1 /* 2 drbd.c 3 4 This file is part of DRBD by Philipp Reisner and Lars Ellenberg. 5 6 Copyright (C) 2001-2008, LINBIT Information Technologies GmbH. 7 Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>. 8 Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>. 9 10 Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev 11 from Logicworks, Inc. for making SDP replication support possible. 12 13 drbd is free software; you can redistribute it and/or modify 14 it under the terms of the GNU General Public License as published by 15 the Free Software Foundation; either version 2, or (at your option) 16 any later version. 17 18 drbd is distributed in the hope that it will be useful, 19 but WITHOUT ANY WARRANTY; without even the implied warranty of 20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 21 GNU General Public License for more details. 22 23 You should have received a copy of the GNU General Public License 24 along with drbd; see the file COPYING. If not, write to 25 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 26 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include <linux/module.h> 32 #include <linux/jiffies.h> 33 #include <linux/drbd.h> 34 #include <linux/uaccess.h> 35 #include <asm/types.h> 36 #include <net/sock.h> 37 #include <linux/ctype.h> 38 #include <linux/mutex.h> 39 #include <linux/fs.h> 40 #include <linux/file.h> 41 #include <linux/proc_fs.h> 42 #include <linux/init.h> 43 #include <linux/mm.h> 44 #include <linux/memcontrol.h> 45 #include <linux/mm_inline.h> 46 #include <linux/slab.h> 47 #include <linux/random.h> 48 #include <linux/reboot.h> 49 #include <linux/notifier.h> 50 #include <linux/kthread.h> 51 #include <linux/workqueue.h> 52 #define __KERNEL_SYSCALLS__ 53 #include <linux/unistd.h> 54 #include <linux/vmalloc.h> 55 56 #include <linux/drbd_limits.h> 57 #include "drbd_int.h" 58 #include "drbd_protocol.h" 59 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */ 60 #include "drbd_vli.h" 61 #include "drbd_debugfs.h" 62 63 static DEFINE_MUTEX(drbd_main_mutex); 64 static int drbd_open(struct block_device *bdev, fmode_t mode); 65 static void drbd_release(struct gendisk *gd, fmode_t mode); 66 static void md_sync_timer_fn(unsigned long data); 67 static int w_bitmap_io(struct drbd_work *w, int unused); 68 69 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, " 70 "Lars Ellenberg <lars@linbit.com>"); 71 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION); 72 MODULE_VERSION(REL_VERSION); 73 MODULE_LICENSE("GPL"); 74 MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices (" 75 __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")"); 76 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR); 77 78 #include <linux/moduleparam.h> 79 /* allow_open_on_secondary */ 80 MODULE_PARM_DESC(allow_oos, "DONT USE!"); 81 /* thanks to these macros, if compiled into the kernel (not-module), 82 * this becomes the boot parameter drbd.minor_count */ 83 module_param(minor_count, uint, 0444); 84 module_param(disable_sendpage, bool, 0644); 85 module_param(allow_oos, bool, 0); 86 module_param(proc_details, int, 0644); 87 88 #ifdef CONFIG_DRBD_FAULT_INJECTION 89 int enable_faults; 90 int fault_rate; 91 static int fault_count; 92 int fault_devs; 93 /* bitmap of enabled faults */ 94 module_param(enable_faults, int, 0664); 95 /* fault rate % value - applies to all enabled faults */ 96 module_param(fault_rate, int, 0664); 97 /* count of faults inserted */ 98 module_param(fault_count, int, 0664); 99 /* bitmap of devices to insert faults on */ 100 module_param(fault_devs, int, 0644); 101 #endif 102 103 /* module parameter, defined */ 104 unsigned int minor_count = DRBD_MINOR_COUNT_DEF; 105 bool disable_sendpage; 106 bool allow_oos; 107 int proc_details; /* Detail level in proc drbd*/ 108 109 /* Module parameter for setting the user mode helper program 110 * to run. Default is /sbin/drbdadm */ 111 char usermode_helper[80] = "/sbin/drbdadm"; 112 113 module_param_string(usermode_helper, usermode_helper, sizeof(usermode_helper), 0644); 114 115 /* in 2.6.x, our device mapping and config info contains our virtual gendisks 116 * as member "struct gendisk *vdisk;" 117 */ 118 struct idr drbd_devices; 119 struct list_head drbd_resources; 120 struct mutex resources_mutex; 121 122 struct kmem_cache *drbd_request_cache; 123 struct kmem_cache *drbd_ee_cache; /* peer requests */ 124 struct kmem_cache *drbd_bm_ext_cache; /* bitmap extents */ 125 struct kmem_cache *drbd_al_ext_cache; /* activity log extents */ 126 mempool_t *drbd_request_mempool; 127 mempool_t *drbd_ee_mempool; 128 mempool_t *drbd_md_io_page_pool; 129 struct bio_set *drbd_md_io_bio_set; 130 131 /* I do not use a standard mempool, because: 132 1) I want to hand out the pre-allocated objects first. 133 2) I want to be able to interrupt sleeping allocation with a signal. 134 Note: This is a single linked list, the next pointer is the private 135 member of struct page. 136 */ 137 struct page *drbd_pp_pool; 138 spinlock_t drbd_pp_lock; 139 int drbd_pp_vacant; 140 wait_queue_head_t drbd_pp_wait; 141 142 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5); 143 144 static const struct block_device_operations drbd_ops = { 145 .owner = THIS_MODULE, 146 .open = drbd_open, 147 .release = drbd_release, 148 }; 149 150 struct bio *bio_alloc_drbd(gfp_t gfp_mask) 151 { 152 struct bio *bio; 153 154 if (!drbd_md_io_bio_set) 155 return bio_alloc(gfp_mask, 1); 156 157 bio = bio_alloc_bioset(gfp_mask, 1, drbd_md_io_bio_set); 158 if (!bio) 159 return NULL; 160 return bio; 161 } 162 163 #ifdef __CHECKER__ 164 /* When checking with sparse, and this is an inline function, sparse will 165 give tons of false positives. When this is a real functions sparse works. 166 */ 167 int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins) 168 { 169 int io_allowed; 170 171 atomic_inc(&device->local_cnt); 172 io_allowed = (device->state.disk >= mins); 173 if (!io_allowed) { 174 if (atomic_dec_and_test(&device->local_cnt)) 175 wake_up(&device->misc_wait); 176 } 177 return io_allowed; 178 } 179 180 #endif 181 182 /** 183 * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch 184 * @connection: DRBD connection. 185 * @barrier_nr: Expected identifier of the DRBD write barrier packet. 186 * @set_size: Expected number of requests before that barrier. 187 * 188 * In case the passed barrier_nr or set_size does not match the oldest 189 * epoch of not yet barrier-acked requests, this function will cause a 190 * termination of the connection. 191 */ 192 void tl_release(struct drbd_connection *connection, unsigned int barrier_nr, 193 unsigned int set_size) 194 { 195 struct drbd_request *r; 196 struct drbd_request *req = NULL; 197 int expect_epoch = 0; 198 int expect_size = 0; 199 200 spin_lock_irq(&connection->resource->req_lock); 201 202 /* find oldest not yet barrier-acked write request, 203 * count writes in its epoch. */ 204 list_for_each_entry(r, &connection->transfer_log, tl_requests) { 205 const unsigned s = r->rq_state; 206 if (!req) { 207 if (!(s & RQ_WRITE)) 208 continue; 209 if (!(s & RQ_NET_MASK)) 210 continue; 211 if (s & RQ_NET_DONE) 212 continue; 213 req = r; 214 expect_epoch = req->epoch; 215 expect_size ++; 216 } else { 217 if (r->epoch != expect_epoch) 218 break; 219 if (!(s & RQ_WRITE)) 220 continue; 221 /* if (s & RQ_DONE): not expected */ 222 /* if (!(s & RQ_NET_MASK)): not expected */ 223 expect_size++; 224 } 225 } 226 227 /* first some paranoia code */ 228 if (req == NULL) { 229 drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n", 230 barrier_nr); 231 goto bail; 232 } 233 if (expect_epoch != barrier_nr) { 234 drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n", 235 barrier_nr, expect_epoch); 236 goto bail; 237 } 238 239 if (expect_size != set_size) { 240 drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n", 241 barrier_nr, set_size, expect_size); 242 goto bail; 243 } 244 245 /* Clean up list of requests processed during current epoch. */ 246 /* this extra list walk restart is paranoia, 247 * to catch requests being barrier-acked "unexpectedly". 248 * It usually should find the same req again, or some READ preceding it. */ 249 list_for_each_entry(req, &connection->transfer_log, tl_requests) 250 if (req->epoch == expect_epoch) 251 break; 252 list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) { 253 if (req->epoch != expect_epoch) 254 break; 255 _req_mod(req, BARRIER_ACKED); 256 } 257 spin_unlock_irq(&connection->resource->req_lock); 258 259 return; 260 261 bail: 262 spin_unlock_irq(&connection->resource->req_lock); 263 conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD); 264 } 265 266 267 /** 268 * _tl_restart() - Walks the transfer log, and applies an action to all requests 269 * @connection: DRBD connection to operate on. 270 * @what: The action/event to perform with all request objects 271 * 272 * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO, 273 * RESTART_FROZEN_DISK_IO. 274 */ 275 /* must hold resource->req_lock */ 276 void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what) 277 { 278 struct drbd_request *req, *r; 279 280 list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) 281 _req_mod(req, what); 282 } 283 284 void tl_restart(struct drbd_connection *connection, enum drbd_req_event what) 285 { 286 spin_lock_irq(&connection->resource->req_lock); 287 _tl_restart(connection, what); 288 spin_unlock_irq(&connection->resource->req_lock); 289 } 290 291 /** 292 * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL 293 * @device: DRBD device. 294 * 295 * This is called after the connection to the peer was lost. The storage covered 296 * by the requests on the transfer gets marked as our of sync. Called from the 297 * receiver thread and the worker thread. 298 */ 299 void tl_clear(struct drbd_connection *connection) 300 { 301 tl_restart(connection, CONNECTION_LOST_WHILE_PENDING); 302 } 303 304 /** 305 * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL 306 * @device: DRBD device. 307 */ 308 void tl_abort_disk_io(struct drbd_device *device) 309 { 310 struct drbd_connection *connection = first_peer_device(device)->connection; 311 struct drbd_request *req, *r; 312 313 spin_lock_irq(&connection->resource->req_lock); 314 list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) { 315 if (!(req->rq_state & RQ_LOCAL_PENDING)) 316 continue; 317 if (req->device != device) 318 continue; 319 _req_mod(req, ABORT_DISK_IO); 320 } 321 spin_unlock_irq(&connection->resource->req_lock); 322 } 323 324 static int drbd_thread_setup(void *arg) 325 { 326 struct drbd_thread *thi = (struct drbd_thread *) arg; 327 struct drbd_resource *resource = thi->resource; 328 unsigned long flags; 329 int retval; 330 331 snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s", 332 thi->name[0], 333 resource->name); 334 335 restart: 336 retval = thi->function(thi); 337 338 spin_lock_irqsave(&thi->t_lock, flags); 339 340 /* if the receiver has been "EXITING", the last thing it did 341 * was set the conn state to "StandAlone", 342 * if now a re-connect request comes in, conn state goes C_UNCONNECTED, 343 * and receiver thread will be "started". 344 * drbd_thread_start needs to set "RESTARTING" in that case. 345 * t_state check and assignment needs to be within the same spinlock, 346 * so either thread_start sees EXITING, and can remap to RESTARTING, 347 * or thread_start see NONE, and can proceed as normal. 348 */ 349 350 if (thi->t_state == RESTARTING) { 351 drbd_info(resource, "Restarting %s thread\n", thi->name); 352 thi->t_state = RUNNING; 353 spin_unlock_irqrestore(&thi->t_lock, flags); 354 goto restart; 355 } 356 357 thi->task = NULL; 358 thi->t_state = NONE; 359 smp_mb(); 360 complete_all(&thi->stop); 361 spin_unlock_irqrestore(&thi->t_lock, flags); 362 363 drbd_info(resource, "Terminating %s\n", current->comm); 364 365 /* Release mod reference taken when thread was started */ 366 367 if (thi->connection) 368 kref_put(&thi->connection->kref, drbd_destroy_connection); 369 kref_put(&resource->kref, drbd_destroy_resource); 370 module_put(THIS_MODULE); 371 return retval; 372 } 373 374 static void drbd_thread_init(struct drbd_resource *resource, struct drbd_thread *thi, 375 int (*func) (struct drbd_thread *), const char *name) 376 { 377 spin_lock_init(&thi->t_lock); 378 thi->task = NULL; 379 thi->t_state = NONE; 380 thi->function = func; 381 thi->resource = resource; 382 thi->connection = NULL; 383 thi->name = name; 384 } 385 386 int drbd_thread_start(struct drbd_thread *thi) 387 { 388 struct drbd_resource *resource = thi->resource; 389 struct task_struct *nt; 390 unsigned long flags; 391 392 /* is used from state engine doing drbd_thread_stop_nowait, 393 * while holding the req lock irqsave */ 394 spin_lock_irqsave(&thi->t_lock, flags); 395 396 switch (thi->t_state) { 397 case NONE: 398 drbd_info(resource, "Starting %s thread (from %s [%d])\n", 399 thi->name, current->comm, current->pid); 400 401 /* Get ref on module for thread - this is released when thread exits */ 402 if (!try_module_get(THIS_MODULE)) { 403 drbd_err(resource, "Failed to get module reference in drbd_thread_start\n"); 404 spin_unlock_irqrestore(&thi->t_lock, flags); 405 return false; 406 } 407 408 kref_get(&resource->kref); 409 if (thi->connection) 410 kref_get(&thi->connection->kref); 411 412 init_completion(&thi->stop); 413 thi->reset_cpu_mask = 1; 414 thi->t_state = RUNNING; 415 spin_unlock_irqrestore(&thi->t_lock, flags); 416 flush_signals(current); /* otherw. may get -ERESTARTNOINTR */ 417 418 nt = kthread_create(drbd_thread_setup, (void *) thi, 419 "drbd_%c_%s", thi->name[0], thi->resource->name); 420 421 if (IS_ERR(nt)) { 422 drbd_err(resource, "Couldn't start thread\n"); 423 424 if (thi->connection) 425 kref_put(&thi->connection->kref, drbd_destroy_connection); 426 kref_put(&resource->kref, drbd_destroy_resource); 427 module_put(THIS_MODULE); 428 return false; 429 } 430 spin_lock_irqsave(&thi->t_lock, flags); 431 thi->task = nt; 432 thi->t_state = RUNNING; 433 spin_unlock_irqrestore(&thi->t_lock, flags); 434 wake_up_process(nt); 435 break; 436 case EXITING: 437 thi->t_state = RESTARTING; 438 drbd_info(resource, "Restarting %s thread (from %s [%d])\n", 439 thi->name, current->comm, current->pid); 440 /* fall through */ 441 case RUNNING: 442 case RESTARTING: 443 default: 444 spin_unlock_irqrestore(&thi->t_lock, flags); 445 break; 446 } 447 448 return true; 449 } 450 451 452 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait) 453 { 454 unsigned long flags; 455 456 enum drbd_thread_state ns = restart ? RESTARTING : EXITING; 457 458 /* may be called from state engine, holding the req lock irqsave */ 459 spin_lock_irqsave(&thi->t_lock, flags); 460 461 if (thi->t_state == NONE) { 462 spin_unlock_irqrestore(&thi->t_lock, flags); 463 if (restart) 464 drbd_thread_start(thi); 465 return; 466 } 467 468 if (thi->t_state != ns) { 469 if (thi->task == NULL) { 470 spin_unlock_irqrestore(&thi->t_lock, flags); 471 return; 472 } 473 474 thi->t_state = ns; 475 smp_mb(); 476 init_completion(&thi->stop); 477 if (thi->task != current) 478 force_sig(DRBD_SIGKILL, thi->task); 479 } 480 481 spin_unlock_irqrestore(&thi->t_lock, flags); 482 483 if (wait) 484 wait_for_completion(&thi->stop); 485 } 486 487 int conn_lowest_minor(struct drbd_connection *connection) 488 { 489 struct drbd_peer_device *peer_device; 490 int vnr = 0, minor = -1; 491 492 rcu_read_lock(); 493 peer_device = idr_get_next(&connection->peer_devices, &vnr); 494 if (peer_device) 495 minor = device_to_minor(peer_device->device); 496 rcu_read_unlock(); 497 498 return minor; 499 } 500 501 #ifdef CONFIG_SMP 502 /** 503 * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs 504 * 505 * Forces all threads of a resource onto the same CPU. This is beneficial for 506 * DRBD's performance. May be overwritten by user's configuration. 507 */ 508 static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask) 509 { 510 unsigned int *resources_per_cpu, min_index = ~0; 511 512 resources_per_cpu = kzalloc(nr_cpu_ids * sizeof(*resources_per_cpu), GFP_KERNEL); 513 if (resources_per_cpu) { 514 struct drbd_resource *resource; 515 unsigned int cpu, min = ~0; 516 517 rcu_read_lock(); 518 for_each_resource_rcu(resource, &drbd_resources) { 519 for_each_cpu(cpu, resource->cpu_mask) 520 resources_per_cpu[cpu]++; 521 } 522 rcu_read_unlock(); 523 for_each_online_cpu(cpu) { 524 if (resources_per_cpu[cpu] < min) { 525 min = resources_per_cpu[cpu]; 526 min_index = cpu; 527 } 528 } 529 kfree(resources_per_cpu); 530 } 531 if (min_index == ~0) { 532 cpumask_setall(*cpu_mask); 533 return; 534 } 535 cpumask_set_cpu(min_index, *cpu_mask); 536 } 537 538 /** 539 * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread 540 * @device: DRBD device. 541 * @thi: drbd_thread object 542 * 543 * call in the "main loop" of _all_ threads, no need for any mutex, current won't die 544 * prematurely. 545 */ 546 void drbd_thread_current_set_cpu(struct drbd_thread *thi) 547 { 548 struct drbd_resource *resource = thi->resource; 549 struct task_struct *p = current; 550 551 if (!thi->reset_cpu_mask) 552 return; 553 thi->reset_cpu_mask = 0; 554 set_cpus_allowed_ptr(p, resource->cpu_mask); 555 } 556 #else 557 #define drbd_calc_cpu_mask(A) ({}) 558 #endif 559 560 /** 561 * drbd_header_size - size of a packet header 562 * 563 * The header size is a multiple of 8, so any payload following the header is 564 * word aligned on 64-bit architectures. (The bitmap send and receive code 565 * relies on this.) 566 */ 567 unsigned int drbd_header_size(struct drbd_connection *connection) 568 { 569 if (connection->agreed_pro_version >= 100) { 570 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8)); 571 return sizeof(struct p_header100); 572 } else { 573 BUILD_BUG_ON(sizeof(struct p_header80) != 574 sizeof(struct p_header95)); 575 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8)); 576 return sizeof(struct p_header80); 577 } 578 } 579 580 static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size) 581 { 582 h->magic = cpu_to_be32(DRBD_MAGIC); 583 h->command = cpu_to_be16(cmd); 584 h->length = cpu_to_be16(size); 585 return sizeof(struct p_header80); 586 } 587 588 static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size) 589 { 590 h->magic = cpu_to_be16(DRBD_MAGIC_BIG); 591 h->command = cpu_to_be16(cmd); 592 h->length = cpu_to_be32(size); 593 return sizeof(struct p_header95); 594 } 595 596 static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd, 597 int size, int vnr) 598 { 599 h->magic = cpu_to_be32(DRBD_MAGIC_100); 600 h->volume = cpu_to_be16(vnr); 601 h->command = cpu_to_be16(cmd); 602 h->length = cpu_to_be32(size); 603 h->pad = 0; 604 return sizeof(struct p_header100); 605 } 606 607 static unsigned int prepare_header(struct drbd_connection *connection, int vnr, 608 void *buffer, enum drbd_packet cmd, int size) 609 { 610 if (connection->agreed_pro_version >= 100) 611 return prepare_header100(buffer, cmd, size, vnr); 612 else if (connection->agreed_pro_version >= 95 && 613 size > DRBD_MAX_SIZE_H80_PACKET) 614 return prepare_header95(buffer, cmd, size); 615 else 616 return prepare_header80(buffer, cmd, size); 617 } 618 619 static void *__conn_prepare_command(struct drbd_connection *connection, 620 struct drbd_socket *sock) 621 { 622 if (!sock->socket) 623 return NULL; 624 return sock->sbuf + drbd_header_size(connection); 625 } 626 627 void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock) 628 { 629 void *p; 630 631 mutex_lock(&sock->mutex); 632 p = __conn_prepare_command(connection, sock); 633 if (!p) 634 mutex_unlock(&sock->mutex); 635 636 return p; 637 } 638 639 void *drbd_prepare_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock) 640 { 641 return conn_prepare_command(peer_device->connection, sock); 642 } 643 644 static int __send_command(struct drbd_connection *connection, int vnr, 645 struct drbd_socket *sock, enum drbd_packet cmd, 646 unsigned int header_size, void *data, 647 unsigned int size) 648 { 649 int msg_flags; 650 int err; 651 652 /* 653 * Called with @data == NULL and the size of the data blocks in @size 654 * for commands that send data blocks. For those commands, omit the 655 * MSG_MORE flag: this will increase the likelihood that data blocks 656 * which are page aligned on the sender will end up page aligned on the 657 * receiver. 658 */ 659 msg_flags = data ? MSG_MORE : 0; 660 661 header_size += prepare_header(connection, vnr, sock->sbuf, cmd, 662 header_size + size); 663 err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size, 664 msg_flags); 665 if (data && !err) 666 err = drbd_send_all(connection, sock->socket, data, size, 0); 667 /* DRBD protocol "pings" are latency critical. 668 * This is supposed to trigger tcp_push_pending_frames() */ 669 if (!err && (cmd == P_PING || cmd == P_PING_ACK)) 670 drbd_tcp_nodelay(sock->socket); 671 672 return err; 673 } 674 675 static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock, 676 enum drbd_packet cmd, unsigned int header_size, 677 void *data, unsigned int size) 678 { 679 return __send_command(connection, 0, sock, cmd, header_size, data, size); 680 } 681 682 int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock, 683 enum drbd_packet cmd, unsigned int header_size, 684 void *data, unsigned int size) 685 { 686 int err; 687 688 err = __conn_send_command(connection, sock, cmd, header_size, data, size); 689 mutex_unlock(&sock->mutex); 690 return err; 691 } 692 693 int drbd_send_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock, 694 enum drbd_packet cmd, unsigned int header_size, 695 void *data, unsigned int size) 696 { 697 int err; 698 699 err = __send_command(peer_device->connection, peer_device->device->vnr, 700 sock, cmd, header_size, data, size); 701 mutex_unlock(&sock->mutex); 702 return err; 703 } 704 705 int drbd_send_ping(struct drbd_connection *connection) 706 { 707 struct drbd_socket *sock; 708 709 sock = &connection->meta; 710 if (!conn_prepare_command(connection, sock)) 711 return -EIO; 712 return conn_send_command(connection, sock, P_PING, 0, NULL, 0); 713 } 714 715 int drbd_send_ping_ack(struct drbd_connection *connection) 716 { 717 struct drbd_socket *sock; 718 719 sock = &connection->meta; 720 if (!conn_prepare_command(connection, sock)) 721 return -EIO; 722 return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0); 723 } 724 725 int drbd_send_sync_param(struct drbd_peer_device *peer_device) 726 { 727 struct drbd_socket *sock; 728 struct p_rs_param_95 *p; 729 int size; 730 const int apv = peer_device->connection->agreed_pro_version; 731 enum drbd_packet cmd; 732 struct net_conf *nc; 733 struct disk_conf *dc; 734 735 sock = &peer_device->connection->data; 736 p = drbd_prepare_command(peer_device, sock); 737 if (!p) 738 return -EIO; 739 740 rcu_read_lock(); 741 nc = rcu_dereference(peer_device->connection->net_conf); 742 743 size = apv <= 87 ? sizeof(struct p_rs_param) 744 : apv == 88 ? sizeof(struct p_rs_param) 745 + strlen(nc->verify_alg) + 1 746 : apv <= 94 ? sizeof(struct p_rs_param_89) 747 : /* apv >= 95 */ sizeof(struct p_rs_param_95); 748 749 cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM; 750 751 /* initialize verify_alg and csums_alg */ 752 memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX); 753 754 if (get_ldev(peer_device->device)) { 755 dc = rcu_dereference(peer_device->device->ldev->disk_conf); 756 p->resync_rate = cpu_to_be32(dc->resync_rate); 757 p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead); 758 p->c_delay_target = cpu_to_be32(dc->c_delay_target); 759 p->c_fill_target = cpu_to_be32(dc->c_fill_target); 760 p->c_max_rate = cpu_to_be32(dc->c_max_rate); 761 put_ldev(peer_device->device); 762 } else { 763 p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF); 764 p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF); 765 p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF); 766 p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF); 767 p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF); 768 } 769 770 if (apv >= 88) 771 strcpy(p->verify_alg, nc->verify_alg); 772 if (apv >= 89) 773 strcpy(p->csums_alg, nc->csums_alg); 774 rcu_read_unlock(); 775 776 return drbd_send_command(peer_device, sock, cmd, size, NULL, 0); 777 } 778 779 int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd) 780 { 781 struct drbd_socket *sock; 782 struct p_protocol *p; 783 struct net_conf *nc; 784 int size, cf; 785 786 sock = &connection->data; 787 p = __conn_prepare_command(connection, sock); 788 if (!p) 789 return -EIO; 790 791 rcu_read_lock(); 792 nc = rcu_dereference(connection->net_conf); 793 794 if (nc->tentative && connection->agreed_pro_version < 92) { 795 rcu_read_unlock(); 796 mutex_unlock(&sock->mutex); 797 drbd_err(connection, "--dry-run is not supported by peer"); 798 return -EOPNOTSUPP; 799 } 800 801 size = sizeof(*p); 802 if (connection->agreed_pro_version >= 87) 803 size += strlen(nc->integrity_alg) + 1; 804 805 p->protocol = cpu_to_be32(nc->wire_protocol); 806 p->after_sb_0p = cpu_to_be32(nc->after_sb_0p); 807 p->after_sb_1p = cpu_to_be32(nc->after_sb_1p); 808 p->after_sb_2p = cpu_to_be32(nc->after_sb_2p); 809 p->two_primaries = cpu_to_be32(nc->two_primaries); 810 cf = 0; 811 if (nc->discard_my_data) 812 cf |= CF_DISCARD_MY_DATA; 813 if (nc->tentative) 814 cf |= CF_DRY_RUN; 815 p->conn_flags = cpu_to_be32(cf); 816 817 if (connection->agreed_pro_version >= 87) 818 strcpy(p->integrity_alg, nc->integrity_alg); 819 rcu_read_unlock(); 820 821 return __conn_send_command(connection, sock, cmd, size, NULL, 0); 822 } 823 824 int drbd_send_protocol(struct drbd_connection *connection) 825 { 826 int err; 827 828 mutex_lock(&connection->data.mutex); 829 err = __drbd_send_protocol(connection, P_PROTOCOL); 830 mutex_unlock(&connection->data.mutex); 831 832 return err; 833 } 834 835 static int _drbd_send_uuids(struct drbd_peer_device *peer_device, u64 uuid_flags) 836 { 837 struct drbd_device *device = peer_device->device; 838 struct drbd_socket *sock; 839 struct p_uuids *p; 840 int i; 841 842 if (!get_ldev_if_state(device, D_NEGOTIATING)) 843 return 0; 844 845 sock = &peer_device->connection->data; 846 p = drbd_prepare_command(peer_device, sock); 847 if (!p) { 848 put_ldev(device); 849 return -EIO; 850 } 851 spin_lock_irq(&device->ldev->md.uuid_lock); 852 for (i = UI_CURRENT; i < UI_SIZE; i++) 853 p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]); 854 spin_unlock_irq(&device->ldev->md.uuid_lock); 855 856 device->comm_bm_set = drbd_bm_total_weight(device); 857 p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set); 858 rcu_read_lock(); 859 uuid_flags |= rcu_dereference(peer_device->connection->net_conf)->discard_my_data ? 1 : 0; 860 rcu_read_unlock(); 861 uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0; 862 uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0; 863 p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags); 864 865 put_ldev(device); 866 return drbd_send_command(peer_device, sock, P_UUIDS, sizeof(*p), NULL, 0); 867 } 868 869 int drbd_send_uuids(struct drbd_peer_device *peer_device) 870 { 871 return _drbd_send_uuids(peer_device, 0); 872 } 873 874 int drbd_send_uuids_skip_initial_sync(struct drbd_peer_device *peer_device) 875 { 876 return _drbd_send_uuids(peer_device, 8); 877 } 878 879 void drbd_print_uuids(struct drbd_device *device, const char *text) 880 { 881 if (get_ldev_if_state(device, D_NEGOTIATING)) { 882 u64 *uuid = device->ldev->md.uuid; 883 drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n", 884 text, 885 (unsigned long long)uuid[UI_CURRENT], 886 (unsigned long long)uuid[UI_BITMAP], 887 (unsigned long long)uuid[UI_HISTORY_START], 888 (unsigned long long)uuid[UI_HISTORY_END]); 889 put_ldev(device); 890 } else { 891 drbd_info(device, "%s effective data uuid: %016llX\n", 892 text, 893 (unsigned long long)device->ed_uuid); 894 } 895 } 896 897 void drbd_gen_and_send_sync_uuid(struct drbd_peer_device *peer_device) 898 { 899 struct drbd_device *device = peer_device->device; 900 struct drbd_socket *sock; 901 struct p_rs_uuid *p; 902 u64 uuid; 903 904 D_ASSERT(device, device->state.disk == D_UP_TO_DATE); 905 906 uuid = device->ldev->md.uuid[UI_BITMAP]; 907 if (uuid && uuid != UUID_JUST_CREATED) 908 uuid = uuid + UUID_NEW_BM_OFFSET; 909 else 910 get_random_bytes(&uuid, sizeof(u64)); 911 drbd_uuid_set(device, UI_BITMAP, uuid); 912 drbd_print_uuids(device, "updated sync UUID"); 913 drbd_md_sync(device); 914 915 sock = &peer_device->connection->data; 916 p = drbd_prepare_command(peer_device, sock); 917 if (p) { 918 p->uuid = cpu_to_be64(uuid); 919 drbd_send_command(peer_device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0); 920 } 921 } 922 923 /* communicated if (agreed_features & DRBD_FF_WSAME) */ 924 void assign_p_sizes_qlim(struct drbd_device *device, struct p_sizes *p, struct request_queue *q) 925 { 926 if (q) { 927 p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q)); 928 p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q)); 929 p->qlim->alignment_offset = cpu_to_be32(queue_alignment_offset(q)); 930 p->qlim->io_min = cpu_to_be32(queue_io_min(q)); 931 p->qlim->io_opt = cpu_to_be32(queue_io_opt(q)); 932 p->qlim->discard_enabled = blk_queue_discard(q); 933 p->qlim->discard_zeroes_data = queue_discard_zeroes_data(q); 934 p->qlim->write_same_capable = !!q->limits.max_write_same_sectors; 935 } else { 936 q = device->rq_queue; 937 p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q)); 938 p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q)); 939 p->qlim->alignment_offset = 0; 940 p->qlim->io_min = cpu_to_be32(queue_io_min(q)); 941 p->qlim->io_opt = cpu_to_be32(queue_io_opt(q)); 942 p->qlim->discard_enabled = 0; 943 p->qlim->discard_zeroes_data = 0; 944 p->qlim->write_same_capable = 0; 945 } 946 } 947 948 int drbd_send_sizes(struct drbd_peer_device *peer_device, int trigger_reply, enum dds_flags flags) 949 { 950 struct drbd_device *device = peer_device->device; 951 struct drbd_socket *sock; 952 struct p_sizes *p; 953 sector_t d_size, u_size; 954 int q_order_type; 955 unsigned int max_bio_size; 956 unsigned int packet_size; 957 958 sock = &peer_device->connection->data; 959 p = drbd_prepare_command(peer_device, sock); 960 if (!p) 961 return -EIO; 962 963 packet_size = sizeof(*p); 964 if (peer_device->connection->agreed_features & DRBD_FF_WSAME) 965 packet_size += sizeof(p->qlim[0]); 966 967 memset(p, 0, packet_size); 968 if (get_ldev_if_state(device, D_NEGOTIATING)) { 969 struct request_queue *q = bdev_get_queue(device->ldev->backing_bdev); 970 d_size = drbd_get_max_capacity(device->ldev); 971 rcu_read_lock(); 972 u_size = rcu_dereference(device->ldev->disk_conf)->disk_size; 973 rcu_read_unlock(); 974 q_order_type = drbd_queue_order_type(device); 975 max_bio_size = queue_max_hw_sectors(q) << 9; 976 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE); 977 assign_p_sizes_qlim(device, p, q); 978 put_ldev(device); 979 } else { 980 d_size = 0; 981 u_size = 0; 982 q_order_type = QUEUE_ORDERED_NONE; 983 max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */ 984 assign_p_sizes_qlim(device, p, NULL); 985 } 986 987 if (peer_device->connection->agreed_pro_version <= 94) 988 max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET); 989 else if (peer_device->connection->agreed_pro_version < 100) 990 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95); 991 992 p->d_size = cpu_to_be64(d_size); 993 p->u_size = cpu_to_be64(u_size); 994 p->c_size = cpu_to_be64(trigger_reply ? 0 : drbd_get_capacity(device->this_bdev)); 995 p->max_bio_size = cpu_to_be32(max_bio_size); 996 p->queue_order_type = cpu_to_be16(q_order_type); 997 p->dds_flags = cpu_to_be16(flags); 998 999 return drbd_send_command(peer_device, sock, P_SIZES, packet_size, NULL, 0); 1000 } 1001 1002 /** 1003 * drbd_send_current_state() - Sends the drbd state to the peer 1004 * @peer_device: DRBD peer device. 1005 */ 1006 int drbd_send_current_state(struct drbd_peer_device *peer_device) 1007 { 1008 struct drbd_socket *sock; 1009 struct p_state *p; 1010 1011 sock = &peer_device->connection->data; 1012 p = drbd_prepare_command(peer_device, sock); 1013 if (!p) 1014 return -EIO; 1015 p->state = cpu_to_be32(peer_device->device->state.i); /* Within the send mutex */ 1016 return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0); 1017 } 1018 1019 /** 1020 * drbd_send_state() - After a state change, sends the new state to the peer 1021 * @peer_device: DRBD peer device. 1022 * @state: the state to send, not necessarily the current state. 1023 * 1024 * Each state change queues an "after_state_ch" work, which will eventually 1025 * send the resulting new state to the peer. If more state changes happen 1026 * between queuing and processing of the after_state_ch work, we still 1027 * want to send each intermediary state in the order it occurred. 1028 */ 1029 int drbd_send_state(struct drbd_peer_device *peer_device, union drbd_state state) 1030 { 1031 struct drbd_socket *sock; 1032 struct p_state *p; 1033 1034 sock = &peer_device->connection->data; 1035 p = drbd_prepare_command(peer_device, sock); 1036 if (!p) 1037 return -EIO; 1038 p->state = cpu_to_be32(state.i); /* Within the send mutex */ 1039 return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0); 1040 } 1041 1042 int drbd_send_state_req(struct drbd_peer_device *peer_device, union drbd_state mask, union drbd_state val) 1043 { 1044 struct drbd_socket *sock; 1045 struct p_req_state *p; 1046 1047 sock = &peer_device->connection->data; 1048 p = drbd_prepare_command(peer_device, sock); 1049 if (!p) 1050 return -EIO; 1051 p->mask = cpu_to_be32(mask.i); 1052 p->val = cpu_to_be32(val.i); 1053 return drbd_send_command(peer_device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0); 1054 } 1055 1056 int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val) 1057 { 1058 enum drbd_packet cmd; 1059 struct drbd_socket *sock; 1060 struct p_req_state *p; 1061 1062 cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ; 1063 sock = &connection->data; 1064 p = conn_prepare_command(connection, sock); 1065 if (!p) 1066 return -EIO; 1067 p->mask = cpu_to_be32(mask.i); 1068 p->val = cpu_to_be32(val.i); 1069 return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0); 1070 } 1071 1072 void drbd_send_sr_reply(struct drbd_peer_device *peer_device, enum drbd_state_rv retcode) 1073 { 1074 struct drbd_socket *sock; 1075 struct p_req_state_reply *p; 1076 1077 sock = &peer_device->connection->meta; 1078 p = drbd_prepare_command(peer_device, sock); 1079 if (p) { 1080 p->retcode = cpu_to_be32(retcode); 1081 drbd_send_command(peer_device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0); 1082 } 1083 } 1084 1085 void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode) 1086 { 1087 struct drbd_socket *sock; 1088 struct p_req_state_reply *p; 1089 enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY; 1090 1091 sock = &connection->meta; 1092 p = conn_prepare_command(connection, sock); 1093 if (p) { 1094 p->retcode = cpu_to_be32(retcode); 1095 conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0); 1096 } 1097 } 1098 1099 static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code) 1100 { 1101 BUG_ON(code & ~0xf); 1102 p->encoding = (p->encoding & ~0xf) | code; 1103 } 1104 1105 static void dcbp_set_start(struct p_compressed_bm *p, int set) 1106 { 1107 p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0); 1108 } 1109 1110 static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n) 1111 { 1112 BUG_ON(n & ~0x7); 1113 p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4); 1114 } 1115 1116 static int fill_bitmap_rle_bits(struct drbd_device *device, 1117 struct p_compressed_bm *p, 1118 unsigned int size, 1119 struct bm_xfer_ctx *c) 1120 { 1121 struct bitstream bs; 1122 unsigned long plain_bits; 1123 unsigned long tmp; 1124 unsigned long rl; 1125 unsigned len; 1126 unsigned toggle; 1127 int bits, use_rle; 1128 1129 /* may we use this feature? */ 1130 rcu_read_lock(); 1131 use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle; 1132 rcu_read_unlock(); 1133 if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90) 1134 return 0; 1135 1136 if (c->bit_offset >= c->bm_bits) 1137 return 0; /* nothing to do. */ 1138 1139 /* use at most thus many bytes */ 1140 bitstream_init(&bs, p->code, size, 0); 1141 memset(p->code, 0, size); 1142 /* plain bits covered in this code string */ 1143 plain_bits = 0; 1144 1145 /* p->encoding & 0x80 stores whether the first run length is set. 1146 * bit offset is implicit. 1147 * start with toggle == 2 to be able to tell the first iteration */ 1148 toggle = 2; 1149 1150 /* see how much plain bits we can stuff into one packet 1151 * using RLE and VLI. */ 1152 do { 1153 tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset) 1154 : _drbd_bm_find_next(device, c->bit_offset); 1155 if (tmp == -1UL) 1156 tmp = c->bm_bits; 1157 rl = tmp - c->bit_offset; 1158 1159 if (toggle == 2) { /* first iteration */ 1160 if (rl == 0) { 1161 /* the first checked bit was set, 1162 * store start value, */ 1163 dcbp_set_start(p, 1); 1164 /* but skip encoding of zero run length */ 1165 toggle = !toggle; 1166 continue; 1167 } 1168 dcbp_set_start(p, 0); 1169 } 1170 1171 /* paranoia: catch zero runlength. 1172 * can only happen if bitmap is modified while we scan it. */ 1173 if (rl == 0) { 1174 drbd_err(device, "unexpected zero runlength while encoding bitmap " 1175 "t:%u bo:%lu\n", toggle, c->bit_offset); 1176 return -1; 1177 } 1178 1179 bits = vli_encode_bits(&bs, rl); 1180 if (bits == -ENOBUFS) /* buffer full */ 1181 break; 1182 if (bits <= 0) { 1183 drbd_err(device, "error while encoding bitmap: %d\n", bits); 1184 return 0; 1185 } 1186 1187 toggle = !toggle; 1188 plain_bits += rl; 1189 c->bit_offset = tmp; 1190 } while (c->bit_offset < c->bm_bits); 1191 1192 len = bs.cur.b - p->code + !!bs.cur.bit; 1193 1194 if (plain_bits < (len << 3)) { 1195 /* incompressible with this method. 1196 * we need to rewind both word and bit position. */ 1197 c->bit_offset -= plain_bits; 1198 bm_xfer_ctx_bit_to_word_offset(c); 1199 c->bit_offset = c->word_offset * BITS_PER_LONG; 1200 return 0; 1201 } 1202 1203 /* RLE + VLI was able to compress it just fine. 1204 * update c->word_offset. */ 1205 bm_xfer_ctx_bit_to_word_offset(c); 1206 1207 /* store pad_bits */ 1208 dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7); 1209 1210 return len; 1211 } 1212 1213 /** 1214 * send_bitmap_rle_or_plain 1215 * 1216 * Return 0 when done, 1 when another iteration is needed, and a negative error 1217 * code upon failure. 1218 */ 1219 static int 1220 send_bitmap_rle_or_plain(struct drbd_device *device, struct bm_xfer_ctx *c) 1221 { 1222 struct drbd_socket *sock = &first_peer_device(device)->connection->data; 1223 unsigned int header_size = drbd_header_size(first_peer_device(device)->connection); 1224 struct p_compressed_bm *p = sock->sbuf + header_size; 1225 int len, err; 1226 1227 len = fill_bitmap_rle_bits(device, p, 1228 DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c); 1229 if (len < 0) 1230 return -EIO; 1231 1232 if (len) { 1233 dcbp_set_code(p, RLE_VLI_Bits); 1234 err = __send_command(first_peer_device(device)->connection, device->vnr, sock, 1235 P_COMPRESSED_BITMAP, sizeof(*p) + len, 1236 NULL, 0); 1237 c->packets[0]++; 1238 c->bytes[0] += header_size + sizeof(*p) + len; 1239 1240 if (c->bit_offset >= c->bm_bits) 1241 len = 0; /* DONE */ 1242 } else { 1243 /* was not compressible. 1244 * send a buffer full of plain text bits instead. */ 1245 unsigned int data_size; 1246 unsigned long num_words; 1247 unsigned long *p = sock->sbuf + header_size; 1248 1249 data_size = DRBD_SOCKET_BUFFER_SIZE - header_size; 1250 num_words = min_t(size_t, data_size / sizeof(*p), 1251 c->bm_words - c->word_offset); 1252 len = num_words * sizeof(*p); 1253 if (len) 1254 drbd_bm_get_lel(device, c->word_offset, num_words, p); 1255 err = __send_command(first_peer_device(device)->connection, device->vnr, sock, P_BITMAP, len, NULL, 0); 1256 c->word_offset += num_words; 1257 c->bit_offset = c->word_offset * BITS_PER_LONG; 1258 1259 c->packets[1]++; 1260 c->bytes[1] += header_size + len; 1261 1262 if (c->bit_offset > c->bm_bits) 1263 c->bit_offset = c->bm_bits; 1264 } 1265 if (!err) { 1266 if (len == 0) { 1267 INFO_bm_xfer_stats(device, "send", c); 1268 return 0; 1269 } else 1270 return 1; 1271 } 1272 return -EIO; 1273 } 1274 1275 /* See the comment at receive_bitmap() */ 1276 static int _drbd_send_bitmap(struct drbd_device *device) 1277 { 1278 struct bm_xfer_ctx c; 1279 int err; 1280 1281 if (!expect(device->bitmap)) 1282 return false; 1283 1284 if (get_ldev(device)) { 1285 if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) { 1286 drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n"); 1287 drbd_bm_set_all(device); 1288 if (drbd_bm_write(device)) { 1289 /* write_bm did fail! Leave full sync flag set in Meta P_DATA 1290 * but otherwise process as per normal - need to tell other 1291 * side that a full resync is required! */ 1292 drbd_err(device, "Failed to write bitmap to disk!\n"); 1293 } else { 1294 drbd_md_clear_flag(device, MDF_FULL_SYNC); 1295 drbd_md_sync(device); 1296 } 1297 } 1298 put_ldev(device); 1299 } 1300 1301 c = (struct bm_xfer_ctx) { 1302 .bm_bits = drbd_bm_bits(device), 1303 .bm_words = drbd_bm_words(device), 1304 }; 1305 1306 do { 1307 err = send_bitmap_rle_or_plain(device, &c); 1308 } while (err > 0); 1309 1310 return err == 0; 1311 } 1312 1313 int drbd_send_bitmap(struct drbd_device *device) 1314 { 1315 struct drbd_socket *sock = &first_peer_device(device)->connection->data; 1316 int err = -1; 1317 1318 mutex_lock(&sock->mutex); 1319 if (sock->socket) 1320 err = !_drbd_send_bitmap(device); 1321 mutex_unlock(&sock->mutex); 1322 return err; 1323 } 1324 1325 void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size) 1326 { 1327 struct drbd_socket *sock; 1328 struct p_barrier_ack *p; 1329 1330 if (connection->cstate < C_WF_REPORT_PARAMS) 1331 return; 1332 1333 sock = &connection->meta; 1334 p = conn_prepare_command(connection, sock); 1335 if (!p) 1336 return; 1337 p->barrier = barrier_nr; 1338 p->set_size = cpu_to_be32(set_size); 1339 conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0); 1340 } 1341 1342 /** 1343 * _drbd_send_ack() - Sends an ack packet 1344 * @device: DRBD device. 1345 * @cmd: Packet command code. 1346 * @sector: sector, needs to be in big endian byte order 1347 * @blksize: size in byte, needs to be in big endian byte order 1348 * @block_id: Id, big endian byte order 1349 */ 1350 static int _drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1351 u64 sector, u32 blksize, u64 block_id) 1352 { 1353 struct drbd_socket *sock; 1354 struct p_block_ack *p; 1355 1356 if (peer_device->device->state.conn < C_CONNECTED) 1357 return -EIO; 1358 1359 sock = &peer_device->connection->meta; 1360 p = drbd_prepare_command(peer_device, sock); 1361 if (!p) 1362 return -EIO; 1363 p->sector = sector; 1364 p->block_id = block_id; 1365 p->blksize = blksize; 1366 p->seq_num = cpu_to_be32(atomic_inc_return(&peer_device->device->packet_seq)); 1367 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0); 1368 } 1369 1370 /* dp->sector and dp->block_id already/still in network byte order, 1371 * data_size is payload size according to dp->head, 1372 * and may need to be corrected for digest size. */ 1373 void drbd_send_ack_dp(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1374 struct p_data *dp, int data_size) 1375 { 1376 if (peer_device->connection->peer_integrity_tfm) 1377 data_size -= crypto_ahash_digestsize(peer_device->connection->peer_integrity_tfm); 1378 _drbd_send_ack(peer_device, cmd, dp->sector, cpu_to_be32(data_size), 1379 dp->block_id); 1380 } 1381 1382 void drbd_send_ack_rp(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1383 struct p_block_req *rp) 1384 { 1385 _drbd_send_ack(peer_device, cmd, rp->sector, rp->blksize, rp->block_id); 1386 } 1387 1388 /** 1389 * drbd_send_ack() - Sends an ack packet 1390 * @device: DRBD device 1391 * @cmd: packet command code 1392 * @peer_req: peer request 1393 */ 1394 int drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1395 struct drbd_peer_request *peer_req) 1396 { 1397 return _drbd_send_ack(peer_device, cmd, 1398 cpu_to_be64(peer_req->i.sector), 1399 cpu_to_be32(peer_req->i.size), 1400 peer_req->block_id); 1401 } 1402 1403 /* This function misuses the block_id field to signal if the blocks 1404 * are is sync or not. */ 1405 int drbd_send_ack_ex(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1406 sector_t sector, int blksize, u64 block_id) 1407 { 1408 return _drbd_send_ack(peer_device, cmd, 1409 cpu_to_be64(sector), 1410 cpu_to_be32(blksize), 1411 cpu_to_be64(block_id)); 1412 } 1413 1414 int drbd_send_rs_deallocated(struct drbd_peer_device *peer_device, 1415 struct drbd_peer_request *peer_req) 1416 { 1417 struct drbd_socket *sock; 1418 struct p_block_desc *p; 1419 1420 sock = &peer_device->connection->data; 1421 p = drbd_prepare_command(peer_device, sock); 1422 if (!p) 1423 return -EIO; 1424 p->sector = cpu_to_be64(peer_req->i.sector); 1425 p->blksize = cpu_to_be32(peer_req->i.size); 1426 p->pad = 0; 1427 return drbd_send_command(peer_device, sock, P_RS_DEALLOCATED, sizeof(*p), NULL, 0); 1428 } 1429 1430 int drbd_send_drequest(struct drbd_peer_device *peer_device, int cmd, 1431 sector_t sector, int size, u64 block_id) 1432 { 1433 struct drbd_socket *sock; 1434 struct p_block_req *p; 1435 1436 sock = &peer_device->connection->data; 1437 p = drbd_prepare_command(peer_device, sock); 1438 if (!p) 1439 return -EIO; 1440 p->sector = cpu_to_be64(sector); 1441 p->block_id = block_id; 1442 p->blksize = cpu_to_be32(size); 1443 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0); 1444 } 1445 1446 int drbd_send_drequest_csum(struct drbd_peer_device *peer_device, sector_t sector, int size, 1447 void *digest, int digest_size, enum drbd_packet cmd) 1448 { 1449 struct drbd_socket *sock; 1450 struct p_block_req *p; 1451 1452 /* FIXME: Put the digest into the preallocated socket buffer. */ 1453 1454 sock = &peer_device->connection->data; 1455 p = drbd_prepare_command(peer_device, sock); 1456 if (!p) 1457 return -EIO; 1458 p->sector = cpu_to_be64(sector); 1459 p->block_id = ID_SYNCER /* unused */; 1460 p->blksize = cpu_to_be32(size); 1461 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), digest, digest_size); 1462 } 1463 1464 int drbd_send_ov_request(struct drbd_peer_device *peer_device, sector_t sector, int size) 1465 { 1466 struct drbd_socket *sock; 1467 struct p_block_req *p; 1468 1469 sock = &peer_device->connection->data; 1470 p = drbd_prepare_command(peer_device, sock); 1471 if (!p) 1472 return -EIO; 1473 p->sector = cpu_to_be64(sector); 1474 p->block_id = ID_SYNCER /* unused */; 1475 p->blksize = cpu_to_be32(size); 1476 return drbd_send_command(peer_device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0); 1477 } 1478 1479 /* called on sndtimeo 1480 * returns false if we should retry, 1481 * true if we think connection is dead 1482 */ 1483 static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock) 1484 { 1485 int drop_it; 1486 /* long elapsed = (long)(jiffies - device->last_received); */ 1487 1488 drop_it = connection->meta.socket == sock 1489 || !connection->ack_receiver.task 1490 || get_t_state(&connection->ack_receiver) != RUNNING 1491 || connection->cstate < C_WF_REPORT_PARAMS; 1492 1493 if (drop_it) 1494 return true; 1495 1496 drop_it = !--connection->ko_count; 1497 if (!drop_it) { 1498 drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n", 1499 current->comm, current->pid, connection->ko_count); 1500 request_ping(connection); 1501 } 1502 1503 return drop_it; /* && (device->state == R_PRIMARY) */; 1504 } 1505 1506 static void drbd_update_congested(struct drbd_connection *connection) 1507 { 1508 struct sock *sk = connection->data.socket->sk; 1509 if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5) 1510 set_bit(NET_CONGESTED, &connection->flags); 1511 } 1512 1513 /* The idea of sendpage seems to be to put some kind of reference 1514 * to the page into the skb, and to hand it over to the NIC. In 1515 * this process get_page() gets called. 1516 * 1517 * As soon as the page was really sent over the network put_page() 1518 * gets called by some part of the network layer. [ NIC driver? ] 1519 * 1520 * [ get_page() / put_page() increment/decrement the count. If count 1521 * reaches 0 the page will be freed. ] 1522 * 1523 * This works nicely with pages from FSs. 1524 * But this means that in protocol A we might signal IO completion too early! 1525 * 1526 * In order not to corrupt data during a resync we must make sure 1527 * that we do not reuse our own buffer pages (EEs) to early, therefore 1528 * we have the net_ee list. 1529 * 1530 * XFS seems to have problems, still, it submits pages with page_count == 0! 1531 * As a workaround, we disable sendpage on pages 1532 * with page_count == 0 or PageSlab. 1533 */ 1534 static int _drbd_no_send_page(struct drbd_peer_device *peer_device, struct page *page, 1535 int offset, size_t size, unsigned msg_flags) 1536 { 1537 struct socket *socket; 1538 void *addr; 1539 int err; 1540 1541 socket = peer_device->connection->data.socket; 1542 addr = kmap(page) + offset; 1543 err = drbd_send_all(peer_device->connection, socket, addr, size, msg_flags); 1544 kunmap(page); 1545 if (!err) 1546 peer_device->device->send_cnt += size >> 9; 1547 return err; 1548 } 1549 1550 static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *page, 1551 int offset, size_t size, unsigned msg_flags) 1552 { 1553 struct socket *socket = peer_device->connection->data.socket; 1554 mm_segment_t oldfs = get_fs(); 1555 int len = size; 1556 int err = -EIO; 1557 1558 /* e.g. XFS meta- & log-data is in slab pages, which have a 1559 * page_count of 0 and/or have PageSlab() set. 1560 * we cannot use send_page for those, as that does get_page(); 1561 * put_page(); and would cause either a VM_BUG directly, or 1562 * __page_cache_release a page that would actually still be referenced 1563 * by someone, leading to some obscure delayed Oops somewhere else. */ 1564 if (disable_sendpage || (page_count(page) < 1) || PageSlab(page)) 1565 return _drbd_no_send_page(peer_device, page, offset, size, msg_flags); 1566 1567 msg_flags |= MSG_NOSIGNAL; 1568 drbd_update_congested(peer_device->connection); 1569 set_fs(KERNEL_DS); 1570 do { 1571 int sent; 1572 1573 sent = socket->ops->sendpage(socket, page, offset, len, msg_flags); 1574 if (sent <= 0) { 1575 if (sent == -EAGAIN) { 1576 if (we_should_drop_the_connection(peer_device->connection, socket)) 1577 break; 1578 continue; 1579 } 1580 drbd_warn(peer_device->device, "%s: size=%d len=%d sent=%d\n", 1581 __func__, (int)size, len, sent); 1582 if (sent < 0) 1583 err = sent; 1584 break; 1585 } 1586 len -= sent; 1587 offset += sent; 1588 } while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/); 1589 set_fs(oldfs); 1590 clear_bit(NET_CONGESTED, &peer_device->connection->flags); 1591 1592 if (len == 0) { 1593 err = 0; 1594 peer_device->device->send_cnt += size >> 9; 1595 } 1596 return err; 1597 } 1598 1599 static int _drbd_send_bio(struct drbd_peer_device *peer_device, struct bio *bio) 1600 { 1601 struct bio_vec bvec; 1602 struct bvec_iter iter; 1603 1604 /* hint all but last page with MSG_MORE */ 1605 bio_for_each_segment(bvec, bio, iter) { 1606 int err; 1607 1608 err = _drbd_no_send_page(peer_device, bvec.bv_page, 1609 bvec.bv_offset, bvec.bv_len, 1610 bio_iter_last(bvec, iter) 1611 ? 0 : MSG_MORE); 1612 if (err) 1613 return err; 1614 /* REQ_OP_WRITE_SAME has only one segment */ 1615 if (bio_op(bio) == REQ_OP_WRITE_SAME) 1616 break; 1617 } 1618 return 0; 1619 } 1620 1621 static int _drbd_send_zc_bio(struct drbd_peer_device *peer_device, struct bio *bio) 1622 { 1623 struct bio_vec bvec; 1624 struct bvec_iter iter; 1625 1626 /* hint all but last page with MSG_MORE */ 1627 bio_for_each_segment(bvec, bio, iter) { 1628 int err; 1629 1630 err = _drbd_send_page(peer_device, bvec.bv_page, 1631 bvec.bv_offset, bvec.bv_len, 1632 bio_iter_last(bvec, iter) ? 0 : MSG_MORE); 1633 if (err) 1634 return err; 1635 /* REQ_OP_WRITE_SAME has only one segment */ 1636 if (bio_op(bio) == REQ_OP_WRITE_SAME) 1637 break; 1638 } 1639 return 0; 1640 } 1641 1642 static int _drbd_send_zc_ee(struct drbd_peer_device *peer_device, 1643 struct drbd_peer_request *peer_req) 1644 { 1645 struct page *page = peer_req->pages; 1646 unsigned len = peer_req->i.size; 1647 int err; 1648 1649 /* hint all but last page with MSG_MORE */ 1650 page_chain_for_each(page) { 1651 unsigned l = min_t(unsigned, len, PAGE_SIZE); 1652 1653 err = _drbd_send_page(peer_device, page, 0, l, 1654 page_chain_next(page) ? MSG_MORE : 0); 1655 if (err) 1656 return err; 1657 len -= l; 1658 } 1659 return 0; 1660 } 1661 1662 static u32 bio_flags_to_wire(struct drbd_connection *connection, 1663 struct bio *bio) 1664 { 1665 if (connection->agreed_pro_version >= 95) 1666 return (bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0) | 1667 (bio->bi_opf & REQ_FUA ? DP_FUA : 0) | 1668 (bio->bi_opf & REQ_PREFLUSH ? DP_FLUSH : 0) | 1669 (bio_op(bio) == REQ_OP_WRITE_SAME ? DP_WSAME : 0) | 1670 (bio_op(bio) == REQ_OP_DISCARD ? DP_DISCARD : 0); 1671 else 1672 return bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0; 1673 } 1674 1675 /* Used to send write or TRIM aka REQ_DISCARD requests 1676 * R_PRIMARY -> Peer (P_DATA, P_TRIM) 1677 */ 1678 int drbd_send_dblock(struct drbd_peer_device *peer_device, struct drbd_request *req) 1679 { 1680 struct drbd_device *device = peer_device->device; 1681 struct drbd_socket *sock; 1682 struct p_data *p; 1683 struct p_wsame *wsame = NULL; 1684 void *digest_out; 1685 unsigned int dp_flags = 0; 1686 int digest_size; 1687 int err; 1688 1689 sock = &peer_device->connection->data; 1690 p = drbd_prepare_command(peer_device, sock); 1691 digest_size = peer_device->connection->integrity_tfm ? 1692 crypto_ahash_digestsize(peer_device->connection->integrity_tfm) : 0; 1693 1694 if (!p) 1695 return -EIO; 1696 p->sector = cpu_to_be64(req->i.sector); 1697 p->block_id = (unsigned long)req; 1698 p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq)); 1699 dp_flags = bio_flags_to_wire(peer_device->connection, req->master_bio); 1700 if (device->state.conn >= C_SYNC_SOURCE && 1701 device->state.conn <= C_PAUSED_SYNC_T) 1702 dp_flags |= DP_MAY_SET_IN_SYNC; 1703 if (peer_device->connection->agreed_pro_version >= 100) { 1704 if (req->rq_state & RQ_EXP_RECEIVE_ACK) 1705 dp_flags |= DP_SEND_RECEIVE_ACK; 1706 /* During resync, request an explicit write ack, 1707 * even in protocol != C */ 1708 if (req->rq_state & RQ_EXP_WRITE_ACK 1709 || (dp_flags & DP_MAY_SET_IN_SYNC)) 1710 dp_flags |= DP_SEND_WRITE_ACK; 1711 } 1712 p->dp_flags = cpu_to_be32(dp_flags); 1713 1714 if (dp_flags & DP_DISCARD) { 1715 struct p_trim *t = (struct p_trim*)p; 1716 t->size = cpu_to_be32(req->i.size); 1717 err = __send_command(peer_device->connection, device->vnr, sock, P_TRIM, sizeof(*t), NULL, 0); 1718 goto out; 1719 } 1720 if (dp_flags & DP_WSAME) { 1721 /* this will only work if DRBD_FF_WSAME is set AND the 1722 * handshake agreed that all nodes and backend devices are 1723 * WRITE_SAME capable and agree on logical_block_size */ 1724 wsame = (struct p_wsame*)p; 1725 digest_out = wsame + 1; 1726 wsame->size = cpu_to_be32(req->i.size); 1727 } else 1728 digest_out = p + 1; 1729 1730 /* our digest is still only over the payload. 1731 * TRIM does not carry any payload. */ 1732 if (digest_size) 1733 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest_out); 1734 if (wsame) { 1735 err = 1736 __send_command(peer_device->connection, device->vnr, sock, P_WSAME, 1737 sizeof(*wsame) + digest_size, NULL, 1738 bio_iovec(req->master_bio).bv_len); 1739 } else 1740 err = 1741 __send_command(peer_device->connection, device->vnr, sock, P_DATA, 1742 sizeof(*p) + digest_size, NULL, req->i.size); 1743 if (!err) { 1744 /* For protocol A, we have to memcpy the payload into 1745 * socket buffers, as we may complete right away 1746 * as soon as we handed it over to tcp, at which point the data 1747 * pages may become invalid. 1748 * 1749 * For data-integrity enabled, we copy it as well, so we can be 1750 * sure that even if the bio pages may still be modified, it 1751 * won't change the data on the wire, thus if the digest checks 1752 * out ok after sending on this side, but does not fit on the 1753 * receiving side, we sure have detected corruption elsewhere. 1754 */ 1755 if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || digest_size) 1756 err = _drbd_send_bio(peer_device, req->master_bio); 1757 else 1758 err = _drbd_send_zc_bio(peer_device, req->master_bio); 1759 1760 /* double check digest, sometimes buffers have been modified in flight. */ 1761 if (digest_size > 0 && digest_size <= 64) { 1762 /* 64 byte, 512 bit, is the largest digest size 1763 * currently supported in kernel crypto. */ 1764 unsigned char digest[64]; 1765 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest); 1766 if (memcmp(p + 1, digest, digest_size)) { 1767 drbd_warn(device, 1768 "Digest mismatch, buffer modified by upper layers during write: %llus +%u\n", 1769 (unsigned long long)req->i.sector, req->i.size); 1770 } 1771 } /* else if (digest_size > 64) { 1772 ... Be noisy about digest too large ... 1773 } */ 1774 } 1775 out: 1776 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */ 1777 1778 return err; 1779 } 1780 1781 /* answer packet, used to send data back for read requests: 1782 * Peer -> (diskless) R_PRIMARY (P_DATA_REPLY) 1783 * C_SYNC_SOURCE -> C_SYNC_TARGET (P_RS_DATA_REPLY) 1784 */ 1785 int drbd_send_block(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1786 struct drbd_peer_request *peer_req) 1787 { 1788 struct drbd_device *device = peer_device->device; 1789 struct drbd_socket *sock; 1790 struct p_data *p; 1791 int err; 1792 int digest_size; 1793 1794 sock = &peer_device->connection->data; 1795 p = drbd_prepare_command(peer_device, sock); 1796 1797 digest_size = peer_device->connection->integrity_tfm ? 1798 crypto_ahash_digestsize(peer_device->connection->integrity_tfm) : 0; 1799 1800 if (!p) 1801 return -EIO; 1802 p->sector = cpu_to_be64(peer_req->i.sector); 1803 p->block_id = peer_req->block_id; 1804 p->seq_num = 0; /* unused */ 1805 p->dp_flags = 0; 1806 if (digest_size) 1807 drbd_csum_ee(peer_device->connection->integrity_tfm, peer_req, p + 1); 1808 err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*p) + digest_size, NULL, peer_req->i.size); 1809 if (!err) 1810 err = _drbd_send_zc_ee(peer_device, peer_req); 1811 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */ 1812 1813 return err; 1814 } 1815 1816 int drbd_send_out_of_sync(struct drbd_peer_device *peer_device, struct drbd_request *req) 1817 { 1818 struct drbd_socket *sock; 1819 struct p_block_desc *p; 1820 1821 sock = &peer_device->connection->data; 1822 p = drbd_prepare_command(peer_device, sock); 1823 if (!p) 1824 return -EIO; 1825 p->sector = cpu_to_be64(req->i.sector); 1826 p->blksize = cpu_to_be32(req->i.size); 1827 return drbd_send_command(peer_device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0); 1828 } 1829 1830 /* 1831 drbd_send distinguishes two cases: 1832 1833 Packets sent via the data socket "sock" 1834 and packets sent via the meta data socket "msock" 1835 1836 sock msock 1837 -----------------+-------------------------+------------------------------ 1838 timeout conf.timeout / 2 conf.timeout / 2 1839 timeout action send a ping via msock Abort communication 1840 and close all sockets 1841 */ 1842 1843 /* 1844 * you must have down()ed the appropriate [m]sock_mutex elsewhere! 1845 */ 1846 int drbd_send(struct drbd_connection *connection, struct socket *sock, 1847 void *buf, size_t size, unsigned msg_flags) 1848 { 1849 struct kvec iov; 1850 struct msghdr msg; 1851 int rv, sent = 0; 1852 1853 if (!sock) 1854 return -EBADR; 1855 1856 /* THINK if (signal_pending) return ... ? */ 1857 1858 iov.iov_base = buf; 1859 iov.iov_len = size; 1860 1861 msg.msg_name = NULL; 1862 msg.msg_namelen = 0; 1863 msg.msg_control = NULL; 1864 msg.msg_controllen = 0; 1865 msg.msg_flags = msg_flags | MSG_NOSIGNAL; 1866 1867 if (sock == connection->data.socket) { 1868 rcu_read_lock(); 1869 connection->ko_count = rcu_dereference(connection->net_conf)->ko_count; 1870 rcu_read_unlock(); 1871 drbd_update_congested(connection); 1872 } 1873 do { 1874 rv = kernel_sendmsg(sock, &msg, &iov, 1, iov.iov_len); 1875 if (rv == -EAGAIN) { 1876 if (we_should_drop_the_connection(connection, sock)) 1877 break; 1878 else 1879 continue; 1880 } 1881 if (rv == -EINTR) { 1882 flush_signals(current); 1883 rv = 0; 1884 } 1885 if (rv < 0) 1886 break; 1887 sent += rv; 1888 iov.iov_base += rv; 1889 iov.iov_len -= rv; 1890 } while (sent < size); 1891 1892 if (sock == connection->data.socket) 1893 clear_bit(NET_CONGESTED, &connection->flags); 1894 1895 if (rv <= 0) { 1896 if (rv != -EAGAIN) { 1897 drbd_err(connection, "%s_sendmsg returned %d\n", 1898 sock == connection->meta.socket ? "msock" : "sock", 1899 rv); 1900 conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD); 1901 } else 1902 conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD); 1903 } 1904 1905 return sent; 1906 } 1907 1908 /** 1909 * drbd_send_all - Send an entire buffer 1910 * 1911 * Returns 0 upon success and a negative error value otherwise. 1912 */ 1913 int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer, 1914 size_t size, unsigned msg_flags) 1915 { 1916 int err; 1917 1918 err = drbd_send(connection, sock, buffer, size, msg_flags); 1919 if (err < 0) 1920 return err; 1921 if (err != size) 1922 return -EIO; 1923 return 0; 1924 } 1925 1926 static int drbd_open(struct block_device *bdev, fmode_t mode) 1927 { 1928 struct drbd_device *device = bdev->bd_disk->private_data; 1929 unsigned long flags; 1930 int rv = 0; 1931 1932 mutex_lock(&drbd_main_mutex); 1933 spin_lock_irqsave(&device->resource->req_lock, flags); 1934 /* to have a stable device->state.role 1935 * and no race with updating open_cnt */ 1936 1937 if (device->state.role != R_PRIMARY) { 1938 if (mode & FMODE_WRITE) 1939 rv = -EROFS; 1940 else if (!allow_oos) 1941 rv = -EMEDIUMTYPE; 1942 } 1943 1944 if (!rv) 1945 device->open_cnt++; 1946 spin_unlock_irqrestore(&device->resource->req_lock, flags); 1947 mutex_unlock(&drbd_main_mutex); 1948 1949 return rv; 1950 } 1951 1952 static void drbd_release(struct gendisk *gd, fmode_t mode) 1953 { 1954 struct drbd_device *device = gd->private_data; 1955 mutex_lock(&drbd_main_mutex); 1956 device->open_cnt--; 1957 mutex_unlock(&drbd_main_mutex); 1958 } 1959 1960 static void drbd_set_defaults(struct drbd_device *device) 1961 { 1962 /* Beware! The actual layout differs 1963 * between big endian and little endian */ 1964 device->state = (union drbd_dev_state) { 1965 { .role = R_SECONDARY, 1966 .peer = R_UNKNOWN, 1967 .conn = C_STANDALONE, 1968 .disk = D_DISKLESS, 1969 .pdsk = D_UNKNOWN, 1970 } }; 1971 } 1972 1973 void drbd_init_set_defaults(struct drbd_device *device) 1974 { 1975 /* the memset(,0,) did most of this. 1976 * note: only assignments, no allocation in here */ 1977 1978 drbd_set_defaults(device); 1979 1980 atomic_set(&device->ap_bio_cnt, 0); 1981 atomic_set(&device->ap_actlog_cnt, 0); 1982 atomic_set(&device->ap_pending_cnt, 0); 1983 atomic_set(&device->rs_pending_cnt, 0); 1984 atomic_set(&device->unacked_cnt, 0); 1985 atomic_set(&device->local_cnt, 0); 1986 atomic_set(&device->pp_in_use_by_net, 0); 1987 atomic_set(&device->rs_sect_in, 0); 1988 atomic_set(&device->rs_sect_ev, 0); 1989 atomic_set(&device->ap_in_flight, 0); 1990 atomic_set(&device->md_io.in_use, 0); 1991 1992 mutex_init(&device->own_state_mutex); 1993 device->state_mutex = &device->own_state_mutex; 1994 1995 spin_lock_init(&device->al_lock); 1996 spin_lock_init(&device->peer_seq_lock); 1997 1998 INIT_LIST_HEAD(&device->active_ee); 1999 INIT_LIST_HEAD(&device->sync_ee); 2000 INIT_LIST_HEAD(&device->done_ee); 2001 INIT_LIST_HEAD(&device->read_ee); 2002 INIT_LIST_HEAD(&device->net_ee); 2003 INIT_LIST_HEAD(&device->resync_reads); 2004 INIT_LIST_HEAD(&device->resync_work.list); 2005 INIT_LIST_HEAD(&device->unplug_work.list); 2006 INIT_LIST_HEAD(&device->bm_io_work.w.list); 2007 INIT_LIST_HEAD(&device->pending_master_completion[0]); 2008 INIT_LIST_HEAD(&device->pending_master_completion[1]); 2009 INIT_LIST_HEAD(&device->pending_completion[0]); 2010 INIT_LIST_HEAD(&device->pending_completion[1]); 2011 2012 device->resync_work.cb = w_resync_timer; 2013 device->unplug_work.cb = w_send_write_hint; 2014 device->bm_io_work.w.cb = w_bitmap_io; 2015 2016 init_timer(&device->resync_timer); 2017 init_timer(&device->md_sync_timer); 2018 init_timer(&device->start_resync_timer); 2019 init_timer(&device->request_timer); 2020 device->resync_timer.function = resync_timer_fn; 2021 device->resync_timer.data = (unsigned long) device; 2022 device->md_sync_timer.function = md_sync_timer_fn; 2023 device->md_sync_timer.data = (unsigned long) device; 2024 device->start_resync_timer.function = start_resync_timer_fn; 2025 device->start_resync_timer.data = (unsigned long) device; 2026 device->request_timer.function = request_timer_fn; 2027 device->request_timer.data = (unsigned long) device; 2028 2029 init_waitqueue_head(&device->misc_wait); 2030 init_waitqueue_head(&device->state_wait); 2031 init_waitqueue_head(&device->ee_wait); 2032 init_waitqueue_head(&device->al_wait); 2033 init_waitqueue_head(&device->seq_wait); 2034 2035 device->resync_wenr = LC_FREE; 2036 device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE; 2037 device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE; 2038 } 2039 2040 void drbd_device_cleanup(struct drbd_device *device) 2041 { 2042 int i; 2043 if (first_peer_device(device)->connection->receiver.t_state != NONE) 2044 drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n", 2045 first_peer_device(device)->connection->receiver.t_state); 2046 2047 device->al_writ_cnt = 2048 device->bm_writ_cnt = 2049 device->read_cnt = 2050 device->recv_cnt = 2051 device->send_cnt = 2052 device->writ_cnt = 2053 device->p_size = 2054 device->rs_start = 2055 device->rs_total = 2056 device->rs_failed = 0; 2057 device->rs_last_events = 0; 2058 device->rs_last_sect_ev = 0; 2059 for (i = 0; i < DRBD_SYNC_MARKS; i++) { 2060 device->rs_mark_left[i] = 0; 2061 device->rs_mark_time[i] = 0; 2062 } 2063 D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL); 2064 2065 drbd_set_my_capacity(device, 0); 2066 if (device->bitmap) { 2067 /* maybe never allocated. */ 2068 drbd_bm_resize(device, 0, 1); 2069 drbd_bm_cleanup(device); 2070 } 2071 2072 drbd_backing_dev_free(device, device->ldev); 2073 device->ldev = NULL; 2074 2075 clear_bit(AL_SUSPENDED, &device->flags); 2076 2077 D_ASSERT(device, list_empty(&device->active_ee)); 2078 D_ASSERT(device, list_empty(&device->sync_ee)); 2079 D_ASSERT(device, list_empty(&device->done_ee)); 2080 D_ASSERT(device, list_empty(&device->read_ee)); 2081 D_ASSERT(device, list_empty(&device->net_ee)); 2082 D_ASSERT(device, list_empty(&device->resync_reads)); 2083 D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q)); 2084 D_ASSERT(device, list_empty(&device->resync_work.list)); 2085 D_ASSERT(device, list_empty(&device->unplug_work.list)); 2086 2087 drbd_set_defaults(device); 2088 } 2089 2090 2091 static void drbd_destroy_mempools(void) 2092 { 2093 struct page *page; 2094 2095 while (drbd_pp_pool) { 2096 page = drbd_pp_pool; 2097 drbd_pp_pool = (struct page *)page_private(page); 2098 __free_page(page); 2099 drbd_pp_vacant--; 2100 } 2101 2102 /* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */ 2103 2104 if (drbd_md_io_bio_set) 2105 bioset_free(drbd_md_io_bio_set); 2106 if (drbd_md_io_page_pool) 2107 mempool_destroy(drbd_md_io_page_pool); 2108 if (drbd_ee_mempool) 2109 mempool_destroy(drbd_ee_mempool); 2110 if (drbd_request_mempool) 2111 mempool_destroy(drbd_request_mempool); 2112 if (drbd_ee_cache) 2113 kmem_cache_destroy(drbd_ee_cache); 2114 if (drbd_request_cache) 2115 kmem_cache_destroy(drbd_request_cache); 2116 if (drbd_bm_ext_cache) 2117 kmem_cache_destroy(drbd_bm_ext_cache); 2118 if (drbd_al_ext_cache) 2119 kmem_cache_destroy(drbd_al_ext_cache); 2120 2121 drbd_md_io_bio_set = NULL; 2122 drbd_md_io_page_pool = NULL; 2123 drbd_ee_mempool = NULL; 2124 drbd_request_mempool = NULL; 2125 drbd_ee_cache = NULL; 2126 drbd_request_cache = NULL; 2127 drbd_bm_ext_cache = NULL; 2128 drbd_al_ext_cache = NULL; 2129 2130 return; 2131 } 2132 2133 static int drbd_create_mempools(void) 2134 { 2135 struct page *page; 2136 const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * minor_count; 2137 int i; 2138 2139 /* prepare our caches and mempools */ 2140 drbd_request_mempool = NULL; 2141 drbd_ee_cache = NULL; 2142 drbd_request_cache = NULL; 2143 drbd_bm_ext_cache = NULL; 2144 drbd_al_ext_cache = NULL; 2145 drbd_pp_pool = NULL; 2146 drbd_md_io_page_pool = NULL; 2147 drbd_md_io_bio_set = NULL; 2148 2149 /* caches */ 2150 drbd_request_cache = kmem_cache_create( 2151 "drbd_req", sizeof(struct drbd_request), 0, 0, NULL); 2152 if (drbd_request_cache == NULL) 2153 goto Enomem; 2154 2155 drbd_ee_cache = kmem_cache_create( 2156 "drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL); 2157 if (drbd_ee_cache == NULL) 2158 goto Enomem; 2159 2160 drbd_bm_ext_cache = kmem_cache_create( 2161 "drbd_bm", sizeof(struct bm_extent), 0, 0, NULL); 2162 if (drbd_bm_ext_cache == NULL) 2163 goto Enomem; 2164 2165 drbd_al_ext_cache = kmem_cache_create( 2166 "drbd_al", sizeof(struct lc_element), 0, 0, NULL); 2167 if (drbd_al_ext_cache == NULL) 2168 goto Enomem; 2169 2170 /* mempools */ 2171 drbd_md_io_bio_set = bioset_create(DRBD_MIN_POOL_PAGES, 0); 2172 if (drbd_md_io_bio_set == NULL) 2173 goto Enomem; 2174 2175 drbd_md_io_page_pool = mempool_create_page_pool(DRBD_MIN_POOL_PAGES, 0); 2176 if (drbd_md_io_page_pool == NULL) 2177 goto Enomem; 2178 2179 drbd_request_mempool = mempool_create_slab_pool(number, 2180 drbd_request_cache); 2181 if (drbd_request_mempool == NULL) 2182 goto Enomem; 2183 2184 drbd_ee_mempool = mempool_create_slab_pool(number, drbd_ee_cache); 2185 if (drbd_ee_mempool == NULL) 2186 goto Enomem; 2187 2188 /* drbd's page pool */ 2189 spin_lock_init(&drbd_pp_lock); 2190 2191 for (i = 0; i < number; i++) { 2192 page = alloc_page(GFP_HIGHUSER); 2193 if (!page) 2194 goto Enomem; 2195 set_page_private(page, (unsigned long)drbd_pp_pool); 2196 drbd_pp_pool = page; 2197 } 2198 drbd_pp_vacant = number; 2199 2200 return 0; 2201 2202 Enomem: 2203 drbd_destroy_mempools(); /* in case we allocated some */ 2204 return -ENOMEM; 2205 } 2206 2207 static void drbd_release_all_peer_reqs(struct drbd_device *device) 2208 { 2209 int rr; 2210 2211 rr = drbd_free_peer_reqs(device, &device->active_ee); 2212 if (rr) 2213 drbd_err(device, "%d EEs in active list found!\n", rr); 2214 2215 rr = drbd_free_peer_reqs(device, &device->sync_ee); 2216 if (rr) 2217 drbd_err(device, "%d EEs in sync list found!\n", rr); 2218 2219 rr = drbd_free_peer_reqs(device, &device->read_ee); 2220 if (rr) 2221 drbd_err(device, "%d EEs in read list found!\n", rr); 2222 2223 rr = drbd_free_peer_reqs(device, &device->done_ee); 2224 if (rr) 2225 drbd_err(device, "%d EEs in done list found!\n", rr); 2226 2227 rr = drbd_free_peer_reqs(device, &device->net_ee); 2228 if (rr) 2229 drbd_err(device, "%d EEs in net list found!\n", rr); 2230 } 2231 2232 /* caution. no locking. */ 2233 void drbd_destroy_device(struct kref *kref) 2234 { 2235 struct drbd_device *device = container_of(kref, struct drbd_device, kref); 2236 struct drbd_resource *resource = device->resource; 2237 struct drbd_peer_device *peer_device, *tmp_peer_device; 2238 2239 del_timer_sync(&device->request_timer); 2240 2241 /* paranoia asserts */ 2242 D_ASSERT(device, device->open_cnt == 0); 2243 /* end paranoia asserts */ 2244 2245 /* cleanup stuff that may have been allocated during 2246 * device (re-)configuration or state changes */ 2247 2248 if (device->this_bdev) 2249 bdput(device->this_bdev); 2250 2251 drbd_backing_dev_free(device, device->ldev); 2252 device->ldev = NULL; 2253 2254 drbd_release_all_peer_reqs(device); 2255 2256 lc_destroy(device->act_log); 2257 lc_destroy(device->resync); 2258 2259 kfree(device->p_uuid); 2260 /* device->p_uuid = NULL; */ 2261 2262 if (device->bitmap) /* should no longer be there. */ 2263 drbd_bm_cleanup(device); 2264 __free_page(device->md_io.page); 2265 put_disk(device->vdisk); 2266 blk_cleanup_queue(device->rq_queue); 2267 kfree(device->rs_plan_s); 2268 2269 /* not for_each_connection(connection, resource): 2270 * those may have been cleaned up and disassociated already. 2271 */ 2272 for_each_peer_device_safe(peer_device, tmp_peer_device, device) { 2273 kref_put(&peer_device->connection->kref, drbd_destroy_connection); 2274 kfree(peer_device); 2275 } 2276 memset(device, 0xfd, sizeof(*device)); 2277 kfree(device); 2278 kref_put(&resource->kref, drbd_destroy_resource); 2279 } 2280 2281 /* One global retry thread, if we need to push back some bio and have it 2282 * reinserted through our make request function. 2283 */ 2284 static struct retry_worker { 2285 struct workqueue_struct *wq; 2286 struct work_struct worker; 2287 2288 spinlock_t lock; 2289 struct list_head writes; 2290 } retry; 2291 2292 static void do_retry(struct work_struct *ws) 2293 { 2294 struct retry_worker *retry = container_of(ws, struct retry_worker, worker); 2295 LIST_HEAD(writes); 2296 struct drbd_request *req, *tmp; 2297 2298 spin_lock_irq(&retry->lock); 2299 list_splice_init(&retry->writes, &writes); 2300 spin_unlock_irq(&retry->lock); 2301 2302 list_for_each_entry_safe(req, tmp, &writes, tl_requests) { 2303 struct drbd_device *device = req->device; 2304 struct bio *bio = req->master_bio; 2305 unsigned long start_jif = req->start_jif; 2306 bool expected; 2307 2308 expected = 2309 expect(atomic_read(&req->completion_ref) == 0) && 2310 expect(req->rq_state & RQ_POSTPONED) && 2311 expect((req->rq_state & RQ_LOCAL_PENDING) == 0 || 2312 (req->rq_state & RQ_LOCAL_ABORTED) != 0); 2313 2314 if (!expected) 2315 drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n", 2316 req, atomic_read(&req->completion_ref), 2317 req->rq_state); 2318 2319 /* We still need to put one kref associated with the 2320 * "completion_ref" going zero in the code path that queued it 2321 * here. The request object may still be referenced by a 2322 * frozen local req->private_bio, in case we force-detached. 2323 */ 2324 kref_put(&req->kref, drbd_req_destroy); 2325 2326 /* A single suspended or otherwise blocking device may stall 2327 * all others as well. Fortunately, this code path is to 2328 * recover from a situation that "should not happen": 2329 * concurrent writes in multi-primary setup. 2330 * In a "normal" lifecycle, this workqueue is supposed to be 2331 * destroyed without ever doing anything. 2332 * If it turns out to be an issue anyways, we can do per 2333 * resource (replication group) or per device (minor) retry 2334 * workqueues instead. 2335 */ 2336 2337 /* We are not just doing generic_make_request(), 2338 * as we want to keep the start_time information. */ 2339 inc_ap_bio(device); 2340 __drbd_make_request(device, bio, start_jif); 2341 } 2342 } 2343 2344 /* called via drbd_req_put_completion_ref(), 2345 * holds resource->req_lock */ 2346 void drbd_restart_request(struct drbd_request *req) 2347 { 2348 unsigned long flags; 2349 spin_lock_irqsave(&retry.lock, flags); 2350 list_move_tail(&req->tl_requests, &retry.writes); 2351 spin_unlock_irqrestore(&retry.lock, flags); 2352 2353 /* Drop the extra reference that would otherwise 2354 * have been dropped by complete_master_bio. 2355 * do_retry() needs to grab a new one. */ 2356 dec_ap_bio(req->device); 2357 2358 queue_work(retry.wq, &retry.worker); 2359 } 2360 2361 void drbd_destroy_resource(struct kref *kref) 2362 { 2363 struct drbd_resource *resource = 2364 container_of(kref, struct drbd_resource, kref); 2365 2366 idr_destroy(&resource->devices); 2367 free_cpumask_var(resource->cpu_mask); 2368 kfree(resource->name); 2369 memset(resource, 0xf2, sizeof(*resource)); 2370 kfree(resource); 2371 } 2372 2373 void drbd_free_resource(struct drbd_resource *resource) 2374 { 2375 struct drbd_connection *connection, *tmp; 2376 2377 for_each_connection_safe(connection, tmp, resource) { 2378 list_del(&connection->connections); 2379 drbd_debugfs_connection_cleanup(connection); 2380 kref_put(&connection->kref, drbd_destroy_connection); 2381 } 2382 drbd_debugfs_resource_cleanup(resource); 2383 kref_put(&resource->kref, drbd_destroy_resource); 2384 } 2385 2386 static void drbd_cleanup(void) 2387 { 2388 unsigned int i; 2389 struct drbd_device *device; 2390 struct drbd_resource *resource, *tmp; 2391 2392 /* first remove proc, 2393 * drbdsetup uses it's presence to detect 2394 * whether DRBD is loaded. 2395 * If we would get stuck in proc removal, 2396 * but have netlink already deregistered, 2397 * some drbdsetup commands may wait forever 2398 * for an answer. 2399 */ 2400 if (drbd_proc) 2401 remove_proc_entry("drbd", NULL); 2402 2403 if (retry.wq) 2404 destroy_workqueue(retry.wq); 2405 2406 drbd_genl_unregister(); 2407 drbd_debugfs_cleanup(); 2408 2409 idr_for_each_entry(&drbd_devices, device, i) 2410 drbd_delete_device(device); 2411 2412 /* not _rcu since, no other updater anymore. Genl already unregistered */ 2413 for_each_resource_safe(resource, tmp, &drbd_resources) { 2414 list_del(&resource->resources); 2415 drbd_free_resource(resource); 2416 } 2417 2418 drbd_destroy_mempools(); 2419 unregister_blkdev(DRBD_MAJOR, "drbd"); 2420 2421 idr_destroy(&drbd_devices); 2422 2423 pr_info("module cleanup done.\n"); 2424 } 2425 2426 /** 2427 * drbd_congested() - Callback for the flusher thread 2428 * @congested_data: User data 2429 * @bdi_bits: Bits the BDI flusher thread is currently interested in 2430 * 2431 * Returns 1<<WB_async_congested and/or 1<<WB_sync_congested if we are congested. 2432 */ 2433 static int drbd_congested(void *congested_data, int bdi_bits) 2434 { 2435 struct drbd_device *device = congested_data; 2436 struct request_queue *q; 2437 char reason = '-'; 2438 int r = 0; 2439 2440 if (!may_inc_ap_bio(device)) { 2441 /* DRBD has frozen IO */ 2442 r = bdi_bits; 2443 reason = 'd'; 2444 goto out; 2445 } 2446 2447 if (test_bit(CALLBACK_PENDING, &first_peer_device(device)->connection->flags)) { 2448 r |= (1 << WB_async_congested); 2449 /* Without good local data, we would need to read from remote, 2450 * and that would need the worker thread as well, which is 2451 * currently blocked waiting for that usermode helper to 2452 * finish. 2453 */ 2454 if (!get_ldev_if_state(device, D_UP_TO_DATE)) 2455 r |= (1 << WB_sync_congested); 2456 else 2457 put_ldev(device); 2458 r &= bdi_bits; 2459 reason = 'c'; 2460 goto out; 2461 } 2462 2463 if (get_ldev(device)) { 2464 q = bdev_get_queue(device->ldev->backing_bdev); 2465 r = bdi_congested(&q->backing_dev_info, bdi_bits); 2466 put_ldev(device); 2467 if (r) 2468 reason = 'b'; 2469 } 2470 2471 if (bdi_bits & (1 << WB_async_congested) && 2472 test_bit(NET_CONGESTED, &first_peer_device(device)->connection->flags)) { 2473 r |= (1 << WB_async_congested); 2474 reason = reason == 'b' ? 'a' : 'n'; 2475 } 2476 2477 out: 2478 device->congestion_reason = reason; 2479 return r; 2480 } 2481 2482 static void drbd_init_workqueue(struct drbd_work_queue* wq) 2483 { 2484 spin_lock_init(&wq->q_lock); 2485 INIT_LIST_HEAD(&wq->q); 2486 init_waitqueue_head(&wq->q_wait); 2487 } 2488 2489 struct completion_work { 2490 struct drbd_work w; 2491 struct completion done; 2492 }; 2493 2494 static int w_complete(struct drbd_work *w, int cancel) 2495 { 2496 struct completion_work *completion_work = 2497 container_of(w, struct completion_work, w); 2498 2499 complete(&completion_work->done); 2500 return 0; 2501 } 2502 2503 void drbd_flush_workqueue(struct drbd_work_queue *work_queue) 2504 { 2505 struct completion_work completion_work; 2506 2507 completion_work.w.cb = w_complete; 2508 init_completion(&completion_work.done); 2509 drbd_queue_work(work_queue, &completion_work.w); 2510 wait_for_completion(&completion_work.done); 2511 } 2512 2513 struct drbd_resource *drbd_find_resource(const char *name) 2514 { 2515 struct drbd_resource *resource; 2516 2517 if (!name || !name[0]) 2518 return NULL; 2519 2520 rcu_read_lock(); 2521 for_each_resource_rcu(resource, &drbd_resources) { 2522 if (!strcmp(resource->name, name)) { 2523 kref_get(&resource->kref); 2524 goto found; 2525 } 2526 } 2527 resource = NULL; 2528 found: 2529 rcu_read_unlock(); 2530 return resource; 2531 } 2532 2533 struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len, 2534 void *peer_addr, int peer_addr_len) 2535 { 2536 struct drbd_resource *resource; 2537 struct drbd_connection *connection; 2538 2539 rcu_read_lock(); 2540 for_each_resource_rcu(resource, &drbd_resources) { 2541 for_each_connection_rcu(connection, resource) { 2542 if (connection->my_addr_len == my_addr_len && 2543 connection->peer_addr_len == peer_addr_len && 2544 !memcmp(&connection->my_addr, my_addr, my_addr_len) && 2545 !memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) { 2546 kref_get(&connection->kref); 2547 goto found; 2548 } 2549 } 2550 } 2551 connection = NULL; 2552 found: 2553 rcu_read_unlock(); 2554 return connection; 2555 } 2556 2557 static int drbd_alloc_socket(struct drbd_socket *socket) 2558 { 2559 socket->rbuf = (void *) __get_free_page(GFP_KERNEL); 2560 if (!socket->rbuf) 2561 return -ENOMEM; 2562 socket->sbuf = (void *) __get_free_page(GFP_KERNEL); 2563 if (!socket->sbuf) 2564 return -ENOMEM; 2565 return 0; 2566 } 2567 2568 static void drbd_free_socket(struct drbd_socket *socket) 2569 { 2570 free_page((unsigned long) socket->sbuf); 2571 free_page((unsigned long) socket->rbuf); 2572 } 2573 2574 void conn_free_crypto(struct drbd_connection *connection) 2575 { 2576 drbd_free_sock(connection); 2577 2578 crypto_free_ahash(connection->csums_tfm); 2579 crypto_free_ahash(connection->verify_tfm); 2580 crypto_free_shash(connection->cram_hmac_tfm); 2581 crypto_free_ahash(connection->integrity_tfm); 2582 crypto_free_ahash(connection->peer_integrity_tfm); 2583 kfree(connection->int_dig_in); 2584 kfree(connection->int_dig_vv); 2585 2586 connection->csums_tfm = NULL; 2587 connection->verify_tfm = NULL; 2588 connection->cram_hmac_tfm = NULL; 2589 connection->integrity_tfm = NULL; 2590 connection->peer_integrity_tfm = NULL; 2591 connection->int_dig_in = NULL; 2592 connection->int_dig_vv = NULL; 2593 } 2594 2595 int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts) 2596 { 2597 struct drbd_connection *connection; 2598 cpumask_var_t new_cpu_mask; 2599 int err; 2600 2601 if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL)) 2602 return -ENOMEM; 2603 2604 /* silently ignore cpu mask on UP kernel */ 2605 if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) { 2606 err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE, 2607 cpumask_bits(new_cpu_mask), nr_cpu_ids); 2608 if (err == -EOVERFLOW) { 2609 /* So what. mask it out. */ 2610 cpumask_var_t tmp_cpu_mask; 2611 if (zalloc_cpumask_var(&tmp_cpu_mask, GFP_KERNEL)) { 2612 cpumask_setall(tmp_cpu_mask); 2613 cpumask_and(new_cpu_mask, new_cpu_mask, tmp_cpu_mask); 2614 drbd_warn(resource, "Overflow in bitmap_parse(%.12s%s), truncating to %u bits\n", 2615 res_opts->cpu_mask, 2616 strlen(res_opts->cpu_mask) > 12 ? "..." : "", 2617 nr_cpu_ids); 2618 free_cpumask_var(tmp_cpu_mask); 2619 err = 0; 2620 } 2621 } 2622 if (err) { 2623 drbd_warn(resource, "bitmap_parse() failed with %d\n", err); 2624 /* retcode = ERR_CPU_MASK_PARSE; */ 2625 goto fail; 2626 } 2627 } 2628 resource->res_opts = *res_opts; 2629 if (cpumask_empty(new_cpu_mask)) 2630 drbd_calc_cpu_mask(&new_cpu_mask); 2631 if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) { 2632 cpumask_copy(resource->cpu_mask, new_cpu_mask); 2633 for_each_connection_rcu(connection, resource) { 2634 connection->receiver.reset_cpu_mask = 1; 2635 connection->ack_receiver.reset_cpu_mask = 1; 2636 connection->worker.reset_cpu_mask = 1; 2637 } 2638 } 2639 err = 0; 2640 2641 fail: 2642 free_cpumask_var(new_cpu_mask); 2643 return err; 2644 2645 } 2646 2647 struct drbd_resource *drbd_create_resource(const char *name) 2648 { 2649 struct drbd_resource *resource; 2650 2651 resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL); 2652 if (!resource) 2653 goto fail; 2654 resource->name = kstrdup(name, GFP_KERNEL); 2655 if (!resource->name) 2656 goto fail_free_resource; 2657 if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL)) 2658 goto fail_free_name; 2659 kref_init(&resource->kref); 2660 idr_init(&resource->devices); 2661 INIT_LIST_HEAD(&resource->connections); 2662 resource->write_ordering = WO_BDEV_FLUSH; 2663 list_add_tail_rcu(&resource->resources, &drbd_resources); 2664 mutex_init(&resource->conf_update); 2665 mutex_init(&resource->adm_mutex); 2666 spin_lock_init(&resource->req_lock); 2667 drbd_debugfs_resource_add(resource); 2668 return resource; 2669 2670 fail_free_name: 2671 kfree(resource->name); 2672 fail_free_resource: 2673 kfree(resource); 2674 fail: 2675 return NULL; 2676 } 2677 2678 /* caller must be under adm_mutex */ 2679 struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts) 2680 { 2681 struct drbd_resource *resource; 2682 struct drbd_connection *connection; 2683 2684 connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL); 2685 if (!connection) 2686 return NULL; 2687 2688 if (drbd_alloc_socket(&connection->data)) 2689 goto fail; 2690 if (drbd_alloc_socket(&connection->meta)) 2691 goto fail; 2692 2693 connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL); 2694 if (!connection->current_epoch) 2695 goto fail; 2696 2697 INIT_LIST_HEAD(&connection->transfer_log); 2698 2699 INIT_LIST_HEAD(&connection->current_epoch->list); 2700 connection->epochs = 1; 2701 spin_lock_init(&connection->epoch_lock); 2702 2703 connection->send.seen_any_write_yet = false; 2704 connection->send.current_epoch_nr = 0; 2705 connection->send.current_epoch_writes = 0; 2706 2707 resource = drbd_create_resource(name); 2708 if (!resource) 2709 goto fail; 2710 2711 connection->cstate = C_STANDALONE; 2712 mutex_init(&connection->cstate_mutex); 2713 init_waitqueue_head(&connection->ping_wait); 2714 idr_init(&connection->peer_devices); 2715 2716 drbd_init_workqueue(&connection->sender_work); 2717 mutex_init(&connection->data.mutex); 2718 mutex_init(&connection->meta.mutex); 2719 2720 drbd_thread_init(resource, &connection->receiver, drbd_receiver, "receiver"); 2721 connection->receiver.connection = connection; 2722 drbd_thread_init(resource, &connection->worker, drbd_worker, "worker"); 2723 connection->worker.connection = connection; 2724 drbd_thread_init(resource, &connection->ack_receiver, drbd_ack_receiver, "ack_recv"); 2725 connection->ack_receiver.connection = connection; 2726 2727 kref_init(&connection->kref); 2728 2729 connection->resource = resource; 2730 2731 if (set_resource_options(resource, res_opts)) 2732 goto fail_resource; 2733 2734 kref_get(&resource->kref); 2735 list_add_tail_rcu(&connection->connections, &resource->connections); 2736 drbd_debugfs_connection_add(connection); 2737 return connection; 2738 2739 fail_resource: 2740 list_del(&resource->resources); 2741 drbd_free_resource(resource); 2742 fail: 2743 kfree(connection->current_epoch); 2744 drbd_free_socket(&connection->meta); 2745 drbd_free_socket(&connection->data); 2746 kfree(connection); 2747 return NULL; 2748 } 2749 2750 void drbd_destroy_connection(struct kref *kref) 2751 { 2752 struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref); 2753 struct drbd_resource *resource = connection->resource; 2754 2755 if (atomic_read(&connection->current_epoch->epoch_size) != 0) 2756 drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size)); 2757 kfree(connection->current_epoch); 2758 2759 idr_destroy(&connection->peer_devices); 2760 2761 drbd_free_socket(&connection->meta); 2762 drbd_free_socket(&connection->data); 2763 kfree(connection->int_dig_in); 2764 kfree(connection->int_dig_vv); 2765 memset(connection, 0xfc, sizeof(*connection)); 2766 kfree(connection); 2767 kref_put(&resource->kref, drbd_destroy_resource); 2768 } 2769 2770 static int init_submitter(struct drbd_device *device) 2771 { 2772 /* opencoded create_singlethread_workqueue(), 2773 * to be able to say "drbd%d", ..., minor */ 2774 device->submit.wq = 2775 alloc_ordered_workqueue("drbd%u_submit", WQ_MEM_RECLAIM, device->minor); 2776 if (!device->submit.wq) 2777 return -ENOMEM; 2778 2779 INIT_WORK(&device->submit.worker, do_submit); 2780 INIT_LIST_HEAD(&device->submit.writes); 2781 return 0; 2782 } 2783 2784 enum drbd_ret_code drbd_create_device(struct drbd_config_context *adm_ctx, unsigned int minor) 2785 { 2786 struct drbd_resource *resource = adm_ctx->resource; 2787 struct drbd_connection *connection; 2788 struct drbd_device *device; 2789 struct drbd_peer_device *peer_device, *tmp_peer_device; 2790 struct gendisk *disk; 2791 struct request_queue *q; 2792 int id; 2793 int vnr = adm_ctx->volume; 2794 enum drbd_ret_code err = ERR_NOMEM; 2795 2796 device = minor_to_device(minor); 2797 if (device) 2798 return ERR_MINOR_OR_VOLUME_EXISTS; 2799 2800 /* GFP_KERNEL, we are outside of all write-out paths */ 2801 device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL); 2802 if (!device) 2803 return ERR_NOMEM; 2804 kref_init(&device->kref); 2805 2806 kref_get(&resource->kref); 2807 device->resource = resource; 2808 device->minor = minor; 2809 device->vnr = vnr; 2810 2811 drbd_init_set_defaults(device); 2812 2813 q = blk_alloc_queue(GFP_KERNEL); 2814 if (!q) 2815 goto out_no_q; 2816 device->rq_queue = q; 2817 q->queuedata = device; 2818 2819 disk = alloc_disk(1); 2820 if (!disk) 2821 goto out_no_disk; 2822 device->vdisk = disk; 2823 2824 set_disk_ro(disk, true); 2825 2826 disk->queue = q; 2827 disk->major = DRBD_MAJOR; 2828 disk->first_minor = minor; 2829 disk->fops = &drbd_ops; 2830 sprintf(disk->disk_name, "drbd%d", minor); 2831 disk->private_data = device; 2832 2833 device->this_bdev = bdget(MKDEV(DRBD_MAJOR, minor)); 2834 /* we have no partitions. we contain only ourselves. */ 2835 device->this_bdev->bd_contains = device->this_bdev; 2836 2837 q->backing_dev_info.congested_fn = drbd_congested; 2838 q->backing_dev_info.congested_data = device; 2839 2840 blk_queue_make_request(q, drbd_make_request); 2841 blk_queue_write_cache(q, true, true); 2842 /* Setting the max_hw_sectors to an odd value of 8kibyte here 2843 This triggers a max_bio_size message upon first attach or connect */ 2844 blk_queue_max_hw_sectors(q, DRBD_MAX_BIO_SIZE_SAFE >> 8); 2845 blk_queue_bounce_limit(q, BLK_BOUNCE_ANY); 2846 q->queue_lock = &resource->req_lock; 2847 2848 device->md_io.page = alloc_page(GFP_KERNEL); 2849 if (!device->md_io.page) 2850 goto out_no_io_page; 2851 2852 if (drbd_bm_init(device)) 2853 goto out_no_bitmap; 2854 device->read_requests = RB_ROOT; 2855 device->write_requests = RB_ROOT; 2856 2857 id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL); 2858 if (id < 0) { 2859 if (id == -ENOSPC) 2860 err = ERR_MINOR_OR_VOLUME_EXISTS; 2861 goto out_no_minor_idr; 2862 } 2863 kref_get(&device->kref); 2864 2865 id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL); 2866 if (id < 0) { 2867 if (id == -ENOSPC) 2868 err = ERR_MINOR_OR_VOLUME_EXISTS; 2869 goto out_idr_remove_minor; 2870 } 2871 kref_get(&device->kref); 2872 2873 INIT_LIST_HEAD(&device->peer_devices); 2874 INIT_LIST_HEAD(&device->pending_bitmap_io); 2875 for_each_connection(connection, resource) { 2876 peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL); 2877 if (!peer_device) 2878 goto out_idr_remove_from_resource; 2879 peer_device->connection = connection; 2880 peer_device->device = device; 2881 2882 list_add(&peer_device->peer_devices, &device->peer_devices); 2883 kref_get(&device->kref); 2884 2885 id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL); 2886 if (id < 0) { 2887 if (id == -ENOSPC) 2888 err = ERR_INVALID_REQUEST; 2889 goto out_idr_remove_from_resource; 2890 } 2891 kref_get(&connection->kref); 2892 INIT_WORK(&peer_device->send_acks_work, drbd_send_acks_wf); 2893 } 2894 2895 if (init_submitter(device)) { 2896 err = ERR_NOMEM; 2897 goto out_idr_remove_vol; 2898 } 2899 2900 add_disk(disk); 2901 2902 /* inherit the connection state */ 2903 device->state.conn = first_connection(resource)->cstate; 2904 if (device->state.conn == C_WF_REPORT_PARAMS) { 2905 for_each_peer_device(peer_device, device) 2906 drbd_connected(peer_device); 2907 } 2908 /* move to create_peer_device() */ 2909 for_each_peer_device(peer_device, device) 2910 drbd_debugfs_peer_device_add(peer_device); 2911 drbd_debugfs_device_add(device); 2912 return NO_ERROR; 2913 2914 out_idr_remove_vol: 2915 idr_remove(&connection->peer_devices, vnr); 2916 out_idr_remove_from_resource: 2917 for_each_connection(connection, resource) { 2918 peer_device = idr_find(&connection->peer_devices, vnr); 2919 if (peer_device) { 2920 idr_remove(&connection->peer_devices, vnr); 2921 kref_put(&connection->kref, drbd_destroy_connection); 2922 } 2923 } 2924 for_each_peer_device_safe(peer_device, tmp_peer_device, device) { 2925 list_del(&peer_device->peer_devices); 2926 kfree(peer_device); 2927 } 2928 idr_remove(&resource->devices, vnr); 2929 out_idr_remove_minor: 2930 idr_remove(&drbd_devices, minor); 2931 synchronize_rcu(); 2932 out_no_minor_idr: 2933 drbd_bm_cleanup(device); 2934 out_no_bitmap: 2935 __free_page(device->md_io.page); 2936 out_no_io_page: 2937 put_disk(disk); 2938 out_no_disk: 2939 blk_cleanup_queue(q); 2940 out_no_q: 2941 kref_put(&resource->kref, drbd_destroy_resource); 2942 kfree(device); 2943 return err; 2944 } 2945 2946 void drbd_delete_device(struct drbd_device *device) 2947 { 2948 struct drbd_resource *resource = device->resource; 2949 struct drbd_connection *connection; 2950 struct drbd_peer_device *peer_device; 2951 int refs = 3; 2952 2953 /* move to free_peer_device() */ 2954 for_each_peer_device(peer_device, device) 2955 drbd_debugfs_peer_device_cleanup(peer_device); 2956 drbd_debugfs_device_cleanup(device); 2957 for_each_connection(connection, resource) { 2958 idr_remove(&connection->peer_devices, device->vnr); 2959 refs++; 2960 } 2961 idr_remove(&resource->devices, device->vnr); 2962 idr_remove(&drbd_devices, device_to_minor(device)); 2963 del_gendisk(device->vdisk); 2964 synchronize_rcu(); 2965 kref_sub(&device->kref, refs, drbd_destroy_device); 2966 } 2967 2968 static int __init drbd_init(void) 2969 { 2970 int err; 2971 2972 if (minor_count < DRBD_MINOR_COUNT_MIN || minor_count > DRBD_MINOR_COUNT_MAX) { 2973 pr_err("invalid minor_count (%d)\n", minor_count); 2974 #ifdef MODULE 2975 return -EINVAL; 2976 #else 2977 minor_count = DRBD_MINOR_COUNT_DEF; 2978 #endif 2979 } 2980 2981 err = register_blkdev(DRBD_MAJOR, "drbd"); 2982 if (err) { 2983 pr_err("unable to register block device major %d\n", 2984 DRBD_MAJOR); 2985 return err; 2986 } 2987 2988 /* 2989 * allocate all necessary structs 2990 */ 2991 init_waitqueue_head(&drbd_pp_wait); 2992 2993 drbd_proc = NULL; /* play safe for drbd_cleanup */ 2994 idr_init(&drbd_devices); 2995 2996 mutex_init(&resources_mutex); 2997 INIT_LIST_HEAD(&drbd_resources); 2998 2999 err = drbd_genl_register(); 3000 if (err) { 3001 pr_err("unable to register generic netlink family\n"); 3002 goto fail; 3003 } 3004 3005 err = drbd_create_mempools(); 3006 if (err) 3007 goto fail; 3008 3009 err = -ENOMEM; 3010 drbd_proc = proc_create_data("drbd", S_IFREG | S_IRUGO , NULL, &drbd_proc_fops, NULL); 3011 if (!drbd_proc) { 3012 pr_err("unable to register proc file\n"); 3013 goto fail; 3014 } 3015 3016 retry.wq = create_singlethread_workqueue("drbd-reissue"); 3017 if (!retry.wq) { 3018 pr_err("unable to create retry workqueue\n"); 3019 goto fail; 3020 } 3021 INIT_WORK(&retry.worker, do_retry); 3022 spin_lock_init(&retry.lock); 3023 INIT_LIST_HEAD(&retry.writes); 3024 3025 if (drbd_debugfs_init()) 3026 pr_notice("failed to initialize debugfs -- will not be available\n"); 3027 3028 pr_info("initialized. " 3029 "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n", 3030 API_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX); 3031 pr_info("%s\n", drbd_buildtag()); 3032 pr_info("registered as block device major %d\n", DRBD_MAJOR); 3033 return 0; /* Success! */ 3034 3035 fail: 3036 drbd_cleanup(); 3037 if (err == -ENOMEM) 3038 pr_err("ran out of memory\n"); 3039 else 3040 pr_err("initialization failure\n"); 3041 return err; 3042 } 3043 3044 static void drbd_free_one_sock(struct drbd_socket *ds) 3045 { 3046 struct socket *s; 3047 mutex_lock(&ds->mutex); 3048 s = ds->socket; 3049 ds->socket = NULL; 3050 mutex_unlock(&ds->mutex); 3051 if (s) { 3052 /* so debugfs does not need to mutex_lock() */ 3053 synchronize_rcu(); 3054 kernel_sock_shutdown(s, SHUT_RDWR); 3055 sock_release(s); 3056 } 3057 } 3058 3059 void drbd_free_sock(struct drbd_connection *connection) 3060 { 3061 if (connection->data.socket) 3062 drbd_free_one_sock(&connection->data); 3063 if (connection->meta.socket) 3064 drbd_free_one_sock(&connection->meta); 3065 } 3066 3067 /* meta data management */ 3068 3069 void conn_md_sync(struct drbd_connection *connection) 3070 { 3071 struct drbd_peer_device *peer_device; 3072 int vnr; 3073 3074 rcu_read_lock(); 3075 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 3076 struct drbd_device *device = peer_device->device; 3077 3078 kref_get(&device->kref); 3079 rcu_read_unlock(); 3080 drbd_md_sync(device); 3081 kref_put(&device->kref, drbd_destroy_device); 3082 rcu_read_lock(); 3083 } 3084 rcu_read_unlock(); 3085 } 3086 3087 /* aligned 4kByte */ 3088 struct meta_data_on_disk { 3089 u64 la_size_sect; /* last agreed size. */ 3090 u64 uuid[UI_SIZE]; /* UUIDs. */ 3091 u64 device_uuid; 3092 u64 reserved_u64_1; 3093 u32 flags; /* MDF */ 3094 u32 magic; 3095 u32 md_size_sect; 3096 u32 al_offset; /* offset to this block */ 3097 u32 al_nr_extents; /* important for restoring the AL (userspace) */ 3098 /* `-- act_log->nr_elements <-- ldev->dc.al_extents */ 3099 u32 bm_offset; /* offset to the bitmap, from here */ 3100 u32 bm_bytes_per_bit; /* BM_BLOCK_SIZE */ 3101 u32 la_peer_max_bio_size; /* last peer max_bio_size */ 3102 3103 /* see al_tr_number_to_on_disk_sector() */ 3104 u32 al_stripes; 3105 u32 al_stripe_size_4k; 3106 3107 u8 reserved_u8[4096 - (7*8 + 10*4)]; 3108 } __packed; 3109 3110 3111 3112 void drbd_md_write(struct drbd_device *device, void *b) 3113 { 3114 struct meta_data_on_disk *buffer = b; 3115 sector_t sector; 3116 int i; 3117 3118 memset(buffer, 0, sizeof(*buffer)); 3119 3120 buffer->la_size_sect = cpu_to_be64(drbd_get_capacity(device->this_bdev)); 3121 for (i = UI_CURRENT; i < UI_SIZE; i++) 3122 buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]); 3123 buffer->flags = cpu_to_be32(device->ldev->md.flags); 3124 buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN); 3125 3126 buffer->md_size_sect = cpu_to_be32(device->ldev->md.md_size_sect); 3127 buffer->al_offset = cpu_to_be32(device->ldev->md.al_offset); 3128 buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements); 3129 buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE); 3130 buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid); 3131 3132 buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset); 3133 buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size); 3134 3135 buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes); 3136 buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k); 3137 3138 D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset); 3139 sector = device->ldev->md.md_offset; 3140 3141 if (drbd_md_sync_page_io(device, device->ldev, sector, REQ_OP_WRITE)) { 3142 /* this was a try anyways ... */ 3143 drbd_err(device, "meta data update failed!\n"); 3144 drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR); 3145 } 3146 } 3147 3148 /** 3149 * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set 3150 * @device: DRBD device. 3151 */ 3152 void drbd_md_sync(struct drbd_device *device) 3153 { 3154 struct meta_data_on_disk *buffer; 3155 3156 /* Don't accidentally change the DRBD meta data layout. */ 3157 BUILD_BUG_ON(UI_SIZE != 4); 3158 BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096); 3159 3160 del_timer(&device->md_sync_timer); 3161 /* timer may be rearmed by drbd_md_mark_dirty() now. */ 3162 if (!test_and_clear_bit(MD_DIRTY, &device->flags)) 3163 return; 3164 3165 /* We use here D_FAILED and not D_ATTACHING because we try to write 3166 * metadata even if we detach due to a disk failure! */ 3167 if (!get_ldev_if_state(device, D_FAILED)) 3168 return; 3169 3170 buffer = drbd_md_get_buffer(device, __func__); 3171 if (!buffer) 3172 goto out; 3173 3174 drbd_md_write(device, buffer); 3175 3176 /* Update device->ldev->md.la_size_sect, 3177 * since we updated it on metadata. */ 3178 device->ldev->md.la_size_sect = drbd_get_capacity(device->this_bdev); 3179 3180 drbd_md_put_buffer(device); 3181 out: 3182 put_ldev(device); 3183 } 3184 3185 static int check_activity_log_stripe_size(struct drbd_device *device, 3186 struct meta_data_on_disk *on_disk, 3187 struct drbd_md *in_core) 3188 { 3189 u32 al_stripes = be32_to_cpu(on_disk->al_stripes); 3190 u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k); 3191 u64 al_size_4k; 3192 3193 /* both not set: default to old fixed size activity log */ 3194 if (al_stripes == 0 && al_stripe_size_4k == 0) { 3195 al_stripes = 1; 3196 al_stripe_size_4k = MD_32kB_SECT/8; 3197 } 3198 3199 /* some paranoia plausibility checks */ 3200 3201 /* we need both values to be set */ 3202 if (al_stripes == 0 || al_stripe_size_4k == 0) 3203 goto err; 3204 3205 al_size_4k = (u64)al_stripes * al_stripe_size_4k; 3206 3207 /* Upper limit of activity log area, to avoid potential overflow 3208 * problems in al_tr_number_to_on_disk_sector(). As right now, more 3209 * than 72 * 4k blocks total only increases the amount of history, 3210 * limiting this arbitrarily to 16 GB is not a real limitation ;-) */ 3211 if (al_size_4k > (16 * 1024 * 1024/4)) 3212 goto err; 3213 3214 /* Lower limit: we need at least 8 transaction slots (32kB) 3215 * to not break existing setups */ 3216 if (al_size_4k < MD_32kB_SECT/8) 3217 goto err; 3218 3219 in_core->al_stripe_size_4k = al_stripe_size_4k; 3220 in_core->al_stripes = al_stripes; 3221 in_core->al_size_4k = al_size_4k; 3222 3223 return 0; 3224 err: 3225 drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n", 3226 al_stripes, al_stripe_size_4k); 3227 return -EINVAL; 3228 } 3229 3230 static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev) 3231 { 3232 sector_t capacity = drbd_get_capacity(bdev->md_bdev); 3233 struct drbd_md *in_core = &bdev->md; 3234 s32 on_disk_al_sect; 3235 s32 on_disk_bm_sect; 3236 3237 /* The on-disk size of the activity log, calculated from offsets, and 3238 * the size of the activity log calculated from the stripe settings, 3239 * should match. 3240 * Though we could relax this a bit: it is ok, if the striped activity log 3241 * fits in the available on-disk activity log size. 3242 * Right now, that would break how resize is implemented. 3243 * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware 3244 * of possible unused padding space in the on disk layout. */ 3245 if (in_core->al_offset < 0) { 3246 if (in_core->bm_offset > in_core->al_offset) 3247 goto err; 3248 on_disk_al_sect = -in_core->al_offset; 3249 on_disk_bm_sect = in_core->al_offset - in_core->bm_offset; 3250 } else { 3251 if (in_core->al_offset != MD_4kB_SECT) 3252 goto err; 3253 if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT) 3254 goto err; 3255 3256 on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT; 3257 on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset; 3258 } 3259 3260 /* old fixed size meta data is exactly that: fixed. */ 3261 if (in_core->meta_dev_idx >= 0) { 3262 if (in_core->md_size_sect != MD_128MB_SECT 3263 || in_core->al_offset != MD_4kB_SECT 3264 || in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT 3265 || in_core->al_stripes != 1 3266 || in_core->al_stripe_size_4k != MD_32kB_SECT/8) 3267 goto err; 3268 } 3269 3270 if (capacity < in_core->md_size_sect) 3271 goto err; 3272 if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev)) 3273 goto err; 3274 3275 /* should be aligned, and at least 32k */ 3276 if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT)) 3277 goto err; 3278 3279 /* should fit (for now: exactly) into the available on-disk space; 3280 * overflow prevention is in check_activity_log_stripe_size() above. */ 3281 if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT) 3282 goto err; 3283 3284 /* again, should be aligned */ 3285 if (in_core->bm_offset & 7) 3286 goto err; 3287 3288 /* FIXME check for device grow with flex external meta data? */ 3289 3290 /* can the available bitmap space cover the last agreed device size? */ 3291 if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512) 3292 goto err; 3293 3294 return 0; 3295 3296 err: 3297 drbd_err(device, "meta data offsets don't make sense: idx=%d " 3298 "al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, " 3299 "md_size_sect=%u, la_size=%llu, md_capacity=%llu\n", 3300 in_core->meta_dev_idx, 3301 in_core->al_stripes, in_core->al_stripe_size_4k, 3302 in_core->al_offset, in_core->bm_offset, in_core->md_size_sect, 3303 (unsigned long long)in_core->la_size_sect, 3304 (unsigned long long)capacity); 3305 3306 return -EINVAL; 3307 } 3308 3309 3310 /** 3311 * drbd_md_read() - Reads in the meta data super block 3312 * @device: DRBD device. 3313 * @bdev: Device from which the meta data should be read in. 3314 * 3315 * Return NO_ERROR on success, and an enum drbd_ret_code in case 3316 * something goes wrong. 3317 * 3318 * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS, 3319 * even before @bdev is assigned to @device->ldev. 3320 */ 3321 int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev) 3322 { 3323 struct meta_data_on_disk *buffer; 3324 u32 magic, flags; 3325 int i, rv = NO_ERROR; 3326 3327 if (device->state.disk != D_DISKLESS) 3328 return ERR_DISK_CONFIGURED; 3329 3330 buffer = drbd_md_get_buffer(device, __func__); 3331 if (!buffer) 3332 return ERR_NOMEM; 3333 3334 /* First, figure out where our meta data superblock is located, 3335 * and read it. */ 3336 bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx; 3337 bdev->md.md_offset = drbd_md_ss(bdev); 3338 /* Even for (flexible or indexed) external meta data, 3339 * initially restrict us to the 4k superblock for now. 3340 * Affects the paranoia out-of-range access check in drbd_md_sync_page_io(). */ 3341 bdev->md.md_size_sect = 8; 3342 3343 if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset, 3344 REQ_OP_READ)) { 3345 /* NOTE: can't do normal error processing here as this is 3346 called BEFORE disk is attached */ 3347 drbd_err(device, "Error while reading metadata.\n"); 3348 rv = ERR_IO_MD_DISK; 3349 goto err; 3350 } 3351 3352 magic = be32_to_cpu(buffer->magic); 3353 flags = be32_to_cpu(buffer->flags); 3354 if (magic == DRBD_MD_MAGIC_84_UNCLEAN || 3355 (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) { 3356 /* btw: that's Activity Log clean, not "all" clean. */ 3357 drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n"); 3358 rv = ERR_MD_UNCLEAN; 3359 goto err; 3360 } 3361 3362 rv = ERR_MD_INVALID; 3363 if (magic != DRBD_MD_MAGIC_08) { 3364 if (magic == DRBD_MD_MAGIC_07) 3365 drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n"); 3366 else 3367 drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n"); 3368 goto err; 3369 } 3370 3371 if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) { 3372 drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n", 3373 be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE); 3374 goto err; 3375 } 3376 3377 3378 /* convert to in_core endian */ 3379 bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect); 3380 for (i = UI_CURRENT; i < UI_SIZE; i++) 3381 bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]); 3382 bdev->md.flags = be32_to_cpu(buffer->flags); 3383 bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid); 3384 3385 bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect); 3386 bdev->md.al_offset = be32_to_cpu(buffer->al_offset); 3387 bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset); 3388 3389 if (check_activity_log_stripe_size(device, buffer, &bdev->md)) 3390 goto err; 3391 if (check_offsets_and_sizes(device, bdev)) 3392 goto err; 3393 3394 if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) { 3395 drbd_err(device, "unexpected bm_offset: %d (expected %d)\n", 3396 be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset); 3397 goto err; 3398 } 3399 if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) { 3400 drbd_err(device, "unexpected md_size: %u (expected %u)\n", 3401 be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect); 3402 goto err; 3403 } 3404 3405 rv = NO_ERROR; 3406 3407 spin_lock_irq(&device->resource->req_lock); 3408 if (device->state.conn < C_CONNECTED) { 3409 unsigned int peer; 3410 peer = be32_to_cpu(buffer->la_peer_max_bio_size); 3411 peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE); 3412 device->peer_max_bio_size = peer; 3413 } 3414 spin_unlock_irq(&device->resource->req_lock); 3415 3416 err: 3417 drbd_md_put_buffer(device); 3418 3419 return rv; 3420 } 3421 3422 /** 3423 * drbd_md_mark_dirty() - Mark meta data super block as dirty 3424 * @device: DRBD device. 3425 * 3426 * Call this function if you change anything that should be written to 3427 * the meta-data super block. This function sets MD_DIRTY, and starts a 3428 * timer that ensures that within five seconds you have to call drbd_md_sync(). 3429 */ 3430 #ifdef DEBUG 3431 void drbd_md_mark_dirty_(struct drbd_device *device, unsigned int line, const char *func) 3432 { 3433 if (!test_and_set_bit(MD_DIRTY, &device->flags)) { 3434 mod_timer(&device->md_sync_timer, jiffies + HZ); 3435 device->last_md_mark_dirty.line = line; 3436 device->last_md_mark_dirty.func = func; 3437 } 3438 } 3439 #else 3440 void drbd_md_mark_dirty(struct drbd_device *device) 3441 { 3442 if (!test_and_set_bit(MD_DIRTY, &device->flags)) 3443 mod_timer(&device->md_sync_timer, jiffies + 5*HZ); 3444 } 3445 #endif 3446 3447 void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local) 3448 { 3449 int i; 3450 3451 for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++) 3452 device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i]; 3453 } 3454 3455 void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local) 3456 { 3457 if (idx == UI_CURRENT) { 3458 if (device->state.role == R_PRIMARY) 3459 val |= 1; 3460 else 3461 val &= ~((u64)1); 3462 3463 drbd_set_ed_uuid(device, val); 3464 } 3465 3466 device->ldev->md.uuid[idx] = val; 3467 drbd_md_mark_dirty(device); 3468 } 3469 3470 void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local) 3471 { 3472 unsigned long flags; 3473 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags); 3474 __drbd_uuid_set(device, idx, val); 3475 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags); 3476 } 3477 3478 void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local) 3479 { 3480 unsigned long flags; 3481 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags); 3482 if (device->ldev->md.uuid[idx]) { 3483 drbd_uuid_move_history(device); 3484 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx]; 3485 } 3486 __drbd_uuid_set(device, idx, val); 3487 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags); 3488 } 3489 3490 /** 3491 * drbd_uuid_new_current() - Creates a new current UUID 3492 * @device: DRBD device. 3493 * 3494 * Creates a new current UUID, and rotates the old current UUID into 3495 * the bitmap slot. Causes an incremental resync upon next connect. 3496 */ 3497 void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local) 3498 { 3499 u64 val; 3500 unsigned long long bm_uuid; 3501 3502 get_random_bytes(&val, sizeof(u64)); 3503 3504 spin_lock_irq(&device->ldev->md.uuid_lock); 3505 bm_uuid = device->ldev->md.uuid[UI_BITMAP]; 3506 3507 if (bm_uuid) 3508 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid); 3509 3510 device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT]; 3511 __drbd_uuid_set(device, UI_CURRENT, val); 3512 spin_unlock_irq(&device->ldev->md.uuid_lock); 3513 3514 drbd_print_uuids(device, "new current UUID"); 3515 /* get it to stable storage _now_ */ 3516 drbd_md_sync(device); 3517 } 3518 3519 void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local) 3520 { 3521 unsigned long flags; 3522 if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0) 3523 return; 3524 3525 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags); 3526 if (val == 0) { 3527 drbd_uuid_move_history(device); 3528 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP]; 3529 device->ldev->md.uuid[UI_BITMAP] = 0; 3530 } else { 3531 unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP]; 3532 if (bm_uuid) 3533 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid); 3534 3535 device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1); 3536 } 3537 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags); 3538 3539 drbd_md_mark_dirty(device); 3540 } 3541 3542 /** 3543 * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io() 3544 * @device: DRBD device. 3545 * 3546 * Sets all bits in the bitmap and writes the whole bitmap to stable storage. 3547 */ 3548 int drbd_bmio_set_n_write(struct drbd_device *device) __must_hold(local) 3549 { 3550 int rv = -EIO; 3551 3552 drbd_md_set_flag(device, MDF_FULL_SYNC); 3553 drbd_md_sync(device); 3554 drbd_bm_set_all(device); 3555 3556 rv = drbd_bm_write(device); 3557 3558 if (!rv) { 3559 drbd_md_clear_flag(device, MDF_FULL_SYNC); 3560 drbd_md_sync(device); 3561 } 3562 3563 return rv; 3564 } 3565 3566 /** 3567 * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io() 3568 * @device: DRBD device. 3569 * 3570 * Clears all bits in the bitmap and writes the whole bitmap to stable storage. 3571 */ 3572 int drbd_bmio_clear_n_write(struct drbd_device *device) __must_hold(local) 3573 { 3574 drbd_resume_al(device); 3575 drbd_bm_clear_all(device); 3576 return drbd_bm_write(device); 3577 } 3578 3579 static int w_bitmap_io(struct drbd_work *w, int unused) 3580 { 3581 struct drbd_device *device = 3582 container_of(w, struct drbd_device, bm_io_work.w); 3583 struct bm_io_work *work = &device->bm_io_work; 3584 int rv = -EIO; 3585 3586 if (work->flags != BM_LOCKED_CHANGE_ALLOWED) { 3587 int cnt = atomic_read(&device->ap_bio_cnt); 3588 if (cnt) 3589 drbd_err(device, "FIXME: ap_bio_cnt %d, expected 0; queued for '%s'\n", 3590 cnt, work->why); 3591 } 3592 3593 if (get_ldev(device)) { 3594 drbd_bm_lock(device, work->why, work->flags); 3595 rv = work->io_fn(device); 3596 drbd_bm_unlock(device); 3597 put_ldev(device); 3598 } 3599 3600 clear_bit_unlock(BITMAP_IO, &device->flags); 3601 wake_up(&device->misc_wait); 3602 3603 if (work->done) 3604 work->done(device, rv); 3605 3606 clear_bit(BITMAP_IO_QUEUED, &device->flags); 3607 work->why = NULL; 3608 work->flags = 0; 3609 3610 return 0; 3611 } 3612 3613 /** 3614 * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap 3615 * @device: DRBD device. 3616 * @io_fn: IO callback to be called when bitmap IO is possible 3617 * @done: callback to be called after the bitmap IO was performed 3618 * @why: Descriptive text of the reason for doing the IO 3619 * 3620 * While IO on the bitmap happens we freeze application IO thus we ensure 3621 * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be 3622 * called from worker context. It MUST NOT be used while a previous such 3623 * work is still pending! 3624 * 3625 * Its worker function encloses the call of io_fn() by get_ldev() and 3626 * put_ldev(). 3627 */ 3628 void drbd_queue_bitmap_io(struct drbd_device *device, 3629 int (*io_fn)(struct drbd_device *), 3630 void (*done)(struct drbd_device *, int), 3631 char *why, enum bm_flag flags) 3632 { 3633 D_ASSERT(device, current == first_peer_device(device)->connection->worker.task); 3634 3635 D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags)); 3636 D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags)); 3637 D_ASSERT(device, list_empty(&device->bm_io_work.w.list)); 3638 if (device->bm_io_work.why) 3639 drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n", 3640 why, device->bm_io_work.why); 3641 3642 device->bm_io_work.io_fn = io_fn; 3643 device->bm_io_work.done = done; 3644 device->bm_io_work.why = why; 3645 device->bm_io_work.flags = flags; 3646 3647 spin_lock_irq(&device->resource->req_lock); 3648 set_bit(BITMAP_IO, &device->flags); 3649 /* don't wait for pending application IO if the caller indicates that 3650 * application IO does not conflict anyways. */ 3651 if (flags == BM_LOCKED_CHANGE_ALLOWED || atomic_read(&device->ap_bio_cnt) == 0) { 3652 if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags)) 3653 drbd_queue_work(&first_peer_device(device)->connection->sender_work, 3654 &device->bm_io_work.w); 3655 } 3656 spin_unlock_irq(&device->resource->req_lock); 3657 } 3658 3659 /** 3660 * drbd_bitmap_io() - Does an IO operation on the whole bitmap 3661 * @device: DRBD device. 3662 * @io_fn: IO callback to be called when bitmap IO is possible 3663 * @why: Descriptive text of the reason for doing the IO 3664 * 3665 * freezes application IO while that the actual IO operations runs. This 3666 * functions MAY NOT be called from worker context. 3667 */ 3668 int drbd_bitmap_io(struct drbd_device *device, int (*io_fn)(struct drbd_device *), 3669 char *why, enum bm_flag flags) 3670 { 3671 /* Only suspend io, if some operation is supposed to be locked out */ 3672 const bool do_suspend_io = flags & (BM_DONT_CLEAR|BM_DONT_SET|BM_DONT_TEST); 3673 int rv; 3674 3675 D_ASSERT(device, current != first_peer_device(device)->connection->worker.task); 3676 3677 if (do_suspend_io) 3678 drbd_suspend_io(device); 3679 3680 drbd_bm_lock(device, why, flags); 3681 rv = io_fn(device); 3682 drbd_bm_unlock(device); 3683 3684 if (do_suspend_io) 3685 drbd_resume_io(device); 3686 3687 return rv; 3688 } 3689 3690 void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local) 3691 { 3692 if ((device->ldev->md.flags & flag) != flag) { 3693 drbd_md_mark_dirty(device); 3694 device->ldev->md.flags |= flag; 3695 } 3696 } 3697 3698 void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local) 3699 { 3700 if ((device->ldev->md.flags & flag) != 0) { 3701 drbd_md_mark_dirty(device); 3702 device->ldev->md.flags &= ~flag; 3703 } 3704 } 3705 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag) 3706 { 3707 return (bdev->md.flags & flag) != 0; 3708 } 3709 3710 static void md_sync_timer_fn(unsigned long data) 3711 { 3712 struct drbd_device *device = (struct drbd_device *) data; 3713 drbd_device_post_work(device, MD_SYNC); 3714 } 3715 3716 const char *cmdname(enum drbd_packet cmd) 3717 { 3718 /* THINK may need to become several global tables 3719 * when we want to support more than 3720 * one PRO_VERSION */ 3721 static const char *cmdnames[] = { 3722 [P_DATA] = "Data", 3723 [P_WSAME] = "WriteSame", 3724 [P_TRIM] = "Trim", 3725 [P_DATA_REPLY] = "DataReply", 3726 [P_RS_DATA_REPLY] = "RSDataReply", 3727 [P_BARRIER] = "Barrier", 3728 [P_BITMAP] = "ReportBitMap", 3729 [P_BECOME_SYNC_TARGET] = "BecomeSyncTarget", 3730 [P_BECOME_SYNC_SOURCE] = "BecomeSyncSource", 3731 [P_UNPLUG_REMOTE] = "UnplugRemote", 3732 [P_DATA_REQUEST] = "DataRequest", 3733 [P_RS_DATA_REQUEST] = "RSDataRequest", 3734 [P_SYNC_PARAM] = "SyncParam", 3735 [P_SYNC_PARAM89] = "SyncParam89", 3736 [P_PROTOCOL] = "ReportProtocol", 3737 [P_UUIDS] = "ReportUUIDs", 3738 [P_SIZES] = "ReportSizes", 3739 [P_STATE] = "ReportState", 3740 [P_SYNC_UUID] = "ReportSyncUUID", 3741 [P_AUTH_CHALLENGE] = "AuthChallenge", 3742 [P_AUTH_RESPONSE] = "AuthResponse", 3743 [P_PING] = "Ping", 3744 [P_PING_ACK] = "PingAck", 3745 [P_RECV_ACK] = "RecvAck", 3746 [P_WRITE_ACK] = "WriteAck", 3747 [P_RS_WRITE_ACK] = "RSWriteAck", 3748 [P_SUPERSEDED] = "Superseded", 3749 [P_NEG_ACK] = "NegAck", 3750 [P_NEG_DREPLY] = "NegDReply", 3751 [P_NEG_RS_DREPLY] = "NegRSDReply", 3752 [P_BARRIER_ACK] = "BarrierAck", 3753 [P_STATE_CHG_REQ] = "StateChgRequest", 3754 [P_STATE_CHG_REPLY] = "StateChgReply", 3755 [P_OV_REQUEST] = "OVRequest", 3756 [P_OV_REPLY] = "OVReply", 3757 [P_OV_RESULT] = "OVResult", 3758 [P_CSUM_RS_REQUEST] = "CsumRSRequest", 3759 [P_RS_IS_IN_SYNC] = "CsumRSIsInSync", 3760 [P_COMPRESSED_BITMAP] = "CBitmap", 3761 [P_DELAY_PROBE] = "DelayProbe", 3762 [P_OUT_OF_SYNC] = "OutOfSync", 3763 [P_RETRY_WRITE] = "RetryWrite", 3764 [P_RS_CANCEL] = "RSCancel", 3765 [P_CONN_ST_CHG_REQ] = "conn_st_chg_req", 3766 [P_CONN_ST_CHG_REPLY] = "conn_st_chg_reply", 3767 [P_RETRY_WRITE] = "retry_write", 3768 [P_PROTOCOL_UPDATE] = "protocol_update", 3769 [P_RS_THIN_REQ] = "rs_thin_req", 3770 [P_RS_DEALLOCATED] = "rs_deallocated", 3771 3772 /* enum drbd_packet, but not commands - obsoleted flags: 3773 * P_MAY_IGNORE 3774 * P_MAX_OPT_CMD 3775 */ 3776 }; 3777 3778 /* too big for the array: 0xfffX */ 3779 if (cmd == P_INITIAL_META) 3780 return "InitialMeta"; 3781 if (cmd == P_INITIAL_DATA) 3782 return "InitialData"; 3783 if (cmd == P_CONNECTION_FEATURES) 3784 return "ConnectionFeatures"; 3785 if (cmd >= ARRAY_SIZE(cmdnames)) 3786 return "Unknown"; 3787 return cmdnames[cmd]; 3788 } 3789 3790 /** 3791 * drbd_wait_misc - wait for a request to make progress 3792 * @device: device associated with the request 3793 * @i: the struct drbd_interval embedded in struct drbd_request or 3794 * struct drbd_peer_request 3795 */ 3796 int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i) 3797 { 3798 struct net_conf *nc; 3799 DEFINE_WAIT(wait); 3800 long timeout; 3801 3802 rcu_read_lock(); 3803 nc = rcu_dereference(first_peer_device(device)->connection->net_conf); 3804 if (!nc) { 3805 rcu_read_unlock(); 3806 return -ETIMEDOUT; 3807 } 3808 timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT; 3809 rcu_read_unlock(); 3810 3811 /* Indicate to wake up device->misc_wait on progress. */ 3812 i->waiting = true; 3813 prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE); 3814 spin_unlock_irq(&device->resource->req_lock); 3815 timeout = schedule_timeout(timeout); 3816 finish_wait(&device->misc_wait, &wait); 3817 spin_lock_irq(&device->resource->req_lock); 3818 if (!timeout || device->state.conn < C_CONNECTED) 3819 return -ETIMEDOUT; 3820 if (signal_pending(current)) 3821 return -ERESTARTSYS; 3822 return 0; 3823 } 3824 3825 void lock_all_resources(void) 3826 { 3827 struct drbd_resource *resource; 3828 int __maybe_unused i = 0; 3829 3830 mutex_lock(&resources_mutex); 3831 local_irq_disable(); 3832 for_each_resource(resource, &drbd_resources) 3833 spin_lock_nested(&resource->req_lock, i++); 3834 } 3835 3836 void unlock_all_resources(void) 3837 { 3838 struct drbd_resource *resource; 3839 3840 for_each_resource(resource, &drbd_resources) 3841 spin_unlock(&resource->req_lock); 3842 local_irq_enable(); 3843 mutex_unlock(&resources_mutex); 3844 } 3845 3846 #ifdef CONFIG_DRBD_FAULT_INJECTION 3847 /* Fault insertion support including random number generator shamelessly 3848 * stolen from kernel/rcutorture.c */ 3849 struct fault_random_state { 3850 unsigned long state; 3851 unsigned long count; 3852 }; 3853 3854 #define FAULT_RANDOM_MULT 39916801 /* prime */ 3855 #define FAULT_RANDOM_ADD 479001701 /* prime */ 3856 #define FAULT_RANDOM_REFRESH 10000 3857 3858 /* 3859 * Crude but fast random-number generator. Uses a linear congruential 3860 * generator, with occasional help from get_random_bytes(). 3861 */ 3862 static unsigned long 3863 _drbd_fault_random(struct fault_random_state *rsp) 3864 { 3865 long refresh; 3866 3867 if (!rsp->count--) { 3868 get_random_bytes(&refresh, sizeof(refresh)); 3869 rsp->state += refresh; 3870 rsp->count = FAULT_RANDOM_REFRESH; 3871 } 3872 rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD; 3873 return swahw32(rsp->state); 3874 } 3875 3876 static char * 3877 _drbd_fault_str(unsigned int type) { 3878 static char *_faults[] = { 3879 [DRBD_FAULT_MD_WR] = "Meta-data write", 3880 [DRBD_FAULT_MD_RD] = "Meta-data read", 3881 [DRBD_FAULT_RS_WR] = "Resync write", 3882 [DRBD_FAULT_RS_RD] = "Resync read", 3883 [DRBD_FAULT_DT_WR] = "Data write", 3884 [DRBD_FAULT_DT_RD] = "Data read", 3885 [DRBD_FAULT_DT_RA] = "Data read ahead", 3886 [DRBD_FAULT_BM_ALLOC] = "BM allocation", 3887 [DRBD_FAULT_AL_EE] = "EE allocation", 3888 [DRBD_FAULT_RECEIVE] = "receive data corruption", 3889 }; 3890 3891 return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**"; 3892 } 3893 3894 unsigned int 3895 _drbd_insert_fault(struct drbd_device *device, unsigned int type) 3896 { 3897 static struct fault_random_state rrs = {0, 0}; 3898 3899 unsigned int ret = ( 3900 (fault_devs == 0 || 3901 ((1 << device_to_minor(device)) & fault_devs) != 0) && 3902 (((_drbd_fault_random(&rrs) % 100) + 1) <= fault_rate)); 3903 3904 if (ret) { 3905 fault_count++; 3906 3907 if (__ratelimit(&drbd_ratelimit_state)) 3908 drbd_warn(device, "***Simulating %s failure\n", 3909 _drbd_fault_str(type)); 3910 } 3911 3912 return ret; 3913 } 3914 #endif 3915 3916 const char *drbd_buildtag(void) 3917 { 3918 /* DRBD built from external sources has here a reference to the 3919 git hash of the source code. */ 3920 3921 static char buildtag[38] = "\0uilt-in"; 3922 3923 if (buildtag[0] == 0) { 3924 #ifdef MODULE 3925 sprintf(buildtag, "srcversion: %-24s", THIS_MODULE->srcversion); 3926 #else 3927 buildtag[0] = 'b'; 3928 #endif 3929 } 3930 3931 return buildtag; 3932 } 3933 3934 module_init(drbd_init) 3935 module_exit(drbd_cleanup) 3936 3937 EXPORT_SYMBOL(drbd_conn_str); 3938 EXPORT_SYMBOL(drbd_role_str); 3939 EXPORT_SYMBOL(drbd_disk_str); 3940 EXPORT_SYMBOL(drbd_set_st_err_str); 3941