1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 drbd.c 4 5 This file is part of DRBD by Philipp Reisner and Lars Ellenberg. 6 7 Copyright (C) 2001-2008, LINBIT Information Technologies GmbH. 8 Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>. 9 Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>. 10 11 Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev 12 from Logicworks, Inc. for making SDP replication support possible. 13 14 15 */ 16 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include <linux/module.h> 20 #include <linux/jiffies.h> 21 #include <linux/drbd.h> 22 #include <linux/uaccess.h> 23 #include <asm/types.h> 24 #include <net/sock.h> 25 #include <linux/ctype.h> 26 #include <linux/mutex.h> 27 #include <linux/fs.h> 28 #include <linux/file.h> 29 #include <linux/proc_fs.h> 30 #include <linux/init.h> 31 #include <linux/mm.h> 32 #include <linux/memcontrol.h> 33 #include <linux/mm_inline.h> 34 #include <linux/slab.h> 35 #include <linux/random.h> 36 #include <linux/reboot.h> 37 #include <linux/notifier.h> 38 #include <linux/kthread.h> 39 #include <linux/workqueue.h> 40 #define __KERNEL_SYSCALLS__ 41 #include <linux/unistd.h> 42 #include <linux/vmalloc.h> 43 #include <linux/sched/signal.h> 44 45 #include <linux/drbd_limits.h> 46 #include "drbd_int.h" 47 #include "drbd_protocol.h" 48 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */ 49 #include "drbd_vli.h" 50 #include "drbd_debugfs.h" 51 52 static DEFINE_MUTEX(drbd_main_mutex); 53 static int drbd_open(struct block_device *bdev, fmode_t mode); 54 static void drbd_release(struct gendisk *gd, fmode_t mode); 55 static void md_sync_timer_fn(struct timer_list *t); 56 static int w_bitmap_io(struct drbd_work *w, int unused); 57 58 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, " 59 "Lars Ellenberg <lars@linbit.com>"); 60 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION); 61 MODULE_VERSION(REL_VERSION); 62 MODULE_LICENSE("GPL"); 63 MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices (" 64 __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")"); 65 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR); 66 67 #include <linux/moduleparam.h> 68 /* thanks to these macros, if compiled into the kernel (not-module), 69 * these become boot parameters (e.g., drbd.minor_count) */ 70 71 #ifdef CONFIG_DRBD_FAULT_INJECTION 72 int drbd_enable_faults; 73 int drbd_fault_rate; 74 static int drbd_fault_count; 75 static int drbd_fault_devs; 76 /* bitmap of enabled faults */ 77 module_param_named(enable_faults, drbd_enable_faults, int, 0664); 78 /* fault rate % value - applies to all enabled faults */ 79 module_param_named(fault_rate, drbd_fault_rate, int, 0664); 80 /* count of faults inserted */ 81 module_param_named(fault_count, drbd_fault_count, int, 0664); 82 /* bitmap of devices to insert faults on */ 83 module_param_named(fault_devs, drbd_fault_devs, int, 0644); 84 #endif 85 86 /* module parameters we can keep static */ 87 static bool drbd_allow_oos; /* allow_open_on_secondary */ 88 static bool drbd_disable_sendpage; 89 MODULE_PARM_DESC(allow_oos, "DONT USE!"); 90 module_param_named(allow_oos, drbd_allow_oos, bool, 0); 91 module_param_named(disable_sendpage, drbd_disable_sendpage, bool, 0644); 92 93 /* module parameters we share */ 94 int drbd_proc_details; /* Detail level in proc drbd*/ 95 module_param_named(proc_details, drbd_proc_details, int, 0644); 96 /* module parameters shared with defaults */ 97 unsigned int drbd_minor_count = DRBD_MINOR_COUNT_DEF; 98 /* Module parameter for setting the user mode helper program 99 * to run. Default is /sbin/drbdadm */ 100 char drbd_usermode_helper[80] = "/sbin/drbdadm"; 101 module_param_named(minor_count, drbd_minor_count, uint, 0444); 102 module_param_string(usermode_helper, drbd_usermode_helper, sizeof(drbd_usermode_helper), 0644); 103 104 /* in 2.6.x, our device mapping and config info contains our virtual gendisks 105 * as member "struct gendisk *vdisk;" 106 */ 107 struct idr drbd_devices; 108 struct list_head drbd_resources; 109 struct mutex resources_mutex; 110 111 struct kmem_cache *drbd_request_cache; 112 struct kmem_cache *drbd_ee_cache; /* peer requests */ 113 struct kmem_cache *drbd_bm_ext_cache; /* bitmap extents */ 114 struct kmem_cache *drbd_al_ext_cache; /* activity log extents */ 115 mempool_t drbd_request_mempool; 116 mempool_t drbd_ee_mempool; 117 mempool_t drbd_md_io_page_pool; 118 struct bio_set drbd_md_io_bio_set; 119 struct bio_set drbd_io_bio_set; 120 121 /* I do not use a standard mempool, because: 122 1) I want to hand out the pre-allocated objects first. 123 2) I want to be able to interrupt sleeping allocation with a signal. 124 Note: This is a single linked list, the next pointer is the private 125 member of struct page. 126 */ 127 struct page *drbd_pp_pool; 128 DEFINE_SPINLOCK(drbd_pp_lock); 129 int drbd_pp_vacant; 130 wait_queue_head_t drbd_pp_wait; 131 132 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5); 133 134 static const struct block_device_operations drbd_ops = { 135 .owner = THIS_MODULE, 136 .submit_bio = drbd_submit_bio, 137 .open = drbd_open, 138 .release = drbd_release, 139 }; 140 141 #ifdef __CHECKER__ 142 /* When checking with sparse, and this is an inline function, sparse will 143 give tons of false positives. When this is a real functions sparse works. 144 */ 145 int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins) 146 { 147 int io_allowed; 148 149 atomic_inc(&device->local_cnt); 150 io_allowed = (device->state.disk >= mins); 151 if (!io_allowed) { 152 if (atomic_dec_and_test(&device->local_cnt)) 153 wake_up(&device->misc_wait); 154 } 155 return io_allowed; 156 } 157 158 #endif 159 160 /** 161 * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch 162 * @connection: DRBD connection. 163 * @barrier_nr: Expected identifier of the DRBD write barrier packet. 164 * @set_size: Expected number of requests before that barrier. 165 * 166 * In case the passed barrier_nr or set_size does not match the oldest 167 * epoch of not yet barrier-acked requests, this function will cause a 168 * termination of the connection. 169 */ 170 void tl_release(struct drbd_connection *connection, unsigned int barrier_nr, 171 unsigned int set_size) 172 { 173 struct drbd_request *r; 174 struct drbd_request *req = NULL; 175 int expect_epoch = 0; 176 int expect_size = 0; 177 178 spin_lock_irq(&connection->resource->req_lock); 179 180 /* find oldest not yet barrier-acked write request, 181 * count writes in its epoch. */ 182 list_for_each_entry(r, &connection->transfer_log, tl_requests) { 183 const unsigned s = r->rq_state; 184 if (!req) { 185 if (!(s & RQ_WRITE)) 186 continue; 187 if (!(s & RQ_NET_MASK)) 188 continue; 189 if (s & RQ_NET_DONE) 190 continue; 191 req = r; 192 expect_epoch = req->epoch; 193 expect_size ++; 194 } else { 195 if (r->epoch != expect_epoch) 196 break; 197 if (!(s & RQ_WRITE)) 198 continue; 199 /* if (s & RQ_DONE): not expected */ 200 /* if (!(s & RQ_NET_MASK)): not expected */ 201 expect_size++; 202 } 203 } 204 205 /* first some paranoia code */ 206 if (req == NULL) { 207 drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n", 208 barrier_nr); 209 goto bail; 210 } 211 if (expect_epoch != barrier_nr) { 212 drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n", 213 barrier_nr, expect_epoch); 214 goto bail; 215 } 216 217 if (expect_size != set_size) { 218 drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n", 219 barrier_nr, set_size, expect_size); 220 goto bail; 221 } 222 223 /* Clean up list of requests processed during current epoch. */ 224 /* this extra list walk restart is paranoia, 225 * to catch requests being barrier-acked "unexpectedly". 226 * It usually should find the same req again, or some READ preceding it. */ 227 list_for_each_entry(req, &connection->transfer_log, tl_requests) 228 if (req->epoch == expect_epoch) 229 break; 230 list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) { 231 if (req->epoch != expect_epoch) 232 break; 233 _req_mod(req, BARRIER_ACKED); 234 } 235 spin_unlock_irq(&connection->resource->req_lock); 236 237 return; 238 239 bail: 240 spin_unlock_irq(&connection->resource->req_lock); 241 conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD); 242 } 243 244 245 /** 246 * _tl_restart() - Walks the transfer log, and applies an action to all requests 247 * @connection: DRBD connection to operate on. 248 * @what: The action/event to perform with all request objects 249 * 250 * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO, 251 * RESTART_FROZEN_DISK_IO. 252 */ 253 /* must hold resource->req_lock */ 254 void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what) 255 { 256 struct drbd_request *req, *r; 257 258 list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) 259 _req_mod(req, what); 260 } 261 262 void tl_restart(struct drbd_connection *connection, enum drbd_req_event what) 263 { 264 spin_lock_irq(&connection->resource->req_lock); 265 _tl_restart(connection, what); 266 spin_unlock_irq(&connection->resource->req_lock); 267 } 268 269 /** 270 * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL 271 * @connection: DRBD connection. 272 * 273 * This is called after the connection to the peer was lost. The storage covered 274 * by the requests on the transfer gets marked as our of sync. Called from the 275 * receiver thread and the worker thread. 276 */ 277 void tl_clear(struct drbd_connection *connection) 278 { 279 tl_restart(connection, CONNECTION_LOST_WHILE_PENDING); 280 } 281 282 /** 283 * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL 284 * @device: DRBD device. 285 */ 286 void tl_abort_disk_io(struct drbd_device *device) 287 { 288 struct drbd_connection *connection = first_peer_device(device)->connection; 289 struct drbd_request *req, *r; 290 291 spin_lock_irq(&connection->resource->req_lock); 292 list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) { 293 if (!(req->rq_state & RQ_LOCAL_PENDING)) 294 continue; 295 if (req->device != device) 296 continue; 297 _req_mod(req, ABORT_DISK_IO); 298 } 299 spin_unlock_irq(&connection->resource->req_lock); 300 } 301 302 static int drbd_thread_setup(void *arg) 303 { 304 struct drbd_thread *thi = (struct drbd_thread *) arg; 305 struct drbd_resource *resource = thi->resource; 306 unsigned long flags; 307 int retval; 308 309 snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s", 310 thi->name[0], 311 resource->name); 312 313 allow_kernel_signal(DRBD_SIGKILL); 314 allow_kernel_signal(SIGXCPU); 315 restart: 316 retval = thi->function(thi); 317 318 spin_lock_irqsave(&thi->t_lock, flags); 319 320 /* if the receiver has been "EXITING", the last thing it did 321 * was set the conn state to "StandAlone", 322 * if now a re-connect request comes in, conn state goes C_UNCONNECTED, 323 * and receiver thread will be "started". 324 * drbd_thread_start needs to set "RESTARTING" in that case. 325 * t_state check and assignment needs to be within the same spinlock, 326 * so either thread_start sees EXITING, and can remap to RESTARTING, 327 * or thread_start see NONE, and can proceed as normal. 328 */ 329 330 if (thi->t_state == RESTARTING) { 331 drbd_info(resource, "Restarting %s thread\n", thi->name); 332 thi->t_state = RUNNING; 333 spin_unlock_irqrestore(&thi->t_lock, flags); 334 goto restart; 335 } 336 337 thi->task = NULL; 338 thi->t_state = NONE; 339 smp_mb(); 340 complete_all(&thi->stop); 341 spin_unlock_irqrestore(&thi->t_lock, flags); 342 343 drbd_info(resource, "Terminating %s\n", current->comm); 344 345 /* Release mod reference taken when thread was started */ 346 347 if (thi->connection) 348 kref_put(&thi->connection->kref, drbd_destroy_connection); 349 kref_put(&resource->kref, drbd_destroy_resource); 350 module_put(THIS_MODULE); 351 return retval; 352 } 353 354 static void drbd_thread_init(struct drbd_resource *resource, struct drbd_thread *thi, 355 int (*func) (struct drbd_thread *), const char *name) 356 { 357 spin_lock_init(&thi->t_lock); 358 thi->task = NULL; 359 thi->t_state = NONE; 360 thi->function = func; 361 thi->resource = resource; 362 thi->connection = NULL; 363 thi->name = name; 364 } 365 366 int drbd_thread_start(struct drbd_thread *thi) 367 { 368 struct drbd_resource *resource = thi->resource; 369 struct task_struct *nt; 370 unsigned long flags; 371 372 /* is used from state engine doing drbd_thread_stop_nowait, 373 * while holding the req lock irqsave */ 374 spin_lock_irqsave(&thi->t_lock, flags); 375 376 switch (thi->t_state) { 377 case NONE: 378 drbd_info(resource, "Starting %s thread (from %s [%d])\n", 379 thi->name, current->comm, current->pid); 380 381 /* Get ref on module for thread - this is released when thread exits */ 382 if (!try_module_get(THIS_MODULE)) { 383 drbd_err(resource, "Failed to get module reference in drbd_thread_start\n"); 384 spin_unlock_irqrestore(&thi->t_lock, flags); 385 return false; 386 } 387 388 kref_get(&resource->kref); 389 if (thi->connection) 390 kref_get(&thi->connection->kref); 391 392 init_completion(&thi->stop); 393 thi->reset_cpu_mask = 1; 394 thi->t_state = RUNNING; 395 spin_unlock_irqrestore(&thi->t_lock, flags); 396 flush_signals(current); /* otherw. may get -ERESTARTNOINTR */ 397 398 nt = kthread_create(drbd_thread_setup, (void *) thi, 399 "drbd_%c_%s", thi->name[0], thi->resource->name); 400 401 if (IS_ERR(nt)) { 402 drbd_err(resource, "Couldn't start thread\n"); 403 404 if (thi->connection) 405 kref_put(&thi->connection->kref, drbd_destroy_connection); 406 kref_put(&resource->kref, drbd_destroy_resource); 407 module_put(THIS_MODULE); 408 return false; 409 } 410 spin_lock_irqsave(&thi->t_lock, flags); 411 thi->task = nt; 412 thi->t_state = RUNNING; 413 spin_unlock_irqrestore(&thi->t_lock, flags); 414 wake_up_process(nt); 415 break; 416 case EXITING: 417 thi->t_state = RESTARTING; 418 drbd_info(resource, "Restarting %s thread (from %s [%d])\n", 419 thi->name, current->comm, current->pid); 420 fallthrough; 421 case RUNNING: 422 case RESTARTING: 423 default: 424 spin_unlock_irqrestore(&thi->t_lock, flags); 425 break; 426 } 427 428 return true; 429 } 430 431 432 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait) 433 { 434 unsigned long flags; 435 436 enum drbd_thread_state ns = restart ? RESTARTING : EXITING; 437 438 /* may be called from state engine, holding the req lock irqsave */ 439 spin_lock_irqsave(&thi->t_lock, flags); 440 441 if (thi->t_state == NONE) { 442 spin_unlock_irqrestore(&thi->t_lock, flags); 443 if (restart) 444 drbd_thread_start(thi); 445 return; 446 } 447 448 if (thi->t_state != ns) { 449 if (thi->task == NULL) { 450 spin_unlock_irqrestore(&thi->t_lock, flags); 451 return; 452 } 453 454 thi->t_state = ns; 455 smp_mb(); 456 init_completion(&thi->stop); 457 if (thi->task != current) 458 send_sig(DRBD_SIGKILL, thi->task, 1); 459 } 460 461 spin_unlock_irqrestore(&thi->t_lock, flags); 462 463 if (wait) 464 wait_for_completion(&thi->stop); 465 } 466 467 int conn_lowest_minor(struct drbd_connection *connection) 468 { 469 struct drbd_peer_device *peer_device; 470 int vnr = 0, minor = -1; 471 472 rcu_read_lock(); 473 peer_device = idr_get_next(&connection->peer_devices, &vnr); 474 if (peer_device) 475 minor = device_to_minor(peer_device->device); 476 rcu_read_unlock(); 477 478 return minor; 479 } 480 481 #ifdef CONFIG_SMP 482 /* 483 * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs 484 * 485 * Forces all threads of a resource onto the same CPU. This is beneficial for 486 * DRBD's performance. May be overwritten by user's configuration. 487 */ 488 static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask) 489 { 490 unsigned int *resources_per_cpu, min_index = ~0; 491 492 resources_per_cpu = kcalloc(nr_cpu_ids, sizeof(*resources_per_cpu), 493 GFP_KERNEL); 494 if (resources_per_cpu) { 495 struct drbd_resource *resource; 496 unsigned int cpu, min = ~0; 497 498 rcu_read_lock(); 499 for_each_resource_rcu(resource, &drbd_resources) { 500 for_each_cpu(cpu, resource->cpu_mask) 501 resources_per_cpu[cpu]++; 502 } 503 rcu_read_unlock(); 504 for_each_online_cpu(cpu) { 505 if (resources_per_cpu[cpu] < min) { 506 min = resources_per_cpu[cpu]; 507 min_index = cpu; 508 } 509 } 510 kfree(resources_per_cpu); 511 } 512 if (min_index == ~0) { 513 cpumask_setall(*cpu_mask); 514 return; 515 } 516 cpumask_set_cpu(min_index, *cpu_mask); 517 } 518 519 /** 520 * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread 521 * @thi: drbd_thread object 522 * 523 * call in the "main loop" of _all_ threads, no need for any mutex, current won't die 524 * prematurely. 525 */ 526 void drbd_thread_current_set_cpu(struct drbd_thread *thi) 527 { 528 struct drbd_resource *resource = thi->resource; 529 struct task_struct *p = current; 530 531 if (!thi->reset_cpu_mask) 532 return; 533 thi->reset_cpu_mask = 0; 534 set_cpus_allowed_ptr(p, resource->cpu_mask); 535 } 536 #else 537 #define drbd_calc_cpu_mask(A) ({}) 538 #endif 539 540 /* 541 * drbd_header_size - size of a packet header 542 * 543 * The header size is a multiple of 8, so any payload following the header is 544 * word aligned on 64-bit architectures. (The bitmap send and receive code 545 * relies on this.) 546 */ 547 unsigned int drbd_header_size(struct drbd_connection *connection) 548 { 549 if (connection->agreed_pro_version >= 100) { 550 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8)); 551 return sizeof(struct p_header100); 552 } else { 553 BUILD_BUG_ON(sizeof(struct p_header80) != 554 sizeof(struct p_header95)); 555 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8)); 556 return sizeof(struct p_header80); 557 } 558 } 559 560 static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size) 561 { 562 h->magic = cpu_to_be32(DRBD_MAGIC); 563 h->command = cpu_to_be16(cmd); 564 h->length = cpu_to_be16(size); 565 return sizeof(struct p_header80); 566 } 567 568 static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size) 569 { 570 h->magic = cpu_to_be16(DRBD_MAGIC_BIG); 571 h->command = cpu_to_be16(cmd); 572 h->length = cpu_to_be32(size); 573 return sizeof(struct p_header95); 574 } 575 576 static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd, 577 int size, int vnr) 578 { 579 h->magic = cpu_to_be32(DRBD_MAGIC_100); 580 h->volume = cpu_to_be16(vnr); 581 h->command = cpu_to_be16(cmd); 582 h->length = cpu_to_be32(size); 583 h->pad = 0; 584 return sizeof(struct p_header100); 585 } 586 587 static unsigned int prepare_header(struct drbd_connection *connection, int vnr, 588 void *buffer, enum drbd_packet cmd, int size) 589 { 590 if (connection->agreed_pro_version >= 100) 591 return prepare_header100(buffer, cmd, size, vnr); 592 else if (connection->agreed_pro_version >= 95 && 593 size > DRBD_MAX_SIZE_H80_PACKET) 594 return prepare_header95(buffer, cmd, size); 595 else 596 return prepare_header80(buffer, cmd, size); 597 } 598 599 static void *__conn_prepare_command(struct drbd_connection *connection, 600 struct drbd_socket *sock) 601 { 602 if (!sock->socket) 603 return NULL; 604 return sock->sbuf + drbd_header_size(connection); 605 } 606 607 void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock) 608 { 609 void *p; 610 611 mutex_lock(&sock->mutex); 612 p = __conn_prepare_command(connection, sock); 613 if (!p) 614 mutex_unlock(&sock->mutex); 615 616 return p; 617 } 618 619 void *drbd_prepare_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock) 620 { 621 return conn_prepare_command(peer_device->connection, sock); 622 } 623 624 static int __send_command(struct drbd_connection *connection, int vnr, 625 struct drbd_socket *sock, enum drbd_packet cmd, 626 unsigned int header_size, void *data, 627 unsigned int size) 628 { 629 int msg_flags; 630 int err; 631 632 /* 633 * Called with @data == NULL and the size of the data blocks in @size 634 * for commands that send data blocks. For those commands, omit the 635 * MSG_MORE flag: this will increase the likelihood that data blocks 636 * which are page aligned on the sender will end up page aligned on the 637 * receiver. 638 */ 639 msg_flags = data ? MSG_MORE : 0; 640 641 header_size += prepare_header(connection, vnr, sock->sbuf, cmd, 642 header_size + size); 643 err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size, 644 msg_flags); 645 if (data && !err) 646 err = drbd_send_all(connection, sock->socket, data, size, 0); 647 /* DRBD protocol "pings" are latency critical. 648 * This is supposed to trigger tcp_push_pending_frames() */ 649 if (!err && (cmd == P_PING || cmd == P_PING_ACK)) 650 tcp_sock_set_nodelay(sock->socket->sk); 651 652 return err; 653 } 654 655 static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock, 656 enum drbd_packet cmd, unsigned int header_size, 657 void *data, unsigned int size) 658 { 659 return __send_command(connection, 0, sock, cmd, header_size, data, size); 660 } 661 662 int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock, 663 enum drbd_packet cmd, unsigned int header_size, 664 void *data, unsigned int size) 665 { 666 int err; 667 668 err = __conn_send_command(connection, sock, cmd, header_size, data, size); 669 mutex_unlock(&sock->mutex); 670 return err; 671 } 672 673 int drbd_send_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock, 674 enum drbd_packet cmd, unsigned int header_size, 675 void *data, unsigned int size) 676 { 677 int err; 678 679 err = __send_command(peer_device->connection, peer_device->device->vnr, 680 sock, cmd, header_size, data, size); 681 mutex_unlock(&sock->mutex); 682 return err; 683 } 684 685 int drbd_send_ping(struct drbd_connection *connection) 686 { 687 struct drbd_socket *sock; 688 689 sock = &connection->meta; 690 if (!conn_prepare_command(connection, sock)) 691 return -EIO; 692 return conn_send_command(connection, sock, P_PING, 0, NULL, 0); 693 } 694 695 int drbd_send_ping_ack(struct drbd_connection *connection) 696 { 697 struct drbd_socket *sock; 698 699 sock = &connection->meta; 700 if (!conn_prepare_command(connection, sock)) 701 return -EIO; 702 return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0); 703 } 704 705 int drbd_send_sync_param(struct drbd_peer_device *peer_device) 706 { 707 struct drbd_socket *sock; 708 struct p_rs_param_95 *p; 709 int size; 710 const int apv = peer_device->connection->agreed_pro_version; 711 enum drbd_packet cmd; 712 struct net_conf *nc; 713 struct disk_conf *dc; 714 715 sock = &peer_device->connection->data; 716 p = drbd_prepare_command(peer_device, sock); 717 if (!p) 718 return -EIO; 719 720 rcu_read_lock(); 721 nc = rcu_dereference(peer_device->connection->net_conf); 722 723 size = apv <= 87 ? sizeof(struct p_rs_param) 724 : apv == 88 ? sizeof(struct p_rs_param) 725 + strlen(nc->verify_alg) + 1 726 : apv <= 94 ? sizeof(struct p_rs_param_89) 727 : /* apv >= 95 */ sizeof(struct p_rs_param_95); 728 729 cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM; 730 731 /* initialize verify_alg and csums_alg */ 732 memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX); 733 734 if (get_ldev(peer_device->device)) { 735 dc = rcu_dereference(peer_device->device->ldev->disk_conf); 736 p->resync_rate = cpu_to_be32(dc->resync_rate); 737 p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead); 738 p->c_delay_target = cpu_to_be32(dc->c_delay_target); 739 p->c_fill_target = cpu_to_be32(dc->c_fill_target); 740 p->c_max_rate = cpu_to_be32(dc->c_max_rate); 741 put_ldev(peer_device->device); 742 } else { 743 p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF); 744 p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF); 745 p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF); 746 p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF); 747 p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF); 748 } 749 750 if (apv >= 88) 751 strcpy(p->verify_alg, nc->verify_alg); 752 if (apv >= 89) 753 strcpy(p->csums_alg, nc->csums_alg); 754 rcu_read_unlock(); 755 756 return drbd_send_command(peer_device, sock, cmd, size, NULL, 0); 757 } 758 759 int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd) 760 { 761 struct drbd_socket *sock; 762 struct p_protocol *p; 763 struct net_conf *nc; 764 int size, cf; 765 766 sock = &connection->data; 767 p = __conn_prepare_command(connection, sock); 768 if (!p) 769 return -EIO; 770 771 rcu_read_lock(); 772 nc = rcu_dereference(connection->net_conf); 773 774 if (nc->tentative && connection->agreed_pro_version < 92) { 775 rcu_read_unlock(); 776 drbd_err(connection, "--dry-run is not supported by peer"); 777 return -EOPNOTSUPP; 778 } 779 780 size = sizeof(*p); 781 if (connection->agreed_pro_version >= 87) 782 size += strlen(nc->integrity_alg) + 1; 783 784 p->protocol = cpu_to_be32(nc->wire_protocol); 785 p->after_sb_0p = cpu_to_be32(nc->after_sb_0p); 786 p->after_sb_1p = cpu_to_be32(nc->after_sb_1p); 787 p->after_sb_2p = cpu_to_be32(nc->after_sb_2p); 788 p->two_primaries = cpu_to_be32(nc->two_primaries); 789 cf = 0; 790 if (nc->discard_my_data) 791 cf |= CF_DISCARD_MY_DATA; 792 if (nc->tentative) 793 cf |= CF_DRY_RUN; 794 p->conn_flags = cpu_to_be32(cf); 795 796 if (connection->agreed_pro_version >= 87) 797 strcpy(p->integrity_alg, nc->integrity_alg); 798 rcu_read_unlock(); 799 800 return __conn_send_command(connection, sock, cmd, size, NULL, 0); 801 } 802 803 int drbd_send_protocol(struct drbd_connection *connection) 804 { 805 int err; 806 807 mutex_lock(&connection->data.mutex); 808 err = __drbd_send_protocol(connection, P_PROTOCOL); 809 mutex_unlock(&connection->data.mutex); 810 811 return err; 812 } 813 814 static int _drbd_send_uuids(struct drbd_peer_device *peer_device, u64 uuid_flags) 815 { 816 struct drbd_device *device = peer_device->device; 817 struct drbd_socket *sock; 818 struct p_uuids *p; 819 int i; 820 821 if (!get_ldev_if_state(device, D_NEGOTIATING)) 822 return 0; 823 824 sock = &peer_device->connection->data; 825 p = drbd_prepare_command(peer_device, sock); 826 if (!p) { 827 put_ldev(device); 828 return -EIO; 829 } 830 spin_lock_irq(&device->ldev->md.uuid_lock); 831 for (i = UI_CURRENT; i < UI_SIZE; i++) 832 p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]); 833 spin_unlock_irq(&device->ldev->md.uuid_lock); 834 835 device->comm_bm_set = drbd_bm_total_weight(device); 836 p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set); 837 rcu_read_lock(); 838 uuid_flags |= rcu_dereference(peer_device->connection->net_conf)->discard_my_data ? 1 : 0; 839 rcu_read_unlock(); 840 uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0; 841 uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0; 842 p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags); 843 844 put_ldev(device); 845 return drbd_send_command(peer_device, sock, P_UUIDS, sizeof(*p), NULL, 0); 846 } 847 848 int drbd_send_uuids(struct drbd_peer_device *peer_device) 849 { 850 return _drbd_send_uuids(peer_device, 0); 851 } 852 853 int drbd_send_uuids_skip_initial_sync(struct drbd_peer_device *peer_device) 854 { 855 return _drbd_send_uuids(peer_device, 8); 856 } 857 858 void drbd_print_uuids(struct drbd_device *device, const char *text) 859 { 860 if (get_ldev_if_state(device, D_NEGOTIATING)) { 861 u64 *uuid = device->ldev->md.uuid; 862 drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n", 863 text, 864 (unsigned long long)uuid[UI_CURRENT], 865 (unsigned long long)uuid[UI_BITMAP], 866 (unsigned long long)uuid[UI_HISTORY_START], 867 (unsigned long long)uuid[UI_HISTORY_END]); 868 put_ldev(device); 869 } else { 870 drbd_info(device, "%s effective data uuid: %016llX\n", 871 text, 872 (unsigned long long)device->ed_uuid); 873 } 874 } 875 876 void drbd_gen_and_send_sync_uuid(struct drbd_peer_device *peer_device) 877 { 878 struct drbd_device *device = peer_device->device; 879 struct drbd_socket *sock; 880 struct p_rs_uuid *p; 881 u64 uuid; 882 883 D_ASSERT(device, device->state.disk == D_UP_TO_DATE); 884 885 uuid = device->ldev->md.uuid[UI_BITMAP]; 886 if (uuid && uuid != UUID_JUST_CREATED) 887 uuid = uuid + UUID_NEW_BM_OFFSET; 888 else 889 get_random_bytes(&uuid, sizeof(u64)); 890 drbd_uuid_set(device, UI_BITMAP, uuid); 891 drbd_print_uuids(device, "updated sync UUID"); 892 drbd_md_sync(device); 893 894 sock = &peer_device->connection->data; 895 p = drbd_prepare_command(peer_device, sock); 896 if (p) { 897 p->uuid = cpu_to_be64(uuid); 898 drbd_send_command(peer_device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0); 899 } 900 } 901 902 /* communicated if (agreed_features & DRBD_FF_WSAME) */ 903 static void 904 assign_p_sizes_qlim(struct drbd_device *device, struct p_sizes *p, 905 struct request_queue *q) 906 { 907 if (q) { 908 p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q)); 909 p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q)); 910 p->qlim->alignment_offset = cpu_to_be32(queue_alignment_offset(q)); 911 p->qlim->io_min = cpu_to_be32(queue_io_min(q)); 912 p->qlim->io_opt = cpu_to_be32(queue_io_opt(q)); 913 p->qlim->discard_enabled = blk_queue_discard(q); 914 p->qlim->write_same_capable = !!q->limits.max_write_same_sectors; 915 } else { 916 q = device->rq_queue; 917 p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q)); 918 p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q)); 919 p->qlim->alignment_offset = 0; 920 p->qlim->io_min = cpu_to_be32(queue_io_min(q)); 921 p->qlim->io_opt = cpu_to_be32(queue_io_opt(q)); 922 p->qlim->discard_enabled = 0; 923 p->qlim->write_same_capable = 0; 924 } 925 } 926 927 int drbd_send_sizes(struct drbd_peer_device *peer_device, int trigger_reply, enum dds_flags flags) 928 { 929 struct drbd_device *device = peer_device->device; 930 struct drbd_socket *sock; 931 struct p_sizes *p; 932 sector_t d_size, u_size; 933 int q_order_type; 934 unsigned int max_bio_size; 935 unsigned int packet_size; 936 937 sock = &peer_device->connection->data; 938 p = drbd_prepare_command(peer_device, sock); 939 if (!p) 940 return -EIO; 941 942 packet_size = sizeof(*p); 943 if (peer_device->connection->agreed_features & DRBD_FF_WSAME) 944 packet_size += sizeof(p->qlim[0]); 945 946 memset(p, 0, packet_size); 947 if (get_ldev_if_state(device, D_NEGOTIATING)) { 948 struct request_queue *q = bdev_get_queue(device->ldev->backing_bdev); 949 d_size = drbd_get_max_capacity(device->ldev); 950 rcu_read_lock(); 951 u_size = rcu_dereference(device->ldev->disk_conf)->disk_size; 952 rcu_read_unlock(); 953 q_order_type = drbd_queue_order_type(device); 954 max_bio_size = queue_max_hw_sectors(q) << 9; 955 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE); 956 assign_p_sizes_qlim(device, p, q); 957 put_ldev(device); 958 } else { 959 d_size = 0; 960 u_size = 0; 961 q_order_type = QUEUE_ORDERED_NONE; 962 max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */ 963 assign_p_sizes_qlim(device, p, NULL); 964 } 965 966 if (peer_device->connection->agreed_pro_version <= 94) 967 max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET); 968 else if (peer_device->connection->agreed_pro_version < 100) 969 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95); 970 971 p->d_size = cpu_to_be64(d_size); 972 p->u_size = cpu_to_be64(u_size); 973 if (trigger_reply) 974 p->c_size = 0; 975 else 976 p->c_size = cpu_to_be64(get_capacity(device->vdisk)); 977 p->max_bio_size = cpu_to_be32(max_bio_size); 978 p->queue_order_type = cpu_to_be16(q_order_type); 979 p->dds_flags = cpu_to_be16(flags); 980 981 return drbd_send_command(peer_device, sock, P_SIZES, packet_size, NULL, 0); 982 } 983 984 /** 985 * drbd_send_current_state() - Sends the drbd state to the peer 986 * @peer_device: DRBD peer device. 987 */ 988 int drbd_send_current_state(struct drbd_peer_device *peer_device) 989 { 990 struct drbd_socket *sock; 991 struct p_state *p; 992 993 sock = &peer_device->connection->data; 994 p = drbd_prepare_command(peer_device, sock); 995 if (!p) 996 return -EIO; 997 p->state = cpu_to_be32(peer_device->device->state.i); /* Within the send mutex */ 998 return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0); 999 } 1000 1001 /** 1002 * drbd_send_state() - After a state change, sends the new state to the peer 1003 * @peer_device: DRBD peer device. 1004 * @state: the state to send, not necessarily the current state. 1005 * 1006 * Each state change queues an "after_state_ch" work, which will eventually 1007 * send the resulting new state to the peer. If more state changes happen 1008 * between queuing and processing of the after_state_ch work, we still 1009 * want to send each intermediary state in the order it occurred. 1010 */ 1011 int drbd_send_state(struct drbd_peer_device *peer_device, union drbd_state state) 1012 { 1013 struct drbd_socket *sock; 1014 struct p_state *p; 1015 1016 sock = &peer_device->connection->data; 1017 p = drbd_prepare_command(peer_device, sock); 1018 if (!p) 1019 return -EIO; 1020 p->state = cpu_to_be32(state.i); /* Within the send mutex */ 1021 return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0); 1022 } 1023 1024 int drbd_send_state_req(struct drbd_peer_device *peer_device, union drbd_state mask, union drbd_state val) 1025 { 1026 struct drbd_socket *sock; 1027 struct p_req_state *p; 1028 1029 sock = &peer_device->connection->data; 1030 p = drbd_prepare_command(peer_device, sock); 1031 if (!p) 1032 return -EIO; 1033 p->mask = cpu_to_be32(mask.i); 1034 p->val = cpu_to_be32(val.i); 1035 return drbd_send_command(peer_device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0); 1036 } 1037 1038 int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val) 1039 { 1040 enum drbd_packet cmd; 1041 struct drbd_socket *sock; 1042 struct p_req_state *p; 1043 1044 cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ; 1045 sock = &connection->data; 1046 p = conn_prepare_command(connection, sock); 1047 if (!p) 1048 return -EIO; 1049 p->mask = cpu_to_be32(mask.i); 1050 p->val = cpu_to_be32(val.i); 1051 return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0); 1052 } 1053 1054 void drbd_send_sr_reply(struct drbd_peer_device *peer_device, enum drbd_state_rv retcode) 1055 { 1056 struct drbd_socket *sock; 1057 struct p_req_state_reply *p; 1058 1059 sock = &peer_device->connection->meta; 1060 p = drbd_prepare_command(peer_device, sock); 1061 if (p) { 1062 p->retcode = cpu_to_be32(retcode); 1063 drbd_send_command(peer_device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0); 1064 } 1065 } 1066 1067 void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode) 1068 { 1069 struct drbd_socket *sock; 1070 struct p_req_state_reply *p; 1071 enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY; 1072 1073 sock = &connection->meta; 1074 p = conn_prepare_command(connection, sock); 1075 if (p) { 1076 p->retcode = cpu_to_be32(retcode); 1077 conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0); 1078 } 1079 } 1080 1081 static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code) 1082 { 1083 BUG_ON(code & ~0xf); 1084 p->encoding = (p->encoding & ~0xf) | code; 1085 } 1086 1087 static void dcbp_set_start(struct p_compressed_bm *p, int set) 1088 { 1089 p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0); 1090 } 1091 1092 static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n) 1093 { 1094 BUG_ON(n & ~0x7); 1095 p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4); 1096 } 1097 1098 static int fill_bitmap_rle_bits(struct drbd_device *device, 1099 struct p_compressed_bm *p, 1100 unsigned int size, 1101 struct bm_xfer_ctx *c) 1102 { 1103 struct bitstream bs; 1104 unsigned long plain_bits; 1105 unsigned long tmp; 1106 unsigned long rl; 1107 unsigned len; 1108 unsigned toggle; 1109 int bits, use_rle; 1110 1111 /* may we use this feature? */ 1112 rcu_read_lock(); 1113 use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle; 1114 rcu_read_unlock(); 1115 if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90) 1116 return 0; 1117 1118 if (c->bit_offset >= c->bm_bits) 1119 return 0; /* nothing to do. */ 1120 1121 /* use at most thus many bytes */ 1122 bitstream_init(&bs, p->code, size, 0); 1123 memset(p->code, 0, size); 1124 /* plain bits covered in this code string */ 1125 plain_bits = 0; 1126 1127 /* p->encoding & 0x80 stores whether the first run length is set. 1128 * bit offset is implicit. 1129 * start with toggle == 2 to be able to tell the first iteration */ 1130 toggle = 2; 1131 1132 /* see how much plain bits we can stuff into one packet 1133 * using RLE and VLI. */ 1134 do { 1135 tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset) 1136 : _drbd_bm_find_next(device, c->bit_offset); 1137 if (tmp == -1UL) 1138 tmp = c->bm_bits; 1139 rl = tmp - c->bit_offset; 1140 1141 if (toggle == 2) { /* first iteration */ 1142 if (rl == 0) { 1143 /* the first checked bit was set, 1144 * store start value, */ 1145 dcbp_set_start(p, 1); 1146 /* but skip encoding of zero run length */ 1147 toggle = !toggle; 1148 continue; 1149 } 1150 dcbp_set_start(p, 0); 1151 } 1152 1153 /* paranoia: catch zero runlength. 1154 * can only happen if bitmap is modified while we scan it. */ 1155 if (rl == 0) { 1156 drbd_err(device, "unexpected zero runlength while encoding bitmap " 1157 "t:%u bo:%lu\n", toggle, c->bit_offset); 1158 return -1; 1159 } 1160 1161 bits = vli_encode_bits(&bs, rl); 1162 if (bits == -ENOBUFS) /* buffer full */ 1163 break; 1164 if (bits <= 0) { 1165 drbd_err(device, "error while encoding bitmap: %d\n", bits); 1166 return 0; 1167 } 1168 1169 toggle = !toggle; 1170 plain_bits += rl; 1171 c->bit_offset = tmp; 1172 } while (c->bit_offset < c->bm_bits); 1173 1174 len = bs.cur.b - p->code + !!bs.cur.bit; 1175 1176 if (plain_bits < (len << 3)) { 1177 /* incompressible with this method. 1178 * we need to rewind both word and bit position. */ 1179 c->bit_offset -= plain_bits; 1180 bm_xfer_ctx_bit_to_word_offset(c); 1181 c->bit_offset = c->word_offset * BITS_PER_LONG; 1182 return 0; 1183 } 1184 1185 /* RLE + VLI was able to compress it just fine. 1186 * update c->word_offset. */ 1187 bm_xfer_ctx_bit_to_word_offset(c); 1188 1189 /* store pad_bits */ 1190 dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7); 1191 1192 return len; 1193 } 1194 1195 /* 1196 * send_bitmap_rle_or_plain 1197 * 1198 * Return 0 when done, 1 when another iteration is needed, and a negative error 1199 * code upon failure. 1200 */ 1201 static int 1202 send_bitmap_rle_or_plain(struct drbd_device *device, struct bm_xfer_ctx *c) 1203 { 1204 struct drbd_socket *sock = &first_peer_device(device)->connection->data; 1205 unsigned int header_size = drbd_header_size(first_peer_device(device)->connection); 1206 struct p_compressed_bm *p = sock->sbuf + header_size; 1207 int len, err; 1208 1209 len = fill_bitmap_rle_bits(device, p, 1210 DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c); 1211 if (len < 0) 1212 return -EIO; 1213 1214 if (len) { 1215 dcbp_set_code(p, RLE_VLI_Bits); 1216 err = __send_command(first_peer_device(device)->connection, device->vnr, sock, 1217 P_COMPRESSED_BITMAP, sizeof(*p) + len, 1218 NULL, 0); 1219 c->packets[0]++; 1220 c->bytes[0] += header_size + sizeof(*p) + len; 1221 1222 if (c->bit_offset >= c->bm_bits) 1223 len = 0; /* DONE */ 1224 } else { 1225 /* was not compressible. 1226 * send a buffer full of plain text bits instead. */ 1227 unsigned int data_size; 1228 unsigned long num_words; 1229 unsigned long *p = sock->sbuf + header_size; 1230 1231 data_size = DRBD_SOCKET_BUFFER_SIZE - header_size; 1232 num_words = min_t(size_t, data_size / sizeof(*p), 1233 c->bm_words - c->word_offset); 1234 len = num_words * sizeof(*p); 1235 if (len) 1236 drbd_bm_get_lel(device, c->word_offset, num_words, p); 1237 err = __send_command(first_peer_device(device)->connection, device->vnr, sock, P_BITMAP, len, NULL, 0); 1238 c->word_offset += num_words; 1239 c->bit_offset = c->word_offset * BITS_PER_LONG; 1240 1241 c->packets[1]++; 1242 c->bytes[1] += header_size + len; 1243 1244 if (c->bit_offset > c->bm_bits) 1245 c->bit_offset = c->bm_bits; 1246 } 1247 if (!err) { 1248 if (len == 0) { 1249 INFO_bm_xfer_stats(device, "send", c); 1250 return 0; 1251 } else 1252 return 1; 1253 } 1254 return -EIO; 1255 } 1256 1257 /* See the comment at receive_bitmap() */ 1258 static int _drbd_send_bitmap(struct drbd_device *device) 1259 { 1260 struct bm_xfer_ctx c; 1261 int err; 1262 1263 if (!expect(device->bitmap)) 1264 return false; 1265 1266 if (get_ldev(device)) { 1267 if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) { 1268 drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n"); 1269 drbd_bm_set_all(device); 1270 if (drbd_bm_write(device)) { 1271 /* write_bm did fail! Leave full sync flag set in Meta P_DATA 1272 * but otherwise process as per normal - need to tell other 1273 * side that a full resync is required! */ 1274 drbd_err(device, "Failed to write bitmap to disk!\n"); 1275 } else { 1276 drbd_md_clear_flag(device, MDF_FULL_SYNC); 1277 drbd_md_sync(device); 1278 } 1279 } 1280 put_ldev(device); 1281 } 1282 1283 c = (struct bm_xfer_ctx) { 1284 .bm_bits = drbd_bm_bits(device), 1285 .bm_words = drbd_bm_words(device), 1286 }; 1287 1288 do { 1289 err = send_bitmap_rle_or_plain(device, &c); 1290 } while (err > 0); 1291 1292 return err == 0; 1293 } 1294 1295 int drbd_send_bitmap(struct drbd_device *device) 1296 { 1297 struct drbd_socket *sock = &first_peer_device(device)->connection->data; 1298 int err = -1; 1299 1300 mutex_lock(&sock->mutex); 1301 if (sock->socket) 1302 err = !_drbd_send_bitmap(device); 1303 mutex_unlock(&sock->mutex); 1304 return err; 1305 } 1306 1307 void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size) 1308 { 1309 struct drbd_socket *sock; 1310 struct p_barrier_ack *p; 1311 1312 if (connection->cstate < C_WF_REPORT_PARAMS) 1313 return; 1314 1315 sock = &connection->meta; 1316 p = conn_prepare_command(connection, sock); 1317 if (!p) 1318 return; 1319 p->barrier = barrier_nr; 1320 p->set_size = cpu_to_be32(set_size); 1321 conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0); 1322 } 1323 1324 /** 1325 * _drbd_send_ack() - Sends an ack packet 1326 * @peer_device: DRBD peer device. 1327 * @cmd: Packet command code. 1328 * @sector: sector, needs to be in big endian byte order 1329 * @blksize: size in byte, needs to be in big endian byte order 1330 * @block_id: Id, big endian byte order 1331 */ 1332 static int _drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1333 u64 sector, u32 blksize, u64 block_id) 1334 { 1335 struct drbd_socket *sock; 1336 struct p_block_ack *p; 1337 1338 if (peer_device->device->state.conn < C_CONNECTED) 1339 return -EIO; 1340 1341 sock = &peer_device->connection->meta; 1342 p = drbd_prepare_command(peer_device, sock); 1343 if (!p) 1344 return -EIO; 1345 p->sector = sector; 1346 p->block_id = block_id; 1347 p->blksize = blksize; 1348 p->seq_num = cpu_to_be32(atomic_inc_return(&peer_device->device->packet_seq)); 1349 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0); 1350 } 1351 1352 /* dp->sector and dp->block_id already/still in network byte order, 1353 * data_size is payload size according to dp->head, 1354 * and may need to be corrected for digest size. */ 1355 void drbd_send_ack_dp(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1356 struct p_data *dp, int data_size) 1357 { 1358 if (peer_device->connection->peer_integrity_tfm) 1359 data_size -= crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm); 1360 _drbd_send_ack(peer_device, cmd, dp->sector, cpu_to_be32(data_size), 1361 dp->block_id); 1362 } 1363 1364 void drbd_send_ack_rp(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1365 struct p_block_req *rp) 1366 { 1367 _drbd_send_ack(peer_device, cmd, rp->sector, rp->blksize, rp->block_id); 1368 } 1369 1370 /** 1371 * drbd_send_ack() - Sends an ack packet 1372 * @peer_device: DRBD peer device 1373 * @cmd: packet command code 1374 * @peer_req: peer request 1375 */ 1376 int drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1377 struct drbd_peer_request *peer_req) 1378 { 1379 return _drbd_send_ack(peer_device, cmd, 1380 cpu_to_be64(peer_req->i.sector), 1381 cpu_to_be32(peer_req->i.size), 1382 peer_req->block_id); 1383 } 1384 1385 /* This function misuses the block_id field to signal if the blocks 1386 * are is sync or not. */ 1387 int drbd_send_ack_ex(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1388 sector_t sector, int blksize, u64 block_id) 1389 { 1390 return _drbd_send_ack(peer_device, cmd, 1391 cpu_to_be64(sector), 1392 cpu_to_be32(blksize), 1393 cpu_to_be64(block_id)); 1394 } 1395 1396 int drbd_send_rs_deallocated(struct drbd_peer_device *peer_device, 1397 struct drbd_peer_request *peer_req) 1398 { 1399 struct drbd_socket *sock; 1400 struct p_block_desc *p; 1401 1402 sock = &peer_device->connection->data; 1403 p = drbd_prepare_command(peer_device, sock); 1404 if (!p) 1405 return -EIO; 1406 p->sector = cpu_to_be64(peer_req->i.sector); 1407 p->blksize = cpu_to_be32(peer_req->i.size); 1408 p->pad = 0; 1409 return drbd_send_command(peer_device, sock, P_RS_DEALLOCATED, sizeof(*p), NULL, 0); 1410 } 1411 1412 int drbd_send_drequest(struct drbd_peer_device *peer_device, int cmd, 1413 sector_t sector, int size, u64 block_id) 1414 { 1415 struct drbd_socket *sock; 1416 struct p_block_req *p; 1417 1418 sock = &peer_device->connection->data; 1419 p = drbd_prepare_command(peer_device, sock); 1420 if (!p) 1421 return -EIO; 1422 p->sector = cpu_to_be64(sector); 1423 p->block_id = block_id; 1424 p->blksize = cpu_to_be32(size); 1425 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0); 1426 } 1427 1428 int drbd_send_drequest_csum(struct drbd_peer_device *peer_device, sector_t sector, int size, 1429 void *digest, int digest_size, enum drbd_packet cmd) 1430 { 1431 struct drbd_socket *sock; 1432 struct p_block_req *p; 1433 1434 /* FIXME: Put the digest into the preallocated socket buffer. */ 1435 1436 sock = &peer_device->connection->data; 1437 p = drbd_prepare_command(peer_device, sock); 1438 if (!p) 1439 return -EIO; 1440 p->sector = cpu_to_be64(sector); 1441 p->block_id = ID_SYNCER /* unused */; 1442 p->blksize = cpu_to_be32(size); 1443 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), digest, digest_size); 1444 } 1445 1446 int drbd_send_ov_request(struct drbd_peer_device *peer_device, sector_t sector, int size) 1447 { 1448 struct drbd_socket *sock; 1449 struct p_block_req *p; 1450 1451 sock = &peer_device->connection->data; 1452 p = drbd_prepare_command(peer_device, sock); 1453 if (!p) 1454 return -EIO; 1455 p->sector = cpu_to_be64(sector); 1456 p->block_id = ID_SYNCER /* unused */; 1457 p->blksize = cpu_to_be32(size); 1458 return drbd_send_command(peer_device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0); 1459 } 1460 1461 /* called on sndtimeo 1462 * returns false if we should retry, 1463 * true if we think connection is dead 1464 */ 1465 static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock) 1466 { 1467 int drop_it; 1468 /* long elapsed = (long)(jiffies - device->last_received); */ 1469 1470 drop_it = connection->meta.socket == sock 1471 || !connection->ack_receiver.task 1472 || get_t_state(&connection->ack_receiver) != RUNNING 1473 || connection->cstate < C_WF_REPORT_PARAMS; 1474 1475 if (drop_it) 1476 return true; 1477 1478 drop_it = !--connection->ko_count; 1479 if (!drop_it) { 1480 drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n", 1481 current->comm, current->pid, connection->ko_count); 1482 request_ping(connection); 1483 } 1484 1485 return drop_it; /* && (device->state == R_PRIMARY) */; 1486 } 1487 1488 static void drbd_update_congested(struct drbd_connection *connection) 1489 { 1490 struct sock *sk = connection->data.socket->sk; 1491 if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5) 1492 set_bit(NET_CONGESTED, &connection->flags); 1493 } 1494 1495 /* The idea of sendpage seems to be to put some kind of reference 1496 * to the page into the skb, and to hand it over to the NIC. In 1497 * this process get_page() gets called. 1498 * 1499 * As soon as the page was really sent over the network put_page() 1500 * gets called by some part of the network layer. [ NIC driver? ] 1501 * 1502 * [ get_page() / put_page() increment/decrement the count. If count 1503 * reaches 0 the page will be freed. ] 1504 * 1505 * This works nicely with pages from FSs. 1506 * But this means that in protocol A we might signal IO completion too early! 1507 * 1508 * In order not to corrupt data during a resync we must make sure 1509 * that we do not reuse our own buffer pages (EEs) to early, therefore 1510 * we have the net_ee list. 1511 * 1512 * XFS seems to have problems, still, it submits pages with page_count == 0! 1513 * As a workaround, we disable sendpage on pages 1514 * with page_count == 0 or PageSlab. 1515 */ 1516 static int _drbd_no_send_page(struct drbd_peer_device *peer_device, struct page *page, 1517 int offset, size_t size, unsigned msg_flags) 1518 { 1519 struct socket *socket; 1520 void *addr; 1521 int err; 1522 1523 socket = peer_device->connection->data.socket; 1524 addr = kmap(page) + offset; 1525 err = drbd_send_all(peer_device->connection, socket, addr, size, msg_flags); 1526 kunmap(page); 1527 if (!err) 1528 peer_device->device->send_cnt += size >> 9; 1529 return err; 1530 } 1531 1532 static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *page, 1533 int offset, size_t size, unsigned msg_flags) 1534 { 1535 struct socket *socket = peer_device->connection->data.socket; 1536 int len = size; 1537 int err = -EIO; 1538 1539 /* e.g. XFS meta- & log-data is in slab pages, which have a 1540 * page_count of 0 and/or have PageSlab() set. 1541 * we cannot use send_page for those, as that does get_page(); 1542 * put_page(); and would cause either a VM_BUG directly, or 1543 * __page_cache_release a page that would actually still be referenced 1544 * by someone, leading to some obscure delayed Oops somewhere else. */ 1545 if (drbd_disable_sendpage || !sendpage_ok(page)) 1546 return _drbd_no_send_page(peer_device, page, offset, size, msg_flags); 1547 1548 msg_flags |= MSG_NOSIGNAL; 1549 drbd_update_congested(peer_device->connection); 1550 do { 1551 int sent; 1552 1553 sent = socket->ops->sendpage(socket, page, offset, len, msg_flags); 1554 if (sent <= 0) { 1555 if (sent == -EAGAIN) { 1556 if (we_should_drop_the_connection(peer_device->connection, socket)) 1557 break; 1558 continue; 1559 } 1560 drbd_warn(peer_device->device, "%s: size=%d len=%d sent=%d\n", 1561 __func__, (int)size, len, sent); 1562 if (sent < 0) 1563 err = sent; 1564 break; 1565 } 1566 len -= sent; 1567 offset += sent; 1568 } while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/); 1569 clear_bit(NET_CONGESTED, &peer_device->connection->flags); 1570 1571 if (len == 0) { 1572 err = 0; 1573 peer_device->device->send_cnt += size >> 9; 1574 } 1575 return err; 1576 } 1577 1578 static int _drbd_send_bio(struct drbd_peer_device *peer_device, struct bio *bio) 1579 { 1580 struct bio_vec bvec; 1581 struct bvec_iter iter; 1582 1583 /* hint all but last page with MSG_MORE */ 1584 bio_for_each_segment(bvec, bio, iter) { 1585 int err; 1586 1587 err = _drbd_no_send_page(peer_device, bvec.bv_page, 1588 bvec.bv_offset, bvec.bv_len, 1589 bio_iter_last(bvec, iter) 1590 ? 0 : MSG_MORE); 1591 if (err) 1592 return err; 1593 /* REQ_OP_WRITE_SAME has only one segment */ 1594 if (bio_op(bio) == REQ_OP_WRITE_SAME) 1595 break; 1596 } 1597 return 0; 1598 } 1599 1600 static int _drbd_send_zc_bio(struct drbd_peer_device *peer_device, struct bio *bio) 1601 { 1602 struct bio_vec bvec; 1603 struct bvec_iter iter; 1604 1605 /* hint all but last page with MSG_MORE */ 1606 bio_for_each_segment(bvec, bio, iter) { 1607 int err; 1608 1609 err = _drbd_send_page(peer_device, bvec.bv_page, 1610 bvec.bv_offset, bvec.bv_len, 1611 bio_iter_last(bvec, iter) ? 0 : MSG_MORE); 1612 if (err) 1613 return err; 1614 /* REQ_OP_WRITE_SAME has only one segment */ 1615 if (bio_op(bio) == REQ_OP_WRITE_SAME) 1616 break; 1617 } 1618 return 0; 1619 } 1620 1621 static int _drbd_send_zc_ee(struct drbd_peer_device *peer_device, 1622 struct drbd_peer_request *peer_req) 1623 { 1624 struct page *page = peer_req->pages; 1625 unsigned len = peer_req->i.size; 1626 int err; 1627 1628 /* hint all but last page with MSG_MORE */ 1629 page_chain_for_each(page) { 1630 unsigned l = min_t(unsigned, len, PAGE_SIZE); 1631 1632 err = _drbd_send_page(peer_device, page, 0, l, 1633 page_chain_next(page) ? MSG_MORE : 0); 1634 if (err) 1635 return err; 1636 len -= l; 1637 } 1638 return 0; 1639 } 1640 1641 static u32 bio_flags_to_wire(struct drbd_connection *connection, 1642 struct bio *bio) 1643 { 1644 if (connection->agreed_pro_version >= 95) 1645 return (bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0) | 1646 (bio->bi_opf & REQ_FUA ? DP_FUA : 0) | 1647 (bio->bi_opf & REQ_PREFLUSH ? DP_FLUSH : 0) | 1648 (bio_op(bio) == REQ_OP_WRITE_SAME ? DP_WSAME : 0) | 1649 (bio_op(bio) == REQ_OP_DISCARD ? DP_DISCARD : 0) | 1650 (bio_op(bio) == REQ_OP_WRITE_ZEROES ? 1651 ((connection->agreed_features & DRBD_FF_WZEROES) ? 1652 (DP_ZEROES |(!(bio->bi_opf & REQ_NOUNMAP) ? DP_DISCARD : 0)) 1653 : DP_DISCARD) 1654 : 0); 1655 else 1656 return bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0; 1657 } 1658 1659 /* Used to send write or TRIM aka REQ_OP_DISCARD requests 1660 * R_PRIMARY -> Peer (P_DATA, P_TRIM) 1661 */ 1662 int drbd_send_dblock(struct drbd_peer_device *peer_device, struct drbd_request *req) 1663 { 1664 struct drbd_device *device = peer_device->device; 1665 struct drbd_socket *sock; 1666 struct p_data *p; 1667 struct p_wsame *wsame = NULL; 1668 void *digest_out; 1669 unsigned int dp_flags = 0; 1670 int digest_size; 1671 int err; 1672 1673 sock = &peer_device->connection->data; 1674 p = drbd_prepare_command(peer_device, sock); 1675 digest_size = peer_device->connection->integrity_tfm ? 1676 crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0; 1677 1678 if (!p) 1679 return -EIO; 1680 p->sector = cpu_to_be64(req->i.sector); 1681 p->block_id = (unsigned long)req; 1682 p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq)); 1683 dp_flags = bio_flags_to_wire(peer_device->connection, req->master_bio); 1684 if (device->state.conn >= C_SYNC_SOURCE && 1685 device->state.conn <= C_PAUSED_SYNC_T) 1686 dp_flags |= DP_MAY_SET_IN_SYNC; 1687 if (peer_device->connection->agreed_pro_version >= 100) { 1688 if (req->rq_state & RQ_EXP_RECEIVE_ACK) 1689 dp_flags |= DP_SEND_RECEIVE_ACK; 1690 /* During resync, request an explicit write ack, 1691 * even in protocol != C */ 1692 if (req->rq_state & RQ_EXP_WRITE_ACK 1693 || (dp_flags & DP_MAY_SET_IN_SYNC)) 1694 dp_flags |= DP_SEND_WRITE_ACK; 1695 } 1696 p->dp_flags = cpu_to_be32(dp_flags); 1697 1698 if (dp_flags & (DP_DISCARD|DP_ZEROES)) { 1699 enum drbd_packet cmd = (dp_flags & DP_ZEROES) ? P_ZEROES : P_TRIM; 1700 struct p_trim *t = (struct p_trim*)p; 1701 t->size = cpu_to_be32(req->i.size); 1702 err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*t), NULL, 0); 1703 goto out; 1704 } 1705 if (dp_flags & DP_WSAME) { 1706 /* this will only work if DRBD_FF_WSAME is set AND the 1707 * handshake agreed that all nodes and backend devices are 1708 * WRITE_SAME capable and agree on logical_block_size */ 1709 wsame = (struct p_wsame*)p; 1710 digest_out = wsame + 1; 1711 wsame->size = cpu_to_be32(req->i.size); 1712 } else 1713 digest_out = p + 1; 1714 1715 /* our digest is still only over the payload. 1716 * TRIM does not carry any payload. */ 1717 if (digest_size) 1718 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest_out); 1719 if (wsame) { 1720 err = 1721 __send_command(peer_device->connection, device->vnr, sock, P_WSAME, 1722 sizeof(*wsame) + digest_size, NULL, 1723 bio_iovec(req->master_bio).bv_len); 1724 } else 1725 err = 1726 __send_command(peer_device->connection, device->vnr, sock, P_DATA, 1727 sizeof(*p) + digest_size, NULL, req->i.size); 1728 if (!err) { 1729 /* For protocol A, we have to memcpy the payload into 1730 * socket buffers, as we may complete right away 1731 * as soon as we handed it over to tcp, at which point the data 1732 * pages may become invalid. 1733 * 1734 * For data-integrity enabled, we copy it as well, so we can be 1735 * sure that even if the bio pages may still be modified, it 1736 * won't change the data on the wire, thus if the digest checks 1737 * out ok after sending on this side, but does not fit on the 1738 * receiving side, we sure have detected corruption elsewhere. 1739 */ 1740 if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || digest_size) 1741 err = _drbd_send_bio(peer_device, req->master_bio); 1742 else 1743 err = _drbd_send_zc_bio(peer_device, req->master_bio); 1744 1745 /* double check digest, sometimes buffers have been modified in flight. */ 1746 if (digest_size > 0 && digest_size <= 64) { 1747 /* 64 byte, 512 bit, is the largest digest size 1748 * currently supported in kernel crypto. */ 1749 unsigned char digest[64]; 1750 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest); 1751 if (memcmp(p + 1, digest, digest_size)) { 1752 drbd_warn(device, 1753 "Digest mismatch, buffer modified by upper layers during write: %llus +%u\n", 1754 (unsigned long long)req->i.sector, req->i.size); 1755 } 1756 } /* else if (digest_size > 64) { 1757 ... Be noisy about digest too large ... 1758 } */ 1759 } 1760 out: 1761 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */ 1762 1763 return err; 1764 } 1765 1766 /* answer packet, used to send data back for read requests: 1767 * Peer -> (diskless) R_PRIMARY (P_DATA_REPLY) 1768 * C_SYNC_SOURCE -> C_SYNC_TARGET (P_RS_DATA_REPLY) 1769 */ 1770 int drbd_send_block(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1771 struct drbd_peer_request *peer_req) 1772 { 1773 struct drbd_device *device = peer_device->device; 1774 struct drbd_socket *sock; 1775 struct p_data *p; 1776 int err; 1777 int digest_size; 1778 1779 sock = &peer_device->connection->data; 1780 p = drbd_prepare_command(peer_device, sock); 1781 1782 digest_size = peer_device->connection->integrity_tfm ? 1783 crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0; 1784 1785 if (!p) 1786 return -EIO; 1787 p->sector = cpu_to_be64(peer_req->i.sector); 1788 p->block_id = peer_req->block_id; 1789 p->seq_num = 0; /* unused */ 1790 p->dp_flags = 0; 1791 if (digest_size) 1792 drbd_csum_ee(peer_device->connection->integrity_tfm, peer_req, p + 1); 1793 err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*p) + digest_size, NULL, peer_req->i.size); 1794 if (!err) 1795 err = _drbd_send_zc_ee(peer_device, peer_req); 1796 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */ 1797 1798 return err; 1799 } 1800 1801 int drbd_send_out_of_sync(struct drbd_peer_device *peer_device, struct drbd_request *req) 1802 { 1803 struct drbd_socket *sock; 1804 struct p_block_desc *p; 1805 1806 sock = &peer_device->connection->data; 1807 p = drbd_prepare_command(peer_device, sock); 1808 if (!p) 1809 return -EIO; 1810 p->sector = cpu_to_be64(req->i.sector); 1811 p->blksize = cpu_to_be32(req->i.size); 1812 return drbd_send_command(peer_device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0); 1813 } 1814 1815 /* 1816 drbd_send distinguishes two cases: 1817 1818 Packets sent via the data socket "sock" 1819 and packets sent via the meta data socket "msock" 1820 1821 sock msock 1822 -----------------+-------------------------+------------------------------ 1823 timeout conf.timeout / 2 conf.timeout / 2 1824 timeout action send a ping via msock Abort communication 1825 and close all sockets 1826 */ 1827 1828 /* 1829 * you must have down()ed the appropriate [m]sock_mutex elsewhere! 1830 */ 1831 int drbd_send(struct drbd_connection *connection, struct socket *sock, 1832 void *buf, size_t size, unsigned msg_flags) 1833 { 1834 struct kvec iov = {.iov_base = buf, .iov_len = size}; 1835 struct msghdr msg = {.msg_flags = msg_flags | MSG_NOSIGNAL}; 1836 int rv, sent = 0; 1837 1838 if (!sock) 1839 return -EBADR; 1840 1841 /* THINK if (signal_pending) return ... ? */ 1842 1843 iov_iter_kvec(&msg.msg_iter, WRITE, &iov, 1, size); 1844 1845 if (sock == connection->data.socket) { 1846 rcu_read_lock(); 1847 connection->ko_count = rcu_dereference(connection->net_conf)->ko_count; 1848 rcu_read_unlock(); 1849 drbd_update_congested(connection); 1850 } 1851 do { 1852 rv = sock_sendmsg(sock, &msg); 1853 if (rv == -EAGAIN) { 1854 if (we_should_drop_the_connection(connection, sock)) 1855 break; 1856 else 1857 continue; 1858 } 1859 if (rv == -EINTR) { 1860 flush_signals(current); 1861 rv = 0; 1862 } 1863 if (rv < 0) 1864 break; 1865 sent += rv; 1866 } while (sent < size); 1867 1868 if (sock == connection->data.socket) 1869 clear_bit(NET_CONGESTED, &connection->flags); 1870 1871 if (rv <= 0) { 1872 if (rv != -EAGAIN) { 1873 drbd_err(connection, "%s_sendmsg returned %d\n", 1874 sock == connection->meta.socket ? "msock" : "sock", 1875 rv); 1876 conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD); 1877 } else 1878 conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD); 1879 } 1880 1881 return sent; 1882 } 1883 1884 /* 1885 * drbd_send_all - Send an entire buffer 1886 * 1887 * Returns 0 upon success and a negative error value otherwise. 1888 */ 1889 int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer, 1890 size_t size, unsigned msg_flags) 1891 { 1892 int err; 1893 1894 err = drbd_send(connection, sock, buffer, size, msg_flags); 1895 if (err < 0) 1896 return err; 1897 if (err != size) 1898 return -EIO; 1899 return 0; 1900 } 1901 1902 static int drbd_open(struct block_device *bdev, fmode_t mode) 1903 { 1904 struct drbd_device *device = bdev->bd_disk->private_data; 1905 unsigned long flags; 1906 int rv = 0; 1907 1908 mutex_lock(&drbd_main_mutex); 1909 spin_lock_irqsave(&device->resource->req_lock, flags); 1910 /* to have a stable device->state.role 1911 * and no race with updating open_cnt */ 1912 1913 if (device->state.role != R_PRIMARY) { 1914 if (mode & FMODE_WRITE) 1915 rv = -EROFS; 1916 else if (!drbd_allow_oos) 1917 rv = -EMEDIUMTYPE; 1918 } 1919 1920 if (!rv) 1921 device->open_cnt++; 1922 spin_unlock_irqrestore(&device->resource->req_lock, flags); 1923 mutex_unlock(&drbd_main_mutex); 1924 1925 return rv; 1926 } 1927 1928 static void drbd_release(struct gendisk *gd, fmode_t mode) 1929 { 1930 struct drbd_device *device = gd->private_data; 1931 mutex_lock(&drbd_main_mutex); 1932 device->open_cnt--; 1933 mutex_unlock(&drbd_main_mutex); 1934 } 1935 1936 /* need to hold resource->req_lock */ 1937 void drbd_queue_unplug(struct drbd_device *device) 1938 { 1939 if (device->state.pdsk >= D_INCONSISTENT && device->state.conn >= C_CONNECTED) { 1940 D_ASSERT(device, device->state.role == R_PRIMARY); 1941 if (test_and_clear_bit(UNPLUG_REMOTE, &device->flags)) { 1942 drbd_queue_work_if_unqueued( 1943 &first_peer_device(device)->connection->sender_work, 1944 &device->unplug_work); 1945 } 1946 } 1947 } 1948 1949 static void drbd_set_defaults(struct drbd_device *device) 1950 { 1951 /* Beware! The actual layout differs 1952 * between big endian and little endian */ 1953 device->state = (union drbd_dev_state) { 1954 { .role = R_SECONDARY, 1955 .peer = R_UNKNOWN, 1956 .conn = C_STANDALONE, 1957 .disk = D_DISKLESS, 1958 .pdsk = D_UNKNOWN, 1959 } }; 1960 } 1961 1962 void drbd_init_set_defaults(struct drbd_device *device) 1963 { 1964 /* the memset(,0,) did most of this. 1965 * note: only assignments, no allocation in here */ 1966 1967 drbd_set_defaults(device); 1968 1969 atomic_set(&device->ap_bio_cnt, 0); 1970 atomic_set(&device->ap_actlog_cnt, 0); 1971 atomic_set(&device->ap_pending_cnt, 0); 1972 atomic_set(&device->rs_pending_cnt, 0); 1973 atomic_set(&device->unacked_cnt, 0); 1974 atomic_set(&device->local_cnt, 0); 1975 atomic_set(&device->pp_in_use_by_net, 0); 1976 atomic_set(&device->rs_sect_in, 0); 1977 atomic_set(&device->rs_sect_ev, 0); 1978 atomic_set(&device->ap_in_flight, 0); 1979 atomic_set(&device->md_io.in_use, 0); 1980 1981 mutex_init(&device->own_state_mutex); 1982 device->state_mutex = &device->own_state_mutex; 1983 1984 spin_lock_init(&device->al_lock); 1985 spin_lock_init(&device->peer_seq_lock); 1986 1987 INIT_LIST_HEAD(&device->active_ee); 1988 INIT_LIST_HEAD(&device->sync_ee); 1989 INIT_LIST_HEAD(&device->done_ee); 1990 INIT_LIST_HEAD(&device->read_ee); 1991 INIT_LIST_HEAD(&device->net_ee); 1992 INIT_LIST_HEAD(&device->resync_reads); 1993 INIT_LIST_HEAD(&device->resync_work.list); 1994 INIT_LIST_HEAD(&device->unplug_work.list); 1995 INIT_LIST_HEAD(&device->bm_io_work.w.list); 1996 INIT_LIST_HEAD(&device->pending_master_completion[0]); 1997 INIT_LIST_HEAD(&device->pending_master_completion[1]); 1998 INIT_LIST_HEAD(&device->pending_completion[0]); 1999 INIT_LIST_HEAD(&device->pending_completion[1]); 2000 2001 device->resync_work.cb = w_resync_timer; 2002 device->unplug_work.cb = w_send_write_hint; 2003 device->bm_io_work.w.cb = w_bitmap_io; 2004 2005 timer_setup(&device->resync_timer, resync_timer_fn, 0); 2006 timer_setup(&device->md_sync_timer, md_sync_timer_fn, 0); 2007 timer_setup(&device->start_resync_timer, start_resync_timer_fn, 0); 2008 timer_setup(&device->request_timer, request_timer_fn, 0); 2009 2010 init_waitqueue_head(&device->misc_wait); 2011 init_waitqueue_head(&device->state_wait); 2012 init_waitqueue_head(&device->ee_wait); 2013 init_waitqueue_head(&device->al_wait); 2014 init_waitqueue_head(&device->seq_wait); 2015 2016 device->resync_wenr = LC_FREE; 2017 device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE; 2018 device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE; 2019 } 2020 2021 void drbd_set_my_capacity(struct drbd_device *device, sector_t size) 2022 { 2023 char ppb[10]; 2024 2025 set_capacity_and_notify(device->vdisk, size); 2026 2027 drbd_info(device, "size = %s (%llu KB)\n", 2028 ppsize(ppb, size>>1), (unsigned long long)size>>1); 2029 } 2030 2031 void drbd_device_cleanup(struct drbd_device *device) 2032 { 2033 int i; 2034 if (first_peer_device(device)->connection->receiver.t_state != NONE) 2035 drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n", 2036 first_peer_device(device)->connection->receiver.t_state); 2037 2038 device->al_writ_cnt = 2039 device->bm_writ_cnt = 2040 device->read_cnt = 2041 device->recv_cnt = 2042 device->send_cnt = 2043 device->writ_cnt = 2044 device->p_size = 2045 device->rs_start = 2046 device->rs_total = 2047 device->rs_failed = 0; 2048 device->rs_last_events = 0; 2049 device->rs_last_sect_ev = 0; 2050 for (i = 0; i < DRBD_SYNC_MARKS; i++) { 2051 device->rs_mark_left[i] = 0; 2052 device->rs_mark_time[i] = 0; 2053 } 2054 D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL); 2055 2056 set_capacity_and_notify(device->vdisk, 0); 2057 if (device->bitmap) { 2058 /* maybe never allocated. */ 2059 drbd_bm_resize(device, 0, 1); 2060 drbd_bm_cleanup(device); 2061 } 2062 2063 drbd_backing_dev_free(device, device->ldev); 2064 device->ldev = NULL; 2065 2066 clear_bit(AL_SUSPENDED, &device->flags); 2067 2068 D_ASSERT(device, list_empty(&device->active_ee)); 2069 D_ASSERT(device, list_empty(&device->sync_ee)); 2070 D_ASSERT(device, list_empty(&device->done_ee)); 2071 D_ASSERT(device, list_empty(&device->read_ee)); 2072 D_ASSERT(device, list_empty(&device->net_ee)); 2073 D_ASSERT(device, list_empty(&device->resync_reads)); 2074 D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q)); 2075 D_ASSERT(device, list_empty(&device->resync_work.list)); 2076 D_ASSERT(device, list_empty(&device->unplug_work.list)); 2077 2078 drbd_set_defaults(device); 2079 } 2080 2081 2082 static void drbd_destroy_mempools(void) 2083 { 2084 struct page *page; 2085 2086 while (drbd_pp_pool) { 2087 page = drbd_pp_pool; 2088 drbd_pp_pool = (struct page *)page_private(page); 2089 __free_page(page); 2090 drbd_pp_vacant--; 2091 } 2092 2093 /* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */ 2094 2095 bioset_exit(&drbd_io_bio_set); 2096 bioset_exit(&drbd_md_io_bio_set); 2097 mempool_exit(&drbd_md_io_page_pool); 2098 mempool_exit(&drbd_ee_mempool); 2099 mempool_exit(&drbd_request_mempool); 2100 kmem_cache_destroy(drbd_ee_cache); 2101 kmem_cache_destroy(drbd_request_cache); 2102 kmem_cache_destroy(drbd_bm_ext_cache); 2103 kmem_cache_destroy(drbd_al_ext_cache); 2104 2105 drbd_ee_cache = NULL; 2106 drbd_request_cache = NULL; 2107 drbd_bm_ext_cache = NULL; 2108 drbd_al_ext_cache = NULL; 2109 2110 return; 2111 } 2112 2113 static int drbd_create_mempools(void) 2114 { 2115 struct page *page; 2116 const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * drbd_minor_count; 2117 int i, ret; 2118 2119 /* caches */ 2120 drbd_request_cache = kmem_cache_create( 2121 "drbd_req", sizeof(struct drbd_request), 0, 0, NULL); 2122 if (drbd_request_cache == NULL) 2123 goto Enomem; 2124 2125 drbd_ee_cache = kmem_cache_create( 2126 "drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL); 2127 if (drbd_ee_cache == NULL) 2128 goto Enomem; 2129 2130 drbd_bm_ext_cache = kmem_cache_create( 2131 "drbd_bm", sizeof(struct bm_extent), 0, 0, NULL); 2132 if (drbd_bm_ext_cache == NULL) 2133 goto Enomem; 2134 2135 drbd_al_ext_cache = kmem_cache_create( 2136 "drbd_al", sizeof(struct lc_element), 0, 0, NULL); 2137 if (drbd_al_ext_cache == NULL) 2138 goto Enomem; 2139 2140 /* mempools */ 2141 ret = bioset_init(&drbd_io_bio_set, BIO_POOL_SIZE, 0, 0); 2142 if (ret) 2143 goto Enomem; 2144 2145 ret = bioset_init(&drbd_md_io_bio_set, DRBD_MIN_POOL_PAGES, 0, 2146 BIOSET_NEED_BVECS); 2147 if (ret) 2148 goto Enomem; 2149 2150 ret = mempool_init_page_pool(&drbd_md_io_page_pool, DRBD_MIN_POOL_PAGES, 0); 2151 if (ret) 2152 goto Enomem; 2153 2154 ret = mempool_init_slab_pool(&drbd_request_mempool, number, 2155 drbd_request_cache); 2156 if (ret) 2157 goto Enomem; 2158 2159 ret = mempool_init_slab_pool(&drbd_ee_mempool, number, drbd_ee_cache); 2160 if (ret) 2161 goto Enomem; 2162 2163 for (i = 0; i < number; i++) { 2164 page = alloc_page(GFP_HIGHUSER); 2165 if (!page) 2166 goto Enomem; 2167 set_page_private(page, (unsigned long)drbd_pp_pool); 2168 drbd_pp_pool = page; 2169 } 2170 drbd_pp_vacant = number; 2171 2172 return 0; 2173 2174 Enomem: 2175 drbd_destroy_mempools(); /* in case we allocated some */ 2176 return -ENOMEM; 2177 } 2178 2179 static void drbd_release_all_peer_reqs(struct drbd_device *device) 2180 { 2181 int rr; 2182 2183 rr = drbd_free_peer_reqs(device, &device->active_ee); 2184 if (rr) 2185 drbd_err(device, "%d EEs in active list found!\n", rr); 2186 2187 rr = drbd_free_peer_reqs(device, &device->sync_ee); 2188 if (rr) 2189 drbd_err(device, "%d EEs in sync list found!\n", rr); 2190 2191 rr = drbd_free_peer_reqs(device, &device->read_ee); 2192 if (rr) 2193 drbd_err(device, "%d EEs in read list found!\n", rr); 2194 2195 rr = drbd_free_peer_reqs(device, &device->done_ee); 2196 if (rr) 2197 drbd_err(device, "%d EEs in done list found!\n", rr); 2198 2199 rr = drbd_free_peer_reqs(device, &device->net_ee); 2200 if (rr) 2201 drbd_err(device, "%d EEs in net list found!\n", rr); 2202 } 2203 2204 /* caution. no locking. */ 2205 void drbd_destroy_device(struct kref *kref) 2206 { 2207 struct drbd_device *device = container_of(kref, struct drbd_device, kref); 2208 struct drbd_resource *resource = device->resource; 2209 struct drbd_peer_device *peer_device, *tmp_peer_device; 2210 2211 del_timer_sync(&device->request_timer); 2212 2213 /* paranoia asserts */ 2214 D_ASSERT(device, device->open_cnt == 0); 2215 /* end paranoia asserts */ 2216 2217 /* cleanup stuff that may have been allocated during 2218 * device (re-)configuration or state changes */ 2219 2220 drbd_backing_dev_free(device, device->ldev); 2221 device->ldev = NULL; 2222 2223 drbd_release_all_peer_reqs(device); 2224 2225 lc_destroy(device->act_log); 2226 lc_destroy(device->resync); 2227 2228 kfree(device->p_uuid); 2229 /* device->p_uuid = NULL; */ 2230 2231 if (device->bitmap) /* should no longer be there. */ 2232 drbd_bm_cleanup(device); 2233 __free_page(device->md_io.page); 2234 put_disk(device->vdisk); 2235 blk_cleanup_queue(device->rq_queue); 2236 kfree(device->rs_plan_s); 2237 2238 /* not for_each_connection(connection, resource): 2239 * those may have been cleaned up and disassociated already. 2240 */ 2241 for_each_peer_device_safe(peer_device, tmp_peer_device, device) { 2242 kref_put(&peer_device->connection->kref, drbd_destroy_connection); 2243 kfree(peer_device); 2244 } 2245 memset(device, 0xfd, sizeof(*device)); 2246 kfree(device); 2247 kref_put(&resource->kref, drbd_destroy_resource); 2248 } 2249 2250 /* One global retry thread, if we need to push back some bio and have it 2251 * reinserted through our make request function. 2252 */ 2253 static struct retry_worker { 2254 struct workqueue_struct *wq; 2255 struct work_struct worker; 2256 2257 spinlock_t lock; 2258 struct list_head writes; 2259 } retry; 2260 2261 static void do_retry(struct work_struct *ws) 2262 { 2263 struct retry_worker *retry = container_of(ws, struct retry_worker, worker); 2264 LIST_HEAD(writes); 2265 struct drbd_request *req, *tmp; 2266 2267 spin_lock_irq(&retry->lock); 2268 list_splice_init(&retry->writes, &writes); 2269 spin_unlock_irq(&retry->lock); 2270 2271 list_for_each_entry_safe(req, tmp, &writes, tl_requests) { 2272 struct drbd_device *device = req->device; 2273 struct bio *bio = req->master_bio; 2274 bool expected; 2275 2276 expected = 2277 expect(atomic_read(&req->completion_ref) == 0) && 2278 expect(req->rq_state & RQ_POSTPONED) && 2279 expect((req->rq_state & RQ_LOCAL_PENDING) == 0 || 2280 (req->rq_state & RQ_LOCAL_ABORTED) != 0); 2281 2282 if (!expected) 2283 drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n", 2284 req, atomic_read(&req->completion_ref), 2285 req->rq_state); 2286 2287 /* We still need to put one kref associated with the 2288 * "completion_ref" going zero in the code path that queued it 2289 * here. The request object may still be referenced by a 2290 * frozen local req->private_bio, in case we force-detached. 2291 */ 2292 kref_put(&req->kref, drbd_req_destroy); 2293 2294 /* A single suspended or otherwise blocking device may stall 2295 * all others as well. Fortunately, this code path is to 2296 * recover from a situation that "should not happen": 2297 * concurrent writes in multi-primary setup. 2298 * In a "normal" lifecycle, this workqueue is supposed to be 2299 * destroyed without ever doing anything. 2300 * If it turns out to be an issue anyways, we can do per 2301 * resource (replication group) or per device (minor) retry 2302 * workqueues instead. 2303 */ 2304 2305 /* We are not just doing submit_bio_noacct(), 2306 * as we want to keep the start_time information. */ 2307 inc_ap_bio(device); 2308 __drbd_make_request(device, bio); 2309 } 2310 } 2311 2312 /* called via drbd_req_put_completion_ref(), 2313 * holds resource->req_lock */ 2314 void drbd_restart_request(struct drbd_request *req) 2315 { 2316 unsigned long flags; 2317 spin_lock_irqsave(&retry.lock, flags); 2318 list_move_tail(&req->tl_requests, &retry.writes); 2319 spin_unlock_irqrestore(&retry.lock, flags); 2320 2321 /* Drop the extra reference that would otherwise 2322 * have been dropped by complete_master_bio. 2323 * do_retry() needs to grab a new one. */ 2324 dec_ap_bio(req->device); 2325 2326 queue_work(retry.wq, &retry.worker); 2327 } 2328 2329 void drbd_destroy_resource(struct kref *kref) 2330 { 2331 struct drbd_resource *resource = 2332 container_of(kref, struct drbd_resource, kref); 2333 2334 idr_destroy(&resource->devices); 2335 free_cpumask_var(resource->cpu_mask); 2336 kfree(resource->name); 2337 memset(resource, 0xf2, sizeof(*resource)); 2338 kfree(resource); 2339 } 2340 2341 void drbd_free_resource(struct drbd_resource *resource) 2342 { 2343 struct drbd_connection *connection, *tmp; 2344 2345 for_each_connection_safe(connection, tmp, resource) { 2346 list_del(&connection->connections); 2347 drbd_debugfs_connection_cleanup(connection); 2348 kref_put(&connection->kref, drbd_destroy_connection); 2349 } 2350 drbd_debugfs_resource_cleanup(resource); 2351 kref_put(&resource->kref, drbd_destroy_resource); 2352 } 2353 2354 static void drbd_cleanup(void) 2355 { 2356 unsigned int i; 2357 struct drbd_device *device; 2358 struct drbd_resource *resource, *tmp; 2359 2360 /* first remove proc, 2361 * drbdsetup uses it's presence to detect 2362 * whether DRBD is loaded. 2363 * If we would get stuck in proc removal, 2364 * but have netlink already deregistered, 2365 * some drbdsetup commands may wait forever 2366 * for an answer. 2367 */ 2368 if (drbd_proc) 2369 remove_proc_entry("drbd", NULL); 2370 2371 if (retry.wq) 2372 destroy_workqueue(retry.wq); 2373 2374 drbd_genl_unregister(); 2375 2376 idr_for_each_entry(&drbd_devices, device, i) 2377 drbd_delete_device(device); 2378 2379 /* not _rcu since, no other updater anymore. Genl already unregistered */ 2380 for_each_resource_safe(resource, tmp, &drbd_resources) { 2381 list_del(&resource->resources); 2382 drbd_free_resource(resource); 2383 } 2384 2385 drbd_debugfs_cleanup(); 2386 2387 drbd_destroy_mempools(); 2388 unregister_blkdev(DRBD_MAJOR, "drbd"); 2389 2390 idr_destroy(&drbd_devices); 2391 2392 pr_info("module cleanup done.\n"); 2393 } 2394 2395 static void drbd_init_workqueue(struct drbd_work_queue* wq) 2396 { 2397 spin_lock_init(&wq->q_lock); 2398 INIT_LIST_HEAD(&wq->q); 2399 init_waitqueue_head(&wq->q_wait); 2400 } 2401 2402 struct completion_work { 2403 struct drbd_work w; 2404 struct completion done; 2405 }; 2406 2407 static int w_complete(struct drbd_work *w, int cancel) 2408 { 2409 struct completion_work *completion_work = 2410 container_of(w, struct completion_work, w); 2411 2412 complete(&completion_work->done); 2413 return 0; 2414 } 2415 2416 void drbd_flush_workqueue(struct drbd_work_queue *work_queue) 2417 { 2418 struct completion_work completion_work; 2419 2420 completion_work.w.cb = w_complete; 2421 init_completion(&completion_work.done); 2422 drbd_queue_work(work_queue, &completion_work.w); 2423 wait_for_completion(&completion_work.done); 2424 } 2425 2426 struct drbd_resource *drbd_find_resource(const char *name) 2427 { 2428 struct drbd_resource *resource; 2429 2430 if (!name || !name[0]) 2431 return NULL; 2432 2433 rcu_read_lock(); 2434 for_each_resource_rcu(resource, &drbd_resources) { 2435 if (!strcmp(resource->name, name)) { 2436 kref_get(&resource->kref); 2437 goto found; 2438 } 2439 } 2440 resource = NULL; 2441 found: 2442 rcu_read_unlock(); 2443 return resource; 2444 } 2445 2446 struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len, 2447 void *peer_addr, int peer_addr_len) 2448 { 2449 struct drbd_resource *resource; 2450 struct drbd_connection *connection; 2451 2452 rcu_read_lock(); 2453 for_each_resource_rcu(resource, &drbd_resources) { 2454 for_each_connection_rcu(connection, resource) { 2455 if (connection->my_addr_len == my_addr_len && 2456 connection->peer_addr_len == peer_addr_len && 2457 !memcmp(&connection->my_addr, my_addr, my_addr_len) && 2458 !memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) { 2459 kref_get(&connection->kref); 2460 goto found; 2461 } 2462 } 2463 } 2464 connection = NULL; 2465 found: 2466 rcu_read_unlock(); 2467 return connection; 2468 } 2469 2470 static int drbd_alloc_socket(struct drbd_socket *socket) 2471 { 2472 socket->rbuf = (void *) __get_free_page(GFP_KERNEL); 2473 if (!socket->rbuf) 2474 return -ENOMEM; 2475 socket->sbuf = (void *) __get_free_page(GFP_KERNEL); 2476 if (!socket->sbuf) 2477 return -ENOMEM; 2478 return 0; 2479 } 2480 2481 static void drbd_free_socket(struct drbd_socket *socket) 2482 { 2483 free_page((unsigned long) socket->sbuf); 2484 free_page((unsigned long) socket->rbuf); 2485 } 2486 2487 void conn_free_crypto(struct drbd_connection *connection) 2488 { 2489 drbd_free_sock(connection); 2490 2491 crypto_free_shash(connection->csums_tfm); 2492 crypto_free_shash(connection->verify_tfm); 2493 crypto_free_shash(connection->cram_hmac_tfm); 2494 crypto_free_shash(connection->integrity_tfm); 2495 crypto_free_shash(connection->peer_integrity_tfm); 2496 kfree(connection->int_dig_in); 2497 kfree(connection->int_dig_vv); 2498 2499 connection->csums_tfm = NULL; 2500 connection->verify_tfm = NULL; 2501 connection->cram_hmac_tfm = NULL; 2502 connection->integrity_tfm = NULL; 2503 connection->peer_integrity_tfm = NULL; 2504 connection->int_dig_in = NULL; 2505 connection->int_dig_vv = NULL; 2506 } 2507 2508 int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts) 2509 { 2510 struct drbd_connection *connection; 2511 cpumask_var_t new_cpu_mask; 2512 int err; 2513 2514 if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL)) 2515 return -ENOMEM; 2516 2517 /* silently ignore cpu mask on UP kernel */ 2518 if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) { 2519 err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE, 2520 cpumask_bits(new_cpu_mask), nr_cpu_ids); 2521 if (err == -EOVERFLOW) { 2522 /* So what. mask it out. */ 2523 cpumask_var_t tmp_cpu_mask; 2524 if (zalloc_cpumask_var(&tmp_cpu_mask, GFP_KERNEL)) { 2525 cpumask_setall(tmp_cpu_mask); 2526 cpumask_and(new_cpu_mask, new_cpu_mask, tmp_cpu_mask); 2527 drbd_warn(resource, "Overflow in bitmap_parse(%.12s%s), truncating to %u bits\n", 2528 res_opts->cpu_mask, 2529 strlen(res_opts->cpu_mask) > 12 ? "..." : "", 2530 nr_cpu_ids); 2531 free_cpumask_var(tmp_cpu_mask); 2532 err = 0; 2533 } 2534 } 2535 if (err) { 2536 drbd_warn(resource, "bitmap_parse() failed with %d\n", err); 2537 /* retcode = ERR_CPU_MASK_PARSE; */ 2538 goto fail; 2539 } 2540 } 2541 resource->res_opts = *res_opts; 2542 if (cpumask_empty(new_cpu_mask)) 2543 drbd_calc_cpu_mask(&new_cpu_mask); 2544 if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) { 2545 cpumask_copy(resource->cpu_mask, new_cpu_mask); 2546 for_each_connection_rcu(connection, resource) { 2547 connection->receiver.reset_cpu_mask = 1; 2548 connection->ack_receiver.reset_cpu_mask = 1; 2549 connection->worker.reset_cpu_mask = 1; 2550 } 2551 } 2552 err = 0; 2553 2554 fail: 2555 free_cpumask_var(new_cpu_mask); 2556 return err; 2557 2558 } 2559 2560 struct drbd_resource *drbd_create_resource(const char *name) 2561 { 2562 struct drbd_resource *resource; 2563 2564 resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL); 2565 if (!resource) 2566 goto fail; 2567 resource->name = kstrdup(name, GFP_KERNEL); 2568 if (!resource->name) 2569 goto fail_free_resource; 2570 if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL)) 2571 goto fail_free_name; 2572 kref_init(&resource->kref); 2573 idr_init(&resource->devices); 2574 INIT_LIST_HEAD(&resource->connections); 2575 resource->write_ordering = WO_BDEV_FLUSH; 2576 list_add_tail_rcu(&resource->resources, &drbd_resources); 2577 mutex_init(&resource->conf_update); 2578 mutex_init(&resource->adm_mutex); 2579 spin_lock_init(&resource->req_lock); 2580 drbd_debugfs_resource_add(resource); 2581 return resource; 2582 2583 fail_free_name: 2584 kfree(resource->name); 2585 fail_free_resource: 2586 kfree(resource); 2587 fail: 2588 return NULL; 2589 } 2590 2591 /* caller must be under adm_mutex */ 2592 struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts) 2593 { 2594 struct drbd_resource *resource; 2595 struct drbd_connection *connection; 2596 2597 connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL); 2598 if (!connection) 2599 return NULL; 2600 2601 if (drbd_alloc_socket(&connection->data)) 2602 goto fail; 2603 if (drbd_alloc_socket(&connection->meta)) 2604 goto fail; 2605 2606 connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL); 2607 if (!connection->current_epoch) 2608 goto fail; 2609 2610 INIT_LIST_HEAD(&connection->transfer_log); 2611 2612 INIT_LIST_HEAD(&connection->current_epoch->list); 2613 connection->epochs = 1; 2614 spin_lock_init(&connection->epoch_lock); 2615 2616 connection->send.seen_any_write_yet = false; 2617 connection->send.current_epoch_nr = 0; 2618 connection->send.current_epoch_writes = 0; 2619 2620 resource = drbd_create_resource(name); 2621 if (!resource) 2622 goto fail; 2623 2624 connection->cstate = C_STANDALONE; 2625 mutex_init(&connection->cstate_mutex); 2626 init_waitqueue_head(&connection->ping_wait); 2627 idr_init(&connection->peer_devices); 2628 2629 drbd_init_workqueue(&connection->sender_work); 2630 mutex_init(&connection->data.mutex); 2631 mutex_init(&connection->meta.mutex); 2632 2633 drbd_thread_init(resource, &connection->receiver, drbd_receiver, "receiver"); 2634 connection->receiver.connection = connection; 2635 drbd_thread_init(resource, &connection->worker, drbd_worker, "worker"); 2636 connection->worker.connection = connection; 2637 drbd_thread_init(resource, &connection->ack_receiver, drbd_ack_receiver, "ack_recv"); 2638 connection->ack_receiver.connection = connection; 2639 2640 kref_init(&connection->kref); 2641 2642 connection->resource = resource; 2643 2644 if (set_resource_options(resource, res_opts)) 2645 goto fail_resource; 2646 2647 kref_get(&resource->kref); 2648 list_add_tail_rcu(&connection->connections, &resource->connections); 2649 drbd_debugfs_connection_add(connection); 2650 return connection; 2651 2652 fail_resource: 2653 list_del(&resource->resources); 2654 drbd_free_resource(resource); 2655 fail: 2656 kfree(connection->current_epoch); 2657 drbd_free_socket(&connection->meta); 2658 drbd_free_socket(&connection->data); 2659 kfree(connection); 2660 return NULL; 2661 } 2662 2663 void drbd_destroy_connection(struct kref *kref) 2664 { 2665 struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref); 2666 struct drbd_resource *resource = connection->resource; 2667 2668 if (atomic_read(&connection->current_epoch->epoch_size) != 0) 2669 drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size)); 2670 kfree(connection->current_epoch); 2671 2672 idr_destroy(&connection->peer_devices); 2673 2674 drbd_free_socket(&connection->meta); 2675 drbd_free_socket(&connection->data); 2676 kfree(connection->int_dig_in); 2677 kfree(connection->int_dig_vv); 2678 memset(connection, 0xfc, sizeof(*connection)); 2679 kfree(connection); 2680 kref_put(&resource->kref, drbd_destroy_resource); 2681 } 2682 2683 static int init_submitter(struct drbd_device *device) 2684 { 2685 /* opencoded create_singlethread_workqueue(), 2686 * to be able to say "drbd%d", ..., minor */ 2687 device->submit.wq = 2688 alloc_ordered_workqueue("drbd%u_submit", WQ_MEM_RECLAIM, device->minor); 2689 if (!device->submit.wq) 2690 return -ENOMEM; 2691 2692 INIT_WORK(&device->submit.worker, do_submit); 2693 INIT_LIST_HEAD(&device->submit.writes); 2694 return 0; 2695 } 2696 2697 enum drbd_ret_code drbd_create_device(struct drbd_config_context *adm_ctx, unsigned int minor) 2698 { 2699 struct drbd_resource *resource = adm_ctx->resource; 2700 struct drbd_connection *connection; 2701 struct drbd_device *device; 2702 struct drbd_peer_device *peer_device, *tmp_peer_device; 2703 struct gendisk *disk; 2704 struct request_queue *q; 2705 int id; 2706 int vnr = adm_ctx->volume; 2707 enum drbd_ret_code err = ERR_NOMEM; 2708 2709 device = minor_to_device(minor); 2710 if (device) 2711 return ERR_MINOR_OR_VOLUME_EXISTS; 2712 2713 /* GFP_KERNEL, we are outside of all write-out paths */ 2714 device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL); 2715 if (!device) 2716 return ERR_NOMEM; 2717 kref_init(&device->kref); 2718 2719 kref_get(&resource->kref); 2720 device->resource = resource; 2721 device->minor = minor; 2722 device->vnr = vnr; 2723 2724 drbd_init_set_defaults(device); 2725 2726 q = blk_alloc_queue(NUMA_NO_NODE); 2727 if (!q) 2728 goto out_no_q; 2729 device->rq_queue = q; 2730 2731 disk = alloc_disk(1); 2732 if (!disk) 2733 goto out_no_disk; 2734 device->vdisk = disk; 2735 2736 set_disk_ro(disk, true); 2737 2738 disk->queue = q; 2739 disk->major = DRBD_MAJOR; 2740 disk->first_minor = minor; 2741 disk->fops = &drbd_ops; 2742 sprintf(disk->disk_name, "drbd%d", minor); 2743 disk->private_data = device; 2744 2745 blk_queue_write_cache(q, true, true); 2746 /* Setting the max_hw_sectors to an odd value of 8kibyte here 2747 This triggers a max_bio_size message upon first attach or connect */ 2748 blk_queue_max_hw_sectors(q, DRBD_MAX_BIO_SIZE_SAFE >> 8); 2749 2750 device->md_io.page = alloc_page(GFP_KERNEL); 2751 if (!device->md_io.page) 2752 goto out_no_io_page; 2753 2754 if (drbd_bm_init(device)) 2755 goto out_no_bitmap; 2756 device->read_requests = RB_ROOT; 2757 device->write_requests = RB_ROOT; 2758 2759 id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL); 2760 if (id < 0) { 2761 if (id == -ENOSPC) 2762 err = ERR_MINOR_OR_VOLUME_EXISTS; 2763 goto out_no_minor_idr; 2764 } 2765 kref_get(&device->kref); 2766 2767 id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL); 2768 if (id < 0) { 2769 if (id == -ENOSPC) 2770 err = ERR_MINOR_OR_VOLUME_EXISTS; 2771 goto out_idr_remove_minor; 2772 } 2773 kref_get(&device->kref); 2774 2775 INIT_LIST_HEAD(&device->peer_devices); 2776 INIT_LIST_HEAD(&device->pending_bitmap_io); 2777 for_each_connection(connection, resource) { 2778 peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL); 2779 if (!peer_device) 2780 goto out_idr_remove_from_resource; 2781 peer_device->connection = connection; 2782 peer_device->device = device; 2783 2784 list_add(&peer_device->peer_devices, &device->peer_devices); 2785 kref_get(&device->kref); 2786 2787 id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL); 2788 if (id < 0) { 2789 if (id == -ENOSPC) 2790 err = ERR_INVALID_REQUEST; 2791 goto out_idr_remove_from_resource; 2792 } 2793 kref_get(&connection->kref); 2794 INIT_WORK(&peer_device->send_acks_work, drbd_send_acks_wf); 2795 } 2796 2797 if (init_submitter(device)) { 2798 err = ERR_NOMEM; 2799 goto out_idr_remove_vol; 2800 } 2801 2802 add_disk(disk); 2803 2804 /* inherit the connection state */ 2805 device->state.conn = first_connection(resource)->cstate; 2806 if (device->state.conn == C_WF_REPORT_PARAMS) { 2807 for_each_peer_device(peer_device, device) 2808 drbd_connected(peer_device); 2809 } 2810 /* move to create_peer_device() */ 2811 for_each_peer_device(peer_device, device) 2812 drbd_debugfs_peer_device_add(peer_device); 2813 drbd_debugfs_device_add(device); 2814 return NO_ERROR; 2815 2816 out_idr_remove_vol: 2817 idr_remove(&connection->peer_devices, vnr); 2818 out_idr_remove_from_resource: 2819 for_each_connection(connection, resource) { 2820 peer_device = idr_remove(&connection->peer_devices, vnr); 2821 if (peer_device) 2822 kref_put(&connection->kref, drbd_destroy_connection); 2823 } 2824 for_each_peer_device_safe(peer_device, tmp_peer_device, device) { 2825 list_del(&peer_device->peer_devices); 2826 kfree(peer_device); 2827 } 2828 idr_remove(&resource->devices, vnr); 2829 out_idr_remove_minor: 2830 idr_remove(&drbd_devices, minor); 2831 synchronize_rcu(); 2832 out_no_minor_idr: 2833 drbd_bm_cleanup(device); 2834 out_no_bitmap: 2835 __free_page(device->md_io.page); 2836 out_no_io_page: 2837 put_disk(disk); 2838 out_no_disk: 2839 blk_cleanup_queue(q); 2840 out_no_q: 2841 kref_put(&resource->kref, drbd_destroy_resource); 2842 kfree(device); 2843 return err; 2844 } 2845 2846 void drbd_delete_device(struct drbd_device *device) 2847 { 2848 struct drbd_resource *resource = device->resource; 2849 struct drbd_connection *connection; 2850 struct drbd_peer_device *peer_device; 2851 2852 /* move to free_peer_device() */ 2853 for_each_peer_device(peer_device, device) 2854 drbd_debugfs_peer_device_cleanup(peer_device); 2855 drbd_debugfs_device_cleanup(device); 2856 for_each_connection(connection, resource) { 2857 idr_remove(&connection->peer_devices, device->vnr); 2858 kref_put(&device->kref, drbd_destroy_device); 2859 } 2860 idr_remove(&resource->devices, device->vnr); 2861 kref_put(&device->kref, drbd_destroy_device); 2862 idr_remove(&drbd_devices, device_to_minor(device)); 2863 kref_put(&device->kref, drbd_destroy_device); 2864 del_gendisk(device->vdisk); 2865 synchronize_rcu(); 2866 kref_put(&device->kref, drbd_destroy_device); 2867 } 2868 2869 static int __init drbd_init(void) 2870 { 2871 int err; 2872 2873 if (drbd_minor_count < DRBD_MINOR_COUNT_MIN || drbd_minor_count > DRBD_MINOR_COUNT_MAX) { 2874 pr_err("invalid minor_count (%d)\n", drbd_minor_count); 2875 #ifdef MODULE 2876 return -EINVAL; 2877 #else 2878 drbd_minor_count = DRBD_MINOR_COUNT_DEF; 2879 #endif 2880 } 2881 2882 err = register_blkdev(DRBD_MAJOR, "drbd"); 2883 if (err) { 2884 pr_err("unable to register block device major %d\n", 2885 DRBD_MAJOR); 2886 return err; 2887 } 2888 2889 /* 2890 * allocate all necessary structs 2891 */ 2892 init_waitqueue_head(&drbd_pp_wait); 2893 2894 drbd_proc = NULL; /* play safe for drbd_cleanup */ 2895 idr_init(&drbd_devices); 2896 2897 mutex_init(&resources_mutex); 2898 INIT_LIST_HEAD(&drbd_resources); 2899 2900 err = drbd_genl_register(); 2901 if (err) { 2902 pr_err("unable to register generic netlink family\n"); 2903 goto fail; 2904 } 2905 2906 err = drbd_create_mempools(); 2907 if (err) 2908 goto fail; 2909 2910 err = -ENOMEM; 2911 drbd_proc = proc_create_single("drbd", S_IFREG | 0444 , NULL, drbd_seq_show); 2912 if (!drbd_proc) { 2913 pr_err("unable to register proc file\n"); 2914 goto fail; 2915 } 2916 2917 retry.wq = create_singlethread_workqueue("drbd-reissue"); 2918 if (!retry.wq) { 2919 pr_err("unable to create retry workqueue\n"); 2920 goto fail; 2921 } 2922 INIT_WORK(&retry.worker, do_retry); 2923 spin_lock_init(&retry.lock); 2924 INIT_LIST_HEAD(&retry.writes); 2925 2926 drbd_debugfs_init(); 2927 2928 pr_info("initialized. " 2929 "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n", 2930 API_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX); 2931 pr_info("%s\n", drbd_buildtag()); 2932 pr_info("registered as block device major %d\n", DRBD_MAJOR); 2933 return 0; /* Success! */ 2934 2935 fail: 2936 drbd_cleanup(); 2937 if (err == -ENOMEM) 2938 pr_err("ran out of memory\n"); 2939 else 2940 pr_err("initialization failure\n"); 2941 return err; 2942 } 2943 2944 static void drbd_free_one_sock(struct drbd_socket *ds) 2945 { 2946 struct socket *s; 2947 mutex_lock(&ds->mutex); 2948 s = ds->socket; 2949 ds->socket = NULL; 2950 mutex_unlock(&ds->mutex); 2951 if (s) { 2952 /* so debugfs does not need to mutex_lock() */ 2953 synchronize_rcu(); 2954 kernel_sock_shutdown(s, SHUT_RDWR); 2955 sock_release(s); 2956 } 2957 } 2958 2959 void drbd_free_sock(struct drbd_connection *connection) 2960 { 2961 if (connection->data.socket) 2962 drbd_free_one_sock(&connection->data); 2963 if (connection->meta.socket) 2964 drbd_free_one_sock(&connection->meta); 2965 } 2966 2967 /* meta data management */ 2968 2969 void conn_md_sync(struct drbd_connection *connection) 2970 { 2971 struct drbd_peer_device *peer_device; 2972 int vnr; 2973 2974 rcu_read_lock(); 2975 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 2976 struct drbd_device *device = peer_device->device; 2977 2978 kref_get(&device->kref); 2979 rcu_read_unlock(); 2980 drbd_md_sync(device); 2981 kref_put(&device->kref, drbd_destroy_device); 2982 rcu_read_lock(); 2983 } 2984 rcu_read_unlock(); 2985 } 2986 2987 /* aligned 4kByte */ 2988 struct meta_data_on_disk { 2989 u64 la_size_sect; /* last agreed size. */ 2990 u64 uuid[UI_SIZE]; /* UUIDs. */ 2991 u64 device_uuid; 2992 u64 reserved_u64_1; 2993 u32 flags; /* MDF */ 2994 u32 magic; 2995 u32 md_size_sect; 2996 u32 al_offset; /* offset to this block */ 2997 u32 al_nr_extents; /* important for restoring the AL (userspace) */ 2998 /* `-- act_log->nr_elements <-- ldev->dc.al_extents */ 2999 u32 bm_offset; /* offset to the bitmap, from here */ 3000 u32 bm_bytes_per_bit; /* BM_BLOCK_SIZE */ 3001 u32 la_peer_max_bio_size; /* last peer max_bio_size */ 3002 3003 /* see al_tr_number_to_on_disk_sector() */ 3004 u32 al_stripes; 3005 u32 al_stripe_size_4k; 3006 3007 u8 reserved_u8[4096 - (7*8 + 10*4)]; 3008 } __packed; 3009 3010 3011 3012 void drbd_md_write(struct drbd_device *device, void *b) 3013 { 3014 struct meta_data_on_disk *buffer = b; 3015 sector_t sector; 3016 int i; 3017 3018 memset(buffer, 0, sizeof(*buffer)); 3019 3020 buffer->la_size_sect = cpu_to_be64(get_capacity(device->vdisk)); 3021 for (i = UI_CURRENT; i < UI_SIZE; i++) 3022 buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]); 3023 buffer->flags = cpu_to_be32(device->ldev->md.flags); 3024 buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN); 3025 3026 buffer->md_size_sect = cpu_to_be32(device->ldev->md.md_size_sect); 3027 buffer->al_offset = cpu_to_be32(device->ldev->md.al_offset); 3028 buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements); 3029 buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE); 3030 buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid); 3031 3032 buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset); 3033 buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size); 3034 3035 buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes); 3036 buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k); 3037 3038 D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset); 3039 sector = device->ldev->md.md_offset; 3040 3041 if (drbd_md_sync_page_io(device, device->ldev, sector, REQ_OP_WRITE)) { 3042 /* this was a try anyways ... */ 3043 drbd_err(device, "meta data update failed!\n"); 3044 drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR); 3045 } 3046 } 3047 3048 /** 3049 * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set 3050 * @device: DRBD device. 3051 */ 3052 void drbd_md_sync(struct drbd_device *device) 3053 { 3054 struct meta_data_on_disk *buffer; 3055 3056 /* Don't accidentally change the DRBD meta data layout. */ 3057 BUILD_BUG_ON(UI_SIZE != 4); 3058 BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096); 3059 3060 del_timer(&device->md_sync_timer); 3061 /* timer may be rearmed by drbd_md_mark_dirty() now. */ 3062 if (!test_and_clear_bit(MD_DIRTY, &device->flags)) 3063 return; 3064 3065 /* We use here D_FAILED and not D_ATTACHING because we try to write 3066 * metadata even if we detach due to a disk failure! */ 3067 if (!get_ldev_if_state(device, D_FAILED)) 3068 return; 3069 3070 buffer = drbd_md_get_buffer(device, __func__); 3071 if (!buffer) 3072 goto out; 3073 3074 drbd_md_write(device, buffer); 3075 3076 /* Update device->ldev->md.la_size_sect, 3077 * since we updated it on metadata. */ 3078 device->ldev->md.la_size_sect = get_capacity(device->vdisk); 3079 3080 drbd_md_put_buffer(device); 3081 out: 3082 put_ldev(device); 3083 } 3084 3085 static int check_activity_log_stripe_size(struct drbd_device *device, 3086 struct meta_data_on_disk *on_disk, 3087 struct drbd_md *in_core) 3088 { 3089 u32 al_stripes = be32_to_cpu(on_disk->al_stripes); 3090 u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k); 3091 u64 al_size_4k; 3092 3093 /* both not set: default to old fixed size activity log */ 3094 if (al_stripes == 0 && al_stripe_size_4k == 0) { 3095 al_stripes = 1; 3096 al_stripe_size_4k = MD_32kB_SECT/8; 3097 } 3098 3099 /* some paranoia plausibility checks */ 3100 3101 /* we need both values to be set */ 3102 if (al_stripes == 0 || al_stripe_size_4k == 0) 3103 goto err; 3104 3105 al_size_4k = (u64)al_stripes * al_stripe_size_4k; 3106 3107 /* Upper limit of activity log area, to avoid potential overflow 3108 * problems in al_tr_number_to_on_disk_sector(). As right now, more 3109 * than 72 * 4k blocks total only increases the amount of history, 3110 * limiting this arbitrarily to 16 GB is not a real limitation ;-) */ 3111 if (al_size_4k > (16 * 1024 * 1024/4)) 3112 goto err; 3113 3114 /* Lower limit: we need at least 8 transaction slots (32kB) 3115 * to not break existing setups */ 3116 if (al_size_4k < MD_32kB_SECT/8) 3117 goto err; 3118 3119 in_core->al_stripe_size_4k = al_stripe_size_4k; 3120 in_core->al_stripes = al_stripes; 3121 in_core->al_size_4k = al_size_4k; 3122 3123 return 0; 3124 err: 3125 drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n", 3126 al_stripes, al_stripe_size_4k); 3127 return -EINVAL; 3128 } 3129 3130 static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev) 3131 { 3132 sector_t capacity = drbd_get_capacity(bdev->md_bdev); 3133 struct drbd_md *in_core = &bdev->md; 3134 s32 on_disk_al_sect; 3135 s32 on_disk_bm_sect; 3136 3137 /* The on-disk size of the activity log, calculated from offsets, and 3138 * the size of the activity log calculated from the stripe settings, 3139 * should match. 3140 * Though we could relax this a bit: it is ok, if the striped activity log 3141 * fits in the available on-disk activity log size. 3142 * Right now, that would break how resize is implemented. 3143 * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware 3144 * of possible unused padding space in the on disk layout. */ 3145 if (in_core->al_offset < 0) { 3146 if (in_core->bm_offset > in_core->al_offset) 3147 goto err; 3148 on_disk_al_sect = -in_core->al_offset; 3149 on_disk_bm_sect = in_core->al_offset - in_core->bm_offset; 3150 } else { 3151 if (in_core->al_offset != MD_4kB_SECT) 3152 goto err; 3153 if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT) 3154 goto err; 3155 3156 on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT; 3157 on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset; 3158 } 3159 3160 /* old fixed size meta data is exactly that: fixed. */ 3161 if (in_core->meta_dev_idx >= 0) { 3162 if (in_core->md_size_sect != MD_128MB_SECT 3163 || in_core->al_offset != MD_4kB_SECT 3164 || in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT 3165 || in_core->al_stripes != 1 3166 || in_core->al_stripe_size_4k != MD_32kB_SECT/8) 3167 goto err; 3168 } 3169 3170 if (capacity < in_core->md_size_sect) 3171 goto err; 3172 if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev)) 3173 goto err; 3174 3175 /* should be aligned, and at least 32k */ 3176 if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT)) 3177 goto err; 3178 3179 /* should fit (for now: exactly) into the available on-disk space; 3180 * overflow prevention is in check_activity_log_stripe_size() above. */ 3181 if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT) 3182 goto err; 3183 3184 /* again, should be aligned */ 3185 if (in_core->bm_offset & 7) 3186 goto err; 3187 3188 /* FIXME check for device grow with flex external meta data? */ 3189 3190 /* can the available bitmap space cover the last agreed device size? */ 3191 if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512) 3192 goto err; 3193 3194 return 0; 3195 3196 err: 3197 drbd_err(device, "meta data offsets don't make sense: idx=%d " 3198 "al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, " 3199 "md_size_sect=%u, la_size=%llu, md_capacity=%llu\n", 3200 in_core->meta_dev_idx, 3201 in_core->al_stripes, in_core->al_stripe_size_4k, 3202 in_core->al_offset, in_core->bm_offset, in_core->md_size_sect, 3203 (unsigned long long)in_core->la_size_sect, 3204 (unsigned long long)capacity); 3205 3206 return -EINVAL; 3207 } 3208 3209 3210 /** 3211 * drbd_md_read() - Reads in the meta data super block 3212 * @device: DRBD device. 3213 * @bdev: Device from which the meta data should be read in. 3214 * 3215 * Return NO_ERROR on success, and an enum drbd_ret_code in case 3216 * something goes wrong. 3217 * 3218 * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS, 3219 * even before @bdev is assigned to @device->ldev. 3220 */ 3221 int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev) 3222 { 3223 struct meta_data_on_disk *buffer; 3224 u32 magic, flags; 3225 int i, rv = NO_ERROR; 3226 3227 if (device->state.disk != D_DISKLESS) 3228 return ERR_DISK_CONFIGURED; 3229 3230 buffer = drbd_md_get_buffer(device, __func__); 3231 if (!buffer) 3232 return ERR_NOMEM; 3233 3234 /* First, figure out where our meta data superblock is located, 3235 * and read it. */ 3236 bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx; 3237 bdev->md.md_offset = drbd_md_ss(bdev); 3238 /* Even for (flexible or indexed) external meta data, 3239 * initially restrict us to the 4k superblock for now. 3240 * Affects the paranoia out-of-range access check in drbd_md_sync_page_io(). */ 3241 bdev->md.md_size_sect = 8; 3242 3243 if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset, 3244 REQ_OP_READ)) { 3245 /* NOTE: can't do normal error processing here as this is 3246 called BEFORE disk is attached */ 3247 drbd_err(device, "Error while reading metadata.\n"); 3248 rv = ERR_IO_MD_DISK; 3249 goto err; 3250 } 3251 3252 magic = be32_to_cpu(buffer->magic); 3253 flags = be32_to_cpu(buffer->flags); 3254 if (magic == DRBD_MD_MAGIC_84_UNCLEAN || 3255 (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) { 3256 /* btw: that's Activity Log clean, not "all" clean. */ 3257 drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n"); 3258 rv = ERR_MD_UNCLEAN; 3259 goto err; 3260 } 3261 3262 rv = ERR_MD_INVALID; 3263 if (magic != DRBD_MD_MAGIC_08) { 3264 if (magic == DRBD_MD_MAGIC_07) 3265 drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n"); 3266 else 3267 drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n"); 3268 goto err; 3269 } 3270 3271 if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) { 3272 drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n", 3273 be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE); 3274 goto err; 3275 } 3276 3277 3278 /* convert to in_core endian */ 3279 bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect); 3280 for (i = UI_CURRENT; i < UI_SIZE; i++) 3281 bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]); 3282 bdev->md.flags = be32_to_cpu(buffer->flags); 3283 bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid); 3284 3285 bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect); 3286 bdev->md.al_offset = be32_to_cpu(buffer->al_offset); 3287 bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset); 3288 3289 if (check_activity_log_stripe_size(device, buffer, &bdev->md)) 3290 goto err; 3291 if (check_offsets_and_sizes(device, bdev)) 3292 goto err; 3293 3294 if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) { 3295 drbd_err(device, "unexpected bm_offset: %d (expected %d)\n", 3296 be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset); 3297 goto err; 3298 } 3299 if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) { 3300 drbd_err(device, "unexpected md_size: %u (expected %u)\n", 3301 be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect); 3302 goto err; 3303 } 3304 3305 rv = NO_ERROR; 3306 3307 spin_lock_irq(&device->resource->req_lock); 3308 if (device->state.conn < C_CONNECTED) { 3309 unsigned int peer; 3310 peer = be32_to_cpu(buffer->la_peer_max_bio_size); 3311 peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE); 3312 device->peer_max_bio_size = peer; 3313 } 3314 spin_unlock_irq(&device->resource->req_lock); 3315 3316 err: 3317 drbd_md_put_buffer(device); 3318 3319 return rv; 3320 } 3321 3322 /** 3323 * drbd_md_mark_dirty() - Mark meta data super block as dirty 3324 * @device: DRBD device. 3325 * 3326 * Call this function if you change anything that should be written to 3327 * the meta-data super block. This function sets MD_DIRTY, and starts a 3328 * timer that ensures that within five seconds you have to call drbd_md_sync(). 3329 */ 3330 void drbd_md_mark_dirty(struct drbd_device *device) 3331 { 3332 if (!test_and_set_bit(MD_DIRTY, &device->flags)) 3333 mod_timer(&device->md_sync_timer, jiffies + 5*HZ); 3334 } 3335 3336 void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local) 3337 { 3338 int i; 3339 3340 for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++) 3341 device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i]; 3342 } 3343 3344 void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local) 3345 { 3346 if (idx == UI_CURRENT) { 3347 if (device->state.role == R_PRIMARY) 3348 val |= 1; 3349 else 3350 val &= ~((u64)1); 3351 3352 drbd_set_ed_uuid(device, val); 3353 } 3354 3355 device->ldev->md.uuid[idx] = val; 3356 drbd_md_mark_dirty(device); 3357 } 3358 3359 void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local) 3360 { 3361 unsigned long flags; 3362 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags); 3363 __drbd_uuid_set(device, idx, val); 3364 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags); 3365 } 3366 3367 void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local) 3368 { 3369 unsigned long flags; 3370 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags); 3371 if (device->ldev->md.uuid[idx]) { 3372 drbd_uuid_move_history(device); 3373 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx]; 3374 } 3375 __drbd_uuid_set(device, idx, val); 3376 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags); 3377 } 3378 3379 /** 3380 * drbd_uuid_new_current() - Creates a new current UUID 3381 * @device: DRBD device. 3382 * 3383 * Creates a new current UUID, and rotates the old current UUID into 3384 * the bitmap slot. Causes an incremental resync upon next connect. 3385 */ 3386 void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local) 3387 { 3388 u64 val; 3389 unsigned long long bm_uuid; 3390 3391 get_random_bytes(&val, sizeof(u64)); 3392 3393 spin_lock_irq(&device->ldev->md.uuid_lock); 3394 bm_uuid = device->ldev->md.uuid[UI_BITMAP]; 3395 3396 if (bm_uuid) 3397 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid); 3398 3399 device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT]; 3400 __drbd_uuid_set(device, UI_CURRENT, val); 3401 spin_unlock_irq(&device->ldev->md.uuid_lock); 3402 3403 drbd_print_uuids(device, "new current UUID"); 3404 /* get it to stable storage _now_ */ 3405 drbd_md_sync(device); 3406 } 3407 3408 void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local) 3409 { 3410 unsigned long flags; 3411 if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0) 3412 return; 3413 3414 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags); 3415 if (val == 0) { 3416 drbd_uuid_move_history(device); 3417 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP]; 3418 device->ldev->md.uuid[UI_BITMAP] = 0; 3419 } else { 3420 unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP]; 3421 if (bm_uuid) 3422 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid); 3423 3424 device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1); 3425 } 3426 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags); 3427 3428 drbd_md_mark_dirty(device); 3429 } 3430 3431 /** 3432 * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io() 3433 * @device: DRBD device. 3434 * 3435 * Sets all bits in the bitmap and writes the whole bitmap to stable storage. 3436 */ 3437 int drbd_bmio_set_n_write(struct drbd_device *device) __must_hold(local) 3438 { 3439 int rv = -EIO; 3440 3441 drbd_md_set_flag(device, MDF_FULL_SYNC); 3442 drbd_md_sync(device); 3443 drbd_bm_set_all(device); 3444 3445 rv = drbd_bm_write(device); 3446 3447 if (!rv) { 3448 drbd_md_clear_flag(device, MDF_FULL_SYNC); 3449 drbd_md_sync(device); 3450 } 3451 3452 return rv; 3453 } 3454 3455 /** 3456 * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io() 3457 * @device: DRBD device. 3458 * 3459 * Clears all bits in the bitmap and writes the whole bitmap to stable storage. 3460 */ 3461 int drbd_bmio_clear_n_write(struct drbd_device *device) __must_hold(local) 3462 { 3463 drbd_resume_al(device); 3464 drbd_bm_clear_all(device); 3465 return drbd_bm_write(device); 3466 } 3467 3468 static int w_bitmap_io(struct drbd_work *w, int unused) 3469 { 3470 struct drbd_device *device = 3471 container_of(w, struct drbd_device, bm_io_work.w); 3472 struct bm_io_work *work = &device->bm_io_work; 3473 int rv = -EIO; 3474 3475 if (work->flags != BM_LOCKED_CHANGE_ALLOWED) { 3476 int cnt = atomic_read(&device->ap_bio_cnt); 3477 if (cnt) 3478 drbd_err(device, "FIXME: ap_bio_cnt %d, expected 0; queued for '%s'\n", 3479 cnt, work->why); 3480 } 3481 3482 if (get_ldev(device)) { 3483 drbd_bm_lock(device, work->why, work->flags); 3484 rv = work->io_fn(device); 3485 drbd_bm_unlock(device); 3486 put_ldev(device); 3487 } 3488 3489 clear_bit_unlock(BITMAP_IO, &device->flags); 3490 wake_up(&device->misc_wait); 3491 3492 if (work->done) 3493 work->done(device, rv); 3494 3495 clear_bit(BITMAP_IO_QUEUED, &device->flags); 3496 work->why = NULL; 3497 work->flags = 0; 3498 3499 return 0; 3500 } 3501 3502 /** 3503 * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap 3504 * @device: DRBD device. 3505 * @io_fn: IO callback to be called when bitmap IO is possible 3506 * @done: callback to be called after the bitmap IO was performed 3507 * @why: Descriptive text of the reason for doing the IO 3508 * @flags: Bitmap flags 3509 * 3510 * While IO on the bitmap happens we freeze application IO thus we ensure 3511 * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be 3512 * called from worker context. It MUST NOT be used while a previous such 3513 * work is still pending! 3514 * 3515 * Its worker function encloses the call of io_fn() by get_ldev() and 3516 * put_ldev(). 3517 */ 3518 void drbd_queue_bitmap_io(struct drbd_device *device, 3519 int (*io_fn)(struct drbd_device *), 3520 void (*done)(struct drbd_device *, int), 3521 char *why, enum bm_flag flags) 3522 { 3523 D_ASSERT(device, current == first_peer_device(device)->connection->worker.task); 3524 3525 D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags)); 3526 D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags)); 3527 D_ASSERT(device, list_empty(&device->bm_io_work.w.list)); 3528 if (device->bm_io_work.why) 3529 drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n", 3530 why, device->bm_io_work.why); 3531 3532 device->bm_io_work.io_fn = io_fn; 3533 device->bm_io_work.done = done; 3534 device->bm_io_work.why = why; 3535 device->bm_io_work.flags = flags; 3536 3537 spin_lock_irq(&device->resource->req_lock); 3538 set_bit(BITMAP_IO, &device->flags); 3539 /* don't wait for pending application IO if the caller indicates that 3540 * application IO does not conflict anyways. */ 3541 if (flags == BM_LOCKED_CHANGE_ALLOWED || atomic_read(&device->ap_bio_cnt) == 0) { 3542 if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags)) 3543 drbd_queue_work(&first_peer_device(device)->connection->sender_work, 3544 &device->bm_io_work.w); 3545 } 3546 spin_unlock_irq(&device->resource->req_lock); 3547 } 3548 3549 /** 3550 * drbd_bitmap_io() - Does an IO operation on the whole bitmap 3551 * @device: DRBD device. 3552 * @io_fn: IO callback to be called when bitmap IO is possible 3553 * @why: Descriptive text of the reason for doing the IO 3554 * @flags: Bitmap flags 3555 * 3556 * freezes application IO while that the actual IO operations runs. This 3557 * functions MAY NOT be called from worker context. 3558 */ 3559 int drbd_bitmap_io(struct drbd_device *device, int (*io_fn)(struct drbd_device *), 3560 char *why, enum bm_flag flags) 3561 { 3562 /* Only suspend io, if some operation is supposed to be locked out */ 3563 const bool do_suspend_io = flags & (BM_DONT_CLEAR|BM_DONT_SET|BM_DONT_TEST); 3564 int rv; 3565 3566 D_ASSERT(device, current != first_peer_device(device)->connection->worker.task); 3567 3568 if (do_suspend_io) 3569 drbd_suspend_io(device); 3570 3571 drbd_bm_lock(device, why, flags); 3572 rv = io_fn(device); 3573 drbd_bm_unlock(device); 3574 3575 if (do_suspend_io) 3576 drbd_resume_io(device); 3577 3578 return rv; 3579 } 3580 3581 void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local) 3582 { 3583 if ((device->ldev->md.flags & flag) != flag) { 3584 drbd_md_mark_dirty(device); 3585 device->ldev->md.flags |= flag; 3586 } 3587 } 3588 3589 void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local) 3590 { 3591 if ((device->ldev->md.flags & flag) != 0) { 3592 drbd_md_mark_dirty(device); 3593 device->ldev->md.flags &= ~flag; 3594 } 3595 } 3596 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag) 3597 { 3598 return (bdev->md.flags & flag) != 0; 3599 } 3600 3601 static void md_sync_timer_fn(struct timer_list *t) 3602 { 3603 struct drbd_device *device = from_timer(device, t, md_sync_timer); 3604 drbd_device_post_work(device, MD_SYNC); 3605 } 3606 3607 const char *cmdname(enum drbd_packet cmd) 3608 { 3609 /* THINK may need to become several global tables 3610 * when we want to support more than 3611 * one PRO_VERSION */ 3612 static const char *cmdnames[] = { 3613 [P_DATA] = "Data", 3614 [P_WSAME] = "WriteSame", 3615 [P_TRIM] = "Trim", 3616 [P_DATA_REPLY] = "DataReply", 3617 [P_RS_DATA_REPLY] = "RSDataReply", 3618 [P_BARRIER] = "Barrier", 3619 [P_BITMAP] = "ReportBitMap", 3620 [P_BECOME_SYNC_TARGET] = "BecomeSyncTarget", 3621 [P_BECOME_SYNC_SOURCE] = "BecomeSyncSource", 3622 [P_UNPLUG_REMOTE] = "UnplugRemote", 3623 [P_DATA_REQUEST] = "DataRequest", 3624 [P_RS_DATA_REQUEST] = "RSDataRequest", 3625 [P_SYNC_PARAM] = "SyncParam", 3626 [P_SYNC_PARAM89] = "SyncParam89", 3627 [P_PROTOCOL] = "ReportProtocol", 3628 [P_UUIDS] = "ReportUUIDs", 3629 [P_SIZES] = "ReportSizes", 3630 [P_STATE] = "ReportState", 3631 [P_SYNC_UUID] = "ReportSyncUUID", 3632 [P_AUTH_CHALLENGE] = "AuthChallenge", 3633 [P_AUTH_RESPONSE] = "AuthResponse", 3634 [P_PING] = "Ping", 3635 [P_PING_ACK] = "PingAck", 3636 [P_RECV_ACK] = "RecvAck", 3637 [P_WRITE_ACK] = "WriteAck", 3638 [P_RS_WRITE_ACK] = "RSWriteAck", 3639 [P_SUPERSEDED] = "Superseded", 3640 [P_NEG_ACK] = "NegAck", 3641 [P_NEG_DREPLY] = "NegDReply", 3642 [P_NEG_RS_DREPLY] = "NegRSDReply", 3643 [P_BARRIER_ACK] = "BarrierAck", 3644 [P_STATE_CHG_REQ] = "StateChgRequest", 3645 [P_STATE_CHG_REPLY] = "StateChgReply", 3646 [P_OV_REQUEST] = "OVRequest", 3647 [P_OV_REPLY] = "OVReply", 3648 [P_OV_RESULT] = "OVResult", 3649 [P_CSUM_RS_REQUEST] = "CsumRSRequest", 3650 [P_RS_IS_IN_SYNC] = "CsumRSIsInSync", 3651 [P_COMPRESSED_BITMAP] = "CBitmap", 3652 [P_DELAY_PROBE] = "DelayProbe", 3653 [P_OUT_OF_SYNC] = "OutOfSync", 3654 [P_RETRY_WRITE] = "RetryWrite", 3655 [P_RS_CANCEL] = "RSCancel", 3656 [P_CONN_ST_CHG_REQ] = "conn_st_chg_req", 3657 [P_CONN_ST_CHG_REPLY] = "conn_st_chg_reply", 3658 [P_PROTOCOL_UPDATE] = "protocol_update", 3659 [P_RS_THIN_REQ] = "rs_thin_req", 3660 [P_RS_DEALLOCATED] = "rs_deallocated", 3661 3662 /* enum drbd_packet, but not commands - obsoleted flags: 3663 * P_MAY_IGNORE 3664 * P_MAX_OPT_CMD 3665 */ 3666 }; 3667 3668 /* too big for the array: 0xfffX */ 3669 if (cmd == P_INITIAL_META) 3670 return "InitialMeta"; 3671 if (cmd == P_INITIAL_DATA) 3672 return "InitialData"; 3673 if (cmd == P_CONNECTION_FEATURES) 3674 return "ConnectionFeatures"; 3675 if (cmd >= ARRAY_SIZE(cmdnames)) 3676 return "Unknown"; 3677 return cmdnames[cmd]; 3678 } 3679 3680 /** 3681 * drbd_wait_misc - wait for a request to make progress 3682 * @device: device associated with the request 3683 * @i: the struct drbd_interval embedded in struct drbd_request or 3684 * struct drbd_peer_request 3685 */ 3686 int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i) 3687 { 3688 struct net_conf *nc; 3689 DEFINE_WAIT(wait); 3690 long timeout; 3691 3692 rcu_read_lock(); 3693 nc = rcu_dereference(first_peer_device(device)->connection->net_conf); 3694 if (!nc) { 3695 rcu_read_unlock(); 3696 return -ETIMEDOUT; 3697 } 3698 timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT; 3699 rcu_read_unlock(); 3700 3701 /* Indicate to wake up device->misc_wait on progress. */ 3702 i->waiting = true; 3703 prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE); 3704 spin_unlock_irq(&device->resource->req_lock); 3705 timeout = schedule_timeout(timeout); 3706 finish_wait(&device->misc_wait, &wait); 3707 spin_lock_irq(&device->resource->req_lock); 3708 if (!timeout || device->state.conn < C_CONNECTED) 3709 return -ETIMEDOUT; 3710 if (signal_pending(current)) 3711 return -ERESTARTSYS; 3712 return 0; 3713 } 3714 3715 void lock_all_resources(void) 3716 { 3717 struct drbd_resource *resource; 3718 int __maybe_unused i = 0; 3719 3720 mutex_lock(&resources_mutex); 3721 local_irq_disable(); 3722 for_each_resource(resource, &drbd_resources) 3723 spin_lock_nested(&resource->req_lock, i++); 3724 } 3725 3726 void unlock_all_resources(void) 3727 { 3728 struct drbd_resource *resource; 3729 3730 for_each_resource(resource, &drbd_resources) 3731 spin_unlock(&resource->req_lock); 3732 local_irq_enable(); 3733 mutex_unlock(&resources_mutex); 3734 } 3735 3736 #ifdef CONFIG_DRBD_FAULT_INJECTION 3737 /* Fault insertion support including random number generator shamelessly 3738 * stolen from kernel/rcutorture.c */ 3739 struct fault_random_state { 3740 unsigned long state; 3741 unsigned long count; 3742 }; 3743 3744 #define FAULT_RANDOM_MULT 39916801 /* prime */ 3745 #define FAULT_RANDOM_ADD 479001701 /* prime */ 3746 #define FAULT_RANDOM_REFRESH 10000 3747 3748 /* 3749 * Crude but fast random-number generator. Uses a linear congruential 3750 * generator, with occasional help from get_random_bytes(). 3751 */ 3752 static unsigned long 3753 _drbd_fault_random(struct fault_random_state *rsp) 3754 { 3755 long refresh; 3756 3757 if (!rsp->count--) { 3758 get_random_bytes(&refresh, sizeof(refresh)); 3759 rsp->state += refresh; 3760 rsp->count = FAULT_RANDOM_REFRESH; 3761 } 3762 rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD; 3763 return swahw32(rsp->state); 3764 } 3765 3766 static char * 3767 _drbd_fault_str(unsigned int type) { 3768 static char *_faults[] = { 3769 [DRBD_FAULT_MD_WR] = "Meta-data write", 3770 [DRBD_FAULT_MD_RD] = "Meta-data read", 3771 [DRBD_FAULT_RS_WR] = "Resync write", 3772 [DRBD_FAULT_RS_RD] = "Resync read", 3773 [DRBD_FAULT_DT_WR] = "Data write", 3774 [DRBD_FAULT_DT_RD] = "Data read", 3775 [DRBD_FAULT_DT_RA] = "Data read ahead", 3776 [DRBD_FAULT_BM_ALLOC] = "BM allocation", 3777 [DRBD_FAULT_AL_EE] = "EE allocation", 3778 [DRBD_FAULT_RECEIVE] = "receive data corruption", 3779 }; 3780 3781 return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**"; 3782 } 3783 3784 unsigned int 3785 _drbd_insert_fault(struct drbd_device *device, unsigned int type) 3786 { 3787 static struct fault_random_state rrs = {0, 0}; 3788 3789 unsigned int ret = ( 3790 (drbd_fault_devs == 0 || 3791 ((1 << device_to_minor(device)) & drbd_fault_devs) != 0) && 3792 (((_drbd_fault_random(&rrs) % 100) + 1) <= drbd_fault_rate)); 3793 3794 if (ret) { 3795 drbd_fault_count++; 3796 3797 if (__ratelimit(&drbd_ratelimit_state)) 3798 drbd_warn(device, "***Simulating %s failure\n", 3799 _drbd_fault_str(type)); 3800 } 3801 3802 return ret; 3803 } 3804 #endif 3805 3806 const char *drbd_buildtag(void) 3807 { 3808 /* DRBD built from external sources has here a reference to the 3809 git hash of the source code. */ 3810 3811 static char buildtag[38] = "\0uilt-in"; 3812 3813 if (buildtag[0] == 0) { 3814 #ifdef MODULE 3815 sprintf(buildtag, "srcversion: %-24s", THIS_MODULE->srcversion); 3816 #else 3817 buildtag[0] = 'b'; 3818 #endif 3819 } 3820 3821 return buildtag; 3822 } 3823 3824 module_init(drbd_init) 3825 module_exit(drbd_cleanup) 3826 3827 EXPORT_SYMBOL(drbd_conn_str); 3828 EXPORT_SYMBOL(drbd_role_str); 3829 EXPORT_SYMBOL(drbd_disk_str); 3830 EXPORT_SYMBOL(drbd_set_st_err_str); 3831