1 /* 2 * Ram backed block device driver. 3 * 4 * Copyright (C) 2007 Nick Piggin 5 * Copyright (C) 2007 Novell Inc. 6 * 7 * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright 8 * of their respective owners. 9 */ 10 11 #include <linux/init.h> 12 #include <linux/module.h> 13 #include <linux/moduleparam.h> 14 #include <linux/major.h> 15 #include <linux/blkdev.h> 16 #include <linux/bio.h> 17 #include <linux/highmem.h> 18 #include <linux/mutex.h> 19 #include <linux/radix-tree.h> 20 #include <linux/buffer_head.h> /* invalidate_bh_lrus() */ 21 #include <linux/slab.h> 22 23 #include <asm/uaccess.h> 24 25 #define SECTOR_SHIFT 9 26 #define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT) 27 #define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT) 28 29 /* 30 * Each block ramdisk device has a radix_tree brd_pages of pages that stores 31 * the pages containing the block device's contents. A brd page's ->index is 32 * its offset in PAGE_SIZE units. This is similar to, but in no way connected 33 * with, the kernel's pagecache or buffer cache (which sit above our block 34 * device). 35 */ 36 struct brd_device { 37 int brd_number; 38 int brd_refcnt; 39 loff_t brd_offset; 40 loff_t brd_sizelimit; 41 unsigned brd_blocksize; 42 43 struct request_queue *brd_queue; 44 struct gendisk *brd_disk; 45 struct list_head brd_list; 46 47 /* 48 * Backing store of pages and lock to protect it. This is the contents 49 * of the block device. 50 */ 51 spinlock_t brd_lock; 52 struct radix_tree_root brd_pages; 53 }; 54 55 /* 56 * Look up and return a brd's page for a given sector. 57 */ 58 static DEFINE_MUTEX(brd_mutex); 59 static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector) 60 { 61 pgoff_t idx; 62 struct page *page; 63 64 /* 65 * The page lifetime is protected by the fact that we have opened the 66 * device node -- brd pages will never be deleted under us, so we 67 * don't need any further locking or refcounting. 68 * 69 * This is strictly true for the radix-tree nodes as well (ie. we 70 * don't actually need the rcu_read_lock()), however that is not a 71 * documented feature of the radix-tree API so it is better to be 72 * safe here (we don't have total exclusion from radix tree updates 73 * here, only deletes). 74 */ 75 rcu_read_lock(); 76 idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */ 77 page = radix_tree_lookup(&brd->brd_pages, idx); 78 rcu_read_unlock(); 79 80 BUG_ON(page && page->index != idx); 81 82 return page; 83 } 84 85 /* 86 * Look up and return a brd's page for a given sector. 87 * If one does not exist, allocate an empty page, and insert that. Then 88 * return it. 89 */ 90 static struct page *brd_insert_page(struct brd_device *brd, sector_t sector) 91 { 92 pgoff_t idx; 93 struct page *page; 94 gfp_t gfp_flags; 95 96 page = brd_lookup_page(brd, sector); 97 if (page) 98 return page; 99 100 /* 101 * Must use NOIO because we don't want to recurse back into the 102 * block or filesystem layers from page reclaim. 103 * 104 * Cannot support XIP and highmem, because our ->direct_access 105 * routine for XIP must return memory that is always addressable. 106 * If XIP was reworked to use pfns and kmap throughout, this 107 * restriction might be able to be lifted. 108 */ 109 gfp_flags = GFP_NOIO | __GFP_ZERO; 110 #ifndef CONFIG_BLK_DEV_XIP 111 gfp_flags |= __GFP_HIGHMEM; 112 #endif 113 page = alloc_page(gfp_flags); 114 if (!page) 115 return NULL; 116 117 if (radix_tree_preload(GFP_NOIO)) { 118 __free_page(page); 119 return NULL; 120 } 121 122 spin_lock(&brd->brd_lock); 123 idx = sector >> PAGE_SECTORS_SHIFT; 124 if (radix_tree_insert(&brd->brd_pages, idx, page)) { 125 __free_page(page); 126 page = radix_tree_lookup(&brd->brd_pages, idx); 127 BUG_ON(!page); 128 BUG_ON(page->index != idx); 129 } else 130 page->index = idx; 131 spin_unlock(&brd->brd_lock); 132 133 radix_tree_preload_end(); 134 135 return page; 136 } 137 138 static void brd_free_page(struct brd_device *brd, sector_t sector) 139 { 140 struct page *page; 141 pgoff_t idx; 142 143 spin_lock(&brd->brd_lock); 144 idx = sector >> PAGE_SECTORS_SHIFT; 145 page = radix_tree_delete(&brd->brd_pages, idx); 146 spin_unlock(&brd->brd_lock); 147 if (page) 148 __free_page(page); 149 } 150 151 static void brd_zero_page(struct brd_device *brd, sector_t sector) 152 { 153 struct page *page; 154 155 page = brd_lookup_page(brd, sector); 156 if (page) 157 clear_highpage(page); 158 } 159 160 /* 161 * Free all backing store pages and radix tree. This must only be called when 162 * there are no other users of the device. 163 */ 164 #define FREE_BATCH 16 165 static void brd_free_pages(struct brd_device *brd) 166 { 167 unsigned long pos = 0; 168 struct page *pages[FREE_BATCH]; 169 int nr_pages; 170 171 do { 172 int i; 173 174 nr_pages = radix_tree_gang_lookup(&brd->brd_pages, 175 (void **)pages, pos, FREE_BATCH); 176 177 for (i = 0; i < nr_pages; i++) { 178 void *ret; 179 180 BUG_ON(pages[i]->index < pos); 181 pos = pages[i]->index; 182 ret = radix_tree_delete(&brd->brd_pages, pos); 183 BUG_ON(!ret || ret != pages[i]); 184 __free_page(pages[i]); 185 } 186 187 pos++; 188 189 /* 190 * This assumes radix_tree_gang_lookup always returns as 191 * many pages as possible. If the radix-tree code changes, 192 * so will this have to. 193 */ 194 } while (nr_pages == FREE_BATCH); 195 } 196 197 /* 198 * copy_to_brd_setup must be called before copy_to_brd. It may sleep. 199 */ 200 static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n) 201 { 202 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; 203 size_t copy; 204 205 copy = min_t(size_t, n, PAGE_SIZE - offset); 206 if (!brd_insert_page(brd, sector)) 207 return -ENOMEM; 208 if (copy < n) { 209 sector += copy >> SECTOR_SHIFT; 210 if (!brd_insert_page(brd, sector)) 211 return -ENOMEM; 212 } 213 return 0; 214 } 215 216 static void discard_from_brd(struct brd_device *brd, 217 sector_t sector, size_t n) 218 { 219 while (n >= PAGE_SIZE) { 220 /* 221 * Don't want to actually discard pages here because 222 * re-allocating the pages can result in writeback 223 * deadlocks under heavy load. 224 */ 225 if (0) 226 brd_free_page(brd, sector); 227 else 228 brd_zero_page(brd, sector); 229 sector += PAGE_SIZE >> SECTOR_SHIFT; 230 n -= PAGE_SIZE; 231 } 232 } 233 234 /* 235 * Copy n bytes from src to the brd starting at sector. Does not sleep. 236 */ 237 static void copy_to_brd(struct brd_device *brd, const void *src, 238 sector_t sector, size_t n) 239 { 240 struct page *page; 241 void *dst; 242 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; 243 size_t copy; 244 245 copy = min_t(size_t, n, PAGE_SIZE - offset); 246 page = brd_lookup_page(brd, sector); 247 BUG_ON(!page); 248 249 dst = kmap_atomic(page, KM_USER1); 250 memcpy(dst + offset, src, copy); 251 kunmap_atomic(dst, KM_USER1); 252 253 if (copy < n) { 254 src += copy; 255 sector += copy >> SECTOR_SHIFT; 256 copy = n - copy; 257 page = brd_lookup_page(brd, sector); 258 BUG_ON(!page); 259 260 dst = kmap_atomic(page, KM_USER1); 261 memcpy(dst, src, copy); 262 kunmap_atomic(dst, KM_USER1); 263 } 264 } 265 266 /* 267 * Copy n bytes to dst from the brd starting at sector. Does not sleep. 268 */ 269 static void copy_from_brd(void *dst, struct brd_device *brd, 270 sector_t sector, size_t n) 271 { 272 struct page *page; 273 void *src; 274 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; 275 size_t copy; 276 277 copy = min_t(size_t, n, PAGE_SIZE - offset); 278 page = brd_lookup_page(brd, sector); 279 if (page) { 280 src = kmap_atomic(page, KM_USER1); 281 memcpy(dst, src + offset, copy); 282 kunmap_atomic(src, KM_USER1); 283 } else 284 memset(dst, 0, copy); 285 286 if (copy < n) { 287 dst += copy; 288 sector += copy >> SECTOR_SHIFT; 289 copy = n - copy; 290 page = brd_lookup_page(brd, sector); 291 if (page) { 292 src = kmap_atomic(page, KM_USER1); 293 memcpy(dst, src, copy); 294 kunmap_atomic(src, KM_USER1); 295 } else 296 memset(dst, 0, copy); 297 } 298 } 299 300 /* 301 * Process a single bvec of a bio. 302 */ 303 static int brd_do_bvec(struct brd_device *brd, struct page *page, 304 unsigned int len, unsigned int off, int rw, 305 sector_t sector) 306 { 307 void *mem; 308 int err = 0; 309 310 if (rw != READ) { 311 err = copy_to_brd_setup(brd, sector, len); 312 if (err) 313 goto out; 314 } 315 316 mem = kmap_atomic(page, KM_USER0); 317 if (rw == READ) { 318 copy_from_brd(mem + off, brd, sector, len); 319 flush_dcache_page(page); 320 } else { 321 flush_dcache_page(page); 322 copy_to_brd(brd, mem + off, sector, len); 323 } 324 kunmap_atomic(mem, KM_USER0); 325 326 out: 327 return err; 328 } 329 330 static int brd_make_request(struct request_queue *q, struct bio *bio) 331 { 332 struct block_device *bdev = bio->bi_bdev; 333 struct brd_device *brd = bdev->bd_disk->private_data; 334 int rw; 335 struct bio_vec *bvec; 336 sector_t sector; 337 int i; 338 int err = -EIO; 339 340 sector = bio->bi_sector; 341 if (sector + (bio->bi_size >> SECTOR_SHIFT) > 342 get_capacity(bdev->bd_disk)) 343 goto out; 344 345 if (unlikely(bio->bi_rw & REQ_DISCARD)) { 346 err = 0; 347 discard_from_brd(brd, sector, bio->bi_size); 348 goto out; 349 } 350 351 rw = bio_rw(bio); 352 if (rw == READA) 353 rw = READ; 354 355 bio_for_each_segment(bvec, bio, i) { 356 unsigned int len = bvec->bv_len; 357 err = brd_do_bvec(brd, bvec->bv_page, len, 358 bvec->bv_offset, rw, sector); 359 if (err) 360 break; 361 sector += len >> SECTOR_SHIFT; 362 } 363 364 out: 365 bio_endio(bio, err); 366 367 return 0; 368 } 369 370 #ifdef CONFIG_BLK_DEV_XIP 371 static int brd_direct_access(struct block_device *bdev, sector_t sector, 372 void **kaddr, unsigned long *pfn) 373 { 374 struct brd_device *brd = bdev->bd_disk->private_data; 375 struct page *page; 376 377 if (!brd) 378 return -ENODEV; 379 if (sector & (PAGE_SECTORS-1)) 380 return -EINVAL; 381 if (sector + PAGE_SECTORS > get_capacity(bdev->bd_disk)) 382 return -ERANGE; 383 page = brd_insert_page(brd, sector); 384 if (!page) 385 return -ENOMEM; 386 *kaddr = page_address(page); 387 *pfn = page_to_pfn(page); 388 389 return 0; 390 } 391 #endif 392 393 static int brd_ioctl(struct block_device *bdev, fmode_t mode, 394 unsigned int cmd, unsigned long arg) 395 { 396 int error; 397 struct brd_device *brd = bdev->bd_disk->private_data; 398 399 if (cmd != BLKFLSBUF) 400 return -ENOTTY; 401 402 /* 403 * ram device BLKFLSBUF has special semantics, we want to actually 404 * release and destroy the ramdisk data. 405 */ 406 mutex_lock(&brd_mutex); 407 mutex_lock(&bdev->bd_mutex); 408 error = -EBUSY; 409 if (bdev->bd_openers <= 1) { 410 /* 411 * Invalidate the cache first, so it isn't written 412 * back to the device. 413 * 414 * Another thread might instantiate more buffercache here, 415 * but there is not much we can do to close that race. 416 */ 417 invalidate_bh_lrus(); 418 truncate_inode_pages(bdev->bd_inode->i_mapping, 0); 419 brd_free_pages(brd); 420 error = 0; 421 } 422 mutex_unlock(&bdev->bd_mutex); 423 mutex_unlock(&brd_mutex); 424 425 return error; 426 } 427 428 static const struct block_device_operations brd_fops = { 429 .owner = THIS_MODULE, 430 .ioctl = brd_ioctl, 431 #ifdef CONFIG_BLK_DEV_XIP 432 .direct_access = brd_direct_access, 433 #endif 434 }; 435 436 /* 437 * And now the modules code and kernel interface. 438 */ 439 static int rd_nr; 440 int rd_size = CONFIG_BLK_DEV_RAM_SIZE; 441 static int max_part; 442 static int part_shift; 443 module_param(rd_nr, int, 0); 444 MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices"); 445 module_param(rd_size, int, 0); 446 MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes."); 447 module_param(max_part, int, 0); 448 MODULE_PARM_DESC(max_part, "Maximum number of partitions per RAM disk"); 449 MODULE_LICENSE("GPL"); 450 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR); 451 MODULE_ALIAS("rd"); 452 453 #ifndef MODULE 454 /* Legacy boot options - nonmodular */ 455 static int __init ramdisk_size(char *str) 456 { 457 rd_size = simple_strtol(str, NULL, 0); 458 return 1; 459 } 460 __setup("ramdisk_size=", ramdisk_size); 461 #endif 462 463 /* 464 * The device scheme is derived from loop.c. Keep them in synch where possible 465 * (should share code eventually). 466 */ 467 static LIST_HEAD(brd_devices); 468 static DEFINE_MUTEX(brd_devices_mutex); 469 470 static struct brd_device *brd_alloc(int i) 471 { 472 struct brd_device *brd; 473 struct gendisk *disk; 474 475 brd = kzalloc(sizeof(*brd), GFP_KERNEL); 476 if (!brd) 477 goto out; 478 brd->brd_number = i; 479 spin_lock_init(&brd->brd_lock); 480 INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC); 481 482 brd->brd_queue = blk_alloc_queue(GFP_KERNEL); 483 if (!brd->brd_queue) 484 goto out_free_dev; 485 blk_queue_make_request(brd->brd_queue, brd_make_request); 486 blk_queue_max_hw_sectors(brd->brd_queue, 1024); 487 blk_queue_bounce_limit(brd->brd_queue, BLK_BOUNCE_ANY); 488 489 brd->brd_queue->limits.discard_granularity = PAGE_SIZE; 490 brd->brd_queue->limits.max_discard_sectors = UINT_MAX; 491 brd->brd_queue->limits.discard_zeroes_data = 1; 492 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, brd->brd_queue); 493 494 disk = brd->brd_disk = alloc_disk(1 << part_shift); 495 if (!disk) 496 goto out_free_queue; 497 disk->major = RAMDISK_MAJOR; 498 disk->first_minor = i << part_shift; 499 disk->fops = &brd_fops; 500 disk->private_data = brd; 501 disk->queue = brd->brd_queue; 502 disk->flags |= GENHD_FL_SUPPRESS_PARTITION_INFO; 503 sprintf(disk->disk_name, "ram%d", i); 504 set_capacity(disk, rd_size * 2); 505 506 return brd; 507 508 out_free_queue: 509 blk_cleanup_queue(brd->brd_queue); 510 out_free_dev: 511 kfree(brd); 512 out: 513 return NULL; 514 } 515 516 static void brd_free(struct brd_device *brd) 517 { 518 put_disk(brd->brd_disk); 519 blk_cleanup_queue(brd->brd_queue); 520 brd_free_pages(brd); 521 kfree(brd); 522 } 523 524 static struct brd_device *brd_init_one(int i) 525 { 526 struct brd_device *brd; 527 528 list_for_each_entry(brd, &brd_devices, brd_list) { 529 if (brd->brd_number == i) 530 goto out; 531 } 532 533 brd = brd_alloc(i); 534 if (brd) { 535 add_disk(brd->brd_disk); 536 list_add_tail(&brd->brd_list, &brd_devices); 537 } 538 out: 539 return brd; 540 } 541 542 static void brd_del_one(struct brd_device *brd) 543 { 544 list_del(&brd->brd_list); 545 del_gendisk(brd->brd_disk); 546 brd_free(brd); 547 } 548 549 static struct kobject *brd_probe(dev_t dev, int *part, void *data) 550 { 551 struct brd_device *brd; 552 struct kobject *kobj; 553 554 mutex_lock(&brd_devices_mutex); 555 brd = brd_init_one(dev & MINORMASK); 556 kobj = brd ? get_disk(brd->brd_disk) : ERR_PTR(-ENOMEM); 557 mutex_unlock(&brd_devices_mutex); 558 559 *part = 0; 560 return kobj; 561 } 562 563 static int __init brd_init(void) 564 { 565 int i, nr; 566 unsigned long range; 567 struct brd_device *brd, *next; 568 569 /* 570 * brd module now has a feature to instantiate underlying device 571 * structure on-demand, provided that there is an access dev node. 572 * However, this will not work well with user space tool that doesn't 573 * know about such "feature". In order to not break any existing 574 * tool, we do the following: 575 * 576 * (1) if rd_nr is specified, create that many upfront, and this 577 * also becomes a hard limit. 578 * (2) if rd_nr is not specified, create 1 rd device on module 579 * load, user can further extend brd device by create dev node 580 * themselves and have kernel automatically instantiate actual 581 * device on-demand. 582 */ 583 584 part_shift = 0; 585 if (max_part > 0) 586 part_shift = fls(max_part); 587 588 if (rd_nr > 1UL << (MINORBITS - part_shift)) 589 return -EINVAL; 590 591 if (rd_nr) { 592 nr = rd_nr; 593 range = rd_nr; 594 } else { 595 nr = CONFIG_BLK_DEV_RAM_COUNT; 596 range = 1UL << (MINORBITS - part_shift); 597 } 598 599 if (register_blkdev(RAMDISK_MAJOR, "ramdisk")) 600 return -EIO; 601 602 for (i = 0; i < nr; i++) { 603 brd = brd_alloc(i); 604 if (!brd) 605 goto out_free; 606 list_add_tail(&brd->brd_list, &brd_devices); 607 } 608 609 /* point of no return */ 610 611 list_for_each_entry(brd, &brd_devices, brd_list) 612 add_disk(brd->brd_disk); 613 614 blk_register_region(MKDEV(RAMDISK_MAJOR, 0), range, 615 THIS_MODULE, brd_probe, NULL, NULL); 616 617 printk(KERN_INFO "brd: module loaded\n"); 618 return 0; 619 620 out_free: 621 list_for_each_entry_safe(brd, next, &brd_devices, brd_list) { 622 list_del(&brd->brd_list); 623 brd_free(brd); 624 } 625 unregister_blkdev(RAMDISK_MAJOR, "ramdisk"); 626 627 return -ENOMEM; 628 } 629 630 static void __exit brd_exit(void) 631 { 632 unsigned long range; 633 struct brd_device *brd, *next; 634 635 range = rd_nr ? rd_nr : 1UL << (MINORBITS - part_shift); 636 637 list_for_each_entry_safe(brd, next, &brd_devices, brd_list) 638 brd_del_one(brd); 639 640 blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), range); 641 unregister_blkdev(RAMDISK_MAJOR, "ramdisk"); 642 } 643 644 module_init(brd_init); 645 module_exit(brd_exit); 646 647