xref: /openbmc/linux/drivers/block/drbd/drbd_main.c (revision 2bc7d3e0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3    drbd.c
4 
5    This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
6 
7    Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
8    Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
9    Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
10 
11    Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev
12    from Logicworks, Inc. for making SDP replication support possible.
13 
14 
15  */
16 
17 #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
18 
19 #include <linux/module.h>
20 #include <linux/jiffies.h>
21 #include <linux/drbd.h>
22 #include <linux/uaccess.h>
23 #include <asm/types.h>
24 #include <net/sock.h>
25 #include <linux/ctype.h>
26 #include <linux/mutex.h>
27 #include <linux/fs.h>
28 #include <linux/file.h>
29 #include <linux/proc_fs.h>
30 #include <linux/init.h>
31 #include <linux/mm.h>
32 #include <linux/memcontrol.h>
33 #include <linux/mm_inline.h>
34 #include <linux/slab.h>
35 #include <linux/random.h>
36 #include <linux/reboot.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/workqueue.h>
40 #define __KERNEL_SYSCALLS__
41 #include <linux/unistd.h>
42 #include <linux/vmalloc.h>
43 #include <linux/sched/signal.h>
44 
45 #include <linux/drbd_limits.h>
46 #include "drbd_int.h"
47 #include "drbd_protocol.h"
48 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */
49 #include "drbd_vli.h"
50 #include "drbd_debugfs.h"
51 
52 static DEFINE_MUTEX(drbd_main_mutex);
53 static int drbd_open(struct block_device *bdev, fmode_t mode);
54 static void drbd_release(struct gendisk *gd, fmode_t mode);
55 static void md_sync_timer_fn(struct timer_list *t);
56 static int w_bitmap_io(struct drbd_work *w, int unused);
57 
58 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, "
59 	      "Lars Ellenberg <lars@linbit.com>");
60 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION);
61 MODULE_VERSION(REL_VERSION);
62 MODULE_LICENSE("GPL");
63 MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices ("
64 		 __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")");
65 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR);
66 
67 #include <linux/moduleparam.h>
68 /* thanks to these macros, if compiled into the kernel (not-module),
69  * these become boot parameters (e.g., drbd.minor_count) */
70 
71 #ifdef CONFIG_DRBD_FAULT_INJECTION
72 int drbd_enable_faults;
73 int drbd_fault_rate;
74 static int drbd_fault_count;
75 static int drbd_fault_devs;
76 /* bitmap of enabled faults */
77 module_param_named(enable_faults, drbd_enable_faults, int, 0664);
78 /* fault rate % value - applies to all enabled faults */
79 module_param_named(fault_rate, drbd_fault_rate, int, 0664);
80 /* count of faults inserted */
81 module_param_named(fault_count, drbd_fault_count, int, 0664);
82 /* bitmap of devices to insert faults on */
83 module_param_named(fault_devs, drbd_fault_devs, int, 0644);
84 #endif
85 
86 /* module parameters we can keep static */
87 static bool drbd_allow_oos; /* allow_open_on_secondary */
88 static bool drbd_disable_sendpage;
89 MODULE_PARM_DESC(allow_oos, "DONT USE!");
90 module_param_named(allow_oos, drbd_allow_oos, bool, 0);
91 module_param_named(disable_sendpage, drbd_disable_sendpage, bool, 0644);
92 
93 /* module parameters we share */
94 int drbd_proc_details; /* Detail level in proc drbd*/
95 module_param_named(proc_details, drbd_proc_details, int, 0644);
96 /* module parameters shared with defaults */
97 unsigned int drbd_minor_count = DRBD_MINOR_COUNT_DEF;
98 /* Module parameter for setting the user mode helper program
99  * to run. Default is /sbin/drbdadm */
100 char drbd_usermode_helper[80] = "/sbin/drbdadm";
101 module_param_named(minor_count, drbd_minor_count, uint, 0444);
102 module_param_string(usermode_helper, drbd_usermode_helper, sizeof(drbd_usermode_helper), 0644);
103 
104 /* in 2.6.x, our device mapping and config info contains our virtual gendisks
105  * as member "struct gendisk *vdisk;"
106  */
107 struct idr drbd_devices;
108 struct list_head drbd_resources;
109 struct mutex resources_mutex;
110 
111 struct kmem_cache *drbd_request_cache;
112 struct kmem_cache *drbd_ee_cache;	/* peer requests */
113 struct kmem_cache *drbd_bm_ext_cache;	/* bitmap extents */
114 struct kmem_cache *drbd_al_ext_cache;	/* activity log extents */
115 mempool_t drbd_request_mempool;
116 mempool_t drbd_ee_mempool;
117 mempool_t drbd_md_io_page_pool;
118 struct bio_set drbd_md_io_bio_set;
119 struct bio_set drbd_io_bio_set;
120 
121 /* I do not use a standard mempool, because:
122    1) I want to hand out the pre-allocated objects first.
123    2) I want to be able to interrupt sleeping allocation with a signal.
124    Note: This is a single linked list, the next pointer is the private
125 	 member of struct page.
126  */
127 struct page *drbd_pp_pool;
128 DEFINE_SPINLOCK(drbd_pp_lock);
129 int          drbd_pp_vacant;
130 wait_queue_head_t drbd_pp_wait;
131 
132 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5);
133 
134 static const struct block_device_operations drbd_ops = {
135 	.owner		= THIS_MODULE,
136 	.submit_bio	= drbd_submit_bio,
137 	.open		= drbd_open,
138 	.release	= drbd_release,
139 };
140 
141 #ifdef __CHECKER__
142 /* When checking with sparse, and this is an inline function, sparse will
143    give tons of false positives. When this is a real functions sparse works.
144  */
145 int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins)
146 {
147 	int io_allowed;
148 
149 	atomic_inc(&device->local_cnt);
150 	io_allowed = (device->state.disk >= mins);
151 	if (!io_allowed) {
152 		if (atomic_dec_and_test(&device->local_cnt))
153 			wake_up(&device->misc_wait);
154 	}
155 	return io_allowed;
156 }
157 
158 #endif
159 
160 /**
161  * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch
162  * @connection:	DRBD connection.
163  * @barrier_nr:	Expected identifier of the DRBD write barrier packet.
164  * @set_size:	Expected number of requests before that barrier.
165  *
166  * In case the passed barrier_nr or set_size does not match the oldest
167  * epoch of not yet barrier-acked requests, this function will cause a
168  * termination of the connection.
169  */
170 void tl_release(struct drbd_connection *connection, unsigned int barrier_nr,
171 		unsigned int set_size)
172 {
173 	struct drbd_request *r;
174 	struct drbd_request *req = NULL, *tmp = NULL;
175 	int expect_epoch = 0;
176 	int expect_size = 0;
177 
178 	spin_lock_irq(&connection->resource->req_lock);
179 
180 	/* find oldest not yet barrier-acked write request,
181 	 * count writes in its epoch. */
182 	list_for_each_entry(r, &connection->transfer_log, tl_requests) {
183 		const unsigned s = r->rq_state;
184 		if (!req) {
185 			if (!(s & RQ_WRITE))
186 				continue;
187 			if (!(s & RQ_NET_MASK))
188 				continue;
189 			if (s & RQ_NET_DONE)
190 				continue;
191 			req = r;
192 			expect_epoch = req->epoch;
193 			expect_size ++;
194 		} else {
195 			if (r->epoch != expect_epoch)
196 				break;
197 			if (!(s & RQ_WRITE))
198 				continue;
199 			/* if (s & RQ_DONE): not expected */
200 			/* if (!(s & RQ_NET_MASK)): not expected */
201 			expect_size++;
202 		}
203 	}
204 
205 	/* first some paranoia code */
206 	if (req == NULL) {
207 		drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n",
208 			 barrier_nr);
209 		goto bail;
210 	}
211 	if (expect_epoch != barrier_nr) {
212 		drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n",
213 			 barrier_nr, expect_epoch);
214 		goto bail;
215 	}
216 
217 	if (expect_size != set_size) {
218 		drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n",
219 			 barrier_nr, set_size, expect_size);
220 		goto bail;
221 	}
222 
223 	/* Clean up list of requests processed during current epoch. */
224 	/* this extra list walk restart is paranoia,
225 	 * to catch requests being barrier-acked "unexpectedly".
226 	 * It usually should find the same req again, or some READ preceding it. */
227 	list_for_each_entry(req, &connection->transfer_log, tl_requests)
228 		if (req->epoch == expect_epoch) {
229 			tmp = req;
230 			break;
231 		}
232 	req = list_prepare_entry(tmp, &connection->transfer_log, tl_requests);
233 	list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) {
234 		if (req->epoch != expect_epoch)
235 			break;
236 		_req_mod(req, BARRIER_ACKED);
237 	}
238 	spin_unlock_irq(&connection->resource->req_lock);
239 
240 	return;
241 
242 bail:
243 	spin_unlock_irq(&connection->resource->req_lock);
244 	conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
245 }
246 
247 
248 /**
249  * _tl_restart() - Walks the transfer log, and applies an action to all requests
250  * @connection:	DRBD connection to operate on.
251  * @what:       The action/event to perform with all request objects
252  *
253  * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO,
254  * RESTART_FROZEN_DISK_IO.
255  */
256 /* must hold resource->req_lock */
257 void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
258 {
259 	struct drbd_request *req, *r;
260 
261 	list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests)
262 		_req_mod(req, what);
263 }
264 
265 void tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
266 {
267 	spin_lock_irq(&connection->resource->req_lock);
268 	_tl_restart(connection, what);
269 	spin_unlock_irq(&connection->resource->req_lock);
270 }
271 
272 /**
273  * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL
274  * @connection:	DRBD connection.
275  *
276  * This is called after the connection to the peer was lost. The storage covered
277  * by the requests on the transfer gets marked as our of sync. Called from the
278  * receiver thread and the worker thread.
279  */
280 void tl_clear(struct drbd_connection *connection)
281 {
282 	tl_restart(connection, CONNECTION_LOST_WHILE_PENDING);
283 }
284 
285 /**
286  * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL
287  * @device:	DRBD device.
288  */
289 void tl_abort_disk_io(struct drbd_device *device)
290 {
291 	struct drbd_connection *connection = first_peer_device(device)->connection;
292 	struct drbd_request *req, *r;
293 
294 	spin_lock_irq(&connection->resource->req_lock);
295 	list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) {
296 		if (!(req->rq_state & RQ_LOCAL_PENDING))
297 			continue;
298 		if (req->device != device)
299 			continue;
300 		_req_mod(req, ABORT_DISK_IO);
301 	}
302 	spin_unlock_irq(&connection->resource->req_lock);
303 }
304 
305 static int drbd_thread_setup(void *arg)
306 {
307 	struct drbd_thread *thi = (struct drbd_thread *) arg;
308 	struct drbd_resource *resource = thi->resource;
309 	unsigned long flags;
310 	int retval;
311 
312 	snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s",
313 		 thi->name[0],
314 		 resource->name);
315 
316 	allow_kernel_signal(DRBD_SIGKILL);
317 	allow_kernel_signal(SIGXCPU);
318 restart:
319 	retval = thi->function(thi);
320 
321 	spin_lock_irqsave(&thi->t_lock, flags);
322 
323 	/* if the receiver has been "EXITING", the last thing it did
324 	 * was set the conn state to "StandAlone",
325 	 * if now a re-connect request comes in, conn state goes C_UNCONNECTED,
326 	 * and receiver thread will be "started".
327 	 * drbd_thread_start needs to set "RESTARTING" in that case.
328 	 * t_state check and assignment needs to be within the same spinlock,
329 	 * so either thread_start sees EXITING, and can remap to RESTARTING,
330 	 * or thread_start see NONE, and can proceed as normal.
331 	 */
332 
333 	if (thi->t_state == RESTARTING) {
334 		drbd_info(resource, "Restarting %s thread\n", thi->name);
335 		thi->t_state = RUNNING;
336 		spin_unlock_irqrestore(&thi->t_lock, flags);
337 		goto restart;
338 	}
339 
340 	thi->task = NULL;
341 	thi->t_state = NONE;
342 	smp_mb();
343 	complete_all(&thi->stop);
344 	spin_unlock_irqrestore(&thi->t_lock, flags);
345 
346 	drbd_info(resource, "Terminating %s\n", current->comm);
347 
348 	/* Release mod reference taken when thread was started */
349 
350 	if (thi->connection)
351 		kref_put(&thi->connection->kref, drbd_destroy_connection);
352 	kref_put(&resource->kref, drbd_destroy_resource);
353 	module_put(THIS_MODULE);
354 	return retval;
355 }
356 
357 static void drbd_thread_init(struct drbd_resource *resource, struct drbd_thread *thi,
358 			     int (*func) (struct drbd_thread *), const char *name)
359 {
360 	spin_lock_init(&thi->t_lock);
361 	thi->task    = NULL;
362 	thi->t_state = NONE;
363 	thi->function = func;
364 	thi->resource = resource;
365 	thi->connection = NULL;
366 	thi->name = name;
367 }
368 
369 int drbd_thread_start(struct drbd_thread *thi)
370 {
371 	struct drbd_resource *resource = thi->resource;
372 	struct task_struct *nt;
373 	unsigned long flags;
374 
375 	/* is used from state engine doing drbd_thread_stop_nowait,
376 	 * while holding the req lock irqsave */
377 	spin_lock_irqsave(&thi->t_lock, flags);
378 
379 	switch (thi->t_state) {
380 	case NONE:
381 		drbd_info(resource, "Starting %s thread (from %s [%d])\n",
382 			 thi->name, current->comm, current->pid);
383 
384 		/* Get ref on module for thread - this is released when thread exits */
385 		if (!try_module_get(THIS_MODULE)) {
386 			drbd_err(resource, "Failed to get module reference in drbd_thread_start\n");
387 			spin_unlock_irqrestore(&thi->t_lock, flags);
388 			return false;
389 		}
390 
391 		kref_get(&resource->kref);
392 		if (thi->connection)
393 			kref_get(&thi->connection->kref);
394 
395 		init_completion(&thi->stop);
396 		thi->reset_cpu_mask = 1;
397 		thi->t_state = RUNNING;
398 		spin_unlock_irqrestore(&thi->t_lock, flags);
399 		flush_signals(current); /* otherw. may get -ERESTARTNOINTR */
400 
401 		nt = kthread_create(drbd_thread_setup, (void *) thi,
402 				    "drbd_%c_%s", thi->name[0], thi->resource->name);
403 
404 		if (IS_ERR(nt)) {
405 			drbd_err(resource, "Couldn't start thread\n");
406 
407 			if (thi->connection)
408 				kref_put(&thi->connection->kref, drbd_destroy_connection);
409 			kref_put(&resource->kref, drbd_destroy_resource);
410 			module_put(THIS_MODULE);
411 			return false;
412 		}
413 		spin_lock_irqsave(&thi->t_lock, flags);
414 		thi->task = nt;
415 		thi->t_state = RUNNING;
416 		spin_unlock_irqrestore(&thi->t_lock, flags);
417 		wake_up_process(nt);
418 		break;
419 	case EXITING:
420 		thi->t_state = RESTARTING;
421 		drbd_info(resource, "Restarting %s thread (from %s [%d])\n",
422 				thi->name, current->comm, current->pid);
423 		fallthrough;
424 	case RUNNING:
425 	case RESTARTING:
426 	default:
427 		spin_unlock_irqrestore(&thi->t_lock, flags);
428 		break;
429 	}
430 
431 	return true;
432 }
433 
434 
435 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait)
436 {
437 	unsigned long flags;
438 
439 	enum drbd_thread_state ns = restart ? RESTARTING : EXITING;
440 
441 	/* may be called from state engine, holding the req lock irqsave */
442 	spin_lock_irqsave(&thi->t_lock, flags);
443 
444 	if (thi->t_state == NONE) {
445 		spin_unlock_irqrestore(&thi->t_lock, flags);
446 		if (restart)
447 			drbd_thread_start(thi);
448 		return;
449 	}
450 
451 	if (thi->t_state != ns) {
452 		if (thi->task == NULL) {
453 			spin_unlock_irqrestore(&thi->t_lock, flags);
454 			return;
455 		}
456 
457 		thi->t_state = ns;
458 		smp_mb();
459 		init_completion(&thi->stop);
460 		if (thi->task != current)
461 			send_sig(DRBD_SIGKILL, thi->task, 1);
462 	}
463 
464 	spin_unlock_irqrestore(&thi->t_lock, flags);
465 
466 	if (wait)
467 		wait_for_completion(&thi->stop);
468 }
469 
470 int conn_lowest_minor(struct drbd_connection *connection)
471 {
472 	struct drbd_peer_device *peer_device;
473 	int vnr = 0, minor = -1;
474 
475 	rcu_read_lock();
476 	peer_device = idr_get_next(&connection->peer_devices, &vnr);
477 	if (peer_device)
478 		minor = device_to_minor(peer_device->device);
479 	rcu_read_unlock();
480 
481 	return minor;
482 }
483 
484 #ifdef CONFIG_SMP
485 /*
486  * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs
487  *
488  * Forces all threads of a resource onto the same CPU. This is beneficial for
489  * DRBD's performance. May be overwritten by user's configuration.
490  */
491 static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask)
492 {
493 	unsigned int *resources_per_cpu, min_index = ~0;
494 
495 	resources_per_cpu = kcalloc(nr_cpu_ids, sizeof(*resources_per_cpu),
496 				    GFP_KERNEL);
497 	if (resources_per_cpu) {
498 		struct drbd_resource *resource;
499 		unsigned int cpu, min = ~0;
500 
501 		rcu_read_lock();
502 		for_each_resource_rcu(resource, &drbd_resources) {
503 			for_each_cpu(cpu, resource->cpu_mask)
504 				resources_per_cpu[cpu]++;
505 		}
506 		rcu_read_unlock();
507 		for_each_online_cpu(cpu) {
508 			if (resources_per_cpu[cpu] < min) {
509 				min = resources_per_cpu[cpu];
510 				min_index = cpu;
511 			}
512 		}
513 		kfree(resources_per_cpu);
514 	}
515 	if (min_index == ~0) {
516 		cpumask_setall(*cpu_mask);
517 		return;
518 	}
519 	cpumask_set_cpu(min_index, *cpu_mask);
520 }
521 
522 /**
523  * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread
524  * @thi:	drbd_thread object
525  *
526  * call in the "main loop" of _all_ threads, no need for any mutex, current won't die
527  * prematurely.
528  */
529 void drbd_thread_current_set_cpu(struct drbd_thread *thi)
530 {
531 	struct drbd_resource *resource = thi->resource;
532 	struct task_struct *p = current;
533 
534 	if (!thi->reset_cpu_mask)
535 		return;
536 	thi->reset_cpu_mask = 0;
537 	set_cpus_allowed_ptr(p, resource->cpu_mask);
538 }
539 #else
540 #define drbd_calc_cpu_mask(A) ({})
541 #endif
542 
543 /*
544  * drbd_header_size  -  size of a packet header
545  *
546  * The header size is a multiple of 8, so any payload following the header is
547  * word aligned on 64-bit architectures.  (The bitmap send and receive code
548  * relies on this.)
549  */
550 unsigned int drbd_header_size(struct drbd_connection *connection)
551 {
552 	if (connection->agreed_pro_version >= 100) {
553 		BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8));
554 		return sizeof(struct p_header100);
555 	} else {
556 		BUILD_BUG_ON(sizeof(struct p_header80) !=
557 			     sizeof(struct p_header95));
558 		BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8));
559 		return sizeof(struct p_header80);
560 	}
561 }
562 
563 static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size)
564 {
565 	h->magic   = cpu_to_be32(DRBD_MAGIC);
566 	h->command = cpu_to_be16(cmd);
567 	h->length  = cpu_to_be16(size);
568 	return sizeof(struct p_header80);
569 }
570 
571 static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size)
572 {
573 	h->magic   = cpu_to_be16(DRBD_MAGIC_BIG);
574 	h->command = cpu_to_be16(cmd);
575 	h->length = cpu_to_be32(size);
576 	return sizeof(struct p_header95);
577 }
578 
579 static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd,
580 				      int size, int vnr)
581 {
582 	h->magic = cpu_to_be32(DRBD_MAGIC_100);
583 	h->volume = cpu_to_be16(vnr);
584 	h->command = cpu_to_be16(cmd);
585 	h->length = cpu_to_be32(size);
586 	h->pad = 0;
587 	return sizeof(struct p_header100);
588 }
589 
590 static unsigned int prepare_header(struct drbd_connection *connection, int vnr,
591 				   void *buffer, enum drbd_packet cmd, int size)
592 {
593 	if (connection->agreed_pro_version >= 100)
594 		return prepare_header100(buffer, cmd, size, vnr);
595 	else if (connection->agreed_pro_version >= 95 &&
596 		 size > DRBD_MAX_SIZE_H80_PACKET)
597 		return prepare_header95(buffer, cmd, size);
598 	else
599 		return prepare_header80(buffer, cmd, size);
600 }
601 
602 static void *__conn_prepare_command(struct drbd_connection *connection,
603 				    struct drbd_socket *sock)
604 {
605 	if (!sock->socket)
606 		return NULL;
607 	return sock->sbuf + drbd_header_size(connection);
608 }
609 
610 void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock)
611 {
612 	void *p;
613 
614 	mutex_lock(&sock->mutex);
615 	p = __conn_prepare_command(connection, sock);
616 	if (!p)
617 		mutex_unlock(&sock->mutex);
618 
619 	return p;
620 }
621 
622 void *drbd_prepare_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock)
623 {
624 	return conn_prepare_command(peer_device->connection, sock);
625 }
626 
627 static int __send_command(struct drbd_connection *connection, int vnr,
628 			  struct drbd_socket *sock, enum drbd_packet cmd,
629 			  unsigned int header_size, void *data,
630 			  unsigned int size)
631 {
632 	int msg_flags;
633 	int err;
634 
635 	/*
636 	 * Called with @data == NULL and the size of the data blocks in @size
637 	 * for commands that send data blocks.  For those commands, omit the
638 	 * MSG_MORE flag: this will increase the likelihood that data blocks
639 	 * which are page aligned on the sender will end up page aligned on the
640 	 * receiver.
641 	 */
642 	msg_flags = data ? MSG_MORE : 0;
643 
644 	header_size += prepare_header(connection, vnr, sock->sbuf, cmd,
645 				      header_size + size);
646 	err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size,
647 			    msg_flags);
648 	if (data && !err)
649 		err = drbd_send_all(connection, sock->socket, data, size, 0);
650 	/* DRBD protocol "pings" are latency critical.
651 	 * This is supposed to trigger tcp_push_pending_frames() */
652 	if (!err && (cmd == P_PING || cmd == P_PING_ACK))
653 		tcp_sock_set_nodelay(sock->socket->sk);
654 
655 	return err;
656 }
657 
658 static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
659 			       enum drbd_packet cmd, unsigned int header_size,
660 			       void *data, unsigned int size)
661 {
662 	return __send_command(connection, 0, sock, cmd, header_size, data, size);
663 }
664 
665 int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
666 		      enum drbd_packet cmd, unsigned int header_size,
667 		      void *data, unsigned int size)
668 {
669 	int err;
670 
671 	err = __conn_send_command(connection, sock, cmd, header_size, data, size);
672 	mutex_unlock(&sock->mutex);
673 	return err;
674 }
675 
676 int drbd_send_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock,
677 		      enum drbd_packet cmd, unsigned int header_size,
678 		      void *data, unsigned int size)
679 {
680 	int err;
681 
682 	err = __send_command(peer_device->connection, peer_device->device->vnr,
683 			     sock, cmd, header_size, data, size);
684 	mutex_unlock(&sock->mutex);
685 	return err;
686 }
687 
688 int drbd_send_ping(struct drbd_connection *connection)
689 {
690 	struct drbd_socket *sock;
691 
692 	sock = &connection->meta;
693 	if (!conn_prepare_command(connection, sock))
694 		return -EIO;
695 	return conn_send_command(connection, sock, P_PING, 0, NULL, 0);
696 }
697 
698 int drbd_send_ping_ack(struct drbd_connection *connection)
699 {
700 	struct drbd_socket *sock;
701 
702 	sock = &connection->meta;
703 	if (!conn_prepare_command(connection, sock))
704 		return -EIO;
705 	return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0);
706 }
707 
708 int drbd_send_sync_param(struct drbd_peer_device *peer_device)
709 {
710 	struct drbd_socket *sock;
711 	struct p_rs_param_95 *p;
712 	int size;
713 	const int apv = peer_device->connection->agreed_pro_version;
714 	enum drbd_packet cmd;
715 	struct net_conf *nc;
716 	struct disk_conf *dc;
717 
718 	sock = &peer_device->connection->data;
719 	p = drbd_prepare_command(peer_device, sock);
720 	if (!p)
721 		return -EIO;
722 
723 	rcu_read_lock();
724 	nc = rcu_dereference(peer_device->connection->net_conf);
725 
726 	size = apv <= 87 ? sizeof(struct p_rs_param)
727 		: apv == 88 ? sizeof(struct p_rs_param)
728 			+ strlen(nc->verify_alg) + 1
729 		: apv <= 94 ? sizeof(struct p_rs_param_89)
730 		: /* apv >= 95 */ sizeof(struct p_rs_param_95);
731 
732 	cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM;
733 
734 	/* initialize verify_alg and csums_alg */
735 	BUILD_BUG_ON(sizeof(p->algs) != 2 * SHARED_SECRET_MAX);
736 	memset(&p->algs, 0, sizeof(p->algs));
737 
738 	if (get_ldev(peer_device->device)) {
739 		dc = rcu_dereference(peer_device->device->ldev->disk_conf);
740 		p->resync_rate = cpu_to_be32(dc->resync_rate);
741 		p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead);
742 		p->c_delay_target = cpu_to_be32(dc->c_delay_target);
743 		p->c_fill_target = cpu_to_be32(dc->c_fill_target);
744 		p->c_max_rate = cpu_to_be32(dc->c_max_rate);
745 		put_ldev(peer_device->device);
746 	} else {
747 		p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF);
748 		p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF);
749 		p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF);
750 		p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF);
751 		p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF);
752 	}
753 
754 	if (apv >= 88)
755 		strcpy(p->verify_alg, nc->verify_alg);
756 	if (apv >= 89)
757 		strcpy(p->csums_alg, nc->csums_alg);
758 	rcu_read_unlock();
759 
760 	return drbd_send_command(peer_device, sock, cmd, size, NULL, 0);
761 }
762 
763 int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd)
764 {
765 	struct drbd_socket *sock;
766 	struct p_protocol *p;
767 	struct net_conf *nc;
768 	int size, cf;
769 
770 	sock = &connection->data;
771 	p = __conn_prepare_command(connection, sock);
772 	if (!p)
773 		return -EIO;
774 
775 	rcu_read_lock();
776 	nc = rcu_dereference(connection->net_conf);
777 
778 	if (nc->tentative && connection->agreed_pro_version < 92) {
779 		rcu_read_unlock();
780 		drbd_err(connection, "--dry-run is not supported by peer");
781 		return -EOPNOTSUPP;
782 	}
783 
784 	size = sizeof(*p);
785 	if (connection->agreed_pro_version >= 87)
786 		size += strlen(nc->integrity_alg) + 1;
787 
788 	p->protocol      = cpu_to_be32(nc->wire_protocol);
789 	p->after_sb_0p   = cpu_to_be32(nc->after_sb_0p);
790 	p->after_sb_1p   = cpu_to_be32(nc->after_sb_1p);
791 	p->after_sb_2p   = cpu_to_be32(nc->after_sb_2p);
792 	p->two_primaries = cpu_to_be32(nc->two_primaries);
793 	cf = 0;
794 	if (nc->discard_my_data)
795 		cf |= CF_DISCARD_MY_DATA;
796 	if (nc->tentative)
797 		cf |= CF_DRY_RUN;
798 	p->conn_flags    = cpu_to_be32(cf);
799 
800 	if (connection->agreed_pro_version >= 87)
801 		strcpy(p->integrity_alg, nc->integrity_alg);
802 	rcu_read_unlock();
803 
804 	return __conn_send_command(connection, sock, cmd, size, NULL, 0);
805 }
806 
807 int drbd_send_protocol(struct drbd_connection *connection)
808 {
809 	int err;
810 
811 	mutex_lock(&connection->data.mutex);
812 	err = __drbd_send_protocol(connection, P_PROTOCOL);
813 	mutex_unlock(&connection->data.mutex);
814 
815 	return err;
816 }
817 
818 static int _drbd_send_uuids(struct drbd_peer_device *peer_device, u64 uuid_flags)
819 {
820 	struct drbd_device *device = peer_device->device;
821 	struct drbd_socket *sock;
822 	struct p_uuids *p;
823 	int i;
824 
825 	if (!get_ldev_if_state(device, D_NEGOTIATING))
826 		return 0;
827 
828 	sock = &peer_device->connection->data;
829 	p = drbd_prepare_command(peer_device, sock);
830 	if (!p) {
831 		put_ldev(device);
832 		return -EIO;
833 	}
834 	spin_lock_irq(&device->ldev->md.uuid_lock);
835 	for (i = UI_CURRENT; i < UI_SIZE; i++)
836 		p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
837 	spin_unlock_irq(&device->ldev->md.uuid_lock);
838 
839 	device->comm_bm_set = drbd_bm_total_weight(device);
840 	p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set);
841 	rcu_read_lock();
842 	uuid_flags |= rcu_dereference(peer_device->connection->net_conf)->discard_my_data ? 1 : 0;
843 	rcu_read_unlock();
844 	uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0;
845 	uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0;
846 	p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags);
847 
848 	put_ldev(device);
849 	return drbd_send_command(peer_device, sock, P_UUIDS, sizeof(*p), NULL, 0);
850 }
851 
852 int drbd_send_uuids(struct drbd_peer_device *peer_device)
853 {
854 	return _drbd_send_uuids(peer_device, 0);
855 }
856 
857 int drbd_send_uuids_skip_initial_sync(struct drbd_peer_device *peer_device)
858 {
859 	return _drbd_send_uuids(peer_device, 8);
860 }
861 
862 void drbd_print_uuids(struct drbd_device *device, const char *text)
863 {
864 	if (get_ldev_if_state(device, D_NEGOTIATING)) {
865 		u64 *uuid = device->ldev->md.uuid;
866 		drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n",
867 		     text,
868 		     (unsigned long long)uuid[UI_CURRENT],
869 		     (unsigned long long)uuid[UI_BITMAP],
870 		     (unsigned long long)uuid[UI_HISTORY_START],
871 		     (unsigned long long)uuid[UI_HISTORY_END]);
872 		put_ldev(device);
873 	} else {
874 		drbd_info(device, "%s effective data uuid: %016llX\n",
875 				text,
876 				(unsigned long long)device->ed_uuid);
877 	}
878 }
879 
880 void drbd_gen_and_send_sync_uuid(struct drbd_peer_device *peer_device)
881 {
882 	struct drbd_device *device = peer_device->device;
883 	struct drbd_socket *sock;
884 	struct p_rs_uuid *p;
885 	u64 uuid;
886 
887 	D_ASSERT(device, device->state.disk == D_UP_TO_DATE);
888 
889 	uuid = device->ldev->md.uuid[UI_BITMAP];
890 	if (uuid && uuid != UUID_JUST_CREATED)
891 		uuid = uuid + UUID_NEW_BM_OFFSET;
892 	else
893 		get_random_bytes(&uuid, sizeof(u64));
894 	drbd_uuid_set(device, UI_BITMAP, uuid);
895 	drbd_print_uuids(device, "updated sync UUID");
896 	drbd_md_sync(device);
897 
898 	sock = &peer_device->connection->data;
899 	p = drbd_prepare_command(peer_device, sock);
900 	if (p) {
901 		p->uuid = cpu_to_be64(uuid);
902 		drbd_send_command(peer_device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0);
903 	}
904 }
905 
906 int drbd_send_sizes(struct drbd_peer_device *peer_device, int trigger_reply, enum dds_flags flags)
907 {
908 	struct drbd_device *device = peer_device->device;
909 	struct drbd_socket *sock;
910 	struct p_sizes *p;
911 	sector_t d_size, u_size;
912 	int q_order_type;
913 	unsigned int max_bio_size;
914 	unsigned int packet_size;
915 
916 	sock = &peer_device->connection->data;
917 	p = drbd_prepare_command(peer_device, sock);
918 	if (!p)
919 		return -EIO;
920 
921 	packet_size = sizeof(*p);
922 	if (peer_device->connection->agreed_features & DRBD_FF_WSAME)
923 		packet_size += sizeof(p->qlim[0]);
924 
925 	memset(p, 0, packet_size);
926 	if (get_ldev_if_state(device, D_NEGOTIATING)) {
927 		struct block_device *bdev = device->ldev->backing_bdev;
928 		struct request_queue *q = bdev_get_queue(bdev);
929 
930 		d_size = drbd_get_max_capacity(device->ldev);
931 		rcu_read_lock();
932 		u_size = rcu_dereference(device->ldev->disk_conf)->disk_size;
933 		rcu_read_unlock();
934 		q_order_type = drbd_queue_order_type(device);
935 		max_bio_size = queue_max_hw_sectors(q) << 9;
936 		max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE);
937 		p->qlim->physical_block_size =
938 			cpu_to_be32(bdev_physical_block_size(bdev));
939 		p->qlim->logical_block_size =
940 			cpu_to_be32(bdev_logical_block_size(bdev));
941 		p->qlim->alignment_offset =
942 			cpu_to_be32(bdev_alignment_offset(bdev));
943 		p->qlim->io_min = cpu_to_be32(bdev_io_min(bdev));
944 		p->qlim->io_opt = cpu_to_be32(bdev_io_opt(bdev));
945 		p->qlim->discard_enabled = !!bdev_max_discard_sectors(bdev);
946 		put_ldev(device);
947 	} else {
948 		struct request_queue *q = device->rq_queue;
949 
950 		p->qlim->physical_block_size =
951 			cpu_to_be32(queue_physical_block_size(q));
952 		p->qlim->logical_block_size =
953 			cpu_to_be32(queue_logical_block_size(q));
954 		p->qlim->alignment_offset = 0;
955 		p->qlim->io_min = cpu_to_be32(queue_io_min(q));
956 		p->qlim->io_opt = cpu_to_be32(queue_io_opt(q));
957 		p->qlim->discard_enabled = 0;
958 
959 		d_size = 0;
960 		u_size = 0;
961 		q_order_type = QUEUE_ORDERED_NONE;
962 		max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */
963 	}
964 
965 	if (peer_device->connection->agreed_pro_version <= 94)
966 		max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET);
967 	else if (peer_device->connection->agreed_pro_version < 100)
968 		max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95);
969 
970 	p->d_size = cpu_to_be64(d_size);
971 	p->u_size = cpu_to_be64(u_size);
972 	if (trigger_reply)
973 		p->c_size = 0;
974 	else
975 		p->c_size = cpu_to_be64(get_capacity(device->vdisk));
976 	p->max_bio_size = cpu_to_be32(max_bio_size);
977 	p->queue_order_type = cpu_to_be16(q_order_type);
978 	p->dds_flags = cpu_to_be16(flags);
979 
980 	return drbd_send_command(peer_device, sock, P_SIZES, packet_size, NULL, 0);
981 }
982 
983 /**
984  * drbd_send_current_state() - Sends the drbd state to the peer
985  * @peer_device:	DRBD peer device.
986  */
987 int drbd_send_current_state(struct drbd_peer_device *peer_device)
988 {
989 	struct drbd_socket *sock;
990 	struct p_state *p;
991 
992 	sock = &peer_device->connection->data;
993 	p = drbd_prepare_command(peer_device, sock);
994 	if (!p)
995 		return -EIO;
996 	p->state = cpu_to_be32(peer_device->device->state.i); /* Within the send mutex */
997 	return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
998 }
999 
1000 /**
1001  * drbd_send_state() - After a state change, sends the new state to the peer
1002  * @peer_device:      DRBD peer device.
1003  * @state:     the state to send, not necessarily the current state.
1004  *
1005  * Each state change queues an "after_state_ch" work, which will eventually
1006  * send the resulting new state to the peer. If more state changes happen
1007  * between queuing and processing of the after_state_ch work, we still
1008  * want to send each intermediary state in the order it occurred.
1009  */
1010 int drbd_send_state(struct drbd_peer_device *peer_device, union drbd_state state)
1011 {
1012 	struct drbd_socket *sock;
1013 	struct p_state *p;
1014 
1015 	sock = &peer_device->connection->data;
1016 	p = drbd_prepare_command(peer_device, sock);
1017 	if (!p)
1018 		return -EIO;
1019 	p->state = cpu_to_be32(state.i); /* Within the send mutex */
1020 	return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1021 }
1022 
1023 int drbd_send_state_req(struct drbd_peer_device *peer_device, union drbd_state mask, union drbd_state val)
1024 {
1025 	struct drbd_socket *sock;
1026 	struct p_req_state *p;
1027 
1028 	sock = &peer_device->connection->data;
1029 	p = drbd_prepare_command(peer_device, sock);
1030 	if (!p)
1031 		return -EIO;
1032 	p->mask = cpu_to_be32(mask.i);
1033 	p->val = cpu_to_be32(val.i);
1034 	return drbd_send_command(peer_device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0);
1035 }
1036 
1037 int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val)
1038 {
1039 	enum drbd_packet cmd;
1040 	struct drbd_socket *sock;
1041 	struct p_req_state *p;
1042 
1043 	cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ;
1044 	sock = &connection->data;
1045 	p = conn_prepare_command(connection, sock);
1046 	if (!p)
1047 		return -EIO;
1048 	p->mask = cpu_to_be32(mask.i);
1049 	p->val = cpu_to_be32(val.i);
1050 	return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1051 }
1052 
1053 void drbd_send_sr_reply(struct drbd_peer_device *peer_device, enum drbd_state_rv retcode)
1054 {
1055 	struct drbd_socket *sock;
1056 	struct p_req_state_reply *p;
1057 
1058 	sock = &peer_device->connection->meta;
1059 	p = drbd_prepare_command(peer_device, sock);
1060 	if (p) {
1061 		p->retcode = cpu_to_be32(retcode);
1062 		drbd_send_command(peer_device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0);
1063 	}
1064 }
1065 
1066 void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode)
1067 {
1068 	struct drbd_socket *sock;
1069 	struct p_req_state_reply *p;
1070 	enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY;
1071 
1072 	sock = &connection->meta;
1073 	p = conn_prepare_command(connection, sock);
1074 	if (p) {
1075 		p->retcode = cpu_to_be32(retcode);
1076 		conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1077 	}
1078 }
1079 
1080 static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code)
1081 {
1082 	BUG_ON(code & ~0xf);
1083 	p->encoding = (p->encoding & ~0xf) | code;
1084 }
1085 
1086 static void dcbp_set_start(struct p_compressed_bm *p, int set)
1087 {
1088 	p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0);
1089 }
1090 
1091 static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n)
1092 {
1093 	BUG_ON(n & ~0x7);
1094 	p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4);
1095 }
1096 
1097 static int fill_bitmap_rle_bits(struct drbd_device *device,
1098 			 struct p_compressed_bm *p,
1099 			 unsigned int size,
1100 			 struct bm_xfer_ctx *c)
1101 {
1102 	struct bitstream bs;
1103 	unsigned long plain_bits;
1104 	unsigned long tmp;
1105 	unsigned long rl;
1106 	unsigned len;
1107 	unsigned toggle;
1108 	int bits, use_rle;
1109 
1110 	/* may we use this feature? */
1111 	rcu_read_lock();
1112 	use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle;
1113 	rcu_read_unlock();
1114 	if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90)
1115 		return 0;
1116 
1117 	if (c->bit_offset >= c->bm_bits)
1118 		return 0; /* nothing to do. */
1119 
1120 	/* use at most thus many bytes */
1121 	bitstream_init(&bs, p->code, size, 0);
1122 	memset(p->code, 0, size);
1123 	/* plain bits covered in this code string */
1124 	plain_bits = 0;
1125 
1126 	/* p->encoding & 0x80 stores whether the first run length is set.
1127 	 * bit offset is implicit.
1128 	 * start with toggle == 2 to be able to tell the first iteration */
1129 	toggle = 2;
1130 
1131 	/* see how much plain bits we can stuff into one packet
1132 	 * using RLE and VLI. */
1133 	do {
1134 		tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset)
1135 				    : _drbd_bm_find_next(device, c->bit_offset);
1136 		if (tmp == -1UL)
1137 			tmp = c->bm_bits;
1138 		rl = tmp - c->bit_offset;
1139 
1140 		if (toggle == 2) { /* first iteration */
1141 			if (rl == 0) {
1142 				/* the first checked bit was set,
1143 				 * store start value, */
1144 				dcbp_set_start(p, 1);
1145 				/* but skip encoding of zero run length */
1146 				toggle = !toggle;
1147 				continue;
1148 			}
1149 			dcbp_set_start(p, 0);
1150 		}
1151 
1152 		/* paranoia: catch zero runlength.
1153 		 * can only happen if bitmap is modified while we scan it. */
1154 		if (rl == 0) {
1155 			drbd_err(device, "unexpected zero runlength while encoding bitmap "
1156 			    "t:%u bo:%lu\n", toggle, c->bit_offset);
1157 			return -1;
1158 		}
1159 
1160 		bits = vli_encode_bits(&bs, rl);
1161 		if (bits == -ENOBUFS) /* buffer full */
1162 			break;
1163 		if (bits <= 0) {
1164 			drbd_err(device, "error while encoding bitmap: %d\n", bits);
1165 			return 0;
1166 		}
1167 
1168 		toggle = !toggle;
1169 		plain_bits += rl;
1170 		c->bit_offset = tmp;
1171 	} while (c->bit_offset < c->bm_bits);
1172 
1173 	len = bs.cur.b - p->code + !!bs.cur.bit;
1174 
1175 	if (plain_bits < (len << 3)) {
1176 		/* incompressible with this method.
1177 		 * we need to rewind both word and bit position. */
1178 		c->bit_offset -= plain_bits;
1179 		bm_xfer_ctx_bit_to_word_offset(c);
1180 		c->bit_offset = c->word_offset * BITS_PER_LONG;
1181 		return 0;
1182 	}
1183 
1184 	/* RLE + VLI was able to compress it just fine.
1185 	 * update c->word_offset. */
1186 	bm_xfer_ctx_bit_to_word_offset(c);
1187 
1188 	/* store pad_bits */
1189 	dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7);
1190 
1191 	return len;
1192 }
1193 
1194 /*
1195  * send_bitmap_rle_or_plain
1196  *
1197  * Return 0 when done, 1 when another iteration is needed, and a negative error
1198  * code upon failure.
1199  */
1200 static int
1201 send_bitmap_rle_or_plain(struct drbd_device *device, struct bm_xfer_ctx *c)
1202 {
1203 	struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1204 	unsigned int header_size = drbd_header_size(first_peer_device(device)->connection);
1205 	struct p_compressed_bm *p = sock->sbuf + header_size;
1206 	int len, err;
1207 
1208 	len = fill_bitmap_rle_bits(device, p,
1209 			DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c);
1210 	if (len < 0)
1211 		return -EIO;
1212 
1213 	if (len) {
1214 		dcbp_set_code(p, RLE_VLI_Bits);
1215 		err = __send_command(first_peer_device(device)->connection, device->vnr, sock,
1216 				     P_COMPRESSED_BITMAP, sizeof(*p) + len,
1217 				     NULL, 0);
1218 		c->packets[0]++;
1219 		c->bytes[0] += header_size + sizeof(*p) + len;
1220 
1221 		if (c->bit_offset >= c->bm_bits)
1222 			len = 0; /* DONE */
1223 	} else {
1224 		/* was not compressible.
1225 		 * send a buffer full of plain text bits instead. */
1226 		unsigned int data_size;
1227 		unsigned long num_words;
1228 		unsigned long *p = sock->sbuf + header_size;
1229 
1230 		data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
1231 		num_words = min_t(size_t, data_size / sizeof(*p),
1232 				  c->bm_words - c->word_offset);
1233 		len = num_words * sizeof(*p);
1234 		if (len)
1235 			drbd_bm_get_lel(device, c->word_offset, num_words, p);
1236 		err = __send_command(first_peer_device(device)->connection, device->vnr, sock, P_BITMAP, len, NULL, 0);
1237 		c->word_offset += num_words;
1238 		c->bit_offset = c->word_offset * BITS_PER_LONG;
1239 
1240 		c->packets[1]++;
1241 		c->bytes[1] += header_size + len;
1242 
1243 		if (c->bit_offset > c->bm_bits)
1244 			c->bit_offset = c->bm_bits;
1245 	}
1246 	if (!err) {
1247 		if (len == 0) {
1248 			INFO_bm_xfer_stats(device, "send", c);
1249 			return 0;
1250 		} else
1251 			return 1;
1252 	}
1253 	return -EIO;
1254 }
1255 
1256 /* See the comment at receive_bitmap() */
1257 static int _drbd_send_bitmap(struct drbd_device *device)
1258 {
1259 	struct bm_xfer_ctx c;
1260 	int err;
1261 
1262 	if (!expect(device->bitmap))
1263 		return false;
1264 
1265 	if (get_ldev(device)) {
1266 		if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) {
1267 			drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n");
1268 			drbd_bm_set_all(device);
1269 			if (drbd_bm_write(device)) {
1270 				/* write_bm did fail! Leave full sync flag set in Meta P_DATA
1271 				 * but otherwise process as per normal - need to tell other
1272 				 * side that a full resync is required! */
1273 				drbd_err(device, "Failed to write bitmap to disk!\n");
1274 			} else {
1275 				drbd_md_clear_flag(device, MDF_FULL_SYNC);
1276 				drbd_md_sync(device);
1277 			}
1278 		}
1279 		put_ldev(device);
1280 	}
1281 
1282 	c = (struct bm_xfer_ctx) {
1283 		.bm_bits = drbd_bm_bits(device),
1284 		.bm_words = drbd_bm_words(device),
1285 	};
1286 
1287 	do {
1288 		err = send_bitmap_rle_or_plain(device, &c);
1289 	} while (err > 0);
1290 
1291 	return err == 0;
1292 }
1293 
1294 int drbd_send_bitmap(struct drbd_device *device)
1295 {
1296 	struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1297 	int err = -1;
1298 
1299 	mutex_lock(&sock->mutex);
1300 	if (sock->socket)
1301 		err = !_drbd_send_bitmap(device);
1302 	mutex_unlock(&sock->mutex);
1303 	return err;
1304 }
1305 
1306 void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size)
1307 {
1308 	struct drbd_socket *sock;
1309 	struct p_barrier_ack *p;
1310 
1311 	if (connection->cstate < C_WF_REPORT_PARAMS)
1312 		return;
1313 
1314 	sock = &connection->meta;
1315 	p = conn_prepare_command(connection, sock);
1316 	if (!p)
1317 		return;
1318 	p->barrier = barrier_nr;
1319 	p->set_size = cpu_to_be32(set_size);
1320 	conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0);
1321 }
1322 
1323 /**
1324  * _drbd_send_ack() - Sends an ack packet
1325  * @peer_device:	DRBD peer device.
1326  * @cmd:		Packet command code.
1327  * @sector:		sector, needs to be in big endian byte order
1328  * @blksize:		size in byte, needs to be in big endian byte order
1329  * @block_id:		Id, big endian byte order
1330  */
1331 static int _drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1332 			  u64 sector, u32 blksize, u64 block_id)
1333 {
1334 	struct drbd_socket *sock;
1335 	struct p_block_ack *p;
1336 
1337 	if (peer_device->device->state.conn < C_CONNECTED)
1338 		return -EIO;
1339 
1340 	sock = &peer_device->connection->meta;
1341 	p = drbd_prepare_command(peer_device, sock);
1342 	if (!p)
1343 		return -EIO;
1344 	p->sector = sector;
1345 	p->block_id = block_id;
1346 	p->blksize = blksize;
1347 	p->seq_num = cpu_to_be32(atomic_inc_return(&peer_device->device->packet_seq));
1348 	return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1349 }
1350 
1351 /* dp->sector and dp->block_id already/still in network byte order,
1352  * data_size is payload size according to dp->head,
1353  * and may need to be corrected for digest size. */
1354 void drbd_send_ack_dp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1355 		      struct p_data *dp, int data_size)
1356 {
1357 	if (peer_device->connection->peer_integrity_tfm)
1358 		data_size -= crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm);
1359 	_drbd_send_ack(peer_device, cmd, dp->sector, cpu_to_be32(data_size),
1360 		       dp->block_id);
1361 }
1362 
1363 void drbd_send_ack_rp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1364 		      struct p_block_req *rp)
1365 {
1366 	_drbd_send_ack(peer_device, cmd, rp->sector, rp->blksize, rp->block_id);
1367 }
1368 
1369 /**
1370  * drbd_send_ack() - Sends an ack packet
1371  * @peer_device:	DRBD peer device
1372  * @cmd:		packet command code
1373  * @peer_req:		peer request
1374  */
1375 int drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1376 		  struct drbd_peer_request *peer_req)
1377 {
1378 	return _drbd_send_ack(peer_device, cmd,
1379 			      cpu_to_be64(peer_req->i.sector),
1380 			      cpu_to_be32(peer_req->i.size),
1381 			      peer_req->block_id);
1382 }
1383 
1384 /* This function misuses the block_id field to signal if the blocks
1385  * are is sync or not. */
1386 int drbd_send_ack_ex(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1387 		     sector_t sector, int blksize, u64 block_id)
1388 {
1389 	return _drbd_send_ack(peer_device, cmd,
1390 			      cpu_to_be64(sector),
1391 			      cpu_to_be32(blksize),
1392 			      cpu_to_be64(block_id));
1393 }
1394 
1395 int drbd_send_rs_deallocated(struct drbd_peer_device *peer_device,
1396 			     struct drbd_peer_request *peer_req)
1397 {
1398 	struct drbd_socket *sock;
1399 	struct p_block_desc *p;
1400 
1401 	sock = &peer_device->connection->data;
1402 	p = drbd_prepare_command(peer_device, sock);
1403 	if (!p)
1404 		return -EIO;
1405 	p->sector = cpu_to_be64(peer_req->i.sector);
1406 	p->blksize = cpu_to_be32(peer_req->i.size);
1407 	p->pad = 0;
1408 	return drbd_send_command(peer_device, sock, P_RS_DEALLOCATED, sizeof(*p), NULL, 0);
1409 }
1410 
1411 int drbd_send_drequest(struct drbd_peer_device *peer_device, int cmd,
1412 		       sector_t sector, int size, u64 block_id)
1413 {
1414 	struct drbd_socket *sock;
1415 	struct p_block_req *p;
1416 
1417 	sock = &peer_device->connection->data;
1418 	p = drbd_prepare_command(peer_device, sock);
1419 	if (!p)
1420 		return -EIO;
1421 	p->sector = cpu_to_be64(sector);
1422 	p->block_id = block_id;
1423 	p->blksize = cpu_to_be32(size);
1424 	return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1425 }
1426 
1427 int drbd_send_drequest_csum(struct drbd_peer_device *peer_device, sector_t sector, int size,
1428 			    void *digest, int digest_size, enum drbd_packet cmd)
1429 {
1430 	struct drbd_socket *sock;
1431 	struct p_block_req *p;
1432 
1433 	/* FIXME: Put the digest into the preallocated socket buffer.  */
1434 
1435 	sock = &peer_device->connection->data;
1436 	p = drbd_prepare_command(peer_device, sock);
1437 	if (!p)
1438 		return -EIO;
1439 	p->sector = cpu_to_be64(sector);
1440 	p->block_id = ID_SYNCER /* unused */;
1441 	p->blksize = cpu_to_be32(size);
1442 	return drbd_send_command(peer_device, sock, cmd, sizeof(*p), digest, digest_size);
1443 }
1444 
1445 int drbd_send_ov_request(struct drbd_peer_device *peer_device, sector_t sector, int size)
1446 {
1447 	struct drbd_socket *sock;
1448 	struct p_block_req *p;
1449 
1450 	sock = &peer_device->connection->data;
1451 	p = drbd_prepare_command(peer_device, sock);
1452 	if (!p)
1453 		return -EIO;
1454 	p->sector = cpu_to_be64(sector);
1455 	p->block_id = ID_SYNCER /* unused */;
1456 	p->blksize = cpu_to_be32(size);
1457 	return drbd_send_command(peer_device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0);
1458 }
1459 
1460 /* called on sndtimeo
1461  * returns false if we should retry,
1462  * true if we think connection is dead
1463  */
1464 static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock)
1465 {
1466 	int drop_it;
1467 	/* long elapsed = (long)(jiffies - device->last_received); */
1468 
1469 	drop_it =   connection->meta.socket == sock
1470 		|| !connection->ack_receiver.task
1471 		|| get_t_state(&connection->ack_receiver) != RUNNING
1472 		|| connection->cstate < C_WF_REPORT_PARAMS;
1473 
1474 	if (drop_it)
1475 		return true;
1476 
1477 	drop_it = !--connection->ko_count;
1478 	if (!drop_it) {
1479 		drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n",
1480 			 current->comm, current->pid, connection->ko_count);
1481 		request_ping(connection);
1482 	}
1483 
1484 	return drop_it; /* && (device->state == R_PRIMARY) */;
1485 }
1486 
1487 static void drbd_update_congested(struct drbd_connection *connection)
1488 {
1489 	struct sock *sk = connection->data.socket->sk;
1490 	if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5)
1491 		set_bit(NET_CONGESTED, &connection->flags);
1492 }
1493 
1494 /* The idea of sendpage seems to be to put some kind of reference
1495  * to the page into the skb, and to hand it over to the NIC. In
1496  * this process get_page() gets called.
1497  *
1498  * As soon as the page was really sent over the network put_page()
1499  * gets called by some part of the network layer. [ NIC driver? ]
1500  *
1501  * [ get_page() / put_page() increment/decrement the count. If count
1502  *   reaches 0 the page will be freed. ]
1503  *
1504  * This works nicely with pages from FSs.
1505  * But this means that in protocol A we might signal IO completion too early!
1506  *
1507  * In order not to corrupt data during a resync we must make sure
1508  * that we do not reuse our own buffer pages (EEs) to early, therefore
1509  * we have the net_ee list.
1510  *
1511  * XFS seems to have problems, still, it submits pages with page_count == 0!
1512  * As a workaround, we disable sendpage on pages
1513  * with page_count == 0 or PageSlab.
1514  */
1515 static int _drbd_no_send_page(struct drbd_peer_device *peer_device, struct page *page,
1516 			      int offset, size_t size, unsigned msg_flags)
1517 {
1518 	struct socket *socket;
1519 	void *addr;
1520 	int err;
1521 
1522 	socket = peer_device->connection->data.socket;
1523 	addr = kmap(page) + offset;
1524 	err = drbd_send_all(peer_device->connection, socket, addr, size, msg_flags);
1525 	kunmap(page);
1526 	if (!err)
1527 		peer_device->device->send_cnt += size >> 9;
1528 	return err;
1529 }
1530 
1531 static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *page,
1532 		    int offset, size_t size, unsigned msg_flags)
1533 {
1534 	struct socket *socket = peer_device->connection->data.socket;
1535 	int len = size;
1536 	int err = -EIO;
1537 
1538 	/* e.g. XFS meta- & log-data is in slab pages, which have a
1539 	 * page_count of 0 and/or have PageSlab() set.
1540 	 * we cannot use send_page for those, as that does get_page();
1541 	 * put_page(); and would cause either a VM_BUG directly, or
1542 	 * __page_cache_release a page that would actually still be referenced
1543 	 * by someone, leading to some obscure delayed Oops somewhere else. */
1544 	if (drbd_disable_sendpage || !sendpage_ok(page))
1545 		return _drbd_no_send_page(peer_device, page, offset, size, msg_flags);
1546 
1547 	msg_flags |= MSG_NOSIGNAL;
1548 	drbd_update_congested(peer_device->connection);
1549 	do {
1550 		int sent;
1551 
1552 		sent = socket->ops->sendpage(socket, page, offset, len, msg_flags);
1553 		if (sent <= 0) {
1554 			if (sent == -EAGAIN) {
1555 				if (we_should_drop_the_connection(peer_device->connection, socket))
1556 					break;
1557 				continue;
1558 			}
1559 			drbd_warn(peer_device->device, "%s: size=%d len=%d sent=%d\n",
1560 			     __func__, (int)size, len, sent);
1561 			if (sent < 0)
1562 				err = sent;
1563 			break;
1564 		}
1565 		len    -= sent;
1566 		offset += sent;
1567 	} while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/);
1568 	clear_bit(NET_CONGESTED, &peer_device->connection->flags);
1569 
1570 	if (len == 0) {
1571 		err = 0;
1572 		peer_device->device->send_cnt += size >> 9;
1573 	}
1574 	return err;
1575 }
1576 
1577 static int _drbd_send_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1578 {
1579 	struct bio_vec bvec;
1580 	struct bvec_iter iter;
1581 
1582 	/* hint all but last page with MSG_MORE */
1583 	bio_for_each_segment(bvec, bio, iter) {
1584 		int err;
1585 
1586 		err = _drbd_no_send_page(peer_device, bvec.bv_page,
1587 					 bvec.bv_offset, bvec.bv_len,
1588 					 bio_iter_last(bvec, iter)
1589 					 ? 0 : MSG_MORE);
1590 		if (err)
1591 			return err;
1592 	}
1593 	return 0;
1594 }
1595 
1596 static int _drbd_send_zc_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1597 {
1598 	struct bio_vec bvec;
1599 	struct bvec_iter iter;
1600 
1601 	/* hint all but last page with MSG_MORE */
1602 	bio_for_each_segment(bvec, bio, iter) {
1603 		int err;
1604 
1605 		err = _drbd_send_page(peer_device, bvec.bv_page,
1606 				      bvec.bv_offset, bvec.bv_len,
1607 				      bio_iter_last(bvec, iter) ? 0 : MSG_MORE);
1608 		if (err)
1609 			return err;
1610 	}
1611 	return 0;
1612 }
1613 
1614 static int _drbd_send_zc_ee(struct drbd_peer_device *peer_device,
1615 			    struct drbd_peer_request *peer_req)
1616 {
1617 	struct page *page = peer_req->pages;
1618 	unsigned len = peer_req->i.size;
1619 	int err;
1620 
1621 	/* hint all but last page with MSG_MORE */
1622 	page_chain_for_each(page) {
1623 		unsigned l = min_t(unsigned, len, PAGE_SIZE);
1624 
1625 		err = _drbd_send_page(peer_device, page, 0, l,
1626 				      page_chain_next(page) ? MSG_MORE : 0);
1627 		if (err)
1628 			return err;
1629 		len -= l;
1630 	}
1631 	return 0;
1632 }
1633 
1634 static u32 bio_flags_to_wire(struct drbd_connection *connection,
1635 			     struct bio *bio)
1636 {
1637 	if (connection->agreed_pro_version >= 95)
1638 		return  (bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0) |
1639 			(bio->bi_opf & REQ_FUA ? DP_FUA : 0) |
1640 			(bio->bi_opf & REQ_PREFLUSH ? DP_FLUSH : 0) |
1641 			(bio_op(bio) == REQ_OP_DISCARD ? DP_DISCARD : 0) |
1642 			(bio_op(bio) == REQ_OP_WRITE_ZEROES ?
1643 			  ((connection->agreed_features & DRBD_FF_WZEROES) ?
1644 			   (DP_ZEROES |(!(bio->bi_opf & REQ_NOUNMAP) ? DP_DISCARD : 0))
1645 			   : DP_DISCARD)
1646 			: 0);
1647 	else
1648 		return bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0;
1649 }
1650 
1651 /* Used to send write or TRIM aka REQ_OP_DISCARD requests
1652  * R_PRIMARY -> Peer	(P_DATA, P_TRIM)
1653  */
1654 int drbd_send_dblock(struct drbd_peer_device *peer_device, struct drbd_request *req)
1655 {
1656 	struct drbd_device *device = peer_device->device;
1657 	struct drbd_socket *sock;
1658 	struct p_data *p;
1659 	void *digest_out;
1660 	unsigned int dp_flags = 0;
1661 	int digest_size;
1662 	int err;
1663 
1664 	sock = &peer_device->connection->data;
1665 	p = drbd_prepare_command(peer_device, sock);
1666 	digest_size = peer_device->connection->integrity_tfm ?
1667 		      crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0;
1668 
1669 	if (!p)
1670 		return -EIO;
1671 	p->sector = cpu_to_be64(req->i.sector);
1672 	p->block_id = (unsigned long)req;
1673 	p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq));
1674 	dp_flags = bio_flags_to_wire(peer_device->connection, req->master_bio);
1675 	if (device->state.conn >= C_SYNC_SOURCE &&
1676 	    device->state.conn <= C_PAUSED_SYNC_T)
1677 		dp_flags |= DP_MAY_SET_IN_SYNC;
1678 	if (peer_device->connection->agreed_pro_version >= 100) {
1679 		if (req->rq_state & RQ_EXP_RECEIVE_ACK)
1680 			dp_flags |= DP_SEND_RECEIVE_ACK;
1681 		/* During resync, request an explicit write ack,
1682 		 * even in protocol != C */
1683 		if (req->rq_state & RQ_EXP_WRITE_ACK
1684 		|| (dp_flags & DP_MAY_SET_IN_SYNC))
1685 			dp_flags |= DP_SEND_WRITE_ACK;
1686 	}
1687 	p->dp_flags = cpu_to_be32(dp_flags);
1688 
1689 	if (dp_flags & (DP_DISCARD|DP_ZEROES)) {
1690 		enum drbd_packet cmd = (dp_flags & DP_ZEROES) ? P_ZEROES : P_TRIM;
1691 		struct p_trim *t = (struct p_trim*)p;
1692 		t->size = cpu_to_be32(req->i.size);
1693 		err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*t), NULL, 0);
1694 		goto out;
1695 	}
1696 	digest_out = p + 1;
1697 
1698 	/* our digest is still only over the payload.
1699 	 * TRIM does not carry any payload. */
1700 	if (digest_size)
1701 		drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest_out);
1702 	err = __send_command(peer_device->connection, device->vnr, sock, P_DATA,
1703 			     sizeof(*p) + digest_size, NULL, req->i.size);
1704 	if (!err) {
1705 		/* For protocol A, we have to memcpy the payload into
1706 		 * socket buffers, as we may complete right away
1707 		 * as soon as we handed it over to tcp, at which point the data
1708 		 * pages may become invalid.
1709 		 *
1710 		 * For data-integrity enabled, we copy it as well, so we can be
1711 		 * sure that even if the bio pages may still be modified, it
1712 		 * won't change the data on the wire, thus if the digest checks
1713 		 * out ok after sending on this side, but does not fit on the
1714 		 * receiving side, we sure have detected corruption elsewhere.
1715 		 */
1716 		if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || digest_size)
1717 			err = _drbd_send_bio(peer_device, req->master_bio);
1718 		else
1719 			err = _drbd_send_zc_bio(peer_device, req->master_bio);
1720 
1721 		/* double check digest, sometimes buffers have been modified in flight. */
1722 		if (digest_size > 0 && digest_size <= 64) {
1723 			/* 64 byte, 512 bit, is the largest digest size
1724 			 * currently supported in kernel crypto. */
1725 			unsigned char digest[64];
1726 			drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest);
1727 			if (memcmp(p + 1, digest, digest_size)) {
1728 				drbd_warn(device,
1729 					"Digest mismatch, buffer modified by upper layers during write: %llus +%u\n",
1730 					(unsigned long long)req->i.sector, req->i.size);
1731 			}
1732 		} /* else if (digest_size > 64) {
1733 		     ... Be noisy about digest too large ...
1734 		} */
1735 	}
1736 out:
1737 	mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1738 
1739 	return err;
1740 }
1741 
1742 /* answer packet, used to send data back for read requests:
1743  *  Peer       -> (diskless) R_PRIMARY   (P_DATA_REPLY)
1744  *  C_SYNC_SOURCE -> C_SYNC_TARGET         (P_RS_DATA_REPLY)
1745  */
1746 int drbd_send_block(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1747 		    struct drbd_peer_request *peer_req)
1748 {
1749 	struct drbd_device *device = peer_device->device;
1750 	struct drbd_socket *sock;
1751 	struct p_data *p;
1752 	int err;
1753 	int digest_size;
1754 
1755 	sock = &peer_device->connection->data;
1756 	p = drbd_prepare_command(peer_device, sock);
1757 
1758 	digest_size = peer_device->connection->integrity_tfm ?
1759 		      crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0;
1760 
1761 	if (!p)
1762 		return -EIO;
1763 	p->sector = cpu_to_be64(peer_req->i.sector);
1764 	p->block_id = peer_req->block_id;
1765 	p->seq_num = 0;  /* unused */
1766 	p->dp_flags = 0;
1767 	if (digest_size)
1768 		drbd_csum_ee(peer_device->connection->integrity_tfm, peer_req, p + 1);
1769 	err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*p) + digest_size, NULL, peer_req->i.size);
1770 	if (!err)
1771 		err = _drbd_send_zc_ee(peer_device, peer_req);
1772 	mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1773 
1774 	return err;
1775 }
1776 
1777 int drbd_send_out_of_sync(struct drbd_peer_device *peer_device, struct drbd_request *req)
1778 {
1779 	struct drbd_socket *sock;
1780 	struct p_block_desc *p;
1781 
1782 	sock = &peer_device->connection->data;
1783 	p = drbd_prepare_command(peer_device, sock);
1784 	if (!p)
1785 		return -EIO;
1786 	p->sector = cpu_to_be64(req->i.sector);
1787 	p->blksize = cpu_to_be32(req->i.size);
1788 	return drbd_send_command(peer_device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0);
1789 }
1790 
1791 /*
1792   drbd_send distinguishes two cases:
1793 
1794   Packets sent via the data socket "sock"
1795   and packets sent via the meta data socket "msock"
1796 
1797 		    sock                      msock
1798   -----------------+-------------------------+------------------------------
1799   timeout           conf.timeout / 2          conf.timeout / 2
1800   timeout action    send a ping via msock     Abort communication
1801 					      and close all sockets
1802 */
1803 
1804 /*
1805  * you must have down()ed the appropriate [m]sock_mutex elsewhere!
1806  */
1807 int drbd_send(struct drbd_connection *connection, struct socket *sock,
1808 	      void *buf, size_t size, unsigned msg_flags)
1809 {
1810 	struct kvec iov = {.iov_base = buf, .iov_len = size};
1811 	struct msghdr msg = {.msg_flags = msg_flags | MSG_NOSIGNAL};
1812 	int rv, sent = 0;
1813 
1814 	if (!sock)
1815 		return -EBADR;
1816 
1817 	/* THINK  if (signal_pending) return ... ? */
1818 
1819 	iov_iter_kvec(&msg.msg_iter, WRITE, &iov, 1, size);
1820 
1821 	if (sock == connection->data.socket) {
1822 		rcu_read_lock();
1823 		connection->ko_count = rcu_dereference(connection->net_conf)->ko_count;
1824 		rcu_read_unlock();
1825 		drbd_update_congested(connection);
1826 	}
1827 	do {
1828 		rv = sock_sendmsg(sock, &msg);
1829 		if (rv == -EAGAIN) {
1830 			if (we_should_drop_the_connection(connection, sock))
1831 				break;
1832 			else
1833 				continue;
1834 		}
1835 		if (rv == -EINTR) {
1836 			flush_signals(current);
1837 			rv = 0;
1838 		}
1839 		if (rv < 0)
1840 			break;
1841 		sent += rv;
1842 	} while (sent < size);
1843 
1844 	if (sock == connection->data.socket)
1845 		clear_bit(NET_CONGESTED, &connection->flags);
1846 
1847 	if (rv <= 0) {
1848 		if (rv != -EAGAIN) {
1849 			drbd_err(connection, "%s_sendmsg returned %d\n",
1850 				 sock == connection->meta.socket ? "msock" : "sock",
1851 				 rv);
1852 			conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD);
1853 		} else
1854 			conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD);
1855 	}
1856 
1857 	return sent;
1858 }
1859 
1860 /*
1861  * drbd_send_all  -  Send an entire buffer
1862  *
1863  * Returns 0 upon success and a negative error value otherwise.
1864  */
1865 int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer,
1866 		  size_t size, unsigned msg_flags)
1867 {
1868 	int err;
1869 
1870 	err = drbd_send(connection, sock, buffer, size, msg_flags);
1871 	if (err < 0)
1872 		return err;
1873 	if (err != size)
1874 		return -EIO;
1875 	return 0;
1876 }
1877 
1878 static int drbd_open(struct block_device *bdev, fmode_t mode)
1879 {
1880 	struct drbd_device *device = bdev->bd_disk->private_data;
1881 	unsigned long flags;
1882 	int rv = 0;
1883 
1884 	mutex_lock(&drbd_main_mutex);
1885 	spin_lock_irqsave(&device->resource->req_lock, flags);
1886 	/* to have a stable device->state.role
1887 	 * and no race with updating open_cnt */
1888 
1889 	if (device->state.role != R_PRIMARY) {
1890 		if (mode & FMODE_WRITE)
1891 			rv = -EROFS;
1892 		else if (!drbd_allow_oos)
1893 			rv = -EMEDIUMTYPE;
1894 	}
1895 
1896 	if (!rv)
1897 		device->open_cnt++;
1898 	spin_unlock_irqrestore(&device->resource->req_lock, flags);
1899 	mutex_unlock(&drbd_main_mutex);
1900 
1901 	return rv;
1902 }
1903 
1904 static void drbd_release(struct gendisk *gd, fmode_t mode)
1905 {
1906 	struct drbd_device *device = gd->private_data;
1907 	mutex_lock(&drbd_main_mutex);
1908 	device->open_cnt--;
1909 	mutex_unlock(&drbd_main_mutex);
1910 }
1911 
1912 /* need to hold resource->req_lock */
1913 void drbd_queue_unplug(struct drbd_device *device)
1914 {
1915 	if (device->state.pdsk >= D_INCONSISTENT && device->state.conn >= C_CONNECTED) {
1916 		D_ASSERT(device, device->state.role == R_PRIMARY);
1917 		if (test_and_clear_bit(UNPLUG_REMOTE, &device->flags)) {
1918 			drbd_queue_work_if_unqueued(
1919 				&first_peer_device(device)->connection->sender_work,
1920 				&device->unplug_work);
1921 		}
1922 	}
1923 }
1924 
1925 static void drbd_set_defaults(struct drbd_device *device)
1926 {
1927 	/* Beware! The actual layout differs
1928 	 * between big endian and little endian */
1929 	device->state = (union drbd_dev_state) {
1930 		{ .role = R_SECONDARY,
1931 		  .peer = R_UNKNOWN,
1932 		  .conn = C_STANDALONE,
1933 		  .disk = D_DISKLESS,
1934 		  .pdsk = D_UNKNOWN,
1935 		} };
1936 }
1937 
1938 void drbd_init_set_defaults(struct drbd_device *device)
1939 {
1940 	/* the memset(,0,) did most of this.
1941 	 * note: only assignments, no allocation in here */
1942 
1943 	drbd_set_defaults(device);
1944 
1945 	atomic_set(&device->ap_bio_cnt, 0);
1946 	atomic_set(&device->ap_actlog_cnt, 0);
1947 	atomic_set(&device->ap_pending_cnt, 0);
1948 	atomic_set(&device->rs_pending_cnt, 0);
1949 	atomic_set(&device->unacked_cnt, 0);
1950 	atomic_set(&device->local_cnt, 0);
1951 	atomic_set(&device->pp_in_use_by_net, 0);
1952 	atomic_set(&device->rs_sect_in, 0);
1953 	atomic_set(&device->rs_sect_ev, 0);
1954 	atomic_set(&device->ap_in_flight, 0);
1955 	atomic_set(&device->md_io.in_use, 0);
1956 
1957 	mutex_init(&device->own_state_mutex);
1958 	device->state_mutex = &device->own_state_mutex;
1959 
1960 	spin_lock_init(&device->al_lock);
1961 	spin_lock_init(&device->peer_seq_lock);
1962 
1963 	INIT_LIST_HEAD(&device->active_ee);
1964 	INIT_LIST_HEAD(&device->sync_ee);
1965 	INIT_LIST_HEAD(&device->done_ee);
1966 	INIT_LIST_HEAD(&device->read_ee);
1967 	INIT_LIST_HEAD(&device->net_ee);
1968 	INIT_LIST_HEAD(&device->resync_reads);
1969 	INIT_LIST_HEAD(&device->resync_work.list);
1970 	INIT_LIST_HEAD(&device->unplug_work.list);
1971 	INIT_LIST_HEAD(&device->bm_io_work.w.list);
1972 	INIT_LIST_HEAD(&device->pending_master_completion[0]);
1973 	INIT_LIST_HEAD(&device->pending_master_completion[1]);
1974 	INIT_LIST_HEAD(&device->pending_completion[0]);
1975 	INIT_LIST_HEAD(&device->pending_completion[1]);
1976 
1977 	device->resync_work.cb  = w_resync_timer;
1978 	device->unplug_work.cb  = w_send_write_hint;
1979 	device->bm_io_work.w.cb = w_bitmap_io;
1980 
1981 	timer_setup(&device->resync_timer, resync_timer_fn, 0);
1982 	timer_setup(&device->md_sync_timer, md_sync_timer_fn, 0);
1983 	timer_setup(&device->start_resync_timer, start_resync_timer_fn, 0);
1984 	timer_setup(&device->request_timer, request_timer_fn, 0);
1985 
1986 	init_waitqueue_head(&device->misc_wait);
1987 	init_waitqueue_head(&device->state_wait);
1988 	init_waitqueue_head(&device->ee_wait);
1989 	init_waitqueue_head(&device->al_wait);
1990 	init_waitqueue_head(&device->seq_wait);
1991 
1992 	device->resync_wenr = LC_FREE;
1993 	device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
1994 	device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
1995 }
1996 
1997 void drbd_set_my_capacity(struct drbd_device *device, sector_t size)
1998 {
1999 	char ppb[10];
2000 
2001 	set_capacity_and_notify(device->vdisk, size);
2002 
2003 	drbd_info(device, "size = %s (%llu KB)\n",
2004 		ppsize(ppb, size>>1), (unsigned long long)size>>1);
2005 }
2006 
2007 void drbd_device_cleanup(struct drbd_device *device)
2008 {
2009 	int i;
2010 	if (first_peer_device(device)->connection->receiver.t_state != NONE)
2011 		drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n",
2012 				first_peer_device(device)->connection->receiver.t_state);
2013 
2014 	device->al_writ_cnt  =
2015 	device->bm_writ_cnt  =
2016 	device->read_cnt     =
2017 	device->recv_cnt     =
2018 	device->send_cnt     =
2019 	device->writ_cnt     =
2020 	device->p_size       =
2021 	device->rs_start     =
2022 	device->rs_total     =
2023 	device->rs_failed    = 0;
2024 	device->rs_last_events = 0;
2025 	device->rs_last_sect_ev = 0;
2026 	for (i = 0; i < DRBD_SYNC_MARKS; i++) {
2027 		device->rs_mark_left[i] = 0;
2028 		device->rs_mark_time[i] = 0;
2029 	}
2030 	D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL);
2031 
2032 	set_capacity_and_notify(device->vdisk, 0);
2033 	if (device->bitmap) {
2034 		/* maybe never allocated. */
2035 		drbd_bm_resize(device, 0, 1);
2036 		drbd_bm_cleanup(device);
2037 	}
2038 
2039 	drbd_backing_dev_free(device, device->ldev);
2040 	device->ldev = NULL;
2041 
2042 	clear_bit(AL_SUSPENDED, &device->flags);
2043 
2044 	D_ASSERT(device, list_empty(&device->active_ee));
2045 	D_ASSERT(device, list_empty(&device->sync_ee));
2046 	D_ASSERT(device, list_empty(&device->done_ee));
2047 	D_ASSERT(device, list_empty(&device->read_ee));
2048 	D_ASSERT(device, list_empty(&device->net_ee));
2049 	D_ASSERT(device, list_empty(&device->resync_reads));
2050 	D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q));
2051 	D_ASSERT(device, list_empty(&device->resync_work.list));
2052 	D_ASSERT(device, list_empty(&device->unplug_work.list));
2053 
2054 	drbd_set_defaults(device);
2055 }
2056 
2057 
2058 static void drbd_destroy_mempools(void)
2059 {
2060 	struct page *page;
2061 
2062 	while (drbd_pp_pool) {
2063 		page = drbd_pp_pool;
2064 		drbd_pp_pool = (struct page *)page_private(page);
2065 		__free_page(page);
2066 		drbd_pp_vacant--;
2067 	}
2068 
2069 	/* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */
2070 
2071 	bioset_exit(&drbd_io_bio_set);
2072 	bioset_exit(&drbd_md_io_bio_set);
2073 	mempool_exit(&drbd_md_io_page_pool);
2074 	mempool_exit(&drbd_ee_mempool);
2075 	mempool_exit(&drbd_request_mempool);
2076 	kmem_cache_destroy(drbd_ee_cache);
2077 	kmem_cache_destroy(drbd_request_cache);
2078 	kmem_cache_destroy(drbd_bm_ext_cache);
2079 	kmem_cache_destroy(drbd_al_ext_cache);
2080 
2081 	drbd_ee_cache        = NULL;
2082 	drbd_request_cache   = NULL;
2083 	drbd_bm_ext_cache    = NULL;
2084 	drbd_al_ext_cache    = NULL;
2085 
2086 	return;
2087 }
2088 
2089 static int drbd_create_mempools(void)
2090 {
2091 	struct page *page;
2092 	const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * drbd_minor_count;
2093 	int i, ret;
2094 
2095 	/* caches */
2096 	drbd_request_cache = kmem_cache_create(
2097 		"drbd_req", sizeof(struct drbd_request), 0, 0, NULL);
2098 	if (drbd_request_cache == NULL)
2099 		goto Enomem;
2100 
2101 	drbd_ee_cache = kmem_cache_create(
2102 		"drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL);
2103 	if (drbd_ee_cache == NULL)
2104 		goto Enomem;
2105 
2106 	drbd_bm_ext_cache = kmem_cache_create(
2107 		"drbd_bm", sizeof(struct bm_extent), 0, 0, NULL);
2108 	if (drbd_bm_ext_cache == NULL)
2109 		goto Enomem;
2110 
2111 	drbd_al_ext_cache = kmem_cache_create(
2112 		"drbd_al", sizeof(struct lc_element), 0, 0, NULL);
2113 	if (drbd_al_ext_cache == NULL)
2114 		goto Enomem;
2115 
2116 	/* mempools */
2117 	ret = bioset_init(&drbd_io_bio_set, BIO_POOL_SIZE, 0, 0);
2118 	if (ret)
2119 		goto Enomem;
2120 
2121 	ret = bioset_init(&drbd_md_io_bio_set, DRBD_MIN_POOL_PAGES, 0,
2122 			  BIOSET_NEED_BVECS);
2123 	if (ret)
2124 		goto Enomem;
2125 
2126 	ret = mempool_init_page_pool(&drbd_md_io_page_pool, DRBD_MIN_POOL_PAGES, 0);
2127 	if (ret)
2128 		goto Enomem;
2129 
2130 	ret = mempool_init_slab_pool(&drbd_request_mempool, number,
2131 				     drbd_request_cache);
2132 	if (ret)
2133 		goto Enomem;
2134 
2135 	ret = mempool_init_slab_pool(&drbd_ee_mempool, number, drbd_ee_cache);
2136 	if (ret)
2137 		goto Enomem;
2138 
2139 	for (i = 0; i < number; i++) {
2140 		page = alloc_page(GFP_HIGHUSER);
2141 		if (!page)
2142 			goto Enomem;
2143 		set_page_private(page, (unsigned long)drbd_pp_pool);
2144 		drbd_pp_pool = page;
2145 	}
2146 	drbd_pp_vacant = number;
2147 
2148 	return 0;
2149 
2150 Enomem:
2151 	drbd_destroy_mempools(); /* in case we allocated some */
2152 	return -ENOMEM;
2153 }
2154 
2155 static void drbd_release_all_peer_reqs(struct drbd_device *device)
2156 {
2157 	int rr;
2158 
2159 	rr = drbd_free_peer_reqs(device, &device->active_ee);
2160 	if (rr)
2161 		drbd_err(device, "%d EEs in active list found!\n", rr);
2162 
2163 	rr = drbd_free_peer_reqs(device, &device->sync_ee);
2164 	if (rr)
2165 		drbd_err(device, "%d EEs in sync list found!\n", rr);
2166 
2167 	rr = drbd_free_peer_reqs(device, &device->read_ee);
2168 	if (rr)
2169 		drbd_err(device, "%d EEs in read list found!\n", rr);
2170 
2171 	rr = drbd_free_peer_reqs(device, &device->done_ee);
2172 	if (rr)
2173 		drbd_err(device, "%d EEs in done list found!\n", rr);
2174 
2175 	rr = drbd_free_peer_reqs(device, &device->net_ee);
2176 	if (rr)
2177 		drbd_err(device, "%d EEs in net list found!\n", rr);
2178 }
2179 
2180 /* caution. no locking. */
2181 void drbd_destroy_device(struct kref *kref)
2182 {
2183 	struct drbd_device *device = container_of(kref, struct drbd_device, kref);
2184 	struct drbd_resource *resource = device->resource;
2185 	struct drbd_peer_device *peer_device, *tmp_peer_device;
2186 
2187 	del_timer_sync(&device->request_timer);
2188 
2189 	/* paranoia asserts */
2190 	D_ASSERT(device, device->open_cnt == 0);
2191 	/* end paranoia asserts */
2192 
2193 	/* cleanup stuff that may have been allocated during
2194 	 * device (re-)configuration or state changes */
2195 
2196 	drbd_backing_dev_free(device, device->ldev);
2197 	device->ldev = NULL;
2198 
2199 	drbd_release_all_peer_reqs(device);
2200 
2201 	lc_destroy(device->act_log);
2202 	lc_destroy(device->resync);
2203 
2204 	kfree(device->p_uuid);
2205 	/* device->p_uuid = NULL; */
2206 
2207 	if (device->bitmap) /* should no longer be there. */
2208 		drbd_bm_cleanup(device);
2209 	__free_page(device->md_io.page);
2210 	blk_cleanup_disk(device->vdisk);
2211 	kfree(device->rs_plan_s);
2212 
2213 	/* not for_each_connection(connection, resource):
2214 	 * those may have been cleaned up and disassociated already.
2215 	 */
2216 	for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2217 		kref_put(&peer_device->connection->kref, drbd_destroy_connection);
2218 		kfree(peer_device);
2219 	}
2220 	memset(device, 0xfd, sizeof(*device));
2221 	kfree(device);
2222 	kref_put(&resource->kref, drbd_destroy_resource);
2223 }
2224 
2225 /* One global retry thread, if we need to push back some bio and have it
2226  * reinserted through our make request function.
2227  */
2228 static struct retry_worker {
2229 	struct workqueue_struct *wq;
2230 	struct work_struct worker;
2231 
2232 	spinlock_t lock;
2233 	struct list_head writes;
2234 } retry;
2235 
2236 static void do_retry(struct work_struct *ws)
2237 {
2238 	struct retry_worker *retry = container_of(ws, struct retry_worker, worker);
2239 	LIST_HEAD(writes);
2240 	struct drbd_request *req, *tmp;
2241 
2242 	spin_lock_irq(&retry->lock);
2243 	list_splice_init(&retry->writes, &writes);
2244 	spin_unlock_irq(&retry->lock);
2245 
2246 	list_for_each_entry_safe(req, tmp, &writes, tl_requests) {
2247 		struct drbd_device *device = req->device;
2248 		struct bio *bio = req->master_bio;
2249 		bool expected;
2250 
2251 		expected =
2252 			expect(atomic_read(&req->completion_ref) == 0) &&
2253 			expect(req->rq_state & RQ_POSTPONED) &&
2254 			expect((req->rq_state & RQ_LOCAL_PENDING) == 0 ||
2255 				(req->rq_state & RQ_LOCAL_ABORTED) != 0);
2256 
2257 		if (!expected)
2258 			drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n",
2259 				req, atomic_read(&req->completion_ref),
2260 				req->rq_state);
2261 
2262 		/* We still need to put one kref associated with the
2263 		 * "completion_ref" going zero in the code path that queued it
2264 		 * here.  The request object may still be referenced by a
2265 		 * frozen local req->private_bio, in case we force-detached.
2266 		 */
2267 		kref_put(&req->kref, drbd_req_destroy);
2268 
2269 		/* A single suspended or otherwise blocking device may stall
2270 		 * all others as well.  Fortunately, this code path is to
2271 		 * recover from a situation that "should not happen":
2272 		 * concurrent writes in multi-primary setup.
2273 		 * In a "normal" lifecycle, this workqueue is supposed to be
2274 		 * destroyed without ever doing anything.
2275 		 * If it turns out to be an issue anyways, we can do per
2276 		 * resource (replication group) or per device (minor) retry
2277 		 * workqueues instead.
2278 		 */
2279 
2280 		/* We are not just doing submit_bio_noacct(),
2281 		 * as we want to keep the start_time information. */
2282 		inc_ap_bio(device);
2283 		__drbd_make_request(device, bio);
2284 	}
2285 }
2286 
2287 /* called via drbd_req_put_completion_ref(),
2288  * holds resource->req_lock */
2289 void drbd_restart_request(struct drbd_request *req)
2290 {
2291 	unsigned long flags;
2292 	spin_lock_irqsave(&retry.lock, flags);
2293 	list_move_tail(&req->tl_requests, &retry.writes);
2294 	spin_unlock_irqrestore(&retry.lock, flags);
2295 
2296 	/* Drop the extra reference that would otherwise
2297 	 * have been dropped by complete_master_bio.
2298 	 * do_retry() needs to grab a new one. */
2299 	dec_ap_bio(req->device);
2300 
2301 	queue_work(retry.wq, &retry.worker);
2302 }
2303 
2304 void drbd_destroy_resource(struct kref *kref)
2305 {
2306 	struct drbd_resource *resource =
2307 		container_of(kref, struct drbd_resource, kref);
2308 
2309 	idr_destroy(&resource->devices);
2310 	free_cpumask_var(resource->cpu_mask);
2311 	kfree(resource->name);
2312 	memset(resource, 0xf2, sizeof(*resource));
2313 	kfree(resource);
2314 }
2315 
2316 void drbd_free_resource(struct drbd_resource *resource)
2317 {
2318 	struct drbd_connection *connection, *tmp;
2319 
2320 	for_each_connection_safe(connection, tmp, resource) {
2321 		list_del(&connection->connections);
2322 		drbd_debugfs_connection_cleanup(connection);
2323 		kref_put(&connection->kref, drbd_destroy_connection);
2324 	}
2325 	drbd_debugfs_resource_cleanup(resource);
2326 	kref_put(&resource->kref, drbd_destroy_resource);
2327 }
2328 
2329 static void drbd_cleanup(void)
2330 {
2331 	unsigned int i;
2332 	struct drbd_device *device;
2333 	struct drbd_resource *resource, *tmp;
2334 
2335 	/* first remove proc,
2336 	 * drbdsetup uses it's presence to detect
2337 	 * whether DRBD is loaded.
2338 	 * If we would get stuck in proc removal,
2339 	 * but have netlink already deregistered,
2340 	 * some drbdsetup commands may wait forever
2341 	 * for an answer.
2342 	 */
2343 	if (drbd_proc)
2344 		remove_proc_entry("drbd", NULL);
2345 
2346 	if (retry.wq)
2347 		destroy_workqueue(retry.wq);
2348 
2349 	drbd_genl_unregister();
2350 
2351 	idr_for_each_entry(&drbd_devices, device, i)
2352 		drbd_delete_device(device);
2353 
2354 	/* not _rcu since, no other updater anymore. Genl already unregistered */
2355 	for_each_resource_safe(resource, tmp, &drbd_resources) {
2356 		list_del(&resource->resources);
2357 		drbd_free_resource(resource);
2358 	}
2359 
2360 	drbd_debugfs_cleanup();
2361 
2362 	drbd_destroy_mempools();
2363 	unregister_blkdev(DRBD_MAJOR, "drbd");
2364 
2365 	idr_destroy(&drbd_devices);
2366 
2367 	pr_info("module cleanup done.\n");
2368 }
2369 
2370 static void drbd_init_workqueue(struct drbd_work_queue* wq)
2371 {
2372 	spin_lock_init(&wq->q_lock);
2373 	INIT_LIST_HEAD(&wq->q);
2374 	init_waitqueue_head(&wq->q_wait);
2375 }
2376 
2377 struct completion_work {
2378 	struct drbd_work w;
2379 	struct completion done;
2380 };
2381 
2382 static int w_complete(struct drbd_work *w, int cancel)
2383 {
2384 	struct completion_work *completion_work =
2385 		container_of(w, struct completion_work, w);
2386 
2387 	complete(&completion_work->done);
2388 	return 0;
2389 }
2390 
2391 void drbd_flush_workqueue(struct drbd_work_queue *work_queue)
2392 {
2393 	struct completion_work completion_work;
2394 
2395 	completion_work.w.cb = w_complete;
2396 	init_completion(&completion_work.done);
2397 	drbd_queue_work(work_queue, &completion_work.w);
2398 	wait_for_completion(&completion_work.done);
2399 }
2400 
2401 struct drbd_resource *drbd_find_resource(const char *name)
2402 {
2403 	struct drbd_resource *resource;
2404 
2405 	if (!name || !name[0])
2406 		return NULL;
2407 
2408 	rcu_read_lock();
2409 	for_each_resource_rcu(resource, &drbd_resources) {
2410 		if (!strcmp(resource->name, name)) {
2411 			kref_get(&resource->kref);
2412 			goto found;
2413 		}
2414 	}
2415 	resource = NULL;
2416 found:
2417 	rcu_read_unlock();
2418 	return resource;
2419 }
2420 
2421 struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len,
2422 				     void *peer_addr, int peer_addr_len)
2423 {
2424 	struct drbd_resource *resource;
2425 	struct drbd_connection *connection;
2426 
2427 	rcu_read_lock();
2428 	for_each_resource_rcu(resource, &drbd_resources) {
2429 		for_each_connection_rcu(connection, resource) {
2430 			if (connection->my_addr_len == my_addr_len &&
2431 			    connection->peer_addr_len == peer_addr_len &&
2432 			    !memcmp(&connection->my_addr, my_addr, my_addr_len) &&
2433 			    !memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) {
2434 				kref_get(&connection->kref);
2435 				goto found;
2436 			}
2437 		}
2438 	}
2439 	connection = NULL;
2440 found:
2441 	rcu_read_unlock();
2442 	return connection;
2443 }
2444 
2445 static int drbd_alloc_socket(struct drbd_socket *socket)
2446 {
2447 	socket->rbuf = (void *) __get_free_page(GFP_KERNEL);
2448 	if (!socket->rbuf)
2449 		return -ENOMEM;
2450 	socket->sbuf = (void *) __get_free_page(GFP_KERNEL);
2451 	if (!socket->sbuf)
2452 		return -ENOMEM;
2453 	return 0;
2454 }
2455 
2456 static void drbd_free_socket(struct drbd_socket *socket)
2457 {
2458 	free_page((unsigned long) socket->sbuf);
2459 	free_page((unsigned long) socket->rbuf);
2460 }
2461 
2462 void conn_free_crypto(struct drbd_connection *connection)
2463 {
2464 	drbd_free_sock(connection);
2465 
2466 	crypto_free_shash(connection->csums_tfm);
2467 	crypto_free_shash(connection->verify_tfm);
2468 	crypto_free_shash(connection->cram_hmac_tfm);
2469 	crypto_free_shash(connection->integrity_tfm);
2470 	crypto_free_shash(connection->peer_integrity_tfm);
2471 	kfree(connection->int_dig_in);
2472 	kfree(connection->int_dig_vv);
2473 
2474 	connection->csums_tfm = NULL;
2475 	connection->verify_tfm = NULL;
2476 	connection->cram_hmac_tfm = NULL;
2477 	connection->integrity_tfm = NULL;
2478 	connection->peer_integrity_tfm = NULL;
2479 	connection->int_dig_in = NULL;
2480 	connection->int_dig_vv = NULL;
2481 }
2482 
2483 int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts)
2484 {
2485 	struct drbd_connection *connection;
2486 	cpumask_var_t new_cpu_mask;
2487 	int err;
2488 
2489 	if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL))
2490 		return -ENOMEM;
2491 
2492 	/* silently ignore cpu mask on UP kernel */
2493 	if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) {
2494 		err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE,
2495 				   cpumask_bits(new_cpu_mask), nr_cpu_ids);
2496 		if (err == -EOVERFLOW) {
2497 			/* So what. mask it out. */
2498 			cpumask_var_t tmp_cpu_mask;
2499 			if (zalloc_cpumask_var(&tmp_cpu_mask, GFP_KERNEL)) {
2500 				cpumask_setall(tmp_cpu_mask);
2501 				cpumask_and(new_cpu_mask, new_cpu_mask, tmp_cpu_mask);
2502 				drbd_warn(resource, "Overflow in bitmap_parse(%.12s%s), truncating to %u bits\n",
2503 					res_opts->cpu_mask,
2504 					strlen(res_opts->cpu_mask) > 12 ? "..." : "",
2505 					nr_cpu_ids);
2506 				free_cpumask_var(tmp_cpu_mask);
2507 				err = 0;
2508 			}
2509 		}
2510 		if (err) {
2511 			drbd_warn(resource, "bitmap_parse() failed with %d\n", err);
2512 			/* retcode = ERR_CPU_MASK_PARSE; */
2513 			goto fail;
2514 		}
2515 	}
2516 	resource->res_opts = *res_opts;
2517 	if (cpumask_empty(new_cpu_mask))
2518 		drbd_calc_cpu_mask(&new_cpu_mask);
2519 	if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) {
2520 		cpumask_copy(resource->cpu_mask, new_cpu_mask);
2521 		for_each_connection_rcu(connection, resource) {
2522 			connection->receiver.reset_cpu_mask = 1;
2523 			connection->ack_receiver.reset_cpu_mask = 1;
2524 			connection->worker.reset_cpu_mask = 1;
2525 		}
2526 	}
2527 	err = 0;
2528 
2529 fail:
2530 	free_cpumask_var(new_cpu_mask);
2531 	return err;
2532 
2533 }
2534 
2535 struct drbd_resource *drbd_create_resource(const char *name)
2536 {
2537 	struct drbd_resource *resource;
2538 
2539 	resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL);
2540 	if (!resource)
2541 		goto fail;
2542 	resource->name = kstrdup(name, GFP_KERNEL);
2543 	if (!resource->name)
2544 		goto fail_free_resource;
2545 	if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL))
2546 		goto fail_free_name;
2547 	kref_init(&resource->kref);
2548 	idr_init(&resource->devices);
2549 	INIT_LIST_HEAD(&resource->connections);
2550 	resource->write_ordering = WO_BDEV_FLUSH;
2551 	list_add_tail_rcu(&resource->resources, &drbd_resources);
2552 	mutex_init(&resource->conf_update);
2553 	mutex_init(&resource->adm_mutex);
2554 	spin_lock_init(&resource->req_lock);
2555 	drbd_debugfs_resource_add(resource);
2556 	return resource;
2557 
2558 fail_free_name:
2559 	kfree(resource->name);
2560 fail_free_resource:
2561 	kfree(resource);
2562 fail:
2563 	return NULL;
2564 }
2565 
2566 /* caller must be under adm_mutex */
2567 struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts)
2568 {
2569 	struct drbd_resource *resource;
2570 	struct drbd_connection *connection;
2571 
2572 	connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL);
2573 	if (!connection)
2574 		return NULL;
2575 
2576 	if (drbd_alloc_socket(&connection->data))
2577 		goto fail;
2578 	if (drbd_alloc_socket(&connection->meta))
2579 		goto fail;
2580 
2581 	connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL);
2582 	if (!connection->current_epoch)
2583 		goto fail;
2584 
2585 	INIT_LIST_HEAD(&connection->transfer_log);
2586 
2587 	INIT_LIST_HEAD(&connection->current_epoch->list);
2588 	connection->epochs = 1;
2589 	spin_lock_init(&connection->epoch_lock);
2590 
2591 	connection->send.seen_any_write_yet = false;
2592 	connection->send.current_epoch_nr = 0;
2593 	connection->send.current_epoch_writes = 0;
2594 
2595 	resource = drbd_create_resource(name);
2596 	if (!resource)
2597 		goto fail;
2598 
2599 	connection->cstate = C_STANDALONE;
2600 	mutex_init(&connection->cstate_mutex);
2601 	init_waitqueue_head(&connection->ping_wait);
2602 	idr_init(&connection->peer_devices);
2603 
2604 	drbd_init_workqueue(&connection->sender_work);
2605 	mutex_init(&connection->data.mutex);
2606 	mutex_init(&connection->meta.mutex);
2607 
2608 	drbd_thread_init(resource, &connection->receiver, drbd_receiver, "receiver");
2609 	connection->receiver.connection = connection;
2610 	drbd_thread_init(resource, &connection->worker, drbd_worker, "worker");
2611 	connection->worker.connection = connection;
2612 	drbd_thread_init(resource, &connection->ack_receiver, drbd_ack_receiver, "ack_recv");
2613 	connection->ack_receiver.connection = connection;
2614 
2615 	kref_init(&connection->kref);
2616 
2617 	connection->resource = resource;
2618 
2619 	if (set_resource_options(resource, res_opts))
2620 		goto fail_resource;
2621 
2622 	kref_get(&resource->kref);
2623 	list_add_tail_rcu(&connection->connections, &resource->connections);
2624 	drbd_debugfs_connection_add(connection);
2625 	return connection;
2626 
2627 fail_resource:
2628 	list_del(&resource->resources);
2629 	drbd_free_resource(resource);
2630 fail:
2631 	kfree(connection->current_epoch);
2632 	drbd_free_socket(&connection->meta);
2633 	drbd_free_socket(&connection->data);
2634 	kfree(connection);
2635 	return NULL;
2636 }
2637 
2638 void drbd_destroy_connection(struct kref *kref)
2639 {
2640 	struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref);
2641 	struct drbd_resource *resource = connection->resource;
2642 
2643 	if (atomic_read(&connection->current_epoch->epoch_size) !=  0)
2644 		drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size));
2645 	kfree(connection->current_epoch);
2646 
2647 	idr_destroy(&connection->peer_devices);
2648 
2649 	drbd_free_socket(&connection->meta);
2650 	drbd_free_socket(&connection->data);
2651 	kfree(connection->int_dig_in);
2652 	kfree(connection->int_dig_vv);
2653 	memset(connection, 0xfc, sizeof(*connection));
2654 	kfree(connection);
2655 	kref_put(&resource->kref, drbd_destroy_resource);
2656 }
2657 
2658 static int init_submitter(struct drbd_device *device)
2659 {
2660 	/* opencoded create_singlethread_workqueue(),
2661 	 * to be able to say "drbd%d", ..., minor */
2662 	device->submit.wq =
2663 		alloc_ordered_workqueue("drbd%u_submit", WQ_MEM_RECLAIM, device->minor);
2664 	if (!device->submit.wq)
2665 		return -ENOMEM;
2666 
2667 	INIT_WORK(&device->submit.worker, do_submit);
2668 	INIT_LIST_HEAD(&device->submit.writes);
2669 	return 0;
2670 }
2671 
2672 enum drbd_ret_code drbd_create_device(struct drbd_config_context *adm_ctx, unsigned int minor)
2673 {
2674 	struct drbd_resource *resource = adm_ctx->resource;
2675 	struct drbd_connection *connection;
2676 	struct drbd_device *device;
2677 	struct drbd_peer_device *peer_device, *tmp_peer_device;
2678 	struct gendisk *disk;
2679 	int id;
2680 	int vnr = adm_ctx->volume;
2681 	enum drbd_ret_code err = ERR_NOMEM;
2682 
2683 	device = minor_to_device(minor);
2684 	if (device)
2685 		return ERR_MINOR_OR_VOLUME_EXISTS;
2686 
2687 	/* GFP_KERNEL, we are outside of all write-out paths */
2688 	device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL);
2689 	if (!device)
2690 		return ERR_NOMEM;
2691 	kref_init(&device->kref);
2692 
2693 	kref_get(&resource->kref);
2694 	device->resource = resource;
2695 	device->minor = minor;
2696 	device->vnr = vnr;
2697 
2698 	drbd_init_set_defaults(device);
2699 
2700 	disk = blk_alloc_disk(NUMA_NO_NODE);
2701 	if (!disk)
2702 		goto out_no_disk;
2703 
2704 	device->vdisk = disk;
2705 	device->rq_queue = disk->queue;
2706 
2707 	set_disk_ro(disk, true);
2708 
2709 	disk->major = DRBD_MAJOR;
2710 	disk->first_minor = minor;
2711 	disk->minors = 1;
2712 	disk->fops = &drbd_ops;
2713 	disk->flags |= GENHD_FL_NO_PART;
2714 	sprintf(disk->disk_name, "drbd%d", minor);
2715 	disk->private_data = device;
2716 
2717 	blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, disk->queue);
2718 	blk_queue_write_cache(disk->queue, true, true);
2719 	/* Setting the max_hw_sectors to an odd value of 8kibyte here
2720 	   This triggers a max_bio_size message upon first attach or connect */
2721 	blk_queue_max_hw_sectors(disk->queue, DRBD_MAX_BIO_SIZE_SAFE >> 8);
2722 
2723 	device->md_io.page = alloc_page(GFP_KERNEL);
2724 	if (!device->md_io.page)
2725 		goto out_no_io_page;
2726 
2727 	if (drbd_bm_init(device))
2728 		goto out_no_bitmap;
2729 	device->read_requests = RB_ROOT;
2730 	device->write_requests = RB_ROOT;
2731 
2732 	id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL);
2733 	if (id < 0) {
2734 		if (id == -ENOSPC)
2735 			err = ERR_MINOR_OR_VOLUME_EXISTS;
2736 		goto out_no_minor_idr;
2737 	}
2738 	kref_get(&device->kref);
2739 
2740 	id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL);
2741 	if (id < 0) {
2742 		if (id == -ENOSPC)
2743 			err = ERR_MINOR_OR_VOLUME_EXISTS;
2744 		goto out_idr_remove_minor;
2745 	}
2746 	kref_get(&device->kref);
2747 
2748 	INIT_LIST_HEAD(&device->peer_devices);
2749 	INIT_LIST_HEAD(&device->pending_bitmap_io);
2750 	for_each_connection(connection, resource) {
2751 		peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL);
2752 		if (!peer_device)
2753 			goto out_idr_remove_from_resource;
2754 		peer_device->connection = connection;
2755 		peer_device->device = device;
2756 
2757 		list_add(&peer_device->peer_devices, &device->peer_devices);
2758 		kref_get(&device->kref);
2759 
2760 		id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL);
2761 		if (id < 0) {
2762 			if (id == -ENOSPC)
2763 				err = ERR_INVALID_REQUEST;
2764 			goto out_idr_remove_from_resource;
2765 		}
2766 		kref_get(&connection->kref);
2767 		INIT_WORK(&peer_device->send_acks_work, drbd_send_acks_wf);
2768 	}
2769 
2770 	if (init_submitter(device)) {
2771 		err = ERR_NOMEM;
2772 		goto out_idr_remove_from_resource;
2773 	}
2774 
2775 	err = add_disk(disk);
2776 	if (err)
2777 		goto out_idr_remove_from_resource;
2778 
2779 	/* inherit the connection state */
2780 	device->state.conn = first_connection(resource)->cstate;
2781 	if (device->state.conn == C_WF_REPORT_PARAMS) {
2782 		for_each_peer_device(peer_device, device)
2783 			drbd_connected(peer_device);
2784 	}
2785 	/* move to create_peer_device() */
2786 	for_each_peer_device(peer_device, device)
2787 		drbd_debugfs_peer_device_add(peer_device);
2788 	drbd_debugfs_device_add(device);
2789 	return NO_ERROR;
2790 
2791 out_idr_remove_from_resource:
2792 	for_each_connection(connection, resource) {
2793 		peer_device = idr_remove(&connection->peer_devices, vnr);
2794 		if (peer_device)
2795 			kref_put(&connection->kref, drbd_destroy_connection);
2796 	}
2797 	for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2798 		list_del(&peer_device->peer_devices);
2799 		kfree(peer_device);
2800 	}
2801 	idr_remove(&resource->devices, vnr);
2802 out_idr_remove_minor:
2803 	idr_remove(&drbd_devices, minor);
2804 	synchronize_rcu();
2805 out_no_minor_idr:
2806 	drbd_bm_cleanup(device);
2807 out_no_bitmap:
2808 	__free_page(device->md_io.page);
2809 out_no_io_page:
2810 	blk_cleanup_disk(disk);
2811 out_no_disk:
2812 	kref_put(&resource->kref, drbd_destroy_resource);
2813 	kfree(device);
2814 	return err;
2815 }
2816 
2817 void drbd_delete_device(struct drbd_device *device)
2818 {
2819 	struct drbd_resource *resource = device->resource;
2820 	struct drbd_connection *connection;
2821 	struct drbd_peer_device *peer_device;
2822 
2823 	/* move to free_peer_device() */
2824 	for_each_peer_device(peer_device, device)
2825 		drbd_debugfs_peer_device_cleanup(peer_device);
2826 	drbd_debugfs_device_cleanup(device);
2827 	for_each_connection(connection, resource) {
2828 		idr_remove(&connection->peer_devices, device->vnr);
2829 		kref_put(&device->kref, drbd_destroy_device);
2830 	}
2831 	idr_remove(&resource->devices, device->vnr);
2832 	kref_put(&device->kref, drbd_destroy_device);
2833 	idr_remove(&drbd_devices, device_to_minor(device));
2834 	kref_put(&device->kref, drbd_destroy_device);
2835 	del_gendisk(device->vdisk);
2836 	synchronize_rcu();
2837 	kref_put(&device->kref, drbd_destroy_device);
2838 }
2839 
2840 static int __init drbd_init(void)
2841 {
2842 	int err;
2843 
2844 	if (drbd_minor_count < DRBD_MINOR_COUNT_MIN || drbd_minor_count > DRBD_MINOR_COUNT_MAX) {
2845 		pr_err("invalid minor_count (%d)\n", drbd_minor_count);
2846 #ifdef MODULE
2847 		return -EINVAL;
2848 #else
2849 		drbd_minor_count = DRBD_MINOR_COUNT_DEF;
2850 #endif
2851 	}
2852 
2853 	err = register_blkdev(DRBD_MAJOR, "drbd");
2854 	if (err) {
2855 		pr_err("unable to register block device major %d\n",
2856 		       DRBD_MAJOR);
2857 		return err;
2858 	}
2859 
2860 	/*
2861 	 * allocate all necessary structs
2862 	 */
2863 	init_waitqueue_head(&drbd_pp_wait);
2864 
2865 	drbd_proc = NULL; /* play safe for drbd_cleanup */
2866 	idr_init(&drbd_devices);
2867 
2868 	mutex_init(&resources_mutex);
2869 	INIT_LIST_HEAD(&drbd_resources);
2870 
2871 	err = drbd_genl_register();
2872 	if (err) {
2873 		pr_err("unable to register generic netlink family\n");
2874 		goto fail;
2875 	}
2876 
2877 	err = drbd_create_mempools();
2878 	if (err)
2879 		goto fail;
2880 
2881 	err = -ENOMEM;
2882 	drbd_proc = proc_create_single("drbd", S_IFREG | 0444 , NULL, drbd_seq_show);
2883 	if (!drbd_proc)	{
2884 		pr_err("unable to register proc file\n");
2885 		goto fail;
2886 	}
2887 
2888 	retry.wq = create_singlethread_workqueue("drbd-reissue");
2889 	if (!retry.wq) {
2890 		pr_err("unable to create retry workqueue\n");
2891 		goto fail;
2892 	}
2893 	INIT_WORK(&retry.worker, do_retry);
2894 	spin_lock_init(&retry.lock);
2895 	INIT_LIST_HEAD(&retry.writes);
2896 
2897 	drbd_debugfs_init();
2898 
2899 	pr_info("initialized. "
2900 	       "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n",
2901 	       API_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX);
2902 	pr_info("%s\n", drbd_buildtag());
2903 	pr_info("registered as block device major %d\n", DRBD_MAJOR);
2904 	return 0; /* Success! */
2905 
2906 fail:
2907 	drbd_cleanup();
2908 	if (err == -ENOMEM)
2909 		pr_err("ran out of memory\n");
2910 	else
2911 		pr_err("initialization failure\n");
2912 	return err;
2913 }
2914 
2915 static void drbd_free_one_sock(struct drbd_socket *ds)
2916 {
2917 	struct socket *s;
2918 	mutex_lock(&ds->mutex);
2919 	s = ds->socket;
2920 	ds->socket = NULL;
2921 	mutex_unlock(&ds->mutex);
2922 	if (s) {
2923 		/* so debugfs does not need to mutex_lock() */
2924 		synchronize_rcu();
2925 		kernel_sock_shutdown(s, SHUT_RDWR);
2926 		sock_release(s);
2927 	}
2928 }
2929 
2930 void drbd_free_sock(struct drbd_connection *connection)
2931 {
2932 	if (connection->data.socket)
2933 		drbd_free_one_sock(&connection->data);
2934 	if (connection->meta.socket)
2935 		drbd_free_one_sock(&connection->meta);
2936 }
2937 
2938 /* meta data management */
2939 
2940 void conn_md_sync(struct drbd_connection *connection)
2941 {
2942 	struct drbd_peer_device *peer_device;
2943 	int vnr;
2944 
2945 	rcu_read_lock();
2946 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
2947 		struct drbd_device *device = peer_device->device;
2948 
2949 		kref_get(&device->kref);
2950 		rcu_read_unlock();
2951 		drbd_md_sync(device);
2952 		kref_put(&device->kref, drbd_destroy_device);
2953 		rcu_read_lock();
2954 	}
2955 	rcu_read_unlock();
2956 }
2957 
2958 /* aligned 4kByte */
2959 struct meta_data_on_disk {
2960 	u64 la_size_sect;      /* last agreed size. */
2961 	u64 uuid[UI_SIZE];   /* UUIDs. */
2962 	u64 device_uuid;
2963 	u64 reserved_u64_1;
2964 	u32 flags;             /* MDF */
2965 	u32 magic;
2966 	u32 md_size_sect;
2967 	u32 al_offset;         /* offset to this block */
2968 	u32 al_nr_extents;     /* important for restoring the AL (userspace) */
2969 	      /* `-- act_log->nr_elements <-- ldev->dc.al_extents */
2970 	u32 bm_offset;         /* offset to the bitmap, from here */
2971 	u32 bm_bytes_per_bit;  /* BM_BLOCK_SIZE */
2972 	u32 la_peer_max_bio_size;   /* last peer max_bio_size */
2973 
2974 	/* see al_tr_number_to_on_disk_sector() */
2975 	u32 al_stripes;
2976 	u32 al_stripe_size_4k;
2977 
2978 	u8 reserved_u8[4096 - (7*8 + 10*4)];
2979 } __packed;
2980 
2981 
2982 
2983 void drbd_md_write(struct drbd_device *device, void *b)
2984 {
2985 	struct meta_data_on_disk *buffer = b;
2986 	sector_t sector;
2987 	int i;
2988 
2989 	memset(buffer, 0, sizeof(*buffer));
2990 
2991 	buffer->la_size_sect = cpu_to_be64(get_capacity(device->vdisk));
2992 	for (i = UI_CURRENT; i < UI_SIZE; i++)
2993 		buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
2994 	buffer->flags = cpu_to_be32(device->ldev->md.flags);
2995 	buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN);
2996 
2997 	buffer->md_size_sect  = cpu_to_be32(device->ldev->md.md_size_sect);
2998 	buffer->al_offset     = cpu_to_be32(device->ldev->md.al_offset);
2999 	buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements);
3000 	buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE);
3001 	buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid);
3002 
3003 	buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset);
3004 	buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size);
3005 
3006 	buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes);
3007 	buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k);
3008 
3009 	D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset);
3010 	sector = device->ldev->md.md_offset;
3011 
3012 	if (drbd_md_sync_page_io(device, device->ldev, sector, REQ_OP_WRITE)) {
3013 		/* this was a try anyways ... */
3014 		drbd_err(device, "meta data update failed!\n");
3015 		drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR);
3016 	}
3017 }
3018 
3019 /**
3020  * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set
3021  * @device:	DRBD device.
3022  */
3023 void drbd_md_sync(struct drbd_device *device)
3024 {
3025 	struct meta_data_on_disk *buffer;
3026 
3027 	/* Don't accidentally change the DRBD meta data layout. */
3028 	BUILD_BUG_ON(UI_SIZE != 4);
3029 	BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096);
3030 
3031 	del_timer(&device->md_sync_timer);
3032 	/* timer may be rearmed by drbd_md_mark_dirty() now. */
3033 	if (!test_and_clear_bit(MD_DIRTY, &device->flags))
3034 		return;
3035 
3036 	/* We use here D_FAILED and not D_ATTACHING because we try to write
3037 	 * metadata even if we detach due to a disk failure! */
3038 	if (!get_ldev_if_state(device, D_FAILED))
3039 		return;
3040 
3041 	buffer = drbd_md_get_buffer(device, __func__);
3042 	if (!buffer)
3043 		goto out;
3044 
3045 	drbd_md_write(device, buffer);
3046 
3047 	/* Update device->ldev->md.la_size_sect,
3048 	 * since we updated it on metadata. */
3049 	device->ldev->md.la_size_sect = get_capacity(device->vdisk);
3050 
3051 	drbd_md_put_buffer(device);
3052 out:
3053 	put_ldev(device);
3054 }
3055 
3056 static int check_activity_log_stripe_size(struct drbd_device *device,
3057 		struct meta_data_on_disk *on_disk,
3058 		struct drbd_md *in_core)
3059 {
3060 	u32 al_stripes = be32_to_cpu(on_disk->al_stripes);
3061 	u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k);
3062 	u64 al_size_4k;
3063 
3064 	/* both not set: default to old fixed size activity log */
3065 	if (al_stripes == 0 && al_stripe_size_4k == 0) {
3066 		al_stripes = 1;
3067 		al_stripe_size_4k = MD_32kB_SECT/8;
3068 	}
3069 
3070 	/* some paranoia plausibility checks */
3071 
3072 	/* we need both values to be set */
3073 	if (al_stripes == 0 || al_stripe_size_4k == 0)
3074 		goto err;
3075 
3076 	al_size_4k = (u64)al_stripes * al_stripe_size_4k;
3077 
3078 	/* Upper limit of activity log area, to avoid potential overflow
3079 	 * problems in al_tr_number_to_on_disk_sector(). As right now, more
3080 	 * than 72 * 4k blocks total only increases the amount of history,
3081 	 * limiting this arbitrarily to 16 GB is not a real limitation ;-)  */
3082 	if (al_size_4k > (16 * 1024 * 1024/4))
3083 		goto err;
3084 
3085 	/* Lower limit: we need at least 8 transaction slots (32kB)
3086 	 * to not break existing setups */
3087 	if (al_size_4k < MD_32kB_SECT/8)
3088 		goto err;
3089 
3090 	in_core->al_stripe_size_4k = al_stripe_size_4k;
3091 	in_core->al_stripes = al_stripes;
3092 	in_core->al_size_4k = al_size_4k;
3093 
3094 	return 0;
3095 err:
3096 	drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n",
3097 			al_stripes, al_stripe_size_4k);
3098 	return -EINVAL;
3099 }
3100 
3101 static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev)
3102 {
3103 	sector_t capacity = drbd_get_capacity(bdev->md_bdev);
3104 	struct drbd_md *in_core = &bdev->md;
3105 	s32 on_disk_al_sect;
3106 	s32 on_disk_bm_sect;
3107 
3108 	/* The on-disk size of the activity log, calculated from offsets, and
3109 	 * the size of the activity log calculated from the stripe settings,
3110 	 * should match.
3111 	 * Though we could relax this a bit: it is ok, if the striped activity log
3112 	 * fits in the available on-disk activity log size.
3113 	 * Right now, that would break how resize is implemented.
3114 	 * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware
3115 	 * of possible unused padding space in the on disk layout. */
3116 	if (in_core->al_offset < 0) {
3117 		if (in_core->bm_offset > in_core->al_offset)
3118 			goto err;
3119 		on_disk_al_sect = -in_core->al_offset;
3120 		on_disk_bm_sect = in_core->al_offset - in_core->bm_offset;
3121 	} else {
3122 		if (in_core->al_offset != MD_4kB_SECT)
3123 			goto err;
3124 		if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT)
3125 			goto err;
3126 
3127 		on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT;
3128 		on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset;
3129 	}
3130 
3131 	/* old fixed size meta data is exactly that: fixed. */
3132 	if (in_core->meta_dev_idx >= 0) {
3133 		if (in_core->md_size_sect != MD_128MB_SECT
3134 		||  in_core->al_offset != MD_4kB_SECT
3135 		||  in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT
3136 		||  in_core->al_stripes != 1
3137 		||  in_core->al_stripe_size_4k != MD_32kB_SECT/8)
3138 			goto err;
3139 	}
3140 
3141 	if (capacity < in_core->md_size_sect)
3142 		goto err;
3143 	if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev))
3144 		goto err;
3145 
3146 	/* should be aligned, and at least 32k */
3147 	if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT))
3148 		goto err;
3149 
3150 	/* should fit (for now: exactly) into the available on-disk space;
3151 	 * overflow prevention is in check_activity_log_stripe_size() above. */
3152 	if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT)
3153 		goto err;
3154 
3155 	/* again, should be aligned */
3156 	if (in_core->bm_offset & 7)
3157 		goto err;
3158 
3159 	/* FIXME check for device grow with flex external meta data? */
3160 
3161 	/* can the available bitmap space cover the last agreed device size? */
3162 	if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512)
3163 		goto err;
3164 
3165 	return 0;
3166 
3167 err:
3168 	drbd_err(device, "meta data offsets don't make sense: idx=%d "
3169 			"al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, "
3170 			"md_size_sect=%u, la_size=%llu, md_capacity=%llu\n",
3171 			in_core->meta_dev_idx,
3172 			in_core->al_stripes, in_core->al_stripe_size_4k,
3173 			in_core->al_offset, in_core->bm_offset, in_core->md_size_sect,
3174 			(unsigned long long)in_core->la_size_sect,
3175 			(unsigned long long)capacity);
3176 
3177 	return -EINVAL;
3178 }
3179 
3180 
3181 /**
3182  * drbd_md_read() - Reads in the meta data super block
3183  * @device:	DRBD device.
3184  * @bdev:	Device from which the meta data should be read in.
3185  *
3186  * Return NO_ERROR on success, and an enum drbd_ret_code in case
3187  * something goes wrong.
3188  *
3189  * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS,
3190  * even before @bdev is assigned to @device->ldev.
3191  */
3192 int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev)
3193 {
3194 	struct meta_data_on_disk *buffer;
3195 	u32 magic, flags;
3196 	int i, rv = NO_ERROR;
3197 
3198 	if (device->state.disk != D_DISKLESS)
3199 		return ERR_DISK_CONFIGURED;
3200 
3201 	buffer = drbd_md_get_buffer(device, __func__);
3202 	if (!buffer)
3203 		return ERR_NOMEM;
3204 
3205 	/* First, figure out where our meta data superblock is located,
3206 	 * and read it. */
3207 	bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx;
3208 	bdev->md.md_offset = drbd_md_ss(bdev);
3209 	/* Even for (flexible or indexed) external meta data,
3210 	 * initially restrict us to the 4k superblock for now.
3211 	 * Affects the paranoia out-of-range access check in drbd_md_sync_page_io(). */
3212 	bdev->md.md_size_sect = 8;
3213 
3214 	if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset,
3215 				 REQ_OP_READ)) {
3216 		/* NOTE: can't do normal error processing here as this is
3217 		   called BEFORE disk is attached */
3218 		drbd_err(device, "Error while reading metadata.\n");
3219 		rv = ERR_IO_MD_DISK;
3220 		goto err;
3221 	}
3222 
3223 	magic = be32_to_cpu(buffer->magic);
3224 	flags = be32_to_cpu(buffer->flags);
3225 	if (magic == DRBD_MD_MAGIC_84_UNCLEAN ||
3226 	    (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) {
3227 			/* btw: that's Activity Log clean, not "all" clean. */
3228 		drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n");
3229 		rv = ERR_MD_UNCLEAN;
3230 		goto err;
3231 	}
3232 
3233 	rv = ERR_MD_INVALID;
3234 	if (magic != DRBD_MD_MAGIC_08) {
3235 		if (magic == DRBD_MD_MAGIC_07)
3236 			drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n");
3237 		else
3238 			drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n");
3239 		goto err;
3240 	}
3241 
3242 	if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) {
3243 		drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n",
3244 		    be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE);
3245 		goto err;
3246 	}
3247 
3248 
3249 	/* convert to in_core endian */
3250 	bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect);
3251 	for (i = UI_CURRENT; i < UI_SIZE; i++)
3252 		bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]);
3253 	bdev->md.flags = be32_to_cpu(buffer->flags);
3254 	bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid);
3255 
3256 	bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect);
3257 	bdev->md.al_offset = be32_to_cpu(buffer->al_offset);
3258 	bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset);
3259 
3260 	if (check_activity_log_stripe_size(device, buffer, &bdev->md))
3261 		goto err;
3262 	if (check_offsets_and_sizes(device, bdev))
3263 		goto err;
3264 
3265 	if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) {
3266 		drbd_err(device, "unexpected bm_offset: %d (expected %d)\n",
3267 		    be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset);
3268 		goto err;
3269 	}
3270 	if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) {
3271 		drbd_err(device, "unexpected md_size: %u (expected %u)\n",
3272 		    be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect);
3273 		goto err;
3274 	}
3275 
3276 	rv = NO_ERROR;
3277 
3278 	spin_lock_irq(&device->resource->req_lock);
3279 	if (device->state.conn < C_CONNECTED) {
3280 		unsigned int peer;
3281 		peer = be32_to_cpu(buffer->la_peer_max_bio_size);
3282 		peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE);
3283 		device->peer_max_bio_size = peer;
3284 	}
3285 	spin_unlock_irq(&device->resource->req_lock);
3286 
3287  err:
3288 	drbd_md_put_buffer(device);
3289 
3290 	return rv;
3291 }
3292 
3293 /**
3294  * drbd_md_mark_dirty() - Mark meta data super block as dirty
3295  * @device:	DRBD device.
3296  *
3297  * Call this function if you change anything that should be written to
3298  * the meta-data super block. This function sets MD_DIRTY, and starts a
3299  * timer that ensures that within five seconds you have to call drbd_md_sync().
3300  */
3301 void drbd_md_mark_dirty(struct drbd_device *device)
3302 {
3303 	if (!test_and_set_bit(MD_DIRTY, &device->flags))
3304 		mod_timer(&device->md_sync_timer, jiffies + 5*HZ);
3305 }
3306 
3307 void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local)
3308 {
3309 	int i;
3310 
3311 	for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++)
3312 		device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i];
3313 }
3314 
3315 void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3316 {
3317 	if (idx == UI_CURRENT) {
3318 		if (device->state.role == R_PRIMARY)
3319 			val |= 1;
3320 		else
3321 			val &= ~((u64)1);
3322 
3323 		drbd_set_ed_uuid(device, val);
3324 	}
3325 
3326 	device->ldev->md.uuid[idx] = val;
3327 	drbd_md_mark_dirty(device);
3328 }
3329 
3330 void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3331 {
3332 	unsigned long flags;
3333 	spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3334 	__drbd_uuid_set(device, idx, val);
3335 	spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3336 }
3337 
3338 void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3339 {
3340 	unsigned long flags;
3341 	spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3342 	if (device->ldev->md.uuid[idx]) {
3343 		drbd_uuid_move_history(device);
3344 		device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx];
3345 	}
3346 	__drbd_uuid_set(device, idx, val);
3347 	spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3348 }
3349 
3350 /**
3351  * drbd_uuid_new_current() - Creates a new current UUID
3352  * @device:	DRBD device.
3353  *
3354  * Creates a new current UUID, and rotates the old current UUID into
3355  * the bitmap slot. Causes an incremental resync upon next connect.
3356  */
3357 void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local)
3358 {
3359 	u64 val;
3360 	unsigned long long bm_uuid;
3361 
3362 	get_random_bytes(&val, sizeof(u64));
3363 
3364 	spin_lock_irq(&device->ldev->md.uuid_lock);
3365 	bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3366 
3367 	if (bm_uuid)
3368 		drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3369 
3370 	device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT];
3371 	__drbd_uuid_set(device, UI_CURRENT, val);
3372 	spin_unlock_irq(&device->ldev->md.uuid_lock);
3373 
3374 	drbd_print_uuids(device, "new current UUID");
3375 	/* get it to stable storage _now_ */
3376 	drbd_md_sync(device);
3377 }
3378 
3379 void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local)
3380 {
3381 	unsigned long flags;
3382 	if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0)
3383 		return;
3384 
3385 	spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3386 	if (val == 0) {
3387 		drbd_uuid_move_history(device);
3388 		device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP];
3389 		device->ldev->md.uuid[UI_BITMAP] = 0;
3390 	} else {
3391 		unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3392 		if (bm_uuid)
3393 			drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3394 
3395 		device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1);
3396 	}
3397 	spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3398 
3399 	drbd_md_mark_dirty(device);
3400 }
3401 
3402 /**
3403  * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3404  * @device:	DRBD device.
3405  *
3406  * Sets all bits in the bitmap and writes the whole bitmap to stable storage.
3407  */
3408 int drbd_bmio_set_n_write(struct drbd_device *device) __must_hold(local)
3409 {
3410 	int rv = -EIO;
3411 
3412 	drbd_md_set_flag(device, MDF_FULL_SYNC);
3413 	drbd_md_sync(device);
3414 	drbd_bm_set_all(device);
3415 
3416 	rv = drbd_bm_write(device);
3417 
3418 	if (!rv) {
3419 		drbd_md_clear_flag(device, MDF_FULL_SYNC);
3420 		drbd_md_sync(device);
3421 	}
3422 
3423 	return rv;
3424 }
3425 
3426 /**
3427  * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3428  * @device:	DRBD device.
3429  *
3430  * Clears all bits in the bitmap and writes the whole bitmap to stable storage.
3431  */
3432 int drbd_bmio_clear_n_write(struct drbd_device *device) __must_hold(local)
3433 {
3434 	drbd_resume_al(device);
3435 	drbd_bm_clear_all(device);
3436 	return drbd_bm_write(device);
3437 }
3438 
3439 static int w_bitmap_io(struct drbd_work *w, int unused)
3440 {
3441 	struct drbd_device *device =
3442 		container_of(w, struct drbd_device, bm_io_work.w);
3443 	struct bm_io_work *work = &device->bm_io_work;
3444 	int rv = -EIO;
3445 
3446 	if (work->flags != BM_LOCKED_CHANGE_ALLOWED) {
3447 		int cnt = atomic_read(&device->ap_bio_cnt);
3448 		if (cnt)
3449 			drbd_err(device, "FIXME: ap_bio_cnt %d, expected 0; queued for '%s'\n",
3450 					cnt, work->why);
3451 	}
3452 
3453 	if (get_ldev(device)) {
3454 		drbd_bm_lock(device, work->why, work->flags);
3455 		rv = work->io_fn(device);
3456 		drbd_bm_unlock(device);
3457 		put_ldev(device);
3458 	}
3459 
3460 	clear_bit_unlock(BITMAP_IO, &device->flags);
3461 	wake_up(&device->misc_wait);
3462 
3463 	if (work->done)
3464 		work->done(device, rv);
3465 
3466 	clear_bit(BITMAP_IO_QUEUED, &device->flags);
3467 	work->why = NULL;
3468 	work->flags = 0;
3469 
3470 	return 0;
3471 }
3472 
3473 /**
3474  * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap
3475  * @device:	DRBD device.
3476  * @io_fn:	IO callback to be called when bitmap IO is possible
3477  * @done:	callback to be called after the bitmap IO was performed
3478  * @why:	Descriptive text of the reason for doing the IO
3479  * @flags:	Bitmap flags
3480  *
3481  * While IO on the bitmap happens we freeze application IO thus we ensure
3482  * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be
3483  * called from worker context. It MUST NOT be used while a previous such
3484  * work is still pending!
3485  *
3486  * Its worker function encloses the call of io_fn() by get_ldev() and
3487  * put_ldev().
3488  */
3489 void drbd_queue_bitmap_io(struct drbd_device *device,
3490 			  int (*io_fn)(struct drbd_device *),
3491 			  void (*done)(struct drbd_device *, int),
3492 			  char *why, enum bm_flag flags)
3493 {
3494 	D_ASSERT(device, current == first_peer_device(device)->connection->worker.task);
3495 
3496 	D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags));
3497 	D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags));
3498 	D_ASSERT(device, list_empty(&device->bm_io_work.w.list));
3499 	if (device->bm_io_work.why)
3500 		drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n",
3501 			why, device->bm_io_work.why);
3502 
3503 	device->bm_io_work.io_fn = io_fn;
3504 	device->bm_io_work.done = done;
3505 	device->bm_io_work.why = why;
3506 	device->bm_io_work.flags = flags;
3507 
3508 	spin_lock_irq(&device->resource->req_lock);
3509 	set_bit(BITMAP_IO, &device->flags);
3510 	/* don't wait for pending application IO if the caller indicates that
3511 	 * application IO does not conflict anyways. */
3512 	if (flags == BM_LOCKED_CHANGE_ALLOWED || atomic_read(&device->ap_bio_cnt) == 0) {
3513 		if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags))
3514 			drbd_queue_work(&first_peer_device(device)->connection->sender_work,
3515 					&device->bm_io_work.w);
3516 	}
3517 	spin_unlock_irq(&device->resource->req_lock);
3518 }
3519 
3520 /**
3521  * drbd_bitmap_io() -  Does an IO operation on the whole bitmap
3522  * @device:	DRBD device.
3523  * @io_fn:	IO callback to be called when bitmap IO is possible
3524  * @why:	Descriptive text of the reason for doing the IO
3525  * @flags:	Bitmap flags
3526  *
3527  * freezes application IO while that the actual IO operations runs. This
3528  * functions MAY NOT be called from worker context.
3529  */
3530 int drbd_bitmap_io(struct drbd_device *device, int (*io_fn)(struct drbd_device *),
3531 		char *why, enum bm_flag flags)
3532 {
3533 	/* Only suspend io, if some operation is supposed to be locked out */
3534 	const bool do_suspend_io = flags & (BM_DONT_CLEAR|BM_DONT_SET|BM_DONT_TEST);
3535 	int rv;
3536 
3537 	D_ASSERT(device, current != first_peer_device(device)->connection->worker.task);
3538 
3539 	if (do_suspend_io)
3540 		drbd_suspend_io(device);
3541 
3542 	drbd_bm_lock(device, why, flags);
3543 	rv = io_fn(device);
3544 	drbd_bm_unlock(device);
3545 
3546 	if (do_suspend_io)
3547 		drbd_resume_io(device);
3548 
3549 	return rv;
3550 }
3551 
3552 void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local)
3553 {
3554 	if ((device->ldev->md.flags & flag) != flag) {
3555 		drbd_md_mark_dirty(device);
3556 		device->ldev->md.flags |= flag;
3557 	}
3558 }
3559 
3560 void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local)
3561 {
3562 	if ((device->ldev->md.flags & flag) != 0) {
3563 		drbd_md_mark_dirty(device);
3564 		device->ldev->md.flags &= ~flag;
3565 	}
3566 }
3567 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag)
3568 {
3569 	return (bdev->md.flags & flag) != 0;
3570 }
3571 
3572 static void md_sync_timer_fn(struct timer_list *t)
3573 {
3574 	struct drbd_device *device = from_timer(device, t, md_sync_timer);
3575 	drbd_device_post_work(device, MD_SYNC);
3576 }
3577 
3578 const char *cmdname(enum drbd_packet cmd)
3579 {
3580 	/* THINK may need to become several global tables
3581 	 * when we want to support more than
3582 	 * one PRO_VERSION */
3583 	static const char *cmdnames[] = {
3584 
3585 		[P_DATA]	        = "Data",
3586 		[P_DATA_REPLY]	        = "DataReply",
3587 		[P_RS_DATA_REPLY]	= "RSDataReply",
3588 		[P_BARRIER]	        = "Barrier",
3589 		[P_BITMAP]	        = "ReportBitMap",
3590 		[P_BECOME_SYNC_TARGET]  = "BecomeSyncTarget",
3591 		[P_BECOME_SYNC_SOURCE]  = "BecomeSyncSource",
3592 		[P_UNPLUG_REMOTE]	= "UnplugRemote",
3593 		[P_DATA_REQUEST]	= "DataRequest",
3594 		[P_RS_DATA_REQUEST]     = "RSDataRequest",
3595 		[P_SYNC_PARAM]	        = "SyncParam",
3596 		[P_PROTOCOL]            = "ReportProtocol",
3597 		[P_UUIDS]	        = "ReportUUIDs",
3598 		[P_SIZES]	        = "ReportSizes",
3599 		[P_STATE]	        = "ReportState",
3600 		[P_SYNC_UUID]           = "ReportSyncUUID",
3601 		[P_AUTH_CHALLENGE]      = "AuthChallenge",
3602 		[P_AUTH_RESPONSE]	= "AuthResponse",
3603 		[P_STATE_CHG_REQ]       = "StateChgRequest",
3604 		[P_PING]		= "Ping",
3605 		[P_PING_ACK]	        = "PingAck",
3606 		[P_RECV_ACK]	        = "RecvAck",
3607 		[P_WRITE_ACK]	        = "WriteAck",
3608 		[P_RS_WRITE_ACK]	= "RSWriteAck",
3609 		[P_SUPERSEDED]          = "Superseded",
3610 		[P_NEG_ACK]	        = "NegAck",
3611 		[P_NEG_DREPLY]	        = "NegDReply",
3612 		[P_NEG_RS_DREPLY]	= "NegRSDReply",
3613 		[P_BARRIER_ACK]	        = "BarrierAck",
3614 		[P_STATE_CHG_REPLY]     = "StateChgReply",
3615 		[P_OV_REQUEST]          = "OVRequest",
3616 		[P_OV_REPLY]            = "OVReply",
3617 		[P_OV_RESULT]           = "OVResult",
3618 		[P_CSUM_RS_REQUEST]     = "CsumRSRequest",
3619 		[P_RS_IS_IN_SYNC]	= "CsumRSIsInSync",
3620 		[P_SYNC_PARAM89]	= "SyncParam89",
3621 		[P_COMPRESSED_BITMAP]   = "CBitmap",
3622 		[P_DELAY_PROBE]         = "DelayProbe",
3623 		[P_OUT_OF_SYNC]		= "OutOfSync",
3624 		[P_RS_CANCEL]		= "RSCancel",
3625 		[P_CONN_ST_CHG_REQ]	= "conn_st_chg_req",
3626 		[P_CONN_ST_CHG_REPLY]	= "conn_st_chg_reply",
3627 		[P_PROTOCOL_UPDATE]	= "protocol_update",
3628 		[P_TRIM]	        = "Trim",
3629 		[P_RS_THIN_REQ]         = "rs_thin_req",
3630 		[P_RS_DEALLOCATED]      = "rs_deallocated",
3631 		[P_WSAME]	        = "WriteSame",
3632 		[P_ZEROES]		= "Zeroes",
3633 
3634 		/* enum drbd_packet, but not commands - obsoleted flags:
3635 		 *	P_MAY_IGNORE
3636 		 *	P_MAX_OPT_CMD
3637 		 */
3638 	};
3639 
3640 	/* too big for the array: 0xfffX */
3641 	if (cmd == P_INITIAL_META)
3642 		return "InitialMeta";
3643 	if (cmd == P_INITIAL_DATA)
3644 		return "InitialData";
3645 	if (cmd == P_CONNECTION_FEATURES)
3646 		return "ConnectionFeatures";
3647 	if (cmd >= ARRAY_SIZE(cmdnames))
3648 		return "Unknown";
3649 	return cmdnames[cmd];
3650 }
3651 
3652 /**
3653  * drbd_wait_misc  -  wait for a request to make progress
3654  * @device:	device associated with the request
3655  * @i:		the struct drbd_interval embedded in struct drbd_request or
3656  *		struct drbd_peer_request
3657  */
3658 int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i)
3659 {
3660 	struct net_conf *nc;
3661 	DEFINE_WAIT(wait);
3662 	long timeout;
3663 
3664 	rcu_read_lock();
3665 	nc = rcu_dereference(first_peer_device(device)->connection->net_conf);
3666 	if (!nc) {
3667 		rcu_read_unlock();
3668 		return -ETIMEDOUT;
3669 	}
3670 	timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT;
3671 	rcu_read_unlock();
3672 
3673 	/* Indicate to wake up device->misc_wait on progress.  */
3674 	i->waiting = true;
3675 	prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE);
3676 	spin_unlock_irq(&device->resource->req_lock);
3677 	timeout = schedule_timeout(timeout);
3678 	finish_wait(&device->misc_wait, &wait);
3679 	spin_lock_irq(&device->resource->req_lock);
3680 	if (!timeout || device->state.conn < C_CONNECTED)
3681 		return -ETIMEDOUT;
3682 	if (signal_pending(current))
3683 		return -ERESTARTSYS;
3684 	return 0;
3685 }
3686 
3687 void lock_all_resources(void)
3688 {
3689 	struct drbd_resource *resource;
3690 	int __maybe_unused i = 0;
3691 
3692 	mutex_lock(&resources_mutex);
3693 	local_irq_disable();
3694 	for_each_resource(resource, &drbd_resources)
3695 		spin_lock_nested(&resource->req_lock, i++);
3696 }
3697 
3698 void unlock_all_resources(void)
3699 {
3700 	struct drbd_resource *resource;
3701 
3702 	for_each_resource(resource, &drbd_resources)
3703 		spin_unlock(&resource->req_lock);
3704 	local_irq_enable();
3705 	mutex_unlock(&resources_mutex);
3706 }
3707 
3708 #ifdef CONFIG_DRBD_FAULT_INJECTION
3709 /* Fault insertion support including random number generator shamelessly
3710  * stolen from kernel/rcutorture.c */
3711 struct fault_random_state {
3712 	unsigned long state;
3713 	unsigned long count;
3714 };
3715 
3716 #define FAULT_RANDOM_MULT 39916801  /* prime */
3717 #define FAULT_RANDOM_ADD	479001701 /* prime */
3718 #define FAULT_RANDOM_REFRESH 10000
3719 
3720 /*
3721  * Crude but fast random-number generator.  Uses a linear congruential
3722  * generator, with occasional help from get_random_bytes().
3723  */
3724 static unsigned long
3725 _drbd_fault_random(struct fault_random_state *rsp)
3726 {
3727 	long refresh;
3728 
3729 	if (!rsp->count--) {
3730 		get_random_bytes(&refresh, sizeof(refresh));
3731 		rsp->state += refresh;
3732 		rsp->count = FAULT_RANDOM_REFRESH;
3733 	}
3734 	rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD;
3735 	return swahw32(rsp->state);
3736 }
3737 
3738 static char *
3739 _drbd_fault_str(unsigned int type) {
3740 	static char *_faults[] = {
3741 		[DRBD_FAULT_MD_WR] = "Meta-data write",
3742 		[DRBD_FAULT_MD_RD] = "Meta-data read",
3743 		[DRBD_FAULT_RS_WR] = "Resync write",
3744 		[DRBD_FAULT_RS_RD] = "Resync read",
3745 		[DRBD_FAULT_DT_WR] = "Data write",
3746 		[DRBD_FAULT_DT_RD] = "Data read",
3747 		[DRBD_FAULT_DT_RA] = "Data read ahead",
3748 		[DRBD_FAULT_BM_ALLOC] = "BM allocation",
3749 		[DRBD_FAULT_AL_EE] = "EE allocation",
3750 		[DRBD_FAULT_RECEIVE] = "receive data corruption",
3751 	};
3752 
3753 	return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**";
3754 }
3755 
3756 unsigned int
3757 _drbd_insert_fault(struct drbd_device *device, unsigned int type)
3758 {
3759 	static struct fault_random_state rrs = {0, 0};
3760 
3761 	unsigned int ret = (
3762 		(drbd_fault_devs == 0 ||
3763 			((1 << device_to_minor(device)) & drbd_fault_devs) != 0) &&
3764 		(((_drbd_fault_random(&rrs) % 100) + 1) <= drbd_fault_rate));
3765 
3766 	if (ret) {
3767 		drbd_fault_count++;
3768 
3769 		if (__ratelimit(&drbd_ratelimit_state))
3770 			drbd_warn(device, "***Simulating %s failure\n",
3771 				_drbd_fault_str(type));
3772 	}
3773 
3774 	return ret;
3775 }
3776 #endif
3777 
3778 const char *drbd_buildtag(void)
3779 {
3780 	/* DRBD built from external sources has here a reference to the
3781 	   git hash of the source code. */
3782 
3783 	static char buildtag[38] = "\0uilt-in";
3784 
3785 	if (buildtag[0] == 0) {
3786 #ifdef MODULE
3787 		sprintf(buildtag, "srcversion: %-24s", THIS_MODULE->srcversion);
3788 #else
3789 		buildtag[0] = 'b';
3790 #endif
3791 	}
3792 
3793 	return buildtag;
3794 }
3795 
3796 module_init(drbd_init)
3797 module_exit(drbd_cleanup)
3798 
3799 EXPORT_SYMBOL(drbd_conn_str);
3800 EXPORT_SYMBOL(drbd_role_str);
3801 EXPORT_SYMBOL(drbd_disk_str);
3802 EXPORT_SYMBOL(drbd_set_st_err_str);
3803