1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 drbd.c 4 5 This file is part of DRBD by Philipp Reisner and Lars Ellenberg. 6 7 Copyright (C) 2001-2008, LINBIT Information Technologies GmbH. 8 Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>. 9 Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>. 10 11 Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev 12 from Logicworks, Inc. for making SDP replication support possible. 13 14 15 */ 16 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include <linux/module.h> 20 #include <linux/jiffies.h> 21 #include <linux/drbd.h> 22 #include <linux/uaccess.h> 23 #include <asm/types.h> 24 #include <net/sock.h> 25 #include <linux/ctype.h> 26 #include <linux/mutex.h> 27 #include <linux/fs.h> 28 #include <linux/file.h> 29 #include <linux/proc_fs.h> 30 #include <linux/init.h> 31 #include <linux/mm.h> 32 #include <linux/memcontrol.h> 33 #include <linux/mm_inline.h> 34 #include <linux/slab.h> 35 #include <linux/random.h> 36 #include <linux/reboot.h> 37 #include <linux/notifier.h> 38 #include <linux/kthread.h> 39 #include <linux/workqueue.h> 40 #define __KERNEL_SYSCALLS__ 41 #include <linux/unistd.h> 42 #include <linux/vmalloc.h> 43 #include <linux/sched/signal.h> 44 45 #include <linux/drbd_limits.h> 46 #include "drbd_int.h" 47 #include "drbd_protocol.h" 48 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */ 49 #include "drbd_vli.h" 50 #include "drbd_debugfs.h" 51 52 static DEFINE_MUTEX(drbd_main_mutex); 53 static int drbd_open(struct block_device *bdev, fmode_t mode); 54 static void drbd_release(struct gendisk *gd, fmode_t mode); 55 static void md_sync_timer_fn(struct timer_list *t); 56 static int w_bitmap_io(struct drbd_work *w, int unused); 57 58 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, " 59 "Lars Ellenberg <lars@linbit.com>"); 60 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION); 61 MODULE_VERSION(REL_VERSION); 62 MODULE_LICENSE("GPL"); 63 MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices (" 64 __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")"); 65 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR); 66 67 #include <linux/moduleparam.h> 68 /* thanks to these macros, if compiled into the kernel (not-module), 69 * these become boot parameters (e.g., drbd.minor_count) */ 70 71 #ifdef CONFIG_DRBD_FAULT_INJECTION 72 int drbd_enable_faults; 73 int drbd_fault_rate; 74 static int drbd_fault_count; 75 static int drbd_fault_devs; 76 /* bitmap of enabled faults */ 77 module_param_named(enable_faults, drbd_enable_faults, int, 0664); 78 /* fault rate % value - applies to all enabled faults */ 79 module_param_named(fault_rate, drbd_fault_rate, int, 0664); 80 /* count of faults inserted */ 81 module_param_named(fault_count, drbd_fault_count, int, 0664); 82 /* bitmap of devices to insert faults on */ 83 module_param_named(fault_devs, drbd_fault_devs, int, 0644); 84 #endif 85 86 /* module parameters we can keep static */ 87 static bool drbd_allow_oos; /* allow_open_on_secondary */ 88 static bool drbd_disable_sendpage; 89 MODULE_PARM_DESC(allow_oos, "DONT USE!"); 90 module_param_named(allow_oos, drbd_allow_oos, bool, 0); 91 module_param_named(disable_sendpage, drbd_disable_sendpage, bool, 0644); 92 93 /* module parameters we share */ 94 int drbd_proc_details; /* Detail level in proc drbd*/ 95 module_param_named(proc_details, drbd_proc_details, int, 0644); 96 /* module parameters shared with defaults */ 97 unsigned int drbd_minor_count = DRBD_MINOR_COUNT_DEF; 98 /* Module parameter for setting the user mode helper program 99 * to run. Default is /sbin/drbdadm */ 100 char drbd_usermode_helper[80] = "/sbin/drbdadm"; 101 module_param_named(minor_count, drbd_minor_count, uint, 0444); 102 module_param_string(usermode_helper, drbd_usermode_helper, sizeof(drbd_usermode_helper), 0644); 103 104 /* in 2.6.x, our device mapping and config info contains our virtual gendisks 105 * as member "struct gendisk *vdisk;" 106 */ 107 struct idr drbd_devices; 108 struct list_head drbd_resources; 109 struct mutex resources_mutex; 110 111 struct kmem_cache *drbd_request_cache; 112 struct kmem_cache *drbd_ee_cache; /* peer requests */ 113 struct kmem_cache *drbd_bm_ext_cache; /* bitmap extents */ 114 struct kmem_cache *drbd_al_ext_cache; /* activity log extents */ 115 mempool_t drbd_request_mempool; 116 mempool_t drbd_ee_mempool; 117 mempool_t drbd_md_io_page_pool; 118 struct bio_set drbd_md_io_bio_set; 119 struct bio_set drbd_io_bio_set; 120 121 /* I do not use a standard mempool, because: 122 1) I want to hand out the pre-allocated objects first. 123 2) I want to be able to interrupt sleeping allocation with a signal. 124 Note: This is a single linked list, the next pointer is the private 125 member of struct page. 126 */ 127 struct page *drbd_pp_pool; 128 DEFINE_SPINLOCK(drbd_pp_lock); 129 int drbd_pp_vacant; 130 wait_queue_head_t drbd_pp_wait; 131 132 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5); 133 134 static const struct block_device_operations drbd_ops = { 135 .owner = THIS_MODULE, 136 .submit_bio = drbd_submit_bio, 137 .open = drbd_open, 138 .release = drbd_release, 139 }; 140 141 #ifdef __CHECKER__ 142 /* When checking with sparse, and this is an inline function, sparse will 143 give tons of false positives. When this is a real functions sparse works. 144 */ 145 int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins) 146 { 147 int io_allowed; 148 149 atomic_inc(&device->local_cnt); 150 io_allowed = (device->state.disk >= mins); 151 if (!io_allowed) { 152 if (atomic_dec_and_test(&device->local_cnt)) 153 wake_up(&device->misc_wait); 154 } 155 return io_allowed; 156 } 157 158 #endif 159 160 /** 161 * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch 162 * @connection: DRBD connection. 163 * @barrier_nr: Expected identifier of the DRBD write barrier packet. 164 * @set_size: Expected number of requests before that barrier. 165 * 166 * In case the passed barrier_nr or set_size does not match the oldest 167 * epoch of not yet barrier-acked requests, this function will cause a 168 * termination of the connection. 169 */ 170 void tl_release(struct drbd_connection *connection, unsigned int barrier_nr, 171 unsigned int set_size) 172 { 173 struct drbd_request *r; 174 struct drbd_request *req = NULL; 175 int expect_epoch = 0; 176 int expect_size = 0; 177 178 spin_lock_irq(&connection->resource->req_lock); 179 180 /* find oldest not yet barrier-acked write request, 181 * count writes in its epoch. */ 182 list_for_each_entry(r, &connection->transfer_log, tl_requests) { 183 const unsigned s = r->rq_state; 184 if (!req) { 185 if (!(s & RQ_WRITE)) 186 continue; 187 if (!(s & RQ_NET_MASK)) 188 continue; 189 if (s & RQ_NET_DONE) 190 continue; 191 req = r; 192 expect_epoch = req->epoch; 193 expect_size ++; 194 } else { 195 if (r->epoch != expect_epoch) 196 break; 197 if (!(s & RQ_WRITE)) 198 continue; 199 /* if (s & RQ_DONE): not expected */ 200 /* if (!(s & RQ_NET_MASK)): not expected */ 201 expect_size++; 202 } 203 } 204 205 /* first some paranoia code */ 206 if (req == NULL) { 207 drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n", 208 barrier_nr); 209 goto bail; 210 } 211 if (expect_epoch != barrier_nr) { 212 drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n", 213 barrier_nr, expect_epoch); 214 goto bail; 215 } 216 217 if (expect_size != set_size) { 218 drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n", 219 barrier_nr, set_size, expect_size); 220 goto bail; 221 } 222 223 /* Clean up list of requests processed during current epoch. */ 224 /* this extra list walk restart is paranoia, 225 * to catch requests being barrier-acked "unexpectedly". 226 * It usually should find the same req again, or some READ preceding it. */ 227 list_for_each_entry(req, &connection->transfer_log, tl_requests) 228 if (req->epoch == expect_epoch) 229 break; 230 list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) { 231 if (req->epoch != expect_epoch) 232 break; 233 _req_mod(req, BARRIER_ACKED); 234 } 235 spin_unlock_irq(&connection->resource->req_lock); 236 237 return; 238 239 bail: 240 spin_unlock_irq(&connection->resource->req_lock); 241 conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD); 242 } 243 244 245 /** 246 * _tl_restart() - Walks the transfer log, and applies an action to all requests 247 * @connection: DRBD connection to operate on. 248 * @what: The action/event to perform with all request objects 249 * 250 * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO, 251 * RESTART_FROZEN_DISK_IO. 252 */ 253 /* must hold resource->req_lock */ 254 void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what) 255 { 256 struct drbd_request *req, *r; 257 258 list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) 259 _req_mod(req, what); 260 } 261 262 void tl_restart(struct drbd_connection *connection, enum drbd_req_event what) 263 { 264 spin_lock_irq(&connection->resource->req_lock); 265 _tl_restart(connection, what); 266 spin_unlock_irq(&connection->resource->req_lock); 267 } 268 269 /** 270 * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL 271 * @connection: DRBD connection. 272 * 273 * This is called after the connection to the peer was lost. The storage covered 274 * by the requests on the transfer gets marked as our of sync. Called from the 275 * receiver thread and the worker thread. 276 */ 277 void tl_clear(struct drbd_connection *connection) 278 { 279 tl_restart(connection, CONNECTION_LOST_WHILE_PENDING); 280 } 281 282 /** 283 * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL 284 * @device: DRBD device. 285 */ 286 void tl_abort_disk_io(struct drbd_device *device) 287 { 288 struct drbd_connection *connection = first_peer_device(device)->connection; 289 struct drbd_request *req, *r; 290 291 spin_lock_irq(&connection->resource->req_lock); 292 list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) { 293 if (!(req->rq_state & RQ_LOCAL_PENDING)) 294 continue; 295 if (req->device != device) 296 continue; 297 _req_mod(req, ABORT_DISK_IO); 298 } 299 spin_unlock_irq(&connection->resource->req_lock); 300 } 301 302 static int drbd_thread_setup(void *arg) 303 { 304 struct drbd_thread *thi = (struct drbd_thread *) arg; 305 struct drbd_resource *resource = thi->resource; 306 unsigned long flags; 307 int retval; 308 309 snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s", 310 thi->name[0], 311 resource->name); 312 313 allow_kernel_signal(DRBD_SIGKILL); 314 allow_kernel_signal(SIGXCPU); 315 restart: 316 retval = thi->function(thi); 317 318 spin_lock_irqsave(&thi->t_lock, flags); 319 320 /* if the receiver has been "EXITING", the last thing it did 321 * was set the conn state to "StandAlone", 322 * if now a re-connect request comes in, conn state goes C_UNCONNECTED, 323 * and receiver thread will be "started". 324 * drbd_thread_start needs to set "RESTARTING" in that case. 325 * t_state check and assignment needs to be within the same spinlock, 326 * so either thread_start sees EXITING, and can remap to RESTARTING, 327 * or thread_start see NONE, and can proceed as normal. 328 */ 329 330 if (thi->t_state == RESTARTING) { 331 drbd_info(resource, "Restarting %s thread\n", thi->name); 332 thi->t_state = RUNNING; 333 spin_unlock_irqrestore(&thi->t_lock, flags); 334 goto restart; 335 } 336 337 thi->task = NULL; 338 thi->t_state = NONE; 339 smp_mb(); 340 complete_all(&thi->stop); 341 spin_unlock_irqrestore(&thi->t_lock, flags); 342 343 drbd_info(resource, "Terminating %s\n", current->comm); 344 345 /* Release mod reference taken when thread was started */ 346 347 if (thi->connection) 348 kref_put(&thi->connection->kref, drbd_destroy_connection); 349 kref_put(&resource->kref, drbd_destroy_resource); 350 module_put(THIS_MODULE); 351 return retval; 352 } 353 354 static void drbd_thread_init(struct drbd_resource *resource, struct drbd_thread *thi, 355 int (*func) (struct drbd_thread *), const char *name) 356 { 357 spin_lock_init(&thi->t_lock); 358 thi->task = NULL; 359 thi->t_state = NONE; 360 thi->function = func; 361 thi->resource = resource; 362 thi->connection = NULL; 363 thi->name = name; 364 } 365 366 int drbd_thread_start(struct drbd_thread *thi) 367 { 368 struct drbd_resource *resource = thi->resource; 369 struct task_struct *nt; 370 unsigned long flags; 371 372 /* is used from state engine doing drbd_thread_stop_nowait, 373 * while holding the req lock irqsave */ 374 spin_lock_irqsave(&thi->t_lock, flags); 375 376 switch (thi->t_state) { 377 case NONE: 378 drbd_info(resource, "Starting %s thread (from %s [%d])\n", 379 thi->name, current->comm, current->pid); 380 381 /* Get ref on module for thread - this is released when thread exits */ 382 if (!try_module_get(THIS_MODULE)) { 383 drbd_err(resource, "Failed to get module reference in drbd_thread_start\n"); 384 spin_unlock_irqrestore(&thi->t_lock, flags); 385 return false; 386 } 387 388 kref_get(&resource->kref); 389 if (thi->connection) 390 kref_get(&thi->connection->kref); 391 392 init_completion(&thi->stop); 393 thi->reset_cpu_mask = 1; 394 thi->t_state = RUNNING; 395 spin_unlock_irqrestore(&thi->t_lock, flags); 396 flush_signals(current); /* otherw. may get -ERESTARTNOINTR */ 397 398 nt = kthread_create(drbd_thread_setup, (void *) thi, 399 "drbd_%c_%s", thi->name[0], thi->resource->name); 400 401 if (IS_ERR(nt)) { 402 drbd_err(resource, "Couldn't start thread\n"); 403 404 if (thi->connection) 405 kref_put(&thi->connection->kref, drbd_destroy_connection); 406 kref_put(&resource->kref, drbd_destroy_resource); 407 module_put(THIS_MODULE); 408 return false; 409 } 410 spin_lock_irqsave(&thi->t_lock, flags); 411 thi->task = nt; 412 thi->t_state = RUNNING; 413 spin_unlock_irqrestore(&thi->t_lock, flags); 414 wake_up_process(nt); 415 break; 416 case EXITING: 417 thi->t_state = RESTARTING; 418 drbd_info(resource, "Restarting %s thread (from %s [%d])\n", 419 thi->name, current->comm, current->pid); 420 fallthrough; 421 case RUNNING: 422 case RESTARTING: 423 default: 424 spin_unlock_irqrestore(&thi->t_lock, flags); 425 break; 426 } 427 428 return true; 429 } 430 431 432 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait) 433 { 434 unsigned long flags; 435 436 enum drbd_thread_state ns = restart ? RESTARTING : EXITING; 437 438 /* may be called from state engine, holding the req lock irqsave */ 439 spin_lock_irqsave(&thi->t_lock, flags); 440 441 if (thi->t_state == NONE) { 442 spin_unlock_irqrestore(&thi->t_lock, flags); 443 if (restart) 444 drbd_thread_start(thi); 445 return; 446 } 447 448 if (thi->t_state != ns) { 449 if (thi->task == NULL) { 450 spin_unlock_irqrestore(&thi->t_lock, flags); 451 return; 452 } 453 454 thi->t_state = ns; 455 smp_mb(); 456 init_completion(&thi->stop); 457 if (thi->task != current) 458 send_sig(DRBD_SIGKILL, thi->task, 1); 459 } 460 461 spin_unlock_irqrestore(&thi->t_lock, flags); 462 463 if (wait) 464 wait_for_completion(&thi->stop); 465 } 466 467 int conn_lowest_minor(struct drbd_connection *connection) 468 { 469 struct drbd_peer_device *peer_device; 470 int vnr = 0, minor = -1; 471 472 rcu_read_lock(); 473 peer_device = idr_get_next(&connection->peer_devices, &vnr); 474 if (peer_device) 475 minor = device_to_minor(peer_device->device); 476 rcu_read_unlock(); 477 478 return minor; 479 } 480 481 #ifdef CONFIG_SMP 482 /* 483 * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs 484 * 485 * Forces all threads of a resource onto the same CPU. This is beneficial for 486 * DRBD's performance. May be overwritten by user's configuration. 487 */ 488 static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask) 489 { 490 unsigned int *resources_per_cpu, min_index = ~0; 491 492 resources_per_cpu = kcalloc(nr_cpu_ids, sizeof(*resources_per_cpu), 493 GFP_KERNEL); 494 if (resources_per_cpu) { 495 struct drbd_resource *resource; 496 unsigned int cpu, min = ~0; 497 498 rcu_read_lock(); 499 for_each_resource_rcu(resource, &drbd_resources) { 500 for_each_cpu(cpu, resource->cpu_mask) 501 resources_per_cpu[cpu]++; 502 } 503 rcu_read_unlock(); 504 for_each_online_cpu(cpu) { 505 if (resources_per_cpu[cpu] < min) { 506 min = resources_per_cpu[cpu]; 507 min_index = cpu; 508 } 509 } 510 kfree(resources_per_cpu); 511 } 512 if (min_index == ~0) { 513 cpumask_setall(*cpu_mask); 514 return; 515 } 516 cpumask_set_cpu(min_index, *cpu_mask); 517 } 518 519 /** 520 * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread 521 * @thi: drbd_thread object 522 * 523 * call in the "main loop" of _all_ threads, no need for any mutex, current won't die 524 * prematurely. 525 */ 526 void drbd_thread_current_set_cpu(struct drbd_thread *thi) 527 { 528 struct drbd_resource *resource = thi->resource; 529 struct task_struct *p = current; 530 531 if (!thi->reset_cpu_mask) 532 return; 533 thi->reset_cpu_mask = 0; 534 set_cpus_allowed_ptr(p, resource->cpu_mask); 535 } 536 #else 537 #define drbd_calc_cpu_mask(A) ({}) 538 #endif 539 540 /* 541 * drbd_header_size - size of a packet header 542 * 543 * The header size is a multiple of 8, so any payload following the header is 544 * word aligned on 64-bit architectures. (The bitmap send and receive code 545 * relies on this.) 546 */ 547 unsigned int drbd_header_size(struct drbd_connection *connection) 548 { 549 if (connection->agreed_pro_version >= 100) { 550 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8)); 551 return sizeof(struct p_header100); 552 } else { 553 BUILD_BUG_ON(sizeof(struct p_header80) != 554 sizeof(struct p_header95)); 555 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8)); 556 return sizeof(struct p_header80); 557 } 558 } 559 560 static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size) 561 { 562 h->magic = cpu_to_be32(DRBD_MAGIC); 563 h->command = cpu_to_be16(cmd); 564 h->length = cpu_to_be16(size); 565 return sizeof(struct p_header80); 566 } 567 568 static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size) 569 { 570 h->magic = cpu_to_be16(DRBD_MAGIC_BIG); 571 h->command = cpu_to_be16(cmd); 572 h->length = cpu_to_be32(size); 573 return sizeof(struct p_header95); 574 } 575 576 static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd, 577 int size, int vnr) 578 { 579 h->magic = cpu_to_be32(DRBD_MAGIC_100); 580 h->volume = cpu_to_be16(vnr); 581 h->command = cpu_to_be16(cmd); 582 h->length = cpu_to_be32(size); 583 h->pad = 0; 584 return sizeof(struct p_header100); 585 } 586 587 static unsigned int prepare_header(struct drbd_connection *connection, int vnr, 588 void *buffer, enum drbd_packet cmd, int size) 589 { 590 if (connection->agreed_pro_version >= 100) 591 return prepare_header100(buffer, cmd, size, vnr); 592 else if (connection->agreed_pro_version >= 95 && 593 size > DRBD_MAX_SIZE_H80_PACKET) 594 return prepare_header95(buffer, cmd, size); 595 else 596 return prepare_header80(buffer, cmd, size); 597 } 598 599 static void *__conn_prepare_command(struct drbd_connection *connection, 600 struct drbd_socket *sock) 601 { 602 if (!sock->socket) 603 return NULL; 604 return sock->sbuf + drbd_header_size(connection); 605 } 606 607 void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock) 608 { 609 void *p; 610 611 mutex_lock(&sock->mutex); 612 p = __conn_prepare_command(connection, sock); 613 if (!p) 614 mutex_unlock(&sock->mutex); 615 616 return p; 617 } 618 619 void *drbd_prepare_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock) 620 { 621 return conn_prepare_command(peer_device->connection, sock); 622 } 623 624 static int __send_command(struct drbd_connection *connection, int vnr, 625 struct drbd_socket *sock, enum drbd_packet cmd, 626 unsigned int header_size, void *data, 627 unsigned int size) 628 { 629 int msg_flags; 630 int err; 631 632 /* 633 * Called with @data == NULL and the size of the data blocks in @size 634 * for commands that send data blocks. For those commands, omit the 635 * MSG_MORE flag: this will increase the likelihood that data blocks 636 * which are page aligned on the sender will end up page aligned on the 637 * receiver. 638 */ 639 msg_flags = data ? MSG_MORE : 0; 640 641 header_size += prepare_header(connection, vnr, sock->sbuf, cmd, 642 header_size + size); 643 err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size, 644 msg_flags); 645 if (data && !err) 646 err = drbd_send_all(connection, sock->socket, data, size, 0); 647 /* DRBD protocol "pings" are latency critical. 648 * This is supposed to trigger tcp_push_pending_frames() */ 649 if (!err && (cmd == P_PING || cmd == P_PING_ACK)) 650 tcp_sock_set_nodelay(sock->socket->sk); 651 652 return err; 653 } 654 655 static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock, 656 enum drbd_packet cmd, unsigned int header_size, 657 void *data, unsigned int size) 658 { 659 return __send_command(connection, 0, sock, cmd, header_size, data, size); 660 } 661 662 int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock, 663 enum drbd_packet cmd, unsigned int header_size, 664 void *data, unsigned int size) 665 { 666 int err; 667 668 err = __conn_send_command(connection, sock, cmd, header_size, data, size); 669 mutex_unlock(&sock->mutex); 670 return err; 671 } 672 673 int drbd_send_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock, 674 enum drbd_packet cmd, unsigned int header_size, 675 void *data, unsigned int size) 676 { 677 int err; 678 679 err = __send_command(peer_device->connection, peer_device->device->vnr, 680 sock, cmd, header_size, data, size); 681 mutex_unlock(&sock->mutex); 682 return err; 683 } 684 685 int drbd_send_ping(struct drbd_connection *connection) 686 { 687 struct drbd_socket *sock; 688 689 sock = &connection->meta; 690 if (!conn_prepare_command(connection, sock)) 691 return -EIO; 692 return conn_send_command(connection, sock, P_PING, 0, NULL, 0); 693 } 694 695 int drbd_send_ping_ack(struct drbd_connection *connection) 696 { 697 struct drbd_socket *sock; 698 699 sock = &connection->meta; 700 if (!conn_prepare_command(connection, sock)) 701 return -EIO; 702 return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0); 703 } 704 705 int drbd_send_sync_param(struct drbd_peer_device *peer_device) 706 { 707 struct drbd_socket *sock; 708 struct p_rs_param_95 *p; 709 int size; 710 const int apv = peer_device->connection->agreed_pro_version; 711 enum drbd_packet cmd; 712 struct net_conf *nc; 713 struct disk_conf *dc; 714 715 sock = &peer_device->connection->data; 716 p = drbd_prepare_command(peer_device, sock); 717 if (!p) 718 return -EIO; 719 720 rcu_read_lock(); 721 nc = rcu_dereference(peer_device->connection->net_conf); 722 723 size = apv <= 87 ? sizeof(struct p_rs_param) 724 : apv == 88 ? sizeof(struct p_rs_param) 725 + strlen(nc->verify_alg) + 1 726 : apv <= 94 ? sizeof(struct p_rs_param_89) 727 : /* apv >= 95 */ sizeof(struct p_rs_param_95); 728 729 cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM; 730 731 /* initialize verify_alg and csums_alg */ 732 BUILD_BUG_ON(sizeof(p->algs) != 2 * SHARED_SECRET_MAX); 733 memset(&p->algs, 0, sizeof(p->algs)); 734 735 if (get_ldev(peer_device->device)) { 736 dc = rcu_dereference(peer_device->device->ldev->disk_conf); 737 p->resync_rate = cpu_to_be32(dc->resync_rate); 738 p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead); 739 p->c_delay_target = cpu_to_be32(dc->c_delay_target); 740 p->c_fill_target = cpu_to_be32(dc->c_fill_target); 741 p->c_max_rate = cpu_to_be32(dc->c_max_rate); 742 put_ldev(peer_device->device); 743 } else { 744 p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF); 745 p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF); 746 p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF); 747 p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF); 748 p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF); 749 } 750 751 if (apv >= 88) 752 strcpy(p->verify_alg, nc->verify_alg); 753 if (apv >= 89) 754 strcpy(p->csums_alg, nc->csums_alg); 755 rcu_read_unlock(); 756 757 return drbd_send_command(peer_device, sock, cmd, size, NULL, 0); 758 } 759 760 int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd) 761 { 762 struct drbd_socket *sock; 763 struct p_protocol *p; 764 struct net_conf *nc; 765 int size, cf; 766 767 sock = &connection->data; 768 p = __conn_prepare_command(connection, sock); 769 if (!p) 770 return -EIO; 771 772 rcu_read_lock(); 773 nc = rcu_dereference(connection->net_conf); 774 775 if (nc->tentative && connection->agreed_pro_version < 92) { 776 rcu_read_unlock(); 777 drbd_err(connection, "--dry-run is not supported by peer"); 778 return -EOPNOTSUPP; 779 } 780 781 size = sizeof(*p); 782 if (connection->agreed_pro_version >= 87) 783 size += strlen(nc->integrity_alg) + 1; 784 785 p->protocol = cpu_to_be32(nc->wire_protocol); 786 p->after_sb_0p = cpu_to_be32(nc->after_sb_0p); 787 p->after_sb_1p = cpu_to_be32(nc->after_sb_1p); 788 p->after_sb_2p = cpu_to_be32(nc->after_sb_2p); 789 p->two_primaries = cpu_to_be32(nc->two_primaries); 790 cf = 0; 791 if (nc->discard_my_data) 792 cf |= CF_DISCARD_MY_DATA; 793 if (nc->tentative) 794 cf |= CF_DRY_RUN; 795 p->conn_flags = cpu_to_be32(cf); 796 797 if (connection->agreed_pro_version >= 87) 798 strcpy(p->integrity_alg, nc->integrity_alg); 799 rcu_read_unlock(); 800 801 return __conn_send_command(connection, sock, cmd, size, NULL, 0); 802 } 803 804 int drbd_send_protocol(struct drbd_connection *connection) 805 { 806 int err; 807 808 mutex_lock(&connection->data.mutex); 809 err = __drbd_send_protocol(connection, P_PROTOCOL); 810 mutex_unlock(&connection->data.mutex); 811 812 return err; 813 } 814 815 static int _drbd_send_uuids(struct drbd_peer_device *peer_device, u64 uuid_flags) 816 { 817 struct drbd_device *device = peer_device->device; 818 struct drbd_socket *sock; 819 struct p_uuids *p; 820 int i; 821 822 if (!get_ldev_if_state(device, D_NEGOTIATING)) 823 return 0; 824 825 sock = &peer_device->connection->data; 826 p = drbd_prepare_command(peer_device, sock); 827 if (!p) { 828 put_ldev(device); 829 return -EIO; 830 } 831 spin_lock_irq(&device->ldev->md.uuid_lock); 832 for (i = UI_CURRENT; i < UI_SIZE; i++) 833 p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]); 834 spin_unlock_irq(&device->ldev->md.uuid_lock); 835 836 device->comm_bm_set = drbd_bm_total_weight(device); 837 p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set); 838 rcu_read_lock(); 839 uuid_flags |= rcu_dereference(peer_device->connection->net_conf)->discard_my_data ? 1 : 0; 840 rcu_read_unlock(); 841 uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0; 842 uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0; 843 p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags); 844 845 put_ldev(device); 846 return drbd_send_command(peer_device, sock, P_UUIDS, sizeof(*p), NULL, 0); 847 } 848 849 int drbd_send_uuids(struct drbd_peer_device *peer_device) 850 { 851 return _drbd_send_uuids(peer_device, 0); 852 } 853 854 int drbd_send_uuids_skip_initial_sync(struct drbd_peer_device *peer_device) 855 { 856 return _drbd_send_uuids(peer_device, 8); 857 } 858 859 void drbd_print_uuids(struct drbd_device *device, const char *text) 860 { 861 if (get_ldev_if_state(device, D_NEGOTIATING)) { 862 u64 *uuid = device->ldev->md.uuid; 863 drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n", 864 text, 865 (unsigned long long)uuid[UI_CURRENT], 866 (unsigned long long)uuid[UI_BITMAP], 867 (unsigned long long)uuid[UI_HISTORY_START], 868 (unsigned long long)uuid[UI_HISTORY_END]); 869 put_ldev(device); 870 } else { 871 drbd_info(device, "%s effective data uuid: %016llX\n", 872 text, 873 (unsigned long long)device->ed_uuid); 874 } 875 } 876 877 void drbd_gen_and_send_sync_uuid(struct drbd_peer_device *peer_device) 878 { 879 struct drbd_device *device = peer_device->device; 880 struct drbd_socket *sock; 881 struct p_rs_uuid *p; 882 u64 uuid; 883 884 D_ASSERT(device, device->state.disk == D_UP_TO_DATE); 885 886 uuid = device->ldev->md.uuid[UI_BITMAP]; 887 if (uuid && uuid != UUID_JUST_CREATED) 888 uuid = uuid + UUID_NEW_BM_OFFSET; 889 else 890 get_random_bytes(&uuid, sizeof(u64)); 891 drbd_uuid_set(device, UI_BITMAP, uuid); 892 drbd_print_uuids(device, "updated sync UUID"); 893 drbd_md_sync(device); 894 895 sock = &peer_device->connection->data; 896 p = drbd_prepare_command(peer_device, sock); 897 if (p) { 898 p->uuid = cpu_to_be64(uuid); 899 drbd_send_command(peer_device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0); 900 } 901 } 902 903 /* communicated if (agreed_features & DRBD_FF_WSAME) */ 904 static void 905 assign_p_sizes_qlim(struct drbd_device *device, struct p_sizes *p, 906 struct request_queue *q) 907 { 908 if (q) { 909 p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q)); 910 p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q)); 911 p->qlim->alignment_offset = cpu_to_be32(queue_alignment_offset(q)); 912 p->qlim->io_min = cpu_to_be32(queue_io_min(q)); 913 p->qlim->io_opt = cpu_to_be32(queue_io_opt(q)); 914 p->qlim->discard_enabled = blk_queue_discard(q); 915 p->qlim->write_same_capable = 0; 916 } else { 917 q = device->rq_queue; 918 p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q)); 919 p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q)); 920 p->qlim->alignment_offset = 0; 921 p->qlim->io_min = cpu_to_be32(queue_io_min(q)); 922 p->qlim->io_opt = cpu_to_be32(queue_io_opt(q)); 923 p->qlim->discard_enabled = 0; 924 p->qlim->write_same_capable = 0; 925 } 926 } 927 928 int drbd_send_sizes(struct drbd_peer_device *peer_device, int trigger_reply, enum dds_flags flags) 929 { 930 struct drbd_device *device = peer_device->device; 931 struct drbd_socket *sock; 932 struct p_sizes *p; 933 sector_t d_size, u_size; 934 int q_order_type; 935 unsigned int max_bio_size; 936 unsigned int packet_size; 937 938 sock = &peer_device->connection->data; 939 p = drbd_prepare_command(peer_device, sock); 940 if (!p) 941 return -EIO; 942 943 packet_size = sizeof(*p); 944 if (peer_device->connection->agreed_features & DRBD_FF_WSAME) 945 packet_size += sizeof(p->qlim[0]); 946 947 memset(p, 0, packet_size); 948 if (get_ldev_if_state(device, D_NEGOTIATING)) { 949 struct request_queue *q = bdev_get_queue(device->ldev->backing_bdev); 950 d_size = drbd_get_max_capacity(device->ldev); 951 rcu_read_lock(); 952 u_size = rcu_dereference(device->ldev->disk_conf)->disk_size; 953 rcu_read_unlock(); 954 q_order_type = drbd_queue_order_type(device); 955 max_bio_size = queue_max_hw_sectors(q) << 9; 956 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE); 957 assign_p_sizes_qlim(device, p, q); 958 put_ldev(device); 959 } else { 960 d_size = 0; 961 u_size = 0; 962 q_order_type = QUEUE_ORDERED_NONE; 963 max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */ 964 assign_p_sizes_qlim(device, p, NULL); 965 } 966 967 if (peer_device->connection->agreed_pro_version <= 94) 968 max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET); 969 else if (peer_device->connection->agreed_pro_version < 100) 970 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95); 971 972 p->d_size = cpu_to_be64(d_size); 973 p->u_size = cpu_to_be64(u_size); 974 if (trigger_reply) 975 p->c_size = 0; 976 else 977 p->c_size = cpu_to_be64(get_capacity(device->vdisk)); 978 p->max_bio_size = cpu_to_be32(max_bio_size); 979 p->queue_order_type = cpu_to_be16(q_order_type); 980 p->dds_flags = cpu_to_be16(flags); 981 982 return drbd_send_command(peer_device, sock, P_SIZES, packet_size, NULL, 0); 983 } 984 985 /** 986 * drbd_send_current_state() - Sends the drbd state to the peer 987 * @peer_device: DRBD peer device. 988 */ 989 int drbd_send_current_state(struct drbd_peer_device *peer_device) 990 { 991 struct drbd_socket *sock; 992 struct p_state *p; 993 994 sock = &peer_device->connection->data; 995 p = drbd_prepare_command(peer_device, sock); 996 if (!p) 997 return -EIO; 998 p->state = cpu_to_be32(peer_device->device->state.i); /* Within the send mutex */ 999 return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0); 1000 } 1001 1002 /** 1003 * drbd_send_state() - After a state change, sends the new state to the peer 1004 * @peer_device: DRBD peer device. 1005 * @state: the state to send, not necessarily the current state. 1006 * 1007 * Each state change queues an "after_state_ch" work, which will eventually 1008 * send the resulting new state to the peer. If more state changes happen 1009 * between queuing and processing of the after_state_ch work, we still 1010 * want to send each intermediary state in the order it occurred. 1011 */ 1012 int drbd_send_state(struct drbd_peer_device *peer_device, union drbd_state state) 1013 { 1014 struct drbd_socket *sock; 1015 struct p_state *p; 1016 1017 sock = &peer_device->connection->data; 1018 p = drbd_prepare_command(peer_device, sock); 1019 if (!p) 1020 return -EIO; 1021 p->state = cpu_to_be32(state.i); /* Within the send mutex */ 1022 return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0); 1023 } 1024 1025 int drbd_send_state_req(struct drbd_peer_device *peer_device, union drbd_state mask, union drbd_state val) 1026 { 1027 struct drbd_socket *sock; 1028 struct p_req_state *p; 1029 1030 sock = &peer_device->connection->data; 1031 p = drbd_prepare_command(peer_device, sock); 1032 if (!p) 1033 return -EIO; 1034 p->mask = cpu_to_be32(mask.i); 1035 p->val = cpu_to_be32(val.i); 1036 return drbd_send_command(peer_device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0); 1037 } 1038 1039 int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val) 1040 { 1041 enum drbd_packet cmd; 1042 struct drbd_socket *sock; 1043 struct p_req_state *p; 1044 1045 cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ; 1046 sock = &connection->data; 1047 p = conn_prepare_command(connection, sock); 1048 if (!p) 1049 return -EIO; 1050 p->mask = cpu_to_be32(mask.i); 1051 p->val = cpu_to_be32(val.i); 1052 return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0); 1053 } 1054 1055 void drbd_send_sr_reply(struct drbd_peer_device *peer_device, enum drbd_state_rv retcode) 1056 { 1057 struct drbd_socket *sock; 1058 struct p_req_state_reply *p; 1059 1060 sock = &peer_device->connection->meta; 1061 p = drbd_prepare_command(peer_device, sock); 1062 if (p) { 1063 p->retcode = cpu_to_be32(retcode); 1064 drbd_send_command(peer_device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0); 1065 } 1066 } 1067 1068 void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode) 1069 { 1070 struct drbd_socket *sock; 1071 struct p_req_state_reply *p; 1072 enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY; 1073 1074 sock = &connection->meta; 1075 p = conn_prepare_command(connection, sock); 1076 if (p) { 1077 p->retcode = cpu_to_be32(retcode); 1078 conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0); 1079 } 1080 } 1081 1082 static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code) 1083 { 1084 BUG_ON(code & ~0xf); 1085 p->encoding = (p->encoding & ~0xf) | code; 1086 } 1087 1088 static void dcbp_set_start(struct p_compressed_bm *p, int set) 1089 { 1090 p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0); 1091 } 1092 1093 static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n) 1094 { 1095 BUG_ON(n & ~0x7); 1096 p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4); 1097 } 1098 1099 static int fill_bitmap_rle_bits(struct drbd_device *device, 1100 struct p_compressed_bm *p, 1101 unsigned int size, 1102 struct bm_xfer_ctx *c) 1103 { 1104 struct bitstream bs; 1105 unsigned long plain_bits; 1106 unsigned long tmp; 1107 unsigned long rl; 1108 unsigned len; 1109 unsigned toggle; 1110 int bits, use_rle; 1111 1112 /* may we use this feature? */ 1113 rcu_read_lock(); 1114 use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle; 1115 rcu_read_unlock(); 1116 if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90) 1117 return 0; 1118 1119 if (c->bit_offset >= c->bm_bits) 1120 return 0; /* nothing to do. */ 1121 1122 /* use at most thus many bytes */ 1123 bitstream_init(&bs, p->code, size, 0); 1124 memset(p->code, 0, size); 1125 /* plain bits covered in this code string */ 1126 plain_bits = 0; 1127 1128 /* p->encoding & 0x80 stores whether the first run length is set. 1129 * bit offset is implicit. 1130 * start with toggle == 2 to be able to tell the first iteration */ 1131 toggle = 2; 1132 1133 /* see how much plain bits we can stuff into one packet 1134 * using RLE and VLI. */ 1135 do { 1136 tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset) 1137 : _drbd_bm_find_next(device, c->bit_offset); 1138 if (tmp == -1UL) 1139 tmp = c->bm_bits; 1140 rl = tmp - c->bit_offset; 1141 1142 if (toggle == 2) { /* first iteration */ 1143 if (rl == 0) { 1144 /* the first checked bit was set, 1145 * store start value, */ 1146 dcbp_set_start(p, 1); 1147 /* but skip encoding of zero run length */ 1148 toggle = !toggle; 1149 continue; 1150 } 1151 dcbp_set_start(p, 0); 1152 } 1153 1154 /* paranoia: catch zero runlength. 1155 * can only happen if bitmap is modified while we scan it. */ 1156 if (rl == 0) { 1157 drbd_err(device, "unexpected zero runlength while encoding bitmap " 1158 "t:%u bo:%lu\n", toggle, c->bit_offset); 1159 return -1; 1160 } 1161 1162 bits = vli_encode_bits(&bs, rl); 1163 if (bits == -ENOBUFS) /* buffer full */ 1164 break; 1165 if (bits <= 0) { 1166 drbd_err(device, "error while encoding bitmap: %d\n", bits); 1167 return 0; 1168 } 1169 1170 toggle = !toggle; 1171 plain_bits += rl; 1172 c->bit_offset = tmp; 1173 } while (c->bit_offset < c->bm_bits); 1174 1175 len = bs.cur.b - p->code + !!bs.cur.bit; 1176 1177 if (plain_bits < (len << 3)) { 1178 /* incompressible with this method. 1179 * we need to rewind both word and bit position. */ 1180 c->bit_offset -= plain_bits; 1181 bm_xfer_ctx_bit_to_word_offset(c); 1182 c->bit_offset = c->word_offset * BITS_PER_LONG; 1183 return 0; 1184 } 1185 1186 /* RLE + VLI was able to compress it just fine. 1187 * update c->word_offset. */ 1188 bm_xfer_ctx_bit_to_word_offset(c); 1189 1190 /* store pad_bits */ 1191 dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7); 1192 1193 return len; 1194 } 1195 1196 /* 1197 * send_bitmap_rle_or_plain 1198 * 1199 * Return 0 when done, 1 when another iteration is needed, and a negative error 1200 * code upon failure. 1201 */ 1202 static int 1203 send_bitmap_rle_or_plain(struct drbd_device *device, struct bm_xfer_ctx *c) 1204 { 1205 struct drbd_socket *sock = &first_peer_device(device)->connection->data; 1206 unsigned int header_size = drbd_header_size(first_peer_device(device)->connection); 1207 struct p_compressed_bm *p = sock->sbuf + header_size; 1208 int len, err; 1209 1210 len = fill_bitmap_rle_bits(device, p, 1211 DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c); 1212 if (len < 0) 1213 return -EIO; 1214 1215 if (len) { 1216 dcbp_set_code(p, RLE_VLI_Bits); 1217 err = __send_command(first_peer_device(device)->connection, device->vnr, sock, 1218 P_COMPRESSED_BITMAP, sizeof(*p) + len, 1219 NULL, 0); 1220 c->packets[0]++; 1221 c->bytes[0] += header_size + sizeof(*p) + len; 1222 1223 if (c->bit_offset >= c->bm_bits) 1224 len = 0; /* DONE */ 1225 } else { 1226 /* was not compressible. 1227 * send a buffer full of plain text bits instead. */ 1228 unsigned int data_size; 1229 unsigned long num_words; 1230 unsigned long *p = sock->sbuf + header_size; 1231 1232 data_size = DRBD_SOCKET_BUFFER_SIZE - header_size; 1233 num_words = min_t(size_t, data_size / sizeof(*p), 1234 c->bm_words - c->word_offset); 1235 len = num_words * sizeof(*p); 1236 if (len) 1237 drbd_bm_get_lel(device, c->word_offset, num_words, p); 1238 err = __send_command(first_peer_device(device)->connection, device->vnr, sock, P_BITMAP, len, NULL, 0); 1239 c->word_offset += num_words; 1240 c->bit_offset = c->word_offset * BITS_PER_LONG; 1241 1242 c->packets[1]++; 1243 c->bytes[1] += header_size + len; 1244 1245 if (c->bit_offset > c->bm_bits) 1246 c->bit_offset = c->bm_bits; 1247 } 1248 if (!err) { 1249 if (len == 0) { 1250 INFO_bm_xfer_stats(device, "send", c); 1251 return 0; 1252 } else 1253 return 1; 1254 } 1255 return -EIO; 1256 } 1257 1258 /* See the comment at receive_bitmap() */ 1259 static int _drbd_send_bitmap(struct drbd_device *device) 1260 { 1261 struct bm_xfer_ctx c; 1262 int err; 1263 1264 if (!expect(device->bitmap)) 1265 return false; 1266 1267 if (get_ldev(device)) { 1268 if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) { 1269 drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n"); 1270 drbd_bm_set_all(device); 1271 if (drbd_bm_write(device)) { 1272 /* write_bm did fail! Leave full sync flag set in Meta P_DATA 1273 * but otherwise process as per normal - need to tell other 1274 * side that a full resync is required! */ 1275 drbd_err(device, "Failed to write bitmap to disk!\n"); 1276 } else { 1277 drbd_md_clear_flag(device, MDF_FULL_SYNC); 1278 drbd_md_sync(device); 1279 } 1280 } 1281 put_ldev(device); 1282 } 1283 1284 c = (struct bm_xfer_ctx) { 1285 .bm_bits = drbd_bm_bits(device), 1286 .bm_words = drbd_bm_words(device), 1287 }; 1288 1289 do { 1290 err = send_bitmap_rle_or_plain(device, &c); 1291 } while (err > 0); 1292 1293 return err == 0; 1294 } 1295 1296 int drbd_send_bitmap(struct drbd_device *device) 1297 { 1298 struct drbd_socket *sock = &first_peer_device(device)->connection->data; 1299 int err = -1; 1300 1301 mutex_lock(&sock->mutex); 1302 if (sock->socket) 1303 err = !_drbd_send_bitmap(device); 1304 mutex_unlock(&sock->mutex); 1305 return err; 1306 } 1307 1308 void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size) 1309 { 1310 struct drbd_socket *sock; 1311 struct p_barrier_ack *p; 1312 1313 if (connection->cstate < C_WF_REPORT_PARAMS) 1314 return; 1315 1316 sock = &connection->meta; 1317 p = conn_prepare_command(connection, sock); 1318 if (!p) 1319 return; 1320 p->barrier = barrier_nr; 1321 p->set_size = cpu_to_be32(set_size); 1322 conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0); 1323 } 1324 1325 /** 1326 * _drbd_send_ack() - Sends an ack packet 1327 * @peer_device: DRBD peer device. 1328 * @cmd: Packet command code. 1329 * @sector: sector, needs to be in big endian byte order 1330 * @blksize: size in byte, needs to be in big endian byte order 1331 * @block_id: Id, big endian byte order 1332 */ 1333 static int _drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1334 u64 sector, u32 blksize, u64 block_id) 1335 { 1336 struct drbd_socket *sock; 1337 struct p_block_ack *p; 1338 1339 if (peer_device->device->state.conn < C_CONNECTED) 1340 return -EIO; 1341 1342 sock = &peer_device->connection->meta; 1343 p = drbd_prepare_command(peer_device, sock); 1344 if (!p) 1345 return -EIO; 1346 p->sector = sector; 1347 p->block_id = block_id; 1348 p->blksize = blksize; 1349 p->seq_num = cpu_to_be32(atomic_inc_return(&peer_device->device->packet_seq)); 1350 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0); 1351 } 1352 1353 /* dp->sector and dp->block_id already/still in network byte order, 1354 * data_size is payload size according to dp->head, 1355 * and may need to be corrected for digest size. */ 1356 void drbd_send_ack_dp(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1357 struct p_data *dp, int data_size) 1358 { 1359 if (peer_device->connection->peer_integrity_tfm) 1360 data_size -= crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm); 1361 _drbd_send_ack(peer_device, cmd, dp->sector, cpu_to_be32(data_size), 1362 dp->block_id); 1363 } 1364 1365 void drbd_send_ack_rp(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1366 struct p_block_req *rp) 1367 { 1368 _drbd_send_ack(peer_device, cmd, rp->sector, rp->blksize, rp->block_id); 1369 } 1370 1371 /** 1372 * drbd_send_ack() - Sends an ack packet 1373 * @peer_device: DRBD peer device 1374 * @cmd: packet command code 1375 * @peer_req: peer request 1376 */ 1377 int drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1378 struct drbd_peer_request *peer_req) 1379 { 1380 return _drbd_send_ack(peer_device, cmd, 1381 cpu_to_be64(peer_req->i.sector), 1382 cpu_to_be32(peer_req->i.size), 1383 peer_req->block_id); 1384 } 1385 1386 /* This function misuses the block_id field to signal if the blocks 1387 * are is sync or not. */ 1388 int drbd_send_ack_ex(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1389 sector_t sector, int blksize, u64 block_id) 1390 { 1391 return _drbd_send_ack(peer_device, cmd, 1392 cpu_to_be64(sector), 1393 cpu_to_be32(blksize), 1394 cpu_to_be64(block_id)); 1395 } 1396 1397 int drbd_send_rs_deallocated(struct drbd_peer_device *peer_device, 1398 struct drbd_peer_request *peer_req) 1399 { 1400 struct drbd_socket *sock; 1401 struct p_block_desc *p; 1402 1403 sock = &peer_device->connection->data; 1404 p = drbd_prepare_command(peer_device, sock); 1405 if (!p) 1406 return -EIO; 1407 p->sector = cpu_to_be64(peer_req->i.sector); 1408 p->blksize = cpu_to_be32(peer_req->i.size); 1409 p->pad = 0; 1410 return drbd_send_command(peer_device, sock, P_RS_DEALLOCATED, sizeof(*p), NULL, 0); 1411 } 1412 1413 int drbd_send_drequest(struct drbd_peer_device *peer_device, int cmd, 1414 sector_t sector, int size, u64 block_id) 1415 { 1416 struct drbd_socket *sock; 1417 struct p_block_req *p; 1418 1419 sock = &peer_device->connection->data; 1420 p = drbd_prepare_command(peer_device, sock); 1421 if (!p) 1422 return -EIO; 1423 p->sector = cpu_to_be64(sector); 1424 p->block_id = block_id; 1425 p->blksize = cpu_to_be32(size); 1426 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0); 1427 } 1428 1429 int drbd_send_drequest_csum(struct drbd_peer_device *peer_device, sector_t sector, int size, 1430 void *digest, int digest_size, enum drbd_packet cmd) 1431 { 1432 struct drbd_socket *sock; 1433 struct p_block_req *p; 1434 1435 /* FIXME: Put the digest into the preallocated socket buffer. */ 1436 1437 sock = &peer_device->connection->data; 1438 p = drbd_prepare_command(peer_device, sock); 1439 if (!p) 1440 return -EIO; 1441 p->sector = cpu_to_be64(sector); 1442 p->block_id = ID_SYNCER /* unused */; 1443 p->blksize = cpu_to_be32(size); 1444 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), digest, digest_size); 1445 } 1446 1447 int drbd_send_ov_request(struct drbd_peer_device *peer_device, sector_t sector, int size) 1448 { 1449 struct drbd_socket *sock; 1450 struct p_block_req *p; 1451 1452 sock = &peer_device->connection->data; 1453 p = drbd_prepare_command(peer_device, sock); 1454 if (!p) 1455 return -EIO; 1456 p->sector = cpu_to_be64(sector); 1457 p->block_id = ID_SYNCER /* unused */; 1458 p->blksize = cpu_to_be32(size); 1459 return drbd_send_command(peer_device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0); 1460 } 1461 1462 /* called on sndtimeo 1463 * returns false if we should retry, 1464 * true if we think connection is dead 1465 */ 1466 static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock) 1467 { 1468 int drop_it; 1469 /* long elapsed = (long)(jiffies - device->last_received); */ 1470 1471 drop_it = connection->meta.socket == sock 1472 || !connection->ack_receiver.task 1473 || get_t_state(&connection->ack_receiver) != RUNNING 1474 || connection->cstate < C_WF_REPORT_PARAMS; 1475 1476 if (drop_it) 1477 return true; 1478 1479 drop_it = !--connection->ko_count; 1480 if (!drop_it) { 1481 drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n", 1482 current->comm, current->pid, connection->ko_count); 1483 request_ping(connection); 1484 } 1485 1486 return drop_it; /* && (device->state == R_PRIMARY) */; 1487 } 1488 1489 static void drbd_update_congested(struct drbd_connection *connection) 1490 { 1491 struct sock *sk = connection->data.socket->sk; 1492 if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5) 1493 set_bit(NET_CONGESTED, &connection->flags); 1494 } 1495 1496 /* The idea of sendpage seems to be to put some kind of reference 1497 * to the page into the skb, and to hand it over to the NIC. In 1498 * this process get_page() gets called. 1499 * 1500 * As soon as the page was really sent over the network put_page() 1501 * gets called by some part of the network layer. [ NIC driver? ] 1502 * 1503 * [ get_page() / put_page() increment/decrement the count. If count 1504 * reaches 0 the page will be freed. ] 1505 * 1506 * This works nicely with pages from FSs. 1507 * But this means that in protocol A we might signal IO completion too early! 1508 * 1509 * In order not to corrupt data during a resync we must make sure 1510 * that we do not reuse our own buffer pages (EEs) to early, therefore 1511 * we have the net_ee list. 1512 * 1513 * XFS seems to have problems, still, it submits pages with page_count == 0! 1514 * As a workaround, we disable sendpage on pages 1515 * with page_count == 0 or PageSlab. 1516 */ 1517 static int _drbd_no_send_page(struct drbd_peer_device *peer_device, struct page *page, 1518 int offset, size_t size, unsigned msg_flags) 1519 { 1520 struct socket *socket; 1521 void *addr; 1522 int err; 1523 1524 socket = peer_device->connection->data.socket; 1525 addr = kmap(page) + offset; 1526 err = drbd_send_all(peer_device->connection, socket, addr, size, msg_flags); 1527 kunmap(page); 1528 if (!err) 1529 peer_device->device->send_cnt += size >> 9; 1530 return err; 1531 } 1532 1533 static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *page, 1534 int offset, size_t size, unsigned msg_flags) 1535 { 1536 struct socket *socket = peer_device->connection->data.socket; 1537 int len = size; 1538 int err = -EIO; 1539 1540 /* e.g. XFS meta- & log-data is in slab pages, which have a 1541 * page_count of 0 and/or have PageSlab() set. 1542 * we cannot use send_page for those, as that does get_page(); 1543 * put_page(); and would cause either a VM_BUG directly, or 1544 * __page_cache_release a page that would actually still be referenced 1545 * by someone, leading to some obscure delayed Oops somewhere else. */ 1546 if (drbd_disable_sendpage || !sendpage_ok(page)) 1547 return _drbd_no_send_page(peer_device, page, offset, size, msg_flags); 1548 1549 msg_flags |= MSG_NOSIGNAL; 1550 drbd_update_congested(peer_device->connection); 1551 do { 1552 int sent; 1553 1554 sent = socket->ops->sendpage(socket, page, offset, len, msg_flags); 1555 if (sent <= 0) { 1556 if (sent == -EAGAIN) { 1557 if (we_should_drop_the_connection(peer_device->connection, socket)) 1558 break; 1559 continue; 1560 } 1561 drbd_warn(peer_device->device, "%s: size=%d len=%d sent=%d\n", 1562 __func__, (int)size, len, sent); 1563 if (sent < 0) 1564 err = sent; 1565 break; 1566 } 1567 len -= sent; 1568 offset += sent; 1569 } while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/); 1570 clear_bit(NET_CONGESTED, &peer_device->connection->flags); 1571 1572 if (len == 0) { 1573 err = 0; 1574 peer_device->device->send_cnt += size >> 9; 1575 } 1576 return err; 1577 } 1578 1579 static int _drbd_send_bio(struct drbd_peer_device *peer_device, struct bio *bio) 1580 { 1581 struct bio_vec bvec; 1582 struct bvec_iter iter; 1583 1584 /* hint all but last page with MSG_MORE */ 1585 bio_for_each_segment(bvec, bio, iter) { 1586 int err; 1587 1588 err = _drbd_no_send_page(peer_device, bvec.bv_page, 1589 bvec.bv_offset, bvec.bv_len, 1590 bio_iter_last(bvec, iter) 1591 ? 0 : MSG_MORE); 1592 if (err) 1593 return err; 1594 } 1595 return 0; 1596 } 1597 1598 static int _drbd_send_zc_bio(struct drbd_peer_device *peer_device, struct bio *bio) 1599 { 1600 struct bio_vec bvec; 1601 struct bvec_iter iter; 1602 1603 /* hint all but last page with MSG_MORE */ 1604 bio_for_each_segment(bvec, bio, iter) { 1605 int err; 1606 1607 err = _drbd_send_page(peer_device, bvec.bv_page, 1608 bvec.bv_offset, bvec.bv_len, 1609 bio_iter_last(bvec, iter) ? 0 : MSG_MORE); 1610 if (err) 1611 return err; 1612 } 1613 return 0; 1614 } 1615 1616 static int _drbd_send_zc_ee(struct drbd_peer_device *peer_device, 1617 struct drbd_peer_request *peer_req) 1618 { 1619 struct page *page = peer_req->pages; 1620 unsigned len = peer_req->i.size; 1621 int err; 1622 1623 /* hint all but last page with MSG_MORE */ 1624 page_chain_for_each(page) { 1625 unsigned l = min_t(unsigned, len, PAGE_SIZE); 1626 1627 err = _drbd_send_page(peer_device, page, 0, l, 1628 page_chain_next(page) ? MSG_MORE : 0); 1629 if (err) 1630 return err; 1631 len -= l; 1632 } 1633 return 0; 1634 } 1635 1636 static u32 bio_flags_to_wire(struct drbd_connection *connection, 1637 struct bio *bio) 1638 { 1639 if (connection->agreed_pro_version >= 95) 1640 return (bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0) | 1641 (bio->bi_opf & REQ_FUA ? DP_FUA : 0) | 1642 (bio->bi_opf & REQ_PREFLUSH ? DP_FLUSH : 0) | 1643 (bio_op(bio) == REQ_OP_DISCARD ? DP_DISCARD : 0) | 1644 (bio_op(bio) == REQ_OP_WRITE_ZEROES ? 1645 ((connection->agreed_features & DRBD_FF_WZEROES) ? 1646 (DP_ZEROES |(!(bio->bi_opf & REQ_NOUNMAP) ? DP_DISCARD : 0)) 1647 : DP_DISCARD) 1648 : 0); 1649 else 1650 return bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0; 1651 } 1652 1653 /* Used to send write or TRIM aka REQ_OP_DISCARD requests 1654 * R_PRIMARY -> Peer (P_DATA, P_TRIM) 1655 */ 1656 int drbd_send_dblock(struct drbd_peer_device *peer_device, struct drbd_request *req) 1657 { 1658 struct drbd_device *device = peer_device->device; 1659 struct drbd_socket *sock; 1660 struct p_data *p; 1661 void *digest_out; 1662 unsigned int dp_flags = 0; 1663 int digest_size; 1664 int err; 1665 1666 sock = &peer_device->connection->data; 1667 p = drbd_prepare_command(peer_device, sock); 1668 digest_size = peer_device->connection->integrity_tfm ? 1669 crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0; 1670 1671 if (!p) 1672 return -EIO; 1673 p->sector = cpu_to_be64(req->i.sector); 1674 p->block_id = (unsigned long)req; 1675 p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq)); 1676 dp_flags = bio_flags_to_wire(peer_device->connection, req->master_bio); 1677 if (device->state.conn >= C_SYNC_SOURCE && 1678 device->state.conn <= C_PAUSED_SYNC_T) 1679 dp_flags |= DP_MAY_SET_IN_SYNC; 1680 if (peer_device->connection->agreed_pro_version >= 100) { 1681 if (req->rq_state & RQ_EXP_RECEIVE_ACK) 1682 dp_flags |= DP_SEND_RECEIVE_ACK; 1683 /* During resync, request an explicit write ack, 1684 * even in protocol != C */ 1685 if (req->rq_state & RQ_EXP_WRITE_ACK 1686 || (dp_flags & DP_MAY_SET_IN_SYNC)) 1687 dp_flags |= DP_SEND_WRITE_ACK; 1688 } 1689 p->dp_flags = cpu_to_be32(dp_flags); 1690 1691 if (dp_flags & (DP_DISCARD|DP_ZEROES)) { 1692 enum drbd_packet cmd = (dp_flags & DP_ZEROES) ? P_ZEROES : P_TRIM; 1693 struct p_trim *t = (struct p_trim*)p; 1694 t->size = cpu_to_be32(req->i.size); 1695 err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*t), NULL, 0); 1696 goto out; 1697 } 1698 digest_out = p + 1; 1699 1700 /* our digest is still only over the payload. 1701 * TRIM does not carry any payload. */ 1702 if (digest_size) 1703 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest_out); 1704 err = __send_command(peer_device->connection, device->vnr, sock, P_DATA, 1705 sizeof(*p) + digest_size, NULL, req->i.size); 1706 if (!err) { 1707 /* For protocol A, we have to memcpy the payload into 1708 * socket buffers, as we may complete right away 1709 * as soon as we handed it over to tcp, at which point the data 1710 * pages may become invalid. 1711 * 1712 * For data-integrity enabled, we copy it as well, so we can be 1713 * sure that even if the bio pages may still be modified, it 1714 * won't change the data on the wire, thus if the digest checks 1715 * out ok after sending on this side, but does not fit on the 1716 * receiving side, we sure have detected corruption elsewhere. 1717 */ 1718 if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || digest_size) 1719 err = _drbd_send_bio(peer_device, req->master_bio); 1720 else 1721 err = _drbd_send_zc_bio(peer_device, req->master_bio); 1722 1723 /* double check digest, sometimes buffers have been modified in flight. */ 1724 if (digest_size > 0 && digest_size <= 64) { 1725 /* 64 byte, 512 bit, is the largest digest size 1726 * currently supported in kernel crypto. */ 1727 unsigned char digest[64]; 1728 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest); 1729 if (memcmp(p + 1, digest, digest_size)) { 1730 drbd_warn(device, 1731 "Digest mismatch, buffer modified by upper layers during write: %llus +%u\n", 1732 (unsigned long long)req->i.sector, req->i.size); 1733 } 1734 } /* else if (digest_size > 64) { 1735 ... Be noisy about digest too large ... 1736 } */ 1737 } 1738 out: 1739 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */ 1740 1741 return err; 1742 } 1743 1744 /* answer packet, used to send data back for read requests: 1745 * Peer -> (diskless) R_PRIMARY (P_DATA_REPLY) 1746 * C_SYNC_SOURCE -> C_SYNC_TARGET (P_RS_DATA_REPLY) 1747 */ 1748 int drbd_send_block(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1749 struct drbd_peer_request *peer_req) 1750 { 1751 struct drbd_device *device = peer_device->device; 1752 struct drbd_socket *sock; 1753 struct p_data *p; 1754 int err; 1755 int digest_size; 1756 1757 sock = &peer_device->connection->data; 1758 p = drbd_prepare_command(peer_device, sock); 1759 1760 digest_size = peer_device->connection->integrity_tfm ? 1761 crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0; 1762 1763 if (!p) 1764 return -EIO; 1765 p->sector = cpu_to_be64(peer_req->i.sector); 1766 p->block_id = peer_req->block_id; 1767 p->seq_num = 0; /* unused */ 1768 p->dp_flags = 0; 1769 if (digest_size) 1770 drbd_csum_ee(peer_device->connection->integrity_tfm, peer_req, p + 1); 1771 err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*p) + digest_size, NULL, peer_req->i.size); 1772 if (!err) 1773 err = _drbd_send_zc_ee(peer_device, peer_req); 1774 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */ 1775 1776 return err; 1777 } 1778 1779 int drbd_send_out_of_sync(struct drbd_peer_device *peer_device, struct drbd_request *req) 1780 { 1781 struct drbd_socket *sock; 1782 struct p_block_desc *p; 1783 1784 sock = &peer_device->connection->data; 1785 p = drbd_prepare_command(peer_device, sock); 1786 if (!p) 1787 return -EIO; 1788 p->sector = cpu_to_be64(req->i.sector); 1789 p->blksize = cpu_to_be32(req->i.size); 1790 return drbd_send_command(peer_device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0); 1791 } 1792 1793 /* 1794 drbd_send distinguishes two cases: 1795 1796 Packets sent via the data socket "sock" 1797 and packets sent via the meta data socket "msock" 1798 1799 sock msock 1800 -----------------+-------------------------+------------------------------ 1801 timeout conf.timeout / 2 conf.timeout / 2 1802 timeout action send a ping via msock Abort communication 1803 and close all sockets 1804 */ 1805 1806 /* 1807 * you must have down()ed the appropriate [m]sock_mutex elsewhere! 1808 */ 1809 int drbd_send(struct drbd_connection *connection, struct socket *sock, 1810 void *buf, size_t size, unsigned msg_flags) 1811 { 1812 struct kvec iov = {.iov_base = buf, .iov_len = size}; 1813 struct msghdr msg = {.msg_flags = msg_flags | MSG_NOSIGNAL}; 1814 int rv, sent = 0; 1815 1816 if (!sock) 1817 return -EBADR; 1818 1819 /* THINK if (signal_pending) return ... ? */ 1820 1821 iov_iter_kvec(&msg.msg_iter, WRITE, &iov, 1, size); 1822 1823 if (sock == connection->data.socket) { 1824 rcu_read_lock(); 1825 connection->ko_count = rcu_dereference(connection->net_conf)->ko_count; 1826 rcu_read_unlock(); 1827 drbd_update_congested(connection); 1828 } 1829 do { 1830 rv = sock_sendmsg(sock, &msg); 1831 if (rv == -EAGAIN) { 1832 if (we_should_drop_the_connection(connection, sock)) 1833 break; 1834 else 1835 continue; 1836 } 1837 if (rv == -EINTR) { 1838 flush_signals(current); 1839 rv = 0; 1840 } 1841 if (rv < 0) 1842 break; 1843 sent += rv; 1844 } while (sent < size); 1845 1846 if (sock == connection->data.socket) 1847 clear_bit(NET_CONGESTED, &connection->flags); 1848 1849 if (rv <= 0) { 1850 if (rv != -EAGAIN) { 1851 drbd_err(connection, "%s_sendmsg returned %d\n", 1852 sock == connection->meta.socket ? "msock" : "sock", 1853 rv); 1854 conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD); 1855 } else 1856 conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD); 1857 } 1858 1859 return sent; 1860 } 1861 1862 /* 1863 * drbd_send_all - Send an entire buffer 1864 * 1865 * Returns 0 upon success and a negative error value otherwise. 1866 */ 1867 int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer, 1868 size_t size, unsigned msg_flags) 1869 { 1870 int err; 1871 1872 err = drbd_send(connection, sock, buffer, size, msg_flags); 1873 if (err < 0) 1874 return err; 1875 if (err != size) 1876 return -EIO; 1877 return 0; 1878 } 1879 1880 static int drbd_open(struct block_device *bdev, fmode_t mode) 1881 { 1882 struct drbd_device *device = bdev->bd_disk->private_data; 1883 unsigned long flags; 1884 int rv = 0; 1885 1886 mutex_lock(&drbd_main_mutex); 1887 spin_lock_irqsave(&device->resource->req_lock, flags); 1888 /* to have a stable device->state.role 1889 * and no race with updating open_cnt */ 1890 1891 if (device->state.role != R_PRIMARY) { 1892 if (mode & FMODE_WRITE) 1893 rv = -EROFS; 1894 else if (!drbd_allow_oos) 1895 rv = -EMEDIUMTYPE; 1896 } 1897 1898 if (!rv) 1899 device->open_cnt++; 1900 spin_unlock_irqrestore(&device->resource->req_lock, flags); 1901 mutex_unlock(&drbd_main_mutex); 1902 1903 return rv; 1904 } 1905 1906 static void drbd_release(struct gendisk *gd, fmode_t mode) 1907 { 1908 struct drbd_device *device = gd->private_data; 1909 mutex_lock(&drbd_main_mutex); 1910 device->open_cnt--; 1911 mutex_unlock(&drbd_main_mutex); 1912 } 1913 1914 /* need to hold resource->req_lock */ 1915 void drbd_queue_unplug(struct drbd_device *device) 1916 { 1917 if (device->state.pdsk >= D_INCONSISTENT && device->state.conn >= C_CONNECTED) { 1918 D_ASSERT(device, device->state.role == R_PRIMARY); 1919 if (test_and_clear_bit(UNPLUG_REMOTE, &device->flags)) { 1920 drbd_queue_work_if_unqueued( 1921 &first_peer_device(device)->connection->sender_work, 1922 &device->unplug_work); 1923 } 1924 } 1925 } 1926 1927 static void drbd_set_defaults(struct drbd_device *device) 1928 { 1929 /* Beware! The actual layout differs 1930 * between big endian and little endian */ 1931 device->state = (union drbd_dev_state) { 1932 { .role = R_SECONDARY, 1933 .peer = R_UNKNOWN, 1934 .conn = C_STANDALONE, 1935 .disk = D_DISKLESS, 1936 .pdsk = D_UNKNOWN, 1937 } }; 1938 } 1939 1940 void drbd_init_set_defaults(struct drbd_device *device) 1941 { 1942 /* the memset(,0,) did most of this. 1943 * note: only assignments, no allocation in here */ 1944 1945 drbd_set_defaults(device); 1946 1947 atomic_set(&device->ap_bio_cnt, 0); 1948 atomic_set(&device->ap_actlog_cnt, 0); 1949 atomic_set(&device->ap_pending_cnt, 0); 1950 atomic_set(&device->rs_pending_cnt, 0); 1951 atomic_set(&device->unacked_cnt, 0); 1952 atomic_set(&device->local_cnt, 0); 1953 atomic_set(&device->pp_in_use_by_net, 0); 1954 atomic_set(&device->rs_sect_in, 0); 1955 atomic_set(&device->rs_sect_ev, 0); 1956 atomic_set(&device->ap_in_flight, 0); 1957 atomic_set(&device->md_io.in_use, 0); 1958 1959 mutex_init(&device->own_state_mutex); 1960 device->state_mutex = &device->own_state_mutex; 1961 1962 spin_lock_init(&device->al_lock); 1963 spin_lock_init(&device->peer_seq_lock); 1964 1965 INIT_LIST_HEAD(&device->active_ee); 1966 INIT_LIST_HEAD(&device->sync_ee); 1967 INIT_LIST_HEAD(&device->done_ee); 1968 INIT_LIST_HEAD(&device->read_ee); 1969 INIT_LIST_HEAD(&device->net_ee); 1970 INIT_LIST_HEAD(&device->resync_reads); 1971 INIT_LIST_HEAD(&device->resync_work.list); 1972 INIT_LIST_HEAD(&device->unplug_work.list); 1973 INIT_LIST_HEAD(&device->bm_io_work.w.list); 1974 INIT_LIST_HEAD(&device->pending_master_completion[0]); 1975 INIT_LIST_HEAD(&device->pending_master_completion[1]); 1976 INIT_LIST_HEAD(&device->pending_completion[0]); 1977 INIT_LIST_HEAD(&device->pending_completion[1]); 1978 1979 device->resync_work.cb = w_resync_timer; 1980 device->unplug_work.cb = w_send_write_hint; 1981 device->bm_io_work.w.cb = w_bitmap_io; 1982 1983 timer_setup(&device->resync_timer, resync_timer_fn, 0); 1984 timer_setup(&device->md_sync_timer, md_sync_timer_fn, 0); 1985 timer_setup(&device->start_resync_timer, start_resync_timer_fn, 0); 1986 timer_setup(&device->request_timer, request_timer_fn, 0); 1987 1988 init_waitqueue_head(&device->misc_wait); 1989 init_waitqueue_head(&device->state_wait); 1990 init_waitqueue_head(&device->ee_wait); 1991 init_waitqueue_head(&device->al_wait); 1992 init_waitqueue_head(&device->seq_wait); 1993 1994 device->resync_wenr = LC_FREE; 1995 device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE; 1996 device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE; 1997 } 1998 1999 void drbd_set_my_capacity(struct drbd_device *device, sector_t size) 2000 { 2001 char ppb[10]; 2002 2003 set_capacity_and_notify(device->vdisk, size); 2004 2005 drbd_info(device, "size = %s (%llu KB)\n", 2006 ppsize(ppb, size>>1), (unsigned long long)size>>1); 2007 } 2008 2009 void drbd_device_cleanup(struct drbd_device *device) 2010 { 2011 int i; 2012 if (first_peer_device(device)->connection->receiver.t_state != NONE) 2013 drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n", 2014 first_peer_device(device)->connection->receiver.t_state); 2015 2016 device->al_writ_cnt = 2017 device->bm_writ_cnt = 2018 device->read_cnt = 2019 device->recv_cnt = 2020 device->send_cnt = 2021 device->writ_cnt = 2022 device->p_size = 2023 device->rs_start = 2024 device->rs_total = 2025 device->rs_failed = 0; 2026 device->rs_last_events = 0; 2027 device->rs_last_sect_ev = 0; 2028 for (i = 0; i < DRBD_SYNC_MARKS; i++) { 2029 device->rs_mark_left[i] = 0; 2030 device->rs_mark_time[i] = 0; 2031 } 2032 D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL); 2033 2034 set_capacity_and_notify(device->vdisk, 0); 2035 if (device->bitmap) { 2036 /* maybe never allocated. */ 2037 drbd_bm_resize(device, 0, 1); 2038 drbd_bm_cleanup(device); 2039 } 2040 2041 drbd_backing_dev_free(device, device->ldev); 2042 device->ldev = NULL; 2043 2044 clear_bit(AL_SUSPENDED, &device->flags); 2045 2046 D_ASSERT(device, list_empty(&device->active_ee)); 2047 D_ASSERT(device, list_empty(&device->sync_ee)); 2048 D_ASSERT(device, list_empty(&device->done_ee)); 2049 D_ASSERT(device, list_empty(&device->read_ee)); 2050 D_ASSERT(device, list_empty(&device->net_ee)); 2051 D_ASSERT(device, list_empty(&device->resync_reads)); 2052 D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q)); 2053 D_ASSERT(device, list_empty(&device->resync_work.list)); 2054 D_ASSERT(device, list_empty(&device->unplug_work.list)); 2055 2056 drbd_set_defaults(device); 2057 } 2058 2059 2060 static void drbd_destroy_mempools(void) 2061 { 2062 struct page *page; 2063 2064 while (drbd_pp_pool) { 2065 page = drbd_pp_pool; 2066 drbd_pp_pool = (struct page *)page_private(page); 2067 __free_page(page); 2068 drbd_pp_vacant--; 2069 } 2070 2071 /* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */ 2072 2073 bioset_exit(&drbd_io_bio_set); 2074 bioset_exit(&drbd_md_io_bio_set); 2075 mempool_exit(&drbd_md_io_page_pool); 2076 mempool_exit(&drbd_ee_mempool); 2077 mempool_exit(&drbd_request_mempool); 2078 kmem_cache_destroy(drbd_ee_cache); 2079 kmem_cache_destroy(drbd_request_cache); 2080 kmem_cache_destroy(drbd_bm_ext_cache); 2081 kmem_cache_destroy(drbd_al_ext_cache); 2082 2083 drbd_ee_cache = NULL; 2084 drbd_request_cache = NULL; 2085 drbd_bm_ext_cache = NULL; 2086 drbd_al_ext_cache = NULL; 2087 2088 return; 2089 } 2090 2091 static int drbd_create_mempools(void) 2092 { 2093 struct page *page; 2094 const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * drbd_minor_count; 2095 int i, ret; 2096 2097 /* caches */ 2098 drbd_request_cache = kmem_cache_create( 2099 "drbd_req", sizeof(struct drbd_request), 0, 0, NULL); 2100 if (drbd_request_cache == NULL) 2101 goto Enomem; 2102 2103 drbd_ee_cache = kmem_cache_create( 2104 "drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL); 2105 if (drbd_ee_cache == NULL) 2106 goto Enomem; 2107 2108 drbd_bm_ext_cache = kmem_cache_create( 2109 "drbd_bm", sizeof(struct bm_extent), 0, 0, NULL); 2110 if (drbd_bm_ext_cache == NULL) 2111 goto Enomem; 2112 2113 drbd_al_ext_cache = kmem_cache_create( 2114 "drbd_al", sizeof(struct lc_element), 0, 0, NULL); 2115 if (drbd_al_ext_cache == NULL) 2116 goto Enomem; 2117 2118 /* mempools */ 2119 ret = bioset_init(&drbd_io_bio_set, BIO_POOL_SIZE, 0, 0); 2120 if (ret) 2121 goto Enomem; 2122 2123 ret = bioset_init(&drbd_md_io_bio_set, DRBD_MIN_POOL_PAGES, 0, 2124 BIOSET_NEED_BVECS); 2125 if (ret) 2126 goto Enomem; 2127 2128 ret = mempool_init_page_pool(&drbd_md_io_page_pool, DRBD_MIN_POOL_PAGES, 0); 2129 if (ret) 2130 goto Enomem; 2131 2132 ret = mempool_init_slab_pool(&drbd_request_mempool, number, 2133 drbd_request_cache); 2134 if (ret) 2135 goto Enomem; 2136 2137 ret = mempool_init_slab_pool(&drbd_ee_mempool, number, drbd_ee_cache); 2138 if (ret) 2139 goto Enomem; 2140 2141 for (i = 0; i < number; i++) { 2142 page = alloc_page(GFP_HIGHUSER); 2143 if (!page) 2144 goto Enomem; 2145 set_page_private(page, (unsigned long)drbd_pp_pool); 2146 drbd_pp_pool = page; 2147 } 2148 drbd_pp_vacant = number; 2149 2150 return 0; 2151 2152 Enomem: 2153 drbd_destroy_mempools(); /* in case we allocated some */ 2154 return -ENOMEM; 2155 } 2156 2157 static void drbd_release_all_peer_reqs(struct drbd_device *device) 2158 { 2159 int rr; 2160 2161 rr = drbd_free_peer_reqs(device, &device->active_ee); 2162 if (rr) 2163 drbd_err(device, "%d EEs in active list found!\n", rr); 2164 2165 rr = drbd_free_peer_reqs(device, &device->sync_ee); 2166 if (rr) 2167 drbd_err(device, "%d EEs in sync list found!\n", rr); 2168 2169 rr = drbd_free_peer_reqs(device, &device->read_ee); 2170 if (rr) 2171 drbd_err(device, "%d EEs in read list found!\n", rr); 2172 2173 rr = drbd_free_peer_reqs(device, &device->done_ee); 2174 if (rr) 2175 drbd_err(device, "%d EEs in done list found!\n", rr); 2176 2177 rr = drbd_free_peer_reqs(device, &device->net_ee); 2178 if (rr) 2179 drbd_err(device, "%d EEs in net list found!\n", rr); 2180 } 2181 2182 /* caution. no locking. */ 2183 void drbd_destroy_device(struct kref *kref) 2184 { 2185 struct drbd_device *device = container_of(kref, struct drbd_device, kref); 2186 struct drbd_resource *resource = device->resource; 2187 struct drbd_peer_device *peer_device, *tmp_peer_device; 2188 2189 del_timer_sync(&device->request_timer); 2190 2191 /* paranoia asserts */ 2192 D_ASSERT(device, device->open_cnt == 0); 2193 /* end paranoia asserts */ 2194 2195 /* cleanup stuff that may have been allocated during 2196 * device (re-)configuration or state changes */ 2197 2198 drbd_backing_dev_free(device, device->ldev); 2199 device->ldev = NULL; 2200 2201 drbd_release_all_peer_reqs(device); 2202 2203 lc_destroy(device->act_log); 2204 lc_destroy(device->resync); 2205 2206 kfree(device->p_uuid); 2207 /* device->p_uuid = NULL; */ 2208 2209 if (device->bitmap) /* should no longer be there. */ 2210 drbd_bm_cleanup(device); 2211 __free_page(device->md_io.page); 2212 blk_cleanup_disk(device->vdisk); 2213 kfree(device->rs_plan_s); 2214 2215 /* not for_each_connection(connection, resource): 2216 * those may have been cleaned up and disassociated already. 2217 */ 2218 for_each_peer_device_safe(peer_device, tmp_peer_device, device) { 2219 kref_put(&peer_device->connection->kref, drbd_destroy_connection); 2220 kfree(peer_device); 2221 } 2222 memset(device, 0xfd, sizeof(*device)); 2223 kfree(device); 2224 kref_put(&resource->kref, drbd_destroy_resource); 2225 } 2226 2227 /* One global retry thread, if we need to push back some bio and have it 2228 * reinserted through our make request function. 2229 */ 2230 static struct retry_worker { 2231 struct workqueue_struct *wq; 2232 struct work_struct worker; 2233 2234 spinlock_t lock; 2235 struct list_head writes; 2236 } retry; 2237 2238 static void do_retry(struct work_struct *ws) 2239 { 2240 struct retry_worker *retry = container_of(ws, struct retry_worker, worker); 2241 LIST_HEAD(writes); 2242 struct drbd_request *req, *tmp; 2243 2244 spin_lock_irq(&retry->lock); 2245 list_splice_init(&retry->writes, &writes); 2246 spin_unlock_irq(&retry->lock); 2247 2248 list_for_each_entry_safe(req, tmp, &writes, tl_requests) { 2249 struct drbd_device *device = req->device; 2250 struct bio *bio = req->master_bio; 2251 bool expected; 2252 2253 expected = 2254 expect(atomic_read(&req->completion_ref) == 0) && 2255 expect(req->rq_state & RQ_POSTPONED) && 2256 expect((req->rq_state & RQ_LOCAL_PENDING) == 0 || 2257 (req->rq_state & RQ_LOCAL_ABORTED) != 0); 2258 2259 if (!expected) 2260 drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n", 2261 req, atomic_read(&req->completion_ref), 2262 req->rq_state); 2263 2264 /* We still need to put one kref associated with the 2265 * "completion_ref" going zero in the code path that queued it 2266 * here. The request object may still be referenced by a 2267 * frozen local req->private_bio, in case we force-detached. 2268 */ 2269 kref_put(&req->kref, drbd_req_destroy); 2270 2271 /* A single suspended or otherwise blocking device may stall 2272 * all others as well. Fortunately, this code path is to 2273 * recover from a situation that "should not happen": 2274 * concurrent writes in multi-primary setup. 2275 * In a "normal" lifecycle, this workqueue is supposed to be 2276 * destroyed without ever doing anything. 2277 * If it turns out to be an issue anyways, we can do per 2278 * resource (replication group) or per device (minor) retry 2279 * workqueues instead. 2280 */ 2281 2282 /* We are not just doing submit_bio_noacct(), 2283 * as we want to keep the start_time information. */ 2284 inc_ap_bio(device); 2285 __drbd_make_request(device, bio); 2286 } 2287 } 2288 2289 /* called via drbd_req_put_completion_ref(), 2290 * holds resource->req_lock */ 2291 void drbd_restart_request(struct drbd_request *req) 2292 { 2293 unsigned long flags; 2294 spin_lock_irqsave(&retry.lock, flags); 2295 list_move_tail(&req->tl_requests, &retry.writes); 2296 spin_unlock_irqrestore(&retry.lock, flags); 2297 2298 /* Drop the extra reference that would otherwise 2299 * have been dropped by complete_master_bio. 2300 * do_retry() needs to grab a new one. */ 2301 dec_ap_bio(req->device); 2302 2303 queue_work(retry.wq, &retry.worker); 2304 } 2305 2306 void drbd_destroy_resource(struct kref *kref) 2307 { 2308 struct drbd_resource *resource = 2309 container_of(kref, struct drbd_resource, kref); 2310 2311 idr_destroy(&resource->devices); 2312 free_cpumask_var(resource->cpu_mask); 2313 kfree(resource->name); 2314 memset(resource, 0xf2, sizeof(*resource)); 2315 kfree(resource); 2316 } 2317 2318 void drbd_free_resource(struct drbd_resource *resource) 2319 { 2320 struct drbd_connection *connection, *tmp; 2321 2322 for_each_connection_safe(connection, tmp, resource) { 2323 list_del(&connection->connections); 2324 drbd_debugfs_connection_cleanup(connection); 2325 kref_put(&connection->kref, drbd_destroy_connection); 2326 } 2327 drbd_debugfs_resource_cleanup(resource); 2328 kref_put(&resource->kref, drbd_destroy_resource); 2329 } 2330 2331 static void drbd_cleanup(void) 2332 { 2333 unsigned int i; 2334 struct drbd_device *device; 2335 struct drbd_resource *resource, *tmp; 2336 2337 /* first remove proc, 2338 * drbdsetup uses it's presence to detect 2339 * whether DRBD is loaded. 2340 * If we would get stuck in proc removal, 2341 * but have netlink already deregistered, 2342 * some drbdsetup commands may wait forever 2343 * for an answer. 2344 */ 2345 if (drbd_proc) 2346 remove_proc_entry("drbd", NULL); 2347 2348 if (retry.wq) 2349 destroy_workqueue(retry.wq); 2350 2351 drbd_genl_unregister(); 2352 2353 idr_for_each_entry(&drbd_devices, device, i) 2354 drbd_delete_device(device); 2355 2356 /* not _rcu since, no other updater anymore. Genl already unregistered */ 2357 for_each_resource_safe(resource, tmp, &drbd_resources) { 2358 list_del(&resource->resources); 2359 drbd_free_resource(resource); 2360 } 2361 2362 drbd_debugfs_cleanup(); 2363 2364 drbd_destroy_mempools(); 2365 unregister_blkdev(DRBD_MAJOR, "drbd"); 2366 2367 idr_destroy(&drbd_devices); 2368 2369 pr_info("module cleanup done.\n"); 2370 } 2371 2372 static void drbd_init_workqueue(struct drbd_work_queue* wq) 2373 { 2374 spin_lock_init(&wq->q_lock); 2375 INIT_LIST_HEAD(&wq->q); 2376 init_waitqueue_head(&wq->q_wait); 2377 } 2378 2379 struct completion_work { 2380 struct drbd_work w; 2381 struct completion done; 2382 }; 2383 2384 static int w_complete(struct drbd_work *w, int cancel) 2385 { 2386 struct completion_work *completion_work = 2387 container_of(w, struct completion_work, w); 2388 2389 complete(&completion_work->done); 2390 return 0; 2391 } 2392 2393 void drbd_flush_workqueue(struct drbd_work_queue *work_queue) 2394 { 2395 struct completion_work completion_work; 2396 2397 completion_work.w.cb = w_complete; 2398 init_completion(&completion_work.done); 2399 drbd_queue_work(work_queue, &completion_work.w); 2400 wait_for_completion(&completion_work.done); 2401 } 2402 2403 struct drbd_resource *drbd_find_resource(const char *name) 2404 { 2405 struct drbd_resource *resource; 2406 2407 if (!name || !name[0]) 2408 return NULL; 2409 2410 rcu_read_lock(); 2411 for_each_resource_rcu(resource, &drbd_resources) { 2412 if (!strcmp(resource->name, name)) { 2413 kref_get(&resource->kref); 2414 goto found; 2415 } 2416 } 2417 resource = NULL; 2418 found: 2419 rcu_read_unlock(); 2420 return resource; 2421 } 2422 2423 struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len, 2424 void *peer_addr, int peer_addr_len) 2425 { 2426 struct drbd_resource *resource; 2427 struct drbd_connection *connection; 2428 2429 rcu_read_lock(); 2430 for_each_resource_rcu(resource, &drbd_resources) { 2431 for_each_connection_rcu(connection, resource) { 2432 if (connection->my_addr_len == my_addr_len && 2433 connection->peer_addr_len == peer_addr_len && 2434 !memcmp(&connection->my_addr, my_addr, my_addr_len) && 2435 !memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) { 2436 kref_get(&connection->kref); 2437 goto found; 2438 } 2439 } 2440 } 2441 connection = NULL; 2442 found: 2443 rcu_read_unlock(); 2444 return connection; 2445 } 2446 2447 static int drbd_alloc_socket(struct drbd_socket *socket) 2448 { 2449 socket->rbuf = (void *) __get_free_page(GFP_KERNEL); 2450 if (!socket->rbuf) 2451 return -ENOMEM; 2452 socket->sbuf = (void *) __get_free_page(GFP_KERNEL); 2453 if (!socket->sbuf) 2454 return -ENOMEM; 2455 return 0; 2456 } 2457 2458 static void drbd_free_socket(struct drbd_socket *socket) 2459 { 2460 free_page((unsigned long) socket->sbuf); 2461 free_page((unsigned long) socket->rbuf); 2462 } 2463 2464 void conn_free_crypto(struct drbd_connection *connection) 2465 { 2466 drbd_free_sock(connection); 2467 2468 crypto_free_shash(connection->csums_tfm); 2469 crypto_free_shash(connection->verify_tfm); 2470 crypto_free_shash(connection->cram_hmac_tfm); 2471 crypto_free_shash(connection->integrity_tfm); 2472 crypto_free_shash(connection->peer_integrity_tfm); 2473 kfree(connection->int_dig_in); 2474 kfree(connection->int_dig_vv); 2475 2476 connection->csums_tfm = NULL; 2477 connection->verify_tfm = NULL; 2478 connection->cram_hmac_tfm = NULL; 2479 connection->integrity_tfm = NULL; 2480 connection->peer_integrity_tfm = NULL; 2481 connection->int_dig_in = NULL; 2482 connection->int_dig_vv = NULL; 2483 } 2484 2485 int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts) 2486 { 2487 struct drbd_connection *connection; 2488 cpumask_var_t new_cpu_mask; 2489 int err; 2490 2491 if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL)) 2492 return -ENOMEM; 2493 2494 /* silently ignore cpu mask on UP kernel */ 2495 if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) { 2496 err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE, 2497 cpumask_bits(new_cpu_mask), nr_cpu_ids); 2498 if (err == -EOVERFLOW) { 2499 /* So what. mask it out. */ 2500 cpumask_var_t tmp_cpu_mask; 2501 if (zalloc_cpumask_var(&tmp_cpu_mask, GFP_KERNEL)) { 2502 cpumask_setall(tmp_cpu_mask); 2503 cpumask_and(new_cpu_mask, new_cpu_mask, tmp_cpu_mask); 2504 drbd_warn(resource, "Overflow in bitmap_parse(%.12s%s), truncating to %u bits\n", 2505 res_opts->cpu_mask, 2506 strlen(res_opts->cpu_mask) > 12 ? "..." : "", 2507 nr_cpu_ids); 2508 free_cpumask_var(tmp_cpu_mask); 2509 err = 0; 2510 } 2511 } 2512 if (err) { 2513 drbd_warn(resource, "bitmap_parse() failed with %d\n", err); 2514 /* retcode = ERR_CPU_MASK_PARSE; */ 2515 goto fail; 2516 } 2517 } 2518 resource->res_opts = *res_opts; 2519 if (cpumask_empty(new_cpu_mask)) 2520 drbd_calc_cpu_mask(&new_cpu_mask); 2521 if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) { 2522 cpumask_copy(resource->cpu_mask, new_cpu_mask); 2523 for_each_connection_rcu(connection, resource) { 2524 connection->receiver.reset_cpu_mask = 1; 2525 connection->ack_receiver.reset_cpu_mask = 1; 2526 connection->worker.reset_cpu_mask = 1; 2527 } 2528 } 2529 err = 0; 2530 2531 fail: 2532 free_cpumask_var(new_cpu_mask); 2533 return err; 2534 2535 } 2536 2537 struct drbd_resource *drbd_create_resource(const char *name) 2538 { 2539 struct drbd_resource *resource; 2540 2541 resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL); 2542 if (!resource) 2543 goto fail; 2544 resource->name = kstrdup(name, GFP_KERNEL); 2545 if (!resource->name) 2546 goto fail_free_resource; 2547 if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL)) 2548 goto fail_free_name; 2549 kref_init(&resource->kref); 2550 idr_init(&resource->devices); 2551 INIT_LIST_HEAD(&resource->connections); 2552 resource->write_ordering = WO_BDEV_FLUSH; 2553 list_add_tail_rcu(&resource->resources, &drbd_resources); 2554 mutex_init(&resource->conf_update); 2555 mutex_init(&resource->adm_mutex); 2556 spin_lock_init(&resource->req_lock); 2557 drbd_debugfs_resource_add(resource); 2558 return resource; 2559 2560 fail_free_name: 2561 kfree(resource->name); 2562 fail_free_resource: 2563 kfree(resource); 2564 fail: 2565 return NULL; 2566 } 2567 2568 /* caller must be under adm_mutex */ 2569 struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts) 2570 { 2571 struct drbd_resource *resource; 2572 struct drbd_connection *connection; 2573 2574 connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL); 2575 if (!connection) 2576 return NULL; 2577 2578 if (drbd_alloc_socket(&connection->data)) 2579 goto fail; 2580 if (drbd_alloc_socket(&connection->meta)) 2581 goto fail; 2582 2583 connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL); 2584 if (!connection->current_epoch) 2585 goto fail; 2586 2587 INIT_LIST_HEAD(&connection->transfer_log); 2588 2589 INIT_LIST_HEAD(&connection->current_epoch->list); 2590 connection->epochs = 1; 2591 spin_lock_init(&connection->epoch_lock); 2592 2593 connection->send.seen_any_write_yet = false; 2594 connection->send.current_epoch_nr = 0; 2595 connection->send.current_epoch_writes = 0; 2596 2597 resource = drbd_create_resource(name); 2598 if (!resource) 2599 goto fail; 2600 2601 connection->cstate = C_STANDALONE; 2602 mutex_init(&connection->cstate_mutex); 2603 init_waitqueue_head(&connection->ping_wait); 2604 idr_init(&connection->peer_devices); 2605 2606 drbd_init_workqueue(&connection->sender_work); 2607 mutex_init(&connection->data.mutex); 2608 mutex_init(&connection->meta.mutex); 2609 2610 drbd_thread_init(resource, &connection->receiver, drbd_receiver, "receiver"); 2611 connection->receiver.connection = connection; 2612 drbd_thread_init(resource, &connection->worker, drbd_worker, "worker"); 2613 connection->worker.connection = connection; 2614 drbd_thread_init(resource, &connection->ack_receiver, drbd_ack_receiver, "ack_recv"); 2615 connection->ack_receiver.connection = connection; 2616 2617 kref_init(&connection->kref); 2618 2619 connection->resource = resource; 2620 2621 if (set_resource_options(resource, res_opts)) 2622 goto fail_resource; 2623 2624 kref_get(&resource->kref); 2625 list_add_tail_rcu(&connection->connections, &resource->connections); 2626 drbd_debugfs_connection_add(connection); 2627 return connection; 2628 2629 fail_resource: 2630 list_del(&resource->resources); 2631 drbd_free_resource(resource); 2632 fail: 2633 kfree(connection->current_epoch); 2634 drbd_free_socket(&connection->meta); 2635 drbd_free_socket(&connection->data); 2636 kfree(connection); 2637 return NULL; 2638 } 2639 2640 void drbd_destroy_connection(struct kref *kref) 2641 { 2642 struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref); 2643 struct drbd_resource *resource = connection->resource; 2644 2645 if (atomic_read(&connection->current_epoch->epoch_size) != 0) 2646 drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size)); 2647 kfree(connection->current_epoch); 2648 2649 idr_destroy(&connection->peer_devices); 2650 2651 drbd_free_socket(&connection->meta); 2652 drbd_free_socket(&connection->data); 2653 kfree(connection->int_dig_in); 2654 kfree(connection->int_dig_vv); 2655 memset(connection, 0xfc, sizeof(*connection)); 2656 kfree(connection); 2657 kref_put(&resource->kref, drbd_destroy_resource); 2658 } 2659 2660 static int init_submitter(struct drbd_device *device) 2661 { 2662 /* opencoded create_singlethread_workqueue(), 2663 * to be able to say "drbd%d", ..., minor */ 2664 device->submit.wq = 2665 alloc_ordered_workqueue("drbd%u_submit", WQ_MEM_RECLAIM, device->minor); 2666 if (!device->submit.wq) 2667 return -ENOMEM; 2668 2669 INIT_WORK(&device->submit.worker, do_submit); 2670 INIT_LIST_HEAD(&device->submit.writes); 2671 return 0; 2672 } 2673 2674 enum drbd_ret_code drbd_create_device(struct drbd_config_context *adm_ctx, unsigned int minor) 2675 { 2676 struct drbd_resource *resource = adm_ctx->resource; 2677 struct drbd_connection *connection; 2678 struct drbd_device *device; 2679 struct drbd_peer_device *peer_device, *tmp_peer_device; 2680 struct gendisk *disk; 2681 int id; 2682 int vnr = adm_ctx->volume; 2683 enum drbd_ret_code err = ERR_NOMEM; 2684 2685 device = minor_to_device(minor); 2686 if (device) 2687 return ERR_MINOR_OR_VOLUME_EXISTS; 2688 2689 /* GFP_KERNEL, we are outside of all write-out paths */ 2690 device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL); 2691 if (!device) 2692 return ERR_NOMEM; 2693 kref_init(&device->kref); 2694 2695 kref_get(&resource->kref); 2696 device->resource = resource; 2697 device->minor = minor; 2698 device->vnr = vnr; 2699 2700 drbd_init_set_defaults(device); 2701 2702 disk = blk_alloc_disk(NUMA_NO_NODE); 2703 if (!disk) 2704 goto out_no_disk; 2705 2706 device->vdisk = disk; 2707 device->rq_queue = disk->queue; 2708 2709 set_disk_ro(disk, true); 2710 2711 disk->major = DRBD_MAJOR; 2712 disk->first_minor = minor; 2713 disk->minors = 1; 2714 disk->fops = &drbd_ops; 2715 disk->flags |= GENHD_FL_NO_PART; 2716 sprintf(disk->disk_name, "drbd%d", minor); 2717 disk->private_data = device; 2718 2719 blk_queue_write_cache(disk->queue, true, true); 2720 /* Setting the max_hw_sectors to an odd value of 8kibyte here 2721 This triggers a max_bio_size message upon first attach or connect */ 2722 blk_queue_max_hw_sectors(disk->queue, DRBD_MAX_BIO_SIZE_SAFE >> 8); 2723 2724 device->md_io.page = alloc_page(GFP_KERNEL); 2725 if (!device->md_io.page) 2726 goto out_no_io_page; 2727 2728 if (drbd_bm_init(device)) 2729 goto out_no_bitmap; 2730 device->read_requests = RB_ROOT; 2731 device->write_requests = RB_ROOT; 2732 2733 id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL); 2734 if (id < 0) { 2735 if (id == -ENOSPC) 2736 err = ERR_MINOR_OR_VOLUME_EXISTS; 2737 goto out_no_minor_idr; 2738 } 2739 kref_get(&device->kref); 2740 2741 id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL); 2742 if (id < 0) { 2743 if (id == -ENOSPC) 2744 err = ERR_MINOR_OR_VOLUME_EXISTS; 2745 goto out_idr_remove_minor; 2746 } 2747 kref_get(&device->kref); 2748 2749 INIT_LIST_HEAD(&device->peer_devices); 2750 INIT_LIST_HEAD(&device->pending_bitmap_io); 2751 for_each_connection(connection, resource) { 2752 peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL); 2753 if (!peer_device) 2754 goto out_idr_remove_from_resource; 2755 peer_device->connection = connection; 2756 peer_device->device = device; 2757 2758 list_add(&peer_device->peer_devices, &device->peer_devices); 2759 kref_get(&device->kref); 2760 2761 id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL); 2762 if (id < 0) { 2763 if (id == -ENOSPC) 2764 err = ERR_INVALID_REQUEST; 2765 goto out_idr_remove_from_resource; 2766 } 2767 kref_get(&connection->kref); 2768 INIT_WORK(&peer_device->send_acks_work, drbd_send_acks_wf); 2769 } 2770 2771 if (init_submitter(device)) { 2772 err = ERR_NOMEM; 2773 goto out_idr_remove_vol; 2774 } 2775 2776 err = add_disk(disk); 2777 if (err) 2778 goto out_idr_remove_vol; 2779 2780 /* inherit the connection state */ 2781 device->state.conn = first_connection(resource)->cstate; 2782 if (device->state.conn == C_WF_REPORT_PARAMS) { 2783 for_each_peer_device(peer_device, device) 2784 drbd_connected(peer_device); 2785 } 2786 /* move to create_peer_device() */ 2787 for_each_peer_device(peer_device, device) 2788 drbd_debugfs_peer_device_add(peer_device); 2789 drbd_debugfs_device_add(device); 2790 return NO_ERROR; 2791 2792 out_idr_remove_vol: 2793 idr_remove(&connection->peer_devices, vnr); 2794 out_idr_remove_from_resource: 2795 for_each_connection(connection, resource) { 2796 peer_device = idr_remove(&connection->peer_devices, vnr); 2797 if (peer_device) 2798 kref_put(&connection->kref, drbd_destroy_connection); 2799 } 2800 for_each_peer_device_safe(peer_device, tmp_peer_device, device) { 2801 list_del(&peer_device->peer_devices); 2802 kfree(peer_device); 2803 } 2804 idr_remove(&resource->devices, vnr); 2805 out_idr_remove_minor: 2806 idr_remove(&drbd_devices, minor); 2807 synchronize_rcu(); 2808 out_no_minor_idr: 2809 drbd_bm_cleanup(device); 2810 out_no_bitmap: 2811 __free_page(device->md_io.page); 2812 out_no_io_page: 2813 blk_cleanup_disk(disk); 2814 out_no_disk: 2815 kref_put(&resource->kref, drbd_destroy_resource); 2816 kfree(device); 2817 return err; 2818 } 2819 2820 void drbd_delete_device(struct drbd_device *device) 2821 { 2822 struct drbd_resource *resource = device->resource; 2823 struct drbd_connection *connection; 2824 struct drbd_peer_device *peer_device; 2825 2826 /* move to free_peer_device() */ 2827 for_each_peer_device(peer_device, device) 2828 drbd_debugfs_peer_device_cleanup(peer_device); 2829 drbd_debugfs_device_cleanup(device); 2830 for_each_connection(connection, resource) { 2831 idr_remove(&connection->peer_devices, device->vnr); 2832 kref_put(&device->kref, drbd_destroy_device); 2833 } 2834 idr_remove(&resource->devices, device->vnr); 2835 kref_put(&device->kref, drbd_destroy_device); 2836 idr_remove(&drbd_devices, device_to_minor(device)); 2837 kref_put(&device->kref, drbd_destroy_device); 2838 del_gendisk(device->vdisk); 2839 synchronize_rcu(); 2840 kref_put(&device->kref, drbd_destroy_device); 2841 } 2842 2843 static int __init drbd_init(void) 2844 { 2845 int err; 2846 2847 if (drbd_minor_count < DRBD_MINOR_COUNT_MIN || drbd_minor_count > DRBD_MINOR_COUNT_MAX) { 2848 pr_err("invalid minor_count (%d)\n", drbd_minor_count); 2849 #ifdef MODULE 2850 return -EINVAL; 2851 #else 2852 drbd_minor_count = DRBD_MINOR_COUNT_DEF; 2853 #endif 2854 } 2855 2856 err = register_blkdev(DRBD_MAJOR, "drbd"); 2857 if (err) { 2858 pr_err("unable to register block device major %d\n", 2859 DRBD_MAJOR); 2860 return err; 2861 } 2862 2863 /* 2864 * allocate all necessary structs 2865 */ 2866 init_waitqueue_head(&drbd_pp_wait); 2867 2868 drbd_proc = NULL; /* play safe for drbd_cleanup */ 2869 idr_init(&drbd_devices); 2870 2871 mutex_init(&resources_mutex); 2872 INIT_LIST_HEAD(&drbd_resources); 2873 2874 err = drbd_genl_register(); 2875 if (err) { 2876 pr_err("unable to register generic netlink family\n"); 2877 goto fail; 2878 } 2879 2880 err = drbd_create_mempools(); 2881 if (err) 2882 goto fail; 2883 2884 err = -ENOMEM; 2885 drbd_proc = proc_create_single("drbd", S_IFREG | 0444 , NULL, drbd_seq_show); 2886 if (!drbd_proc) { 2887 pr_err("unable to register proc file\n"); 2888 goto fail; 2889 } 2890 2891 retry.wq = create_singlethread_workqueue("drbd-reissue"); 2892 if (!retry.wq) { 2893 pr_err("unable to create retry workqueue\n"); 2894 goto fail; 2895 } 2896 INIT_WORK(&retry.worker, do_retry); 2897 spin_lock_init(&retry.lock); 2898 INIT_LIST_HEAD(&retry.writes); 2899 2900 drbd_debugfs_init(); 2901 2902 pr_info("initialized. " 2903 "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n", 2904 API_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX); 2905 pr_info("%s\n", drbd_buildtag()); 2906 pr_info("registered as block device major %d\n", DRBD_MAJOR); 2907 return 0; /* Success! */ 2908 2909 fail: 2910 drbd_cleanup(); 2911 if (err == -ENOMEM) 2912 pr_err("ran out of memory\n"); 2913 else 2914 pr_err("initialization failure\n"); 2915 return err; 2916 } 2917 2918 static void drbd_free_one_sock(struct drbd_socket *ds) 2919 { 2920 struct socket *s; 2921 mutex_lock(&ds->mutex); 2922 s = ds->socket; 2923 ds->socket = NULL; 2924 mutex_unlock(&ds->mutex); 2925 if (s) { 2926 /* so debugfs does not need to mutex_lock() */ 2927 synchronize_rcu(); 2928 kernel_sock_shutdown(s, SHUT_RDWR); 2929 sock_release(s); 2930 } 2931 } 2932 2933 void drbd_free_sock(struct drbd_connection *connection) 2934 { 2935 if (connection->data.socket) 2936 drbd_free_one_sock(&connection->data); 2937 if (connection->meta.socket) 2938 drbd_free_one_sock(&connection->meta); 2939 } 2940 2941 /* meta data management */ 2942 2943 void conn_md_sync(struct drbd_connection *connection) 2944 { 2945 struct drbd_peer_device *peer_device; 2946 int vnr; 2947 2948 rcu_read_lock(); 2949 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 2950 struct drbd_device *device = peer_device->device; 2951 2952 kref_get(&device->kref); 2953 rcu_read_unlock(); 2954 drbd_md_sync(device); 2955 kref_put(&device->kref, drbd_destroy_device); 2956 rcu_read_lock(); 2957 } 2958 rcu_read_unlock(); 2959 } 2960 2961 /* aligned 4kByte */ 2962 struct meta_data_on_disk { 2963 u64 la_size_sect; /* last agreed size. */ 2964 u64 uuid[UI_SIZE]; /* UUIDs. */ 2965 u64 device_uuid; 2966 u64 reserved_u64_1; 2967 u32 flags; /* MDF */ 2968 u32 magic; 2969 u32 md_size_sect; 2970 u32 al_offset; /* offset to this block */ 2971 u32 al_nr_extents; /* important for restoring the AL (userspace) */ 2972 /* `-- act_log->nr_elements <-- ldev->dc.al_extents */ 2973 u32 bm_offset; /* offset to the bitmap, from here */ 2974 u32 bm_bytes_per_bit; /* BM_BLOCK_SIZE */ 2975 u32 la_peer_max_bio_size; /* last peer max_bio_size */ 2976 2977 /* see al_tr_number_to_on_disk_sector() */ 2978 u32 al_stripes; 2979 u32 al_stripe_size_4k; 2980 2981 u8 reserved_u8[4096 - (7*8 + 10*4)]; 2982 } __packed; 2983 2984 2985 2986 void drbd_md_write(struct drbd_device *device, void *b) 2987 { 2988 struct meta_data_on_disk *buffer = b; 2989 sector_t sector; 2990 int i; 2991 2992 memset(buffer, 0, sizeof(*buffer)); 2993 2994 buffer->la_size_sect = cpu_to_be64(get_capacity(device->vdisk)); 2995 for (i = UI_CURRENT; i < UI_SIZE; i++) 2996 buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]); 2997 buffer->flags = cpu_to_be32(device->ldev->md.flags); 2998 buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN); 2999 3000 buffer->md_size_sect = cpu_to_be32(device->ldev->md.md_size_sect); 3001 buffer->al_offset = cpu_to_be32(device->ldev->md.al_offset); 3002 buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements); 3003 buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE); 3004 buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid); 3005 3006 buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset); 3007 buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size); 3008 3009 buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes); 3010 buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k); 3011 3012 D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset); 3013 sector = device->ldev->md.md_offset; 3014 3015 if (drbd_md_sync_page_io(device, device->ldev, sector, REQ_OP_WRITE)) { 3016 /* this was a try anyways ... */ 3017 drbd_err(device, "meta data update failed!\n"); 3018 drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR); 3019 } 3020 } 3021 3022 /** 3023 * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set 3024 * @device: DRBD device. 3025 */ 3026 void drbd_md_sync(struct drbd_device *device) 3027 { 3028 struct meta_data_on_disk *buffer; 3029 3030 /* Don't accidentally change the DRBD meta data layout. */ 3031 BUILD_BUG_ON(UI_SIZE != 4); 3032 BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096); 3033 3034 del_timer(&device->md_sync_timer); 3035 /* timer may be rearmed by drbd_md_mark_dirty() now. */ 3036 if (!test_and_clear_bit(MD_DIRTY, &device->flags)) 3037 return; 3038 3039 /* We use here D_FAILED and not D_ATTACHING because we try to write 3040 * metadata even if we detach due to a disk failure! */ 3041 if (!get_ldev_if_state(device, D_FAILED)) 3042 return; 3043 3044 buffer = drbd_md_get_buffer(device, __func__); 3045 if (!buffer) 3046 goto out; 3047 3048 drbd_md_write(device, buffer); 3049 3050 /* Update device->ldev->md.la_size_sect, 3051 * since we updated it on metadata. */ 3052 device->ldev->md.la_size_sect = get_capacity(device->vdisk); 3053 3054 drbd_md_put_buffer(device); 3055 out: 3056 put_ldev(device); 3057 } 3058 3059 static int check_activity_log_stripe_size(struct drbd_device *device, 3060 struct meta_data_on_disk *on_disk, 3061 struct drbd_md *in_core) 3062 { 3063 u32 al_stripes = be32_to_cpu(on_disk->al_stripes); 3064 u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k); 3065 u64 al_size_4k; 3066 3067 /* both not set: default to old fixed size activity log */ 3068 if (al_stripes == 0 && al_stripe_size_4k == 0) { 3069 al_stripes = 1; 3070 al_stripe_size_4k = MD_32kB_SECT/8; 3071 } 3072 3073 /* some paranoia plausibility checks */ 3074 3075 /* we need both values to be set */ 3076 if (al_stripes == 0 || al_stripe_size_4k == 0) 3077 goto err; 3078 3079 al_size_4k = (u64)al_stripes * al_stripe_size_4k; 3080 3081 /* Upper limit of activity log area, to avoid potential overflow 3082 * problems in al_tr_number_to_on_disk_sector(). As right now, more 3083 * than 72 * 4k blocks total only increases the amount of history, 3084 * limiting this arbitrarily to 16 GB is not a real limitation ;-) */ 3085 if (al_size_4k > (16 * 1024 * 1024/4)) 3086 goto err; 3087 3088 /* Lower limit: we need at least 8 transaction slots (32kB) 3089 * to not break existing setups */ 3090 if (al_size_4k < MD_32kB_SECT/8) 3091 goto err; 3092 3093 in_core->al_stripe_size_4k = al_stripe_size_4k; 3094 in_core->al_stripes = al_stripes; 3095 in_core->al_size_4k = al_size_4k; 3096 3097 return 0; 3098 err: 3099 drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n", 3100 al_stripes, al_stripe_size_4k); 3101 return -EINVAL; 3102 } 3103 3104 static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev) 3105 { 3106 sector_t capacity = drbd_get_capacity(bdev->md_bdev); 3107 struct drbd_md *in_core = &bdev->md; 3108 s32 on_disk_al_sect; 3109 s32 on_disk_bm_sect; 3110 3111 /* The on-disk size of the activity log, calculated from offsets, and 3112 * the size of the activity log calculated from the stripe settings, 3113 * should match. 3114 * Though we could relax this a bit: it is ok, if the striped activity log 3115 * fits in the available on-disk activity log size. 3116 * Right now, that would break how resize is implemented. 3117 * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware 3118 * of possible unused padding space in the on disk layout. */ 3119 if (in_core->al_offset < 0) { 3120 if (in_core->bm_offset > in_core->al_offset) 3121 goto err; 3122 on_disk_al_sect = -in_core->al_offset; 3123 on_disk_bm_sect = in_core->al_offset - in_core->bm_offset; 3124 } else { 3125 if (in_core->al_offset != MD_4kB_SECT) 3126 goto err; 3127 if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT) 3128 goto err; 3129 3130 on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT; 3131 on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset; 3132 } 3133 3134 /* old fixed size meta data is exactly that: fixed. */ 3135 if (in_core->meta_dev_idx >= 0) { 3136 if (in_core->md_size_sect != MD_128MB_SECT 3137 || in_core->al_offset != MD_4kB_SECT 3138 || in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT 3139 || in_core->al_stripes != 1 3140 || in_core->al_stripe_size_4k != MD_32kB_SECT/8) 3141 goto err; 3142 } 3143 3144 if (capacity < in_core->md_size_sect) 3145 goto err; 3146 if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev)) 3147 goto err; 3148 3149 /* should be aligned, and at least 32k */ 3150 if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT)) 3151 goto err; 3152 3153 /* should fit (for now: exactly) into the available on-disk space; 3154 * overflow prevention is in check_activity_log_stripe_size() above. */ 3155 if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT) 3156 goto err; 3157 3158 /* again, should be aligned */ 3159 if (in_core->bm_offset & 7) 3160 goto err; 3161 3162 /* FIXME check for device grow with flex external meta data? */ 3163 3164 /* can the available bitmap space cover the last agreed device size? */ 3165 if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512) 3166 goto err; 3167 3168 return 0; 3169 3170 err: 3171 drbd_err(device, "meta data offsets don't make sense: idx=%d " 3172 "al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, " 3173 "md_size_sect=%u, la_size=%llu, md_capacity=%llu\n", 3174 in_core->meta_dev_idx, 3175 in_core->al_stripes, in_core->al_stripe_size_4k, 3176 in_core->al_offset, in_core->bm_offset, in_core->md_size_sect, 3177 (unsigned long long)in_core->la_size_sect, 3178 (unsigned long long)capacity); 3179 3180 return -EINVAL; 3181 } 3182 3183 3184 /** 3185 * drbd_md_read() - Reads in the meta data super block 3186 * @device: DRBD device. 3187 * @bdev: Device from which the meta data should be read in. 3188 * 3189 * Return NO_ERROR on success, and an enum drbd_ret_code in case 3190 * something goes wrong. 3191 * 3192 * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS, 3193 * even before @bdev is assigned to @device->ldev. 3194 */ 3195 int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev) 3196 { 3197 struct meta_data_on_disk *buffer; 3198 u32 magic, flags; 3199 int i, rv = NO_ERROR; 3200 3201 if (device->state.disk != D_DISKLESS) 3202 return ERR_DISK_CONFIGURED; 3203 3204 buffer = drbd_md_get_buffer(device, __func__); 3205 if (!buffer) 3206 return ERR_NOMEM; 3207 3208 /* First, figure out where our meta data superblock is located, 3209 * and read it. */ 3210 bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx; 3211 bdev->md.md_offset = drbd_md_ss(bdev); 3212 /* Even for (flexible or indexed) external meta data, 3213 * initially restrict us to the 4k superblock for now. 3214 * Affects the paranoia out-of-range access check in drbd_md_sync_page_io(). */ 3215 bdev->md.md_size_sect = 8; 3216 3217 if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset, 3218 REQ_OP_READ)) { 3219 /* NOTE: can't do normal error processing here as this is 3220 called BEFORE disk is attached */ 3221 drbd_err(device, "Error while reading metadata.\n"); 3222 rv = ERR_IO_MD_DISK; 3223 goto err; 3224 } 3225 3226 magic = be32_to_cpu(buffer->magic); 3227 flags = be32_to_cpu(buffer->flags); 3228 if (magic == DRBD_MD_MAGIC_84_UNCLEAN || 3229 (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) { 3230 /* btw: that's Activity Log clean, not "all" clean. */ 3231 drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n"); 3232 rv = ERR_MD_UNCLEAN; 3233 goto err; 3234 } 3235 3236 rv = ERR_MD_INVALID; 3237 if (magic != DRBD_MD_MAGIC_08) { 3238 if (magic == DRBD_MD_MAGIC_07) 3239 drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n"); 3240 else 3241 drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n"); 3242 goto err; 3243 } 3244 3245 if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) { 3246 drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n", 3247 be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE); 3248 goto err; 3249 } 3250 3251 3252 /* convert to in_core endian */ 3253 bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect); 3254 for (i = UI_CURRENT; i < UI_SIZE; i++) 3255 bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]); 3256 bdev->md.flags = be32_to_cpu(buffer->flags); 3257 bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid); 3258 3259 bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect); 3260 bdev->md.al_offset = be32_to_cpu(buffer->al_offset); 3261 bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset); 3262 3263 if (check_activity_log_stripe_size(device, buffer, &bdev->md)) 3264 goto err; 3265 if (check_offsets_and_sizes(device, bdev)) 3266 goto err; 3267 3268 if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) { 3269 drbd_err(device, "unexpected bm_offset: %d (expected %d)\n", 3270 be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset); 3271 goto err; 3272 } 3273 if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) { 3274 drbd_err(device, "unexpected md_size: %u (expected %u)\n", 3275 be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect); 3276 goto err; 3277 } 3278 3279 rv = NO_ERROR; 3280 3281 spin_lock_irq(&device->resource->req_lock); 3282 if (device->state.conn < C_CONNECTED) { 3283 unsigned int peer; 3284 peer = be32_to_cpu(buffer->la_peer_max_bio_size); 3285 peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE); 3286 device->peer_max_bio_size = peer; 3287 } 3288 spin_unlock_irq(&device->resource->req_lock); 3289 3290 err: 3291 drbd_md_put_buffer(device); 3292 3293 return rv; 3294 } 3295 3296 /** 3297 * drbd_md_mark_dirty() - Mark meta data super block as dirty 3298 * @device: DRBD device. 3299 * 3300 * Call this function if you change anything that should be written to 3301 * the meta-data super block. This function sets MD_DIRTY, and starts a 3302 * timer that ensures that within five seconds you have to call drbd_md_sync(). 3303 */ 3304 void drbd_md_mark_dirty(struct drbd_device *device) 3305 { 3306 if (!test_and_set_bit(MD_DIRTY, &device->flags)) 3307 mod_timer(&device->md_sync_timer, jiffies + 5*HZ); 3308 } 3309 3310 void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local) 3311 { 3312 int i; 3313 3314 for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++) 3315 device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i]; 3316 } 3317 3318 void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local) 3319 { 3320 if (idx == UI_CURRENT) { 3321 if (device->state.role == R_PRIMARY) 3322 val |= 1; 3323 else 3324 val &= ~((u64)1); 3325 3326 drbd_set_ed_uuid(device, val); 3327 } 3328 3329 device->ldev->md.uuid[idx] = val; 3330 drbd_md_mark_dirty(device); 3331 } 3332 3333 void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local) 3334 { 3335 unsigned long flags; 3336 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags); 3337 __drbd_uuid_set(device, idx, val); 3338 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags); 3339 } 3340 3341 void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local) 3342 { 3343 unsigned long flags; 3344 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags); 3345 if (device->ldev->md.uuid[idx]) { 3346 drbd_uuid_move_history(device); 3347 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx]; 3348 } 3349 __drbd_uuid_set(device, idx, val); 3350 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags); 3351 } 3352 3353 /** 3354 * drbd_uuid_new_current() - Creates a new current UUID 3355 * @device: DRBD device. 3356 * 3357 * Creates a new current UUID, and rotates the old current UUID into 3358 * the bitmap slot. Causes an incremental resync upon next connect. 3359 */ 3360 void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local) 3361 { 3362 u64 val; 3363 unsigned long long bm_uuid; 3364 3365 get_random_bytes(&val, sizeof(u64)); 3366 3367 spin_lock_irq(&device->ldev->md.uuid_lock); 3368 bm_uuid = device->ldev->md.uuid[UI_BITMAP]; 3369 3370 if (bm_uuid) 3371 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid); 3372 3373 device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT]; 3374 __drbd_uuid_set(device, UI_CURRENT, val); 3375 spin_unlock_irq(&device->ldev->md.uuid_lock); 3376 3377 drbd_print_uuids(device, "new current UUID"); 3378 /* get it to stable storage _now_ */ 3379 drbd_md_sync(device); 3380 } 3381 3382 void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local) 3383 { 3384 unsigned long flags; 3385 if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0) 3386 return; 3387 3388 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags); 3389 if (val == 0) { 3390 drbd_uuid_move_history(device); 3391 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP]; 3392 device->ldev->md.uuid[UI_BITMAP] = 0; 3393 } else { 3394 unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP]; 3395 if (bm_uuid) 3396 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid); 3397 3398 device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1); 3399 } 3400 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags); 3401 3402 drbd_md_mark_dirty(device); 3403 } 3404 3405 /** 3406 * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io() 3407 * @device: DRBD device. 3408 * 3409 * Sets all bits in the bitmap and writes the whole bitmap to stable storage. 3410 */ 3411 int drbd_bmio_set_n_write(struct drbd_device *device) __must_hold(local) 3412 { 3413 int rv = -EIO; 3414 3415 drbd_md_set_flag(device, MDF_FULL_SYNC); 3416 drbd_md_sync(device); 3417 drbd_bm_set_all(device); 3418 3419 rv = drbd_bm_write(device); 3420 3421 if (!rv) { 3422 drbd_md_clear_flag(device, MDF_FULL_SYNC); 3423 drbd_md_sync(device); 3424 } 3425 3426 return rv; 3427 } 3428 3429 /** 3430 * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io() 3431 * @device: DRBD device. 3432 * 3433 * Clears all bits in the bitmap and writes the whole bitmap to stable storage. 3434 */ 3435 int drbd_bmio_clear_n_write(struct drbd_device *device) __must_hold(local) 3436 { 3437 drbd_resume_al(device); 3438 drbd_bm_clear_all(device); 3439 return drbd_bm_write(device); 3440 } 3441 3442 static int w_bitmap_io(struct drbd_work *w, int unused) 3443 { 3444 struct drbd_device *device = 3445 container_of(w, struct drbd_device, bm_io_work.w); 3446 struct bm_io_work *work = &device->bm_io_work; 3447 int rv = -EIO; 3448 3449 if (work->flags != BM_LOCKED_CHANGE_ALLOWED) { 3450 int cnt = atomic_read(&device->ap_bio_cnt); 3451 if (cnt) 3452 drbd_err(device, "FIXME: ap_bio_cnt %d, expected 0; queued for '%s'\n", 3453 cnt, work->why); 3454 } 3455 3456 if (get_ldev(device)) { 3457 drbd_bm_lock(device, work->why, work->flags); 3458 rv = work->io_fn(device); 3459 drbd_bm_unlock(device); 3460 put_ldev(device); 3461 } 3462 3463 clear_bit_unlock(BITMAP_IO, &device->flags); 3464 wake_up(&device->misc_wait); 3465 3466 if (work->done) 3467 work->done(device, rv); 3468 3469 clear_bit(BITMAP_IO_QUEUED, &device->flags); 3470 work->why = NULL; 3471 work->flags = 0; 3472 3473 return 0; 3474 } 3475 3476 /** 3477 * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap 3478 * @device: DRBD device. 3479 * @io_fn: IO callback to be called when bitmap IO is possible 3480 * @done: callback to be called after the bitmap IO was performed 3481 * @why: Descriptive text of the reason for doing the IO 3482 * @flags: Bitmap flags 3483 * 3484 * While IO on the bitmap happens we freeze application IO thus we ensure 3485 * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be 3486 * called from worker context. It MUST NOT be used while a previous such 3487 * work is still pending! 3488 * 3489 * Its worker function encloses the call of io_fn() by get_ldev() and 3490 * put_ldev(). 3491 */ 3492 void drbd_queue_bitmap_io(struct drbd_device *device, 3493 int (*io_fn)(struct drbd_device *), 3494 void (*done)(struct drbd_device *, int), 3495 char *why, enum bm_flag flags) 3496 { 3497 D_ASSERT(device, current == first_peer_device(device)->connection->worker.task); 3498 3499 D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags)); 3500 D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags)); 3501 D_ASSERT(device, list_empty(&device->bm_io_work.w.list)); 3502 if (device->bm_io_work.why) 3503 drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n", 3504 why, device->bm_io_work.why); 3505 3506 device->bm_io_work.io_fn = io_fn; 3507 device->bm_io_work.done = done; 3508 device->bm_io_work.why = why; 3509 device->bm_io_work.flags = flags; 3510 3511 spin_lock_irq(&device->resource->req_lock); 3512 set_bit(BITMAP_IO, &device->flags); 3513 /* don't wait for pending application IO if the caller indicates that 3514 * application IO does not conflict anyways. */ 3515 if (flags == BM_LOCKED_CHANGE_ALLOWED || atomic_read(&device->ap_bio_cnt) == 0) { 3516 if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags)) 3517 drbd_queue_work(&first_peer_device(device)->connection->sender_work, 3518 &device->bm_io_work.w); 3519 } 3520 spin_unlock_irq(&device->resource->req_lock); 3521 } 3522 3523 /** 3524 * drbd_bitmap_io() - Does an IO operation on the whole bitmap 3525 * @device: DRBD device. 3526 * @io_fn: IO callback to be called when bitmap IO is possible 3527 * @why: Descriptive text of the reason for doing the IO 3528 * @flags: Bitmap flags 3529 * 3530 * freezes application IO while that the actual IO operations runs. This 3531 * functions MAY NOT be called from worker context. 3532 */ 3533 int drbd_bitmap_io(struct drbd_device *device, int (*io_fn)(struct drbd_device *), 3534 char *why, enum bm_flag flags) 3535 { 3536 /* Only suspend io, if some operation is supposed to be locked out */ 3537 const bool do_suspend_io = flags & (BM_DONT_CLEAR|BM_DONT_SET|BM_DONT_TEST); 3538 int rv; 3539 3540 D_ASSERT(device, current != first_peer_device(device)->connection->worker.task); 3541 3542 if (do_suspend_io) 3543 drbd_suspend_io(device); 3544 3545 drbd_bm_lock(device, why, flags); 3546 rv = io_fn(device); 3547 drbd_bm_unlock(device); 3548 3549 if (do_suspend_io) 3550 drbd_resume_io(device); 3551 3552 return rv; 3553 } 3554 3555 void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local) 3556 { 3557 if ((device->ldev->md.flags & flag) != flag) { 3558 drbd_md_mark_dirty(device); 3559 device->ldev->md.flags |= flag; 3560 } 3561 } 3562 3563 void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local) 3564 { 3565 if ((device->ldev->md.flags & flag) != 0) { 3566 drbd_md_mark_dirty(device); 3567 device->ldev->md.flags &= ~flag; 3568 } 3569 } 3570 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag) 3571 { 3572 return (bdev->md.flags & flag) != 0; 3573 } 3574 3575 static void md_sync_timer_fn(struct timer_list *t) 3576 { 3577 struct drbd_device *device = from_timer(device, t, md_sync_timer); 3578 drbd_device_post_work(device, MD_SYNC); 3579 } 3580 3581 const char *cmdname(enum drbd_packet cmd) 3582 { 3583 /* THINK may need to become several global tables 3584 * when we want to support more than 3585 * one PRO_VERSION */ 3586 static const char *cmdnames[] = { 3587 [P_DATA] = "Data", 3588 [P_WSAME] = "WriteSame", 3589 [P_TRIM] = "Trim", 3590 [P_DATA_REPLY] = "DataReply", 3591 [P_RS_DATA_REPLY] = "RSDataReply", 3592 [P_BARRIER] = "Barrier", 3593 [P_BITMAP] = "ReportBitMap", 3594 [P_BECOME_SYNC_TARGET] = "BecomeSyncTarget", 3595 [P_BECOME_SYNC_SOURCE] = "BecomeSyncSource", 3596 [P_UNPLUG_REMOTE] = "UnplugRemote", 3597 [P_DATA_REQUEST] = "DataRequest", 3598 [P_RS_DATA_REQUEST] = "RSDataRequest", 3599 [P_SYNC_PARAM] = "SyncParam", 3600 [P_SYNC_PARAM89] = "SyncParam89", 3601 [P_PROTOCOL] = "ReportProtocol", 3602 [P_UUIDS] = "ReportUUIDs", 3603 [P_SIZES] = "ReportSizes", 3604 [P_STATE] = "ReportState", 3605 [P_SYNC_UUID] = "ReportSyncUUID", 3606 [P_AUTH_CHALLENGE] = "AuthChallenge", 3607 [P_AUTH_RESPONSE] = "AuthResponse", 3608 [P_PING] = "Ping", 3609 [P_PING_ACK] = "PingAck", 3610 [P_RECV_ACK] = "RecvAck", 3611 [P_WRITE_ACK] = "WriteAck", 3612 [P_RS_WRITE_ACK] = "RSWriteAck", 3613 [P_SUPERSEDED] = "Superseded", 3614 [P_NEG_ACK] = "NegAck", 3615 [P_NEG_DREPLY] = "NegDReply", 3616 [P_NEG_RS_DREPLY] = "NegRSDReply", 3617 [P_BARRIER_ACK] = "BarrierAck", 3618 [P_STATE_CHG_REQ] = "StateChgRequest", 3619 [P_STATE_CHG_REPLY] = "StateChgReply", 3620 [P_OV_REQUEST] = "OVRequest", 3621 [P_OV_REPLY] = "OVReply", 3622 [P_OV_RESULT] = "OVResult", 3623 [P_CSUM_RS_REQUEST] = "CsumRSRequest", 3624 [P_RS_IS_IN_SYNC] = "CsumRSIsInSync", 3625 [P_COMPRESSED_BITMAP] = "CBitmap", 3626 [P_DELAY_PROBE] = "DelayProbe", 3627 [P_OUT_OF_SYNC] = "OutOfSync", 3628 [P_RETRY_WRITE] = "RetryWrite", 3629 [P_RS_CANCEL] = "RSCancel", 3630 [P_CONN_ST_CHG_REQ] = "conn_st_chg_req", 3631 [P_CONN_ST_CHG_REPLY] = "conn_st_chg_reply", 3632 [P_PROTOCOL_UPDATE] = "protocol_update", 3633 [P_RS_THIN_REQ] = "rs_thin_req", 3634 [P_RS_DEALLOCATED] = "rs_deallocated", 3635 3636 /* enum drbd_packet, but not commands - obsoleted flags: 3637 * P_MAY_IGNORE 3638 * P_MAX_OPT_CMD 3639 */ 3640 }; 3641 3642 /* too big for the array: 0xfffX */ 3643 if (cmd == P_INITIAL_META) 3644 return "InitialMeta"; 3645 if (cmd == P_INITIAL_DATA) 3646 return "InitialData"; 3647 if (cmd == P_CONNECTION_FEATURES) 3648 return "ConnectionFeatures"; 3649 if (cmd >= ARRAY_SIZE(cmdnames)) 3650 return "Unknown"; 3651 return cmdnames[cmd]; 3652 } 3653 3654 /** 3655 * drbd_wait_misc - wait for a request to make progress 3656 * @device: device associated with the request 3657 * @i: the struct drbd_interval embedded in struct drbd_request or 3658 * struct drbd_peer_request 3659 */ 3660 int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i) 3661 { 3662 struct net_conf *nc; 3663 DEFINE_WAIT(wait); 3664 long timeout; 3665 3666 rcu_read_lock(); 3667 nc = rcu_dereference(first_peer_device(device)->connection->net_conf); 3668 if (!nc) { 3669 rcu_read_unlock(); 3670 return -ETIMEDOUT; 3671 } 3672 timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT; 3673 rcu_read_unlock(); 3674 3675 /* Indicate to wake up device->misc_wait on progress. */ 3676 i->waiting = true; 3677 prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE); 3678 spin_unlock_irq(&device->resource->req_lock); 3679 timeout = schedule_timeout(timeout); 3680 finish_wait(&device->misc_wait, &wait); 3681 spin_lock_irq(&device->resource->req_lock); 3682 if (!timeout || device->state.conn < C_CONNECTED) 3683 return -ETIMEDOUT; 3684 if (signal_pending(current)) 3685 return -ERESTARTSYS; 3686 return 0; 3687 } 3688 3689 void lock_all_resources(void) 3690 { 3691 struct drbd_resource *resource; 3692 int __maybe_unused i = 0; 3693 3694 mutex_lock(&resources_mutex); 3695 local_irq_disable(); 3696 for_each_resource(resource, &drbd_resources) 3697 spin_lock_nested(&resource->req_lock, i++); 3698 } 3699 3700 void unlock_all_resources(void) 3701 { 3702 struct drbd_resource *resource; 3703 3704 for_each_resource(resource, &drbd_resources) 3705 spin_unlock(&resource->req_lock); 3706 local_irq_enable(); 3707 mutex_unlock(&resources_mutex); 3708 } 3709 3710 #ifdef CONFIG_DRBD_FAULT_INJECTION 3711 /* Fault insertion support including random number generator shamelessly 3712 * stolen from kernel/rcutorture.c */ 3713 struct fault_random_state { 3714 unsigned long state; 3715 unsigned long count; 3716 }; 3717 3718 #define FAULT_RANDOM_MULT 39916801 /* prime */ 3719 #define FAULT_RANDOM_ADD 479001701 /* prime */ 3720 #define FAULT_RANDOM_REFRESH 10000 3721 3722 /* 3723 * Crude but fast random-number generator. Uses a linear congruential 3724 * generator, with occasional help from get_random_bytes(). 3725 */ 3726 static unsigned long 3727 _drbd_fault_random(struct fault_random_state *rsp) 3728 { 3729 long refresh; 3730 3731 if (!rsp->count--) { 3732 get_random_bytes(&refresh, sizeof(refresh)); 3733 rsp->state += refresh; 3734 rsp->count = FAULT_RANDOM_REFRESH; 3735 } 3736 rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD; 3737 return swahw32(rsp->state); 3738 } 3739 3740 static char * 3741 _drbd_fault_str(unsigned int type) { 3742 static char *_faults[] = { 3743 [DRBD_FAULT_MD_WR] = "Meta-data write", 3744 [DRBD_FAULT_MD_RD] = "Meta-data read", 3745 [DRBD_FAULT_RS_WR] = "Resync write", 3746 [DRBD_FAULT_RS_RD] = "Resync read", 3747 [DRBD_FAULT_DT_WR] = "Data write", 3748 [DRBD_FAULT_DT_RD] = "Data read", 3749 [DRBD_FAULT_DT_RA] = "Data read ahead", 3750 [DRBD_FAULT_BM_ALLOC] = "BM allocation", 3751 [DRBD_FAULT_AL_EE] = "EE allocation", 3752 [DRBD_FAULT_RECEIVE] = "receive data corruption", 3753 }; 3754 3755 return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**"; 3756 } 3757 3758 unsigned int 3759 _drbd_insert_fault(struct drbd_device *device, unsigned int type) 3760 { 3761 static struct fault_random_state rrs = {0, 0}; 3762 3763 unsigned int ret = ( 3764 (drbd_fault_devs == 0 || 3765 ((1 << device_to_minor(device)) & drbd_fault_devs) != 0) && 3766 (((_drbd_fault_random(&rrs) % 100) + 1) <= drbd_fault_rate)); 3767 3768 if (ret) { 3769 drbd_fault_count++; 3770 3771 if (__ratelimit(&drbd_ratelimit_state)) 3772 drbd_warn(device, "***Simulating %s failure\n", 3773 _drbd_fault_str(type)); 3774 } 3775 3776 return ret; 3777 } 3778 #endif 3779 3780 const char *drbd_buildtag(void) 3781 { 3782 /* DRBD built from external sources has here a reference to the 3783 git hash of the source code. */ 3784 3785 static char buildtag[38] = "\0uilt-in"; 3786 3787 if (buildtag[0] == 0) { 3788 #ifdef MODULE 3789 sprintf(buildtag, "srcversion: %-24s", THIS_MODULE->srcversion); 3790 #else 3791 buildtag[0] = 'b'; 3792 #endif 3793 } 3794 3795 return buildtag; 3796 } 3797 3798 module_init(drbd_init) 3799 module_exit(drbd_cleanup) 3800 3801 EXPORT_SYMBOL(drbd_conn_str); 3802 EXPORT_SYMBOL(drbd_role_str); 3803 EXPORT_SYMBOL(drbd_disk_str); 3804 EXPORT_SYMBOL(drbd_set_st_err_str); 3805