1 /* 2 drbd.c 3 4 This file is part of DRBD by Philipp Reisner and Lars Ellenberg. 5 6 Copyright (C) 2001-2008, LINBIT Information Technologies GmbH. 7 Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>. 8 Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>. 9 10 Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev 11 from Logicworks, Inc. for making SDP replication support possible. 12 13 drbd is free software; you can redistribute it and/or modify 14 it under the terms of the GNU General Public License as published by 15 the Free Software Foundation; either version 2, or (at your option) 16 any later version. 17 18 drbd is distributed in the hope that it will be useful, 19 but WITHOUT ANY WARRANTY; without even the implied warranty of 20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 21 GNU General Public License for more details. 22 23 You should have received a copy of the GNU General Public License 24 along with drbd; see the file COPYING. If not, write to 25 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 26 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include <linux/module.h> 32 #include <linux/jiffies.h> 33 #include <linux/drbd.h> 34 #include <linux/uaccess.h> 35 #include <asm/types.h> 36 #include <net/sock.h> 37 #include <linux/ctype.h> 38 #include <linux/mutex.h> 39 #include <linux/fs.h> 40 #include <linux/file.h> 41 #include <linux/proc_fs.h> 42 #include <linux/init.h> 43 #include <linux/mm.h> 44 #include <linux/memcontrol.h> 45 #include <linux/mm_inline.h> 46 #include <linux/slab.h> 47 #include <linux/random.h> 48 #include <linux/reboot.h> 49 #include <linux/notifier.h> 50 #include <linux/kthread.h> 51 #include <linux/workqueue.h> 52 #define __KERNEL_SYSCALLS__ 53 #include <linux/unistd.h> 54 #include <linux/vmalloc.h> 55 #include <linux/sched/signal.h> 56 57 #include <linux/drbd_limits.h> 58 #include "drbd_int.h" 59 #include "drbd_protocol.h" 60 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */ 61 #include "drbd_vli.h" 62 #include "drbd_debugfs.h" 63 64 static DEFINE_MUTEX(drbd_main_mutex); 65 static int drbd_open(struct block_device *bdev, fmode_t mode); 66 static void drbd_release(struct gendisk *gd, fmode_t mode); 67 static void md_sync_timer_fn(unsigned long data); 68 static int w_bitmap_io(struct drbd_work *w, int unused); 69 70 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, " 71 "Lars Ellenberg <lars@linbit.com>"); 72 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION); 73 MODULE_VERSION(REL_VERSION); 74 MODULE_LICENSE("GPL"); 75 MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices (" 76 __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")"); 77 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR); 78 79 #include <linux/moduleparam.h> 80 /* thanks to these macros, if compiled into the kernel (not-module), 81 * these become boot parameters (e.g., drbd.minor_count) */ 82 83 #ifdef CONFIG_DRBD_FAULT_INJECTION 84 int drbd_enable_faults; 85 int drbd_fault_rate; 86 static int drbd_fault_count; 87 static int drbd_fault_devs; 88 /* bitmap of enabled faults */ 89 module_param_named(enable_faults, drbd_enable_faults, int, 0664); 90 /* fault rate % value - applies to all enabled faults */ 91 module_param_named(fault_rate, drbd_fault_rate, int, 0664); 92 /* count of faults inserted */ 93 module_param_named(fault_count, drbd_fault_count, int, 0664); 94 /* bitmap of devices to insert faults on */ 95 module_param_named(fault_devs, drbd_fault_devs, int, 0644); 96 #endif 97 98 /* module parameters we can keep static */ 99 static bool drbd_allow_oos; /* allow_open_on_secondary */ 100 static bool drbd_disable_sendpage; 101 MODULE_PARM_DESC(allow_oos, "DONT USE!"); 102 module_param_named(allow_oos, drbd_allow_oos, bool, 0); 103 module_param_named(disable_sendpage, drbd_disable_sendpage, bool, 0644); 104 105 /* module parameters we share */ 106 int drbd_proc_details; /* Detail level in proc drbd*/ 107 module_param_named(proc_details, drbd_proc_details, int, 0644); 108 /* module parameters shared with defaults */ 109 unsigned int drbd_minor_count = DRBD_MINOR_COUNT_DEF; 110 /* Module parameter for setting the user mode helper program 111 * to run. Default is /sbin/drbdadm */ 112 char drbd_usermode_helper[80] = "/sbin/drbdadm"; 113 module_param_named(minor_count, drbd_minor_count, uint, 0444); 114 module_param_string(usermode_helper, drbd_usermode_helper, sizeof(drbd_usermode_helper), 0644); 115 116 /* in 2.6.x, our device mapping and config info contains our virtual gendisks 117 * as member "struct gendisk *vdisk;" 118 */ 119 struct idr drbd_devices; 120 struct list_head drbd_resources; 121 struct mutex resources_mutex; 122 123 struct kmem_cache *drbd_request_cache; 124 struct kmem_cache *drbd_ee_cache; /* peer requests */ 125 struct kmem_cache *drbd_bm_ext_cache; /* bitmap extents */ 126 struct kmem_cache *drbd_al_ext_cache; /* activity log extents */ 127 mempool_t *drbd_request_mempool; 128 mempool_t *drbd_ee_mempool; 129 mempool_t *drbd_md_io_page_pool; 130 struct bio_set *drbd_md_io_bio_set; 131 struct bio_set *drbd_io_bio_set; 132 133 /* I do not use a standard mempool, because: 134 1) I want to hand out the pre-allocated objects first. 135 2) I want to be able to interrupt sleeping allocation with a signal. 136 Note: This is a single linked list, the next pointer is the private 137 member of struct page. 138 */ 139 struct page *drbd_pp_pool; 140 spinlock_t drbd_pp_lock; 141 int drbd_pp_vacant; 142 wait_queue_head_t drbd_pp_wait; 143 144 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5); 145 146 static const struct block_device_operations drbd_ops = { 147 .owner = THIS_MODULE, 148 .open = drbd_open, 149 .release = drbd_release, 150 }; 151 152 struct bio *bio_alloc_drbd(gfp_t gfp_mask) 153 { 154 struct bio *bio; 155 156 if (!drbd_md_io_bio_set) 157 return bio_alloc(gfp_mask, 1); 158 159 bio = bio_alloc_bioset(gfp_mask, 1, drbd_md_io_bio_set); 160 if (!bio) 161 return NULL; 162 return bio; 163 } 164 165 #ifdef __CHECKER__ 166 /* When checking with sparse, and this is an inline function, sparse will 167 give tons of false positives. When this is a real functions sparse works. 168 */ 169 int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins) 170 { 171 int io_allowed; 172 173 atomic_inc(&device->local_cnt); 174 io_allowed = (device->state.disk >= mins); 175 if (!io_allowed) { 176 if (atomic_dec_and_test(&device->local_cnt)) 177 wake_up(&device->misc_wait); 178 } 179 return io_allowed; 180 } 181 182 #endif 183 184 /** 185 * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch 186 * @connection: DRBD connection. 187 * @barrier_nr: Expected identifier of the DRBD write barrier packet. 188 * @set_size: Expected number of requests before that barrier. 189 * 190 * In case the passed barrier_nr or set_size does not match the oldest 191 * epoch of not yet barrier-acked requests, this function will cause a 192 * termination of the connection. 193 */ 194 void tl_release(struct drbd_connection *connection, unsigned int barrier_nr, 195 unsigned int set_size) 196 { 197 struct drbd_request *r; 198 struct drbd_request *req = NULL; 199 int expect_epoch = 0; 200 int expect_size = 0; 201 202 spin_lock_irq(&connection->resource->req_lock); 203 204 /* find oldest not yet barrier-acked write request, 205 * count writes in its epoch. */ 206 list_for_each_entry(r, &connection->transfer_log, tl_requests) { 207 const unsigned s = r->rq_state; 208 if (!req) { 209 if (!(s & RQ_WRITE)) 210 continue; 211 if (!(s & RQ_NET_MASK)) 212 continue; 213 if (s & RQ_NET_DONE) 214 continue; 215 req = r; 216 expect_epoch = req->epoch; 217 expect_size ++; 218 } else { 219 if (r->epoch != expect_epoch) 220 break; 221 if (!(s & RQ_WRITE)) 222 continue; 223 /* if (s & RQ_DONE): not expected */ 224 /* if (!(s & RQ_NET_MASK)): not expected */ 225 expect_size++; 226 } 227 } 228 229 /* first some paranoia code */ 230 if (req == NULL) { 231 drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n", 232 barrier_nr); 233 goto bail; 234 } 235 if (expect_epoch != barrier_nr) { 236 drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n", 237 barrier_nr, expect_epoch); 238 goto bail; 239 } 240 241 if (expect_size != set_size) { 242 drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n", 243 barrier_nr, set_size, expect_size); 244 goto bail; 245 } 246 247 /* Clean up list of requests processed during current epoch. */ 248 /* this extra list walk restart is paranoia, 249 * to catch requests being barrier-acked "unexpectedly". 250 * It usually should find the same req again, or some READ preceding it. */ 251 list_for_each_entry(req, &connection->transfer_log, tl_requests) 252 if (req->epoch == expect_epoch) 253 break; 254 list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) { 255 if (req->epoch != expect_epoch) 256 break; 257 _req_mod(req, BARRIER_ACKED); 258 } 259 spin_unlock_irq(&connection->resource->req_lock); 260 261 return; 262 263 bail: 264 spin_unlock_irq(&connection->resource->req_lock); 265 conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD); 266 } 267 268 269 /** 270 * _tl_restart() - Walks the transfer log, and applies an action to all requests 271 * @connection: DRBD connection to operate on. 272 * @what: The action/event to perform with all request objects 273 * 274 * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO, 275 * RESTART_FROZEN_DISK_IO. 276 */ 277 /* must hold resource->req_lock */ 278 void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what) 279 { 280 struct drbd_request *req, *r; 281 282 list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) 283 _req_mod(req, what); 284 } 285 286 void tl_restart(struct drbd_connection *connection, enum drbd_req_event what) 287 { 288 spin_lock_irq(&connection->resource->req_lock); 289 _tl_restart(connection, what); 290 spin_unlock_irq(&connection->resource->req_lock); 291 } 292 293 /** 294 * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL 295 * @device: DRBD device. 296 * 297 * This is called after the connection to the peer was lost. The storage covered 298 * by the requests on the transfer gets marked as our of sync. Called from the 299 * receiver thread and the worker thread. 300 */ 301 void tl_clear(struct drbd_connection *connection) 302 { 303 tl_restart(connection, CONNECTION_LOST_WHILE_PENDING); 304 } 305 306 /** 307 * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL 308 * @device: DRBD device. 309 */ 310 void tl_abort_disk_io(struct drbd_device *device) 311 { 312 struct drbd_connection *connection = first_peer_device(device)->connection; 313 struct drbd_request *req, *r; 314 315 spin_lock_irq(&connection->resource->req_lock); 316 list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) { 317 if (!(req->rq_state & RQ_LOCAL_PENDING)) 318 continue; 319 if (req->device != device) 320 continue; 321 _req_mod(req, ABORT_DISK_IO); 322 } 323 spin_unlock_irq(&connection->resource->req_lock); 324 } 325 326 static int drbd_thread_setup(void *arg) 327 { 328 struct drbd_thread *thi = (struct drbd_thread *) arg; 329 struct drbd_resource *resource = thi->resource; 330 unsigned long flags; 331 int retval; 332 333 snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s", 334 thi->name[0], 335 resource->name); 336 337 restart: 338 retval = thi->function(thi); 339 340 spin_lock_irqsave(&thi->t_lock, flags); 341 342 /* if the receiver has been "EXITING", the last thing it did 343 * was set the conn state to "StandAlone", 344 * if now a re-connect request comes in, conn state goes C_UNCONNECTED, 345 * and receiver thread will be "started". 346 * drbd_thread_start needs to set "RESTARTING" in that case. 347 * t_state check and assignment needs to be within the same spinlock, 348 * so either thread_start sees EXITING, and can remap to RESTARTING, 349 * or thread_start see NONE, and can proceed as normal. 350 */ 351 352 if (thi->t_state == RESTARTING) { 353 drbd_info(resource, "Restarting %s thread\n", thi->name); 354 thi->t_state = RUNNING; 355 spin_unlock_irqrestore(&thi->t_lock, flags); 356 goto restart; 357 } 358 359 thi->task = NULL; 360 thi->t_state = NONE; 361 smp_mb(); 362 complete_all(&thi->stop); 363 spin_unlock_irqrestore(&thi->t_lock, flags); 364 365 drbd_info(resource, "Terminating %s\n", current->comm); 366 367 /* Release mod reference taken when thread was started */ 368 369 if (thi->connection) 370 kref_put(&thi->connection->kref, drbd_destroy_connection); 371 kref_put(&resource->kref, drbd_destroy_resource); 372 module_put(THIS_MODULE); 373 return retval; 374 } 375 376 static void drbd_thread_init(struct drbd_resource *resource, struct drbd_thread *thi, 377 int (*func) (struct drbd_thread *), const char *name) 378 { 379 spin_lock_init(&thi->t_lock); 380 thi->task = NULL; 381 thi->t_state = NONE; 382 thi->function = func; 383 thi->resource = resource; 384 thi->connection = NULL; 385 thi->name = name; 386 } 387 388 int drbd_thread_start(struct drbd_thread *thi) 389 { 390 struct drbd_resource *resource = thi->resource; 391 struct task_struct *nt; 392 unsigned long flags; 393 394 /* is used from state engine doing drbd_thread_stop_nowait, 395 * while holding the req lock irqsave */ 396 spin_lock_irqsave(&thi->t_lock, flags); 397 398 switch (thi->t_state) { 399 case NONE: 400 drbd_info(resource, "Starting %s thread (from %s [%d])\n", 401 thi->name, current->comm, current->pid); 402 403 /* Get ref on module for thread - this is released when thread exits */ 404 if (!try_module_get(THIS_MODULE)) { 405 drbd_err(resource, "Failed to get module reference in drbd_thread_start\n"); 406 spin_unlock_irqrestore(&thi->t_lock, flags); 407 return false; 408 } 409 410 kref_get(&resource->kref); 411 if (thi->connection) 412 kref_get(&thi->connection->kref); 413 414 init_completion(&thi->stop); 415 thi->reset_cpu_mask = 1; 416 thi->t_state = RUNNING; 417 spin_unlock_irqrestore(&thi->t_lock, flags); 418 flush_signals(current); /* otherw. may get -ERESTARTNOINTR */ 419 420 nt = kthread_create(drbd_thread_setup, (void *) thi, 421 "drbd_%c_%s", thi->name[0], thi->resource->name); 422 423 if (IS_ERR(nt)) { 424 drbd_err(resource, "Couldn't start thread\n"); 425 426 if (thi->connection) 427 kref_put(&thi->connection->kref, drbd_destroy_connection); 428 kref_put(&resource->kref, drbd_destroy_resource); 429 module_put(THIS_MODULE); 430 return false; 431 } 432 spin_lock_irqsave(&thi->t_lock, flags); 433 thi->task = nt; 434 thi->t_state = RUNNING; 435 spin_unlock_irqrestore(&thi->t_lock, flags); 436 wake_up_process(nt); 437 break; 438 case EXITING: 439 thi->t_state = RESTARTING; 440 drbd_info(resource, "Restarting %s thread (from %s [%d])\n", 441 thi->name, current->comm, current->pid); 442 /* fall through */ 443 case RUNNING: 444 case RESTARTING: 445 default: 446 spin_unlock_irqrestore(&thi->t_lock, flags); 447 break; 448 } 449 450 return true; 451 } 452 453 454 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait) 455 { 456 unsigned long flags; 457 458 enum drbd_thread_state ns = restart ? RESTARTING : EXITING; 459 460 /* may be called from state engine, holding the req lock irqsave */ 461 spin_lock_irqsave(&thi->t_lock, flags); 462 463 if (thi->t_state == NONE) { 464 spin_unlock_irqrestore(&thi->t_lock, flags); 465 if (restart) 466 drbd_thread_start(thi); 467 return; 468 } 469 470 if (thi->t_state != ns) { 471 if (thi->task == NULL) { 472 spin_unlock_irqrestore(&thi->t_lock, flags); 473 return; 474 } 475 476 thi->t_state = ns; 477 smp_mb(); 478 init_completion(&thi->stop); 479 if (thi->task != current) 480 force_sig(DRBD_SIGKILL, thi->task); 481 } 482 483 spin_unlock_irqrestore(&thi->t_lock, flags); 484 485 if (wait) 486 wait_for_completion(&thi->stop); 487 } 488 489 int conn_lowest_minor(struct drbd_connection *connection) 490 { 491 struct drbd_peer_device *peer_device; 492 int vnr = 0, minor = -1; 493 494 rcu_read_lock(); 495 peer_device = idr_get_next(&connection->peer_devices, &vnr); 496 if (peer_device) 497 minor = device_to_minor(peer_device->device); 498 rcu_read_unlock(); 499 500 return minor; 501 } 502 503 #ifdef CONFIG_SMP 504 /** 505 * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs 506 * 507 * Forces all threads of a resource onto the same CPU. This is beneficial for 508 * DRBD's performance. May be overwritten by user's configuration. 509 */ 510 static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask) 511 { 512 unsigned int *resources_per_cpu, min_index = ~0; 513 514 resources_per_cpu = kzalloc(nr_cpu_ids * sizeof(*resources_per_cpu), GFP_KERNEL); 515 if (resources_per_cpu) { 516 struct drbd_resource *resource; 517 unsigned int cpu, min = ~0; 518 519 rcu_read_lock(); 520 for_each_resource_rcu(resource, &drbd_resources) { 521 for_each_cpu(cpu, resource->cpu_mask) 522 resources_per_cpu[cpu]++; 523 } 524 rcu_read_unlock(); 525 for_each_online_cpu(cpu) { 526 if (resources_per_cpu[cpu] < min) { 527 min = resources_per_cpu[cpu]; 528 min_index = cpu; 529 } 530 } 531 kfree(resources_per_cpu); 532 } 533 if (min_index == ~0) { 534 cpumask_setall(*cpu_mask); 535 return; 536 } 537 cpumask_set_cpu(min_index, *cpu_mask); 538 } 539 540 /** 541 * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread 542 * @device: DRBD device. 543 * @thi: drbd_thread object 544 * 545 * call in the "main loop" of _all_ threads, no need for any mutex, current won't die 546 * prematurely. 547 */ 548 void drbd_thread_current_set_cpu(struct drbd_thread *thi) 549 { 550 struct drbd_resource *resource = thi->resource; 551 struct task_struct *p = current; 552 553 if (!thi->reset_cpu_mask) 554 return; 555 thi->reset_cpu_mask = 0; 556 set_cpus_allowed_ptr(p, resource->cpu_mask); 557 } 558 #else 559 #define drbd_calc_cpu_mask(A) ({}) 560 #endif 561 562 /** 563 * drbd_header_size - size of a packet header 564 * 565 * The header size is a multiple of 8, so any payload following the header is 566 * word aligned on 64-bit architectures. (The bitmap send and receive code 567 * relies on this.) 568 */ 569 unsigned int drbd_header_size(struct drbd_connection *connection) 570 { 571 if (connection->agreed_pro_version >= 100) { 572 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8)); 573 return sizeof(struct p_header100); 574 } else { 575 BUILD_BUG_ON(sizeof(struct p_header80) != 576 sizeof(struct p_header95)); 577 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8)); 578 return sizeof(struct p_header80); 579 } 580 } 581 582 static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size) 583 { 584 h->magic = cpu_to_be32(DRBD_MAGIC); 585 h->command = cpu_to_be16(cmd); 586 h->length = cpu_to_be16(size); 587 return sizeof(struct p_header80); 588 } 589 590 static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size) 591 { 592 h->magic = cpu_to_be16(DRBD_MAGIC_BIG); 593 h->command = cpu_to_be16(cmd); 594 h->length = cpu_to_be32(size); 595 return sizeof(struct p_header95); 596 } 597 598 static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd, 599 int size, int vnr) 600 { 601 h->magic = cpu_to_be32(DRBD_MAGIC_100); 602 h->volume = cpu_to_be16(vnr); 603 h->command = cpu_to_be16(cmd); 604 h->length = cpu_to_be32(size); 605 h->pad = 0; 606 return sizeof(struct p_header100); 607 } 608 609 static unsigned int prepare_header(struct drbd_connection *connection, int vnr, 610 void *buffer, enum drbd_packet cmd, int size) 611 { 612 if (connection->agreed_pro_version >= 100) 613 return prepare_header100(buffer, cmd, size, vnr); 614 else if (connection->agreed_pro_version >= 95 && 615 size > DRBD_MAX_SIZE_H80_PACKET) 616 return prepare_header95(buffer, cmd, size); 617 else 618 return prepare_header80(buffer, cmd, size); 619 } 620 621 static void *__conn_prepare_command(struct drbd_connection *connection, 622 struct drbd_socket *sock) 623 { 624 if (!sock->socket) 625 return NULL; 626 return sock->sbuf + drbd_header_size(connection); 627 } 628 629 void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock) 630 { 631 void *p; 632 633 mutex_lock(&sock->mutex); 634 p = __conn_prepare_command(connection, sock); 635 if (!p) 636 mutex_unlock(&sock->mutex); 637 638 return p; 639 } 640 641 void *drbd_prepare_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock) 642 { 643 return conn_prepare_command(peer_device->connection, sock); 644 } 645 646 static int __send_command(struct drbd_connection *connection, int vnr, 647 struct drbd_socket *sock, enum drbd_packet cmd, 648 unsigned int header_size, void *data, 649 unsigned int size) 650 { 651 int msg_flags; 652 int err; 653 654 /* 655 * Called with @data == NULL and the size of the data blocks in @size 656 * for commands that send data blocks. For those commands, omit the 657 * MSG_MORE flag: this will increase the likelihood that data blocks 658 * which are page aligned on the sender will end up page aligned on the 659 * receiver. 660 */ 661 msg_flags = data ? MSG_MORE : 0; 662 663 header_size += prepare_header(connection, vnr, sock->sbuf, cmd, 664 header_size + size); 665 err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size, 666 msg_flags); 667 if (data && !err) 668 err = drbd_send_all(connection, sock->socket, data, size, 0); 669 /* DRBD protocol "pings" are latency critical. 670 * This is supposed to trigger tcp_push_pending_frames() */ 671 if (!err && (cmd == P_PING || cmd == P_PING_ACK)) 672 drbd_tcp_nodelay(sock->socket); 673 674 return err; 675 } 676 677 static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock, 678 enum drbd_packet cmd, unsigned int header_size, 679 void *data, unsigned int size) 680 { 681 return __send_command(connection, 0, sock, cmd, header_size, data, size); 682 } 683 684 int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock, 685 enum drbd_packet cmd, unsigned int header_size, 686 void *data, unsigned int size) 687 { 688 int err; 689 690 err = __conn_send_command(connection, sock, cmd, header_size, data, size); 691 mutex_unlock(&sock->mutex); 692 return err; 693 } 694 695 int drbd_send_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock, 696 enum drbd_packet cmd, unsigned int header_size, 697 void *data, unsigned int size) 698 { 699 int err; 700 701 err = __send_command(peer_device->connection, peer_device->device->vnr, 702 sock, cmd, header_size, data, size); 703 mutex_unlock(&sock->mutex); 704 return err; 705 } 706 707 int drbd_send_ping(struct drbd_connection *connection) 708 { 709 struct drbd_socket *sock; 710 711 sock = &connection->meta; 712 if (!conn_prepare_command(connection, sock)) 713 return -EIO; 714 return conn_send_command(connection, sock, P_PING, 0, NULL, 0); 715 } 716 717 int drbd_send_ping_ack(struct drbd_connection *connection) 718 { 719 struct drbd_socket *sock; 720 721 sock = &connection->meta; 722 if (!conn_prepare_command(connection, sock)) 723 return -EIO; 724 return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0); 725 } 726 727 int drbd_send_sync_param(struct drbd_peer_device *peer_device) 728 { 729 struct drbd_socket *sock; 730 struct p_rs_param_95 *p; 731 int size; 732 const int apv = peer_device->connection->agreed_pro_version; 733 enum drbd_packet cmd; 734 struct net_conf *nc; 735 struct disk_conf *dc; 736 737 sock = &peer_device->connection->data; 738 p = drbd_prepare_command(peer_device, sock); 739 if (!p) 740 return -EIO; 741 742 rcu_read_lock(); 743 nc = rcu_dereference(peer_device->connection->net_conf); 744 745 size = apv <= 87 ? sizeof(struct p_rs_param) 746 : apv == 88 ? sizeof(struct p_rs_param) 747 + strlen(nc->verify_alg) + 1 748 : apv <= 94 ? sizeof(struct p_rs_param_89) 749 : /* apv >= 95 */ sizeof(struct p_rs_param_95); 750 751 cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM; 752 753 /* initialize verify_alg and csums_alg */ 754 memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX); 755 756 if (get_ldev(peer_device->device)) { 757 dc = rcu_dereference(peer_device->device->ldev->disk_conf); 758 p->resync_rate = cpu_to_be32(dc->resync_rate); 759 p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead); 760 p->c_delay_target = cpu_to_be32(dc->c_delay_target); 761 p->c_fill_target = cpu_to_be32(dc->c_fill_target); 762 p->c_max_rate = cpu_to_be32(dc->c_max_rate); 763 put_ldev(peer_device->device); 764 } else { 765 p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF); 766 p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF); 767 p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF); 768 p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF); 769 p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF); 770 } 771 772 if (apv >= 88) 773 strcpy(p->verify_alg, nc->verify_alg); 774 if (apv >= 89) 775 strcpy(p->csums_alg, nc->csums_alg); 776 rcu_read_unlock(); 777 778 return drbd_send_command(peer_device, sock, cmd, size, NULL, 0); 779 } 780 781 int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd) 782 { 783 struct drbd_socket *sock; 784 struct p_protocol *p; 785 struct net_conf *nc; 786 int size, cf; 787 788 sock = &connection->data; 789 p = __conn_prepare_command(connection, sock); 790 if (!p) 791 return -EIO; 792 793 rcu_read_lock(); 794 nc = rcu_dereference(connection->net_conf); 795 796 if (nc->tentative && connection->agreed_pro_version < 92) { 797 rcu_read_unlock(); 798 mutex_unlock(&sock->mutex); 799 drbd_err(connection, "--dry-run is not supported by peer"); 800 return -EOPNOTSUPP; 801 } 802 803 size = sizeof(*p); 804 if (connection->agreed_pro_version >= 87) 805 size += strlen(nc->integrity_alg) + 1; 806 807 p->protocol = cpu_to_be32(nc->wire_protocol); 808 p->after_sb_0p = cpu_to_be32(nc->after_sb_0p); 809 p->after_sb_1p = cpu_to_be32(nc->after_sb_1p); 810 p->after_sb_2p = cpu_to_be32(nc->after_sb_2p); 811 p->two_primaries = cpu_to_be32(nc->two_primaries); 812 cf = 0; 813 if (nc->discard_my_data) 814 cf |= CF_DISCARD_MY_DATA; 815 if (nc->tentative) 816 cf |= CF_DRY_RUN; 817 p->conn_flags = cpu_to_be32(cf); 818 819 if (connection->agreed_pro_version >= 87) 820 strcpy(p->integrity_alg, nc->integrity_alg); 821 rcu_read_unlock(); 822 823 return __conn_send_command(connection, sock, cmd, size, NULL, 0); 824 } 825 826 int drbd_send_protocol(struct drbd_connection *connection) 827 { 828 int err; 829 830 mutex_lock(&connection->data.mutex); 831 err = __drbd_send_protocol(connection, P_PROTOCOL); 832 mutex_unlock(&connection->data.mutex); 833 834 return err; 835 } 836 837 static int _drbd_send_uuids(struct drbd_peer_device *peer_device, u64 uuid_flags) 838 { 839 struct drbd_device *device = peer_device->device; 840 struct drbd_socket *sock; 841 struct p_uuids *p; 842 int i; 843 844 if (!get_ldev_if_state(device, D_NEGOTIATING)) 845 return 0; 846 847 sock = &peer_device->connection->data; 848 p = drbd_prepare_command(peer_device, sock); 849 if (!p) { 850 put_ldev(device); 851 return -EIO; 852 } 853 spin_lock_irq(&device->ldev->md.uuid_lock); 854 for (i = UI_CURRENT; i < UI_SIZE; i++) 855 p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]); 856 spin_unlock_irq(&device->ldev->md.uuid_lock); 857 858 device->comm_bm_set = drbd_bm_total_weight(device); 859 p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set); 860 rcu_read_lock(); 861 uuid_flags |= rcu_dereference(peer_device->connection->net_conf)->discard_my_data ? 1 : 0; 862 rcu_read_unlock(); 863 uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0; 864 uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0; 865 p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags); 866 867 put_ldev(device); 868 return drbd_send_command(peer_device, sock, P_UUIDS, sizeof(*p), NULL, 0); 869 } 870 871 int drbd_send_uuids(struct drbd_peer_device *peer_device) 872 { 873 return _drbd_send_uuids(peer_device, 0); 874 } 875 876 int drbd_send_uuids_skip_initial_sync(struct drbd_peer_device *peer_device) 877 { 878 return _drbd_send_uuids(peer_device, 8); 879 } 880 881 void drbd_print_uuids(struct drbd_device *device, const char *text) 882 { 883 if (get_ldev_if_state(device, D_NEGOTIATING)) { 884 u64 *uuid = device->ldev->md.uuid; 885 drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n", 886 text, 887 (unsigned long long)uuid[UI_CURRENT], 888 (unsigned long long)uuid[UI_BITMAP], 889 (unsigned long long)uuid[UI_HISTORY_START], 890 (unsigned long long)uuid[UI_HISTORY_END]); 891 put_ldev(device); 892 } else { 893 drbd_info(device, "%s effective data uuid: %016llX\n", 894 text, 895 (unsigned long long)device->ed_uuid); 896 } 897 } 898 899 void drbd_gen_and_send_sync_uuid(struct drbd_peer_device *peer_device) 900 { 901 struct drbd_device *device = peer_device->device; 902 struct drbd_socket *sock; 903 struct p_rs_uuid *p; 904 u64 uuid; 905 906 D_ASSERT(device, device->state.disk == D_UP_TO_DATE); 907 908 uuid = device->ldev->md.uuid[UI_BITMAP]; 909 if (uuid && uuid != UUID_JUST_CREATED) 910 uuid = uuid + UUID_NEW_BM_OFFSET; 911 else 912 get_random_bytes(&uuid, sizeof(u64)); 913 drbd_uuid_set(device, UI_BITMAP, uuid); 914 drbd_print_uuids(device, "updated sync UUID"); 915 drbd_md_sync(device); 916 917 sock = &peer_device->connection->data; 918 p = drbd_prepare_command(peer_device, sock); 919 if (p) { 920 p->uuid = cpu_to_be64(uuid); 921 drbd_send_command(peer_device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0); 922 } 923 } 924 925 /* communicated if (agreed_features & DRBD_FF_WSAME) */ 926 static void 927 assign_p_sizes_qlim(struct drbd_device *device, struct p_sizes *p, 928 struct request_queue *q) 929 { 930 if (q) { 931 p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q)); 932 p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q)); 933 p->qlim->alignment_offset = cpu_to_be32(queue_alignment_offset(q)); 934 p->qlim->io_min = cpu_to_be32(queue_io_min(q)); 935 p->qlim->io_opt = cpu_to_be32(queue_io_opt(q)); 936 p->qlim->discard_enabled = blk_queue_discard(q); 937 p->qlim->write_same_capable = !!q->limits.max_write_same_sectors; 938 } else { 939 q = device->rq_queue; 940 p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q)); 941 p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q)); 942 p->qlim->alignment_offset = 0; 943 p->qlim->io_min = cpu_to_be32(queue_io_min(q)); 944 p->qlim->io_opt = cpu_to_be32(queue_io_opt(q)); 945 p->qlim->discard_enabled = 0; 946 p->qlim->write_same_capable = 0; 947 } 948 } 949 950 int drbd_send_sizes(struct drbd_peer_device *peer_device, int trigger_reply, enum dds_flags flags) 951 { 952 struct drbd_device *device = peer_device->device; 953 struct drbd_socket *sock; 954 struct p_sizes *p; 955 sector_t d_size, u_size; 956 int q_order_type; 957 unsigned int max_bio_size; 958 unsigned int packet_size; 959 960 sock = &peer_device->connection->data; 961 p = drbd_prepare_command(peer_device, sock); 962 if (!p) 963 return -EIO; 964 965 packet_size = sizeof(*p); 966 if (peer_device->connection->agreed_features & DRBD_FF_WSAME) 967 packet_size += sizeof(p->qlim[0]); 968 969 memset(p, 0, packet_size); 970 if (get_ldev_if_state(device, D_NEGOTIATING)) { 971 struct request_queue *q = bdev_get_queue(device->ldev->backing_bdev); 972 d_size = drbd_get_max_capacity(device->ldev); 973 rcu_read_lock(); 974 u_size = rcu_dereference(device->ldev->disk_conf)->disk_size; 975 rcu_read_unlock(); 976 q_order_type = drbd_queue_order_type(device); 977 max_bio_size = queue_max_hw_sectors(q) << 9; 978 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE); 979 assign_p_sizes_qlim(device, p, q); 980 put_ldev(device); 981 } else { 982 d_size = 0; 983 u_size = 0; 984 q_order_type = QUEUE_ORDERED_NONE; 985 max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */ 986 assign_p_sizes_qlim(device, p, NULL); 987 } 988 989 if (peer_device->connection->agreed_pro_version <= 94) 990 max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET); 991 else if (peer_device->connection->agreed_pro_version < 100) 992 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95); 993 994 p->d_size = cpu_to_be64(d_size); 995 p->u_size = cpu_to_be64(u_size); 996 p->c_size = cpu_to_be64(trigger_reply ? 0 : drbd_get_capacity(device->this_bdev)); 997 p->max_bio_size = cpu_to_be32(max_bio_size); 998 p->queue_order_type = cpu_to_be16(q_order_type); 999 p->dds_flags = cpu_to_be16(flags); 1000 1001 return drbd_send_command(peer_device, sock, P_SIZES, packet_size, NULL, 0); 1002 } 1003 1004 /** 1005 * drbd_send_current_state() - Sends the drbd state to the peer 1006 * @peer_device: DRBD peer device. 1007 */ 1008 int drbd_send_current_state(struct drbd_peer_device *peer_device) 1009 { 1010 struct drbd_socket *sock; 1011 struct p_state *p; 1012 1013 sock = &peer_device->connection->data; 1014 p = drbd_prepare_command(peer_device, sock); 1015 if (!p) 1016 return -EIO; 1017 p->state = cpu_to_be32(peer_device->device->state.i); /* Within the send mutex */ 1018 return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0); 1019 } 1020 1021 /** 1022 * drbd_send_state() - After a state change, sends the new state to the peer 1023 * @peer_device: DRBD peer device. 1024 * @state: the state to send, not necessarily the current state. 1025 * 1026 * Each state change queues an "after_state_ch" work, which will eventually 1027 * send the resulting new state to the peer. If more state changes happen 1028 * between queuing and processing of the after_state_ch work, we still 1029 * want to send each intermediary state in the order it occurred. 1030 */ 1031 int drbd_send_state(struct drbd_peer_device *peer_device, union drbd_state state) 1032 { 1033 struct drbd_socket *sock; 1034 struct p_state *p; 1035 1036 sock = &peer_device->connection->data; 1037 p = drbd_prepare_command(peer_device, sock); 1038 if (!p) 1039 return -EIO; 1040 p->state = cpu_to_be32(state.i); /* Within the send mutex */ 1041 return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0); 1042 } 1043 1044 int drbd_send_state_req(struct drbd_peer_device *peer_device, union drbd_state mask, union drbd_state val) 1045 { 1046 struct drbd_socket *sock; 1047 struct p_req_state *p; 1048 1049 sock = &peer_device->connection->data; 1050 p = drbd_prepare_command(peer_device, sock); 1051 if (!p) 1052 return -EIO; 1053 p->mask = cpu_to_be32(mask.i); 1054 p->val = cpu_to_be32(val.i); 1055 return drbd_send_command(peer_device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0); 1056 } 1057 1058 int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val) 1059 { 1060 enum drbd_packet cmd; 1061 struct drbd_socket *sock; 1062 struct p_req_state *p; 1063 1064 cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ; 1065 sock = &connection->data; 1066 p = conn_prepare_command(connection, sock); 1067 if (!p) 1068 return -EIO; 1069 p->mask = cpu_to_be32(mask.i); 1070 p->val = cpu_to_be32(val.i); 1071 return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0); 1072 } 1073 1074 void drbd_send_sr_reply(struct drbd_peer_device *peer_device, enum drbd_state_rv retcode) 1075 { 1076 struct drbd_socket *sock; 1077 struct p_req_state_reply *p; 1078 1079 sock = &peer_device->connection->meta; 1080 p = drbd_prepare_command(peer_device, sock); 1081 if (p) { 1082 p->retcode = cpu_to_be32(retcode); 1083 drbd_send_command(peer_device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0); 1084 } 1085 } 1086 1087 void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode) 1088 { 1089 struct drbd_socket *sock; 1090 struct p_req_state_reply *p; 1091 enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY; 1092 1093 sock = &connection->meta; 1094 p = conn_prepare_command(connection, sock); 1095 if (p) { 1096 p->retcode = cpu_to_be32(retcode); 1097 conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0); 1098 } 1099 } 1100 1101 static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code) 1102 { 1103 BUG_ON(code & ~0xf); 1104 p->encoding = (p->encoding & ~0xf) | code; 1105 } 1106 1107 static void dcbp_set_start(struct p_compressed_bm *p, int set) 1108 { 1109 p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0); 1110 } 1111 1112 static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n) 1113 { 1114 BUG_ON(n & ~0x7); 1115 p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4); 1116 } 1117 1118 static int fill_bitmap_rle_bits(struct drbd_device *device, 1119 struct p_compressed_bm *p, 1120 unsigned int size, 1121 struct bm_xfer_ctx *c) 1122 { 1123 struct bitstream bs; 1124 unsigned long plain_bits; 1125 unsigned long tmp; 1126 unsigned long rl; 1127 unsigned len; 1128 unsigned toggle; 1129 int bits, use_rle; 1130 1131 /* may we use this feature? */ 1132 rcu_read_lock(); 1133 use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle; 1134 rcu_read_unlock(); 1135 if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90) 1136 return 0; 1137 1138 if (c->bit_offset >= c->bm_bits) 1139 return 0; /* nothing to do. */ 1140 1141 /* use at most thus many bytes */ 1142 bitstream_init(&bs, p->code, size, 0); 1143 memset(p->code, 0, size); 1144 /* plain bits covered in this code string */ 1145 plain_bits = 0; 1146 1147 /* p->encoding & 0x80 stores whether the first run length is set. 1148 * bit offset is implicit. 1149 * start with toggle == 2 to be able to tell the first iteration */ 1150 toggle = 2; 1151 1152 /* see how much plain bits we can stuff into one packet 1153 * using RLE and VLI. */ 1154 do { 1155 tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset) 1156 : _drbd_bm_find_next(device, c->bit_offset); 1157 if (tmp == -1UL) 1158 tmp = c->bm_bits; 1159 rl = tmp - c->bit_offset; 1160 1161 if (toggle == 2) { /* first iteration */ 1162 if (rl == 0) { 1163 /* the first checked bit was set, 1164 * store start value, */ 1165 dcbp_set_start(p, 1); 1166 /* but skip encoding of zero run length */ 1167 toggle = !toggle; 1168 continue; 1169 } 1170 dcbp_set_start(p, 0); 1171 } 1172 1173 /* paranoia: catch zero runlength. 1174 * can only happen if bitmap is modified while we scan it. */ 1175 if (rl == 0) { 1176 drbd_err(device, "unexpected zero runlength while encoding bitmap " 1177 "t:%u bo:%lu\n", toggle, c->bit_offset); 1178 return -1; 1179 } 1180 1181 bits = vli_encode_bits(&bs, rl); 1182 if (bits == -ENOBUFS) /* buffer full */ 1183 break; 1184 if (bits <= 0) { 1185 drbd_err(device, "error while encoding bitmap: %d\n", bits); 1186 return 0; 1187 } 1188 1189 toggle = !toggle; 1190 plain_bits += rl; 1191 c->bit_offset = tmp; 1192 } while (c->bit_offset < c->bm_bits); 1193 1194 len = bs.cur.b - p->code + !!bs.cur.bit; 1195 1196 if (plain_bits < (len << 3)) { 1197 /* incompressible with this method. 1198 * we need to rewind both word and bit position. */ 1199 c->bit_offset -= plain_bits; 1200 bm_xfer_ctx_bit_to_word_offset(c); 1201 c->bit_offset = c->word_offset * BITS_PER_LONG; 1202 return 0; 1203 } 1204 1205 /* RLE + VLI was able to compress it just fine. 1206 * update c->word_offset. */ 1207 bm_xfer_ctx_bit_to_word_offset(c); 1208 1209 /* store pad_bits */ 1210 dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7); 1211 1212 return len; 1213 } 1214 1215 /** 1216 * send_bitmap_rle_or_plain 1217 * 1218 * Return 0 when done, 1 when another iteration is needed, and a negative error 1219 * code upon failure. 1220 */ 1221 static int 1222 send_bitmap_rle_or_plain(struct drbd_device *device, struct bm_xfer_ctx *c) 1223 { 1224 struct drbd_socket *sock = &first_peer_device(device)->connection->data; 1225 unsigned int header_size = drbd_header_size(first_peer_device(device)->connection); 1226 struct p_compressed_bm *p = sock->sbuf + header_size; 1227 int len, err; 1228 1229 len = fill_bitmap_rle_bits(device, p, 1230 DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c); 1231 if (len < 0) 1232 return -EIO; 1233 1234 if (len) { 1235 dcbp_set_code(p, RLE_VLI_Bits); 1236 err = __send_command(first_peer_device(device)->connection, device->vnr, sock, 1237 P_COMPRESSED_BITMAP, sizeof(*p) + len, 1238 NULL, 0); 1239 c->packets[0]++; 1240 c->bytes[0] += header_size + sizeof(*p) + len; 1241 1242 if (c->bit_offset >= c->bm_bits) 1243 len = 0; /* DONE */ 1244 } else { 1245 /* was not compressible. 1246 * send a buffer full of plain text bits instead. */ 1247 unsigned int data_size; 1248 unsigned long num_words; 1249 unsigned long *p = sock->sbuf + header_size; 1250 1251 data_size = DRBD_SOCKET_BUFFER_SIZE - header_size; 1252 num_words = min_t(size_t, data_size / sizeof(*p), 1253 c->bm_words - c->word_offset); 1254 len = num_words * sizeof(*p); 1255 if (len) 1256 drbd_bm_get_lel(device, c->word_offset, num_words, p); 1257 err = __send_command(first_peer_device(device)->connection, device->vnr, sock, P_BITMAP, len, NULL, 0); 1258 c->word_offset += num_words; 1259 c->bit_offset = c->word_offset * BITS_PER_LONG; 1260 1261 c->packets[1]++; 1262 c->bytes[1] += header_size + len; 1263 1264 if (c->bit_offset > c->bm_bits) 1265 c->bit_offset = c->bm_bits; 1266 } 1267 if (!err) { 1268 if (len == 0) { 1269 INFO_bm_xfer_stats(device, "send", c); 1270 return 0; 1271 } else 1272 return 1; 1273 } 1274 return -EIO; 1275 } 1276 1277 /* See the comment at receive_bitmap() */ 1278 static int _drbd_send_bitmap(struct drbd_device *device) 1279 { 1280 struct bm_xfer_ctx c; 1281 int err; 1282 1283 if (!expect(device->bitmap)) 1284 return false; 1285 1286 if (get_ldev(device)) { 1287 if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) { 1288 drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n"); 1289 drbd_bm_set_all(device); 1290 if (drbd_bm_write(device)) { 1291 /* write_bm did fail! Leave full sync flag set in Meta P_DATA 1292 * but otherwise process as per normal - need to tell other 1293 * side that a full resync is required! */ 1294 drbd_err(device, "Failed to write bitmap to disk!\n"); 1295 } else { 1296 drbd_md_clear_flag(device, MDF_FULL_SYNC); 1297 drbd_md_sync(device); 1298 } 1299 } 1300 put_ldev(device); 1301 } 1302 1303 c = (struct bm_xfer_ctx) { 1304 .bm_bits = drbd_bm_bits(device), 1305 .bm_words = drbd_bm_words(device), 1306 }; 1307 1308 do { 1309 err = send_bitmap_rle_or_plain(device, &c); 1310 } while (err > 0); 1311 1312 return err == 0; 1313 } 1314 1315 int drbd_send_bitmap(struct drbd_device *device) 1316 { 1317 struct drbd_socket *sock = &first_peer_device(device)->connection->data; 1318 int err = -1; 1319 1320 mutex_lock(&sock->mutex); 1321 if (sock->socket) 1322 err = !_drbd_send_bitmap(device); 1323 mutex_unlock(&sock->mutex); 1324 return err; 1325 } 1326 1327 void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size) 1328 { 1329 struct drbd_socket *sock; 1330 struct p_barrier_ack *p; 1331 1332 if (connection->cstate < C_WF_REPORT_PARAMS) 1333 return; 1334 1335 sock = &connection->meta; 1336 p = conn_prepare_command(connection, sock); 1337 if (!p) 1338 return; 1339 p->barrier = barrier_nr; 1340 p->set_size = cpu_to_be32(set_size); 1341 conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0); 1342 } 1343 1344 /** 1345 * _drbd_send_ack() - Sends an ack packet 1346 * @device: DRBD device. 1347 * @cmd: Packet command code. 1348 * @sector: sector, needs to be in big endian byte order 1349 * @blksize: size in byte, needs to be in big endian byte order 1350 * @block_id: Id, big endian byte order 1351 */ 1352 static int _drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1353 u64 sector, u32 blksize, u64 block_id) 1354 { 1355 struct drbd_socket *sock; 1356 struct p_block_ack *p; 1357 1358 if (peer_device->device->state.conn < C_CONNECTED) 1359 return -EIO; 1360 1361 sock = &peer_device->connection->meta; 1362 p = drbd_prepare_command(peer_device, sock); 1363 if (!p) 1364 return -EIO; 1365 p->sector = sector; 1366 p->block_id = block_id; 1367 p->blksize = blksize; 1368 p->seq_num = cpu_to_be32(atomic_inc_return(&peer_device->device->packet_seq)); 1369 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0); 1370 } 1371 1372 /* dp->sector and dp->block_id already/still in network byte order, 1373 * data_size is payload size according to dp->head, 1374 * and may need to be corrected for digest size. */ 1375 void drbd_send_ack_dp(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1376 struct p_data *dp, int data_size) 1377 { 1378 if (peer_device->connection->peer_integrity_tfm) 1379 data_size -= crypto_ahash_digestsize(peer_device->connection->peer_integrity_tfm); 1380 _drbd_send_ack(peer_device, cmd, dp->sector, cpu_to_be32(data_size), 1381 dp->block_id); 1382 } 1383 1384 void drbd_send_ack_rp(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1385 struct p_block_req *rp) 1386 { 1387 _drbd_send_ack(peer_device, cmd, rp->sector, rp->blksize, rp->block_id); 1388 } 1389 1390 /** 1391 * drbd_send_ack() - Sends an ack packet 1392 * @device: DRBD device 1393 * @cmd: packet command code 1394 * @peer_req: peer request 1395 */ 1396 int drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1397 struct drbd_peer_request *peer_req) 1398 { 1399 return _drbd_send_ack(peer_device, cmd, 1400 cpu_to_be64(peer_req->i.sector), 1401 cpu_to_be32(peer_req->i.size), 1402 peer_req->block_id); 1403 } 1404 1405 /* This function misuses the block_id field to signal if the blocks 1406 * are is sync or not. */ 1407 int drbd_send_ack_ex(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1408 sector_t sector, int blksize, u64 block_id) 1409 { 1410 return _drbd_send_ack(peer_device, cmd, 1411 cpu_to_be64(sector), 1412 cpu_to_be32(blksize), 1413 cpu_to_be64(block_id)); 1414 } 1415 1416 int drbd_send_rs_deallocated(struct drbd_peer_device *peer_device, 1417 struct drbd_peer_request *peer_req) 1418 { 1419 struct drbd_socket *sock; 1420 struct p_block_desc *p; 1421 1422 sock = &peer_device->connection->data; 1423 p = drbd_prepare_command(peer_device, sock); 1424 if (!p) 1425 return -EIO; 1426 p->sector = cpu_to_be64(peer_req->i.sector); 1427 p->blksize = cpu_to_be32(peer_req->i.size); 1428 p->pad = 0; 1429 return drbd_send_command(peer_device, sock, P_RS_DEALLOCATED, sizeof(*p), NULL, 0); 1430 } 1431 1432 int drbd_send_drequest(struct drbd_peer_device *peer_device, int cmd, 1433 sector_t sector, int size, u64 block_id) 1434 { 1435 struct drbd_socket *sock; 1436 struct p_block_req *p; 1437 1438 sock = &peer_device->connection->data; 1439 p = drbd_prepare_command(peer_device, sock); 1440 if (!p) 1441 return -EIO; 1442 p->sector = cpu_to_be64(sector); 1443 p->block_id = block_id; 1444 p->blksize = cpu_to_be32(size); 1445 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0); 1446 } 1447 1448 int drbd_send_drequest_csum(struct drbd_peer_device *peer_device, sector_t sector, int size, 1449 void *digest, int digest_size, enum drbd_packet cmd) 1450 { 1451 struct drbd_socket *sock; 1452 struct p_block_req *p; 1453 1454 /* FIXME: Put the digest into the preallocated socket buffer. */ 1455 1456 sock = &peer_device->connection->data; 1457 p = drbd_prepare_command(peer_device, sock); 1458 if (!p) 1459 return -EIO; 1460 p->sector = cpu_to_be64(sector); 1461 p->block_id = ID_SYNCER /* unused */; 1462 p->blksize = cpu_to_be32(size); 1463 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), digest, digest_size); 1464 } 1465 1466 int drbd_send_ov_request(struct drbd_peer_device *peer_device, sector_t sector, int size) 1467 { 1468 struct drbd_socket *sock; 1469 struct p_block_req *p; 1470 1471 sock = &peer_device->connection->data; 1472 p = drbd_prepare_command(peer_device, sock); 1473 if (!p) 1474 return -EIO; 1475 p->sector = cpu_to_be64(sector); 1476 p->block_id = ID_SYNCER /* unused */; 1477 p->blksize = cpu_to_be32(size); 1478 return drbd_send_command(peer_device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0); 1479 } 1480 1481 /* called on sndtimeo 1482 * returns false if we should retry, 1483 * true if we think connection is dead 1484 */ 1485 static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock) 1486 { 1487 int drop_it; 1488 /* long elapsed = (long)(jiffies - device->last_received); */ 1489 1490 drop_it = connection->meta.socket == sock 1491 || !connection->ack_receiver.task 1492 || get_t_state(&connection->ack_receiver) != RUNNING 1493 || connection->cstate < C_WF_REPORT_PARAMS; 1494 1495 if (drop_it) 1496 return true; 1497 1498 drop_it = !--connection->ko_count; 1499 if (!drop_it) { 1500 drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n", 1501 current->comm, current->pid, connection->ko_count); 1502 request_ping(connection); 1503 } 1504 1505 return drop_it; /* && (device->state == R_PRIMARY) */; 1506 } 1507 1508 static void drbd_update_congested(struct drbd_connection *connection) 1509 { 1510 struct sock *sk = connection->data.socket->sk; 1511 if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5) 1512 set_bit(NET_CONGESTED, &connection->flags); 1513 } 1514 1515 /* The idea of sendpage seems to be to put some kind of reference 1516 * to the page into the skb, and to hand it over to the NIC. In 1517 * this process get_page() gets called. 1518 * 1519 * As soon as the page was really sent over the network put_page() 1520 * gets called by some part of the network layer. [ NIC driver? ] 1521 * 1522 * [ get_page() / put_page() increment/decrement the count. If count 1523 * reaches 0 the page will be freed. ] 1524 * 1525 * This works nicely with pages from FSs. 1526 * But this means that in protocol A we might signal IO completion too early! 1527 * 1528 * In order not to corrupt data during a resync we must make sure 1529 * that we do not reuse our own buffer pages (EEs) to early, therefore 1530 * we have the net_ee list. 1531 * 1532 * XFS seems to have problems, still, it submits pages with page_count == 0! 1533 * As a workaround, we disable sendpage on pages 1534 * with page_count == 0 or PageSlab. 1535 */ 1536 static int _drbd_no_send_page(struct drbd_peer_device *peer_device, struct page *page, 1537 int offset, size_t size, unsigned msg_flags) 1538 { 1539 struct socket *socket; 1540 void *addr; 1541 int err; 1542 1543 socket = peer_device->connection->data.socket; 1544 addr = kmap(page) + offset; 1545 err = drbd_send_all(peer_device->connection, socket, addr, size, msg_flags); 1546 kunmap(page); 1547 if (!err) 1548 peer_device->device->send_cnt += size >> 9; 1549 return err; 1550 } 1551 1552 static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *page, 1553 int offset, size_t size, unsigned msg_flags) 1554 { 1555 struct socket *socket = peer_device->connection->data.socket; 1556 int len = size; 1557 int err = -EIO; 1558 1559 /* e.g. XFS meta- & log-data is in slab pages, which have a 1560 * page_count of 0 and/or have PageSlab() set. 1561 * we cannot use send_page for those, as that does get_page(); 1562 * put_page(); and would cause either a VM_BUG directly, or 1563 * __page_cache_release a page that would actually still be referenced 1564 * by someone, leading to some obscure delayed Oops somewhere else. */ 1565 if (drbd_disable_sendpage || (page_count(page) < 1) || PageSlab(page)) 1566 return _drbd_no_send_page(peer_device, page, offset, size, msg_flags); 1567 1568 msg_flags |= MSG_NOSIGNAL; 1569 drbd_update_congested(peer_device->connection); 1570 do { 1571 int sent; 1572 1573 sent = socket->ops->sendpage(socket, page, offset, len, msg_flags); 1574 if (sent <= 0) { 1575 if (sent == -EAGAIN) { 1576 if (we_should_drop_the_connection(peer_device->connection, socket)) 1577 break; 1578 continue; 1579 } 1580 drbd_warn(peer_device->device, "%s: size=%d len=%d sent=%d\n", 1581 __func__, (int)size, len, sent); 1582 if (sent < 0) 1583 err = sent; 1584 break; 1585 } 1586 len -= sent; 1587 offset += sent; 1588 } while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/); 1589 clear_bit(NET_CONGESTED, &peer_device->connection->flags); 1590 1591 if (len == 0) { 1592 err = 0; 1593 peer_device->device->send_cnt += size >> 9; 1594 } 1595 return err; 1596 } 1597 1598 static int _drbd_send_bio(struct drbd_peer_device *peer_device, struct bio *bio) 1599 { 1600 struct bio_vec bvec; 1601 struct bvec_iter iter; 1602 1603 /* hint all but last page with MSG_MORE */ 1604 bio_for_each_segment(bvec, bio, iter) { 1605 int err; 1606 1607 err = _drbd_no_send_page(peer_device, bvec.bv_page, 1608 bvec.bv_offset, bvec.bv_len, 1609 bio_iter_last(bvec, iter) 1610 ? 0 : MSG_MORE); 1611 if (err) 1612 return err; 1613 /* REQ_OP_WRITE_SAME has only one segment */ 1614 if (bio_op(bio) == REQ_OP_WRITE_SAME) 1615 break; 1616 } 1617 return 0; 1618 } 1619 1620 static int _drbd_send_zc_bio(struct drbd_peer_device *peer_device, struct bio *bio) 1621 { 1622 struct bio_vec bvec; 1623 struct bvec_iter iter; 1624 1625 /* hint all but last page with MSG_MORE */ 1626 bio_for_each_segment(bvec, bio, iter) { 1627 int err; 1628 1629 err = _drbd_send_page(peer_device, bvec.bv_page, 1630 bvec.bv_offset, bvec.bv_len, 1631 bio_iter_last(bvec, iter) ? 0 : MSG_MORE); 1632 if (err) 1633 return err; 1634 /* REQ_OP_WRITE_SAME has only one segment */ 1635 if (bio_op(bio) == REQ_OP_WRITE_SAME) 1636 break; 1637 } 1638 return 0; 1639 } 1640 1641 static int _drbd_send_zc_ee(struct drbd_peer_device *peer_device, 1642 struct drbd_peer_request *peer_req) 1643 { 1644 struct page *page = peer_req->pages; 1645 unsigned len = peer_req->i.size; 1646 int err; 1647 1648 /* hint all but last page with MSG_MORE */ 1649 page_chain_for_each(page) { 1650 unsigned l = min_t(unsigned, len, PAGE_SIZE); 1651 1652 err = _drbd_send_page(peer_device, page, 0, l, 1653 page_chain_next(page) ? MSG_MORE : 0); 1654 if (err) 1655 return err; 1656 len -= l; 1657 } 1658 return 0; 1659 } 1660 1661 static u32 bio_flags_to_wire(struct drbd_connection *connection, 1662 struct bio *bio) 1663 { 1664 if (connection->agreed_pro_version >= 95) 1665 return (bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0) | 1666 (bio->bi_opf & REQ_FUA ? DP_FUA : 0) | 1667 (bio->bi_opf & REQ_PREFLUSH ? DP_FLUSH : 0) | 1668 (bio_op(bio) == REQ_OP_WRITE_SAME ? DP_WSAME : 0) | 1669 (bio_op(bio) == REQ_OP_DISCARD ? DP_DISCARD : 0) | 1670 (bio_op(bio) == REQ_OP_WRITE_ZEROES ? DP_DISCARD : 0); 1671 else 1672 return bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0; 1673 } 1674 1675 /* Used to send write or TRIM aka REQ_DISCARD requests 1676 * R_PRIMARY -> Peer (P_DATA, P_TRIM) 1677 */ 1678 int drbd_send_dblock(struct drbd_peer_device *peer_device, struct drbd_request *req) 1679 { 1680 struct drbd_device *device = peer_device->device; 1681 struct drbd_socket *sock; 1682 struct p_data *p; 1683 struct p_wsame *wsame = NULL; 1684 void *digest_out; 1685 unsigned int dp_flags = 0; 1686 int digest_size; 1687 int err; 1688 1689 sock = &peer_device->connection->data; 1690 p = drbd_prepare_command(peer_device, sock); 1691 digest_size = peer_device->connection->integrity_tfm ? 1692 crypto_ahash_digestsize(peer_device->connection->integrity_tfm) : 0; 1693 1694 if (!p) 1695 return -EIO; 1696 p->sector = cpu_to_be64(req->i.sector); 1697 p->block_id = (unsigned long)req; 1698 p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq)); 1699 dp_flags = bio_flags_to_wire(peer_device->connection, req->master_bio); 1700 if (device->state.conn >= C_SYNC_SOURCE && 1701 device->state.conn <= C_PAUSED_SYNC_T) 1702 dp_flags |= DP_MAY_SET_IN_SYNC; 1703 if (peer_device->connection->agreed_pro_version >= 100) { 1704 if (req->rq_state & RQ_EXP_RECEIVE_ACK) 1705 dp_flags |= DP_SEND_RECEIVE_ACK; 1706 /* During resync, request an explicit write ack, 1707 * even in protocol != C */ 1708 if (req->rq_state & RQ_EXP_WRITE_ACK 1709 || (dp_flags & DP_MAY_SET_IN_SYNC)) 1710 dp_flags |= DP_SEND_WRITE_ACK; 1711 } 1712 p->dp_flags = cpu_to_be32(dp_flags); 1713 1714 if (dp_flags & DP_DISCARD) { 1715 struct p_trim *t = (struct p_trim*)p; 1716 t->size = cpu_to_be32(req->i.size); 1717 err = __send_command(peer_device->connection, device->vnr, sock, P_TRIM, sizeof(*t), NULL, 0); 1718 goto out; 1719 } 1720 if (dp_flags & DP_WSAME) { 1721 /* this will only work if DRBD_FF_WSAME is set AND the 1722 * handshake agreed that all nodes and backend devices are 1723 * WRITE_SAME capable and agree on logical_block_size */ 1724 wsame = (struct p_wsame*)p; 1725 digest_out = wsame + 1; 1726 wsame->size = cpu_to_be32(req->i.size); 1727 } else 1728 digest_out = p + 1; 1729 1730 /* our digest is still only over the payload. 1731 * TRIM does not carry any payload. */ 1732 if (digest_size) 1733 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest_out); 1734 if (wsame) { 1735 err = 1736 __send_command(peer_device->connection, device->vnr, sock, P_WSAME, 1737 sizeof(*wsame) + digest_size, NULL, 1738 bio_iovec(req->master_bio).bv_len); 1739 } else 1740 err = 1741 __send_command(peer_device->connection, device->vnr, sock, P_DATA, 1742 sizeof(*p) + digest_size, NULL, req->i.size); 1743 if (!err) { 1744 /* For protocol A, we have to memcpy the payload into 1745 * socket buffers, as we may complete right away 1746 * as soon as we handed it over to tcp, at which point the data 1747 * pages may become invalid. 1748 * 1749 * For data-integrity enabled, we copy it as well, so we can be 1750 * sure that even if the bio pages may still be modified, it 1751 * won't change the data on the wire, thus if the digest checks 1752 * out ok after sending on this side, but does not fit on the 1753 * receiving side, we sure have detected corruption elsewhere. 1754 */ 1755 if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || digest_size) 1756 err = _drbd_send_bio(peer_device, req->master_bio); 1757 else 1758 err = _drbd_send_zc_bio(peer_device, req->master_bio); 1759 1760 /* double check digest, sometimes buffers have been modified in flight. */ 1761 if (digest_size > 0 && digest_size <= 64) { 1762 /* 64 byte, 512 bit, is the largest digest size 1763 * currently supported in kernel crypto. */ 1764 unsigned char digest[64]; 1765 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest); 1766 if (memcmp(p + 1, digest, digest_size)) { 1767 drbd_warn(device, 1768 "Digest mismatch, buffer modified by upper layers during write: %llus +%u\n", 1769 (unsigned long long)req->i.sector, req->i.size); 1770 } 1771 } /* else if (digest_size > 64) { 1772 ... Be noisy about digest too large ... 1773 } */ 1774 } 1775 out: 1776 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */ 1777 1778 return err; 1779 } 1780 1781 /* answer packet, used to send data back for read requests: 1782 * Peer -> (diskless) R_PRIMARY (P_DATA_REPLY) 1783 * C_SYNC_SOURCE -> C_SYNC_TARGET (P_RS_DATA_REPLY) 1784 */ 1785 int drbd_send_block(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1786 struct drbd_peer_request *peer_req) 1787 { 1788 struct drbd_device *device = peer_device->device; 1789 struct drbd_socket *sock; 1790 struct p_data *p; 1791 int err; 1792 int digest_size; 1793 1794 sock = &peer_device->connection->data; 1795 p = drbd_prepare_command(peer_device, sock); 1796 1797 digest_size = peer_device->connection->integrity_tfm ? 1798 crypto_ahash_digestsize(peer_device->connection->integrity_tfm) : 0; 1799 1800 if (!p) 1801 return -EIO; 1802 p->sector = cpu_to_be64(peer_req->i.sector); 1803 p->block_id = peer_req->block_id; 1804 p->seq_num = 0; /* unused */ 1805 p->dp_flags = 0; 1806 if (digest_size) 1807 drbd_csum_ee(peer_device->connection->integrity_tfm, peer_req, p + 1); 1808 err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*p) + digest_size, NULL, peer_req->i.size); 1809 if (!err) 1810 err = _drbd_send_zc_ee(peer_device, peer_req); 1811 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */ 1812 1813 return err; 1814 } 1815 1816 int drbd_send_out_of_sync(struct drbd_peer_device *peer_device, struct drbd_request *req) 1817 { 1818 struct drbd_socket *sock; 1819 struct p_block_desc *p; 1820 1821 sock = &peer_device->connection->data; 1822 p = drbd_prepare_command(peer_device, sock); 1823 if (!p) 1824 return -EIO; 1825 p->sector = cpu_to_be64(req->i.sector); 1826 p->blksize = cpu_to_be32(req->i.size); 1827 return drbd_send_command(peer_device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0); 1828 } 1829 1830 /* 1831 drbd_send distinguishes two cases: 1832 1833 Packets sent via the data socket "sock" 1834 and packets sent via the meta data socket "msock" 1835 1836 sock msock 1837 -----------------+-------------------------+------------------------------ 1838 timeout conf.timeout / 2 conf.timeout / 2 1839 timeout action send a ping via msock Abort communication 1840 and close all sockets 1841 */ 1842 1843 /* 1844 * you must have down()ed the appropriate [m]sock_mutex elsewhere! 1845 */ 1846 int drbd_send(struct drbd_connection *connection, struct socket *sock, 1847 void *buf, size_t size, unsigned msg_flags) 1848 { 1849 struct kvec iov = {.iov_base = buf, .iov_len = size}; 1850 struct msghdr msg; 1851 int rv, sent = 0; 1852 1853 if (!sock) 1854 return -EBADR; 1855 1856 /* THINK if (signal_pending) return ... ? */ 1857 1858 msg.msg_name = NULL; 1859 msg.msg_namelen = 0; 1860 msg.msg_control = NULL; 1861 msg.msg_controllen = 0; 1862 msg.msg_flags = msg_flags | MSG_NOSIGNAL; 1863 1864 iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, &iov, 1, size); 1865 1866 if (sock == connection->data.socket) { 1867 rcu_read_lock(); 1868 connection->ko_count = rcu_dereference(connection->net_conf)->ko_count; 1869 rcu_read_unlock(); 1870 drbd_update_congested(connection); 1871 } 1872 do { 1873 rv = sock_sendmsg(sock, &msg); 1874 if (rv == -EAGAIN) { 1875 if (we_should_drop_the_connection(connection, sock)) 1876 break; 1877 else 1878 continue; 1879 } 1880 if (rv == -EINTR) { 1881 flush_signals(current); 1882 rv = 0; 1883 } 1884 if (rv < 0) 1885 break; 1886 sent += rv; 1887 } while (sent < size); 1888 1889 if (sock == connection->data.socket) 1890 clear_bit(NET_CONGESTED, &connection->flags); 1891 1892 if (rv <= 0) { 1893 if (rv != -EAGAIN) { 1894 drbd_err(connection, "%s_sendmsg returned %d\n", 1895 sock == connection->meta.socket ? "msock" : "sock", 1896 rv); 1897 conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD); 1898 } else 1899 conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD); 1900 } 1901 1902 return sent; 1903 } 1904 1905 /** 1906 * drbd_send_all - Send an entire buffer 1907 * 1908 * Returns 0 upon success and a negative error value otherwise. 1909 */ 1910 int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer, 1911 size_t size, unsigned msg_flags) 1912 { 1913 int err; 1914 1915 err = drbd_send(connection, sock, buffer, size, msg_flags); 1916 if (err < 0) 1917 return err; 1918 if (err != size) 1919 return -EIO; 1920 return 0; 1921 } 1922 1923 static int drbd_open(struct block_device *bdev, fmode_t mode) 1924 { 1925 struct drbd_device *device = bdev->bd_disk->private_data; 1926 unsigned long flags; 1927 int rv = 0; 1928 1929 mutex_lock(&drbd_main_mutex); 1930 spin_lock_irqsave(&device->resource->req_lock, flags); 1931 /* to have a stable device->state.role 1932 * and no race with updating open_cnt */ 1933 1934 if (device->state.role != R_PRIMARY) { 1935 if (mode & FMODE_WRITE) 1936 rv = -EROFS; 1937 else if (!drbd_allow_oos) 1938 rv = -EMEDIUMTYPE; 1939 } 1940 1941 if (!rv) 1942 device->open_cnt++; 1943 spin_unlock_irqrestore(&device->resource->req_lock, flags); 1944 mutex_unlock(&drbd_main_mutex); 1945 1946 return rv; 1947 } 1948 1949 static void drbd_release(struct gendisk *gd, fmode_t mode) 1950 { 1951 struct drbd_device *device = gd->private_data; 1952 mutex_lock(&drbd_main_mutex); 1953 device->open_cnt--; 1954 mutex_unlock(&drbd_main_mutex); 1955 } 1956 1957 /* need to hold resource->req_lock */ 1958 void drbd_queue_unplug(struct drbd_device *device) 1959 { 1960 if (device->state.pdsk >= D_INCONSISTENT && device->state.conn >= C_CONNECTED) { 1961 D_ASSERT(device, device->state.role == R_PRIMARY); 1962 if (test_and_clear_bit(UNPLUG_REMOTE, &device->flags)) { 1963 drbd_queue_work_if_unqueued( 1964 &first_peer_device(device)->connection->sender_work, 1965 &device->unplug_work); 1966 } 1967 } 1968 } 1969 1970 static void drbd_set_defaults(struct drbd_device *device) 1971 { 1972 /* Beware! The actual layout differs 1973 * between big endian and little endian */ 1974 device->state = (union drbd_dev_state) { 1975 { .role = R_SECONDARY, 1976 .peer = R_UNKNOWN, 1977 .conn = C_STANDALONE, 1978 .disk = D_DISKLESS, 1979 .pdsk = D_UNKNOWN, 1980 } }; 1981 } 1982 1983 void drbd_init_set_defaults(struct drbd_device *device) 1984 { 1985 /* the memset(,0,) did most of this. 1986 * note: only assignments, no allocation in here */ 1987 1988 drbd_set_defaults(device); 1989 1990 atomic_set(&device->ap_bio_cnt, 0); 1991 atomic_set(&device->ap_actlog_cnt, 0); 1992 atomic_set(&device->ap_pending_cnt, 0); 1993 atomic_set(&device->rs_pending_cnt, 0); 1994 atomic_set(&device->unacked_cnt, 0); 1995 atomic_set(&device->local_cnt, 0); 1996 atomic_set(&device->pp_in_use_by_net, 0); 1997 atomic_set(&device->rs_sect_in, 0); 1998 atomic_set(&device->rs_sect_ev, 0); 1999 atomic_set(&device->ap_in_flight, 0); 2000 atomic_set(&device->md_io.in_use, 0); 2001 2002 mutex_init(&device->own_state_mutex); 2003 device->state_mutex = &device->own_state_mutex; 2004 2005 spin_lock_init(&device->al_lock); 2006 spin_lock_init(&device->peer_seq_lock); 2007 2008 INIT_LIST_HEAD(&device->active_ee); 2009 INIT_LIST_HEAD(&device->sync_ee); 2010 INIT_LIST_HEAD(&device->done_ee); 2011 INIT_LIST_HEAD(&device->read_ee); 2012 INIT_LIST_HEAD(&device->net_ee); 2013 INIT_LIST_HEAD(&device->resync_reads); 2014 INIT_LIST_HEAD(&device->resync_work.list); 2015 INIT_LIST_HEAD(&device->unplug_work.list); 2016 INIT_LIST_HEAD(&device->bm_io_work.w.list); 2017 INIT_LIST_HEAD(&device->pending_master_completion[0]); 2018 INIT_LIST_HEAD(&device->pending_master_completion[1]); 2019 INIT_LIST_HEAD(&device->pending_completion[0]); 2020 INIT_LIST_HEAD(&device->pending_completion[1]); 2021 2022 device->resync_work.cb = w_resync_timer; 2023 device->unplug_work.cb = w_send_write_hint; 2024 device->bm_io_work.w.cb = w_bitmap_io; 2025 2026 setup_timer(&device->resync_timer, resync_timer_fn, 2027 (unsigned long)device); 2028 setup_timer(&device->md_sync_timer, md_sync_timer_fn, 2029 (unsigned long)device); 2030 setup_timer(&device->start_resync_timer, start_resync_timer_fn, 2031 (unsigned long)device); 2032 setup_timer(&device->request_timer, request_timer_fn, 2033 (unsigned long)device); 2034 2035 init_waitqueue_head(&device->misc_wait); 2036 init_waitqueue_head(&device->state_wait); 2037 init_waitqueue_head(&device->ee_wait); 2038 init_waitqueue_head(&device->al_wait); 2039 init_waitqueue_head(&device->seq_wait); 2040 2041 device->resync_wenr = LC_FREE; 2042 device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE; 2043 device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE; 2044 } 2045 2046 void drbd_device_cleanup(struct drbd_device *device) 2047 { 2048 int i; 2049 if (first_peer_device(device)->connection->receiver.t_state != NONE) 2050 drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n", 2051 first_peer_device(device)->connection->receiver.t_state); 2052 2053 device->al_writ_cnt = 2054 device->bm_writ_cnt = 2055 device->read_cnt = 2056 device->recv_cnt = 2057 device->send_cnt = 2058 device->writ_cnt = 2059 device->p_size = 2060 device->rs_start = 2061 device->rs_total = 2062 device->rs_failed = 0; 2063 device->rs_last_events = 0; 2064 device->rs_last_sect_ev = 0; 2065 for (i = 0; i < DRBD_SYNC_MARKS; i++) { 2066 device->rs_mark_left[i] = 0; 2067 device->rs_mark_time[i] = 0; 2068 } 2069 D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL); 2070 2071 drbd_set_my_capacity(device, 0); 2072 if (device->bitmap) { 2073 /* maybe never allocated. */ 2074 drbd_bm_resize(device, 0, 1); 2075 drbd_bm_cleanup(device); 2076 } 2077 2078 drbd_backing_dev_free(device, device->ldev); 2079 device->ldev = NULL; 2080 2081 clear_bit(AL_SUSPENDED, &device->flags); 2082 2083 D_ASSERT(device, list_empty(&device->active_ee)); 2084 D_ASSERT(device, list_empty(&device->sync_ee)); 2085 D_ASSERT(device, list_empty(&device->done_ee)); 2086 D_ASSERT(device, list_empty(&device->read_ee)); 2087 D_ASSERT(device, list_empty(&device->net_ee)); 2088 D_ASSERT(device, list_empty(&device->resync_reads)); 2089 D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q)); 2090 D_ASSERT(device, list_empty(&device->resync_work.list)); 2091 D_ASSERT(device, list_empty(&device->unplug_work.list)); 2092 2093 drbd_set_defaults(device); 2094 } 2095 2096 2097 static void drbd_destroy_mempools(void) 2098 { 2099 struct page *page; 2100 2101 while (drbd_pp_pool) { 2102 page = drbd_pp_pool; 2103 drbd_pp_pool = (struct page *)page_private(page); 2104 __free_page(page); 2105 drbd_pp_vacant--; 2106 } 2107 2108 /* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */ 2109 2110 if (drbd_io_bio_set) 2111 bioset_free(drbd_io_bio_set); 2112 if (drbd_md_io_bio_set) 2113 bioset_free(drbd_md_io_bio_set); 2114 if (drbd_md_io_page_pool) 2115 mempool_destroy(drbd_md_io_page_pool); 2116 if (drbd_ee_mempool) 2117 mempool_destroy(drbd_ee_mempool); 2118 if (drbd_request_mempool) 2119 mempool_destroy(drbd_request_mempool); 2120 if (drbd_ee_cache) 2121 kmem_cache_destroy(drbd_ee_cache); 2122 if (drbd_request_cache) 2123 kmem_cache_destroy(drbd_request_cache); 2124 if (drbd_bm_ext_cache) 2125 kmem_cache_destroy(drbd_bm_ext_cache); 2126 if (drbd_al_ext_cache) 2127 kmem_cache_destroy(drbd_al_ext_cache); 2128 2129 drbd_io_bio_set = NULL; 2130 drbd_md_io_bio_set = NULL; 2131 drbd_md_io_page_pool = NULL; 2132 drbd_ee_mempool = NULL; 2133 drbd_request_mempool = NULL; 2134 drbd_ee_cache = NULL; 2135 drbd_request_cache = NULL; 2136 drbd_bm_ext_cache = NULL; 2137 drbd_al_ext_cache = NULL; 2138 2139 return; 2140 } 2141 2142 static int drbd_create_mempools(void) 2143 { 2144 struct page *page; 2145 const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * drbd_minor_count; 2146 int i; 2147 2148 /* prepare our caches and mempools */ 2149 drbd_request_mempool = NULL; 2150 drbd_ee_cache = NULL; 2151 drbd_request_cache = NULL; 2152 drbd_bm_ext_cache = NULL; 2153 drbd_al_ext_cache = NULL; 2154 drbd_pp_pool = NULL; 2155 drbd_md_io_page_pool = NULL; 2156 drbd_md_io_bio_set = NULL; 2157 drbd_io_bio_set = NULL; 2158 2159 /* caches */ 2160 drbd_request_cache = kmem_cache_create( 2161 "drbd_req", sizeof(struct drbd_request), 0, 0, NULL); 2162 if (drbd_request_cache == NULL) 2163 goto Enomem; 2164 2165 drbd_ee_cache = kmem_cache_create( 2166 "drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL); 2167 if (drbd_ee_cache == NULL) 2168 goto Enomem; 2169 2170 drbd_bm_ext_cache = kmem_cache_create( 2171 "drbd_bm", sizeof(struct bm_extent), 0, 0, NULL); 2172 if (drbd_bm_ext_cache == NULL) 2173 goto Enomem; 2174 2175 drbd_al_ext_cache = kmem_cache_create( 2176 "drbd_al", sizeof(struct lc_element), 0, 0, NULL); 2177 if (drbd_al_ext_cache == NULL) 2178 goto Enomem; 2179 2180 /* mempools */ 2181 drbd_io_bio_set = bioset_create(BIO_POOL_SIZE, 0, 0); 2182 if (drbd_io_bio_set == NULL) 2183 goto Enomem; 2184 2185 drbd_md_io_bio_set = bioset_create(DRBD_MIN_POOL_PAGES, 0, 2186 BIOSET_NEED_BVECS); 2187 if (drbd_md_io_bio_set == NULL) 2188 goto Enomem; 2189 2190 drbd_md_io_page_pool = mempool_create_page_pool(DRBD_MIN_POOL_PAGES, 0); 2191 if (drbd_md_io_page_pool == NULL) 2192 goto Enomem; 2193 2194 drbd_request_mempool = mempool_create_slab_pool(number, 2195 drbd_request_cache); 2196 if (drbd_request_mempool == NULL) 2197 goto Enomem; 2198 2199 drbd_ee_mempool = mempool_create_slab_pool(number, drbd_ee_cache); 2200 if (drbd_ee_mempool == NULL) 2201 goto Enomem; 2202 2203 /* drbd's page pool */ 2204 spin_lock_init(&drbd_pp_lock); 2205 2206 for (i = 0; i < number; i++) { 2207 page = alloc_page(GFP_HIGHUSER); 2208 if (!page) 2209 goto Enomem; 2210 set_page_private(page, (unsigned long)drbd_pp_pool); 2211 drbd_pp_pool = page; 2212 } 2213 drbd_pp_vacant = number; 2214 2215 return 0; 2216 2217 Enomem: 2218 drbd_destroy_mempools(); /* in case we allocated some */ 2219 return -ENOMEM; 2220 } 2221 2222 static void drbd_release_all_peer_reqs(struct drbd_device *device) 2223 { 2224 int rr; 2225 2226 rr = drbd_free_peer_reqs(device, &device->active_ee); 2227 if (rr) 2228 drbd_err(device, "%d EEs in active list found!\n", rr); 2229 2230 rr = drbd_free_peer_reqs(device, &device->sync_ee); 2231 if (rr) 2232 drbd_err(device, "%d EEs in sync list found!\n", rr); 2233 2234 rr = drbd_free_peer_reqs(device, &device->read_ee); 2235 if (rr) 2236 drbd_err(device, "%d EEs in read list found!\n", rr); 2237 2238 rr = drbd_free_peer_reqs(device, &device->done_ee); 2239 if (rr) 2240 drbd_err(device, "%d EEs in done list found!\n", rr); 2241 2242 rr = drbd_free_peer_reqs(device, &device->net_ee); 2243 if (rr) 2244 drbd_err(device, "%d EEs in net list found!\n", rr); 2245 } 2246 2247 /* caution. no locking. */ 2248 void drbd_destroy_device(struct kref *kref) 2249 { 2250 struct drbd_device *device = container_of(kref, struct drbd_device, kref); 2251 struct drbd_resource *resource = device->resource; 2252 struct drbd_peer_device *peer_device, *tmp_peer_device; 2253 2254 del_timer_sync(&device->request_timer); 2255 2256 /* paranoia asserts */ 2257 D_ASSERT(device, device->open_cnt == 0); 2258 /* end paranoia asserts */ 2259 2260 /* cleanup stuff that may have been allocated during 2261 * device (re-)configuration or state changes */ 2262 2263 if (device->this_bdev) 2264 bdput(device->this_bdev); 2265 2266 drbd_backing_dev_free(device, device->ldev); 2267 device->ldev = NULL; 2268 2269 drbd_release_all_peer_reqs(device); 2270 2271 lc_destroy(device->act_log); 2272 lc_destroy(device->resync); 2273 2274 kfree(device->p_uuid); 2275 /* device->p_uuid = NULL; */ 2276 2277 if (device->bitmap) /* should no longer be there. */ 2278 drbd_bm_cleanup(device); 2279 __free_page(device->md_io.page); 2280 put_disk(device->vdisk); 2281 blk_cleanup_queue(device->rq_queue); 2282 kfree(device->rs_plan_s); 2283 2284 /* not for_each_connection(connection, resource): 2285 * those may have been cleaned up and disassociated already. 2286 */ 2287 for_each_peer_device_safe(peer_device, tmp_peer_device, device) { 2288 kref_put(&peer_device->connection->kref, drbd_destroy_connection); 2289 kfree(peer_device); 2290 } 2291 memset(device, 0xfd, sizeof(*device)); 2292 kfree(device); 2293 kref_put(&resource->kref, drbd_destroy_resource); 2294 } 2295 2296 /* One global retry thread, if we need to push back some bio and have it 2297 * reinserted through our make request function. 2298 */ 2299 static struct retry_worker { 2300 struct workqueue_struct *wq; 2301 struct work_struct worker; 2302 2303 spinlock_t lock; 2304 struct list_head writes; 2305 } retry; 2306 2307 static void do_retry(struct work_struct *ws) 2308 { 2309 struct retry_worker *retry = container_of(ws, struct retry_worker, worker); 2310 LIST_HEAD(writes); 2311 struct drbd_request *req, *tmp; 2312 2313 spin_lock_irq(&retry->lock); 2314 list_splice_init(&retry->writes, &writes); 2315 spin_unlock_irq(&retry->lock); 2316 2317 list_for_each_entry_safe(req, tmp, &writes, tl_requests) { 2318 struct drbd_device *device = req->device; 2319 struct bio *bio = req->master_bio; 2320 unsigned long start_jif = req->start_jif; 2321 bool expected; 2322 2323 expected = 2324 expect(atomic_read(&req->completion_ref) == 0) && 2325 expect(req->rq_state & RQ_POSTPONED) && 2326 expect((req->rq_state & RQ_LOCAL_PENDING) == 0 || 2327 (req->rq_state & RQ_LOCAL_ABORTED) != 0); 2328 2329 if (!expected) 2330 drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n", 2331 req, atomic_read(&req->completion_ref), 2332 req->rq_state); 2333 2334 /* We still need to put one kref associated with the 2335 * "completion_ref" going zero in the code path that queued it 2336 * here. The request object may still be referenced by a 2337 * frozen local req->private_bio, in case we force-detached. 2338 */ 2339 kref_put(&req->kref, drbd_req_destroy); 2340 2341 /* A single suspended or otherwise blocking device may stall 2342 * all others as well. Fortunately, this code path is to 2343 * recover from a situation that "should not happen": 2344 * concurrent writes in multi-primary setup. 2345 * In a "normal" lifecycle, this workqueue is supposed to be 2346 * destroyed without ever doing anything. 2347 * If it turns out to be an issue anyways, we can do per 2348 * resource (replication group) or per device (minor) retry 2349 * workqueues instead. 2350 */ 2351 2352 /* We are not just doing generic_make_request(), 2353 * as we want to keep the start_time information. */ 2354 inc_ap_bio(device); 2355 __drbd_make_request(device, bio, start_jif); 2356 } 2357 } 2358 2359 /* called via drbd_req_put_completion_ref(), 2360 * holds resource->req_lock */ 2361 void drbd_restart_request(struct drbd_request *req) 2362 { 2363 unsigned long flags; 2364 spin_lock_irqsave(&retry.lock, flags); 2365 list_move_tail(&req->tl_requests, &retry.writes); 2366 spin_unlock_irqrestore(&retry.lock, flags); 2367 2368 /* Drop the extra reference that would otherwise 2369 * have been dropped by complete_master_bio. 2370 * do_retry() needs to grab a new one. */ 2371 dec_ap_bio(req->device); 2372 2373 queue_work(retry.wq, &retry.worker); 2374 } 2375 2376 void drbd_destroy_resource(struct kref *kref) 2377 { 2378 struct drbd_resource *resource = 2379 container_of(kref, struct drbd_resource, kref); 2380 2381 idr_destroy(&resource->devices); 2382 free_cpumask_var(resource->cpu_mask); 2383 kfree(resource->name); 2384 memset(resource, 0xf2, sizeof(*resource)); 2385 kfree(resource); 2386 } 2387 2388 void drbd_free_resource(struct drbd_resource *resource) 2389 { 2390 struct drbd_connection *connection, *tmp; 2391 2392 for_each_connection_safe(connection, tmp, resource) { 2393 list_del(&connection->connections); 2394 drbd_debugfs_connection_cleanup(connection); 2395 kref_put(&connection->kref, drbd_destroy_connection); 2396 } 2397 drbd_debugfs_resource_cleanup(resource); 2398 kref_put(&resource->kref, drbd_destroy_resource); 2399 } 2400 2401 static void drbd_cleanup(void) 2402 { 2403 unsigned int i; 2404 struct drbd_device *device; 2405 struct drbd_resource *resource, *tmp; 2406 2407 /* first remove proc, 2408 * drbdsetup uses it's presence to detect 2409 * whether DRBD is loaded. 2410 * If we would get stuck in proc removal, 2411 * but have netlink already deregistered, 2412 * some drbdsetup commands may wait forever 2413 * for an answer. 2414 */ 2415 if (drbd_proc) 2416 remove_proc_entry("drbd", NULL); 2417 2418 if (retry.wq) 2419 destroy_workqueue(retry.wq); 2420 2421 drbd_genl_unregister(); 2422 2423 idr_for_each_entry(&drbd_devices, device, i) 2424 drbd_delete_device(device); 2425 2426 /* not _rcu since, no other updater anymore. Genl already unregistered */ 2427 for_each_resource_safe(resource, tmp, &drbd_resources) { 2428 list_del(&resource->resources); 2429 drbd_free_resource(resource); 2430 } 2431 2432 drbd_debugfs_cleanup(); 2433 2434 drbd_destroy_mempools(); 2435 unregister_blkdev(DRBD_MAJOR, "drbd"); 2436 2437 idr_destroy(&drbd_devices); 2438 2439 pr_info("module cleanup done.\n"); 2440 } 2441 2442 /** 2443 * drbd_congested() - Callback for the flusher thread 2444 * @congested_data: User data 2445 * @bdi_bits: Bits the BDI flusher thread is currently interested in 2446 * 2447 * Returns 1<<WB_async_congested and/or 1<<WB_sync_congested if we are congested. 2448 */ 2449 static int drbd_congested(void *congested_data, int bdi_bits) 2450 { 2451 struct drbd_device *device = congested_data; 2452 struct request_queue *q; 2453 char reason = '-'; 2454 int r = 0; 2455 2456 if (!may_inc_ap_bio(device)) { 2457 /* DRBD has frozen IO */ 2458 r = bdi_bits; 2459 reason = 'd'; 2460 goto out; 2461 } 2462 2463 if (test_bit(CALLBACK_PENDING, &first_peer_device(device)->connection->flags)) { 2464 r |= (1 << WB_async_congested); 2465 /* Without good local data, we would need to read from remote, 2466 * and that would need the worker thread as well, which is 2467 * currently blocked waiting for that usermode helper to 2468 * finish. 2469 */ 2470 if (!get_ldev_if_state(device, D_UP_TO_DATE)) 2471 r |= (1 << WB_sync_congested); 2472 else 2473 put_ldev(device); 2474 r &= bdi_bits; 2475 reason = 'c'; 2476 goto out; 2477 } 2478 2479 if (get_ldev(device)) { 2480 q = bdev_get_queue(device->ldev->backing_bdev); 2481 r = bdi_congested(q->backing_dev_info, bdi_bits); 2482 put_ldev(device); 2483 if (r) 2484 reason = 'b'; 2485 } 2486 2487 if (bdi_bits & (1 << WB_async_congested) && 2488 test_bit(NET_CONGESTED, &first_peer_device(device)->connection->flags)) { 2489 r |= (1 << WB_async_congested); 2490 reason = reason == 'b' ? 'a' : 'n'; 2491 } 2492 2493 out: 2494 device->congestion_reason = reason; 2495 return r; 2496 } 2497 2498 static void drbd_init_workqueue(struct drbd_work_queue* wq) 2499 { 2500 spin_lock_init(&wq->q_lock); 2501 INIT_LIST_HEAD(&wq->q); 2502 init_waitqueue_head(&wq->q_wait); 2503 } 2504 2505 struct completion_work { 2506 struct drbd_work w; 2507 struct completion done; 2508 }; 2509 2510 static int w_complete(struct drbd_work *w, int cancel) 2511 { 2512 struct completion_work *completion_work = 2513 container_of(w, struct completion_work, w); 2514 2515 complete(&completion_work->done); 2516 return 0; 2517 } 2518 2519 void drbd_flush_workqueue(struct drbd_work_queue *work_queue) 2520 { 2521 struct completion_work completion_work; 2522 2523 completion_work.w.cb = w_complete; 2524 init_completion(&completion_work.done); 2525 drbd_queue_work(work_queue, &completion_work.w); 2526 wait_for_completion(&completion_work.done); 2527 } 2528 2529 struct drbd_resource *drbd_find_resource(const char *name) 2530 { 2531 struct drbd_resource *resource; 2532 2533 if (!name || !name[0]) 2534 return NULL; 2535 2536 rcu_read_lock(); 2537 for_each_resource_rcu(resource, &drbd_resources) { 2538 if (!strcmp(resource->name, name)) { 2539 kref_get(&resource->kref); 2540 goto found; 2541 } 2542 } 2543 resource = NULL; 2544 found: 2545 rcu_read_unlock(); 2546 return resource; 2547 } 2548 2549 struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len, 2550 void *peer_addr, int peer_addr_len) 2551 { 2552 struct drbd_resource *resource; 2553 struct drbd_connection *connection; 2554 2555 rcu_read_lock(); 2556 for_each_resource_rcu(resource, &drbd_resources) { 2557 for_each_connection_rcu(connection, resource) { 2558 if (connection->my_addr_len == my_addr_len && 2559 connection->peer_addr_len == peer_addr_len && 2560 !memcmp(&connection->my_addr, my_addr, my_addr_len) && 2561 !memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) { 2562 kref_get(&connection->kref); 2563 goto found; 2564 } 2565 } 2566 } 2567 connection = NULL; 2568 found: 2569 rcu_read_unlock(); 2570 return connection; 2571 } 2572 2573 static int drbd_alloc_socket(struct drbd_socket *socket) 2574 { 2575 socket->rbuf = (void *) __get_free_page(GFP_KERNEL); 2576 if (!socket->rbuf) 2577 return -ENOMEM; 2578 socket->sbuf = (void *) __get_free_page(GFP_KERNEL); 2579 if (!socket->sbuf) 2580 return -ENOMEM; 2581 return 0; 2582 } 2583 2584 static void drbd_free_socket(struct drbd_socket *socket) 2585 { 2586 free_page((unsigned long) socket->sbuf); 2587 free_page((unsigned long) socket->rbuf); 2588 } 2589 2590 void conn_free_crypto(struct drbd_connection *connection) 2591 { 2592 drbd_free_sock(connection); 2593 2594 crypto_free_ahash(connection->csums_tfm); 2595 crypto_free_ahash(connection->verify_tfm); 2596 crypto_free_shash(connection->cram_hmac_tfm); 2597 crypto_free_ahash(connection->integrity_tfm); 2598 crypto_free_ahash(connection->peer_integrity_tfm); 2599 kfree(connection->int_dig_in); 2600 kfree(connection->int_dig_vv); 2601 2602 connection->csums_tfm = NULL; 2603 connection->verify_tfm = NULL; 2604 connection->cram_hmac_tfm = NULL; 2605 connection->integrity_tfm = NULL; 2606 connection->peer_integrity_tfm = NULL; 2607 connection->int_dig_in = NULL; 2608 connection->int_dig_vv = NULL; 2609 } 2610 2611 int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts) 2612 { 2613 struct drbd_connection *connection; 2614 cpumask_var_t new_cpu_mask; 2615 int err; 2616 2617 if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL)) 2618 return -ENOMEM; 2619 2620 /* silently ignore cpu mask on UP kernel */ 2621 if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) { 2622 err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE, 2623 cpumask_bits(new_cpu_mask), nr_cpu_ids); 2624 if (err == -EOVERFLOW) { 2625 /* So what. mask it out. */ 2626 cpumask_var_t tmp_cpu_mask; 2627 if (zalloc_cpumask_var(&tmp_cpu_mask, GFP_KERNEL)) { 2628 cpumask_setall(tmp_cpu_mask); 2629 cpumask_and(new_cpu_mask, new_cpu_mask, tmp_cpu_mask); 2630 drbd_warn(resource, "Overflow in bitmap_parse(%.12s%s), truncating to %u bits\n", 2631 res_opts->cpu_mask, 2632 strlen(res_opts->cpu_mask) > 12 ? "..." : "", 2633 nr_cpu_ids); 2634 free_cpumask_var(tmp_cpu_mask); 2635 err = 0; 2636 } 2637 } 2638 if (err) { 2639 drbd_warn(resource, "bitmap_parse() failed with %d\n", err); 2640 /* retcode = ERR_CPU_MASK_PARSE; */ 2641 goto fail; 2642 } 2643 } 2644 resource->res_opts = *res_opts; 2645 if (cpumask_empty(new_cpu_mask)) 2646 drbd_calc_cpu_mask(&new_cpu_mask); 2647 if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) { 2648 cpumask_copy(resource->cpu_mask, new_cpu_mask); 2649 for_each_connection_rcu(connection, resource) { 2650 connection->receiver.reset_cpu_mask = 1; 2651 connection->ack_receiver.reset_cpu_mask = 1; 2652 connection->worker.reset_cpu_mask = 1; 2653 } 2654 } 2655 err = 0; 2656 2657 fail: 2658 free_cpumask_var(new_cpu_mask); 2659 return err; 2660 2661 } 2662 2663 struct drbd_resource *drbd_create_resource(const char *name) 2664 { 2665 struct drbd_resource *resource; 2666 2667 resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL); 2668 if (!resource) 2669 goto fail; 2670 resource->name = kstrdup(name, GFP_KERNEL); 2671 if (!resource->name) 2672 goto fail_free_resource; 2673 if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL)) 2674 goto fail_free_name; 2675 kref_init(&resource->kref); 2676 idr_init(&resource->devices); 2677 INIT_LIST_HEAD(&resource->connections); 2678 resource->write_ordering = WO_BDEV_FLUSH; 2679 list_add_tail_rcu(&resource->resources, &drbd_resources); 2680 mutex_init(&resource->conf_update); 2681 mutex_init(&resource->adm_mutex); 2682 spin_lock_init(&resource->req_lock); 2683 drbd_debugfs_resource_add(resource); 2684 return resource; 2685 2686 fail_free_name: 2687 kfree(resource->name); 2688 fail_free_resource: 2689 kfree(resource); 2690 fail: 2691 return NULL; 2692 } 2693 2694 /* caller must be under adm_mutex */ 2695 struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts) 2696 { 2697 struct drbd_resource *resource; 2698 struct drbd_connection *connection; 2699 2700 connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL); 2701 if (!connection) 2702 return NULL; 2703 2704 if (drbd_alloc_socket(&connection->data)) 2705 goto fail; 2706 if (drbd_alloc_socket(&connection->meta)) 2707 goto fail; 2708 2709 connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL); 2710 if (!connection->current_epoch) 2711 goto fail; 2712 2713 INIT_LIST_HEAD(&connection->transfer_log); 2714 2715 INIT_LIST_HEAD(&connection->current_epoch->list); 2716 connection->epochs = 1; 2717 spin_lock_init(&connection->epoch_lock); 2718 2719 connection->send.seen_any_write_yet = false; 2720 connection->send.current_epoch_nr = 0; 2721 connection->send.current_epoch_writes = 0; 2722 2723 resource = drbd_create_resource(name); 2724 if (!resource) 2725 goto fail; 2726 2727 connection->cstate = C_STANDALONE; 2728 mutex_init(&connection->cstate_mutex); 2729 init_waitqueue_head(&connection->ping_wait); 2730 idr_init(&connection->peer_devices); 2731 2732 drbd_init_workqueue(&connection->sender_work); 2733 mutex_init(&connection->data.mutex); 2734 mutex_init(&connection->meta.mutex); 2735 2736 drbd_thread_init(resource, &connection->receiver, drbd_receiver, "receiver"); 2737 connection->receiver.connection = connection; 2738 drbd_thread_init(resource, &connection->worker, drbd_worker, "worker"); 2739 connection->worker.connection = connection; 2740 drbd_thread_init(resource, &connection->ack_receiver, drbd_ack_receiver, "ack_recv"); 2741 connection->ack_receiver.connection = connection; 2742 2743 kref_init(&connection->kref); 2744 2745 connection->resource = resource; 2746 2747 if (set_resource_options(resource, res_opts)) 2748 goto fail_resource; 2749 2750 kref_get(&resource->kref); 2751 list_add_tail_rcu(&connection->connections, &resource->connections); 2752 drbd_debugfs_connection_add(connection); 2753 return connection; 2754 2755 fail_resource: 2756 list_del(&resource->resources); 2757 drbd_free_resource(resource); 2758 fail: 2759 kfree(connection->current_epoch); 2760 drbd_free_socket(&connection->meta); 2761 drbd_free_socket(&connection->data); 2762 kfree(connection); 2763 return NULL; 2764 } 2765 2766 void drbd_destroy_connection(struct kref *kref) 2767 { 2768 struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref); 2769 struct drbd_resource *resource = connection->resource; 2770 2771 if (atomic_read(&connection->current_epoch->epoch_size) != 0) 2772 drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size)); 2773 kfree(connection->current_epoch); 2774 2775 idr_destroy(&connection->peer_devices); 2776 2777 drbd_free_socket(&connection->meta); 2778 drbd_free_socket(&connection->data); 2779 kfree(connection->int_dig_in); 2780 kfree(connection->int_dig_vv); 2781 memset(connection, 0xfc, sizeof(*connection)); 2782 kfree(connection); 2783 kref_put(&resource->kref, drbd_destroy_resource); 2784 } 2785 2786 static int init_submitter(struct drbd_device *device) 2787 { 2788 /* opencoded create_singlethread_workqueue(), 2789 * to be able to say "drbd%d", ..., minor */ 2790 device->submit.wq = 2791 alloc_ordered_workqueue("drbd%u_submit", WQ_MEM_RECLAIM, device->minor); 2792 if (!device->submit.wq) 2793 return -ENOMEM; 2794 2795 INIT_WORK(&device->submit.worker, do_submit); 2796 INIT_LIST_HEAD(&device->submit.writes); 2797 return 0; 2798 } 2799 2800 enum drbd_ret_code drbd_create_device(struct drbd_config_context *adm_ctx, unsigned int minor) 2801 { 2802 struct drbd_resource *resource = adm_ctx->resource; 2803 struct drbd_connection *connection; 2804 struct drbd_device *device; 2805 struct drbd_peer_device *peer_device, *tmp_peer_device; 2806 struct gendisk *disk; 2807 struct request_queue *q; 2808 int id; 2809 int vnr = adm_ctx->volume; 2810 enum drbd_ret_code err = ERR_NOMEM; 2811 2812 device = minor_to_device(minor); 2813 if (device) 2814 return ERR_MINOR_OR_VOLUME_EXISTS; 2815 2816 /* GFP_KERNEL, we are outside of all write-out paths */ 2817 device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL); 2818 if (!device) 2819 return ERR_NOMEM; 2820 kref_init(&device->kref); 2821 2822 kref_get(&resource->kref); 2823 device->resource = resource; 2824 device->minor = minor; 2825 device->vnr = vnr; 2826 2827 drbd_init_set_defaults(device); 2828 2829 q = blk_alloc_queue(GFP_KERNEL); 2830 if (!q) 2831 goto out_no_q; 2832 device->rq_queue = q; 2833 q->queuedata = device; 2834 2835 disk = alloc_disk(1); 2836 if (!disk) 2837 goto out_no_disk; 2838 device->vdisk = disk; 2839 2840 set_disk_ro(disk, true); 2841 2842 disk->queue = q; 2843 disk->major = DRBD_MAJOR; 2844 disk->first_minor = minor; 2845 disk->fops = &drbd_ops; 2846 sprintf(disk->disk_name, "drbd%d", minor); 2847 disk->private_data = device; 2848 2849 device->this_bdev = bdget(MKDEV(DRBD_MAJOR, minor)); 2850 /* we have no partitions. we contain only ourselves. */ 2851 device->this_bdev->bd_contains = device->this_bdev; 2852 2853 q->backing_dev_info->congested_fn = drbd_congested; 2854 q->backing_dev_info->congested_data = device; 2855 2856 blk_queue_make_request(q, drbd_make_request); 2857 blk_queue_write_cache(q, true, true); 2858 /* Setting the max_hw_sectors to an odd value of 8kibyte here 2859 This triggers a max_bio_size message upon first attach or connect */ 2860 blk_queue_max_hw_sectors(q, DRBD_MAX_BIO_SIZE_SAFE >> 8); 2861 q->queue_lock = &resource->req_lock; 2862 2863 device->md_io.page = alloc_page(GFP_KERNEL); 2864 if (!device->md_io.page) 2865 goto out_no_io_page; 2866 2867 if (drbd_bm_init(device)) 2868 goto out_no_bitmap; 2869 device->read_requests = RB_ROOT; 2870 device->write_requests = RB_ROOT; 2871 2872 id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL); 2873 if (id < 0) { 2874 if (id == -ENOSPC) 2875 err = ERR_MINOR_OR_VOLUME_EXISTS; 2876 goto out_no_minor_idr; 2877 } 2878 kref_get(&device->kref); 2879 2880 id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL); 2881 if (id < 0) { 2882 if (id == -ENOSPC) 2883 err = ERR_MINOR_OR_VOLUME_EXISTS; 2884 goto out_idr_remove_minor; 2885 } 2886 kref_get(&device->kref); 2887 2888 INIT_LIST_HEAD(&device->peer_devices); 2889 INIT_LIST_HEAD(&device->pending_bitmap_io); 2890 for_each_connection(connection, resource) { 2891 peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL); 2892 if (!peer_device) 2893 goto out_idr_remove_from_resource; 2894 peer_device->connection = connection; 2895 peer_device->device = device; 2896 2897 list_add(&peer_device->peer_devices, &device->peer_devices); 2898 kref_get(&device->kref); 2899 2900 id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL); 2901 if (id < 0) { 2902 if (id == -ENOSPC) 2903 err = ERR_INVALID_REQUEST; 2904 goto out_idr_remove_from_resource; 2905 } 2906 kref_get(&connection->kref); 2907 INIT_WORK(&peer_device->send_acks_work, drbd_send_acks_wf); 2908 } 2909 2910 if (init_submitter(device)) { 2911 err = ERR_NOMEM; 2912 goto out_idr_remove_vol; 2913 } 2914 2915 add_disk(disk); 2916 2917 /* inherit the connection state */ 2918 device->state.conn = first_connection(resource)->cstate; 2919 if (device->state.conn == C_WF_REPORT_PARAMS) { 2920 for_each_peer_device(peer_device, device) 2921 drbd_connected(peer_device); 2922 } 2923 /* move to create_peer_device() */ 2924 for_each_peer_device(peer_device, device) 2925 drbd_debugfs_peer_device_add(peer_device); 2926 drbd_debugfs_device_add(device); 2927 return NO_ERROR; 2928 2929 out_idr_remove_vol: 2930 idr_remove(&connection->peer_devices, vnr); 2931 out_idr_remove_from_resource: 2932 for_each_connection(connection, resource) { 2933 peer_device = idr_remove(&connection->peer_devices, vnr); 2934 if (peer_device) 2935 kref_put(&connection->kref, drbd_destroy_connection); 2936 } 2937 for_each_peer_device_safe(peer_device, tmp_peer_device, device) { 2938 list_del(&peer_device->peer_devices); 2939 kfree(peer_device); 2940 } 2941 idr_remove(&resource->devices, vnr); 2942 out_idr_remove_minor: 2943 idr_remove(&drbd_devices, minor); 2944 synchronize_rcu(); 2945 out_no_minor_idr: 2946 drbd_bm_cleanup(device); 2947 out_no_bitmap: 2948 __free_page(device->md_io.page); 2949 out_no_io_page: 2950 put_disk(disk); 2951 out_no_disk: 2952 blk_cleanup_queue(q); 2953 out_no_q: 2954 kref_put(&resource->kref, drbd_destroy_resource); 2955 kfree(device); 2956 return err; 2957 } 2958 2959 void drbd_delete_device(struct drbd_device *device) 2960 { 2961 struct drbd_resource *resource = device->resource; 2962 struct drbd_connection *connection; 2963 struct drbd_peer_device *peer_device; 2964 2965 /* move to free_peer_device() */ 2966 for_each_peer_device(peer_device, device) 2967 drbd_debugfs_peer_device_cleanup(peer_device); 2968 drbd_debugfs_device_cleanup(device); 2969 for_each_connection(connection, resource) { 2970 idr_remove(&connection->peer_devices, device->vnr); 2971 kref_put(&device->kref, drbd_destroy_device); 2972 } 2973 idr_remove(&resource->devices, device->vnr); 2974 kref_put(&device->kref, drbd_destroy_device); 2975 idr_remove(&drbd_devices, device_to_minor(device)); 2976 kref_put(&device->kref, drbd_destroy_device); 2977 del_gendisk(device->vdisk); 2978 synchronize_rcu(); 2979 kref_put(&device->kref, drbd_destroy_device); 2980 } 2981 2982 static int __init drbd_init(void) 2983 { 2984 int err; 2985 2986 if (drbd_minor_count < DRBD_MINOR_COUNT_MIN || drbd_minor_count > DRBD_MINOR_COUNT_MAX) { 2987 pr_err("invalid minor_count (%d)\n", drbd_minor_count); 2988 #ifdef MODULE 2989 return -EINVAL; 2990 #else 2991 drbd_minor_count = DRBD_MINOR_COUNT_DEF; 2992 #endif 2993 } 2994 2995 err = register_blkdev(DRBD_MAJOR, "drbd"); 2996 if (err) { 2997 pr_err("unable to register block device major %d\n", 2998 DRBD_MAJOR); 2999 return err; 3000 } 3001 3002 /* 3003 * allocate all necessary structs 3004 */ 3005 init_waitqueue_head(&drbd_pp_wait); 3006 3007 drbd_proc = NULL; /* play safe for drbd_cleanup */ 3008 idr_init(&drbd_devices); 3009 3010 mutex_init(&resources_mutex); 3011 INIT_LIST_HEAD(&drbd_resources); 3012 3013 err = drbd_genl_register(); 3014 if (err) { 3015 pr_err("unable to register generic netlink family\n"); 3016 goto fail; 3017 } 3018 3019 err = drbd_create_mempools(); 3020 if (err) 3021 goto fail; 3022 3023 err = -ENOMEM; 3024 drbd_proc = proc_create_data("drbd", S_IFREG | S_IRUGO , NULL, &drbd_proc_fops, NULL); 3025 if (!drbd_proc) { 3026 pr_err("unable to register proc file\n"); 3027 goto fail; 3028 } 3029 3030 retry.wq = create_singlethread_workqueue("drbd-reissue"); 3031 if (!retry.wq) { 3032 pr_err("unable to create retry workqueue\n"); 3033 goto fail; 3034 } 3035 INIT_WORK(&retry.worker, do_retry); 3036 spin_lock_init(&retry.lock); 3037 INIT_LIST_HEAD(&retry.writes); 3038 3039 if (drbd_debugfs_init()) 3040 pr_notice("failed to initialize debugfs -- will not be available\n"); 3041 3042 pr_info("initialized. " 3043 "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n", 3044 API_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX); 3045 pr_info("%s\n", drbd_buildtag()); 3046 pr_info("registered as block device major %d\n", DRBD_MAJOR); 3047 return 0; /* Success! */ 3048 3049 fail: 3050 drbd_cleanup(); 3051 if (err == -ENOMEM) 3052 pr_err("ran out of memory\n"); 3053 else 3054 pr_err("initialization failure\n"); 3055 return err; 3056 } 3057 3058 static void drbd_free_one_sock(struct drbd_socket *ds) 3059 { 3060 struct socket *s; 3061 mutex_lock(&ds->mutex); 3062 s = ds->socket; 3063 ds->socket = NULL; 3064 mutex_unlock(&ds->mutex); 3065 if (s) { 3066 /* so debugfs does not need to mutex_lock() */ 3067 synchronize_rcu(); 3068 kernel_sock_shutdown(s, SHUT_RDWR); 3069 sock_release(s); 3070 } 3071 } 3072 3073 void drbd_free_sock(struct drbd_connection *connection) 3074 { 3075 if (connection->data.socket) 3076 drbd_free_one_sock(&connection->data); 3077 if (connection->meta.socket) 3078 drbd_free_one_sock(&connection->meta); 3079 } 3080 3081 /* meta data management */ 3082 3083 void conn_md_sync(struct drbd_connection *connection) 3084 { 3085 struct drbd_peer_device *peer_device; 3086 int vnr; 3087 3088 rcu_read_lock(); 3089 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 3090 struct drbd_device *device = peer_device->device; 3091 3092 kref_get(&device->kref); 3093 rcu_read_unlock(); 3094 drbd_md_sync(device); 3095 kref_put(&device->kref, drbd_destroy_device); 3096 rcu_read_lock(); 3097 } 3098 rcu_read_unlock(); 3099 } 3100 3101 /* aligned 4kByte */ 3102 struct meta_data_on_disk { 3103 u64 la_size_sect; /* last agreed size. */ 3104 u64 uuid[UI_SIZE]; /* UUIDs. */ 3105 u64 device_uuid; 3106 u64 reserved_u64_1; 3107 u32 flags; /* MDF */ 3108 u32 magic; 3109 u32 md_size_sect; 3110 u32 al_offset; /* offset to this block */ 3111 u32 al_nr_extents; /* important for restoring the AL (userspace) */ 3112 /* `-- act_log->nr_elements <-- ldev->dc.al_extents */ 3113 u32 bm_offset; /* offset to the bitmap, from here */ 3114 u32 bm_bytes_per_bit; /* BM_BLOCK_SIZE */ 3115 u32 la_peer_max_bio_size; /* last peer max_bio_size */ 3116 3117 /* see al_tr_number_to_on_disk_sector() */ 3118 u32 al_stripes; 3119 u32 al_stripe_size_4k; 3120 3121 u8 reserved_u8[4096 - (7*8 + 10*4)]; 3122 } __packed; 3123 3124 3125 3126 void drbd_md_write(struct drbd_device *device, void *b) 3127 { 3128 struct meta_data_on_disk *buffer = b; 3129 sector_t sector; 3130 int i; 3131 3132 memset(buffer, 0, sizeof(*buffer)); 3133 3134 buffer->la_size_sect = cpu_to_be64(drbd_get_capacity(device->this_bdev)); 3135 for (i = UI_CURRENT; i < UI_SIZE; i++) 3136 buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]); 3137 buffer->flags = cpu_to_be32(device->ldev->md.flags); 3138 buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN); 3139 3140 buffer->md_size_sect = cpu_to_be32(device->ldev->md.md_size_sect); 3141 buffer->al_offset = cpu_to_be32(device->ldev->md.al_offset); 3142 buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements); 3143 buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE); 3144 buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid); 3145 3146 buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset); 3147 buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size); 3148 3149 buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes); 3150 buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k); 3151 3152 D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset); 3153 sector = device->ldev->md.md_offset; 3154 3155 if (drbd_md_sync_page_io(device, device->ldev, sector, REQ_OP_WRITE)) { 3156 /* this was a try anyways ... */ 3157 drbd_err(device, "meta data update failed!\n"); 3158 drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR); 3159 } 3160 } 3161 3162 /** 3163 * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set 3164 * @device: DRBD device. 3165 */ 3166 void drbd_md_sync(struct drbd_device *device) 3167 { 3168 struct meta_data_on_disk *buffer; 3169 3170 /* Don't accidentally change the DRBD meta data layout. */ 3171 BUILD_BUG_ON(UI_SIZE != 4); 3172 BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096); 3173 3174 del_timer(&device->md_sync_timer); 3175 /* timer may be rearmed by drbd_md_mark_dirty() now. */ 3176 if (!test_and_clear_bit(MD_DIRTY, &device->flags)) 3177 return; 3178 3179 /* We use here D_FAILED and not D_ATTACHING because we try to write 3180 * metadata even if we detach due to a disk failure! */ 3181 if (!get_ldev_if_state(device, D_FAILED)) 3182 return; 3183 3184 buffer = drbd_md_get_buffer(device, __func__); 3185 if (!buffer) 3186 goto out; 3187 3188 drbd_md_write(device, buffer); 3189 3190 /* Update device->ldev->md.la_size_sect, 3191 * since we updated it on metadata. */ 3192 device->ldev->md.la_size_sect = drbd_get_capacity(device->this_bdev); 3193 3194 drbd_md_put_buffer(device); 3195 out: 3196 put_ldev(device); 3197 } 3198 3199 static int check_activity_log_stripe_size(struct drbd_device *device, 3200 struct meta_data_on_disk *on_disk, 3201 struct drbd_md *in_core) 3202 { 3203 u32 al_stripes = be32_to_cpu(on_disk->al_stripes); 3204 u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k); 3205 u64 al_size_4k; 3206 3207 /* both not set: default to old fixed size activity log */ 3208 if (al_stripes == 0 && al_stripe_size_4k == 0) { 3209 al_stripes = 1; 3210 al_stripe_size_4k = MD_32kB_SECT/8; 3211 } 3212 3213 /* some paranoia plausibility checks */ 3214 3215 /* we need both values to be set */ 3216 if (al_stripes == 0 || al_stripe_size_4k == 0) 3217 goto err; 3218 3219 al_size_4k = (u64)al_stripes * al_stripe_size_4k; 3220 3221 /* Upper limit of activity log area, to avoid potential overflow 3222 * problems in al_tr_number_to_on_disk_sector(). As right now, more 3223 * than 72 * 4k blocks total only increases the amount of history, 3224 * limiting this arbitrarily to 16 GB is not a real limitation ;-) */ 3225 if (al_size_4k > (16 * 1024 * 1024/4)) 3226 goto err; 3227 3228 /* Lower limit: we need at least 8 transaction slots (32kB) 3229 * to not break existing setups */ 3230 if (al_size_4k < MD_32kB_SECT/8) 3231 goto err; 3232 3233 in_core->al_stripe_size_4k = al_stripe_size_4k; 3234 in_core->al_stripes = al_stripes; 3235 in_core->al_size_4k = al_size_4k; 3236 3237 return 0; 3238 err: 3239 drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n", 3240 al_stripes, al_stripe_size_4k); 3241 return -EINVAL; 3242 } 3243 3244 static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev) 3245 { 3246 sector_t capacity = drbd_get_capacity(bdev->md_bdev); 3247 struct drbd_md *in_core = &bdev->md; 3248 s32 on_disk_al_sect; 3249 s32 on_disk_bm_sect; 3250 3251 /* The on-disk size of the activity log, calculated from offsets, and 3252 * the size of the activity log calculated from the stripe settings, 3253 * should match. 3254 * Though we could relax this a bit: it is ok, if the striped activity log 3255 * fits in the available on-disk activity log size. 3256 * Right now, that would break how resize is implemented. 3257 * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware 3258 * of possible unused padding space in the on disk layout. */ 3259 if (in_core->al_offset < 0) { 3260 if (in_core->bm_offset > in_core->al_offset) 3261 goto err; 3262 on_disk_al_sect = -in_core->al_offset; 3263 on_disk_bm_sect = in_core->al_offset - in_core->bm_offset; 3264 } else { 3265 if (in_core->al_offset != MD_4kB_SECT) 3266 goto err; 3267 if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT) 3268 goto err; 3269 3270 on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT; 3271 on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset; 3272 } 3273 3274 /* old fixed size meta data is exactly that: fixed. */ 3275 if (in_core->meta_dev_idx >= 0) { 3276 if (in_core->md_size_sect != MD_128MB_SECT 3277 || in_core->al_offset != MD_4kB_SECT 3278 || in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT 3279 || in_core->al_stripes != 1 3280 || in_core->al_stripe_size_4k != MD_32kB_SECT/8) 3281 goto err; 3282 } 3283 3284 if (capacity < in_core->md_size_sect) 3285 goto err; 3286 if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev)) 3287 goto err; 3288 3289 /* should be aligned, and at least 32k */ 3290 if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT)) 3291 goto err; 3292 3293 /* should fit (for now: exactly) into the available on-disk space; 3294 * overflow prevention is in check_activity_log_stripe_size() above. */ 3295 if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT) 3296 goto err; 3297 3298 /* again, should be aligned */ 3299 if (in_core->bm_offset & 7) 3300 goto err; 3301 3302 /* FIXME check for device grow with flex external meta data? */ 3303 3304 /* can the available bitmap space cover the last agreed device size? */ 3305 if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512) 3306 goto err; 3307 3308 return 0; 3309 3310 err: 3311 drbd_err(device, "meta data offsets don't make sense: idx=%d " 3312 "al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, " 3313 "md_size_sect=%u, la_size=%llu, md_capacity=%llu\n", 3314 in_core->meta_dev_idx, 3315 in_core->al_stripes, in_core->al_stripe_size_4k, 3316 in_core->al_offset, in_core->bm_offset, in_core->md_size_sect, 3317 (unsigned long long)in_core->la_size_sect, 3318 (unsigned long long)capacity); 3319 3320 return -EINVAL; 3321 } 3322 3323 3324 /** 3325 * drbd_md_read() - Reads in the meta data super block 3326 * @device: DRBD device. 3327 * @bdev: Device from which the meta data should be read in. 3328 * 3329 * Return NO_ERROR on success, and an enum drbd_ret_code in case 3330 * something goes wrong. 3331 * 3332 * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS, 3333 * even before @bdev is assigned to @device->ldev. 3334 */ 3335 int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev) 3336 { 3337 struct meta_data_on_disk *buffer; 3338 u32 magic, flags; 3339 int i, rv = NO_ERROR; 3340 3341 if (device->state.disk != D_DISKLESS) 3342 return ERR_DISK_CONFIGURED; 3343 3344 buffer = drbd_md_get_buffer(device, __func__); 3345 if (!buffer) 3346 return ERR_NOMEM; 3347 3348 /* First, figure out where our meta data superblock is located, 3349 * and read it. */ 3350 bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx; 3351 bdev->md.md_offset = drbd_md_ss(bdev); 3352 /* Even for (flexible or indexed) external meta data, 3353 * initially restrict us to the 4k superblock for now. 3354 * Affects the paranoia out-of-range access check in drbd_md_sync_page_io(). */ 3355 bdev->md.md_size_sect = 8; 3356 3357 if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset, 3358 REQ_OP_READ)) { 3359 /* NOTE: can't do normal error processing here as this is 3360 called BEFORE disk is attached */ 3361 drbd_err(device, "Error while reading metadata.\n"); 3362 rv = ERR_IO_MD_DISK; 3363 goto err; 3364 } 3365 3366 magic = be32_to_cpu(buffer->magic); 3367 flags = be32_to_cpu(buffer->flags); 3368 if (magic == DRBD_MD_MAGIC_84_UNCLEAN || 3369 (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) { 3370 /* btw: that's Activity Log clean, not "all" clean. */ 3371 drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n"); 3372 rv = ERR_MD_UNCLEAN; 3373 goto err; 3374 } 3375 3376 rv = ERR_MD_INVALID; 3377 if (magic != DRBD_MD_MAGIC_08) { 3378 if (magic == DRBD_MD_MAGIC_07) 3379 drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n"); 3380 else 3381 drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n"); 3382 goto err; 3383 } 3384 3385 if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) { 3386 drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n", 3387 be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE); 3388 goto err; 3389 } 3390 3391 3392 /* convert to in_core endian */ 3393 bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect); 3394 for (i = UI_CURRENT; i < UI_SIZE; i++) 3395 bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]); 3396 bdev->md.flags = be32_to_cpu(buffer->flags); 3397 bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid); 3398 3399 bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect); 3400 bdev->md.al_offset = be32_to_cpu(buffer->al_offset); 3401 bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset); 3402 3403 if (check_activity_log_stripe_size(device, buffer, &bdev->md)) 3404 goto err; 3405 if (check_offsets_and_sizes(device, bdev)) 3406 goto err; 3407 3408 if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) { 3409 drbd_err(device, "unexpected bm_offset: %d (expected %d)\n", 3410 be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset); 3411 goto err; 3412 } 3413 if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) { 3414 drbd_err(device, "unexpected md_size: %u (expected %u)\n", 3415 be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect); 3416 goto err; 3417 } 3418 3419 rv = NO_ERROR; 3420 3421 spin_lock_irq(&device->resource->req_lock); 3422 if (device->state.conn < C_CONNECTED) { 3423 unsigned int peer; 3424 peer = be32_to_cpu(buffer->la_peer_max_bio_size); 3425 peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE); 3426 device->peer_max_bio_size = peer; 3427 } 3428 spin_unlock_irq(&device->resource->req_lock); 3429 3430 err: 3431 drbd_md_put_buffer(device); 3432 3433 return rv; 3434 } 3435 3436 /** 3437 * drbd_md_mark_dirty() - Mark meta data super block as dirty 3438 * @device: DRBD device. 3439 * 3440 * Call this function if you change anything that should be written to 3441 * the meta-data super block. This function sets MD_DIRTY, and starts a 3442 * timer that ensures that within five seconds you have to call drbd_md_sync(). 3443 */ 3444 #ifdef DEBUG 3445 void drbd_md_mark_dirty_(struct drbd_device *device, unsigned int line, const char *func) 3446 { 3447 if (!test_and_set_bit(MD_DIRTY, &device->flags)) { 3448 mod_timer(&device->md_sync_timer, jiffies + HZ); 3449 device->last_md_mark_dirty.line = line; 3450 device->last_md_mark_dirty.func = func; 3451 } 3452 } 3453 #else 3454 void drbd_md_mark_dirty(struct drbd_device *device) 3455 { 3456 if (!test_and_set_bit(MD_DIRTY, &device->flags)) 3457 mod_timer(&device->md_sync_timer, jiffies + 5*HZ); 3458 } 3459 #endif 3460 3461 void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local) 3462 { 3463 int i; 3464 3465 for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++) 3466 device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i]; 3467 } 3468 3469 void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local) 3470 { 3471 if (idx == UI_CURRENT) { 3472 if (device->state.role == R_PRIMARY) 3473 val |= 1; 3474 else 3475 val &= ~((u64)1); 3476 3477 drbd_set_ed_uuid(device, val); 3478 } 3479 3480 device->ldev->md.uuid[idx] = val; 3481 drbd_md_mark_dirty(device); 3482 } 3483 3484 void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local) 3485 { 3486 unsigned long flags; 3487 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags); 3488 __drbd_uuid_set(device, idx, val); 3489 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags); 3490 } 3491 3492 void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local) 3493 { 3494 unsigned long flags; 3495 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags); 3496 if (device->ldev->md.uuid[idx]) { 3497 drbd_uuid_move_history(device); 3498 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx]; 3499 } 3500 __drbd_uuid_set(device, idx, val); 3501 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags); 3502 } 3503 3504 /** 3505 * drbd_uuid_new_current() - Creates a new current UUID 3506 * @device: DRBD device. 3507 * 3508 * Creates a new current UUID, and rotates the old current UUID into 3509 * the bitmap slot. Causes an incremental resync upon next connect. 3510 */ 3511 void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local) 3512 { 3513 u64 val; 3514 unsigned long long bm_uuid; 3515 3516 get_random_bytes(&val, sizeof(u64)); 3517 3518 spin_lock_irq(&device->ldev->md.uuid_lock); 3519 bm_uuid = device->ldev->md.uuid[UI_BITMAP]; 3520 3521 if (bm_uuid) 3522 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid); 3523 3524 device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT]; 3525 __drbd_uuid_set(device, UI_CURRENT, val); 3526 spin_unlock_irq(&device->ldev->md.uuid_lock); 3527 3528 drbd_print_uuids(device, "new current UUID"); 3529 /* get it to stable storage _now_ */ 3530 drbd_md_sync(device); 3531 } 3532 3533 void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local) 3534 { 3535 unsigned long flags; 3536 if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0) 3537 return; 3538 3539 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags); 3540 if (val == 0) { 3541 drbd_uuid_move_history(device); 3542 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP]; 3543 device->ldev->md.uuid[UI_BITMAP] = 0; 3544 } else { 3545 unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP]; 3546 if (bm_uuid) 3547 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid); 3548 3549 device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1); 3550 } 3551 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags); 3552 3553 drbd_md_mark_dirty(device); 3554 } 3555 3556 /** 3557 * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io() 3558 * @device: DRBD device. 3559 * 3560 * Sets all bits in the bitmap and writes the whole bitmap to stable storage. 3561 */ 3562 int drbd_bmio_set_n_write(struct drbd_device *device) __must_hold(local) 3563 { 3564 int rv = -EIO; 3565 3566 drbd_md_set_flag(device, MDF_FULL_SYNC); 3567 drbd_md_sync(device); 3568 drbd_bm_set_all(device); 3569 3570 rv = drbd_bm_write(device); 3571 3572 if (!rv) { 3573 drbd_md_clear_flag(device, MDF_FULL_SYNC); 3574 drbd_md_sync(device); 3575 } 3576 3577 return rv; 3578 } 3579 3580 /** 3581 * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io() 3582 * @device: DRBD device. 3583 * 3584 * Clears all bits in the bitmap and writes the whole bitmap to stable storage. 3585 */ 3586 int drbd_bmio_clear_n_write(struct drbd_device *device) __must_hold(local) 3587 { 3588 drbd_resume_al(device); 3589 drbd_bm_clear_all(device); 3590 return drbd_bm_write(device); 3591 } 3592 3593 static int w_bitmap_io(struct drbd_work *w, int unused) 3594 { 3595 struct drbd_device *device = 3596 container_of(w, struct drbd_device, bm_io_work.w); 3597 struct bm_io_work *work = &device->bm_io_work; 3598 int rv = -EIO; 3599 3600 if (work->flags != BM_LOCKED_CHANGE_ALLOWED) { 3601 int cnt = atomic_read(&device->ap_bio_cnt); 3602 if (cnt) 3603 drbd_err(device, "FIXME: ap_bio_cnt %d, expected 0; queued for '%s'\n", 3604 cnt, work->why); 3605 } 3606 3607 if (get_ldev(device)) { 3608 drbd_bm_lock(device, work->why, work->flags); 3609 rv = work->io_fn(device); 3610 drbd_bm_unlock(device); 3611 put_ldev(device); 3612 } 3613 3614 clear_bit_unlock(BITMAP_IO, &device->flags); 3615 wake_up(&device->misc_wait); 3616 3617 if (work->done) 3618 work->done(device, rv); 3619 3620 clear_bit(BITMAP_IO_QUEUED, &device->flags); 3621 work->why = NULL; 3622 work->flags = 0; 3623 3624 return 0; 3625 } 3626 3627 /** 3628 * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap 3629 * @device: DRBD device. 3630 * @io_fn: IO callback to be called when bitmap IO is possible 3631 * @done: callback to be called after the bitmap IO was performed 3632 * @why: Descriptive text of the reason for doing the IO 3633 * 3634 * While IO on the bitmap happens we freeze application IO thus we ensure 3635 * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be 3636 * called from worker context. It MUST NOT be used while a previous such 3637 * work is still pending! 3638 * 3639 * Its worker function encloses the call of io_fn() by get_ldev() and 3640 * put_ldev(). 3641 */ 3642 void drbd_queue_bitmap_io(struct drbd_device *device, 3643 int (*io_fn)(struct drbd_device *), 3644 void (*done)(struct drbd_device *, int), 3645 char *why, enum bm_flag flags) 3646 { 3647 D_ASSERT(device, current == first_peer_device(device)->connection->worker.task); 3648 3649 D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags)); 3650 D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags)); 3651 D_ASSERT(device, list_empty(&device->bm_io_work.w.list)); 3652 if (device->bm_io_work.why) 3653 drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n", 3654 why, device->bm_io_work.why); 3655 3656 device->bm_io_work.io_fn = io_fn; 3657 device->bm_io_work.done = done; 3658 device->bm_io_work.why = why; 3659 device->bm_io_work.flags = flags; 3660 3661 spin_lock_irq(&device->resource->req_lock); 3662 set_bit(BITMAP_IO, &device->flags); 3663 /* don't wait for pending application IO if the caller indicates that 3664 * application IO does not conflict anyways. */ 3665 if (flags == BM_LOCKED_CHANGE_ALLOWED || atomic_read(&device->ap_bio_cnt) == 0) { 3666 if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags)) 3667 drbd_queue_work(&first_peer_device(device)->connection->sender_work, 3668 &device->bm_io_work.w); 3669 } 3670 spin_unlock_irq(&device->resource->req_lock); 3671 } 3672 3673 /** 3674 * drbd_bitmap_io() - Does an IO operation on the whole bitmap 3675 * @device: DRBD device. 3676 * @io_fn: IO callback to be called when bitmap IO is possible 3677 * @why: Descriptive text of the reason for doing the IO 3678 * 3679 * freezes application IO while that the actual IO operations runs. This 3680 * functions MAY NOT be called from worker context. 3681 */ 3682 int drbd_bitmap_io(struct drbd_device *device, int (*io_fn)(struct drbd_device *), 3683 char *why, enum bm_flag flags) 3684 { 3685 /* Only suspend io, if some operation is supposed to be locked out */ 3686 const bool do_suspend_io = flags & (BM_DONT_CLEAR|BM_DONT_SET|BM_DONT_TEST); 3687 int rv; 3688 3689 D_ASSERT(device, current != first_peer_device(device)->connection->worker.task); 3690 3691 if (do_suspend_io) 3692 drbd_suspend_io(device); 3693 3694 drbd_bm_lock(device, why, flags); 3695 rv = io_fn(device); 3696 drbd_bm_unlock(device); 3697 3698 if (do_suspend_io) 3699 drbd_resume_io(device); 3700 3701 return rv; 3702 } 3703 3704 void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local) 3705 { 3706 if ((device->ldev->md.flags & flag) != flag) { 3707 drbd_md_mark_dirty(device); 3708 device->ldev->md.flags |= flag; 3709 } 3710 } 3711 3712 void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local) 3713 { 3714 if ((device->ldev->md.flags & flag) != 0) { 3715 drbd_md_mark_dirty(device); 3716 device->ldev->md.flags &= ~flag; 3717 } 3718 } 3719 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag) 3720 { 3721 return (bdev->md.flags & flag) != 0; 3722 } 3723 3724 static void md_sync_timer_fn(unsigned long data) 3725 { 3726 struct drbd_device *device = (struct drbd_device *) data; 3727 drbd_device_post_work(device, MD_SYNC); 3728 } 3729 3730 const char *cmdname(enum drbd_packet cmd) 3731 { 3732 /* THINK may need to become several global tables 3733 * when we want to support more than 3734 * one PRO_VERSION */ 3735 static const char *cmdnames[] = { 3736 [P_DATA] = "Data", 3737 [P_WSAME] = "WriteSame", 3738 [P_TRIM] = "Trim", 3739 [P_DATA_REPLY] = "DataReply", 3740 [P_RS_DATA_REPLY] = "RSDataReply", 3741 [P_BARRIER] = "Barrier", 3742 [P_BITMAP] = "ReportBitMap", 3743 [P_BECOME_SYNC_TARGET] = "BecomeSyncTarget", 3744 [P_BECOME_SYNC_SOURCE] = "BecomeSyncSource", 3745 [P_UNPLUG_REMOTE] = "UnplugRemote", 3746 [P_DATA_REQUEST] = "DataRequest", 3747 [P_RS_DATA_REQUEST] = "RSDataRequest", 3748 [P_SYNC_PARAM] = "SyncParam", 3749 [P_SYNC_PARAM89] = "SyncParam89", 3750 [P_PROTOCOL] = "ReportProtocol", 3751 [P_UUIDS] = "ReportUUIDs", 3752 [P_SIZES] = "ReportSizes", 3753 [P_STATE] = "ReportState", 3754 [P_SYNC_UUID] = "ReportSyncUUID", 3755 [P_AUTH_CHALLENGE] = "AuthChallenge", 3756 [P_AUTH_RESPONSE] = "AuthResponse", 3757 [P_PING] = "Ping", 3758 [P_PING_ACK] = "PingAck", 3759 [P_RECV_ACK] = "RecvAck", 3760 [P_WRITE_ACK] = "WriteAck", 3761 [P_RS_WRITE_ACK] = "RSWriteAck", 3762 [P_SUPERSEDED] = "Superseded", 3763 [P_NEG_ACK] = "NegAck", 3764 [P_NEG_DREPLY] = "NegDReply", 3765 [P_NEG_RS_DREPLY] = "NegRSDReply", 3766 [P_BARRIER_ACK] = "BarrierAck", 3767 [P_STATE_CHG_REQ] = "StateChgRequest", 3768 [P_STATE_CHG_REPLY] = "StateChgReply", 3769 [P_OV_REQUEST] = "OVRequest", 3770 [P_OV_REPLY] = "OVReply", 3771 [P_OV_RESULT] = "OVResult", 3772 [P_CSUM_RS_REQUEST] = "CsumRSRequest", 3773 [P_RS_IS_IN_SYNC] = "CsumRSIsInSync", 3774 [P_COMPRESSED_BITMAP] = "CBitmap", 3775 [P_DELAY_PROBE] = "DelayProbe", 3776 [P_OUT_OF_SYNC] = "OutOfSync", 3777 [P_RETRY_WRITE] = "RetryWrite", 3778 [P_RS_CANCEL] = "RSCancel", 3779 [P_CONN_ST_CHG_REQ] = "conn_st_chg_req", 3780 [P_CONN_ST_CHG_REPLY] = "conn_st_chg_reply", 3781 [P_RETRY_WRITE] = "retry_write", 3782 [P_PROTOCOL_UPDATE] = "protocol_update", 3783 [P_RS_THIN_REQ] = "rs_thin_req", 3784 [P_RS_DEALLOCATED] = "rs_deallocated", 3785 3786 /* enum drbd_packet, but not commands - obsoleted flags: 3787 * P_MAY_IGNORE 3788 * P_MAX_OPT_CMD 3789 */ 3790 }; 3791 3792 /* too big for the array: 0xfffX */ 3793 if (cmd == P_INITIAL_META) 3794 return "InitialMeta"; 3795 if (cmd == P_INITIAL_DATA) 3796 return "InitialData"; 3797 if (cmd == P_CONNECTION_FEATURES) 3798 return "ConnectionFeatures"; 3799 if (cmd >= ARRAY_SIZE(cmdnames)) 3800 return "Unknown"; 3801 return cmdnames[cmd]; 3802 } 3803 3804 /** 3805 * drbd_wait_misc - wait for a request to make progress 3806 * @device: device associated with the request 3807 * @i: the struct drbd_interval embedded in struct drbd_request or 3808 * struct drbd_peer_request 3809 */ 3810 int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i) 3811 { 3812 struct net_conf *nc; 3813 DEFINE_WAIT(wait); 3814 long timeout; 3815 3816 rcu_read_lock(); 3817 nc = rcu_dereference(first_peer_device(device)->connection->net_conf); 3818 if (!nc) { 3819 rcu_read_unlock(); 3820 return -ETIMEDOUT; 3821 } 3822 timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT; 3823 rcu_read_unlock(); 3824 3825 /* Indicate to wake up device->misc_wait on progress. */ 3826 i->waiting = true; 3827 prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE); 3828 spin_unlock_irq(&device->resource->req_lock); 3829 timeout = schedule_timeout(timeout); 3830 finish_wait(&device->misc_wait, &wait); 3831 spin_lock_irq(&device->resource->req_lock); 3832 if (!timeout || device->state.conn < C_CONNECTED) 3833 return -ETIMEDOUT; 3834 if (signal_pending(current)) 3835 return -ERESTARTSYS; 3836 return 0; 3837 } 3838 3839 void lock_all_resources(void) 3840 { 3841 struct drbd_resource *resource; 3842 int __maybe_unused i = 0; 3843 3844 mutex_lock(&resources_mutex); 3845 local_irq_disable(); 3846 for_each_resource(resource, &drbd_resources) 3847 spin_lock_nested(&resource->req_lock, i++); 3848 } 3849 3850 void unlock_all_resources(void) 3851 { 3852 struct drbd_resource *resource; 3853 3854 for_each_resource(resource, &drbd_resources) 3855 spin_unlock(&resource->req_lock); 3856 local_irq_enable(); 3857 mutex_unlock(&resources_mutex); 3858 } 3859 3860 #ifdef CONFIG_DRBD_FAULT_INJECTION 3861 /* Fault insertion support including random number generator shamelessly 3862 * stolen from kernel/rcutorture.c */ 3863 struct fault_random_state { 3864 unsigned long state; 3865 unsigned long count; 3866 }; 3867 3868 #define FAULT_RANDOM_MULT 39916801 /* prime */ 3869 #define FAULT_RANDOM_ADD 479001701 /* prime */ 3870 #define FAULT_RANDOM_REFRESH 10000 3871 3872 /* 3873 * Crude but fast random-number generator. Uses a linear congruential 3874 * generator, with occasional help from get_random_bytes(). 3875 */ 3876 static unsigned long 3877 _drbd_fault_random(struct fault_random_state *rsp) 3878 { 3879 long refresh; 3880 3881 if (!rsp->count--) { 3882 get_random_bytes(&refresh, sizeof(refresh)); 3883 rsp->state += refresh; 3884 rsp->count = FAULT_RANDOM_REFRESH; 3885 } 3886 rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD; 3887 return swahw32(rsp->state); 3888 } 3889 3890 static char * 3891 _drbd_fault_str(unsigned int type) { 3892 static char *_faults[] = { 3893 [DRBD_FAULT_MD_WR] = "Meta-data write", 3894 [DRBD_FAULT_MD_RD] = "Meta-data read", 3895 [DRBD_FAULT_RS_WR] = "Resync write", 3896 [DRBD_FAULT_RS_RD] = "Resync read", 3897 [DRBD_FAULT_DT_WR] = "Data write", 3898 [DRBD_FAULT_DT_RD] = "Data read", 3899 [DRBD_FAULT_DT_RA] = "Data read ahead", 3900 [DRBD_FAULT_BM_ALLOC] = "BM allocation", 3901 [DRBD_FAULT_AL_EE] = "EE allocation", 3902 [DRBD_FAULT_RECEIVE] = "receive data corruption", 3903 }; 3904 3905 return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**"; 3906 } 3907 3908 unsigned int 3909 _drbd_insert_fault(struct drbd_device *device, unsigned int type) 3910 { 3911 static struct fault_random_state rrs = {0, 0}; 3912 3913 unsigned int ret = ( 3914 (drbd_fault_devs == 0 || 3915 ((1 << device_to_minor(device)) & drbd_fault_devs) != 0) && 3916 (((_drbd_fault_random(&rrs) % 100) + 1) <= drbd_fault_rate)); 3917 3918 if (ret) { 3919 drbd_fault_count++; 3920 3921 if (__ratelimit(&drbd_ratelimit_state)) 3922 drbd_warn(device, "***Simulating %s failure\n", 3923 _drbd_fault_str(type)); 3924 } 3925 3926 return ret; 3927 } 3928 #endif 3929 3930 const char *drbd_buildtag(void) 3931 { 3932 /* DRBD built from external sources has here a reference to the 3933 git hash of the source code. */ 3934 3935 static char buildtag[38] = "\0uilt-in"; 3936 3937 if (buildtag[0] == 0) { 3938 #ifdef MODULE 3939 sprintf(buildtag, "srcversion: %-24s", THIS_MODULE->srcversion); 3940 #else 3941 buildtag[0] = 'b'; 3942 #endif 3943 } 3944 3945 return buildtag; 3946 } 3947 3948 module_init(drbd_init) 3949 module_exit(drbd_cleanup) 3950 3951 EXPORT_SYMBOL(drbd_conn_str); 3952 EXPORT_SYMBOL(drbd_role_str); 3953 EXPORT_SYMBOL(drbd_disk_str); 3954 EXPORT_SYMBOL(drbd_set_st_err_str); 3955