xref: /openbmc/linux/drivers/block/drbd/drbd_main.c (revision 020c5260)
1 /*
2    drbd.c
3 
4    This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
5 
6    Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
7    Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
8    Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
9 
10    Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev
11    from Logicworks, Inc. for making SDP replication support possible.
12 
13    drbd is free software; you can redistribute it and/or modify
14    it under the terms of the GNU General Public License as published by
15    the Free Software Foundation; either version 2, or (at your option)
16    any later version.
17 
18    drbd is distributed in the hope that it will be useful,
19    but WITHOUT ANY WARRANTY; without even the implied warranty of
20    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21    GNU General Public License for more details.
22 
23    You should have received a copy of the GNU General Public License
24    along with drbd; see the file COPYING.  If not, write to
25    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
26 
27  */
28 
29 #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
30 
31 #include <linux/module.h>
32 #include <linux/jiffies.h>
33 #include <linux/drbd.h>
34 #include <linux/uaccess.h>
35 #include <asm/types.h>
36 #include <net/sock.h>
37 #include <linux/ctype.h>
38 #include <linux/mutex.h>
39 #include <linux/fs.h>
40 #include <linux/file.h>
41 #include <linux/proc_fs.h>
42 #include <linux/init.h>
43 #include <linux/mm.h>
44 #include <linux/memcontrol.h>
45 #include <linux/mm_inline.h>
46 #include <linux/slab.h>
47 #include <linux/random.h>
48 #include <linux/reboot.h>
49 #include <linux/notifier.h>
50 #include <linux/kthread.h>
51 #include <linux/workqueue.h>
52 #define __KERNEL_SYSCALLS__
53 #include <linux/unistd.h>
54 #include <linux/vmalloc.h>
55 #include <linux/sched/signal.h>
56 
57 #include <linux/drbd_limits.h>
58 #include "drbd_int.h"
59 #include "drbd_protocol.h"
60 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */
61 #include "drbd_vli.h"
62 #include "drbd_debugfs.h"
63 
64 static DEFINE_MUTEX(drbd_main_mutex);
65 static int drbd_open(struct block_device *bdev, fmode_t mode);
66 static void drbd_release(struct gendisk *gd, fmode_t mode);
67 static void md_sync_timer_fn(unsigned long data);
68 static int w_bitmap_io(struct drbd_work *w, int unused);
69 
70 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, "
71 	      "Lars Ellenberg <lars@linbit.com>");
72 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION);
73 MODULE_VERSION(REL_VERSION);
74 MODULE_LICENSE("GPL");
75 MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices ("
76 		 __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")");
77 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR);
78 
79 #include <linux/moduleparam.h>
80 /* allow_open_on_secondary */
81 MODULE_PARM_DESC(allow_oos, "DONT USE!");
82 /* thanks to these macros, if compiled into the kernel (not-module),
83  * this becomes the boot parameter drbd.minor_count */
84 module_param(minor_count, uint, 0444);
85 module_param(disable_sendpage, bool, 0644);
86 module_param(allow_oos, bool, 0);
87 module_param(proc_details, int, 0644);
88 
89 #ifdef CONFIG_DRBD_FAULT_INJECTION
90 int enable_faults;
91 int fault_rate;
92 static int fault_count;
93 int fault_devs;
94 /* bitmap of enabled faults */
95 module_param(enable_faults, int, 0664);
96 /* fault rate % value - applies to all enabled faults */
97 module_param(fault_rate, int, 0664);
98 /* count of faults inserted */
99 module_param(fault_count, int, 0664);
100 /* bitmap of devices to insert faults on */
101 module_param(fault_devs, int, 0644);
102 #endif
103 
104 /* module parameter, defined */
105 unsigned int minor_count = DRBD_MINOR_COUNT_DEF;
106 bool disable_sendpage;
107 bool allow_oos;
108 int proc_details;       /* Detail level in proc drbd*/
109 
110 /* Module parameter for setting the user mode helper program
111  * to run. Default is /sbin/drbdadm */
112 char usermode_helper[80] = "/sbin/drbdadm";
113 
114 module_param_string(usermode_helper, usermode_helper, sizeof(usermode_helper), 0644);
115 
116 /* in 2.6.x, our device mapping and config info contains our virtual gendisks
117  * as member "struct gendisk *vdisk;"
118  */
119 struct idr drbd_devices;
120 struct list_head drbd_resources;
121 struct mutex resources_mutex;
122 
123 struct kmem_cache *drbd_request_cache;
124 struct kmem_cache *drbd_ee_cache;	/* peer requests */
125 struct kmem_cache *drbd_bm_ext_cache;	/* bitmap extents */
126 struct kmem_cache *drbd_al_ext_cache;	/* activity log extents */
127 mempool_t *drbd_request_mempool;
128 mempool_t *drbd_ee_mempool;
129 mempool_t *drbd_md_io_page_pool;
130 struct bio_set *drbd_md_io_bio_set;
131 
132 /* I do not use a standard mempool, because:
133    1) I want to hand out the pre-allocated objects first.
134    2) I want to be able to interrupt sleeping allocation with a signal.
135    Note: This is a single linked list, the next pointer is the private
136 	 member of struct page.
137  */
138 struct page *drbd_pp_pool;
139 spinlock_t   drbd_pp_lock;
140 int          drbd_pp_vacant;
141 wait_queue_head_t drbd_pp_wait;
142 
143 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5);
144 
145 static const struct block_device_operations drbd_ops = {
146 	.owner =   THIS_MODULE,
147 	.open =    drbd_open,
148 	.release = drbd_release,
149 };
150 
151 struct bio *bio_alloc_drbd(gfp_t gfp_mask)
152 {
153 	struct bio *bio;
154 
155 	if (!drbd_md_io_bio_set)
156 		return bio_alloc(gfp_mask, 1);
157 
158 	bio = bio_alloc_bioset(gfp_mask, 1, drbd_md_io_bio_set);
159 	if (!bio)
160 		return NULL;
161 	return bio;
162 }
163 
164 #ifdef __CHECKER__
165 /* When checking with sparse, and this is an inline function, sparse will
166    give tons of false positives. When this is a real functions sparse works.
167  */
168 int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins)
169 {
170 	int io_allowed;
171 
172 	atomic_inc(&device->local_cnt);
173 	io_allowed = (device->state.disk >= mins);
174 	if (!io_allowed) {
175 		if (atomic_dec_and_test(&device->local_cnt))
176 			wake_up(&device->misc_wait);
177 	}
178 	return io_allowed;
179 }
180 
181 #endif
182 
183 /**
184  * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch
185  * @connection:	DRBD connection.
186  * @barrier_nr:	Expected identifier of the DRBD write barrier packet.
187  * @set_size:	Expected number of requests before that barrier.
188  *
189  * In case the passed barrier_nr or set_size does not match the oldest
190  * epoch of not yet barrier-acked requests, this function will cause a
191  * termination of the connection.
192  */
193 void tl_release(struct drbd_connection *connection, unsigned int barrier_nr,
194 		unsigned int set_size)
195 {
196 	struct drbd_request *r;
197 	struct drbd_request *req = NULL;
198 	int expect_epoch = 0;
199 	int expect_size = 0;
200 
201 	spin_lock_irq(&connection->resource->req_lock);
202 
203 	/* find oldest not yet barrier-acked write request,
204 	 * count writes in its epoch. */
205 	list_for_each_entry(r, &connection->transfer_log, tl_requests) {
206 		const unsigned s = r->rq_state;
207 		if (!req) {
208 			if (!(s & RQ_WRITE))
209 				continue;
210 			if (!(s & RQ_NET_MASK))
211 				continue;
212 			if (s & RQ_NET_DONE)
213 				continue;
214 			req = r;
215 			expect_epoch = req->epoch;
216 			expect_size ++;
217 		} else {
218 			if (r->epoch != expect_epoch)
219 				break;
220 			if (!(s & RQ_WRITE))
221 				continue;
222 			/* if (s & RQ_DONE): not expected */
223 			/* if (!(s & RQ_NET_MASK)): not expected */
224 			expect_size++;
225 		}
226 	}
227 
228 	/* first some paranoia code */
229 	if (req == NULL) {
230 		drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n",
231 			 barrier_nr);
232 		goto bail;
233 	}
234 	if (expect_epoch != barrier_nr) {
235 		drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n",
236 			 barrier_nr, expect_epoch);
237 		goto bail;
238 	}
239 
240 	if (expect_size != set_size) {
241 		drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n",
242 			 barrier_nr, set_size, expect_size);
243 		goto bail;
244 	}
245 
246 	/* Clean up list of requests processed during current epoch. */
247 	/* this extra list walk restart is paranoia,
248 	 * to catch requests being barrier-acked "unexpectedly".
249 	 * It usually should find the same req again, or some READ preceding it. */
250 	list_for_each_entry(req, &connection->transfer_log, tl_requests)
251 		if (req->epoch == expect_epoch)
252 			break;
253 	list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) {
254 		if (req->epoch != expect_epoch)
255 			break;
256 		_req_mod(req, BARRIER_ACKED);
257 	}
258 	spin_unlock_irq(&connection->resource->req_lock);
259 
260 	return;
261 
262 bail:
263 	spin_unlock_irq(&connection->resource->req_lock);
264 	conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
265 }
266 
267 
268 /**
269  * _tl_restart() - Walks the transfer log, and applies an action to all requests
270  * @connection:	DRBD connection to operate on.
271  * @what:       The action/event to perform with all request objects
272  *
273  * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO,
274  * RESTART_FROZEN_DISK_IO.
275  */
276 /* must hold resource->req_lock */
277 void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
278 {
279 	struct drbd_request *req, *r;
280 
281 	list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests)
282 		_req_mod(req, what);
283 }
284 
285 void tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
286 {
287 	spin_lock_irq(&connection->resource->req_lock);
288 	_tl_restart(connection, what);
289 	spin_unlock_irq(&connection->resource->req_lock);
290 }
291 
292 /**
293  * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL
294  * @device:	DRBD device.
295  *
296  * This is called after the connection to the peer was lost. The storage covered
297  * by the requests on the transfer gets marked as our of sync. Called from the
298  * receiver thread and the worker thread.
299  */
300 void tl_clear(struct drbd_connection *connection)
301 {
302 	tl_restart(connection, CONNECTION_LOST_WHILE_PENDING);
303 }
304 
305 /**
306  * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL
307  * @device:	DRBD device.
308  */
309 void tl_abort_disk_io(struct drbd_device *device)
310 {
311 	struct drbd_connection *connection = first_peer_device(device)->connection;
312 	struct drbd_request *req, *r;
313 
314 	spin_lock_irq(&connection->resource->req_lock);
315 	list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) {
316 		if (!(req->rq_state & RQ_LOCAL_PENDING))
317 			continue;
318 		if (req->device != device)
319 			continue;
320 		_req_mod(req, ABORT_DISK_IO);
321 	}
322 	spin_unlock_irq(&connection->resource->req_lock);
323 }
324 
325 static int drbd_thread_setup(void *arg)
326 {
327 	struct drbd_thread *thi = (struct drbd_thread *) arg;
328 	struct drbd_resource *resource = thi->resource;
329 	unsigned long flags;
330 	int retval;
331 
332 	snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s",
333 		 thi->name[0],
334 		 resource->name);
335 
336 restart:
337 	retval = thi->function(thi);
338 
339 	spin_lock_irqsave(&thi->t_lock, flags);
340 
341 	/* if the receiver has been "EXITING", the last thing it did
342 	 * was set the conn state to "StandAlone",
343 	 * if now a re-connect request comes in, conn state goes C_UNCONNECTED,
344 	 * and receiver thread will be "started".
345 	 * drbd_thread_start needs to set "RESTARTING" in that case.
346 	 * t_state check and assignment needs to be within the same spinlock,
347 	 * so either thread_start sees EXITING, and can remap to RESTARTING,
348 	 * or thread_start see NONE, and can proceed as normal.
349 	 */
350 
351 	if (thi->t_state == RESTARTING) {
352 		drbd_info(resource, "Restarting %s thread\n", thi->name);
353 		thi->t_state = RUNNING;
354 		spin_unlock_irqrestore(&thi->t_lock, flags);
355 		goto restart;
356 	}
357 
358 	thi->task = NULL;
359 	thi->t_state = NONE;
360 	smp_mb();
361 	complete_all(&thi->stop);
362 	spin_unlock_irqrestore(&thi->t_lock, flags);
363 
364 	drbd_info(resource, "Terminating %s\n", current->comm);
365 
366 	/* Release mod reference taken when thread was started */
367 
368 	if (thi->connection)
369 		kref_put(&thi->connection->kref, drbd_destroy_connection);
370 	kref_put(&resource->kref, drbd_destroy_resource);
371 	module_put(THIS_MODULE);
372 	return retval;
373 }
374 
375 static void drbd_thread_init(struct drbd_resource *resource, struct drbd_thread *thi,
376 			     int (*func) (struct drbd_thread *), const char *name)
377 {
378 	spin_lock_init(&thi->t_lock);
379 	thi->task    = NULL;
380 	thi->t_state = NONE;
381 	thi->function = func;
382 	thi->resource = resource;
383 	thi->connection = NULL;
384 	thi->name = name;
385 }
386 
387 int drbd_thread_start(struct drbd_thread *thi)
388 {
389 	struct drbd_resource *resource = thi->resource;
390 	struct task_struct *nt;
391 	unsigned long flags;
392 
393 	/* is used from state engine doing drbd_thread_stop_nowait,
394 	 * while holding the req lock irqsave */
395 	spin_lock_irqsave(&thi->t_lock, flags);
396 
397 	switch (thi->t_state) {
398 	case NONE:
399 		drbd_info(resource, "Starting %s thread (from %s [%d])\n",
400 			 thi->name, current->comm, current->pid);
401 
402 		/* Get ref on module for thread - this is released when thread exits */
403 		if (!try_module_get(THIS_MODULE)) {
404 			drbd_err(resource, "Failed to get module reference in drbd_thread_start\n");
405 			spin_unlock_irqrestore(&thi->t_lock, flags);
406 			return false;
407 		}
408 
409 		kref_get(&resource->kref);
410 		if (thi->connection)
411 			kref_get(&thi->connection->kref);
412 
413 		init_completion(&thi->stop);
414 		thi->reset_cpu_mask = 1;
415 		thi->t_state = RUNNING;
416 		spin_unlock_irqrestore(&thi->t_lock, flags);
417 		flush_signals(current); /* otherw. may get -ERESTARTNOINTR */
418 
419 		nt = kthread_create(drbd_thread_setup, (void *) thi,
420 				    "drbd_%c_%s", thi->name[0], thi->resource->name);
421 
422 		if (IS_ERR(nt)) {
423 			drbd_err(resource, "Couldn't start thread\n");
424 
425 			if (thi->connection)
426 				kref_put(&thi->connection->kref, drbd_destroy_connection);
427 			kref_put(&resource->kref, drbd_destroy_resource);
428 			module_put(THIS_MODULE);
429 			return false;
430 		}
431 		spin_lock_irqsave(&thi->t_lock, flags);
432 		thi->task = nt;
433 		thi->t_state = RUNNING;
434 		spin_unlock_irqrestore(&thi->t_lock, flags);
435 		wake_up_process(nt);
436 		break;
437 	case EXITING:
438 		thi->t_state = RESTARTING;
439 		drbd_info(resource, "Restarting %s thread (from %s [%d])\n",
440 				thi->name, current->comm, current->pid);
441 		/* fall through */
442 	case RUNNING:
443 	case RESTARTING:
444 	default:
445 		spin_unlock_irqrestore(&thi->t_lock, flags);
446 		break;
447 	}
448 
449 	return true;
450 }
451 
452 
453 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait)
454 {
455 	unsigned long flags;
456 
457 	enum drbd_thread_state ns = restart ? RESTARTING : EXITING;
458 
459 	/* may be called from state engine, holding the req lock irqsave */
460 	spin_lock_irqsave(&thi->t_lock, flags);
461 
462 	if (thi->t_state == NONE) {
463 		spin_unlock_irqrestore(&thi->t_lock, flags);
464 		if (restart)
465 			drbd_thread_start(thi);
466 		return;
467 	}
468 
469 	if (thi->t_state != ns) {
470 		if (thi->task == NULL) {
471 			spin_unlock_irqrestore(&thi->t_lock, flags);
472 			return;
473 		}
474 
475 		thi->t_state = ns;
476 		smp_mb();
477 		init_completion(&thi->stop);
478 		if (thi->task != current)
479 			force_sig(DRBD_SIGKILL, thi->task);
480 	}
481 
482 	spin_unlock_irqrestore(&thi->t_lock, flags);
483 
484 	if (wait)
485 		wait_for_completion(&thi->stop);
486 }
487 
488 int conn_lowest_minor(struct drbd_connection *connection)
489 {
490 	struct drbd_peer_device *peer_device;
491 	int vnr = 0, minor = -1;
492 
493 	rcu_read_lock();
494 	peer_device = idr_get_next(&connection->peer_devices, &vnr);
495 	if (peer_device)
496 		minor = device_to_minor(peer_device->device);
497 	rcu_read_unlock();
498 
499 	return minor;
500 }
501 
502 #ifdef CONFIG_SMP
503 /**
504  * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs
505  *
506  * Forces all threads of a resource onto the same CPU. This is beneficial for
507  * DRBD's performance. May be overwritten by user's configuration.
508  */
509 static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask)
510 {
511 	unsigned int *resources_per_cpu, min_index = ~0;
512 
513 	resources_per_cpu = kzalloc(nr_cpu_ids * sizeof(*resources_per_cpu), GFP_KERNEL);
514 	if (resources_per_cpu) {
515 		struct drbd_resource *resource;
516 		unsigned int cpu, min = ~0;
517 
518 		rcu_read_lock();
519 		for_each_resource_rcu(resource, &drbd_resources) {
520 			for_each_cpu(cpu, resource->cpu_mask)
521 				resources_per_cpu[cpu]++;
522 		}
523 		rcu_read_unlock();
524 		for_each_online_cpu(cpu) {
525 			if (resources_per_cpu[cpu] < min) {
526 				min = resources_per_cpu[cpu];
527 				min_index = cpu;
528 			}
529 		}
530 		kfree(resources_per_cpu);
531 	}
532 	if (min_index == ~0) {
533 		cpumask_setall(*cpu_mask);
534 		return;
535 	}
536 	cpumask_set_cpu(min_index, *cpu_mask);
537 }
538 
539 /**
540  * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread
541  * @device:	DRBD device.
542  * @thi:	drbd_thread object
543  *
544  * call in the "main loop" of _all_ threads, no need for any mutex, current won't die
545  * prematurely.
546  */
547 void drbd_thread_current_set_cpu(struct drbd_thread *thi)
548 {
549 	struct drbd_resource *resource = thi->resource;
550 	struct task_struct *p = current;
551 
552 	if (!thi->reset_cpu_mask)
553 		return;
554 	thi->reset_cpu_mask = 0;
555 	set_cpus_allowed_ptr(p, resource->cpu_mask);
556 }
557 #else
558 #define drbd_calc_cpu_mask(A) ({})
559 #endif
560 
561 /**
562  * drbd_header_size  -  size of a packet header
563  *
564  * The header size is a multiple of 8, so any payload following the header is
565  * word aligned on 64-bit architectures.  (The bitmap send and receive code
566  * relies on this.)
567  */
568 unsigned int drbd_header_size(struct drbd_connection *connection)
569 {
570 	if (connection->agreed_pro_version >= 100) {
571 		BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8));
572 		return sizeof(struct p_header100);
573 	} else {
574 		BUILD_BUG_ON(sizeof(struct p_header80) !=
575 			     sizeof(struct p_header95));
576 		BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8));
577 		return sizeof(struct p_header80);
578 	}
579 }
580 
581 static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size)
582 {
583 	h->magic   = cpu_to_be32(DRBD_MAGIC);
584 	h->command = cpu_to_be16(cmd);
585 	h->length  = cpu_to_be16(size);
586 	return sizeof(struct p_header80);
587 }
588 
589 static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size)
590 {
591 	h->magic   = cpu_to_be16(DRBD_MAGIC_BIG);
592 	h->command = cpu_to_be16(cmd);
593 	h->length = cpu_to_be32(size);
594 	return sizeof(struct p_header95);
595 }
596 
597 static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd,
598 				      int size, int vnr)
599 {
600 	h->magic = cpu_to_be32(DRBD_MAGIC_100);
601 	h->volume = cpu_to_be16(vnr);
602 	h->command = cpu_to_be16(cmd);
603 	h->length = cpu_to_be32(size);
604 	h->pad = 0;
605 	return sizeof(struct p_header100);
606 }
607 
608 static unsigned int prepare_header(struct drbd_connection *connection, int vnr,
609 				   void *buffer, enum drbd_packet cmd, int size)
610 {
611 	if (connection->agreed_pro_version >= 100)
612 		return prepare_header100(buffer, cmd, size, vnr);
613 	else if (connection->agreed_pro_version >= 95 &&
614 		 size > DRBD_MAX_SIZE_H80_PACKET)
615 		return prepare_header95(buffer, cmd, size);
616 	else
617 		return prepare_header80(buffer, cmd, size);
618 }
619 
620 static void *__conn_prepare_command(struct drbd_connection *connection,
621 				    struct drbd_socket *sock)
622 {
623 	if (!sock->socket)
624 		return NULL;
625 	return sock->sbuf + drbd_header_size(connection);
626 }
627 
628 void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock)
629 {
630 	void *p;
631 
632 	mutex_lock(&sock->mutex);
633 	p = __conn_prepare_command(connection, sock);
634 	if (!p)
635 		mutex_unlock(&sock->mutex);
636 
637 	return p;
638 }
639 
640 void *drbd_prepare_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock)
641 {
642 	return conn_prepare_command(peer_device->connection, sock);
643 }
644 
645 static int __send_command(struct drbd_connection *connection, int vnr,
646 			  struct drbd_socket *sock, enum drbd_packet cmd,
647 			  unsigned int header_size, void *data,
648 			  unsigned int size)
649 {
650 	int msg_flags;
651 	int err;
652 
653 	/*
654 	 * Called with @data == NULL and the size of the data blocks in @size
655 	 * for commands that send data blocks.  For those commands, omit the
656 	 * MSG_MORE flag: this will increase the likelihood that data blocks
657 	 * which are page aligned on the sender will end up page aligned on the
658 	 * receiver.
659 	 */
660 	msg_flags = data ? MSG_MORE : 0;
661 
662 	header_size += prepare_header(connection, vnr, sock->sbuf, cmd,
663 				      header_size + size);
664 	err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size,
665 			    msg_flags);
666 	if (data && !err)
667 		err = drbd_send_all(connection, sock->socket, data, size, 0);
668 	/* DRBD protocol "pings" are latency critical.
669 	 * This is supposed to trigger tcp_push_pending_frames() */
670 	if (!err && (cmd == P_PING || cmd == P_PING_ACK))
671 		drbd_tcp_nodelay(sock->socket);
672 
673 	return err;
674 }
675 
676 static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
677 			       enum drbd_packet cmd, unsigned int header_size,
678 			       void *data, unsigned int size)
679 {
680 	return __send_command(connection, 0, sock, cmd, header_size, data, size);
681 }
682 
683 int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
684 		      enum drbd_packet cmd, unsigned int header_size,
685 		      void *data, unsigned int size)
686 {
687 	int err;
688 
689 	err = __conn_send_command(connection, sock, cmd, header_size, data, size);
690 	mutex_unlock(&sock->mutex);
691 	return err;
692 }
693 
694 int drbd_send_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock,
695 		      enum drbd_packet cmd, unsigned int header_size,
696 		      void *data, unsigned int size)
697 {
698 	int err;
699 
700 	err = __send_command(peer_device->connection, peer_device->device->vnr,
701 			     sock, cmd, header_size, data, size);
702 	mutex_unlock(&sock->mutex);
703 	return err;
704 }
705 
706 int drbd_send_ping(struct drbd_connection *connection)
707 {
708 	struct drbd_socket *sock;
709 
710 	sock = &connection->meta;
711 	if (!conn_prepare_command(connection, sock))
712 		return -EIO;
713 	return conn_send_command(connection, sock, P_PING, 0, NULL, 0);
714 }
715 
716 int drbd_send_ping_ack(struct drbd_connection *connection)
717 {
718 	struct drbd_socket *sock;
719 
720 	sock = &connection->meta;
721 	if (!conn_prepare_command(connection, sock))
722 		return -EIO;
723 	return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0);
724 }
725 
726 int drbd_send_sync_param(struct drbd_peer_device *peer_device)
727 {
728 	struct drbd_socket *sock;
729 	struct p_rs_param_95 *p;
730 	int size;
731 	const int apv = peer_device->connection->agreed_pro_version;
732 	enum drbd_packet cmd;
733 	struct net_conf *nc;
734 	struct disk_conf *dc;
735 
736 	sock = &peer_device->connection->data;
737 	p = drbd_prepare_command(peer_device, sock);
738 	if (!p)
739 		return -EIO;
740 
741 	rcu_read_lock();
742 	nc = rcu_dereference(peer_device->connection->net_conf);
743 
744 	size = apv <= 87 ? sizeof(struct p_rs_param)
745 		: apv == 88 ? sizeof(struct p_rs_param)
746 			+ strlen(nc->verify_alg) + 1
747 		: apv <= 94 ? sizeof(struct p_rs_param_89)
748 		: /* apv >= 95 */ sizeof(struct p_rs_param_95);
749 
750 	cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM;
751 
752 	/* initialize verify_alg and csums_alg */
753 	memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX);
754 
755 	if (get_ldev(peer_device->device)) {
756 		dc = rcu_dereference(peer_device->device->ldev->disk_conf);
757 		p->resync_rate = cpu_to_be32(dc->resync_rate);
758 		p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead);
759 		p->c_delay_target = cpu_to_be32(dc->c_delay_target);
760 		p->c_fill_target = cpu_to_be32(dc->c_fill_target);
761 		p->c_max_rate = cpu_to_be32(dc->c_max_rate);
762 		put_ldev(peer_device->device);
763 	} else {
764 		p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF);
765 		p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF);
766 		p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF);
767 		p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF);
768 		p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF);
769 	}
770 
771 	if (apv >= 88)
772 		strcpy(p->verify_alg, nc->verify_alg);
773 	if (apv >= 89)
774 		strcpy(p->csums_alg, nc->csums_alg);
775 	rcu_read_unlock();
776 
777 	return drbd_send_command(peer_device, sock, cmd, size, NULL, 0);
778 }
779 
780 int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd)
781 {
782 	struct drbd_socket *sock;
783 	struct p_protocol *p;
784 	struct net_conf *nc;
785 	int size, cf;
786 
787 	sock = &connection->data;
788 	p = __conn_prepare_command(connection, sock);
789 	if (!p)
790 		return -EIO;
791 
792 	rcu_read_lock();
793 	nc = rcu_dereference(connection->net_conf);
794 
795 	if (nc->tentative && connection->agreed_pro_version < 92) {
796 		rcu_read_unlock();
797 		mutex_unlock(&sock->mutex);
798 		drbd_err(connection, "--dry-run is not supported by peer");
799 		return -EOPNOTSUPP;
800 	}
801 
802 	size = sizeof(*p);
803 	if (connection->agreed_pro_version >= 87)
804 		size += strlen(nc->integrity_alg) + 1;
805 
806 	p->protocol      = cpu_to_be32(nc->wire_protocol);
807 	p->after_sb_0p   = cpu_to_be32(nc->after_sb_0p);
808 	p->after_sb_1p   = cpu_to_be32(nc->after_sb_1p);
809 	p->after_sb_2p   = cpu_to_be32(nc->after_sb_2p);
810 	p->two_primaries = cpu_to_be32(nc->two_primaries);
811 	cf = 0;
812 	if (nc->discard_my_data)
813 		cf |= CF_DISCARD_MY_DATA;
814 	if (nc->tentative)
815 		cf |= CF_DRY_RUN;
816 	p->conn_flags    = cpu_to_be32(cf);
817 
818 	if (connection->agreed_pro_version >= 87)
819 		strcpy(p->integrity_alg, nc->integrity_alg);
820 	rcu_read_unlock();
821 
822 	return __conn_send_command(connection, sock, cmd, size, NULL, 0);
823 }
824 
825 int drbd_send_protocol(struct drbd_connection *connection)
826 {
827 	int err;
828 
829 	mutex_lock(&connection->data.mutex);
830 	err = __drbd_send_protocol(connection, P_PROTOCOL);
831 	mutex_unlock(&connection->data.mutex);
832 
833 	return err;
834 }
835 
836 static int _drbd_send_uuids(struct drbd_peer_device *peer_device, u64 uuid_flags)
837 {
838 	struct drbd_device *device = peer_device->device;
839 	struct drbd_socket *sock;
840 	struct p_uuids *p;
841 	int i;
842 
843 	if (!get_ldev_if_state(device, D_NEGOTIATING))
844 		return 0;
845 
846 	sock = &peer_device->connection->data;
847 	p = drbd_prepare_command(peer_device, sock);
848 	if (!p) {
849 		put_ldev(device);
850 		return -EIO;
851 	}
852 	spin_lock_irq(&device->ldev->md.uuid_lock);
853 	for (i = UI_CURRENT; i < UI_SIZE; i++)
854 		p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
855 	spin_unlock_irq(&device->ldev->md.uuid_lock);
856 
857 	device->comm_bm_set = drbd_bm_total_weight(device);
858 	p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set);
859 	rcu_read_lock();
860 	uuid_flags |= rcu_dereference(peer_device->connection->net_conf)->discard_my_data ? 1 : 0;
861 	rcu_read_unlock();
862 	uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0;
863 	uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0;
864 	p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags);
865 
866 	put_ldev(device);
867 	return drbd_send_command(peer_device, sock, P_UUIDS, sizeof(*p), NULL, 0);
868 }
869 
870 int drbd_send_uuids(struct drbd_peer_device *peer_device)
871 {
872 	return _drbd_send_uuids(peer_device, 0);
873 }
874 
875 int drbd_send_uuids_skip_initial_sync(struct drbd_peer_device *peer_device)
876 {
877 	return _drbd_send_uuids(peer_device, 8);
878 }
879 
880 void drbd_print_uuids(struct drbd_device *device, const char *text)
881 {
882 	if (get_ldev_if_state(device, D_NEGOTIATING)) {
883 		u64 *uuid = device->ldev->md.uuid;
884 		drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n",
885 		     text,
886 		     (unsigned long long)uuid[UI_CURRENT],
887 		     (unsigned long long)uuid[UI_BITMAP],
888 		     (unsigned long long)uuid[UI_HISTORY_START],
889 		     (unsigned long long)uuid[UI_HISTORY_END]);
890 		put_ldev(device);
891 	} else {
892 		drbd_info(device, "%s effective data uuid: %016llX\n",
893 				text,
894 				(unsigned long long)device->ed_uuid);
895 	}
896 }
897 
898 void drbd_gen_and_send_sync_uuid(struct drbd_peer_device *peer_device)
899 {
900 	struct drbd_device *device = peer_device->device;
901 	struct drbd_socket *sock;
902 	struct p_rs_uuid *p;
903 	u64 uuid;
904 
905 	D_ASSERT(device, device->state.disk == D_UP_TO_DATE);
906 
907 	uuid = device->ldev->md.uuid[UI_BITMAP];
908 	if (uuid && uuid != UUID_JUST_CREATED)
909 		uuid = uuid + UUID_NEW_BM_OFFSET;
910 	else
911 		get_random_bytes(&uuid, sizeof(u64));
912 	drbd_uuid_set(device, UI_BITMAP, uuid);
913 	drbd_print_uuids(device, "updated sync UUID");
914 	drbd_md_sync(device);
915 
916 	sock = &peer_device->connection->data;
917 	p = drbd_prepare_command(peer_device, sock);
918 	if (p) {
919 		p->uuid = cpu_to_be64(uuid);
920 		drbd_send_command(peer_device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0);
921 	}
922 }
923 
924 /* communicated if (agreed_features & DRBD_FF_WSAME) */
925 void assign_p_sizes_qlim(struct drbd_device *device, struct p_sizes *p, struct request_queue *q)
926 {
927 	if (q) {
928 		p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q));
929 		p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q));
930 		p->qlim->alignment_offset = cpu_to_be32(queue_alignment_offset(q));
931 		p->qlim->io_min = cpu_to_be32(queue_io_min(q));
932 		p->qlim->io_opt = cpu_to_be32(queue_io_opt(q));
933 		p->qlim->discard_enabled = blk_queue_discard(q);
934 		p->qlim->write_same_capable = !!q->limits.max_write_same_sectors;
935 	} else {
936 		q = device->rq_queue;
937 		p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q));
938 		p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q));
939 		p->qlim->alignment_offset = 0;
940 		p->qlim->io_min = cpu_to_be32(queue_io_min(q));
941 		p->qlim->io_opt = cpu_to_be32(queue_io_opt(q));
942 		p->qlim->discard_enabled = 0;
943 		p->qlim->write_same_capable = 0;
944 	}
945 }
946 
947 int drbd_send_sizes(struct drbd_peer_device *peer_device, int trigger_reply, enum dds_flags flags)
948 {
949 	struct drbd_device *device = peer_device->device;
950 	struct drbd_socket *sock;
951 	struct p_sizes *p;
952 	sector_t d_size, u_size;
953 	int q_order_type;
954 	unsigned int max_bio_size;
955 	unsigned int packet_size;
956 
957 	sock = &peer_device->connection->data;
958 	p = drbd_prepare_command(peer_device, sock);
959 	if (!p)
960 		return -EIO;
961 
962 	packet_size = sizeof(*p);
963 	if (peer_device->connection->agreed_features & DRBD_FF_WSAME)
964 		packet_size += sizeof(p->qlim[0]);
965 
966 	memset(p, 0, packet_size);
967 	if (get_ldev_if_state(device, D_NEGOTIATING)) {
968 		struct request_queue *q = bdev_get_queue(device->ldev->backing_bdev);
969 		d_size = drbd_get_max_capacity(device->ldev);
970 		rcu_read_lock();
971 		u_size = rcu_dereference(device->ldev->disk_conf)->disk_size;
972 		rcu_read_unlock();
973 		q_order_type = drbd_queue_order_type(device);
974 		max_bio_size = queue_max_hw_sectors(q) << 9;
975 		max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE);
976 		assign_p_sizes_qlim(device, p, q);
977 		put_ldev(device);
978 	} else {
979 		d_size = 0;
980 		u_size = 0;
981 		q_order_type = QUEUE_ORDERED_NONE;
982 		max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */
983 		assign_p_sizes_qlim(device, p, NULL);
984 	}
985 
986 	if (peer_device->connection->agreed_pro_version <= 94)
987 		max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET);
988 	else if (peer_device->connection->agreed_pro_version < 100)
989 		max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95);
990 
991 	p->d_size = cpu_to_be64(d_size);
992 	p->u_size = cpu_to_be64(u_size);
993 	p->c_size = cpu_to_be64(trigger_reply ? 0 : drbd_get_capacity(device->this_bdev));
994 	p->max_bio_size = cpu_to_be32(max_bio_size);
995 	p->queue_order_type = cpu_to_be16(q_order_type);
996 	p->dds_flags = cpu_to_be16(flags);
997 
998 	return drbd_send_command(peer_device, sock, P_SIZES, packet_size, NULL, 0);
999 }
1000 
1001 /**
1002  * drbd_send_current_state() - Sends the drbd state to the peer
1003  * @peer_device:	DRBD peer device.
1004  */
1005 int drbd_send_current_state(struct drbd_peer_device *peer_device)
1006 {
1007 	struct drbd_socket *sock;
1008 	struct p_state *p;
1009 
1010 	sock = &peer_device->connection->data;
1011 	p = drbd_prepare_command(peer_device, sock);
1012 	if (!p)
1013 		return -EIO;
1014 	p->state = cpu_to_be32(peer_device->device->state.i); /* Within the send mutex */
1015 	return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1016 }
1017 
1018 /**
1019  * drbd_send_state() - After a state change, sends the new state to the peer
1020  * @peer_device:      DRBD peer device.
1021  * @state:     the state to send, not necessarily the current state.
1022  *
1023  * Each state change queues an "after_state_ch" work, which will eventually
1024  * send the resulting new state to the peer. If more state changes happen
1025  * between queuing and processing of the after_state_ch work, we still
1026  * want to send each intermediary state in the order it occurred.
1027  */
1028 int drbd_send_state(struct drbd_peer_device *peer_device, union drbd_state state)
1029 {
1030 	struct drbd_socket *sock;
1031 	struct p_state *p;
1032 
1033 	sock = &peer_device->connection->data;
1034 	p = drbd_prepare_command(peer_device, sock);
1035 	if (!p)
1036 		return -EIO;
1037 	p->state = cpu_to_be32(state.i); /* Within the send mutex */
1038 	return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1039 }
1040 
1041 int drbd_send_state_req(struct drbd_peer_device *peer_device, union drbd_state mask, union drbd_state val)
1042 {
1043 	struct drbd_socket *sock;
1044 	struct p_req_state *p;
1045 
1046 	sock = &peer_device->connection->data;
1047 	p = drbd_prepare_command(peer_device, sock);
1048 	if (!p)
1049 		return -EIO;
1050 	p->mask = cpu_to_be32(mask.i);
1051 	p->val = cpu_to_be32(val.i);
1052 	return drbd_send_command(peer_device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0);
1053 }
1054 
1055 int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val)
1056 {
1057 	enum drbd_packet cmd;
1058 	struct drbd_socket *sock;
1059 	struct p_req_state *p;
1060 
1061 	cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ;
1062 	sock = &connection->data;
1063 	p = conn_prepare_command(connection, sock);
1064 	if (!p)
1065 		return -EIO;
1066 	p->mask = cpu_to_be32(mask.i);
1067 	p->val = cpu_to_be32(val.i);
1068 	return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1069 }
1070 
1071 void drbd_send_sr_reply(struct drbd_peer_device *peer_device, enum drbd_state_rv retcode)
1072 {
1073 	struct drbd_socket *sock;
1074 	struct p_req_state_reply *p;
1075 
1076 	sock = &peer_device->connection->meta;
1077 	p = drbd_prepare_command(peer_device, sock);
1078 	if (p) {
1079 		p->retcode = cpu_to_be32(retcode);
1080 		drbd_send_command(peer_device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0);
1081 	}
1082 }
1083 
1084 void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode)
1085 {
1086 	struct drbd_socket *sock;
1087 	struct p_req_state_reply *p;
1088 	enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY;
1089 
1090 	sock = &connection->meta;
1091 	p = conn_prepare_command(connection, sock);
1092 	if (p) {
1093 		p->retcode = cpu_to_be32(retcode);
1094 		conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1095 	}
1096 }
1097 
1098 static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code)
1099 {
1100 	BUG_ON(code & ~0xf);
1101 	p->encoding = (p->encoding & ~0xf) | code;
1102 }
1103 
1104 static void dcbp_set_start(struct p_compressed_bm *p, int set)
1105 {
1106 	p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0);
1107 }
1108 
1109 static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n)
1110 {
1111 	BUG_ON(n & ~0x7);
1112 	p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4);
1113 }
1114 
1115 static int fill_bitmap_rle_bits(struct drbd_device *device,
1116 			 struct p_compressed_bm *p,
1117 			 unsigned int size,
1118 			 struct bm_xfer_ctx *c)
1119 {
1120 	struct bitstream bs;
1121 	unsigned long plain_bits;
1122 	unsigned long tmp;
1123 	unsigned long rl;
1124 	unsigned len;
1125 	unsigned toggle;
1126 	int bits, use_rle;
1127 
1128 	/* may we use this feature? */
1129 	rcu_read_lock();
1130 	use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle;
1131 	rcu_read_unlock();
1132 	if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90)
1133 		return 0;
1134 
1135 	if (c->bit_offset >= c->bm_bits)
1136 		return 0; /* nothing to do. */
1137 
1138 	/* use at most thus many bytes */
1139 	bitstream_init(&bs, p->code, size, 0);
1140 	memset(p->code, 0, size);
1141 	/* plain bits covered in this code string */
1142 	plain_bits = 0;
1143 
1144 	/* p->encoding & 0x80 stores whether the first run length is set.
1145 	 * bit offset is implicit.
1146 	 * start with toggle == 2 to be able to tell the first iteration */
1147 	toggle = 2;
1148 
1149 	/* see how much plain bits we can stuff into one packet
1150 	 * using RLE and VLI. */
1151 	do {
1152 		tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset)
1153 				    : _drbd_bm_find_next(device, c->bit_offset);
1154 		if (tmp == -1UL)
1155 			tmp = c->bm_bits;
1156 		rl = tmp - c->bit_offset;
1157 
1158 		if (toggle == 2) { /* first iteration */
1159 			if (rl == 0) {
1160 				/* the first checked bit was set,
1161 				 * store start value, */
1162 				dcbp_set_start(p, 1);
1163 				/* but skip encoding of zero run length */
1164 				toggle = !toggle;
1165 				continue;
1166 			}
1167 			dcbp_set_start(p, 0);
1168 		}
1169 
1170 		/* paranoia: catch zero runlength.
1171 		 * can only happen if bitmap is modified while we scan it. */
1172 		if (rl == 0) {
1173 			drbd_err(device, "unexpected zero runlength while encoding bitmap "
1174 			    "t:%u bo:%lu\n", toggle, c->bit_offset);
1175 			return -1;
1176 		}
1177 
1178 		bits = vli_encode_bits(&bs, rl);
1179 		if (bits == -ENOBUFS) /* buffer full */
1180 			break;
1181 		if (bits <= 0) {
1182 			drbd_err(device, "error while encoding bitmap: %d\n", bits);
1183 			return 0;
1184 		}
1185 
1186 		toggle = !toggle;
1187 		plain_bits += rl;
1188 		c->bit_offset = tmp;
1189 	} while (c->bit_offset < c->bm_bits);
1190 
1191 	len = bs.cur.b - p->code + !!bs.cur.bit;
1192 
1193 	if (plain_bits < (len << 3)) {
1194 		/* incompressible with this method.
1195 		 * we need to rewind both word and bit position. */
1196 		c->bit_offset -= plain_bits;
1197 		bm_xfer_ctx_bit_to_word_offset(c);
1198 		c->bit_offset = c->word_offset * BITS_PER_LONG;
1199 		return 0;
1200 	}
1201 
1202 	/* RLE + VLI was able to compress it just fine.
1203 	 * update c->word_offset. */
1204 	bm_xfer_ctx_bit_to_word_offset(c);
1205 
1206 	/* store pad_bits */
1207 	dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7);
1208 
1209 	return len;
1210 }
1211 
1212 /**
1213  * send_bitmap_rle_or_plain
1214  *
1215  * Return 0 when done, 1 when another iteration is needed, and a negative error
1216  * code upon failure.
1217  */
1218 static int
1219 send_bitmap_rle_or_plain(struct drbd_device *device, struct bm_xfer_ctx *c)
1220 {
1221 	struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1222 	unsigned int header_size = drbd_header_size(first_peer_device(device)->connection);
1223 	struct p_compressed_bm *p = sock->sbuf + header_size;
1224 	int len, err;
1225 
1226 	len = fill_bitmap_rle_bits(device, p,
1227 			DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c);
1228 	if (len < 0)
1229 		return -EIO;
1230 
1231 	if (len) {
1232 		dcbp_set_code(p, RLE_VLI_Bits);
1233 		err = __send_command(first_peer_device(device)->connection, device->vnr, sock,
1234 				     P_COMPRESSED_BITMAP, sizeof(*p) + len,
1235 				     NULL, 0);
1236 		c->packets[0]++;
1237 		c->bytes[0] += header_size + sizeof(*p) + len;
1238 
1239 		if (c->bit_offset >= c->bm_bits)
1240 			len = 0; /* DONE */
1241 	} else {
1242 		/* was not compressible.
1243 		 * send a buffer full of plain text bits instead. */
1244 		unsigned int data_size;
1245 		unsigned long num_words;
1246 		unsigned long *p = sock->sbuf + header_size;
1247 
1248 		data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
1249 		num_words = min_t(size_t, data_size / sizeof(*p),
1250 				  c->bm_words - c->word_offset);
1251 		len = num_words * sizeof(*p);
1252 		if (len)
1253 			drbd_bm_get_lel(device, c->word_offset, num_words, p);
1254 		err = __send_command(first_peer_device(device)->connection, device->vnr, sock, P_BITMAP, len, NULL, 0);
1255 		c->word_offset += num_words;
1256 		c->bit_offset = c->word_offset * BITS_PER_LONG;
1257 
1258 		c->packets[1]++;
1259 		c->bytes[1] += header_size + len;
1260 
1261 		if (c->bit_offset > c->bm_bits)
1262 			c->bit_offset = c->bm_bits;
1263 	}
1264 	if (!err) {
1265 		if (len == 0) {
1266 			INFO_bm_xfer_stats(device, "send", c);
1267 			return 0;
1268 		} else
1269 			return 1;
1270 	}
1271 	return -EIO;
1272 }
1273 
1274 /* See the comment at receive_bitmap() */
1275 static int _drbd_send_bitmap(struct drbd_device *device)
1276 {
1277 	struct bm_xfer_ctx c;
1278 	int err;
1279 
1280 	if (!expect(device->bitmap))
1281 		return false;
1282 
1283 	if (get_ldev(device)) {
1284 		if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) {
1285 			drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n");
1286 			drbd_bm_set_all(device);
1287 			if (drbd_bm_write(device)) {
1288 				/* write_bm did fail! Leave full sync flag set in Meta P_DATA
1289 				 * but otherwise process as per normal - need to tell other
1290 				 * side that a full resync is required! */
1291 				drbd_err(device, "Failed to write bitmap to disk!\n");
1292 			} else {
1293 				drbd_md_clear_flag(device, MDF_FULL_SYNC);
1294 				drbd_md_sync(device);
1295 			}
1296 		}
1297 		put_ldev(device);
1298 	}
1299 
1300 	c = (struct bm_xfer_ctx) {
1301 		.bm_bits = drbd_bm_bits(device),
1302 		.bm_words = drbd_bm_words(device),
1303 	};
1304 
1305 	do {
1306 		err = send_bitmap_rle_or_plain(device, &c);
1307 	} while (err > 0);
1308 
1309 	return err == 0;
1310 }
1311 
1312 int drbd_send_bitmap(struct drbd_device *device)
1313 {
1314 	struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1315 	int err = -1;
1316 
1317 	mutex_lock(&sock->mutex);
1318 	if (sock->socket)
1319 		err = !_drbd_send_bitmap(device);
1320 	mutex_unlock(&sock->mutex);
1321 	return err;
1322 }
1323 
1324 void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size)
1325 {
1326 	struct drbd_socket *sock;
1327 	struct p_barrier_ack *p;
1328 
1329 	if (connection->cstate < C_WF_REPORT_PARAMS)
1330 		return;
1331 
1332 	sock = &connection->meta;
1333 	p = conn_prepare_command(connection, sock);
1334 	if (!p)
1335 		return;
1336 	p->barrier = barrier_nr;
1337 	p->set_size = cpu_to_be32(set_size);
1338 	conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0);
1339 }
1340 
1341 /**
1342  * _drbd_send_ack() - Sends an ack packet
1343  * @device:	DRBD device.
1344  * @cmd:	Packet command code.
1345  * @sector:	sector, needs to be in big endian byte order
1346  * @blksize:	size in byte, needs to be in big endian byte order
1347  * @block_id:	Id, big endian byte order
1348  */
1349 static int _drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1350 			  u64 sector, u32 blksize, u64 block_id)
1351 {
1352 	struct drbd_socket *sock;
1353 	struct p_block_ack *p;
1354 
1355 	if (peer_device->device->state.conn < C_CONNECTED)
1356 		return -EIO;
1357 
1358 	sock = &peer_device->connection->meta;
1359 	p = drbd_prepare_command(peer_device, sock);
1360 	if (!p)
1361 		return -EIO;
1362 	p->sector = sector;
1363 	p->block_id = block_id;
1364 	p->blksize = blksize;
1365 	p->seq_num = cpu_to_be32(atomic_inc_return(&peer_device->device->packet_seq));
1366 	return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1367 }
1368 
1369 /* dp->sector and dp->block_id already/still in network byte order,
1370  * data_size is payload size according to dp->head,
1371  * and may need to be corrected for digest size. */
1372 void drbd_send_ack_dp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1373 		      struct p_data *dp, int data_size)
1374 {
1375 	if (peer_device->connection->peer_integrity_tfm)
1376 		data_size -= crypto_ahash_digestsize(peer_device->connection->peer_integrity_tfm);
1377 	_drbd_send_ack(peer_device, cmd, dp->sector, cpu_to_be32(data_size),
1378 		       dp->block_id);
1379 }
1380 
1381 void drbd_send_ack_rp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1382 		      struct p_block_req *rp)
1383 {
1384 	_drbd_send_ack(peer_device, cmd, rp->sector, rp->blksize, rp->block_id);
1385 }
1386 
1387 /**
1388  * drbd_send_ack() - Sends an ack packet
1389  * @device:	DRBD device
1390  * @cmd:	packet command code
1391  * @peer_req:	peer request
1392  */
1393 int drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1394 		  struct drbd_peer_request *peer_req)
1395 {
1396 	return _drbd_send_ack(peer_device, cmd,
1397 			      cpu_to_be64(peer_req->i.sector),
1398 			      cpu_to_be32(peer_req->i.size),
1399 			      peer_req->block_id);
1400 }
1401 
1402 /* This function misuses the block_id field to signal if the blocks
1403  * are is sync or not. */
1404 int drbd_send_ack_ex(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1405 		     sector_t sector, int blksize, u64 block_id)
1406 {
1407 	return _drbd_send_ack(peer_device, cmd,
1408 			      cpu_to_be64(sector),
1409 			      cpu_to_be32(blksize),
1410 			      cpu_to_be64(block_id));
1411 }
1412 
1413 int drbd_send_rs_deallocated(struct drbd_peer_device *peer_device,
1414 			     struct drbd_peer_request *peer_req)
1415 {
1416 	struct drbd_socket *sock;
1417 	struct p_block_desc *p;
1418 
1419 	sock = &peer_device->connection->data;
1420 	p = drbd_prepare_command(peer_device, sock);
1421 	if (!p)
1422 		return -EIO;
1423 	p->sector = cpu_to_be64(peer_req->i.sector);
1424 	p->blksize = cpu_to_be32(peer_req->i.size);
1425 	p->pad = 0;
1426 	return drbd_send_command(peer_device, sock, P_RS_DEALLOCATED, sizeof(*p), NULL, 0);
1427 }
1428 
1429 int drbd_send_drequest(struct drbd_peer_device *peer_device, int cmd,
1430 		       sector_t sector, int size, u64 block_id)
1431 {
1432 	struct drbd_socket *sock;
1433 	struct p_block_req *p;
1434 
1435 	sock = &peer_device->connection->data;
1436 	p = drbd_prepare_command(peer_device, sock);
1437 	if (!p)
1438 		return -EIO;
1439 	p->sector = cpu_to_be64(sector);
1440 	p->block_id = block_id;
1441 	p->blksize = cpu_to_be32(size);
1442 	return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1443 }
1444 
1445 int drbd_send_drequest_csum(struct drbd_peer_device *peer_device, sector_t sector, int size,
1446 			    void *digest, int digest_size, enum drbd_packet cmd)
1447 {
1448 	struct drbd_socket *sock;
1449 	struct p_block_req *p;
1450 
1451 	/* FIXME: Put the digest into the preallocated socket buffer.  */
1452 
1453 	sock = &peer_device->connection->data;
1454 	p = drbd_prepare_command(peer_device, sock);
1455 	if (!p)
1456 		return -EIO;
1457 	p->sector = cpu_to_be64(sector);
1458 	p->block_id = ID_SYNCER /* unused */;
1459 	p->blksize = cpu_to_be32(size);
1460 	return drbd_send_command(peer_device, sock, cmd, sizeof(*p), digest, digest_size);
1461 }
1462 
1463 int drbd_send_ov_request(struct drbd_peer_device *peer_device, sector_t sector, int size)
1464 {
1465 	struct drbd_socket *sock;
1466 	struct p_block_req *p;
1467 
1468 	sock = &peer_device->connection->data;
1469 	p = drbd_prepare_command(peer_device, sock);
1470 	if (!p)
1471 		return -EIO;
1472 	p->sector = cpu_to_be64(sector);
1473 	p->block_id = ID_SYNCER /* unused */;
1474 	p->blksize = cpu_to_be32(size);
1475 	return drbd_send_command(peer_device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0);
1476 }
1477 
1478 /* called on sndtimeo
1479  * returns false if we should retry,
1480  * true if we think connection is dead
1481  */
1482 static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock)
1483 {
1484 	int drop_it;
1485 	/* long elapsed = (long)(jiffies - device->last_received); */
1486 
1487 	drop_it =   connection->meta.socket == sock
1488 		|| !connection->ack_receiver.task
1489 		|| get_t_state(&connection->ack_receiver) != RUNNING
1490 		|| connection->cstate < C_WF_REPORT_PARAMS;
1491 
1492 	if (drop_it)
1493 		return true;
1494 
1495 	drop_it = !--connection->ko_count;
1496 	if (!drop_it) {
1497 		drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n",
1498 			 current->comm, current->pid, connection->ko_count);
1499 		request_ping(connection);
1500 	}
1501 
1502 	return drop_it; /* && (device->state == R_PRIMARY) */;
1503 }
1504 
1505 static void drbd_update_congested(struct drbd_connection *connection)
1506 {
1507 	struct sock *sk = connection->data.socket->sk;
1508 	if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5)
1509 		set_bit(NET_CONGESTED, &connection->flags);
1510 }
1511 
1512 /* The idea of sendpage seems to be to put some kind of reference
1513  * to the page into the skb, and to hand it over to the NIC. In
1514  * this process get_page() gets called.
1515  *
1516  * As soon as the page was really sent over the network put_page()
1517  * gets called by some part of the network layer. [ NIC driver? ]
1518  *
1519  * [ get_page() / put_page() increment/decrement the count. If count
1520  *   reaches 0 the page will be freed. ]
1521  *
1522  * This works nicely with pages from FSs.
1523  * But this means that in protocol A we might signal IO completion too early!
1524  *
1525  * In order not to corrupt data during a resync we must make sure
1526  * that we do not reuse our own buffer pages (EEs) to early, therefore
1527  * we have the net_ee list.
1528  *
1529  * XFS seems to have problems, still, it submits pages with page_count == 0!
1530  * As a workaround, we disable sendpage on pages
1531  * with page_count == 0 or PageSlab.
1532  */
1533 static int _drbd_no_send_page(struct drbd_peer_device *peer_device, struct page *page,
1534 			      int offset, size_t size, unsigned msg_flags)
1535 {
1536 	struct socket *socket;
1537 	void *addr;
1538 	int err;
1539 
1540 	socket = peer_device->connection->data.socket;
1541 	addr = kmap(page) + offset;
1542 	err = drbd_send_all(peer_device->connection, socket, addr, size, msg_flags);
1543 	kunmap(page);
1544 	if (!err)
1545 		peer_device->device->send_cnt += size >> 9;
1546 	return err;
1547 }
1548 
1549 static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *page,
1550 		    int offset, size_t size, unsigned msg_flags)
1551 {
1552 	struct socket *socket = peer_device->connection->data.socket;
1553 	mm_segment_t oldfs = get_fs();
1554 	int len = size;
1555 	int err = -EIO;
1556 
1557 	/* e.g. XFS meta- & log-data is in slab pages, which have a
1558 	 * page_count of 0 and/or have PageSlab() set.
1559 	 * we cannot use send_page for those, as that does get_page();
1560 	 * put_page(); and would cause either a VM_BUG directly, or
1561 	 * __page_cache_release a page that would actually still be referenced
1562 	 * by someone, leading to some obscure delayed Oops somewhere else. */
1563 	if (disable_sendpage || (page_count(page) < 1) || PageSlab(page))
1564 		return _drbd_no_send_page(peer_device, page, offset, size, msg_flags);
1565 
1566 	msg_flags |= MSG_NOSIGNAL;
1567 	drbd_update_congested(peer_device->connection);
1568 	set_fs(KERNEL_DS);
1569 	do {
1570 		int sent;
1571 
1572 		sent = socket->ops->sendpage(socket, page, offset, len, msg_flags);
1573 		if (sent <= 0) {
1574 			if (sent == -EAGAIN) {
1575 				if (we_should_drop_the_connection(peer_device->connection, socket))
1576 					break;
1577 				continue;
1578 			}
1579 			drbd_warn(peer_device->device, "%s: size=%d len=%d sent=%d\n",
1580 			     __func__, (int)size, len, sent);
1581 			if (sent < 0)
1582 				err = sent;
1583 			break;
1584 		}
1585 		len    -= sent;
1586 		offset += sent;
1587 	} while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/);
1588 	set_fs(oldfs);
1589 	clear_bit(NET_CONGESTED, &peer_device->connection->flags);
1590 
1591 	if (len == 0) {
1592 		err = 0;
1593 		peer_device->device->send_cnt += size >> 9;
1594 	}
1595 	return err;
1596 }
1597 
1598 static int _drbd_send_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1599 {
1600 	struct bio_vec bvec;
1601 	struct bvec_iter iter;
1602 
1603 	/* hint all but last page with MSG_MORE */
1604 	bio_for_each_segment(bvec, bio, iter) {
1605 		int err;
1606 
1607 		err = _drbd_no_send_page(peer_device, bvec.bv_page,
1608 					 bvec.bv_offset, bvec.bv_len,
1609 					 bio_iter_last(bvec, iter)
1610 					 ? 0 : MSG_MORE);
1611 		if (err)
1612 			return err;
1613 		/* REQ_OP_WRITE_SAME has only one segment */
1614 		if (bio_op(bio) == REQ_OP_WRITE_SAME)
1615 			break;
1616 	}
1617 	return 0;
1618 }
1619 
1620 static int _drbd_send_zc_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1621 {
1622 	struct bio_vec bvec;
1623 	struct bvec_iter iter;
1624 
1625 	/* hint all but last page with MSG_MORE */
1626 	bio_for_each_segment(bvec, bio, iter) {
1627 		int err;
1628 
1629 		err = _drbd_send_page(peer_device, bvec.bv_page,
1630 				      bvec.bv_offset, bvec.bv_len,
1631 				      bio_iter_last(bvec, iter) ? 0 : MSG_MORE);
1632 		if (err)
1633 			return err;
1634 		/* REQ_OP_WRITE_SAME has only one segment */
1635 		if (bio_op(bio) == REQ_OP_WRITE_SAME)
1636 			break;
1637 	}
1638 	return 0;
1639 }
1640 
1641 static int _drbd_send_zc_ee(struct drbd_peer_device *peer_device,
1642 			    struct drbd_peer_request *peer_req)
1643 {
1644 	struct page *page = peer_req->pages;
1645 	unsigned len = peer_req->i.size;
1646 	int err;
1647 
1648 	/* hint all but last page with MSG_MORE */
1649 	page_chain_for_each(page) {
1650 		unsigned l = min_t(unsigned, len, PAGE_SIZE);
1651 
1652 		err = _drbd_send_page(peer_device, page, 0, l,
1653 				      page_chain_next(page) ? MSG_MORE : 0);
1654 		if (err)
1655 			return err;
1656 		len -= l;
1657 	}
1658 	return 0;
1659 }
1660 
1661 static u32 bio_flags_to_wire(struct drbd_connection *connection,
1662 			     struct bio *bio)
1663 {
1664 	if (connection->agreed_pro_version >= 95)
1665 		return  (bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0) |
1666 			(bio->bi_opf & REQ_FUA ? DP_FUA : 0) |
1667 			(bio->bi_opf & REQ_PREFLUSH ? DP_FLUSH : 0) |
1668 			(bio_op(bio) == REQ_OP_WRITE_SAME ? DP_WSAME : 0) |
1669 			(bio_op(bio) == REQ_OP_DISCARD ? DP_DISCARD : 0) |
1670 			(bio_op(bio) == REQ_OP_WRITE_ZEROES ? DP_DISCARD : 0);
1671 	else
1672 		return bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0;
1673 }
1674 
1675 /* Used to send write or TRIM aka REQ_DISCARD requests
1676  * R_PRIMARY -> Peer	(P_DATA, P_TRIM)
1677  */
1678 int drbd_send_dblock(struct drbd_peer_device *peer_device, struct drbd_request *req)
1679 {
1680 	struct drbd_device *device = peer_device->device;
1681 	struct drbd_socket *sock;
1682 	struct p_data *p;
1683 	struct p_wsame *wsame = NULL;
1684 	void *digest_out;
1685 	unsigned int dp_flags = 0;
1686 	int digest_size;
1687 	int err;
1688 
1689 	sock = &peer_device->connection->data;
1690 	p = drbd_prepare_command(peer_device, sock);
1691 	digest_size = peer_device->connection->integrity_tfm ?
1692 		      crypto_ahash_digestsize(peer_device->connection->integrity_tfm) : 0;
1693 
1694 	if (!p)
1695 		return -EIO;
1696 	p->sector = cpu_to_be64(req->i.sector);
1697 	p->block_id = (unsigned long)req;
1698 	p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq));
1699 	dp_flags = bio_flags_to_wire(peer_device->connection, req->master_bio);
1700 	if (device->state.conn >= C_SYNC_SOURCE &&
1701 	    device->state.conn <= C_PAUSED_SYNC_T)
1702 		dp_flags |= DP_MAY_SET_IN_SYNC;
1703 	if (peer_device->connection->agreed_pro_version >= 100) {
1704 		if (req->rq_state & RQ_EXP_RECEIVE_ACK)
1705 			dp_flags |= DP_SEND_RECEIVE_ACK;
1706 		/* During resync, request an explicit write ack,
1707 		 * even in protocol != C */
1708 		if (req->rq_state & RQ_EXP_WRITE_ACK
1709 		|| (dp_flags & DP_MAY_SET_IN_SYNC))
1710 			dp_flags |= DP_SEND_WRITE_ACK;
1711 	}
1712 	p->dp_flags = cpu_to_be32(dp_flags);
1713 
1714 	if (dp_flags & DP_DISCARD) {
1715 		struct p_trim *t = (struct p_trim*)p;
1716 		t->size = cpu_to_be32(req->i.size);
1717 		err = __send_command(peer_device->connection, device->vnr, sock, P_TRIM, sizeof(*t), NULL, 0);
1718 		goto out;
1719 	}
1720 	if (dp_flags & DP_WSAME) {
1721 		/* this will only work if DRBD_FF_WSAME is set AND the
1722 		 * handshake agreed that all nodes and backend devices are
1723 		 * WRITE_SAME capable and agree on logical_block_size */
1724 		wsame = (struct p_wsame*)p;
1725 		digest_out = wsame + 1;
1726 		wsame->size = cpu_to_be32(req->i.size);
1727 	} else
1728 		digest_out = p + 1;
1729 
1730 	/* our digest is still only over the payload.
1731 	 * TRIM does not carry any payload. */
1732 	if (digest_size)
1733 		drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest_out);
1734 	if (wsame) {
1735 		err =
1736 		    __send_command(peer_device->connection, device->vnr, sock, P_WSAME,
1737 				   sizeof(*wsame) + digest_size, NULL,
1738 				   bio_iovec(req->master_bio).bv_len);
1739 	} else
1740 		err =
1741 		    __send_command(peer_device->connection, device->vnr, sock, P_DATA,
1742 				   sizeof(*p) + digest_size, NULL, req->i.size);
1743 	if (!err) {
1744 		/* For protocol A, we have to memcpy the payload into
1745 		 * socket buffers, as we may complete right away
1746 		 * as soon as we handed it over to tcp, at which point the data
1747 		 * pages may become invalid.
1748 		 *
1749 		 * For data-integrity enabled, we copy it as well, so we can be
1750 		 * sure that even if the bio pages may still be modified, it
1751 		 * won't change the data on the wire, thus if the digest checks
1752 		 * out ok after sending on this side, but does not fit on the
1753 		 * receiving side, we sure have detected corruption elsewhere.
1754 		 */
1755 		if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || digest_size)
1756 			err = _drbd_send_bio(peer_device, req->master_bio);
1757 		else
1758 			err = _drbd_send_zc_bio(peer_device, req->master_bio);
1759 
1760 		/* double check digest, sometimes buffers have been modified in flight. */
1761 		if (digest_size > 0 && digest_size <= 64) {
1762 			/* 64 byte, 512 bit, is the largest digest size
1763 			 * currently supported in kernel crypto. */
1764 			unsigned char digest[64];
1765 			drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest);
1766 			if (memcmp(p + 1, digest, digest_size)) {
1767 				drbd_warn(device,
1768 					"Digest mismatch, buffer modified by upper layers during write: %llus +%u\n",
1769 					(unsigned long long)req->i.sector, req->i.size);
1770 			}
1771 		} /* else if (digest_size > 64) {
1772 		     ... Be noisy about digest too large ...
1773 		} */
1774 	}
1775 out:
1776 	mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1777 
1778 	return err;
1779 }
1780 
1781 /* answer packet, used to send data back for read requests:
1782  *  Peer       -> (diskless) R_PRIMARY   (P_DATA_REPLY)
1783  *  C_SYNC_SOURCE -> C_SYNC_TARGET         (P_RS_DATA_REPLY)
1784  */
1785 int drbd_send_block(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1786 		    struct drbd_peer_request *peer_req)
1787 {
1788 	struct drbd_device *device = peer_device->device;
1789 	struct drbd_socket *sock;
1790 	struct p_data *p;
1791 	int err;
1792 	int digest_size;
1793 
1794 	sock = &peer_device->connection->data;
1795 	p = drbd_prepare_command(peer_device, sock);
1796 
1797 	digest_size = peer_device->connection->integrity_tfm ?
1798 		      crypto_ahash_digestsize(peer_device->connection->integrity_tfm) : 0;
1799 
1800 	if (!p)
1801 		return -EIO;
1802 	p->sector = cpu_to_be64(peer_req->i.sector);
1803 	p->block_id = peer_req->block_id;
1804 	p->seq_num = 0;  /* unused */
1805 	p->dp_flags = 0;
1806 	if (digest_size)
1807 		drbd_csum_ee(peer_device->connection->integrity_tfm, peer_req, p + 1);
1808 	err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*p) + digest_size, NULL, peer_req->i.size);
1809 	if (!err)
1810 		err = _drbd_send_zc_ee(peer_device, peer_req);
1811 	mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1812 
1813 	return err;
1814 }
1815 
1816 int drbd_send_out_of_sync(struct drbd_peer_device *peer_device, struct drbd_request *req)
1817 {
1818 	struct drbd_socket *sock;
1819 	struct p_block_desc *p;
1820 
1821 	sock = &peer_device->connection->data;
1822 	p = drbd_prepare_command(peer_device, sock);
1823 	if (!p)
1824 		return -EIO;
1825 	p->sector = cpu_to_be64(req->i.sector);
1826 	p->blksize = cpu_to_be32(req->i.size);
1827 	return drbd_send_command(peer_device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0);
1828 }
1829 
1830 /*
1831   drbd_send distinguishes two cases:
1832 
1833   Packets sent via the data socket "sock"
1834   and packets sent via the meta data socket "msock"
1835 
1836 		    sock                      msock
1837   -----------------+-------------------------+------------------------------
1838   timeout           conf.timeout / 2          conf.timeout / 2
1839   timeout action    send a ping via msock     Abort communication
1840 					      and close all sockets
1841 */
1842 
1843 /*
1844  * you must have down()ed the appropriate [m]sock_mutex elsewhere!
1845  */
1846 int drbd_send(struct drbd_connection *connection, struct socket *sock,
1847 	      void *buf, size_t size, unsigned msg_flags)
1848 {
1849 	struct kvec iov = {.iov_base = buf, .iov_len = size};
1850 	struct msghdr msg;
1851 	int rv, sent = 0;
1852 
1853 	if (!sock)
1854 		return -EBADR;
1855 
1856 	/* THINK  if (signal_pending) return ... ? */
1857 
1858 	msg.msg_name       = NULL;
1859 	msg.msg_namelen    = 0;
1860 	msg.msg_control    = NULL;
1861 	msg.msg_controllen = 0;
1862 	msg.msg_flags      = msg_flags | MSG_NOSIGNAL;
1863 
1864 	iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, &iov, 1, size);
1865 
1866 	if (sock == connection->data.socket) {
1867 		rcu_read_lock();
1868 		connection->ko_count = rcu_dereference(connection->net_conf)->ko_count;
1869 		rcu_read_unlock();
1870 		drbd_update_congested(connection);
1871 	}
1872 	do {
1873 		rv = sock_sendmsg(sock, &msg);
1874 		if (rv == -EAGAIN) {
1875 			if (we_should_drop_the_connection(connection, sock))
1876 				break;
1877 			else
1878 				continue;
1879 		}
1880 		if (rv == -EINTR) {
1881 			flush_signals(current);
1882 			rv = 0;
1883 		}
1884 		if (rv < 0)
1885 			break;
1886 		sent += rv;
1887 	} while (sent < size);
1888 
1889 	if (sock == connection->data.socket)
1890 		clear_bit(NET_CONGESTED, &connection->flags);
1891 
1892 	if (rv <= 0) {
1893 		if (rv != -EAGAIN) {
1894 			drbd_err(connection, "%s_sendmsg returned %d\n",
1895 				 sock == connection->meta.socket ? "msock" : "sock",
1896 				 rv);
1897 			conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD);
1898 		} else
1899 			conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD);
1900 	}
1901 
1902 	return sent;
1903 }
1904 
1905 /**
1906  * drbd_send_all  -  Send an entire buffer
1907  *
1908  * Returns 0 upon success and a negative error value otherwise.
1909  */
1910 int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer,
1911 		  size_t size, unsigned msg_flags)
1912 {
1913 	int err;
1914 
1915 	err = drbd_send(connection, sock, buffer, size, msg_flags);
1916 	if (err < 0)
1917 		return err;
1918 	if (err != size)
1919 		return -EIO;
1920 	return 0;
1921 }
1922 
1923 static int drbd_open(struct block_device *bdev, fmode_t mode)
1924 {
1925 	struct drbd_device *device = bdev->bd_disk->private_data;
1926 	unsigned long flags;
1927 	int rv = 0;
1928 
1929 	mutex_lock(&drbd_main_mutex);
1930 	spin_lock_irqsave(&device->resource->req_lock, flags);
1931 	/* to have a stable device->state.role
1932 	 * and no race with updating open_cnt */
1933 
1934 	if (device->state.role != R_PRIMARY) {
1935 		if (mode & FMODE_WRITE)
1936 			rv = -EROFS;
1937 		else if (!allow_oos)
1938 			rv = -EMEDIUMTYPE;
1939 	}
1940 
1941 	if (!rv)
1942 		device->open_cnt++;
1943 	spin_unlock_irqrestore(&device->resource->req_lock, flags);
1944 	mutex_unlock(&drbd_main_mutex);
1945 
1946 	return rv;
1947 }
1948 
1949 static void drbd_release(struct gendisk *gd, fmode_t mode)
1950 {
1951 	struct drbd_device *device = gd->private_data;
1952 	mutex_lock(&drbd_main_mutex);
1953 	device->open_cnt--;
1954 	mutex_unlock(&drbd_main_mutex);
1955 }
1956 
1957 static void drbd_set_defaults(struct drbd_device *device)
1958 {
1959 	/* Beware! The actual layout differs
1960 	 * between big endian and little endian */
1961 	device->state = (union drbd_dev_state) {
1962 		{ .role = R_SECONDARY,
1963 		  .peer = R_UNKNOWN,
1964 		  .conn = C_STANDALONE,
1965 		  .disk = D_DISKLESS,
1966 		  .pdsk = D_UNKNOWN,
1967 		} };
1968 }
1969 
1970 void drbd_init_set_defaults(struct drbd_device *device)
1971 {
1972 	/* the memset(,0,) did most of this.
1973 	 * note: only assignments, no allocation in here */
1974 
1975 	drbd_set_defaults(device);
1976 
1977 	atomic_set(&device->ap_bio_cnt, 0);
1978 	atomic_set(&device->ap_actlog_cnt, 0);
1979 	atomic_set(&device->ap_pending_cnt, 0);
1980 	atomic_set(&device->rs_pending_cnt, 0);
1981 	atomic_set(&device->unacked_cnt, 0);
1982 	atomic_set(&device->local_cnt, 0);
1983 	atomic_set(&device->pp_in_use_by_net, 0);
1984 	atomic_set(&device->rs_sect_in, 0);
1985 	atomic_set(&device->rs_sect_ev, 0);
1986 	atomic_set(&device->ap_in_flight, 0);
1987 	atomic_set(&device->md_io.in_use, 0);
1988 
1989 	mutex_init(&device->own_state_mutex);
1990 	device->state_mutex = &device->own_state_mutex;
1991 
1992 	spin_lock_init(&device->al_lock);
1993 	spin_lock_init(&device->peer_seq_lock);
1994 
1995 	INIT_LIST_HEAD(&device->active_ee);
1996 	INIT_LIST_HEAD(&device->sync_ee);
1997 	INIT_LIST_HEAD(&device->done_ee);
1998 	INIT_LIST_HEAD(&device->read_ee);
1999 	INIT_LIST_HEAD(&device->net_ee);
2000 	INIT_LIST_HEAD(&device->resync_reads);
2001 	INIT_LIST_HEAD(&device->resync_work.list);
2002 	INIT_LIST_HEAD(&device->unplug_work.list);
2003 	INIT_LIST_HEAD(&device->bm_io_work.w.list);
2004 	INIT_LIST_HEAD(&device->pending_master_completion[0]);
2005 	INIT_LIST_HEAD(&device->pending_master_completion[1]);
2006 	INIT_LIST_HEAD(&device->pending_completion[0]);
2007 	INIT_LIST_HEAD(&device->pending_completion[1]);
2008 
2009 	device->resync_work.cb  = w_resync_timer;
2010 	device->unplug_work.cb  = w_send_write_hint;
2011 	device->bm_io_work.w.cb = w_bitmap_io;
2012 
2013 	init_timer(&device->resync_timer);
2014 	init_timer(&device->md_sync_timer);
2015 	init_timer(&device->start_resync_timer);
2016 	init_timer(&device->request_timer);
2017 	device->resync_timer.function = resync_timer_fn;
2018 	device->resync_timer.data = (unsigned long) device;
2019 	device->md_sync_timer.function = md_sync_timer_fn;
2020 	device->md_sync_timer.data = (unsigned long) device;
2021 	device->start_resync_timer.function = start_resync_timer_fn;
2022 	device->start_resync_timer.data = (unsigned long) device;
2023 	device->request_timer.function = request_timer_fn;
2024 	device->request_timer.data = (unsigned long) device;
2025 
2026 	init_waitqueue_head(&device->misc_wait);
2027 	init_waitqueue_head(&device->state_wait);
2028 	init_waitqueue_head(&device->ee_wait);
2029 	init_waitqueue_head(&device->al_wait);
2030 	init_waitqueue_head(&device->seq_wait);
2031 
2032 	device->resync_wenr = LC_FREE;
2033 	device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
2034 	device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
2035 }
2036 
2037 void drbd_device_cleanup(struct drbd_device *device)
2038 {
2039 	int i;
2040 	if (first_peer_device(device)->connection->receiver.t_state != NONE)
2041 		drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n",
2042 				first_peer_device(device)->connection->receiver.t_state);
2043 
2044 	device->al_writ_cnt  =
2045 	device->bm_writ_cnt  =
2046 	device->read_cnt     =
2047 	device->recv_cnt     =
2048 	device->send_cnt     =
2049 	device->writ_cnt     =
2050 	device->p_size       =
2051 	device->rs_start     =
2052 	device->rs_total     =
2053 	device->rs_failed    = 0;
2054 	device->rs_last_events = 0;
2055 	device->rs_last_sect_ev = 0;
2056 	for (i = 0; i < DRBD_SYNC_MARKS; i++) {
2057 		device->rs_mark_left[i] = 0;
2058 		device->rs_mark_time[i] = 0;
2059 	}
2060 	D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL);
2061 
2062 	drbd_set_my_capacity(device, 0);
2063 	if (device->bitmap) {
2064 		/* maybe never allocated. */
2065 		drbd_bm_resize(device, 0, 1);
2066 		drbd_bm_cleanup(device);
2067 	}
2068 
2069 	drbd_backing_dev_free(device, device->ldev);
2070 	device->ldev = NULL;
2071 
2072 	clear_bit(AL_SUSPENDED, &device->flags);
2073 
2074 	D_ASSERT(device, list_empty(&device->active_ee));
2075 	D_ASSERT(device, list_empty(&device->sync_ee));
2076 	D_ASSERT(device, list_empty(&device->done_ee));
2077 	D_ASSERT(device, list_empty(&device->read_ee));
2078 	D_ASSERT(device, list_empty(&device->net_ee));
2079 	D_ASSERT(device, list_empty(&device->resync_reads));
2080 	D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q));
2081 	D_ASSERT(device, list_empty(&device->resync_work.list));
2082 	D_ASSERT(device, list_empty(&device->unplug_work.list));
2083 
2084 	drbd_set_defaults(device);
2085 }
2086 
2087 
2088 static void drbd_destroy_mempools(void)
2089 {
2090 	struct page *page;
2091 
2092 	while (drbd_pp_pool) {
2093 		page = drbd_pp_pool;
2094 		drbd_pp_pool = (struct page *)page_private(page);
2095 		__free_page(page);
2096 		drbd_pp_vacant--;
2097 	}
2098 
2099 	/* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */
2100 
2101 	if (drbd_md_io_bio_set)
2102 		bioset_free(drbd_md_io_bio_set);
2103 	if (drbd_md_io_page_pool)
2104 		mempool_destroy(drbd_md_io_page_pool);
2105 	if (drbd_ee_mempool)
2106 		mempool_destroy(drbd_ee_mempool);
2107 	if (drbd_request_mempool)
2108 		mempool_destroy(drbd_request_mempool);
2109 	if (drbd_ee_cache)
2110 		kmem_cache_destroy(drbd_ee_cache);
2111 	if (drbd_request_cache)
2112 		kmem_cache_destroy(drbd_request_cache);
2113 	if (drbd_bm_ext_cache)
2114 		kmem_cache_destroy(drbd_bm_ext_cache);
2115 	if (drbd_al_ext_cache)
2116 		kmem_cache_destroy(drbd_al_ext_cache);
2117 
2118 	drbd_md_io_bio_set   = NULL;
2119 	drbd_md_io_page_pool = NULL;
2120 	drbd_ee_mempool      = NULL;
2121 	drbd_request_mempool = NULL;
2122 	drbd_ee_cache        = NULL;
2123 	drbd_request_cache   = NULL;
2124 	drbd_bm_ext_cache    = NULL;
2125 	drbd_al_ext_cache    = NULL;
2126 
2127 	return;
2128 }
2129 
2130 static int drbd_create_mempools(void)
2131 {
2132 	struct page *page;
2133 	const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * minor_count;
2134 	int i;
2135 
2136 	/* prepare our caches and mempools */
2137 	drbd_request_mempool = NULL;
2138 	drbd_ee_cache        = NULL;
2139 	drbd_request_cache   = NULL;
2140 	drbd_bm_ext_cache    = NULL;
2141 	drbd_al_ext_cache    = NULL;
2142 	drbd_pp_pool         = NULL;
2143 	drbd_md_io_page_pool = NULL;
2144 	drbd_md_io_bio_set   = NULL;
2145 
2146 	/* caches */
2147 	drbd_request_cache = kmem_cache_create(
2148 		"drbd_req", sizeof(struct drbd_request), 0, 0, NULL);
2149 	if (drbd_request_cache == NULL)
2150 		goto Enomem;
2151 
2152 	drbd_ee_cache = kmem_cache_create(
2153 		"drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL);
2154 	if (drbd_ee_cache == NULL)
2155 		goto Enomem;
2156 
2157 	drbd_bm_ext_cache = kmem_cache_create(
2158 		"drbd_bm", sizeof(struct bm_extent), 0, 0, NULL);
2159 	if (drbd_bm_ext_cache == NULL)
2160 		goto Enomem;
2161 
2162 	drbd_al_ext_cache = kmem_cache_create(
2163 		"drbd_al", sizeof(struct lc_element), 0, 0, NULL);
2164 	if (drbd_al_ext_cache == NULL)
2165 		goto Enomem;
2166 
2167 	/* mempools */
2168 	drbd_md_io_bio_set = bioset_create(DRBD_MIN_POOL_PAGES, 0);
2169 	if (drbd_md_io_bio_set == NULL)
2170 		goto Enomem;
2171 
2172 	drbd_md_io_page_pool = mempool_create_page_pool(DRBD_MIN_POOL_PAGES, 0);
2173 	if (drbd_md_io_page_pool == NULL)
2174 		goto Enomem;
2175 
2176 	drbd_request_mempool = mempool_create_slab_pool(number,
2177 		drbd_request_cache);
2178 	if (drbd_request_mempool == NULL)
2179 		goto Enomem;
2180 
2181 	drbd_ee_mempool = mempool_create_slab_pool(number, drbd_ee_cache);
2182 	if (drbd_ee_mempool == NULL)
2183 		goto Enomem;
2184 
2185 	/* drbd's page pool */
2186 	spin_lock_init(&drbd_pp_lock);
2187 
2188 	for (i = 0; i < number; i++) {
2189 		page = alloc_page(GFP_HIGHUSER);
2190 		if (!page)
2191 			goto Enomem;
2192 		set_page_private(page, (unsigned long)drbd_pp_pool);
2193 		drbd_pp_pool = page;
2194 	}
2195 	drbd_pp_vacant = number;
2196 
2197 	return 0;
2198 
2199 Enomem:
2200 	drbd_destroy_mempools(); /* in case we allocated some */
2201 	return -ENOMEM;
2202 }
2203 
2204 static void drbd_release_all_peer_reqs(struct drbd_device *device)
2205 {
2206 	int rr;
2207 
2208 	rr = drbd_free_peer_reqs(device, &device->active_ee);
2209 	if (rr)
2210 		drbd_err(device, "%d EEs in active list found!\n", rr);
2211 
2212 	rr = drbd_free_peer_reqs(device, &device->sync_ee);
2213 	if (rr)
2214 		drbd_err(device, "%d EEs in sync list found!\n", rr);
2215 
2216 	rr = drbd_free_peer_reqs(device, &device->read_ee);
2217 	if (rr)
2218 		drbd_err(device, "%d EEs in read list found!\n", rr);
2219 
2220 	rr = drbd_free_peer_reqs(device, &device->done_ee);
2221 	if (rr)
2222 		drbd_err(device, "%d EEs in done list found!\n", rr);
2223 
2224 	rr = drbd_free_peer_reqs(device, &device->net_ee);
2225 	if (rr)
2226 		drbd_err(device, "%d EEs in net list found!\n", rr);
2227 }
2228 
2229 /* caution. no locking. */
2230 void drbd_destroy_device(struct kref *kref)
2231 {
2232 	struct drbd_device *device = container_of(kref, struct drbd_device, kref);
2233 	struct drbd_resource *resource = device->resource;
2234 	struct drbd_peer_device *peer_device, *tmp_peer_device;
2235 
2236 	del_timer_sync(&device->request_timer);
2237 
2238 	/* paranoia asserts */
2239 	D_ASSERT(device, device->open_cnt == 0);
2240 	/* end paranoia asserts */
2241 
2242 	/* cleanup stuff that may have been allocated during
2243 	 * device (re-)configuration or state changes */
2244 
2245 	if (device->this_bdev)
2246 		bdput(device->this_bdev);
2247 
2248 	drbd_backing_dev_free(device, device->ldev);
2249 	device->ldev = NULL;
2250 
2251 	drbd_release_all_peer_reqs(device);
2252 
2253 	lc_destroy(device->act_log);
2254 	lc_destroy(device->resync);
2255 
2256 	kfree(device->p_uuid);
2257 	/* device->p_uuid = NULL; */
2258 
2259 	if (device->bitmap) /* should no longer be there. */
2260 		drbd_bm_cleanup(device);
2261 	__free_page(device->md_io.page);
2262 	put_disk(device->vdisk);
2263 	blk_cleanup_queue(device->rq_queue);
2264 	kfree(device->rs_plan_s);
2265 
2266 	/* not for_each_connection(connection, resource):
2267 	 * those may have been cleaned up and disassociated already.
2268 	 */
2269 	for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2270 		kref_put(&peer_device->connection->kref, drbd_destroy_connection);
2271 		kfree(peer_device);
2272 	}
2273 	memset(device, 0xfd, sizeof(*device));
2274 	kfree(device);
2275 	kref_put(&resource->kref, drbd_destroy_resource);
2276 }
2277 
2278 /* One global retry thread, if we need to push back some bio and have it
2279  * reinserted through our make request function.
2280  */
2281 static struct retry_worker {
2282 	struct workqueue_struct *wq;
2283 	struct work_struct worker;
2284 
2285 	spinlock_t lock;
2286 	struct list_head writes;
2287 } retry;
2288 
2289 static void do_retry(struct work_struct *ws)
2290 {
2291 	struct retry_worker *retry = container_of(ws, struct retry_worker, worker);
2292 	LIST_HEAD(writes);
2293 	struct drbd_request *req, *tmp;
2294 
2295 	spin_lock_irq(&retry->lock);
2296 	list_splice_init(&retry->writes, &writes);
2297 	spin_unlock_irq(&retry->lock);
2298 
2299 	list_for_each_entry_safe(req, tmp, &writes, tl_requests) {
2300 		struct drbd_device *device = req->device;
2301 		struct bio *bio = req->master_bio;
2302 		unsigned long start_jif = req->start_jif;
2303 		bool expected;
2304 
2305 		expected =
2306 			expect(atomic_read(&req->completion_ref) == 0) &&
2307 			expect(req->rq_state & RQ_POSTPONED) &&
2308 			expect((req->rq_state & RQ_LOCAL_PENDING) == 0 ||
2309 				(req->rq_state & RQ_LOCAL_ABORTED) != 0);
2310 
2311 		if (!expected)
2312 			drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n",
2313 				req, atomic_read(&req->completion_ref),
2314 				req->rq_state);
2315 
2316 		/* We still need to put one kref associated with the
2317 		 * "completion_ref" going zero in the code path that queued it
2318 		 * here.  The request object may still be referenced by a
2319 		 * frozen local req->private_bio, in case we force-detached.
2320 		 */
2321 		kref_put(&req->kref, drbd_req_destroy);
2322 
2323 		/* A single suspended or otherwise blocking device may stall
2324 		 * all others as well.  Fortunately, this code path is to
2325 		 * recover from a situation that "should not happen":
2326 		 * concurrent writes in multi-primary setup.
2327 		 * In a "normal" lifecycle, this workqueue is supposed to be
2328 		 * destroyed without ever doing anything.
2329 		 * If it turns out to be an issue anyways, we can do per
2330 		 * resource (replication group) or per device (minor) retry
2331 		 * workqueues instead.
2332 		 */
2333 
2334 		/* We are not just doing generic_make_request(),
2335 		 * as we want to keep the start_time information. */
2336 		inc_ap_bio(device);
2337 		__drbd_make_request(device, bio, start_jif);
2338 	}
2339 }
2340 
2341 /* called via drbd_req_put_completion_ref(),
2342  * holds resource->req_lock */
2343 void drbd_restart_request(struct drbd_request *req)
2344 {
2345 	unsigned long flags;
2346 	spin_lock_irqsave(&retry.lock, flags);
2347 	list_move_tail(&req->tl_requests, &retry.writes);
2348 	spin_unlock_irqrestore(&retry.lock, flags);
2349 
2350 	/* Drop the extra reference that would otherwise
2351 	 * have been dropped by complete_master_bio.
2352 	 * do_retry() needs to grab a new one. */
2353 	dec_ap_bio(req->device);
2354 
2355 	queue_work(retry.wq, &retry.worker);
2356 }
2357 
2358 void drbd_destroy_resource(struct kref *kref)
2359 {
2360 	struct drbd_resource *resource =
2361 		container_of(kref, struct drbd_resource, kref);
2362 
2363 	idr_destroy(&resource->devices);
2364 	free_cpumask_var(resource->cpu_mask);
2365 	kfree(resource->name);
2366 	memset(resource, 0xf2, sizeof(*resource));
2367 	kfree(resource);
2368 }
2369 
2370 void drbd_free_resource(struct drbd_resource *resource)
2371 {
2372 	struct drbd_connection *connection, *tmp;
2373 
2374 	for_each_connection_safe(connection, tmp, resource) {
2375 		list_del(&connection->connections);
2376 		drbd_debugfs_connection_cleanup(connection);
2377 		kref_put(&connection->kref, drbd_destroy_connection);
2378 	}
2379 	drbd_debugfs_resource_cleanup(resource);
2380 	kref_put(&resource->kref, drbd_destroy_resource);
2381 }
2382 
2383 static void drbd_cleanup(void)
2384 {
2385 	unsigned int i;
2386 	struct drbd_device *device;
2387 	struct drbd_resource *resource, *tmp;
2388 
2389 	/* first remove proc,
2390 	 * drbdsetup uses it's presence to detect
2391 	 * whether DRBD is loaded.
2392 	 * If we would get stuck in proc removal,
2393 	 * but have netlink already deregistered,
2394 	 * some drbdsetup commands may wait forever
2395 	 * for an answer.
2396 	 */
2397 	if (drbd_proc)
2398 		remove_proc_entry("drbd", NULL);
2399 
2400 	if (retry.wq)
2401 		destroy_workqueue(retry.wq);
2402 
2403 	drbd_genl_unregister();
2404 	drbd_debugfs_cleanup();
2405 
2406 	idr_for_each_entry(&drbd_devices, device, i)
2407 		drbd_delete_device(device);
2408 
2409 	/* not _rcu since, no other updater anymore. Genl already unregistered */
2410 	for_each_resource_safe(resource, tmp, &drbd_resources) {
2411 		list_del(&resource->resources);
2412 		drbd_free_resource(resource);
2413 	}
2414 
2415 	drbd_destroy_mempools();
2416 	unregister_blkdev(DRBD_MAJOR, "drbd");
2417 
2418 	idr_destroy(&drbd_devices);
2419 
2420 	pr_info("module cleanup done.\n");
2421 }
2422 
2423 /**
2424  * drbd_congested() - Callback for the flusher thread
2425  * @congested_data:	User data
2426  * @bdi_bits:		Bits the BDI flusher thread is currently interested in
2427  *
2428  * Returns 1<<WB_async_congested and/or 1<<WB_sync_congested if we are congested.
2429  */
2430 static int drbd_congested(void *congested_data, int bdi_bits)
2431 {
2432 	struct drbd_device *device = congested_data;
2433 	struct request_queue *q;
2434 	char reason = '-';
2435 	int r = 0;
2436 
2437 	if (!may_inc_ap_bio(device)) {
2438 		/* DRBD has frozen IO */
2439 		r = bdi_bits;
2440 		reason = 'd';
2441 		goto out;
2442 	}
2443 
2444 	if (test_bit(CALLBACK_PENDING, &first_peer_device(device)->connection->flags)) {
2445 		r |= (1 << WB_async_congested);
2446 		/* Without good local data, we would need to read from remote,
2447 		 * and that would need the worker thread as well, which is
2448 		 * currently blocked waiting for that usermode helper to
2449 		 * finish.
2450 		 */
2451 		if (!get_ldev_if_state(device, D_UP_TO_DATE))
2452 			r |= (1 << WB_sync_congested);
2453 		else
2454 			put_ldev(device);
2455 		r &= bdi_bits;
2456 		reason = 'c';
2457 		goto out;
2458 	}
2459 
2460 	if (get_ldev(device)) {
2461 		q = bdev_get_queue(device->ldev->backing_bdev);
2462 		r = bdi_congested(q->backing_dev_info, bdi_bits);
2463 		put_ldev(device);
2464 		if (r)
2465 			reason = 'b';
2466 	}
2467 
2468 	if (bdi_bits & (1 << WB_async_congested) &&
2469 	    test_bit(NET_CONGESTED, &first_peer_device(device)->connection->flags)) {
2470 		r |= (1 << WB_async_congested);
2471 		reason = reason == 'b' ? 'a' : 'n';
2472 	}
2473 
2474 out:
2475 	device->congestion_reason = reason;
2476 	return r;
2477 }
2478 
2479 static void drbd_init_workqueue(struct drbd_work_queue* wq)
2480 {
2481 	spin_lock_init(&wq->q_lock);
2482 	INIT_LIST_HEAD(&wq->q);
2483 	init_waitqueue_head(&wq->q_wait);
2484 }
2485 
2486 struct completion_work {
2487 	struct drbd_work w;
2488 	struct completion done;
2489 };
2490 
2491 static int w_complete(struct drbd_work *w, int cancel)
2492 {
2493 	struct completion_work *completion_work =
2494 		container_of(w, struct completion_work, w);
2495 
2496 	complete(&completion_work->done);
2497 	return 0;
2498 }
2499 
2500 void drbd_flush_workqueue(struct drbd_work_queue *work_queue)
2501 {
2502 	struct completion_work completion_work;
2503 
2504 	completion_work.w.cb = w_complete;
2505 	init_completion(&completion_work.done);
2506 	drbd_queue_work(work_queue, &completion_work.w);
2507 	wait_for_completion(&completion_work.done);
2508 }
2509 
2510 struct drbd_resource *drbd_find_resource(const char *name)
2511 {
2512 	struct drbd_resource *resource;
2513 
2514 	if (!name || !name[0])
2515 		return NULL;
2516 
2517 	rcu_read_lock();
2518 	for_each_resource_rcu(resource, &drbd_resources) {
2519 		if (!strcmp(resource->name, name)) {
2520 			kref_get(&resource->kref);
2521 			goto found;
2522 		}
2523 	}
2524 	resource = NULL;
2525 found:
2526 	rcu_read_unlock();
2527 	return resource;
2528 }
2529 
2530 struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len,
2531 				     void *peer_addr, int peer_addr_len)
2532 {
2533 	struct drbd_resource *resource;
2534 	struct drbd_connection *connection;
2535 
2536 	rcu_read_lock();
2537 	for_each_resource_rcu(resource, &drbd_resources) {
2538 		for_each_connection_rcu(connection, resource) {
2539 			if (connection->my_addr_len == my_addr_len &&
2540 			    connection->peer_addr_len == peer_addr_len &&
2541 			    !memcmp(&connection->my_addr, my_addr, my_addr_len) &&
2542 			    !memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) {
2543 				kref_get(&connection->kref);
2544 				goto found;
2545 			}
2546 		}
2547 	}
2548 	connection = NULL;
2549 found:
2550 	rcu_read_unlock();
2551 	return connection;
2552 }
2553 
2554 static int drbd_alloc_socket(struct drbd_socket *socket)
2555 {
2556 	socket->rbuf = (void *) __get_free_page(GFP_KERNEL);
2557 	if (!socket->rbuf)
2558 		return -ENOMEM;
2559 	socket->sbuf = (void *) __get_free_page(GFP_KERNEL);
2560 	if (!socket->sbuf)
2561 		return -ENOMEM;
2562 	return 0;
2563 }
2564 
2565 static void drbd_free_socket(struct drbd_socket *socket)
2566 {
2567 	free_page((unsigned long) socket->sbuf);
2568 	free_page((unsigned long) socket->rbuf);
2569 }
2570 
2571 void conn_free_crypto(struct drbd_connection *connection)
2572 {
2573 	drbd_free_sock(connection);
2574 
2575 	crypto_free_ahash(connection->csums_tfm);
2576 	crypto_free_ahash(connection->verify_tfm);
2577 	crypto_free_shash(connection->cram_hmac_tfm);
2578 	crypto_free_ahash(connection->integrity_tfm);
2579 	crypto_free_ahash(connection->peer_integrity_tfm);
2580 	kfree(connection->int_dig_in);
2581 	kfree(connection->int_dig_vv);
2582 
2583 	connection->csums_tfm = NULL;
2584 	connection->verify_tfm = NULL;
2585 	connection->cram_hmac_tfm = NULL;
2586 	connection->integrity_tfm = NULL;
2587 	connection->peer_integrity_tfm = NULL;
2588 	connection->int_dig_in = NULL;
2589 	connection->int_dig_vv = NULL;
2590 }
2591 
2592 int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts)
2593 {
2594 	struct drbd_connection *connection;
2595 	cpumask_var_t new_cpu_mask;
2596 	int err;
2597 
2598 	if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL))
2599 		return -ENOMEM;
2600 
2601 	/* silently ignore cpu mask on UP kernel */
2602 	if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) {
2603 		err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE,
2604 				   cpumask_bits(new_cpu_mask), nr_cpu_ids);
2605 		if (err == -EOVERFLOW) {
2606 			/* So what. mask it out. */
2607 			cpumask_var_t tmp_cpu_mask;
2608 			if (zalloc_cpumask_var(&tmp_cpu_mask, GFP_KERNEL)) {
2609 				cpumask_setall(tmp_cpu_mask);
2610 				cpumask_and(new_cpu_mask, new_cpu_mask, tmp_cpu_mask);
2611 				drbd_warn(resource, "Overflow in bitmap_parse(%.12s%s), truncating to %u bits\n",
2612 					res_opts->cpu_mask,
2613 					strlen(res_opts->cpu_mask) > 12 ? "..." : "",
2614 					nr_cpu_ids);
2615 				free_cpumask_var(tmp_cpu_mask);
2616 				err = 0;
2617 			}
2618 		}
2619 		if (err) {
2620 			drbd_warn(resource, "bitmap_parse() failed with %d\n", err);
2621 			/* retcode = ERR_CPU_MASK_PARSE; */
2622 			goto fail;
2623 		}
2624 	}
2625 	resource->res_opts = *res_opts;
2626 	if (cpumask_empty(new_cpu_mask))
2627 		drbd_calc_cpu_mask(&new_cpu_mask);
2628 	if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) {
2629 		cpumask_copy(resource->cpu_mask, new_cpu_mask);
2630 		for_each_connection_rcu(connection, resource) {
2631 			connection->receiver.reset_cpu_mask = 1;
2632 			connection->ack_receiver.reset_cpu_mask = 1;
2633 			connection->worker.reset_cpu_mask = 1;
2634 		}
2635 	}
2636 	err = 0;
2637 
2638 fail:
2639 	free_cpumask_var(new_cpu_mask);
2640 	return err;
2641 
2642 }
2643 
2644 struct drbd_resource *drbd_create_resource(const char *name)
2645 {
2646 	struct drbd_resource *resource;
2647 
2648 	resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL);
2649 	if (!resource)
2650 		goto fail;
2651 	resource->name = kstrdup(name, GFP_KERNEL);
2652 	if (!resource->name)
2653 		goto fail_free_resource;
2654 	if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL))
2655 		goto fail_free_name;
2656 	kref_init(&resource->kref);
2657 	idr_init(&resource->devices);
2658 	INIT_LIST_HEAD(&resource->connections);
2659 	resource->write_ordering = WO_BDEV_FLUSH;
2660 	list_add_tail_rcu(&resource->resources, &drbd_resources);
2661 	mutex_init(&resource->conf_update);
2662 	mutex_init(&resource->adm_mutex);
2663 	spin_lock_init(&resource->req_lock);
2664 	drbd_debugfs_resource_add(resource);
2665 	return resource;
2666 
2667 fail_free_name:
2668 	kfree(resource->name);
2669 fail_free_resource:
2670 	kfree(resource);
2671 fail:
2672 	return NULL;
2673 }
2674 
2675 /* caller must be under adm_mutex */
2676 struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts)
2677 {
2678 	struct drbd_resource *resource;
2679 	struct drbd_connection *connection;
2680 
2681 	connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL);
2682 	if (!connection)
2683 		return NULL;
2684 
2685 	if (drbd_alloc_socket(&connection->data))
2686 		goto fail;
2687 	if (drbd_alloc_socket(&connection->meta))
2688 		goto fail;
2689 
2690 	connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL);
2691 	if (!connection->current_epoch)
2692 		goto fail;
2693 
2694 	INIT_LIST_HEAD(&connection->transfer_log);
2695 
2696 	INIT_LIST_HEAD(&connection->current_epoch->list);
2697 	connection->epochs = 1;
2698 	spin_lock_init(&connection->epoch_lock);
2699 
2700 	connection->send.seen_any_write_yet = false;
2701 	connection->send.current_epoch_nr = 0;
2702 	connection->send.current_epoch_writes = 0;
2703 
2704 	resource = drbd_create_resource(name);
2705 	if (!resource)
2706 		goto fail;
2707 
2708 	connection->cstate = C_STANDALONE;
2709 	mutex_init(&connection->cstate_mutex);
2710 	init_waitqueue_head(&connection->ping_wait);
2711 	idr_init(&connection->peer_devices);
2712 
2713 	drbd_init_workqueue(&connection->sender_work);
2714 	mutex_init(&connection->data.mutex);
2715 	mutex_init(&connection->meta.mutex);
2716 
2717 	drbd_thread_init(resource, &connection->receiver, drbd_receiver, "receiver");
2718 	connection->receiver.connection = connection;
2719 	drbd_thread_init(resource, &connection->worker, drbd_worker, "worker");
2720 	connection->worker.connection = connection;
2721 	drbd_thread_init(resource, &connection->ack_receiver, drbd_ack_receiver, "ack_recv");
2722 	connection->ack_receiver.connection = connection;
2723 
2724 	kref_init(&connection->kref);
2725 
2726 	connection->resource = resource;
2727 
2728 	if (set_resource_options(resource, res_opts))
2729 		goto fail_resource;
2730 
2731 	kref_get(&resource->kref);
2732 	list_add_tail_rcu(&connection->connections, &resource->connections);
2733 	drbd_debugfs_connection_add(connection);
2734 	return connection;
2735 
2736 fail_resource:
2737 	list_del(&resource->resources);
2738 	drbd_free_resource(resource);
2739 fail:
2740 	kfree(connection->current_epoch);
2741 	drbd_free_socket(&connection->meta);
2742 	drbd_free_socket(&connection->data);
2743 	kfree(connection);
2744 	return NULL;
2745 }
2746 
2747 void drbd_destroy_connection(struct kref *kref)
2748 {
2749 	struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref);
2750 	struct drbd_resource *resource = connection->resource;
2751 
2752 	if (atomic_read(&connection->current_epoch->epoch_size) !=  0)
2753 		drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size));
2754 	kfree(connection->current_epoch);
2755 
2756 	idr_destroy(&connection->peer_devices);
2757 
2758 	drbd_free_socket(&connection->meta);
2759 	drbd_free_socket(&connection->data);
2760 	kfree(connection->int_dig_in);
2761 	kfree(connection->int_dig_vv);
2762 	memset(connection, 0xfc, sizeof(*connection));
2763 	kfree(connection);
2764 	kref_put(&resource->kref, drbd_destroy_resource);
2765 }
2766 
2767 static int init_submitter(struct drbd_device *device)
2768 {
2769 	/* opencoded create_singlethread_workqueue(),
2770 	 * to be able to say "drbd%d", ..., minor */
2771 	device->submit.wq =
2772 		alloc_ordered_workqueue("drbd%u_submit", WQ_MEM_RECLAIM, device->minor);
2773 	if (!device->submit.wq)
2774 		return -ENOMEM;
2775 
2776 	INIT_WORK(&device->submit.worker, do_submit);
2777 	INIT_LIST_HEAD(&device->submit.writes);
2778 	return 0;
2779 }
2780 
2781 enum drbd_ret_code drbd_create_device(struct drbd_config_context *adm_ctx, unsigned int minor)
2782 {
2783 	struct drbd_resource *resource = adm_ctx->resource;
2784 	struct drbd_connection *connection;
2785 	struct drbd_device *device;
2786 	struct drbd_peer_device *peer_device, *tmp_peer_device;
2787 	struct gendisk *disk;
2788 	struct request_queue *q;
2789 	int id;
2790 	int vnr = adm_ctx->volume;
2791 	enum drbd_ret_code err = ERR_NOMEM;
2792 
2793 	device = minor_to_device(minor);
2794 	if (device)
2795 		return ERR_MINOR_OR_VOLUME_EXISTS;
2796 
2797 	/* GFP_KERNEL, we are outside of all write-out paths */
2798 	device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL);
2799 	if (!device)
2800 		return ERR_NOMEM;
2801 	kref_init(&device->kref);
2802 
2803 	kref_get(&resource->kref);
2804 	device->resource = resource;
2805 	device->minor = minor;
2806 	device->vnr = vnr;
2807 
2808 	drbd_init_set_defaults(device);
2809 
2810 	q = blk_alloc_queue(GFP_KERNEL);
2811 	if (!q)
2812 		goto out_no_q;
2813 	device->rq_queue = q;
2814 	q->queuedata   = device;
2815 
2816 	disk = alloc_disk(1);
2817 	if (!disk)
2818 		goto out_no_disk;
2819 	device->vdisk = disk;
2820 
2821 	set_disk_ro(disk, true);
2822 
2823 	disk->queue = q;
2824 	disk->major = DRBD_MAJOR;
2825 	disk->first_minor = minor;
2826 	disk->fops = &drbd_ops;
2827 	sprintf(disk->disk_name, "drbd%d", minor);
2828 	disk->private_data = device;
2829 
2830 	device->this_bdev = bdget(MKDEV(DRBD_MAJOR, minor));
2831 	/* we have no partitions. we contain only ourselves. */
2832 	device->this_bdev->bd_contains = device->this_bdev;
2833 
2834 	q->backing_dev_info->congested_fn = drbd_congested;
2835 	q->backing_dev_info->congested_data = device;
2836 
2837 	blk_queue_make_request(q, drbd_make_request);
2838 	blk_queue_write_cache(q, true, true);
2839 	/* Setting the max_hw_sectors to an odd value of 8kibyte here
2840 	   This triggers a max_bio_size message upon first attach or connect */
2841 	blk_queue_max_hw_sectors(q, DRBD_MAX_BIO_SIZE_SAFE >> 8);
2842 	blk_queue_bounce_limit(q, BLK_BOUNCE_ANY);
2843 	q->queue_lock = &resource->req_lock;
2844 
2845 	device->md_io.page = alloc_page(GFP_KERNEL);
2846 	if (!device->md_io.page)
2847 		goto out_no_io_page;
2848 
2849 	if (drbd_bm_init(device))
2850 		goto out_no_bitmap;
2851 	device->read_requests = RB_ROOT;
2852 	device->write_requests = RB_ROOT;
2853 
2854 	id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL);
2855 	if (id < 0) {
2856 		if (id == -ENOSPC)
2857 			err = ERR_MINOR_OR_VOLUME_EXISTS;
2858 		goto out_no_minor_idr;
2859 	}
2860 	kref_get(&device->kref);
2861 
2862 	id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL);
2863 	if (id < 0) {
2864 		if (id == -ENOSPC)
2865 			err = ERR_MINOR_OR_VOLUME_EXISTS;
2866 		goto out_idr_remove_minor;
2867 	}
2868 	kref_get(&device->kref);
2869 
2870 	INIT_LIST_HEAD(&device->peer_devices);
2871 	INIT_LIST_HEAD(&device->pending_bitmap_io);
2872 	for_each_connection(connection, resource) {
2873 		peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL);
2874 		if (!peer_device)
2875 			goto out_idr_remove_from_resource;
2876 		peer_device->connection = connection;
2877 		peer_device->device = device;
2878 
2879 		list_add(&peer_device->peer_devices, &device->peer_devices);
2880 		kref_get(&device->kref);
2881 
2882 		id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL);
2883 		if (id < 0) {
2884 			if (id == -ENOSPC)
2885 				err = ERR_INVALID_REQUEST;
2886 			goto out_idr_remove_from_resource;
2887 		}
2888 		kref_get(&connection->kref);
2889 		INIT_WORK(&peer_device->send_acks_work, drbd_send_acks_wf);
2890 	}
2891 
2892 	if (init_submitter(device)) {
2893 		err = ERR_NOMEM;
2894 		goto out_idr_remove_vol;
2895 	}
2896 
2897 	add_disk(disk);
2898 
2899 	/* inherit the connection state */
2900 	device->state.conn = first_connection(resource)->cstate;
2901 	if (device->state.conn == C_WF_REPORT_PARAMS) {
2902 		for_each_peer_device(peer_device, device)
2903 			drbd_connected(peer_device);
2904 	}
2905 	/* move to create_peer_device() */
2906 	for_each_peer_device(peer_device, device)
2907 		drbd_debugfs_peer_device_add(peer_device);
2908 	drbd_debugfs_device_add(device);
2909 	return NO_ERROR;
2910 
2911 out_idr_remove_vol:
2912 	idr_remove(&connection->peer_devices, vnr);
2913 out_idr_remove_from_resource:
2914 	for_each_connection(connection, resource) {
2915 		peer_device = idr_remove(&connection->peer_devices, vnr);
2916 		if (peer_device)
2917 			kref_put(&connection->kref, drbd_destroy_connection);
2918 	}
2919 	for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2920 		list_del(&peer_device->peer_devices);
2921 		kfree(peer_device);
2922 	}
2923 	idr_remove(&resource->devices, vnr);
2924 out_idr_remove_minor:
2925 	idr_remove(&drbd_devices, minor);
2926 	synchronize_rcu();
2927 out_no_minor_idr:
2928 	drbd_bm_cleanup(device);
2929 out_no_bitmap:
2930 	__free_page(device->md_io.page);
2931 out_no_io_page:
2932 	put_disk(disk);
2933 out_no_disk:
2934 	blk_cleanup_queue(q);
2935 out_no_q:
2936 	kref_put(&resource->kref, drbd_destroy_resource);
2937 	kfree(device);
2938 	return err;
2939 }
2940 
2941 void drbd_delete_device(struct drbd_device *device)
2942 {
2943 	struct drbd_resource *resource = device->resource;
2944 	struct drbd_connection *connection;
2945 	struct drbd_peer_device *peer_device;
2946 
2947 	/* move to free_peer_device() */
2948 	for_each_peer_device(peer_device, device)
2949 		drbd_debugfs_peer_device_cleanup(peer_device);
2950 	drbd_debugfs_device_cleanup(device);
2951 	for_each_connection(connection, resource) {
2952 		idr_remove(&connection->peer_devices, device->vnr);
2953 		kref_put(&device->kref, drbd_destroy_device);
2954 	}
2955 	idr_remove(&resource->devices, device->vnr);
2956 	kref_put(&device->kref, drbd_destroy_device);
2957 	idr_remove(&drbd_devices, device_to_minor(device));
2958 	kref_put(&device->kref, drbd_destroy_device);
2959 	del_gendisk(device->vdisk);
2960 	synchronize_rcu();
2961 	kref_put(&device->kref, drbd_destroy_device);
2962 }
2963 
2964 static int __init drbd_init(void)
2965 {
2966 	int err;
2967 
2968 	if (minor_count < DRBD_MINOR_COUNT_MIN || minor_count > DRBD_MINOR_COUNT_MAX) {
2969 		pr_err("invalid minor_count (%d)\n", minor_count);
2970 #ifdef MODULE
2971 		return -EINVAL;
2972 #else
2973 		minor_count = DRBD_MINOR_COUNT_DEF;
2974 #endif
2975 	}
2976 
2977 	err = register_blkdev(DRBD_MAJOR, "drbd");
2978 	if (err) {
2979 		pr_err("unable to register block device major %d\n",
2980 		       DRBD_MAJOR);
2981 		return err;
2982 	}
2983 
2984 	/*
2985 	 * allocate all necessary structs
2986 	 */
2987 	init_waitqueue_head(&drbd_pp_wait);
2988 
2989 	drbd_proc = NULL; /* play safe for drbd_cleanup */
2990 	idr_init(&drbd_devices);
2991 
2992 	mutex_init(&resources_mutex);
2993 	INIT_LIST_HEAD(&drbd_resources);
2994 
2995 	err = drbd_genl_register();
2996 	if (err) {
2997 		pr_err("unable to register generic netlink family\n");
2998 		goto fail;
2999 	}
3000 
3001 	err = drbd_create_mempools();
3002 	if (err)
3003 		goto fail;
3004 
3005 	err = -ENOMEM;
3006 	drbd_proc = proc_create_data("drbd", S_IFREG | S_IRUGO , NULL, &drbd_proc_fops, NULL);
3007 	if (!drbd_proc)	{
3008 		pr_err("unable to register proc file\n");
3009 		goto fail;
3010 	}
3011 
3012 	retry.wq = create_singlethread_workqueue("drbd-reissue");
3013 	if (!retry.wq) {
3014 		pr_err("unable to create retry workqueue\n");
3015 		goto fail;
3016 	}
3017 	INIT_WORK(&retry.worker, do_retry);
3018 	spin_lock_init(&retry.lock);
3019 	INIT_LIST_HEAD(&retry.writes);
3020 
3021 	if (drbd_debugfs_init())
3022 		pr_notice("failed to initialize debugfs -- will not be available\n");
3023 
3024 	pr_info("initialized. "
3025 	       "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n",
3026 	       API_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX);
3027 	pr_info("%s\n", drbd_buildtag());
3028 	pr_info("registered as block device major %d\n", DRBD_MAJOR);
3029 	return 0; /* Success! */
3030 
3031 fail:
3032 	drbd_cleanup();
3033 	if (err == -ENOMEM)
3034 		pr_err("ran out of memory\n");
3035 	else
3036 		pr_err("initialization failure\n");
3037 	return err;
3038 }
3039 
3040 static void drbd_free_one_sock(struct drbd_socket *ds)
3041 {
3042 	struct socket *s;
3043 	mutex_lock(&ds->mutex);
3044 	s = ds->socket;
3045 	ds->socket = NULL;
3046 	mutex_unlock(&ds->mutex);
3047 	if (s) {
3048 		/* so debugfs does not need to mutex_lock() */
3049 		synchronize_rcu();
3050 		kernel_sock_shutdown(s, SHUT_RDWR);
3051 		sock_release(s);
3052 	}
3053 }
3054 
3055 void drbd_free_sock(struct drbd_connection *connection)
3056 {
3057 	if (connection->data.socket)
3058 		drbd_free_one_sock(&connection->data);
3059 	if (connection->meta.socket)
3060 		drbd_free_one_sock(&connection->meta);
3061 }
3062 
3063 /* meta data management */
3064 
3065 void conn_md_sync(struct drbd_connection *connection)
3066 {
3067 	struct drbd_peer_device *peer_device;
3068 	int vnr;
3069 
3070 	rcu_read_lock();
3071 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
3072 		struct drbd_device *device = peer_device->device;
3073 
3074 		kref_get(&device->kref);
3075 		rcu_read_unlock();
3076 		drbd_md_sync(device);
3077 		kref_put(&device->kref, drbd_destroy_device);
3078 		rcu_read_lock();
3079 	}
3080 	rcu_read_unlock();
3081 }
3082 
3083 /* aligned 4kByte */
3084 struct meta_data_on_disk {
3085 	u64 la_size_sect;      /* last agreed size. */
3086 	u64 uuid[UI_SIZE];   /* UUIDs. */
3087 	u64 device_uuid;
3088 	u64 reserved_u64_1;
3089 	u32 flags;             /* MDF */
3090 	u32 magic;
3091 	u32 md_size_sect;
3092 	u32 al_offset;         /* offset to this block */
3093 	u32 al_nr_extents;     /* important for restoring the AL (userspace) */
3094 	      /* `-- act_log->nr_elements <-- ldev->dc.al_extents */
3095 	u32 bm_offset;         /* offset to the bitmap, from here */
3096 	u32 bm_bytes_per_bit;  /* BM_BLOCK_SIZE */
3097 	u32 la_peer_max_bio_size;   /* last peer max_bio_size */
3098 
3099 	/* see al_tr_number_to_on_disk_sector() */
3100 	u32 al_stripes;
3101 	u32 al_stripe_size_4k;
3102 
3103 	u8 reserved_u8[4096 - (7*8 + 10*4)];
3104 } __packed;
3105 
3106 
3107 
3108 void drbd_md_write(struct drbd_device *device, void *b)
3109 {
3110 	struct meta_data_on_disk *buffer = b;
3111 	sector_t sector;
3112 	int i;
3113 
3114 	memset(buffer, 0, sizeof(*buffer));
3115 
3116 	buffer->la_size_sect = cpu_to_be64(drbd_get_capacity(device->this_bdev));
3117 	for (i = UI_CURRENT; i < UI_SIZE; i++)
3118 		buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
3119 	buffer->flags = cpu_to_be32(device->ldev->md.flags);
3120 	buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN);
3121 
3122 	buffer->md_size_sect  = cpu_to_be32(device->ldev->md.md_size_sect);
3123 	buffer->al_offset     = cpu_to_be32(device->ldev->md.al_offset);
3124 	buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements);
3125 	buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE);
3126 	buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid);
3127 
3128 	buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset);
3129 	buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size);
3130 
3131 	buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes);
3132 	buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k);
3133 
3134 	D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset);
3135 	sector = device->ldev->md.md_offset;
3136 
3137 	if (drbd_md_sync_page_io(device, device->ldev, sector, REQ_OP_WRITE)) {
3138 		/* this was a try anyways ... */
3139 		drbd_err(device, "meta data update failed!\n");
3140 		drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR);
3141 	}
3142 }
3143 
3144 /**
3145  * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set
3146  * @device:	DRBD device.
3147  */
3148 void drbd_md_sync(struct drbd_device *device)
3149 {
3150 	struct meta_data_on_disk *buffer;
3151 
3152 	/* Don't accidentally change the DRBD meta data layout. */
3153 	BUILD_BUG_ON(UI_SIZE != 4);
3154 	BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096);
3155 
3156 	del_timer(&device->md_sync_timer);
3157 	/* timer may be rearmed by drbd_md_mark_dirty() now. */
3158 	if (!test_and_clear_bit(MD_DIRTY, &device->flags))
3159 		return;
3160 
3161 	/* We use here D_FAILED and not D_ATTACHING because we try to write
3162 	 * metadata even if we detach due to a disk failure! */
3163 	if (!get_ldev_if_state(device, D_FAILED))
3164 		return;
3165 
3166 	buffer = drbd_md_get_buffer(device, __func__);
3167 	if (!buffer)
3168 		goto out;
3169 
3170 	drbd_md_write(device, buffer);
3171 
3172 	/* Update device->ldev->md.la_size_sect,
3173 	 * since we updated it on metadata. */
3174 	device->ldev->md.la_size_sect = drbd_get_capacity(device->this_bdev);
3175 
3176 	drbd_md_put_buffer(device);
3177 out:
3178 	put_ldev(device);
3179 }
3180 
3181 static int check_activity_log_stripe_size(struct drbd_device *device,
3182 		struct meta_data_on_disk *on_disk,
3183 		struct drbd_md *in_core)
3184 {
3185 	u32 al_stripes = be32_to_cpu(on_disk->al_stripes);
3186 	u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k);
3187 	u64 al_size_4k;
3188 
3189 	/* both not set: default to old fixed size activity log */
3190 	if (al_stripes == 0 && al_stripe_size_4k == 0) {
3191 		al_stripes = 1;
3192 		al_stripe_size_4k = MD_32kB_SECT/8;
3193 	}
3194 
3195 	/* some paranoia plausibility checks */
3196 
3197 	/* we need both values to be set */
3198 	if (al_stripes == 0 || al_stripe_size_4k == 0)
3199 		goto err;
3200 
3201 	al_size_4k = (u64)al_stripes * al_stripe_size_4k;
3202 
3203 	/* Upper limit of activity log area, to avoid potential overflow
3204 	 * problems in al_tr_number_to_on_disk_sector(). As right now, more
3205 	 * than 72 * 4k blocks total only increases the amount of history,
3206 	 * limiting this arbitrarily to 16 GB is not a real limitation ;-)  */
3207 	if (al_size_4k > (16 * 1024 * 1024/4))
3208 		goto err;
3209 
3210 	/* Lower limit: we need at least 8 transaction slots (32kB)
3211 	 * to not break existing setups */
3212 	if (al_size_4k < MD_32kB_SECT/8)
3213 		goto err;
3214 
3215 	in_core->al_stripe_size_4k = al_stripe_size_4k;
3216 	in_core->al_stripes = al_stripes;
3217 	in_core->al_size_4k = al_size_4k;
3218 
3219 	return 0;
3220 err:
3221 	drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n",
3222 			al_stripes, al_stripe_size_4k);
3223 	return -EINVAL;
3224 }
3225 
3226 static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev)
3227 {
3228 	sector_t capacity = drbd_get_capacity(bdev->md_bdev);
3229 	struct drbd_md *in_core = &bdev->md;
3230 	s32 on_disk_al_sect;
3231 	s32 on_disk_bm_sect;
3232 
3233 	/* The on-disk size of the activity log, calculated from offsets, and
3234 	 * the size of the activity log calculated from the stripe settings,
3235 	 * should match.
3236 	 * Though we could relax this a bit: it is ok, if the striped activity log
3237 	 * fits in the available on-disk activity log size.
3238 	 * Right now, that would break how resize is implemented.
3239 	 * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware
3240 	 * of possible unused padding space in the on disk layout. */
3241 	if (in_core->al_offset < 0) {
3242 		if (in_core->bm_offset > in_core->al_offset)
3243 			goto err;
3244 		on_disk_al_sect = -in_core->al_offset;
3245 		on_disk_bm_sect = in_core->al_offset - in_core->bm_offset;
3246 	} else {
3247 		if (in_core->al_offset != MD_4kB_SECT)
3248 			goto err;
3249 		if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT)
3250 			goto err;
3251 
3252 		on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT;
3253 		on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset;
3254 	}
3255 
3256 	/* old fixed size meta data is exactly that: fixed. */
3257 	if (in_core->meta_dev_idx >= 0) {
3258 		if (in_core->md_size_sect != MD_128MB_SECT
3259 		||  in_core->al_offset != MD_4kB_SECT
3260 		||  in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT
3261 		||  in_core->al_stripes != 1
3262 		||  in_core->al_stripe_size_4k != MD_32kB_SECT/8)
3263 			goto err;
3264 	}
3265 
3266 	if (capacity < in_core->md_size_sect)
3267 		goto err;
3268 	if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev))
3269 		goto err;
3270 
3271 	/* should be aligned, and at least 32k */
3272 	if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT))
3273 		goto err;
3274 
3275 	/* should fit (for now: exactly) into the available on-disk space;
3276 	 * overflow prevention is in check_activity_log_stripe_size() above. */
3277 	if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT)
3278 		goto err;
3279 
3280 	/* again, should be aligned */
3281 	if (in_core->bm_offset & 7)
3282 		goto err;
3283 
3284 	/* FIXME check for device grow with flex external meta data? */
3285 
3286 	/* can the available bitmap space cover the last agreed device size? */
3287 	if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512)
3288 		goto err;
3289 
3290 	return 0;
3291 
3292 err:
3293 	drbd_err(device, "meta data offsets don't make sense: idx=%d "
3294 			"al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, "
3295 			"md_size_sect=%u, la_size=%llu, md_capacity=%llu\n",
3296 			in_core->meta_dev_idx,
3297 			in_core->al_stripes, in_core->al_stripe_size_4k,
3298 			in_core->al_offset, in_core->bm_offset, in_core->md_size_sect,
3299 			(unsigned long long)in_core->la_size_sect,
3300 			(unsigned long long)capacity);
3301 
3302 	return -EINVAL;
3303 }
3304 
3305 
3306 /**
3307  * drbd_md_read() - Reads in the meta data super block
3308  * @device:	DRBD device.
3309  * @bdev:	Device from which the meta data should be read in.
3310  *
3311  * Return NO_ERROR on success, and an enum drbd_ret_code in case
3312  * something goes wrong.
3313  *
3314  * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS,
3315  * even before @bdev is assigned to @device->ldev.
3316  */
3317 int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev)
3318 {
3319 	struct meta_data_on_disk *buffer;
3320 	u32 magic, flags;
3321 	int i, rv = NO_ERROR;
3322 
3323 	if (device->state.disk != D_DISKLESS)
3324 		return ERR_DISK_CONFIGURED;
3325 
3326 	buffer = drbd_md_get_buffer(device, __func__);
3327 	if (!buffer)
3328 		return ERR_NOMEM;
3329 
3330 	/* First, figure out where our meta data superblock is located,
3331 	 * and read it. */
3332 	bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx;
3333 	bdev->md.md_offset = drbd_md_ss(bdev);
3334 	/* Even for (flexible or indexed) external meta data,
3335 	 * initially restrict us to the 4k superblock for now.
3336 	 * Affects the paranoia out-of-range access check in drbd_md_sync_page_io(). */
3337 	bdev->md.md_size_sect = 8;
3338 
3339 	if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset,
3340 				 REQ_OP_READ)) {
3341 		/* NOTE: can't do normal error processing here as this is
3342 		   called BEFORE disk is attached */
3343 		drbd_err(device, "Error while reading metadata.\n");
3344 		rv = ERR_IO_MD_DISK;
3345 		goto err;
3346 	}
3347 
3348 	magic = be32_to_cpu(buffer->magic);
3349 	flags = be32_to_cpu(buffer->flags);
3350 	if (magic == DRBD_MD_MAGIC_84_UNCLEAN ||
3351 	    (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) {
3352 			/* btw: that's Activity Log clean, not "all" clean. */
3353 		drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n");
3354 		rv = ERR_MD_UNCLEAN;
3355 		goto err;
3356 	}
3357 
3358 	rv = ERR_MD_INVALID;
3359 	if (magic != DRBD_MD_MAGIC_08) {
3360 		if (magic == DRBD_MD_MAGIC_07)
3361 			drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n");
3362 		else
3363 			drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n");
3364 		goto err;
3365 	}
3366 
3367 	if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) {
3368 		drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n",
3369 		    be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE);
3370 		goto err;
3371 	}
3372 
3373 
3374 	/* convert to in_core endian */
3375 	bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect);
3376 	for (i = UI_CURRENT; i < UI_SIZE; i++)
3377 		bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]);
3378 	bdev->md.flags = be32_to_cpu(buffer->flags);
3379 	bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid);
3380 
3381 	bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect);
3382 	bdev->md.al_offset = be32_to_cpu(buffer->al_offset);
3383 	bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset);
3384 
3385 	if (check_activity_log_stripe_size(device, buffer, &bdev->md))
3386 		goto err;
3387 	if (check_offsets_and_sizes(device, bdev))
3388 		goto err;
3389 
3390 	if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) {
3391 		drbd_err(device, "unexpected bm_offset: %d (expected %d)\n",
3392 		    be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset);
3393 		goto err;
3394 	}
3395 	if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) {
3396 		drbd_err(device, "unexpected md_size: %u (expected %u)\n",
3397 		    be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect);
3398 		goto err;
3399 	}
3400 
3401 	rv = NO_ERROR;
3402 
3403 	spin_lock_irq(&device->resource->req_lock);
3404 	if (device->state.conn < C_CONNECTED) {
3405 		unsigned int peer;
3406 		peer = be32_to_cpu(buffer->la_peer_max_bio_size);
3407 		peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE);
3408 		device->peer_max_bio_size = peer;
3409 	}
3410 	spin_unlock_irq(&device->resource->req_lock);
3411 
3412  err:
3413 	drbd_md_put_buffer(device);
3414 
3415 	return rv;
3416 }
3417 
3418 /**
3419  * drbd_md_mark_dirty() - Mark meta data super block as dirty
3420  * @device:	DRBD device.
3421  *
3422  * Call this function if you change anything that should be written to
3423  * the meta-data super block. This function sets MD_DIRTY, and starts a
3424  * timer that ensures that within five seconds you have to call drbd_md_sync().
3425  */
3426 #ifdef DEBUG
3427 void drbd_md_mark_dirty_(struct drbd_device *device, unsigned int line, const char *func)
3428 {
3429 	if (!test_and_set_bit(MD_DIRTY, &device->flags)) {
3430 		mod_timer(&device->md_sync_timer, jiffies + HZ);
3431 		device->last_md_mark_dirty.line = line;
3432 		device->last_md_mark_dirty.func = func;
3433 	}
3434 }
3435 #else
3436 void drbd_md_mark_dirty(struct drbd_device *device)
3437 {
3438 	if (!test_and_set_bit(MD_DIRTY, &device->flags))
3439 		mod_timer(&device->md_sync_timer, jiffies + 5*HZ);
3440 }
3441 #endif
3442 
3443 void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local)
3444 {
3445 	int i;
3446 
3447 	for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++)
3448 		device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i];
3449 }
3450 
3451 void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3452 {
3453 	if (idx == UI_CURRENT) {
3454 		if (device->state.role == R_PRIMARY)
3455 			val |= 1;
3456 		else
3457 			val &= ~((u64)1);
3458 
3459 		drbd_set_ed_uuid(device, val);
3460 	}
3461 
3462 	device->ldev->md.uuid[idx] = val;
3463 	drbd_md_mark_dirty(device);
3464 }
3465 
3466 void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3467 {
3468 	unsigned long flags;
3469 	spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3470 	__drbd_uuid_set(device, idx, val);
3471 	spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3472 }
3473 
3474 void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3475 {
3476 	unsigned long flags;
3477 	spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3478 	if (device->ldev->md.uuid[idx]) {
3479 		drbd_uuid_move_history(device);
3480 		device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx];
3481 	}
3482 	__drbd_uuid_set(device, idx, val);
3483 	spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3484 }
3485 
3486 /**
3487  * drbd_uuid_new_current() - Creates a new current UUID
3488  * @device:	DRBD device.
3489  *
3490  * Creates a new current UUID, and rotates the old current UUID into
3491  * the bitmap slot. Causes an incremental resync upon next connect.
3492  */
3493 void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local)
3494 {
3495 	u64 val;
3496 	unsigned long long bm_uuid;
3497 
3498 	get_random_bytes(&val, sizeof(u64));
3499 
3500 	spin_lock_irq(&device->ldev->md.uuid_lock);
3501 	bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3502 
3503 	if (bm_uuid)
3504 		drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3505 
3506 	device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT];
3507 	__drbd_uuid_set(device, UI_CURRENT, val);
3508 	spin_unlock_irq(&device->ldev->md.uuid_lock);
3509 
3510 	drbd_print_uuids(device, "new current UUID");
3511 	/* get it to stable storage _now_ */
3512 	drbd_md_sync(device);
3513 }
3514 
3515 void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local)
3516 {
3517 	unsigned long flags;
3518 	if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0)
3519 		return;
3520 
3521 	spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3522 	if (val == 0) {
3523 		drbd_uuid_move_history(device);
3524 		device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP];
3525 		device->ldev->md.uuid[UI_BITMAP] = 0;
3526 	} else {
3527 		unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3528 		if (bm_uuid)
3529 			drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3530 
3531 		device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1);
3532 	}
3533 	spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3534 
3535 	drbd_md_mark_dirty(device);
3536 }
3537 
3538 /**
3539  * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3540  * @device:	DRBD device.
3541  *
3542  * Sets all bits in the bitmap and writes the whole bitmap to stable storage.
3543  */
3544 int drbd_bmio_set_n_write(struct drbd_device *device) __must_hold(local)
3545 {
3546 	int rv = -EIO;
3547 
3548 	drbd_md_set_flag(device, MDF_FULL_SYNC);
3549 	drbd_md_sync(device);
3550 	drbd_bm_set_all(device);
3551 
3552 	rv = drbd_bm_write(device);
3553 
3554 	if (!rv) {
3555 		drbd_md_clear_flag(device, MDF_FULL_SYNC);
3556 		drbd_md_sync(device);
3557 	}
3558 
3559 	return rv;
3560 }
3561 
3562 /**
3563  * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3564  * @device:	DRBD device.
3565  *
3566  * Clears all bits in the bitmap and writes the whole bitmap to stable storage.
3567  */
3568 int drbd_bmio_clear_n_write(struct drbd_device *device) __must_hold(local)
3569 {
3570 	drbd_resume_al(device);
3571 	drbd_bm_clear_all(device);
3572 	return drbd_bm_write(device);
3573 }
3574 
3575 static int w_bitmap_io(struct drbd_work *w, int unused)
3576 {
3577 	struct drbd_device *device =
3578 		container_of(w, struct drbd_device, bm_io_work.w);
3579 	struct bm_io_work *work = &device->bm_io_work;
3580 	int rv = -EIO;
3581 
3582 	if (work->flags != BM_LOCKED_CHANGE_ALLOWED) {
3583 		int cnt = atomic_read(&device->ap_bio_cnt);
3584 		if (cnt)
3585 			drbd_err(device, "FIXME: ap_bio_cnt %d, expected 0; queued for '%s'\n",
3586 					cnt, work->why);
3587 	}
3588 
3589 	if (get_ldev(device)) {
3590 		drbd_bm_lock(device, work->why, work->flags);
3591 		rv = work->io_fn(device);
3592 		drbd_bm_unlock(device);
3593 		put_ldev(device);
3594 	}
3595 
3596 	clear_bit_unlock(BITMAP_IO, &device->flags);
3597 	wake_up(&device->misc_wait);
3598 
3599 	if (work->done)
3600 		work->done(device, rv);
3601 
3602 	clear_bit(BITMAP_IO_QUEUED, &device->flags);
3603 	work->why = NULL;
3604 	work->flags = 0;
3605 
3606 	return 0;
3607 }
3608 
3609 /**
3610  * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap
3611  * @device:	DRBD device.
3612  * @io_fn:	IO callback to be called when bitmap IO is possible
3613  * @done:	callback to be called after the bitmap IO was performed
3614  * @why:	Descriptive text of the reason for doing the IO
3615  *
3616  * While IO on the bitmap happens we freeze application IO thus we ensure
3617  * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be
3618  * called from worker context. It MUST NOT be used while a previous such
3619  * work is still pending!
3620  *
3621  * Its worker function encloses the call of io_fn() by get_ldev() and
3622  * put_ldev().
3623  */
3624 void drbd_queue_bitmap_io(struct drbd_device *device,
3625 			  int (*io_fn)(struct drbd_device *),
3626 			  void (*done)(struct drbd_device *, int),
3627 			  char *why, enum bm_flag flags)
3628 {
3629 	D_ASSERT(device, current == first_peer_device(device)->connection->worker.task);
3630 
3631 	D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags));
3632 	D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags));
3633 	D_ASSERT(device, list_empty(&device->bm_io_work.w.list));
3634 	if (device->bm_io_work.why)
3635 		drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n",
3636 			why, device->bm_io_work.why);
3637 
3638 	device->bm_io_work.io_fn = io_fn;
3639 	device->bm_io_work.done = done;
3640 	device->bm_io_work.why = why;
3641 	device->bm_io_work.flags = flags;
3642 
3643 	spin_lock_irq(&device->resource->req_lock);
3644 	set_bit(BITMAP_IO, &device->flags);
3645 	/* don't wait for pending application IO if the caller indicates that
3646 	 * application IO does not conflict anyways. */
3647 	if (flags == BM_LOCKED_CHANGE_ALLOWED || atomic_read(&device->ap_bio_cnt) == 0) {
3648 		if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags))
3649 			drbd_queue_work(&first_peer_device(device)->connection->sender_work,
3650 					&device->bm_io_work.w);
3651 	}
3652 	spin_unlock_irq(&device->resource->req_lock);
3653 }
3654 
3655 /**
3656  * drbd_bitmap_io() -  Does an IO operation on the whole bitmap
3657  * @device:	DRBD device.
3658  * @io_fn:	IO callback to be called when bitmap IO is possible
3659  * @why:	Descriptive text of the reason for doing the IO
3660  *
3661  * freezes application IO while that the actual IO operations runs. This
3662  * functions MAY NOT be called from worker context.
3663  */
3664 int drbd_bitmap_io(struct drbd_device *device, int (*io_fn)(struct drbd_device *),
3665 		char *why, enum bm_flag flags)
3666 {
3667 	/* Only suspend io, if some operation is supposed to be locked out */
3668 	const bool do_suspend_io = flags & (BM_DONT_CLEAR|BM_DONT_SET|BM_DONT_TEST);
3669 	int rv;
3670 
3671 	D_ASSERT(device, current != first_peer_device(device)->connection->worker.task);
3672 
3673 	if (do_suspend_io)
3674 		drbd_suspend_io(device);
3675 
3676 	drbd_bm_lock(device, why, flags);
3677 	rv = io_fn(device);
3678 	drbd_bm_unlock(device);
3679 
3680 	if (do_suspend_io)
3681 		drbd_resume_io(device);
3682 
3683 	return rv;
3684 }
3685 
3686 void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local)
3687 {
3688 	if ((device->ldev->md.flags & flag) != flag) {
3689 		drbd_md_mark_dirty(device);
3690 		device->ldev->md.flags |= flag;
3691 	}
3692 }
3693 
3694 void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local)
3695 {
3696 	if ((device->ldev->md.flags & flag) != 0) {
3697 		drbd_md_mark_dirty(device);
3698 		device->ldev->md.flags &= ~flag;
3699 	}
3700 }
3701 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag)
3702 {
3703 	return (bdev->md.flags & flag) != 0;
3704 }
3705 
3706 static void md_sync_timer_fn(unsigned long data)
3707 {
3708 	struct drbd_device *device = (struct drbd_device *) data;
3709 	drbd_device_post_work(device, MD_SYNC);
3710 }
3711 
3712 const char *cmdname(enum drbd_packet cmd)
3713 {
3714 	/* THINK may need to become several global tables
3715 	 * when we want to support more than
3716 	 * one PRO_VERSION */
3717 	static const char *cmdnames[] = {
3718 		[P_DATA]	        = "Data",
3719 		[P_WSAME]	        = "WriteSame",
3720 		[P_TRIM]	        = "Trim",
3721 		[P_DATA_REPLY]	        = "DataReply",
3722 		[P_RS_DATA_REPLY]	= "RSDataReply",
3723 		[P_BARRIER]	        = "Barrier",
3724 		[P_BITMAP]	        = "ReportBitMap",
3725 		[P_BECOME_SYNC_TARGET]  = "BecomeSyncTarget",
3726 		[P_BECOME_SYNC_SOURCE]  = "BecomeSyncSource",
3727 		[P_UNPLUG_REMOTE]	= "UnplugRemote",
3728 		[P_DATA_REQUEST]	= "DataRequest",
3729 		[P_RS_DATA_REQUEST]     = "RSDataRequest",
3730 		[P_SYNC_PARAM]	        = "SyncParam",
3731 		[P_SYNC_PARAM89]	= "SyncParam89",
3732 		[P_PROTOCOL]            = "ReportProtocol",
3733 		[P_UUIDS]	        = "ReportUUIDs",
3734 		[P_SIZES]	        = "ReportSizes",
3735 		[P_STATE]	        = "ReportState",
3736 		[P_SYNC_UUID]           = "ReportSyncUUID",
3737 		[P_AUTH_CHALLENGE]      = "AuthChallenge",
3738 		[P_AUTH_RESPONSE]	= "AuthResponse",
3739 		[P_PING]		= "Ping",
3740 		[P_PING_ACK]	        = "PingAck",
3741 		[P_RECV_ACK]	        = "RecvAck",
3742 		[P_WRITE_ACK]	        = "WriteAck",
3743 		[P_RS_WRITE_ACK]	= "RSWriteAck",
3744 		[P_SUPERSEDED]          = "Superseded",
3745 		[P_NEG_ACK]	        = "NegAck",
3746 		[P_NEG_DREPLY]	        = "NegDReply",
3747 		[P_NEG_RS_DREPLY]	= "NegRSDReply",
3748 		[P_BARRIER_ACK]	        = "BarrierAck",
3749 		[P_STATE_CHG_REQ]       = "StateChgRequest",
3750 		[P_STATE_CHG_REPLY]     = "StateChgReply",
3751 		[P_OV_REQUEST]          = "OVRequest",
3752 		[P_OV_REPLY]            = "OVReply",
3753 		[P_OV_RESULT]           = "OVResult",
3754 		[P_CSUM_RS_REQUEST]     = "CsumRSRequest",
3755 		[P_RS_IS_IN_SYNC]	= "CsumRSIsInSync",
3756 		[P_COMPRESSED_BITMAP]   = "CBitmap",
3757 		[P_DELAY_PROBE]         = "DelayProbe",
3758 		[P_OUT_OF_SYNC]		= "OutOfSync",
3759 		[P_RETRY_WRITE]		= "RetryWrite",
3760 		[P_RS_CANCEL]		= "RSCancel",
3761 		[P_CONN_ST_CHG_REQ]	= "conn_st_chg_req",
3762 		[P_CONN_ST_CHG_REPLY]	= "conn_st_chg_reply",
3763 		[P_RETRY_WRITE]		= "retry_write",
3764 		[P_PROTOCOL_UPDATE]	= "protocol_update",
3765 		[P_RS_THIN_REQ]         = "rs_thin_req",
3766 		[P_RS_DEALLOCATED]      = "rs_deallocated",
3767 
3768 		/* enum drbd_packet, but not commands - obsoleted flags:
3769 		 *	P_MAY_IGNORE
3770 		 *	P_MAX_OPT_CMD
3771 		 */
3772 	};
3773 
3774 	/* too big for the array: 0xfffX */
3775 	if (cmd == P_INITIAL_META)
3776 		return "InitialMeta";
3777 	if (cmd == P_INITIAL_DATA)
3778 		return "InitialData";
3779 	if (cmd == P_CONNECTION_FEATURES)
3780 		return "ConnectionFeatures";
3781 	if (cmd >= ARRAY_SIZE(cmdnames))
3782 		return "Unknown";
3783 	return cmdnames[cmd];
3784 }
3785 
3786 /**
3787  * drbd_wait_misc  -  wait for a request to make progress
3788  * @device:	device associated with the request
3789  * @i:		the struct drbd_interval embedded in struct drbd_request or
3790  *		struct drbd_peer_request
3791  */
3792 int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i)
3793 {
3794 	struct net_conf *nc;
3795 	DEFINE_WAIT(wait);
3796 	long timeout;
3797 
3798 	rcu_read_lock();
3799 	nc = rcu_dereference(first_peer_device(device)->connection->net_conf);
3800 	if (!nc) {
3801 		rcu_read_unlock();
3802 		return -ETIMEDOUT;
3803 	}
3804 	timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT;
3805 	rcu_read_unlock();
3806 
3807 	/* Indicate to wake up device->misc_wait on progress.  */
3808 	i->waiting = true;
3809 	prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE);
3810 	spin_unlock_irq(&device->resource->req_lock);
3811 	timeout = schedule_timeout(timeout);
3812 	finish_wait(&device->misc_wait, &wait);
3813 	spin_lock_irq(&device->resource->req_lock);
3814 	if (!timeout || device->state.conn < C_CONNECTED)
3815 		return -ETIMEDOUT;
3816 	if (signal_pending(current))
3817 		return -ERESTARTSYS;
3818 	return 0;
3819 }
3820 
3821 void lock_all_resources(void)
3822 {
3823 	struct drbd_resource *resource;
3824 	int __maybe_unused i = 0;
3825 
3826 	mutex_lock(&resources_mutex);
3827 	local_irq_disable();
3828 	for_each_resource(resource, &drbd_resources)
3829 		spin_lock_nested(&resource->req_lock, i++);
3830 }
3831 
3832 void unlock_all_resources(void)
3833 {
3834 	struct drbd_resource *resource;
3835 
3836 	for_each_resource(resource, &drbd_resources)
3837 		spin_unlock(&resource->req_lock);
3838 	local_irq_enable();
3839 	mutex_unlock(&resources_mutex);
3840 }
3841 
3842 #ifdef CONFIG_DRBD_FAULT_INJECTION
3843 /* Fault insertion support including random number generator shamelessly
3844  * stolen from kernel/rcutorture.c */
3845 struct fault_random_state {
3846 	unsigned long state;
3847 	unsigned long count;
3848 };
3849 
3850 #define FAULT_RANDOM_MULT 39916801  /* prime */
3851 #define FAULT_RANDOM_ADD	479001701 /* prime */
3852 #define FAULT_RANDOM_REFRESH 10000
3853 
3854 /*
3855  * Crude but fast random-number generator.  Uses a linear congruential
3856  * generator, with occasional help from get_random_bytes().
3857  */
3858 static unsigned long
3859 _drbd_fault_random(struct fault_random_state *rsp)
3860 {
3861 	long refresh;
3862 
3863 	if (!rsp->count--) {
3864 		get_random_bytes(&refresh, sizeof(refresh));
3865 		rsp->state += refresh;
3866 		rsp->count = FAULT_RANDOM_REFRESH;
3867 	}
3868 	rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD;
3869 	return swahw32(rsp->state);
3870 }
3871 
3872 static char *
3873 _drbd_fault_str(unsigned int type) {
3874 	static char *_faults[] = {
3875 		[DRBD_FAULT_MD_WR] = "Meta-data write",
3876 		[DRBD_FAULT_MD_RD] = "Meta-data read",
3877 		[DRBD_FAULT_RS_WR] = "Resync write",
3878 		[DRBD_FAULT_RS_RD] = "Resync read",
3879 		[DRBD_FAULT_DT_WR] = "Data write",
3880 		[DRBD_FAULT_DT_RD] = "Data read",
3881 		[DRBD_FAULT_DT_RA] = "Data read ahead",
3882 		[DRBD_FAULT_BM_ALLOC] = "BM allocation",
3883 		[DRBD_FAULT_AL_EE] = "EE allocation",
3884 		[DRBD_FAULT_RECEIVE] = "receive data corruption",
3885 	};
3886 
3887 	return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**";
3888 }
3889 
3890 unsigned int
3891 _drbd_insert_fault(struct drbd_device *device, unsigned int type)
3892 {
3893 	static struct fault_random_state rrs = {0, 0};
3894 
3895 	unsigned int ret = (
3896 		(fault_devs == 0 ||
3897 			((1 << device_to_minor(device)) & fault_devs) != 0) &&
3898 		(((_drbd_fault_random(&rrs) % 100) + 1) <= fault_rate));
3899 
3900 	if (ret) {
3901 		fault_count++;
3902 
3903 		if (__ratelimit(&drbd_ratelimit_state))
3904 			drbd_warn(device, "***Simulating %s failure\n",
3905 				_drbd_fault_str(type));
3906 	}
3907 
3908 	return ret;
3909 }
3910 #endif
3911 
3912 const char *drbd_buildtag(void)
3913 {
3914 	/* DRBD built from external sources has here a reference to the
3915 	   git hash of the source code. */
3916 
3917 	static char buildtag[38] = "\0uilt-in";
3918 
3919 	if (buildtag[0] == 0) {
3920 #ifdef MODULE
3921 		sprintf(buildtag, "srcversion: %-24s", THIS_MODULE->srcversion);
3922 #else
3923 		buildtag[0] = 'b';
3924 #endif
3925 	}
3926 
3927 	return buildtag;
3928 }
3929 
3930 module_init(drbd_init)
3931 module_exit(drbd_cleanup)
3932 
3933 EXPORT_SYMBOL(drbd_conn_str);
3934 EXPORT_SYMBOL(drbd_role_str);
3935 EXPORT_SYMBOL(drbd_disk_str);
3936 EXPORT_SYMBOL(drbd_set_st_err_str);
3937