:	packet command code
1351  * @peer_req:	peer request
1352  */
1353 int drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1354 		  struct drbd_peer_request *peer_req)
1355 {
1356 	return _drbd_send_ack(peer_device, cmd,
1357 			      cpu_to_be64(peer_req->i.sector),
1358 			      cpu_to_be32(peer_req->i.size),
1359 			      peer_req->block_id);
1360 }
1361 
1362 /* This function misuses the block_id field to signal if the blocks
1363  * are is sync or not. */
1364 int drbd_send_ack_ex(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1365 		     sector_t sector, int blksize, u64 block_id)
1366 {
1367 	return _drbd_send_ack(peer_device, cmd,
1368 			      cpu_to_be64(sector),
1369 			      cpu_to_be32(blksize),
1370 			      cpu_to_be64(block_id));
1371 }
1372 
1373 int drbd_send_drequest(struct drbd_peer_device *peer_device, int cmd,
1374 		       sector_t sector, int size, u64 block_id)
1375 {
1376 	struct drbd_socket *sock;
1377 	struct p_block_req *p;
1378 
1379 	sock = &peer_device->connection->data;
1380 	p = drbd_prepare_command(peer_device, sock);
1381 	if (!p)
1382 		return -EIO;
1383 	p->sector = cpu_to_be64(sector);
1384 	p->block_id = block_id;
1385 	p->blksize = cpu_to_be32(size);
1386 	return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1387 }
1388 
1389 int drbd_send_drequest_csum(struct drbd_peer_device *peer_device, sector_t sector, int size,
1390 			    void *digest, int digest_size, enum drbd_packet cmd)
1391 {
1392 	struct drbd_socket *sock;
1393 	struct p_block_req *p;
1394 
1395 	/* FIXME: Put the digest into the preallocated socket buffer.  */
1396 
1397 	sock = &peer_device->connection->data;
1398 	p = drbd_prepare_command(peer_device, sock);
1399 	if (!p)
1400 		return -EIO;
1401 	p->sector = cpu_to_be64(sector);
1402 	p->block_id = ID_SYNCER /* unused */;
1403 	p->blksize = cpu_to_be32(size);
1404 	return drbd_send_command(peer_device, sock, cmd, sizeof(*p), digest, digest_size);
1405 }
1406 
1407 int drbd_send_ov_request(struct drbd_peer_device *peer_device, sector_t sector, int size)
1408 {
1409 	struct drbd_socket *sock;
1410 	struct p_block_req *p;
1411 
1412 	sock = &peer_device->connection->data;
1413 	p = drbd_prepare_command(peer_device, sock);
1414 	if (!p)
1415 		return -EIO;
1416 	p->sector = cpu_to_be64(sector);
1417 	p->block_id = ID_SYNCER /* unused */;
1418 	p->blksize = cpu_to_be32(size);
1419 	return drbd_send_command(peer_device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0);
1420 }
1421 
1422 /* called on sndtimeo
1423  * returns false if we should retry,
1424  * true if we think connection is dead
1425  */
1426 static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock)
1427 {
1428 	int drop_it;
1429 	/* long elapsed = (long)(jiffies - device->last_received); */
1430 
1431 	drop_it =   connection->meta.socket == sock
1432 		|| !connection->asender.task
1433 		|| get_t_state(&connection->asender) != RUNNING
1434 		|| connection->cstate < C_WF_REPORT_PARAMS;
1435 
1436 	if (drop_it)
1437 		return true;
1438 
1439 	drop_it = !--connection->ko_count;
1440 	if (!drop_it) {
1441 		drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n",
1442 			 current->comm, current->pid, connection->ko_count);
1443 		request_ping(connection);
1444 	}
1445 
1446 	return drop_it; /* && (device->state == R_PRIMARY) */;
1447 }
1448 
1449 static void drbd_update_congested(struct drbd_connection *connection)
1450 {
1451 	struct sock *sk = connection->data.socket->sk;
1452 	if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5)
1453 		set_bit(NET_CONGESTED, &connection->flags);
1454 }
1455 
1456 /* The idea of sendpage seems to be to put some kind of reference
1457  * to the page into the skb, and to hand it over to the NIC. In
1458  * this process get_page() gets called.
1459  *
1460  * As soon as the page was really sent over the network put_page()
1461  * gets called by some part of the network layer. [ NIC driver? ]
1462  *
1463  * [ get_page() / put_page() increment/decrement the count. If count
1464  *   reaches 0 the page will be freed. ]
1465  *
1466  * This works nicely with pages from FSs.
1467  * But this means that in protocol A we might signal IO completion too early!
1468  *
1469  * In order not to corrupt data during a resync we must make sure
1470  * that we do not reuse our own buffer pages (EEs) to early, therefore
1471  * we have the net_ee list.
1472  *
1473  * XFS seems to have problems, still, it submits pages with page_count == 0!
1474  * As a workaround, we disable sendpage on pages
1475  * with page_count == 0 or PageSlab.
1476  */
1477 static int _drbd_no_send_page(struct drbd_peer_device *peer_device, struct page *page,
1478 			      int offset, size_t size, unsigned msg_flags)
1479 {
1480 	struct socket *socket;
1481 	void *addr;
1482 	int err;
1483 
1484 	socket = peer_device->connection->data.socket;
1485 	addr = kmap(page) + offset;
1486 	err = drbd_send_all(peer_device->connection, socket, addr, size, msg_flags);
1487 	kunmap(page);
1488 	if (!err)
1489 		peer_device->device->send_cnt += size >> 9;
1490 	return err;
1491 }
1492 
1493 static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *page,
1494 		    int offset, size_t size, unsigned msg_flags)
1495 {
1496 	struct socket *socket = peer_device->connection->data.socket;
1497 	mm_segment_t oldfs = get_fs();
1498 	int len = size;
1499 	int err = -EIO;
1500 
1501 	/* e.g. XFS meta- & log-data is in slab pages, which have a
1502 	 * page_count of 0 and/or have PageSlab() set.
1503 	 * we cannot use send_page for those, as that does get_page();
1504 	 * put_page(); and would cause either a VM_BUG directly, or
1505 	 * __page_cache_release a page that would actually still be referenced
1506 	 * by someone, leading to some obscure delayed Oops somewhere else. */
1507 	if (disable_sendpage || (page_count(page) < 1) || PageSlab(page))
1508 		return _drbd_no_send_page(peer_device, page, offset, size, msg_flags);
1509 
1510 	msg_flags |= MSG_NOSIGNAL;
1511 	drbd_update_congested(peer_device->connection);
1512 	set_fs(KERNEL_DS);
1513 	do {
1514 		int sent;
1515 
1516 		sent = socket->ops->sendpage(socket, page, offset, len, msg_flags);
1517 		if (sent <= 0) {
1518 			if (sent == -EAGAIN) {
1519 				if (we_should_drop_the_connection(peer_device->connection, socket))
1520 					break;
1521 				continue;
1522 			}
1523 			drbd_warn(peer_device->device, "%s: size=%d len=%d sent=%d\n",
1524 			     __func__, (int)size, len, sent);
1525 			if (sent < 0)
1526 				err = sent;
1527 			break;
1528 		}
1529 		len    -= sent;
1530 		offset += sent;
1531 	} while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/);
1532 	set_fs(oldfs);
1533 	clear_bit(NET_CONGESTED, &peer_device->connection->flags);
1534 
1535 	if (len == 0) {
1536 		err = 0;
1537 		peer_device->device->send_cnt += size >> 9;
1538 	}
1539 	return err;
1540 }
1541 
1542 static int _drbd_send_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1543 {
1544 	struct bio_vec bvec;
1545 	struct bvec_iter iter;
1546 
1547 	/* hint all but last page with MSG_MORE */
1548 	bio_for_each_segment(bvec, bio, iter) {
1549 		int err;
1550 
1551 		err = _drbd_no_send_page(peer_device, bvec.bv_page,
1552 					 bvec.bv_offset, bvec.bv_len,
1553 					 bio_iter_last(bvec, iter)
1554 					 ? 0 : MSG_MORE);
1555 		if (err)
1556 			return err;
1557 	}
1558 	return 0;
1559 }
1560 
1561 static int _drbd_send_zc_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1562 {
1563 	struct bio_vec bvec;
1564 	struct bvec_iter iter;
1565 
1566 	/* hint all but last page with MSG_MORE */
1567 	bio_for_each_segment(bvec, bio, iter) {
1568 		int err;
1569 
1570 		err = _drbd_send_page(peer_device, bvec.bv_page,
1571 				      bvec.bv_offset, bvec.bv_len,
1572 				      bio_iter_last(bvec, iter) ? 0 : MSG_MORE);
1573 		if (err)
1574 			return err;
1575 	}
1576 	return 0;
1577 }
1578 
1579 static int _drbd_send_zc_ee(struct drbd_peer_device *peer_device,
1580 			    struct drbd_peer_request *peer_req)
1581 {
1582 	struct page *page = peer_req->pages;
1583 	unsigned len = peer_req->i.size;
1584 	int err;
1585 
1586 	/* hint all but last page with MSG_MORE */
1587 	page_chain_for_each(page) {
1588 		unsigned l = min_t(unsigned, len, PAGE_SIZE);
1589 
1590 		err = _drbd_send_page(peer_device, page, 0, l,
1591 				      page_chain_next(page) ? MSG_MORE : 0);
1592 		if (err)
1593 			return err;
1594 		len -= l;
1595 	}
1596 	return 0;
1597 }
1598 
1599 static u32 bio_flags_to_wire(struct drbd_connection *connection, unsigned long bi_rw)
1600 {
1601 	if (connection->agreed_pro_version >= 95)
1602 		return  (bi_rw & REQ_SYNC ? DP_RW_SYNC : 0) |
1603 			(bi_rw & REQ_FUA ? DP_FUA : 0) |
1604 			(bi_rw & REQ_FLUSH ? DP_FLUSH : 0) |
1605 			(bi_rw & REQ_DISCARD ? DP_DISCARD : 0);
1606 	else
1607 		return bi_rw & REQ_SYNC ? DP_RW_SYNC : 0;
1608 }
1609 
1610 /* Used to send write requests
1611  * R_PRIMARY -> Peer	(P_DATA)
1612  */
1613 int drbd_send_dblock(struct drbd_peer_device *peer_device, struct drbd_request *req)
1614 {
1615 	struct drbd_device *device = peer_device->device;
1616 	struct drbd_socket *sock;
1617 	struct p_data *p;
1618 	unsigned int dp_flags = 0;
1619 	int dgs;
1620 	int err;
1621 
1622 	sock = &peer_device->connection->data;
1623 	p = drbd_prepare_command(peer_device, sock);
1624 	dgs = peer_device->connection->integrity_tfm ?
1625 	      crypto_hash_digestsize(peer_device->connection->integrity_tfm) : 0;
1626 
1627 	if (!p)
1628 		return -EIO;
1629 	p->sector = cpu_to_be64(req->i.sector);
1630 	p->block_id = (unsigned long)req;
1631 	p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq));
1632 	dp_flags = bio_flags_to_wire(peer_device->connection, req->master_bio->bi_rw);
1633 	if (device->state.conn >= C_SYNC_SOURCE &&
1634 	    device->state.conn <= C_PAUSED_SYNC_T)
1635 		dp_flags |= DP_MAY_SET_IN_SYNC;
1636 	if (peer_device->connection->agreed_pro_version >= 100) {
1637 		if (req->rq_state & RQ_EXP_RECEIVE_ACK)
1638 			dp_flags |= DP_SEND_RECEIVE_ACK;
1639 		if (req->rq_state & RQ_EXP_WRITE_ACK)
1640 			dp_flags |= DP_SEND_WRITE_ACK;
1641 	}
1642 	p->dp_flags = cpu_to_be32(dp_flags);
1643 	if (dgs)
1644 		drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, p + 1);
1645 	err = __send_command(peer_device->connection, device->vnr, sock, P_DATA, sizeof(*p) + dgs, NULL, req->i.size);
1646 	if (!err) {
1647 		/* For protocol A, we have to memcpy the payload into
1648 		 * socket buffers, as we may complete right away
1649 		 * as soon as we handed it over to tcp, at which point the data
1650 		 * pages may become invalid.
1651 		 *
1652 		 * For data-integrity enabled, we copy it as well, so we can be
1653 		 * sure that even if the bio pages may still be modified, it
1654 		 * won't change the data on the wire, thus if the digest checks
1655 		 * out ok after sending on this side, but does not fit on the
1656 		 * receiving side, we sure have detected corruption elsewhere.
1657 		 */
1658 		if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || dgs)
1659 			err = _drbd_send_bio(peer_device, req->master_bio);
1660 		else
1661 			err = _drbd_send_zc_bio(peer_device, req->master_bio);
1662 
1663 		/* double check digest, sometimes buffers have been modified in flight. */
1664 		if (dgs > 0 && dgs <= 64) {
1665 			/* 64 byte, 512 bit, is the largest digest size
1666 			 * currently supported in kernel crypto. */
1667 			unsigned char digest[64];
1668 			drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest);
1669 			if (memcmp(p + 1, digest, dgs)) {
1670 				drbd_warn(device,
1671 					"Digest mismatch, buffer modified by upper layers during write: %llus +%u\n",
1672 					(unsigned long long)req->i.sector, req->i.size);
1673 			}
1674 		} /* else if (dgs > 64) {
1675 		     ... Be noisy about digest too large ...
1676 		} */
1677 	}
1678 	mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1679 
1680 	return err;
1681 }
1682 
1683 /* answer packet, used to send data back for read requests:
1684  *  Peer       -> (diskless) R_PRIMARY   (P_DATA_REPLY)
1685  *  C_SYNC_SOURCE -> C_SYNC_TARGET         (P_RS_DATA_REPLY)
1686  */
1687 int drbd_send_block(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1688 		    struct drbd_peer_request *peer_req)
1689 {
1690 	struct drbd_device *device = peer_device->device;
1691 	struct drbd_socket *sock;
1692 	struct p_data *p;
1693 	int err;
1694 	int dgs;
1695 
1696 	sock = &peer_device->connection->data;
1697 	p = drbd_prepare_command(peer_device, sock);
1698 
1699 	dgs = peer_device->connection->integrity_tfm ?
1700 	      crypto_hash_digestsize(peer_device->connection->integrity_tfm) : 0;
1701 
1702 	if (!p)
1703 		return -EIO;
1704 	p->sector = cpu_to_be64(peer_req->i.sector);
1705 	p->block_id = peer_req->block_id;
1706 	p->seq_num = 0;  /* unused */
1707 	p->dp_flags = 0;
1708 	if (dgs)
1709 		drbd_csum_ee(peer_device->connection->integrity_tfm, peer_req, p + 1);
1710 	err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*p) + dgs, NULL, peer_req->i.size);
1711 	if (!err)
1712 		err = _drbd_send_zc_ee(peer_device, peer_req);
1713 	mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1714 
1715 	return err;
1716 }
1717 
1718 int drbd_send_out_of_sync(struct drbd_peer_device *peer_device, struct drbd_request *req)
1719 {
1720 	struct drbd_socket *sock;
1721 	struct p_block_desc *p;
1722 
1723 	sock = &peer_device->connection->data;
1724 	p = drbd_prepare_command(peer_device, sock);
1725 	if (!p)
1726 		return -EIO;
1727 	p->sector = cpu_to_be64(req->i.sector);
1728 	p->blksize = cpu_to_be32(req->i.size);
1729 	return drbd_send_command(peer_device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0);
1730 }
1731 
1732 /*
1733   drbd_send distinguishes two cases:
1734 
1735   Packets sent via the data socket "sock"
1736   and packets sent via the meta data socket "msock"
1737 
1738 		    sock                      msock
1739   -----------------+-------------------------+------------------------------
1740   timeout           conf.timeout / 2          conf.timeout / 2
1741   timeout action    send a ping via msock     Abort communication
1742 					      and close all sockets
1743 */
1744 
1745 /*
1746  * you must have down()ed the appropriate [m]sock_mutex elsewhere!
1747  */
1748 int drbd_send(struct drbd_connection *connection, struct socket *sock,
1749 	      void *buf, size_t size, unsigned msg_flags)
1750 {
1751 	struct kvec iov;
1752 	struct msghdr msg;
1753 	int rv, sent = 0;
1754 
1755 	if (!sock)
1756 		return -EBADR;
1757 
1758 	/* THINK  if (signal_pending) return ... ? */
1759 
1760 	iov.iov_base = buf;
1761 	iov.iov_len  = size;
1762 
1763 	msg.msg_name       = NULL;
1764 	msg.msg_namelen    = 0;
1765 	msg.msg_control    = NULL;
1766 	msg.msg_controllen = 0;
1767 	msg.msg_flags      = msg_flags | MSG_NOSIGNAL;
1768 
1769 	if (sock == connection->data.socket) {
1770 		rcu_read_lock();
1771 		connection->ko_count = rcu_dereference(connection->net_conf)->ko_count;
1772 		rcu_read_unlock();
1773 		drbd_update_congested(connection);
1774 	}
1775 	do {
1776 		/* STRANGE
1777 		 * tcp_sendmsg does _not_ use its size parameter at all ?
1778 		 *
1779 		 * -EAGAIN on timeout, -EINTR on signal.
1780 		 */
1781 /* THINK
1782  * do we need to block DRBD_SIG if sock == &meta.socket ??
1783  * otherwise wake_asender() might interrupt some send_*Ack !
1784  */
1785 		rv = kernel_sendmsg(sock, &msg, &iov, 1, size);
1786 		if (rv == -EAGAIN) {
1787 			if (we_should_drop_the_connection(connection, sock))
1788 				break;
1789 			else
1790 				continue;
1791 		}
1792 		if (rv == -EINTR) {
1793 			flush_signals(current);
1794 			rv = 0;
1795 		}
1796 		if (rv < 0)
1797 			break;
1798 		sent += rv;
1799 		iov.iov_base += rv;
1800 		iov.iov_len  -= rv;
1801 	} while (sent < size);
1802 
1803 	if (sock == connection->data.socket)
1804 		clear_bit(NET_CONGESTED, &connection->flags);
1805 
1806 	if (rv <= 0) {
1807 		if (rv != -EAGAIN) {
1808 			drbd_err(connection, "%s_sendmsg returned %d\n",
1809 				 sock == connection->meta.socket ? "msock" : "sock",
1810 				 rv);
1811 			conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD);
1812 		} else
1813 			conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD);
1814 	}
1815 
1816 	return sent;
1817 }
1818 
1819 /**
1820  * drbd_send_all  -  Send an entire buffer
1821  *
1822  * Returns 0 upon success and a negative error value otherwise.
1823  */
1824 int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer,
1825 		  size_t size, unsigned msg_flags)
1826 {
1827 	int err;
1828 
1829 	err = drbd_send(connection, sock, buffer, size, msg_flags);
1830 	if (err < 0)
1831 		return err;
1832 	if (err != size)
1833 		return -EIO;
1834 	return 0;
1835 }
1836 
1837 static int drbd_open(struct block_device *bdev, fmode_t mode)
1838 {
1839 	struct drbd_device *device = bdev->bd_disk->private_data;
1840 	unsigned long flags;
1841 	int rv = 0;
1842 
1843 	mutex_lock(&drbd_main_mutex);
1844 	spin_lock_irqsave(&device->resource->req_lock, flags);
1845 	/* to have a stable device->state.role
1846 	 * and no race with updating open_cnt */
1847 
1848 	if (device->state.role != R_PRIMARY) {
1849 		if (mode & FMODE_WRITE)
1850 			rv = -EROFS;
1851 		else if (!allow_oos)
1852 			rv = -EMEDIUMTYPE;
1853 	}
1854 
1855 	if (!rv)
1856 		device->open_cnt++;
1857 	spin_unlock_irqrestore(&device->resource->req_lock, flags);
1858 	mutex_unlock(&drbd_main_mutex);
1859 
1860 	return rv;
1861 }
1862 
1863 static void drbd_release(struct gendisk *gd, fmode_t mode)
1864 {
1865 	struct drbd_device *device = gd->private_data;
1866 	mutex_lock(&drbd_main_mutex);
1867 	device->open_cnt--;
1868 	mutex_unlock(&drbd_main_mutex);
1869 }
1870 
1871 static void drbd_set_defaults(struct drbd_device *device)
1872 {
1873 	/* Beware! The actual layout differs
1874 	 * between big endian and little endian */
1875 	device->state = (union drbd_dev_state) {
1876 		{ .role = R_SECONDARY,
1877 		  .peer = R_UNKNOWN,
1878 		  .conn = C_STANDALONE,
1879 		  .disk = D_DISKLESS,
1880 		  .pdsk = D_UNKNOWN,
1881 		} };
1882 }
1883 
1884 void drbd_init_set_defaults(struct drbd_device *device)
1885 {
1886 	/* the memset(,0,) did most of this.
1887 	 * note: only assignments, no allocation in here */
1888 
1889 	drbd_set_defaults(device);
1890 
1891 	atomic_set(&device->ap_bio_cnt, 0);
1892 	atomic_set(&device->ap_pending_cnt, 0);
1893 	atomic_set(&device->rs_pending_cnt, 0);
1894 	atomic_set(&device->unacked_cnt, 0);
1895 	atomic_set(&device->local_cnt, 0);
1896 	atomic_set(&device->pp_in_use_by_net, 0);
1897 	atomic_set(&device->rs_sect_in, 0);
1898 	atomic_set(&device->rs_sect_ev, 0);
1899 	atomic_set(&device->ap_in_flight, 0);
1900 	atomic_set(&device->md_io_in_use, 0);
1901 
1902 	mutex_init(&device->own_state_mutex);
1903 	device->state_mutex = &device->own_state_mutex;
1904 
1905 	spin_lock_init(&device->al_lock);
1906 	spin_lock_init(&device->peer_seq_lock);
1907 
1908 	INIT_LIST_HEAD(&device->active_ee);
1909 	INIT_LIST_HEAD(&device->sync_ee);
1910 	INIT_LIST_HEAD(&device->done_ee);
1911 	INIT_LIST_HEAD(&device->read_ee);
1912 	INIT_LIST_HEAD(&device->net_ee);
1913 	INIT_LIST_HEAD(&device->resync_reads);
1914 	INIT_LIST_HEAD(&device->resync_work.list);
1915 	INIT_LIST_HEAD(&device->unplug_work.list);
1916 	INIT_LIST_HEAD(&device->go_diskless.list);
1917 	INIT_LIST_HEAD(&device->md_sync_work.list);
1918 	INIT_LIST_HEAD(&device->start_resync_work.list);
1919 	INIT_LIST_HEAD(&device->bm_io_work.w.list);
1920 
1921 	device->resync_work.cb  = w_resync_timer;
1922 	device->unplug_work.cb  = w_send_write_hint;
1923 	device->go_diskless.cb  = w_go_diskless;
1924 	device->md_sync_work.cb = w_md_sync;
1925 	device->bm_io_work.w.cb = w_bitmap_io;
1926 	device->start_resync_work.cb = w_start_resync;
1927 
1928 	init_timer(&device->resync_timer);
1929 	init_timer(&device->md_sync_timer);
1930 	init_timer(&device->start_resync_timer);
1931 	init_timer(&device->request_timer);
1932 	device->resync_timer.function = resync_timer_fn;
1933 	device->resync_timer.data = (unsigned long) device;
1934 	device->md_sync_timer.function = md_sync_timer_fn;
1935 	device->md_sync_timer.data = (unsigned long) device;
1936 	device->start_resync_timer.function = start_resync_timer_fn;
1937 	device->start_resync_timer.data = (unsigned long) device;
1938 	device->request_timer.function = request_timer_fn;
1939 	device->request_timer.data = (unsigned long) device;
1940 
1941 	init_waitqueue_head(&device->misc_wait);
1942 	init_waitqueue_head(&device->state_wait);
1943 	init_waitqueue_head(&device->ee_wait);
1944 	init_waitqueue_head(&device->al_wait);
1945 	init_waitqueue_head(&device->seq_wait);
1946 
1947 	device->resync_wenr = LC_FREE;
1948 	device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
1949 	device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
1950 }
1951 
1952 void drbd_device_cleanup(struct drbd_device *device)
1953 {
1954 	int i;
1955 	if (first_peer_device(device)->connection->receiver.t_state != NONE)
1956 		drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n",
1957 				first_peer_device(device)->connection->receiver.t_state);
1958 
1959 	device->al_writ_cnt  =
1960 	device->bm_writ_cnt  =
1961 	device->read_cnt     =
1962 	device->recv_cnt     =
1963 	device->send_cnt     =
1964 	device->writ_cnt     =
1965 	device->p_size       =
1966 	device->rs_start     =
1967 	device->rs_total     =
1968 	device->rs_failed    = 0;
1969 	device->rs_last_events = 0;
1970 	device->rs_last_sect_ev = 0;
1971 	for (i = 0; i < DRBD_SYNC_MARKS; i++) {
1972 		device->rs_mark_left[i] = 0;
1973 		device->rs_mark_time[i] = 0;
1974 	}
1975 	D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL);
1976 
1977 	drbd_set_my_capacity(device, 0);
1978 	if (device->bitmap) {
1979 		/* maybe never allocated. */
1980 		drbd_bm_resize(device, 0, 1);
1981 		drbd_bm_cleanup(device);
1982 	}
1983 
1984 	drbd_free_bc(device->ldev);
1985 	device->ldev = NULL;
1986 
1987 	clear_bit(AL_SUSPENDED, &device->flags);
1988 
1989 	D_ASSERT(device, list_empty(&device->active_ee));
1990 	D_ASSERT(device, list_empty(&device->sync_ee));
1991 	D_ASSERT(device, list_empty(&device->done_ee));
1992 	D_ASSERT(device, list_empty(&device->read_ee));
1993 	D_ASSERT(device, list_empty(&device->net_ee));
1994 	D_ASSERT(device, list_empty(&device->resync_reads));
1995 	D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q));
1996 	D_ASSERT(device, list_empty(&device->resync_work.list));
1997 	D_ASSERT(device, list_empty(&device->unplug_work.list));
1998 	D_ASSERT(device, list_empty(&device->go_diskless.list));
1999 
2000 	drbd_set_defaults(device);
2001 }
2002 
2003 
2004 static void drbd_destroy_mempools(void)
2005 {
2006 	struct page *page;
2007 
2008 	while (drbd_pp_pool) {
2009 		page = drbd_pp_pool;
2010 		drbd_pp_pool = (struct page *)page_private(page);
2011 		__free_page(page);
2012 		drbd_pp_vacant--;
2013 	}
2014 
2015 	/* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */
2016 
2017 	if (drbd_md_io_bio_set)
2018 		bioset_free(drbd_md_io_bio_set);
2019 	if (drbd_md_io_page_pool)
2020 		mempool_destroy(drbd_md_io_page_pool);
2021 	if (drbd_ee_mempool)
2022 		mempool_destroy(drbd_ee_mempool);
2023 	if (drbd_request_mempool)
2024 		mempool_destroy(drbd_request_mempool);
2025 	if (drbd_ee_cache)
2026 		kmem_cache_destroy(drbd_ee_cache);
2027 	if (drbd_request_cache)
2028 		kmem_cache_destroy(drbd_request_cache);
2029 	if (drbd_bm_ext_cache)
2030 		kmem_cache_destroy(drbd_bm_ext_cache);
2031 	if (drbd_al_ext_cache)
2032 		kmem_cache_destroy(drbd_al_ext_cache);
2033 
2034 	drbd_md_io_bio_set   = NULL;
2035 	drbd_md_io_page_pool = NULL;
2036 	drbd_ee_mempool      = NULL;
2037 	drbd_request_mempool = NULL;
2038 	drbd_ee_cache        = NULL;
2039 	drbd_request_cache   = NULL;
2040 	drbd_bm_ext_cache    = NULL;
2041 	drbd_al_ext_cache    = NULL;
2042 
2043 	return;
2044 }
2045 
2046 static int drbd_create_mempools(void)
2047 {
2048 	struct page *page;
2049 	const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * minor_count;
2050 	int i;
2051 
2052 	/* prepare our caches and mempools */
2053 	drbd_request_mempool = NULL;
2054 	drbd_ee_cache        = NULL;
2055 	drbd_request_cache   = NULL;
2056 	drbd_bm_ext_cache    = NULL;
2057 	drbd_al_ext_cache    = NULL;
2058 	drbd_pp_pool         = NULL;
2059 	drbd_md_io_page_pool = NULL;
2060 	drbd_md_io_bio_set   = NULL;
2061 
2062 	/* caches */
2063 	drbd_request_cache = kmem_cache_create(
2064 		"drbd_req", sizeof(struct drbd_request), 0, 0, NULL);
2065 	if (drbd_request_cache == NULL)
2066 		goto Enomem;
2067 
2068 	drbd_ee_cache = kmem_cache_create(
2069 		"drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL);
2070 	if (drbd_ee_cache == NULL)
2071 		goto Enomem;
2072 
2073 	drbd_bm_ext_cache = kmem_cache_create(
2074 		"drbd_bm", sizeof(struct bm_extent), 0, 0, NULL);
2075 	if (drbd_bm_ext_cache == NULL)
2076 		goto Enomem;
2077 
2078 	drbd_al_ext_cache = kmem_cache_create(
2079 		"drbd_al", sizeof(struct lc_element), 0, 0, NULL);
2080 	if (drbd_al_ext_cache == NULL)
2081 		goto Enomem;
2082 
2083 	/* mempools */
2084 	drbd_md_io_bio_set = bioset_create(DRBD_MIN_POOL_PAGES, 0);
2085 	if (drbd_md_io_bio_set == NULL)
2086 		goto Enomem;
2087 
2088 	drbd_md_io_page_pool = mempool_create_page_pool(DRBD_MIN_POOL_PAGES, 0);
2089 	if (drbd_md_io_page_pool == NULL)
2090 		goto Enomem;
2091 
2092 	drbd_request_mempool = mempool_create(number,
2093 		mempool_alloc_slab, mempool_free_slab, drbd_request_cache);
2094 	if (drbd_request_mempool == NULL)
2095 		goto Enomem;
2096 
2097 	drbd_ee_mempool = mempool_create(number,
2098 		mempool_alloc_slab, mempool_free_slab, drbd_ee_cache);
2099 	if (drbd_ee_mempool == NULL)
2100 		goto Enomem;
2101 
2102 	/* drbd's page pool */
2103 	spin_lock_init(&drbd_pp_lock);
2104 
2105 	for (i = 0; i < number; i++) {
2106 		page = alloc_page(GFP_HIGHUSER);
2107 		if (!page)
2108 			goto Enomem;
2109 		set_page_private(page, (unsigned long)drbd_pp_pool);
2110 		drbd_pp_pool = page;
2111 	}
2112 	drbd_pp_vacant = number;
2113 
2114 	return 0;
2115 
2116 Enomem:
2117 	drbd_destroy_mempools(); /* in case we allocated some */
2118 	return -ENOMEM;
2119 }
2120 
2121 static int drbd_notify_sys(struct notifier_block *this, unsigned long code,
2122 	void *unused)
2123 {
2124 	/* just so we have it.  you never know what interesting things we
2125 	 * might want to do here some day...
2126 	 */
2127 
2128 	return NOTIFY_DONE;
2129 }
2130 
2131 static struct notifier_block drbd_notifier = {
2132 	.notifier_call = drbd_notify_sys,
2133 };
2134 
2135 static void drbd_release_all_peer_reqs(struct drbd_device *device)
2136 {
2137 	int rr;
2138 
2139 	rr = drbd_free_peer_reqs(device, &device->active_ee);
2140 	if (rr)
2141 		drbd_err(device, "%d EEs in active list found!\n", rr);
2142 
2143 	rr = drbd_free_peer_reqs(device, &device->sync_ee);
2144 	if (rr)
2145 		drbd_err(device, "%d EEs in sync list found!\n", rr);
2146 
2147 	rr = drbd_free_peer_reqs(device, &device->read_ee);
2148 	if (rr)
2149 		drbd_err(device, "%d EEs in read list found!\n", rr);
2150 
2151 	rr = drbd_free_peer_reqs(device, &device->done_ee);
2152 	if (rr)
2153 		drbd_err(device, "%d EEs in done list found!\n", rr);
2154 
2155 	rr = drbd_free_peer_reqs(device, &device->net_ee);
2156 	if (rr)
2157 		drbd_err(device, "%d EEs in net list found!\n", rr);
2158 }
2159 
2160 /* caution. no locking. */
2161 void drbd_destroy_device(struct kref *kref)
2162 {
2163 	struct drbd_device *device = container_of(kref, struct drbd_device, kref);
2164 	struct drbd_resource *resource = device->resource;
2165 	struct drbd_connection *connection;
2166 
2167 	del_timer_sync(&device->request_timer);
2168 
2169 	/* paranoia asserts */
2170 	D_ASSERT(device, device->open_cnt == 0);
2171 	/* end paranoia asserts */
2172 
2173 	/* cleanup stuff that may have been allocated during
2174 	 * device (re-)configuration or state changes */
2175 
2176 	if (device->this_bdev)
2177 		bdput(device->this_bdev);
2178 
2179 	drbd_free_bc(device->ldev);
2180 	device->ldev = NULL;
2181 
2182 	drbd_release_all_peer_reqs(device);
2183 
2184 	lc_destroy(device->act_log);
2185 	lc_destroy(device->resync);
2186 
2187 	kfree(device->p_uuid);
2188 	/* device->p_uuid = NULL; */
2189 
2190 	if (device->bitmap) /* should no longer be there. */
2191 		drbd_bm_cleanup(device);
2192 	__free_page(device->md_io_page);
2193 	put_disk(device->vdisk);
2194 	blk_cleanup_queue(device->rq_queue);
2195 	kfree(device->rs_plan_s);
2196 	kfree(first_peer_device(device));
2197 	kfree(device);
2198 
2199 	for_each_connection(connection, resource)
2200 		kref_put(&connection->kref, drbd_destroy_connection);
2201 	kref_put(&resource->kref, drbd_destroy_resource);
2202 }
2203 
2204 /* One global retry thread, if we need to push back some bio and have it
2205  * reinserted through our make request function.
2206  */
2207 static struct retry_worker {
2208 	struct workqueue_struct *wq;
2209 	struct work_struct worker;
2210 
2211 	spinlock_t lock;
2212 	struct list_head writes;
2213 } retry;
2214 
2215 static void do_retry(struct work_struct *ws)
2216 {
2217 	struct retry_worker *retry = container_of(ws, struct retry_worker, worker);
2218 	LIST_HEAD(writes);
2219 	struct drbd_request *req, *tmp;
2220 
2221 	spin_lock_irq(&retry->lock);
2222 	list_splice_init(&retry->writes, &writes);
2223 	spin_unlock_irq(&retry->lock);
2224 
2225 	list_for_each_entry_safe(req, tmp, &writes, tl_requests) {
2226 		struct drbd_device *device = req->device;
2227 		struct bio *bio = req->master_bio;
2228 		unsigned long start_time = req->start_time;
2229 		bool expected;
2230 
2231 		expected =
2232 			expect(atomic_read(&req->completion_ref) == 0) &&
2233 			expect(req->rq_state & RQ_POSTPONED) &&
2234 			expect((req->rq_state & RQ_LOCAL_PENDING) == 0 ||
2235 				(req->rq_state & RQ_LOCAL_ABORTED) != 0);
2236 
2237 		if (!expected)
2238 			drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n",
2239 				req, atomic_read(&req->completion_ref),
2240 				req->rq_state);
2241 
2242 		/* We still need to put one kref associated with the
2243 		 * "completion_ref" going zero in the code path that queued it
2244 		 * here.  The request object may still be referenced by a
2245 		 * frozen local req->private_bio, in case we force-detached.
2246 		 */
2247 		kref_put(&req->kref, drbd_req_destroy);
2248 
2249 		/* A single suspended or otherwise blocking device may stall
2250 		 * all others as well.  Fortunately, this code path is to
2251 		 * recover from a situation that "should not happen":
2252 		 * concurrent writes in multi-primary setup.
2253 		 * In a "normal" lifecycle, this workqueue is supposed to be
2254 		 * destroyed without ever doing anything.
2255 		 * If it turns out to be an issue anyways, we can do per
2256 		 * resource (replication group) or per device (minor) retry
2257 		 * workqueues instead.
2258 		 */
2259 
2260 		/* We are not just doing generic_make_request(),
2261 		 * as we want to keep the start_time information. */
2262 		inc_ap_bio(device);
2263 		__drbd_make_request(device, bio, start_time);
2264 	}
2265 }
2266 
2267 void drbd_restart_request(struct drbd_request *req)
2268 {
2269 	unsigned long flags;
2270 	spin_lock_irqsave(&retry.lock, flags);
2271 	list_move_tail(&req->tl_requests, &retry.writes);
2272 	spin_unlock_irqrestore(&retry.lock, flags);
2273 
2274 	/* Drop the extra reference that would otherwise
2275 	 * have been dropped by complete_master_bio.
2276 	 * do_retry() needs to grab a new one. */
2277 	dec_ap_bio(req->device);
2278 
2279 	queue_work(retry.wq, &retry.worker);
2280 }
2281 
2282 void drbd_destroy_resource(struct kref *kref)
2283 {
2284 	struct drbd_resource *resource =
2285 		container_of(kref, struct drbd_resource, kref);
2286 
2287 	idr_destroy(&resource->devices);
2288 	free_cpumask_var(resource->cpu_mask);
2289 	kfree(resource->name);
2290 	kfree(resource);
2291 }
2292 
2293 void drbd_free_resource(struct drbd_resource *resource)
2294 {
2295 	struct drbd_connection *connection, *tmp;
2296 
2297 	for_each_connection_safe(connection, tmp, resource) {
2298 		list_del(&connection->connections);
2299 		kref_put(&connection->kref, drbd_destroy_connection);
2300 	}
2301 	kref_put(&resource->kref, drbd_destroy_resource);
2302 }
2303 
2304 static void drbd_cleanup(void)
2305 {
2306 	unsigned int i;
2307 	struct drbd_device *device;
2308 	struct drbd_resource *resource, *tmp;
2309 
2310 	unregister_reboot_notifier(&drbd_notifier);
2311 
2312 	/* first remove proc,
2313 	 * drbdsetup uses it's presence to detect
2314 	 * whether DRBD is loaded.
2315 	 * If we would get stuck in proc removal,
2316 	 * but have netlink already deregistered,
2317 	 * some drbdsetup commands may wait forever
2318 	 * for an answer.
2319 	 */
2320 	if (drbd_proc)
2321 		remove_proc_entry("drbd", NULL);
2322 
2323 	if (retry.wq)
2324 		destroy_workqueue(retry.wq);
2325 
2326 	drbd_genl_unregister();
2327 
2328 	idr_for_each_entry(&drbd_devices, device, i)
2329 		drbd_delete_device(device);
2330 
2331 	/* not _rcu since, no other updater anymore. Genl already unregistered */
2332 	for_each_resource_safe(resource, tmp, &drbd_resources) {
2333 		list_del(&resource->resources);
2334 		drbd_free_resource(resource);
2335 	}
2336 
2337 	drbd_destroy_mempools();
2338 	unregister_blkdev(DRBD_MAJOR, "drbd");
2339 
2340 	idr_destroy(&drbd_devices);
2341 
2342 	printk(KERN_INFO "drbd: module cleanup done.\n");
2343 }
2344 
2345 /**
2346  * drbd_congested() - Callback for the flusher thread
2347  * @congested_data:	User data
2348  * @bdi_bits:		Bits the BDI flusher thread is currently interested in
2349  *
2350  * Returns 1<<BDI_async_congested and/or 1<<BDI_sync_congested if we are congested.
2351  */
2352 static int drbd_congested(void *congested_data, int bdi_bits)
2353 {
2354 	struct drbd_device *device = congested_data;
2355 	struct request_queue *q;
2356 	char reason = '-';
2357 	int r = 0;
2358 
2359 	if (!may_inc_ap_bio(device)) {
2360 		/* DRBD has frozen IO */
2361 		r = bdi_bits;
2362 		reason = 'd';
2363 		goto out;
2364 	}
2365 
2366 	if (test_bit(CALLBACK_PENDING, &first_peer_device(device)->connection->flags)) {
2367 		r |= (1 << BDI_async_congested);
2368 		/* Without good local data, we would need to read from remote,
2369 		 * and that would need the worker thread as well, which is
2370 		 * currently blocked waiting for that usermode helper to
2371 		 * finish.
2372 		 */
2373 		if (!get_ldev_if_state(device, D_UP_TO_DATE))
2374 			r |= (1 << BDI_sync_congested);
2375 		else
2376 			put_ldev(device);
2377 		r &= bdi_bits;
2378 		reason = 'c';
2379 		goto out;
2380 	}
2381 
2382 	if (get_ldev(device)) {
2383 		q = bdev_get_queue(device->ldev->backing_bdev);
2384 		r = bdi_congested(&q->backing_dev_info, bdi_bits);
2385 		put_ldev(device);
2386 		if (r)
2387 			reason = 'b';
2388 	}
2389 
2390 	if (bdi_bits & (1 << BDI_async_congested) &&
2391 	    test_bit(NET_CONGESTED, &first_peer_device(device)->connection->flags)) {
2392 		r |= (1 << BDI_async_congested);
2393 		reason = reason == 'b' ? 'a' : 'n';
2394 	}
2395 
2396 out:
2397 	device->congestion_reason = reason;
2398 	return r;
2399 }
2400 
2401 static void drbd_init_workqueue(struct drbd_work_queue* wq)
2402 {
2403 	spin_lock_init(&wq->q_lock);
2404 	INIT_LIST_HEAD(&wq->q);
2405 	init_waitqueue_head(&wq->q_wait);
2406 }
2407 
2408 struct completion_work {
2409 	struct drbd_work w;
2410 	struct completion done;
2411 };
2412 
2413 static int w_complete(struct drbd_work *w, int cancel)
2414 {
2415 	struct completion_work *completion_work =
2416 		container_of(w, struct completion_work, w);
2417 
2418 	complete(&completion_work->done);
2419 	return 0;
2420 }
2421 
2422 void drbd_flush_workqueue(struct drbd_work_queue *work_queue)
2423 {
2424 	struct completion_work completion_work;
2425 
2426 	completion_work.w.cb = w_complete;
2427 	init_completion(&completion_work.done);
2428 	drbd_queue_work(work_queue, &completion_work.w);
2429 	wait_for_completion(&completion_work.done);
2430 }
2431 
2432 struct drbd_resource *drbd_find_resource(const char *name)
2433 {
2434 	struct drbd_resource *resource;
2435 
2436 	if (!name || !name[0])
2437 		return NULL;
2438 
2439 	rcu_read_lock();
2440 	for_each_resource_rcu(resource, &drbd_resources) {
2441 		if (!strcmp(resource->name, name)) {
2442 			kref_get(&resource->kref);
2443 			goto found;
2444 		}
2445 	}
2446 	resource = NULL;
2447 found:
2448 	rcu_read_unlock();
2449 	return resource;
2450 }
2451 
2452 struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len,
2453 				     void *peer_addr, int peer_addr_len)
2454 {
2455 	struct drbd_resource *resource;
2456 	struct drbd_connection *connection;
2457 
2458 	rcu_read_lock();
2459 	for_each_resource_rcu(resource, &drbd_resources) {
2460 		for_each_connection_rcu(connection, resource) {
2461 			if (connection->my_addr_len == my_addr_len &&
2462 			    connection->peer_addr_len == peer_addr_len &&
2463 			    !memcmp(&connection->my_addr, my_addr, my_addr_len) &&
2464 			    !memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) {
2465 				kref_get(&connection->kref);
2466 				goto found;
2467 			}
2468 		}
2469 	}
2470 	connection = NULL;
2471 found:
2472 	rcu_read_unlock();
2473 	return connection;
2474 }
2475 
2476 static int drbd_alloc_socket(struct drbd_socket *socket)
2477 {
2478 	socket->rbuf = (void *) __get_free_page(GFP_KERNEL);
2479 	if (!socket->rbuf)
2480 		return -ENOMEM;
2481 	socket->sbuf = (void *) __get_free_page(GFP_KERNEL);
2482 	if (!socket->sbuf)
2483 		return -ENOMEM;
2484 	return 0;
2485 }
2486 
2487 static void drbd_free_socket(struct drbd_socket *socket)
2488 {
2489 	free_page((unsigned long) socket->sbuf);
2490 	free_page((unsigned long) socket->rbuf);
2491 }
2492 
2493 void conn_free_crypto(struct drbd_connection *connection)
2494 {
2495 	drbd_free_sock(connection);
2496 
2497 	crypto_free_hash(connection->csums_tfm);
2498 	crypto_free_hash(connection->verify_tfm);
2499 	crypto_free_hash(connection->cram_hmac_tfm);
2500 	crypto_free_hash(connection->integrity_tfm);
2501 	crypto_free_hash(connection->peer_integrity_tfm);
2502 	kfree(connection->int_dig_in);
2503 	kfree(connection->int_dig_vv);
2504 
2505 	connection->csums_tfm = NULL;
2506 	connection->verify_tfm = NULL;
2507 	connection->cram_hmac_tfm = NULL;
2508 	connection->integrity_tfm = NULL;
2509 	connection->peer_integrity_tfm = NULL;
2510 	connection->int_dig_in = NULL;
2511 	connection->int_dig_vv = NULL;
2512 }
2513 
2514 int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts)
2515 {
2516 	struct drbd_connection *connection;
2517 	cpumask_var_t new_cpu_mask;
2518 	int err;
2519 
2520 	if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL))
2521 		return -ENOMEM;
2522 		/*
2523 		retcode = ERR_NOMEM;
2524 		drbd_msg_put_info("unable to allocate cpumask");
2525 		*/
2526 
2527 	/* silently ignore cpu mask on UP kernel */
2528 	if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) {
2529 		err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE,
2530 				   cpumask_bits(new_cpu_mask), nr_cpu_ids);
2531 		if (err) {
2532 			drbd_warn(resource, "bitmap_parse() failed with %d\n", err);
2533 			/* retcode = ERR_CPU_MASK_PARSE; */
2534 			goto fail;
2535 		}
2536 	}
2537 	resource->res_opts = *res_opts;
2538 	if (cpumask_empty(new_cpu_mask))
2539 		drbd_calc_cpu_mask(&new_cpu_mask);
2540 	if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) {
2541 		cpumask_copy(resource->cpu_mask, new_cpu_mask);
2542 		for_each_connection_rcu(connection, resource) {
2543 			connection->receiver.reset_cpu_mask = 1;
2544 			connection->asender.reset_cpu_mask = 1;
2545 			connection->worker.reset_cpu_mask = 1;
2546 		}
2547 	}
2548 	err = 0;
2549 
2550 fail:
2551 	free_cpumask_var(new_cpu_mask);
2552 	return err;
2553 
2554 }
2555 
2556 struct drbd_resource *drbd_create_resource(const char *name)
2557 {
2558 	struct drbd_resource *resource;
2559 
2560 	resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL);
2561 	if (!resource)
2562 		goto fail;
2563 	resource->name = kstrdup(name, GFP_KERNEL);
2564 	if (!resource->name)
2565 		goto fail_free_resource;
2566 	if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL))
2567 		goto fail_free_name;
2568 	kref_init(&resource->kref);
2569 	idr_init(&resource->devices);
2570 	INIT_LIST_HEAD(&resource->connections);
2571 	list_add_tail_rcu(&resource->resources, &drbd_resources);
2572 	mutex_init(&resource->conf_update);
2573 	spin_lock_init(&resource->req_lock);
2574 	return resource;
2575 
2576 fail_free_name:
2577 	kfree(resource->name);
2578 fail_free_resource:
2579 	kfree(resource);
2580 fail:
2581 	return NULL;
2582 }
2583 
2584 /* caller must be under genl_lock() */
2585 struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts)
2586 {
2587 	struct drbd_resource *resource;
2588 	struct drbd_connection *connection;
2589 
2590 	connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL);
2591 	if (!connection)
2592 		return NULL;
2593 
2594 	if (drbd_alloc_socket(&connection->data))
2595 		goto fail;
2596 	if (drbd_alloc_socket(&connection->meta))
2597 		goto fail;
2598 
2599 	connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL);
2600 	if (!connection->current_epoch)
2601 		goto fail;
2602 
2603 	INIT_LIST_HEAD(&connection->transfer_log);
2604 
2605 	INIT_LIST_HEAD(&connection->current_epoch->list);
2606 	connection->epochs = 1;
2607 	spin_lock_init(&connection->epoch_lock);
2608 	connection->write_ordering = WO_bdev_flush;
2609 
2610 	connection->send.seen_any_write_yet = false;
2611 	connection->send.current_epoch_nr = 0;
2612 	connection->send.current_epoch_writes = 0;
2613 
2614 	resource = drbd_create_resource(name);
2615 	if (!resource)
2616 		goto fail;
2617 
2618 	connection->cstate = C_STANDALONE;
2619 	mutex_init(&connection->cstate_mutex);
2620 	init_waitqueue_head(&connection->ping_wait);
2621 	idr_init(&connection->peer_devices);
2622 
2623 	drbd_init_workqueue(&connection->sender_work);
2624 	mutex_init(&connection->data.mutex);
2625 	mutex_init(&connection->meta.mutex);
2626 
2627 	drbd_thread_init(resource, &connection->receiver, drbd_receiver, "receiver");
2628 	connection->receiver.connection = connection;
2629 	drbd_thread_init(resource, &connection->worker, drbd_worker, "worker");
2630 	connection->worker.connection = connection;
2631 	drbd_thread_init(resource, &connection->asender, drbd_asender, "asender");
2632 	connection->asender.connection = connection;
2633 
2634 	kref_init(&connection->kref);
2635 
2636 	connection->resource = resource;
2637 
2638 	if (set_resource_options(resource, res_opts))
2639 		goto fail_resource;
2640 
2641 	kref_get(&resource->kref);
2642 	list_add_tail_rcu(&connection->connections, &resource->connections);
2643 	return connection;
2644 
2645 fail_resource:
2646 	list_del(&resource->resources);
2647 	drbd_free_resource(resource);
2648 fail:
2649 	kfree(connection->current_epoch);
2650 	drbd_free_socket(&connection->meta);
2651 	drbd_free_socket(&connection->data);
2652 	kfree(connection);
2653 	return NULL;
2654 }
2655 
2656 void drbd_destroy_connection(struct kref *kref)
2657 {
2658 	struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref);
2659 	struct drbd_resource *resource = connection->resource;
2660 
2661 	if (atomic_read(&connection->current_epoch->epoch_size) !=  0)
2662 		drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size));
2663 	kfree(connection->current_epoch);
2664 
2665 	idr_destroy(&connection->peer_devices);
2666 
2667 	drbd_free_socket(&connection->meta);
2668 	drbd_free_socket(&connection->data);
2669 	kfree(connection->int_dig_in);
2670 	kfree(connection->int_dig_vv);
2671 	kfree(connection);
2672 	kref_put(&resource->kref, drbd_destroy_resource);
2673 }
2674 
2675 static int init_submitter(struct drbd_device *device)
2676 {
2677 	/* opencoded create_singlethread_workqueue(),
2678 	 * to be able to say "drbd%d", ..., minor */
2679 	device->submit.wq = alloc_workqueue("drbd%u_submit",
2680 			WQ_UNBOUND | WQ_MEM_RECLAIM, 1, device->minor);
2681 	if (!device->submit.wq)
2682 		return -ENOMEM;
2683 
2684 	INIT_WORK(&device->submit.worker, do_submit);
2685 	spin_lock_init(&device->submit.lock);
2686 	INIT_LIST_HEAD(&device->submit.writes);
2687 	return 0;
2688 }
2689 
2690 enum drbd_ret_code drbd_create_device(struct drbd_resource *resource, unsigned int minor, int vnr)
2691 {
2692 	struct drbd_connection *connection;
2693 	struct drbd_device *device;
2694 	struct drbd_peer_device *peer_device, *tmp_peer_device;
2695 	struct gendisk *disk;
2696 	struct request_queue *q;
2697 	int id;
2698 	enum drbd_ret_code err = ERR_NOMEM;
2699 
2700 	device = minor_to_device(minor);
2701 	if (device)
2702 		return ERR_MINOR_EXISTS;
2703 
2704 	/* GFP_KERNEL, we are outside of all write-out paths */
2705 	device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL);
2706 	if (!device)
2707 		return ERR_NOMEM;
2708 	kref_init(&device->kref);
2709 
2710 	kref_get(&resource->kref);
2711 	device->resource = resource;
2712 	device->minor = minor;
2713 	device->vnr = vnr;
2714 
2715 	drbd_init_set_defaults(device);
2716 
2717 	q = blk_alloc_queue(GFP_KERNEL);
2718 	if (!q)
2719 		goto out_no_q;
2720 	device->rq_queue = q;
2721 	q->queuedata   = device;
2722 
2723 	disk = alloc_disk(1);
2724 	if (!disk)
2725 		goto out_no_disk;
2726 	device->vdisk = disk;
2727 
2728 	set_disk_ro(disk, true);
2729 
2730 	disk->queue = q;
2731 	disk->major = DRBD_MAJOR;
2732 	disk->first_minor = minor;
2733 	disk->fops = &drbd_ops;
2734 	sprintf(disk->disk_name, "drbd%d", minor);
2735 	disk->private_data = device;
2736 
2737 	device->this_bdev = bdget(MKDEV(DRBD_MAJOR, minor));
2738 	/* we have no partitions. we contain only ourselves. */
2739 	device->this_bdev->bd_contains = device->this_bdev;
2740 
2741 	q->backing_dev_info.congested_fn = drbd_congested;
2742 	q->backing_dev_info.congested_data = device;
2743 
2744 	blk_queue_make_request(q, drbd_make_request);
2745 	blk_queue_flush(q, REQ_FLUSH | REQ_FUA);
2746 	/* Setting the max_hw_sectors to an odd value of 8kibyte here
2747 	   This triggers a max_bio_size message upon first attach or connect */
2748 	blk_queue_max_hw_sectors(q, DRBD_MAX_BIO_SIZE_SAFE >> 8);
2749 	blk_queue_bounce_limit(q, BLK_BOUNCE_ANY);
2750 	blk_queue_merge_bvec(q, drbd_merge_bvec);
2751 	q->queue_lock = &resource->req_lock;
2752 
2753 	device->md_io_page = alloc_page(GFP_KERNEL);
2754 	if (!device->md_io_page)
2755 		goto out_no_io_page;
2756 
2757 	if (drbd_bm_init(device))
2758 		goto out_no_bitmap;
2759 	device->read_requests = RB_ROOT;
2760 	device->write_requests = RB_ROOT;
2761 
2762 	id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL);
2763 	if (id < 0) {
2764 		if (id == -ENOSPC) {
2765 			err = ERR_MINOR_EXISTS;
2766 			drbd_msg_put_info("requested minor exists already");
2767 		}
2768 		goto out_no_minor_idr;
2769 	}
2770 	kref_get(&device->kref);
2771 
2772 	id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL);
2773 	if (id < 0) {
2774 		if (id == -ENOSPC) {
2775 			err = ERR_MINOR_EXISTS;
2776 			drbd_msg_put_info("requested minor exists already");
2777 		}
2778 		goto out_idr_remove_minor;
2779 	}
2780 	kref_get(&device->kref);
2781 
2782 	INIT_LIST_HEAD(&device->peer_devices);
2783 	for_each_connection(connection, resource) {
2784 		peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL);
2785 		if (!peer_device)
2786 			goto out_idr_remove_from_resource;
2787 		peer_device->connection = connection;
2788 		peer_device->device = device;
2789 
2790 		list_add(&peer_device->peer_devices, &device->peer_devices);
2791 		kref_get(&device->kref);
2792 
2793 		id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL);
2794 		if (id < 0) {
2795 			if (id == -ENOSPC) {
2796 				err = ERR_INVALID_REQUEST;
2797 				drbd_msg_put_info("requested volume exists already");
2798 			}
2799 			goto out_idr_remove_from_resource;
2800 		}
2801 		kref_get(&connection->kref);
2802 	}
2803 
2804 	if (init_submitter(device)) {
2805 		err = ERR_NOMEM;
2806 		drbd_msg_put_info("unable to create submit workqueue");
2807 		goto out_idr_remove_vol;
2808 	}
2809 
2810 	add_disk(disk);
2811 
2812 	/* inherit the connection state */
2813 	device->state.conn = first_connection(resource)->cstate;
2814 	if (device->state.conn == C_WF_REPORT_PARAMS) {
2815 		for_each_peer_device(peer_device, device)
2816 			drbd_connected(peer_device);
2817 	}
2818 
2819 	return NO_ERROR;
2820 
2821 out_idr_remove_vol:
2822 	idr_remove(&connection->peer_devices, vnr);
2823 out_idr_remove_from_resource:
2824 	for_each_connection(connection, resource) {
2825 		peer_device = idr_find(&connection->peer_devices, vnr);
2826 		if (peer_device) {
2827 			idr_remove(&connection->peer_devices, vnr);
2828 			kref_put(&connection->kref, drbd_destroy_connection);
2829 		}
2830 	}
2831 	for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2832 		list_del(&peer_device->peer_devices);
2833 		kfree(peer_device);
2834 	}
2835 	idr_remove(&resource->devices, vnr);
2836 out_idr_remove_minor:
2837 	idr_remove(&drbd_devices, minor);
2838 	synchronize_rcu();
2839 out_no_minor_idr:
2840 	drbd_bm_cleanup(device);
2841 out_no_bitmap:
2842 	__free_page(device->md_io_page);
2843 out_no_io_page:
2844 	put_disk(disk);
2845 out_no_disk:
2846 	blk_cleanup_queue(q);
2847 out_no_q:
2848 	kref_put(&resource->kref, drbd_destroy_resource);
2849 	kfree(device);
2850 	return err;
2851 }
2852 
2853 void drbd_delete_device(struct drbd_device *device)
2854 {
2855 	struct drbd_resource *resource = device->resource;
2856 	struct drbd_connection *connection;
2857 	int refs = 3;
2858 
2859 	for_each_connection(connection, resource) {
2860 		idr_remove(&connection->peer_devices, device->vnr);
2861 		refs++;
2862 	}
2863 	idr_remove(&resource->devices, device->vnr);
2864 	idr_remove(&drbd_devices, device_to_minor(device));
2865 	del_gendisk(device->vdisk);
2866 	synchronize_rcu();
2867 	kref_sub(&device->kref, refs, drbd_destroy_device);
2868 }
2869 
2870 int __init drbd_init(void)
2871 {
2872 	int err;
2873 
2874 	if (minor_count < DRBD_MINOR_COUNT_MIN || minor_count > DRBD_MINOR_COUNT_MAX) {
2875 		printk(KERN_ERR
2876 		       "drbd: invalid minor_count (%d)\n", minor_count);
2877 #ifdef MODULE
2878 		return -EINVAL;
2879 #else
2880 		minor_count = DRBD_MINOR_COUNT_DEF;
2881 #endif
2882 	}
2883 
2884 	err = register_blkdev(DRBD_MAJOR, "drbd");
2885 	if (err) {
2886 		printk(KERN_ERR
2887 		       "drbd: unable to register block device major %d\n",
2888 		       DRBD_MAJOR);
2889 		return err;
2890 	}
2891 
2892 	register_reboot_notifier(&drbd_notifier);
2893 
2894 	/*
2895 	 * allocate all necessary structs
2896 	 */
2897 	init_waitqueue_head(&drbd_pp_wait);
2898 
2899 	drbd_proc = NULL; /* play safe for drbd_cleanup */
2900 	idr_init(&drbd_devices);
2901 
2902 	rwlock_init(&global_state_lock);
2903 	INIT_LIST_HEAD(&drbd_resources);
2904 
2905 	err = drbd_genl_register();
2906 	if (err) {
2907 		printk(KERN_ERR "drbd: unable to register generic netlink family\n");
2908 		goto fail;
2909 	}
2910 
2911 	err = drbd_create_mempools();
2912 	if (err)
2913 		goto fail;
2914 
2915 	err = -ENOMEM;
2916 	drbd_proc = proc_create_data("drbd", S_IFREG | S_IRUGO , NULL, &drbd_proc_fops, NULL);
2917 	if (!drbd_proc)	{
2918 		printk(KERN_ERR "drbd: unable to register proc file\n");
2919 		goto fail;
2920 	}
2921 
2922 	retry.wq = create_singlethread_workqueue("drbd-reissue");
2923 	if (!retry.wq) {
2924 		printk(KERN_ERR "drbd: unable to create retry workqueue\n");
2925 		goto fail;
2926 	}
2927 	INIT_WORK(&retry.worker, do_retry);
2928 	spin_lock_init(&retry.lock);
2929 	INIT_LIST_HEAD(&retry.writes);
2930 
2931 	printk(KERN_INFO "drbd: initialized. "
2932 	       "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n",
2933 	       API_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX);
2934 	printk(KERN_INFO "drbd: %s\n", drbd_buildtag());
2935 	printk(KERN_INFO "drbd: registered as block device major %d\n",
2936 		DRBD_MAJOR);
2937 
2938 	return 0; /* Success! */
2939 
2940 fail:
2941 	drbd_cleanup();
2942 	if (err == -ENOMEM)
2943 		printk(KERN_ERR "drbd: ran out of memory\n");
2944 	else
2945 		printk(KERN_ERR "drbd: initialization failure\n");
2946 	return err;
2947 }
2948 
2949 void drbd_free_bc(struct drbd_backing_dev *ldev)
2950 {
2951 	if (ldev == NULL)
2952 		return;
2953 
2954 	blkdev_put(ldev->backing_bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2955 	blkdev_put(ldev->md_bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2956 
2957 	kfree(ldev->disk_conf);
2958 	kfree(ldev);
2959 }
2960 
2961 void drbd_free_sock(struct drbd_connection *connection)
2962 {
2963 	if (connection->data.socket) {
2964 		mutex_lock(&connection->data.mutex);
2965 		kernel_sock_shutdown(connection->data.socket, SHUT_RDWR);
2966 		sock_release(connection->data.socket);
2967 		connection->data.socket = NULL;
2968 		mutex_unlock(&connection->data.mutex);
2969 	}
2970 	if (connection->meta.socket) {
2971 		mutex_lock(&connection->meta.mutex);
2972 		kernel_sock_shutdown(connection->meta.socket, SHUT_RDWR);
2973 		sock_release(connection->meta.socket);
2974 		connection->meta.socket = NULL;
2975 		mutex_unlock(&connection->meta.mutex);
2976 	}
2977 }
2978 
2979 /* meta data management */
2980 
2981 void conn_md_sync(struct drbd_connection *connection)
2982 {
2983 	struct drbd_peer_device *peer_device;
2984 	int vnr;
2985 
2986 	rcu_read_lock();
2987 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
2988 		struct drbd_device *device = peer_device->device;
2989 
2990 		kref_get(&device->kref);
2991 		rcu_read_unlock();
2992 		drbd_md_sync(device);
2993 		kref_put(&device->kref, drbd_destroy_device);
2994 		rcu_read_lock();
2995 	}
2996 	rcu_read_unlock();
2997 }
2998 
2999 /* aligned 4kByte */
3000 struct meta_data_on_disk {
3001 	u64 la_size_sect;      /* last agreed size. */
3002 	u64 uuid[UI_SIZE];   /* UUIDs. */
3003 	u64 device_uuid;
3004 	u64 reserved_u64_1;
3005 	u32 flags;             /* MDF */
3006 	u32 magic;
3007 	u32 md_size_sect;
3008 	u32 al_offset;         /* offset to this block */
3009 	u32 al_nr_extents;     /* important for restoring the AL (userspace) */
3010 	      /* `-- act_log->nr_elements <-- ldev->dc.al_extents */
3011 	u32 bm_offset;         /* offset to the bitmap, from here */
3012 	u32 bm_bytes_per_bit;  /* BM_BLOCK_SIZE */
3013 	u32 la_peer_max_bio_size;   /* last peer max_bio_size */
3014 
3015 	/* see al_tr_number_to_on_disk_sector() */
3016 	u32 al_stripes;
3017 	u32 al_stripe_size_4k;
3018 
3019 	u8 reserved_u8[4096 - (7*8 + 10*4)];
3020 } __packed;
3021 
3022 
3023 
3024 void drbd_md_write(struct drbd_device *device, void *b)
3025 {
3026 	struct meta_data_on_disk *buffer = b;
3027 	sector_t sector;
3028 	int i;
3029 
3030 	memset(buffer, 0, sizeof(*buffer));
3031 
3032 	buffer->la_size_sect = cpu_to_be64(drbd_get_capacity(device->this_bdev));
3033 	for (i = UI_CURRENT; i < UI_SIZE; i++)
3034 		buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
3035 	buffer->flags = cpu_to_be32(device->ldev->md.flags);
3036 	buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN);
3037 
3038 	buffer->md_size_sect  = cpu_to_be32(device->ldev->md.md_size_sect);
3039 	buffer->al_offset     = cpu_to_be32(device->ldev->md.al_offset);
3040 	buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements);
3041 	buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE);
3042 	buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid);
3043 
3044 	buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset);
3045 	buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size);
3046 
3047 	buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes);
3048 	buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k);
3049 
3050 	D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset);
3051 	sector = device->ldev->md.md_offset;
3052 
3053 	if (drbd_md_sync_page_io(device, device->ldev, sector, WRITE)) {
3054 		/* this was a try anyways ... */
3055 		drbd_err(device, "meta data update failed!\n");
3056 		drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR);
3057 	}
3058 }
3059 
3060 /**
3061  * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set
3062  * @device:	DRBD device.
3063  */
3064 void drbd_md_sync(struct drbd_device *device)
3065 {
3066 	struct meta_data_on_disk *buffer;
3067 
3068 	/* Don't accidentally change the DRBD meta data layout. */
3069 	BUILD_BUG_ON(UI_SIZE != 4);
3070 	BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096);
3071 
3072 	del_timer(&device->md_sync_timer);
3073 	/* timer may be rearmed by drbd_md_mark_dirty() now. */
3074 	if (!test_and_clear_bit(MD_DIRTY, &device->flags))
3075 		return;
3076 
3077 	/* We use here D_FAILED and not D_ATTACHING because we try to write
3078 	 * metadata even if we detach due to a disk failure! */
3079 	if (!get_ldev_if_state(device, D_FAILED))
3080 		return;
3081 
3082 	buffer = drbd_md_get_buffer(device);
3083 	if (!buffer)
3084 		goto out;
3085 
3086 	drbd_md_write(device, buffer);
3087 
3088 	/* Update device->ldev->md.la_size_sect,
3089 	 * since we updated it on metadata. */
3090 	device->ldev->md.la_size_sect = drbd_get_capacity(device->this_bdev);
3091 
3092 	drbd_md_put_buffer(device);
3093 out:
3094 	put_ldev(device);
3095 }
3096 
3097 static int check_activity_log_stripe_size(struct drbd_device *device,
3098 		struct meta_data_on_disk *on_disk,
3099 		struct drbd_md *in_core)
3100 {
3101 	u32 al_stripes = be32_to_cpu(on_disk->al_stripes);
3102 	u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k);
3103 	u64 al_size_4k;
3104 
3105 	/* both not set: default to old fixed size activity log */
3106 	if (al_stripes == 0 && al_stripe_size_4k == 0) {
3107 		al_stripes = 1;
3108 		al_stripe_size_4k = MD_32kB_SECT/8;
3109 	}
3110 
3111 	/* some paranoia plausibility checks */
3112 
3113 	/* we need both values to be set */
3114 	if (al_stripes == 0 || al_stripe_size_4k == 0)
3115 		goto err;
3116 
3117 	al_size_4k = (u64)al_stripes * al_stripe_size_4k;
3118 
3119 	/* Upper limit of activity log area, to avoid potential overflow
3120 	 * problems in al_tr_number_to_on_disk_sector(). As right now, more
3121 	 * than 72 * 4k blocks total only increases the amount of history,
3122 	 * limiting this arbitrarily to 16 GB is not a real limitation ;-)  */
3123 	if (al_size_4k > (16 * 1024 * 1024/4))
3124 		goto err;
3125 
3126 	/* Lower limit: we need at least 8 transaction slots (32kB)
3127 	 * to not break existing setups */
3128 	if (al_size_4k < MD_32kB_SECT/8)
3129 		goto err;
3130 
3131 	in_core->al_stripe_size_4k = al_stripe_size_4k;
3132 	in_core->al_stripes = al_stripes;
3133 	in_core->al_size_4k = al_size_4k;
3134 
3135 	return 0;
3136 err:
3137 	drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n",
3138 			al_stripes, al_stripe_size_4k);
3139 	return -EINVAL;
3140 }
3141 
3142 static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev)
3143 {
3144 	sector_t capacity = drbd_get_capacity(bdev->md_bdev);
3145 	struct drbd_md *in_core = &bdev->md;
3146 	s32 on_disk_al_sect;
3147 	s32 on_disk_bm_sect;
3148 
3149 	/* The on-disk size of the activity log, calculated from offsets, and
3150 	 * the size of the activity log calculated from the stripe settings,
3151 	 * should match.
3152 	 * Though we could relax this a bit: it is ok, if the striped activity log
3153 	 * fits in the available on-disk activity log size.
3154 	 * Right now, that would break how resize is implemented.
3155 	 * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware
3156 	 * of possible unused padding space in the on disk layout. */
3157 	if (in_core->al_offset < 0) {
3158 		if (in_core->bm_offset > in_core->al_offset)
3159 			goto err;
3160 		on_disk_al_sect = -in_core->al_offset;
3161 		on_disk_bm_sect = in_core->al_offset - in_core->bm_offset;
3162 	} else {
3163 		if (in_core->al_offset != MD_4kB_SECT)
3164 			goto err;
3165 		if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT)
3166 			goto err;
3167 
3168 		on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT;
3169 		on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset;
3170 	}
3171 
3172 	/* old fixed size meta data is exactly that: fixed. */
3173 	if (in_core->meta_dev_idx >= 0) {
3174 		if (in_core->md_size_sect != MD_128MB_SECT
3175 		||  in_core->al_offset != MD_4kB_SECT
3176 		||  in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT
3177 		||  in_core->al_stripes != 1
3178 		||  in_core->al_stripe_size_4k != MD_32kB_SECT/8)
3179 			goto err;
3180 	}
3181 
3182 	if (capacity < in_core->md_size_sect)
3183 		goto err;
3184 	if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev))
3185 		goto err;
3186 
3187 	/* should be aligned, and at least 32k */
3188 	if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT))
3189 		goto err;
3190 
3191 	/* should fit (for now: exactly) into the available on-disk space;
3192 	 * overflow prevention is in check_activity_log_stripe_size() above. */
3193 	if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT)
3194 		goto err;
3195 
3196 	/* again, should be aligned */
3197 	if (in_core->bm_offset & 7)
3198 		goto err;
3199 
3200 	/* FIXME check for device grow with flex external meta data? */
3201 
3202 	/* can the available bitmap space cover the last agreed device size? */
3203 	if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512)
3204 		goto err;
3205 
3206 	return 0;
3207 
3208 err:
3209 	drbd_err(device, "meta data offsets don't make sense: idx=%d "
3210 			"al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, "
3211 			"md_size_sect=%u, la_size=%llu, md_capacity=%llu\n",
3212 			in_core->meta_dev_idx,
3213 			in_core->al_stripes, in_core->al_stripe_size_4k,
3214 			in_core->al_offset, in_core->bm_offset, in_core->md_size_sect,
3215 			(unsigned long long)in_core->la_size_sect,
3216 			(unsigned long long)capacity);
3217 
3218 	return -EINVAL;
3219 }
3220 
3221 
3222 /**
3223  * drbd_md_read() - Reads in the meta data super block
3224  * @device:	DRBD device.
3225  * @bdev:	Device from which the meta data should be read in.
3226  *
3227  * Return NO_ERROR on success, and an enum drbd_ret_code in case
3228  * something goes wrong.
3229  *
3230  * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS,
3231  * even before @bdev is assigned to @device->ldev.
3232  */
3233 int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev)
3234 {
3235 	struct meta_data_on_disk *buffer;
3236 	u32 magic, flags;
3237 	int i, rv = NO_ERROR;
3238 
3239 	if (device->state.disk != D_DISKLESS)
3240 		return ERR_DISK_CONFIGURED;
3241 
3242 	buffer = drbd_md_get_buffer(device);
3243 	if (!buffer)
3244 		return ERR_NOMEM;
3245 
3246 	/* First, figure out where our meta data superblock is located,
3247 	 * and read it. */
3248 	bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx;
3249 	bdev->md.md_offset = drbd_md_ss(bdev);
3250 
3251 	if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset, READ)) {
3252 		/* NOTE: can't do normal error processing here as this is
3253 		   called BEFORE disk is attached */
3254 		drbd_err(device, "Error while reading metadata.\n");
3255 		rv = ERR_IO_MD_DISK;
3256 		goto err;
3257 	}
3258 
3259 	magic = be32_to_cpu(buffer->magic);
3260 	flags = be32_to_cpu(buffer->flags);
3261 	if (magic == DRBD_MD_MAGIC_84_UNCLEAN ||
3262 	    (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) {
3263 			/* btw: that's Activity Log clean, not "all" clean. */
3264 		drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n");
3265 		rv = ERR_MD_UNCLEAN;
3266 		goto err;
3267 	}
3268 
3269 	rv = ERR_MD_INVALID;
3270 	if (magic != DRBD_MD_MAGIC_08) {
3271 		if (magic == DRBD_MD_MAGIC_07)
3272 			drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n");
3273 		else
3274 			drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n");
3275 		goto err;
3276 	}
3277 
3278 	if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) {
3279 		drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n",
3280 		    be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE);
3281 		goto err;
3282 	}
3283 
3284 
3285 	/* convert to in_core endian */
3286 	bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect);
3287 	for (i = UI_CURRENT; i < UI_SIZE; i++)
3288 		bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]);
3289 	bdev->md.flags = be32_to_cpu(buffer->flags);
3290 	bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid);
3291 
3292 	bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect);
3293 	bdev->md.al_offset = be32_to_cpu(buffer->al_offset);
3294 	bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset);
3295 
3296 	if (check_activity_log_stripe_size(device, buffer, &bdev->md))
3297 		goto err;
3298 	if (check_offsets_and_sizes(device, bdev))
3299 		goto err;
3300 
3301 	if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) {
3302 		drbd_err(device, "unexpected bm_offset: %d (expected %d)\n",
3303 		    be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset);
3304 		goto err;
3305 	}
3306 	if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) {
3307 		drbd_err(device, "unexpected md_size: %u (expected %u)\n",
3308 		    be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect);
3309 		goto err;
3310 	}
3311 
3312 	rv = NO_ERROR;
3313 
3314 	spin_lock_irq(&device->resource->req_lock);
3315 	if (device->state.conn < C_CONNECTED) {
3316 		unsigned int peer;
3317 		peer = be32_to_cpu(buffer->la_peer_max_bio_size);
3318 		peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE);
3319 		device->peer_max_bio_size = peer;
3320 	}
3321 	spin_unlock_irq(&device->resource->req_lock);
3322 
3323  err:
3324 	drbd_md_put_buffer(device);
3325 
3326 	return rv;
3327 }
3328 
3329 /**
3330  * drbd_md_mark_dirty() - Mark meta data super block as dirty
3331  * @device:	DRBD device.
3332  *
3333  * Call this function if you change anything that should be written to
3334  * the meta-data super block. This function sets MD_DIRTY, and starts a
3335  * timer that ensures that within five seconds you have to call drbd_md_sync().
3336  */
3337 #ifdef DEBUG
3338 void drbd_md_mark_dirty_(struct drbd_device *device, unsigned int line, const char *func)
3339 {
3340 	if (!test_and_set_bit(MD_DIRTY, &device->flags)) {
3341 		mod_timer(&device->md_sync_timer, jiffies + HZ);
3342 		device->last_md_mark_dirty.line = line;
3343 		device->last_md_mark_dirty.func = func;
3344 	}
3345 }
3346 #else
3347 void drbd_md_mark_dirty(struct drbd_device *device)
3348 {
3349 	if (!test_and_set_bit(MD_DIRTY, &device->flags))
3350 		mod_timer(&device->md_sync_timer, jiffies + 5*HZ);
3351 }
3352 #endif
3353 
3354 void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local)
3355 {
3356 	int i;
3357 
3358 	for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++)
3359 		device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i];
3360 }
3361 
3362 void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3363 {
3364 	if (idx == UI_CURRENT) {
3365 		if (device->state.role == R_PRIMARY)
3366 			val |= 1;
3367 		else
3368 			val &= ~((u64)1);
3369 
3370 		drbd_set_ed_uuid(device, val);
3371 	}
3372 
3373 	device->ldev->md.uuid[idx] = val;
3374 	drbd_md_mark_dirty(device);
3375 }
3376 
3377 void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3378 {
3379 	unsigned long flags;
3380 	spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3381 	__drbd_uuid_set(device, idx, val);
3382 	spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3383 }
3384 
3385 void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3386 {
3387 	unsigned long flags;
3388 	spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3389 	if (device->ldev->md.uuid[idx]) {
3390 		drbd_uuid_move_history(device);
3391 		device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx];
3392 	}
3393 	__drbd_uuid_set(device, idx, val);
3394 	spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3395 }
3396 
3397 /**
3398  * drbd_uuid_new_current() - Creates a new current UUID
3399  * @device:	DRBD device.
3400  *
3401  * Creates a new current UUID, and rotates the old current UUID into
3402  * the bitmap slot. Causes an incremental resync upon next connect.
3403  */
3404 void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local)
3405 {
3406 	u64 val;
3407 	unsigned long long bm_uuid;
3408 
3409 	get_random_bytes(&val, sizeof(u64));
3410 
3411 	spin_lock_irq(&device->ldev->md.uuid_lock);
3412 	bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3413 
3414 	if (bm_uuid)
3415 		drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3416 
3417 	device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT];
3418 	__drbd_uuid_set(device, UI_CURRENT, val);
3419 	spin_unlock_irq(&device->ldev->md.uuid_lock);
3420 
3421 	drbd_print_uuids(device, "new current UUID");
3422 	/* get it to stable storage _now_ */
3423 	drbd_md_sync(device);
3424 }
3425 
3426 void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local)
3427 {
3428 	unsigned long flags;
3429 	if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0)
3430 		return;
3431 
3432 	spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3433 	if (val == 0) {
3434 		drbd_uuid_move_history(device);
3435 		device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP];
3436 		device->ldev->md.uuid[UI_BITMAP] = 0;
3437 	} else {
3438 		unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3439 		if (bm_uuid)
3440 			drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3441 
3442 		device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1);
3443 	}
3444 	spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3445 
3446 	drbd_md_mark_dirty(device);
3447 }
3448 
3449 /**
3450  * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3451  * @device:	DRBD device.
3452  *
3453  * Sets all bits in the bitmap and writes the whole bitmap to stable storage.
3454  */
3455 int drbd_bmio_set_n_write(struct drbd_device *device)
3456 {
3457 	int rv = -EIO;
3458 
3459 	if (get_ldev_if_state(device, D_ATTACHING)) {
3460 		drbd_md_set_flag(device, MDF_FULL_SYNC);
3461 		drbd_md_sync(device);
3462 		drbd_bm_set_all(device);
3463 
3464 		rv = drbd_bm_write(device);
3465 
3466 		if (!rv) {
3467 			drbd_md_clear_flag(device, MDF_FULL_SYNC);
3468 			drbd_md_sync(device);
3469 		}
3470 
3471 		put_ldev(device);
3472 	}
3473 
3474 	return rv;
3475 }
3476 
3477 /**
3478  * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3479  * @device:	DRBD device.
3480  *
3481  * Clears all bits in the bitmap and writes the whole bitmap to stable storage.
3482  */
3483 int drbd_bmio_clear_n_write(struct drbd_device *device)
3484 {
3485 	int rv = -EIO;
3486 
3487 	drbd_resume_al(device);
3488 	if (get_ldev_if_state(device, D_ATTACHING)) {
3489 		drbd_bm_clear_all(device);
3490 		rv = drbd_bm_write(device);
3491 		put_ldev(device);
3492 	}
3493 
3494 	return rv;
3495 }
3496 
3497 static int w_bitmap_io(struct drbd_work *w, int unused)
3498 {
3499 	struct drbd_device *device =
3500 		container_of(w, struct drbd_device, bm_io_work.w);
3501 	struct bm_io_work *work = &device->bm_io_work;
3502 	int rv = -EIO;
3503 
3504 	D_ASSERT(device, atomic_read(&device->ap_bio_cnt) == 0);
3505 
3506 	if (get_ldev(device)) {
3507 		drbd_bm_lock(device, work->why, work->flags);
3508 		rv = work->io_fn(device);
3509 		drbd_bm_unlock(device);
3510 		put_ldev(device);
3511 	}
3512 
3513 	clear_bit_unlock(BITMAP_IO, &device->flags);
3514 	wake_up(&device->misc_wait);
3515 
3516 	if (work->done)
3517 		work->done(device, rv);
3518 
3519 	clear_bit(BITMAP_IO_QUEUED, &device->flags);
3520 	work->why = NULL;
3521 	work->flags = 0;
3522 
3523 	return 0;
3524 }
3525 
3526 void drbd_ldev_destroy(struct drbd_device *device)
3527 {
3528 	lc_destroy(device->resync);
3529 	device->resync = NULL;
3530 	lc_destroy(device->act_log);
3531 	device->act_log = NULL;
3532 	__no_warn(local,
3533 		drbd_free_bc(device->ldev);
3534 		device->ldev = NULL;);
3535 
3536 	clear_bit(GO_DISKLESS, &device->flags);
3537 }
3538 
3539 static int w_go_diskless(struct drbd_work *w, int unused)
3540 {
3541 	struct drbd_device *device =
3542 		container_of(w, struct drbd_device, go_diskless);
3543 
3544 	D_ASSERT(device, device->state.disk == D_FAILED);
3545 	/* we cannot assert local_cnt == 0 here, as get_ldev_if_state will
3546 	 * inc/dec it frequently. Once we are D_DISKLESS, no one will touch
3547 	 * the protected members anymore, though, so once put_ldev reaches zero
3548 	 * again, it will be safe to free them. */
3549 
3550 	/* Try to write changed bitmap pages, read errors may have just
3551 	 * set some bits outside the area covered by the activity log.
3552 	 *
3553 	 * If we have an IO error during the bitmap writeout,
3554 	 * we will want a full sync next time, just in case.
3555 	 * (Do we want a specific meta data flag for this?)
3556 	 *
3557 	 * If that does not make it to stable storage either,
3558 	 * we cannot do anything about that anymore.
3559 	 *
3560 	 * We still need to check if both bitmap and ldev are present, we may
3561 	 * end up here after a failed attach, before ldev was even assigned.
3562 	 */
3563 	if (device->bitmap && device->ldev) {
3564 		/* An interrupted resync or similar is allowed to recounts bits
3565 		 * while we detach.
3566 		 * Any modifications would not be expected anymore, though.
3567 		 */
3568 		if (drbd_bitmap_io_from_worker(device, drbd_bm_write,
3569 					"detach", BM_LOCKED_TEST_ALLOWED)) {
3570 			if (test_bit(WAS_READ_ERROR, &device->flags)) {
3571 				drbd_md_set_flag(device, MDF_FULL_SYNC);
3572 				drbd_md_sync(device);
3573 			}
3574 		}
3575 	}
3576 
3577 	drbd_force_state(device, NS(disk, D_DISKLESS));
3578 	return 0;
3579 }
3580 
3581 /**
3582  * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap
3583  * @device:	DRBD device.
3584  * @io_fn:	IO callback to be called when bitmap IO is possible
3585  * @done:	callback to be called after the bitmap IO was performed
3586  * @why:	Descriptive text of the reason for doing the IO
3587  *
3588  * While IO on the bitmap happens we freeze application IO thus we ensure
3589  * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be
3590  * called from worker context. It MUST NOT be used while a previous such
3591  * work is still pending!
3592  */
3593 void drbd_queue_bitmap_io(struct drbd_device *device,
3594 			  int (*io_fn)(struct drbd_device *),
3595 			  void (*done)(struct drbd_device *, int),
3596 			  char *why, enum bm_flag flags)
3597 {
3598 	D_ASSERT(device, current == first_peer_device(device)->connection->worker.task);
3599 
3600 	D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags));
3601 	D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags));
3602 	D_ASSERT(device, list_empty(&device->bm_io_work.w.list));
3603 	if (device->bm_io_work.why)
3604 		drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n",
3605 			why, device->bm_io_work.why);
3606 
3607 	device->bm_io_work.io_fn = io_fn;
3608 	device->bm_io_work.done = done;
3609 	device->bm_io_work.why = why;
3610 	device->bm_io_work.flags = flags;
3611 
3612 	spin_lock_irq(&device->resource->req_lock);
3613 	set_bit(BITMAP_IO, &device->flags);
3614 	if (atomic_read(&device->ap_bio_cnt) == 0) {
3615 		if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags))
3616 			drbd_queue_work(&first_peer_device(device)->connection->sender_work,
3617 					&device->bm_io_work.w);
3618 	}
3619 	spin_unlock_irq(&device->resource->req_lock);
3620 }
3621 
3622 /**
3623  * drbd_bitmap_io() -  Does an IO operation on the whole bitmap
3624  * @device:	DRBD device.
3625  * @io_fn:	IO callback to be called when bitmap IO is possible
3626  * @why:	Descriptive text of the reason for doing the IO
3627  *
3628  * freezes application IO while that the actual IO operations runs. This
3629  * functions MAY NOT be called from worker context.
3630  */
3631 int drbd_bitmap_io(struct drbd_device *device, int (*io_fn)(struct drbd_device *),
3632 		char *why, enum bm_flag flags)
3633 {
3634 	int rv;
3635 
3636 	D_ASSERT(device, current != first_peer_device(device)->connection->worker.task);
3637 
3638 	if ((flags & BM_LOCKED_SET_ALLOWED) == 0)
3639 		drbd_suspend_io(device);
3640 
3641 	drbd_bm_lock(device, why, flags);
3642 	rv = io_fn(device);
3643 	drbd_bm_unlock(device);
3644 
3645 	if ((flags & BM_LOCKED_SET_ALLOWED) == 0)
3646 		drbd_resume_io(device);
3647 
3648 	return rv;
3649 }
3650 
3651 void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local)
3652 {
3653 	if ((device->ldev->md.flags & flag) != flag) {
3654 		drbd_md_mark_dirty(device);
3655 		device->ldev->md.flags |= flag;
3656 	}
3657 }
3658 
3659 void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local)
3660 {
3661 	if ((device->ldev->md.flags & flag) != 0) {
3662 		drbd_md_mark_dirty(device);
3663 		device->ldev->md.flags &= ~flag;
3664 	}
3665 }
3666 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag)
3667 {
3668 	return (bdev->md.flags & flag) != 0;
3669 }
3670 
3671 static void md_sync_timer_fn(unsigned long data)
3672 {
3673 	struct drbd_device *device = (struct drbd_device *) data;
3674 
3675 	/* must not double-queue! */
3676 	if (list_empty(&device->md_sync_work.list))
3677 		drbd_queue_work_front(&first_peer_device(device)->connection->sender_work,
3678 				      &device->md_sync_work);
3679 }
3680 
3681 static int w_md_sync(struct drbd_work *w, int unused)
3682 {
3683 	struct drbd_device *device =
3684 		container_of(w, struct drbd_device, md_sync_work);
3685 
3686 	drbd_warn(device, "md_sync_timer expired! Worker calls drbd_md_sync().\n");
3687 #ifdef DEBUG
3688 	drbd_warn(device, "last md_mark_dirty: %s:%u\n",
3689 		device->last_md_mark_dirty.func, device->last_md_mark_dirty.line);
3690 #endif
3691 	drbd_md_sync(device);
3692 	return 0;
3693 }
3694 
3695 const char *cmdname(enum drbd_packet cmd)
3696 {
3697 	/* THINK may need to become several global tables
3698 	 * when we want to support more than
3699 	 * one PRO_VERSION */
3700 	static const char *cmdnames[] = {
3701 		[P_DATA]	        = "Data",
3702 		[P_DATA_REPLY]	        = "DataReply",
3703 		[P_RS_DATA_REPLY]	= "RSDataReply",
3704 		[P_BARRIER]	        = "Barrier",
3705 		[P_BITMAP]	        = "ReportBitMap",
3706 		[P_BECOME_SYNC_TARGET]  = "BecomeSyncTarget",
3707 		[P_BECOME_SYNC_SOURCE]  = "BecomeSyncSource",
3708 		[P_UNPLUG_REMOTE]	= "UnplugRemote",
3709 		[P_DATA_REQUEST]	= "DataRequest",
3710 		[P_RS_DATA_REQUEST]     = "RSDataRequest",
3711 		[P_SYNC_PARAM]	        = "SyncParam",
3712 		[P_SYNC_PARAM89]	= "SyncParam89",
3713 		[P_PROTOCOL]            = "ReportProtocol",
3714 		[P_UUIDS]	        = "ReportUUIDs",
3715 		[P_SIZES]	        = "ReportSizes",
3716 		[P_STATE]	        = "ReportState",
3717 		[P_SYNC_UUID]           = "ReportSyncUUID",
3718 		[P_AUTH_CHALLENGE]      = "AuthChallenge",
3719 		[P_AUTH_RESPONSE]	= "AuthResponse",
3720 		[P_PING]		= "Ping",
3721 		[P_PING_ACK]	        = "PingAck",
3722 		[P_RECV_ACK]	        = "RecvAck",
3723 		[P_WRITE_ACK]	        = "WriteAck",
3724 		[P_RS_WRITE_ACK]	= "RSWriteAck",
3725 		[P_SUPERSEDED]          = "Superseded",
3726 		[P_NEG_ACK]	        = "NegAck",
3727 		[P_NEG_DREPLY]	        = "NegDReply",
3728 		[P_NEG_RS_DREPLY]	= "NegRSDReply",
3729 		[P_BARRIER_ACK]	        = "BarrierAck",
3730 		[P_STATE_CHG_REQ]       = "StateChgRequest",
3731 		[P_STATE_CHG_REPLY]     = "StateChgReply",
3732 		[P_OV_REQUEST]          = "OVRequest",
3733 		[P_OV_REPLY]            = "OVReply",
3734 		[P_OV_RESULT]           = "OVResult",
3735 		[P_CSUM_RS_REQUEST]     = "CsumRSRequest",
3736 		[P_RS_IS_IN_SYNC]	= "CsumRSIsInSync",
3737 		[P_COMPRESSED_BITMAP]   = "CBitmap",
3738 		[P_DELAY_PROBE]         = "DelayProbe",
3739 		[P_OUT_OF_SYNC]		= "OutOfSync",
3740 		[P_RETRY_WRITE]		= "RetryWrite",
3741 		[P_RS_CANCEL]		= "RSCancel",
3742 		[P_CONN_ST_CHG_REQ]	= "conn_st_chg_req",
3743 		[P_CONN_ST_CHG_REPLY]	= "conn_st_chg_reply",
3744 		[P_RETRY_WRITE]		= "retry_write",
3745 		[P_PROTOCOL_UPDATE]	= "protocol_update",
3746 
3747 		/* enum drbd_packet, but not commands - obsoleted flags:
3748 		 *	P_MAY_IGNORE
3749 		 *	P_MAX_OPT_CMD
3750 		 */
3751 	};
3752 
3753 	/* too big for the array: 0xfffX */
3754 	if (cmd == P_INITIAL_META)
3755 		return "InitialMeta";
3756 	if (cmd == P_INITIAL_DATA)
3757 		return "InitialData";
3758 	if (cmd == P_CONNECTION_FEATURES)
3759 		return "ConnectionFeatures";
3760 	if (cmd >= ARRAY_SIZE(cmdnames))
3761 		return "Unknown";
3762 	return cmdnames[cmd];
3763 }
3764 
3765 /**
3766  * drbd_wait_misc  -  wait for a request to make progress
3767  * @device:	device associated with the request
3768  * @i:		the struct drbd_interval embedded in struct drbd_request or
3769  *		struct drbd_peer_request
3770  */
3771 int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i)
3772 {
3773 	struct net_conf *nc;
3774 	DEFINE_WAIT(wait);
3775 	long timeout;
3776 
3777 	rcu_read_lock();
3778 	nc = rcu_dereference(first_peer_device(device)->connection->net_conf);
3779 	if (!nc) {
3780 		rcu_read_unlock();
3781 		return -ETIMEDOUT;
3782 	}
3783 	timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT;
3784 	rcu_read_unlock();
3785 
3786 	/* Indicate to wake up device->misc_wait on progress.  */
3787 	i->waiting = true;
3788 	prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE);
3789 	spin_unlock_irq(&device->resource->req_lock);
3790 	timeout = schedule_timeout(timeout);
3791 	finish_wait(&device->misc_wait, &wait);
3792 	spin_lock_irq(&device->resource->req_lock);
3793 	if (!timeout || device->state.conn < C_CONNECTED)
3794 		return -ETIMEDOUT;
3795 	if (signal_pending(current))
3796 		return -ERESTARTSYS;
3797 	return 0;
3798 }
3799 
3800 #ifdef CONFIG_DRBD_FAULT_INJECTION
3801 /* Fault insertion support including random number generator shamelessly
3802  * stolen from kernel/rcutorture.c */
3803 struct fault_random_state {
3804 	unsigned long state;
3805 	unsigned long count;
3806 };
3807 
3808 #define FAULT_RANDOM_MULT 39916801  /* prime */
3809 #define FAULT_RANDOM_ADD	479001701 /* prime */
3810 #define FAULT_RANDOM_REFRESH 10000
3811 
3812 /*
3813  * Crude but fast random-number generator.  Uses a linear congruential
3814  * generator, with occasional help from get_random_bytes().
3815  */
3816 static unsigned long
3817 _drbd_fault_random(struct fault_random_state *rsp)
3818 {
3819 	long refresh;
3820 
3821 	if (!rsp->count--) {
3822 		get_random_bytes(&refresh, sizeof(refresh));
3823 		rsp->state += refresh;
3824 		rsp->count = FAULT_RANDOM_REFRESH;
3825 	}
3826 	rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD;
3827 	return swahw32(rsp->state);
3828 }
3829 
3830 static char *
3831 _drbd_fault_str(unsigned int type) {
3832 	static char *_faults[] = {
3833 		[DRBD_FAULT_MD_WR] = "Meta-data write",
3834 		[DRBD_FAULT_MD_RD] = "Meta-data read",
3835 		[DRBD_FAULT_RS_WR] = "Resync write",
3836 		[DRBD_FAULT_RS_RD] = "Resync read",
3837 		[DRBD_FAULT_DT_WR] = "Data write",
3838 		[DRBD_FAULT_DT_RD] = "Data read",
3839 		[DRBD_FAULT_DT_RA] = "Data read ahead",
3840 		[DRBD_FAULT_BM_ALLOC] = "BM allocation",
3841 		[DRBD_FAULT_AL_EE] = "EE allocation",
3842 		[DRBD_FAULT_RECEIVE] = "receive data corruption",
3843 	};
3844 
3845 	return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**";
3846 }
3847 
3848 unsigned int
3849 _drbd_insert_fault(struct drbd_device *device, unsigned int type)
3850 {
3851 	static struct fault_random_state rrs = {0, 0};
3852 
3853 	unsigned int ret = (
3854 		(fault_devs == 0 ||
3855 			((1 << device_to_minor(device)) & fault_devs) != 0) &&
3856 		(((_drbd_fault_random(&rrs) % 100) + 1) <= fault_rate));
3857 
3858 	if (ret) {
3859 		fault_count++;
3860 
3861 		if (__ratelimit(&drbd_ratelimit_state))
3862 			drbd_warn(device, "***Simulating %s failure\n",
3863 				_drbd_fault_str(type));
3864 	}
3865 
3866 	return ret;
3867 }
3868 #endif
3869 
3870 const char *drbd_buildtag(void)
3871 {
3872 	/* DRBD built from external sources has here a reference to the
3873 	   git hash of the source code. */
3874 
3875 	static char buildtag[38] = "\0uilt-in";
3876 
3877 	if (buildtag[0] == 0) {
3878 #ifdef MODULE
3879 		sprintf(buildtag, "srcversion: %-24s", THIS_MODULE->srcversion);
3880 #else
3881 		buildtag[0] = 'b';
3882 #endif
3883 	}
3884 
3885 	return buildtag;
3886 }
3887 
3888 module_init(drbd_init)
3889 module_exit(drbd_cleanup)
3890 
3891 EXPORT_SYMBOL(drbd_conn_str);
3892 EXPORT_SYMBOL(drbd_role_str);
3893 EXPORT_SYMBOL(drbd_disk_str);
3894 EXPORT_SYMBOL(drbd_set_st_err_str);
3895