xref: /openbmc/linux/drivers/block/brd.c (revision ba61bb17496d1664bf7c5c2fd650d5fd78bd0a92)
1 /*
2  * Ram backed block device driver.
3  *
4  * Copyright (C) 2007 Nick Piggin
5  * Copyright (C) 2007 Novell Inc.
6  *
7  * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
8  * of their respective owners.
9  */
10 
11 #include <linux/init.h>
12 #include <linux/initrd.h>
13 #include <linux/module.h>
14 #include <linux/moduleparam.h>
15 #include <linux/major.h>
16 #include <linux/blkdev.h>
17 #include <linux/bio.h>
18 #include <linux/highmem.h>
19 #include <linux/mutex.h>
20 #include <linux/radix-tree.h>
21 #include <linux/fs.h>
22 #include <linux/slab.h>
23 #include <linux/backing-dev.h>
24 
25 #include <linux/uaccess.h>
26 
27 #define PAGE_SECTORS_SHIFT	(PAGE_SHIFT - SECTOR_SHIFT)
28 #define PAGE_SECTORS		(1 << PAGE_SECTORS_SHIFT)
29 
30 /*
31  * Each block ramdisk device has a radix_tree brd_pages of pages that stores
32  * the pages containing the block device's contents. A brd page's ->index is
33  * its offset in PAGE_SIZE units. This is similar to, but in no way connected
34  * with, the kernel's pagecache or buffer cache (which sit above our block
35  * device).
36  */
37 struct brd_device {
38 	int		brd_number;
39 
40 	struct request_queue	*brd_queue;
41 	struct gendisk		*brd_disk;
42 	struct list_head	brd_list;
43 
44 	/*
45 	 * Backing store of pages and lock to protect it. This is the contents
46 	 * of the block device.
47 	 */
48 	spinlock_t		brd_lock;
49 	struct radix_tree_root	brd_pages;
50 };
51 
52 /*
53  * Look up and return a brd's page for a given sector.
54  */
55 static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
56 {
57 	pgoff_t idx;
58 	struct page *page;
59 
60 	/*
61 	 * The page lifetime is protected by the fact that we have opened the
62 	 * device node -- brd pages will never be deleted under us, so we
63 	 * don't need any further locking or refcounting.
64 	 *
65 	 * This is strictly true for the radix-tree nodes as well (ie. we
66 	 * don't actually need the rcu_read_lock()), however that is not a
67 	 * documented feature of the radix-tree API so it is better to be
68 	 * safe here (we don't have total exclusion from radix tree updates
69 	 * here, only deletes).
70 	 */
71 	rcu_read_lock();
72 	idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */
73 	page = radix_tree_lookup(&brd->brd_pages, idx);
74 	rcu_read_unlock();
75 
76 	BUG_ON(page && page->index != idx);
77 
78 	return page;
79 }
80 
81 /*
82  * Look up and return a brd's page for a given sector.
83  * If one does not exist, allocate an empty page, and insert that. Then
84  * return it.
85  */
86 static struct page *brd_insert_page(struct brd_device *brd, sector_t sector)
87 {
88 	pgoff_t idx;
89 	struct page *page;
90 	gfp_t gfp_flags;
91 
92 	page = brd_lookup_page(brd, sector);
93 	if (page)
94 		return page;
95 
96 	/*
97 	 * Must use NOIO because we don't want to recurse back into the
98 	 * block or filesystem layers from page reclaim.
99 	 *
100 	 * Cannot support DAX and highmem, because our ->direct_access
101 	 * routine for DAX must return memory that is always addressable.
102 	 * If DAX was reworked to use pfns and kmap throughout, this
103 	 * restriction might be able to be lifted.
104 	 */
105 	gfp_flags = GFP_NOIO | __GFP_ZERO;
106 	page = alloc_page(gfp_flags);
107 	if (!page)
108 		return NULL;
109 
110 	if (radix_tree_preload(GFP_NOIO)) {
111 		__free_page(page);
112 		return NULL;
113 	}
114 
115 	spin_lock(&brd->brd_lock);
116 	idx = sector >> PAGE_SECTORS_SHIFT;
117 	page->index = idx;
118 	if (radix_tree_insert(&brd->brd_pages, idx, page)) {
119 		__free_page(page);
120 		page = radix_tree_lookup(&brd->brd_pages, idx);
121 		BUG_ON(!page);
122 		BUG_ON(page->index != idx);
123 	}
124 	spin_unlock(&brd->brd_lock);
125 
126 	radix_tree_preload_end();
127 
128 	return page;
129 }
130 
131 /*
132  * Free all backing store pages and radix tree. This must only be called when
133  * there are no other users of the device.
134  */
135 #define FREE_BATCH 16
136 static void brd_free_pages(struct brd_device *brd)
137 {
138 	unsigned long pos = 0;
139 	struct page *pages[FREE_BATCH];
140 	int nr_pages;
141 
142 	do {
143 		int i;
144 
145 		nr_pages = radix_tree_gang_lookup(&brd->brd_pages,
146 				(void **)pages, pos, FREE_BATCH);
147 
148 		for (i = 0; i < nr_pages; i++) {
149 			void *ret;
150 
151 			BUG_ON(pages[i]->index < pos);
152 			pos = pages[i]->index;
153 			ret = radix_tree_delete(&brd->brd_pages, pos);
154 			BUG_ON(!ret || ret != pages[i]);
155 			__free_page(pages[i]);
156 		}
157 
158 		pos++;
159 
160 		/*
161 		 * This assumes radix_tree_gang_lookup always returns as
162 		 * many pages as possible. If the radix-tree code changes,
163 		 * so will this have to.
164 		 */
165 	} while (nr_pages == FREE_BATCH);
166 }
167 
168 /*
169  * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
170  */
171 static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n)
172 {
173 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
174 	size_t copy;
175 
176 	copy = min_t(size_t, n, PAGE_SIZE - offset);
177 	if (!brd_insert_page(brd, sector))
178 		return -ENOSPC;
179 	if (copy < n) {
180 		sector += copy >> SECTOR_SHIFT;
181 		if (!brd_insert_page(brd, sector))
182 			return -ENOSPC;
183 	}
184 	return 0;
185 }
186 
187 /*
188  * Copy n bytes from src to the brd starting at sector. Does not sleep.
189  */
190 static void copy_to_brd(struct brd_device *brd, const void *src,
191 			sector_t sector, size_t n)
192 {
193 	struct page *page;
194 	void *dst;
195 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
196 	size_t copy;
197 
198 	copy = min_t(size_t, n, PAGE_SIZE - offset);
199 	page = brd_lookup_page(brd, sector);
200 	BUG_ON(!page);
201 
202 	dst = kmap_atomic(page);
203 	memcpy(dst + offset, src, copy);
204 	kunmap_atomic(dst);
205 
206 	if (copy < n) {
207 		src += copy;
208 		sector += copy >> SECTOR_SHIFT;
209 		copy = n - copy;
210 		page = brd_lookup_page(brd, sector);
211 		BUG_ON(!page);
212 
213 		dst = kmap_atomic(page);
214 		memcpy(dst, src, copy);
215 		kunmap_atomic(dst);
216 	}
217 }
218 
219 /*
220  * Copy n bytes to dst from the brd starting at sector. Does not sleep.
221  */
222 static void copy_from_brd(void *dst, struct brd_device *brd,
223 			sector_t sector, size_t n)
224 {
225 	struct page *page;
226 	void *src;
227 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
228 	size_t copy;
229 
230 	copy = min_t(size_t, n, PAGE_SIZE - offset);
231 	page = brd_lookup_page(brd, sector);
232 	if (page) {
233 		src = kmap_atomic(page);
234 		memcpy(dst, src + offset, copy);
235 		kunmap_atomic(src);
236 	} else
237 		memset(dst, 0, copy);
238 
239 	if (copy < n) {
240 		dst += copy;
241 		sector += copy >> SECTOR_SHIFT;
242 		copy = n - copy;
243 		page = brd_lookup_page(brd, sector);
244 		if (page) {
245 			src = kmap_atomic(page);
246 			memcpy(dst, src, copy);
247 			kunmap_atomic(src);
248 		} else
249 			memset(dst, 0, copy);
250 	}
251 }
252 
253 /*
254  * Process a single bvec of a bio.
255  */
256 static int brd_do_bvec(struct brd_device *brd, struct page *page,
257 			unsigned int len, unsigned int off, bool is_write,
258 			sector_t sector)
259 {
260 	void *mem;
261 	int err = 0;
262 
263 	if (is_write) {
264 		err = copy_to_brd_setup(brd, sector, len);
265 		if (err)
266 			goto out;
267 	}
268 
269 	mem = kmap_atomic(page);
270 	if (!is_write) {
271 		copy_from_brd(mem + off, brd, sector, len);
272 		flush_dcache_page(page);
273 	} else {
274 		flush_dcache_page(page);
275 		copy_to_brd(brd, mem + off, sector, len);
276 	}
277 	kunmap_atomic(mem);
278 
279 out:
280 	return err;
281 }
282 
283 static blk_qc_t brd_make_request(struct request_queue *q, struct bio *bio)
284 {
285 	struct brd_device *brd = bio->bi_disk->private_data;
286 	struct bio_vec bvec;
287 	sector_t sector;
288 	struct bvec_iter iter;
289 
290 	sector = bio->bi_iter.bi_sector;
291 	if (bio_end_sector(bio) > get_capacity(bio->bi_disk))
292 		goto io_error;
293 
294 	bio_for_each_segment(bvec, bio, iter) {
295 		unsigned int len = bvec.bv_len;
296 		int err;
297 
298 		err = brd_do_bvec(brd, bvec.bv_page, len, bvec.bv_offset,
299 					op_is_write(bio_op(bio)), sector);
300 		if (err)
301 			goto io_error;
302 		sector += len >> SECTOR_SHIFT;
303 	}
304 
305 	bio_endio(bio);
306 	return BLK_QC_T_NONE;
307 io_error:
308 	bio_io_error(bio);
309 	return BLK_QC_T_NONE;
310 }
311 
312 static int brd_rw_page(struct block_device *bdev, sector_t sector,
313 		       struct page *page, bool is_write)
314 {
315 	struct brd_device *brd = bdev->bd_disk->private_data;
316 	int err;
317 
318 	if (PageTransHuge(page))
319 		return -ENOTSUPP;
320 	err = brd_do_bvec(brd, page, PAGE_SIZE, 0, is_write, sector);
321 	page_endio(page, is_write, err);
322 	return err;
323 }
324 
325 static const struct block_device_operations brd_fops = {
326 	.owner =		THIS_MODULE,
327 	.rw_page =		brd_rw_page,
328 };
329 
330 /*
331  * And now the modules code and kernel interface.
332  */
333 static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT;
334 module_param(rd_nr, int, 0444);
335 MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
336 
337 unsigned long rd_size = CONFIG_BLK_DEV_RAM_SIZE;
338 module_param(rd_size, ulong, 0444);
339 MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
340 
341 static int max_part = 1;
342 module_param(max_part, int, 0444);
343 MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices");
344 
345 MODULE_LICENSE("GPL");
346 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
347 MODULE_ALIAS("rd");
348 
349 #ifndef MODULE
350 /* Legacy boot options - nonmodular */
351 static int __init ramdisk_size(char *str)
352 {
353 	rd_size = simple_strtol(str, NULL, 0);
354 	return 1;
355 }
356 __setup("ramdisk_size=", ramdisk_size);
357 #endif
358 
359 /*
360  * The device scheme is derived from loop.c. Keep them in synch where possible
361  * (should share code eventually).
362  */
363 static LIST_HEAD(brd_devices);
364 static DEFINE_MUTEX(brd_devices_mutex);
365 
366 static struct brd_device *brd_alloc(int i)
367 {
368 	struct brd_device *brd;
369 	struct gendisk *disk;
370 
371 	brd = kzalloc(sizeof(*brd), GFP_KERNEL);
372 	if (!brd)
373 		goto out;
374 	brd->brd_number		= i;
375 	spin_lock_init(&brd->brd_lock);
376 	INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC);
377 
378 	brd->brd_queue = blk_alloc_queue(GFP_KERNEL);
379 	if (!brd->brd_queue)
380 		goto out_free_dev;
381 
382 	blk_queue_make_request(brd->brd_queue, brd_make_request);
383 	blk_queue_max_hw_sectors(brd->brd_queue, 1024);
384 
385 	/* This is so fdisk will align partitions on 4k, because of
386 	 * direct_access API needing 4k alignment, returning a PFN
387 	 * (This is only a problem on very small devices <= 4M,
388 	 *  otherwise fdisk will align on 1M. Regardless this call
389 	 *  is harmless)
390 	 */
391 	blk_queue_physical_block_size(brd->brd_queue, PAGE_SIZE);
392 	disk = brd->brd_disk = alloc_disk(max_part);
393 	if (!disk)
394 		goto out_free_queue;
395 	disk->major		= RAMDISK_MAJOR;
396 	disk->first_minor	= i * max_part;
397 	disk->fops		= &brd_fops;
398 	disk->private_data	= brd;
399 	disk->queue		= brd->brd_queue;
400 	disk->flags		= GENHD_FL_EXT_DEVT;
401 	sprintf(disk->disk_name, "ram%d", i);
402 	set_capacity(disk, rd_size * 2);
403 	disk->queue->backing_dev_info->capabilities |= BDI_CAP_SYNCHRONOUS_IO;
404 
405 	/* Tell the block layer that this is not a rotational device */
406 	blk_queue_flag_set(QUEUE_FLAG_NONROT, disk->queue);
407 	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, disk->queue);
408 
409 	return brd;
410 
411 out_free_queue:
412 	blk_cleanup_queue(brd->brd_queue);
413 out_free_dev:
414 	kfree(brd);
415 out:
416 	return NULL;
417 }
418 
419 static void brd_free(struct brd_device *brd)
420 {
421 	put_disk(brd->brd_disk);
422 	blk_cleanup_queue(brd->brd_queue);
423 	brd_free_pages(brd);
424 	kfree(brd);
425 }
426 
427 static struct brd_device *brd_init_one(int i, bool *new)
428 {
429 	struct brd_device *brd;
430 
431 	*new = false;
432 	list_for_each_entry(brd, &brd_devices, brd_list) {
433 		if (brd->brd_number == i)
434 			goto out;
435 	}
436 
437 	brd = brd_alloc(i);
438 	if (brd) {
439 		add_disk(brd->brd_disk);
440 		list_add_tail(&brd->brd_list, &brd_devices);
441 	}
442 	*new = true;
443 out:
444 	return brd;
445 }
446 
447 static void brd_del_one(struct brd_device *brd)
448 {
449 	list_del(&brd->brd_list);
450 	del_gendisk(brd->brd_disk);
451 	brd_free(brd);
452 }
453 
454 static struct kobject *brd_probe(dev_t dev, int *part, void *data)
455 {
456 	struct brd_device *brd;
457 	struct kobject *kobj;
458 	bool new;
459 
460 	mutex_lock(&brd_devices_mutex);
461 	brd = brd_init_one(MINOR(dev) / max_part, &new);
462 	kobj = brd ? get_disk_and_module(brd->brd_disk) : NULL;
463 	mutex_unlock(&brd_devices_mutex);
464 
465 	if (new)
466 		*part = 0;
467 
468 	return kobj;
469 }
470 
471 static int __init brd_init(void)
472 {
473 	struct brd_device *brd, *next;
474 	int i;
475 
476 	/*
477 	 * brd module now has a feature to instantiate underlying device
478 	 * structure on-demand, provided that there is an access dev node.
479 	 *
480 	 * (1) if rd_nr is specified, create that many upfront. else
481 	 *     it defaults to CONFIG_BLK_DEV_RAM_COUNT
482 	 * (2) User can further extend brd devices by create dev node themselves
483 	 *     and have kernel automatically instantiate actual device
484 	 *     on-demand. Example:
485 	 *		mknod /path/devnod_name b 1 X	# 1 is the rd major
486 	 *		fdisk -l /path/devnod_name
487 	 *	If (X / max_part) was not already created it will be created
488 	 *	dynamically.
489 	 */
490 
491 	if (register_blkdev(RAMDISK_MAJOR, "ramdisk"))
492 		return -EIO;
493 
494 	if (unlikely(!max_part))
495 		max_part = 1;
496 
497 	for (i = 0; i < rd_nr; i++) {
498 		brd = brd_alloc(i);
499 		if (!brd)
500 			goto out_free;
501 		list_add_tail(&brd->brd_list, &brd_devices);
502 	}
503 
504 	/* point of no return */
505 
506 	list_for_each_entry(brd, &brd_devices, brd_list)
507 		add_disk(brd->brd_disk);
508 
509 	blk_register_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS,
510 				  THIS_MODULE, brd_probe, NULL, NULL);
511 
512 	pr_info("brd: module loaded\n");
513 	return 0;
514 
515 out_free:
516 	list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
517 		list_del(&brd->brd_list);
518 		brd_free(brd);
519 	}
520 	unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
521 
522 	pr_info("brd: module NOT loaded !!!\n");
523 	return -ENOMEM;
524 }
525 
526 static void __exit brd_exit(void)
527 {
528 	struct brd_device *brd, *next;
529 
530 	list_for_each_entry_safe(brd, next, &brd_devices, brd_list)
531 		brd_del_one(brd);
532 
533 	blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS);
534 	unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
535 
536 	pr_info("brd: module unloaded\n");
537 }
538 
539 module_init(brd_init);
540 module_exit(brd_exit);
541 
542