xref: /openbmc/linux/drivers/block/drbd/drbd_main.c (revision 67bf4745)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3    drbd.c
4 
5    This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
6 
7    Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
8    Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
9    Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
10 
11    Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev
12    from Logicworks, Inc. for making SDP replication support possible.
13 
14 
15  */
16 
17 #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
18 
19 #include <linux/module.h>
20 #include <linux/jiffies.h>
21 #include <linux/drbd.h>
22 #include <linux/uaccess.h>
23 #include <asm/types.h>
24 #include <net/sock.h>
25 #include <linux/ctype.h>
26 #include <linux/mutex.h>
27 #include <linux/fs.h>
28 #include <linux/file.h>
29 #include <linux/proc_fs.h>
30 #include <linux/init.h>
31 #include <linux/mm.h>
32 #include <linux/memcontrol.h>
33 #include <linux/mm_inline.h>
34 #include <linux/slab.h>
35 #include <linux/random.h>
36 #include <linux/reboot.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/workqueue.h>
40 #define __KERNEL_SYSCALLS__
41 #include <linux/unistd.h>
42 #include <linux/vmalloc.h>
43 #include <linux/sched/signal.h>
44 
45 #include <linux/drbd_limits.h>
46 #include "drbd_int.h"
47 #include "drbd_protocol.h"
48 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */
49 #include "drbd_vli.h"
50 #include "drbd_debugfs.h"
51 
52 static DEFINE_MUTEX(drbd_main_mutex);
53 static int drbd_open(struct block_device *bdev, fmode_t mode);
54 static void drbd_release(struct gendisk *gd, fmode_t mode);
55 static void md_sync_timer_fn(struct timer_list *t);
56 static int w_bitmap_io(struct drbd_work *w, int unused);
57 
58 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, "
59 	      "Lars Ellenberg <lars@linbit.com>");
60 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION);
61 MODULE_VERSION(REL_VERSION);
62 MODULE_LICENSE("GPL");
63 MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices ("
64 		 __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")");
65 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR);
66 
67 #include <linux/moduleparam.h>
68 /* thanks to these macros, if compiled into the kernel (not-module),
69  * these become boot parameters (e.g., drbd.minor_count) */
70 
71 #ifdef CONFIG_DRBD_FAULT_INJECTION
72 int drbd_enable_faults;
73 int drbd_fault_rate;
74 static int drbd_fault_count;
75 static int drbd_fault_devs;
76 /* bitmap of enabled faults */
77 module_param_named(enable_faults, drbd_enable_faults, int, 0664);
78 /* fault rate % value - applies to all enabled faults */
79 module_param_named(fault_rate, drbd_fault_rate, int, 0664);
80 /* count of faults inserted */
81 module_param_named(fault_count, drbd_fault_count, int, 0664);
82 /* bitmap of devices to insert faults on */
83 module_param_named(fault_devs, drbd_fault_devs, int, 0644);
84 #endif
85 
86 /* module parameters we can keep static */
87 static bool drbd_allow_oos; /* allow_open_on_secondary */
88 static bool drbd_disable_sendpage;
89 MODULE_PARM_DESC(allow_oos, "DONT USE!");
90 module_param_named(allow_oos, drbd_allow_oos, bool, 0);
91 module_param_named(disable_sendpage, drbd_disable_sendpage, bool, 0644);
92 
93 /* module parameters we share */
94 int drbd_proc_details; /* Detail level in proc drbd*/
95 module_param_named(proc_details, drbd_proc_details, int, 0644);
96 /* module parameters shared with defaults */
97 unsigned int drbd_minor_count = DRBD_MINOR_COUNT_DEF;
98 /* Module parameter for setting the user mode helper program
99  * to run. Default is /sbin/drbdadm */
100 char drbd_usermode_helper[80] = "/sbin/drbdadm";
101 module_param_named(minor_count, drbd_minor_count, uint, 0444);
102 module_param_string(usermode_helper, drbd_usermode_helper, sizeof(drbd_usermode_helper), 0644);
103 
104 /* in 2.6.x, our device mapping and config info contains our virtual gendisks
105  * as member "struct gendisk *vdisk;"
106  */
107 struct idr drbd_devices;
108 struct list_head drbd_resources;
109 struct mutex resources_mutex;
110 
111 struct kmem_cache *drbd_request_cache;
112 struct kmem_cache *drbd_ee_cache;	/* peer requests */
113 struct kmem_cache *drbd_bm_ext_cache;	/* bitmap extents */
114 struct kmem_cache *drbd_al_ext_cache;	/* activity log extents */
115 mempool_t drbd_request_mempool;
116 mempool_t drbd_ee_mempool;
117 mempool_t drbd_md_io_page_pool;
118 struct bio_set drbd_md_io_bio_set;
119 struct bio_set drbd_io_bio_set;
120 
121 /* I do not use a standard mempool, because:
122    1) I want to hand out the pre-allocated objects first.
123    2) I want to be able to interrupt sleeping allocation with a signal.
124    Note: This is a single linked list, the next pointer is the private
125 	 member of struct page.
126  */
127 struct page *drbd_pp_pool;
128 spinlock_t   drbd_pp_lock;
129 int          drbd_pp_vacant;
130 wait_queue_head_t drbd_pp_wait;
131 
132 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5);
133 
134 static const struct block_device_operations drbd_ops = {
135 	.owner =   THIS_MODULE,
136 	.open =    drbd_open,
137 	.release = drbd_release,
138 };
139 
140 struct bio *bio_alloc_drbd(gfp_t gfp_mask)
141 {
142 	struct bio *bio;
143 
144 	if (!bioset_initialized(&drbd_md_io_bio_set))
145 		return bio_alloc(gfp_mask, 1);
146 
147 	bio = bio_alloc_bioset(gfp_mask, 1, &drbd_md_io_bio_set);
148 	if (!bio)
149 		return NULL;
150 	return bio;
151 }
152 
153 #ifdef __CHECKER__
154 /* When checking with sparse, and this is an inline function, sparse will
155    give tons of false positives. When this is a real functions sparse works.
156  */
157 int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins)
158 {
159 	int io_allowed;
160 
161 	atomic_inc(&device->local_cnt);
162 	io_allowed = (device->state.disk >= mins);
163 	if (!io_allowed) {
164 		if (atomic_dec_and_test(&device->local_cnt))
165 			wake_up(&device->misc_wait);
166 	}
167 	return io_allowed;
168 }
169 
170 #endif
171 
172 /**
173  * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch
174  * @connection:	DRBD connection.
175  * @barrier_nr:	Expected identifier of the DRBD write barrier packet.
176  * @set_size:	Expected number of requests before that barrier.
177  *
178  * In case the passed barrier_nr or set_size does not match the oldest
179  * epoch of not yet barrier-acked requests, this function will cause a
180  * termination of the connection.
181  */
182 void tl_release(struct drbd_connection *connection, unsigned int barrier_nr,
183 		unsigned int set_size)
184 {
185 	struct drbd_request *r;
186 	struct drbd_request *req = NULL;
187 	int expect_epoch = 0;
188 	int expect_size = 0;
189 
190 	spin_lock_irq(&connection->resource->req_lock);
191 
192 	/* find oldest not yet barrier-acked write request,
193 	 * count writes in its epoch. */
194 	list_for_each_entry(r, &connection->transfer_log, tl_requests) {
195 		const unsigned s = r->rq_state;
196 		if (!req) {
197 			if (!(s & RQ_WRITE))
198 				continue;
199 			if (!(s & RQ_NET_MASK))
200 				continue;
201 			if (s & RQ_NET_DONE)
202 				continue;
203 			req = r;
204 			expect_epoch = req->epoch;
205 			expect_size ++;
206 		} else {
207 			if (r->epoch != expect_epoch)
208 				break;
209 			if (!(s & RQ_WRITE))
210 				continue;
211 			/* if (s & RQ_DONE): not expected */
212 			/* if (!(s & RQ_NET_MASK)): not expected */
213 			expect_size++;
214 		}
215 	}
216 
217 	/* first some paranoia code */
218 	if (req == NULL) {
219 		drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n",
220 			 barrier_nr);
221 		goto bail;
222 	}
223 	if (expect_epoch != barrier_nr) {
224 		drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n",
225 			 barrier_nr, expect_epoch);
226 		goto bail;
227 	}
228 
229 	if (expect_size != set_size) {
230 		drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n",
231 			 barrier_nr, set_size, expect_size);
232 		goto bail;
233 	}
234 
235 	/* Clean up list of requests processed during current epoch. */
236 	/* this extra list walk restart is paranoia,
237 	 * to catch requests being barrier-acked "unexpectedly".
238 	 * It usually should find the same req again, or some READ preceding it. */
239 	list_for_each_entry(req, &connection->transfer_log, tl_requests)
240 		if (req->epoch == expect_epoch)
241 			break;
242 	list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) {
243 		if (req->epoch != expect_epoch)
244 			break;
245 		_req_mod(req, BARRIER_ACKED);
246 	}
247 	spin_unlock_irq(&connection->resource->req_lock);
248 
249 	return;
250 
251 bail:
252 	spin_unlock_irq(&connection->resource->req_lock);
253 	conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
254 }
255 
256 
257 /**
258  * _tl_restart() - Walks the transfer log, and applies an action to all requests
259  * @connection:	DRBD connection to operate on.
260  * @what:       The action/event to perform with all request objects
261  *
262  * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO,
263  * RESTART_FROZEN_DISK_IO.
264  */
265 /* must hold resource->req_lock */
266 void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
267 {
268 	struct drbd_request *req, *r;
269 
270 	list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests)
271 		_req_mod(req, what);
272 }
273 
274 void tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
275 {
276 	spin_lock_irq(&connection->resource->req_lock);
277 	_tl_restart(connection, what);
278 	spin_unlock_irq(&connection->resource->req_lock);
279 }
280 
281 /**
282  * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL
283  * @device:	DRBD device.
284  *
285  * This is called after the connection to the peer was lost. The storage covered
286  * by the requests on the transfer gets marked as our of sync. Called from the
287  * receiver thread and the worker thread.
288  */
289 void tl_clear(struct drbd_connection *connection)
290 {
291 	tl_restart(connection, CONNECTION_LOST_WHILE_PENDING);
292 }
293 
294 /**
295  * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL
296  * @device:	DRBD device.
297  */
298 void tl_abort_disk_io(struct drbd_device *device)
299 {
300 	struct drbd_connection *connection = first_peer_device(device)->connection;
301 	struct drbd_request *req, *r;
302 
303 	spin_lock_irq(&connection->resource->req_lock);
304 	list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) {
305 		if (!(req->rq_state & RQ_LOCAL_PENDING))
306 			continue;
307 		if (req->device != device)
308 			continue;
309 		_req_mod(req, ABORT_DISK_IO);
310 	}
311 	spin_unlock_irq(&connection->resource->req_lock);
312 }
313 
314 static int drbd_thread_setup(void *arg)
315 {
316 	struct drbd_thread *thi = (struct drbd_thread *) arg;
317 	struct drbd_resource *resource = thi->resource;
318 	unsigned long flags;
319 	int retval;
320 
321 	snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s",
322 		 thi->name[0],
323 		 resource->name);
324 
325 restart:
326 	retval = thi->function(thi);
327 
328 	spin_lock_irqsave(&thi->t_lock, flags);
329 
330 	/* if the receiver has been "EXITING", the last thing it did
331 	 * was set the conn state to "StandAlone",
332 	 * if now a re-connect request comes in, conn state goes C_UNCONNECTED,
333 	 * and receiver thread will be "started".
334 	 * drbd_thread_start needs to set "RESTARTING" in that case.
335 	 * t_state check and assignment needs to be within the same spinlock,
336 	 * so either thread_start sees EXITING, and can remap to RESTARTING,
337 	 * or thread_start see NONE, and can proceed as normal.
338 	 */
339 
340 	if (thi->t_state == RESTARTING) {
341 		drbd_info(resource, "Restarting %s thread\n", thi->name);
342 		thi->t_state = RUNNING;
343 		spin_unlock_irqrestore(&thi->t_lock, flags);
344 		goto restart;
345 	}
346 
347 	thi->task = NULL;
348 	thi->t_state = NONE;
349 	smp_mb();
350 	complete_all(&thi->stop);
351 	spin_unlock_irqrestore(&thi->t_lock, flags);
352 
353 	drbd_info(resource, "Terminating %s\n", current->comm);
354 
355 	/* Release mod reference taken when thread was started */
356 
357 	if (thi->connection)
358 		kref_put(&thi->connection->kref, drbd_destroy_connection);
359 	kref_put(&resource->kref, drbd_destroy_resource);
360 	module_put(THIS_MODULE);
361 	return retval;
362 }
363 
364 static void drbd_thread_init(struct drbd_resource *resource, struct drbd_thread *thi,
365 			     int (*func) (struct drbd_thread *), const char *name)
366 {
367 	spin_lock_init(&thi->t_lock);
368 	thi->task    = NULL;
369 	thi->t_state = NONE;
370 	thi->function = func;
371 	thi->resource = resource;
372 	thi->connection = NULL;
373 	thi->name = name;
374 }
375 
376 int drbd_thread_start(struct drbd_thread *thi)
377 {
378 	struct drbd_resource *resource = thi->resource;
379 	struct task_struct *nt;
380 	unsigned long flags;
381 
382 	/* is used from state engine doing drbd_thread_stop_nowait,
383 	 * while holding the req lock irqsave */
384 	spin_lock_irqsave(&thi->t_lock, flags);
385 
386 	switch (thi->t_state) {
387 	case NONE:
388 		drbd_info(resource, "Starting %s thread (from %s [%d])\n",
389 			 thi->name, current->comm, current->pid);
390 
391 		/* Get ref on module for thread - this is released when thread exits */
392 		if (!try_module_get(THIS_MODULE)) {
393 			drbd_err(resource, "Failed to get module reference in drbd_thread_start\n");
394 			spin_unlock_irqrestore(&thi->t_lock, flags);
395 			return false;
396 		}
397 
398 		kref_get(&resource->kref);
399 		if (thi->connection)
400 			kref_get(&thi->connection->kref);
401 
402 		init_completion(&thi->stop);
403 		thi->reset_cpu_mask = 1;
404 		thi->t_state = RUNNING;
405 		spin_unlock_irqrestore(&thi->t_lock, flags);
406 		flush_signals(current); /* otherw. may get -ERESTARTNOINTR */
407 
408 		nt = kthread_create(drbd_thread_setup, (void *) thi,
409 				    "drbd_%c_%s", thi->name[0], thi->resource->name);
410 
411 		if (IS_ERR(nt)) {
412 			drbd_err(resource, "Couldn't start thread\n");
413 
414 			if (thi->connection)
415 				kref_put(&thi->connection->kref, drbd_destroy_connection);
416 			kref_put(&resource->kref, drbd_destroy_resource);
417 			module_put(THIS_MODULE);
418 			return false;
419 		}
420 		spin_lock_irqsave(&thi->t_lock, flags);
421 		thi->task = nt;
422 		thi->t_state = RUNNING;
423 		spin_unlock_irqrestore(&thi->t_lock, flags);
424 		wake_up_process(nt);
425 		break;
426 	case EXITING:
427 		thi->t_state = RESTARTING;
428 		drbd_info(resource, "Restarting %s thread (from %s [%d])\n",
429 				thi->name, current->comm, current->pid);
430 		/* fall through */
431 	case RUNNING:
432 	case RESTARTING:
433 	default:
434 		spin_unlock_irqrestore(&thi->t_lock, flags);
435 		break;
436 	}
437 
438 	return true;
439 }
440 
441 
442 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait)
443 {
444 	unsigned long flags;
445 
446 	enum drbd_thread_state ns = restart ? RESTARTING : EXITING;
447 
448 	/* may be called from state engine, holding the req lock irqsave */
449 	spin_lock_irqsave(&thi->t_lock, flags);
450 
451 	if (thi->t_state == NONE) {
452 		spin_unlock_irqrestore(&thi->t_lock, flags);
453 		if (restart)
454 			drbd_thread_start(thi);
455 		return;
456 	}
457 
458 	if (thi->t_state != ns) {
459 		if (thi->task == NULL) {
460 			spin_unlock_irqrestore(&thi->t_lock, flags);
461 			return;
462 		}
463 
464 		thi->t_state = ns;
465 		smp_mb();
466 		init_completion(&thi->stop);
467 		if (thi->task != current)
468 			send_sig(DRBD_SIGKILL, thi->task, 1);
469 	}
470 
471 	spin_unlock_irqrestore(&thi->t_lock, flags);
472 
473 	if (wait)
474 		wait_for_completion(&thi->stop);
475 }
476 
477 int conn_lowest_minor(struct drbd_connection *connection)
478 {
479 	struct drbd_peer_device *peer_device;
480 	int vnr = 0, minor = -1;
481 
482 	rcu_read_lock();
483 	peer_device = idr_get_next(&connection->peer_devices, &vnr);
484 	if (peer_device)
485 		minor = device_to_minor(peer_device->device);
486 	rcu_read_unlock();
487 
488 	return minor;
489 }
490 
491 #ifdef CONFIG_SMP
492 /**
493  * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs
494  *
495  * Forces all threads of a resource onto the same CPU. This is beneficial for
496  * DRBD's performance. May be overwritten by user's configuration.
497  */
498 static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask)
499 {
500 	unsigned int *resources_per_cpu, min_index = ~0;
501 
502 	resources_per_cpu = kcalloc(nr_cpu_ids, sizeof(*resources_per_cpu),
503 				    GFP_KERNEL);
504 	if (resources_per_cpu) {
505 		struct drbd_resource *resource;
506 		unsigned int cpu, min = ~0;
507 
508 		rcu_read_lock();
509 		for_each_resource_rcu(resource, &drbd_resources) {
510 			for_each_cpu(cpu, resource->cpu_mask)
511 				resources_per_cpu[cpu]++;
512 		}
513 		rcu_read_unlock();
514 		for_each_online_cpu(cpu) {
515 			if (resources_per_cpu[cpu] < min) {
516 				min = resources_per_cpu[cpu];
517 				min_index = cpu;
518 			}
519 		}
520 		kfree(resources_per_cpu);
521 	}
522 	if (min_index == ~0) {
523 		cpumask_setall(*cpu_mask);
524 		return;
525 	}
526 	cpumask_set_cpu(min_index, *cpu_mask);
527 }
528 
529 /**
530  * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread
531  * @device:	DRBD device.
532  * @thi:	drbd_thread object
533  *
534  * call in the "main loop" of _all_ threads, no need for any mutex, current won't die
535  * prematurely.
536  */
537 void drbd_thread_current_set_cpu(struct drbd_thread *thi)
538 {
539 	struct drbd_resource *resource = thi->resource;
540 	struct task_struct *p = current;
541 
542 	if (!thi->reset_cpu_mask)
543 		return;
544 	thi->reset_cpu_mask = 0;
545 	set_cpus_allowed_ptr(p, resource->cpu_mask);
546 }
547 #else
548 #define drbd_calc_cpu_mask(A) ({})
549 #endif
550 
551 /**
552  * drbd_header_size  -  size of a packet header
553  *
554  * The header size is a multiple of 8, so any payload following the header is
555  * word aligned on 64-bit architectures.  (The bitmap send and receive code
556  * relies on this.)
557  */
558 unsigned int drbd_header_size(struct drbd_connection *connection)
559 {
560 	if (connection->agreed_pro_version >= 100) {
561 		BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8));
562 		return sizeof(struct p_header100);
563 	} else {
564 		BUILD_BUG_ON(sizeof(struct p_header80) !=
565 			     sizeof(struct p_header95));
566 		BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8));
567 		return sizeof(struct p_header80);
568 	}
569 }
570 
571 static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size)
572 {
573 	h->magic   = cpu_to_be32(DRBD_MAGIC);
574 	h->command = cpu_to_be16(cmd);
575 	h->length  = cpu_to_be16(size);
576 	return sizeof(struct p_header80);
577 }
578 
579 static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size)
580 {
581 	h->magic   = cpu_to_be16(DRBD_MAGIC_BIG);
582 	h->command = cpu_to_be16(cmd);
583 	h->length = cpu_to_be32(size);
584 	return sizeof(struct p_header95);
585 }
586 
587 static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd,
588 				      int size, int vnr)
589 {
590 	h->magic = cpu_to_be32(DRBD_MAGIC_100);
591 	h->volume = cpu_to_be16(vnr);
592 	h->command = cpu_to_be16(cmd);
593 	h->length = cpu_to_be32(size);
594 	h->pad = 0;
595 	return sizeof(struct p_header100);
596 }
597 
598 static unsigned int prepare_header(struct drbd_connection *connection, int vnr,
599 				   void *buffer, enum drbd_packet cmd, int size)
600 {
601 	if (connection->agreed_pro_version >= 100)
602 		return prepare_header100(buffer, cmd, size, vnr);
603 	else if (connection->agreed_pro_version >= 95 &&
604 		 size > DRBD_MAX_SIZE_H80_PACKET)
605 		return prepare_header95(buffer, cmd, size);
606 	else
607 		return prepare_header80(buffer, cmd, size);
608 }
609 
610 static void *__conn_prepare_command(struct drbd_connection *connection,
611 				    struct drbd_socket *sock)
612 {
613 	if (!sock->socket)
614 		return NULL;
615 	return sock->sbuf + drbd_header_size(connection);
616 }
617 
618 void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock)
619 {
620 	void *p;
621 
622 	mutex_lock(&sock->mutex);
623 	p = __conn_prepare_command(connection, sock);
624 	if (!p)
625 		mutex_unlock(&sock->mutex);
626 
627 	return p;
628 }
629 
630 void *drbd_prepare_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock)
631 {
632 	return conn_prepare_command(peer_device->connection, sock);
633 }
634 
635 static int __send_command(struct drbd_connection *connection, int vnr,
636 			  struct drbd_socket *sock, enum drbd_packet cmd,
637 			  unsigned int header_size, void *data,
638 			  unsigned int size)
639 {
640 	int msg_flags;
641 	int err;
642 
643 	/*
644 	 * Called with @data == NULL and the size of the data blocks in @size
645 	 * for commands that send data blocks.  For those commands, omit the
646 	 * MSG_MORE flag: this will increase the likelihood that data blocks
647 	 * which are page aligned on the sender will end up page aligned on the
648 	 * receiver.
649 	 */
650 	msg_flags = data ? MSG_MORE : 0;
651 
652 	header_size += prepare_header(connection, vnr, sock->sbuf, cmd,
653 				      header_size + size);
654 	err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size,
655 			    msg_flags);
656 	if (data && !err)
657 		err = drbd_send_all(connection, sock->socket, data, size, 0);
658 	/* DRBD protocol "pings" are latency critical.
659 	 * This is supposed to trigger tcp_push_pending_frames() */
660 	if (!err && (cmd == P_PING || cmd == P_PING_ACK))
661 		drbd_tcp_nodelay(sock->socket);
662 
663 	return err;
664 }
665 
666 static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
667 			       enum drbd_packet cmd, unsigned int header_size,
668 			       void *data, unsigned int size)
669 {
670 	return __send_command(connection, 0, sock, cmd, header_size, data, size);
671 }
672 
673 int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
674 		      enum drbd_packet cmd, unsigned int header_size,
675 		      void *data, unsigned int size)
676 {
677 	int err;
678 
679 	err = __conn_send_command(connection, sock, cmd, header_size, data, size);
680 	mutex_unlock(&sock->mutex);
681 	return err;
682 }
683 
684 int drbd_send_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock,
685 		      enum drbd_packet cmd, unsigned int header_size,
686 		      void *data, unsigned int size)
687 {
688 	int err;
689 
690 	err = __send_command(peer_device->connection, peer_device->device->vnr,
691 			     sock, cmd, header_size, data, size);
692 	mutex_unlock(&sock->mutex);
693 	return err;
694 }
695 
696 int drbd_send_ping(struct drbd_connection *connection)
697 {
698 	struct drbd_socket *sock;
699 
700 	sock = &connection->meta;
701 	if (!conn_prepare_command(connection, sock))
702 		return -EIO;
703 	return conn_send_command(connection, sock, P_PING, 0, NULL, 0);
704 }
705 
706 int drbd_send_ping_ack(struct drbd_connection *connection)
707 {
708 	struct drbd_socket *sock;
709 
710 	sock = &connection->meta;
711 	if (!conn_prepare_command(connection, sock))
712 		return -EIO;
713 	return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0);
714 }
715 
716 int drbd_send_sync_param(struct drbd_peer_device *peer_device)
717 {
718 	struct drbd_socket *sock;
719 	struct p_rs_param_95 *p;
720 	int size;
721 	const int apv = peer_device->connection->agreed_pro_version;
722 	enum drbd_packet cmd;
723 	struct net_conf *nc;
724 	struct disk_conf *dc;
725 
726 	sock = &peer_device->connection->data;
727 	p = drbd_prepare_command(peer_device, sock);
728 	if (!p)
729 		return -EIO;
730 
731 	rcu_read_lock();
732 	nc = rcu_dereference(peer_device->connection->net_conf);
733 
734 	size = apv <= 87 ? sizeof(struct p_rs_param)
735 		: apv == 88 ? sizeof(struct p_rs_param)
736 			+ strlen(nc->verify_alg) + 1
737 		: apv <= 94 ? sizeof(struct p_rs_param_89)
738 		: /* apv >= 95 */ sizeof(struct p_rs_param_95);
739 
740 	cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM;
741 
742 	/* initialize verify_alg and csums_alg */
743 	memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX);
744 
745 	if (get_ldev(peer_device->device)) {
746 		dc = rcu_dereference(peer_device->device->ldev->disk_conf);
747 		p->resync_rate = cpu_to_be32(dc->resync_rate);
748 		p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead);
749 		p->c_delay_target = cpu_to_be32(dc->c_delay_target);
750 		p->c_fill_target = cpu_to_be32(dc->c_fill_target);
751 		p->c_max_rate = cpu_to_be32(dc->c_max_rate);
752 		put_ldev(peer_device->device);
753 	} else {
754 		p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF);
755 		p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF);
756 		p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF);
757 		p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF);
758 		p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF);
759 	}
760 
761 	if (apv >= 88)
762 		strcpy(p->verify_alg, nc->verify_alg);
763 	if (apv >= 89)
764 		strcpy(p->csums_alg, nc->csums_alg);
765 	rcu_read_unlock();
766 
767 	return drbd_send_command(peer_device, sock, cmd, size, NULL, 0);
768 }
769 
770 int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd)
771 {
772 	struct drbd_socket *sock;
773 	struct p_protocol *p;
774 	struct net_conf *nc;
775 	int size, cf;
776 
777 	sock = &connection->data;
778 	p = __conn_prepare_command(connection, sock);
779 	if (!p)
780 		return -EIO;
781 
782 	rcu_read_lock();
783 	nc = rcu_dereference(connection->net_conf);
784 
785 	if (nc->tentative && connection->agreed_pro_version < 92) {
786 		rcu_read_unlock();
787 		mutex_unlock(&sock->mutex);
788 		drbd_err(connection, "--dry-run is not supported by peer");
789 		return -EOPNOTSUPP;
790 	}
791 
792 	size = sizeof(*p);
793 	if (connection->agreed_pro_version >= 87)
794 		size += strlen(nc->integrity_alg) + 1;
795 
796 	p->protocol      = cpu_to_be32(nc->wire_protocol);
797 	p->after_sb_0p   = cpu_to_be32(nc->after_sb_0p);
798 	p->after_sb_1p   = cpu_to_be32(nc->after_sb_1p);
799 	p->after_sb_2p   = cpu_to_be32(nc->after_sb_2p);
800 	p->two_primaries = cpu_to_be32(nc->two_primaries);
801 	cf = 0;
802 	if (nc->discard_my_data)
803 		cf |= CF_DISCARD_MY_DATA;
804 	if (nc->tentative)
805 		cf |= CF_DRY_RUN;
806 	p->conn_flags    = cpu_to_be32(cf);
807 
808 	if (connection->agreed_pro_version >= 87)
809 		strcpy(p->integrity_alg, nc->integrity_alg);
810 	rcu_read_unlock();
811 
812 	return __conn_send_command(connection, sock, cmd, size, NULL, 0);
813 }
814 
815 int drbd_send_protocol(struct drbd_connection *connection)
816 {
817 	int err;
818 
819 	mutex_lock(&connection->data.mutex);
820 	err = __drbd_send_protocol(connection, P_PROTOCOL);
821 	mutex_unlock(&connection->data.mutex);
822 
823 	return err;
824 }
825 
826 static int _drbd_send_uuids(struct drbd_peer_device *peer_device, u64 uuid_flags)
827 {
828 	struct drbd_device *device = peer_device->device;
829 	struct drbd_socket *sock;
830 	struct p_uuids *p;
831 	int i;
832 
833 	if (!get_ldev_if_state(device, D_NEGOTIATING))
834 		return 0;
835 
836 	sock = &peer_device->connection->data;
837 	p = drbd_prepare_command(peer_device, sock);
838 	if (!p) {
839 		put_ldev(device);
840 		return -EIO;
841 	}
842 	spin_lock_irq(&device->ldev->md.uuid_lock);
843 	for (i = UI_CURRENT; i < UI_SIZE; i++)
844 		p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
845 	spin_unlock_irq(&device->ldev->md.uuid_lock);
846 
847 	device->comm_bm_set = drbd_bm_total_weight(device);
848 	p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set);
849 	rcu_read_lock();
850 	uuid_flags |= rcu_dereference(peer_device->connection->net_conf)->discard_my_data ? 1 : 0;
851 	rcu_read_unlock();
852 	uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0;
853 	uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0;
854 	p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags);
855 
856 	put_ldev(device);
857 	return drbd_send_command(peer_device, sock, P_UUIDS, sizeof(*p), NULL, 0);
858 }
859 
860 int drbd_send_uuids(struct drbd_peer_device *peer_device)
861 {
862 	return _drbd_send_uuids(peer_device, 0);
863 }
864 
865 int drbd_send_uuids_skip_initial_sync(struct drbd_peer_device *peer_device)
866 {
867 	return _drbd_send_uuids(peer_device, 8);
868 }
869 
870 void drbd_print_uuids(struct drbd_device *device, const char *text)
871 {
872 	if (get_ldev_if_state(device, D_NEGOTIATING)) {
873 		u64 *uuid = device->ldev->md.uuid;
874 		drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n",
875 		     text,
876 		     (unsigned long long)uuid[UI_CURRENT],
877 		     (unsigned long long)uuid[UI_BITMAP],
878 		     (unsigned long long)uuid[UI_HISTORY_START],
879 		     (unsigned long long)uuid[UI_HISTORY_END]);
880 		put_ldev(device);
881 	} else {
882 		drbd_info(device, "%s effective data uuid: %016llX\n",
883 				text,
884 				(unsigned long long)device->ed_uuid);
885 	}
886 }
887 
888 void drbd_gen_and_send_sync_uuid(struct drbd_peer_device *peer_device)
889 {
890 	struct drbd_device *device = peer_device->device;
891 	struct drbd_socket *sock;
892 	struct p_rs_uuid *p;
893 	u64 uuid;
894 
895 	D_ASSERT(device, device->state.disk == D_UP_TO_DATE);
896 
897 	uuid = device->ldev->md.uuid[UI_BITMAP];
898 	if (uuid && uuid != UUID_JUST_CREATED)
899 		uuid = uuid + UUID_NEW_BM_OFFSET;
900 	else
901 		get_random_bytes(&uuid, sizeof(u64));
902 	drbd_uuid_set(device, UI_BITMAP, uuid);
903 	drbd_print_uuids(device, "updated sync UUID");
904 	drbd_md_sync(device);
905 
906 	sock = &peer_device->connection->data;
907 	p = drbd_prepare_command(peer_device, sock);
908 	if (p) {
909 		p->uuid = cpu_to_be64(uuid);
910 		drbd_send_command(peer_device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0);
911 	}
912 }
913 
914 /* communicated if (agreed_features & DRBD_FF_WSAME) */
915 static void
916 assign_p_sizes_qlim(struct drbd_device *device, struct p_sizes *p,
917 					struct request_queue *q)
918 {
919 	if (q) {
920 		p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q));
921 		p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q));
922 		p->qlim->alignment_offset = cpu_to_be32(queue_alignment_offset(q));
923 		p->qlim->io_min = cpu_to_be32(queue_io_min(q));
924 		p->qlim->io_opt = cpu_to_be32(queue_io_opt(q));
925 		p->qlim->discard_enabled = blk_queue_discard(q);
926 		p->qlim->write_same_capable = !!q->limits.max_write_same_sectors;
927 	} else {
928 		q = device->rq_queue;
929 		p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q));
930 		p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q));
931 		p->qlim->alignment_offset = 0;
932 		p->qlim->io_min = cpu_to_be32(queue_io_min(q));
933 		p->qlim->io_opt = cpu_to_be32(queue_io_opt(q));
934 		p->qlim->discard_enabled = 0;
935 		p->qlim->write_same_capable = 0;
936 	}
937 }
938 
939 int drbd_send_sizes(struct drbd_peer_device *peer_device, int trigger_reply, enum dds_flags flags)
940 {
941 	struct drbd_device *device = peer_device->device;
942 	struct drbd_socket *sock;
943 	struct p_sizes *p;
944 	sector_t d_size, u_size;
945 	int q_order_type;
946 	unsigned int max_bio_size;
947 	unsigned int packet_size;
948 
949 	sock = &peer_device->connection->data;
950 	p = drbd_prepare_command(peer_device, sock);
951 	if (!p)
952 		return -EIO;
953 
954 	packet_size = sizeof(*p);
955 	if (peer_device->connection->agreed_features & DRBD_FF_WSAME)
956 		packet_size += sizeof(p->qlim[0]);
957 
958 	memset(p, 0, packet_size);
959 	if (get_ldev_if_state(device, D_NEGOTIATING)) {
960 		struct request_queue *q = bdev_get_queue(device->ldev->backing_bdev);
961 		d_size = drbd_get_max_capacity(device->ldev);
962 		rcu_read_lock();
963 		u_size = rcu_dereference(device->ldev->disk_conf)->disk_size;
964 		rcu_read_unlock();
965 		q_order_type = drbd_queue_order_type(device);
966 		max_bio_size = queue_max_hw_sectors(q) << 9;
967 		max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE);
968 		assign_p_sizes_qlim(device, p, q);
969 		put_ldev(device);
970 	} else {
971 		d_size = 0;
972 		u_size = 0;
973 		q_order_type = QUEUE_ORDERED_NONE;
974 		max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */
975 		assign_p_sizes_qlim(device, p, NULL);
976 	}
977 
978 	if (peer_device->connection->agreed_pro_version <= 94)
979 		max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET);
980 	else if (peer_device->connection->agreed_pro_version < 100)
981 		max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95);
982 
983 	p->d_size = cpu_to_be64(d_size);
984 	p->u_size = cpu_to_be64(u_size);
985 	p->c_size = cpu_to_be64(trigger_reply ? 0 : drbd_get_capacity(device->this_bdev));
986 	p->max_bio_size = cpu_to_be32(max_bio_size);
987 	p->queue_order_type = cpu_to_be16(q_order_type);
988 	p->dds_flags = cpu_to_be16(flags);
989 
990 	return drbd_send_command(peer_device, sock, P_SIZES, packet_size, NULL, 0);
991 }
992 
993 /**
994  * drbd_send_current_state() - Sends the drbd state to the peer
995  * @peer_device:	DRBD peer device.
996  */
997 int drbd_send_current_state(struct drbd_peer_device *peer_device)
998 {
999 	struct drbd_socket *sock;
1000 	struct p_state *p;
1001 
1002 	sock = &peer_device->connection->data;
1003 	p = drbd_prepare_command(peer_device, sock);
1004 	if (!p)
1005 		return -EIO;
1006 	p->state = cpu_to_be32(peer_device->device->state.i); /* Within the send mutex */
1007 	return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1008 }
1009 
1010 /**
1011  * drbd_send_state() - After a state change, sends the new state to the peer
1012  * @peer_device:      DRBD peer device.
1013  * @state:     the state to send, not necessarily the current state.
1014  *
1015  * Each state change queues an "after_state_ch" work, which will eventually
1016  * send the resulting new state to the peer. If more state changes happen
1017  * between queuing and processing of the after_state_ch work, we still
1018  * want to send each intermediary state in the order it occurred.
1019  */
1020 int drbd_send_state(struct drbd_peer_device *peer_device, union drbd_state state)
1021 {
1022 	struct drbd_socket *sock;
1023 	struct p_state *p;
1024 
1025 	sock = &peer_device->connection->data;
1026 	p = drbd_prepare_command(peer_device, sock);
1027 	if (!p)
1028 		return -EIO;
1029 	p->state = cpu_to_be32(state.i); /* Within the send mutex */
1030 	return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1031 }
1032 
1033 int drbd_send_state_req(struct drbd_peer_device *peer_device, union drbd_state mask, union drbd_state val)
1034 {
1035 	struct drbd_socket *sock;
1036 	struct p_req_state *p;
1037 
1038 	sock = &peer_device->connection->data;
1039 	p = drbd_prepare_command(peer_device, sock);
1040 	if (!p)
1041 		return -EIO;
1042 	p->mask = cpu_to_be32(mask.i);
1043 	p->val = cpu_to_be32(val.i);
1044 	return drbd_send_command(peer_device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0);
1045 }
1046 
1047 int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val)
1048 {
1049 	enum drbd_packet cmd;
1050 	struct drbd_socket *sock;
1051 	struct p_req_state *p;
1052 
1053 	cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ;
1054 	sock = &connection->data;
1055 	p = conn_prepare_command(connection, sock);
1056 	if (!p)
1057 		return -EIO;
1058 	p->mask = cpu_to_be32(mask.i);
1059 	p->val = cpu_to_be32(val.i);
1060 	return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1061 }
1062 
1063 void drbd_send_sr_reply(struct drbd_peer_device *peer_device, enum drbd_state_rv retcode)
1064 {
1065 	struct drbd_socket *sock;
1066 	struct p_req_state_reply *p;
1067 
1068 	sock = &peer_device->connection->meta;
1069 	p = drbd_prepare_command(peer_device, sock);
1070 	if (p) {
1071 		p->retcode = cpu_to_be32(retcode);
1072 		drbd_send_command(peer_device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0);
1073 	}
1074 }
1075 
1076 void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode)
1077 {
1078 	struct drbd_socket *sock;
1079 	struct p_req_state_reply *p;
1080 	enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY;
1081 
1082 	sock = &connection->meta;
1083 	p = conn_prepare_command(connection, sock);
1084 	if (p) {
1085 		p->retcode = cpu_to_be32(retcode);
1086 		conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1087 	}
1088 }
1089 
1090 static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code)
1091 {
1092 	BUG_ON(code & ~0xf);
1093 	p->encoding = (p->encoding & ~0xf) | code;
1094 }
1095 
1096 static void dcbp_set_start(struct p_compressed_bm *p, int set)
1097 {
1098 	p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0);
1099 }
1100 
1101 static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n)
1102 {
1103 	BUG_ON(n & ~0x7);
1104 	p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4);
1105 }
1106 
1107 static int fill_bitmap_rle_bits(struct drbd_device *device,
1108 			 struct p_compressed_bm *p,
1109 			 unsigned int size,
1110 			 struct bm_xfer_ctx *c)
1111 {
1112 	struct bitstream bs;
1113 	unsigned long plain_bits;
1114 	unsigned long tmp;
1115 	unsigned long rl;
1116 	unsigned len;
1117 	unsigned toggle;
1118 	int bits, use_rle;
1119 
1120 	/* may we use this feature? */
1121 	rcu_read_lock();
1122 	use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle;
1123 	rcu_read_unlock();
1124 	if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90)
1125 		return 0;
1126 
1127 	if (c->bit_offset >= c->bm_bits)
1128 		return 0; /* nothing to do. */
1129 
1130 	/* use at most thus many bytes */
1131 	bitstream_init(&bs, p->code, size, 0);
1132 	memset(p->code, 0, size);
1133 	/* plain bits covered in this code string */
1134 	plain_bits = 0;
1135 
1136 	/* p->encoding & 0x80 stores whether the first run length is set.
1137 	 * bit offset is implicit.
1138 	 * start with toggle == 2 to be able to tell the first iteration */
1139 	toggle = 2;
1140 
1141 	/* see how much plain bits we can stuff into one packet
1142 	 * using RLE and VLI. */
1143 	do {
1144 		tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset)
1145 				    : _drbd_bm_find_next(device, c->bit_offset);
1146 		if (tmp == -1UL)
1147 			tmp = c->bm_bits;
1148 		rl = tmp - c->bit_offset;
1149 
1150 		if (toggle == 2) { /* first iteration */
1151 			if (rl == 0) {
1152 				/* the first checked bit was set,
1153 				 * store start value, */
1154 				dcbp_set_start(p, 1);
1155 				/* but skip encoding of zero run length */
1156 				toggle = !toggle;
1157 				continue;
1158 			}
1159 			dcbp_set_start(p, 0);
1160 		}
1161 
1162 		/* paranoia: catch zero runlength.
1163 		 * can only happen if bitmap is modified while we scan it. */
1164 		if (rl == 0) {
1165 			drbd_err(device, "unexpected zero runlength while encoding bitmap "
1166 			    "t:%u bo:%lu\n", toggle, c->bit_offset);
1167 			return -1;
1168 		}
1169 
1170 		bits = vli_encode_bits(&bs, rl);
1171 		if (bits == -ENOBUFS) /* buffer full */
1172 			break;
1173 		if (bits <= 0) {
1174 			drbd_err(device, "error while encoding bitmap: %d\n", bits);
1175 			return 0;
1176 		}
1177 
1178 		toggle = !toggle;
1179 		plain_bits += rl;
1180 		c->bit_offset = tmp;
1181 	} while (c->bit_offset < c->bm_bits);
1182 
1183 	len = bs.cur.b - p->code + !!bs.cur.bit;
1184 
1185 	if (plain_bits < (len << 3)) {
1186 		/* incompressible with this method.
1187 		 * we need to rewind both word and bit position. */
1188 		c->bit_offset -= plain_bits;
1189 		bm_xfer_ctx_bit_to_word_offset(c);
1190 		c->bit_offset = c->word_offset * BITS_PER_LONG;
1191 		return 0;
1192 	}
1193 
1194 	/* RLE + VLI was able to compress it just fine.
1195 	 * update c->word_offset. */
1196 	bm_xfer_ctx_bit_to_word_offset(c);
1197 
1198 	/* store pad_bits */
1199 	dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7);
1200 
1201 	return len;
1202 }
1203 
1204 /**
1205  * send_bitmap_rle_or_plain
1206  *
1207  * Return 0 when done, 1 when another iteration is needed, and a negative error
1208  * code upon failure.
1209  */
1210 static int
1211 send_bitmap_rle_or_plain(struct drbd_device *device, struct bm_xfer_ctx *c)
1212 {
1213 	struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1214 	unsigned int header_size = drbd_header_size(first_peer_device(device)->connection);
1215 	struct p_compressed_bm *p = sock->sbuf + header_size;
1216 	int len, err;
1217 
1218 	len = fill_bitmap_rle_bits(device, p,
1219 			DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c);
1220 	if (len < 0)
1221 		return -EIO;
1222 
1223 	if (len) {
1224 		dcbp_set_code(p, RLE_VLI_Bits);
1225 		err = __send_command(first_peer_device(device)->connection, device->vnr, sock,
1226 				     P_COMPRESSED_BITMAP, sizeof(*p) + len,
1227 				     NULL, 0);
1228 		c->packets[0]++;
1229 		c->bytes[0] += header_size + sizeof(*p) + len;
1230 
1231 		if (c->bit_offset >= c->bm_bits)
1232 			len = 0; /* DONE */
1233 	} else {
1234 		/* was not compressible.
1235 		 * send a buffer full of plain text bits instead. */
1236 		unsigned int data_size;
1237 		unsigned long num_words;
1238 		unsigned long *p = sock->sbuf + header_size;
1239 
1240 		data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
1241 		num_words = min_t(size_t, data_size / sizeof(*p),
1242 				  c->bm_words - c->word_offset);
1243 		len = num_words * sizeof(*p);
1244 		if (len)
1245 			drbd_bm_get_lel(device, c->word_offset, num_words, p);
1246 		err = __send_command(first_peer_device(device)->connection, device->vnr, sock, P_BITMAP, len, NULL, 0);
1247 		c->word_offset += num_words;
1248 		c->bit_offset = c->word_offset * BITS_PER_LONG;
1249 
1250 		c->packets[1]++;
1251 		c->bytes[1] += header_size + len;
1252 
1253 		if (c->bit_offset > c->bm_bits)
1254 			c->bit_offset = c->bm_bits;
1255 	}
1256 	if (!err) {
1257 		if (len == 0) {
1258 			INFO_bm_xfer_stats(device, "send", c);
1259 			return 0;
1260 		} else
1261 			return 1;
1262 	}
1263 	return -EIO;
1264 }
1265 
1266 /* See the comment at receive_bitmap() */
1267 static int _drbd_send_bitmap(struct drbd_device *device)
1268 {
1269 	struct bm_xfer_ctx c;
1270 	int err;
1271 
1272 	if (!expect(device->bitmap))
1273 		return false;
1274 
1275 	if (get_ldev(device)) {
1276 		if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) {
1277 			drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n");
1278 			drbd_bm_set_all(device);
1279 			if (drbd_bm_write(device)) {
1280 				/* write_bm did fail! Leave full sync flag set in Meta P_DATA
1281 				 * but otherwise process as per normal - need to tell other
1282 				 * side that a full resync is required! */
1283 				drbd_err(device, "Failed to write bitmap to disk!\n");
1284 			} else {
1285 				drbd_md_clear_flag(device, MDF_FULL_SYNC);
1286 				drbd_md_sync(device);
1287 			}
1288 		}
1289 		put_ldev(device);
1290 	}
1291 
1292 	c = (struct bm_xfer_ctx) {
1293 		.bm_bits = drbd_bm_bits(device),
1294 		.bm_words = drbd_bm_words(device),
1295 	};
1296 
1297 	do {
1298 		err = send_bitmap_rle_or_plain(device, &c);
1299 	} while (err > 0);
1300 
1301 	return err == 0;
1302 }
1303 
1304 int drbd_send_bitmap(struct drbd_device *device)
1305 {
1306 	struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1307 	int err = -1;
1308 
1309 	mutex_lock(&sock->mutex);
1310 	if (sock->socket)
1311 		err = !_drbd_send_bitmap(device);
1312 	mutex_unlock(&sock->mutex);
1313 	return err;
1314 }
1315 
1316 void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size)
1317 {
1318 	struct drbd_socket *sock;
1319 	struct p_barrier_ack *p;
1320 
1321 	if (connection->cstate < C_WF_REPORT_PARAMS)
1322 		return;
1323 
1324 	sock = &connection->meta;
1325 	p = conn_prepare_command(connection, sock);
1326 	if (!p)
1327 		return;
1328 	p->barrier = barrier_nr;
1329 	p->set_size = cpu_to_be32(set_size);
1330 	conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0);
1331 }
1332 
1333 /**
1334  * _drbd_send_ack() - Sends an ack packet
1335  * @device:	DRBD device.
1336  * @cmd:	Packet command code.
1337  * @sector:	sector, needs to be in big endian byte order
1338  * @blksize:	size in byte, needs to be in big endian byte order
1339  * @block_id:	Id, big endian byte order
1340  */
1341 static int _drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1342 			  u64 sector, u32 blksize, u64 block_id)
1343 {
1344 	struct drbd_socket *sock;
1345 	struct p_block_ack *p;
1346 
1347 	if (peer_device->device->state.conn < C_CONNECTED)
1348 		return -EIO;
1349 
1350 	sock = &peer_device->connection->meta;
1351 	p = drbd_prepare_command(peer_device, sock);
1352 	if (!p)
1353 		return -EIO;
1354 	p->sector = sector;
1355 	p->block_id = block_id;
1356 	p->blksize = blksize;
1357 	p->seq_num = cpu_to_be32(atomic_inc_return(&peer_device->device->packet_seq));
1358 	return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1359 }
1360 
1361 /* dp->sector and dp->block_id already/still in network byte order,
1362  * data_size is payload size according to dp->head,
1363  * and may need to be corrected for digest size. */
1364 void drbd_send_ack_dp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1365 		      struct p_data *dp, int data_size)
1366 {
1367 	if (peer_device->connection->peer_integrity_tfm)
1368 		data_size -= crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm);
1369 	_drbd_send_ack(peer_device, cmd, dp->sector, cpu_to_be32(data_size),
1370 		       dp->block_id);
1371 }
1372 
1373 void drbd_send_ack_rp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1374 		      struct p_block_req *rp)
1375 {
1376 	_drbd_send_ack(peer_device, cmd, rp->sector, rp->blksize, rp->block_id);
1377 }
1378 
1379 /**
1380  * drbd_send_ack() - Sends an ack packet
1381  * @device:	DRBD device
1382  * @cmd:	packet command code
1383  * @peer_req:	peer request
1384  */
1385 int drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1386 		  struct drbd_peer_request *peer_req)
1387 {
1388 	return _drbd_send_ack(peer_device, cmd,
1389 			      cpu_to_be64(peer_req->i.sector),
1390 			      cpu_to_be32(peer_req->i.size),
1391 			      peer_req->block_id);
1392 }
1393 
1394 /* This function misuses the block_id field to signal if the blocks
1395  * are is sync or not. */
1396 int drbd_send_ack_ex(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1397 		     sector_t sector, int blksize, u64 block_id)
1398 {
1399 	return _drbd_send_ack(peer_device, cmd,
1400 			      cpu_to_be64(sector),
1401 			      cpu_to_be32(blksize),
1402 			      cpu_to_be64(block_id));
1403 }
1404 
1405 int drbd_send_rs_deallocated(struct drbd_peer_device *peer_device,
1406 			     struct drbd_peer_request *peer_req)
1407 {
1408 	struct drbd_socket *sock;
1409 	struct p_block_desc *p;
1410 
1411 	sock = &peer_device->connection->data;
1412 	p = drbd_prepare_command(peer_device, sock);
1413 	if (!p)
1414 		return -EIO;
1415 	p->sector = cpu_to_be64(peer_req->i.sector);
1416 	p->blksize = cpu_to_be32(peer_req->i.size);
1417 	p->pad = 0;
1418 	return drbd_send_command(peer_device, sock, P_RS_DEALLOCATED, sizeof(*p), NULL, 0);
1419 }
1420 
1421 int drbd_send_drequest(struct drbd_peer_device *peer_device, int cmd,
1422 		       sector_t sector, int size, u64 block_id)
1423 {
1424 	struct drbd_socket *sock;
1425 	struct p_block_req *p;
1426 
1427 	sock = &peer_device->connection->data;
1428 	p = drbd_prepare_command(peer_device, sock);
1429 	if (!p)
1430 		return -EIO;
1431 	p->sector = cpu_to_be64(sector);
1432 	p->block_id = block_id;
1433 	p->blksize = cpu_to_be32(size);
1434 	return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1435 }
1436 
1437 int drbd_send_drequest_csum(struct drbd_peer_device *peer_device, sector_t sector, int size,
1438 			    void *digest, int digest_size, enum drbd_packet cmd)
1439 {
1440 	struct drbd_socket *sock;
1441 	struct p_block_req *p;
1442 
1443 	/* FIXME: Put the digest into the preallocated socket buffer.  */
1444 
1445 	sock = &peer_device->connection->data;
1446 	p = drbd_prepare_command(peer_device, sock);
1447 	if (!p)
1448 		return -EIO;
1449 	p->sector = cpu_to_be64(sector);
1450 	p->block_id = ID_SYNCER /* unused */;
1451 	p->blksize = cpu_to_be32(size);
1452 	return drbd_send_command(peer_device, sock, cmd, sizeof(*p), digest, digest_size);
1453 }
1454 
1455 int drbd_send_ov_request(struct drbd_peer_device *peer_device, sector_t sector, int size)
1456 {
1457 	struct drbd_socket *sock;
1458 	struct p_block_req *p;
1459 
1460 	sock = &peer_device->connection->data;
1461 	p = drbd_prepare_command(peer_device, sock);
1462 	if (!p)
1463 		return -EIO;
1464 	p->sector = cpu_to_be64(sector);
1465 	p->block_id = ID_SYNCER /* unused */;
1466 	p->blksize = cpu_to_be32(size);
1467 	return drbd_send_command(peer_device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0);
1468 }
1469 
1470 /* called on sndtimeo
1471  * returns false if we should retry,
1472  * true if we think connection is dead
1473  */
1474 static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock)
1475 {
1476 	int drop_it;
1477 	/* long elapsed = (long)(jiffies - device->last_received); */
1478 
1479 	drop_it =   connection->meta.socket == sock
1480 		|| !connection->ack_receiver.task
1481 		|| get_t_state(&connection->ack_receiver) != RUNNING
1482 		|| connection->cstate < C_WF_REPORT_PARAMS;
1483 
1484 	if (drop_it)
1485 		return true;
1486 
1487 	drop_it = !--connection->ko_count;
1488 	if (!drop_it) {
1489 		drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n",
1490 			 current->comm, current->pid, connection->ko_count);
1491 		request_ping(connection);
1492 	}
1493 
1494 	return drop_it; /* && (device->state == R_PRIMARY) */;
1495 }
1496 
1497 static void drbd_update_congested(struct drbd_connection *connection)
1498 {
1499 	struct sock *sk = connection->data.socket->sk;
1500 	if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5)
1501 		set_bit(NET_CONGESTED, &connection->flags);
1502 }
1503 
1504 /* The idea of sendpage seems to be to put some kind of reference
1505  * to the page into the skb, and to hand it over to the NIC. In
1506  * this process get_page() gets called.
1507  *
1508  * As soon as the page was really sent over the network put_page()
1509  * gets called by some part of the network layer. [ NIC driver? ]
1510  *
1511  * [ get_page() / put_page() increment/decrement the count. If count
1512  *   reaches 0 the page will be freed. ]
1513  *
1514  * This works nicely with pages from FSs.
1515  * But this means that in protocol A we might signal IO completion too early!
1516  *
1517  * In order not to corrupt data during a resync we must make sure
1518  * that we do not reuse our own buffer pages (EEs) to early, therefore
1519  * we have the net_ee list.
1520  *
1521  * XFS seems to have problems, still, it submits pages with page_count == 0!
1522  * As a workaround, we disable sendpage on pages
1523  * with page_count == 0 or PageSlab.
1524  */
1525 static int _drbd_no_send_page(struct drbd_peer_device *peer_device, struct page *page,
1526 			      int offset, size_t size, unsigned msg_flags)
1527 {
1528 	struct socket *socket;
1529 	void *addr;
1530 	int err;
1531 
1532 	socket = peer_device->connection->data.socket;
1533 	addr = kmap(page) + offset;
1534 	err = drbd_send_all(peer_device->connection, socket, addr, size, msg_flags);
1535 	kunmap(page);
1536 	if (!err)
1537 		peer_device->device->send_cnt += size >> 9;
1538 	return err;
1539 }
1540 
1541 static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *page,
1542 		    int offset, size_t size, unsigned msg_flags)
1543 {
1544 	struct socket *socket = peer_device->connection->data.socket;
1545 	int len = size;
1546 	int err = -EIO;
1547 
1548 	/* e.g. XFS meta- & log-data is in slab pages, which have a
1549 	 * page_count of 0 and/or have PageSlab() set.
1550 	 * we cannot use send_page for those, as that does get_page();
1551 	 * put_page(); and would cause either a VM_BUG directly, or
1552 	 * __page_cache_release a page that would actually still be referenced
1553 	 * by someone, leading to some obscure delayed Oops somewhere else. */
1554 	if (drbd_disable_sendpage || (page_count(page) < 1) || PageSlab(page))
1555 		return _drbd_no_send_page(peer_device, page, offset, size, msg_flags);
1556 
1557 	msg_flags |= MSG_NOSIGNAL;
1558 	drbd_update_congested(peer_device->connection);
1559 	do {
1560 		int sent;
1561 
1562 		sent = socket->ops->sendpage(socket, page, offset, len, msg_flags);
1563 		if (sent <= 0) {
1564 			if (sent == -EAGAIN) {
1565 				if (we_should_drop_the_connection(peer_device->connection, socket))
1566 					break;
1567 				continue;
1568 			}
1569 			drbd_warn(peer_device->device, "%s: size=%d len=%d sent=%d\n",
1570 			     __func__, (int)size, len, sent);
1571 			if (sent < 0)
1572 				err = sent;
1573 			break;
1574 		}
1575 		len    -= sent;
1576 		offset += sent;
1577 	} while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/);
1578 	clear_bit(NET_CONGESTED, &peer_device->connection->flags);
1579 
1580 	if (len == 0) {
1581 		err = 0;
1582 		peer_device->device->send_cnt += size >> 9;
1583 	}
1584 	return err;
1585 }
1586 
1587 static int _drbd_send_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1588 {
1589 	struct bio_vec bvec;
1590 	struct bvec_iter iter;
1591 
1592 	/* hint all but last page with MSG_MORE */
1593 	bio_for_each_segment(bvec, bio, iter) {
1594 		int err;
1595 
1596 		err = _drbd_no_send_page(peer_device, bvec.bv_page,
1597 					 bvec.bv_offset, bvec.bv_len,
1598 					 bio_iter_last(bvec, iter)
1599 					 ? 0 : MSG_MORE);
1600 		if (err)
1601 			return err;
1602 		/* REQ_OP_WRITE_SAME has only one segment */
1603 		if (bio_op(bio) == REQ_OP_WRITE_SAME)
1604 			break;
1605 	}
1606 	return 0;
1607 }
1608 
1609 static int _drbd_send_zc_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1610 {
1611 	struct bio_vec bvec;
1612 	struct bvec_iter iter;
1613 
1614 	/* hint all but last page with MSG_MORE */
1615 	bio_for_each_segment(bvec, bio, iter) {
1616 		int err;
1617 
1618 		err = _drbd_send_page(peer_device, bvec.bv_page,
1619 				      bvec.bv_offset, bvec.bv_len,
1620 				      bio_iter_last(bvec, iter) ? 0 : MSG_MORE);
1621 		if (err)
1622 			return err;
1623 		/* REQ_OP_WRITE_SAME has only one segment */
1624 		if (bio_op(bio) == REQ_OP_WRITE_SAME)
1625 			break;
1626 	}
1627 	return 0;
1628 }
1629 
1630 static int _drbd_send_zc_ee(struct drbd_peer_device *peer_device,
1631 			    struct drbd_peer_request *peer_req)
1632 {
1633 	struct page *page = peer_req->pages;
1634 	unsigned len = peer_req->i.size;
1635 	int err;
1636 
1637 	/* hint all but last page with MSG_MORE */
1638 	page_chain_for_each(page) {
1639 		unsigned l = min_t(unsigned, len, PAGE_SIZE);
1640 
1641 		err = _drbd_send_page(peer_device, page, 0, l,
1642 				      page_chain_next(page) ? MSG_MORE : 0);
1643 		if (err)
1644 			return err;
1645 		len -= l;
1646 	}
1647 	return 0;
1648 }
1649 
1650 static u32 bio_flags_to_wire(struct drbd_connection *connection,
1651 			     struct bio *bio)
1652 {
1653 	if (connection->agreed_pro_version >= 95)
1654 		return  (bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0) |
1655 			(bio->bi_opf & REQ_FUA ? DP_FUA : 0) |
1656 			(bio->bi_opf & REQ_PREFLUSH ? DP_FLUSH : 0) |
1657 			(bio_op(bio) == REQ_OP_WRITE_SAME ? DP_WSAME : 0) |
1658 			(bio_op(bio) == REQ_OP_DISCARD ? DP_DISCARD : 0) |
1659 			(bio_op(bio) == REQ_OP_WRITE_ZEROES ?
1660 			  ((connection->agreed_features & DRBD_FF_WZEROES) ?
1661 			   (DP_ZEROES |(!(bio->bi_opf & REQ_NOUNMAP) ? DP_DISCARD : 0))
1662 			   : DP_DISCARD)
1663 			: 0);
1664 	else
1665 		return bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0;
1666 }
1667 
1668 /* Used to send write or TRIM aka REQ_OP_DISCARD requests
1669  * R_PRIMARY -> Peer	(P_DATA, P_TRIM)
1670  */
1671 int drbd_send_dblock(struct drbd_peer_device *peer_device, struct drbd_request *req)
1672 {
1673 	struct drbd_device *device = peer_device->device;
1674 	struct drbd_socket *sock;
1675 	struct p_data *p;
1676 	struct p_wsame *wsame = NULL;
1677 	void *digest_out;
1678 	unsigned int dp_flags = 0;
1679 	int digest_size;
1680 	int err;
1681 
1682 	sock = &peer_device->connection->data;
1683 	p = drbd_prepare_command(peer_device, sock);
1684 	digest_size = peer_device->connection->integrity_tfm ?
1685 		      crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0;
1686 
1687 	if (!p)
1688 		return -EIO;
1689 	p->sector = cpu_to_be64(req->i.sector);
1690 	p->block_id = (unsigned long)req;
1691 	p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq));
1692 	dp_flags = bio_flags_to_wire(peer_device->connection, req->master_bio);
1693 	if (device->state.conn >= C_SYNC_SOURCE &&
1694 	    device->state.conn <= C_PAUSED_SYNC_T)
1695 		dp_flags |= DP_MAY_SET_IN_SYNC;
1696 	if (peer_device->connection->agreed_pro_version >= 100) {
1697 		if (req->rq_state & RQ_EXP_RECEIVE_ACK)
1698 			dp_flags |= DP_SEND_RECEIVE_ACK;
1699 		/* During resync, request an explicit write ack,
1700 		 * even in protocol != C */
1701 		if (req->rq_state & RQ_EXP_WRITE_ACK
1702 		|| (dp_flags & DP_MAY_SET_IN_SYNC))
1703 			dp_flags |= DP_SEND_WRITE_ACK;
1704 	}
1705 	p->dp_flags = cpu_to_be32(dp_flags);
1706 
1707 	if (dp_flags & (DP_DISCARD|DP_ZEROES)) {
1708 		enum drbd_packet cmd = (dp_flags & DP_ZEROES) ? P_ZEROES : P_TRIM;
1709 		struct p_trim *t = (struct p_trim*)p;
1710 		t->size = cpu_to_be32(req->i.size);
1711 		err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*t), NULL, 0);
1712 		goto out;
1713 	}
1714 	if (dp_flags & DP_WSAME) {
1715 		/* this will only work if DRBD_FF_WSAME is set AND the
1716 		 * handshake agreed that all nodes and backend devices are
1717 		 * WRITE_SAME capable and agree on logical_block_size */
1718 		wsame = (struct p_wsame*)p;
1719 		digest_out = wsame + 1;
1720 		wsame->size = cpu_to_be32(req->i.size);
1721 	} else
1722 		digest_out = p + 1;
1723 
1724 	/* our digest is still only over the payload.
1725 	 * TRIM does not carry any payload. */
1726 	if (digest_size)
1727 		drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest_out);
1728 	if (wsame) {
1729 		err =
1730 		    __send_command(peer_device->connection, device->vnr, sock, P_WSAME,
1731 				   sizeof(*wsame) + digest_size, NULL,
1732 				   bio_iovec(req->master_bio).bv_len);
1733 	} else
1734 		err =
1735 		    __send_command(peer_device->connection, device->vnr, sock, P_DATA,
1736 				   sizeof(*p) + digest_size, NULL, req->i.size);
1737 	if (!err) {
1738 		/* For protocol A, we have to memcpy the payload into
1739 		 * socket buffers, as we may complete right away
1740 		 * as soon as we handed it over to tcp, at which point the data
1741 		 * pages may become invalid.
1742 		 *
1743 		 * For data-integrity enabled, we copy it as well, so we can be
1744 		 * sure that even if the bio pages may still be modified, it
1745 		 * won't change the data on the wire, thus if the digest checks
1746 		 * out ok after sending on this side, but does not fit on the
1747 		 * receiving side, we sure have detected corruption elsewhere.
1748 		 */
1749 		if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || digest_size)
1750 			err = _drbd_send_bio(peer_device, req->master_bio);
1751 		else
1752 			err = _drbd_send_zc_bio(peer_device, req->master_bio);
1753 
1754 		/* double check digest, sometimes buffers have been modified in flight. */
1755 		if (digest_size > 0 && digest_size <= 64) {
1756 			/* 64 byte, 512 bit, is the largest digest size
1757 			 * currently supported in kernel crypto. */
1758 			unsigned char digest[64];
1759 			drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest);
1760 			if (memcmp(p + 1, digest, digest_size)) {
1761 				drbd_warn(device,
1762 					"Digest mismatch, buffer modified by upper layers during write: %llus +%u\n",
1763 					(unsigned long long)req->i.sector, req->i.size);
1764 			}
1765 		} /* else if (digest_size > 64) {
1766 		     ... Be noisy about digest too large ...
1767 		} */
1768 	}
1769 out:
1770 	mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1771 
1772 	return err;
1773 }
1774 
1775 /* answer packet, used to send data back for read requests:
1776  *  Peer       -> (diskless) R_PRIMARY   (P_DATA_REPLY)
1777  *  C_SYNC_SOURCE -> C_SYNC_TARGET         (P_RS_DATA_REPLY)
1778  */
1779 int drbd_send_block(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1780 		    struct drbd_peer_request *peer_req)
1781 {
1782 	struct drbd_device *device = peer_device->device;
1783 	struct drbd_socket *sock;
1784 	struct p_data *p;
1785 	int err;
1786 	int digest_size;
1787 
1788 	sock = &peer_device->connection->data;
1789 	p = drbd_prepare_command(peer_device, sock);
1790 
1791 	digest_size = peer_device->connection->integrity_tfm ?
1792 		      crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0;
1793 
1794 	if (!p)
1795 		return -EIO;
1796 	p->sector = cpu_to_be64(peer_req->i.sector);
1797 	p->block_id = peer_req->block_id;
1798 	p->seq_num = 0;  /* unused */
1799 	p->dp_flags = 0;
1800 	if (digest_size)
1801 		drbd_csum_ee(peer_device->connection->integrity_tfm, peer_req, p + 1);
1802 	err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*p) + digest_size, NULL, peer_req->i.size);
1803 	if (!err)
1804 		err = _drbd_send_zc_ee(peer_device, peer_req);
1805 	mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1806 
1807 	return err;
1808 }
1809 
1810 int drbd_send_out_of_sync(struct drbd_peer_device *peer_device, struct drbd_request *req)
1811 {
1812 	struct drbd_socket *sock;
1813 	struct p_block_desc *p;
1814 
1815 	sock = &peer_device->connection->data;
1816 	p = drbd_prepare_command(peer_device, sock);
1817 	if (!p)
1818 		return -EIO;
1819 	p->sector = cpu_to_be64(req->i.sector);
1820 	p->blksize = cpu_to_be32(req->i.size);
1821 	return drbd_send_command(peer_device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0);
1822 }
1823 
1824 /*
1825   drbd_send distinguishes two cases:
1826 
1827   Packets sent via the data socket "sock"
1828   and packets sent via the meta data socket "msock"
1829 
1830 		    sock                      msock
1831   -----------------+-------------------------+------------------------------
1832   timeout           conf.timeout / 2          conf.timeout / 2
1833   timeout action    send a ping via msock     Abort communication
1834 					      and close all sockets
1835 */
1836 
1837 /*
1838  * you must have down()ed the appropriate [m]sock_mutex elsewhere!
1839  */
1840 int drbd_send(struct drbd_connection *connection, struct socket *sock,
1841 	      void *buf, size_t size, unsigned msg_flags)
1842 {
1843 	struct kvec iov = {.iov_base = buf, .iov_len = size};
1844 	struct msghdr msg = {.msg_flags = msg_flags | MSG_NOSIGNAL};
1845 	int rv, sent = 0;
1846 
1847 	if (!sock)
1848 		return -EBADR;
1849 
1850 	/* THINK  if (signal_pending) return ... ? */
1851 
1852 	iov_iter_kvec(&msg.msg_iter, WRITE, &iov, 1, size);
1853 
1854 	if (sock == connection->data.socket) {
1855 		rcu_read_lock();
1856 		connection->ko_count = rcu_dereference(connection->net_conf)->ko_count;
1857 		rcu_read_unlock();
1858 		drbd_update_congested(connection);
1859 	}
1860 	do {
1861 		rv = sock_sendmsg(sock, &msg);
1862 		if (rv == -EAGAIN) {
1863 			if (we_should_drop_the_connection(connection, sock))
1864 				break;
1865 			else
1866 				continue;
1867 		}
1868 		if (rv == -EINTR) {
1869 			flush_signals(current);
1870 			rv = 0;
1871 		}
1872 		if (rv < 0)
1873 			break;
1874 		sent += rv;
1875 	} while (sent < size);
1876 
1877 	if (sock == connection->data.socket)
1878 		clear_bit(NET_CONGESTED, &connection->flags);
1879 
1880 	if (rv <= 0) {
1881 		if (rv != -EAGAIN) {
1882 			drbd_err(connection, "%s_sendmsg returned %d\n",
1883 				 sock == connection->meta.socket ? "msock" : "sock",
1884 				 rv);
1885 			conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD);
1886 		} else
1887 			conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD);
1888 	}
1889 
1890 	return sent;
1891 }
1892 
1893 /**
1894  * drbd_send_all  -  Send an entire buffer
1895  *
1896  * Returns 0 upon success and a negative error value otherwise.
1897  */
1898 int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer,
1899 		  size_t size, unsigned msg_flags)
1900 {
1901 	int err;
1902 
1903 	err = drbd_send(connection, sock, buffer, size, msg_flags);
1904 	if (err < 0)
1905 		return err;
1906 	if (err != size)
1907 		return -EIO;
1908 	return 0;
1909 }
1910 
1911 static int drbd_open(struct block_device *bdev, fmode_t mode)
1912 {
1913 	struct drbd_device *device = bdev->bd_disk->private_data;
1914 	unsigned long flags;
1915 	int rv = 0;
1916 
1917 	mutex_lock(&drbd_main_mutex);
1918 	spin_lock_irqsave(&device->resource->req_lock, flags);
1919 	/* to have a stable device->state.role
1920 	 * and no race with updating open_cnt */
1921 
1922 	if (device->state.role != R_PRIMARY) {
1923 		if (mode & FMODE_WRITE)
1924 			rv = -EROFS;
1925 		else if (!drbd_allow_oos)
1926 			rv = -EMEDIUMTYPE;
1927 	}
1928 
1929 	if (!rv)
1930 		device->open_cnt++;
1931 	spin_unlock_irqrestore(&device->resource->req_lock, flags);
1932 	mutex_unlock(&drbd_main_mutex);
1933 
1934 	return rv;
1935 }
1936 
1937 static void drbd_release(struct gendisk *gd, fmode_t mode)
1938 {
1939 	struct drbd_device *device = gd->private_data;
1940 	mutex_lock(&drbd_main_mutex);
1941 	device->open_cnt--;
1942 	mutex_unlock(&drbd_main_mutex);
1943 }
1944 
1945 /* need to hold resource->req_lock */
1946 void drbd_queue_unplug(struct drbd_device *device)
1947 {
1948 	if (device->state.pdsk >= D_INCONSISTENT && device->state.conn >= C_CONNECTED) {
1949 		D_ASSERT(device, device->state.role == R_PRIMARY);
1950 		if (test_and_clear_bit(UNPLUG_REMOTE, &device->flags)) {
1951 			drbd_queue_work_if_unqueued(
1952 				&first_peer_device(device)->connection->sender_work,
1953 				&device->unplug_work);
1954 		}
1955 	}
1956 }
1957 
1958 static void drbd_set_defaults(struct drbd_device *device)
1959 {
1960 	/* Beware! The actual layout differs
1961 	 * between big endian and little endian */
1962 	device->state = (union drbd_dev_state) {
1963 		{ .role = R_SECONDARY,
1964 		  .peer = R_UNKNOWN,
1965 		  .conn = C_STANDALONE,
1966 		  .disk = D_DISKLESS,
1967 		  .pdsk = D_UNKNOWN,
1968 		} };
1969 }
1970 
1971 void drbd_init_set_defaults(struct drbd_device *device)
1972 {
1973 	/* the memset(,0,) did most of this.
1974 	 * note: only assignments, no allocation in here */
1975 
1976 	drbd_set_defaults(device);
1977 
1978 	atomic_set(&device->ap_bio_cnt, 0);
1979 	atomic_set(&device->ap_actlog_cnt, 0);
1980 	atomic_set(&device->ap_pending_cnt, 0);
1981 	atomic_set(&device->rs_pending_cnt, 0);
1982 	atomic_set(&device->unacked_cnt, 0);
1983 	atomic_set(&device->local_cnt, 0);
1984 	atomic_set(&device->pp_in_use_by_net, 0);
1985 	atomic_set(&device->rs_sect_in, 0);
1986 	atomic_set(&device->rs_sect_ev, 0);
1987 	atomic_set(&device->ap_in_flight, 0);
1988 	atomic_set(&device->md_io.in_use, 0);
1989 
1990 	mutex_init(&device->own_state_mutex);
1991 	device->state_mutex = &device->own_state_mutex;
1992 
1993 	spin_lock_init(&device->al_lock);
1994 	spin_lock_init(&device->peer_seq_lock);
1995 
1996 	INIT_LIST_HEAD(&device->active_ee);
1997 	INIT_LIST_HEAD(&device->sync_ee);
1998 	INIT_LIST_HEAD(&device->done_ee);
1999 	INIT_LIST_HEAD(&device->read_ee);
2000 	INIT_LIST_HEAD(&device->net_ee);
2001 	INIT_LIST_HEAD(&device->resync_reads);
2002 	INIT_LIST_HEAD(&device->resync_work.list);
2003 	INIT_LIST_HEAD(&device->unplug_work.list);
2004 	INIT_LIST_HEAD(&device->bm_io_work.w.list);
2005 	INIT_LIST_HEAD(&device->pending_master_completion[0]);
2006 	INIT_LIST_HEAD(&device->pending_master_completion[1]);
2007 	INIT_LIST_HEAD(&device->pending_completion[0]);
2008 	INIT_LIST_HEAD(&device->pending_completion[1]);
2009 
2010 	device->resync_work.cb  = w_resync_timer;
2011 	device->unplug_work.cb  = w_send_write_hint;
2012 	device->bm_io_work.w.cb = w_bitmap_io;
2013 
2014 	timer_setup(&device->resync_timer, resync_timer_fn, 0);
2015 	timer_setup(&device->md_sync_timer, md_sync_timer_fn, 0);
2016 	timer_setup(&device->start_resync_timer, start_resync_timer_fn, 0);
2017 	timer_setup(&device->request_timer, request_timer_fn, 0);
2018 
2019 	init_waitqueue_head(&device->misc_wait);
2020 	init_waitqueue_head(&device->state_wait);
2021 	init_waitqueue_head(&device->ee_wait);
2022 	init_waitqueue_head(&device->al_wait);
2023 	init_waitqueue_head(&device->seq_wait);
2024 
2025 	device->resync_wenr = LC_FREE;
2026 	device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
2027 	device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
2028 }
2029 
2030 static void _drbd_set_my_capacity(struct drbd_device *device, sector_t size)
2031 {
2032 	/* set_capacity(device->this_bdev->bd_disk, size); */
2033 	set_capacity(device->vdisk, size);
2034 	device->this_bdev->bd_inode->i_size = (loff_t)size << 9;
2035 }
2036 
2037 void drbd_set_my_capacity(struct drbd_device *device, sector_t size)
2038 {
2039 	char ppb[10];
2040 	_drbd_set_my_capacity(device, size);
2041 	drbd_info(device, "size = %s (%llu KB)\n",
2042 		ppsize(ppb, size>>1), (unsigned long long)size>>1);
2043 }
2044 
2045 void drbd_device_cleanup(struct drbd_device *device)
2046 {
2047 	int i;
2048 	if (first_peer_device(device)->connection->receiver.t_state != NONE)
2049 		drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n",
2050 				first_peer_device(device)->connection->receiver.t_state);
2051 
2052 	device->al_writ_cnt  =
2053 	device->bm_writ_cnt  =
2054 	device->read_cnt     =
2055 	device->recv_cnt     =
2056 	device->send_cnt     =
2057 	device->writ_cnt     =
2058 	device->p_size       =
2059 	device->rs_start     =
2060 	device->rs_total     =
2061 	device->rs_failed    = 0;
2062 	device->rs_last_events = 0;
2063 	device->rs_last_sect_ev = 0;
2064 	for (i = 0; i < DRBD_SYNC_MARKS; i++) {
2065 		device->rs_mark_left[i] = 0;
2066 		device->rs_mark_time[i] = 0;
2067 	}
2068 	D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL);
2069 
2070 	_drbd_set_my_capacity(device, 0);
2071 	if (device->bitmap) {
2072 		/* maybe never allocated. */
2073 		drbd_bm_resize(device, 0, 1);
2074 		drbd_bm_cleanup(device);
2075 	}
2076 
2077 	drbd_backing_dev_free(device, device->ldev);
2078 	device->ldev = NULL;
2079 
2080 	clear_bit(AL_SUSPENDED, &device->flags);
2081 
2082 	D_ASSERT(device, list_empty(&device->active_ee));
2083 	D_ASSERT(device, list_empty(&device->sync_ee));
2084 	D_ASSERT(device, list_empty(&device->done_ee));
2085 	D_ASSERT(device, list_empty(&device->read_ee));
2086 	D_ASSERT(device, list_empty(&device->net_ee));
2087 	D_ASSERT(device, list_empty(&device->resync_reads));
2088 	D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q));
2089 	D_ASSERT(device, list_empty(&device->resync_work.list));
2090 	D_ASSERT(device, list_empty(&device->unplug_work.list));
2091 
2092 	drbd_set_defaults(device);
2093 }
2094 
2095 
2096 static void drbd_destroy_mempools(void)
2097 {
2098 	struct page *page;
2099 
2100 	while (drbd_pp_pool) {
2101 		page = drbd_pp_pool;
2102 		drbd_pp_pool = (struct page *)page_private(page);
2103 		__free_page(page);
2104 		drbd_pp_vacant--;
2105 	}
2106 
2107 	/* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */
2108 
2109 	bioset_exit(&drbd_io_bio_set);
2110 	bioset_exit(&drbd_md_io_bio_set);
2111 	mempool_exit(&drbd_md_io_page_pool);
2112 	mempool_exit(&drbd_ee_mempool);
2113 	mempool_exit(&drbd_request_mempool);
2114 	kmem_cache_destroy(drbd_ee_cache);
2115 	kmem_cache_destroy(drbd_request_cache);
2116 	kmem_cache_destroy(drbd_bm_ext_cache);
2117 	kmem_cache_destroy(drbd_al_ext_cache);
2118 
2119 	drbd_ee_cache        = NULL;
2120 	drbd_request_cache   = NULL;
2121 	drbd_bm_ext_cache    = NULL;
2122 	drbd_al_ext_cache    = NULL;
2123 
2124 	return;
2125 }
2126 
2127 static int drbd_create_mempools(void)
2128 {
2129 	struct page *page;
2130 	const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * drbd_minor_count;
2131 	int i, ret;
2132 
2133 	/* caches */
2134 	drbd_request_cache = kmem_cache_create(
2135 		"drbd_req", sizeof(struct drbd_request), 0, 0, NULL);
2136 	if (drbd_request_cache == NULL)
2137 		goto Enomem;
2138 
2139 	drbd_ee_cache = kmem_cache_create(
2140 		"drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL);
2141 	if (drbd_ee_cache == NULL)
2142 		goto Enomem;
2143 
2144 	drbd_bm_ext_cache = kmem_cache_create(
2145 		"drbd_bm", sizeof(struct bm_extent), 0, 0, NULL);
2146 	if (drbd_bm_ext_cache == NULL)
2147 		goto Enomem;
2148 
2149 	drbd_al_ext_cache = kmem_cache_create(
2150 		"drbd_al", sizeof(struct lc_element), 0, 0, NULL);
2151 	if (drbd_al_ext_cache == NULL)
2152 		goto Enomem;
2153 
2154 	/* mempools */
2155 	ret = bioset_init(&drbd_io_bio_set, BIO_POOL_SIZE, 0, 0);
2156 	if (ret)
2157 		goto Enomem;
2158 
2159 	ret = bioset_init(&drbd_md_io_bio_set, DRBD_MIN_POOL_PAGES, 0,
2160 			  BIOSET_NEED_BVECS);
2161 	if (ret)
2162 		goto Enomem;
2163 
2164 	ret = mempool_init_page_pool(&drbd_md_io_page_pool, DRBD_MIN_POOL_PAGES, 0);
2165 	if (ret)
2166 		goto Enomem;
2167 
2168 	ret = mempool_init_slab_pool(&drbd_request_mempool, number,
2169 				     drbd_request_cache);
2170 	if (ret)
2171 		goto Enomem;
2172 
2173 	ret = mempool_init_slab_pool(&drbd_ee_mempool, number, drbd_ee_cache);
2174 	if (ret)
2175 		goto Enomem;
2176 
2177 	/* drbd's page pool */
2178 	spin_lock_init(&drbd_pp_lock);
2179 
2180 	for (i = 0; i < number; i++) {
2181 		page = alloc_page(GFP_HIGHUSER);
2182 		if (!page)
2183 			goto Enomem;
2184 		set_page_private(page, (unsigned long)drbd_pp_pool);
2185 		drbd_pp_pool = page;
2186 	}
2187 	drbd_pp_vacant = number;
2188 
2189 	return 0;
2190 
2191 Enomem:
2192 	drbd_destroy_mempools(); /* in case we allocated some */
2193 	return -ENOMEM;
2194 }
2195 
2196 static void drbd_release_all_peer_reqs(struct drbd_device *device)
2197 {
2198 	int rr;
2199 
2200 	rr = drbd_free_peer_reqs(device, &device->active_ee);
2201 	if (rr)
2202 		drbd_err(device, "%d EEs in active list found!\n", rr);
2203 
2204 	rr = drbd_free_peer_reqs(device, &device->sync_ee);
2205 	if (rr)
2206 		drbd_err(device, "%d EEs in sync list found!\n", rr);
2207 
2208 	rr = drbd_free_peer_reqs(device, &device->read_ee);
2209 	if (rr)
2210 		drbd_err(device, "%d EEs in read list found!\n", rr);
2211 
2212 	rr = drbd_free_peer_reqs(device, &device->done_ee);
2213 	if (rr)
2214 		drbd_err(device, "%d EEs in done list found!\n", rr);
2215 
2216 	rr = drbd_free_peer_reqs(device, &device->net_ee);
2217 	if (rr)
2218 		drbd_err(device, "%d EEs in net list found!\n", rr);
2219 }
2220 
2221 /* caution. no locking. */
2222 void drbd_destroy_device(struct kref *kref)
2223 {
2224 	struct drbd_device *device = container_of(kref, struct drbd_device, kref);
2225 	struct drbd_resource *resource = device->resource;
2226 	struct drbd_peer_device *peer_device, *tmp_peer_device;
2227 
2228 	del_timer_sync(&device->request_timer);
2229 
2230 	/* paranoia asserts */
2231 	D_ASSERT(device, device->open_cnt == 0);
2232 	/* end paranoia asserts */
2233 
2234 	/* cleanup stuff that may have been allocated during
2235 	 * device (re-)configuration or state changes */
2236 
2237 	if (device->this_bdev)
2238 		bdput(device->this_bdev);
2239 
2240 	drbd_backing_dev_free(device, device->ldev);
2241 	device->ldev = NULL;
2242 
2243 	drbd_release_all_peer_reqs(device);
2244 
2245 	lc_destroy(device->act_log);
2246 	lc_destroy(device->resync);
2247 
2248 	kfree(device->p_uuid);
2249 	/* device->p_uuid = NULL; */
2250 
2251 	if (device->bitmap) /* should no longer be there. */
2252 		drbd_bm_cleanup(device);
2253 	__free_page(device->md_io.page);
2254 	put_disk(device->vdisk);
2255 	blk_cleanup_queue(device->rq_queue);
2256 	kfree(device->rs_plan_s);
2257 
2258 	/* not for_each_connection(connection, resource):
2259 	 * those may have been cleaned up and disassociated already.
2260 	 */
2261 	for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2262 		kref_put(&peer_device->connection->kref, drbd_destroy_connection);
2263 		kfree(peer_device);
2264 	}
2265 	memset(device, 0xfd, sizeof(*device));
2266 	kfree(device);
2267 	kref_put(&resource->kref, drbd_destroy_resource);
2268 }
2269 
2270 /* One global retry thread, if we need to push back some bio and have it
2271  * reinserted through our make request function.
2272  */
2273 static struct retry_worker {
2274 	struct workqueue_struct *wq;
2275 	struct work_struct worker;
2276 
2277 	spinlock_t lock;
2278 	struct list_head writes;
2279 } retry;
2280 
2281 static void do_retry(struct work_struct *ws)
2282 {
2283 	struct retry_worker *retry = container_of(ws, struct retry_worker, worker);
2284 	LIST_HEAD(writes);
2285 	struct drbd_request *req, *tmp;
2286 
2287 	spin_lock_irq(&retry->lock);
2288 	list_splice_init(&retry->writes, &writes);
2289 	spin_unlock_irq(&retry->lock);
2290 
2291 	list_for_each_entry_safe(req, tmp, &writes, tl_requests) {
2292 		struct drbd_device *device = req->device;
2293 		struct bio *bio = req->master_bio;
2294 		unsigned long start_jif = req->start_jif;
2295 		bool expected;
2296 
2297 		expected =
2298 			expect(atomic_read(&req->completion_ref) == 0) &&
2299 			expect(req->rq_state & RQ_POSTPONED) &&
2300 			expect((req->rq_state & RQ_LOCAL_PENDING) == 0 ||
2301 				(req->rq_state & RQ_LOCAL_ABORTED) != 0);
2302 
2303 		if (!expected)
2304 			drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n",
2305 				req, atomic_read(&req->completion_ref),
2306 				req->rq_state);
2307 
2308 		/* We still need to put one kref associated with the
2309 		 * "completion_ref" going zero in the code path that queued it
2310 		 * here.  The request object may still be referenced by a
2311 		 * frozen local req->private_bio, in case we force-detached.
2312 		 */
2313 		kref_put(&req->kref, drbd_req_destroy);
2314 
2315 		/* A single suspended or otherwise blocking device may stall
2316 		 * all others as well.  Fortunately, this code path is to
2317 		 * recover from a situation that "should not happen":
2318 		 * concurrent writes in multi-primary setup.
2319 		 * In a "normal" lifecycle, this workqueue is supposed to be
2320 		 * destroyed without ever doing anything.
2321 		 * If it turns out to be an issue anyways, we can do per
2322 		 * resource (replication group) or per device (minor) retry
2323 		 * workqueues instead.
2324 		 */
2325 
2326 		/* We are not just doing generic_make_request(),
2327 		 * as we want to keep the start_time information. */
2328 		inc_ap_bio(device);
2329 		__drbd_make_request(device, bio, start_jif);
2330 	}
2331 }
2332 
2333 /* called via drbd_req_put_completion_ref(),
2334  * holds resource->req_lock */
2335 void drbd_restart_request(struct drbd_request *req)
2336 {
2337 	unsigned long flags;
2338 	spin_lock_irqsave(&retry.lock, flags);
2339 	list_move_tail(&req->tl_requests, &retry.writes);
2340 	spin_unlock_irqrestore(&retry.lock, flags);
2341 
2342 	/* Drop the extra reference that would otherwise
2343 	 * have been dropped by complete_master_bio.
2344 	 * do_retry() needs to grab a new one. */
2345 	dec_ap_bio(req->device);
2346 
2347 	queue_work(retry.wq, &retry.worker);
2348 }
2349 
2350 void drbd_destroy_resource(struct kref *kref)
2351 {
2352 	struct drbd_resource *resource =
2353 		container_of(kref, struct drbd_resource, kref);
2354 
2355 	idr_destroy(&resource->devices);
2356 	free_cpumask_var(resource->cpu_mask);
2357 	kfree(resource->name);
2358 	memset(resource, 0xf2, sizeof(*resource));
2359 	kfree(resource);
2360 }
2361 
2362 void drbd_free_resource(struct drbd_resource *resource)
2363 {
2364 	struct drbd_connection *connection, *tmp;
2365 
2366 	for_each_connection_safe(connection, tmp, resource) {
2367 		list_del(&connection->connections);
2368 		drbd_debugfs_connection_cleanup(connection);
2369 		kref_put(&connection->kref, drbd_destroy_connection);
2370 	}
2371 	drbd_debugfs_resource_cleanup(resource);
2372 	kref_put(&resource->kref, drbd_destroy_resource);
2373 }
2374 
2375 static void drbd_cleanup(void)
2376 {
2377 	unsigned int i;
2378 	struct drbd_device *device;
2379 	struct drbd_resource *resource, *tmp;
2380 
2381 	/* first remove proc,
2382 	 * drbdsetup uses it's presence to detect
2383 	 * whether DRBD is loaded.
2384 	 * If we would get stuck in proc removal,
2385 	 * but have netlink already deregistered,
2386 	 * some drbdsetup commands may wait forever
2387 	 * for an answer.
2388 	 */
2389 	if (drbd_proc)
2390 		remove_proc_entry("drbd", NULL);
2391 
2392 	if (retry.wq)
2393 		destroy_workqueue(retry.wq);
2394 
2395 	drbd_genl_unregister();
2396 
2397 	idr_for_each_entry(&drbd_devices, device, i)
2398 		drbd_delete_device(device);
2399 
2400 	/* not _rcu since, no other updater anymore. Genl already unregistered */
2401 	for_each_resource_safe(resource, tmp, &drbd_resources) {
2402 		list_del(&resource->resources);
2403 		drbd_free_resource(resource);
2404 	}
2405 
2406 	drbd_debugfs_cleanup();
2407 
2408 	drbd_destroy_mempools();
2409 	unregister_blkdev(DRBD_MAJOR, "drbd");
2410 
2411 	idr_destroy(&drbd_devices);
2412 
2413 	pr_info("module cleanup done.\n");
2414 }
2415 
2416 /**
2417  * drbd_congested() - Callback for the flusher thread
2418  * @congested_data:	User data
2419  * @bdi_bits:		Bits the BDI flusher thread is currently interested in
2420  *
2421  * Returns 1<<WB_async_congested and/or 1<<WB_sync_congested if we are congested.
2422  */
2423 static int drbd_congested(void *congested_data, int bdi_bits)
2424 {
2425 	struct drbd_device *device = congested_data;
2426 	struct request_queue *q;
2427 	char reason = '-';
2428 	int r = 0;
2429 
2430 	if (!may_inc_ap_bio(device)) {
2431 		/* DRBD has frozen IO */
2432 		r = bdi_bits;
2433 		reason = 'd';
2434 		goto out;
2435 	}
2436 
2437 	if (test_bit(CALLBACK_PENDING, &first_peer_device(device)->connection->flags)) {
2438 		r |= (1 << WB_async_congested);
2439 		/* Without good local data, we would need to read from remote,
2440 		 * and that would need the worker thread as well, which is
2441 		 * currently blocked waiting for that usermode helper to
2442 		 * finish.
2443 		 */
2444 		if (!get_ldev_if_state(device, D_UP_TO_DATE))
2445 			r |= (1 << WB_sync_congested);
2446 		else
2447 			put_ldev(device);
2448 		r &= bdi_bits;
2449 		reason = 'c';
2450 		goto out;
2451 	}
2452 
2453 	if (get_ldev(device)) {
2454 		q = bdev_get_queue(device->ldev->backing_bdev);
2455 		r = bdi_congested(q->backing_dev_info, bdi_bits);
2456 		put_ldev(device);
2457 		if (r)
2458 			reason = 'b';
2459 	}
2460 
2461 	if (bdi_bits & (1 << WB_async_congested) &&
2462 	    test_bit(NET_CONGESTED, &first_peer_device(device)->connection->flags)) {
2463 		r |= (1 << WB_async_congested);
2464 		reason = reason == 'b' ? 'a' : 'n';
2465 	}
2466 
2467 out:
2468 	device->congestion_reason = reason;
2469 	return r;
2470 }
2471 
2472 static void drbd_init_workqueue(struct drbd_work_queue* wq)
2473 {
2474 	spin_lock_init(&wq->q_lock);
2475 	INIT_LIST_HEAD(&wq->q);
2476 	init_waitqueue_head(&wq->q_wait);
2477 }
2478 
2479 struct completion_work {
2480 	struct drbd_work w;
2481 	struct completion done;
2482 };
2483 
2484 static int w_complete(struct drbd_work *w, int cancel)
2485 {
2486 	struct completion_work *completion_work =
2487 		container_of(w, struct completion_work, w);
2488 
2489 	complete(&completion_work->done);
2490 	return 0;
2491 }
2492 
2493 void drbd_flush_workqueue(struct drbd_work_queue *work_queue)
2494 {
2495 	struct completion_work completion_work;
2496 
2497 	completion_work.w.cb = w_complete;
2498 	init_completion(&completion_work.done);
2499 	drbd_queue_work(work_queue, &completion_work.w);
2500 	wait_for_completion(&completion_work.done);
2501 }
2502 
2503 struct drbd_resource *drbd_find_resource(const char *name)
2504 {
2505 	struct drbd_resource *resource;
2506 
2507 	if (!name || !name[0])
2508 		return NULL;
2509 
2510 	rcu_read_lock();
2511 	for_each_resource_rcu(resource, &drbd_resources) {
2512 		if (!strcmp(resource->name, name)) {
2513 			kref_get(&resource->kref);
2514 			goto found;
2515 		}
2516 	}
2517 	resource = NULL;
2518 found:
2519 	rcu_read_unlock();
2520 	return resource;
2521 }
2522 
2523 struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len,
2524 				     void *peer_addr, int peer_addr_len)
2525 {
2526 	struct drbd_resource *resource;
2527 	struct drbd_connection *connection;
2528 
2529 	rcu_read_lock();
2530 	for_each_resource_rcu(resource, &drbd_resources) {
2531 		for_each_connection_rcu(connection, resource) {
2532 			if (connection->my_addr_len == my_addr_len &&
2533 			    connection->peer_addr_len == peer_addr_len &&
2534 			    !memcmp(&connection->my_addr, my_addr, my_addr_len) &&
2535 			    !memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) {
2536 				kref_get(&connection->kref);
2537 				goto found;
2538 			}
2539 		}
2540 	}
2541 	connection = NULL;
2542 found:
2543 	rcu_read_unlock();
2544 	return connection;
2545 }
2546 
2547 static int drbd_alloc_socket(struct drbd_socket *socket)
2548 {
2549 	socket->rbuf = (void *) __get_free_page(GFP_KERNEL);
2550 	if (!socket->rbuf)
2551 		return -ENOMEM;
2552 	socket->sbuf = (void *) __get_free_page(GFP_KERNEL);
2553 	if (!socket->sbuf)
2554 		return -ENOMEM;
2555 	return 0;
2556 }
2557 
2558 static void drbd_free_socket(struct drbd_socket *socket)
2559 {
2560 	free_page((unsigned long) socket->sbuf);
2561 	free_page((unsigned long) socket->rbuf);
2562 }
2563 
2564 void conn_free_crypto(struct drbd_connection *connection)
2565 {
2566 	drbd_free_sock(connection);
2567 
2568 	crypto_free_shash(connection->csums_tfm);
2569 	crypto_free_shash(connection->verify_tfm);
2570 	crypto_free_shash(connection->cram_hmac_tfm);
2571 	crypto_free_shash(connection->integrity_tfm);
2572 	crypto_free_shash(connection->peer_integrity_tfm);
2573 	kfree(connection->int_dig_in);
2574 	kfree(connection->int_dig_vv);
2575 
2576 	connection->csums_tfm = NULL;
2577 	connection->verify_tfm = NULL;
2578 	connection->cram_hmac_tfm = NULL;
2579 	connection->integrity_tfm = NULL;
2580 	connection->peer_integrity_tfm = NULL;
2581 	connection->int_dig_in = NULL;
2582 	connection->int_dig_vv = NULL;
2583 }
2584 
2585 int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts)
2586 {
2587 	struct drbd_connection *connection;
2588 	cpumask_var_t new_cpu_mask;
2589 	int err;
2590 
2591 	if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL))
2592 		return -ENOMEM;
2593 
2594 	/* silently ignore cpu mask on UP kernel */
2595 	if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) {
2596 		err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE,
2597 				   cpumask_bits(new_cpu_mask), nr_cpu_ids);
2598 		if (err == -EOVERFLOW) {
2599 			/* So what. mask it out. */
2600 			cpumask_var_t tmp_cpu_mask;
2601 			if (zalloc_cpumask_var(&tmp_cpu_mask, GFP_KERNEL)) {
2602 				cpumask_setall(tmp_cpu_mask);
2603 				cpumask_and(new_cpu_mask, new_cpu_mask, tmp_cpu_mask);
2604 				drbd_warn(resource, "Overflow in bitmap_parse(%.12s%s), truncating to %u bits\n",
2605 					res_opts->cpu_mask,
2606 					strlen(res_opts->cpu_mask) > 12 ? "..." : "",
2607 					nr_cpu_ids);
2608 				free_cpumask_var(tmp_cpu_mask);
2609 				err = 0;
2610 			}
2611 		}
2612 		if (err) {
2613 			drbd_warn(resource, "bitmap_parse() failed with %d\n", err);
2614 			/* retcode = ERR_CPU_MASK_PARSE; */
2615 			goto fail;
2616 		}
2617 	}
2618 	resource->res_opts = *res_opts;
2619 	if (cpumask_empty(new_cpu_mask))
2620 		drbd_calc_cpu_mask(&new_cpu_mask);
2621 	if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) {
2622 		cpumask_copy(resource->cpu_mask, new_cpu_mask);
2623 		for_each_connection_rcu(connection, resource) {
2624 			connection->receiver.reset_cpu_mask = 1;
2625 			connection->ack_receiver.reset_cpu_mask = 1;
2626 			connection->worker.reset_cpu_mask = 1;
2627 		}
2628 	}
2629 	err = 0;
2630 
2631 fail:
2632 	free_cpumask_var(new_cpu_mask);
2633 	return err;
2634 
2635 }
2636 
2637 struct drbd_resource *drbd_create_resource(const char *name)
2638 {
2639 	struct drbd_resource *resource;
2640 
2641 	resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL);
2642 	if (!resource)
2643 		goto fail;
2644 	resource->name = kstrdup(name, GFP_KERNEL);
2645 	if (!resource->name)
2646 		goto fail_free_resource;
2647 	if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL))
2648 		goto fail_free_name;
2649 	kref_init(&resource->kref);
2650 	idr_init(&resource->devices);
2651 	INIT_LIST_HEAD(&resource->connections);
2652 	resource->write_ordering = WO_BDEV_FLUSH;
2653 	list_add_tail_rcu(&resource->resources, &drbd_resources);
2654 	mutex_init(&resource->conf_update);
2655 	mutex_init(&resource->adm_mutex);
2656 	spin_lock_init(&resource->req_lock);
2657 	drbd_debugfs_resource_add(resource);
2658 	return resource;
2659 
2660 fail_free_name:
2661 	kfree(resource->name);
2662 fail_free_resource:
2663 	kfree(resource);
2664 fail:
2665 	return NULL;
2666 }
2667 
2668 /* caller must be under adm_mutex */
2669 struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts)
2670 {
2671 	struct drbd_resource *resource;
2672 	struct drbd_connection *connection;
2673 
2674 	connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL);
2675 	if (!connection)
2676 		return NULL;
2677 
2678 	if (drbd_alloc_socket(&connection->data))
2679 		goto fail;
2680 	if (drbd_alloc_socket(&connection->meta))
2681 		goto fail;
2682 
2683 	connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL);
2684 	if (!connection->current_epoch)
2685 		goto fail;
2686 
2687 	INIT_LIST_HEAD(&connection->transfer_log);
2688 
2689 	INIT_LIST_HEAD(&connection->current_epoch->list);
2690 	connection->epochs = 1;
2691 	spin_lock_init(&connection->epoch_lock);
2692 
2693 	connection->send.seen_any_write_yet = false;
2694 	connection->send.current_epoch_nr = 0;
2695 	connection->send.current_epoch_writes = 0;
2696 
2697 	resource = drbd_create_resource(name);
2698 	if (!resource)
2699 		goto fail;
2700 
2701 	connection->cstate = C_STANDALONE;
2702 	mutex_init(&connection->cstate_mutex);
2703 	init_waitqueue_head(&connection->ping_wait);
2704 	idr_init(&connection->peer_devices);
2705 
2706 	drbd_init_workqueue(&connection->sender_work);
2707 	mutex_init(&connection->data.mutex);
2708 	mutex_init(&connection->meta.mutex);
2709 
2710 	drbd_thread_init(resource, &connection->receiver, drbd_receiver, "receiver");
2711 	connection->receiver.connection = connection;
2712 	drbd_thread_init(resource, &connection->worker, drbd_worker, "worker");
2713 	connection->worker.connection = connection;
2714 	drbd_thread_init(resource, &connection->ack_receiver, drbd_ack_receiver, "ack_recv");
2715 	connection->ack_receiver.connection = connection;
2716 
2717 	kref_init(&connection->kref);
2718 
2719 	connection->resource = resource;
2720 
2721 	if (set_resource_options(resource, res_opts))
2722 		goto fail_resource;
2723 
2724 	kref_get(&resource->kref);
2725 	list_add_tail_rcu(&connection->connections, &resource->connections);
2726 	drbd_debugfs_connection_add(connection);
2727 	return connection;
2728 
2729 fail_resource:
2730 	list_del(&resource->resources);
2731 	drbd_free_resource(resource);
2732 fail:
2733 	kfree(connection->current_epoch);
2734 	drbd_free_socket(&connection->meta);
2735 	drbd_free_socket(&connection->data);
2736 	kfree(connection);
2737 	return NULL;
2738 }
2739 
2740 void drbd_destroy_connection(struct kref *kref)
2741 {
2742 	struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref);
2743 	struct drbd_resource *resource = connection->resource;
2744 
2745 	if (atomic_read(&connection->current_epoch->epoch_size) !=  0)
2746 		drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size));
2747 	kfree(connection->current_epoch);
2748 
2749 	idr_destroy(&connection->peer_devices);
2750 
2751 	drbd_free_socket(&connection->meta);
2752 	drbd_free_socket(&connection->data);
2753 	kfree(connection->int_dig_in);
2754 	kfree(connection->int_dig_vv);
2755 	memset(connection, 0xfc, sizeof(*connection));
2756 	kfree(connection);
2757 	kref_put(&resource->kref, drbd_destroy_resource);
2758 }
2759 
2760 static int init_submitter(struct drbd_device *device)
2761 {
2762 	/* opencoded create_singlethread_workqueue(),
2763 	 * to be able to say "drbd%d", ..., minor */
2764 	device->submit.wq =
2765 		alloc_ordered_workqueue("drbd%u_submit", WQ_MEM_RECLAIM, device->minor);
2766 	if (!device->submit.wq)
2767 		return -ENOMEM;
2768 
2769 	INIT_WORK(&device->submit.worker, do_submit);
2770 	INIT_LIST_HEAD(&device->submit.writes);
2771 	return 0;
2772 }
2773 
2774 enum drbd_ret_code drbd_create_device(struct drbd_config_context *adm_ctx, unsigned int minor)
2775 {
2776 	struct drbd_resource *resource = adm_ctx->resource;
2777 	struct drbd_connection *connection;
2778 	struct drbd_device *device;
2779 	struct drbd_peer_device *peer_device, *tmp_peer_device;
2780 	struct gendisk *disk;
2781 	struct request_queue *q;
2782 	int id;
2783 	int vnr = adm_ctx->volume;
2784 	enum drbd_ret_code err = ERR_NOMEM;
2785 
2786 	device = minor_to_device(minor);
2787 	if (device)
2788 		return ERR_MINOR_OR_VOLUME_EXISTS;
2789 
2790 	/* GFP_KERNEL, we are outside of all write-out paths */
2791 	device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL);
2792 	if (!device)
2793 		return ERR_NOMEM;
2794 	kref_init(&device->kref);
2795 
2796 	kref_get(&resource->kref);
2797 	device->resource = resource;
2798 	device->minor = minor;
2799 	device->vnr = vnr;
2800 
2801 	drbd_init_set_defaults(device);
2802 
2803 	q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE);
2804 	if (!q)
2805 		goto out_no_q;
2806 	device->rq_queue = q;
2807 	q->queuedata   = device;
2808 
2809 	disk = alloc_disk(1);
2810 	if (!disk)
2811 		goto out_no_disk;
2812 	device->vdisk = disk;
2813 
2814 	set_disk_ro(disk, true);
2815 
2816 	disk->queue = q;
2817 	disk->major = DRBD_MAJOR;
2818 	disk->first_minor = minor;
2819 	disk->fops = &drbd_ops;
2820 	sprintf(disk->disk_name, "drbd%d", minor);
2821 	disk->private_data = device;
2822 
2823 	device->this_bdev = bdget(MKDEV(DRBD_MAJOR, minor));
2824 	/* we have no partitions. we contain only ourselves. */
2825 	device->this_bdev->bd_contains = device->this_bdev;
2826 
2827 	q->backing_dev_info->congested_fn = drbd_congested;
2828 	q->backing_dev_info->congested_data = device;
2829 
2830 	blk_queue_make_request(q, drbd_make_request);
2831 	blk_queue_write_cache(q, true, true);
2832 	/* Setting the max_hw_sectors to an odd value of 8kibyte here
2833 	   This triggers a max_bio_size message upon first attach or connect */
2834 	blk_queue_max_hw_sectors(q, DRBD_MAX_BIO_SIZE_SAFE >> 8);
2835 
2836 	device->md_io.page = alloc_page(GFP_KERNEL);
2837 	if (!device->md_io.page)
2838 		goto out_no_io_page;
2839 
2840 	if (drbd_bm_init(device))
2841 		goto out_no_bitmap;
2842 	device->read_requests = RB_ROOT;
2843 	device->write_requests = RB_ROOT;
2844 
2845 	id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL);
2846 	if (id < 0) {
2847 		if (id == -ENOSPC)
2848 			err = ERR_MINOR_OR_VOLUME_EXISTS;
2849 		goto out_no_minor_idr;
2850 	}
2851 	kref_get(&device->kref);
2852 
2853 	id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL);
2854 	if (id < 0) {
2855 		if (id == -ENOSPC)
2856 			err = ERR_MINOR_OR_VOLUME_EXISTS;
2857 		goto out_idr_remove_minor;
2858 	}
2859 	kref_get(&device->kref);
2860 
2861 	INIT_LIST_HEAD(&device->peer_devices);
2862 	INIT_LIST_HEAD(&device->pending_bitmap_io);
2863 	for_each_connection(connection, resource) {
2864 		peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL);
2865 		if (!peer_device)
2866 			goto out_idr_remove_from_resource;
2867 		peer_device->connection = connection;
2868 		peer_device->device = device;
2869 
2870 		list_add(&peer_device->peer_devices, &device->peer_devices);
2871 		kref_get(&device->kref);
2872 
2873 		id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL);
2874 		if (id < 0) {
2875 			if (id == -ENOSPC)
2876 				err = ERR_INVALID_REQUEST;
2877 			goto out_idr_remove_from_resource;
2878 		}
2879 		kref_get(&connection->kref);
2880 		INIT_WORK(&peer_device->send_acks_work, drbd_send_acks_wf);
2881 	}
2882 
2883 	if (init_submitter(device)) {
2884 		err = ERR_NOMEM;
2885 		goto out_idr_remove_vol;
2886 	}
2887 
2888 	add_disk(disk);
2889 
2890 	/* inherit the connection state */
2891 	device->state.conn = first_connection(resource)->cstate;
2892 	if (device->state.conn == C_WF_REPORT_PARAMS) {
2893 		for_each_peer_device(peer_device, device)
2894 			drbd_connected(peer_device);
2895 	}
2896 	/* move to create_peer_device() */
2897 	for_each_peer_device(peer_device, device)
2898 		drbd_debugfs_peer_device_add(peer_device);
2899 	drbd_debugfs_device_add(device);
2900 	return NO_ERROR;
2901 
2902 out_idr_remove_vol:
2903 	idr_remove(&connection->peer_devices, vnr);
2904 out_idr_remove_from_resource:
2905 	for_each_connection(connection, resource) {
2906 		peer_device = idr_remove(&connection->peer_devices, vnr);
2907 		if (peer_device)
2908 			kref_put(&connection->kref, drbd_destroy_connection);
2909 	}
2910 	for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2911 		list_del(&peer_device->peer_devices);
2912 		kfree(peer_device);
2913 	}
2914 	idr_remove(&resource->devices, vnr);
2915 out_idr_remove_minor:
2916 	idr_remove(&drbd_devices, minor);
2917 	synchronize_rcu();
2918 out_no_minor_idr:
2919 	drbd_bm_cleanup(device);
2920 out_no_bitmap:
2921 	__free_page(device->md_io.page);
2922 out_no_io_page:
2923 	put_disk(disk);
2924 out_no_disk:
2925 	blk_cleanup_queue(q);
2926 out_no_q:
2927 	kref_put(&resource->kref, drbd_destroy_resource);
2928 	kfree(device);
2929 	return err;
2930 }
2931 
2932 void drbd_delete_device(struct drbd_device *device)
2933 {
2934 	struct drbd_resource *resource = device->resource;
2935 	struct drbd_connection *connection;
2936 	struct drbd_peer_device *peer_device;
2937 
2938 	/* move to free_peer_device() */
2939 	for_each_peer_device(peer_device, device)
2940 		drbd_debugfs_peer_device_cleanup(peer_device);
2941 	drbd_debugfs_device_cleanup(device);
2942 	for_each_connection(connection, resource) {
2943 		idr_remove(&connection->peer_devices, device->vnr);
2944 		kref_put(&device->kref, drbd_destroy_device);
2945 	}
2946 	idr_remove(&resource->devices, device->vnr);
2947 	kref_put(&device->kref, drbd_destroy_device);
2948 	idr_remove(&drbd_devices, device_to_minor(device));
2949 	kref_put(&device->kref, drbd_destroy_device);
2950 	del_gendisk(device->vdisk);
2951 	synchronize_rcu();
2952 	kref_put(&device->kref, drbd_destroy_device);
2953 }
2954 
2955 static int __init drbd_init(void)
2956 {
2957 	int err;
2958 
2959 	if (drbd_minor_count < DRBD_MINOR_COUNT_MIN || drbd_minor_count > DRBD_MINOR_COUNT_MAX) {
2960 		pr_err("invalid minor_count (%d)\n", drbd_minor_count);
2961 #ifdef MODULE
2962 		return -EINVAL;
2963 #else
2964 		drbd_minor_count = DRBD_MINOR_COUNT_DEF;
2965 #endif
2966 	}
2967 
2968 	err = register_blkdev(DRBD_MAJOR, "drbd");
2969 	if (err) {
2970 		pr_err("unable to register block device major %d\n",
2971 		       DRBD_MAJOR);
2972 		return err;
2973 	}
2974 
2975 	/*
2976 	 * allocate all necessary structs
2977 	 */
2978 	init_waitqueue_head(&drbd_pp_wait);
2979 
2980 	drbd_proc = NULL; /* play safe for drbd_cleanup */
2981 	idr_init(&drbd_devices);
2982 
2983 	mutex_init(&resources_mutex);
2984 	INIT_LIST_HEAD(&drbd_resources);
2985 
2986 	err = drbd_genl_register();
2987 	if (err) {
2988 		pr_err("unable to register generic netlink family\n");
2989 		goto fail;
2990 	}
2991 
2992 	err = drbd_create_mempools();
2993 	if (err)
2994 		goto fail;
2995 
2996 	err = -ENOMEM;
2997 	drbd_proc = proc_create_single("drbd", S_IFREG | 0444 , NULL, drbd_seq_show);
2998 	if (!drbd_proc)	{
2999 		pr_err("unable to register proc file\n");
3000 		goto fail;
3001 	}
3002 
3003 	retry.wq = create_singlethread_workqueue("drbd-reissue");
3004 	if (!retry.wq) {
3005 		pr_err("unable to create retry workqueue\n");
3006 		goto fail;
3007 	}
3008 	INIT_WORK(&retry.worker, do_retry);
3009 	spin_lock_init(&retry.lock);
3010 	INIT_LIST_HEAD(&retry.writes);
3011 
3012 	drbd_debugfs_init();
3013 
3014 	pr_info("initialized. "
3015 	       "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n",
3016 	       API_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX);
3017 	pr_info("%s\n", drbd_buildtag());
3018 	pr_info("registered as block device major %d\n", DRBD_MAJOR);
3019 	return 0; /* Success! */
3020 
3021 fail:
3022 	drbd_cleanup();
3023 	if (err == -ENOMEM)
3024 		pr_err("ran out of memory\n");
3025 	else
3026 		pr_err("initialization failure\n");
3027 	return err;
3028 }
3029 
3030 static void drbd_free_one_sock(struct drbd_socket *ds)
3031 {
3032 	struct socket *s;
3033 	mutex_lock(&ds->mutex);
3034 	s = ds->socket;
3035 	ds->socket = NULL;
3036 	mutex_unlock(&ds->mutex);
3037 	if (s) {
3038 		/* so debugfs does not need to mutex_lock() */
3039 		synchronize_rcu();
3040 		kernel_sock_shutdown(s, SHUT_RDWR);
3041 		sock_release(s);
3042 	}
3043 }
3044 
3045 void drbd_free_sock(struct drbd_connection *connection)
3046 {
3047 	if (connection->data.socket)
3048 		drbd_free_one_sock(&connection->data);
3049 	if (connection->meta.socket)
3050 		drbd_free_one_sock(&connection->meta);
3051 }
3052 
3053 /* meta data management */
3054 
3055 void conn_md_sync(struct drbd_connection *connection)
3056 {
3057 	struct drbd_peer_device *peer_device;
3058 	int vnr;
3059 
3060 	rcu_read_lock();
3061 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
3062 		struct drbd_device *device = peer_device->device;
3063 
3064 		kref_get(&device->kref);
3065 		rcu_read_unlock();
3066 		drbd_md_sync(device);
3067 		kref_put(&device->kref, drbd_destroy_device);
3068 		rcu_read_lock();
3069 	}
3070 	rcu_read_unlock();
3071 }
3072 
3073 /* aligned 4kByte */
3074 struct meta_data_on_disk {
3075 	u64 la_size_sect;      /* last agreed size. */
3076 	u64 uuid[UI_SIZE];   /* UUIDs. */
3077 	u64 device_uuid;
3078 	u64 reserved_u64_1;
3079 	u32 flags;             /* MDF */
3080 	u32 magic;
3081 	u32 md_size_sect;
3082 	u32 al_offset;         /* offset to this block */
3083 	u32 al_nr_extents;     /* important for restoring the AL (userspace) */
3084 	      /* `-- act_log->nr_elements <-- ldev->dc.al_extents */
3085 	u32 bm_offset;         /* offset to the bitmap, from here */
3086 	u32 bm_bytes_per_bit;  /* BM_BLOCK_SIZE */
3087 	u32 la_peer_max_bio_size;   /* last peer max_bio_size */
3088 
3089 	/* see al_tr_number_to_on_disk_sector() */
3090 	u32 al_stripes;
3091 	u32 al_stripe_size_4k;
3092 
3093 	u8 reserved_u8[4096 - (7*8 + 10*4)];
3094 } __packed;
3095 
3096 
3097 
3098 void drbd_md_write(struct drbd_device *device, void *b)
3099 {
3100 	struct meta_data_on_disk *buffer = b;
3101 	sector_t sector;
3102 	int i;
3103 
3104 	memset(buffer, 0, sizeof(*buffer));
3105 
3106 	buffer->la_size_sect = cpu_to_be64(drbd_get_capacity(device->this_bdev));
3107 	for (i = UI_CURRENT; i < UI_SIZE; i++)
3108 		buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
3109 	buffer->flags = cpu_to_be32(device->ldev->md.flags);
3110 	buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN);
3111 
3112 	buffer->md_size_sect  = cpu_to_be32(device->ldev->md.md_size_sect);
3113 	buffer->al_offset     = cpu_to_be32(device->ldev->md.al_offset);
3114 	buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements);
3115 	buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE);
3116 	buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid);
3117 
3118 	buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset);
3119 	buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size);
3120 
3121 	buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes);
3122 	buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k);
3123 
3124 	D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset);
3125 	sector = device->ldev->md.md_offset;
3126 
3127 	if (drbd_md_sync_page_io(device, device->ldev, sector, REQ_OP_WRITE)) {
3128 		/* this was a try anyways ... */
3129 		drbd_err(device, "meta data update failed!\n");
3130 		drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR);
3131 	}
3132 }
3133 
3134 /**
3135  * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set
3136  * @device:	DRBD device.
3137  */
3138 void drbd_md_sync(struct drbd_device *device)
3139 {
3140 	struct meta_data_on_disk *buffer;
3141 
3142 	/* Don't accidentally change the DRBD meta data layout. */
3143 	BUILD_BUG_ON(UI_SIZE != 4);
3144 	BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096);
3145 
3146 	del_timer(&device->md_sync_timer);
3147 	/* timer may be rearmed by drbd_md_mark_dirty() now. */
3148 	if (!test_and_clear_bit(MD_DIRTY, &device->flags))
3149 		return;
3150 
3151 	/* We use here D_FAILED and not D_ATTACHING because we try to write
3152 	 * metadata even if we detach due to a disk failure! */
3153 	if (!get_ldev_if_state(device, D_FAILED))
3154 		return;
3155 
3156 	buffer = drbd_md_get_buffer(device, __func__);
3157 	if (!buffer)
3158 		goto out;
3159 
3160 	drbd_md_write(device, buffer);
3161 
3162 	/* Update device->ldev->md.la_size_sect,
3163 	 * since we updated it on metadata. */
3164 	device->ldev->md.la_size_sect = drbd_get_capacity(device->this_bdev);
3165 
3166 	drbd_md_put_buffer(device);
3167 out:
3168 	put_ldev(device);
3169 }
3170 
3171 static int check_activity_log_stripe_size(struct drbd_device *device,
3172 		struct meta_data_on_disk *on_disk,
3173 		struct drbd_md *in_core)
3174 {
3175 	u32 al_stripes = be32_to_cpu(on_disk->al_stripes);
3176 	u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k);
3177 	u64 al_size_4k;
3178 
3179 	/* both not set: default to old fixed size activity log */
3180 	if (al_stripes == 0 && al_stripe_size_4k == 0) {
3181 		al_stripes = 1;
3182 		al_stripe_size_4k = MD_32kB_SECT/8;
3183 	}
3184 
3185 	/* some paranoia plausibility checks */
3186 
3187 	/* we need both values to be set */
3188 	if (al_stripes == 0 || al_stripe_size_4k == 0)
3189 		goto err;
3190 
3191 	al_size_4k = (u64)al_stripes * al_stripe_size_4k;
3192 
3193 	/* Upper limit of activity log area, to avoid potential overflow
3194 	 * problems in al_tr_number_to_on_disk_sector(). As right now, more
3195 	 * than 72 * 4k blocks total only increases the amount of history,
3196 	 * limiting this arbitrarily to 16 GB is not a real limitation ;-)  */
3197 	if (al_size_4k > (16 * 1024 * 1024/4))
3198 		goto err;
3199 
3200 	/* Lower limit: we need at least 8 transaction slots (32kB)
3201 	 * to not break existing setups */
3202 	if (al_size_4k < MD_32kB_SECT/8)
3203 		goto err;
3204 
3205 	in_core->al_stripe_size_4k = al_stripe_size_4k;
3206 	in_core->al_stripes = al_stripes;
3207 	in_core->al_size_4k = al_size_4k;
3208 
3209 	return 0;
3210 err:
3211 	drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n",
3212 			al_stripes, al_stripe_size_4k);
3213 	return -EINVAL;
3214 }
3215 
3216 static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev)
3217 {
3218 	sector_t capacity = drbd_get_capacity(bdev->md_bdev);
3219 	struct drbd_md *in_core = &bdev->md;
3220 	s32 on_disk_al_sect;
3221 	s32 on_disk_bm_sect;
3222 
3223 	/* The on-disk size of the activity log, calculated from offsets, and
3224 	 * the size of the activity log calculated from the stripe settings,
3225 	 * should match.
3226 	 * Though we could relax this a bit: it is ok, if the striped activity log
3227 	 * fits in the available on-disk activity log size.
3228 	 * Right now, that would break how resize is implemented.
3229 	 * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware
3230 	 * of possible unused padding space in the on disk layout. */
3231 	if (in_core->al_offset < 0) {
3232 		if (in_core->bm_offset > in_core->al_offset)
3233 			goto err;
3234 		on_disk_al_sect = -in_core->al_offset;
3235 		on_disk_bm_sect = in_core->al_offset - in_core->bm_offset;
3236 	} else {
3237 		if (in_core->al_offset != MD_4kB_SECT)
3238 			goto err;
3239 		if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT)
3240 			goto err;
3241 
3242 		on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT;
3243 		on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset;
3244 	}
3245 
3246 	/* old fixed size meta data is exactly that: fixed. */
3247 	if (in_core->meta_dev_idx >= 0) {
3248 		if (in_core->md_size_sect != MD_128MB_SECT
3249 		||  in_core->al_offset != MD_4kB_SECT
3250 		||  in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT
3251 		||  in_core->al_stripes != 1
3252 		||  in_core->al_stripe_size_4k != MD_32kB_SECT/8)
3253 			goto err;
3254 	}
3255 
3256 	if (capacity < in_core->md_size_sect)
3257 		goto err;
3258 	if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev))
3259 		goto err;
3260 
3261 	/* should be aligned, and at least 32k */
3262 	if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT))
3263 		goto err;
3264 
3265 	/* should fit (for now: exactly) into the available on-disk space;
3266 	 * overflow prevention is in check_activity_log_stripe_size() above. */
3267 	if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT)
3268 		goto err;
3269 
3270 	/* again, should be aligned */
3271 	if (in_core->bm_offset & 7)
3272 		goto err;
3273 
3274 	/* FIXME check for device grow with flex external meta data? */
3275 
3276 	/* can the available bitmap space cover the last agreed device size? */
3277 	if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512)
3278 		goto err;
3279 
3280 	return 0;
3281 
3282 err:
3283 	drbd_err(device, "meta data offsets don't make sense: idx=%d "
3284 			"al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, "
3285 			"md_size_sect=%u, la_size=%llu, md_capacity=%llu\n",
3286 			in_core->meta_dev_idx,
3287 			in_core->al_stripes, in_core->al_stripe_size_4k,
3288 			in_core->al_offset, in_core->bm_offset, in_core->md_size_sect,
3289 			(unsigned long long)in_core->la_size_sect,
3290 			(unsigned long long)capacity);
3291 
3292 	return -EINVAL;
3293 }
3294 
3295 
3296 /**
3297  * drbd_md_read() - Reads in the meta data super block
3298  * @device:	DRBD device.
3299  * @bdev:	Device from which the meta data should be read in.
3300  *
3301  * Return NO_ERROR on success, and an enum drbd_ret_code in case
3302  * something goes wrong.
3303  *
3304  * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS,
3305  * even before @bdev is assigned to @device->ldev.
3306  */
3307 int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev)
3308 {
3309 	struct meta_data_on_disk *buffer;
3310 	u32 magic, flags;
3311 	int i, rv = NO_ERROR;
3312 
3313 	if (device->state.disk != D_DISKLESS)
3314 		return ERR_DISK_CONFIGURED;
3315 
3316 	buffer = drbd_md_get_buffer(device, __func__);
3317 	if (!buffer)
3318 		return ERR_NOMEM;
3319 
3320 	/* First, figure out where our meta data superblock is located,
3321 	 * and read it. */
3322 	bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx;
3323 	bdev->md.md_offset = drbd_md_ss(bdev);
3324 	/* Even for (flexible or indexed) external meta data,
3325 	 * initially restrict us to the 4k superblock for now.
3326 	 * Affects the paranoia out-of-range access check in drbd_md_sync_page_io(). */
3327 	bdev->md.md_size_sect = 8;
3328 
3329 	if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset,
3330 				 REQ_OP_READ)) {
3331 		/* NOTE: can't do normal error processing here as this is
3332 		   called BEFORE disk is attached */
3333 		drbd_err(device, "Error while reading metadata.\n");
3334 		rv = ERR_IO_MD_DISK;
3335 		goto err;
3336 	}
3337 
3338 	magic = be32_to_cpu(buffer->magic);
3339 	flags = be32_to_cpu(buffer->flags);
3340 	if (magic == DRBD_MD_MAGIC_84_UNCLEAN ||
3341 	    (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) {
3342 			/* btw: that's Activity Log clean, not "all" clean. */
3343 		drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n");
3344 		rv = ERR_MD_UNCLEAN;
3345 		goto err;
3346 	}
3347 
3348 	rv = ERR_MD_INVALID;
3349 	if (magic != DRBD_MD_MAGIC_08) {
3350 		if (magic == DRBD_MD_MAGIC_07)
3351 			drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n");
3352 		else
3353 			drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n");
3354 		goto err;
3355 	}
3356 
3357 	if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) {
3358 		drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n",
3359 		    be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE);
3360 		goto err;
3361 	}
3362 
3363 
3364 	/* convert to in_core endian */
3365 	bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect);
3366 	for (i = UI_CURRENT; i < UI_SIZE; i++)
3367 		bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]);
3368 	bdev->md.flags = be32_to_cpu(buffer->flags);
3369 	bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid);
3370 
3371 	bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect);
3372 	bdev->md.al_offset = be32_to_cpu(buffer->al_offset);
3373 	bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset);
3374 
3375 	if (check_activity_log_stripe_size(device, buffer, &bdev->md))
3376 		goto err;
3377 	if (check_offsets_and_sizes(device, bdev))
3378 		goto err;
3379 
3380 	if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) {
3381 		drbd_err(device, "unexpected bm_offset: %d (expected %d)\n",
3382 		    be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset);
3383 		goto err;
3384 	}
3385 	if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) {
3386 		drbd_err(device, "unexpected md_size: %u (expected %u)\n",
3387 		    be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect);
3388 		goto err;
3389 	}
3390 
3391 	rv = NO_ERROR;
3392 
3393 	spin_lock_irq(&device->resource->req_lock);
3394 	if (device->state.conn < C_CONNECTED) {
3395 		unsigned int peer;
3396 		peer = be32_to_cpu(buffer->la_peer_max_bio_size);
3397 		peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE);
3398 		device->peer_max_bio_size = peer;
3399 	}
3400 	spin_unlock_irq(&device->resource->req_lock);
3401 
3402  err:
3403 	drbd_md_put_buffer(device);
3404 
3405 	return rv;
3406 }
3407 
3408 /**
3409  * drbd_md_mark_dirty() - Mark meta data super block as dirty
3410  * @device:	DRBD device.
3411  *
3412  * Call this function if you change anything that should be written to
3413  * the meta-data super block. This function sets MD_DIRTY, and starts a
3414  * timer that ensures that within five seconds you have to call drbd_md_sync().
3415  */
3416 #ifdef DEBUG
3417 void drbd_md_mark_dirty_(struct drbd_device *device, unsigned int line, const char *func)
3418 {
3419 	if (!test_and_set_bit(MD_DIRTY, &device->flags)) {
3420 		mod_timer(&device->md_sync_timer, jiffies + HZ);
3421 		device->last_md_mark_dirty.line = line;
3422 		device->last_md_mark_dirty.func = func;
3423 	}
3424 }
3425 #else
3426 void drbd_md_mark_dirty(struct drbd_device *device)
3427 {
3428 	if (!test_and_set_bit(MD_DIRTY, &device->flags))
3429 		mod_timer(&device->md_sync_timer, jiffies + 5*HZ);
3430 }
3431 #endif
3432 
3433 void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local)
3434 {
3435 	int i;
3436 
3437 	for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++)
3438 		device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i];
3439 }
3440 
3441 void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3442 {
3443 	if (idx == UI_CURRENT) {
3444 		if (device->state.role == R_PRIMARY)
3445 			val |= 1;
3446 		else
3447 			val &= ~((u64)1);
3448 
3449 		drbd_set_ed_uuid(device, val);
3450 	}
3451 
3452 	device->ldev->md.uuid[idx] = val;
3453 	drbd_md_mark_dirty(device);
3454 }
3455 
3456 void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3457 {
3458 	unsigned long flags;
3459 	spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3460 	__drbd_uuid_set(device, idx, val);
3461 	spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3462 }
3463 
3464 void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3465 {
3466 	unsigned long flags;
3467 	spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3468 	if (device->ldev->md.uuid[idx]) {
3469 		drbd_uuid_move_history(device);
3470 		device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx];
3471 	}
3472 	__drbd_uuid_set(device, idx, val);
3473 	spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3474 }
3475 
3476 /**
3477  * drbd_uuid_new_current() - Creates a new current UUID
3478  * @device:	DRBD device.
3479  *
3480  * Creates a new current UUID, and rotates the old current UUID into
3481  * the bitmap slot. Causes an incremental resync upon next connect.
3482  */
3483 void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local)
3484 {
3485 	u64 val;
3486 	unsigned long long bm_uuid;
3487 
3488 	get_random_bytes(&val, sizeof(u64));
3489 
3490 	spin_lock_irq(&device->ldev->md.uuid_lock);
3491 	bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3492 
3493 	if (bm_uuid)
3494 		drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3495 
3496 	device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT];
3497 	__drbd_uuid_set(device, UI_CURRENT, val);
3498 	spin_unlock_irq(&device->ldev->md.uuid_lock);
3499 
3500 	drbd_print_uuids(device, "new current UUID");
3501 	/* get it to stable storage _now_ */
3502 	drbd_md_sync(device);
3503 }
3504 
3505 void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local)
3506 {
3507 	unsigned long flags;
3508 	if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0)
3509 		return;
3510 
3511 	spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3512 	if (val == 0) {
3513 		drbd_uuid_move_history(device);
3514 		device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP];
3515 		device->ldev->md.uuid[UI_BITMAP] = 0;
3516 	} else {
3517 		unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3518 		if (bm_uuid)
3519 			drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3520 
3521 		device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1);
3522 	}
3523 	spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3524 
3525 	drbd_md_mark_dirty(device);
3526 }
3527 
3528 /**
3529  * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3530  * @device:	DRBD device.
3531  *
3532  * Sets all bits in the bitmap and writes the whole bitmap to stable storage.
3533  */
3534 int drbd_bmio_set_n_write(struct drbd_device *device) __must_hold(local)
3535 {
3536 	int rv = -EIO;
3537 
3538 	drbd_md_set_flag(device, MDF_FULL_SYNC);
3539 	drbd_md_sync(device);
3540 	drbd_bm_set_all(device);
3541 
3542 	rv = drbd_bm_write(device);
3543 
3544 	if (!rv) {
3545 		drbd_md_clear_flag(device, MDF_FULL_SYNC);
3546 		drbd_md_sync(device);
3547 	}
3548 
3549 	return rv;
3550 }
3551 
3552 /**
3553  * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3554  * @device:	DRBD device.
3555  *
3556  * Clears all bits in the bitmap and writes the whole bitmap to stable storage.
3557  */
3558 int drbd_bmio_clear_n_write(struct drbd_device *device) __must_hold(local)
3559 {
3560 	drbd_resume_al(device);
3561 	drbd_bm_clear_all(device);
3562 	return drbd_bm_write(device);
3563 }
3564 
3565 static int w_bitmap_io(struct drbd_work *w, int unused)
3566 {
3567 	struct drbd_device *device =
3568 		container_of(w, struct drbd_device, bm_io_work.w);
3569 	struct bm_io_work *work = &device->bm_io_work;
3570 	int rv = -EIO;
3571 
3572 	if (work->flags != BM_LOCKED_CHANGE_ALLOWED) {
3573 		int cnt = atomic_read(&device->ap_bio_cnt);
3574 		if (cnt)
3575 			drbd_err(device, "FIXME: ap_bio_cnt %d, expected 0; queued for '%s'\n",
3576 					cnt, work->why);
3577 	}
3578 
3579 	if (get_ldev(device)) {
3580 		drbd_bm_lock(device, work->why, work->flags);
3581 		rv = work->io_fn(device);
3582 		drbd_bm_unlock(device);
3583 		put_ldev(device);
3584 	}
3585 
3586 	clear_bit_unlock(BITMAP_IO, &device->flags);
3587 	wake_up(&device->misc_wait);
3588 
3589 	if (work->done)
3590 		work->done(device, rv);
3591 
3592 	clear_bit(BITMAP_IO_QUEUED, &device->flags);
3593 	work->why = NULL;
3594 	work->flags = 0;
3595 
3596 	return 0;
3597 }
3598 
3599 /**
3600  * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap
3601  * @device:	DRBD device.
3602  * @io_fn:	IO callback to be called when bitmap IO is possible
3603  * @done:	callback to be called after the bitmap IO was performed
3604  * @why:	Descriptive text of the reason for doing the IO
3605  *
3606  * While IO on the bitmap happens we freeze application IO thus we ensure
3607  * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be
3608  * called from worker context. It MUST NOT be used while a previous such
3609  * work is still pending!
3610  *
3611  * Its worker function encloses the call of io_fn() by get_ldev() and
3612  * put_ldev().
3613  */
3614 void drbd_queue_bitmap_io(struct drbd_device *device,
3615 			  int (*io_fn)(struct drbd_device *),
3616 			  void (*done)(struct drbd_device *, int),
3617 			  char *why, enum bm_flag flags)
3618 {
3619 	D_ASSERT(device, current == first_peer_device(device)->connection->worker.task);
3620 
3621 	D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags));
3622 	D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags));
3623 	D_ASSERT(device, list_empty(&device->bm_io_work.w.list));
3624 	if (device->bm_io_work.why)
3625 		drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n",
3626 			why, device->bm_io_work.why);
3627 
3628 	device->bm_io_work.io_fn = io_fn;
3629 	device->bm_io_work.done = done;
3630 	device->bm_io_work.why = why;
3631 	device->bm_io_work.flags = flags;
3632 
3633 	spin_lock_irq(&device->resource->req_lock);
3634 	set_bit(BITMAP_IO, &device->flags);
3635 	/* don't wait for pending application IO if the caller indicates that
3636 	 * application IO does not conflict anyways. */
3637 	if (flags == BM_LOCKED_CHANGE_ALLOWED || atomic_read(&device->ap_bio_cnt) == 0) {
3638 		if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags))
3639 			drbd_queue_work(&first_peer_device(device)->connection->sender_work,
3640 					&device->bm_io_work.w);
3641 	}
3642 	spin_unlock_irq(&device->resource->req_lock);
3643 }
3644 
3645 /**
3646  * drbd_bitmap_io() -  Does an IO operation on the whole bitmap
3647  * @device:	DRBD device.
3648  * @io_fn:	IO callback to be called when bitmap IO is possible
3649  * @why:	Descriptive text of the reason for doing the IO
3650  *
3651  * freezes application IO while that the actual IO operations runs. This
3652  * functions MAY NOT be called from worker context.
3653  */
3654 int drbd_bitmap_io(struct drbd_device *device, int (*io_fn)(struct drbd_device *),
3655 		char *why, enum bm_flag flags)
3656 {
3657 	/* Only suspend io, if some operation is supposed to be locked out */
3658 	const bool do_suspend_io = flags & (BM_DONT_CLEAR|BM_DONT_SET|BM_DONT_TEST);
3659 	int rv;
3660 
3661 	D_ASSERT(device, current != first_peer_device(device)->connection->worker.task);
3662 
3663 	if (do_suspend_io)
3664 		drbd_suspend_io(device);
3665 
3666 	drbd_bm_lock(device, why, flags);
3667 	rv = io_fn(device);
3668 	drbd_bm_unlock(device);
3669 
3670 	if (do_suspend_io)
3671 		drbd_resume_io(device);
3672 
3673 	return rv;
3674 }
3675 
3676 void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local)
3677 {
3678 	if ((device->ldev->md.flags & flag) != flag) {
3679 		drbd_md_mark_dirty(device);
3680 		device->ldev->md.flags |= flag;
3681 	}
3682 }
3683 
3684 void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local)
3685 {
3686 	if ((device->ldev->md.flags & flag) != 0) {
3687 		drbd_md_mark_dirty(device);
3688 		device->ldev->md.flags &= ~flag;
3689 	}
3690 }
3691 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag)
3692 {
3693 	return (bdev->md.flags & flag) != 0;
3694 }
3695 
3696 static void md_sync_timer_fn(struct timer_list *t)
3697 {
3698 	struct drbd_device *device = from_timer(device, t, md_sync_timer);
3699 	drbd_device_post_work(device, MD_SYNC);
3700 }
3701 
3702 const char *cmdname(enum drbd_packet cmd)
3703 {
3704 	/* THINK may need to become several global tables
3705 	 * when we want to support more than
3706 	 * one PRO_VERSION */
3707 	static const char *cmdnames[] = {
3708 		[P_DATA]	        = "Data",
3709 		[P_WSAME]	        = "WriteSame",
3710 		[P_TRIM]	        = "Trim",
3711 		[P_DATA_REPLY]	        = "DataReply",
3712 		[P_RS_DATA_REPLY]	= "RSDataReply",
3713 		[P_BARRIER]	        = "Barrier",
3714 		[P_BITMAP]	        = "ReportBitMap",
3715 		[P_BECOME_SYNC_TARGET]  = "BecomeSyncTarget",
3716 		[P_BECOME_SYNC_SOURCE]  = "BecomeSyncSource",
3717 		[P_UNPLUG_REMOTE]	= "UnplugRemote",
3718 		[P_DATA_REQUEST]	= "DataRequest",
3719 		[P_RS_DATA_REQUEST]     = "RSDataRequest",
3720 		[P_SYNC_PARAM]	        = "SyncParam",
3721 		[P_SYNC_PARAM89]	= "SyncParam89",
3722 		[P_PROTOCOL]            = "ReportProtocol",
3723 		[P_UUIDS]	        = "ReportUUIDs",
3724 		[P_SIZES]	        = "ReportSizes",
3725 		[P_STATE]	        = "ReportState",
3726 		[P_SYNC_UUID]           = "ReportSyncUUID",
3727 		[P_AUTH_CHALLENGE]      = "AuthChallenge",
3728 		[P_AUTH_RESPONSE]	= "AuthResponse",
3729 		[P_PING]		= "Ping",
3730 		[P_PING_ACK]	        = "PingAck",
3731 		[P_RECV_ACK]	        = "RecvAck",
3732 		[P_WRITE_ACK]	        = "WriteAck",
3733 		[P_RS_WRITE_ACK]	= "RSWriteAck",
3734 		[P_SUPERSEDED]          = "Superseded",
3735 		[P_NEG_ACK]	        = "NegAck",
3736 		[P_NEG_DREPLY]	        = "NegDReply",
3737 		[P_NEG_RS_DREPLY]	= "NegRSDReply",
3738 		[P_BARRIER_ACK]	        = "BarrierAck",
3739 		[P_STATE_CHG_REQ]       = "StateChgRequest",
3740 		[P_STATE_CHG_REPLY]     = "StateChgReply",
3741 		[P_OV_REQUEST]          = "OVRequest",
3742 		[P_OV_REPLY]            = "OVReply",
3743 		[P_OV_RESULT]           = "OVResult",
3744 		[P_CSUM_RS_REQUEST]     = "CsumRSRequest",
3745 		[P_RS_IS_IN_SYNC]	= "CsumRSIsInSync",
3746 		[P_COMPRESSED_BITMAP]   = "CBitmap",
3747 		[P_DELAY_PROBE]         = "DelayProbe",
3748 		[P_OUT_OF_SYNC]		= "OutOfSync",
3749 		[P_RETRY_WRITE]		= "RetryWrite",
3750 		[P_RS_CANCEL]		= "RSCancel",
3751 		[P_CONN_ST_CHG_REQ]	= "conn_st_chg_req",
3752 		[P_CONN_ST_CHG_REPLY]	= "conn_st_chg_reply",
3753 		[P_RETRY_WRITE]		= "retry_write",
3754 		[P_PROTOCOL_UPDATE]	= "protocol_update",
3755 		[P_RS_THIN_REQ]         = "rs_thin_req",
3756 		[P_RS_DEALLOCATED]      = "rs_deallocated",
3757 
3758 		/* enum drbd_packet, but not commands - obsoleted flags:
3759 		 *	P_MAY_IGNORE
3760 		 *	P_MAX_OPT_CMD
3761 		 */
3762 	};
3763 
3764 	/* too big for the array: 0xfffX */
3765 	if (cmd == P_INITIAL_META)
3766 		return "InitialMeta";
3767 	if (cmd == P_INITIAL_DATA)
3768 		return "InitialData";
3769 	if (cmd == P_CONNECTION_FEATURES)
3770 		return "ConnectionFeatures";
3771 	if (cmd >= ARRAY_SIZE(cmdnames))
3772 		return "Unknown";
3773 	return cmdnames[cmd];
3774 }
3775 
3776 /**
3777  * drbd_wait_misc  -  wait for a request to make progress
3778  * @device:	device associated with the request
3779  * @i:		the struct drbd_interval embedded in struct drbd_request or
3780  *		struct drbd_peer_request
3781  */
3782 int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i)
3783 {
3784 	struct net_conf *nc;
3785 	DEFINE_WAIT(wait);
3786 	long timeout;
3787 
3788 	rcu_read_lock();
3789 	nc = rcu_dereference(first_peer_device(device)->connection->net_conf);
3790 	if (!nc) {
3791 		rcu_read_unlock();
3792 		return -ETIMEDOUT;
3793 	}
3794 	timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT;
3795 	rcu_read_unlock();
3796 
3797 	/* Indicate to wake up device->misc_wait on progress.  */
3798 	i->waiting = true;
3799 	prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE);
3800 	spin_unlock_irq(&device->resource->req_lock);
3801 	timeout = schedule_timeout(timeout);
3802 	finish_wait(&device->misc_wait, &wait);
3803 	spin_lock_irq(&device->resource->req_lock);
3804 	if (!timeout || device->state.conn < C_CONNECTED)
3805 		return -ETIMEDOUT;
3806 	if (signal_pending(current))
3807 		return -ERESTARTSYS;
3808 	return 0;
3809 }
3810 
3811 void lock_all_resources(void)
3812 {
3813 	struct drbd_resource *resource;
3814 	int __maybe_unused i = 0;
3815 
3816 	mutex_lock(&resources_mutex);
3817 	local_irq_disable();
3818 	for_each_resource(resource, &drbd_resources)
3819 		spin_lock_nested(&resource->req_lock, i++);
3820 }
3821 
3822 void unlock_all_resources(void)
3823 {
3824 	struct drbd_resource *resource;
3825 
3826 	for_each_resource(resource, &drbd_resources)
3827 		spin_unlock(&resource->req_lock);
3828 	local_irq_enable();
3829 	mutex_unlock(&resources_mutex);
3830 }
3831 
3832 #ifdef CONFIG_DRBD_FAULT_INJECTION
3833 /* Fault insertion support including random number generator shamelessly
3834  * stolen from kernel/rcutorture.c */
3835 struct fault_random_state {
3836 	unsigned long state;
3837 	unsigned long count;
3838 };
3839 
3840 #define FAULT_RANDOM_MULT 39916801  /* prime */
3841 #define FAULT_RANDOM_ADD	479001701 /* prime */
3842 #define FAULT_RANDOM_REFRESH 10000
3843 
3844 /*
3845  * Crude but fast random-number generator.  Uses a linear congruential
3846  * generator, with occasional help from get_random_bytes().
3847  */
3848 static unsigned long
3849 _drbd_fault_random(struct fault_random_state *rsp)
3850 {
3851 	long refresh;
3852 
3853 	if (!rsp->count--) {
3854 		get_random_bytes(&refresh, sizeof(refresh));
3855 		rsp->state += refresh;
3856 		rsp->count = FAULT_RANDOM_REFRESH;
3857 	}
3858 	rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD;
3859 	return swahw32(rsp->state);
3860 }
3861 
3862 static char *
3863 _drbd_fault_str(unsigned int type) {
3864 	static char *_faults[] = {
3865 		[DRBD_FAULT_MD_WR] = "Meta-data write",
3866 		[DRBD_FAULT_MD_RD] = "Meta-data read",
3867 		[DRBD_FAULT_RS_WR] = "Resync write",
3868 		[DRBD_FAULT_RS_RD] = "Resync read",
3869 		[DRBD_FAULT_DT_WR] = "Data write",
3870 		[DRBD_FAULT_DT_RD] = "Data read",
3871 		[DRBD_FAULT_DT_RA] = "Data read ahead",
3872 		[DRBD_FAULT_BM_ALLOC] = "BM allocation",
3873 		[DRBD_FAULT_AL_EE] = "EE allocation",
3874 		[DRBD_FAULT_RECEIVE] = "receive data corruption",
3875 	};
3876 
3877 	return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**";
3878 }
3879 
3880 unsigned int
3881 _drbd_insert_fault(struct drbd_device *device, unsigned int type)
3882 {
3883 	static struct fault_random_state rrs = {0, 0};
3884 
3885 	unsigned int ret = (
3886 		(drbd_fault_devs == 0 ||
3887 			((1 << device_to_minor(device)) & drbd_fault_devs) != 0) &&
3888 		(((_drbd_fault_random(&rrs) % 100) + 1) <= drbd_fault_rate));
3889 
3890 	if (ret) {
3891 		drbd_fault_count++;
3892 
3893 		if (__ratelimit(&drbd_ratelimit_state))
3894 			drbd_warn(device, "***Simulating %s failure\n",
3895 				_drbd_fault_str(type));
3896 	}
3897 
3898 	return ret;
3899 }
3900 #endif
3901 
3902 const char *drbd_buildtag(void)
3903 {
3904 	/* DRBD built from external sources has here a reference to the
3905 	   git hash of the source code. */
3906 
3907 	static char buildtag[38] = "\0uilt-in";
3908 
3909 	if (buildtag[0] == 0) {
3910 #ifdef MODULE
3911 		sprintf(buildtag, "srcversion: %-24s", THIS_MODULE->srcversion);
3912 #else
3913 		buildtag[0] = 'b';
3914 #endif
3915 	}
3916 
3917 	return buildtag;
3918 }
3919 
3920 module_init(drbd_init)
3921 module_exit(drbd_cleanup)
3922 
3923 EXPORT_SYMBOL(drbd_conn_str);
3924 EXPORT_SYMBOL(drbd_role_str);
3925 EXPORT_SYMBOL(drbd_disk_str);
3926 EXPORT_SYMBOL(drbd_set_st_err_str);
3927