xref: /openbmc/linux/drivers/block/brd.c (revision d2a266fa)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Ram backed block device driver.
4  *
5  * Copyright (C) 2007 Nick Piggin
6  * Copyright (C) 2007 Novell Inc.
7  *
8  * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
9  * of their respective owners.
10  */
11 
12 #include <linux/init.h>
13 #include <linux/initrd.h>
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/major.h>
17 #include <linux/blkdev.h>
18 #include <linux/bio.h>
19 #include <linux/highmem.h>
20 #include <linux/mutex.h>
21 #include <linux/pagemap.h>
22 #include <linux/radix-tree.h>
23 #include <linux/fs.h>
24 #include <linux/slab.h>
25 #include <linux/backing-dev.h>
26 #include <linux/debugfs.h>
27 
28 #include <linux/uaccess.h>
29 
30 #define PAGE_SECTORS_SHIFT	(PAGE_SHIFT - SECTOR_SHIFT)
31 #define PAGE_SECTORS		(1 << PAGE_SECTORS_SHIFT)
32 
33 /*
34  * Each block ramdisk device has a radix_tree brd_pages of pages that stores
35  * the pages containing the block device's contents. A brd page's ->index is
36  * its offset in PAGE_SIZE units. This is similar to, but in no way connected
37  * with, the kernel's pagecache or buffer cache (which sit above our block
38  * device).
39  */
40 struct brd_device {
41 	int			brd_number;
42 	struct gendisk		*brd_disk;
43 	struct list_head	brd_list;
44 
45 	/*
46 	 * Backing store of pages and lock to protect it. This is the contents
47 	 * of the block device.
48 	 */
49 	spinlock_t		brd_lock;
50 	struct radix_tree_root	brd_pages;
51 	u64			brd_nr_pages;
52 };
53 
54 /*
55  * Look up and return a brd's page for a given sector.
56  */
57 static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
58 {
59 	pgoff_t idx;
60 	struct page *page;
61 
62 	/*
63 	 * The page lifetime is protected by the fact that we have opened the
64 	 * device node -- brd pages will never be deleted under us, so we
65 	 * don't need any further locking or refcounting.
66 	 *
67 	 * This is strictly true for the radix-tree nodes as well (ie. we
68 	 * don't actually need the rcu_read_lock()), however that is not a
69 	 * documented feature of the radix-tree API so it is better to be
70 	 * safe here (we don't have total exclusion from radix tree updates
71 	 * here, only deletes).
72 	 */
73 	rcu_read_lock();
74 	idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */
75 	page = radix_tree_lookup(&brd->brd_pages, idx);
76 	rcu_read_unlock();
77 
78 	BUG_ON(page && page->index != idx);
79 
80 	return page;
81 }
82 
83 /*
84  * Look up and return a brd's page for a given sector.
85  * If one does not exist, allocate an empty page, and insert that. Then
86  * return it.
87  */
88 static struct page *brd_insert_page(struct brd_device *brd, sector_t sector)
89 {
90 	pgoff_t idx;
91 	struct page *page;
92 	gfp_t gfp_flags;
93 
94 	page = brd_lookup_page(brd, sector);
95 	if (page)
96 		return page;
97 
98 	/*
99 	 * Must use NOIO because we don't want to recurse back into the
100 	 * block or filesystem layers from page reclaim.
101 	 */
102 	gfp_flags = GFP_NOIO | __GFP_ZERO | __GFP_HIGHMEM;
103 	page = alloc_page(gfp_flags);
104 	if (!page)
105 		return NULL;
106 
107 	if (radix_tree_preload(GFP_NOIO)) {
108 		__free_page(page);
109 		return NULL;
110 	}
111 
112 	spin_lock(&brd->brd_lock);
113 	idx = sector >> PAGE_SECTORS_SHIFT;
114 	page->index = idx;
115 	if (radix_tree_insert(&brd->brd_pages, idx, page)) {
116 		__free_page(page);
117 		page = radix_tree_lookup(&brd->brd_pages, idx);
118 		BUG_ON(!page);
119 		BUG_ON(page->index != idx);
120 	} else {
121 		brd->brd_nr_pages++;
122 	}
123 	spin_unlock(&brd->brd_lock);
124 
125 	radix_tree_preload_end();
126 
127 	return page;
128 }
129 
130 /*
131  * Free all backing store pages and radix tree. This must only be called when
132  * there are no other users of the device.
133  */
134 #define FREE_BATCH 16
135 static void brd_free_pages(struct brd_device *brd)
136 {
137 	unsigned long pos = 0;
138 	struct page *pages[FREE_BATCH];
139 	int nr_pages;
140 
141 	do {
142 		int i;
143 
144 		nr_pages = radix_tree_gang_lookup(&brd->brd_pages,
145 				(void **)pages, pos, FREE_BATCH);
146 
147 		for (i = 0; i < nr_pages; i++) {
148 			void *ret;
149 
150 			BUG_ON(pages[i]->index < pos);
151 			pos = pages[i]->index;
152 			ret = radix_tree_delete(&brd->brd_pages, pos);
153 			BUG_ON(!ret || ret != pages[i]);
154 			__free_page(pages[i]);
155 		}
156 
157 		pos++;
158 
159 		/*
160 		 * It takes 3.4 seconds to remove 80GiB ramdisk.
161 		 * So, we need cond_resched to avoid stalling the CPU.
162 		 */
163 		cond_resched();
164 
165 		/*
166 		 * This assumes radix_tree_gang_lookup always returns as
167 		 * many pages as possible. If the radix-tree code changes,
168 		 * so will this have to.
169 		 */
170 	} while (nr_pages == FREE_BATCH);
171 }
172 
173 /*
174  * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
175  */
176 static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n)
177 {
178 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
179 	size_t copy;
180 
181 	copy = min_t(size_t, n, PAGE_SIZE - offset);
182 	if (!brd_insert_page(brd, sector))
183 		return -ENOSPC;
184 	if (copy < n) {
185 		sector += copy >> SECTOR_SHIFT;
186 		if (!brd_insert_page(brd, sector))
187 			return -ENOSPC;
188 	}
189 	return 0;
190 }
191 
192 /*
193  * Copy n bytes from src to the brd starting at sector. Does not sleep.
194  */
195 static void copy_to_brd(struct brd_device *brd, const void *src,
196 			sector_t sector, size_t n)
197 {
198 	struct page *page;
199 	void *dst;
200 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
201 	size_t copy;
202 
203 	copy = min_t(size_t, n, PAGE_SIZE - offset);
204 	page = brd_lookup_page(brd, sector);
205 	BUG_ON(!page);
206 
207 	dst = kmap_atomic(page);
208 	memcpy(dst + offset, src, copy);
209 	kunmap_atomic(dst);
210 
211 	if (copy < n) {
212 		src += copy;
213 		sector += copy >> SECTOR_SHIFT;
214 		copy = n - copy;
215 		page = brd_lookup_page(brd, sector);
216 		BUG_ON(!page);
217 
218 		dst = kmap_atomic(page);
219 		memcpy(dst, src, copy);
220 		kunmap_atomic(dst);
221 	}
222 }
223 
224 /*
225  * Copy n bytes to dst from the brd starting at sector. Does not sleep.
226  */
227 static void copy_from_brd(void *dst, struct brd_device *brd,
228 			sector_t sector, size_t n)
229 {
230 	struct page *page;
231 	void *src;
232 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
233 	size_t copy;
234 
235 	copy = min_t(size_t, n, PAGE_SIZE - offset);
236 	page = brd_lookup_page(brd, sector);
237 	if (page) {
238 		src = kmap_atomic(page);
239 		memcpy(dst, src + offset, copy);
240 		kunmap_atomic(src);
241 	} else
242 		memset(dst, 0, copy);
243 
244 	if (copy < n) {
245 		dst += copy;
246 		sector += copy >> SECTOR_SHIFT;
247 		copy = n - copy;
248 		page = brd_lookup_page(brd, sector);
249 		if (page) {
250 			src = kmap_atomic(page);
251 			memcpy(dst, src, copy);
252 			kunmap_atomic(src);
253 		} else
254 			memset(dst, 0, copy);
255 	}
256 }
257 
258 /*
259  * Process a single bvec of a bio.
260  */
261 static int brd_do_bvec(struct brd_device *brd, struct page *page,
262 			unsigned int len, unsigned int off, unsigned int op,
263 			sector_t sector)
264 {
265 	void *mem;
266 	int err = 0;
267 
268 	if (op_is_write(op)) {
269 		err = copy_to_brd_setup(brd, sector, len);
270 		if (err)
271 			goto out;
272 	}
273 
274 	mem = kmap_atomic(page);
275 	if (!op_is_write(op)) {
276 		copy_from_brd(mem + off, brd, sector, len);
277 		flush_dcache_page(page);
278 	} else {
279 		flush_dcache_page(page);
280 		copy_to_brd(brd, mem + off, sector, len);
281 	}
282 	kunmap_atomic(mem);
283 
284 out:
285 	return err;
286 }
287 
288 static blk_qc_t brd_submit_bio(struct bio *bio)
289 {
290 	struct brd_device *brd = bio->bi_bdev->bd_disk->private_data;
291 	sector_t sector = bio->bi_iter.bi_sector;
292 	struct bio_vec bvec;
293 	struct bvec_iter iter;
294 
295 	bio_for_each_segment(bvec, bio, iter) {
296 		unsigned int len = bvec.bv_len;
297 		int err;
298 
299 		/* Don't support un-aligned buffer */
300 		WARN_ON_ONCE((bvec.bv_offset & (SECTOR_SIZE - 1)) ||
301 				(len & (SECTOR_SIZE - 1)));
302 
303 		err = brd_do_bvec(brd, bvec.bv_page, len, bvec.bv_offset,
304 				  bio_op(bio), sector);
305 		if (err)
306 			goto io_error;
307 		sector += len >> SECTOR_SHIFT;
308 	}
309 
310 	bio_endio(bio);
311 	return BLK_QC_T_NONE;
312 io_error:
313 	bio_io_error(bio);
314 	return BLK_QC_T_NONE;
315 }
316 
317 static int brd_rw_page(struct block_device *bdev, sector_t sector,
318 		       struct page *page, unsigned int op)
319 {
320 	struct brd_device *brd = bdev->bd_disk->private_data;
321 	int err;
322 
323 	if (PageTransHuge(page))
324 		return -ENOTSUPP;
325 	err = brd_do_bvec(brd, page, PAGE_SIZE, 0, op, sector);
326 	page_endio(page, op_is_write(op), err);
327 	return err;
328 }
329 
330 static const struct block_device_operations brd_fops = {
331 	.owner =		THIS_MODULE,
332 	.submit_bio =		brd_submit_bio,
333 	.rw_page =		brd_rw_page,
334 };
335 
336 /*
337  * And now the modules code and kernel interface.
338  */
339 static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT;
340 module_param(rd_nr, int, 0444);
341 MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
342 
343 unsigned long rd_size = CONFIG_BLK_DEV_RAM_SIZE;
344 module_param(rd_size, ulong, 0444);
345 MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
346 
347 static int max_part = 1;
348 module_param(max_part, int, 0444);
349 MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices");
350 
351 MODULE_LICENSE("GPL");
352 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
353 MODULE_ALIAS("rd");
354 
355 #ifndef MODULE
356 /* Legacy boot options - nonmodular */
357 static int __init ramdisk_size(char *str)
358 {
359 	rd_size = simple_strtol(str, NULL, 0);
360 	return 1;
361 }
362 __setup("ramdisk_size=", ramdisk_size);
363 #endif
364 
365 /*
366  * The device scheme is derived from loop.c. Keep them in synch where possible
367  * (should share code eventually).
368  */
369 static LIST_HEAD(brd_devices);
370 static DEFINE_MUTEX(brd_devices_mutex);
371 static struct dentry *brd_debugfs_dir;
372 
373 static int brd_alloc(int i)
374 {
375 	struct brd_device *brd;
376 	struct gendisk *disk;
377 	char buf[DISK_NAME_LEN];
378 
379 	brd = kzalloc(sizeof(*brd), GFP_KERNEL);
380 	if (!brd)
381 		return -ENOMEM;
382 	brd->brd_number		= i;
383 	spin_lock_init(&brd->brd_lock);
384 	INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC);
385 
386 	snprintf(buf, DISK_NAME_LEN, "ram%d", i);
387 	if (!IS_ERR_OR_NULL(brd_debugfs_dir))
388 		debugfs_create_u64(buf, 0444, brd_debugfs_dir,
389 				&brd->brd_nr_pages);
390 
391 	disk = brd->brd_disk = blk_alloc_disk(NUMA_NO_NODE);
392 	if (!disk)
393 		goto out_free_dev;
394 
395 	disk->major		= RAMDISK_MAJOR;
396 	disk->first_minor	= i * max_part;
397 	disk->minors		= max_part;
398 	disk->fops		= &brd_fops;
399 	disk->private_data	= brd;
400 	disk->flags		= GENHD_FL_EXT_DEVT;
401 	strlcpy(disk->disk_name, buf, DISK_NAME_LEN);
402 	set_capacity(disk, rd_size * 2);
403 
404 	/*
405 	 * This is so fdisk will align partitions on 4k, because of
406 	 * direct_access API needing 4k alignment, returning a PFN
407 	 * (This is only a problem on very small devices <= 4M,
408 	 *  otherwise fdisk will align on 1M. Regardless this call
409 	 *  is harmless)
410 	 */
411 	blk_queue_physical_block_size(disk->queue, PAGE_SIZE);
412 
413 	/* Tell the block layer that this is not a rotational device */
414 	blk_queue_flag_set(QUEUE_FLAG_NONROT, disk->queue);
415 	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, disk->queue);
416 	add_disk(disk);
417 	list_add_tail(&brd->brd_list, &brd_devices);
418 
419 	return 0;
420 
421 out_free_dev:
422 	kfree(brd);
423 	return -ENOMEM;
424 }
425 
426 static void brd_probe(dev_t dev)
427 {
428 	int i = MINOR(dev) / max_part;
429 	struct brd_device *brd;
430 
431 	mutex_lock(&brd_devices_mutex);
432 	list_for_each_entry(brd, &brd_devices, brd_list) {
433 		if (brd->brd_number == i)
434 			goto out_unlock;
435 	}
436 
437 	brd_alloc(i);
438 out_unlock:
439 	mutex_unlock(&brd_devices_mutex);
440 }
441 
442 static void brd_del_one(struct brd_device *brd)
443 {
444 	list_del(&brd->brd_list);
445 	del_gendisk(brd->brd_disk);
446 	blk_cleanup_disk(brd->brd_disk);
447 	brd_free_pages(brd);
448 	kfree(brd);
449 }
450 
451 static inline void brd_check_and_reset_par(void)
452 {
453 	if (unlikely(!max_part))
454 		max_part = 1;
455 
456 	/*
457 	 * make sure 'max_part' can be divided exactly by (1U << MINORBITS),
458 	 * otherwise, it is possiable to get same dev_t when adding partitions.
459 	 */
460 	if ((1U << MINORBITS) % max_part != 0)
461 		max_part = 1UL << fls(max_part);
462 
463 	if (max_part > DISK_MAX_PARTS) {
464 		pr_info("brd: max_part can't be larger than %d, reset max_part = %d.\n",
465 			DISK_MAX_PARTS, DISK_MAX_PARTS);
466 		max_part = DISK_MAX_PARTS;
467 	}
468 }
469 
470 static int __init brd_init(void)
471 {
472 	struct brd_device *brd, *next;
473 	int err, i;
474 
475 	/*
476 	 * brd module now has a feature to instantiate underlying device
477 	 * structure on-demand, provided that there is an access dev node.
478 	 *
479 	 * (1) if rd_nr is specified, create that many upfront. else
480 	 *     it defaults to CONFIG_BLK_DEV_RAM_COUNT
481 	 * (2) User can further extend brd devices by create dev node themselves
482 	 *     and have kernel automatically instantiate actual device
483 	 *     on-demand. Example:
484 	 *		mknod /path/devnod_name b 1 X	# 1 is the rd major
485 	 *		fdisk -l /path/devnod_name
486 	 *	If (X / max_part) was not already created it will be created
487 	 *	dynamically.
488 	 */
489 
490 	if (__register_blkdev(RAMDISK_MAJOR, "ramdisk", brd_probe))
491 		return -EIO;
492 
493 	brd_check_and_reset_par();
494 
495 	brd_debugfs_dir = debugfs_create_dir("ramdisk_pages", NULL);
496 
497 	mutex_lock(&brd_devices_mutex);
498 	for (i = 0; i < rd_nr; i++) {
499 		err = brd_alloc(i);
500 		if (err)
501 			goto out_free;
502 	}
503 
504 	mutex_unlock(&brd_devices_mutex);
505 
506 	pr_info("brd: module loaded\n");
507 	return 0;
508 
509 out_free:
510 	debugfs_remove_recursive(brd_debugfs_dir);
511 
512 	list_for_each_entry_safe(brd, next, &brd_devices, brd_list)
513 		brd_del_one(brd);
514 	mutex_unlock(&brd_devices_mutex);
515 	unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
516 
517 	pr_info("brd: module NOT loaded !!!\n");
518 	return err;
519 }
520 
521 static void __exit brd_exit(void)
522 {
523 	struct brd_device *brd, *next;
524 
525 	debugfs_remove_recursive(brd_debugfs_dir);
526 
527 	list_for_each_entry_safe(brd, next, &brd_devices, brd_list)
528 		brd_del_one(brd);
529 
530 	unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
531 
532 	pr_info("brd: module unloaded\n");
533 }
534 
535 module_init(brd_init);
536 module_exit(brd_exit);
537 
538