1 /* 2 drbd.c 3 4 This file is part of DRBD by Philipp Reisner and Lars Ellenberg. 5 6 Copyright (C) 2001-2008, LINBIT Information Technologies GmbH. 7 Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>. 8 Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>. 9 10 Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev 11 from Logicworks, Inc. for making SDP replication support possible. 12 13 drbd is free software; you can redistribute it and/or modify 14 it under the terms of the GNU General Public License as published by 15 the Free Software Foundation; either version 2, or (at your option) 16 any later version. 17 18 drbd is distributed in the hope that it will be useful, 19 but WITHOUT ANY WARRANTY; without even the implied warranty of 20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 21 GNU General Public License for more details. 22 23 You should have received a copy of the GNU General Public License 24 along with drbd; see the file COPYING. If not, write to 25 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 26 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include <linux/module.h> 32 #include <linux/jiffies.h> 33 #include <linux/drbd.h> 34 #include <linux/uaccess.h> 35 #include <asm/types.h> 36 #include <net/sock.h> 37 #include <linux/ctype.h> 38 #include <linux/mutex.h> 39 #include <linux/fs.h> 40 #include <linux/file.h> 41 #include <linux/proc_fs.h> 42 #include <linux/init.h> 43 #include <linux/mm.h> 44 #include <linux/memcontrol.h> 45 #include <linux/mm_inline.h> 46 #include <linux/slab.h> 47 #include <linux/random.h> 48 #include <linux/reboot.h> 49 #include <linux/notifier.h> 50 #include <linux/kthread.h> 51 #include <linux/workqueue.h> 52 #define __KERNEL_SYSCALLS__ 53 #include <linux/unistd.h> 54 #include <linux/vmalloc.h> 55 #include <linux/sched/signal.h> 56 57 #include <linux/drbd_limits.h> 58 #include "drbd_int.h" 59 #include "drbd_protocol.h" 60 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */ 61 #include "drbd_vli.h" 62 #include "drbd_debugfs.h" 63 64 static DEFINE_MUTEX(drbd_main_mutex); 65 static int drbd_open(struct block_device *bdev, fmode_t mode); 66 static void drbd_release(struct gendisk *gd, fmode_t mode); 67 static void md_sync_timer_fn(unsigned long data); 68 static int w_bitmap_io(struct drbd_work *w, int unused); 69 70 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, " 71 "Lars Ellenberg <lars@linbit.com>"); 72 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION); 73 MODULE_VERSION(REL_VERSION); 74 MODULE_LICENSE("GPL"); 75 MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices (" 76 __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")"); 77 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR); 78 79 #include <linux/moduleparam.h> 80 /* allow_open_on_secondary */ 81 MODULE_PARM_DESC(allow_oos, "DONT USE!"); 82 /* thanks to these macros, if compiled into the kernel (not-module), 83 * this becomes the boot parameter drbd.minor_count */ 84 module_param(minor_count, uint, 0444); 85 module_param(disable_sendpage, bool, 0644); 86 module_param(allow_oos, bool, 0); 87 module_param(proc_details, int, 0644); 88 89 #ifdef CONFIG_DRBD_FAULT_INJECTION 90 int enable_faults; 91 int fault_rate; 92 static int fault_count; 93 int fault_devs; 94 /* bitmap of enabled faults */ 95 module_param(enable_faults, int, 0664); 96 /* fault rate % value - applies to all enabled faults */ 97 module_param(fault_rate, int, 0664); 98 /* count of faults inserted */ 99 module_param(fault_count, int, 0664); 100 /* bitmap of devices to insert faults on */ 101 module_param(fault_devs, int, 0644); 102 #endif 103 104 /* module parameter, defined */ 105 unsigned int minor_count = DRBD_MINOR_COUNT_DEF; 106 bool disable_sendpage; 107 bool allow_oos; 108 int proc_details; /* Detail level in proc drbd*/ 109 110 /* Module parameter for setting the user mode helper program 111 * to run. Default is /sbin/drbdadm */ 112 char usermode_helper[80] = "/sbin/drbdadm"; 113 114 module_param_string(usermode_helper, usermode_helper, sizeof(usermode_helper), 0644); 115 116 /* in 2.6.x, our device mapping and config info contains our virtual gendisks 117 * as member "struct gendisk *vdisk;" 118 */ 119 struct idr drbd_devices; 120 struct list_head drbd_resources; 121 struct mutex resources_mutex; 122 123 struct kmem_cache *drbd_request_cache; 124 struct kmem_cache *drbd_ee_cache; /* peer requests */ 125 struct kmem_cache *drbd_bm_ext_cache; /* bitmap extents */ 126 struct kmem_cache *drbd_al_ext_cache; /* activity log extents */ 127 mempool_t *drbd_request_mempool; 128 mempool_t *drbd_ee_mempool; 129 mempool_t *drbd_md_io_page_pool; 130 struct bio_set *drbd_md_io_bio_set; 131 132 /* I do not use a standard mempool, because: 133 1) I want to hand out the pre-allocated objects first. 134 2) I want to be able to interrupt sleeping allocation with a signal. 135 Note: This is a single linked list, the next pointer is the private 136 member of struct page. 137 */ 138 struct page *drbd_pp_pool; 139 spinlock_t drbd_pp_lock; 140 int drbd_pp_vacant; 141 wait_queue_head_t drbd_pp_wait; 142 143 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5); 144 145 static const struct block_device_operations drbd_ops = { 146 .owner = THIS_MODULE, 147 .open = drbd_open, 148 .release = drbd_release, 149 }; 150 151 struct bio *bio_alloc_drbd(gfp_t gfp_mask) 152 { 153 struct bio *bio; 154 155 if (!drbd_md_io_bio_set) 156 return bio_alloc(gfp_mask, 1); 157 158 bio = bio_alloc_bioset(gfp_mask, 1, drbd_md_io_bio_set); 159 if (!bio) 160 return NULL; 161 return bio; 162 } 163 164 #ifdef __CHECKER__ 165 /* When checking with sparse, and this is an inline function, sparse will 166 give tons of false positives. When this is a real functions sparse works. 167 */ 168 int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins) 169 { 170 int io_allowed; 171 172 atomic_inc(&device->local_cnt); 173 io_allowed = (device->state.disk >= mins); 174 if (!io_allowed) { 175 if (atomic_dec_and_test(&device->local_cnt)) 176 wake_up(&device->misc_wait); 177 } 178 return io_allowed; 179 } 180 181 #endif 182 183 /** 184 * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch 185 * @connection: DRBD connection. 186 * @barrier_nr: Expected identifier of the DRBD write barrier packet. 187 * @set_size: Expected number of requests before that barrier. 188 * 189 * In case the passed barrier_nr or set_size does not match the oldest 190 * epoch of not yet barrier-acked requests, this function will cause a 191 * termination of the connection. 192 */ 193 void tl_release(struct drbd_connection *connection, unsigned int barrier_nr, 194 unsigned int set_size) 195 { 196 struct drbd_request *r; 197 struct drbd_request *req = NULL; 198 int expect_epoch = 0; 199 int expect_size = 0; 200 201 spin_lock_irq(&connection->resource->req_lock); 202 203 /* find oldest not yet barrier-acked write request, 204 * count writes in its epoch. */ 205 list_for_each_entry(r, &connection->transfer_log, tl_requests) { 206 const unsigned s = r->rq_state; 207 if (!req) { 208 if (!(s & RQ_WRITE)) 209 continue; 210 if (!(s & RQ_NET_MASK)) 211 continue; 212 if (s & RQ_NET_DONE) 213 continue; 214 req = r; 215 expect_epoch = req->epoch; 216 expect_size ++; 217 } else { 218 if (r->epoch != expect_epoch) 219 break; 220 if (!(s & RQ_WRITE)) 221 continue; 222 /* if (s & RQ_DONE): not expected */ 223 /* if (!(s & RQ_NET_MASK)): not expected */ 224 expect_size++; 225 } 226 } 227 228 /* first some paranoia code */ 229 if (req == NULL) { 230 drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n", 231 barrier_nr); 232 goto bail; 233 } 234 if (expect_epoch != barrier_nr) { 235 drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n", 236 barrier_nr, expect_epoch); 237 goto bail; 238 } 239 240 if (expect_size != set_size) { 241 drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n", 242 barrier_nr, set_size, expect_size); 243 goto bail; 244 } 245 246 /* Clean up list of requests processed during current epoch. */ 247 /* this extra list walk restart is paranoia, 248 * to catch requests being barrier-acked "unexpectedly". 249 * It usually should find the same req again, or some READ preceding it. */ 250 list_for_each_entry(req, &connection->transfer_log, tl_requests) 251 if (req->epoch == expect_epoch) 252 break; 253 list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) { 254 if (req->epoch != expect_epoch) 255 break; 256 _req_mod(req, BARRIER_ACKED); 257 } 258 spin_unlock_irq(&connection->resource->req_lock); 259 260 return; 261 262 bail: 263 spin_unlock_irq(&connection->resource->req_lock); 264 conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD); 265 } 266 267 268 /** 269 * _tl_restart() - Walks the transfer log, and applies an action to all requests 270 * @connection: DRBD connection to operate on. 271 * @what: The action/event to perform with all request objects 272 * 273 * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO, 274 * RESTART_FROZEN_DISK_IO. 275 */ 276 /* must hold resource->req_lock */ 277 void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what) 278 { 279 struct drbd_request *req, *r; 280 281 list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) 282 _req_mod(req, what); 283 } 284 285 void tl_restart(struct drbd_connection *connection, enum drbd_req_event what) 286 { 287 spin_lock_irq(&connection->resource->req_lock); 288 _tl_restart(connection, what); 289 spin_unlock_irq(&connection->resource->req_lock); 290 } 291 292 /** 293 * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL 294 * @device: DRBD device. 295 * 296 * This is called after the connection to the peer was lost. The storage covered 297 * by the requests on the transfer gets marked as our of sync. Called from the 298 * receiver thread and the worker thread. 299 */ 300 void tl_clear(struct drbd_connection *connection) 301 { 302 tl_restart(connection, CONNECTION_LOST_WHILE_PENDING); 303 } 304 305 /** 306 * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL 307 * @device: DRBD device. 308 */ 309 void tl_abort_disk_io(struct drbd_device *device) 310 { 311 struct drbd_connection *connection = first_peer_device(device)->connection; 312 struct drbd_request *req, *r; 313 314 spin_lock_irq(&connection->resource->req_lock); 315 list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) { 316 if (!(req->rq_state & RQ_LOCAL_PENDING)) 317 continue; 318 if (req->device != device) 319 continue; 320 _req_mod(req, ABORT_DISK_IO); 321 } 322 spin_unlock_irq(&connection->resource->req_lock); 323 } 324 325 static int drbd_thread_setup(void *arg) 326 { 327 struct drbd_thread *thi = (struct drbd_thread *) arg; 328 struct drbd_resource *resource = thi->resource; 329 unsigned long flags; 330 int retval; 331 332 snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s", 333 thi->name[0], 334 resource->name); 335 336 restart: 337 retval = thi->function(thi); 338 339 spin_lock_irqsave(&thi->t_lock, flags); 340 341 /* if the receiver has been "EXITING", the last thing it did 342 * was set the conn state to "StandAlone", 343 * if now a re-connect request comes in, conn state goes C_UNCONNECTED, 344 * and receiver thread will be "started". 345 * drbd_thread_start needs to set "RESTARTING" in that case. 346 * t_state check and assignment needs to be within the same spinlock, 347 * so either thread_start sees EXITING, and can remap to RESTARTING, 348 * or thread_start see NONE, and can proceed as normal. 349 */ 350 351 if (thi->t_state == RESTARTING) { 352 drbd_info(resource, "Restarting %s thread\n", thi->name); 353 thi->t_state = RUNNING; 354 spin_unlock_irqrestore(&thi->t_lock, flags); 355 goto restart; 356 } 357 358 thi->task = NULL; 359 thi->t_state = NONE; 360 smp_mb(); 361 complete_all(&thi->stop); 362 spin_unlock_irqrestore(&thi->t_lock, flags); 363 364 drbd_info(resource, "Terminating %s\n", current->comm); 365 366 /* Release mod reference taken when thread was started */ 367 368 if (thi->connection) 369 kref_put(&thi->connection->kref, drbd_destroy_connection); 370 kref_put(&resource->kref, drbd_destroy_resource); 371 module_put(THIS_MODULE); 372 return retval; 373 } 374 375 static void drbd_thread_init(struct drbd_resource *resource, struct drbd_thread *thi, 376 int (*func) (struct drbd_thread *), const char *name) 377 { 378 spin_lock_init(&thi->t_lock); 379 thi->task = NULL; 380 thi->t_state = NONE; 381 thi->function = func; 382 thi->resource = resource; 383 thi->connection = NULL; 384 thi->name = name; 385 } 386 387 int drbd_thread_start(struct drbd_thread *thi) 388 { 389 struct drbd_resource *resource = thi->resource; 390 struct task_struct *nt; 391 unsigned long flags; 392 393 /* is used from state engine doing drbd_thread_stop_nowait, 394 * while holding the req lock irqsave */ 395 spin_lock_irqsave(&thi->t_lock, flags); 396 397 switch (thi->t_state) { 398 case NONE: 399 drbd_info(resource, "Starting %s thread (from %s [%d])\n", 400 thi->name, current->comm, current->pid); 401 402 /* Get ref on module for thread - this is released when thread exits */ 403 if (!try_module_get(THIS_MODULE)) { 404 drbd_err(resource, "Failed to get module reference in drbd_thread_start\n"); 405 spin_unlock_irqrestore(&thi->t_lock, flags); 406 return false; 407 } 408 409 kref_get(&resource->kref); 410 if (thi->connection) 411 kref_get(&thi->connection->kref); 412 413 init_completion(&thi->stop); 414 thi->reset_cpu_mask = 1; 415 thi->t_state = RUNNING; 416 spin_unlock_irqrestore(&thi->t_lock, flags); 417 flush_signals(current); /* otherw. may get -ERESTARTNOINTR */ 418 419 nt = kthread_create(drbd_thread_setup, (void *) thi, 420 "drbd_%c_%s", thi->name[0], thi->resource->name); 421 422 if (IS_ERR(nt)) { 423 drbd_err(resource, "Couldn't start thread\n"); 424 425 if (thi->connection) 426 kref_put(&thi->connection->kref, drbd_destroy_connection); 427 kref_put(&resource->kref, drbd_destroy_resource); 428 module_put(THIS_MODULE); 429 return false; 430 } 431 spin_lock_irqsave(&thi->t_lock, flags); 432 thi->task = nt; 433 thi->t_state = RUNNING; 434 spin_unlock_irqrestore(&thi->t_lock, flags); 435 wake_up_process(nt); 436 break; 437 case EXITING: 438 thi->t_state = RESTARTING; 439 drbd_info(resource, "Restarting %s thread (from %s [%d])\n", 440 thi->name, current->comm, current->pid); 441 /* fall through */ 442 case RUNNING: 443 case RESTARTING: 444 default: 445 spin_unlock_irqrestore(&thi->t_lock, flags); 446 break; 447 } 448 449 return true; 450 } 451 452 453 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait) 454 { 455 unsigned long flags; 456 457 enum drbd_thread_state ns = restart ? RESTARTING : EXITING; 458 459 /* may be called from state engine, holding the req lock irqsave */ 460 spin_lock_irqsave(&thi->t_lock, flags); 461 462 if (thi->t_state == NONE) { 463 spin_unlock_irqrestore(&thi->t_lock, flags); 464 if (restart) 465 drbd_thread_start(thi); 466 return; 467 } 468 469 if (thi->t_state != ns) { 470 if (thi->task == NULL) { 471 spin_unlock_irqrestore(&thi->t_lock, flags); 472 return; 473 } 474 475 thi->t_state = ns; 476 smp_mb(); 477 init_completion(&thi->stop); 478 if (thi->task != current) 479 force_sig(DRBD_SIGKILL, thi->task); 480 } 481 482 spin_unlock_irqrestore(&thi->t_lock, flags); 483 484 if (wait) 485 wait_for_completion(&thi->stop); 486 } 487 488 int conn_lowest_minor(struct drbd_connection *connection) 489 { 490 struct drbd_peer_device *peer_device; 491 int vnr = 0, minor = -1; 492 493 rcu_read_lock(); 494 peer_device = idr_get_next(&connection->peer_devices, &vnr); 495 if (peer_device) 496 minor = device_to_minor(peer_device->device); 497 rcu_read_unlock(); 498 499 return minor; 500 } 501 502 #ifdef CONFIG_SMP 503 /** 504 * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs 505 * 506 * Forces all threads of a resource onto the same CPU. This is beneficial for 507 * DRBD's performance. May be overwritten by user's configuration. 508 */ 509 static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask) 510 { 511 unsigned int *resources_per_cpu, min_index = ~0; 512 513 resources_per_cpu = kzalloc(nr_cpu_ids * sizeof(*resources_per_cpu), GFP_KERNEL); 514 if (resources_per_cpu) { 515 struct drbd_resource *resource; 516 unsigned int cpu, min = ~0; 517 518 rcu_read_lock(); 519 for_each_resource_rcu(resource, &drbd_resources) { 520 for_each_cpu(cpu, resource->cpu_mask) 521 resources_per_cpu[cpu]++; 522 } 523 rcu_read_unlock(); 524 for_each_online_cpu(cpu) { 525 if (resources_per_cpu[cpu] < min) { 526 min = resources_per_cpu[cpu]; 527 min_index = cpu; 528 } 529 } 530 kfree(resources_per_cpu); 531 } 532 if (min_index == ~0) { 533 cpumask_setall(*cpu_mask); 534 return; 535 } 536 cpumask_set_cpu(min_index, *cpu_mask); 537 } 538 539 /** 540 * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread 541 * @device: DRBD device. 542 * @thi: drbd_thread object 543 * 544 * call in the "main loop" of _all_ threads, no need for any mutex, current won't die 545 * prematurely. 546 */ 547 void drbd_thread_current_set_cpu(struct drbd_thread *thi) 548 { 549 struct drbd_resource *resource = thi->resource; 550 struct task_struct *p = current; 551 552 if (!thi->reset_cpu_mask) 553 return; 554 thi->reset_cpu_mask = 0; 555 set_cpus_allowed_ptr(p, resource->cpu_mask); 556 } 557 #else 558 #define drbd_calc_cpu_mask(A) ({}) 559 #endif 560 561 /** 562 * drbd_header_size - size of a packet header 563 * 564 * The header size is a multiple of 8, so any payload following the header is 565 * word aligned on 64-bit architectures. (The bitmap send and receive code 566 * relies on this.) 567 */ 568 unsigned int drbd_header_size(struct drbd_connection *connection) 569 { 570 if (connection->agreed_pro_version >= 100) { 571 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8)); 572 return sizeof(struct p_header100); 573 } else { 574 BUILD_BUG_ON(sizeof(struct p_header80) != 575 sizeof(struct p_header95)); 576 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8)); 577 return sizeof(struct p_header80); 578 } 579 } 580 581 static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size) 582 { 583 h->magic = cpu_to_be32(DRBD_MAGIC); 584 h->command = cpu_to_be16(cmd); 585 h->length = cpu_to_be16(size); 586 return sizeof(struct p_header80); 587 } 588 589 static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size) 590 { 591 h->magic = cpu_to_be16(DRBD_MAGIC_BIG); 592 h->command = cpu_to_be16(cmd); 593 h->length = cpu_to_be32(size); 594 return sizeof(struct p_header95); 595 } 596 597 static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd, 598 int size, int vnr) 599 { 600 h->magic = cpu_to_be32(DRBD_MAGIC_100); 601 h->volume = cpu_to_be16(vnr); 602 h->command = cpu_to_be16(cmd); 603 h->length = cpu_to_be32(size); 604 h->pad = 0; 605 return sizeof(struct p_header100); 606 } 607 608 static unsigned int prepare_header(struct drbd_connection *connection, int vnr, 609 void *buffer, enum drbd_packet cmd, int size) 610 { 611 if (connection->agreed_pro_version >= 100) 612 return prepare_header100(buffer, cmd, size, vnr); 613 else if (connection->agreed_pro_version >= 95 && 614 size > DRBD_MAX_SIZE_H80_PACKET) 615 return prepare_header95(buffer, cmd, size); 616 else 617 return prepare_header80(buffer, cmd, size); 618 } 619 620 static void *__conn_prepare_command(struct drbd_connection *connection, 621 struct drbd_socket *sock) 622 { 623 if (!sock->socket) 624 return NULL; 625 return sock->sbuf + drbd_header_size(connection); 626 } 627 628 void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock) 629 { 630 void *p; 631 632 mutex_lock(&sock->mutex); 633 p = __conn_prepare_command(connection, sock); 634 if (!p) 635 mutex_unlock(&sock->mutex); 636 637 return p; 638 } 639 640 void *drbd_prepare_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock) 641 { 642 return conn_prepare_command(peer_device->connection, sock); 643 } 644 645 static int __send_command(struct drbd_connection *connection, int vnr, 646 struct drbd_socket *sock, enum drbd_packet cmd, 647 unsigned int header_size, void *data, 648 unsigned int size) 649 { 650 int msg_flags; 651 int err; 652 653 /* 654 * Called with @data == NULL and the size of the data blocks in @size 655 * for commands that send data blocks. For those commands, omit the 656 * MSG_MORE flag: this will increase the likelihood that data blocks 657 * which are page aligned on the sender will end up page aligned on the 658 * receiver. 659 */ 660 msg_flags = data ? MSG_MORE : 0; 661 662 header_size += prepare_header(connection, vnr, sock->sbuf, cmd, 663 header_size + size); 664 err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size, 665 msg_flags); 666 if (data && !err) 667 err = drbd_send_all(connection, sock->socket, data, size, 0); 668 /* DRBD protocol "pings" are latency critical. 669 * This is supposed to trigger tcp_push_pending_frames() */ 670 if (!err && (cmd == P_PING || cmd == P_PING_ACK)) 671 drbd_tcp_nodelay(sock->socket); 672 673 return err; 674 } 675 676 static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock, 677 enum drbd_packet cmd, unsigned int header_size, 678 void *data, unsigned int size) 679 { 680 return __send_command(connection, 0, sock, cmd, header_size, data, size); 681 } 682 683 int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock, 684 enum drbd_packet cmd, unsigned int header_size, 685 void *data, unsigned int size) 686 { 687 int err; 688 689 err = __conn_send_command(connection, sock, cmd, header_size, data, size); 690 mutex_unlock(&sock->mutex); 691 return err; 692 } 693 694 int drbd_send_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock, 695 enum drbd_packet cmd, unsigned int header_size, 696 void *data, unsigned int size) 697 { 698 int err; 699 700 err = __send_command(peer_device->connection, peer_device->device->vnr, 701 sock, cmd, header_size, data, size); 702 mutex_unlock(&sock->mutex); 703 return err; 704 } 705 706 int drbd_send_ping(struct drbd_connection *connection) 707 { 708 struct drbd_socket *sock; 709 710 sock = &connection->meta; 711 if (!conn_prepare_command(connection, sock)) 712 return -EIO; 713 return conn_send_command(connection, sock, P_PING, 0, NULL, 0); 714 } 715 716 int drbd_send_ping_ack(struct drbd_connection *connection) 717 { 718 struct drbd_socket *sock; 719 720 sock = &connection->meta; 721 if (!conn_prepare_command(connection, sock)) 722 return -EIO; 723 return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0); 724 } 725 726 int drbd_send_sync_param(struct drbd_peer_device *peer_device) 727 { 728 struct drbd_socket *sock; 729 struct p_rs_param_95 *p; 730 int size; 731 const int apv = peer_device->connection->agreed_pro_version; 732 enum drbd_packet cmd; 733 struct net_conf *nc; 734 struct disk_conf *dc; 735 736 sock = &peer_device->connection->data; 737 p = drbd_prepare_command(peer_device, sock); 738 if (!p) 739 return -EIO; 740 741 rcu_read_lock(); 742 nc = rcu_dereference(peer_device->connection->net_conf); 743 744 size = apv <= 87 ? sizeof(struct p_rs_param) 745 : apv == 88 ? sizeof(struct p_rs_param) 746 + strlen(nc->verify_alg) + 1 747 : apv <= 94 ? sizeof(struct p_rs_param_89) 748 : /* apv >= 95 */ sizeof(struct p_rs_param_95); 749 750 cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM; 751 752 /* initialize verify_alg and csums_alg */ 753 memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX); 754 755 if (get_ldev(peer_device->device)) { 756 dc = rcu_dereference(peer_device->device->ldev->disk_conf); 757 p->resync_rate = cpu_to_be32(dc->resync_rate); 758 p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead); 759 p->c_delay_target = cpu_to_be32(dc->c_delay_target); 760 p->c_fill_target = cpu_to_be32(dc->c_fill_target); 761 p->c_max_rate = cpu_to_be32(dc->c_max_rate); 762 put_ldev(peer_device->device); 763 } else { 764 p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF); 765 p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF); 766 p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF); 767 p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF); 768 p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF); 769 } 770 771 if (apv >= 88) 772 strcpy(p->verify_alg, nc->verify_alg); 773 if (apv >= 89) 774 strcpy(p->csums_alg, nc->csums_alg); 775 rcu_read_unlock(); 776 777 return drbd_send_command(peer_device, sock, cmd, size, NULL, 0); 778 } 779 780 int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd) 781 { 782 struct drbd_socket *sock; 783 struct p_protocol *p; 784 struct net_conf *nc; 785 int size, cf; 786 787 sock = &connection->data; 788 p = __conn_prepare_command(connection, sock); 789 if (!p) 790 return -EIO; 791 792 rcu_read_lock(); 793 nc = rcu_dereference(connection->net_conf); 794 795 if (nc->tentative && connection->agreed_pro_version < 92) { 796 rcu_read_unlock(); 797 mutex_unlock(&sock->mutex); 798 drbd_err(connection, "--dry-run is not supported by peer"); 799 return -EOPNOTSUPP; 800 } 801 802 size = sizeof(*p); 803 if (connection->agreed_pro_version >= 87) 804 size += strlen(nc->integrity_alg) + 1; 805 806 p->protocol = cpu_to_be32(nc->wire_protocol); 807 p->after_sb_0p = cpu_to_be32(nc->after_sb_0p); 808 p->after_sb_1p = cpu_to_be32(nc->after_sb_1p); 809 p->after_sb_2p = cpu_to_be32(nc->after_sb_2p); 810 p->two_primaries = cpu_to_be32(nc->two_primaries); 811 cf = 0; 812 if (nc->discard_my_data) 813 cf |= CF_DISCARD_MY_DATA; 814 if (nc->tentative) 815 cf |= CF_DRY_RUN; 816 p->conn_flags = cpu_to_be32(cf); 817 818 if (connection->agreed_pro_version >= 87) 819 strcpy(p->integrity_alg, nc->integrity_alg); 820 rcu_read_unlock(); 821 822 return __conn_send_command(connection, sock, cmd, size, NULL, 0); 823 } 824 825 int drbd_send_protocol(struct drbd_connection *connection) 826 { 827 int err; 828 829 mutex_lock(&connection->data.mutex); 830 err = __drbd_send_protocol(connection, P_PROTOCOL); 831 mutex_unlock(&connection->data.mutex); 832 833 return err; 834 } 835 836 static int _drbd_send_uuids(struct drbd_peer_device *peer_device, u64 uuid_flags) 837 { 838 struct drbd_device *device = peer_device->device; 839 struct drbd_socket *sock; 840 struct p_uuids *p; 841 int i; 842 843 if (!get_ldev_if_state(device, D_NEGOTIATING)) 844 return 0; 845 846 sock = &peer_device->connection->data; 847 p = drbd_prepare_command(peer_device, sock); 848 if (!p) { 849 put_ldev(device); 850 return -EIO; 851 } 852 spin_lock_irq(&device->ldev->md.uuid_lock); 853 for (i = UI_CURRENT; i < UI_SIZE; i++) 854 p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]); 855 spin_unlock_irq(&device->ldev->md.uuid_lock); 856 857 device->comm_bm_set = drbd_bm_total_weight(device); 858 p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set); 859 rcu_read_lock(); 860 uuid_flags |= rcu_dereference(peer_device->connection->net_conf)->discard_my_data ? 1 : 0; 861 rcu_read_unlock(); 862 uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0; 863 uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0; 864 p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags); 865 866 put_ldev(device); 867 return drbd_send_command(peer_device, sock, P_UUIDS, sizeof(*p), NULL, 0); 868 } 869 870 int drbd_send_uuids(struct drbd_peer_device *peer_device) 871 { 872 return _drbd_send_uuids(peer_device, 0); 873 } 874 875 int drbd_send_uuids_skip_initial_sync(struct drbd_peer_device *peer_device) 876 { 877 return _drbd_send_uuids(peer_device, 8); 878 } 879 880 void drbd_print_uuids(struct drbd_device *device, const char *text) 881 { 882 if (get_ldev_if_state(device, D_NEGOTIATING)) { 883 u64 *uuid = device->ldev->md.uuid; 884 drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n", 885 text, 886 (unsigned long long)uuid[UI_CURRENT], 887 (unsigned long long)uuid[UI_BITMAP], 888 (unsigned long long)uuid[UI_HISTORY_START], 889 (unsigned long long)uuid[UI_HISTORY_END]); 890 put_ldev(device); 891 } else { 892 drbd_info(device, "%s effective data uuid: %016llX\n", 893 text, 894 (unsigned long long)device->ed_uuid); 895 } 896 } 897 898 void drbd_gen_and_send_sync_uuid(struct drbd_peer_device *peer_device) 899 { 900 struct drbd_device *device = peer_device->device; 901 struct drbd_socket *sock; 902 struct p_rs_uuid *p; 903 u64 uuid; 904 905 D_ASSERT(device, device->state.disk == D_UP_TO_DATE); 906 907 uuid = device->ldev->md.uuid[UI_BITMAP]; 908 if (uuid && uuid != UUID_JUST_CREATED) 909 uuid = uuid + UUID_NEW_BM_OFFSET; 910 else 911 get_random_bytes(&uuid, sizeof(u64)); 912 drbd_uuid_set(device, UI_BITMAP, uuid); 913 drbd_print_uuids(device, "updated sync UUID"); 914 drbd_md_sync(device); 915 916 sock = &peer_device->connection->data; 917 p = drbd_prepare_command(peer_device, sock); 918 if (p) { 919 p->uuid = cpu_to_be64(uuid); 920 drbd_send_command(peer_device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0); 921 } 922 } 923 924 /* communicated if (agreed_features & DRBD_FF_WSAME) */ 925 void assign_p_sizes_qlim(struct drbd_device *device, struct p_sizes *p, struct request_queue *q) 926 { 927 if (q) { 928 p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q)); 929 p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q)); 930 p->qlim->alignment_offset = cpu_to_be32(queue_alignment_offset(q)); 931 p->qlim->io_min = cpu_to_be32(queue_io_min(q)); 932 p->qlim->io_opt = cpu_to_be32(queue_io_opt(q)); 933 p->qlim->discard_enabled = blk_queue_discard(q); 934 p->qlim->discard_zeroes_data = queue_discard_zeroes_data(q); 935 p->qlim->write_same_capable = !!q->limits.max_write_same_sectors; 936 } else { 937 q = device->rq_queue; 938 p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q)); 939 p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q)); 940 p->qlim->alignment_offset = 0; 941 p->qlim->io_min = cpu_to_be32(queue_io_min(q)); 942 p->qlim->io_opt = cpu_to_be32(queue_io_opt(q)); 943 p->qlim->discard_enabled = 0; 944 p->qlim->discard_zeroes_data = 0; 945 p->qlim->write_same_capable = 0; 946 } 947 } 948 949 int drbd_send_sizes(struct drbd_peer_device *peer_device, int trigger_reply, enum dds_flags flags) 950 { 951 struct drbd_device *device = peer_device->device; 952 struct drbd_socket *sock; 953 struct p_sizes *p; 954 sector_t d_size, u_size; 955 int q_order_type; 956 unsigned int max_bio_size; 957 unsigned int packet_size; 958 959 sock = &peer_device->connection->data; 960 p = drbd_prepare_command(peer_device, sock); 961 if (!p) 962 return -EIO; 963 964 packet_size = sizeof(*p); 965 if (peer_device->connection->agreed_features & DRBD_FF_WSAME) 966 packet_size += sizeof(p->qlim[0]); 967 968 memset(p, 0, packet_size); 969 if (get_ldev_if_state(device, D_NEGOTIATING)) { 970 struct request_queue *q = bdev_get_queue(device->ldev->backing_bdev); 971 d_size = drbd_get_max_capacity(device->ldev); 972 rcu_read_lock(); 973 u_size = rcu_dereference(device->ldev->disk_conf)->disk_size; 974 rcu_read_unlock(); 975 q_order_type = drbd_queue_order_type(device); 976 max_bio_size = queue_max_hw_sectors(q) << 9; 977 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE); 978 assign_p_sizes_qlim(device, p, q); 979 put_ldev(device); 980 } else { 981 d_size = 0; 982 u_size = 0; 983 q_order_type = QUEUE_ORDERED_NONE; 984 max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */ 985 assign_p_sizes_qlim(device, p, NULL); 986 } 987 988 if (peer_device->connection->agreed_pro_version <= 94) 989 max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET); 990 else if (peer_device->connection->agreed_pro_version < 100) 991 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95); 992 993 p->d_size = cpu_to_be64(d_size); 994 p->u_size = cpu_to_be64(u_size); 995 p->c_size = cpu_to_be64(trigger_reply ? 0 : drbd_get_capacity(device->this_bdev)); 996 p->max_bio_size = cpu_to_be32(max_bio_size); 997 p->queue_order_type = cpu_to_be16(q_order_type); 998 p->dds_flags = cpu_to_be16(flags); 999 1000 return drbd_send_command(peer_device, sock, P_SIZES, packet_size, NULL, 0); 1001 } 1002 1003 /** 1004 * drbd_send_current_state() - Sends the drbd state to the peer 1005 * @peer_device: DRBD peer device. 1006 */ 1007 int drbd_send_current_state(struct drbd_peer_device *peer_device) 1008 { 1009 struct drbd_socket *sock; 1010 struct p_state *p; 1011 1012 sock = &peer_device->connection->data; 1013 p = drbd_prepare_command(peer_device, sock); 1014 if (!p) 1015 return -EIO; 1016 p->state = cpu_to_be32(peer_device->device->state.i); /* Within the send mutex */ 1017 return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0); 1018 } 1019 1020 /** 1021 * drbd_send_state() - After a state change, sends the new state to the peer 1022 * @peer_device: DRBD peer device. 1023 * @state: the state to send, not necessarily the current state. 1024 * 1025 * Each state change queues an "after_state_ch" work, which will eventually 1026 * send the resulting new state to the peer. If more state changes happen 1027 * between queuing and processing of the after_state_ch work, we still 1028 * want to send each intermediary state in the order it occurred. 1029 */ 1030 int drbd_send_state(struct drbd_peer_device *peer_device, union drbd_state state) 1031 { 1032 struct drbd_socket *sock; 1033 struct p_state *p; 1034 1035 sock = &peer_device->connection->data; 1036 p = drbd_prepare_command(peer_device, sock); 1037 if (!p) 1038 return -EIO; 1039 p->state = cpu_to_be32(state.i); /* Within the send mutex */ 1040 return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0); 1041 } 1042 1043 int drbd_send_state_req(struct drbd_peer_device *peer_device, union drbd_state mask, union drbd_state val) 1044 { 1045 struct drbd_socket *sock; 1046 struct p_req_state *p; 1047 1048 sock = &peer_device->connection->data; 1049 p = drbd_prepare_command(peer_device, sock); 1050 if (!p) 1051 return -EIO; 1052 p->mask = cpu_to_be32(mask.i); 1053 p->val = cpu_to_be32(val.i); 1054 return drbd_send_command(peer_device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0); 1055 } 1056 1057 int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val) 1058 { 1059 enum drbd_packet cmd; 1060 struct drbd_socket *sock; 1061 struct p_req_state *p; 1062 1063 cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ; 1064 sock = &connection->data; 1065 p = conn_prepare_command(connection, sock); 1066 if (!p) 1067 return -EIO; 1068 p->mask = cpu_to_be32(mask.i); 1069 p->val = cpu_to_be32(val.i); 1070 return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0); 1071 } 1072 1073 void drbd_send_sr_reply(struct drbd_peer_device *peer_device, enum drbd_state_rv retcode) 1074 { 1075 struct drbd_socket *sock; 1076 struct p_req_state_reply *p; 1077 1078 sock = &peer_device->connection->meta; 1079 p = drbd_prepare_command(peer_device, sock); 1080 if (p) { 1081 p->retcode = cpu_to_be32(retcode); 1082 drbd_send_command(peer_device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0); 1083 } 1084 } 1085 1086 void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode) 1087 { 1088 struct drbd_socket *sock; 1089 struct p_req_state_reply *p; 1090 enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY; 1091 1092 sock = &connection->meta; 1093 p = conn_prepare_command(connection, sock); 1094 if (p) { 1095 p->retcode = cpu_to_be32(retcode); 1096 conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0); 1097 } 1098 } 1099 1100 static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code) 1101 { 1102 BUG_ON(code & ~0xf); 1103 p->encoding = (p->encoding & ~0xf) | code; 1104 } 1105 1106 static void dcbp_set_start(struct p_compressed_bm *p, int set) 1107 { 1108 p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0); 1109 } 1110 1111 static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n) 1112 { 1113 BUG_ON(n & ~0x7); 1114 p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4); 1115 } 1116 1117 static int fill_bitmap_rle_bits(struct drbd_device *device, 1118 struct p_compressed_bm *p, 1119 unsigned int size, 1120 struct bm_xfer_ctx *c) 1121 { 1122 struct bitstream bs; 1123 unsigned long plain_bits; 1124 unsigned long tmp; 1125 unsigned long rl; 1126 unsigned len; 1127 unsigned toggle; 1128 int bits, use_rle; 1129 1130 /* may we use this feature? */ 1131 rcu_read_lock(); 1132 use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle; 1133 rcu_read_unlock(); 1134 if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90) 1135 return 0; 1136 1137 if (c->bit_offset >= c->bm_bits) 1138 return 0; /* nothing to do. */ 1139 1140 /* use at most thus many bytes */ 1141 bitstream_init(&bs, p->code, size, 0); 1142 memset(p->code, 0, size); 1143 /* plain bits covered in this code string */ 1144 plain_bits = 0; 1145 1146 /* p->encoding & 0x80 stores whether the first run length is set. 1147 * bit offset is implicit. 1148 * start with toggle == 2 to be able to tell the first iteration */ 1149 toggle = 2; 1150 1151 /* see how much plain bits we can stuff into one packet 1152 * using RLE and VLI. */ 1153 do { 1154 tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset) 1155 : _drbd_bm_find_next(device, c->bit_offset); 1156 if (tmp == -1UL) 1157 tmp = c->bm_bits; 1158 rl = tmp - c->bit_offset; 1159 1160 if (toggle == 2) { /* first iteration */ 1161 if (rl == 0) { 1162 /* the first checked bit was set, 1163 * store start value, */ 1164 dcbp_set_start(p, 1); 1165 /* but skip encoding of zero run length */ 1166 toggle = !toggle; 1167 continue; 1168 } 1169 dcbp_set_start(p, 0); 1170 } 1171 1172 /* paranoia: catch zero runlength. 1173 * can only happen if bitmap is modified while we scan it. */ 1174 if (rl == 0) { 1175 drbd_err(device, "unexpected zero runlength while encoding bitmap " 1176 "t:%u bo:%lu\n", toggle, c->bit_offset); 1177 return -1; 1178 } 1179 1180 bits = vli_encode_bits(&bs, rl); 1181 if (bits == -ENOBUFS) /* buffer full */ 1182 break; 1183 if (bits <= 0) { 1184 drbd_err(device, "error while encoding bitmap: %d\n", bits); 1185 return 0; 1186 } 1187 1188 toggle = !toggle; 1189 plain_bits += rl; 1190 c->bit_offset = tmp; 1191 } while (c->bit_offset < c->bm_bits); 1192 1193 len = bs.cur.b - p->code + !!bs.cur.bit; 1194 1195 if (plain_bits < (len << 3)) { 1196 /* incompressible with this method. 1197 * we need to rewind both word and bit position. */ 1198 c->bit_offset -= plain_bits; 1199 bm_xfer_ctx_bit_to_word_offset(c); 1200 c->bit_offset = c->word_offset * BITS_PER_LONG; 1201 return 0; 1202 } 1203 1204 /* RLE + VLI was able to compress it just fine. 1205 * update c->word_offset. */ 1206 bm_xfer_ctx_bit_to_word_offset(c); 1207 1208 /* store pad_bits */ 1209 dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7); 1210 1211 return len; 1212 } 1213 1214 /** 1215 * send_bitmap_rle_or_plain 1216 * 1217 * Return 0 when done, 1 when another iteration is needed, and a negative error 1218 * code upon failure. 1219 */ 1220 static int 1221 send_bitmap_rle_or_plain(struct drbd_device *device, struct bm_xfer_ctx *c) 1222 { 1223 struct drbd_socket *sock = &first_peer_device(device)->connection->data; 1224 unsigned int header_size = drbd_header_size(first_peer_device(device)->connection); 1225 struct p_compressed_bm *p = sock->sbuf + header_size; 1226 int len, err; 1227 1228 len = fill_bitmap_rle_bits(device, p, 1229 DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c); 1230 if (len < 0) 1231 return -EIO; 1232 1233 if (len) { 1234 dcbp_set_code(p, RLE_VLI_Bits); 1235 err = __send_command(first_peer_device(device)->connection, device->vnr, sock, 1236 P_COMPRESSED_BITMAP, sizeof(*p) + len, 1237 NULL, 0); 1238 c->packets[0]++; 1239 c->bytes[0] += header_size + sizeof(*p) + len; 1240 1241 if (c->bit_offset >= c->bm_bits) 1242 len = 0; /* DONE */ 1243 } else { 1244 /* was not compressible. 1245 * send a buffer full of plain text bits instead. */ 1246 unsigned int data_size; 1247 unsigned long num_words; 1248 unsigned long *p = sock->sbuf + header_size; 1249 1250 data_size = DRBD_SOCKET_BUFFER_SIZE - header_size; 1251 num_words = min_t(size_t, data_size / sizeof(*p), 1252 c->bm_words - c->word_offset); 1253 len = num_words * sizeof(*p); 1254 if (len) 1255 drbd_bm_get_lel(device, c->word_offset, num_words, p); 1256 err = __send_command(first_peer_device(device)->connection, device->vnr, sock, P_BITMAP, len, NULL, 0); 1257 c->word_offset += num_words; 1258 c->bit_offset = c->word_offset * BITS_PER_LONG; 1259 1260 c->packets[1]++; 1261 c->bytes[1] += header_size + len; 1262 1263 if (c->bit_offset > c->bm_bits) 1264 c->bit_offset = c->bm_bits; 1265 } 1266 if (!err) { 1267 if (len == 0) { 1268 INFO_bm_xfer_stats(device, "send", c); 1269 return 0; 1270 } else 1271 return 1; 1272 } 1273 return -EIO; 1274 } 1275 1276 /* See the comment at receive_bitmap() */ 1277 static int _drbd_send_bitmap(struct drbd_device *device) 1278 { 1279 struct bm_xfer_ctx c; 1280 int err; 1281 1282 if (!expect(device->bitmap)) 1283 return false; 1284 1285 if (get_ldev(device)) { 1286 if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) { 1287 drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n"); 1288 drbd_bm_set_all(device); 1289 if (drbd_bm_write(device)) { 1290 /* write_bm did fail! Leave full sync flag set in Meta P_DATA 1291 * but otherwise process as per normal - need to tell other 1292 * side that a full resync is required! */ 1293 drbd_err(device, "Failed to write bitmap to disk!\n"); 1294 } else { 1295 drbd_md_clear_flag(device, MDF_FULL_SYNC); 1296 drbd_md_sync(device); 1297 } 1298 } 1299 put_ldev(device); 1300 } 1301 1302 c = (struct bm_xfer_ctx) { 1303 .bm_bits = drbd_bm_bits(device), 1304 .bm_words = drbd_bm_words(device), 1305 }; 1306 1307 do { 1308 err = send_bitmap_rle_or_plain(device, &c); 1309 } while (err > 0); 1310 1311 return err == 0; 1312 } 1313 1314 int drbd_send_bitmap(struct drbd_device *device) 1315 { 1316 struct drbd_socket *sock = &first_peer_device(device)->connection->data; 1317 int err = -1; 1318 1319 mutex_lock(&sock->mutex); 1320 if (sock->socket) 1321 err = !_drbd_send_bitmap(device); 1322 mutex_unlock(&sock->mutex); 1323 return err; 1324 } 1325 1326 void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size) 1327 { 1328 struct drbd_socket *sock; 1329 struct p_barrier_ack *p; 1330 1331 if (connection->cstate < C_WF_REPORT_PARAMS) 1332 return; 1333 1334 sock = &connection->meta; 1335 p = conn_prepare_command(connection, sock); 1336 if (!p) 1337 return; 1338 p->barrier = barrier_nr; 1339 p->set_size = cpu_to_be32(set_size); 1340 conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0); 1341 } 1342 1343 /** 1344 * _drbd_send_ack() - Sends an ack packet 1345 * @device: DRBD device. 1346 * @cmd: Packet command code. 1347 * @sector: sector, needs to be in big endian byte order 1348 * @blksize: size in byte, needs to be in big endian byte order 1349 * @block_id: Id, big endian byte order 1350 */ 1351 static int _drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1352 u64 sector, u32 blksize, u64 block_id) 1353 { 1354 struct drbd_socket *sock; 1355 struct p_block_ack *p; 1356 1357 if (peer_device->device->state.conn < C_CONNECTED) 1358 return -EIO; 1359 1360 sock = &peer_device->connection->meta; 1361 p = drbd_prepare_command(peer_device, sock); 1362 if (!p) 1363 return -EIO; 1364 p->sector = sector; 1365 p->block_id = block_id; 1366 p->blksize = blksize; 1367 p->seq_num = cpu_to_be32(atomic_inc_return(&peer_device->device->packet_seq)); 1368 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0); 1369 } 1370 1371 /* dp->sector and dp->block_id already/still in network byte order, 1372 * data_size is payload size according to dp->head, 1373 * and may need to be corrected for digest size. */ 1374 void drbd_send_ack_dp(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1375 struct p_data *dp, int data_size) 1376 { 1377 if (peer_device->connection->peer_integrity_tfm) 1378 data_size -= crypto_ahash_digestsize(peer_device->connection->peer_integrity_tfm); 1379 _drbd_send_ack(peer_device, cmd, dp->sector, cpu_to_be32(data_size), 1380 dp->block_id); 1381 } 1382 1383 void drbd_send_ack_rp(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1384 struct p_block_req *rp) 1385 { 1386 _drbd_send_ack(peer_device, cmd, rp->sector, rp->blksize, rp->block_id); 1387 } 1388 1389 /** 1390 * drbd_send_ack() - Sends an ack packet 1391 * @device: DRBD device 1392 * @cmd: packet command code 1393 * @peer_req: peer request 1394 */ 1395 int drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1396 struct drbd_peer_request *peer_req) 1397 { 1398 return _drbd_send_ack(peer_device, cmd, 1399 cpu_to_be64(peer_req->i.sector), 1400 cpu_to_be32(peer_req->i.size), 1401 peer_req->block_id); 1402 } 1403 1404 /* This function misuses the block_id field to signal if the blocks 1405 * are is sync or not. */ 1406 int drbd_send_ack_ex(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1407 sector_t sector, int blksize, u64 block_id) 1408 { 1409 return _drbd_send_ack(peer_device, cmd, 1410 cpu_to_be64(sector), 1411 cpu_to_be32(blksize), 1412 cpu_to_be64(block_id)); 1413 } 1414 1415 int drbd_send_rs_deallocated(struct drbd_peer_device *peer_device, 1416 struct drbd_peer_request *peer_req) 1417 { 1418 struct drbd_socket *sock; 1419 struct p_block_desc *p; 1420 1421 sock = &peer_device->connection->data; 1422 p = drbd_prepare_command(peer_device, sock); 1423 if (!p) 1424 return -EIO; 1425 p->sector = cpu_to_be64(peer_req->i.sector); 1426 p->blksize = cpu_to_be32(peer_req->i.size); 1427 p->pad = 0; 1428 return drbd_send_command(peer_device, sock, P_RS_DEALLOCATED, sizeof(*p), NULL, 0); 1429 } 1430 1431 int drbd_send_drequest(struct drbd_peer_device *peer_device, int cmd, 1432 sector_t sector, int size, u64 block_id) 1433 { 1434 struct drbd_socket *sock; 1435 struct p_block_req *p; 1436 1437 sock = &peer_device->connection->data; 1438 p = drbd_prepare_command(peer_device, sock); 1439 if (!p) 1440 return -EIO; 1441 p->sector = cpu_to_be64(sector); 1442 p->block_id = block_id; 1443 p->blksize = cpu_to_be32(size); 1444 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0); 1445 } 1446 1447 int drbd_send_drequest_csum(struct drbd_peer_device *peer_device, sector_t sector, int size, 1448 void *digest, int digest_size, enum drbd_packet cmd) 1449 { 1450 struct drbd_socket *sock; 1451 struct p_block_req *p; 1452 1453 /* FIXME: Put the digest into the preallocated socket buffer. */ 1454 1455 sock = &peer_device->connection->data; 1456 p = drbd_prepare_command(peer_device, sock); 1457 if (!p) 1458 return -EIO; 1459 p->sector = cpu_to_be64(sector); 1460 p->block_id = ID_SYNCER /* unused */; 1461 p->blksize = cpu_to_be32(size); 1462 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), digest, digest_size); 1463 } 1464 1465 int drbd_send_ov_request(struct drbd_peer_device *peer_device, sector_t sector, int size) 1466 { 1467 struct drbd_socket *sock; 1468 struct p_block_req *p; 1469 1470 sock = &peer_device->connection->data; 1471 p = drbd_prepare_command(peer_device, sock); 1472 if (!p) 1473 return -EIO; 1474 p->sector = cpu_to_be64(sector); 1475 p->block_id = ID_SYNCER /* unused */; 1476 p->blksize = cpu_to_be32(size); 1477 return drbd_send_command(peer_device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0); 1478 } 1479 1480 /* called on sndtimeo 1481 * returns false if we should retry, 1482 * true if we think connection is dead 1483 */ 1484 static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock) 1485 { 1486 int drop_it; 1487 /* long elapsed = (long)(jiffies - device->last_received); */ 1488 1489 drop_it = connection->meta.socket == sock 1490 || !connection->ack_receiver.task 1491 || get_t_state(&connection->ack_receiver) != RUNNING 1492 || connection->cstate < C_WF_REPORT_PARAMS; 1493 1494 if (drop_it) 1495 return true; 1496 1497 drop_it = !--connection->ko_count; 1498 if (!drop_it) { 1499 drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n", 1500 current->comm, current->pid, connection->ko_count); 1501 request_ping(connection); 1502 } 1503 1504 return drop_it; /* && (device->state == R_PRIMARY) */; 1505 } 1506 1507 static void drbd_update_congested(struct drbd_connection *connection) 1508 { 1509 struct sock *sk = connection->data.socket->sk; 1510 if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5) 1511 set_bit(NET_CONGESTED, &connection->flags); 1512 } 1513 1514 /* The idea of sendpage seems to be to put some kind of reference 1515 * to the page into the skb, and to hand it over to the NIC. In 1516 * this process get_page() gets called. 1517 * 1518 * As soon as the page was really sent over the network put_page() 1519 * gets called by some part of the network layer. [ NIC driver? ] 1520 * 1521 * [ get_page() / put_page() increment/decrement the count. If count 1522 * reaches 0 the page will be freed. ] 1523 * 1524 * This works nicely with pages from FSs. 1525 * But this means that in protocol A we might signal IO completion too early! 1526 * 1527 * In order not to corrupt data during a resync we must make sure 1528 * that we do not reuse our own buffer pages (EEs) to early, therefore 1529 * we have the net_ee list. 1530 * 1531 * XFS seems to have problems, still, it submits pages with page_count == 0! 1532 * As a workaround, we disable sendpage on pages 1533 * with page_count == 0 or PageSlab. 1534 */ 1535 static int _drbd_no_send_page(struct drbd_peer_device *peer_device, struct page *page, 1536 int offset, size_t size, unsigned msg_flags) 1537 { 1538 struct socket *socket; 1539 void *addr; 1540 int err; 1541 1542 socket = peer_device->connection->data.socket; 1543 addr = kmap(page) + offset; 1544 err = drbd_send_all(peer_device->connection, socket, addr, size, msg_flags); 1545 kunmap(page); 1546 if (!err) 1547 peer_device->device->send_cnt += size >> 9; 1548 return err; 1549 } 1550 1551 static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *page, 1552 int offset, size_t size, unsigned msg_flags) 1553 { 1554 struct socket *socket = peer_device->connection->data.socket; 1555 mm_segment_t oldfs = get_fs(); 1556 int len = size; 1557 int err = -EIO; 1558 1559 /* e.g. XFS meta- & log-data is in slab pages, which have a 1560 * page_count of 0 and/or have PageSlab() set. 1561 * we cannot use send_page for those, as that does get_page(); 1562 * put_page(); and would cause either a VM_BUG directly, or 1563 * __page_cache_release a page that would actually still be referenced 1564 * by someone, leading to some obscure delayed Oops somewhere else. */ 1565 if (disable_sendpage || (page_count(page) < 1) || PageSlab(page)) 1566 return _drbd_no_send_page(peer_device, page, offset, size, msg_flags); 1567 1568 msg_flags |= MSG_NOSIGNAL; 1569 drbd_update_congested(peer_device->connection); 1570 set_fs(KERNEL_DS); 1571 do { 1572 int sent; 1573 1574 sent = socket->ops->sendpage(socket, page, offset, len, msg_flags); 1575 if (sent <= 0) { 1576 if (sent == -EAGAIN) { 1577 if (we_should_drop_the_connection(peer_device->connection, socket)) 1578 break; 1579 continue; 1580 } 1581 drbd_warn(peer_device->device, "%s: size=%d len=%d sent=%d\n", 1582 __func__, (int)size, len, sent); 1583 if (sent < 0) 1584 err = sent; 1585 break; 1586 } 1587 len -= sent; 1588 offset += sent; 1589 } while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/); 1590 set_fs(oldfs); 1591 clear_bit(NET_CONGESTED, &peer_device->connection->flags); 1592 1593 if (len == 0) { 1594 err = 0; 1595 peer_device->device->send_cnt += size >> 9; 1596 } 1597 return err; 1598 } 1599 1600 static int _drbd_send_bio(struct drbd_peer_device *peer_device, struct bio *bio) 1601 { 1602 struct bio_vec bvec; 1603 struct bvec_iter iter; 1604 1605 /* hint all but last page with MSG_MORE */ 1606 bio_for_each_segment(bvec, bio, iter) { 1607 int err; 1608 1609 err = _drbd_no_send_page(peer_device, bvec.bv_page, 1610 bvec.bv_offset, bvec.bv_len, 1611 bio_iter_last(bvec, iter) 1612 ? 0 : MSG_MORE); 1613 if (err) 1614 return err; 1615 /* REQ_OP_WRITE_SAME has only one segment */ 1616 if (bio_op(bio) == REQ_OP_WRITE_SAME) 1617 break; 1618 } 1619 return 0; 1620 } 1621 1622 static int _drbd_send_zc_bio(struct drbd_peer_device *peer_device, struct bio *bio) 1623 { 1624 struct bio_vec bvec; 1625 struct bvec_iter iter; 1626 1627 /* hint all but last page with MSG_MORE */ 1628 bio_for_each_segment(bvec, bio, iter) { 1629 int err; 1630 1631 err = _drbd_send_page(peer_device, bvec.bv_page, 1632 bvec.bv_offset, bvec.bv_len, 1633 bio_iter_last(bvec, iter) ? 0 : MSG_MORE); 1634 if (err) 1635 return err; 1636 /* REQ_OP_WRITE_SAME has only one segment */ 1637 if (bio_op(bio) == REQ_OP_WRITE_SAME) 1638 break; 1639 } 1640 return 0; 1641 } 1642 1643 static int _drbd_send_zc_ee(struct drbd_peer_device *peer_device, 1644 struct drbd_peer_request *peer_req) 1645 { 1646 struct page *page = peer_req->pages; 1647 unsigned len = peer_req->i.size; 1648 int err; 1649 1650 /* hint all but last page with MSG_MORE */ 1651 page_chain_for_each(page) { 1652 unsigned l = min_t(unsigned, len, PAGE_SIZE); 1653 1654 err = _drbd_send_page(peer_device, page, 0, l, 1655 page_chain_next(page) ? MSG_MORE : 0); 1656 if (err) 1657 return err; 1658 len -= l; 1659 } 1660 return 0; 1661 } 1662 1663 static u32 bio_flags_to_wire(struct drbd_connection *connection, 1664 struct bio *bio) 1665 { 1666 if (connection->agreed_pro_version >= 95) 1667 return (bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0) | 1668 (bio->bi_opf & REQ_FUA ? DP_FUA : 0) | 1669 (bio->bi_opf & REQ_PREFLUSH ? DP_FLUSH : 0) | 1670 (bio_op(bio) == REQ_OP_WRITE_SAME ? DP_WSAME : 0) | 1671 (bio_op(bio) == REQ_OP_DISCARD ? DP_DISCARD : 0); 1672 else 1673 return bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0; 1674 } 1675 1676 /* Used to send write or TRIM aka REQ_DISCARD requests 1677 * R_PRIMARY -> Peer (P_DATA, P_TRIM) 1678 */ 1679 int drbd_send_dblock(struct drbd_peer_device *peer_device, struct drbd_request *req) 1680 { 1681 struct drbd_device *device = peer_device->device; 1682 struct drbd_socket *sock; 1683 struct p_data *p; 1684 struct p_wsame *wsame = NULL; 1685 void *digest_out; 1686 unsigned int dp_flags = 0; 1687 int digest_size; 1688 int err; 1689 1690 sock = &peer_device->connection->data; 1691 p = drbd_prepare_command(peer_device, sock); 1692 digest_size = peer_device->connection->integrity_tfm ? 1693 crypto_ahash_digestsize(peer_device->connection->integrity_tfm) : 0; 1694 1695 if (!p) 1696 return -EIO; 1697 p->sector = cpu_to_be64(req->i.sector); 1698 p->block_id = (unsigned long)req; 1699 p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq)); 1700 dp_flags = bio_flags_to_wire(peer_device->connection, req->master_bio); 1701 if (device->state.conn >= C_SYNC_SOURCE && 1702 device->state.conn <= C_PAUSED_SYNC_T) 1703 dp_flags |= DP_MAY_SET_IN_SYNC; 1704 if (peer_device->connection->agreed_pro_version >= 100) { 1705 if (req->rq_state & RQ_EXP_RECEIVE_ACK) 1706 dp_flags |= DP_SEND_RECEIVE_ACK; 1707 /* During resync, request an explicit write ack, 1708 * even in protocol != C */ 1709 if (req->rq_state & RQ_EXP_WRITE_ACK 1710 || (dp_flags & DP_MAY_SET_IN_SYNC)) 1711 dp_flags |= DP_SEND_WRITE_ACK; 1712 } 1713 p->dp_flags = cpu_to_be32(dp_flags); 1714 1715 if (dp_flags & DP_DISCARD) { 1716 struct p_trim *t = (struct p_trim*)p; 1717 t->size = cpu_to_be32(req->i.size); 1718 err = __send_command(peer_device->connection, device->vnr, sock, P_TRIM, sizeof(*t), NULL, 0); 1719 goto out; 1720 } 1721 if (dp_flags & DP_WSAME) { 1722 /* this will only work if DRBD_FF_WSAME is set AND the 1723 * handshake agreed that all nodes and backend devices are 1724 * WRITE_SAME capable and agree on logical_block_size */ 1725 wsame = (struct p_wsame*)p; 1726 digest_out = wsame + 1; 1727 wsame->size = cpu_to_be32(req->i.size); 1728 } else 1729 digest_out = p + 1; 1730 1731 /* our digest is still only over the payload. 1732 * TRIM does not carry any payload. */ 1733 if (digest_size) 1734 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest_out); 1735 if (wsame) { 1736 err = 1737 __send_command(peer_device->connection, device->vnr, sock, P_WSAME, 1738 sizeof(*wsame) + digest_size, NULL, 1739 bio_iovec(req->master_bio).bv_len); 1740 } else 1741 err = 1742 __send_command(peer_device->connection, device->vnr, sock, P_DATA, 1743 sizeof(*p) + digest_size, NULL, req->i.size); 1744 if (!err) { 1745 /* For protocol A, we have to memcpy the payload into 1746 * socket buffers, as we may complete right away 1747 * as soon as we handed it over to tcp, at which point the data 1748 * pages may become invalid. 1749 * 1750 * For data-integrity enabled, we copy it as well, so we can be 1751 * sure that even if the bio pages may still be modified, it 1752 * won't change the data on the wire, thus if the digest checks 1753 * out ok after sending on this side, but does not fit on the 1754 * receiving side, we sure have detected corruption elsewhere. 1755 */ 1756 if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || digest_size) 1757 err = _drbd_send_bio(peer_device, req->master_bio); 1758 else 1759 err = _drbd_send_zc_bio(peer_device, req->master_bio); 1760 1761 /* double check digest, sometimes buffers have been modified in flight. */ 1762 if (digest_size > 0 && digest_size <= 64) { 1763 /* 64 byte, 512 bit, is the largest digest size 1764 * currently supported in kernel crypto. */ 1765 unsigned char digest[64]; 1766 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest); 1767 if (memcmp(p + 1, digest, digest_size)) { 1768 drbd_warn(device, 1769 "Digest mismatch, buffer modified by upper layers during write: %llus +%u\n", 1770 (unsigned long long)req->i.sector, req->i.size); 1771 } 1772 } /* else if (digest_size > 64) { 1773 ... Be noisy about digest too large ... 1774 } */ 1775 } 1776 out: 1777 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */ 1778 1779 return err; 1780 } 1781 1782 /* answer packet, used to send data back for read requests: 1783 * Peer -> (diskless) R_PRIMARY (P_DATA_REPLY) 1784 * C_SYNC_SOURCE -> C_SYNC_TARGET (P_RS_DATA_REPLY) 1785 */ 1786 int drbd_send_block(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1787 struct drbd_peer_request *peer_req) 1788 { 1789 struct drbd_device *device = peer_device->device; 1790 struct drbd_socket *sock; 1791 struct p_data *p; 1792 int err; 1793 int digest_size; 1794 1795 sock = &peer_device->connection->data; 1796 p = drbd_prepare_command(peer_device, sock); 1797 1798 digest_size = peer_device->connection->integrity_tfm ? 1799 crypto_ahash_digestsize(peer_device->connection->integrity_tfm) : 0; 1800 1801 if (!p) 1802 return -EIO; 1803 p->sector = cpu_to_be64(peer_req->i.sector); 1804 p->block_id = peer_req->block_id; 1805 p->seq_num = 0; /* unused */ 1806 p->dp_flags = 0; 1807 if (digest_size) 1808 drbd_csum_ee(peer_device->connection->integrity_tfm, peer_req, p + 1); 1809 err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*p) + digest_size, NULL, peer_req->i.size); 1810 if (!err) 1811 err = _drbd_send_zc_ee(peer_device, peer_req); 1812 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */ 1813 1814 return err; 1815 } 1816 1817 int drbd_send_out_of_sync(struct drbd_peer_device *peer_device, struct drbd_request *req) 1818 { 1819 struct drbd_socket *sock; 1820 struct p_block_desc *p; 1821 1822 sock = &peer_device->connection->data; 1823 p = drbd_prepare_command(peer_device, sock); 1824 if (!p) 1825 return -EIO; 1826 p->sector = cpu_to_be64(req->i.sector); 1827 p->blksize = cpu_to_be32(req->i.size); 1828 return drbd_send_command(peer_device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0); 1829 } 1830 1831 /* 1832 drbd_send distinguishes two cases: 1833 1834 Packets sent via the data socket "sock" 1835 and packets sent via the meta data socket "msock" 1836 1837 sock msock 1838 -----------------+-------------------------+------------------------------ 1839 timeout conf.timeout / 2 conf.timeout / 2 1840 timeout action send a ping via msock Abort communication 1841 and close all sockets 1842 */ 1843 1844 /* 1845 * you must have down()ed the appropriate [m]sock_mutex elsewhere! 1846 */ 1847 int drbd_send(struct drbd_connection *connection, struct socket *sock, 1848 void *buf, size_t size, unsigned msg_flags) 1849 { 1850 struct kvec iov; 1851 struct msghdr msg; 1852 int rv, sent = 0; 1853 1854 if (!sock) 1855 return -EBADR; 1856 1857 /* THINK if (signal_pending) return ... ? */ 1858 1859 iov.iov_base = buf; 1860 iov.iov_len = size; 1861 1862 msg.msg_name = NULL; 1863 msg.msg_namelen = 0; 1864 msg.msg_control = NULL; 1865 msg.msg_controllen = 0; 1866 msg.msg_flags = msg_flags | MSG_NOSIGNAL; 1867 1868 if (sock == connection->data.socket) { 1869 rcu_read_lock(); 1870 connection->ko_count = rcu_dereference(connection->net_conf)->ko_count; 1871 rcu_read_unlock(); 1872 drbd_update_congested(connection); 1873 } 1874 do { 1875 rv = kernel_sendmsg(sock, &msg, &iov, 1, iov.iov_len); 1876 if (rv == -EAGAIN) { 1877 if (we_should_drop_the_connection(connection, sock)) 1878 break; 1879 else 1880 continue; 1881 } 1882 if (rv == -EINTR) { 1883 flush_signals(current); 1884 rv = 0; 1885 } 1886 if (rv < 0) 1887 break; 1888 sent += rv; 1889 iov.iov_base += rv; 1890 iov.iov_len -= rv; 1891 } while (sent < size); 1892 1893 if (sock == connection->data.socket) 1894 clear_bit(NET_CONGESTED, &connection->flags); 1895 1896 if (rv <= 0) { 1897 if (rv != -EAGAIN) { 1898 drbd_err(connection, "%s_sendmsg returned %d\n", 1899 sock == connection->meta.socket ? "msock" : "sock", 1900 rv); 1901 conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD); 1902 } else 1903 conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD); 1904 } 1905 1906 return sent; 1907 } 1908 1909 /** 1910 * drbd_send_all - Send an entire buffer 1911 * 1912 * Returns 0 upon success and a negative error value otherwise. 1913 */ 1914 int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer, 1915 size_t size, unsigned msg_flags) 1916 { 1917 int err; 1918 1919 err = drbd_send(connection, sock, buffer, size, msg_flags); 1920 if (err < 0) 1921 return err; 1922 if (err != size) 1923 return -EIO; 1924 return 0; 1925 } 1926 1927 static int drbd_open(struct block_device *bdev, fmode_t mode) 1928 { 1929 struct drbd_device *device = bdev->bd_disk->private_data; 1930 unsigned long flags; 1931 int rv = 0; 1932 1933 mutex_lock(&drbd_main_mutex); 1934 spin_lock_irqsave(&device->resource->req_lock, flags); 1935 /* to have a stable device->state.role 1936 * and no race with updating open_cnt */ 1937 1938 if (device->state.role != R_PRIMARY) { 1939 if (mode & FMODE_WRITE) 1940 rv = -EROFS; 1941 else if (!allow_oos) 1942 rv = -EMEDIUMTYPE; 1943 } 1944 1945 if (!rv) 1946 device->open_cnt++; 1947 spin_unlock_irqrestore(&device->resource->req_lock, flags); 1948 mutex_unlock(&drbd_main_mutex); 1949 1950 return rv; 1951 } 1952 1953 static void drbd_release(struct gendisk *gd, fmode_t mode) 1954 { 1955 struct drbd_device *device = gd->private_data; 1956 mutex_lock(&drbd_main_mutex); 1957 device->open_cnt--; 1958 mutex_unlock(&drbd_main_mutex); 1959 } 1960 1961 static void drbd_set_defaults(struct drbd_device *device) 1962 { 1963 /* Beware! The actual layout differs 1964 * between big endian and little endian */ 1965 device->state = (union drbd_dev_state) { 1966 { .role = R_SECONDARY, 1967 .peer = R_UNKNOWN, 1968 .conn = C_STANDALONE, 1969 .disk = D_DISKLESS, 1970 .pdsk = D_UNKNOWN, 1971 } }; 1972 } 1973 1974 void drbd_init_set_defaults(struct drbd_device *device) 1975 { 1976 /* the memset(,0,) did most of this. 1977 * note: only assignments, no allocation in here */ 1978 1979 drbd_set_defaults(device); 1980 1981 atomic_set(&device->ap_bio_cnt, 0); 1982 atomic_set(&device->ap_actlog_cnt, 0); 1983 atomic_set(&device->ap_pending_cnt, 0); 1984 atomic_set(&device->rs_pending_cnt, 0); 1985 atomic_set(&device->unacked_cnt, 0); 1986 atomic_set(&device->local_cnt, 0); 1987 atomic_set(&device->pp_in_use_by_net, 0); 1988 atomic_set(&device->rs_sect_in, 0); 1989 atomic_set(&device->rs_sect_ev, 0); 1990 atomic_set(&device->ap_in_flight, 0); 1991 atomic_set(&device->md_io.in_use, 0); 1992 1993 mutex_init(&device->own_state_mutex); 1994 device->state_mutex = &device->own_state_mutex; 1995 1996 spin_lock_init(&device->al_lock); 1997 spin_lock_init(&device->peer_seq_lock); 1998 1999 INIT_LIST_HEAD(&device->active_ee); 2000 INIT_LIST_HEAD(&device->sync_ee); 2001 INIT_LIST_HEAD(&device->done_ee); 2002 INIT_LIST_HEAD(&device->read_ee); 2003 INIT_LIST_HEAD(&device->net_ee); 2004 INIT_LIST_HEAD(&device->resync_reads); 2005 INIT_LIST_HEAD(&device->resync_work.list); 2006 INIT_LIST_HEAD(&device->unplug_work.list); 2007 INIT_LIST_HEAD(&device->bm_io_work.w.list); 2008 INIT_LIST_HEAD(&device->pending_master_completion[0]); 2009 INIT_LIST_HEAD(&device->pending_master_completion[1]); 2010 INIT_LIST_HEAD(&device->pending_completion[0]); 2011 INIT_LIST_HEAD(&device->pending_completion[1]); 2012 2013 device->resync_work.cb = w_resync_timer; 2014 device->unplug_work.cb = w_send_write_hint; 2015 device->bm_io_work.w.cb = w_bitmap_io; 2016 2017 init_timer(&device->resync_timer); 2018 init_timer(&device->md_sync_timer); 2019 init_timer(&device->start_resync_timer); 2020 init_timer(&device->request_timer); 2021 device->resync_timer.function = resync_timer_fn; 2022 device->resync_timer.data = (unsigned long) device; 2023 device->md_sync_timer.function = md_sync_timer_fn; 2024 device->md_sync_timer.data = (unsigned long) device; 2025 device->start_resync_timer.function = start_resync_timer_fn; 2026 device->start_resync_timer.data = (unsigned long) device; 2027 device->request_timer.function = request_timer_fn; 2028 device->request_timer.data = (unsigned long) device; 2029 2030 init_waitqueue_head(&device->misc_wait); 2031 init_waitqueue_head(&device->state_wait); 2032 init_waitqueue_head(&device->ee_wait); 2033 init_waitqueue_head(&device->al_wait); 2034 init_waitqueue_head(&device->seq_wait); 2035 2036 device->resync_wenr = LC_FREE; 2037 device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE; 2038 device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE; 2039 } 2040 2041 void drbd_device_cleanup(struct drbd_device *device) 2042 { 2043 int i; 2044 if (first_peer_device(device)->connection->receiver.t_state != NONE) 2045 drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n", 2046 first_peer_device(device)->connection->receiver.t_state); 2047 2048 device->al_writ_cnt = 2049 device->bm_writ_cnt = 2050 device->read_cnt = 2051 device->recv_cnt = 2052 device->send_cnt = 2053 device->writ_cnt = 2054 device->p_size = 2055 device->rs_start = 2056 device->rs_total = 2057 device->rs_failed = 0; 2058 device->rs_last_events = 0; 2059 device->rs_last_sect_ev = 0; 2060 for (i = 0; i < DRBD_SYNC_MARKS; i++) { 2061 device->rs_mark_left[i] = 0; 2062 device->rs_mark_time[i] = 0; 2063 } 2064 D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL); 2065 2066 drbd_set_my_capacity(device, 0); 2067 if (device->bitmap) { 2068 /* maybe never allocated. */ 2069 drbd_bm_resize(device, 0, 1); 2070 drbd_bm_cleanup(device); 2071 } 2072 2073 drbd_backing_dev_free(device, device->ldev); 2074 device->ldev = NULL; 2075 2076 clear_bit(AL_SUSPENDED, &device->flags); 2077 2078 D_ASSERT(device, list_empty(&device->active_ee)); 2079 D_ASSERT(device, list_empty(&device->sync_ee)); 2080 D_ASSERT(device, list_empty(&device->done_ee)); 2081 D_ASSERT(device, list_empty(&device->read_ee)); 2082 D_ASSERT(device, list_empty(&device->net_ee)); 2083 D_ASSERT(device, list_empty(&device->resync_reads)); 2084 D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q)); 2085 D_ASSERT(device, list_empty(&device->resync_work.list)); 2086 D_ASSERT(device, list_empty(&device->unplug_work.list)); 2087 2088 drbd_set_defaults(device); 2089 } 2090 2091 2092 static void drbd_destroy_mempools(void) 2093 { 2094 struct page *page; 2095 2096 while (drbd_pp_pool) { 2097 page = drbd_pp_pool; 2098 drbd_pp_pool = (struct page *)page_private(page); 2099 __free_page(page); 2100 drbd_pp_vacant--; 2101 } 2102 2103 /* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */ 2104 2105 if (drbd_md_io_bio_set) 2106 bioset_free(drbd_md_io_bio_set); 2107 if (drbd_md_io_page_pool) 2108 mempool_destroy(drbd_md_io_page_pool); 2109 if (drbd_ee_mempool) 2110 mempool_destroy(drbd_ee_mempool); 2111 if (drbd_request_mempool) 2112 mempool_destroy(drbd_request_mempool); 2113 if (drbd_ee_cache) 2114 kmem_cache_destroy(drbd_ee_cache); 2115 if (drbd_request_cache) 2116 kmem_cache_destroy(drbd_request_cache); 2117 if (drbd_bm_ext_cache) 2118 kmem_cache_destroy(drbd_bm_ext_cache); 2119 if (drbd_al_ext_cache) 2120 kmem_cache_destroy(drbd_al_ext_cache); 2121 2122 drbd_md_io_bio_set = NULL; 2123 drbd_md_io_page_pool = NULL; 2124 drbd_ee_mempool = NULL; 2125 drbd_request_mempool = NULL; 2126 drbd_ee_cache = NULL; 2127 drbd_request_cache = NULL; 2128 drbd_bm_ext_cache = NULL; 2129 drbd_al_ext_cache = NULL; 2130 2131 return; 2132 } 2133 2134 static int drbd_create_mempools(void) 2135 { 2136 struct page *page; 2137 const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * minor_count; 2138 int i; 2139 2140 /* prepare our caches and mempools */ 2141 drbd_request_mempool = NULL; 2142 drbd_ee_cache = NULL; 2143 drbd_request_cache = NULL; 2144 drbd_bm_ext_cache = NULL; 2145 drbd_al_ext_cache = NULL; 2146 drbd_pp_pool = NULL; 2147 drbd_md_io_page_pool = NULL; 2148 drbd_md_io_bio_set = NULL; 2149 2150 /* caches */ 2151 drbd_request_cache = kmem_cache_create( 2152 "drbd_req", sizeof(struct drbd_request), 0, 0, NULL); 2153 if (drbd_request_cache == NULL) 2154 goto Enomem; 2155 2156 drbd_ee_cache = kmem_cache_create( 2157 "drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL); 2158 if (drbd_ee_cache == NULL) 2159 goto Enomem; 2160 2161 drbd_bm_ext_cache = kmem_cache_create( 2162 "drbd_bm", sizeof(struct bm_extent), 0, 0, NULL); 2163 if (drbd_bm_ext_cache == NULL) 2164 goto Enomem; 2165 2166 drbd_al_ext_cache = kmem_cache_create( 2167 "drbd_al", sizeof(struct lc_element), 0, 0, NULL); 2168 if (drbd_al_ext_cache == NULL) 2169 goto Enomem; 2170 2171 /* mempools */ 2172 drbd_md_io_bio_set = bioset_create(DRBD_MIN_POOL_PAGES, 0); 2173 if (drbd_md_io_bio_set == NULL) 2174 goto Enomem; 2175 2176 drbd_md_io_page_pool = mempool_create_page_pool(DRBD_MIN_POOL_PAGES, 0); 2177 if (drbd_md_io_page_pool == NULL) 2178 goto Enomem; 2179 2180 drbd_request_mempool = mempool_create_slab_pool(number, 2181 drbd_request_cache); 2182 if (drbd_request_mempool == NULL) 2183 goto Enomem; 2184 2185 drbd_ee_mempool = mempool_create_slab_pool(number, drbd_ee_cache); 2186 if (drbd_ee_mempool == NULL) 2187 goto Enomem; 2188 2189 /* drbd's page pool */ 2190 spin_lock_init(&drbd_pp_lock); 2191 2192 for (i = 0; i < number; i++) { 2193 page = alloc_page(GFP_HIGHUSER); 2194 if (!page) 2195 goto Enomem; 2196 set_page_private(page, (unsigned long)drbd_pp_pool); 2197 drbd_pp_pool = page; 2198 } 2199 drbd_pp_vacant = number; 2200 2201 return 0; 2202 2203 Enomem: 2204 drbd_destroy_mempools(); /* in case we allocated some */ 2205 return -ENOMEM; 2206 } 2207 2208 static void drbd_release_all_peer_reqs(struct drbd_device *device) 2209 { 2210 int rr; 2211 2212 rr = drbd_free_peer_reqs(device, &device->active_ee); 2213 if (rr) 2214 drbd_err(device, "%d EEs in active list found!\n", rr); 2215 2216 rr = drbd_free_peer_reqs(device, &device->sync_ee); 2217 if (rr) 2218 drbd_err(device, "%d EEs in sync list found!\n", rr); 2219 2220 rr = drbd_free_peer_reqs(device, &device->read_ee); 2221 if (rr) 2222 drbd_err(device, "%d EEs in read list found!\n", rr); 2223 2224 rr = drbd_free_peer_reqs(device, &device->done_ee); 2225 if (rr) 2226 drbd_err(device, "%d EEs in done list found!\n", rr); 2227 2228 rr = drbd_free_peer_reqs(device, &device->net_ee); 2229 if (rr) 2230 drbd_err(device, "%d EEs in net list found!\n", rr); 2231 } 2232 2233 /* caution. no locking. */ 2234 void drbd_destroy_device(struct kref *kref) 2235 { 2236 struct drbd_device *device = container_of(kref, struct drbd_device, kref); 2237 struct drbd_resource *resource = device->resource; 2238 struct drbd_peer_device *peer_device, *tmp_peer_device; 2239 2240 del_timer_sync(&device->request_timer); 2241 2242 /* paranoia asserts */ 2243 D_ASSERT(device, device->open_cnt == 0); 2244 /* end paranoia asserts */ 2245 2246 /* cleanup stuff that may have been allocated during 2247 * device (re-)configuration or state changes */ 2248 2249 if (device->this_bdev) 2250 bdput(device->this_bdev); 2251 2252 drbd_backing_dev_free(device, device->ldev); 2253 device->ldev = NULL; 2254 2255 drbd_release_all_peer_reqs(device); 2256 2257 lc_destroy(device->act_log); 2258 lc_destroy(device->resync); 2259 2260 kfree(device->p_uuid); 2261 /* device->p_uuid = NULL; */ 2262 2263 if (device->bitmap) /* should no longer be there. */ 2264 drbd_bm_cleanup(device); 2265 __free_page(device->md_io.page); 2266 put_disk(device->vdisk); 2267 blk_cleanup_queue(device->rq_queue); 2268 kfree(device->rs_plan_s); 2269 2270 /* not for_each_connection(connection, resource): 2271 * those may have been cleaned up and disassociated already. 2272 */ 2273 for_each_peer_device_safe(peer_device, tmp_peer_device, device) { 2274 kref_put(&peer_device->connection->kref, drbd_destroy_connection); 2275 kfree(peer_device); 2276 } 2277 memset(device, 0xfd, sizeof(*device)); 2278 kfree(device); 2279 kref_put(&resource->kref, drbd_destroy_resource); 2280 } 2281 2282 /* One global retry thread, if we need to push back some bio and have it 2283 * reinserted through our make request function. 2284 */ 2285 static struct retry_worker { 2286 struct workqueue_struct *wq; 2287 struct work_struct worker; 2288 2289 spinlock_t lock; 2290 struct list_head writes; 2291 } retry; 2292 2293 static void do_retry(struct work_struct *ws) 2294 { 2295 struct retry_worker *retry = container_of(ws, struct retry_worker, worker); 2296 LIST_HEAD(writes); 2297 struct drbd_request *req, *tmp; 2298 2299 spin_lock_irq(&retry->lock); 2300 list_splice_init(&retry->writes, &writes); 2301 spin_unlock_irq(&retry->lock); 2302 2303 list_for_each_entry_safe(req, tmp, &writes, tl_requests) { 2304 struct drbd_device *device = req->device; 2305 struct bio *bio = req->master_bio; 2306 unsigned long start_jif = req->start_jif; 2307 bool expected; 2308 2309 expected = 2310 expect(atomic_read(&req->completion_ref) == 0) && 2311 expect(req->rq_state & RQ_POSTPONED) && 2312 expect((req->rq_state & RQ_LOCAL_PENDING) == 0 || 2313 (req->rq_state & RQ_LOCAL_ABORTED) != 0); 2314 2315 if (!expected) 2316 drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n", 2317 req, atomic_read(&req->completion_ref), 2318 req->rq_state); 2319 2320 /* We still need to put one kref associated with the 2321 * "completion_ref" going zero in the code path that queued it 2322 * here. The request object may still be referenced by a 2323 * frozen local req->private_bio, in case we force-detached. 2324 */ 2325 kref_put(&req->kref, drbd_req_destroy); 2326 2327 /* A single suspended or otherwise blocking device may stall 2328 * all others as well. Fortunately, this code path is to 2329 * recover from a situation that "should not happen": 2330 * concurrent writes in multi-primary setup. 2331 * In a "normal" lifecycle, this workqueue is supposed to be 2332 * destroyed without ever doing anything. 2333 * If it turns out to be an issue anyways, we can do per 2334 * resource (replication group) or per device (minor) retry 2335 * workqueues instead. 2336 */ 2337 2338 /* We are not just doing generic_make_request(), 2339 * as we want to keep the start_time information. */ 2340 inc_ap_bio(device); 2341 __drbd_make_request(device, bio, start_jif); 2342 } 2343 } 2344 2345 /* called via drbd_req_put_completion_ref(), 2346 * holds resource->req_lock */ 2347 void drbd_restart_request(struct drbd_request *req) 2348 { 2349 unsigned long flags; 2350 spin_lock_irqsave(&retry.lock, flags); 2351 list_move_tail(&req->tl_requests, &retry.writes); 2352 spin_unlock_irqrestore(&retry.lock, flags); 2353 2354 /* Drop the extra reference that would otherwise 2355 * have been dropped by complete_master_bio. 2356 * do_retry() needs to grab a new one. */ 2357 dec_ap_bio(req->device); 2358 2359 queue_work(retry.wq, &retry.worker); 2360 } 2361 2362 void drbd_destroy_resource(struct kref *kref) 2363 { 2364 struct drbd_resource *resource = 2365 container_of(kref, struct drbd_resource, kref); 2366 2367 idr_destroy(&resource->devices); 2368 free_cpumask_var(resource->cpu_mask); 2369 kfree(resource->name); 2370 memset(resource, 0xf2, sizeof(*resource)); 2371 kfree(resource); 2372 } 2373 2374 void drbd_free_resource(struct drbd_resource *resource) 2375 { 2376 struct drbd_connection *connection, *tmp; 2377 2378 for_each_connection_safe(connection, tmp, resource) { 2379 list_del(&connection->connections); 2380 drbd_debugfs_connection_cleanup(connection); 2381 kref_put(&connection->kref, drbd_destroy_connection); 2382 } 2383 drbd_debugfs_resource_cleanup(resource); 2384 kref_put(&resource->kref, drbd_destroy_resource); 2385 } 2386 2387 static void drbd_cleanup(void) 2388 { 2389 unsigned int i; 2390 struct drbd_device *device; 2391 struct drbd_resource *resource, *tmp; 2392 2393 /* first remove proc, 2394 * drbdsetup uses it's presence to detect 2395 * whether DRBD is loaded. 2396 * If we would get stuck in proc removal, 2397 * but have netlink already deregistered, 2398 * some drbdsetup commands may wait forever 2399 * for an answer. 2400 */ 2401 if (drbd_proc) 2402 remove_proc_entry("drbd", NULL); 2403 2404 if (retry.wq) 2405 destroy_workqueue(retry.wq); 2406 2407 drbd_genl_unregister(); 2408 drbd_debugfs_cleanup(); 2409 2410 idr_for_each_entry(&drbd_devices, device, i) 2411 drbd_delete_device(device); 2412 2413 /* not _rcu since, no other updater anymore. Genl already unregistered */ 2414 for_each_resource_safe(resource, tmp, &drbd_resources) { 2415 list_del(&resource->resources); 2416 drbd_free_resource(resource); 2417 } 2418 2419 drbd_destroy_mempools(); 2420 unregister_blkdev(DRBD_MAJOR, "drbd"); 2421 2422 idr_destroy(&drbd_devices); 2423 2424 pr_info("module cleanup done.\n"); 2425 } 2426 2427 /** 2428 * drbd_congested() - Callback for the flusher thread 2429 * @congested_data: User data 2430 * @bdi_bits: Bits the BDI flusher thread is currently interested in 2431 * 2432 * Returns 1<<WB_async_congested and/or 1<<WB_sync_congested if we are congested. 2433 */ 2434 static int drbd_congested(void *congested_data, int bdi_bits) 2435 { 2436 struct drbd_device *device = congested_data; 2437 struct request_queue *q; 2438 char reason = '-'; 2439 int r = 0; 2440 2441 if (!may_inc_ap_bio(device)) { 2442 /* DRBD has frozen IO */ 2443 r = bdi_bits; 2444 reason = 'd'; 2445 goto out; 2446 } 2447 2448 if (test_bit(CALLBACK_PENDING, &first_peer_device(device)->connection->flags)) { 2449 r |= (1 << WB_async_congested); 2450 /* Without good local data, we would need to read from remote, 2451 * and that would need the worker thread as well, which is 2452 * currently blocked waiting for that usermode helper to 2453 * finish. 2454 */ 2455 if (!get_ldev_if_state(device, D_UP_TO_DATE)) 2456 r |= (1 << WB_sync_congested); 2457 else 2458 put_ldev(device); 2459 r &= bdi_bits; 2460 reason = 'c'; 2461 goto out; 2462 } 2463 2464 if (get_ldev(device)) { 2465 q = bdev_get_queue(device->ldev->backing_bdev); 2466 r = bdi_congested(q->backing_dev_info, bdi_bits); 2467 put_ldev(device); 2468 if (r) 2469 reason = 'b'; 2470 } 2471 2472 if (bdi_bits & (1 << WB_async_congested) && 2473 test_bit(NET_CONGESTED, &first_peer_device(device)->connection->flags)) { 2474 r |= (1 << WB_async_congested); 2475 reason = reason == 'b' ? 'a' : 'n'; 2476 } 2477 2478 out: 2479 device->congestion_reason = reason; 2480 return r; 2481 } 2482 2483 static void drbd_init_workqueue(struct drbd_work_queue* wq) 2484 { 2485 spin_lock_init(&wq->q_lock); 2486 INIT_LIST_HEAD(&wq->q); 2487 init_waitqueue_head(&wq->q_wait); 2488 } 2489 2490 struct completion_work { 2491 struct drbd_work w; 2492 struct completion done; 2493 }; 2494 2495 static int w_complete(struct drbd_work *w, int cancel) 2496 { 2497 struct completion_work *completion_work = 2498 container_of(w, struct completion_work, w); 2499 2500 complete(&completion_work->done); 2501 return 0; 2502 } 2503 2504 void drbd_flush_workqueue(struct drbd_work_queue *work_queue) 2505 { 2506 struct completion_work completion_work; 2507 2508 completion_work.w.cb = w_complete; 2509 init_completion(&completion_work.done); 2510 drbd_queue_work(work_queue, &completion_work.w); 2511 wait_for_completion(&completion_work.done); 2512 } 2513 2514 struct drbd_resource *drbd_find_resource(const char *name) 2515 { 2516 struct drbd_resource *resource; 2517 2518 if (!name || !name[0]) 2519 return NULL; 2520 2521 rcu_read_lock(); 2522 for_each_resource_rcu(resource, &drbd_resources) { 2523 if (!strcmp(resource->name, name)) { 2524 kref_get(&resource->kref); 2525 goto found; 2526 } 2527 } 2528 resource = NULL; 2529 found: 2530 rcu_read_unlock(); 2531 return resource; 2532 } 2533 2534 struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len, 2535 void *peer_addr, int peer_addr_len) 2536 { 2537 struct drbd_resource *resource; 2538 struct drbd_connection *connection; 2539 2540 rcu_read_lock(); 2541 for_each_resource_rcu(resource, &drbd_resources) { 2542 for_each_connection_rcu(connection, resource) { 2543 if (connection->my_addr_len == my_addr_len && 2544 connection->peer_addr_len == peer_addr_len && 2545 !memcmp(&connection->my_addr, my_addr, my_addr_len) && 2546 !memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) { 2547 kref_get(&connection->kref); 2548 goto found; 2549 } 2550 } 2551 } 2552 connection = NULL; 2553 found: 2554 rcu_read_unlock(); 2555 return connection; 2556 } 2557 2558 static int drbd_alloc_socket(struct drbd_socket *socket) 2559 { 2560 socket->rbuf = (void *) __get_free_page(GFP_KERNEL); 2561 if (!socket->rbuf) 2562 return -ENOMEM; 2563 socket->sbuf = (void *) __get_free_page(GFP_KERNEL); 2564 if (!socket->sbuf) 2565 return -ENOMEM; 2566 return 0; 2567 } 2568 2569 static void drbd_free_socket(struct drbd_socket *socket) 2570 { 2571 free_page((unsigned long) socket->sbuf); 2572 free_page((unsigned long) socket->rbuf); 2573 } 2574 2575 void conn_free_crypto(struct drbd_connection *connection) 2576 { 2577 drbd_free_sock(connection); 2578 2579 crypto_free_ahash(connection->csums_tfm); 2580 crypto_free_ahash(connection->verify_tfm); 2581 crypto_free_shash(connection->cram_hmac_tfm); 2582 crypto_free_ahash(connection->integrity_tfm); 2583 crypto_free_ahash(connection->peer_integrity_tfm); 2584 kfree(connection->int_dig_in); 2585 kfree(connection->int_dig_vv); 2586 2587 connection->csums_tfm = NULL; 2588 connection->verify_tfm = NULL; 2589 connection->cram_hmac_tfm = NULL; 2590 connection->integrity_tfm = NULL; 2591 connection->peer_integrity_tfm = NULL; 2592 connection->int_dig_in = NULL; 2593 connection->int_dig_vv = NULL; 2594 } 2595 2596 int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts) 2597 { 2598 struct drbd_connection *connection; 2599 cpumask_var_t new_cpu_mask; 2600 int err; 2601 2602 if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL)) 2603 return -ENOMEM; 2604 2605 /* silently ignore cpu mask on UP kernel */ 2606 if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) { 2607 err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE, 2608 cpumask_bits(new_cpu_mask), nr_cpu_ids); 2609 if (err == -EOVERFLOW) { 2610 /* So what. mask it out. */ 2611 cpumask_var_t tmp_cpu_mask; 2612 if (zalloc_cpumask_var(&tmp_cpu_mask, GFP_KERNEL)) { 2613 cpumask_setall(tmp_cpu_mask); 2614 cpumask_and(new_cpu_mask, new_cpu_mask, tmp_cpu_mask); 2615 drbd_warn(resource, "Overflow in bitmap_parse(%.12s%s), truncating to %u bits\n", 2616 res_opts->cpu_mask, 2617 strlen(res_opts->cpu_mask) > 12 ? "..." : "", 2618 nr_cpu_ids); 2619 free_cpumask_var(tmp_cpu_mask); 2620 err = 0; 2621 } 2622 } 2623 if (err) { 2624 drbd_warn(resource, "bitmap_parse() failed with %d\n", err); 2625 /* retcode = ERR_CPU_MASK_PARSE; */ 2626 goto fail; 2627 } 2628 } 2629 resource->res_opts = *res_opts; 2630 if (cpumask_empty(new_cpu_mask)) 2631 drbd_calc_cpu_mask(&new_cpu_mask); 2632 if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) { 2633 cpumask_copy(resource->cpu_mask, new_cpu_mask); 2634 for_each_connection_rcu(connection, resource) { 2635 connection->receiver.reset_cpu_mask = 1; 2636 connection->ack_receiver.reset_cpu_mask = 1; 2637 connection->worker.reset_cpu_mask = 1; 2638 } 2639 } 2640 err = 0; 2641 2642 fail: 2643 free_cpumask_var(new_cpu_mask); 2644 return err; 2645 2646 } 2647 2648 struct drbd_resource *drbd_create_resource(const char *name) 2649 { 2650 struct drbd_resource *resource; 2651 2652 resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL); 2653 if (!resource) 2654 goto fail; 2655 resource->name = kstrdup(name, GFP_KERNEL); 2656 if (!resource->name) 2657 goto fail_free_resource; 2658 if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL)) 2659 goto fail_free_name; 2660 kref_init(&resource->kref); 2661 idr_init(&resource->devices); 2662 INIT_LIST_HEAD(&resource->connections); 2663 resource->write_ordering = WO_BDEV_FLUSH; 2664 list_add_tail_rcu(&resource->resources, &drbd_resources); 2665 mutex_init(&resource->conf_update); 2666 mutex_init(&resource->adm_mutex); 2667 spin_lock_init(&resource->req_lock); 2668 drbd_debugfs_resource_add(resource); 2669 return resource; 2670 2671 fail_free_name: 2672 kfree(resource->name); 2673 fail_free_resource: 2674 kfree(resource); 2675 fail: 2676 return NULL; 2677 } 2678 2679 /* caller must be under adm_mutex */ 2680 struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts) 2681 { 2682 struct drbd_resource *resource; 2683 struct drbd_connection *connection; 2684 2685 connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL); 2686 if (!connection) 2687 return NULL; 2688 2689 if (drbd_alloc_socket(&connection->data)) 2690 goto fail; 2691 if (drbd_alloc_socket(&connection->meta)) 2692 goto fail; 2693 2694 connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL); 2695 if (!connection->current_epoch) 2696 goto fail; 2697 2698 INIT_LIST_HEAD(&connection->transfer_log); 2699 2700 INIT_LIST_HEAD(&connection->current_epoch->list); 2701 connection->epochs = 1; 2702 spin_lock_init(&connection->epoch_lock); 2703 2704 connection->send.seen_any_write_yet = false; 2705 connection->send.current_epoch_nr = 0; 2706 connection->send.current_epoch_writes = 0; 2707 2708 resource = drbd_create_resource(name); 2709 if (!resource) 2710 goto fail; 2711 2712 connection->cstate = C_STANDALONE; 2713 mutex_init(&connection->cstate_mutex); 2714 init_waitqueue_head(&connection->ping_wait); 2715 idr_init(&connection->peer_devices); 2716 2717 drbd_init_workqueue(&connection->sender_work); 2718 mutex_init(&connection->data.mutex); 2719 mutex_init(&connection->meta.mutex); 2720 2721 drbd_thread_init(resource, &connection->receiver, drbd_receiver, "receiver"); 2722 connection->receiver.connection = connection; 2723 drbd_thread_init(resource, &connection->worker, drbd_worker, "worker"); 2724 connection->worker.connection = connection; 2725 drbd_thread_init(resource, &connection->ack_receiver, drbd_ack_receiver, "ack_recv"); 2726 connection->ack_receiver.connection = connection; 2727 2728 kref_init(&connection->kref); 2729 2730 connection->resource = resource; 2731 2732 if (set_resource_options(resource, res_opts)) 2733 goto fail_resource; 2734 2735 kref_get(&resource->kref); 2736 list_add_tail_rcu(&connection->connections, &resource->connections); 2737 drbd_debugfs_connection_add(connection); 2738 return connection; 2739 2740 fail_resource: 2741 list_del(&resource->resources); 2742 drbd_free_resource(resource); 2743 fail: 2744 kfree(connection->current_epoch); 2745 drbd_free_socket(&connection->meta); 2746 drbd_free_socket(&connection->data); 2747 kfree(connection); 2748 return NULL; 2749 } 2750 2751 void drbd_destroy_connection(struct kref *kref) 2752 { 2753 struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref); 2754 struct drbd_resource *resource = connection->resource; 2755 2756 if (atomic_read(&connection->current_epoch->epoch_size) != 0) 2757 drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size)); 2758 kfree(connection->current_epoch); 2759 2760 idr_destroy(&connection->peer_devices); 2761 2762 drbd_free_socket(&connection->meta); 2763 drbd_free_socket(&connection->data); 2764 kfree(connection->int_dig_in); 2765 kfree(connection->int_dig_vv); 2766 memset(connection, 0xfc, sizeof(*connection)); 2767 kfree(connection); 2768 kref_put(&resource->kref, drbd_destroy_resource); 2769 } 2770 2771 static int init_submitter(struct drbd_device *device) 2772 { 2773 /* opencoded create_singlethread_workqueue(), 2774 * to be able to say "drbd%d", ..., minor */ 2775 device->submit.wq = 2776 alloc_ordered_workqueue("drbd%u_submit", WQ_MEM_RECLAIM, device->minor); 2777 if (!device->submit.wq) 2778 return -ENOMEM; 2779 2780 INIT_WORK(&device->submit.worker, do_submit); 2781 INIT_LIST_HEAD(&device->submit.writes); 2782 return 0; 2783 } 2784 2785 enum drbd_ret_code drbd_create_device(struct drbd_config_context *adm_ctx, unsigned int minor) 2786 { 2787 struct drbd_resource *resource = adm_ctx->resource; 2788 struct drbd_connection *connection; 2789 struct drbd_device *device; 2790 struct drbd_peer_device *peer_device, *tmp_peer_device; 2791 struct gendisk *disk; 2792 struct request_queue *q; 2793 int id; 2794 int vnr = adm_ctx->volume; 2795 enum drbd_ret_code err = ERR_NOMEM; 2796 2797 device = minor_to_device(minor); 2798 if (device) 2799 return ERR_MINOR_OR_VOLUME_EXISTS; 2800 2801 /* GFP_KERNEL, we are outside of all write-out paths */ 2802 device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL); 2803 if (!device) 2804 return ERR_NOMEM; 2805 kref_init(&device->kref); 2806 2807 kref_get(&resource->kref); 2808 device->resource = resource; 2809 device->minor = minor; 2810 device->vnr = vnr; 2811 2812 drbd_init_set_defaults(device); 2813 2814 q = blk_alloc_queue(GFP_KERNEL); 2815 if (!q) 2816 goto out_no_q; 2817 device->rq_queue = q; 2818 q->queuedata = device; 2819 2820 disk = alloc_disk(1); 2821 if (!disk) 2822 goto out_no_disk; 2823 device->vdisk = disk; 2824 2825 set_disk_ro(disk, true); 2826 2827 disk->queue = q; 2828 disk->major = DRBD_MAJOR; 2829 disk->first_minor = minor; 2830 disk->fops = &drbd_ops; 2831 sprintf(disk->disk_name, "drbd%d", minor); 2832 disk->private_data = device; 2833 2834 device->this_bdev = bdget(MKDEV(DRBD_MAJOR, minor)); 2835 /* we have no partitions. we contain only ourselves. */ 2836 device->this_bdev->bd_contains = device->this_bdev; 2837 2838 q->backing_dev_info->congested_fn = drbd_congested; 2839 q->backing_dev_info->congested_data = device; 2840 2841 blk_queue_make_request(q, drbd_make_request); 2842 blk_queue_write_cache(q, true, true); 2843 /* Setting the max_hw_sectors to an odd value of 8kibyte here 2844 This triggers a max_bio_size message upon first attach or connect */ 2845 blk_queue_max_hw_sectors(q, DRBD_MAX_BIO_SIZE_SAFE >> 8); 2846 blk_queue_bounce_limit(q, BLK_BOUNCE_ANY); 2847 q->queue_lock = &resource->req_lock; 2848 2849 device->md_io.page = alloc_page(GFP_KERNEL); 2850 if (!device->md_io.page) 2851 goto out_no_io_page; 2852 2853 if (drbd_bm_init(device)) 2854 goto out_no_bitmap; 2855 device->read_requests = RB_ROOT; 2856 device->write_requests = RB_ROOT; 2857 2858 id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL); 2859 if (id < 0) { 2860 if (id == -ENOSPC) 2861 err = ERR_MINOR_OR_VOLUME_EXISTS; 2862 goto out_no_minor_idr; 2863 } 2864 kref_get(&device->kref); 2865 2866 id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL); 2867 if (id < 0) { 2868 if (id == -ENOSPC) 2869 err = ERR_MINOR_OR_VOLUME_EXISTS; 2870 goto out_idr_remove_minor; 2871 } 2872 kref_get(&device->kref); 2873 2874 INIT_LIST_HEAD(&device->peer_devices); 2875 INIT_LIST_HEAD(&device->pending_bitmap_io); 2876 for_each_connection(connection, resource) { 2877 peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL); 2878 if (!peer_device) 2879 goto out_idr_remove_from_resource; 2880 peer_device->connection = connection; 2881 peer_device->device = device; 2882 2883 list_add(&peer_device->peer_devices, &device->peer_devices); 2884 kref_get(&device->kref); 2885 2886 id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL); 2887 if (id < 0) { 2888 if (id == -ENOSPC) 2889 err = ERR_INVALID_REQUEST; 2890 goto out_idr_remove_from_resource; 2891 } 2892 kref_get(&connection->kref); 2893 INIT_WORK(&peer_device->send_acks_work, drbd_send_acks_wf); 2894 } 2895 2896 if (init_submitter(device)) { 2897 err = ERR_NOMEM; 2898 goto out_idr_remove_vol; 2899 } 2900 2901 add_disk(disk); 2902 2903 /* inherit the connection state */ 2904 device->state.conn = first_connection(resource)->cstate; 2905 if (device->state.conn == C_WF_REPORT_PARAMS) { 2906 for_each_peer_device(peer_device, device) 2907 drbd_connected(peer_device); 2908 } 2909 /* move to create_peer_device() */ 2910 for_each_peer_device(peer_device, device) 2911 drbd_debugfs_peer_device_add(peer_device); 2912 drbd_debugfs_device_add(device); 2913 return NO_ERROR; 2914 2915 out_idr_remove_vol: 2916 idr_remove(&connection->peer_devices, vnr); 2917 out_idr_remove_from_resource: 2918 for_each_connection(connection, resource) { 2919 peer_device = idr_remove(&connection->peer_devices, vnr); 2920 if (peer_device) 2921 kref_put(&connection->kref, drbd_destroy_connection); 2922 } 2923 for_each_peer_device_safe(peer_device, tmp_peer_device, device) { 2924 list_del(&peer_device->peer_devices); 2925 kfree(peer_device); 2926 } 2927 idr_remove(&resource->devices, vnr); 2928 out_idr_remove_minor: 2929 idr_remove(&drbd_devices, minor); 2930 synchronize_rcu(); 2931 out_no_minor_idr: 2932 drbd_bm_cleanup(device); 2933 out_no_bitmap: 2934 __free_page(device->md_io.page); 2935 out_no_io_page: 2936 put_disk(disk); 2937 out_no_disk: 2938 blk_cleanup_queue(q); 2939 out_no_q: 2940 kref_put(&resource->kref, drbd_destroy_resource); 2941 kfree(device); 2942 return err; 2943 } 2944 2945 void drbd_delete_device(struct drbd_device *device) 2946 { 2947 struct drbd_resource *resource = device->resource; 2948 struct drbd_connection *connection; 2949 struct drbd_peer_device *peer_device; 2950 2951 /* move to free_peer_device() */ 2952 for_each_peer_device(peer_device, device) 2953 drbd_debugfs_peer_device_cleanup(peer_device); 2954 drbd_debugfs_device_cleanup(device); 2955 for_each_connection(connection, resource) { 2956 idr_remove(&connection->peer_devices, device->vnr); 2957 kref_put(&device->kref, drbd_destroy_device); 2958 } 2959 idr_remove(&resource->devices, device->vnr); 2960 kref_put(&device->kref, drbd_destroy_device); 2961 idr_remove(&drbd_devices, device_to_minor(device)); 2962 kref_put(&device->kref, drbd_destroy_device); 2963 del_gendisk(device->vdisk); 2964 synchronize_rcu(); 2965 kref_put(&device->kref, drbd_destroy_device); 2966 } 2967 2968 static int __init drbd_init(void) 2969 { 2970 int err; 2971 2972 if (minor_count < DRBD_MINOR_COUNT_MIN || minor_count > DRBD_MINOR_COUNT_MAX) { 2973 pr_err("invalid minor_count (%d)\n", minor_count); 2974 #ifdef MODULE 2975 return -EINVAL; 2976 #else 2977 minor_count = DRBD_MINOR_COUNT_DEF; 2978 #endif 2979 } 2980 2981 err = register_blkdev(DRBD_MAJOR, "drbd"); 2982 if (err) { 2983 pr_err("unable to register block device major %d\n", 2984 DRBD_MAJOR); 2985 return err; 2986 } 2987 2988 /* 2989 * allocate all necessary structs 2990 */ 2991 init_waitqueue_head(&drbd_pp_wait); 2992 2993 drbd_proc = NULL; /* play safe for drbd_cleanup */ 2994 idr_init(&drbd_devices); 2995 2996 mutex_init(&resources_mutex); 2997 INIT_LIST_HEAD(&drbd_resources); 2998 2999 err = drbd_genl_register(); 3000 if (err) { 3001 pr_err("unable to register generic netlink family\n"); 3002 goto fail; 3003 } 3004 3005 err = drbd_create_mempools(); 3006 if (err) 3007 goto fail; 3008 3009 err = -ENOMEM; 3010 drbd_proc = proc_create_data("drbd", S_IFREG | S_IRUGO , NULL, &drbd_proc_fops, NULL); 3011 if (!drbd_proc) { 3012 pr_err("unable to register proc file\n"); 3013 goto fail; 3014 } 3015 3016 retry.wq = create_singlethread_workqueue("drbd-reissue"); 3017 if (!retry.wq) { 3018 pr_err("unable to create retry workqueue\n"); 3019 goto fail; 3020 } 3021 INIT_WORK(&retry.worker, do_retry); 3022 spin_lock_init(&retry.lock); 3023 INIT_LIST_HEAD(&retry.writes); 3024 3025 if (drbd_debugfs_init()) 3026 pr_notice("failed to initialize debugfs -- will not be available\n"); 3027 3028 pr_info("initialized. " 3029 "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n", 3030 API_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX); 3031 pr_info("%s\n", drbd_buildtag()); 3032 pr_info("registered as block device major %d\n", DRBD_MAJOR); 3033 return 0; /* Success! */ 3034 3035 fail: 3036 drbd_cleanup(); 3037 if (err == -ENOMEM) 3038 pr_err("ran out of memory\n"); 3039 else 3040 pr_err("initialization failure\n"); 3041 return err; 3042 } 3043 3044 static void drbd_free_one_sock(struct drbd_socket *ds) 3045 { 3046 struct socket *s; 3047 mutex_lock(&ds->mutex); 3048 s = ds->socket; 3049 ds->socket = NULL; 3050 mutex_unlock(&ds->mutex); 3051 if (s) { 3052 /* so debugfs does not need to mutex_lock() */ 3053 synchronize_rcu(); 3054 kernel_sock_shutdown(s, SHUT_RDWR); 3055 sock_release(s); 3056 } 3057 } 3058 3059 void drbd_free_sock(struct drbd_connection *connection) 3060 { 3061 if (connection->data.socket) 3062 drbd_free_one_sock(&connection->data); 3063 if (connection->meta.socket) 3064 drbd_free_one_sock(&connection->meta); 3065 } 3066 3067 /* meta data management */ 3068 3069 void conn_md_sync(struct drbd_connection *connection) 3070 { 3071 struct drbd_peer_device *peer_device; 3072 int vnr; 3073 3074 rcu_read_lock(); 3075 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 3076 struct drbd_device *device = peer_device->device; 3077 3078 kref_get(&device->kref); 3079 rcu_read_unlock(); 3080 drbd_md_sync(device); 3081 kref_put(&device->kref, drbd_destroy_device); 3082 rcu_read_lock(); 3083 } 3084 rcu_read_unlock(); 3085 } 3086 3087 /* aligned 4kByte */ 3088 struct meta_data_on_disk { 3089 u64 la_size_sect; /* last agreed size. */ 3090 u64 uuid[UI_SIZE]; /* UUIDs. */ 3091 u64 device_uuid; 3092 u64 reserved_u64_1; 3093 u32 flags; /* MDF */ 3094 u32 magic; 3095 u32 md_size_sect; 3096 u32 al_offset; /* offset to this block */ 3097 u32 al_nr_extents; /* important for restoring the AL (userspace) */ 3098 /* `-- act_log->nr_elements <-- ldev->dc.al_extents */ 3099 u32 bm_offset; /* offset to the bitmap, from here */ 3100 u32 bm_bytes_per_bit; /* BM_BLOCK_SIZE */ 3101 u32 la_peer_max_bio_size; /* last peer max_bio_size */ 3102 3103 /* see al_tr_number_to_on_disk_sector() */ 3104 u32 al_stripes; 3105 u32 al_stripe_size_4k; 3106 3107 u8 reserved_u8[4096 - (7*8 + 10*4)]; 3108 } __packed; 3109 3110 3111 3112 void drbd_md_write(struct drbd_device *device, void *b) 3113 { 3114 struct meta_data_on_disk *buffer = b; 3115 sector_t sector; 3116 int i; 3117 3118 memset(buffer, 0, sizeof(*buffer)); 3119 3120 buffer->la_size_sect = cpu_to_be64(drbd_get_capacity(device->this_bdev)); 3121 for (i = UI_CURRENT; i < UI_SIZE; i++) 3122 buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]); 3123 buffer->flags = cpu_to_be32(device->ldev->md.flags); 3124 buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN); 3125 3126 buffer->md_size_sect = cpu_to_be32(device->ldev->md.md_size_sect); 3127 buffer->al_offset = cpu_to_be32(device->ldev->md.al_offset); 3128 buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements); 3129 buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE); 3130 buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid); 3131 3132 buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset); 3133 buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size); 3134 3135 buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes); 3136 buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k); 3137 3138 D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset); 3139 sector = device->ldev->md.md_offset; 3140 3141 if (drbd_md_sync_page_io(device, device->ldev, sector, REQ_OP_WRITE)) { 3142 /* this was a try anyways ... */ 3143 drbd_err(device, "meta data update failed!\n"); 3144 drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR); 3145 } 3146 } 3147 3148 /** 3149 * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set 3150 * @device: DRBD device. 3151 */ 3152 void drbd_md_sync(struct drbd_device *device) 3153 { 3154 struct meta_data_on_disk *buffer; 3155 3156 /* Don't accidentally change the DRBD meta data layout. */ 3157 BUILD_BUG_ON(UI_SIZE != 4); 3158 BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096); 3159 3160 del_timer(&device->md_sync_timer); 3161 /* timer may be rearmed by drbd_md_mark_dirty() now. */ 3162 if (!test_and_clear_bit(MD_DIRTY, &device->flags)) 3163 return; 3164 3165 /* We use here D_FAILED and not D_ATTACHING because we try to write 3166 * metadata even if we detach due to a disk failure! */ 3167 if (!get_ldev_if_state(device, D_FAILED)) 3168 return; 3169 3170 buffer = drbd_md_get_buffer(device, __func__); 3171 if (!buffer) 3172 goto out; 3173 3174 drbd_md_write(device, buffer); 3175 3176 /* Update device->ldev->md.la_size_sect, 3177 * since we updated it on metadata. */ 3178 device->ldev->md.la_size_sect = drbd_get_capacity(device->this_bdev); 3179 3180 drbd_md_put_buffer(device); 3181 out: 3182 put_ldev(device); 3183 } 3184 3185 static int check_activity_log_stripe_size(struct drbd_device *device, 3186 struct meta_data_on_disk *on_disk, 3187 struct drbd_md *in_core) 3188 { 3189 u32 al_stripes = be32_to_cpu(on_disk->al_stripes); 3190 u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k); 3191 u64 al_size_4k; 3192 3193 /* both not set: default to old fixed size activity log */ 3194 if (al_stripes == 0 && al_stripe_size_4k == 0) { 3195 al_stripes = 1; 3196 al_stripe_size_4k = MD_32kB_SECT/8; 3197 } 3198 3199 /* some paranoia plausibility checks */ 3200 3201 /* we need both values to be set */ 3202 if (al_stripes == 0 || al_stripe_size_4k == 0) 3203 goto err; 3204 3205 al_size_4k = (u64)al_stripes * al_stripe_size_4k; 3206 3207 /* Upper limit of activity log area, to avoid potential overflow 3208 * problems in al_tr_number_to_on_disk_sector(). As right now, more 3209 * than 72 * 4k blocks total only increases the amount of history, 3210 * limiting this arbitrarily to 16 GB is not a real limitation ;-) */ 3211 if (al_size_4k > (16 * 1024 * 1024/4)) 3212 goto err; 3213 3214 /* Lower limit: we need at least 8 transaction slots (32kB) 3215 * to not break existing setups */ 3216 if (al_size_4k < MD_32kB_SECT/8) 3217 goto err; 3218 3219 in_core->al_stripe_size_4k = al_stripe_size_4k; 3220 in_core->al_stripes = al_stripes; 3221 in_core->al_size_4k = al_size_4k; 3222 3223 return 0; 3224 err: 3225 drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n", 3226 al_stripes, al_stripe_size_4k); 3227 return -EINVAL; 3228 } 3229 3230 static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev) 3231 { 3232 sector_t capacity = drbd_get_capacity(bdev->md_bdev); 3233 struct drbd_md *in_core = &bdev->md; 3234 s32 on_disk_al_sect; 3235 s32 on_disk_bm_sect; 3236 3237 /* The on-disk size of the activity log, calculated from offsets, and 3238 * the size of the activity log calculated from the stripe settings, 3239 * should match. 3240 * Though we could relax this a bit: it is ok, if the striped activity log 3241 * fits in the available on-disk activity log size. 3242 * Right now, that would break how resize is implemented. 3243 * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware 3244 * of possible unused padding space in the on disk layout. */ 3245 if (in_core->al_offset < 0) { 3246 if (in_core->bm_offset > in_core->al_offset) 3247 goto err; 3248 on_disk_al_sect = -in_core->al_offset; 3249 on_disk_bm_sect = in_core->al_offset - in_core->bm_offset; 3250 } else { 3251 if (in_core->al_offset != MD_4kB_SECT) 3252 goto err; 3253 if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT) 3254 goto err; 3255 3256 on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT; 3257 on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset; 3258 } 3259 3260 /* old fixed size meta data is exactly that: fixed. */ 3261 if (in_core->meta_dev_idx >= 0) { 3262 if (in_core->md_size_sect != MD_128MB_SECT 3263 || in_core->al_offset != MD_4kB_SECT 3264 || in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT 3265 || in_core->al_stripes != 1 3266 || in_core->al_stripe_size_4k != MD_32kB_SECT/8) 3267 goto err; 3268 } 3269 3270 if (capacity < in_core->md_size_sect) 3271 goto err; 3272 if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev)) 3273 goto err; 3274 3275 /* should be aligned, and at least 32k */ 3276 if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT)) 3277 goto err; 3278 3279 /* should fit (for now: exactly) into the available on-disk space; 3280 * overflow prevention is in check_activity_log_stripe_size() above. */ 3281 if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT) 3282 goto err; 3283 3284 /* again, should be aligned */ 3285 if (in_core->bm_offset & 7) 3286 goto err; 3287 3288 /* FIXME check for device grow with flex external meta data? */ 3289 3290 /* can the available bitmap space cover the last agreed device size? */ 3291 if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512) 3292 goto err; 3293 3294 return 0; 3295 3296 err: 3297 drbd_err(device, "meta data offsets don't make sense: idx=%d " 3298 "al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, " 3299 "md_size_sect=%u, la_size=%llu, md_capacity=%llu\n", 3300 in_core->meta_dev_idx, 3301 in_core->al_stripes, in_core->al_stripe_size_4k, 3302 in_core->al_offset, in_core->bm_offset, in_core->md_size_sect, 3303 (unsigned long long)in_core->la_size_sect, 3304 (unsigned long long)capacity); 3305 3306 return -EINVAL; 3307 } 3308 3309 3310 /** 3311 * drbd_md_read() - Reads in the meta data super block 3312 * @device: DRBD device. 3313 * @bdev: Device from which the meta data should be read in. 3314 * 3315 * Return NO_ERROR on success, and an enum drbd_ret_code in case 3316 * something goes wrong. 3317 * 3318 * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS, 3319 * even before @bdev is assigned to @device->ldev. 3320 */ 3321 int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev) 3322 { 3323 struct meta_data_on_disk *buffer; 3324 u32 magic, flags; 3325 int i, rv = NO_ERROR; 3326 3327 if (device->state.disk != D_DISKLESS) 3328 return ERR_DISK_CONFIGURED; 3329 3330 buffer = drbd_md_get_buffer(device, __func__); 3331 if (!buffer) 3332 return ERR_NOMEM; 3333 3334 /* First, figure out where our meta data superblock is located, 3335 * and read it. */ 3336 bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx; 3337 bdev->md.md_offset = drbd_md_ss(bdev); 3338 /* Even for (flexible or indexed) external meta data, 3339 * initially restrict us to the 4k superblock for now. 3340 * Affects the paranoia out-of-range access check in drbd_md_sync_page_io(). */ 3341 bdev->md.md_size_sect = 8; 3342 3343 if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset, 3344 REQ_OP_READ)) { 3345 /* NOTE: can't do normal error processing here as this is 3346 called BEFORE disk is attached */ 3347 drbd_err(device, "Error while reading metadata.\n"); 3348 rv = ERR_IO_MD_DISK; 3349 goto err; 3350 } 3351 3352 magic = be32_to_cpu(buffer->magic); 3353 flags = be32_to_cpu(buffer->flags); 3354 if (magic == DRBD_MD_MAGIC_84_UNCLEAN || 3355 (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) { 3356 /* btw: that's Activity Log clean, not "all" clean. */ 3357 drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n"); 3358 rv = ERR_MD_UNCLEAN; 3359 goto err; 3360 } 3361 3362 rv = ERR_MD_INVALID; 3363 if (magic != DRBD_MD_MAGIC_08) { 3364 if (magic == DRBD_MD_MAGIC_07) 3365 drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n"); 3366 else 3367 drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n"); 3368 goto err; 3369 } 3370 3371 if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) { 3372 drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n", 3373 be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE); 3374 goto err; 3375 } 3376 3377 3378 /* convert to in_core endian */ 3379 bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect); 3380 for (i = UI_CURRENT; i < UI_SIZE; i++) 3381 bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]); 3382 bdev->md.flags = be32_to_cpu(buffer->flags); 3383 bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid); 3384 3385 bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect); 3386 bdev->md.al_offset = be32_to_cpu(buffer->al_offset); 3387 bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset); 3388 3389 if (check_activity_log_stripe_size(device, buffer, &bdev->md)) 3390 goto err; 3391 if (check_offsets_and_sizes(device, bdev)) 3392 goto err; 3393 3394 if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) { 3395 drbd_err(device, "unexpected bm_offset: %d (expected %d)\n", 3396 be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset); 3397 goto err; 3398 } 3399 if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) { 3400 drbd_err(device, "unexpected md_size: %u (expected %u)\n", 3401 be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect); 3402 goto err; 3403 } 3404 3405 rv = NO_ERROR; 3406 3407 spin_lock_irq(&device->resource->req_lock); 3408 if (device->state.conn < C_CONNECTED) { 3409 unsigned int peer; 3410 peer = be32_to_cpu(buffer->la_peer_max_bio_size); 3411 peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE); 3412 device->peer_max_bio_size = peer; 3413 } 3414 spin_unlock_irq(&device->resource->req_lock); 3415 3416 err: 3417 drbd_md_put_buffer(device); 3418 3419 return rv; 3420 } 3421 3422 /** 3423 * drbd_md_mark_dirty() - Mark meta data super block as dirty 3424 * @device: DRBD device. 3425 * 3426 * Call this function if you change anything that should be written to 3427 * the meta-data super block. This function sets MD_DIRTY, and starts a 3428 * timer that ensures that within five seconds you have to call drbd_md_sync(). 3429 */ 3430 #ifdef DEBUG 3431 void drbd_md_mark_dirty_(struct drbd_device *device, unsigned int line, const char *func) 3432 { 3433 if (!test_and_set_bit(MD_DIRTY, &device->flags)) { 3434 mod_timer(&device->md_sync_timer, jiffies + HZ); 3435 device->last_md_mark_dirty.line = line; 3436 device->last_md_mark_dirty.func = func; 3437 } 3438 } 3439 #else 3440 void drbd_md_mark_dirty(struct drbd_device *device) 3441 { 3442 if (!test_and_set_bit(MD_DIRTY, &device->flags)) 3443 mod_timer(&device->md_sync_timer, jiffies + 5*HZ); 3444 } 3445 #endif 3446 3447 void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local) 3448 { 3449 int i; 3450 3451 for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++) 3452 device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i]; 3453 } 3454 3455 void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local) 3456 { 3457 if (idx == UI_CURRENT) { 3458 if (device->state.role == R_PRIMARY) 3459 val |= 1; 3460 else 3461 val &= ~((u64)1); 3462 3463 drbd_set_ed_uuid(device, val); 3464 } 3465 3466 device->ldev->md.uuid[idx] = val; 3467 drbd_md_mark_dirty(device); 3468 } 3469 3470 void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local) 3471 { 3472 unsigned long flags; 3473 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags); 3474 __drbd_uuid_set(device, idx, val); 3475 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags); 3476 } 3477 3478 void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local) 3479 { 3480 unsigned long flags; 3481 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags); 3482 if (device->ldev->md.uuid[idx]) { 3483 drbd_uuid_move_history(device); 3484 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx]; 3485 } 3486 __drbd_uuid_set(device, idx, val); 3487 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags); 3488 } 3489 3490 /** 3491 * drbd_uuid_new_current() - Creates a new current UUID 3492 * @device: DRBD device. 3493 * 3494 * Creates a new current UUID, and rotates the old current UUID into 3495 * the bitmap slot. Causes an incremental resync upon next connect. 3496 */ 3497 void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local) 3498 { 3499 u64 val; 3500 unsigned long long bm_uuid; 3501 3502 get_random_bytes(&val, sizeof(u64)); 3503 3504 spin_lock_irq(&device->ldev->md.uuid_lock); 3505 bm_uuid = device->ldev->md.uuid[UI_BITMAP]; 3506 3507 if (bm_uuid) 3508 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid); 3509 3510 device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT]; 3511 __drbd_uuid_set(device, UI_CURRENT, val); 3512 spin_unlock_irq(&device->ldev->md.uuid_lock); 3513 3514 drbd_print_uuids(device, "new current UUID"); 3515 /* get it to stable storage _now_ */ 3516 drbd_md_sync(device); 3517 } 3518 3519 void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local) 3520 { 3521 unsigned long flags; 3522 if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0) 3523 return; 3524 3525 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags); 3526 if (val == 0) { 3527 drbd_uuid_move_history(device); 3528 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP]; 3529 device->ldev->md.uuid[UI_BITMAP] = 0; 3530 } else { 3531 unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP]; 3532 if (bm_uuid) 3533 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid); 3534 3535 device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1); 3536 } 3537 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags); 3538 3539 drbd_md_mark_dirty(device); 3540 } 3541 3542 /** 3543 * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io() 3544 * @device: DRBD device. 3545 * 3546 * Sets all bits in the bitmap and writes the whole bitmap to stable storage. 3547 */ 3548 int drbd_bmio_set_n_write(struct drbd_device *device) __must_hold(local) 3549 { 3550 int rv = -EIO; 3551 3552 drbd_md_set_flag(device, MDF_FULL_SYNC); 3553 drbd_md_sync(device); 3554 drbd_bm_set_all(device); 3555 3556 rv = drbd_bm_write(device); 3557 3558 if (!rv) { 3559 drbd_md_clear_flag(device, MDF_FULL_SYNC); 3560 drbd_md_sync(device); 3561 } 3562 3563 return rv; 3564 } 3565 3566 /** 3567 * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io() 3568 * @device: DRBD device. 3569 * 3570 * Clears all bits in the bitmap and writes the whole bitmap to stable storage. 3571 */ 3572 int drbd_bmio_clear_n_write(struct drbd_device *device) __must_hold(local) 3573 { 3574 drbd_resume_al(device); 3575 drbd_bm_clear_all(device); 3576 return drbd_bm_write(device); 3577 } 3578 3579 static int w_bitmap_io(struct drbd_work *w, int unused) 3580 { 3581 struct drbd_device *device = 3582 container_of(w, struct drbd_device, bm_io_work.w); 3583 struct bm_io_work *work = &device->bm_io_work; 3584 int rv = -EIO; 3585 3586 if (work->flags != BM_LOCKED_CHANGE_ALLOWED) { 3587 int cnt = atomic_read(&device->ap_bio_cnt); 3588 if (cnt) 3589 drbd_err(device, "FIXME: ap_bio_cnt %d, expected 0; queued for '%s'\n", 3590 cnt, work->why); 3591 } 3592 3593 if (get_ldev(device)) { 3594 drbd_bm_lock(device, work->why, work->flags); 3595 rv = work->io_fn(device); 3596 drbd_bm_unlock(device); 3597 put_ldev(device); 3598 } 3599 3600 clear_bit_unlock(BITMAP_IO, &device->flags); 3601 wake_up(&device->misc_wait); 3602 3603 if (work->done) 3604 work->done(device, rv); 3605 3606 clear_bit(BITMAP_IO_QUEUED, &device->flags); 3607 work->why = NULL; 3608 work->flags = 0; 3609 3610 return 0; 3611 } 3612 3613 /** 3614 * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap 3615 * @device: DRBD device. 3616 * @io_fn: IO callback to be called when bitmap IO is possible 3617 * @done: callback to be called after the bitmap IO was performed 3618 * @why: Descriptive text of the reason for doing the IO 3619 * 3620 * While IO on the bitmap happens we freeze application IO thus we ensure 3621 * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be 3622 * called from worker context. It MUST NOT be used while a previous such 3623 * work is still pending! 3624 * 3625 * Its worker function encloses the call of io_fn() by get_ldev() and 3626 * put_ldev(). 3627 */ 3628 void drbd_queue_bitmap_io(struct drbd_device *device, 3629 int (*io_fn)(struct drbd_device *), 3630 void (*done)(struct drbd_device *, int), 3631 char *why, enum bm_flag flags) 3632 { 3633 D_ASSERT(device, current == first_peer_device(device)->connection->worker.task); 3634 3635 D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags)); 3636 D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags)); 3637 D_ASSERT(device, list_empty(&device->bm_io_work.w.list)); 3638 if (device->bm_io_work.why) 3639 drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n", 3640 why, device->bm_io_work.why); 3641 3642 device->bm_io_work.io_fn = io_fn; 3643 device->bm_io_work.done = done; 3644 device->bm_io_work.why = why; 3645 device->bm_io_work.flags = flags; 3646 3647 spin_lock_irq(&device->resource->req_lock); 3648 set_bit(BITMAP_IO, &device->flags); 3649 /* don't wait for pending application IO if the caller indicates that 3650 * application IO does not conflict anyways. */ 3651 if (flags == BM_LOCKED_CHANGE_ALLOWED || atomic_read(&device->ap_bio_cnt) == 0) { 3652 if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags)) 3653 drbd_queue_work(&first_peer_device(device)->connection->sender_work, 3654 &device->bm_io_work.w); 3655 } 3656 spin_unlock_irq(&device->resource->req_lock); 3657 } 3658 3659 /** 3660 * drbd_bitmap_io() - Does an IO operation on the whole bitmap 3661 * @device: DRBD device. 3662 * @io_fn: IO callback to be called when bitmap IO is possible 3663 * @why: Descriptive text of the reason for doing the IO 3664 * 3665 * freezes application IO while that the actual IO operations runs. This 3666 * functions MAY NOT be called from worker context. 3667 */ 3668 int drbd_bitmap_io(struct drbd_device *device, int (*io_fn)(struct drbd_device *), 3669 char *why, enum bm_flag flags) 3670 { 3671 /* Only suspend io, if some operation is supposed to be locked out */ 3672 const bool do_suspend_io = flags & (BM_DONT_CLEAR|BM_DONT_SET|BM_DONT_TEST); 3673 int rv; 3674 3675 D_ASSERT(device, current != first_peer_device(device)->connection->worker.task); 3676 3677 if (do_suspend_io) 3678 drbd_suspend_io(device); 3679 3680 drbd_bm_lock(device, why, flags); 3681 rv = io_fn(device); 3682 drbd_bm_unlock(device); 3683 3684 if (do_suspend_io) 3685 drbd_resume_io(device); 3686 3687 return rv; 3688 } 3689 3690 void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local) 3691 { 3692 if ((device->ldev->md.flags & flag) != flag) { 3693 drbd_md_mark_dirty(device); 3694 device->ldev->md.flags |= flag; 3695 } 3696 } 3697 3698 void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local) 3699 { 3700 if ((device->ldev->md.flags & flag) != 0) { 3701 drbd_md_mark_dirty(device); 3702 device->ldev->md.flags &= ~flag; 3703 } 3704 } 3705 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag) 3706 { 3707 return (bdev->md.flags & flag) != 0; 3708 } 3709 3710 static void md_sync_timer_fn(unsigned long data) 3711 { 3712 struct drbd_device *device = (struct drbd_device *) data; 3713 drbd_device_post_work(device, MD_SYNC); 3714 } 3715 3716 const char *cmdname(enum drbd_packet cmd) 3717 { 3718 /* THINK may need to become several global tables 3719 * when we want to support more than 3720 * one PRO_VERSION */ 3721 static const char *cmdnames[] = { 3722 [P_DATA] = "Data", 3723 [P_WSAME] = "WriteSame", 3724 [P_TRIM] = "Trim", 3725 [P_DATA_REPLY] = "DataReply", 3726 [P_RS_DATA_REPLY] = "RSDataReply", 3727 [P_BARRIER] = "Barrier", 3728 [P_BITMAP] = "ReportBitMap", 3729 [P_BECOME_SYNC_TARGET] = "BecomeSyncTarget", 3730 [P_BECOME_SYNC_SOURCE] = "BecomeSyncSource", 3731 [P_UNPLUG_REMOTE] = "UnplugRemote", 3732 [P_DATA_REQUEST] = "DataRequest", 3733 [P_RS_DATA_REQUEST] = "RSDataRequest", 3734 [P_SYNC_PARAM] = "SyncParam", 3735 [P_SYNC_PARAM89] = "SyncParam89", 3736 [P_PROTOCOL] = "ReportProtocol", 3737 [P_UUIDS] = "ReportUUIDs", 3738 [P_SIZES] = "ReportSizes", 3739 [P_STATE] = "ReportState", 3740 [P_SYNC_UUID] = "ReportSyncUUID", 3741 [P_AUTH_CHALLENGE] = "AuthChallenge", 3742 [P_AUTH_RESPONSE] = "AuthResponse", 3743 [P_PING] = "Ping", 3744 [P_PING_ACK] = "PingAck", 3745 [P_RECV_ACK] = "RecvAck", 3746 [P_WRITE_ACK] = "WriteAck", 3747 [P_RS_WRITE_ACK] = "RSWriteAck", 3748 [P_SUPERSEDED] = "Superseded", 3749 [P_NEG_ACK] = "NegAck", 3750 [P_NEG_DREPLY] = "NegDReply", 3751 [P_NEG_RS_DREPLY] = "NegRSDReply", 3752 [P_BARRIER_ACK] = "BarrierAck", 3753 [P_STATE_CHG_REQ] = "StateChgRequest", 3754 [P_STATE_CHG_REPLY] = "StateChgReply", 3755 [P_OV_REQUEST] = "OVRequest", 3756 [P_OV_REPLY] = "OVReply", 3757 [P_OV_RESULT] = "OVResult", 3758 [P_CSUM_RS_REQUEST] = "CsumRSRequest", 3759 [P_RS_IS_IN_SYNC] = "CsumRSIsInSync", 3760 [P_COMPRESSED_BITMAP] = "CBitmap", 3761 [P_DELAY_PROBE] = "DelayProbe", 3762 [P_OUT_OF_SYNC] = "OutOfSync", 3763 [P_RETRY_WRITE] = "RetryWrite", 3764 [P_RS_CANCEL] = "RSCancel", 3765 [P_CONN_ST_CHG_REQ] = "conn_st_chg_req", 3766 [P_CONN_ST_CHG_REPLY] = "conn_st_chg_reply", 3767 [P_RETRY_WRITE] = "retry_write", 3768 [P_PROTOCOL_UPDATE] = "protocol_update", 3769 [P_RS_THIN_REQ] = "rs_thin_req", 3770 [P_RS_DEALLOCATED] = "rs_deallocated", 3771 3772 /* enum drbd_packet, but not commands - obsoleted flags: 3773 * P_MAY_IGNORE 3774 * P_MAX_OPT_CMD 3775 */ 3776 }; 3777 3778 /* too big for the array: 0xfffX */ 3779 if (cmd == P_INITIAL_META) 3780 return "InitialMeta"; 3781 if (cmd == P_INITIAL_DATA) 3782 return "InitialData"; 3783 if (cmd == P_CONNECTION_FEATURES) 3784 return "ConnectionFeatures"; 3785 if (cmd >= ARRAY_SIZE(cmdnames)) 3786 return "Unknown"; 3787 return cmdnames[cmd]; 3788 } 3789 3790 /** 3791 * drbd_wait_misc - wait for a request to make progress 3792 * @device: device associated with the request 3793 * @i: the struct drbd_interval embedded in struct drbd_request or 3794 * struct drbd_peer_request 3795 */ 3796 int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i) 3797 { 3798 struct net_conf *nc; 3799 DEFINE_WAIT(wait); 3800 long timeout; 3801 3802 rcu_read_lock(); 3803 nc = rcu_dereference(first_peer_device(device)->connection->net_conf); 3804 if (!nc) { 3805 rcu_read_unlock(); 3806 return -ETIMEDOUT; 3807 } 3808 timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT; 3809 rcu_read_unlock(); 3810 3811 /* Indicate to wake up device->misc_wait on progress. */ 3812 i->waiting = true; 3813 prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE); 3814 spin_unlock_irq(&device->resource->req_lock); 3815 timeout = schedule_timeout(timeout); 3816 finish_wait(&device->misc_wait, &wait); 3817 spin_lock_irq(&device->resource->req_lock); 3818 if (!timeout || device->state.conn < C_CONNECTED) 3819 return -ETIMEDOUT; 3820 if (signal_pending(current)) 3821 return -ERESTARTSYS; 3822 return 0; 3823 } 3824 3825 void lock_all_resources(void) 3826 { 3827 struct drbd_resource *resource; 3828 int __maybe_unused i = 0; 3829 3830 mutex_lock(&resources_mutex); 3831 local_irq_disable(); 3832 for_each_resource(resource, &drbd_resources) 3833 spin_lock_nested(&resource->req_lock, i++); 3834 } 3835 3836 void unlock_all_resources(void) 3837 { 3838 struct drbd_resource *resource; 3839 3840 for_each_resource(resource, &drbd_resources) 3841 spin_unlock(&resource->req_lock); 3842 local_irq_enable(); 3843 mutex_unlock(&resources_mutex); 3844 } 3845 3846 #ifdef CONFIG_DRBD_FAULT_INJECTION 3847 /* Fault insertion support including random number generator shamelessly 3848 * stolen from kernel/rcutorture.c */ 3849 struct fault_random_state { 3850 unsigned long state; 3851 unsigned long count; 3852 }; 3853 3854 #define FAULT_RANDOM_MULT 39916801 /* prime */ 3855 #define FAULT_RANDOM_ADD 479001701 /* prime */ 3856 #define FAULT_RANDOM_REFRESH 10000 3857 3858 /* 3859 * Crude but fast random-number generator. Uses a linear congruential 3860 * generator, with occasional help from get_random_bytes(). 3861 */ 3862 static unsigned long 3863 _drbd_fault_random(struct fault_random_state *rsp) 3864 { 3865 long refresh; 3866 3867 if (!rsp->count--) { 3868 get_random_bytes(&refresh, sizeof(refresh)); 3869 rsp->state += refresh; 3870 rsp->count = FAULT_RANDOM_REFRESH; 3871 } 3872 rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD; 3873 return swahw32(rsp->state); 3874 } 3875 3876 static char * 3877 _drbd_fault_str(unsigned int type) { 3878 static char *_faults[] = { 3879 [DRBD_FAULT_MD_WR] = "Meta-data write", 3880 [DRBD_FAULT_MD_RD] = "Meta-data read", 3881 [DRBD_FAULT_RS_WR] = "Resync write", 3882 [DRBD_FAULT_RS_RD] = "Resync read", 3883 [DRBD_FAULT_DT_WR] = "Data write", 3884 [DRBD_FAULT_DT_RD] = "Data read", 3885 [DRBD_FAULT_DT_RA] = "Data read ahead", 3886 [DRBD_FAULT_BM_ALLOC] = "BM allocation", 3887 [DRBD_FAULT_AL_EE] = "EE allocation", 3888 [DRBD_FAULT_RECEIVE] = "receive data corruption", 3889 }; 3890 3891 return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**"; 3892 } 3893 3894 unsigned int 3895 _drbd_insert_fault(struct drbd_device *device, unsigned int type) 3896 { 3897 static struct fault_random_state rrs = {0, 0}; 3898 3899 unsigned int ret = ( 3900 (fault_devs == 0 || 3901 ((1 << device_to_minor(device)) & fault_devs) != 0) && 3902 (((_drbd_fault_random(&rrs) % 100) + 1) <= fault_rate)); 3903 3904 if (ret) { 3905 fault_count++; 3906 3907 if (__ratelimit(&drbd_ratelimit_state)) 3908 drbd_warn(device, "***Simulating %s failure\n", 3909 _drbd_fault_str(type)); 3910 } 3911 3912 return ret; 3913 } 3914 #endif 3915 3916 const char *drbd_buildtag(void) 3917 { 3918 /* DRBD built from external sources has here a reference to the 3919 git hash of the source code. */ 3920 3921 static char buildtag[38] = "\0uilt-in"; 3922 3923 if (buildtag[0] == 0) { 3924 #ifdef MODULE 3925 sprintf(buildtag, "srcversion: %-24s", THIS_MODULE->srcversion); 3926 #else 3927 buildtag[0] = 'b'; 3928 #endif 3929 } 3930 3931 return buildtag; 3932 } 3933 3934 module_init(drbd_init) 3935 module_exit(drbd_cleanup) 3936 3937 EXPORT_SYMBOL(drbd_conn_str); 3938 EXPORT_SYMBOL(drbd_role_str); 3939 EXPORT_SYMBOL(drbd_disk_str); 3940 EXPORT_SYMBOL(drbd_set_st_err_str); 3941