1 /* 2 drbd.c 3 4 This file is part of DRBD by Philipp Reisner and Lars Ellenberg. 5 6 Copyright (C) 2001-2008, LINBIT Information Technologies GmbH. 7 Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>. 8 Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>. 9 10 Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev 11 from Logicworks, Inc. for making SDP replication support possible. 12 13 drbd is free software; you can redistribute it and/or modify 14 it under the terms of the GNU General Public License as published by 15 the Free Software Foundation; either version 2, or (at your option) 16 any later version. 17 18 drbd is distributed in the hope that it will be useful, 19 but WITHOUT ANY WARRANTY; without even the implied warranty of 20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 21 GNU General Public License for more details. 22 23 You should have received a copy of the GNU General Public License 24 along with drbd; see the file COPYING. If not, write to 25 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 26 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include <linux/module.h> 32 #include <linux/jiffies.h> 33 #include <linux/drbd.h> 34 #include <linux/uaccess.h> 35 #include <asm/types.h> 36 #include <net/sock.h> 37 #include <linux/ctype.h> 38 #include <linux/mutex.h> 39 #include <linux/fs.h> 40 #include <linux/file.h> 41 #include <linux/proc_fs.h> 42 #include <linux/init.h> 43 #include <linux/mm.h> 44 #include <linux/memcontrol.h> 45 #include <linux/mm_inline.h> 46 #include <linux/slab.h> 47 #include <linux/random.h> 48 #include <linux/reboot.h> 49 #include <linux/notifier.h> 50 #include <linux/kthread.h> 51 #include <linux/workqueue.h> 52 #define __KERNEL_SYSCALLS__ 53 #include <linux/unistd.h> 54 #include <linux/vmalloc.h> 55 #include <linux/sched/signal.h> 56 57 #include <linux/drbd_limits.h> 58 #include "drbd_int.h" 59 #include "drbd_protocol.h" 60 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */ 61 #include "drbd_vli.h" 62 #include "drbd_debugfs.h" 63 64 static DEFINE_MUTEX(drbd_main_mutex); 65 static int drbd_open(struct block_device *bdev, fmode_t mode); 66 static void drbd_release(struct gendisk *gd, fmode_t mode); 67 static void md_sync_timer_fn(unsigned long data); 68 static int w_bitmap_io(struct drbd_work *w, int unused); 69 70 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, " 71 "Lars Ellenberg <lars@linbit.com>"); 72 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION); 73 MODULE_VERSION(REL_VERSION); 74 MODULE_LICENSE("GPL"); 75 MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices (" 76 __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")"); 77 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR); 78 79 #include <linux/moduleparam.h> 80 /* allow_open_on_secondary */ 81 MODULE_PARM_DESC(allow_oos, "DONT USE!"); 82 /* thanks to these macros, if compiled into the kernel (not-module), 83 * this becomes the boot parameter drbd.minor_count */ 84 module_param(minor_count, uint, 0444); 85 module_param(disable_sendpage, bool, 0644); 86 module_param(allow_oos, bool, 0); 87 module_param(proc_details, int, 0644); 88 89 #ifdef CONFIG_DRBD_FAULT_INJECTION 90 int enable_faults; 91 int fault_rate; 92 static int fault_count; 93 int fault_devs; 94 /* bitmap of enabled faults */ 95 module_param(enable_faults, int, 0664); 96 /* fault rate % value - applies to all enabled faults */ 97 module_param(fault_rate, int, 0664); 98 /* count of faults inserted */ 99 module_param(fault_count, int, 0664); 100 /* bitmap of devices to insert faults on */ 101 module_param(fault_devs, int, 0644); 102 #endif 103 104 /* module parameter, defined */ 105 unsigned int minor_count = DRBD_MINOR_COUNT_DEF; 106 bool disable_sendpage; 107 bool allow_oos; 108 int proc_details; /* Detail level in proc drbd*/ 109 110 /* Module parameter for setting the user mode helper program 111 * to run. Default is /sbin/drbdadm */ 112 char usermode_helper[80] = "/sbin/drbdadm"; 113 114 module_param_string(usermode_helper, usermode_helper, sizeof(usermode_helper), 0644); 115 116 /* in 2.6.x, our device mapping and config info contains our virtual gendisks 117 * as member "struct gendisk *vdisk;" 118 */ 119 struct idr drbd_devices; 120 struct list_head drbd_resources; 121 struct mutex resources_mutex; 122 123 struct kmem_cache *drbd_request_cache; 124 struct kmem_cache *drbd_ee_cache; /* peer requests */ 125 struct kmem_cache *drbd_bm_ext_cache; /* bitmap extents */ 126 struct kmem_cache *drbd_al_ext_cache; /* activity log extents */ 127 mempool_t *drbd_request_mempool; 128 mempool_t *drbd_ee_mempool; 129 mempool_t *drbd_md_io_page_pool; 130 struct bio_set *drbd_md_io_bio_set; 131 132 /* I do not use a standard mempool, because: 133 1) I want to hand out the pre-allocated objects first. 134 2) I want to be able to interrupt sleeping allocation with a signal. 135 Note: This is a single linked list, the next pointer is the private 136 member of struct page. 137 */ 138 struct page *drbd_pp_pool; 139 spinlock_t drbd_pp_lock; 140 int drbd_pp_vacant; 141 wait_queue_head_t drbd_pp_wait; 142 143 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5); 144 145 static const struct block_device_operations drbd_ops = { 146 .owner = THIS_MODULE, 147 .open = drbd_open, 148 .release = drbd_release, 149 }; 150 151 struct bio *bio_alloc_drbd(gfp_t gfp_mask) 152 { 153 struct bio *bio; 154 155 if (!drbd_md_io_bio_set) 156 return bio_alloc(gfp_mask, 1); 157 158 bio = bio_alloc_bioset(gfp_mask, 1, drbd_md_io_bio_set); 159 if (!bio) 160 return NULL; 161 return bio; 162 } 163 164 #ifdef __CHECKER__ 165 /* When checking with sparse, and this is an inline function, sparse will 166 give tons of false positives. When this is a real functions sparse works. 167 */ 168 int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins) 169 { 170 int io_allowed; 171 172 atomic_inc(&device->local_cnt); 173 io_allowed = (device->state.disk >= mins); 174 if (!io_allowed) { 175 if (atomic_dec_and_test(&device->local_cnt)) 176 wake_up(&device->misc_wait); 177 } 178 return io_allowed; 179 } 180 181 #endif 182 183 /** 184 * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch 185 * @connection: DRBD connection. 186 * @barrier_nr: Expected identifier of the DRBD write barrier packet. 187 * @set_size: Expected number of requests before that barrier. 188 * 189 * In case the passed barrier_nr or set_size does not match the oldest 190 * epoch of not yet barrier-acked requests, this function will cause a 191 * termination of the connection. 192 */ 193 void tl_release(struct drbd_connection *connection, unsigned int barrier_nr, 194 unsigned int set_size) 195 { 196 struct drbd_request *r; 197 struct drbd_request *req = NULL; 198 int expect_epoch = 0; 199 int expect_size = 0; 200 201 spin_lock_irq(&connection->resource->req_lock); 202 203 /* find oldest not yet barrier-acked write request, 204 * count writes in its epoch. */ 205 list_for_each_entry(r, &connection->transfer_log, tl_requests) { 206 const unsigned s = r->rq_state; 207 if (!req) { 208 if (!(s & RQ_WRITE)) 209 continue; 210 if (!(s & RQ_NET_MASK)) 211 continue; 212 if (s & RQ_NET_DONE) 213 continue; 214 req = r; 215 expect_epoch = req->epoch; 216 expect_size ++; 217 } else { 218 if (r->epoch != expect_epoch) 219 break; 220 if (!(s & RQ_WRITE)) 221 continue; 222 /* if (s & RQ_DONE): not expected */ 223 /* if (!(s & RQ_NET_MASK)): not expected */ 224 expect_size++; 225 } 226 } 227 228 /* first some paranoia code */ 229 if (req == NULL) { 230 drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n", 231 barrier_nr); 232 goto bail; 233 } 234 if (expect_epoch != barrier_nr) { 235 drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n", 236 barrier_nr, expect_epoch); 237 goto bail; 238 } 239 240 if (expect_size != set_size) { 241 drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n", 242 barrier_nr, set_size, expect_size); 243 goto bail; 244 } 245 246 /* Clean up list of requests processed during current epoch. */ 247 /* this extra list walk restart is paranoia, 248 * to catch requests being barrier-acked "unexpectedly". 249 * It usually should find the same req again, or some READ preceding it. */ 250 list_for_each_entry(req, &connection->transfer_log, tl_requests) 251 if (req->epoch == expect_epoch) 252 break; 253 list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) { 254 if (req->epoch != expect_epoch) 255 break; 256 _req_mod(req, BARRIER_ACKED); 257 } 258 spin_unlock_irq(&connection->resource->req_lock); 259 260 return; 261 262 bail: 263 spin_unlock_irq(&connection->resource->req_lock); 264 conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD); 265 } 266 267 268 /** 269 * _tl_restart() - Walks the transfer log, and applies an action to all requests 270 * @connection: DRBD connection to operate on. 271 * @what: The action/event to perform with all request objects 272 * 273 * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO, 274 * RESTART_FROZEN_DISK_IO. 275 */ 276 /* must hold resource->req_lock */ 277 void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what) 278 { 279 struct drbd_request *req, *r; 280 281 list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) 282 _req_mod(req, what); 283 } 284 285 void tl_restart(struct drbd_connection *connection, enum drbd_req_event what) 286 { 287 spin_lock_irq(&connection->resource->req_lock); 288 _tl_restart(connection, what); 289 spin_unlock_irq(&connection->resource->req_lock); 290 } 291 292 /** 293 * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL 294 * @device: DRBD device. 295 * 296 * This is called after the connection to the peer was lost. The storage covered 297 * by the requests on the transfer gets marked as our of sync. Called from the 298 * receiver thread and the worker thread. 299 */ 300 void tl_clear(struct drbd_connection *connection) 301 { 302 tl_restart(connection, CONNECTION_LOST_WHILE_PENDING); 303 } 304 305 /** 306 * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL 307 * @device: DRBD device. 308 */ 309 void tl_abort_disk_io(struct drbd_device *device) 310 { 311 struct drbd_connection *connection = first_peer_device(device)->connection; 312 struct drbd_request *req, *r; 313 314 spin_lock_irq(&connection->resource->req_lock); 315 list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) { 316 if (!(req->rq_state & RQ_LOCAL_PENDING)) 317 continue; 318 if (req->device != device) 319 continue; 320 _req_mod(req, ABORT_DISK_IO); 321 } 322 spin_unlock_irq(&connection->resource->req_lock); 323 } 324 325 static int drbd_thread_setup(void *arg) 326 { 327 struct drbd_thread *thi = (struct drbd_thread *) arg; 328 struct drbd_resource *resource = thi->resource; 329 unsigned long flags; 330 int retval; 331 332 snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s", 333 thi->name[0], 334 resource->name); 335 336 restart: 337 retval = thi->function(thi); 338 339 spin_lock_irqsave(&thi->t_lock, flags); 340 341 /* if the receiver has been "EXITING", the last thing it did 342 * was set the conn state to "StandAlone", 343 * if now a re-connect request comes in, conn state goes C_UNCONNECTED, 344 * and receiver thread will be "started". 345 * drbd_thread_start needs to set "RESTARTING" in that case. 346 * t_state check and assignment needs to be within the same spinlock, 347 * so either thread_start sees EXITING, and can remap to RESTARTING, 348 * or thread_start see NONE, and can proceed as normal. 349 */ 350 351 if (thi->t_state == RESTARTING) { 352 drbd_info(resource, "Restarting %s thread\n", thi->name); 353 thi->t_state = RUNNING; 354 spin_unlock_irqrestore(&thi->t_lock, flags); 355 goto restart; 356 } 357 358 thi->task = NULL; 359 thi->t_state = NONE; 360 smp_mb(); 361 complete_all(&thi->stop); 362 spin_unlock_irqrestore(&thi->t_lock, flags); 363 364 drbd_info(resource, "Terminating %s\n", current->comm); 365 366 /* Release mod reference taken when thread was started */ 367 368 if (thi->connection) 369 kref_put(&thi->connection->kref, drbd_destroy_connection); 370 kref_put(&resource->kref, drbd_destroy_resource); 371 module_put(THIS_MODULE); 372 return retval; 373 } 374 375 static void drbd_thread_init(struct drbd_resource *resource, struct drbd_thread *thi, 376 int (*func) (struct drbd_thread *), const char *name) 377 { 378 spin_lock_init(&thi->t_lock); 379 thi->task = NULL; 380 thi->t_state = NONE; 381 thi->function = func; 382 thi->resource = resource; 383 thi->connection = NULL; 384 thi->name = name; 385 } 386 387 int drbd_thread_start(struct drbd_thread *thi) 388 { 389 struct drbd_resource *resource = thi->resource; 390 struct task_struct *nt; 391 unsigned long flags; 392 393 /* is used from state engine doing drbd_thread_stop_nowait, 394 * while holding the req lock irqsave */ 395 spin_lock_irqsave(&thi->t_lock, flags); 396 397 switch (thi->t_state) { 398 case NONE: 399 drbd_info(resource, "Starting %s thread (from %s [%d])\n", 400 thi->name, current->comm, current->pid); 401 402 /* Get ref on module for thread - this is released when thread exits */ 403 if (!try_module_get(THIS_MODULE)) { 404 drbd_err(resource, "Failed to get module reference in drbd_thread_start\n"); 405 spin_unlock_irqrestore(&thi->t_lock, flags); 406 return false; 407 } 408 409 kref_get(&resource->kref); 410 if (thi->connection) 411 kref_get(&thi->connection->kref); 412 413 init_completion(&thi->stop); 414 thi->reset_cpu_mask = 1; 415 thi->t_state = RUNNING; 416 spin_unlock_irqrestore(&thi->t_lock, flags); 417 flush_signals(current); /* otherw. may get -ERESTARTNOINTR */ 418 419 nt = kthread_create(drbd_thread_setup, (void *) thi, 420 "drbd_%c_%s", thi->name[0], thi->resource->name); 421 422 if (IS_ERR(nt)) { 423 drbd_err(resource, "Couldn't start thread\n"); 424 425 if (thi->connection) 426 kref_put(&thi->connection->kref, drbd_destroy_connection); 427 kref_put(&resource->kref, drbd_destroy_resource); 428 module_put(THIS_MODULE); 429 return false; 430 } 431 spin_lock_irqsave(&thi->t_lock, flags); 432 thi->task = nt; 433 thi->t_state = RUNNING; 434 spin_unlock_irqrestore(&thi->t_lock, flags); 435 wake_up_process(nt); 436 break; 437 case EXITING: 438 thi->t_state = RESTARTING; 439 drbd_info(resource, "Restarting %s thread (from %s [%d])\n", 440 thi->name, current->comm, current->pid); 441 /* fall through */ 442 case RUNNING: 443 case RESTARTING: 444 default: 445 spin_unlock_irqrestore(&thi->t_lock, flags); 446 break; 447 } 448 449 return true; 450 } 451 452 453 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait) 454 { 455 unsigned long flags; 456 457 enum drbd_thread_state ns = restart ? RESTARTING : EXITING; 458 459 /* may be called from state engine, holding the req lock irqsave */ 460 spin_lock_irqsave(&thi->t_lock, flags); 461 462 if (thi->t_state == NONE) { 463 spin_unlock_irqrestore(&thi->t_lock, flags); 464 if (restart) 465 drbd_thread_start(thi); 466 return; 467 } 468 469 if (thi->t_state != ns) { 470 if (thi->task == NULL) { 471 spin_unlock_irqrestore(&thi->t_lock, flags); 472 return; 473 } 474 475 thi->t_state = ns; 476 smp_mb(); 477 init_completion(&thi->stop); 478 if (thi->task != current) 479 force_sig(DRBD_SIGKILL, thi->task); 480 } 481 482 spin_unlock_irqrestore(&thi->t_lock, flags); 483 484 if (wait) 485 wait_for_completion(&thi->stop); 486 } 487 488 int conn_lowest_minor(struct drbd_connection *connection) 489 { 490 struct drbd_peer_device *peer_device; 491 int vnr = 0, minor = -1; 492 493 rcu_read_lock(); 494 peer_device = idr_get_next(&connection->peer_devices, &vnr); 495 if (peer_device) 496 minor = device_to_minor(peer_device->device); 497 rcu_read_unlock(); 498 499 return minor; 500 } 501 502 #ifdef CONFIG_SMP 503 /** 504 * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs 505 * 506 * Forces all threads of a resource onto the same CPU. This is beneficial for 507 * DRBD's performance. May be overwritten by user's configuration. 508 */ 509 static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask) 510 { 511 unsigned int *resources_per_cpu, min_index = ~0; 512 513 resources_per_cpu = kzalloc(nr_cpu_ids * sizeof(*resources_per_cpu), GFP_KERNEL); 514 if (resources_per_cpu) { 515 struct drbd_resource *resource; 516 unsigned int cpu, min = ~0; 517 518 rcu_read_lock(); 519 for_each_resource_rcu(resource, &drbd_resources) { 520 for_each_cpu(cpu, resource->cpu_mask) 521 resources_per_cpu[cpu]++; 522 } 523 rcu_read_unlock(); 524 for_each_online_cpu(cpu) { 525 if (resources_per_cpu[cpu] < min) { 526 min = resources_per_cpu[cpu]; 527 min_index = cpu; 528 } 529 } 530 kfree(resources_per_cpu); 531 } 532 if (min_index == ~0) { 533 cpumask_setall(*cpu_mask); 534 return; 535 } 536 cpumask_set_cpu(min_index, *cpu_mask); 537 } 538 539 /** 540 * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread 541 * @device: DRBD device. 542 * @thi: drbd_thread object 543 * 544 * call in the "main loop" of _all_ threads, no need for any mutex, current won't die 545 * prematurely. 546 */ 547 void drbd_thread_current_set_cpu(struct drbd_thread *thi) 548 { 549 struct drbd_resource *resource = thi->resource; 550 struct task_struct *p = current; 551 552 if (!thi->reset_cpu_mask) 553 return; 554 thi->reset_cpu_mask = 0; 555 set_cpus_allowed_ptr(p, resource->cpu_mask); 556 } 557 #else 558 #define drbd_calc_cpu_mask(A) ({}) 559 #endif 560 561 /** 562 * drbd_header_size - size of a packet header 563 * 564 * The header size is a multiple of 8, so any payload following the header is 565 * word aligned on 64-bit architectures. (The bitmap send and receive code 566 * relies on this.) 567 */ 568 unsigned int drbd_header_size(struct drbd_connection *connection) 569 { 570 if (connection->agreed_pro_version >= 100) { 571 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8)); 572 return sizeof(struct p_header100); 573 } else { 574 BUILD_BUG_ON(sizeof(struct p_header80) != 575 sizeof(struct p_header95)); 576 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8)); 577 return sizeof(struct p_header80); 578 } 579 } 580 581 static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size) 582 { 583 h->magic = cpu_to_be32(DRBD_MAGIC); 584 h->command = cpu_to_be16(cmd); 585 h->length = cpu_to_be16(size); 586 return sizeof(struct p_header80); 587 } 588 589 static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size) 590 { 591 h->magic = cpu_to_be16(DRBD_MAGIC_BIG); 592 h->command = cpu_to_be16(cmd); 593 h->length = cpu_to_be32(size); 594 return sizeof(struct p_header95); 595 } 596 597 static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd, 598 int size, int vnr) 599 { 600 h->magic = cpu_to_be32(DRBD_MAGIC_100); 601 h->volume = cpu_to_be16(vnr); 602 h->command = cpu_to_be16(cmd); 603 h->length = cpu_to_be32(size); 604 h->pad = 0; 605 return sizeof(struct p_header100); 606 } 607 608 static unsigned int prepare_header(struct drbd_connection *connection, int vnr, 609 void *buffer, enum drbd_packet cmd, int size) 610 { 611 if (connection->agreed_pro_version >= 100) 612 return prepare_header100(buffer, cmd, size, vnr); 613 else if (connection->agreed_pro_version >= 95 && 614 size > DRBD_MAX_SIZE_H80_PACKET) 615 return prepare_header95(buffer, cmd, size); 616 else 617 return prepare_header80(buffer, cmd, size); 618 } 619 620 static void *__conn_prepare_command(struct drbd_connection *connection, 621 struct drbd_socket *sock) 622 { 623 if (!sock->socket) 624 return NULL; 625 return sock->sbuf + drbd_header_size(connection); 626 } 627 628 void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock) 629 { 630 void *p; 631 632 mutex_lock(&sock->mutex); 633 p = __conn_prepare_command(connection, sock); 634 if (!p) 635 mutex_unlock(&sock->mutex); 636 637 return p; 638 } 639 640 void *drbd_prepare_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock) 641 { 642 return conn_prepare_command(peer_device->connection, sock); 643 } 644 645 static int __send_command(struct drbd_connection *connection, int vnr, 646 struct drbd_socket *sock, enum drbd_packet cmd, 647 unsigned int header_size, void *data, 648 unsigned int size) 649 { 650 int msg_flags; 651 int err; 652 653 /* 654 * Called with @data == NULL and the size of the data blocks in @size 655 * for commands that send data blocks. For those commands, omit the 656 * MSG_MORE flag: this will increase the likelihood that data blocks 657 * which are page aligned on the sender will end up page aligned on the 658 * receiver. 659 */ 660 msg_flags = data ? MSG_MORE : 0; 661 662 header_size += prepare_header(connection, vnr, sock->sbuf, cmd, 663 header_size + size); 664 err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size, 665 msg_flags); 666 if (data && !err) 667 err = drbd_send_all(connection, sock->socket, data, size, 0); 668 /* DRBD protocol "pings" are latency critical. 669 * This is supposed to trigger tcp_push_pending_frames() */ 670 if (!err && (cmd == P_PING || cmd == P_PING_ACK)) 671 drbd_tcp_nodelay(sock->socket); 672 673 return err; 674 } 675 676 static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock, 677 enum drbd_packet cmd, unsigned int header_size, 678 void *data, unsigned int size) 679 { 680 return __send_command(connection, 0, sock, cmd, header_size, data, size); 681 } 682 683 int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock, 684 enum drbd_packet cmd, unsigned int header_size, 685 void *data, unsigned int size) 686 { 687 int err; 688 689 err = __conn_send_command(connection, sock, cmd, header_size, data, size); 690 mutex_unlock(&sock->mutex); 691 return err; 692 } 693 694 int drbd_send_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock, 695 enum drbd_packet cmd, unsigned int header_size, 696 void *data, unsigned int size) 697 { 698 int err; 699 700 err = __send_command(peer_device->connection, peer_device->device->vnr, 701 sock, cmd, header_size, data, size); 702 mutex_unlock(&sock->mutex); 703 return err; 704 } 705 706 int drbd_send_ping(struct drbd_connection *connection) 707 { 708 struct drbd_socket *sock; 709 710 sock = &connection->meta; 711 if (!conn_prepare_command(connection, sock)) 712 return -EIO; 713 return conn_send_command(connection, sock, P_PING, 0, NULL, 0); 714 } 715 716 int drbd_send_ping_ack(struct drbd_connection *connection) 717 { 718 struct drbd_socket *sock; 719 720 sock = &connection->meta; 721 if (!conn_prepare_command(connection, sock)) 722 return -EIO; 723 return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0); 724 } 725 726 int drbd_send_sync_param(struct drbd_peer_device *peer_device) 727 { 728 struct drbd_socket *sock; 729 struct p_rs_param_95 *p; 730 int size; 731 const int apv = peer_device->connection->agreed_pro_version; 732 enum drbd_packet cmd; 733 struct net_conf *nc; 734 struct disk_conf *dc; 735 736 sock = &peer_device->connection->data; 737 p = drbd_prepare_command(peer_device, sock); 738 if (!p) 739 return -EIO; 740 741 rcu_read_lock(); 742 nc = rcu_dereference(peer_device->connection->net_conf); 743 744 size = apv <= 87 ? sizeof(struct p_rs_param) 745 : apv == 88 ? sizeof(struct p_rs_param) 746 + strlen(nc->verify_alg) + 1 747 : apv <= 94 ? sizeof(struct p_rs_param_89) 748 : /* apv >= 95 */ sizeof(struct p_rs_param_95); 749 750 cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM; 751 752 /* initialize verify_alg and csums_alg */ 753 memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX); 754 755 if (get_ldev(peer_device->device)) { 756 dc = rcu_dereference(peer_device->device->ldev->disk_conf); 757 p->resync_rate = cpu_to_be32(dc->resync_rate); 758 p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead); 759 p->c_delay_target = cpu_to_be32(dc->c_delay_target); 760 p->c_fill_target = cpu_to_be32(dc->c_fill_target); 761 p->c_max_rate = cpu_to_be32(dc->c_max_rate); 762 put_ldev(peer_device->device); 763 } else { 764 p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF); 765 p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF); 766 p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF); 767 p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF); 768 p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF); 769 } 770 771 if (apv >= 88) 772 strcpy(p->verify_alg, nc->verify_alg); 773 if (apv >= 89) 774 strcpy(p->csums_alg, nc->csums_alg); 775 rcu_read_unlock(); 776 777 return drbd_send_command(peer_device, sock, cmd, size, NULL, 0); 778 } 779 780 int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd) 781 { 782 struct drbd_socket *sock; 783 struct p_protocol *p; 784 struct net_conf *nc; 785 int size, cf; 786 787 sock = &connection->data; 788 p = __conn_prepare_command(connection, sock); 789 if (!p) 790 return -EIO; 791 792 rcu_read_lock(); 793 nc = rcu_dereference(connection->net_conf); 794 795 if (nc->tentative && connection->agreed_pro_version < 92) { 796 rcu_read_unlock(); 797 mutex_unlock(&sock->mutex); 798 drbd_err(connection, "--dry-run is not supported by peer"); 799 return -EOPNOTSUPP; 800 } 801 802 size = sizeof(*p); 803 if (connection->agreed_pro_version >= 87) 804 size += strlen(nc->integrity_alg) + 1; 805 806 p->protocol = cpu_to_be32(nc->wire_protocol); 807 p->after_sb_0p = cpu_to_be32(nc->after_sb_0p); 808 p->after_sb_1p = cpu_to_be32(nc->after_sb_1p); 809 p->after_sb_2p = cpu_to_be32(nc->after_sb_2p); 810 p->two_primaries = cpu_to_be32(nc->two_primaries); 811 cf = 0; 812 if (nc->discard_my_data) 813 cf |= CF_DISCARD_MY_DATA; 814 if (nc->tentative) 815 cf |= CF_DRY_RUN; 816 p->conn_flags = cpu_to_be32(cf); 817 818 if (connection->agreed_pro_version >= 87) 819 strcpy(p->integrity_alg, nc->integrity_alg); 820 rcu_read_unlock(); 821 822 return __conn_send_command(connection, sock, cmd, size, NULL, 0); 823 } 824 825 int drbd_send_protocol(struct drbd_connection *connection) 826 { 827 int err; 828 829 mutex_lock(&connection->data.mutex); 830 err = __drbd_send_protocol(connection, P_PROTOCOL); 831 mutex_unlock(&connection->data.mutex); 832 833 return err; 834 } 835 836 static int _drbd_send_uuids(struct drbd_peer_device *peer_device, u64 uuid_flags) 837 { 838 struct drbd_device *device = peer_device->device; 839 struct drbd_socket *sock; 840 struct p_uuids *p; 841 int i; 842 843 if (!get_ldev_if_state(device, D_NEGOTIATING)) 844 return 0; 845 846 sock = &peer_device->connection->data; 847 p = drbd_prepare_command(peer_device, sock); 848 if (!p) { 849 put_ldev(device); 850 return -EIO; 851 } 852 spin_lock_irq(&device->ldev->md.uuid_lock); 853 for (i = UI_CURRENT; i < UI_SIZE; i++) 854 p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]); 855 spin_unlock_irq(&device->ldev->md.uuid_lock); 856 857 device->comm_bm_set = drbd_bm_total_weight(device); 858 p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set); 859 rcu_read_lock(); 860 uuid_flags |= rcu_dereference(peer_device->connection->net_conf)->discard_my_data ? 1 : 0; 861 rcu_read_unlock(); 862 uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0; 863 uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0; 864 p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags); 865 866 put_ldev(device); 867 return drbd_send_command(peer_device, sock, P_UUIDS, sizeof(*p), NULL, 0); 868 } 869 870 int drbd_send_uuids(struct drbd_peer_device *peer_device) 871 { 872 return _drbd_send_uuids(peer_device, 0); 873 } 874 875 int drbd_send_uuids_skip_initial_sync(struct drbd_peer_device *peer_device) 876 { 877 return _drbd_send_uuids(peer_device, 8); 878 } 879 880 void drbd_print_uuids(struct drbd_device *device, const char *text) 881 { 882 if (get_ldev_if_state(device, D_NEGOTIATING)) { 883 u64 *uuid = device->ldev->md.uuid; 884 drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n", 885 text, 886 (unsigned long long)uuid[UI_CURRENT], 887 (unsigned long long)uuid[UI_BITMAP], 888 (unsigned long long)uuid[UI_HISTORY_START], 889 (unsigned long long)uuid[UI_HISTORY_END]); 890 put_ldev(device); 891 } else { 892 drbd_info(device, "%s effective data uuid: %016llX\n", 893 text, 894 (unsigned long long)device->ed_uuid); 895 } 896 } 897 898 void drbd_gen_and_send_sync_uuid(struct drbd_peer_device *peer_device) 899 { 900 struct drbd_device *device = peer_device->device; 901 struct drbd_socket *sock; 902 struct p_rs_uuid *p; 903 u64 uuid; 904 905 D_ASSERT(device, device->state.disk == D_UP_TO_DATE); 906 907 uuid = device->ldev->md.uuid[UI_BITMAP]; 908 if (uuid && uuid != UUID_JUST_CREATED) 909 uuid = uuid + UUID_NEW_BM_OFFSET; 910 else 911 get_random_bytes(&uuid, sizeof(u64)); 912 drbd_uuid_set(device, UI_BITMAP, uuid); 913 drbd_print_uuids(device, "updated sync UUID"); 914 drbd_md_sync(device); 915 916 sock = &peer_device->connection->data; 917 p = drbd_prepare_command(peer_device, sock); 918 if (p) { 919 p->uuid = cpu_to_be64(uuid); 920 drbd_send_command(peer_device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0); 921 } 922 } 923 924 /* communicated if (agreed_features & DRBD_FF_WSAME) */ 925 void assign_p_sizes_qlim(struct drbd_device *device, struct p_sizes *p, struct request_queue *q) 926 { 927 if (q) { 928 p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q)); 929 p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q)); 930 p->qlim->alignment_offset = cpu_to_be32(queue_alignment_offset(q)); 931 p->qlim->io_min = cpu_to_be32(queue_io_min(q)); 932 p->qlim->io_opt = cpu_to_be32(queue_io_opt(q)); 933 p->qlim->discard_enabled = blk_queue_discard(q); 934 p->qlim->write_same_capable = !!q->limits.max_write_same_sectors; 935 } else { 936 q = device->rq_queue; 937 p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q)); 938 p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q)); 939 p->qlim->alignment_offset = 0; 940 p->qlim->io_min = cpu_to_be32(queue_io_min(q)); 941 p->qlim->io_opt = cpu_to_be32(queue_io_opt(q)); 942 p->qlim->discard_enabled = 0; 943 p->qlim->write_same_capable = 0; 944 } 945 } 946 947 int drbd_send_sizes(struct drbd_peer_device *peer_device, int trigger_reply, enum dds_flags flags) 948 { 949 struct drbd_device *device = peer_device->device; 950 struct drbd_socket *sock; 951 struct p_sizes *p; 952 sector_t d_size, u_size; 953 int q_order_type; 954 unsigned int max_bio_size; 955 unsigned int packet_size; 956 957 sock = &peer_device->connection->data; 958 p = drbd_prepare_command(peer_device, sock); 959 if (!p) 960 return -EIO; 961 962 packet_size = sizeof(*p); 963 if (peer_device->connection->agreed_features & DRBD_FF_WSAME) 964 packet_size += sizeof(p->qlim[0]); 965 966 memset(p, 0, packet_size); 967 if (get_ldev_if_state(device, D_NEGOTIATING)) { 968 struct request_queue *q = bdev_get_queue(device->ldev->backing_bdev); 969 d_size = drbd_get_max_capacity(device->ldev); 970 rcu_read_lock(); 971 u_size = rcu_dereference(device->ldev->disk_conf)->disk_size; 972 rcu_read_unlock(); 973 q_order_type = drbd_queue_order_type(device); 974 max_bio_size = queue_max_hw_sectors(q) << 9; 975 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE); 976 assign_p_sizes_qlim(device, p, q); 977 put_ldev(device); 978 } else { 979 d_size = 0; 980 u_size = 0; 981 q_order_type = QUEUE_ORDERED_NONE; 982 max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */ 983 assign_p_sizes_qlim(device, p, NULL); 984 } 985 986 if (peer_device->connection->agreed_pro_version <= 94) 987 max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET); 988 else if (peer_device->connection->agreed_pro_version < 100) 989 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95); 990 991 p->d_size = cpu_to_be64(d_size); 992 p->u_size = cpu_to_be64(u_size); 993 p->c_size = cpu_to_be64(trigger_reply ? 0 : drbd_get_capacity(device->this_bdev)); 994 p->max_bio_size = cpu_to_be32(max_bio_size); 995 p->queue_order_type = cpu_to_be16(q_order_type); 996 p->dds_flags = cpu_to_be16(flags); 997 998 return drbd_send_command(peer_device, sock, P_SIZES, packet_size, NULL, 0); 999 } 1000 1001 /** 1002 * drbd_send_current_state() - Sends the drbd state to the peer 1003 * @peer_device: DRBD peer device. 1004 */ 1005 int drbd_send_current_state(struct drbd_peer_device *peer_device) 1006 { 1007 struct drbd_socket *sock; 1008 struct p_state *p; 1009 1010 sock = &peer_device->connection->data; 1011 p = drbd_prepare_command(peer_device, sock); 1012 if (!p) 1013 return -EIO; 1014 p->state = cpu_to_be32(peer_device->device->state.i); /* Within the send mutex */ 1015 return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0); 1016 } 1017 1018 /** 1019 * drbd_send_state() - After a state change, sends the new state to the peer 1020 * @peer_device: DRBD peer device. 1021 * @state: the state to send, not necessarily the current state. 1022 * 1023 * Each state change queues an "after_state_ch" work, which will eventually 1024 * send the resulting new state to the peer. If more state changes happen 1025 * between queuing and processing of the after_state_ch work, we still 1026 * want to send each intermediary state in the order it occurred. 1027 */ 1028 int drbd_send_state(struct drbd_peer_device *peer_device, union drbd_state state) 1029 { 1030 struct drbd_socket *sock; 1031 struct p_state *p; 1032 1033 sock = &peer_device->connection->data; 1034 p = drbd_prepare_command(peer_device, sock); 1035 if (!p) 1036 return -EIO; 1037 p->state = cpu_to_be32(state.i); /* Within the send mutex */ 1038 return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0); 1039 } 1040 1041 int drbd_send_state_req(struct drbd_peer_device *peer_device, union drbd_state mask, union drbd_state val) 1042 { 1043 struct drbd_socket *sock; 1044 struct p_req_state *p; 1045 1046 sock = &peer_device->connection->data; 1047 p = drbd_prepare_command(peer_device, sock); 1048 if (!p) 1049 return -EIO; 1050 p->mask = cpu_to_be32(mask.i); 1051 p->val = cpu_to_be32(val.i); 1052 return drbd_send_command(peer_device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0); 1053 } 1054 1055 int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val) 1056 { 1057 enum drbd_packet cmd; 1058 struct drbd_socket *sock; 1059 struct p_req_state *p; 1060 1061 cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ; 1062 sock = &connection->data; 1063 p = conn_prepare_command(connection, sock); 1064 if (!p) 1065 return -EIO; 1066 p->mask = cpu_to_be32(mask.i); 1067 p->val = cpu_to_be32(val.i); 1068 return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0); 1069 } 1070 1071 void drbd_send_sr_reply(struct drbd_peer_device *peer_device, enum drbd_state_rv retcode) 1072 { 1073 struct drbd_socket *sock; 1074 struct p_req_state_reply *p; 1075 1076 sock = &peer_device->connection->meta; 1077 p = drbd_prepare_command(peer_device, sock); 1078 if (p) { 1079 p->retcode = cpu_to_be32(retcode); 1080 drbd_send_command(peer_device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0); 1081 } 1082 } 1083 1084 void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode) 1085 { 1086 struct drbd_socket *sock; 1087 struct p_req_state_reply *p; 1088 enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY; 1089 1090 sock = &connection->meta; 1091 p = conn_prepare_command(connection, sock); 1092 if (p) { 1093 p->retcode = cpu_to_be32(retcode); 1094 conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0); 1095 } 1096 } 1097 1098 static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code) 1099 { 1100 BUG_ON(code & ~0xf); 1101 p->encoding = (p->encoding & ~0xf) | code; 1102 } 1103 1104 static void dcbp_set_start(struct p_compressed_bm *p, int set) 1105 { 1106 p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0); 1107 } 1108 1109 static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n) 1110 { 1111 BUG_ON(n & ~0x7); 1112 p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4); 1113 } 1114 1115 static int fill_bitmap_rle_bits(struct drbd_device *device, 1116 struct p_compressed_bm *p, 1117 unsigned int size, 1118 struct bm_xfer_ctx *c) 1119 { 1120 struct bitstream bs; 1121 unsigned long plain_bits; 1122 unsigned long tmp; 1123 unsigned long rl; 1124 unsigned len; 1125 unsigned toggle; 1126 int bits, use_rle; 1127 1128 /* may we use this feature? */ 1129 rcu_read_lock(); 1130 use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle; 1131 rcu_read_unlock(); 1132 if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90) 1133 return 0; 1134 1135 if (c->bit_offset >= c->bm_bits) 1136 return 0; /* nothing to do. */ 1137 1138 /* use at most thus many bytes */ 1139 bitstream_init(&bs, p->code, size, 0); 1140 memset(p->code, 0, size); 1141 /* plain bits covered in this code string */ 1142 plain_bits = 0; 1143 1144 /* p->encoding & 0x80 stores whether the first run length is set. 1145 * bit offset is implicit. 1146 * start with toggle == 2 to be able to tell the first iteration */ 1147 toggle = 2; 1148 1149 /* see how much plain bits we can stuff into one packet 1150 * using RLE and VLI. */ 1151 do { 1152 tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset) 1153 : _drbd_bm_find_next(device, c->bit_offset); 1154 if (tmp == -1UL) 1155 tmp = c->bm_bits; 1156 rl = tmp - c->bit_offset; 1157 1158 if (toggle == 2) { /* first iteration */ 1159 if (rl == 0) { 1160 /* the first checked bit was set, 1161 * store start value, */ 1162 dcbp_set_start(p, 1); 1163 /* but skip encoding of zero run length */ 1164 toggle = !toggle; 1165 continue; 1166 } 1167 dcbp_set_start(p, 0); 1168 } 1169 1170 /* paranoia: catch zero runlength. 1171 * can only happen if bitmap is modified while we scan it. */ 1172 if (rl == 0) { 1173 drbd_err(device, "unexpected zero runlength while encoding bitmap " 1174 "t:%u bo:%lu\n", toggle, c->bit_offset); 1175 return -1; 1176 } 1177 1178 bits = vli_encode_bits(&bs, rl); 1179 if (bits == -ENOBUFS) /* buffer full */ 1180 break; 1181 if (bits <= 0) { 1182 drbd_err(device, "error while encoding bitmap: %d\n", bits); 1183 return 0; 1184 } 1185 1186 toggle = !toggle; 1187 plain_bits += rl; 1188 c->bit_offset = tmp; 1189 } while (c->bit_offset < c->bm_bits); 1190 1191 len = bs.cur.b - p->code + !!bs.cur.bit; 1192 1193 if (plain_bits < (len << 3)) { 1194 /* incompressible with this method. 1195 * we need to rewind both word and bit position. */ 1196 c->bit_offset -= plain_bits; 1197 bm_xfer_ctx_bit_to_word_offset(c); 1198 c->bit_offset = c->word_offset * BITS_PER_LONG; 1199 return 0; 1200 } 1201 1202 /* RLE + VLI was able to compress it just fine. 1203 * update c->word_offset. */ 1204 bm_xfer_ctx_bit_to_word_offset(c); 1205 1206 /* store pad_bits */ 1207 dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7); 1208 1209 return len; 1210 } 1211 1212 /** 1213 * send_bitmap_rle_or_plain 1214 * 1215 * Return 0 when done, 1 when another iteration is needed, and a negative error 1216 * code upon failure. 1217 */ 1218 static int 1219 send_bitmap_rle_or_plain(struct drbd_device *device, struct bm_xfer_ctx *c) 1220 { 1221 struct drbd_socket *sock = &first_peer_device(device)->connection->data; 1222 unsigned int header_size = drbd_header_size(first_peer_device(device)->connection); 1223 struct p_compressed_bm *p = sock->sbuf + header_size; 1224 int len, err; 1225 1226 len = fill_bitmap_rle_bits(device, p, 1227 DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c); 1228 if (len < 0) 1229 return -EIO; 1230 1231 if (len) { 1232 dcbp_set_code(p, RLE_VLI_Bits); 1233 err = __send_command(first_peer_device(device)->connection, device->vnr, sock, 1234 P_COMPRESSED_BITMAP, sizeof(*p) + len, 1235 NULL, 0); 1236 c->packets[0]++; 1237 c->bytes[0] += header_size + sizeof(*p) + len; 1238 1239 if (c->bit_offset >= c->bm_bits) 1240 len = 0; /* DONE */ 1241 } else { 1242 /* was not compressible. 1243 * send a buffer full of plain text bits instead. */ 1244 unsigned int data_size; 1245 unsigned long num_words; 1246 unsigned long *p = sock->sbuf + header_size; 1247 1248 data_size = DRBD_SOCKET_BUFFER_SIZE - header_size; 1249 num_words = min_t(size_t, data_size / sizeof(*p), 1250 c->bm_words - c->word_offset); 1251 len = num_words * sizeof(*p); 1252 if (len) 1253 drbd_bm_get_lel(device, c->word_offset, num_words, p); 1254 err = __send_command(first_peer_device(device)->connection, device->vnr, sock, P_BITMAP, len, NULL, 0); 1255 c->word_offset += num_words; 1256 c->bit_offset = c->word_offset * BITS_PER_LONG; 1257 1258 c->packets[1]++; 1259 c->bytes[1] += header_size + len; 1260 1261 if (c->bit_offset > c->bm_bits) 1262 c->bit_offset = c->bm_bits; 1263 } 1264 if (!err) { 1265 if (len == 0) { 1266 INFO_bm_xfer_stats(device, "send", c); 1267 return 0; 1268 } else 1269 return 1; 1270 } 1271 return -EIO; 1272 } 1273 1274 /* See the comment at receive_bitmap() */ 1275 static int _drbd_send_bitmap(struct drbd_device *device) 1276 { 1277 struct bm_xfer_ctx c; 1278 int err; 1279 1280 if (!expect(device->bitmap)) 1281 return false; 1282 1283 if (get_ldev(device)) { 1284 if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) { 1285 drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n"); 1286 drbd_bm_set_all(device); 1287 if (drbd_bm_write(device)) { 1288 /* write_bm did fail! Leave full sync flag set in Meta P_DATA 1289 * but otherwise process as per normal - need to tell other 1290 * side that a full resync is required! */ 1291 drbd_err(device, "Failed to write bitmap to disk!\n"); 1292 } else { 1293 drbd_md_clear_flag(device, MDF_FULL_SYNC); 1294 drbd_md_sync(device); 1295 } 1296 } 1297 put_ldev(device); 1298 } 1299 1300 c = (struct bm_xfer_ctx) { 1301 .bm_bits = drbd_bm_bits(device), 1302 .bm_words = drbd_bm_words(device), 1303 }; 1304 1305 do { 1306 err = send_bitmap_rle_or_plain(device, &c); 1307 } while (err > 0); 1308 1309 return err == 0; 1310 } 1311 1312 int drbd_send_bitmap(struct drbd_device *device) 1313 { 1314 struct drbd_socket *sock = &first_peer_device(device)->connection->data; 1315 int err = -1; 1316 1317 mutex_lock(&sock->mutex); 1318 if (sock->socket) 1319 err = !_drbd_send_bitmap(device); 1320 mutex_unlock(&sock->mutex); 1321 return err; 1322 } 1323 1324 void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size) 1325 { 1326 struct drbd_socket *sock; 1327 struct p_barrier_ack *p; 1328 1329 if (connection->cstate < C_WF_REPORT_PARAMS) 1330 return; 1331 1332 sock = &connection->meta; 1333 p = conn_prepare_command(connection, sock); 1334 if (!p) 1335 return; 1336 p->barrier = barrier_nr; 1337 p->set_size = cpu_to_be32(set_size); 1338 conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0); 1339 } 1340 1341 /** 1342 * _drbd_send_ack() - Sends an ack packet 1343 * @device: DRBD device. 1344 * @cmd: Packet command code. 1345 * @sector: sector, needs to be in big endian byte order 1346 * @blksize: size in byte, needs to be in big endian byte order 1347 * @block_id: Id, big endian byte order 1348 */ 1349 static int _drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1350 u64 sector, u32 blksize, u64 block_id) 1351 { 1352 struct drbd_socket *sock; 1353 struct p_block_ack *p; 1354 1355 if (peer_device->device->state.conn < C_CONNECTED) 1356 return -EIO; 1357 1358 sock = &peer_device->connection->meta; 1359 p = drbd_prepare_command(peer_device, sock); 1360 if (!p) 1361 return -EIO; 1362 p->sector = sector; 1363 p->block_id = block_id; 1364 p->blksize = blksize; 1365 p->seq_num = cpu_to_be32(atomic_inc_return(&peer_device->device->packet_seq)); 1366 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0); 1367 } 1368 1369 /* dp->sector and dp->block_id already/still in network byte order, 1370 * data_size is payload size according to dp->head, 1371 * and may need to be corrected for digest size. */ 1372 void drbd_send_ack_dp(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1373 struct p_data *dp, int data_size) 1374 { 1375 if (peer_device->connection->peer_integrity_tfm) 1376 data_size -= crypto_ahash_digestsize(peer_device->connection->peer_integrity_tfm); 1377 _drbd_send_ack(peer_device, cmd, dp->sector, cpu_to_be32(data_size), 1378 dp->block_id); 1379 } 1380 1381 void drbd_send_ack_rp(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1382 struct p_block_req *rp) 1383 { 1384 _drbd_send_ack(peer_device, cmd, rp->sector, rp->blksize, rp->block_id); 1385 } 1386 1387 /** 1388 * drbd_send_ack() - Sends an ack packet 1389 * @device: DRBD device 1390 * @cmd: packet command code 1391 * @peer_req: peer request 1392 */ 1393 int drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1394 struct drbd_peer_request *peer_req) 1395 { 1396 return _drbd_send_ack(peer_device, cmd, 1397 cpu_to_be64(peer_req->i.sector), 1398 cpu_to_be32(peer_req->i.size), 1399 peer_req->block_id); 1400 } 1401 1402 /* This function misuses the block_id field to signal if the blocks 1403 * are is sync or not. */ 1404 int drbd_send_ack_ex(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1405 sector_t sector, int blksize, u64 block_id) 1406 { 1407 return _drbd_send_ack(peer_device, cmd, 1408 cpu_to_be64(sector), 1409 cpu_to_be32(blksize), 1410 cpu_to_be64(block_id)); 1411 } 1412 1413 int drbd_send_rs_deallocated(struct drbd_peer_device *peer_device, 1414 struct drbd_peer_request *peer_req) 1415 { 1416 struct drbd_socket *sock; 1417 struct p_block_desc *p; 1418 1419 sock = &peer_device->connection->data; 1420 p = drbd_prepare_command(peer_device, sock); 1421 if (!p) 1422 return -EIO; 1423 p->sector = cpu_to_be64(peer_req->i.sector); 1424 p->blksize = cpu_to_be32(peer_req->i.size); 1425 p->pad = 0; 1426 return drbd_send_command(peer_device, sock, P_RS_DEALLOCATED, sizeof(*p), NULL, 0); 1427 } 1428 1429 int drbd_send_drequest(struct drbd_peer_device *peer_device, int cmd, 1430 sector_t sector, int size, u64 block_id) 1431 { 1432 struct drbd_socket *sock; 1433 struct p_block_req *p; 1434 1435 sock = &peer_device->connection->data; 1436 p = drbd_prepare_command(peer_device, sock); 1437 if (!p) 1438 return -EIO; 1439 p->sector = cpu_to_be64(sector); 1440 p->block_id = block_id; 1441 p->blksize = cpu_to_be32(size); 1442 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0); 1443 } 1444 1445 int drbd_send_drequest_csum(struct drbd_peer_device *peer_device, sector_t sector, int size, 1446 void *digest, int digest_size, enum drbd_packet cmd) 1447 { 1448 struct drbd_socket *sock; 1449 struct p_block_req *p; 1450 1451 /* FIXME: Put the digest into the preallocated socket buffer. */ 1452 1453 sock = &peer_device->connection->data; 1454 p = drbd_prepare_command(peer_device, sock); 1455 if (!p) 1456 return -EIO; 1457 p->sector = cpu_to_be64(sector); 1458 p->block_id = ID_SYNCER /* unused */; 1459 p->blksize = cpu_to_be32(size); 1460 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), digest, digest_size); 1461 } 1462 1463 int drbd_send_ov_request(struct drbd_peer_device *peer_device, sector_t sector, int size) 1464 { 1465 struct drbd_socket *sock; 1466 struct p_block_req *p; 1467 1468 sock = &peer_device->connection->data; 1469 p = drbd_prepare_command(peer_device, sock); 1470 if (!p) 1471 return -EIO; 1472 p->sector = cpu_to_be64(sector); 1473 p->block_id = ID_SYNCER /* unused */; 1474 p->blksize = cpu_to_be32(size); 1475 return drbd_send_command(peer_device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0); 1476 } 1477 1478 /* called on sndtimeo 1479 * returns false if we should retry, 1480 * true if we think connection is dead 1481 */ 1482 static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock) 1483 { 1484 int drop_it; 1485 /* long elapsed = (long)(jiffies - device->last_received); */ 1486 1487 drop_it = connection->meta.socket == sock 1488 || !connection->ack_receiver.task 1489 || get_t_state(&connection->ack_receiver) != RUNNING 1490 || connection->cstate < C_WF_REPORT_PARAMS; 1491 1492 if (drop_it) 1493 return true; 1494 1495 drop_it = !--connection->ko_count; 1496 if (!drop_it) { 1497 drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n", 1498 current->comm, current->pid, connection->ko_count); 1499 request_ping(connection); 1500 } 1501 1502 return drop_it; /* && (device->state == R_PRIMARY) */; 1503 } 1504 1505 static void drbd_update_congested(struct drbd_connection *connection) 1506 { 1507 struct sock *sk = connection->data.socket->sk; 1508 if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5) 1509 set_bit(NET_CONGESTED, &connection->flags); 1510 } 1511 1512 /* The idea of sendpage seems to be to put some kind of reference 1513 * to the page into the skb, and to hand it over to the NIC. In 1514 * this process get_page() gets called. 1515 * 1516 * As soon as the page was really sent over the network put_page() 1517 * gets called by some part of the network layer. [ NIC driver? ] 1518 * 1519 * [ get_page() / put_page() increment/decrement the count. If count 1520 * reaches 0 the page will be freed. ] 1521 * 1522 * This works nicely with pages from FSs. 1523 * But this means that in protocol A we might signal IO completion too early! 1524 * 1525 * In order not to corrupt data during a resync we must make sure 1526 * that we do not reuse our own buffer pages (EEs) to early, therefore 1527 * we have the net_ee list. 1528 * 1529 * XFS seems to have problems, still, it submits pages with page_count == 0! 1530 * As a workaround, we disable sendpage on pages 1531 * with page_count == 0 or PageSlab. 1532 */ 1533 static int _drbd_no_send_page(struct drbd_peer_device *peer_device, struct page *page, 1534 int offset, size_t size, unsigned msg_flags) 1535 { 1536 struct socket *socket; 1537 void *addr; 1538 int err; 1539 1540 socket = peer_device->connection->data.socket; 1541 addr = kmap(page) + offset; 1542 err = drbd_send_all(peer_device->connection, socket, addr, size, msg_flags); 1543 kunmap(page); 1544 if (!err) 1545 peer_device->device->send_cnt += size >> 9; 1546 return err; 1547 } 1548 1549 static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *page, 1550 int offset, size_t size, unsigned msg_flags) 1551 { 1552 struct socket *socket = peer_device->connection->data.socket; 1553 mm_segment_t oldfs = get_fs(); 1554 int len = size; 1555 int err = -EIO; 1556 1557 /* e.g. XFS meta- & log-data is in slab pages, which have a 1558 * page_count of 0 and/or have PageSlab() set. 1559 * we cannot use send_page for those, as that does get_page(); 1560 * put_page(); and would cause either a VM_BUG directly, or 1561 * __page_cache_release a page that would actually still be referenced 1562 * by someone, leading to some obscure delayed Oops somewhere else. */ 1563 if (disable_sendpage || (page_count(page) < 1) || PageSlab(page)) 1564 return _drbd_no_send_page(peer_device, page, offset, size, msg_flags); 1565 1566 msg_flags |= MSG_NOSIGNAL; 1567 drbd_update_congested(peer_device->connection); 1568 set_fs(KERNEL_DS); 1569 do { 1570 int sent; 1571 1572 sent = socket->ops->sendpage(socket, page, offset, len, msg_flags); 1573 if (sent <= 0) { 1574 if (sent == -EAGAIN) { 1575 if (we_should_drop_the_connection(peer_device->connection, socket)) 1576 break; 1577 continue; 1578 } 1579 drbd_warn(peer_device->device, "%s: size=%d len=%d sent=%d\n", 1580 __func__, (int)size, len, sent); 1581 if (sent < 0) 1582 err = sent; 1583 break; 1584 } 1585 len -= sent; 1586 offset += sent; 1587 } while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/); 1588 set_fs(oldfs); 1589 clear_bit(NET_CONGESTED, &peer_device->connection->flags); 1590 1591 if (len == 0) { 1592 err = 0; 1593 peer_device->device->send_cnt += size >> 9; 1594 } 1595 return err; 1596 } 1597 1598 static int _drbd_send_bio(struct drbd_peer_device *peer_device, struct bio *bio) 1599 { 1600 struct bio_vec bvec; 1601 struct bvec_iter iter; 1602 1603 /* hint all but last page with MSG_MORE */ 1604 bio_for_each_segment(bvec, bio, iter) { 1605 int err; 1606 1607 err = _drbd_no_send_page(peer_device, bvec.bv_page, 1608 bvec.bv_offset, bvec.bv_len, 1609 bio_iter_last(bvec, iter) 1610 ? 0 : MSG_MORE); 1611 if (err) 1612 return err; 1613 /* REQ_OP_WRITE_SAME has only one segment */ 1614 if (bio_op(bio) == REQ_OP_WRITE_SAME) 1615 break; 1616 } 1617 return 0; 1618 } 1619 1620 static int _drbd_send_zc_bio(struct drbd_peer_device *peer_device, struct bio *bio) 1621 { 1622 struct bio_vec bvec; 1623 struct bvec_iter iter; 1624 1625 /* hint all but last page with MSG_MORE */ 1626 bio_for_each_segment(bvec, bio, iter) { 1627 int err; 1628 1629 err = _drbd_send_page(peer_device, bvec.bv_page, 1630 bvec.bv_offset, bvec.bv_len, 1631 bio_iter_last(bvec, iter) ? 0 : MSG_MORE); 1632 if (err) 1633 return err; 1634 /* REQ_OP_WRITE_SAME has only one segment */ 1635 if (bio_op(bio) == REQ_OP_WRITE_SAME) 1636 break; 1637 } 1638 return 0; 1639 } 1640 1641 static int _drbd_send_zc_ee(struct drbd_peer_device *peer_device, 1642 struct drbd_peer_request *peer_req) 1643 { 1644 struct page *page = peer_req->pages; 1645 unsigned len = peer_req->i.size; 1646 int err; 1647 1648 /* hint all but last page with MSG_MORE */ 1649 page_chain_for_each(page) { 1650 unsigned l = min_t(unsigned, len, PAGE_SIZE); 1651 1652 err = _drbd_send_page(peer_device, page, 0, l, 1653 page_chain_next(page) ? MSG_MORE : 0); 1654 if (err) 1655 return err; 1656 len -= l; 1657 } 1658 return 0; 1659 } 1660 1661 static u32 bio_flags_to_wire(struct drbd_connection *connection, 1662 struct bio *bio) 1663 { 1664 if (connection->agreed_pro_version >= 95) 1665 return (bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0) | 1666 (bio->bi_opf & REQ_FUA ? DP_FUA : 0) | 1667 (bio->bi_opf & REQ_PREFLUSH ? DP_FLUSH : 0) | 1668 (bio_op(bio) == REQ_OP_WRITE_SAME ? DP_WSAME : 0) | 1669 (bio_op(bio) == REQ_OP_DISCARD ? DP_DISCARD : 0) | 1670 (bio_op(bio) == REQ_OP_WRITE_ZEROES ? DP_DISCARD : 0); 1671 else 1672 return bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0; 1673 } 1674 1675 /* Used to send write or TRIM aka REQ_DISCARD requests 1676 * R_PRIMARY -> Peer (P_DATA, P_TRIM) 1677 */ 1678 int drbd_send_dblock(struct drbd_peer_device *peer_device, struct drbd_request *req) 1679 { 1680 struct drbd_device *device = peer_device->device; 1681 struct drbd_socket *sock; 1682 struct p_data *p; 1683 struct p_wsame *wsame = NULL; 1684 void *digest_out; 1685 unsigned int dp_flags = 0; 1686 int digest_size; 1687 int err; 1688 1689 sock = &peer_device->connection->data; 1690 p = drbd_prepare_command(peer_device, sock); 1691 digest_size = peer_device->connection->integrity_tfm ? 1692 crypto_ahash_digestsize(peer_device->connection->integrity_tfm) : 0; 1693 1694 if (!p) 1695 return -EIO; 1696 p->sector = cpu_to_be64(req->i.sector); 1697 p->block_id = (unsigned long)req; 1698 p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq)); 1699 dp_flags = bio_flags_to_wire(peer_device->connection, req->master_bio); 1700 if (device->state.conn >= C_SYNC_SOURCE && 1701 device->state.conn <= C_PAUSED_SYNC_T) 1702 dp_flags |= DP_MAY_SET_IN_SYNC; 1703 if (peer_device->connection->agreed_pro_version >= 100) { 1704 if (req->rq_state & RQ_EXP_RECEIVE_ACK) 1705 dp_flags |= DP_SEND_RECEIVE_ACK; 1706 /* During resync, request an explicit write ack, 1707 * even in protocol != C */ 1708 if (req->rq_state & RQ_EXP_WRITE_ACK 1709 || (dp_flags & DP_MAY_SET_IN_SYNC)) 1710 dp_flags |= DP_SEND_WRITE_ACK; 1711 } 1712 p->dp_flags = cpu_to_be32(dp_flags); 1713 1714 if (dp_flags & DP_DISCARD) { 1715 struct p_trim *t = (struct p_trim*)p; 1716 t->size = cpu_to_be32(req->i.size); 1717 err = __send_command(peer_device->connection, device->vnr, sock, P_TRIM, sizeof(*t), NULL, 0); 1718 goto out; 1719 } 1720 if (dp_flags & DP_WSAME) { 1721 /* this will only work if DRBD_FF_WSAME is set AND the 1722 * handshake agreed that all nodes and backend devices are 1723 * WRITE_SAME capable and agree on logical_block_size */ 1724 wsame = (struct p_wsame*)p; 1725 digest_out = wsame + 1; 1726 wsame->size = cpu_to_be32(req->i.size); 1727 } else 1728 digest_out = p + 1; 1729 1730 /* our digest is still only over the payload. 1731 * TRIM does not carry any payload. */ 1732 if (digest_size) 1733 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest_out); 1734 if (wsame) { 1735 err = 1736 __send_command(peer_device->connection, device->vnr, sock, P_WSAME, 1737 sizeof(*wsame) + digest_size, NULL, 1738 bio_iovec(req->master_bio).bv_len); 1739 } else 1740 err = 1741 __send_command(peer_device->connection, device->vnr, sock, P_DATA, 1742 sizeof(*p) + digest_size, NULL, req->i.size); 1743 if (!err) { 1744 /* For protocol A, we have to memcpy the payload into 1745 * socket buffers, as we may complete right away 1746 * as soon as we handed it over to tcp, at which point the data 1747 * pages may become invalid. 1748 * 1749 * For data-integrity enabled, we copy it as well, so we can be 1750 * sure that even if the bio pages may still be modified, it 1751 * won't change the data on the wire, thus if the digest checks 1752 * out ok after sending on this side, but does not fit on the 1753 * receiving side, we sure have detected corruption elsewhere. 1754 */ 1755 if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || digest_size) 1756 err = _drbd_send_bio(peer_device, req->master_bio); 1757 else 1758 err = _drbd_send_zc_bio(peer_device, req->master_bio); 1759 1760 /* double check digest, sometimes buffers have been modified in flight. */ 1761 if (digest_size > 0 && digest_size <= 64) { 1762 /* 64 byte, 512 bit, is the largest digest size 1763 * currently supported in kernel crypto. */ 1764 unsigned char digest[64]; 1765 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest); 1766 if (memcmp(p + 1, digest, digest_size)) { 1767 drbd_warn(device, 1768 "Digest mismatch, buffer modified by upper layers during write: %llus +%u\n", 1769 (unsigned long long)req->i.sector, req->i.size); 1770 } 1771 } /* else if (digest_size > 64) { 1772 ... Be noisy about digest too large ... 1773 } */ 1774 } 1775 out: 1776 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */ 1777 1778 return err; 1779 } 1780 1781 /* answer packet, used to send data back for read requests: 1782 * Peer -> (diskless) R_PRIMARY (P_DATA_REPLY) 1783 * C_SYNC_SOURCE -> C_SYNC_TARGET (P_RS_DATA_REPLY) 1784 */ 1785 int drbd_send_block(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1786 struct drbd_peer_request *peer_req) 1787 { 1788 struct drbd_device *device = peer_device->device; 1789 struct drbd_socket *sock; 1790 struct p_data *p; 1791 int err; 1792 int digest_size; 1793 1794 sock = &peer_device->connection->data; 1795 p = drbd_prepare_command(peer_device, sock); 1796 1797 digest_size = peer_device->connection->integrity_tfm ? 1798 crypto_ahash_digestsize(peer_device->connection->integrity_tfm) : 0; 1799 1800 if (!p) 1801 return -EIO; 1802 p->sector = cpu_to_be64(peer_req->i.sector); 1803 p->block_id = peer_req->block_id; 1804 p->seq_num = 0; /* unused */ 1805 p->dp_flags = 0; 1806 if (digest_size) 1807 drbd_csum_ee(peer_device->connection->integrity_tfm, peer_req, p + 1); 1808 err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*p) + digest_size, NULL, peer_req->i.size); 1809 if (!err) 1810 err = _drbd_send_zc_ee(peer_device, peer_req); 1811 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */ 1812 1813 return err; 1814 } 1815 1816 int drbd_send_out_of_sync(struct drbd_peer_device *peer_device, struct drbd_request *req) 1817 { 1818 struct drbd_socket *sock; 1819 struct p_block_desc *p; 1820 1821 sock = &peer_device->connection->data; 1822 p = drbd_prepare_command(peer_device, sock); 1823 if (!p) 1824 return -EIO; 1825 p->sector = cpu_to_be64(req->i.sector); 1826 p->blksize = cpu_to_be32(req->i.size); 1827 return drbd_send_command(peer_device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0); 1828 } 1829 1830 /* 1831 drbd_send distinguishes two cases: 1832 1833 Packets sent via the data socket "sock" 1834 and packets sent via the meta data socket "msock" 1835 1836 sock msock 1837 -----------------+-------------------------+------------------------------ 1838 timeout conf.timeout / 2 conf.timeout / 2 1839 timeout action send a ping via msock Abort communication 1840 and close all sockets 1841 */ 1842 1843 /* 1844 * you must have down()ed the appropriate [m]sock_mutex elsewhere! 1845 */ 1846 int drbd_send(struct drbd_connection *connection, struct socket *sock, 1847 void *buf, size_t size, unsigned msg_flags) 1848 { 1849 struct kvec iov = {.iov_base = buf, .iov_len = size}; 1850 struct msghdr msg; 1851 int rv, sent = 0; 1852 1853 if (!sock) 1854 return -EBADR; 1855 1856 /* THINK if (signal_pending) return ... ? */ 1857 1858 msg.msg_name = NULL; 1859 msg.msg_namelen = 0; 1860 msg.msg_control = NULL; 1861 msg.msg_controllen = 0; 1862 msg.msg_flags = msg_flags | MSG_NOSIGNAL; 1863 1864 iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, &iov, 1, size); 1865 1866 if (sock == connection->data.socket) { 1867 rcu_read_lock(); 1868 connection->ko_count = rcu_dereference(connection->net_conf)->ko_count; 1869 rcu_read_unlock(); 1870 drbd_update_congested(connection); 1871 } 1872 do { 1873 rv = sock_sendmsg(sock, &msg); 1874 if (rv == -EAGAIN) { 1875 if (we_should_drop_the_connection(connection, sock)) 1876 break; 1877 else 1878 continue; 1879 } 1880 if (rv == -EINTR) { 1881 flush_signals(current); 1882 rv = 0; 1883 } 1884 if (rv < 0) 1885 break; 1886 sent += rv; 1887 } while (sent < size); 1888 1889 if (sock == connection->data.socket) 1890 clear_bit(NET_CONGESTED, &connection->flags); 1891 1892 if (rv <= 0) { 1893 if (rv != -EAGAIN) { 1894 drbd_err(connection, "%s_sendmsg returned %d\n", 1895 sock == connection->meta.socket ? "msock" : "sock", 1896 rv); 1897 conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD); 1898 } else 1899 conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD); 1900 } 1901 1902 return sent; 1903 } 1904 1905 /** 1906 * drbd_send_all - Send an entire buffer 1907 * 1908 * Returns 0 upon success and a negative error value otherwise. 1909 */ 1910 int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer, 1911 size_t size, unsigned msg_flags) 1912 { 1913 int err; 1914 1915 err = drbd_send(connection, sock, buffer, size, msg_flags); 1916 if (err < 0) 1917 return err; 1918 if (err != size) 1919 return -EIO; 1920 return 0; 1921 } 1922 1923 static int drbd_open(struct block_device *bdev, fmode_t mode) 1924 { 1925 struct drbd_device *device = bdev->bd_disk->private_data; 1926 unsigned long flags; 1927 int rv = 0; 1928 1929 mutex_lock(&drbd_main_mutex); 1930 spin_lock_irqsave(&device->resource->req_lock, flags); 1931 /* to have a stable device->state.role 1932 * and no race with updating open_cnt */ 1933 1934 if (device->state.role != R_PRIMARY) { 1935 if (mode & FMODE_WRITE) 1936 rv = -EROFS; 1937 else if (!allow_oos) 1938 rv = -EMEDIUMTYPE; 1939 } 1940 1941 if (!rv) 1942 device->open_cnt++; 1943 spin_unlock_irqrestore(&device->resource->req_lock, flags); 1944 mutex_unlock(&drbd_main_mutex); 1945 1946 return rv; 1947 } 1948 1949 static void drbd_release(struct gendisk *gd, fmode_t mode) 1950 { 1951 struct drbd_device *device = gd->private_data; 1952 mutex_lock(&drbd_main_mutex); 1953 device->open_cnt--; 1954 mutex_unlock(&drbd_main_mutex); 1955 } 1956 1957 static void drbd_set_defaults(struct drbd_device *device) 1958 { 1959 /* Beware! The actual layout differs 1960 * between big endian and little endian */ 1961 device->state = (union drbd_dev_state) { 1962 { .role = R_SECONDARY, 1963 .peer = R_UNKNOWN, 1964 .conn = C_STANDALONE, 1965 .disk = D_DISKLESS, 1966 .pdsk = D_UNKNOWN, 1967 } }; 1968 } 1969 1970 void drbd_init_set_defaults(struct drbd_device *device) 1971 { 1972 /* the memset(,0,) did most of this. 1973 * note: only assignments, no allocation in here */ 1974 1975 drbd_set_defaults(device); 1976 1977 atomic_set(&device->ap_bio_cnt, 0); 1978 atomic_set(&device->ap_actlog_cnt, 0); 1979 atomic_set(&device->ap_pending_cnt, 0); 1980 atomic_set(&device->rs_pending_cnt, 0); 1981 atomic_set(&device->unacked_cnt, 0); 1982 atomic_set(&device->local_cnt, 0); 1983 atomic_set(&device->pp_in_use_by_net, 0); 1984 atomic_set(&device->rs_sect_in, 0); 1985 atomic_set(&device->rs_sect_ev, 0); 1986 atomic_set(&device->ap_in_flight, 0); 1987 atomic_set(&device->md_io.in_use, 0); 1988 1989 mutex_init(&device->own_state_mutex); 1990 device->state_mutex = &device->own_state_mutex; 1991 1992 spin_lock_init(&device->al_lock); 1993 spin_lock_init(&device->peer_seq_lock); 1994 1995 INIT_LIST_HEAD(&device->active_ee); 1996 INIT_LIST_HEAD(&device->sync_ee); 1997 INIT_LIST_HEAD(&device->done_ee); 1998 INIT_LIST_HEAD(&device->read_ee); 1999 INIT_LIST_HEAD(&device->net_ee); 2000 INIT_LIST_HEAD(&device->resync_reads); 2001 INIT_LIST_HEAD(&device->resync_work.list); 2002 INIT_LIST_HEAD(&device->unplug_work.list); 2003 INIT_LIST_HEAD(&device->bm_io_work.w.list); 2004 INIT_LIST_HEAD(&device->pending_master_completion[0]); 2005 INIT_LIST_HEAD(&device->pending_master_completion[1]); 2006 INIT_LIST_HEAD(&device->pending_completion[0]); 2007 INIT_LIST_HEAD(&device->pending_completion[1]); 2008 2009 device->resync_work.cb = w_resync_timer; 2010 device->unplug_work.cb = w_send_write_hint; 2011 device->bm_io_work.w.cb = w_bitmap_io; 2012 2013 init_timer(&device->resync_timer); 2014 init_timer(&device->md_sync_timer); 2015 init_timer(&device->start_resync_timer); 2016 init_timer(&device->request_timer); 2017 device->resync_timer.function = resync_timer_fn; 2018 device->resync_timer.data = (unsigned long) device; 2019 device->md_sync_timer.function = md_sync_timer_fn; 2020 device->md_sync_timer.data = (unsigned long) device; 2021 device->start_resync_timer.function = start_resync_timer_fn; 2022 device->start_resync_timer.data = (unsigned long) device; 2023 device->request_timer.function = request_timer_fn; 2024 device->request_timer.data = (unsigned long) device; 2025 2026 init_waitqueue_head(&device->misc_wait); 2027 init_waitqueue_head(&device->state_wait); 2028 init_waitqueue_head(&device->ee_wait); 2029 init_waitqueue_head(&device->al_wait); 2030 init_waitqueue_head(&device->seq_wait); 2031 2032 device->resync_wenr = LC_FREE; 2033 device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE; 2034 device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE; 2035 } 2036 2037 void drbd_device_cleanup(struct drbd_device *device) 2038 { 2039 int i; 2040 if (first_peer_device(device)->connection->receiver.t_state != NONE) 2041 drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n", 2042 first_peer_device(device)->connection->receiver.t_state); 2043 2044 device->al_writ_cnt = 2045 device->bm_writ_cnt = 2046 device->read_cnt = 2047 device->recv_cnt = 2048 device->send_cnt = 2049 device->writ_cnt = 2050 device->p_size = 2051 device->rs_start = 2052 device->rs_total = 2053 device->rs_failed = 0; 2054 device->rs_last_events = 0; 2055 device->rs_last_sect_ev = 0; 2056 for (i = 0; i < DRBD_SYNC_MARKS; i++) { 2057 device->rs_mark_left[i] = 0; 2058 device->rs_mark_time[i] = 0; 2059 } 2060 D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL); 2061 2062 drbd_set_my_capacity(device, 0); 2063 if (device->bitmap) { 2064 /* maybe never allocated. */ 2065 drbd_bm_resize(device, 0, 1); 2066 drbd_bm_cleanup(device); 2067 } 2068 2069 drbd_backing_dev_free(device, device->ldev); 2070 device->ldev = NULL; 2071 2072 clear_bit(AL_SUSPENDED, &device->flags); 2073 2074 D_ASSERT(device, list_empty(&device->active_ee)); 2075 D_ASSERT(device, list_empty(&device->sync_ee)); 2076 D_ASSERT(device, list_empty(&device->done_ee)); 2077 D_ASSERT(device, list_empty(&device->read_ee)); 2078 D_ASSERT(device, list_empty(&device->net_ee)); 2079 D_ASSERT(device, list_empty(&device->resync_reads)); 2080 D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q)); 2081 D_ASSERT(device, list_empty(&device->resync_work.list)); 2082 D_ASSERT(device, list_empty(&device->unplug_work.list)); 2083 2084 drbd_set_defaults(device); 2085 } 2086 2087 2088 static void drbd_destroy_mempools(void) 2089 { 2090 struct page *page; 2091 2092 while (drbd_pp_pool) { 2093 page = drbd_pp_pool; 2094 drbd_pp_pool = (struct page *)page_private(page); 2095 __free_page(page); 2096 drbd_pp_vacant--; 2097 } 2098 2099 /* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */ 2100 2101 if (drbd_md_io_bio_set) 2102 bioset_free(drbd_md_io_bio_set); 2103 if (drbd_md_io_page_pool) 2104 mempool_destroy(drbd_md_io_page_pool); 2105 if (drbd_ee_mempool) 2106 mempool_destroy(drbd_ee_mempool); 2107 if (drbd_request_mempool) 2108 mempool_destroy(drbd_request_mempool); 2109 if (drbd_ee_cache) 2110 kmem_cache_destroy(drbd_ee_cache); 2111 if (drbd_request_cache) 2112 kmem_cache_destroy(drbd_request_cache); 2113 if (drbd_bm_ext_cache) 2114 kmem_cache_destroy(drbd_bm_ext_cache); 2115 if (drbd_al_ext_cache) 2116 kmem_cache_destroy(drbd_al_ext_cache); 2117 2118 drbd_md_io_bio_set = NULL; 2119 drbd_md_io_page_pool = NULL; 2120 drbd_ee_mempool = NULL; 2121 drbd_request_mempool = NULL; 2122 drbd_ee_cache = NULL; 2123 drbd_request_cache = NULL; 2124 drbd_bm_ext_cache = NULL; 2125 drbd_al_ext_cache = NULL; 2126 2127 return; 2128 } 2129 2130 static int drbd_create_mempools(void) 2131 { 2132 struct page *page; 2133 const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * minor_count; 2134 int i; 2135 2136 /* prepare our caches and mempools */ 2137 drbd_request_mempool = NULL; 2138 drbd_ee_cache = NULL; 2139 drbd_request_cache = NULL; 2140 drbd_bm_ext_cache = NULL; 2141 drbd_al_ext_cache = NULL; 2142 drbd_pp_pool = NULL; 2143 drbd_md_io_page_pool = NULL; 2144 drbd_md_io_bio_set = NULL; 2145 2146 /* caches */ 2147 drbd_request_cache = kmem_cache_create( 2148 "drbd_req", sizeof(struct drbd_request), 0, 0, NULL); 2149 if (drbd_request_cache == NULL) 2150 goto Enomem; 2151 2152 drbd_ee_cache = kmem_cache_create( 2153 "drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL); 2154 if (drbd_ee_cache == NULL) 2155 goto Enomem; 2156 2157 drbd_bm_ext_cache = kmem_cache_create( 2158 "drbd_bm", sizeof(struct bm_extent), 0, 0, NULL); 2159 if (drbd_bm_ext_cache == NULL) 2160 goto Enomem; 2161 2162 drbd_al_ext_cache = kmem_cache_create( 2163 "drbd_al", sizeof(struct lc_element), 0, 0, NULL); 2164 if (drbd_al_ext_cache == NULL) 2165 goto Enomem; 2166 2167 /* mempools */ 2168 drbd_md_io_bio_set = bioset_create(DRBD_MIN_POOL_PAGES, 0); 2169 if (drbd_md_io_bio_set == NULL) 2170 goto Enomem; 2171 2172 drbd_md_io_page_pool = mempool_create_page_pool(DRBD_MIN_POOL_PAGES, 0); 2173 if (drbd_md_io_page_pool == NULL) 2174 goto Enomem; 2175 2176 drbd_request_mempool = mempool_create_slab_pool(number, 2177 drbd_request_cache); 2178 if (drbd_request_mempool == NULL) 2179 goto Enomem; 2180 2181 drbd_ee_mempool = mempool_create_slab_pool(number, drbd_ee_cache); 2182 if (drbd_ee_mempool == NULL) 2183 goto Enomem; 2184 2185 /* drbd's page pool */ 2186 spin_lock_init(&drbd_pp_lock); 2187 2188 for (i = 0; i < number; i++) { 2189 page = alloc_page(GFP_HIGHUSER); 2190 if (!page) 2191 goto Enomem; 2192 set_page_private(page, (unsigned long)drbd_pp_pool); 2193 drbd_pp_pool = page; 2194 } 2195 drbd_pp_vacant = number; 2196 2197 return 0; 2198 2199 Enomem: 2200 drbd_destroy_mempools(); /* in case we allocated some */ 2201 return -ENOMEM; 2202 } 2203 2204 static void drbd_release_all_peer_reqs(struct drbd_device *device) 2205 { 2206 int rr; 2207 2208 rr = drbd_free_peer_reqs(device, &device->active_ee); 2209 if (rr) 2210 drbd_err(device, "%d EEs in active list found!\n", rr); 2211 2212 rr = drbd_free_peer_reqs(device, &device->sync_ee); 2213 if (rr) 2214 drbd_err(device, "%d EEs in sync list found!\n", rr); 2215 2216 rr = drbd_free_peer_reqs(device, &device->read_ee); 2217 if (rr) 2218 drbd_err(device, "%d EEs in read list found!\n", rr); 2219 2220 rr = drbd_free_peer_reqs(device, &device->done_ee); 2221 if (rr) 2222 drbd_err(device, "%d EEs in done list found!\n", rr); 2223 2224 rr = drbd_free_peer_reqs(device, &device->net_ee); 2225 if (rr) 2226 drbd_err(device, "%d EEs in net list found!\n", rr); 2227 } 2228 2229 /* caution. no locking. */ 2230 void drbd_destroy_device(struct kref *kref) 2231 { 2232 struct drbd_device *device = container_of(kref, struct drbd_device, kref); 2233 struct drbd_resource *resource = device->resource; 2234 struct drbd_peer_device *peer_device, *tmp_peer_device; 2235 2236 del_timer_sync(&device->request_timer); 2237 2238 /* paranoia asserts */ 2239 D_ASSERT(device, device->open_cnt == 0); 2240 /* end paranoia asserts */ 2241 2242 /* cleanup stuff that may have been allocated during 2243 * device (re-)configuration or state changes */ 2244 2245 if (device->this_bdev) 2246 bdput(device->this_bdev); 2247 2248 drbd_backing_dev_free(device, device->ldev); 2249 device->ldev = NULL; 2250 2251 drbd_release_all_peer_reqs(device); 2252 2253 lc_destroy(device->act_log); 2254 lc_destroy(device->resync); 2255 2256 kfree(device->p_uuid); 2257 /* device->p_uuid = NULL; */ 2258 2259 if (device->bitmap) /* should no longer be there. */ 2260 drbd_bm_cleanup(device); 2261 __free_page(device->md_io.page); 2262 put_disk(device->vdisk); 2263 blk_cleanup_queue(device->rq_queue); 2264 kfree(device->rs_plan_s); 2265 2266 /* not for_each_connection(connection, resource): 2267 * those may have been cleaned up and disassociated already. 2268 */ 2269 for_each_peer_device_safe(peer_device, tmp_peer_device, device) { 2270 kref_put(&peer_device->connection->kref, drbd_destroy_connection); 2271 kfree(peer_device); 2272 } 2273 memset(device, 0xfd, sizeof(*device)); 2274 kfree(device); 2275 kref_put(&resource->kref, drbd_destroy_resource); 2276 } 2277 2278 /* One global retry thread, if we need to push back some bio and have it 2279 * reinserted through our make request function. 2280 */ 2281 static struct retry_worker { 2282 struct workqueue_struct *wq; 2283 struct work_struct worker; 2284 2285 spinlock_t lock; 2286 struct list_head writes; 2287 } retry; 2288 2289 static void do_retry(struct work_struct *ws) 2290 { 2291 struct retry_worker *retry = container_of(ws, struct retry_worker, worker); 2292 LIST_HEAD(writes); 2293 struct drbd_request *req, *tmp; 2294 2295 spin_lock_irq(&retry->lock); 2296 list_splice_init(&retry->writes, &writes); 2297 spin_unlock_irq(&retry->lock); 2298 2299 list_for_each_entry_safe(req, tmp, &writes, tl_requests) { 2300 struct drbd_device *device = req->device; 2301 struct bio *bio = req->master_bio; 2302 unsigned long start_jif = req->start_jif; 2303 bool expected; 2304 2305 expected = 2306 expect(atomic_read(&req->completion_ref) == 0) && 2307 expect(req->rq_state & RQ_POSTPONED) && 2308 expect((req->rq_state & RQ_LOCAL_PENDING) == 0 || 2309 (req->rq_state & RQ_LOCAL_ABORTED) != 0); 2310 2311 if (!expected) 2312 drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n", 2313 req, atomic_read(&req->completion_ref), 2314 req->rq_state); 2315 2316 /* We still need to put one kref associated with the 2317 * "completion_ref" going zero in the code path that queued it 2318 * here. The request object may still be referenced by a 2319 * frozen local req->private_bio, in case we force-detached. 2320 */ 2321 kref_put(&req->kref, drbd_req_destroy); 2322 2323 /* A single suspended or otherwise blocking device may stall 2324 * all others as well. Fortunately, this code path is to 2325 * recover from a situation that "should not happen": 2326 * concurrent writes in multi-primary setup. 2327 * In a "normal" lifecycle, this workqueue is supposed to be 2328 * destroyed without ever doing anything. 2329 * If it turns out to be an issue anyways, we can do per 2330 * resource (replication group) or per device (minor) retry 2331 * workqueues instead. 2332 */ 2333 2334 /* We are not just doing generic_make_request(), 2335 * as we want to keep the start_time information. */ 2336 inc_ap_bio(device); 2337 __drbd_make_request(device, bio, start_jif); 2338 } 2339 } 2340 2341 /* called via drbd_req_put_completion_ref(), 2342 * holds resource->req_lock */ 2343 void drbd_restart_request(struct drbd_request *req) 2344 { 2345 unsigned long flags; 2346 spin_lock_irqsave(&retry.lock, flags); 2347 list_move_tail(&req->tl_requests, &retry.writes); 2348 spin_unlock_irqrestore(&retry.lock, flags); 2349 2350 /* Drop the extra reference that would otherwise 2351 * have been dropped by complete_master_bio. 2352 * do_retry() needs to grab a new one. */ 2353 dec_ap_bio(req->device); 2354 2355 queue_work(retry.wq, &retry.worker); 2356 } 2357 2358 void drbd_destroy_resource(struct kref *kref) 2359 { 2360 struct drbd_resource *resource = 2361 container_of(kref, struct drbd_resource, kref); 2362 2363 idr_destroy(&resource->devices); 2364 free_cpumask_var(resource->cpu_mask); 2365 kfree(resource->name); 2366 memset(resource, 0xf2, sizeof(*resource)); 2367 kfree(resource); 2368 } 2369 2370 void drbd_free_resource(struct drbd_resource *resource) 2371 { 2372 struct drbd_connection *connection, *tmp; 2373 2374 for_each_connection_safe(connection, tmp, resource) { 2375 list_del(&connection->connections); 2376 drbd_debugfs_connection_cleanup(connection); 2377 kref_put(&connection->kref, drbd_destroy_connection); 2378 } 2379 drbd_debugfs_resource_cleanup(resource); 2380 kref_put(&resource->kref, drbd_destroy_resource); 2381 } 2382 2383 static void drbd_cleanup(void) 2384 { 2385 unsigned int i; 2386 struct drbd_device *device; 2387 struct drbd_resource *resource, *tmp; 2388 2389 /* first remove proc, 2390 * drbdsetup uses it's presence to detect 2391 * whether DRBD is loaded. 2392 * If we would get stuck in proc removal, 2393 * but have netlink already deregistered, 2394 * some drbdsetup commands may wait forever 2395 * for an answer. 2396 */ 2397 if (drbd_proc) 2398 remove_proc_entry("drbd", NULL); 2399 2400 if (retry.wq) 2401 destroy_workqueue(retry.wq); 2402 2403 drbd_genl_unregister(); 2404 drbd_debugfs_cleanup(); 2405 2406 idr_for_each_entry(&drbd_devices, device, i) 2407 drbd_delete_device(device); 2408 2409 /* not _rcu since, no other updater anymore. Genl already unregistered */ 2410 for_each_resource_safe(resource, tmp, &drbd_resources) { 2411 list_del(&resource->resources); 2412 drbd_free_resource(resource); 2413 } 2414 2415 drbd_destroy_mempools(); 2416 unregister_blkdev(DRBD_MAJOR, "drbd"); 2417 2418 idr_destroy(&drbd_devices); 2419 2420 pr_info("module cleanup done.\n"); 2421 } 2422 2423 /** 2424 * drbd_congested() - Callback for the flusher thread 2425 * @congested_data: User data 2426 * @bdi_bits: Bits the BDI flusher thread is currently interested in 2427 * 2428 * Returns 1<<WB_async_congested and/or 1<<WB_sync_congested if we are congested. 2429 */ 2430 static int drbd_congested(void *congested_data, int bdi_bits) 2431 { 2432 struct drbd_device *device = congested_data; 2433 struct request_queue *q; 2434 char reason = '-'; 2435 int r = 0; 2436 2437 if (!may_inc_ap_bio(device)) { 2438 /* DRBD has frozen IO */ 2439 r = bdi_bits; 2440 reason = 'd'; 2441 goto out; 2442 } 2443 2444 if (test_bit(CALLBACK_PENDING, &first_peer_device(device)->connection->flags)) { 2445 r |= (1 << WB_async_congested); 2446 /* Without good local data, we would need to read from remote, 2447 * and that would need the worker thread as well, which is 2448 * currently blocked waiting for that usermode helper to 2449 * finish. 2450 */ 2451 if (!get_ldev_if_state(device, D_UP_TO_DATE)) 2452 r |= (1 << WB_sync_congested); 2453 else 2454 put_ldev(device); 2455 r &= bdi_bits; 2456 reason = 'c'; 2457 goto out; 2458 } 2459 2460 if (get_ldev(device)) { 2461 q = bdev_get_queue(device->ldev->backing_bdev); 2462 r = bdi_congested(q->backing_dev_info, bdi_bits); 2463 put_ldev(device); 2464 if (r) 2465 reason = 'b'; 2466 } 2467 2468 if (bdi_bits & (1 << WB_async_congested) && 2469 test_bit(NET_CONGESTED, &first_peer_device(device)->connection->flags)) { 2470 r |= (1 << WB_async_congested); 2471 reason = reason == 'b' ? 'a' : 'n'; 2472 } 2473 2474 out: 2475 device->congestion_reason = reason; 2476 return r; 2477 } 2478 2479 static void drbd_init_workqueue(struct drbd_work_queue* wq) 2480 { 2481 spin_lock_init(&wq->q_lock); 2482 INIT_LIST_HEAD(&wq->q); 2483 init_waitqueue_head(&wq->q_wait); 2484 } 2485 2486 struct completion_work { 2487 struct drbd_work w; 2488 struct completion done; 2489 }; 2490 2491 static int w_complete(struct drbd_work *w, int cancel) 2492 { 2493 struct completion_work *completion_work = 2494 container_of(w, struct completion_work, w); 2495 2496 complete(&completion_work->done); 2497 return 0; 2498 } 2499 2500 void drbd_flush_workqueue(struct drbd_work_queue *work_queue) 2501 { 2502 struct completion_work completion_work; 2503 2504 completion_work.w.cb = w_complete; 2505 init_completion(&completion_work.done); 2506 drbd_queue_work(work_queue, &completion_work.w); 2507 wait_for_completion(&completion_work.done); 2508 } 2509 2510 struct drbd_resource *drbd_find_resource(const char *name) 2511 { 2512 struct drbd_resource *resource; 2513 2514 if (!name || !name[0]) 2515 return NULL; 2516 2517 rcu_read_lock(); 2518 for_each_resource_rcu(resource, &drbd_resources) { 2519 if (!strcmp(resource->name, name)) { 2520 kref_get(&resource->kref); 2521 goto found; 2522 } 2523 } 2524 resource = NULL; 2525 found: 2526 rcu_read_unlock(); 2527 return resource; 2528 } 2529 2530 struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len, 2531 void *peer_addr, int peer_addr_len) 2532 { 2533 struct drbd_resource *resource; 2534 struct drbd_connection *connection; 2535 2536 rcu_read_lock(); 2537 for_each_resource_rcu(resource, &drbd_resources) { 2538 for_each_connection_rcu(connection, resource) { 2539 if (connection->my_addr_len == my_addr_len && 2540 connection->peer_addr_len == peer_addr_len && 2541 !memcmp(&connection->my_addr, my_addr, my_addr_len) && 2542 !memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) { 2543 kref_get(&connection->kref); 2544 goto found; 2545 } 2546 } 2547 } 2548 connection = NULL; 2549 found: 2550 rcu_read_unlock(); 2551 return connection; 2552 } 2553 2554 static int drbd_alloc_socket(struct drbd_socket *socket) 2555 { 2556 socket->rbuf = (void *) __get_free_page(GFP_KERNEL); 2557 if (!socket->rbuf) 2558 return -ENOMEM; 2559 socket->sbuf = (void *) __get_free_page(GFP_KERNEL); 2560 if (!socket->sbuf) 2561 return -ENOMEM; 2562 return 0; 2563 } 2564 2565 static void drbd_free_socket(struct drbd_socket *socket) 2566 { 2567 free_page((unsigned long) socket->sbuf); 2568 free_page((unsigned long) socket->rbuf); 2569 } 2570 2571 void conn_free_crypto(struct drbd_connection *connection) 2572 { 2573 drbd_free_sock(connection); 2574 2575 crypto_free_ahash(connection->csums_tfm); 2576 crypto_free_ahash(connection->verify_tfm); 2577 crypto_free_shash(connection->cram_hmac_tfm); 2578 crypto_free_ahash(connection->integrity_tfm); 2579 crypto_free_ahash(connection->peer_integrity_tfm); 2580 kfree(connection->int_dig_in); 2581 kfree(connection->int_dig_vv); 2582 2583 connection->csums_tfm = NULL; 2584 connection->verify_tfm = NULL; 2585 connection->cram_hmac_tfm = NULL; 2586 connection->integrity_tfm = NULL; 2587 connection->peer_integrity_tfm = NULL; 2588 connection->int_dig_in = NULL; 2589 connection->int_dig_vv = NULL; 2590 } 2591 2592 int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts) 2593 { 2594 struct drbd_connection *connection; 2595 cpumask_var_t new_cpu_mask; 2596 int err; 2597 2598 if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL)) 2599 return -ENOMEM; 2600 2601 /* silently ignore cpu mask on UP kernel */ 2602 if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) { 2603 err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE, 2604 cpumask_bits(new_cpu_mask), nr_cpu_ids); 2605 if (err == -EOVERFLOW) { 2606 /* So what. mask it out. */ 2607 cpumask_var_t tmp_cpu_mask; 2608 if (zalloc_cpumask_var(&tmp_cpu_mask, GFP_KERNEL)) { 2609 cpumask_setall(tmp_cpu_mask); 2610 cpumask_and(new_cpu_mask, new_cpu_mask, tmp_cpu_mask); 2611 drbd_warn(resource, "Overflow in bitmap_parse(%.12s%s), truncating to %u bits\n", 2612 res_opts->cpu_mask, 2613 strlen(res_opts->cpu_mask) > 12 ? "..." : "", 2614 nr_cpu_ids); 2615 free_cpumask_var(tmp_cpu_mask); 2616 err = 0; 2617 } 2618 } 2619 if (err) { 2620 drbd_warn(resource, "bitmap_parse() failed with %d\n", err); 2621 /* retcode = ERR_CPU_MASK_PARSE; */ 2622 goto fail; 2623 } 2624 } 2625 resource->res_opts = *res_opts; 2626 if (cpumask_empty(new_cpu_mask)) 2627 drbd_calc_cpu_mask(&new_cpu_mask); 2628 if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) { 2629 cpumask_copy(resource->cpu_mask, new_cpu_mask); 2630 for_each_connection_rcu(connection, resource) { 2631 connection->receiver.reset_cpu_mask = 1; 2632 connection->ack_receiver.reset_cpu_mask = 1; 2633 connection->worker.reset_cpu_mask = 1; 2634 } 2635 } 2636 err = 0; 2637 2638 fail: 2639 free_cpumask_var(new_cpu_mask); 2640 return err; 2641 2642 } 2643 2644 struct drbd_resource *drbd_create_resource(const char *name) 2645 { 2646 struct drbd_resource *resource; 2647 2648 resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL); 2649 if (!resource) 2650 goto fail; 2651 resource->name = kstrdup(name, GFP_KERNEL); 2652 if (!resource->name) 2653 goto fail_free_resource; 2654 if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL)) 2655 goto fail_free_name; 2656 kref_init(&resource->kref); 2657 idr_init(&resource->devices); 2658 INIT_LIST_HEAD(&resource->connections); 2659 resource->write_ordering = WO_BDEV_FLUSH; 2660 list_add_tail_rcu(&resource->resources, &drbd_resources); 2661 mutex_init(&resource->conf_update); 2662 mutex_init(&resource->adm_mutex); 2663 spin_lock_init(&resource->req_lock); 2664 drbd_debugfs_resource_add(resource); 2665 return resource; 2666 2667 fail_free_name: 2668 kfree(resource->name); 2669 fail_free_resource: 2670 kfree(resource); 2671 fail: 2672 return NULL; 2673 } 2674 2675 /* caller must be under adm_mutex */ 2676 struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts) 2677 { 2678 struct drbd_resource *resource; 2679 struct drbd_connection *connection; 2680 2681 connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL); 2682 if (!connection) 2683 return NULL; 2684 2685 if (drbd_alloc_socket(&connection->data)) 2686 goto fail; 2687 if (drbd_alloc_socket(&connection->meta)) 2688 goto fail; 2689 2690 connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL); 2691 if (!connection->current_epoch) 2692 goto fail; 2693 2694 INIT_LIST_HEAD(&connection->transfer_log); 2695 2696 INIT_LIST_HEAD(&connection->current_epoch->list); 2697 connection->epochs = 1; 2698 spin_lock_init(&connection->epoch_lock); 2699 2700 connection->send.seen_any_write_yet = false; 2701 connection->send.current_epoch_nr = 0; 2702 connection->send.current_epoch_writes = 0; 2703 2704 resource = drbd_create_resource(name); 2705 if (!resource) 2706 goto fail; 2707 2708 connection->cstate = C_STANDALONE; 2709 mutex_init(&connection->cstate_mutex); 2710 init_waitqueue_head(&connection->ping_wait); 2711 idr_init(&connection->peer_devices); 2712 2713 drbd_init_workqueue(&connection->sender_work); 2714 mutex_init(&connection->data.mutex); 2715 mutex_init(&connection->meta.mutex); 2716 2717 drbd_thread_init(resource, &connection->receiver, drbd_receiver, "receiver"); 2718 connection->receiver.connection = connection; 2719 drbd_thread_init(resource, &connection->worker, drbd_worker, "worker"); 2720 connection->worker.connection = connection; 2721 drbd_thread_init(resource, &connection->ack_receiver, drbd_ack_receiver, "ack_recv"); 2722 connection->ack_receiver.connection = connection; 2723 2724 kref_init(&connection->kref); 2725 2726 connection->resource = resource; 2727 2728 if (set_resource_options(resource, res_opts)) 2729 goto fail_resource; 2730 2731 kref_get(&resource->kref); 2732 list_add_tail_rcu(&connection->connections, &resource->connections); 2733 drbd_debugfs_connection_add(connection); 2734 return connection; 2735 2736 fail_resource: 2737 list_del(&resource->resources); 2738 drbd_free_resource(resource); 2739 fail: 2740 kfree(connection->current_epoch); 2741 drbd_free_socket(&connection->meta); 2742 drbd_free_socket(&connection->data); 2743 kfree(connection); 2744 return NULL; 2745 } 2746 2747 void drbd_destroy_connection(struct kref *kref) 2748 { 2749 struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref); 2750 struct drbd_resource *resource = connection->resource; 2751 2752 if (atomic_read(&connection->current_epoch->epoch_size) != 0) 2753 drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size)); 2754 kfree(connection->current_epoch); 2755 2756 idr_destroy(&connection->peer_devices); 2757 2758 drbd_free_socket(&connection->meta); 2759 drbd_free_socket(&connection->data); 2760 kfree(connection->int_dig_in); 2761 kfree(connection->int_dig_vv); 2762 memset(connection, 0xfc, sizeof(*connection)); 2763 kfree(connection); 2764 kref_put(&resource->kref, drbd_destroy_resource); 2765 } 2766 2767 static int init_submitter(struct drbd_device *device) 2768 { 2769 /* opencoded create_singlethread_workqueue(), 2770 * to be able to say "drbd%d", ..., minor */ 2771 device->submit.wq = 2772 alloc_ordered_workqueue("drbd%u_submit", WQ_MEM_RECLAIM, device->minor); 2773 if (!device->submit.wq) 2774 return -ENOMEM; 2775 2776 INIT_WORK(&device->submit.worker, do_submit); 2777 INIT_LIST_HEAD(&device->submit.writes); 2778 return 0; 2779 } 2780 2781 enum drbd_ret_code drbd_create_device(struct drbd_config_context *adm_ctx, unsigned int minor) 2782 { 2783 struct drbd_resource *resource = adm_ctx->resource; 2784 struct drbd_connection *connection; 2785 struct drbd_device *device; 2786 struct drbd_peer_device *peer_device, *tmp_peer_device; 2787 struct gendisk *disk; 2788 struct request_queue *q; 2789 int id; 2790 int vnr = adm_ctx->volume; 2791 enum drbd_ret_code err = ERR_NOMEM; 2792 2793 device = minor_to_device(minor); 2794 if (device) 2795 return ERR_MINOR_OR_VOLUME_EXISTS; 2796 2797 /* GFP_KERNEL, we are outside of all write-out paths */ 2798 device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL); 2799 if (!device) 2800 return ERR_NOMEM; 2801 kref_init(&device->kref); 2802 2803 kref_get(&resource->kref); 2804 device->resource = resource; 2805 device->minor = minor; 2806 device->vnr = vnr; 2807 2808 drbd_init_set_defaults(device); 2809 2810 q = blk_alloc_queue(GFP_KERNEL); 2811 if (!q) 2812 goto out_no_q; 2813 device->rq_queue = q; 2814 q->queuedata = device; 2815 2816 disk = alloc_disk(1); 2817 if (!disk) 2818 goto out_no_disk; 2819 device->vdisk = disk; 2820 2821 set_disk_ro(disk, true); 2822 2823 disk->queue = q; 2824 disk->major = DRBD_MAJOR; 2825 disk->first_minor = minor; 2826 disk->fops = &drbd_ops; 2827 sprintf(disk->disk_name, "drbd%d", minor); 2828 disk->private_data = device; 2829 2830 device->this_bdev = bdget(MKDEV(DRBD_MAJOR, minor)); 2831 /* we have no partitions. we contain only ourselves. */ 2832 device->this_bdev->bd_contains = device->this_bdev; 2833 2834 q->backing_dev_info->congested_fn = drbd_congested; 2835 q->backing_dev_info->congested_data = device; 2836 2837 blk_queue_make_request(q, drbd_make_request); 2838 blk_queue_write_cache(q, true, true); 2839 /* Setting the max_hw_sectors to an odd value of 8kibyte here 2840 This triggers a max_bio_size message upon first attach or connect */ 2841 blk_queue_max_hw_sectors(q, DRBD_MAX_BIO_SIZE_SAFE >> 8); 2842 blk_queue_bounce_limit(q, BLK_BOUNCE_ANY); 2843 q->queue_lock = &resource->req_lock; 2844 2845 device->md_io.page = alloc_page(GFP_KERNEL); 2846 if (!device->md_io.page) 2847 goto out_no_io_page; 2848 2849 if (drbd_bm_init(device)) 2850 goto out_no_bitmap; 2851 device->read_requests = RB_ROOT; 2852 device->write_requests = RB_ROOT; 2853 2854 id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL); 2855 if (id < 0) { 2856 if (id == -ENOSPC) 2857 err = ERR_MINOR_OR_VOLUME_EXISTS; 2858 goto out_no_minor_idr; 2859 } 2860 kref_get(&device->kref); 2861 2862 id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL); 2863 if (id < 0) { 2864 if (id == -ENOSPC) 2865 err = ERR_MINOR_OR_VOLUME_EXISTS; 2866 goto out_idr_remove_minor; 2867 } 2868 kref_get(&device->kref); 2869 2870 INIT_LIST_HEAD(&device->peer_devices); 2871 INIT_LIST_HEAD(&device->pending_bitmap_io); 2872 for_each_connection(connection, resource) { 2873 peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL); 2874 if (!peer_device) 2875 goto out_idr_remove_from_resource; 2876 peer_device->connection = connection; 2877 peer_device->device = device; 2878 2879 list_add(&peer_device->peer_devices, &device->peer_devices); 2880 kref_get(&device->kref); 2881 2882 id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL); 2883 if (id < 0) { 2884 if (id == -ENOSPC) 2885 err = ERR_INVALID_REQUEST; 2886 goto out_idr_remove_from_resource; 2887 } 2888 kref_get(&connection->kref); 2889 INIT_WORK(&peer_device->send_acks_work, drbd_send_acks_wf); 2890 } 2891 2892 if (init_submitter(device)) { 2893 err = ERR_NOMEM; 2894 goto out_idr_remove_vol; 2895 } 2896 2897 add_disk(disk); 2898 2899 /* inherit the connection state */ 2900 device->state.conn = first_connection(resource)->cstate; 2901 if (device->state.conn == C_WF_REPORT_PARAMS) { 2902 for_each_peer_device(peer_device, device) 2903 drbd_connected(peer_device); 2904 } 2905 /* move to create_peer_device() */ 2906 for_each_peer_device(peer_device, device) 2907 drbd_debugfs_peer_device_add(peer_device); 2908 drbd_debugfs_device_add(device); 2909 return NO_ERROR; 2910 2911 out_idr_remove_vol: 2912 idr_remove(&connection->peer_devices, vnr); 2913 out_idr_remove_from_resource: 2914 for_each_connection(connection, resource) { 2915 peer_device = idr_remove(&connection->peer_devices, vnr); 2916 if (peer_device) 2917 kref_put(&connection->kref, drbd_destroy_connection); 2918 } 2919 for_each_peer_device_safe(peer_device, tmp_peer_device, device) { 2920 list_del(&peer_device->peer_devices); 2921 kfree(peer_device); 2922 } 2923 idr_remove(&resource->devices, vnr); 2924 out_idr_remove_minor: 2925 idr_remove(&drbd_devices, minor); 2926 synchronize_rcu(); 2927 out_no_minor_idr: 2928 drbd_bm_cleanup(device); 2929 out_no_bitmap: 2930 __free_page(device->md_io.page); 2931 out_no_io_page: 2932 put_disk(disk); 2933 out_no_disk: 2934 blk_cleanup_queue(q); 2935 out_no_q: 2936 kref_put(&resource->kref, drbd_destroy_resource); 2937 kfree(device); 2938 return err; 2939 } 2940 2941 void drbd_delete_device(struct drbd_device *device) 2942 { 2943 struct drbd_resource *resource = device->resource; 2944 struct drbd_connection *connection; 2945 struct drbd_peer_device *peer_device; 2946 2947 /* move to free_peer_device() */ 2948 for_each_peer_device(peer_device, device) 2949 drbd_debugfs_peer_device_cleanup(peer_device); 2950 drbd_debugfs_device_cleanup(device); 2951 for_each_connection(connection, resource) { 2952 idr_remove(&connection->peer_devices, device->vnr); 2953 kref_put(&device->kref, drbd_destroy_device); 2954 } 2955 idr_remove(&resource->devices, device->vnr); 2956 kref_put(&device->kref, drbd_destroy_device); 2957 idr_remove(&drbd_devices, device_to_minor(device)); 2958 kref_put(&device->kref, drbd_destroy_device); 2959 del_gendisk(device->vdisk); 2960 synchronize_rcu(); 2961 kref_put(&device->kref, drbd_destroy_device); 2962 } 2963 2964 static int __init drbd_init(void) 2965 { 2966 int err; 2967 2968 if (minor_count < DRBD_MINOR_COUNT_MIN || minor_count > DRBD_MINOR_COUNT_MAX) { 2969 pr_err("invalid minor_count (%d)\n", minor_count); 2970 #ifdef MODULE 2971 return -EINVAL; 2972 #else 2973 minor_count = DRBD_MINOR_COUNT_DEF; 2974 #endif 2975 } 2976 2977 err = register_blkdev(DRBD_MAJOR, "drbd"); 2978 if (err) { 2979 pr_err("unable to register block device major %d\n", 2980 DRBD_MAJOR); 2981 return err; 2982 } 2983 2984 /* 2985 * allocate all necessary structs 2986 */ 2987 init_waitqueue_head(&drbd_pp_wait); 2988 2989 drbd_proc = NULL; /* play safe for drbd_cleanup */ 2990 idr_init(&drbd_devices); 2991 2992 mutex_init(&resources_mutex); 2993 INIT_LIST_HEAD(&drbd_resources); 2994 2995 err = drbd_genl_register(); 2996 if (err) { 2997 pr_err("unable to register generic netlink family\n"); 2998 goto fail; 2999 } 3000 3001 err = drbd_create_mempools(); 3002 if (err) 3003 goto fail; 3004 3005 err = -ENOMEM; 3006 drbd_proc = proc_create_data("drbd", S_IFREG | S_IRUGO , NULL, &drbd_proc_fops, NULL); 3007 if (!drbd_proc) { 3008 pr_err("unable to register proc file\n"); 3009 goto fail; 3010 } 3011 3012 retry.wq = create_singlethread_workqueue("drbd-reissue"); 3013 if (!retry.wq) { 3014 pr_err("unable to create retry workqueue\n"); 3015 goto fail; 3016 } 3017 INIT_WORK(&retry.worker, do_retry); 3018 spin_lock_init(&retry.lock); 3019 INIT_LIST_HEAD(&retry.writes); 3020 3021 if (drbd_debugfs_init()) 3022 pr_notice("failed to initialize debugfs -- will not be available\n"); 3023 3024 pr_info("initialized. " 3025 "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n", 3026 API_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX); 3027 pr_info("%s\n", drbd_buildtag()); 3028 pr_info("registered as block device major %d\n", DRBD_MAJOR); 3029 return 0; /* Success! */ 3030 3031 fail: 3032 drbd_cleanup(); 3033 if (err == -ENOMEM) 3034 pr_err("ran out of memory\n"); 3035 else 3036 pr_err("initialization failure\n"); 3037 return err; 3038 } 3039 3040 static void drbd_free_one_sock(struct drbd_socket *ds) 3041 { 3042 struct socket *s; 3043 mutex_lock(&ds->mutex); 3044 s = ds->socket; 3045 ds->socket = NULL; 3046 mutex_unlock(&ds->mutex); 3047 if (s) { 3048 /* so debugfs does not need to mutex_lock() */ 3049 synchronize_rcu(); 3050 kernel_sock_shutdown(s, SHUT_RDWR); 3051 sock_release(s); 3052 } 3053 } 3054 3055 void drbd_free_sock(struct drbd_connection *connection) 3056 { 3057 if (connection->data.socket) 3058 drbd_free_one_sock(&connection->data); 3059 if (connection->meta.socket) 3060 drbd_free_one_sock(&connection->meta); 3061 } 3062 3063 /* meta data management */ 3064 3065 void conn_md_sync(struct drbd_connection *connection) 3066 { 3067 struct drbd_peer_device *peer_device; 3068 int vnr; 3069 3070 rcu_read_lock(); 3071 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 3072 struct drbd_device *device = peer_device->device; 3073 3074 kref_get(&device->kref); 3075 rcu_read_unlock(); 3076 drbd_md_sync(device); 3077 kref_put(&device->kref, drbd_destroy_device); 3078 rcu_read_lock(); 3079 } 3080 rcu_read_unlock(); 3081 } 3082 3083 /* aligned 4kByte */ 3084 struct meta_data_on_disk { 3085 u64 la_size_sect; /* last agreed size. */ 3086 u64 uuid[UI_SIZE]; /* UUIDs. */ 3087 u64 device_uuid; 3088 u64 reserved_u64_1; 3089 u32 flags; /* MDF */ 3090 u32 magic; 3091 u32 md_size_sect; 3092 u32 al_offset; /* offset to this block */ 3093 u32 al_nr_extents; /* important for restoring the AL (userspace) */ 3094 /* `-- act_log->nr_elements <-- ldev->dc.al_extents */ 3095 u32 bm_offset; /* offset to the bitmap, from here */ 3096 u32 bm_bytes_per_bit; /* BM_BLOCK_SIZE */ 3097 u32 la_peer_max_bio_size; /* last peer max_bio_size */ 3098 3099 /* see al_tr_number_to_on_disk_sector() */ 3100 u32 al_stripes; 3101 u32 al_stripe_size_4k; 3102 3103 u8 reserved_u8[4096 - (7*8 + 10*4)]; 3104 } __packed; 3105 3106 3107 3108 void drbd_md_write(struct drbd_device *device, void *b) 3109 { 3110 struct meta_data_on_disk *buffer = b; 3111 sector_t sector; 3112 int i; 3113 3114 memset(buffer, 0, sizeof(*buffer)); 3115 3116 buffer->la_size_sect = cpu_to_be64(drbd_get_capacity(device->this_bdev)); 3117 for (i = UI_CURRENT; i < UI_SIZE; i++) 3118 buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]); 3119 buffer->flags = cpu_to_be32(device->ldev->md.flags); 3120 buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN); 3121 3122 buffer->md_size_sect = cpu_to_be32(device->ldev->md.md_size_sect); 3123 buffer->al_offset = cpu_to_be32(device->ldev->md.al_offset); 3124 buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements); 3125 buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE); 3126 buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid); 3127 3128 buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset); 3129 buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size); 3130 3131 buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes); 3132 buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k); 3133 3134 D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset); 3135 sector = device->ldev->md.md_offset; 3136 3137 if (drbd_md_sync_page_io(device, device->ldev, sector, REQ_OP_WRITE)) { 3138 /* this was a try anyways ... */ 3139 drbd_err(device, "meta data update failed!\n"); 3140 drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR); 3141 } 3142 } 3143 3144 /** 3145 * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set 3146 * @device: DRBD device. 3147 */ 3148 void drbd_md_sync(struct drbd_device *device) 3149 { 3150 struct meta_data_on_disk *buffer; 3151 3152 /* Don't accidentally change the DRBD meta data layout. */ 3153 BUILD_BUG_ON(UI_SIZE != 4); 3154 BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096); 3155 3156 del_timer(&device->md_sync_timer); 3157 /* timer may be rearmed by drbd_md_mark_dirty() now. */ 3158 if (!test_and_clear_bit(MD_DIRTY, &device->flags)) 3159 return; 3160 3161 /* We use here D_FAILED and not D_ATTACHING because we try to write 3162 * metadata even if we detach due to a disk failure! */ 3163 if (!get_ldev_if_state(device, D_FAILED)) 3164 return; 3165 3166 buffer = drbd_md_get_buffer(device, __func__); 3167 if (!buffer) 3168 goto out; 3169 3170 drbd_md_write(device, buffer); 3171 3172 /* Update device->ldev->md.la_size_sect, 3173 * since we updated it on metadata. */ 3174 device->ldev->md.la_size_sect = drbd_get_capacity(device->this_bdev); 3175 3176 drbd_md_put_buffer(device); 3177 out: 3178 put_ldev(device); 3179 } 3180 3181 static int check_activity_log_stripe_size(struct drbd_device *device, 3182 struct meta_data_on_disk *on_disk, 3183 struct drbd_md *in_core) 3184 { 3185 u32 al_stripes = be32_to_cpu(on_disk->al_stripes); 3186 u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k); 3187 u64 al_size_4k; 3188 3189 /* both not set: default to old fixed size activity log */ 3190 if (al_stripes == 0 && al_stripe_size_4k == 0) { 3191 al_stripes = 1; 3192 al_stripe_size_4k = MD_32kB_SECT/8; 3193 } 3194 3195 /* some paranoia plausibility checks */ 3196 3197 /* we need both values to be set */ 3198 if (al_stripes == 0 || al_stripe_size_4k == 0) 3199 goto err; 3200 3201 al_size_4k = (u64)al_stripes * al_stripe_size_4k; 3202 3203 /* Upper limit of activity log area, to avoid potential overflow 3204 * problems in al_tr_number_to_on_disk_sector(). As right now, more 3205 * than 72 * 4k blocks total only increases the amount of history, 3206 * limiting this arbitrarily to 16 GB is not a real limitation ;-) */ 3207 if (al_size_4k > (16 * 1024 * 1024/4)) 3208 goto err; 3209 3210 /* Lower limit: we need at least 8 transaction slots (32kB) 3211 * to not break existing setups */ 3212 if (al_size_4k < MD_32kB_SECT/8) 3213 goto err; 3214 3215 in_core->al_stripe_size_4k = al_stripe_size_4k; 3216 in_core->al_stripes = al_stripes; 3217 in_core->al_size_4k = al_size_4k; 3218 3219 return 0; 3220 err: 3221 drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n", 3222 al_stripes, al_stripe_size_4k); 3223 return -EINVAL; 3224 } 3225 3226 static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev) 3227 { 3228 sector_t capacity = drbd_get_capacity(bdev->md_bdev); 3229 struct drbd_md *in_core = &bdev->md; 3230 s32 on_disk_al_sect; 3231 s32 on_disk_bm_sect; 3232 3233 /* The on-disk size of the activity log, calculated from offsets, and 3234 * the size of the activity log calculated from the stripe settings, 3235 * should match. 3236 * Though we could relax this a bit: it is ok, if the striped activity log 3237 * fits in the available on-disk activity log size. 3238 * Right now, that would break how resize is implemented. 3239 * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware 3240 * of possible unused padding space in the on disk layout. */ 3241 if (in_core->al_offset < 0) { 3242 if (in_core->bm_offset > in_core->al_offset) 3243 goto err; 3244 on_disk_al_sect = -in_core->al_offset; 3245 on_disk_bm_sect = in_core->al_offset - in_core->bm_offset; 3246 } else { 3247 if (in_core->al_offset != MD_4kB_SECT) 3248 goto err; 3249 if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT) 3250 goto err; 3251 3252 on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT; 3253 on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset; 3254 } 3255 3256 /* old fixed size meta data is exactly that: fixed. */ 3257 if (in_core->meta_dev_idx >= 0) { 3258 if (in_core->md_size_sect != MD_128MB_SECT 3259 || in_core->al_offset != MD_4kB_SECT 3260 || in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT 3261 || in_core->al_stripes != 1 3262 || in_core->al_stripe_size_4k != MD_32kB_SECT/8) 3263 goto err; 3264 } 3265 3266 if (capacity < in_core->md_size_sect) 3267 goto err; 3268 if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev)) 3269 goto err; 3270 3271 /* should be aligned, and at least 32k */ 3272 if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT)) 3273 goto err; 3274 3275 /* should fit (for now: exactly) into the available on-disk space; 3276 * overflow prevention is in check_activity_log_stripe_size() above. */ 3277 if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT) 3278 goto err; 3279 3280 /* again, should be aligned */ 3281 if (in_core->bm_offset & 7) 3282 goto err; 3283 3284 /* FIXME check for device grow with flex external meta data? */ 3285 3286 /* can the available bitmap space cover the last agreed device size? */ 3287 if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512) 3288 goto err; 3289 3290 return 0; 3291 3292 err: 3293 drbd_err(device, "meta data offsets don't make sense: idx=%d " 3294 "al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, " 3295 "md_size_sect=%u, la_size=%llu, md_capacity=%llu\n", 3296 in_core->meta_dev_idx, 3297 in_core->al_stripes, in_core->al_stripe_size_4k, 3298 in_core->al_offset, in_core->bm_offset, in_core->md_size_sect, 3299 (unsigned long long)in_core->la_size_sect, 3300 (unsigned long long)capacity); 3301 3302 return -EINVAL; 3303 } 3304 3305 3306 /** 3307 * drbd_md_read() - Reads in the meta data super block 3308 * @device: DRBD device. 3309 * @bdev: Device from which the meta data should be read in. 3310 * 3311 * Return NO_ERROR on success, and an enum drbd_ret_code in case 3312 * something goes wrong. 3313 * 3314 * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS, 3315 * even before @bdev is assigned to @device->ldev. 3316 */ 3317 int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev) 3318 { 3319 struct meta_data_on_disk *buffer; 3320 u32 magic, flags; 3321 int i, rv = NO_ERROR; 3322 3323 if (device->state.disk != D_DISKLESS) 3324 return ERR_DISK_CONFIGURED; 3325 3326 buffer = drbd_md_get_buffer(device, __func__); 3327 if (!buffer) 3328 return ERR_NOMEM; 3329 3330 /* First, figure out where our meta data superblock is located, 3331 * and read it. */ 3332 bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx; 3333 bdev->md.md_offset = drbd_md_ss(bdev); 3334 /* Even for (flexible or indexed) external meta data, 3335 * initially restrict us to the 4k superblock for now. 3336 * Affects the paranoia out-of-range access check in drbd_md_sync_page_io(). */ 3337 bdev->md.md_size_sect = 8; 3338 3339 if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset, 3340 REQ_OP_READ)) { 3341 /* NOTE: can't do normal error processing here as this is 3342 called BEFORE disk is attached */ 3343 drbd_err(device, "Error while reading metadata.\n"); 3344 rv = ERR_IO_MD_DISK; 3345 goto err; 3346 } 3347 3348 magic = be32_to_cpu(buffer->magic); 3349 flags = be32_to_cpu(buffer->flags); 3350 if (magic == DRBD_MD_MAGIC_84_UNCLEAN || 3351 (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) { 3352 /* btw: that's Activity Log clean, not "all" clean. */ 3353 drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n"); 3354 rv = ERR_MD_UNCLEAN; 3355 goto err; 3356 } 3357 3358 rv = ERR_MD_INVALID; 3359 if (magic != DRBD_MD_MAGIC_08) { 3360 if (magic == DRBD_MD_MAGIC_07) 3361 drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n"); 3362 else 3363 drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n"); 3364 goto err; 3365 } 3366 3367 if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) { 3368 drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n", 3369 be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE); 3370 goto err; 3371 } 3372 3373 3374 /* convert to in_core endian */ 3375 bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect); 3376 for (i = UI_CURRENT; i < UI_SIZE; i++) 3377 bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]); 3378 bdev->md.flags = be32_to_cpu(buffer->flags); 3379 bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid); 3380 3381 bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect); 3382 bdev->md.al_offset = be32_to_cpu(buffer->al_offset); 3383 bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset); 3384 3385 if (check_activity_log_stripe_size(device, buffer, &bdev->md)) 3386 goto err; 3387 if (check_offsets_and_sizes(device, bdev)) 3388 goto err; 3389 3390 if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) { 3391 drbd_err(device, "unexpected bm_offset: %d (expected %d)\n", 3392 be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset); 3393 goto err; 3394 } 3395 if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) { 3396 drbd_err(device, "unexpected md_size: %u (expected %u)\n", 3397 be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect); 3398 goto err; 3399 } 3400 3401 rv = NO_ERROR; 3402 3403 spin_lock_irq(&device->resource->req_lock); 3404 if (device->state.conn < C_CONNECTED) { 3405 unsigned int peer; 3406 peer = be32_to_cpu(buffer->la_peer_max_bio_size); 3407 peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE); 3408 device->peer_max_bio_size = peer; 3409 } 3410 spin_unlock_irq(&device->resource->req_lock); 3411 3412 err: 3413 drbd_md_put_buffer(device); 3414 3415 return rv; 3416 } 3417 3418 /** 3419 * drbd_md_mark_dirty() - Mark meta data super block as dirty 3420 * @device: DRBD device. 3421 * 3422 * Call this function if you change anything that should be written to 3423 * the meta-data super block. This function sets MD_DIRTY, and starts a 3424 * timer that ensures that within five seconds you have to call drbd_md_sync(). 3425 */ 3426 #ifdef DEBUG 3427 void drbd_md_mark_dirty_(struct drbd_device *device, unsigned int line, const char *func) 3428 { 3429 if (!test_and_set_bit(MD_DIRTY, &device->flags)) { 3430 mod_timer(&device->md_sync_timer, jiffies + HZ); 3431 device->last_md_mark_dirty.line = line; 3432 device->last_md_mark_dirty.func = func; 3433 } 3434 } 3435 #else 3436 void drbd_md_mark_dirty(struct drbd_device *device) 3437 { 3438 if (!test_and_set_bit(MD_DIRTY, &device->flags)) 3439 mod_timer(&device->md_sync_timer, jiffies + 5*HZ); 3440 } 3441 #endif 3442 3443 void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local) 3444 { 3445 int i; 3446 3447 for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++) 3448 device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i]; 3449 } 3450 3451 void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local) 3452 { 3453 if (idx == UI_CURRENT) { 3454 if (device->state.role == R_PRIMARY) 3455 val |= 1; 3456 else 3457 val &= ~((u64)1); 3458 3459 drbd_set_ed_uuid(device, val); 3460 } 3461 3462 device->ldev->md.uuid[idx] = val; 3463 drbd_md_mark_dirty(device); 3464 } 3465 3466 void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local) 3467 { 3468 unsigned long flags; 3469 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags); 3470 __drbd_uuid_set(device, idx, val); 3471 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags); 3472 } 3473 3474 void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local) 3475 { 3476 unsigned long flags; 3477 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags); 3478 if (device->ldev->md.uuid[idx]) { 3479 drbd_uuid_move_history(device); 3480 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx]; 3481 } 3482 __drbd_uuid_set(device, idx, val); 3483 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags); 3484 } 3485 3486 /** 3487 * drbd_uuid_new_current() - Creates a new current UUID 3488 * @device: DRBD device. 3489 * 3490 * Creates a new current UUID, and rotates the old current UUID into 3491 * the bitmap slot. Causes an incremental resync upon next connect. 3492 */ 3493 void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local) 3494 { 3495 u64 val; 3496 unsigned long long bm_uuid; 3497 3498 get_random_bytes(&val, sizeof(u64)); 3499 3500 spin_lock_irq(&device->ldev->md.uuid_lock); 3501 bm_uuid = device->ldev->md.uuid[UI_BITMAP]; 3502 3503 if (bm_uuid) 3504 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid); 3505 3506 device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT]; 3507 __drbd_uuid_set(device, UI_CURRENT, val); 3508 spin_unlock_irq(&device->ldev->md.uuid_lock); 3509 3510 drbd_print_uuids(device, "new current UUID"); 3511 /* get it to stable storage _now_ */ 3512 drbd_md_sync(device); 3513 } 3514 3515 void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local) 3516 { 3517 unsigned long flags; 3518 if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0) 3519 return; 3520 3521 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags); 3522 if (val == 0) { 3523 drbd_uuid_move_history(device); 3524 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP]; 3525 device->ldev->md.uuid[UI_BITMAP] = 0; 3526 } else { 3527 unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP]; 3528 if (bm_uuid) 3529 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid); 3530 3531 device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1); 3532 } 3533 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags); 3534 3535 drbd_md_mark_dirty(device); 3536 } 3537 3538 /** 3539 * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io() 3540 * @device: DRBD device. 3541 * 3542 * Sets all bits in the bitmap and writes the whole bitmap to stable storage. 3543 */ 3544 int drbd_bmio_set_n_write(struct drbd_device *device) __must_hold(local) 3545 { 3546 int rv = -EIO; 3547 3548 drbd_md_set_flag(device, MDF_FULL_SYNC); 3549 drbd_md_sync(device); 3550 drbd_bm_set_all(device); 3551 3552 rv = drbd_bm_write(device); 3553 3554 if (!rv) { 3555 drbd_md_clear_flag(device, MDF_FULL_SYNC); 3556 drbd_md_sync(device); 3557 } 3558 3559 return rv; 3560 } 3561 3562 /** 3563 * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io() 3564 * @device: DRBD device. 3565 * 3566 * Clears all bits in the bitmap and writes the whole bitmap to stable storage. 3567 */ 3568 int drbd_bmio_clear_n_write(struct drbd_device *device) __must_hold(local) 3569 { 3570 drbd_resume_al(device); 3571 drbd_bm_clear_all(device); 3572 return drbd_bm_write(device); 3573 } 3574 3575 static int w_bitmap_io(struct drbd_work *w, int unused) 3576 { 3577 struct drbd_device *device = 3578 container_of(w, struct drbd_device, bm_io_work.w); 3579 struct bm_io_work *work = &device->bm_io_work; 3580 int rv = -EIO; 3581 3582 if (work->flags != BM_LOCKED_CHANGE_ALLOWED) { 3583 int cnt = atomic_read(&device->ap_bio_cnt); 3584 if (cnt) 3585 drbd_err(device, "FIXME: ap_bio_cnt %d, expected 0; queued for '%s'\n", 3586 cnt, work->why); 3587 } 3588 3589 if (get_ldev(device)) { 3590 drbd_bm_lock(device, work->why, work->flags); 3591 rv = work->io_fn(device); 3592 drbd_bm_unlock(device); 3593 put_ldev(device); 3594 } 3595 3596 clear_bit_unlock(BITMAP_IO, &device->flags); 3597 wake_up(&device->misc_wait); 3598 3599 if (work->done) 3600 work->done(device, rv); 3601 3602 clear_bit(BITMAP_IO_QUEUED, &device->flags); 3603 work->why = NULL; 3604 work->flags = 0; 3605 3606 return 0; 3607 } 3608 3609 /** 3610 * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap 3611 * @device: DRBD device. 3612 * @io_fn: IO callback to be called when bitmap IO is possible 3613 * @done: callback to be called after the bitmap IO was performed 3614 * @why: Descriptive text of the reason for doing the IO 3615 * 3616 * While IO on the bitmap happens we freeze application IO thus we ensure 3617 * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be 3618 * called from worker context. It MUST NOT be used while a previous such 3619 * work is still pending! 3620 * 3621 * Its worker function encloses the call of io_fn() by get_ldev() and 3622 * put_ldev(). 3623 */ 3624 void drbd_queue_bitmap_io(struct drbd_device *device, 3625 int (*io_fn)(struct drbd_device *), 3626 void (*done)(struct drbd_device *, int), 3627 char *why, enum bm_flag flags) 3628 { 3629 D_ASSERT(device, current == first_peer_device(device)->connection->worker.task); 3630 3631 D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags)); 3632 D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags)); 3633 D_ASSERT(device, list_empty(&device->bm_io_work.w.list)); 3634 if (device->bm_io_work.why) 3635 drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n", 3636 why, device->bm_io_work.why); 3637 3638 device->bm_io_work.io_fn = io_fn; 3639 device->bm_io_work.done = done; 3640 device->bm_io_work.why = why; 3641 device->bm_io_work.flags = flags; 3642 3643 spin_lock_irq(&device->resource->req_lock); 3644 set_bit(BITMAP_IO, &device->flags); 3645 /* don't wait for pending application IO if the caller indicates that 3646 * application IO does not conflict anyways. */ 3647 if (flags == BM_LOCKED_CHANGE_ALLOWED || atomic_read(&device->ap_bio_cnt) == 0) { 3648 if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags)) 3649 drbd_queue_work(&first_peer_device(device)->connection->sender_work, 3650 &device->bm_io_work.w); 3651 } 3652 spin_unlock_irq(&device->resource->req_lock); 3653 } 3654 3655 /** 3656 * drbd_bitmap_io() - Does an IO operation on the whole bitmap 3657 * @device: DRBD device. 3658 * @io_fn: IO callback to be called when bitmap IO is possible 3659 * @why: Descriptive text of the reason for doing the IO 3660 * 3661 * freezes application IO while that the actual IO operations runs. This 3662 * functions MAY NOT be called from worker context. 3663 */ 3664 int drbd_bitmap_io(struct drbd_device *device, int (*io_fn)(struct drbd_device *), 3665 char *why, enum bm_flag flags) 3666 { 3667 /* Only suspend io, if some operation is supposed to be locked out */ 3668 const bool do_suspend_io = flags & (BM_DONT_CLEAR|BM_DONT_SET|BM_DONT_TEST); 3669 int rv; 3670 3671 D_ASSERT(device, current != first_peer_device(device)->connection->worker.task); 3672 3673 if (do_suspend_io) 3674 drbd_suspend_io(device); 3675 3676 drbd_bm_lock(device, why, flags); 3677 rv = io_fn(device); 3678 drbd_bm_unlock(device); 3679 3680 if (do_suspend_io) 3681 drbd_resume_io(device); 3682 3683 return rv; 3684 } 3685 3686 void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local) 3687 { 3688 if ((device->ldev->md.flags & flag) != flag) { 3689 drbd_md_mark_dirty(device); 3690 device->ldev->md.flags |= flag; 3691 } 3692 } 3693 3694 void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local) 3695 { 3696 if ((device->ldev->md.flags & flag) != 0) { 3697 drbd_md_mark_dirty(device); 3698 device->ldev->md.flags &= ~flag; 3699 } 3700 } 3701 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag) 3702 { 3703 return (bdev->md.flags & flag) != 0; 3704 } 3705 3706 static void md_sync_timer_fn(unsigned long data) 3707 { 3708 struct drbd_device *device = (struct drbd_device *) data; 3709 drbd_device_post_work(device, MD_SYNC); 3710 } 3711 3712 const char *cmdname(enum drbd_packet cmd) 3713 { 3714 /* THINK may need to become several global tables 3715 * when we want to support more than 3716 * one PRO_VERSION */ 3717 static const char *cmdnames[] = { 3718 [P_DATA] = "Data", 3719 [P_WSAME] = "WriteSame", 3720 [P_TRIM] = "Trim", 3721 [P_DATA_REPLY] = "DataReply", 3722 [P_RS_DATA_REPLY] = "RSDataReply", 3723 [P_BARRIER] = "Barrier", 3724 [P_BITMAP] = "ReportBitMap", 3725 [P_BECOME_SYNC_TARGET] = "BecomeSyncTarget", 3726 [P_BECOME_SYNC_SOURCE] = "BecomeSyncSource", 3727 [P_UNPLUG_REMOTE] = "UnplugRemote", 3728 [P_DATA_REQUEST] = "DataRequest", 3729 [P_RS_DATA_REQUEST] = "RSDataRequest", 3730 [P_SYNC_PARAM] = "SyncParam", 3731 [P_SYNC_PARAM89] = "SyncParam89", 3732 [P_PROTOCOL] = "ReportProtocol", 3733 [P_UUIDS] = "ReportUUIDs", 3734 [P_SIZES] = "ReportSizes", 3735 [P_STATE] = "ReportState", 3736 [P_SYNC_UUID] = "ReportSyncUUID", 3737 [P_AUTH_CHALLENGE] = "AuthChallenge", 3738 [P_AUTH_RESPONSE] = "AuthResponse", 3739 [P_PING] = "Ping", 3740 [P_PING_ACK] = "PingAck", 3741 [P_RECV_ACK] = "RecvAck", 3742 [P_WRITE_ACK] = "WriteAck", 3743 [P_RS_WRITE_ACK] = "RSWriteAck", 3744 [P_SUPERSEDED] = "Superseded", 3745 [P_NEG_ACK] = "NegAck", 3746 [P_NEG_DREPLY] = "NegDReply", 3747 [P_NEG_RS_DREPLY] = "NegRSDReply", 3748 [P_BARRIER_ACK] = "BarrierAck", 3749 [P_STATE_CHG_REQ] = "StateChgRequest", 3750 [P_STATE_CHG_REPLY] = "StateChgReply", 3751 [P_OV_REQUEST] = "OVRequest", 3752 [P_OV_REPLY] = "OVReply", 3753 [P_OV_RESULT] = "OVResult", 3754 [P_CSUM_RS_REQUEST] = "CsumRSRequest", 3755 [P_RS_IS_IN_SYNC] = "CsumRSIsInSync", 3756 [P_COMPRESSED_BITMAP] = "CBitmap", 3757 [P_DELAY_PROBE] = "DelayProbe", 3758 [P_OUT_OF_SYNC] = "OutOfSync", 3759 [P_RETRY_WRITE] = "RetryWrite", 3760 [P_RS_CANCEL] = "RSCancel", 3761 [P_CONN_ST_CHG_REQ] = "conn_st_chg_req", 3762 [P_CONN_ST_CHG_REPLY] = "conn_st_chg_reply", 3763 [P_RETRY_WRITE] = "retry_write", 3764 [P_PROTOCOL_UPDATE] = "protocol_update", 3765 [P_RS_THIN_REQ] = "rs_thin_req", 3766 [P_RS_DEALLOCATED] = "rs_deallocated", 3767 3768 /* enum drbd_packet, but not commands - obsoleted flags: 3769 * P_MAY_IGNORE 3770 * P_MAX_OPT_CMD 3771 */ 3772 }; 3773 3774 /* too big for the array: 0xfffX */ 3775 if (cmd == P_INITIAL_META) 3776 return "InitialMeta"; 3777 if (cmd == P_INITIAL_DATA) 3778 return "InitialData"; 3779 if (cmd == P_CONNECTION_FEATURES) 3780 return "ConnectionFeatures"; 3781 if (cmd >= ARRAY_SIZE(cmdnames)) 3782 return "Unknown"; 3783 return cmdnames[cmd]; 3784 } 3785 3786 /** 3787 * drbd_wait_misc - wait for a request to make progress 3788 * @device: device associated with the request 3789 * @i: the struct drbd_interval embedded in struct drbd_request or 3790 * struct drbd_peer_request 3791 */ 3792 int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i) 3793 { 3794 struct net_conf *nc; 3795 DEFINE_WAIT(wait); 3796 long timeout; 3797 3798 rcu_read_lock(); 3799 nc = rcu_dereference(first_peer_device(device)->connection->net_conf); 3800 if (!nc) { 3801 rcu_read_unlock(); 3802 return -ETIMEDOUT; 3803 } 3804 timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT; 3805 rcu_read_unlock(); 3806 3807 /* Indicate to wake up device->misc_wait on progress. */ 3808 i->waiting = true; 3809 prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE); 3810 spin_unlock_irq(&device->resource->req_lock); 3811 timeout = schedule_timeout(timeout); 3812 finish_wait(&device->misc_wait, &wait); 3813 spin_lock_irq(&device->resource->req_lock); 3814 if (!timeout || device->state.conn < C_CONNECTED) 3815 return -ETIMEDOUT; 3816 if (signal_pending(current)) 3817 return -ERESTARTSYS; 3818 return 0; 3819 } 3820 3821 void lock_all_resources(void) 3822 { 3823 struct drbd_resource *resource; 3824 int __maybe_unused i = 0; 3825 3826 mutex_lock(&resources_mutex); 3827 local_irq_disable(); 3828 for_each_resource(resource, &drbd_resources) 3829 spin_lock_nested(&resource->req_lock, i++); 3830 } 3831 3832 void unlock_all_resources(void) 3833 { 3834 struct drbd_resource *resource; 3835 3836 for_each_resource(resource, &drbd_resources) 3837 spin_unlock(&resource->req_lock); 3838 local_irq_enable(); 3839 mutex_unlock(&resources_mutex); 3840 } 3841 3842 #ifdef CONFIG_DRBD_FAULT_INJECTION 3843 /* Fault insertion support including random number generator shamelessly 3844 * stolen from kernel/rcutorture.c */ 3845 struct fault_random_state { 3846 unsigned long state; 3847 unsigned long count; 3848 }; 3849 3850 #define FAULT_RANDOM_MULT 39916801 /* prime */ 3851 #define FAULT_RANDOM_ADD 479001701 /* prime */ 3852 #define FAULT_RANDOM_REFRESH 10000 3853 3854 /* 3855 * Crude but fast random-number generator. Uses a linear congruential 3856 * generator, with occasional help from get_random_bytes(). 3857 */ 3858 static unsigned long 3859 _drbd_fault_random(struct fault_random_state *rsp) 3860 { 3861 long refresh; 3862 3863 if (!rsp->count--) { 3864 get_random_bytes(&refresh, sizeof(refresh)); 3865 rsp->state += refresh; 3866 rsp->count = FAULT_RANDOM_REFRESH; 3867 } 3868 rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD; 3869 return swahw32(rsp->state); 3870 } 3871 3872 static char * 3873 _drbd_fault_str(unsigned int type) { 3874 static char *_faults[] = { 3875 [DRBD_FAULT_MD_WR] = "Meta-data write", 3876 [DRBD_FAULT_MD_RD] = "Meta-data read", 3877 [DRBD_FAULT_RS_WR] = "Resync write", 3878 [DRBD_FAULT_RS_RD] = "Resync read", 3879 [DRBD_FAULT_DT_WR] = "Data write", 3880 [DRBD_FAULT_DT_RD] = "Data read", 3881 [DRBD_FAULT_DT_RA] = "Data read ahead", 3882 [DRBD_FAULT_BM_ALLOC] = "BM allocation", 3883 [DRBD_FAULT_AL_EE] = "EE allocation", 3884 [DRBD_FAULT_RECEIVE] = "receive data corruption", 3885 }; 3886 3887 return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**"; 3888 } 3889 3890 unsigned int 3891 _drbd_insert_fault(struct drbd_device *device, unsigned int type) 3892 { 3893 static struct fault_random_state rrs = {0, 0}; 3894 3895 unsigned int ret = ( 3896 (fault_devs == 0 || 3897 ((1 << device_to_minor(device)) & fault_devs) != 0) && 3898 (((_drbd_fault_random(&rrs) % 100) + 1) <= fault_rate)); 3899 3900 if (ret) { 3901 fault_count++; 3902 3903 if (__ratelimit(&drbd_ratelimit_state)) 3904 drbd_warn(device, "***Simulating %s failure\n", 3905 _drbd_fault_str(type)); 3906 } 3907 3908 return ret; 3909 } 3910 #endif 3911 3912 const char *drbd_buildtag(void) 3913 { 3914 /* DRBD built from external sources has here a reference to the 3915 git hash of the source code. */ 3916 3917 static char buildtag[38] = "\0uilt-in"; 3918 3919 if (buildtag[0] == 0) { 3920 #ifdef MODULE 3921 sprintf(buildtag, "srcversion: %-24s", THIS_MODULE->srcversion); 3922 #else 3923 buildtag[0] = 'b'; 3924 #endif 3925 } 3926 3927 return buildtag; 3928 } 3929 3930 module_init(drbd_init) 3931 module_exit(drbd_cleanup) 3932 3933 EXPORT_SYMBOL(drbd_conn_str); 3934 EXPORT_SYMBOL(drbd_role_str); 3935 EXPORT_SYMBOL(drbd_disk_str); 3936 EXPORT_SYMBOL(drbd_set_st_err_str); 3937