xref: /openbmc/linux/drivers/block/brd.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  * Ram backed block device driver.
3  *
4  * Copyright (C) 2007 Nick Piggin
5  * Copyright (C) 2007 Novell Inc.
6  *
7  * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
8  * of their respective owners.
9  */
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/moduleparam.h>
14 #include <linux/major.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/highmem.h>
18 #include <linux/mutex.h>
19 #include <linux/radix-tree.h>
20 #include <linux/buffer_head.h> /* invalidate_bh_lrus() */
21 #include <linux/slab.h>
22 
23 #include <asm/uaccess.h>
24 
25 #define SECTOR_SHIFT		9
26 #define PAGE_SECTORS_SHIFT	(PAGE_SHIFT - SECTOR_SHIFT)
27 #define PAGE_SECTORS		(1 << PAGE_SECTORS_SHIFT)
28 
29 /*
30  * Each block ramdisk device has a radix_tree brd_pages of pages that stores
31  * the pages containing the block device's contents. A brd page's ->index is
32  * its offset in PAGE_SIZE units. This is similar to, but in no way connected
33  * with, the kernel's pagecache or buffer cache (which sit above our block
34  * device).
35  */
36 struct brd_device {
37 	int		brd_number;
38 	int		brd_refcnt;
39 	loff_t		brd_offset;
40 	loff_t		brd_sizelimit;
41 	unsigned	brd_blocksize;
42 
43 	struct request_queue	*brd_queue;
44 	struct gendisk		*brd_disk;
45 	struct list_head	brd_list;
46 
47 	/*
48 	 * Backing store of pages and lock to protect it. This is the contents
49 	 * of the block device.
50 	 */
51 	spinlock_t		brd_lock;
52 	struct radix_tree_root	brd_pages;
53 };
54 
55 /*
56  * Look up and return a brd's page for a given sector.
57  */
58 static DEFINE_MUTEX(brd_mutex);
59 static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
60 {
61 	pgoff_t idx;
62 	struct page *page;
63 
64 	/*
65 	 * The page lifetime is protected by the fact that we have opened the
66 	 * device node -- brd pages will never be deleted under us, so we
67 	 * don't need any further locking or refcounting.
68 	 *
69 	 * This is strictly true for the radix-tree nodes as well (ie. we
70 	 * don't actually need the rcu_read_lock()), however that is not a
71 	 * documented feature of the radix-tree API so it is better to be
72 	 * safe here (we don't have total exclusion from radix tree updates
73 	 * here, only deletes).
74 	 */
75 	rcu_read_lock();
76 	idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */
77 	page = radix_tree_lookup(&brd->brd_pages, idx);
78 	rcu_read_unlock();
79 
80 	BUG_ON(page && page->index != idx);
81 
82 	return page;
83 }
84 
85 /*
86  * Look up and return a brd's page for a given sector.
87  * If one does not exist, allocate an empty page, and insert that. Then
88  * return it.
89  */
90 static struct page *brd_insert_page(struct brd_device *brd, sector_t sector)
91 {
92 	pgoff_t idx;
93 	struct page *page;
94 	gfp_t gfp_flags;
95 
96 	page = brd_lookup_page(brd, sector);
97 	if (page)
98 		return page;
99 
100 	/*
101 	 * Must use NOIO because we don't want to recurse back into the
102 	 * block or filesystem layers from page reclaim.
103 	 *
104 	 * Cannot support XIP and highmem, because our ->direct_access
105 	 * routine for XIP must return memory that is always addressable.
106 	 * If XIP was reworked to use pfns and kmap throughout, this
107 	 * restriction might be able to be lifted.
108 	 */
109 	gfp_flags = GFP_NOIO | __GFP_ZERO;
110 #ifndef CONFIG_BLK_DEV_XIP
111 	gfp_flags |= __GFP_HIGHMEM;
112 #endif
113 	page = alloc_page(gfp_flags);
114 	if (!page)
115 		return NULL;
116 
117 	if (radix_tree_preload(GFP_NOIO)) {
118 		__free_page(page);
119 		return NULL;
120 	}
121 
122 	spin_lock(&brd->brd_lock);
123 	idx = sector >> PAGE_SECTORS_SHIFT;
124 	if (radix_tree_insert(&brd->brd_pages, idx, page)) {
125 		__free_page(page);
126 		page = radix_tree_lookup(&brd->brd_pages, idx);
127 		BUG_ON(!page);
128 		BUG_ON(page->index != idx);
129 	} else
130 		page->index = idx;
131 	spin_unlock(&brd->brd_lock);
132 
133 	radix_tree_preload_end();
134 
135 	return page;
136 }
137 
138 static void brd_free_page(struct brd_device *brd, sector_t sector)
139 {
140 	struct page *page;
141 	pgoff_t idx;
142 
143 	spin_lock(&brd->brd_lock);
144 	idx = sector >> PAGE_SECTORS_SHIFT;
145 	page = radix_tree_delete(&brd->brd_pages, idx);
146 	spin_unlock(&brd->brd_lock);
147 	if (page)
148 		__free_page(page);
149 }
150 
151 static void brd_zero_page(struct brd_device *brd, sector_t sector)
152 {
153 	struct page *page;
154 
155 	page = brd_lookup_page(brd, sector);
156 	if (page)
157 		clear_highpage(page);
158 }
159 
160 /*
161  * Free all backing store pages and radix tree. This must only be called when
162  * there are no other users of the device.
163  */
164 #define FREE_BATCH 16
165 static void brd_free_pages(struct brd_device *brd)
166 {
167 	unsigned long pos = 0;
168 	struct page *pages[FREE_BATCH];
169 	int nr_pages;
170 
171 	do {
172 		int i;
173 
174 		nr_pages = radix_tree_gang_lookup(&brd->brd_pages,
175 				(void **)pages, pos, FREE_BATCH);
176 
177 		for (i = 0; i < nr_pages; i++) {
178 			void *ret;
179 
180 			BUG_ON(pages[i]->index < pos);
181 			pos = pages[i]->index;
182 			ret = radix_tree_delete(&brd->brd_pages, pos);
183 			BUG_ON(!ret || ret != pages[i]);
184 			__free_page(pages[i]);
185 		}
186 
187 		pos++;
188 
189 		/*
190 		 * This assumes radix_tree_gang_lookup always returns as
191 		 * many pages as possible. If the radix-tree code changes,
192 		 * so will this have to.
193 		 */
194 	} while (nr_pages == FREE_BATCH);
195 }
196 
197 /*
198  * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
199  */
200 static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n)
201 {
202 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
203 	size_t copy;
204 
205 	copy = min_t(size_t, n, PAGE_SIZE - offset);
206 	if (!brd_insert_page(brd, sector))
207 		return -ENOMEM;
208 	if (copy < n) {
209 		sector += copy >> SECTOR_SHIFT;
210 		if (!brd_insert_page(brd, sector))
211 			return -ENOMEM;
212 	}
213 	return 0;
214 }
215 
216 static void discard_from_brd(struct brd_device *brd,
217 			sector_t sector, size_t n)
218 {
219 	while (n >= PAGE_SIZE) {
220 		/*
221 		 * Don't want to actually discard pages here because
222 		 * re-allocating the pages can result in writeback
223 		 * deadlocks under heavy load.
224 		 */
225 		if (0)
226 			brd_free_page(brd, sector);
227 		else
228 			brd_zero_page(brd, sector);
229 		sector += PAGE_SIZE >> SECTOR_SHIFT;
230 		n -= PAGE_SIZE;
231 	}
232 }
233 
234 /*
235  * Copy n bytes from src to the brd starting at sector. Does not sleep.
236  */
237 static void copy_to_brd(struct brd_device *brd, const void *src,
238 			sector_t sector, size_t n)
239 {
240 	struct page *page;
241 	void *dst;
242 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
243 	size_t copy;
244 
245 	copy = min_t(size_t, n, PAGE_SIZE - offset);
246 	page = brd_lookup_page(brd, sector);
247 	BUG_ON(!page);
248 
249 	dst = kmap_atomic(page, KM_USER1);
250 	memcpy(dst + offset, src, copy);
251 	kunmap_atomic(dst, KM_USER1);
252 
253 	if (copy < n) {
254 		src += copy;
255 		sector += copy >> SECTOR_SHIFT;
256 		copy = n - copy;
257 		page = brd_lookup_page(brd, sector);
258 		BUG_ON(!page);
259 
260 		dst = kmap_atomic(page, KM_USER1);
261 		memcpy(dst, src, copy);
262 		kunmap_atomic(dst, KM_USER1);
263 	}
264 }
265 
266 /*
267  * Copy n bytes to dst from the brd starting at sector. Does not sleep.
268  */
269 static void copy_from_brd(void *dst, struct brd_device *brd,
270 			sector_t sector, size_t n)
271 {
272 	struct page *page;
273 	void *src;
274 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
275 	size_t copy;
276 
277 	copy = min_t(size_t, n, PAGE_SIZE - offset);
278 	page = brd_lookup_page(brd, sector);
279 	if (page) {
280 		src = kmap_atomic(page, KM_USER1);
281 		memcpy(dst, src + offset, copy);
282 		kunmap_atomic(src, KM_USER1);
283 	} else
284 		memset(dst, 0, copy);
285 
286 	if (copy < n) {
287 		dst += copy;
288 		sector += copy >> SECTOR_SHIFT;
289 		copy = n - copy;
290 		page = brd_lookup_page(brd, sector);
291 		if (page) {
292 			src = kmap_atomic(page, KM_USER1);
293 			memcpy(dst, src, copy);
294 			kunmap_atomic(src, KM_USER1);
295 		} else
296 			memset(dst, 0, copy);
297 	}
298 }
299 
300 /*
301  * Process a single bvec of a bio.
302  */
303 static int brd_do_bvec(struct brd_device *brd, struct page *page,
304 			unsigned int len, unsigned int off, int rw,
305 			sector_t sector)
306 {
307 	void *mem;
308 	int err = 0;
309 
310 	if (rw != READ) {
311 		err = copy_to_brd_setup(brd, sector, len);
312 		if (err)
313 			goto out;
314 	}
315 
316 	mem = kmap_atomic(page, KM_USER0);
317 	if (rw == READ) {
318 		copy_from_brd(mem + off, brd, sector, len);
319 		flush_dcache_page(page);
320 	} else {
321 		flush_dcache_page(page);
322 		copy_to_brd(brd, mem + off, sector, len);
323 	}
324 	kunmap_atomic(mem, KM_USER0);
325 
326 out:
327 	return err;
328 }
329 
330 static int brd_make_request(struct request_queue *q, struct bio *bio)
331 {
332 	struct block_device *bdev = bio->bi_bdev;
333 	struct brd_device *brd = bdev->bd_disk->private_data;
334 	int rw;
335 	struct bio_vec *bvec;
336 	sector_t sector;
337 	int i;
338 	int err = -EIO;
339 
340 	sector = bio->bi_sector;
341 	if (sector + (bio->bi_size >> SECTOR_SHIFT) >
342 						get_capacity(bdev->bd_disk))
343 		goto out;
344 
345 	if (unlikely(bio->bi_rw & REQ_DISCARD)) {
346 		err = 0;
347 		discard_from_brd(brd, sector, bio->bi_size);
348 		goto out;
349 	}
350 
351 	rw = bio_rw(bio);
352 	if (rw == READA)
353 		rw = READ;
354 
355 	bio_for_each_segment(bvec, bio, i) {
356 		unsigned int len = bvec->bv_len;
357 		err = brd_do_bvec(brd, bvec->bv_page, len,
358 					bvec->bv_offset, rw, sector);
359 		if (err)
360 			break;
361 		sector += len >> SECTOR_SHIFT;
362 	}
363 
364 out:
365 	bio_endio(bio, err);
366 
367 	return 0;
368 }
369 
370 #ifdef CONFIG_BLK_DEV_XIP
371 static int brd_direct_access(struct block_device *bdev, sector_t sector,
372 			void **kaddr, unsigned long *pfn)
373 {
374 	struct brd_device *brd = bdev->bd_disk->private_data;
375 	struct page *page;
376 
377 	if (!brd)
378 		return -ENODEV;
379 	if (sector & (PAGE_SECTORS-1))
380 		return -EINVAL;
381 	if (sector + PAGE_SECTORS > get_capacity(bdev->bd_disk))
382 		return -ERANGE;
383 	page = brd_insert_page(brd, sector);
384 	if (!page)
385 		return -ENOMEM;
386 	*kaddr = page_address(page);
387 	*pfn = page_to_pfn(page);
388 
389 	return 0;
390 }
391 #endif
392 
393 static int brd_ioctl(struct block_device *bdev, fmode_t mode,
394 			unsigned int cmd, unsigned long arg)
395 {
396 	int error;
397 	struct brd_device *brd = bdev->bd_disk->private_data;
398 
399 	if (cmd != BLKFLSBUF)
400 		return -ENOTTY;
401 
402 	/*
403 	 * ram device BLKFLSBUF has special semantics, we want to actually
404 	 * release and destroy the ramdisk data.
405 	 */
406 	mutex_lock(&brd_mutex);
407 	mutex_lock(&bdev->bd_mutex);
408 	error = -EBUSY;
409 	if (bdev->bd_openers <= 1) {
410 		/*
411 		 * Invalidate the cache first, so it isn't written
412 		 * back to the device.
413 		 *
414 		 * Another thread might instantiate more buffercache here,
415 		 * but there is not much we can do to close that race.
416 		 */
417 		invalidate_bh_lrus();
418 		truncate_inode_pages(bdev->bd_inode->i_mapping, 0);
419 		brd_free_pages(brd);
420 		error = 0;
421 	}
422 	mutex_unlock(&bdev->bd_mutex);
423 	mutex_unlock(&brd_mutex);
424 
425 	return error;
426 }
427 
428 static const struct block_device_operations brd_fops = {
429 	.owner =		THIS_MODULE,
430 	.ioctl =		brd_ioctl,
431 #ifdef CONFIG_BLK_DEV_XIP
432 	.direct_access =	brd_direct_access,
433 #endif
434 };
435 
436 /*
437  * And now the modules code and kernel interface.
438  */
439 static int rd_nr;
440 int rd_size = CONFIG_BLK_DEV_RAM_SIZE;
441 static int max_part;
442 static int part_shift;
443 module_param(rd_nr, int, 0);
444 MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
445 module_param(rd_size, int, 0);
446 MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
447 module_param(max_part, int, 0);
448 MODULE_PARM_DESC(max_part, "Maximum number of partitions per RAM disk");
449 MODULE_LICENSE("GPL");
450 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
451 MODULE_ALIAS("rd");
452 
453 #ifndef MODULE
454 /* Legacy boot options - nonmodular */
455 static int __init ramdisk_size(char *str)
456 {
457 	rd_size = simple_strtol(str, NULL, 0);
458 	return 1;
459 }
460 __setup("ramdisk_size=", ramdisk_size);
461 #endif
462 
463 /*
464  * The device scheme is derived from loop.c. Keep them in synch where possible
465  * (should share code eventually).
466  */
467 static LIST_HEAD(brd_devices);
468 static DEFINE_MUTEX(brd_devices_mutex);
469 
470 static struct brd_device *brd_alloc(int i)
471 {
472 	struct brd_device *brd;
473 	struct gendisk *disk;
474 
475 	brd = kzalloc(sizeof(*brd), GFP_KERNEL);
476 	if (!brd)
477 		goto out;
478 	brd->brd_number		= i;
479 	spin_lock_init(&brd->brd_lock);
480 	INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC);
481 
482 	brd->brd_queue = blk_alloc_queue(GFP_KERNEL);
483 	if (!brd->brd_queue)
484 		goto out_free_dev;
485 	blk_queue_make_request(brd->brd_queue, brd_make_request);
486 	blk_queue_max_hw_sectors(brd->brd_queue, 1024);
487 	blk_queue_bounce_limit(brd->brd_queue, BLK_BOUNCE_ANY);
488 
489 	brd->brd_queue->limits.discard_granularity = PAGE_SIZE;
490 	brd->brd_queue->limits.max_discard_sectors = UINT_MAX;
491 	brd->brd_queue->limits.discard_zeroes_data = 1;
492 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, brd->brd_queue);
493 
494 	disk = brd->brd_disk = alloc_disk(1 << part_shift);
495 	if (!disk)
496 		goto out_free_queue;
497 	disk->major		= RAMDISK_MAJOR;
498 	disk->first_minor	= i << part_shift;
499 	disk->fops		= &brd_fops;
500 	disk->private_data	= brd;
501 	disk->queue		= brd->brd_queue;
502 	disk->flags |= GENHD_FL_SUPPRESS_PARTITION_INFO;
503 	sprintf(disk->disk_name, "ram%d", i);
504 	set_capacity(disk, rd_size * 2);
505 
506 	return brd;
507 
508 out_free_queue:
509 	blk_cleanup_queue(brd->brd_queue);
510 out_free_dev:
511 	kfree(brd);
512 out:
513 	return NULL;
514 }
515 
516 static void brd_free(struct brd_device *brd)
517 {
518 	put_disk(brd->brd_disk);
519 	blk_cleanup_queue(brd->brd_queue);
520 	brd_free_pages(brd);
521 	kfree(brd);
522 }
523 
524 static struct brd_device *brd_init_one(int i)
525 {
526 	struct brd_device *brd;
527 
528 	list_for_each_entry(brd, &brd_devices, brd_list) {
529 		if (brd->brd_number == i)
530 			goto out;
531 	}
532 
533 	brd = brd_alloc(i);
534 	if (brd) {
535 		add_disk(brd->brd_disk);
536 		list_add_tail(&brd->brd_list, &brd_devices);
537 	}
538 out:
539 	return brd;
540 }
541 
542 static void brd_del_one(struct brd_device *brd)
543 {
544 	list_del(&brd->brd_list);
545 	del_gendisk(brd->brd_disk);
546 	brd_free(brd);
547 }
548 
549 static struct kobject *brd_probe(dev_t dev, int *part, void *data)
550 {
551 	struct brd_device *brd;
552 	struct kobject *kobj;
553 
554 	mutex_lock(&brd_devices_mutex);
555 	brd = brd_init_one(dev & MINORMASK);
556 	kobj = brd ? get_disk(brd->brd_disk) : ERR_PTR(-ENOMEM);
557 	mutex_unlock(&brd_devices_mutex);
558 
559 	*part = 0;
560 	return kobj;
561 }
562 
563 static int __init brd_init(void)
564 {
565 	int i, nr;
566 	unsigned long range;
567 	struct brd_device *brd, *next;
568 
569 	/*
570 	 * brd module now has a feature to instantiate underlying device
571 	 * structure on-demand, provided that there is an access dev node.
572 	 * However, this will not work well with user space tool that doesn't
573 	 * know about such "feature".  In order to not break any existing
574 	 * tool, we do the following:
575 	 *
576 	 * (1) if rd_nr is specified, create that many upfront, and this
577 	 *     also becomes a hard limit.
578 	 * (2) if rd_nr is not specified, create 1 rd device on module
579 	 *     load, user can further extend brd device by create dev node
580 	 *     themselves and have kernel automatically instantiate actual
581 	 *     device on-demand.
582 	 */
583 
584 	part_shift = 0;
585 	if (max_part > 0)
586 		part_shift = fls(max_part);
587 
588 	if (rd_nr > 1UL << (MINORBITS - part_shift))
589 		return -EINVAL;
590 
591 	if (rd_nr) {
592 		nr = rd_nr;
593 		range = rd_nr;
594 	} else {
595 		nr = CONFIG_BLK_DEV_RAM_COUNT;
596 		range = 1UL << (MINORBITS - part_shift);
597 	}
598 
599 	if (register_blkdev(RAMDISK_MAJOR, "ramdisk"))
600 		return -EIO;
601 
602 	for (i = 0; i < nr; i++) {
603 		brd = brd_alloc(i);
604 		if (!brd)
605 			goto out_free;
606 		list_add_tail(&brd->brd_list, &brd_devices);
607 	}
608 
609 	/* point of no return */
610 
611 	list_for_each_entry(brd, &brd_devices, brd_list)
612 		add_disk(brd->brd_disk);
613 
614 	blk_register_region(MKDEV(RAMDISK_MAJOR, 0), range,
615 				  THIS_MODULE, brd_probe, NULL, NULL);
616 
617 	printk(KERN_INFO "brd: module loaded\n");
618 	return 0;
619 
620 out_free:
621 	list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
622 		list_del(&brd->brd_list);
623 		brd_free(brd);
624 	}
625 	unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
626 
627 	return -ENOMEM;
628 }
629 
630 static void __exit brd_exit(void)
631 {
632 	unsigned long range;
633 	struct brd_device *brd, *next;
634 
635 	range = rd_nr ? rd_nr :  1UL << (MINORBITS - part_shift);
636 
637 	list_for_each_entry_safe(brd, next, &brd_devices, brd_list)
638 		brd_del_one(brd);
639 
640 	blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), range);
641 	unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
642 }
643 
644 module_init(brd_init);
645 module_exit(brd_exit);
646 
647