1 /* 2 * Ram backed block device driver. 3 * 4 * Copyright (C) 2007 Nick Piggin 5 * Copyright (C) 2007 Novell Inc. 6 * 7 * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright 8 * of their respective owners. 9 */ 10 11 #include <linux/init.h> 12 #include <linux/module.h> 13 #include <linux/moduleparam.h> 14 #include <linux/major.h> 15 #include <linux/blkdev.h> 16 #include <linux/bio.h> 17 #include <linux/highmem.h> 18 #include <linux/mutex.h> 19 #include <linux/radix-tree.h> 20 #include <linux/fs.h> 21 #include <linux/slab.h> 22 #ifdef CONFIG_BLK_DEV_RAM_DAX 23 #include <linux/pfn_t.h> 24 #include <linux/dax.h> 25 #endif 26 27 #include <linux/uaccess.h> 28 29 #define SECTOR_SHIFT 9 30 #define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT) 31 #define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT) 32 33 /* 34 * Each block ramdisk device has a radix_tree brd_pages of pages that stores 35 * the pages containing the block device's contents. A brd page's ->index is 36 * its offset in PAGE_SIZE units. This is similar to, but in no way connected 37 * with, the kernel's pagecache or buffer cache (which sit above our block 38 * device). 39 */ 40 struct brd_device { 41 int brd_number; 42 43 struct request_queue *brd_queue; 44 struct gendisk *brd_disk; 45 #ifdef CONFIG_BLK_DEV_RAM_DAX 46 struct dax_device *dax_dev; 47 #endif 48 struct list_head brd_list; 49 50 /* 51 * Backing store of pages and lock to protect it. This is the contents 52 * of the block device. 53 */ 54 spinlock_t brd_lock; 55 struct radix_tree_root brd_pages; 56 }; 57 58 /* 59 * Look up and return a brd's page for a given sector. 60 */ 61 static DEFINE_MUTEX(brd_mutex); 62 static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector) 63 { 64 pgoff_t idx; 65 struct page *page; 66 67 /* 68 * The page lifetime is protected by the fact that we have opened the 69 * device node -- brd pages will never be deleted under us, so we 70 * don't need any further locking or refcounting. 71 * 72 * This is strictly true for the radix-tree nodes as well (ie. we 73 * don't actually need the rcu_read_lock()), however that is not a 74 * documented feature of the radix-tree API so it is better to be 75 * safe here (we don't have total exclusion from radix tree updates 76 * here, only deletes). 77 */ 78 rcu_read_lock(); 79 idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */ 80 page = radix_tree_lookup(&brd->brd_pages, idx); 81 rcu_read_unlock(); 82 83 BUG_ON(page && page->index != idx); 84 85 return page; 86 } 87 88 /* 89 * Look up and return a brd's page for a given sector. 90 * If one does not exist, allocate an empty page, and insert that. Then 91 * return it. 92 */ 93 static struct page *brd_insert_page(struct brd_device *brd, sector_t sector) 94 { 95 pgoff_t idx; 96 struct page *page; 97 gfp_t gfp_flags; 98 99 page = brd_lookup_page(brd, sector); 100 if (page) 101 return page; 102 103 /* 104 * Must use NOIO because we don't want to recurse back into the 105 * block or filesystem layers from page reclaim. 106 * 107 * Cannot support DAX and highmem, because our ->direct_access 108 * routine for DAX must return memory that is always addressable. 109 * If DAX was reworked to use pfns and kmap throughout, this 110 * restriction might be able to be lifted. 111 */ 112 gfp_flags = GFP_NOIO | __GFP_ZERO; 113 #ifndef CONFIG_BLK_DEV_RAM_DAX 114 gfp_flags |= __GFP_HIGHMEM; 115 #endif 116 page = alloc_page(gfp_flags); 117 if (!page) 118 return NULL; 119 120 if (radix_tree_preload(GFP_NOIO)) { 121 __free_page(page); 122 return NULL; 123 } 124 125 spin_lock(&brd->brd_lock); 126 idx = sector >> PAGE_SECTORS_SHIFT; 127 page->index = idx; 128 if (radix_tree_insert(&brd->brd_pages, idx, page)) { 129 __free_page(page); 130 page = radix_tree_lookup(&brd->brd_pages, idx); 131 BUG_ON(!page); 132 BUG_ON(page->index != idx); 133 } 134 spin_unlock(&brd->brd_lock); 135 136 radix_tree_preload_end(); 137 138 return page; 139 } 140 141 /* 142 * Free all backing store pages and radix tree. This must only be called when 143 * there are no other users of the device. 144 */ 145 #define FREE_BATCH 16 146 static void brd_free_pages(struct brd_device *brd) 147 { 148 unsigned long pos = 0; 149 struct page *pages[FREE_BATCH]; 150 int nr_pages; 151 152 do { 153 int i; 154 155 nr_pages = radix_tree_gang_lookup(&brd->brd_pages, 156 (void **)pages, pos, FREE_BATCH); 157 158 for (i = 0; i < nr_pages; i++) { 159 void *ret; 160 161 BUG_ON(pages[i]->index < pos); 162 pos = pages[i]->index; 163 ret = radix_tree_delete(&brd->brd_pages, pos); 164 BUG_ON(!ret || ret != pages[i]); 165 __free_page(pages[i]); 166 } 167 168 pos++; 169 170 /* 171 * This assumes radix_tree_gang_lookup always returns as 172 * many pages as possible. If the radix-tree code changes, 173 * so will this have to. 174 */ 175 } while (nr_pages == FREE_BATCH); 176 } 177 178 /* 179 * copy_to_brd_setup must be called before copy_to_brd. It may sleep. 180 */ 181 static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n) 182 { 183 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; 184 size_t copy; 185 186 copy = min_t(size_t, n, PAGE_SIZE - offset); 187 if (!brd_insert_page(brd, sector)) 188 return -ENOSPC; 189 if (copy < n) { 190 sector += copy >> SECTOR_SHIFT; 191 if (!brd_insert_page(brd, sector)) 192 return -ENOSPC; 193 } 194 return 0; 195 } 196 197 /* 198 * Copy n bytes from src to the brd starting at sector. Does not sleep. 199 */ 200 static void copy_to_brd(struct brd_device *brd, const void *src, 201 sector_t sector, size_t n) 202 { 203 struct page *page; 204 void *dst; 205 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; 206 size_t copy; 207 208 copy = min_t(size_t, n, PAGE_SIZE - offset); 209 page = brd_lookup_page(brd, sector); 210 BUG_ON(!page); 211 212 dst = kmap_atomic(page); 213 memcpy(dst + offset, src, copy); 214 kunmap_atomic(dst); 215 216 if (copy < n) { 217 src += copy; 218 sector += copy >> SECTOR_SHIFT; 219 copy = n - copy; 220 page = brd_lookup_page(brd, sector); 221 BUG_ON(!page); 222 223 dst = kmap_atomic(page); 224 memcpy(dst, src, copy); 225 kunmap_atomic(dst); 226 } 227 } 228 229 /* 230 * Copy n bytes to dst from the brd starting at sector. Does not sleep. 231 */ 232 static void copy_from_brd(void *dst, struct brd_device *brd, 233 sector_t sector, size_t n) 234 { 235 struct page *page; 236 void *src; 237 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; 238 size_t copy; 239 240 copy = min_t(size_t, n, PAGE_SIZE - offset); 241 page = brd_lookup_page(brd, sector); 242 if (page) { 243 src = kmap_atomic(page); 244 memcpy(dst, src + offset, copy); 245 kunmap_atomic(src); 246 } else 247 memset(dst, 0, copy); 248 249 if (copy < n) { 250 dst += copy; 251 sector += copy >> SECTOR_SHIFT; 252 copy = n - copy; 253 page = brd_lookup_page(brd, sector); 254 if (page) { 255 src = kmap_atomic(page); 256 memcpy(dst, src, copy); 257 kunmap_atomic(src); 258 } else 259 memset(dst, 0, copy); 260 } 261 } 262 263 /* 264 * Process a single bvec of a bio. 265 */ 266 static int brd_do_bvec(struct brd_device *brd, struct page *page, 267 unsigned int len, unsigned int off, bool is_write, 268 sector_t sector) 269 { 270 void *mem; 271 int err = 0; 272 273 if (is_write) { 274 err = copy_to_brd_setup(brd, sector, len); 275 if (err) 276 goto out; 277 } 278 279 mem = kmap_atomic(page); 280 if (!is_write) { 281 copy_from_brd(mem + off, brd, sector, len); 282 flush_dcache_page(page); 283 } else { 284 flush_dcache_page(page); 285 copy_to_brd(brd, mem + off, sector, len); 286 } 287 kunmap_atomic(mem); 288 289 out: 290 return err; 291 } 292 293 static blk_qc_t brd_make_request(struct request_queue *q, struct bio *bio) 294 { 295 struct block_device *bdev = bio->bi_bdev; 296 struct brd_device *brd = bdev->bd_disk->private_data; 297 struct bio_vec bvec; 298 sector_t sector; 299 struct bvec_iter iter; 300 301 sector = bio->bi_iter.bi_sector; 302 if (bio_end_sector(bio) > get_capacity(bdev->bd_disk)) 303 goto io_error; 304 305 bio_for_each_segment(bvec, bio, iter) { 306 unsigned int len = bvec.bv_len; 307 int err; 308 309 err = brd_do_bvec(brd, bvec.bv_page, len, bvec.bv_offset, 310 op_is_write(bio_op(bio)), sector); 311 if (err) 312 goto io_error; 313 sector += len >> SECTOR_SHIFT; 314 } 315 316 bio_endio(bio); 317 return BLK_QC_T_NONE; 318 io_error: 319 bio_io_error(bio); 320 return BLK_QC_T_NONE; 321 } 322 323 static int brd_rw_page(struct block_device *bdev, sector_t sector, 324 struct page *page, bool is_write) 325 { 326 struct brd_device *brd = bdev->bd_disk->private_data; 327 int err = brd_do_bvec(brd, page, PAGE_SIZE, 0, is_write, sector); 328 page_endio(page, is_write, err); 329 return err; 330 } 331 332 #ifdef CONFIG_BLK_DEV_RAM_DAX 333 static long __brd_direct_access(struct brd_device *brd, pgoff_t pgoff, 334 long nr_pages, void **kaddr, pfn_t *pfn) 335 { 336 struct page *page; 337 338 if (!brd) 339 return -ENODEV; 340 page = brd_insert_page(brd, PFN_PHYS(pgoff) / 512); 341 if (!page) 342 return -ENOSPC; 343 *kaddr = page_address(page); 344 *pfn = page_to_pfn_t(page); 345 346 return 1; 347 } 348 349 static long brd_dax_direct_access(struct dax_device *dax_dev, 350 pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn) 351 { 352 struct brd_device *brd = dax_get_private(dax_dev); 353 354 return __brd_direct_access(brd, pgoff, nr_pages, kaddr, pfn); 355 } 356 357 static const struct dax_operations brd_dax_ops = { 358 .direct_access = brd_dax_direct_access, 359 }; 360 #endif 361 362 static const struct block_device_operations brd_fops = { 363 .owner = THIS_MODULE, 364 .rw_page = brd_rw_page, 365 }; 366 367 /* 368 * And now the modules code and kernel interface. 369 */ 370 static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT; 371 module_param(rd_nr, int, S_IRUGO); 372 MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices"); 373 374 unsigned long rd_size = CONFIG_BLK_DEV_RAM_SIZE; 375 module_param(rd_size, ulong, S_IRUGO); 376 MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes."); 377 378 static int max_part = 1; 379 module_param(max_part, int, S_IRUGO); 380 MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices"); 381 382 MODULE_LICENSE("GPL"); 383 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR); 384 MODULE_ALIAS("rd"); 385 386 #ifndef MODULE 387 /* Legacy boot options - nonmodular */ 388 static int __init ramdisk_size(char *str) 389 { 390 rd_size = simple_strtol(str, NULL, 0); 391 return 1; 392 } 393 __setup("ramdisk_size=", ramdisk_size); 394 #endif 395 396 /* 397 * The device scheme is derived from loop.c. Keep them in synch where possible 398 * (should share code eventually). 399 */ 400 static LIST_HEAD(brd_devices); 401 static DEFINE_MUTEX(brd_devices_mutex); 402 403 static struct brd_device *brd_alloc(int i) 404 { 405 struct brd_device *brd; 406 struct gendisk *disk; 407 408 brd = kzalloc(sizeof(*brd), GFP_KERNEL); 409 if (!brd) 410 goto out; 411 brd->brd_number = i; 412 spin_lock_init(&brd->brd_lock); 413 INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC); 414 415 brd->brd_queue = blk_alloc_queue(GFP_KERNEL); 416 if (!brd->brd_queue) 417 goto out_free_dev; 418 419 blk_queue_make_request(brd->brd_queue, brd_make_request); 420 blk_queue_max_hw_sectors(brd->brd_queue, 1024); 421 blk_queue_bounce_limit(brd->brd_queue, BLK_BOUNCE_ANY); 422 423 /* This is so fdisk will align partitions on 4k, because of 424 * direct_access API needing 4k alignment, returning a PFN 425 * (This is only a problem on very small devices <= 4M, 426 * otherwise fdisk will align on 1M. Regardless this call 427 * is harmless) 428 */ 429 blk_queue_physical_block_size(brd->brd_queue, PAGE_SIZE); 430 disk = brd->brd_disk = alloc_disk(max_part); 431 if (!disk) 432 goto out_free_queue; 433 disk->major = RAMDISK_MAJOR; 434 disk->first_minor = i * max_part; 435 disk->fops = &brd_fops; 436 disk->private_data = brd; 437 disk->queue = brd->brd_queue; 438 disk->flags = GENHD_FL_EXT_DEVT; 439 sprintf(disk->disk_name, "ram%d", i); 440 set_capacity(disk, rd_size * 2); 441 442 #ifdef CONFIG_BLK_DEV_RAM_DAX 443 queue_flag_set_unlocked(QUEUE_FLAG_DAX, brd->brd_queue); 444 brd->dax_dev = alloc_dax(brd, disk->disk_name, &brd_dax_ops); 445 if (!brd->dax_dev) 446 goto out_free_inode; 447 #endif 448 449 450 return brd; 451 452 #ifdef CONFIG_BLK_DEV_RAM_DAX 453 out_free_inode: 454 kill_dax(brd->dax_dev); 455 put_dax(brd->dax_dev); 456 #endif 457 out_free_queue: 458 blk_cleanup_queue(brd->brd_queue); 459 out_free_dev: 460 kfree(brd); 461 out: 462 return NULL; 463 } 464 465 static void brd_free(struct brd_device *brd) 466 { 467 put_disk(brd->brd_disk); 468 blk_cleanup_queue(brd->brd_queue); 469 brd_free_pages(brd); 470 kfree(brd); 471 } 472 473 static struct brd_device *brd_init_one(int i, bool *new) 474 { 475 struct brd_device *brd; 476 477 *new = false; 478 list_for_each_entry(brd, &brd_devices, brd_list) { 479 if (brd->brd_number == i) 480 goto out; 481 } 482 483 brd = brd_alloc(i); 484 if (brd) { 485 add_disk(brd->brd_disk); 486 list_add_tail(&brd->brd_list, &brd_devices); 487 } 488 *new = true; 489 out: 490 return brd; 491 } 492 493 static void brd_del_one(struct brd_device *brd) 494 { 495 list_del(&brd->brd_list); 496 #ifdef CONFIG_BLK_DEV_RAM_DAX 497 kill_dax(brd->dax_dev); 498 put_dax(brd->dax_dev); 499 #endif 500 del_gendisk(brd->brd_disk); 501 brd_free(brd); 502 } 503 504 static struct kobject *brd_probe(dev_t dev, int *part, void *data) 505 { 506 struct brd_device *brd; 507 struct kobject *kobj; 508 bool new; 509 510 mutex_lock(&brd_devices_mutex); 511 brd = brd_init_one(MINOR(dev) / max_part, &new); 512 kobj = brd ? get_disk(brd->brd_disk) : NULL; 513 mutex_unlock(&brd_devices_mutex); 514 515 if (new) 516 *part = 0; 517 518 return kobj; 519 } 520 521 static int __init brd_init(void) 522 { 523 struct brd_device *brd, *next; 524 int i; 525 526 /* 527 * brd module now has a feature to instantiate underlying device 528 * structure on-demand, provided that there is an access dev node. 529 * 530 * (1) if rd_nr is specified, create that many upfront. else 531 * it defaults to CONFIG_BLK_DEV_RAM_COUNT 532 * (2) User can further extend brd devices by create dev node themselves 533 * and have kernel automatically instantiate actual device 534 * on-demand. Example: 535 * mknod /path/devnod_name b 1 X # 1 is the rd major 536 * fdisk -l /path/devnod_name 537 * If (X / max_part) was not already created it will be created 538 * dynamically. 539 */ 540 541 if (register_blkdev(RAMDISK_MAJOR, "ramdisk")) 542 return -EIO; 543 544 if (unlikely(!max_part)) 545 max_part = 1; 546 547 for (i = 0; i < rd_nr; i++) { 548 brd = brd_alloc(i); 549 if (!brd) 550 goto out_free; 551 list_add_tail(&brd->brd_list, &brd_devices); 552 } 553 554 /* point of no return */ 555 556 list_for_each_entry(brd, &brd_devices, brd_list) 557 add_disk(brd->brd_disk); 558 559 blk_register_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS, 560 THIS_MODULE, brd_probe, NULL, NULL); 561 562 pr_info("brd: module loaded\n"); 563 return 0; 564 565 out_free: 566 list_for_each_entry_safe(brd, next, &brd_devices, brd_list) { 567 list_del(&brd->brd_list); 568 brd_free(brd); 569 } 570 unregister_blkdev(RAMDISK_MAJOR, "ramdisk"); 571 572 pr_info("brd: module NOT loaded !!!\n"); 573 return -ENOMEM; 574 } 575 576 static void __exit brd_exit(void) 577 { 578 struct brd_device *brd, *next; 579 580 list_for_each_entry_safe(brd, next, &brd_devices, brd_list) 581 brd_del_one(brd); 582 583 blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS); 584 unregister_blkdev(RAMDISK_MAJOR, "ramdisk"); 585 586 pr_info("brd: module unloaded\n"); 587 } 588 589 module_init(brd_init); 590 module_exit(brd_exit); 591 592