1 /* 2 * Ram backed block device driver. 3 * 4 * Copyright (C) 2007 Nick Piggin 5 * Copyright (C) 2007 Novell Inc. 6 * 7 * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright 8 * of their respective owners. 9 */ 10 11 #include <linux/init.h> 12 #include <linux/module.h> 13 #include <linux/moduleparam.h> 14 #include <linux/major.h> 15 #include <linux/blkdev.h> 16 #include <linux/bio.h> 17 #include <linux/highmem.h> 18 #include <linux/mutex.h> 19 #include <linux/radix-tree.h> 20 #include <linux/fs.h> 21 #include <linux/slab.h> 22 #ifdef CONFIG_BLK_DEV_RAM_DAX 23 #include <linux/pfn_t.h> 24 #endif 25 26 #include <asm/uaccess.h> 27 28 #define SECTOR_SHIFT 9 29 #define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT) 30 #define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT) 31 32 /* 33 * Each block ramdisk device has a radix_tree brd_pages of pages that stores 34 * the pages containing the block device's contents. A brd page's ->index is 35 * its offset in PAGE_SIZE units. This is similar to, but in no way connected 36 * with, the kernel's pagecache or buffer cache (which sit above our block 37 * device). 38 */ 39 struct brd_device { 40 int brd_number; 41 42 struct request_queue *brd_queue; 43 struct gendisk *brd_disk; 44 struct list_head brd_list; 45 46 /* 47 * Backing store of pages and lock to protect it. This is the contents 48 * of the block device. 49 */ 50 spinlock_t brd_lock; 51 struct radix_tree_root brd_pages; 52 }; 53 54 /* 55 * Look up and return a brd's page for a given sector. 56 */ 57 static DEFINE_MUTEX(brd_mutex); 58 static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector) 59 { 60 pgoff_t idx; 61 struct page *page; 62 63 /* 64 * The page lifetime is protected by the fact that we have opened the 65 * device node -- brd pages will never be deleted under us, so we 66 * don't need any further locking or refcounting. 67 * 68 * This is strictly true for the radix-tree nodes as well (ie. we 69 * don't actually need the rcu_read_lock()), however that is not a 70 * documented feature of the radix-tree API so it is better to be 71 * safe here (we don't have total exclusion from radix tree updates 72 * here, only deletes). 73 */ 74 rcu_read_lock(); 75 idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */ 76 page = radix_tree_lookup(&brd->brd_pages, idx); 77 rcu_read_unlock(); 78 79 BUG_ON(page && page->index != idx); 80 81 return page; 82 } 83 84 /* 85 * Look up and return a brd's page for a given sector. 86 * If one does not exist, allocate an empty page, and insert that. Then 87 * return it. 88 */ 89 static struct page *brd_insert_page(struct brd_device *brd, sector_t sector) 90 { 91 pgoff_t idx; 92 struct page *page; 93 gfp_t gfp_flags; 94 95 page = brd_lookup_page(brd, sector); 96 if (page) 97 return page; 98 99 /* 100 * Must use NOIO because we don't want to recurse back into the 101 * block or filesystem layers from page reclaim. 102 * 103 * Cannot support DAX and highmem, because our ->direct_access 104 * routine for DAX must return memory that is always addressable. 105 * If DAX was reworked to use pfns and kmap throughout, this 106 * restriction might be able to be lifted. 107 */ 108 gfp_flags = GFP_NOIO | __GFP_ZERO; 109 #ifndef CONFIG_BLK_DEV_RAM_DAX 110 gfp_flags |= __GFP_HIGHMEM; 111 #endif 112 page = alloc_page(gfp_flags); 113 if (!page) 114 return NULL; 115 116 if (radix_tree_preload(GFP_NOIO)) { 117 __free_page(page); 118 return NULL; 119 } 120 121 spin_lock(&brd->brd_lock); 122 idx = sector >> PAGE_SECTORS_SHIFT; 123 page->index = idx; 124 if (radix_tree_insert(&brd->brd_pages, idx, page)) { 125 __free_page(page); 126 page = radix_tree_lookup(&brd->brd_pages, idx); 127 BUG_ON(!page); 128 BUG_ON(page->index != idx); 129 } 130 spin_unlock(&brd->brd_lock); 131 132 radix_tree_preload_end(); 133 134 return page; 135 } 136 137 static void brd_free_page(struct brd_device *brd, sector_t sector) 138 { 139 struct page *page; 140 pgoff_t idx; 141 142 spin_lock(&brd->brd_lock); 143 idx = sector >> PAGE_SECTORS_SHIFT; 144 page = radix_tree_delete(&brd->brd_pages, idx); 145 spin_unlock(&brd->brd_lock); 146 if (page) 147 __free_page(page); 148 } 149 150 static void brd_zero_page(struct brd_device *brd, sector_t sector) 151 { 152 struct page *page; 153 154 page = brd_lookup_page(brd, sector); 155 if (page) 156 clear_highpage(page); 157 } 158 159 /* 160 * Free all backing store pages and radix tree. This must only be called when 161 * there are no other users of the device. 162 */ 163 #define FREE_BATCH 16 164 static void brd_free_pages(struct brd_device *brd) 165 { 166 unsigned long pos = 0; 167 struct page *pages[FREE_BATCH]; 168 int nr_pages; 169 170 do { 171 int i; 172 173 nr_pages = radix_tree_gang_lookup(&brd->brd_pages, 174 (void **)pages, pos, FREE_BATCH); 175 176 for (i = 0; i < nr_pages; i++) { 177 void *ret; 178 179 BUG_ON(pages[i]->index < pos); 180 pos = pages[i]->index; 181 ret = radix_tree_delete(&brd->brd_pages, pos); 182 BUG_ON(!ret || ret != pages[i]); 183 __free_page(pages[i]); 184 } 185 186 pos++; 187 188 /* 189 * This assumes radix_tree_gang_lookup always returns as 190 * many pages as possible. If the radix-tree code changes, 191 * so will this have to. 192 */ 193 } while (nr_pages == FREE_BATCH); 194 } 195 196 /* 197 * copy_to_brd_setup must be called before copy_to_brd. It may sleep. 198 */ 199 static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n) 200 { 201 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; 202 size_t copy; 203 204 copy = min_t(size_t, n, PAGE_SIZE - offset); 205 if (!brd_insert_page(brd, sector)) 206 return -ENOSPC; 207 if (copy < n) { 208 sector += copy >> SECTOR_SHIFT; 209 if (!brd_insert_page(brd, sector)) 210 return -ENOSPC; 211 } 212 return 0; 213 } 214 215 static void discard_from_brd(struct brd_device *brd, 216 sector_t sector, size_t n) 217 { 218 while (n >= PAGE_SIZE) { 219 /* 220 * Don't want to actually discard pages here because 221 * re-allocating the pages can result in writeback 222 * deadlocks under heavy load. 223 */ 224 if (0) 225 brd_free_page(brd, sector); 226 else 227 brd_zero_page(brd, sector); 228 sector += PAGE_SIZE >> SECTOR_SHIFT; 229 n -= PAGE_SIZE; 230 } 231 } 232 233 /* 234 * Copy n bytes from src to the brd starting at sector. Does not sleep. 235 */ 236 static void copy_to_brd(struct brd_device *brd, const void *src, 237 sector_t sector, size_t n) 238 { 239 struct page *page; 240 void *dst; 241 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; 242 size_t copy; 243 244 copy = min_t(size_t, n, PAGE_SIZE - offset); 245 page = brd_lookup_page(brd, sector); 246 BUG_ON(!page); 247 248 dst = kmap_atomic(page); 249 memcpy(dst + offset, src, copy); 250 kunmap_atomic(dst); 251 252 if (copy < n) { 253 src += copy; 254 sector += copy >> SECTOR_SHIFT; 255 copy = n - copy; 256 page = brd_lookup_page(brd, sector); 257 BUG_ON(!page); 258 259 dst = kmap_atomic(page); 260 memcpy(dst, src, copy); 261 kunmap_atomic(dst); 262 } 263 } 264 265 /* 266 * Copy n bytes to dst from the brd starting at sector. Does not sleep. 267 */ 268 static void copy_from_brd(void *dst, struct brd_device *brd, 269 sector_t sector, size_t n) 270 { 271 struct page *page; 272 void *src; 273 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; 274 size_t copy; 275 276 copy = min_t(size_t, n, PAGE_SIZE - offset); 277 page = brd_lookup_page(brd, sector); 278 if (page) { 279 src = kmap_atomic(page); 280 memcpy(dst, src + offset, copy); 281 kunmap_atomic(src); 282 } else 283 memset(dst, 0, copy); 284 285 if (copy < n) { 286 dst += copy; 287 sector += copy >> SECTOR_SHIFT; 288 copy = n - copy; 289 page = brd_lookup_page(brd, sector); 290 if (page) { 291 src = kmap_atomic(page); 292 memcpy(dst, src, copy); 293 kunmap_atomic(src); 294 } else 295 memset(dst, 0, copy); 296 } 297 } 298 299 /* 300 * Process a single bvec of a bio. 301 */ 302 static int brd_do_bvec(struct brd_device *brd, struct page *page, 303 unsigned int len, unsigned int off, bool is_write, 304 sector_t sector) 305 { 306 void *mem; 307 int err = 0; 308 309 if (is_write) { 310 err = copy_to_brd_setup(brd, sector, len); 311 if (err) 312 goto out; 313 } 314 315 mem = kmap_atomic(page); 316 if (!is_write) { 317 copy_from_brd(mem + off, brd, sector, len); 318 flush_dcache_page(page); 319 } else { 320 flush_dcache_page(page); 321 copy_to_brd(brd, mem + off, sector, len); 322 } 323 kunmap_atomic(mem); 324 325 out: 326 return err; 327 } 328 329 static blk_qc_t brd_make_request(struct request_queue *q, struct bio *bio) 330 { 331 struct block_device *bdev = bio->bi_bdev; 332 struct brd_device *brd = bdev->bd_disk->private_data; 333 struct bio_vec bvec; 334 sector_t sector; 335 struct bvec_iter iter; 336 337 sector = bio->bi_iter.bi_sector; 338 if (bio_end_sector(bio) > get_capacity(bdev->bd_disk)) 339 goto io_error; 340 341 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) { 342 if (sector & ((PAGE_SIZE >> SECTOR_SHIFT) - 1) || 343 bio->bi_iter.bi_size & ~PAGE_MASK) 344 goto io_error; 345 discard_from_brd(brd, sector, bio->bi_iter.bi_size); 346 goto out; 347 } 348 349 bio_for_each_segment(bvec, bio, iter) { 350 unsigned int len = bvec.bv_len; 351 int err; 352 353 err = brd_do_bvec(brd, bvec.bv_page, len, bvec.bv_offset, 354 op_is_write(bio_op(bio)), sector); 355 if (err) 356 goto io_error; 357 sector += len >> SECTOR_SHIFT; 358 } 359 360 out: 361 bio_endio(bio); 362 return BLK_QC_T_NONE; 363 io_error: 364 bio_io_error(bio); 365 return BLK_QC_T_NONE; 366 } 367 368 static int brd_rw_page(struct block_device *bdev, sector_t sector, 369 struct page *page, bool is_write) 370 { 371 struct brd_device *brd = bdev->bd_disk->private_data; 372 int err = brd_do_bvec(brd, page, PAGE_SIZE, 0, is_write, sector); 373 page_endio(page, is_write, err); 374 return err; 375 } 376 377 #ifdef CONFIG_BLK_DEV_RAM_DAX 378 static long brd_direct_access(struct block_device *bdev, sector_t sector, 379 void **kaddr, pfn_t *pfn, long size) 380 { 381 struct brd_device *brd = bdev->bd_disk->private_data; 382 struct page *page; 383 384 if (!brd) 385 return -ENODEV; 386 page = brd_insert_page(brd, sector); 387 if (!page) 388 return -ENOSPC; 389 *kaddr = page_address(page); 390 *pfn = page_to_pfn_t(page); 391 392 return PAGE_SIZE; 393 } 394 #else 395 #define brd_direct_access NULL 396 #endif 397 398 static int brd_ioctl(struct block_device *bdev, fmode_t mode, 399 unsigned int cmd, unsigned long arg) 400 { 401 int error; 402 struct brd_device *brd = bdev->bd_disk->private_data; 403 404 if (cmd != BLKFLSBUF) 405 return -ENOTTY; 406 407 /* 408 * ram device BLKFLSBUF has special semantics, we want to actually 409 * release and destroy the ramdisk data. 410 */ 411 mutex_lock(&brd_mutex); 412 mutex_lock(&bdev->bd_mutex); 413 error = -EBUSY; 414 if (bdev->bd_openers <= 1) { 415 /* 416 * Kill the cache first, so it isn't written back to the 417 * device. 418 * 419 * Another thread might instantiate more buffercache here, 420 * but there is not much we can do to close that race. 421 */ 422 kill_bdev(bdev); 423 brd_free_pages(brd); 424 error = 0; 425 } 426 mutex_unlock(&bdev->bd_mutex); 427 mutex_unlock(&brd_mutex); 428 429 return error; 430 } 431 432 static const struct block_device_operations brd_fops = { 433 .owner = THIS_MODULE, 434 .rw_page = brd_rw_page, 435 .ioctl = brd_ioctl, 436 .direct_access = brd_direct_access, 437 }; 438 439 /* 440 * And now the modules code and kernel interface. 441 */ 442 static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT; 443 module_param(rd_nr, int, S_IRUGO); 444 MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices"); 445 446 int rd_size = CONFIG_BLK_DEV_RAM_SIZE; 447 module_param(rd_size, int, S_IRUGO); 448 MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes."); 449 450 static int max_part = 1; 451 module_param(max_part, int, S_IRUGO); 452 MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices"); 453 454 MODULE_LICENSE("GPL"); 455 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR); 456 MODULE_ALIAS("rd"); 457 458 #ifndef MODULE 459 /* Legacy boot options - nonmodular */ 460 static int __init ramdisk_size(char *str) 461 { 462 rd_size = simple_strtol(str, NULL, 0); 463 return 1; 464 } 465 __setup("ramdisk_size=", ramdisk_size); 466 #endif 467 468 /* 469 * The device scheme is derived from loop.c. Keep them in synch where possible 470 * (should share code eventually). 471 */ 472 static LIST_HEAD(brd_devices); 473 static DEFINE_MUTEX(brd_devices_mutex); 474 475 static struct brd_device *brd_alloc(int i) 476 { 477 struct brd_device *brd; 478 struct gendisk *disk; 479 480 brd = kzalloc(sizeof(*brd), GFP_KERNEL); 481 if (!brd) 482 goto out; 483 brd->brd_number = i; 484 spin_lock_init(&brd->brd_lock); 485 INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC); 486 487 brd->brd_queue = blk_alloc_queue(GFP_KERNEL); 488 if (!brd->brd_queue) 489 goto out_free_dev; 490 491 blk_queue_make_request(brd->brd_queue, brd_make_request); 492 blk_queue_max_hw_sectors(brd->brd_queue, 1024); 493 blk_queue_bounce_limit(brd->brd_queue, BLK_BOUNCE_ANY); 494 495 /* This is so fdisk will align partitions on 4k, because of 496 * direct_access API needing 4k alignment, returning a PFN 497 * (This is only a problem on very small devices <= 4M, 498 * otherwise fdisk will align on 1M. Regardless this call 499 * is harmless) 500 */ 501 blk_queue_physical_block_size(brd->brd_queue, PAGE_SIZE); 502 503 brd->brd_queue->limits.discard_granularity = PAGE_SIZE; 504 blk_queue_max_discard_sectors(brd->brd_queue, UINT_MAX); 505 brd->brd_queue->limits.discard_zeroes_data = 1; 506 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, brd->brd_queue); 507 #ifdef CONFIG_BLK_DEV_RAM_DAX 508 queue_flag_set_unlocked(QUEUE_FLAG_DAX, brd->brd_queue); 509 #endif 510 disk = brd->brd_disk = alloc_disk(max_part); 511 if (!disk) 512 goto out_free_queue; 513 disk->major = RAMDISK_MAJOR; 514 disk->first_minor = i * max_part; 515 disk->fops = &brd_fops; 516 disk->private_data = brd; 517 disk->queue = brd->brd_queue; 518 disk->flags = GENHD_FL_EXT_DEVT; 519 sprintf(disk->disk_name, "ram%d", i); 520 set_capacity(disk, rd_size * 2); 521 522 return brd; 523 524 out_free_queue: 525 blk_cleanup_queue(brd->brd_queue); 526 out_free_dev: 527 kfree(brd); 528 out: 529 return NULL; 530 } 531 532 static void brd_free(struct brd_device *brd) 533 { 534 put_disk(brd->brd_disk); 535 blk_cleanup_queue(brd->brd_queue); 536 brd_free_pages(brd); 537 kfree(brd); 538 } 539 540 static struct brd_device *brd_init_one(int i, bool *new) 541 { 542 struct brd_device *brd; 543 544 *new = false; 545 list_for_each_entry(brd, &brd_devices, brd_list) { 546 if (brd->brd_number == i) 547 goto out; 548 } 549 550 brd = brd_alloc(i); 551 if (brd) { 552 add_disk(brd->brd_disk); 553 list_add_tail(&brd->brd_list, &brd_devices); 554 } 555 *new = true; 556 out: 557 return brd; 558 } 559 560 static void brd_del_one(struct brd_device *brd) 561 { 562 list_del(&brd->brd_list); 563 del_gendisk(brd->brd_disk); 564 brd_free(brd); 565 } 566 567 static struct kobject *brd_probe(dev_t dev, int *part, void *data) 568 { 569 struct brd_device *brd; 570 struct kobject *kobj; 571 bool new; 572 573 mutex_lock(&brd_devices_mutex); 574 brd = brd_init_one(MINOR(dev) / max_part, &new); 575 kobj = brd ? get_disk(brd->brd_disk) : NULL; 576 mutex_unlock(&brd_devices_mutex); 577 578 if (new) 579 *part = 0; 580 581 return kobj; 582 } 583 584 static int __init brd_init(void) 585 { 586 struct brd_device *brd, *next; 587 int i; 588 589 /* 590 * brd module now has a feature to instantiate underlying device 591 * structure on-demand, provided that there is an access dev node. 592 * 593 * (1) if rd_nr is specified, create that many upfront. else 594 * it defaults to CONFIG_BLK_DEV_RAM_COUNT 595 * (2) User can further extend brd devices by create dev node themselves 596 * and have kernel automatically instantiate actual device 597 * on-demand. Example: 598 * mknod /path/devnod_name b 1 X # 1 is the rd major 599 * fdisk -l /path/devnod_name 600 * If (X / max_part) was not already created it will be created 601 * dynamically. 602 */ 603 604 if (register_blkdev(RAMDISK_MAJOR, "ramdisk")) 605 return -EIO; 606 607 if (unlikely(!max_part)) 608 max_part = 1; 609 610 for (i = 0; i < rd_nr; i++) { 611 brd = brd_alloc(i); 612 if (!brd) 613 goto out_free; 614 list_add_tail(&brd->brd_list, &brd_devices); 615 } 616 617 /* point of no return */ 618 619 list_for_each_entry(brd, &brd_devices, brd_list) 620 add_disk(brd->brd_disk); 621 622 blk_register_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS, 623 THIS_MODULE, brd_probe, NULL, NULL); 624 625 pr_info("brd: module loaded\n"); 626 return 0; 627 628 out_free: 629 list_for_each_entry_safe(brd, next, &brd_devices, brd_list) { 630 list_del(&brd->brd_list); 631 brd_free(brd); 632 } 633 unregister_blkdev(RAMDISK_MAJOR, "ramdisk"); 634 635 pr_info("brd: module NOT loaded !!!\n"); 636 return -ENOMEM; 637 } 638 639 static void __exit brd_exit(void) 640 { 641 struct brd_device *brd, *next; 642 643 list_for_each_entry_safe(brd, next, &brd_devices, brd_list) 644 brd_del_one(brd); 645 646 blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS); 647 unregister_blkdev(RAMDISK_MAJOR, "ramdisk"); 648 649 pr_info("brd: module unloaded\n"); 650 } 651 652 module_init(brd_init); 653 module_exit(brd_exit); 654 655