1 /* 2 drbd.c 3 4 This file is part of DRBD by Philipp Reisner and Lars Ellenberg. 5 6 Copyright (C) 2001-2008, LINBIT Information Technologies GmbH. 7 Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>. 8 Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>. 9 10 Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev 11 from Logicworks, Inc. for making SDP replication support possible. 12 13 drbd is free software; you can redistribute it and/or modify 14 it under the terms of the GNU General Public License as published by 15 the Free Software Foundation; either version 2, or (at your option) 16 any later version. 17 18 drbd is distributed in the hope that it will be useful, 19 but WITHOUT ANY WARRANTY; without even the implied warranty of 20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 21 GNU General Public License for more details. 22 23 You should have received a copy of the GNU General Public License 24 along with drbd; see the file COPYING. If not, write to 25 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 26 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include <linux/module.h> 32 #include <linux/jiffies.h> 33 #include <linux/drbd.h> 34 #include <asm/uaccess.h> 35 #include <asm/types.h> 36 #include <net/sock.h> 37 #include <linux/ctype.h> 38 #include <linux/mutex.h> 39 #include <linux/fs.h> 40 #include <linux/file.h> 41 #include <linux/proc_fs.h> 42 #include <linux/init.h> 43 #include <linux/mm.h> 44 #include <linux/memcontrol.h> 45 #include <linux/mm_inline.h> 46 #include <linux/slab.h> 47 #include <linux/random.h> 48 #include <linux/reboot.h> 49 #include <linux/notifier.h> 50 #include <linux/kthread.h> 51 #include <linux/workqueue.h> 52 #define __KERNEL_SYSCALLS__ 53 #include <linux/unistd.h> 54 #include <linux/vmalloc.h> 55 56 #include <linux/drbd_limits.h> 57 #include "drbd_int.h" 58 #include "drbd_protocol.h" 59 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */ 60 #include "drbd_vli.h" 61 #include "drbd_debugfs.h" 62 63 static DEFINE_MUTEX(drbd_main_mutex); 64 static int drbd_open(struct block_device *bdev, fmode_t mode); 65 static void drbd_release(struct gendisk *gd, fmode_t mode); 66 static void md_sync_timer_fn(unsigned long data); 67 static int w_bitmap_io(struct drbd_work *w, int unused); 68 69 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, " 70 "Lars Ellenberg <lars@linbit.com>"); 71 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION); 72 MODULE_VERSION(REL_VERSION); 73 MODULE_LICENSE("GPL"); 74 MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices (" 75 __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")"); 76 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR); 77 78 #include <linux/moduleparam.h> 79 /* allow_open_on_secondary */ 80 MODULE_PARM_DESC(allow_oos, "DONT USE!"); 81 /* thanks to these macros, if compiled into the kernel (not-module), 82 * this becomes the boot parameter drbd.minor_count */ 83 module_param(minor_count, uint, 0444); 84 module_param(disable_sendpage, bool, 0644); 85 module_param(allow_oos, bool, 0); 86 module_param(proc_details, int, 0644); 87 88 #ifdef CONFIG_DRBD_FAULT_INJECTION 89 int enable_faults; 90 int fault_rate; 91 static int fault_count; 92 int fault_devs; 93 /* bitmap of enabled faults */ 94 module_param(enable_faults, int, 0664); 95 /* fault rate % value - applies to all enabled faults */ 96 module_param(fault_rate, int, 0664); 97 /* count of faults inserted */ 98 module_param(fault_count, int, 0664); 99 /* bitmap of devices to insert faults on */ 100 module_param(fault_devs, int, 0644); 101 #endif 102 103 /* module parameter, defined */ 104 unsigned int minor_count = DRBD_MINOR_COUNT_DEF; 105 bool disable_sendpage; 106 bool allow_oos; 107 int proc_details; /* Detail level in proc drbd*/ 108 109 /* Module parameter for setting the user mode helper program 110 * to run. Default is /sbin/drbdadm */ 111 char usermode_helper[80] = "/sbin/drbdadm"; 112 113 module_param_string(usermode_helper, usermode_helper, sizeof(usermode_helper), 0644); 114 115 /* in 2.6.x, our device mapping and config info contains our virtual gendisks 116 * as member "struct gendisk *vdisk;" 117 */ 118 struct idr drbd_devices; 119 struct list_head drbd_resources; 120 struct mutex resources_mutex; 121 122 struct kmem_cache *drbd_request_cache; 123 struct kmem_cache *drbd_ee_cache; /* peer requests */ 124 struct kmem_cache *drbd_bm_ext_cache; /* bitmap extents */ 125 struct kmem_cache *drbd_al_ext_cache; /* activity log extents */ 126 mempool_t *drbd_request_mempool; 127 mempool_t *drbd_ee_mempool; 128 mempool_t *drbd_md_io_page_pool; 129 struct bio_set *drbd_md_io_bio_set; 130 131 /* I do not use a standard mempool, because: 132 1) I want to hand out the pre-allocated objects first. 133 2) I want to be able to interrupt sleeping allocation with a signal. 134 Note: This is a single linked list, the next pointer is the private 135 member of struct page. 136 */ 137 struct page *drbd_pp_pool; 138 spinlock_t drbd_pp_lock; 139 int drbd_pp_vacant; 140 wait_queue_head_t drbd_pp_wait; 141 142 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5); 143 144 static const struct block_device_operations drbd_ops = { 145 .owner = THIS_MODULE, 146 .open = drbd_open, 147 .release = drbd_release, 148 }; 149 150 struct bio *bio_alloc_drbd(gfp_t gfp_mask) 151 { 152 struct bio *bio; 153 154 if (!drbd_md_io_bio_set) 155 return bio_alloc(gfp_mask, 1); 156 157 bio = bio_alloc_bioset(gfp_mask, 1, drbd_md_io_bio_set); 158 if (!bio) 159 return NULL; 160 return bio; 161 } 162 163 #ifdef __CHECKER__ 164 /* When checking with sparse, and this is an inline function, sparse will 165 give tons of false positives. When this is a real functions sparse works. 166 */ 167 int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins) 168 { 169 int io_allowed; 170 171 atomic_inc(&device->local_cnt); 172 io_allowed = (device->state.disk >= mins); 173 if (!io_allowed) { 174 if (atomic_dec_and_test(&device->local_cnt)) 175 wake_up(&device->misc_wait); 176 } 177 return io_allowed; 178 } 179 180 #endif 181 182 /** 183 * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch 184 * @connection: DRBD connection. 185 * @barrier_nr: Expected identifier of the DRBD write barrier packet. 186 * @set_size: Expected number of requests before that barrier. 187 * 188 * In case the passed barrier_nr or set_size does not match the oldest 189 * epoch of not yet barrier-acked requests, this function will cause a 190 * termination of the connection. 191 */ 192 void tl_release(struct drbd_connection *connection, unsigned int barrier_nr, 193 unsigned int set_size) 194 { 195 struct drbd_request *r; 196 struct drbd_request *req = NULL; 197 int expect_epoch = 0; 198 int expect_size = 0; 199 200 spin_lock_irq(&connection->resource->req_lock); 201 202 /* find oldest not yet barrier-acked write request, 203 * count writes in its epoch. */ 204 list_for_each_entry(r, &connection->transfer_log, tl_requests) { 205 const unsigned s = r->rq_state; 206 if (!req) { 207 if (!(s & RQ_WRITE)) 208 continue; 209 if (!(s & RQ_NET_MASK)) 210 continue; 211 if (s & RQ_NET_DONE) 212 continue; 213 req = r; 214 expect_epoch = req->epoch; 215 expect_size ++; 216 } else { 217 if (r->epoch != expect_epoch) 218 break; 219 if (!(s & RQ_WRITE)) 220 continue; 221 /* if (s & RQ_DONE): not expected */ 222 /* if (!(s & RQ_NET_MASK)): not expected */ 223 expect_size++; 224 } 225 } 226 227 /* first some paranoia code */ 228 if (req == NULL) { 229 drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n", 230 barrier_nr); 231 goto bail; 232 } 233 if (expect_epoch != barrier_nr) { 234 drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n", 235 barrier_nr, expect_epoch); 236 goto bail; 237 } 238 239 if (expect_size != set_size) { 240 drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n", 241 barrier_nr, set_size, expect_size); 242 goto bail; 243 } 244 245 /* Clean up list of requests processed during current epoch. */ 246 /* this extra list walk restart is paranoia, 247 * to catch requests being barrier-acked "unexpectedly". 248 * It usually should find the same req again, or some READ preceding it. */ 249 list_for_each_entry(req, &connection->transfer_log, tl_requests) 250 if (req->epoch == expect_epoch) 251 break; 252 list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) { 253 if (req->epoch != expect_epoch) 254 break; 255 _req_mod(req, BARRIER_ACKED); 256 } 257 spin_unlock_irq(&connection->resource->req_lock); 258 259 return; 260 261 bail: 262 spin_unlock_irq(&connection->resource->req_lock); 263 conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD); 264 } 265 266 267 /** 268 * _tl_restart() - Walks the transfer log, and applies an action to all requests 269 * @connection: DRBD connection to operate on. 270 * @what: The action/event to perform with all request objects 271 * 272 * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO, 273 * RESTART_FROZEN_DISK_IO. 274 */ 275 /* must hold resource->req_lock */ 276 void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what) 277 { 278 struct drbd_request *req, *r; 279 280 list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) 281 _req_mod(req, what); 282 } 283 284 void tl_restart(struct drbd_connection *connection, enum drbd_req_event what) 285 { 286 spin_lock_irq(&connection->resource->req_lock); 287 _tl_restart(connection, what); 288 spin_unlock_irq(&connection->resource->req_lock); 289 } 290 291 /** 292 * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL 293 * @device: DRBD device. 294 * 295 * This is called after the connection to the peer was lost. The storage covered 296 * by the requests on the transfer gets marked as our of sync. Called from the 297 * receiver thread and the worker thread. 298 */ 299 void tl_clear(struct drbd_connection *connection) 300 { 301 tl_restart(connection, CONNECTION_LOST_WHILE_PENDING); 302 } 303 304 /** 305 * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL 306 * @device: DRBD device. 307 */ 308 void tl_abort_disk_io(struct drbd_device *device) 309 { 310 struct drbd_connection *connection = first_peer_device(device)->connection; 311 struct drbd_request *req, *r; 312 313 spin_lock_irq(&connection->resource->req_lock); 314 list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) { 315 if (!(req->rq_state & RQ_LOCAL_PENDING)) 316 continue; 317 if (req->device != device) 318 continue; 319 _req_mod(req, ABORT_DISK_IO); 320 } 321 spin_unlock_irq(&connection->resource->req_lock); 322 } 323 324 static int drbd_thread_setup(void *arg) 325 { 326 struct drbd_thread *thi = (struct drbd_thread *) arg; 327 struct drbd_resource *resource = thi->resource; 328 unsigned long flags; 329 int retval; 330 331 snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s", 332 thi->name[0], 333 resource->name); 334 335 restart: 336 retval = thi->function(thi); 337 338 spin_lock_irqsave(&thi->t_lock, flags); 339 340 /* if the receiver has been "EXITING", the last thing it did 341 * was set the conn state to "StandAlone", 342 * if now a re-connect request comes in, conn state goes C_UNCONNECTED, 343 * and receiver thread will be "started". 344 * drbd_thread_start needs to set "RESTARTING" in that case. 345 * t_state check and assignment needs to be within the same spinlock, 346 * so either thread_start sees EXITING, and can remap to RESTARTING, 347 * or thread_start see NONE, and can proceed as normal. 348 */ 349 350 if (thi->t_state == RESTARTING) { 351 drbd_info(resource, "Restarting %s thread\n", thi->name); 352 thi->t_state = RUNNING; 353 spin_unlock_irqrestore(&thi->t_lock, flags); 354 goto restart; 355 } 356 357 thi->task = NULL; 358 thi->t_state = NONE; 359 smp_mb(); 360 complete_all(&thi->stop); 361 spin_unlock_irqrestore(&thi->t_lock, flags); 362 363 drbd_info(resource, "Terminating %s\n", current->comm); 364 365 /* Release mod reference taken when thread was started */ 366 367 if (thi->connection) 368 kref_put(&thi->connection->kref, drbd_destroy_connection); 369 kref_put(&resource->kref, drbd_destroy_resource); 370 module_put(THIS_MODULE); 371 return retval; 372 } 373 374 static void drbd_thread_init(struct drbd_resource *resource, struct drbd_thread *thi, 375 int (*func) (struct drbd_thread *), const char *name) 376 { 377 spin_lock_init(&thi->t_lock); 378 thi->task = NULL; 379 thi->t_state = NONE; 380 thi->function = func; 381 thi->resource = resource; 382 thi->connection = NULL; 383 thi->name = name; 384 } 385 386 int drbd_thread_start(struct drbd_thread *thi) 387 { 388 struct drbd_resource *resource = thi->resource; 389 struct task_struct *nt; 390 unsigned long flags; 391 392 /* is used from state engine doing drbd_thread_stop_nowait, 393 * while holding the req lock irqsave */ 394 spin_lock_irqsave(&thi->t_lock, flags); 395 396 switch (thi->t_state) { 397 case NONE: 398 drbd_info(resource, "Starting %s thread (from %s [%d])\n", 399 thi->name, current->comm, current->pid); 400 401 /* Get ref on module for thread - this is released when thread exits */ 402 if (!try_module_get(THIS_MODULE)) { 403 drbd_err(resource, "Failed to get module reference in drbd_thread_start\n"); 404 spin_unlock_irqrestore(&thi->t_lock, flags); 405 return false; 406 } 407 408 kref_get(&resource->kref); 409 if (thi->connection) 410 kref_get(&thi->connection->kref); 411 412 init_completion(&thi->stop); 413 thi->reset_cpu_mask = 1; 414 thi->t_state = RUNNING; 415 spin_unlock_irqrestore(&thi->t_lock, flags); 416 flush_signals(current); /* otherw. may get -ERESTARTNOINTR */ 417 418 nt = kthread_create(drbd_thread_setup, (void *) thi, 419 "drbd_%c_%s", thi->name[0], thi->resource->name); 420 421 if (IS_ERR(nt)) { 422 drbd_err(resource, "Couldn't start thread\n"); 423 424 if (thi->connection) 425 kref_put(&thi->connection->kref, drbd_destroy_connection); 426 kref_put(&resource->kref, drbd_destroy_resource); 427 module_put(THIS_MODULE); 428 return false; 429 } 430 spin_lock_irqsave(&thi->t_lock, flags); 431 thi->task = nt; 432 thi->t_state = RUNNING; 433 spin_unlock_irqrestore(&thi->t_lock, flags); 434 wake_up_process(nt); 435 break; 436 case EXITING: 437 thi->t_state = RESTARTING; 438 drbd_info(resource, "Restarting %s thread (from %s [%d])\n", 439 thi->name, current->comm, current->pid); 440 /* fall through */ 441 case RUNNING: 442 case RESTARTING: 443 default: 444 spin_unlock_irqrestore(&thi->t_lock, flags); 445 break; 446 } 447 448 return true; 449 } 450 451 452 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait) 453 { 454 unsigned long flags; 455 456 enum drbd_thread_state ns = restart ? RESTARTING : EXITING; 457 458 /* may be called from state engine, holding the req lock irqsave */ 459 spin_lock_irqsave(&thi->t_lock, flags); 460 461 if (thi->t_state == NONE) { 462 spin_unlock_irqrestore(&thi->t_lock, flags); 463 if (restart) 464 drbd_thread_start(thi); 465 return; 466 } 467 468 if (thi->t_state != ns) { 469 if (thi->task == NULL) { 470 spin_unlock_irqrestore(&thi->t_lock, flags); 471 return; 472 } 473 474 thi->t_state = ns; 475 smp_mb(); 476 init_completion(&thi->stop); 477 if (thi->task != current) 478 force_sig(DRBD_SIGKILL, thi->task); 479 } 480 481 spin_unlock_irqrestore(&thi->t_lock, flags); 482 483 if (wait) 484 wait_for_completion(&thi->stop); 485 } 486 487 int conn_lowest_minor(struct drbd_connection *connection) 488 { 489 struct drbd_peer_device *peer_device; 490 int vnr = 0, minor = -1; 491 492 rcu_read_lock(); 493 peer_device = idr_get_next(&connection->peer_devices, &vnr); 494 if (peer_device) 495 minor = device_to_minor(peer_device->device); 496 rcu_read_unlock(); 497 498 return minor; 499 } 500 501 #ifdef CONFIG_SMP 502 /** 503 * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs 504 * 505 * Forces all threads of a resource onto the same CPU. This is beneficial for 506 * DRBD's performance. May be overwritten by user's configuration. 507 */ 508 static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask) 509 { 510 unsigned int *resources_per_cpu, min_index = ~0; 511 512 resources_per_cpu = kzalloc(nr_cpu_ids * sizeof(*resources_per_cpu), GFP_KERNEL); 513 if (resources_per_cpu) { 514 struct drbd_resource *resource; 515 unsigned int cpu, min = ~0; 516 517 rcu_read_lock(); 518 for_each_resource_rcu(resource, &drbd_resources) { 519 for_each_cpu(cpu, resource->cpu_mask) 520 resources_per_cpu[cpu]++; 521 } 522 rcu_read_unlock(); 523 for_each_online_cpu(cpu) { 524 if (resources_per_cpu[cpu] < min) { 525 min = resources_per_cpu[cpu]; 526 min_index = cpu; 527 } 528 } 529 kfree(resources_per_cpu); 530 } 531 if (min_index == ~0) { 532 cpumask_setall(*cpu_mask); 533 return; 534 } 535 cpumask_set_cpu(min_index, *cpu_mask); 536 } 537 538 /** 539 * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread 540 * @device: DRBD device. 541 * @thi: drbd_thread object 542 * 543 * call in the "main loop" of _all_ threads, no need for any mutex, current won't die 544 * prematurely. 545 */ 546 void drbd_thread_current_set_cpu(struct drbd_thread *thi) 547 { 548 struct drbd_resource *resource = thi->resource; 549 struct task_struct *p = current; 550 551 if (!thi->reset_cpu_mask) 552 return; 553 thi->reset_cpu_mask = 0; 554 set_cpus_allowed_ptr(p, resource->cpu_mask); 555 } 556 #else 557 #define drbd_calc_cpu_mask(A) ({}) 558 #endif 559 560 /** 561 * drbd_header_size - size of a packet header 562 * 563 * The header size is a multiple of 8, so any payload following the header is 564 * word aligned on 64-bit architectures. (The bitmap send and receive code 565 * relies on this.) 566 */ 567 unsigned int drbd_header_size(struct drbd_connection *connection) 568 { 569 if (connection->agreed_pro_version >= 100) { 570 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8)); 571 return sizeof(struct p_header100); 572 } else { 573 BUILD_BUG_ON(sizeof(struct p_header80) != 574 sizeof(struct p_header95)); 575 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8)); 576 return sizeof(struct p_header80); 577 } 578 } 579 580 static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size) 581 { 582 h->magic = cpu_to_be32(DRBD_MAGIC); 583 h->command = cpu_to_be16(cmd); 584 h->length = cpu_to_be16(size); 585 return sizeof(struct p_header80); 586 } 587 588 static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size) 589 { 590 h->magic = cpu_to_be16(DRBD_MAGIC_BIG); 591 h->command = cpu_to_be16(cmd); 592 h->length = cpu_to_be32(size); 593 return sizeof(struct p_header95); 594 } 595 596 static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd, 597 int size, int vnr) 598 { 599 h->magic = cpu_to_be32(DRBD_MAGIC_100); 600 h->volume = cpu_to_be16(vnr); 601 h->command = cpu_to_be16(cmd); 602 h->length = cpu_to_be32(size); 603 h->pad = 0; 604 return sizeof(struct p_header100); 605 } 606 607 static unsigned int prepare_header(struct drbd_connection *connection, int vnr, 608 void *buffer, enum drbd_packet cmd, int size) 609 { 610 if (connection->agreed_pro_version >= 100) 611 return prepare_header100(buffer, cmd, size, vnr); 612 else if (connection->agreed_pro_version >= 95 && 613 size > DRBD_MAX_SIZE_H80_PACKET) 614 return prepare_header95(buffer, cmd, size); 615 else 616 return prepare_header80(buffer, cmd, size); 617 } 618 619 static void *__conn_prepare_command(struct drbd_connection *connection, 620 struct drbd_socket *sock) 621 { 622 if (!sock->socket) 623 return NULL; 624 return sock->sbuf + drbd_header_size(connection); 625 } 626 627 void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock) 628 { 629 void *p; 630 631 mutex_lock(&sock->mutex); 632 p = __conn_prepare_command(connection, sock); 633 if (!p) 634 mutex_unlock(&sock->mutex); 635 636 return p; 637 } 638 639 void *drbd_prepare_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock) 640 { 641 return conn_prepare_command(peer_device->connection, sock); 642 } 643 644 static int __send_command(struct drbd_connection *connection, int vnr, 645 struct drbd_socket *sock, enum drbd_packet cmd, 646 unsigned int header_size, void *data, 647 unsigned int size) 648 { 649 int msg_flags; 650 int err; 651 652 /* 653 * Called with @data == NULL and the size of the data blocks in @size 654 * for commands that send data blocks. For those commands, omit the 655 * MSG_MORE flag: this will increase the likelihood that data blocks 656 * which are page aligned on the sender will end up page aligned on the 657 * receiver. 658 */ 659 msg_flags = data ? MSG_MORE : 0; 660 661 header_size += prepare_header(connection, vnr, sock->sbuf, cmd, 662 header_size + size); 663 err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size, 664 msg_flags); 665 if (data && !err) 666 err = drbd_send_all(connection, sock->socket, data, size, 0); 667 /* DRBD protocol "pings" are latency critical. 668 * This is supposed to trigger tcp_push_pending_frames() */ 669 if (!err && (cmd == P_PING || cmd == P_PING_ACK)) 670 drbd_tcp_nodelay(sock->socket); 671 672 return err; 673 } 674 675 static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock, 676 enum drbd_packet cmd, unsigned int header_size, 677 void *data, unsigned int size) 678 { 679 return __send_command(connection, 0, sock, cmd, header_size, data, size); 680 } 681 682 int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock, 683 enum drbd_packet cmd, unsigned int header_size, 684 void *data, unsigned int size) 685 { 686 int err; 687 688 err = __conn_send_command(connection, sock, cmd, header_size, data, size); 689 mutex_unlock(&sock->mutex); 690 return err; 691 } 692 693 int drbd_send_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock, 694 enum drbd_packet cmd, unsigned int header_size, 695 void *data, unsigned int size) 696 { 697 int err; 698 699 err = __send_command(peer_device->connection, peer_device->device->vnr, 700 sock, cmd, header_size, data, size); 701 mutex_unlock(&sock->mutex); 702 return err; 703 } 704 705 int drbd_send_ping(struct drbd_connection *connection) 706 { 707 struct drbd_socket *sock; 708 709 sock = &connection->meta; 710 if (!conn_prepare_command(connection, sock)) 711 return -EIO; 712 return conn_send_command(connection, sock, P_PING, 0, NULL, 0); 713 } 714 715 int drbd_send_ping_ack(struct drbd_connection *connection) 716 { 717 struct drbd_socket *sock; 718 719 sock = &connection->meta; 720 if (!conn_prepare_command(connection, sock)) 721 return -EIO; 722 return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0); 723 } 724 725 int drbd_send_sync_param(struct drbd_peer_device *peer_device) 726 { 727 struct drbd_socket *sock; 728 struct p_rs_param_95 *p; 729 int size; 730 const int apv = peer_device->connection->agreed_pro_version; 731 enum drbd_packet cmd; 732 struct net_conf *nc; 733 struct disk_conf *dc; 734 735 sock = &peer_device->connection->data; 736 p = drbd_prepare_command(peer_device, sock); 737 if (!p) 738 return -EIO; 739 740 rcu_read_lock(); 741 nc = rcu_dereference(peer_device->connection->net_conf); 742 743 size = apv <= 87 ? sizeof(struct p_rs_param) 744 : apv == 88 ? sizeof(struct p_rs_param) 745 + strlen(nc->verify_alg) + 1 746 : apv <= 94 ? sizeof(struct p_rs_param_89) 747 : /* apv >= 95 */ sizeof(struct p_rs_param_95); 748 749 cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM; 750 751 /* initialize verify_alg and csums_alg */ 752 memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX); 753 754 if (get_ldev(peer_device->device)) { 755 dc = rcu_dereference(peer_device->device->ldev->disk_conf); 756 p->resync_rate = cpu_to_be32(dc->resync_rate); 757 p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead); 758 p->c_delay_target = cpu_to_be32(dc->c_delay_target); 759 p->c_fill_target = cpu_to_be32(dc->c_fill_target); 760 p->c_max_rate = cpu_to_be32(dc->c_max_rate); 761 put_ldev(peer_device->device); 762 } else { 763 p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF); 764 p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF); 765 p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF); 766 p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF); 767 p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF); 768 } 769 770 if (apv >= 88) 771 strcpy(p->verify_alg, nc->verify_alg); 772 if (apv >= 89) 773 strcpy(p->csums_alg, nc->csums_alg); 774 rcu_read_unlock(); 775 776 return drbd_send_command(peer_device, sock, cmd, size, NULL, 0); 777 } 778 779 int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd) 780 { 781 struct drbd_socket *sock; 782 struct p_protocol *p; 783 struct net_conf *nc; 784 int size, cf; 785 786 sock = &connection->data; 787 p = __conn_prepare_command(connection, sock); 788 if (!p) 789 return -EIO; 790 791 rcu_read_lock(); 792 nc = rcu_dereference(connection->net_conf); 793 794 if (nc->tentative && connection->agreed_pro_version < 92) { 795 rcu_read_unlock(); 796 mutex_unlock(&sock->mutex); 797 drbd_err(connection, "--dry-run is not supported by peer"); 798 return -EOPNOTSUPP; 799 } 800 801 size = sizeof(*p); 802 if (connection->agreed_pro_version >= 87) 803 size += strlen(nc->integrity_alg) + 1; 804 805 p->protocol = cpu_to_be32(nc->wire_protocol); 806 p->after_sb_0p = cpu_to_be32(nc->after_sb_0p); 807 p->after_sb_1p = cpu_to_be32(nc->after_sb_1p); 808 p->after_sb_2p = cpu_to_be32(nc->after_sb_2p); 809 p->two_primaries = cpu_to_be32(nc->two_primaries); 810 cf = 0; 811 if (nc->discard_my_data) 812 cf |= CF_DISCARD_MY_DATA; 813 if (nc->tentative) 814 cf |= CF_DRY_RUN; 815 p->conn_flags = cpu_to_be32(cf); 816 817 if (connection->agreed_pro_version >= 87) 818 strcpy(p->integrity_alg, nc->integrity_alg); 819 rcu_read_unlock(); 820 821 return __conn_send_command(connection, sock, cmd, size, NULL, 0); 822 } 823 824 int drbd_send_protocol(struct drbd_connection *connection) 825 { 826 int err; 827 828 mutex_lock(&connection->data.mutex); 829 err = __drbd_send_protocol(connection, P_PROTOCOL); 830 mutex_unlock(&connection->data.mutex); 831 832 return err; 833 } 834 835 static int _drbd_send_uuids(struct drbd_peer_device *peer_device, u64 uuid_flags) 836 { 837 struct drbd_device *device = peer_device->device; 838 struct drbd_socket *sock; 839 struct p_uuids *p; 840 int i; 841 842 if (!get_ldev_if_state(device, D_NEGOTIATING)) 843 return 0; 844 845 sock = &peer_device->connection->data; 846 p = drbd_prepare_command(peer_device, sock); 847 if (!p) { 848 put_ldev(device); 849 return -EIO; 850 } 851 spin_lock_irq(&device->ldev->md.uuid_lock); 852 for (i = UI_CURRENT; i < UI_SIZE; i++) 853 p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]); 854 spin_unlock_irq(&device->ldev->md.uuid_lock); 855 856 device->comm_bm_set = drbd_bm_total_weight(device); 857 p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set); 858 rcu_read_lock(); 859 uuid_flags |= rcu_dereference(peer_device->connection->net_conf)->discard_my_data ? 1 : 0; 860 rcu_read_unlock(); 861 uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0; 862 uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0; 863 p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags); 864 865 put_ldev(device); 866 return drbd_send_command(peer_device, sock, P_UUIDS, sizeof(*p), NULL, 0); 867 } 868 869 int drbd_send_uuids(struct drbd_peer_device *peer_device) 870 { 871 return _drbd_send_uuids(peer_device, 0); 872 } 873 874 int drbd_send_uuids_skip_initial_sync(struct drbd_peer_device *peer_device) 875 { 876 return _drbd_send_uuids(peer_device, 8); 877 } 878 879 void drbd_print_uuids(struct drbd_device *device, const char *text) 880 { 881 if (get_ldev_if_state(device, D_NEGOTIATING)) { 882 u64 *uuid = device->ldev->md.uuid; 883 drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n", 884 text, 885 (unsigned long long)uuid[UI_CURRENT], 886 (unsigned long long)uuid[UI_BITMAP], 887 (unsigned long long)uuid[UI_HISTORY_START], 888 (unsigned long long)uuid[UI_HISTORY_END]); 889 put_ldev(device); 890 } else { 891 drbd_info(device, "%s effective data uuid: %016llX\n", 892 text, 893 (unsigned long long)device->ed_uuid); 894 } 895 } 896 897 void drbd_gen_and_send_sync_uuid(struct drbd_peer_device *peer_device) 898 { 899 struct drbd_device *device = peer_device->device; 900 struct drbd_socket *sock; 901 struct p_rs_uuid *p; 902 u64 uuid; 903 904 D_ASSERT(device, device->state.disk == D_UP_TO_DATE); 905 906 uuid = device->ldev->md.uuid[UI_BITMAP]; 907 if (uuid && uuid != UUID_JUST_CREATED) 908 uuid = uuid + UUID_NEW_BM_OFFSET; 909 else 910 get_random_bytes(&uuid, sizeof(u64)); 911 drbd_uuid_set(device, UI_BITMAP, uuid); 912 drbd_print_uuids(device, "updated sync UUID"); 913 drbd_md_sync(device); 914 915 sock = &peer_device->connection->data; 916 p = drbd_prepare_command(peer_device, sock); 917 if (p) { 918 p->uuid = cpu_to_be64(uuid); 919 drbd_send_command(peer_device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0); 920 } 921 } 922 923 int drbd_send_sizes(struct drbd_peer_device *peer_device, int trigger_reply, enum dds_flags flags) 924 { 925 struct drbd_device *device = peer_device->device; 926 struct drbd_socket *sock; 927 struct p_sizes *p; 928 sector_t d_size, u_size; 929 int q_order_type; 930 unsigned int max_bio_size; 931 932 if (get_ldev_if_state(device, D_NEGOTIATING)) { 933 D_ASSERT(device, device->ldev->backing_bdev); 934 d_size = drbd_get_max_capacity(device->ldev); 935 rcu_read_lock(); 936 u_size = rcu_dereference(device->ldev->disk_conf)->disk_size; 937 rcu_read_unlock(); 938 q_order_type = drbd_queue_order_type(device); 939 max_bio_size = queue_max_hw_sectors(device->ldev->backing_bdev->bd_disk->queue) << 9; 940 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE); 941 put_ldev(device); 942 } else { 943 d_size = 0; 944 u_size = 0; 945 q_order_type = QUEUE_ORDERED_NONE; 946 max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */ 947 } 948 949 sock = &peer_device->connection->data; 950 p = drbd_prepare_command(peer_device, sock); 951 if (!p) 952 return -EIO; 953 954 if (peer_device->connection->agreed_pro_version <= 94) 955 max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET); 956 else if (peer_device->connection->agreed_pro_version < 100) 957 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95); 958 959 p->d_size = cpu_to_be64(d_size); 960 p->u_size = cpu_to_be64(u_size); 961 p->c_size = cpu_to_be64(trigger_reply ? 0 : drbd_get_capacity(device->this_bdev)); 962 p->max_bio_size = cpu_to_be32(max_bio_size); 963 p->queue_order_type = cpu_to_be16(q_order_type); 964 p->dds_flags = cpu_to_be16(flags); 965 return drbd_send_command(peer_device, sock, P_SIZES, sizeof(*p), NULL, 0); 966 } 967 968 /** 969 * drbd_send_current_state() - Sends the drbd state to the peer 970 * @peer_device: DRBD peer device. 971 */ 972 int drbd_send_current_state(struct drbd_peer_device *peer_device) 973 { 974 struct drbd_socket *sock; 975 struct p_state *p; 976 977 sock = &peer_device->connection->data; 978 p = drbd_prepare_command(peer_device, sock); 979 if (!p) 980 return -EIO; 981 p->state = cpu_to_be32(peer_device->device->state.i); /* Within the send mutex */ 982 return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0); 983 } 984 985 /** 986 * drbd_send_state() - After a state change, sends the new state to the peer 987 * @peer_device: DRBD peer device. 988 * @state: the state to send, not necessarily the current state. 989 * 990 * Each state change queues an "after_state_ch" work, which will eventually 991 * send the resulting new state to the peer. If more state changes happen 992 * between queuing and processing of the after_state_ch work, we still 993 * want to send each intermediary state in the order it occurred. 994 */ 995 int drbd_send_state(struct drbd_peer_device *peer_device, union drbd_state state) 996 { 997 struct drbd_socket *sock; 998 struct p_state *p; 999 1000 sock = &peer_device->connection->data; 1001 p = drbd_prepare_command(peer_device, sock); 1002 if (!p) 1003 return -EIO; 1004 p->state = cpu_to_be32(state.i); /* Within the send mutex */ 1005 return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0); 1006 } 1007 1008 int drbd_send_state_req(struct drbd_peer_device *peer_device, union drbd_state mask, union drbd_state val) 1009 { 1010 struct drbd_socket *sock; 1011 struct p_req_state *p; 1012 1013 sock = &peer_device->connection->data; 1014 p = drbd_prepare_command(peer_device, sock); 1015 if (!p) 1016 return -EIO; 1017 p->mask = cpu_to_be32(mask.i); 1018 p->val = cpu_to_be32(val.i); 1019 return drbd_send_command(peer_device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0); 1020 } 1021 1022 int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val) 1023 { 1024 enum drbd_packet cmd; 1025 struct drbd_socket *sock; 1026 struct p_req_state *p; 1027 1028 cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ; 1029 sock = &connection->data; 1030 p = conn_prepare_command(connection, sock); 1031 if (!p) 1032 return -EIO; 1033 p->mask = cpu_to_be32(mask.i); 1034 p->val = cpu_to_be32(val.i); 1035 return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0); 1036 } 1037 1038 void drbd_send_sr_reply(struct drbd_peer_device *peer_device, enum drbd_state_rv retcode) 1039 { 1040 struct drbd_socket *sock; 1041 struct p_req_state_reply *p; 1042 1043 sock = &peer_device->connection->meta; 1044 p = drbd_prepare_command(peer_device, sock); 1045 if (p) { 1046 p->retcode = cpu_to_be32(retcode); 1047 drbd_send_command(peer_device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0); 1048 } 1049 } 1050 1051 void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode) 1052 { 1053 struct drbd_socket *sock; 1054 struct p_req_state_reply *p; 1055 enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY; 1056 1057 sock = &connection->meta; 1058 p = conn_prepare_command(connection, sock); 1059 if (p) { 1060 p->retcode = cpu_to_be32(retcode); 1061 conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0); 1062 } 1063 } 1064 1065 static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code) 1066 { 1067 BUG_ON(code & ~0xf); 1068 p->encoding = (p->encoding & ~0xf) | code; 1069 } 1070 1071 static void dcbp_set_start(struct p_compressed_bm *p, int set) 1072 { 1073 p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0); 1074 } 1075 1076 static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n) 1077 { 1078 BUG_ON(n & ~0x7); 1079 p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4); 1080 } 1081 1082 static int fill_bitmap_rle_bits(struct drbd_device *device, 1083 struct p_compressed_bm *p, 1084 unsigned int size, 1085 struct bm_xfer_ctx *c) 1086 { 1087 struct bitstream bs; 1088 unsigned long plain_bits; 1089 unsigned long tmp; 1090 unsigned long rl; 1091 unsigned len; 1092 unsigned toggle; 1093 int bits, use_rle; 1094 1095 /* may we use this feature? */ 1096 rcu_read_lock(); 1097 use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle; 1098 rcu_read_unlock(); 1099 if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90) 1100 return 0; 1101 1102 if (c->bit_offset >= c->bm_bits) 1103 return 0; /* nothing to do. */ 1104 1105 /* use at most thus many bytes */ 1106 bitstream_init(&bs, p->code, size, 0); 1107 memset(p->code, 0, size); 1108 /* plain bits covered in this code string */ 1109 plain_bits = 0; 1110 1111 /* p->encoding & 0x80 stores whether the first run length is set. 1112 * bit offset is implicit. 1113 * start with toggle == 2 to be able to tell the first iteration */ 1114 toggle = 2; 1115 1116 /* see how much plain bits we can stuff into one packet 1117 * using RLE and VLI. */ 1118 do { 1119 tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset) 1120 : _drbd_bm_find_next(device, c->bit_offset); 1121 if (tmp == -1UL) 1122 tmp = c->bm_bits; 1123 rl = tmp - c->bit_offset; 1124 1125 if (toggle == 2) { /* first iteration */ 1126 if (rl == 0) { 1127 /* the first checked bit was set, 1128 * store start value, */ 1129 dcbp_set_start(p, 1); 1130 /* but skip encoding of zero run length */ 1131 toggle = !toggle; 1132 continue; 1133 } 1134 dcbp_set_start(p, 0); 1135 } 1136 1137 /* paranoia: catch zero runlength. 1138 * can only happen if bitmap is modified while we scan it. */ 1139 if (rl == 0) { 1140 drbd_err(device, "unexpected zero runlength while encoding bitmap " 1141 "t:%u bo:%lu\n", toggle, c->bit_offset); 1142 return -1; 1143 } 1144 1145 bits = vli_encode_bits(&bs, rl); 1146 if (bits == -ENOBUFS) /* buffer full */ 1147 break; 1148 if (bits <= 0) { 1149 drbd_err(device, "error while encoding bitmap: %d\n", bits); 1150 return 0; 1151 } 1152 1153 toggle = !toggle; 1154 plain_bits += rl; 1155 c->bit_offset = tmp; 1156 } while (c->bit_offset < c->bm_bits); 1157 1158 len = bs.cur.b - p->code + !!bs.cur.bit; 1159 1160 if (plain_bits < (len << 3)) { 1161 /* incompressible with this method. 1162 * we need to rewind both word and bit position. */ 1163 c->bit_offset -= plain_bits; 1164 bm_xfer_ctx_bit_to_word_offset(c); 1165 c->bit_offset = c->word_offset * BITS_PER_LONG; 1166 return 0; 1167 } 1168 1169 /* RLE + VLI was able to compress it just fine. 1170 * update c->word_offset. */ 1171 bm_xfer_ctx_bit_to_word_offset(c); 1172 1173 /* store pad_bits */ 1174 dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7); 1175 1176 return len; 1177 } 1178 1179 /** 1180 * send_bitmap_rle_or_plain 1181 * 1182 * Return 0 when done, 1 when another iteration is needed, and a negative error 1183 * code upon failure. 1184 */ 1185 static int 1186 send_bitmap_rle_or_plain(struct drbd_device *device, struct bm_xfer_ctx *c) 1187 { 1188 struct drbd_socket *sock = &first_peer_device(device)->connection->data; 1189 unsigned int header_size = drbd_header_size(first_peer_device(device)->connection); 1190 struct p_compressed_bm *p = sock->sbuf + header_size; 1191 int len, err; 1192 1193 len = fill_bitmap_rle_bits(device, p, 1194 DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c); 1195 if (len < 0) 1196 return -EIO; 1197 1198 if (len) { 1199 dcbp_set_code(p, RLE_VLI_Bits); 1200 err = __send_command(first_peer_device(device)->connection, device->vnr, sock, 1201 P_COMPRESSED_BITMAP, sizeof(*p) + len, 1202 NULL, 0); 1203 c->packets[0]++; 1204 c->bytes[0] += header_size + sizeof(*p) + len; 1205 1206 if (c->bit_offset >= c->bm_bits) 1207 len = 0; /* DONE */ 1208 } else { 1209 /* was not compressible. 1210 * send a buffer full of plain text bits instead. */ 1211 unsigned int data_size; 1212 unsigned long num_words; 1213 unsigned long *p = sock->sbuf + header_size; 1214 1215 data_size = DRBD_SOCKET_BUFFER_SIZE - header_size; 1216 num_words = min_t(size_t, data_size / sizeof(*p), 1217 c->bm_words - c->word_offset); 1218 len = num_words * sizeof(*p); 1219 if (len) 1220 drbd_bm_get_lel(device, c->word_offset, num_words, p); 1221 err = __send_command(first_peer_device(device)->connection, device->vnr, sock, P_BITMAP, len, NULL, 0); 1222 c->word_offset += num_words; 1223 c->bit_offset = c->word_offset * BITS_PER_LONG; 1224 1225 c->packets[1]++; 1226 c->bytes[1] += header_size + len; 1227 1228 if (c->bit_offset > c->bm_bits) 1229 c->bit_offset = c->bm_bits; 1230 } 1231 if (!err) { 1232 if (len == 0) { 1233 INFO_bm_xfer_stats(device, "send", c); 1234 return 0; 1235 } else 1236 return 1; 1237 } 1238 return -EIO; 1239 } 1240 1241 /* See the comment at receive_bitmap() */ 1242 static int _drbd_send_bitmap(struct drbd_device *device) 1243 { 1244 struct bm_xfer_ctx c; 1245 int err; 1246 1247 if (!expect(device->bitmap)) 1248 return false; 1249 1250 if (get_ldev(device)) { 1251 if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) { 1252 drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n"); 1253 drbd_bm_set_all(device); 1254 if (drbd_bm_write(device)) { 1255 /* write_bm did fail! Leave full sync flag set in Meta P_DATA 1256 * but otherwise process as per normal - need to tell other 1257 * side that a full resync is required! */ 1258 drbd_err(device, "Failed to write bitmap to disk!\n"); 1259 } else { 1260 drbd_md_clear_flag(device, MDF_FULL_SYNC); 1261 drbd_md_sync(device); 1262 } 1263 } 1264 put_ldev(device); 1265 } 1266 1267 c = (struct bm_xfer_ctx) { 1268 .bm_bits = drbd_bm_bits(device), 1269 .bm_words = drbd_bm_words(device), 1270 }; 1271 1272 do { 1273 err = send_bitmap_rle_or_plain(device, &c); 1274 } while (err > 0); 1275 1276 return err == 0; 1277 } 1278 1279 int drbd_send_bitmap(struct drbd_device *device) 1280 { 1281 struct drbd_socket *sock = &first_peer_device(device)->connection->data; 1282 int err = -1; 1283 1284 mutex_lock(&sock->mutex); 1285 if (sock->socket) 1286 err = !_drbd_send_bitmap(device); 1287 mutex_unlock(&sock->mutex); 1288 return err; 1289 } 1290 1291 void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size) 1292 { 1293 struct drbd_socket *sock; 1294 struct p_barrier_ack *p; 1295 1296 if (connection->cstate < C_WF_REPORT_PARAMS) 1297 return; 1298 1299 sock = &connection->meta; 1300 p = conn_prepare_command(connection, sock); 1301 if (!p) 1302 return; 1303 p->barrier = barrier_nr; 1304 p->set_size = cpu_to_be32(set_size); 1305 conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0); 1306 } 1307 1308 /** 1309 * _drbd_send_ack() - Sends an ack packet 1310 * @device: DRBD device. 1311 * @cmd: Packet command code. 1312 * @sector: sector, needs to be in big endian byte order 1313 * @blksize: size in byte, needs to be in big endian byte order 1314 * @block_id: Id, big endian byte order 1315 */ 1316 static int _drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1317 u64 sector, u32 blksize, u64 block_id) 1318 { 1319 struct drbd_socket *sock; 1320 struct p_block_ack *p; 1321 1322 if (peer_device->device->state.conn < C_CONNECTED) 1323 return -EIO; 1324 1325 sock = &peer_device->connection->meta; 1326 p = drbd_prepare_command(peer_device, sock); 1327 if (!p) 1328 return -EIO; 1329 p->sector = sector; 1330 p->block_id = block_id; 1331 p->blksize = blksize; 1332 p->seq_num = cpu_to_be32(atomic_inc_return(&peer_device->device->packet_seq)); 1333 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0); 1334 } 1335 1336 /* dp->sector and dp->block_id already/still in network byte order, 1337 * data_size is payload size according to dp->head, 1338 * and may need to be corrected for digest size. */ 1339 void drbd_send_ack_dp(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1340 struct p_data *dp, int data_size) 1341 { 1342 if (peer_device->connection->peer_integrity_tfm) 1343 data_size -= crypto_ahash_digestsize(peer_device->connection->peer_integrity_tfm); 1344 _drbd_send_ack(peer_device, cmd, dp->sector, cpu_to_be32(data_size), 1345 dp->block_id); 1346 } 1347 1348 void drbd_send_ack_rp(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1349 struct p_block_req *rp) 1350 { 1351 _drbd_send_ack(peer_device, cmd, rp->sector, rp->blksize, rp->block_id); 1352 } 1353 1354 /** 1355 * drbd_send_ack() - Sends an ack packet 1356 * @device: DRBD device 1357 * @cmd: packet command code 1358 * @peer_req: peer request 1359 */ 1360 int drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1361 struct drbd_peer_request *peer_req) 1362 { 1363 return _drbd_send_ack(peer_device, cmd, 1364 cpu_to_be64(peer_req->i.sector), 1365 cpu_to_be32(peer_req->i.size), 1366 peer_req->block_id); 1367 } 1368 1369 /* This function misuses the block_id field to signal if the blocks 1370 * are is sync or not. */ 1371 int drbd_send_ack_ex(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1372 sector_t sector, int blksize, u64 block_id) 1373 { 1374 return _drbd_send_ack(peer_device, cmd, 1375 cpu_to_be64(sector), 1376 cpu_to_be32(blksize), 1377 cpu_to_be64(block_id)); 1378 } 1379 1380 int drbd_send_drequest(struct drbd_peer_device *peer_device, int cmd, 1381 sector_t sector, int size, u64 block_id) 1382 { 1383 struct drbd_socket *sock; 1384 struct p_block_req *p; 1385 1386 sock = &peer_device->connection->data; 1387 p = drbd_prepare_command(peer_device, sock); 1388 if (!p) 1389 return -EIO; 1390 p->sector = cpu_to_be64(sector); 1391 p->block_id = block_id; 1392 p->blksize = cpu_to_be32(size); 1393 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0); 1394 } 1395 1396 int drbd_send_drequest_csum(struct drbd_peer_device *peer_device, sector_t sector, int size, 1397 void *digest, int digest_size, enum drbd_packet cmd) 1398 { 1399 struct drbd_socket *sock; 1400 struct p_block_req *p; 1401 1402 /* FIXME: Put the digest into the preallocated socket buffer. */ 1403 1404 sock = &peer_device->connection->data; 1405 p = drbd_prepare_command(peer_device, sock); 1406 if (!p) 1407 return -EIO; 1408 p->sector = cpu_to_be64(sector); 1409 p->block_id = ID_SYNCER /* unused */; 1410 p->blksize = cpu_to_be32(size); 1411 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), digest, digest_size); 1412 } 1413 1414 int drbd_send_ov_request(struct drbd_peer_device *peer_device, sector_t sector, int size) 1415 { 1416 struct drbd_socket *sock; 1417 struct p_block_req *p; 1418 1419 sock = &peer_device->connection->data; 1420 p = drbd_prepare_command(peer_device, sock); 1421 if (!p) 1422 return -EIO; 1423 p->sector = cpu_to_be64(sector); 1424 p->block_id = ID_SYNCER /* unused */; 1425 p->blksize = cpu_to_be32(size); 1426 return drbd_send_command(peer_device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0); 1427 } 1428 1429 /* called on sndtimeo 1430 * returns false if we should retry, 1431 * true if we think connection is dead 1432 */ 1433 static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock) 1434 { 1435 int drop_it; 1436 /* long elapsed = (long)(jiffies - device->last_received); */ 1437 1438 drop_it = connection->meta.socket == sock 1439 || !connection->ack_receiver.task 1440 || get_t_state(&connection->ack_receiver) != RUNNING 1441 || connection->cstate < C_WF_REPORT_PARAMS; 1442 1443 if (drop_it) 1444 return true; 1445 1446 drop_it = !--connection->ko_count; 1447 if (!drop_it) { 1448 drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n", 1449 current->comm, current->pid, connection->ko_count); 1450 request_ping(connection); 1451 } 1452 1453 return drop_it; /* && (device->state == R_PRIMARY) */; 1454 } 1455 1456 static void drbd_update_congested(struct drbd_connection *connection) 1457 { 1458 struct sock *sk = connection->data.socket->sk; 1459 if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5) 1460 set_bit(NET_CONGESTED, &connection->flags); 1461 } 1462 1463 /* The idea of sendpage seems to be to put some kind of reference 1464 * to the page into the skb, and to hand it over to the NIC. In 1465 * this process get_page() gets called. 1466 * 1467 * As soon as the page was really sent over the network put_page() 1468 * gets called by some part of the network layer. [ NIC driver? ] 1469 * 1470 * [ get_page() / put_page() increment/decrement the count. If count 1471 * reaches 0 the page will be freed. ] 1472 * 1473 * This works nicely with pages from FSs. 1474 * But this means that in protocol A we might signal IO completion too early! 1475 * 1476 * In order not to corrupt data during a resync we must make sure 1477 * that we do not reuse our own buffer pages (EEs) to early, therefore 1478 * we have the net_ee list. 1479 * 1480 * XFS seems to have problems, still, it submits pages with page_count == 0! 1481 * As a workaround, we disable sendpage on pages 1482 * with page_count == 0 or PageSlab. 1483 */ 1484 static int _drbd_no_send_page(struct drbd_peer_device *peer_device, struct page *page, 1485 int offset, size_t size, unsigned msg_flags) 1486 { 1487 struct socket *socket; 1488 void *addr; 1489 int err; 1490 1491 socket = peer_device->connection->data.socket; 1492 addr = kmap(page) + offset; 1493 err = drbd_send_all(peer_device->connection, socket, addr, size, msg_flags); 1494 kunmap(page); 1495 if (!err) 1496 peer_device->device->send_cnt += size >> 9; 1497 return err; 1498 } 1499 1500 static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *page, 1501 int offset, size_t size, unsigned msg_flags) 1502 { 1503 struct socket *socket = peer_device->connection->data.socket; 1504 mm_segment_t oldfs = get_fs(); 1505 int len = size; 1506 int err = -EIO; 1507 1508 /* e.g. XFS meta- & log-data is in slab pages, which have a 1509 * page_count of 0 and/or have PageSlab() set. 1510 * we cannot use send_page for those, as that does get_page(); 1511 * put_page(); and would cause either a VM_BUG directly, or 1512 * __page_cache_release a page that would actually still be referenced 1513 * by someone, leading to some obscure delayed Oops somewhere else. */ 1514 if (disable_sendpage || (page_count(page) < 1) || PageSlab(page)) 1515 return _drbd_no_send_page(peer_device, page, offset, size, msg_flags); 1516 1517 msg_flags |= MSG_NOSIGNAL; 1518 drbd_update_congested(peer_device->connection); 1519 set_fs(KERNEL_DS); 1520 do { 1521 int sent; 1522 1523 sent = socket->ops->sendpage(socket, page, offset, len, msg_flags); 1524 if (sent <= 0) { 1525 if (sent == -EAGAIN) { 1526 if (we_should_drop_the_connection(peer_device->connection, socket)) 1527 break; 1528 continue; 1529 } 1530 drbd_warn(peer_device->device, "%s: size=%d len=%d sent=%d\n", 1531 __func__, (int)size, len, sent); 1532 if (sent < 0) 1533 err = sent; 1534 break; 1535 } 1536 len -= sent; 1537 offset += sent; 1538 } while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/); 1539 set_fs(oldfs); 1540 clear_bit(NET_CONGESTED, &peer_device->connection->flags); 1541 1542 if (len == 0) { 1543 err = 0; 1544 peer_device->device->send_cnt += size >> 9; 1545 } 1546 return err; 1547 } 1548 1549 static int _drbd_send_bio(struct drbd_peer_device *peer_device, struct bio *bio) 1550 { 1551 struct bio_vec bvec; 1552 struct bvec_iter iter; 1553 1554 /* hint all but last page with MSG_MORE */ 1555 bio_for_each_segment(bvec, bio, iter) { 1556 int err; 1557 1558 err = _drbd_no_send_page(peer_device, bvec.bv_page, 1559 bvec.bv_offset, bvec.bv_len, 1560 bio_iter_last(bvec, iter) 1561 ? 0 : MSG_MORE); 1562 if (err) 1563 return err; 1564 } 1565 return 0; 1566 } 1567 1568 static int _drbd_send_zc_bio(struct drbd_peer_device *peer_device, struct bio *bio) 1569 { 1570 struct bio_vec bvec; 1571 struct bvec_iter iter; 1572 1573 /* hint all but last page with MSG_MORE */ 1574 bio_for_each_segment(bvec, bio, iter) { 1575 int err; 1576 1577 err = _drbd_send_page(peer_device, bvec.bv_page, 1578 bvec.bv_offset, bvec.bv_len, 1579 bio_iter_last(bvec, iter) ? 0 : MSG_MORE); 1580 if (err) 1581 return err; 1582 } 1583 return 0; 1584 } 1585 1586 static int _drbd_send_zc_ee(struct drbd_peer_device *peer_device, 1587 struct drbd_peer_request *peer_req) 1588 { 1589 struct page *page = peer_req->pages; 1590 unsigned len = peer_req->i.size; 1591 int err; 1592 1593 /* hint all but last page with MSG_MORE */ 1594 page_chain_for_each(page) { 1595 unsigned l = min_t(unsigned, len, PAGE_SIZE); 1596 1597 err = _drbd_send_page(peer_device, page, 0, l, 1598 page_chain_next(page) ? MSG_MORE : 0); 1599 if (err) 1600 return err; 1601 len -= l; 1602 } 1603 return 0; 1604 } 1605 1606 static u32 bio_flags_to_wire(struct drbd_connection *connection, unsigned long bi_rw) 1607 { 1608 if (connection->agreed_pro_version >= 95) 1609 return (bi_rw & REQ_SYNC ? DP_RW_SYNC : 0) | 1610 (bi_rw & REQ_FUA ? DP_FUA : 0) | 1611 (bi_rw & REQ_FLUSH ? DP_FLUSH : 0) | 1612 (bi_rw & REQ_DISCARD ? DP_DISCARD : 0); 1613 else 1614 return bi_rw & REQ_SYNC ? DP_RW_SYNC : 0; 1615 } 1616 1617 /* Used to send write or TRIM aka REQ_DISCARD requests 1618 * R_PRIMARY -> Peer (P_DATA, P_TRIM) 1619 */ 1620 int drbd_send_dblock(struct drbd_peer_device *peer_device, struct drbd_request *req) 1621 { 1622 struct drbd_device *device = peer_device->device; 1623 struct drbd_socket *sock; 1624 struct p_data *p; 1625 unsigned int dp_flags = 0; 1626 int digest_size; 1627 int err; 1628 1629 sock = &peer_device->connection->data; 1630 p = drbd_prepare_command(peer_device, sock); 1631 digest_size = peer_device->connection->integrity_tfm ? 1632 crypto_ahash_digestsize(peer_device->connection->integrity_tfm) : 0; 1633 1634 if (!p) 1635 return -EIO; 1636 p->sector = cpu_to_be64(req->i.sector); 1637 p->block_id = (unsigned long)req; 1638 p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq)); 1639 dp_flags = bio_flags_to_wire(peer_device->connection, req->master_bio->bi_rw); 1640 if (device->state.conn >= C_SYNC_SOURCE && 1641 device->state.conn <= C_PAUSED_SYNC_T) 1642 dp_flags |= DP_MAY_SET_IN_SYNC; 1643 if (peer_device->connection->agreed_pro_version >= 100) { 1644 if (req->rq_state & RQ_EXP_RECEIVE_ACK) 1645 dp_flags |= DP_SEND_RECEIVE_ACK; 1646 /* During resync, request an explicit write ack, 1647 * even in protocol != C */ 1648 if (req->rq_state & RQ_EXP_WRITE_ACK 1649 || (dp_flags & DP_MAY_SET_IN_SYNC)) 1650 dp_flags |= DP_SEND_WRITE_ACK; 1651 } 1652 p->dp_flags = cpu_to_be32(dp_flags); 1653 1654 if (dp_flags & DP_DISCARD) { 1655 struct p_trim *t = (struct p_trim*)p; 1656 t->size = cpu_to_be32(req->i.size); 1657 err = __send_command(peer_device->connection, device->vnr, sock, P_TRIM, sizeof(*t), NULL, 0); 1658 goto out; 1659 } 1660 1661 /* our digest is still only over the payload. 1662 * TRIM does not carry any payload. */ 1663 if (digest_size) 1664 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, p + 1); 1665 err = __send_command(peer_device->connection, device->vnr, sock, P_DATA, sizeof(*p) + digest_size, NULL, req->i.size); 1666 if (!err) { 1667 /* For protocol A, we have to memcpy the payload into 1668 * socket buffers, as we may complete right away 1669 * as soon as we handed it over to tcp, at which point the data 1670 * pages may become invalid. 1671 * 1672 * For data-integrity enabled, we copy it as well, so we can be 1673 * sure that even if the bio pages may still be modified, it 1674 * won't change the data on the wire, thus if the digest checks 1675 * out ok after sending on this side, but does not fit on the 1676 * receiving side, we sure have detected corruption elsewhere. 1677 */ 1678 if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || digest_size) 1679 err = _drbd_send_bio(peer_device, req->master_bio); 1680 else 1681 err = _drbd_send_zc_bio(peer_device, req->master_bio); 1682 1683 /* double check digest, sometimes buffers have been modified in flight. */ 1684 if (digest_size > 0 && digest_size <= 64) { 1685 /* 64 byte, 512 bit, is the largest digest size 1686 * currently supported in kernel crypto. */ 1687 unsigned char digest[64]; 1688 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest); 1689 if (memcmp(p + 1, digest, digest_size)) { 1690 drbd_warn(device, 1691 "Digest mismatch, buffer modified by upper layers during write: %llus +%u\n", 1692 (unsigned long long)req->i.sector, req->i.size); 1693 } 1694 } /* else if (digest_size > 64) { 1695 ... Be noisy about digest too large ... 1696 } */ 1697 } 1698 out: 1699 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */ 1700 1701 return err; 1702 } 1703 1704 /* answer packet, used to send data back for read requests: 1705 * Peer -> (diskless) R_PRIMARY (P_DATA_REPLY) 1706 * C_SYNC_SOURCE -> C_SYNC_TARGET (P_RS_DATA_REPLY) 1707 */ 1708 int drbd_send_block(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1709 struct drbd_peer_request *peer_req) 1710 { 1711 struct drbd_device *device = peer_device->device; 1712 struct drbd_socket *sock; 1713 struct p_data *p; 1714 int err; 1715 int digest_size; 1716 1717 sock = &peer_device->connection->data; 1718 p = drbd_prepare_command(peer_device, sock); 1719 1720 digest_size = peer_device->connection->integrity_tfm ? 1721 crypto_ahash_digestsize(peer_device->connection->integrity_tfm) : 0; 1722 1723 if (!p) 1724 return -EIO; 1725 p->sector = cpu_to_be64(peer_req->i.sector); 1726 p->block_id = peer_req->block_id; 1727 p->seq_num = 0; /* unused */ 1728 p->dp_flags = 0; 1729 if (digest_size) 1730 drbd_csum_ee(peer_device->connection->integrity_tfm, peer_req, p + 1); 1731 err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*p) + digest_size, NULL, peer_req->i.size); 1732 if (!err) 1733 err = _drbd_send_zc_ee(peer_device, peer_req); 1734 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */ 1735 1736 return err; 1737 } 1738 1739 int drbd_send_out_of_sync(struct drbd_peer_device *peer_device, struct drbd_request *req) 1740 { 1741 struct drbd_socket *sock; 1742 struct p_block_desc *p; 1743 1744 sock = &peer_device->connection->data; 1745 p = drbd_prepare_command(peer_device, sock); 1746 if (!p) 1747 return -EIO; 1748 p->sector = cpu_to_be64(req->i.sector); 1749 p->blksize = cpu_to_be32(req->i.size); 1750 return drbd_send_command(peer_device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0); 1751 } 1752 1753 /* 1754 drbd_send distinguishes two cases: 1755 1756 Packets sent via the data socket "sock" 1757 and packets sent via the meta data socket "msock" 1758 1759 sock msock 1760 -----------------+-------------------------+------------------------------ 1761 timeout conf.timeout / 2 conf.timeout / 2 1762 timeout action send a ping via msock Abort communication 1763 and close all sockets 1764 */ 1765 1766 /* 1767 * you must have down()ed the appropriate [m]sock_mutex elsewhere! 1768 */ 1769 int drbd_send(struct drbd_connection *connection, struct socket *sock, 1770 void *buf, size_t size, unsigned msg_flags) 1771 { 1772 struct kvec iov; 1773 struct msghdr msg; 1774 int rv, sent = 0; 1775 1776 if (!sock) 1777 return -EBADR; 1778 1779 /* THINK if (signal_pending) return ... ? */ 1780 1781 iov.iov_base = buf; 1782 iov.iov_len = size; 1783 1784 msg.msg_name = NULL; 1785 msg.msg_namelen = 0; 1786 msg.msg_control = NULL; 1787 msg.msg_controllen = 0; 1788 msg.msg_flags = msg_flags | MSG_NOSIGNAL; 1789 1790 if (sock == connection->data.socket) { 1791 rcu_read_lock(); 1792 connection->ko_count = rcu_dereference(connection->net_conf)->ko_count; 1793 rcu_read_unlock(); 1794 drbd_update_congested(connection); 1795 } 1796 do { 1797 rv = kernel_sendmsg(sock, &msg, &iov, 1, size); 1798 if (rv == -EAGAIN) { 1799 if (we_should_drop_the_connection(connection, sock)) 1800 break; 1801 else 1802 continue; 1803 } 1804 if (rv == -EINTR) { 1805 flush_signals(current); 1806 rv = 0; 1807 } 1808 if (rv < 0) 1809 break; 1810 sent += rv; 1811 iov.iov_base += rv; 1812 iov.iov_len -= rv; 1813 } while (sent < size); 1814 1815 if (sock == connection->data.socket) 1816 clear_bit(NET_CONGESTED, &connection->flags); 1817 1818 if (rv <= 0) { 1819 if (rv != -EAGAIN) { 1820 drbd_err(connection, "%s_sendmsg returned %d\n", 1821 sock == connection->meta.socket ? "msock" : "sock", 1822 rv); 1823 conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD); 1824 } else 1825 conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD); 1826 } 1827 1828 return sent; 1829 } 1830 1831 /** 1832 * drbd_send_all - Send an entire buffer 1833 * 1834 * Returns 0 upon success and a negative error value otherwise. 1835 */ 1836 int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer, 1837 size_t size, unsigned msg_flags) 1838 { 1839 int err; 1840 1841 err = drbd_send(connection, sock, buffer, size, msg_flags); 1842 if (err < 0) 1843 return err; 1844 if (err != size) 1845 return -EIO; 1846 return 0; 1847 } 1848 1849 static int drbd_open(struct block_device *bdev, fmode_t mode) 1850 { 1851 struct drbd_device *device = bdev->bd_disk->private_data; 1852 unsigned long flags; 1853 int rv = 0; 1854 1855 mutex_lock(&drbd_main_mutex); 1856 spin_lock_irqsave(&device->resource->req_lock, flags); 1857 /* to have a stable device->state.role 1858 * and no race with updating open_cnt */ 1859 1860 if (device->state.role != R_PRIMARY) { 1861 if (mode & FMODE_WRITE) 1862 rv = -EROFS; 1863 else if (!allow_oos) 1864 rv = -EMEDIUMTYPE; 1865 } 1866 1867 if (!rv) 1868 device->open_cnt++; 1869 spin_unlock_irqrestore(&device->resource->req_lock, flags); 1870 mutex_unlock(&drbd_main_mutex); 1871 1872 return rv; 1873 } 1874 1875 static void drbd_release(struct gendisk *gd, fmode_t mode) 1876 { 1877 struct drbd_device *device = gd->private_data; 1878 mutex_lock(&drbd_main_mutex); 1879 device->open_cnt--; 1880 mutex_unlock(&drbd_main_mutex); 1881 } 1882 1883 static void drbd_set_defaults(struct drbd_device *device) 1884 { 1885 /* Beware! The actual layout differs 1886 * between big endian and little endian */ 1887 device->state = (union drbd_dev_state) { 1888 { .role = R_SECONDARY, 1889 .peer = R_UNKNOWN, 1890 .conn = C_STANDALONE, 1891 .disk = D_DISKLESS, 1892 .pdsk = D_UNKNOWN, 1893 } }; 1894 } 1895 1896 void drbd_init_set_defaults(struct drbd_device *device) 1897 { 1898 /* the memset(,0,) did most of this. 1899 * note: only assignments, no allocation in here */ 1900 1901 drbd_set_defaults(device); 1902 1903 atomic_set(&device->ap_bio_cnt, 0); 1904 atomic_set(&device->ap_actlog_cnt, 0); 1905 atomic_set(&device->ap_pending_cnt, 0); 1906 atomic_set(&device->rs_pending_cnt, 0); 1907 atomic_set(&device->unacked_cnt, 0); 1908 atomic_set(&device->local_cnt, 0); 1909 atomic_set(&device->pp_in_use_by_net, 0); 1910 atomic_set(&device->rs_sect_in, 0); 1911 atomic_set(&device->rs_sect_ev, 0); 1912 atomic_set(&device->ap_in_flight, 0); 1913 atomic_set(&device->md_io.in_use, 0); 1914 1915 mutex_init(&device->own_state_mutex); 1916 device->state_mutex = &device->own_state_mutex; 1917 1918 spin_lock_init(&device->al_lock); 1919 spin_lock_init(&device->peer_seq_lock); 1920 1921 INIT_LIST_HEAD(&device->active_ee); 1922 INIT_LIST_HEAD(&device->sync_ee); 1923 INIT_LIST_HEAD(&device->done_ee); 1924 INIT_LIST_HEAD(&device->read_ee); 1925 INIT_LIST_HEAD(&device->net_ee); 1926 INIT_LIST_HEAD(&device->resync_reads); 1927 INIT_LIST_HEAD(&device->resync_work.list); 1928 INIT_LIST_HEAD(&device->unplug_work.list); 1929 INIT_LIST_HEAD(&device->bm_io_work.w.list); 1930 INIT_LIST_HEAD(&device->pending_master_completion[0]); 1931 INIT_LIST_HEAD(&device->pending_master_completion[1]); 1932 INIT_LIST_HEAD(&device->pending_completion[0]); 1933 INIT_LIST_HEAD(&device->pending_completion[1]); 1934 1935 device->resync_work.cb = w_resync_timer; 1936 device->unplug_work.cb = w_send_write_hint; 1937 device->bm_io_work.w.cb = w_bitmap_io; 1938 1939 init_timer(&device->resync_timer); 1940 init_timer(&device->md_sync_timer); 1941 init_timer(&device->start_resync_timer); 1942 init_timer(&device->request_timer); 1943 device->resync_timer.function = resync_timer_fn; 1944 device->resync_timer.data = (unsigned long) device; 1945 device->md_sync_timer.function = md_sync_timer_fn; 1946 device->md_sync_timer.data = (unsigned long) device; 1947 device->start_resync_timer.function = start_resync_timer_fn; 1948 device->start_resync_timer.data = (unsigned long) device; 1949 device->request_timer.function = request_timer_fn; 1950 device->request_timer.data = (unsigned long) device; 1951 1952 init_waitqueue_head(&device->misc_wait); 1953 init_waitqueue_head(&device->state_wait); 1954 init_waitqueue_head(&device->ee_wait); 1955 init_waitqueue_head(&device->al_wait); 1956 init_waitqueue_head(&device->seq_wait); 1957 1958 device->resync_wenr = LC_FREE; 1959 device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE; 1960 device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE; 1961 } 1962 1963 void drbd_device_cleanup(struct drbd_device *device) 1964 { 1965 int i; 1966 if (first_peer_device(device)->connection->receiver.t_state != NONE) 1967 drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n", 1968 first_peer_device(device)->connection->receiver.t_state); 1969 1970 device->al_writ_cnt = 1971 device->bm_writ_cnt = 1972 device->read_cnt = 1973 device->recv_cnt = 1974 device->send_cnt = 1975 device->writ_cnt = 1976 device->p_size = 1977 device->rs_start = 1978 device->rs_total = 1979 device->rs_failed = 0; 1980 device->rs_last_events = 0; 1981 device->rs_last_sect_ev = 0; 1982 for (i = 0; i < DRBD_SYNC_MARKS; i++) { 1983 device->rs_mark_left[i] = 0; 1984 device->rs_mark_time[i] = 0; 1985 } 1986 D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL); 1987 1988 drbd_set_my_capacity(device, 0); 1989 if (device->bitmap) { 1990 /* maybe never allocated. */ 1991 drbd_bm_resize(device, 0, 1); 1992 drbd_bm_cleanup(device); 1993 } 1994 1995 drbd_backing_dev_free(device, device->ldev); 1996 device->ldev = NULL; 1997 1998 clear_bit(AL_SUSPENDED, &device->flags); 1999 2000 D_ASSERT(device, list_empty(&device->active_ee)); 2001 D_ASSERT(device, list_empty(&device->sync_ee)); 2002 D_ASSERT(device, list_empty(&device->done_ee)); 2003 D_ASSERT(device, list_empty(&device->read_ee)); 2004 D_ASSERT(device, list_empty(&device->net_ee)); 2005 D_ASSERT(device, list_empty(&device->resync_reads)); 2006 D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q)); 2007 D_ASSERT(device, list_empty(&device->resync_work.list)); 2008 D_ASSERT(device, list_empty(&device->unplug_work.list)); 2009 2010 drbd_set_defaults(device); 2011 } 2012 2013 2014 static void drbd_destroy_mempools(void) 2015 { 2016 struct page *page; 2017 2018 while (drbd_pp_pool) { 2019 page = drbd_pp_pool; 2020 drbd_pp_pool = (struct page *)page_private(page); 2021 __free_page(page); 2022 drbd_pp_vacant--; 2023 } 2024 2025 /* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */ 2026 2027 if (drbd_md_io_bio_set) 2028 bioset_free(drbd_md_io_bio_set); 2029 if (drbd_md_io_page_pool) 2030 mempool_destroy(drbd_md_io_page_pool); 2031 if (drbd_ee_mempool) 2032 mempool_destroy(drbd_ee_mempool); 2033 if (drbd_request_mempool) 2034 mempool_destroy(drbd_request_mempool); 2035 if (drbd_ee_cache) 2036 kmem_cache_destroy(drbd_ee_cache); 2037 if (drbd_request_cache) 2038 kmem_cache_destroy(drbd_request_cache); 2039 if (drbd_bm_ext_cache) 2040 kmem_cache_destroy(drbd_bm_ext_cache); 2041 if (drbd_al_ext_cache) 2042 kmem_cache_destroy(drbd_al_ext_cache); 2043 2044 drbd_md_io_bio_set = NULL; 2045 drbd_md_io_page_pool = NULL; 2046 drbd_ee_mempool = NULL; 2047 drbd_request_mempool = NULL; 2048 drbd_ee_cache = NULL; 2049 drbd_request_cache = NULL; 2050 drbd_bm_ext_cache = NULL; 2051 drbd_al_ext_cache = NULL; 2052 2053 return; 2054 } 2055 2056 static int drbd_create_mempools(void) 2057 { 2058 struct page *page; 2059 const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * minor_count; 2060 int i; 2061 2062 /* prepare our caches and mempools */ 2063 drbd_request_mempool = NULL; 2064 drbd_ee_cache = NULL; 2065 drbd_request_cache = NULL; 2066 drbd_bm_ext_cache = NULL; 2067 drbd_al_ext_cache = NULL; 2068 drbd_pp_pool = NULL; 2069 drbd_md_io_page_pool = NULL; 2070 drbd_md_io_bio_set = NULL; 2071 2072 /* caches */ 2073 drbd_request_cache = kmem_cache_create( 2074 "drbd_req", sizeof(struct drbd_request), 0, 0, NULL); 2075 if (drbd_request_cache == NULL) 2076 goto Enomem; 2077 2078 drbd_ee_cache = kmem_cache_create( 2079 "drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL); 2080 if (drbd_ee_cache == NULL) 2081 goto Enomem; 2082 2083 drbd_bm_ext_cache = kmem_cache_create( 2084 "drbd_bm", sizeof(struct bm_extent), 0, 0, NULL); 2085 if (drbd_bm_ext_cache == NULL) 2086 goto Enomem; 2087 2088 drbd_al_ext_cache = kmem_cache_create( 2089 "drbd_al", sizeof(struct lc_element), 0, 0, NULL); 2090 if (drbd_al_ext_cache == NULL) 2091 goto Enomem; 2092 2093 /* mempools */ 2094 drbd_md_io_bio_set = bioset_create(DRBD_MIN_POOL_PAGES, 0); 2095 if (drbd_md_io_bio_set == NULL) 2096 goto Enomem; 2097 2098 drbd_md_io_page_pool = mempool_create_page_pool(DRBD_MIN_POOL_PAGES, 0); 2099 if (drbd_md_io_page_pool == NULL) 2100 goto Enomem; 2101 2102 drbd_request_mempool = mempool_create_slab_pool(number, 2103 drbd_request_cache); 2104 if (drbd_request_mempool == NULL) 2105 goto Enomem; 2106 2107 drbd_ee_mempool = mempool_create_slab_pool(number, drbd_ee_cache); 2108 if (drbd_ee_mempool == NULL) 2109 goto Enomem; 2110 2111 /* drbd's page pool */ 2112 spin_lock_init(&drbd_pp_lock); 2113 2114 for (i = 0; i < number; i++) { 2115 page = alloc_page(GFP_HIGHUSER); 2116 if (!page) 2117 goto Enomem; 2118 set_page_private(page, (unsigned long)drbd_pp_pool); 2119 drbd_pp_pool = page; 2120 } 2121 drbd_pp_vacant = number; 2122 2123 return 0; 2124 2125 Enomem: 2126 drbd_destroy_mempools(); /* in case we allocated some */ 2127 return -ENOMEM; 2128 } 2129 2130 static void drbd_release_all_peer_reqs(struct drbd_device *device) 2131 { 2132 int rr; 2133 2134 rr = drbd_free_peer_reqs(device, &device->active_ee); 2135 if (rr) 2136 drbd_err(device, "%d EEs in active list found!\n", rr); 2137 2138 rr = drbd_free_peer_reqs(device, &device->sync_ee); 2139 if (rr) 2140 drbd_err(device, "%d EEs in sync list found!\n", rr); 2141 2142 rr = drbd_free_peer_reqs(device, &device->read_ee); 2143 if (rr) 2144 drbd_err(device, "%d EEs in read list found!\n", rr); 2145 2146 rr = drbd_free_peer_reqs(device, &device->done_ee); 2147 if (rr) 2148 drbd_err(device, "%d EEs in done list found!\n", rr); 2149 2150 rr = drbd_free_peer_reqs(device, &device->net_ee); 2151 if (rr) 2152 drbd_err(device, "%d EEs in net list found!\n", rr); 2153 } 2154 2155 /* caution. no locking. */ 2156 void drbd_destroy_device(struct kref *kref) 2157 { 2158 struct drbd_device *device = container_of(kref, struct drbd_device, kref); 2159 struct drbd_resource *resource = device->resource; 2160 struct drbd_peer_device *peer_device, *tmp_peer_device; 2161 2162 del_timer_sync(&device->request_timer); 2163 2164 /* paranoia asserts */ 2165 D_ASSERT(device, device->open_cnt == 0); 2166 /* end paranoia asserts */ 2167 2168 /* cleanup stuff that may have been allocated during 2169 * device (re-)configuration or state changes */ 2170 2171 if (device->this_bdev) 2172 bdput(device->this_bdev); 2173 2174 drbd_backing_dev_free(device, device->ldev); 2175 device->ldev = NULL; 2176 2177 drbd_release_all_peer_reqs(device); 2178 2179 lc_destroy(device->act_log); 2180 lc_destroy(device->resync); 2181 2182 kfree(device->p_uuid); 2183 /* device->p_uuid = NULL; */ 2184 2185 if (device->bitmap) /* should no longer be there. */ 2186 drbd_bm_cleanup(device); 2187 __free_page(device->md_io.page); 2188 put_disk(device->vdisk); 2189 blk_cleanup_queue(device->rq_queue); 2190 kfree(device->rs_plan_s); 2191 2192 /* not for_each_connection(connection, resource): 2193 * those may have been cleaned up and disassociated already. 2194 */ 2195 for_each_peer_device_safe(peer_device, tmp_peer_device, device) { 2196 kref_put(&peer_device->connection->kref, drbd_destroy_connection); 2197 kfree(peer_device); 2198 } 2199 memset(device, 0xfd, sizeof(*device)); 2200 kfree(device); 2201 kref_put(&resource->kref, drbd_destroy_resource); 2202 } 2203 2204 /* One global retry thread, if we need to push back some bio and have it 2205 * reinserted through our make request function. 2206 */ 2207 static struct retry_worker { 2208 struct workqueue_struct *wq; 2209 struct work_struct worker; 2210 2211 spinlock_t lock; 2212 struct list_head writes; 2213 } retry; 2214 2215 static void do_retry(struct work_struct *ws) 2216 { 2217 struct retry_worker *retry = container_of(ws, struct retry_worker, worker); 2218 LIST_HEAD(writes); 2219 struct drbd_request *req, *tmp; 2220 2221 spin_lock_irq(&retry->lock); 2222 list_splice_init(&retry->writes, &writes); 2223 spin_unlock_irq(&retry->lock); 2224 2225 list_for_each_entry_safe(req, tmp, &writes, tl_requests) { 2226 struct drbd_device *device = req->device; 2227 struct bio *bio = req->master_bio; 2228 unsigned long start_jif = req->start_jif; 2229 bool expected; 2230 2231 expected = 2232 expect(atomic_read(&req->completion_ref) == 0) && 2233 expect(req->rq_state & RQ_POSTPONED) && 2234 expect((req->rq_state & RQ_LOCAL_PENDING) == 0 || 2235 (req->rq_state & RQ_LOCAL_ABORTED) != 0); 2236 2237 if (!expected) 2238 drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n", 2239 req, atomic_read(&req->completion_ref), 2240 req->rq_state); 2241 2242 /* We still need to put one kref associated with the 2243 * "completion_ref" going zero in the code path that queued it 2244 * here. The request object may still be referenced by a 2245 * frozen local req->private_bio, in case we force-detached. 2246 */ 2247 kref_put(&req->kref, drbd_req_destroy); 2248 2249 /* A single suspended or otherwise blocking device may stall 2250 * all others as well. Fortunately, this code path is to 2251 * recover from a situation that "should not happen": 2252 * concurrent writes in multi-primary setup. 2253 * In a "normal" lifecycle, this workqueue is supposed to be 2254 * destroyed without ever doing anything. 2255 * If it turns out to be an issue anyways, we can do per 2256 * resource (replication group) or per device (minor) retry 2257 * workqueues instead. 2258 */ 2259 2260 /* We are not just doing generic_make_request(), 2261 * as we want to keep the start_time information. */ 2262 inc_ap_bio(device); 2263 __drbd_make_request(device, bio, start_jif); 2264 } 2265 } 2266 2267 /* called via drbd_req_put_completion_ref(), 2268 * holds resource->req_lock */ 2269 void drbd_restart_request(struct drbd_request *req) 2270 { 2271 unsigned long flags; 2272 spin_lock_irqsave(&retry.lock, flags); 2273 list_move_tail(&req->tl_requests, &retry.writes); 2274 spin_unlock_irqrestore(&retry.lock, flags); 2275 2276 /* Drop the extra reference that would otherwise 2277 * have been dropped by complete_master_bio. 2278 * do_retry() needs to grab a new one. */ 2279 dec_ap_bio(req->device); 2280 2281 queue_work(retry.wq, &retry.worker); 2282 } 2283 2284 void drbd_destroy_resource(struct kref *kref) 2285 { 2286 struct drbd_resource *resource = 2287 container_of(kref, struct drbd_resource, kref); 2288 2289 idr_destroy(&resource->devices); 2290 free_cpumask_var(resource->cpu_mask); 2291 kfree(resource->name); 2292 memset(resource, 0xf2, sizeof(*resource)); 2293 kfree(resource); 2294 } 2295 2296 void drbd_free_resource(struct drbd_resource *resource) 2297 { 2298 struct drbd_connection *connection, *tmp; 2299 2300 for_each_connection_safe(connection, tmp, resource) { 2301 list_del(&connection->connections); 2302 drbd_debugfs_connection_cleanup(connection); 2303 kref_put(&connection->kref, drbd_destroy_connection); 2304 } 2305 drbd_debugfs_resource_cleanup(resource); 2306 kref_put(&resource->kref, drbd_destroy_resource); 2307 } 2308 2309 static void drbd_cleanup(void) 2310 { 2311 unsigned int i; 2312 struct drbd_device *device; 2313 struct drbd_resource *resource, *tmp; 2314 2315 /* first remove proc, 2316 * drbdsetup uses it's presence to detect 2317 * whether DRBD is loaded. 2318 * If we would get stuck in proc removal, 2319 * but have netlink already deregistered, 2320 * some drbdsetup commands may wait forever 2321 * for an answer. 2322 */ 2323 if (drbd_proc) 2324 remove_proc_entry("drbd", NULL); 2325 2326 if (retry.wq) 2327 destroy_workqueue(retry.wq); 2328 2329 drbd_genl_unregister(); 2330 drbd_debugfs_cleanup(); 2331 2332 idr_for_each_entry(&drbd_devices, device, i) 2333 drbd_delete_device(device); 2334 2335 /* not _rcu since, no other updater anymore. Genl already unregistered */ 2336 for_each_resource_safe(resource, tmp, &drbd_resources) { 2337 list_del(&resource->resources); 2338 drbd_free_resource(resource); 2339 } 2340 2341 drbd_destroy_mempools(); 2342 unregister_blkdev(DRBD_MAJOR, "drbd"); 2343 2344 idr_destroy(&drbd_devices); 2345 2346 pr_info("module cleanup done.\n"); 2347 } 2348 2349 /** 2350 * drbd_congested() - Callback for the flusher thread 2351 * @congested_data: User data 2352 * @bdi_bits: Bits the BDI flusher thread is currently interested in 2353 * 2354 * Returns 1<<WB_async_congested and/or 1<<WB_sync_congested if we are congested. 2355 */ 2356 static int drbd_congested(void *congested_data, int bdi_bits) 2357 { 2358 struct drbd_device *device = congested_data; 2359 struct request_queue *q; 2360 char reason = '-'; 2361 int r = 0; 2362 2363 if (!may_inc_ap_bio(device)) { 2364 /* DRBD has frozen IO */ 2365 r = bdi_bits; 2366 reason = 'd'; 2367 goto out; 2368 } 2369 2370 if (test_bit(CALLBACK_PENDING, &first_peer_device(device)->connection->flags)) { 2371 r |= (1 << WB_async_congested); 2372 /* Without good local data, we would need to read from remote, 2373 * and that would need the worker thread as well, which is 2374 * currently blocked waiting for that usermode helper to 2375 * finish. 2376 */ 2377 if (!get_ldev_if_state(device, D_UP_TO_DATE)) 2378 r |= (1 << WB_sync_congested); 2379 else 2380 put_ldev(device); 2381 r &= bdi_bits; 2382 reason = 'c'; 2383 goto out; 2384 } 2385 2386 if (get_ldev(device)) { 2387 q = bdev_get_queue(device->ldev->backing_bdev); 2388 r = bdi_congested(&q->backing_dev_info, bdi_bits); 2389 put_ldev(device); 2390 if (r) 2391 reason = 'b'; 2392 } 2393 2394 if (bdi_bits & (1 << WB_async_congested) && 2395 test_bit(NET_CONGESTED, &first_peer_device(device)->connection->flags)) { 2396 r |= (1 << WB_async_congested); 2397 reason = reason == 'b' ? 'a' : 'n'; 2398 } 2399 2400 out: 2401 device->congestion_reason = reason; 2402 return r; 2403 } 2404 2405 static void drbd_init_workqueue(struct drbd_work_queue* wq) 2406 { 2407 spin_lock_init(&wq->q_lock); 2408 INIT_LIST_HEAD(&wq->q); 2409 init_waitqueue_head(&wq->q_wait); 2410 } 2411 2412 struct completion_work { 2413 struct drbd_work w; 2414 struct completion done; 2415 }; 2416 2417 static int w_complete(struct drbd_work *w, int cancel) 2418 { 2419 struct completion_work *completion_work = 2420 container_of(w, struct completion_work, w); 2421 2422 complete(&completion_work->done); 2423 return 0; 2424 } 2425 2426 void drbd_flush_workqueue(struct drbd_work_queue *work_queue) 2427 { 2428 struct completion_work completion_work; 2429 2430 completion_work.w.cb = w_complete; 2431 init_completion(&completion_work.done); 2432 drbd_queue_work(work_queue, &completion_work.w); 2433 wait_for_completion(&completion_work.done); 2434 } 2435 2436 struct drbd_resource *drbd_find_resource(const char *name) 2437 { 2438 struct drbd_resource *resource; 2439 2440 if (!name || !name[0]) 2441 return NULL; 2442 2443 rcu_read_lock(); 2444 for_each_resource_rcu(resource, &drbd_resources) { 2445 if (!strcmp(resource->name, name)) { 2446 kref_get(&resource->kref); 2447 goto found; 2448 } 2449 } 2450 resource = NULL; 2451 found: 2452 rcu_read_unlock(); 2453 return resource; 2454 } 2455 2456 struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len, 2457 void *peer_addr, int peer_addr_len) 2458 { 2459 struct drbd_resource *resource; 2460 struct drbd_connection *connection; 2461 2462 rcu_read_lock(); 2463 for_each_resource_rcu(resource, &drbd_resources) { 2464 for_each_connection_rcu(connection, resource) { 2465 if (connection->my_addr_len == my_addr_len && 2466 connection->peer_addr_len == peer_addr_len && 2467 !memcmp(&connection->my_addr, my_addr, my_addr_len) && 2468 !memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) { 2469 kref_get(&connection->kref); 2470 goto found; 2471 } 2472 } 2473 } 2474 connection = NULL; 2475 found: 2476 rcu_read_unlock(); 2477 return connection; 2478 } 2479 2480 static int drbd_alloc_socket(struct drbd_socket *socket) 2481 { 2482 socket->rbuf = (void *) __get_free_page(GFP_KERNEL); 2483 if (!socket->rbuf) 2484 return -ENOMEM; 2485 socket->sbuf = (void *) __get_free_page(GFP_KERNEL); 2486 if (!socket->sbuf) 2487 return -ENOMEM; 2488 return 0; 2489 } 2490 2491 static void drbd_free_socket(struct drbd_socket *socket) 2492 { 2493 free_page((unsigned long) socket->sbuf); 2494 free_page((unsigned long) socket->rbuf); 2495 } 2496 2497 void conn_free_crypto(struct drbd_connection *connection) 2498 { 2499 drbd_free_sock(connection); 2500 2501 crypto_free_ahash(connection->csums_tfm); 2502 crypto_free_ahash(connection->verify_tfm); 2503 crypto_free_shash(connection->cram_hmac_tfm); 2504 crypto_free_ahash(connection->integrity_tfm); 2505 crypto_free_ahash(connection->peer_integrity_tfm); 2506 kfree(connection->int_dig_in); 2507 kfree(connection->int_dig_vv); 2508 2509 connection->csums_tfm = NULL; 2510 connection->verify_tfm = NULL; 2511 connection->cram_hmac_tfm = NULL; 2512 connection->integrity_tfm = NULL; 2513 connection->peer_integrity_tfm = NULL; 2514 connection->int_dig_in = NULL; 2515 connection->int_dig_vv = NULL; 2516 } 2517 2518 int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts) 2519 { 2520 struct drbd_connection *connection; 2521 cpumask_var_t new_cpu_mask; 2522 int err; 2523 2524 if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL)) 2525 return -ENOMEM; 2526 2527 /* silently ignore cpu mask on UP kernel */ 2528 if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) { 2529 err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE, 2530 cpumask_bits(new_cpu_mask), nr_cpu_ids); 2531 if (err == -EOVERFLOW) { 2532 /* So what. mask it out. */ 2533 cpumask_var_t tmp_cpu_mask; 2534 if (zalloc_cpumask_var(&tmp_cpu_mask, GFP_KERNEL)) { 2535 cpumask_setall(tmp_cpu_mask); 2536 cpumask_and(new_cpu_mask, new_cpu_mask, tmp_cpu_mask); 2537 drbd_warn(resource, "Overflow in bitmap_parse(%.12s%s), truncating to %u bits\n", 2538 res_opts->cpu_mask, 2539 strlen(res_opts->cpu_mask) > 12 ? "..." : "", 2540 nr_cpu_ids); 2541 free_cpumask_var(tmp_cpu_mask); 2542 err = 0; 2543 } 2544 } 2545 if (err) { 2546 drbd_warn(resource, "bitmap_parse() failed with %d\n", err); 2547 /* retcode = ERR_CPU_MASK_PARSE; */ 2548 goto fail; 2549 } 2550 } 2551 resource->res_opts = *res_opts; 2552 if (cpumask_empty(new_cpu_mask)) 2553 drbd_calc_cpu_mask(&new_cpu_mask); 2554 if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) { 2555 cpumask_copy(resource->cpu_mask, new_cpu_mask); 2556 for_each_connection_rcu(connection, resource) { 2557 connection->receiver.reset_cpu_mask = 1; 2558 connection->ack_receiver.reset_cpu_mask = 1; 2559 connection->worker.reset_cpu_mask = 1; 2560 } 2561 } 2562 err = 0; 2563 2564 fail: 2565 free_cpumask_var(new_cpu_mask); 2566 return err; 2567 2568 } 2569 2570 struct drbd_resource *drbd_create_resource(const char *name) 2571 { 2572 struct drbd_resource *resource; 2573 2574 resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL); 2575 if (!resource) 2576 goto fail; 2577 resource->name = kstrdup(name, GFP_KERNEL); 2578 if (!resource->name) 2579 goto fail_free_resource; 2580 if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL)) 2581 goto fail_free_name; 2582 kref_init(&resource->kref); 2583 idr_init(&resource->devices); 2584 INIT_LIST_HEAD(&resource->connections); 2585 resource->write_ordering = WO_BDEV_FLUSH; 2586 list_add_tail_rcu(&resource->resources, &drbd_resources); 2587 mutex_init(&resource->conf_update); 2588 mutex_init(&resource->adm_mutex); 2589 spin_lock_init(&resource->req_lock); 2590 drbd_debugfs_resource_add(resource); 2591 return resource; 2592 2593 fail_free_name: 2594 kfree(resource->name); 2595 fail_free_resource: 2596 kfree(resource); 2597 fail: 2598 return NULL; 2599 } 2600 2601 /* caller must be under adm_mutex */ 2602 struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts) 2603 { 2604 struct drbd_resource *resource; 2605 struct drbd_connection *connection; 2606 2607 connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL); 2608 if (!connection) 2609 return NULL; 2610 2611 if (drbd_alloc_socket(&connection->data)) 2612 goto fail; 2613 if (drbd_alloc_socket(&connection->meta)) 2614 goto fail; 2615 2616 connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL); 2617 if (!connection->current_epoch) 2618 goto fail; 2619 2620 INIT_LIST_HEAD(&connection->transfer_log); 2621 2622 INIT_LIST_HEAD(&connection->current_epoch->list); 2623 connection->epochs = 1; 2624 spin_lock_init(&connection->epoch_lock); 2625 2626 connection->send.seen_any_write_yet = false; 2627 connection->send.current_epoch_nr = 0; 2628 connection->send.current_epoch_writes = 0; 2629 2630 resource = drbd_create_resource(name); 2631 if (!resource) 2632 goto fail; 2633 2634 connection->cstate = C_STANDALONE; 2635 mutex_init(&connection->cstate_mutex); 2636 init_waitqueue_head(&connection->ping_wait); 2637 idr_init(&connection->peer_devices); 2638 2639 drbd_init_workqueue(&connection->sender_work); 2640 mutex_init(&connection->data.mutex); 2641 mutex_init(&connection->meta.mutex); 2642 2643 drbd_thread_init(resource, &connection->receiver, drbd_receiver, "receiver"); 2644 connection->receiver.connection = connection; 2645 drbd_thread_init(resource, &connection->worker, drbd_worker, "worker"); 2646 connection->worker.connection = connection; 2647 drbd_thread_init(resource, &connection->ack_receiver, drbd_ack_receiver, "ack_recv"); 2648 connection->ack_receiver.connection = connection; 2649 2650 kref_init(&connection->kref); 2651 2652 connection->resource = resource; 2653 2654 if (set_resource_options(resource, res_opts)) 2655 goto fail_resource; 2656 2657 kref_get(&resource->kref); 2658 list_add_tail_rcu(&connection->connections, &resource->connections); 2659 drbd_debugfs_connection_add(connection); 2660 return connection; 2661 2662 fail_resource: 2663 list_del(&resource->resources); 2664 drbd_free_resource(resource); 2665 fail: 2666 kfree(connection->current_epoch); 2667 drbd_free_socket(&connection->meta); 2668 drbd_free_socket(&connection->data); 2669 kfree(connection); 2670 return NULL; 2671 } 2672 2673 void drbd_destroy_connection(struct kref *kref) 2674 { 2675 struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref); 2676 struct drbd_resource *resource = connection->resource; 2677 2678 if (atomic_read(&connection->current_epoch->epoch_size) != 0) 2679 drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size)); 2680 kfree(connection->current_epoch); 2681 2682 idr_destroy(&connection->peer_devices); 2683 2684 drbd_free_socket(&connection->meta); 2685 drbd_free_socket(&connection->data); 2686 kfree(connection->int_dig_in); 2687 kfree(connection->int_dig_vv); 2688 memset(connection, 0xfc, sizeof(*connection)); 2689 kfree(connection); 2690 kref_put(&resource->kref, drbd_destroy_resource); 2691 } 2692 2693 static int init_submitter(struct drbd_device *device) 2694 { 2695 /* opencoded create_singlethread_workqueue(), 2696 * to be able to say "drbd%d", ..., minor */ 2697 device->submit.wq = 2698 alloc_ordered_workqueue("drbd%u_submit", WQ_MEM_RECLAIM, device->minor); 2699 if (!device->submit.wq) 2700 return -ENOMEM; 2701 2702 INIT_WORK(&device->submit.worker, do_submit); 2703 INIT_LIST_HEAD(&device->submit.writes); 2704 return 0; 2705 } 2706 2707 enum drbd_ret_code drbd_create_device(struct drbd_config_context *adm_ctx, unsigned int minor) 2708 { 2709 struct drbd_resource *resource = adm_ctx->resource; 2710 struct drbd_connection *connection; 2711 struct drbd_device *device; 2712 struct drbd_peer_device *peer_device, *tmp_peer_device; 2713 struct gendisk *disk; 2714 struct request_queue *q; 2715 int id; 2716 int vnr = adm_ctx->volume; 2717 enum drbd_ret_code err = ERR_NOMEM; 2718 2719 device = minor_to_device(minor); 2720 if (device) 2721 return ERR_MINOR_OR_VOLUME_EXISTS; 2722 2723 /* GFP_KERNEL, we are outside of all write-out paths */ 2724 device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL); 2725 if (!device) 2726 return ERR_NOMEM; 2727 kref_init(&device->kref); 2728 2729 kref_get(&resource->kref); 2730 device->resource = resource; 2731 device->minor = minor; 2732 device->vnr = vnr; 2733 2734 drbd_init_set_defaults(device); 2735 2736 q = blk_alloc_queue(GFP_KERNEL); 2737 if (!q) 2738 goto out_no_q; 2739 device->rq_queue = q; 2740 q->queuedata = device; 2741 2742 disk = alloc_disk(1); 2743 if (!disk) 2744 goto out_no_disk; 2745 device->vdisk = disk; 2746 2747 set_disk_ro(disk, true); 2748 2749 disk->queue = q; 2750 disk->major = DRBD_MAJOR; 2751 disk->first_minor = minor; 2752 disk->fops = &drbd_ops; 2753 sprintf(disk->disk_name, "drbd%d", minor); 2754 disk->private_data = device; 2755 2756 device->this_bdev = bdget(MKDEV(DRBD_MAJOR, minor)); 2757 /* we have no partitions. we contain only ourselves. */ 2758 device->this_bdev->bd_contains = device->this_bdev; 2759 2760 q->backing_dev_info.congested_fn = drbd_congested; 2761 q->backing_dev_info.congested_data = device; 2762 2763 blk_queue_make_request(q, drbd_make_request); 2764 blk_queue_write_cache(q, true, true); 2765 /* Setting the max_hw_sectors to an odd value of 8kibyte here 2766 This triggers a max_bio_size message upon first attach or connect */ 2767 blk_queue_max_hw_sectors(q, DRBD_MAX_BIO_SIZE_SAFE >> 8); 2768 blk_queue_bounce_limit(q, BLK_BOUNCE_ANY); 2769 q->queue_lock = &resource->req_lock; 2770 2771 device->md_io.page = alloc_page(GFP_KERNEL); 2772 if (!device->md_io.page) 2773 goto out_no_io_page; 2774 2775 if (drbd_bm_init(device)) 2776 goto out_no_bitmap; 2777 device->read_requests = RB_ROOT; 2778 device->write_requests = RB_ROOT; 2779 2780 id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL); 2781 if (id < 0) { 2782 if (id == -ENOSPC) 2783 err = ERR_MINOR_OR_VOLUME_EXISTS; 2784 goto out_no_minor_idr; 2785 } 2786 kref_get(&device->kref); 2787 2788 id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL); 2789 if (id < 0) { 2790 if (id == -ENOSPC) 2791 err = ERR_MINOR_OR_VOLUME_EXISTS; 2792 goto out_idr_remove_minor; 2793 } 2794 kref_get(&device->kref); 2795 2796 INIT_LIST_HEAD(&device->peer_devices); 2797 INIT_LIST_HEAD(&device->pending_bitmap_io); 2798 for_each_connection(connection, resource) { 2799 peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL); 2800 if (!peer_device) 2801 goto out_idr_remove_from_resource; 2802 peer_device->connection = connection; 2803 peer_device->device = device; 2804 2805 list_add(&peer_device->peer_devices, &device->peer_devices); 2806 kref_get(&device->kref); 2807 2808 id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL); 2809 if (id < 0) { 2810 if (id == -ENOSPC) 2811 err = ERR_INVALID_REQUEST; 2812 goto out_idr_remove_from_resource; 2813 } 2814 kref_get(&connection->kref); 2815 INIT_WORK(&peer_device->send_acks_work, drbd_send_acks_wf); 2816 } 2817 2818 if (init_submitter(device)) { 2819 err = ERR_NOMEM; 2820 goto out_idr_remove_vol; 2821 } 2822 2823 add_disk(disk); 2824 2825 /* inherit the connection state */ 2826 device->state.conn = first_connection(resource)->cstate; 2827 if (device->state.conn == C_WF_REPORT_PARAMS) { 2828 for_each_peer_device(peer_device, device) 2829 drbd_connected(peer_device); 2830 } 2831 /* move to create_peer_device() */ 2832 for_each_peer_device(peer_device, device) 2833 drbd_debugfs_peer_device_add(peer_device); 2834 drbd_debugfs_device_add(device); 2835 return NO_ERROR; 2836 2837 out_idr_remove_vol: 2838 idr_remove(&connection->peer_devices, vnr); 2839 out_idr_remove_from_resource: 2840 for_each_connection(connection, resource) { 2841 peer_device = idr_find(&connection->peer_devices, vnr); 2842 if (peer_device) { 2843 idr_remove(&connection->peer_devices, vnr); 2844 kref_put(&connection->kref, drbd_destroy_connection); 2845 } 2846 } 2847 for_each_peer_device_safe(peer_device, tmp_peer_device, device) { 2848 list_del(&peer_device->peer_devices); 2849 kfree(peer_device); 2850 } 2851 idr_remove(&resource->devices, vnr); 2852 out_idr_remove_minor: 2853 idr_remove(&drbd_devices, minor); 2854 synchronize_rcu(); 2855 out_no_minor_idr: 2856 drbd_bm_cleanup(device); 2857 out_no_bitmap: 2858 __free_page(device->md_io.page); 2859 out_no_io_page: 2860 put_disk(disk); 2861 out_no_disk: 2862 blk_cleanup_queue(q); 2863 out_no_q: 2864 kref_put(&resource->kref, drbd_destroy_resource); 2865 kfree(device); 2866 return err; 2867 } 2868 2869 void drbd_delete_device(struct drbd_device *device) 2870 { 2871 struct drbd_resource *resource = device->resource; 2872 struct drbd_connection *connection; 2873 struct drbd_peer_device *peer_device; 2874 int refs = 3; 2875 2876 /* move to free_peer_device() */ 2877 for_each_peer_device(peer_device, device) 2878 drbd_debugfs_peer_device_cleanup(peer_device); 2879 drbd_debugfs_device_cleanup(device); 2880 for_each_connection(connection, resource) { 2881 idr_remove(&connection->peer_devices, device->vnr); 2882 refs++; 2883 } 2884 idr_remove(&resource->devices, device->vnr); 2885 idr_remove(&drbd_devices, device_to_minor(device)); 2886 del_gendisk(device->vdisk); 2887 synchronize_rcu(); 2888 kref_sub(&device->kref, refs, drbd_destroy_device); 2889 } 2890 2891 static int __init drbd_init(void) 2892 { 2893 int err; 2894 2895 if (minor_count < DRBD_MINOR_COUNT_MIN || minor_count > DRBD_MINOR_COUNT_MAX) { 2896 pr_err("invalid minor_count (%d)\n", minor_count); 2897 #ifdef MODULE 2898 return -EINVAL; 2899 #else 2900 minor_count = DRBD_MINOR_COUNT_DEF; 2901 #endif 2902 } 2903 2904 err = register_blkdev(DRBD_MAJOR, "drbd"); 2905 if (err) { 2906 pr_err("unable to register block device major %d\n", 2907 DRBD_MAJOR); 2908 return err; 2909 } 2910 2911 /* 2912 * allocate all necessary structs 2913 */ 2914 init_waitqueue_head(&drbd_pp_wait); 2915 2916 drbd_proc = NULL; /* play safe for drbd_cleanup */ 2917 idr_init(&drbd_devices); 2918 2919 mutex_init(&resources_mutex); 2920 INIT_LIST_HEAD(&drbd_resources); 2921 2922 err = drbd_genl_register(); 2923 if (err) { 2924 pr_err("unable to register generic netlink family\n"); 2925 goto fail; 2926 } 2927 2928 err = drbd_create_mempools(); 2929 if (err) 2930 goto fail; 2931 2932 err = -ENOMEM; 2933 drbd_proc = proc_create_data("drbd", S_IFREG | S_IRUGO , NULL, &drbd_proc_fops, NULL); 2934 if (!drbd_proc) { 2935 pr_err("unable to register proc file\n"); 2936 goto fail; 2937 } 2938 2939 retry.wq = create_singlethread_workqueue("drbd-reissue"); 2940 if (!retry.wq) { 2941 pr_err("unable to create retry workqueue\n"); 2942 goto fail; 2943 } 2944 INIT_WORK(&retry.worker, do_retry); 2945 spin_lock_init(&retry.lock); 2946 INIT_LIST_HEAD(&retry.writes); 2947 2948 if (drbd_debugfs_init()) 2949 pr_notice("failed to initialize debugfs -- will not be available\n"); 2950 2951 pr_info("initialized. " 2952 "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n", 2953 API_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX); 2954 pr_info("%s\n", drbd_buildtag()); 2955 pr_info("registered as block device major %d\n", DRBD_MAJOR); 2956 return 0; /* Success! */ 2957 2958 fail: 2959 drbd_cleanup(); 2960 if (err == -ENOMEM) 2961 pr_err("ran out of memory\n"); 2962 else 2963 pr_err("initialization failure\n"); 2964 return err; 2965 } 2966 2967 static void drbd_free_one_sock(struct drbd_socket *ds) 2968 { 2969 struct socket *s; 2970 mutex_lock(&ds->mutex); 2971 s = ds->socket; 2972 ds->socket = NULL; 2973 mutex_unlock(&ds->mutex); 2974 if (s) { 2975 /* so debugfs does not need to mutex_lock() */ 2976 synchronize_rcu(); 2977 kernel_sock_shutdown(s, SHUT_RDWR); 2978 sock_release(s); 2979 } 2980 } 2981 2982 void drbd_free_sock(struct drbd_connection *connection) 2983 { 2984 if (connection->data.socket) 2985 drbd_free_one_sock(&connection->data); 2986 if (connection->meta.socket) 2987 drbd_free_one_sock(&connection->meta); 2988 } 2989 2990 /* meta data management */ 2991 2992 void conn_md_sync(struct drbd_connection *connection) 2993 { 2994 struct drbd_peer_device *peer_device; 2995 int vnr; 2996 2997 rcu_read_lock(); 2998 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 2999 struct drbd_device *device = peer_device->device; 3000 3001 kref_get(&device->kref); 3002 rcu_read_unlock(); 3003 drbd_md_sync(device); 3004 kref_put(&device->kref, drbd_destroy_device); 3005 rcu_read_lock(); 3006 } 3007 rcu_read_unlock(); 3008 } 3009 3010 /* aligned 4kByte */ 3011 struct meta_data_on_disk { 3012 u64 la_size_sect; /* last agreed size. */ 3013 u64 uuid[UI_SIZE]; /* UUIDs. */ 3014 u64 device_uuid; 3015 u64 reserved_u64_1; 3016 u32 flags; /* MDF */ 3017 u32 magic; 3018 u32 md_size_sect; 3019 u32 al_offset; /* offset to this block */ 3020 u32 al_nr_extents; /* important for restoring the AL (userspace) */ 3021 /* `-- act_log->nr_elements <-- ldev->dc.al_extents */ 3022 u32 bm_offset; /* offset to the bitmap, from here */ 3023 u32 bm_bytes_per_bit; /* BM_BLOCK_SIZE */ 3024 u32 la_peer_max_bio_size; /* last peer max_bio_size */ 3025 3026 /* see al_tr_number_to_on_disk_sector() */ 3027 u32 al_stripes; 3028 u32 al_stripe_size_4k; 3029 3030 u8 reserved_u8[4096 - (7*8 + 10*4)]; 3031 } __packed; 3032 3033 3034 3035 void drbd_md_write(struct drbd_device *device, void *b) 3036 { 3037 struct meta_data_on_disk *buffer = b; 3038 sector_t sector; 3039 int i; 3040 3041 memset(buffer, 0, sizeof(*buffer)); 3042 3043 buffer->la_size_sect = cpu_to_be64(drbd_get_capacity(device->this_bdev)); 3044 for (i = UI_CURRENT; i < UI_SIZE; i++) 3045 buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]); 3046 buffer->flags = cpu_to_be32(device->ldev->md.flags); 3047 buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN); 3048 3049 buffer->md_size_sect = cpu_to_be32(device->ldev->md.md_size_sect); 3050 buffer->al_offset = cpu_to_be32(device->ldev->md.al_offset); 3051 buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements); 3052 buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE); 3053 buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid); 3054 3055 buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset); 3056 buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size); 3057 3058 buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes); 3059 buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k); 3060 3061 D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset); 3062 sector = device->ldev->md.md_offset; 3063 3064 if (drbd_md_sync_page_io(device, device->ldev, sector, WRITE)) { 3065 /* this was a try anyways ... */ 3066 drbd_err(device, "meta data update failed!\n"); 3067 drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR); 3068 } 3069 } 3070 3071 /** 3072 * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set 3073 * @device: DRBD device. 3074 */ 3075 void drbd_md_sync(struct drbd_device *device) 3076 { 3077 struct meta_data_on_disk *buffer; 3078 3079 /* Don't accidentally change the DRBD meta data layout. */ 3080 BUILD_BUG_ON(UI_SIZE != 4); 3081 BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096); 3082 3083 del_timer(&device->md_sync_timer); 3084 /* timer may be rearmed by drbd_md_mark_dirty() now. */ 3085 if (!test_and_clear_bit(MD_DIRTY, &device->flags)) 3086 return; 3087 3088 /* We use here D_FAILED and not D_ATTACHING because we try to write 3089 * metadata even if we detach due to a disk failure! */ 3090 if (!get_ldev_if_state(device, D_FAILED)) 3091 return; 3092 3093 buffer = drbd_md_get_buffer(device, __func__); 3094 if (!buffer) 3095 goto out; 3096 3097 drbd_md_write(device, buffer); 3098 3099 /* Update device->ldev->md.la_size_sect, 3100 * since we updated it on metadata. */ 3101 device->ldev->md.la_size_sect = drbd_get_capacity(device->this_bdev); 3102 3103 drbd_md_put_buffer(device); 3104 out: 3105 put_ldev(device); 3106 } 3107 3108 static int check_activity_log_stripe_size(struct drbd_device *device, 3109 struct meta_data_on_disk *on_disk, 3110 struct drbd_md *in_core) 3111 { 3112 u32 al_stripes = be32_to_cpu(on_disk->al_stripes); 3113 u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k); 3114 u64 al_size_4k; 3115 3116 /* both not set: default to old fixed size activity log */ 3117 if (al_stripes == 0 && al_stripe_size_4k == 0) { 3118 al_stripes = 1; 3119 al_stripe_size_4k = MD_32kB_SECT/8; 3120 } 3121 3122 /* some paranoia plausibility checks */ 3123 3124 /* we need both values to be set */ 3125 if (al_stripes == 0 || al_stripe_size_4k == 0) 3126 goto err; 3127 3128 al_size_4k = (u64)al_stripes * al_stripe_size_4k; 3129 3130 /* Upper limit of activity log area, to avoid potential overflow 3131 * problems in al_tr_number_to_on_disk_sector(). As right now, more 3132 * than 72 * 4k blocks total only increases the amount of history, 3133 * limiting this arbitrarily to 16 GB is not a real limitation ;-) */ 3134 if (al_size_4k > (16 * 1024 * 1024/4)) 3135 goto err; 3136 3137 /* Lower limit: we need at least 8 transaction slots (32kB) 3138 * to not break existing setups */ 3139 if (al_size_4k < MD_32kB_SECT/8) 3140 goto err; 3141 3142 in_core->al_stripe_size_4k = al_stripe_size_4k; 3143 in_core->al_stripes = al_stripes; 3144 in_core->al_size_4k = al_size_4k; 3145 3146 return 0; 3147 err: 3148 drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n", 3149 al_stripes, al_stripe_size_4k); 3150 return -EINVAL; 3151 } 3152 3153 static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev) 3154 { 3155 sector_t capacity = drbd_get_capacity(bdev->md_bdev); 3156 struct drbd_md *in_core = &bdev->md; 3157 s32 on_disk_al_sect; 3158 s32 on_disk_bm_sect; 3159 3160 /* The on-disk size of the activity log, calculated from offsets, and 3161 * the size of the activity log calculated from the stripe settings, 3162 * should match. 3163 * Though we could relax this a bit: it is ok, if the striped activity log 3164 * fits in the available on-disk activity log size. 3165 * Right now, that would break how resize is implemented. 3166 * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware 3167 * of possible unused padding space in the on disk layout. */ 3168 if (in_core->al_offset < 0) { 3169 if (in_core->bm_offset > in_core->al_offset) 3170 goto err; 3171 on_disk_al_sect = -in_core->al_offset; 3172 on_disk_bm_sect = in_core->al_offset - in_core->bm_offset; 3173 } else { 3174 if (in_core->al_offset != MD_4kB_SECT) 3175 goto err; 3176 if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT) 3177 goto err; 3178 3179 on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT; 3180 on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset; 3181 } 3182 3183 /* old fixed size meta data is exactly that: fixed. */ 3184 if (in_core->meta_dev_idx >= 0) { 3185 if (in_core->md_size_sect != MD_128MB_SECT 3186 || in_core->al_offset != MD_4kB_SECT 3187 || in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT 3188 || in_core->al_stripes != 1 3189 || in_core->al_stripe_size_4k != MD_32kB_SECT/8) 3190 goto err; 3191 } 3192 3193 if (capacity < in_core->md_size_sect) 3194 goto err; 3195 if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev)) 3196 goto err; 3197 3198 /* should be aligned, and at least 32k */ 3199 if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT)) 3200 goto err; 3201 3202 /* should fit (for now: exactly) into the available on-disk space; 3203 * overflow prevention is in check_activity_log_stripe_size() above. */ 3204 if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT) 3205 goto err; 3206 3207 /* again, should be aligned */ 3208 if (in_core->bm_offset & 7) 3209 goto err; 3210 3211 /* FIXME check for device grow with flex external meta data? */ 3212 3213 /* can the available bitmap space cover the last agreed device size? */ 3214 if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512) 3215 goto err; 3216 3217 return 0; 3218 3219 err: 3220 drbd_err(device, "meta data offsets don't make sense: idx=%d " 3221 "al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, " 3222 "md_size_sect=%u, la_size=%llu, md_capacity=%llu\n", 3223 in_core->meta_dev_idx, 3224 in_core->al_stripes, in_core->al_stripe_size_4k, 3225 in_core->al_offset, in_core->bm_offset, in_core->md_size_sect, 3226 (unsigned long long)in_core->la_size_sect, 3227 (unsigned long long)capacity); 3228 3229 return -EINVAL; 3230 } 3231 3232 3233 /** 3234 * drbd_md_read() - Reads in the meta data super block 3235 * @device: DRBD device. 3236 * @bdev: Device from which the meta data should be read in. 3237 * 3238 * Return NO_ERROR on success, and an enum drbd_ret_code in case 3239 * something goes wrong. 3240 * 3241 * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS, 3242 * even before @bdev is assigned to @device->ldev. 3243 */ 3244 int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev) 3245 { 3246 struct meta_data_on_disk *buffer; 3247 u32 magic, flags; 3248 int i, rv = NO_ERROR; 3249 3250 if (device->state.disk != D_DISKLESS) 3251 return ERR_DISK_CONFIGURED; 3252 3253 buffer = drbd_md_get_buffer(device, __func__); 3254 if (!buffer) 3255 return ERR_NOMEM; 3256 3257 /* First, figure out where our meta data superblock is located, 3258 * and read it. */ 3259 bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx; 3260 bdev->md.md_offset = drbd_md_ss(bdev); 3261 /* Even for (flexible or indexed) external meta data, 3262 * initially restrict us to the 4k superblock for now. 3263 * Affects the paranoia out-of-range access check in drbd_md_sync_page_io(). */ 3264 bdev->md.md_size_sect = 8; 3265 3266 if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset, READ)) { 3267 /* NOTE: can't do normal error processing here as this is 3268 called BEFORE disk is attached */ 3269 drbd_err(device, "Error while reading metadata.\n"); 3270 rv = ERR_IO_MD_DISK; 3271 goto err; 3272 } 3273 3274 magic = be32_to_cpu(buffer->magic); 3275 flags = be32_to_cpu(buffer->flags); 3276 if (magic == DRBD_MD_MAGIC_84_UNCLEAN || 3277 (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) { 3278 /* btw: that's Activity Log clean, not "all" clean. */ 3279 drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n"); 3280 rv = ERR_MD_UNCLEAN; 3281 goto err; 3282 } 3283 3284 rv = ERR_MD_INVALID; 3285 if (magic != DRBD_MD_MAGIC_08) { 3286 if (magic == DRBD_MD_MAGIC_07) 3287 drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n"); 3288 else 3289 drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n"); 3290 goto err; 3291 } 3292 3293 if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) { 3294 drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n", 3295 be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE); 3296 goto err; 3297 } 3298 3299 3300 /* convert to in_core endian */ 3301 bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect); 3302 for (i = UI_CURRENT; i < UI_SIZE; i++) 3303 bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]); 3304 bdev->md.flags = be32_to_cpu(buffer->flags); 3305 bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid); 3306 3307 bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect); 3308 bdev->md.al_offset = be32_to_cpu(buffer->al_offset); 3309 bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset); 3310 3311 if (check_activity_log_stripe_size(device, buffer, &bdev->md)) 3312 goto err; 3313 if (check_offsets_and_sizes(device, bdev)) 3314 goto err; 3315 3316 if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) { 3317 drbd_err(device, "unexpected bm_offset: %d (expected %d)\n", 3318 be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset); 3319 goto err; 3320 } 3321 if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) { 3322 drbd_err(device, "unexpected md_size: %u (expected %u)\n", 3323 be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect); 3324 goto err; 3325 } 3326 3327 rv = NO_ERROR; 3328 3329 spin_lock_irq(&device->resource->req_lock); 3330 if (device->state.conn < C_CONNECTED) { 3331 unsigned int peer; 3332 peer = be32_to_cpu(buffer->la_peer_max_bio_size); 3333 peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE); 3334 device->peer_max_bio_size = peer; 3335 } 3336 spin_unlock_irq(&device->resource->req_lock); 3337 3338 err: 3339 drbd_md_put_buffer(device); 3340 3341 return rv; 3342 } 3343 3344 /** 3345 * drbd_md_mark_dirty() - Mark meta data super block as dirty 3346 * @device: DRBD device. 3347 * 3348 * Call this function if you change anything that should be written to 3349 * the meta-data super block. This function sets MD_DIRTY, and starts a 3350 * timer that ensures that within five seconds you have to call drbd_md_sync(). 3351 */ 3352 #ifdef DEBUG 3353 void drbd_md_mark_dirty_(struct drbd_device *device, unsigned int line, const char *func) 3354 { 3355 if (!test_and_set_bit(MD_DIRTY, &device->flags)) { 3356 mod_timer(&device->md_sync_timer, jiffies + HZ); 3357 device->last_md_mark_dirty.line = line; 3358 device->last_md_mark_dirty.func = func; 3359 } 3360 } 3361 #else 3362 void drbd_md_mark_dirty(struct drbd_device *device) 3363 { 3364 if (!test_and_set_bit(MD_DIRTY, &device->flags)) 3365 mod_timer(&device->md_sync_timer, jiffies + 5*HZ); 3366 } 3367 #endif 3368 3369 void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local) 3370 { 3371 int i; 3372 3373 for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++) 3374 device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i]; 3375 } 3376 3377 void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local) 3378 { 3379 if (idx == UI_CURRENT) { 3380 if (device->state.role == R_PRIMARY) 3381 val |= 1; 3382 else 3383 val &= ~((u64)1); 3384 3385 drbd_set_ed_uuid(device, val); 3386 } 3387 3388 device->ldev->md.uuid[idx] = val; 3389 drbd_md_mark_dirty(device); 3390 } 3391 3392 void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local) 3393 { 3394 unsigned long flags; 3395 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags); 3396 __drbd_uuid_set(device, idx, val); 3397 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags); 3398 } 3399 3400 void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local) 3401 { 3402 unsigned long flags; 3403 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags); 3404 if (device->ldev->md.uuid[idx]) { 3405 drbd_uuid_move_history(device); 3406 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx]; 3407 } 3408 __drbd_uuid_set(device, idx, val); 3409 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags); 3410 } 3411 3412 /** 3413 * drbd_uuid_new_current() - Creates a new current UUID 3414 * @device: DRBD device. 3415 * 3416 * Creates a new current UUID, and rotates the old current UUID into 3417 * the bitmap slot. Causes an incremental resync upon next connect. 3418 */ 3419 void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local) 3420 { 3421 u64 val; 3422 unsigned long long bm_uuid; 3423 3424 get_random_bytes(&val, sizeof(u64)); 3425 3426 spin_lock_irq(&device->ldev->md.uuid_lock); 3427 bm_uuid = device->ldev->md.uuid[UI_BITMAP]; 3428 3429 if (bm_uuid) 3430 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid); 3431 3432 device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT]; 3433 __drbd_uuid_set(device, UI_CURRENT, val); 3434 spin_unlock_irq(&device->ldev->md.uuid_lock); 3435 3436 drbd_print_uuids(device, "new current UUID"); 3437 /* get it to stable storage _now_ */ 3438 drbd_md_sync(device); 3439 } 3440 3441 void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local) 3442 { 3443 unsigned long flags; 3444 if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0) 3445 return; 3446 3447 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags); 3448 if (val == 0) { 3449 drbd_uuid_move_history(device); 3450 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP]; 3451 device->ldev->md.uuid[UI_BITMAP] = 0; 3452 } else { 3453 unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP]; 3454 if (bm_uuid) 3455 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid); 3456 3457 device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1); 3458 } 3459 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags); 3460 3461 drbd_md_mark_dirty(device); 3462 } 3463 3464 /** 3465 * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io() 3466 * @device: DRBD device. 3467 * 3468 * Sets all bits in the bitmap and writes the whole bitmap to stable storage. 3469 */ 3470 int drbd_bmio_set_n_write(struct drbd_device *device) __must_hold(local) 3471 { 3472 int rv = -EIO; 3473 3474 drbd_md_set_flag(device, MDF_FULL_SYNC); 3475 drbd_md_sync(device); 3476 drbd_bm_set_all(device); 3477 3478 rv = drbd_bm_write(device); 3479 3480 if (!rv) { 3481 drbd_md_clear_flag(device, MDF_FULL_SYNC); 3482 drbd_md_sync(device); 3483 } 3484 3485 return rv; 3486 } 3487 3488 /** 3489 * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io() 3490 * @device: DRBD device. 3491 * 3492 * Clears all bits in the bitmap and writes the whole bitmap to stable storage. 3493 */ 3494 int drbd_bmio_clear_n_write(struct drbd_device *device) __must_hold(local) 3495 { 3496 drbd_resume_al(device); 3497 drbd_bm_clear_all(device); 3498 return drbd_bm_write(device); 3499 } 3500 3501 static int w_bitmap_io(struct drbd_work *w, int unused) 3502 { 3503 struct drbd_device *device = 3504 container_of(w, struct drbd_device, bm_io_work.w); 3505 struct bm_io_work *work = &device->bm_io_work; 3506 int rv = -EIO; 3507 3508 D_ASSERT(device, atomic_read(&device->ap_bio_cnt) == 0); 3509 3510 if (get_ldev(device)) { 3511 drbd_bm_lock(device, work->why, work->flags); 3512 rv = work->io_fn(device); 3513 drbd_bm_unlock(device); 3514 put_ldev(device); 3515 } 3516 3517 clear_bit_unlock(BITMAP_IO, &device->flags); 3518 wake_up(&device->misc_wait); 3519 3520 if (work->done) 3521 work->done(device, rv); 3522 3523 clear_bit(BITMAP_IO_QUEUED, &device->flags); 3524 work->why = NULL; 3525 work->flags = 0; 3526 3527 return 0; 3528 } 3529 3530 /** 3531 * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap 3532 * @device: DRBD device. 3533 * @io_fn: IO callback to be called when bitmap IO is possible 3534 * @done: callback to be called after the bitmap IO was performed 3535 * @why: Descriptive text of the reason for doing the IO 3536 * 3537 * While IO on the bitmap happens we freeze application IO thus we ensure 3538 * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be 3539 * called from worker context. It MUST NOT be used while a previous such 3540 * work is still pending! 3541 * 3542 * Its worker function encloses the call of io_fn() by get_ldev() and 3543 * put_ldev(). 3544 */ 3545 void drbd_queue_bitmap_io(struct drbd_device *device, 3546 int (*io_fn)(struct drbd_device *), 3547 void (*done)(struct drbd_device *, int), 3548 char *why, enum bm_flag flags) 3549 { 3550 D_ASSERT(device, current == first_peer_device(device)->connection->worker.task); 3551 3552 D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags)); 3553 D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags)); 3554 D_ASSERT(device, list_empty(&device->bm_io_work.w.list)); 3555 if (device->bm_io_work.why) 3556 drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n", 3557 why, device->bm_io_work.why); 3558 3559 device->bm_io_work.io_fn = io_fn; 3560 device->bm_io_work.done = done; 3561 device->bm_io_work.why = why; 3562 device->bm_io_work.flags = flags; 3563 3564 spin_lock_irq(&device->resource->req_lock); 3565 set_bit(BITMAP_IO, &device->flags); 3566 /* don't wait for pending application IO if the caller indicates that 3567 * application IO does not conflict anyways. */ 3568 if (flags == BM_LOCKED_CHANGE_ALLOWED || atomic_read(&device->ap_bio_cnt) == 0) { 3569 if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags)) 3570 drbd_queue_work(&first_peer_device(device)->connection->sender_work, 3571 &device->bm_io_work.w); 3572 } 3573 spin_unlock_irq(&device->resource->req_lock); 3574 } 3575 3576 /** 3577 * drbd_bitmap_io() - Does an IO operation on the whole bitmap 3578 * @device: DRBD device. 3579 * @io_fn: IO callback to be called when bitmap IO is possible 3580 * @why: Descriptive text of the reason for doing the IO 3581 * 3582 * freezes application IO while that the actual IO operations runs. This 3583 * functions MAY NOT be called from worker context. 3584 */ 3585 int drbd_bitmap_io(struct drbd_device *device, int (*io_fn)(struct drbd_device *), 3586 char *why, enum bm_flag flags) 3587 { 3588 int rv; 3589 3590 D_ASSERT(device, current != first_peer_device(device)->connection->worker.task); 3591 3592 if ((flags & BM_LOCKED_SET_ALLOWED) == 0) 3593 drbd_suspend_io(device); 3594 3595 drbd_bm_lock(device, why, flags); 3596 rv = io_fn(device); 3597 drbd_bm_unlock(device); 3598 3599 if ((flags & BM_LOCKED_SET_ALLOWED) == 0) 3600 drbd_resume_io(device); 3601 3602 return rv; 3603 } 3604 3605 void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local) 3606 { 3607 if ((device->ldev->md.flags & flag) != flag) { 3608 drbd_md_mark_dirty(device); 3609 device->ldev->md.flags |= flag; 3610 } 3611 } 3612 3613 void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local) 3614 { 3615 if ((device->ldev->md.flags & flag) != 0) { 3616 drbd_md_mark_dirty(device); 3617 device->ldev->md.flags &= ~flag; 3618 } 3619 } 3620 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag) 3621 { 3622 return (bdev->md.flags & flag) != 0; 3623 } 3624 3625 static void md_sync_timer_fn(unsigned long data) 3626 { 3627 struct drbd_device *device = (struct drbd_device *) data; 3628 drbd_device_post_work(device, MD_SYNC); 3629 } 3630 3631 const char *cmdname(enum drbd_packet cmd) 3632 { 3633 /* THINK may need to become several global tables 3634 * when we want to support more than 3635 * one PRO_VERSION */ 3636 static const char *cmdnames[] = { 3637 [P_DATA] = "Data", 3638 [P_DATA_REPLY] = "DataReply", 3639 [P_RS_DATA_REPLY] = "RSDataReply", 3640 [P_BARRIER] = "Barrier", 3641 [P_BITMAP] = "ReportBitMap", 3642 [P_BECOME_SYNC_TARGET] = "BecomeSyncTarget", 3643 [P_BECOME_SYNC_SOURCE] = "BecomeSyncSource", 3644 [P_UNPLUG_REMOTE] = "UnplugRemote", 3645 [P_DATA_REQUEST] = "DataRequest", 3646 [P_RS_DATA_REQUEST] = "RSDataRequest", 3647 [P_SYNC_PARAM] = "SyncParam", 3648 [P_SYNC_PARAM89] = "SyncParam89", 3649 [P_PROTOCOL] = "ReportProtocol", 3650 [P_UUIDS] = "ReportUUIDs", 3651 [P_SIZES] = "ReportSizes", 3652 [P_STATE] = "ReportState", 3653 [P_SYNC_UUID] = "ReportSyncUUID", 3654 [P_AUTH_CHALLENGE] = "AuthChallenge", 3655 [P_AUTH_RESPONSE] = "AuthResponse", 3656 [P_PING] = "Ping", 3657 [P_PING_ACK] = "PingAck", 3658 [P_RECV_ACK] = "RecvAck", 3659 [P_WRITE_ACK] = "WriteAck", 3660 [P_RS_WRITE_ACK] = "RSWriteAck", 3661 [P_SUPERSEDED] = "Superseded", 3662 [P_NEG_ACK] = "NegAck", 3663 [P_NEG_DREPLY] = "NegDReply", 3664 [P_NEG_RS_DREPLY] = "NegRSDReply", 3665 [P_BARRIER_ACK] = "BarrierAck", 3666 [P_STATE_CHG_REQ] = "StateChgRequest", 3667 [P_STATE_CHG_REPLY] = "StateChgReply", 3668 [P_OV_REQUEST] = "OVRequest", 3669 [P_OV_REPLY] = "OVReply", 3670 [P_OV_RESULT] = "OVResult", 3671 [P_CSUM_RS_REQUEST] = "CsumRSRequest", 3672 [P_RS_IS_IN_SYNC] = "CsumRSIsInSync", 3673 [P_COMPRESSED_BITMAP] = "CBitmap", 3674 [P_DELAY_PROBE] = "DelayProbe", 3675 [P_OUT_OF_SYNC] = "OutOfSync", 3676 [P_RETRY_WRITE] = "RetryWrite", 3677 [P_RS_CANCEL] = "RSCancel", 3678 [P_CONN_ST_CHG_REQ] = "conn_st_chg_req", 3679 [P_CONN_ST_CHG_REPLY] = "conn_st_chg_reply", 3680 [P_RETRY_WRITE] = "retry_write", 3681 [P_PROTOCOL_UPDATE] = "protocol_update", 3682 3683 /* enum drbd_packet, but not commands - obsoleted flags: 3684 * P_MAY_IGNORE 3685 * P_MAX_OPT_CMD 3686 */ 3687 }; 3688 3689 /* too big for the array: 0xfffX */ 3690 if (cmd == P_INITIAL_META) 3691 return "InitialMeta"; 3692 if (cmd == P_INITIAL_DATA) 3693 return "InitialData"; 3694 if (cmd == P_CONNECTION_FEATURES) 3695 return "ConnectionFeatures"; 3696 if (cmd >= ARRAY_SIZE(cmdnames)) 3697 return "Unknown"; 3698 return cmdnames[cmd]; 3699 } 3700 3701 /** 3702 * drbd_wait_misc - wait for a request to make progress 3703 * @device: device associated with the request 3704 * @i: the struct drbd_interval embedded in struct drbd_request or 3705 * struct drbd_peer_request 3706 */ 3707 int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i) 3708 { 3709 struct net_conf *nc; 3710 DEFINE_WAIT(wait); 3711 long timeout; 3712 3713 rcu_read_lock(); 3714 nc = rcu_dereference(first_peer_device(device)->connection->net_conf); 3715 if (!nc) { 3716 rcu_read_unlock(); 3717 return -ETIMEDOUT; 3718 } 3719 timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT; 3720 rcu_read_unlock(); 3721 3722 /* Indicate to wake up device->misc_wait on progress. */ 3723 i->waiting = true; 3724 prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE); 3725 spin_unlock_irq(&device->resource->req_lock); 3726 timeout = schedule_timeout(timeout); 3727 finish_wait(&device->misc_wait, &wait); 3728 spin_lock_irq(&device->resource->req_lock); 3729 if (!timeout || device->state.conn < C_CONNECTED) 3730 return -ETIMEDOUT; 3731 if (signal_pending(current)) 3732 return -ERESTARTSYS; 3733 return 0; 3734 } 3735 3736 void lock_all_resources(void) 3737 { 3738 struct drbd_resource *resource; 3739 int __maybe_unused i = 0; 3740 3741 mutex_lock(&resources_mutex); 3742 local_irq_disable(); 3743 for_each_resource(resource, &drbd_resources) 3744 spin_lock_nested(&resource->req_lock, i++); 3745 } 3746 3747 void unlock_all_resources(void) 3748 { 3749 struct drbd_resource *resource; 3750 3751 for_each_resource(resource, &drbd_resources) 3752 spin_unlock(&resource->req_lock); 3753 local_irq_enable(); 3754 mutex_unlock(&resources_mutex); 3755 } 3756 3757 #ifdef CONFIG_DRBD_FAULT_INJECTION 3758 /* Fault insertion support including random number generator shamelessly 3759 * stolen from kernel/rcutorture.c */ 3760 struct fault_random_state { 3761 unsigned long state; 3762 unsigned long count; 3763 }; 3764 3765 #define FAULT_RANDOM_MULT 39916801 /* prime */ 3766 #define FAULT_RANDOM_ADD 479001701 /* prime */ 3767 #define FAULT_RANDOM_REFRESH 10000 3768 3769 /* 3770 * Crude but fast random-number generator. Uses a linear congruential 3771 * generator, with occasional help from get_random_bytes(). 3772 */ 3773 static unsigned long 3774 _drbd_fault_random(struct fault_random_state *rsp) 3775 { 3776 long refresh; 3777 3778 if (!rsp->count--) { 3779 get_random_bytes(&refresh, sizeof(refresh)); 3780 rsp->state += refresh; 3781 rsp->count = FAULT_RANDOM_REFRESH; 3782 } 3783 rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD; 3784 return swahw32(rsp->state); 3785 } 3786 3787 static char * 3788 _drbd_fault_str(unsigned int type) { 3789 static char *_faults[] = { 3790 [DRBD_FAULT_MD_WR] = "Meta-data write", 3791 [DRBD_FAULT_MD_RD] = "Meta-data read", 3792 [DRBD_FAULT_RS_WR] = "Resync write", 3793 [DRBD_FAULT_RS_RD] = "Resync read", 3794 [DRBD_FAULT_DT_WR] = "Data write", 3795 [DRBD_FAULT_DT_RD] = "Data read", 3796 [DRBD_FAULT_DT_RA] = "Data read ahead", 3797 [DRBD_FAULT_BM_ALLOC] = "BM allocation", 3798 [DRBD_FAULT_AL_EE] = "EE allocation", 3799 [DRBD_FAULT_RECEIVE] = "receive data corruption", 3800 }; 3801 3802 return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**"; 3803 } 3804 3805 unsigned int 3806 _drbd_insert_fault(struct drbd_device *device, unsigned int type) 3807 { 3808 static struct fault_random_state rrs = {0, 0}; 3809 3810 unsigned int ret = ( 3811 (fault_devs == 0 || 3812 ((1 << device_to_minor(device)) & fault_devs) != 0) && 3813 (((_drbd_fault_random(&rrs) % 100) + 1) <= fault_rate)); 3814 3815 if (ret) { 3816 fault_count++; 3817 3818 if (__ratelimit(&drbd_ratelimit_state)) 3819 drbd_warn(device, "***Simulating %s failure\n", 3820 _drbd_fault_str(type)); 3821 } 3822 3823 return ret; 3824 } 3825 #endif 3826 3827 const char *drbd_buildtag(void) 3828 { 3829 /* DRBD built from external sources has here a reference to the 3830 git hash of the source code. */ 3831 3832 static char buildtag[38] = "\0uilt-in"; 3833 3834 if (buildtag[0] == 0) { 3835 #ifdef MODULE 3836 sprintf(buildtag, "srcversion: %-24s", THIS_MODULE->srcversion); 3837 #else 3838 buildtag[0] = 'b'; 3839 #endif 3840 } 3841 3842 return buildtag; 3843 } 3844 3845 module_init(drbd_init) 3846 module_exit(drbd_cleanup) 3847 3848 EXPORT_SYMBOL(drbd_conn_str); 3849 EXPORT_SYMBOL(drbd_role_str); 3850 EXPORT_SYMBOL(drbd_disk_str); 3851 EXPORT_SYMBOL(drbd_set_st_err_str); 3852