1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Ram backed block device driver. 4 * 5 * Copyright (C) 2007 Nick Piggin 6 * Copyright (C) 2007 Novell Inc. 7 * 8 * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright 9 * of their respective owners. 10 */ 11 12 #include <linux/init.h> 13 #include <linux/initrd.h> 14 #include <linux/module.h> 15 #include <linux/moduleparam.h> 16 #include <linux/major.h> 17 #include <linux/blkdev.h> 18 #include <linux/bio.h> 19 #include <linux/highmem.h> 20 #include <linux/mutex.h> 21 #include <linux/pagemap.h> 22 #include <linux/radix-tree.h> 23 #include <linux/fs.h> 24 #include <linux/slab.h> 25 #include <linux/backing-dev.h> 26 #include <linux/debugfs.h> 27 28 #include <linux/uaccess.h> 29 30 #define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT) 31 #define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT) 32 33 /* 34 * Each block ramdisk device has a radix_tree brd_pages of pages that stores 35 * the pages containing the block device's contents. A brd page's ->index is 36 * its offset in PAGE_SIZE units. This is similar to, but in no way connected 37 * with, the kernel's pagecache or buffer cache (which sit above our block 38 * device). 39 */ 40 struct brd_device { 41 int brd_number; 42 struct gendisk *brd_disk; 43 struct list_head brd_list; 44 45 /* 46 * Backing store of pages and lock to protect it. This is the contents 47 * of the block device. 48 */ 49 spinlock_t brd_lock; 50 struct radix_tree_root brd_pages; 51 u64 brd_nr_pages; 52 }; 53 54 /* 55 * Look up and return a brd's page for a given sector. 56 */ 57 static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector) 58 { 59 pgoff_t idx; 60 struct page *page; 61 62 /* 63 * The page lifetime is protected by the fact that we have opened the 64 * device node -- brd pages will never be deleted under us, so we 65 * don't need any further locking or refcounting. 66 * 67 * This is strictly true for the radix-tree nodes as well (ie. we 68 * don't actually need the rcu_read_lock()), however that is not a 69 * documented feature of the radix-tree API so it is better to be 70 * safe here (we don't have total exclusion from radix tree updates 71 * here, only deletes). 72 */ 73 rcu_read_lock(); 74 idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */ 75 page = radix_tree_lookup(&brd->brd_pages, idx); 76 rcu_read_unlock(); 77 78 BUG_ON(page && page->index != idx); 79 80 return page; 81 } 82 83 /* 84 * Look up and return a brd's page for a given sector. 85 * If one does not exist, allocate an empty page, and insert that. Then 86 * return it. 87 */ 88 static struct page *brd_insert_page(struct brd_device *brd, sector_t sector) 89 { 90 pgoff_t idx; 91 struct page *page; 92 gfp_t gfp_flags; 93 94 page = brd_lookup_page(brd, sector); 95 if (page) 96 return page; 97 98 /* 99 * Must use NOIO because we don't want to recurse back into the 100 * block or filesystem layers from page reclaim. 101 */ 102 gfp_flags = GFP_NOIO | __GFP_ZERO | __GFP_HIGHMEM; 103 page = alloc_page(gfp_flags); 104 if (!page) 105 return NULL; 106 107 if (radix_tree_preload(GFP_NOIO)) { 108 __free_page(page); 109 return NULL; 110 } 111 112 spin_lock(&brd->brd_lock); 113 idx = sector >> PAGE_SECTORS_SHIFT; 114 page->index = idx; 115 if (radix_tree_insert(&brd->brd_pages, idx, page)) { 116 __free_page(page); 117 page = radix_tree_lookup(&brd->brd_pages, idx); 118 BUG_ON(!page); 119 BUG_ON(page->index != idx); 120 } else { 121 brd->brd_nr_pages++; 122 } 123 spin_unlock(&brd->brd_lock); 124 125 radix_tree_preload_end(); 126 127 return page; 128 } 129 130 /* 131 * Free all backing store pages and radix tree. This must only be called when 132 * there are no other users of the device. 133 */ 134 #define FREE_BATCH 16 135 static void brd_free_pages(struct brd_device *brd) 136 { 137 unsigned long pos = 0; 138 struct page *pages[FREE_BATCH]; 139 int nr_pages; 140 141 do { 142 int i; 143 144 nr_pages = radix_tree_gang_lookup(&brd->brd_pages, 145 (void **)pages, pos, FREE_BATCH); 146 147 for (i = 0; i < nr_pages; i++) { 148 void *ret; 149 150 BUG_ON(pages[i]->index < pos); 151 pos = pages[i]->index; 152 ret = radix_tree_delete(&brd->brd_pages, pos); 153 BUG_ON(!ret || ret != pages[i]); 154 __free_page(pages[i]); 155 } 156 157 pos++; 158 159 /* 160 * It takes 3.4 seconds to remove 80GiB ramdisk. 161 * So, we need cond_resched to avoid stalling the CPU. 162 */ 163 cond_resched(); 164 165 /* 166 * This assumes radix_tree_gang_lookup always returns as 167 * many pages as possible. If the radix-tree code changes, 168 * so will this have to. 169 */ 170 } while (nr_pages == FREE_BATCH); 171 } 172 173 /* 174 * copy_to_brd_setup must be called before copy_to_brd. It may sleep. 175 */ 176 static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n) 177 { 178 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; 179 size_t copy; 180 181 copy = min_t(size_t, n, PAGE_SIZE - offset); 182 if (!brd_insert_page(brd, sector)) 183 return -ENOSPC; 184 if (copy < n) { 185 sector += copy >> SECTOR_SHIFT; 186 if (!brd_insert_page(brd, sector)) 187 return -ENOSPC; 188 } 189 return 0; 190 } 191 192 /* 193 * Copy n bytes from src to the brd starting at sector. Does not sleep. 194 */ 195 static void copy_to_brd(struct brd_device *brd, const void *src, 196 sector_t sector, size_t n) 197 { 198 struct page *page; 199 void *dst; 200 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; 201 size_t copy; 202 203 copy = min_t(size_t, n, PAGE_SIZE - offset); 204 page = brd_lookup_page(brd, sector); 205 BUG_ON(!page); 206 207 dst = kmap_atomic(page); 208 memcpy(dst + offset, src, copy); 209 kunmap_atomic(dst); 210 211 if (copy < n) { 212 src += copy; 213 sector += copy >> SECTOR_SHIFT; 214 copy = n - copy; 215 page = brd_lookup_page(brd, sector); 216 BUG_ON(!page); 217 218 dst = kmap_atomic(page); 219 memcpy(dst, src, copy); 220 kunmap_atomic(dst); 221 } 222 } 223 224 /* 225 * Copy n bytes to dst from the brd starting at sector. Does not sleep. 226 */ 227 static void copy_from_brd(void *dst, struct brd_device *brd, 228 sector_t sector, size_t n) 229 { 230 struct page *page; 231 void *src; 232 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; 233 size_t copy; 234 235 copy = min_t(size_t, n, PAGE_SIZE - offset); 236 page = brd_lookup_page(brd, sector); 237 if (page) { 238 src = kmap_atomic(page); 239 memcpy(dst, src + offset, copy); 240 kunmap_atomic(src); 241 } else 242 memset(dst, 0, copy); 243 244 if (copy < n) { 245 dst += copy; 246 sector += copy >> SECTOR_SHIFT; 247 copy = n - copy; 248 page = brd_lookup_page(brd, sector); 249 if (page) { 250 src = kmap_atomic(page); 251 memcpy(dst, src, copy); 252 kunmap_atomic(src); 253 } else 254 memset(dst, 0, copy); 255 } 256 } 257 258 /* 259 * Process a single bvec of a bio. 260 */ 261 static int brd_do_bvec(struct brd_device *brd, struct page *page, 262 unsigned int len, unsigned int off, unsigned int op, 263 sector_t sector) 264 { 265 void *mem; 266 int err = 0; 267 268 if (op_is_write(op)) { 269 err = copy_to_brd_setup(brd, sector, len); 270 if (err) 271 goto out; 272 } 273 274 mem = kmap_atomic(page); 275 if (!op_is_write(op)) { 276 copy_from_brd(mem + off, brd, sector, len); 277 flush_dcache_page(page); 278 } else { 279 flush_dcache_page(page); 280 copy_to_brd(brd, mem + off, sector, len); 281 } 282 kunmap_atomic(mem); 283 284 out: 285 return err; 286 } 287 288 static blk_qc_t brd_submit_bio(struct bio *bio) 289 { 290 struct brd_device *brd = bio->bi_bdev->bd_disk->private_data; 291 sector_t sector = bio->bi_iter.bi_sector; 292 struct bio_vec bvec; 293 struct bvec_iter iter; 294 295 bio_for_each_segment(bvec, bio, iter) { 296 unsigned int len = bvec.bv_len; 297 int err; 298 299 /* Don't support un-aligned buffer */ 300 WARN_ON_ONCE((bvec.bv_offset & (SECTOR_SIZE - 1)) || 301 (len & (SECTOR_SIZE - 1))); 302 303 err = brd_do_bvec(brd, bvec.bv_page, len, bvec.bv_offset, 304 bio_op(bio), sector); 305 if (err) 306 goto io_error; 307 sector += len >> SECTOR_SHIFT; 308 } 309 310 bio_endio(bio); 311 return BLK_QC_T_NONE; 312 io_error: 313 bio_io_error(bio); 314 return BLK_QC_T_NONE; 315 } 316 317 static int brd_rw_page(struct block_device *bdev, sector_t sector, 318 struct page *page, unsigned int op) 319 { 320 struct brd_device *brd = bdev->bd_disk->private_data; 321 int err; 322 323 if (PageTransHuge(page)) 324 return -ENOTSUPP; 325 err = brd_do_bvec(brd, page, PAGE_SIZE, 0, op, sector); 326 page_endio(page, op_is_write(op), err); 327 return err; 328 } 329 330 static const struct block_device_operations brd_fops = { 331 .owner = THIS_MODULE, 332 .submit_bio = brd_submit_bio, 333 .rw_page = brd_rw_page, 334 }; 335 336 /* 337 * And now the modules code and kernel interface. 338 */ 339 static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT; 340 module_param(rd_nr, int, 0444); 341 MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices"); 342 343 unsigned long rd_size = CONFIG_BLK_DEV_RAM_SIZE; 344 module_param(rd_size, ulong, 0444); 345 MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes."); 346 347 static int max_part = 1; 348 module_param(max_part, int, 0444); 349 MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices"); 350 351 MODULE_LICENSE("GPL"); 352 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR); 353 MODULE_ALIAS("rd"); 354 355 #ifndef MODULE 356 /* Legacy boot options - nonmodular */ 357 static int __init ramdisk_size(char *str) 358 { 359 rd_size = simple_strtol(str, NULL, 0); 360 return 1; 361 } 362 __setup("ramdisk_size=", ramdisk_size); 363 #endif 364 365 /* 366 * The device scheme is derived from loop.c. Keep them in synch where possible 367 * (should share code eventually). 368 */ 369 static LIST_HEAD(brd_devices); 370 static DEFINE_MUTEX(brd_devices_mutex); 371 static struct dentry *brd_debugfs_dir; 372 373 static int brd_alloc(int i) 374 { 375 struct brd_device *brd; 376 struct gendisk *disk; 377 char buf[DISK_NAME_LEN]; 378 379 brd = kzalloc(sizeof(*brd), GFP_KERNEL); 380 if (!brd) 381 return -ENOMEM; 382 brd->brd_number = i; 383 spin_lock_init(&brd->brd_lock); 384 INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC); 385 386 snprintf(buf, DISK_NAME_LEN, "ram%d", i); 387 if (!IS_ERR_OR_NULL(brd_debugfs_dir)) 388 debugfs_create_u64(buf, 0444, brd_debugfs_dir, 389 &brd->brd_nr_pages); 390 391 disk = brd->brd_disk = blk_alloc_disk(NUMA_NO_NODE); 392 if (!disk) 393 goto out_free_dev; 394 395 disk->major = RAMDISK_MAJOR; 396 disk->first_minor = i * max_part; 397 disk->minors = max_part; 398 disk->fops = &brd_fops; 399 disk->private_data = brd; 400 disk->flags = GENHD_FL_EXT_DEVT; 401 strlcpy(disk->disk_name, buf, DISK_NAME_LEN); 402 set_capacity(disk, rd_size * 2); 403 404 /* 405 * This is so fdisk will align partitions on 4k, because of 406 * direct_access API needing 4k alignment, returning a PFN 407 * (This is only a problem on very small devices <= 4M, 408 * otherwise fdisk will align on 1M. Regardless this call 409 * is harmless) 410 */ 411 blk_queue_physical_block_size(disk->queue, PAGE_SIZE); 412 413 /* Tell the block layer that this is not a rotational device */ 414 blk_queue_flag_set(QUEUE_FLAG_NONROT, disk->queue); 415 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, disk->queue); 416 add_disk(disk); 417 list_add_tail(&brd->brd_list, &brd_devices); 418 419 return 0; 420 421 out_free_dev: 422 kfree(brd); 423 return -ENOMEM; 424 } 425 426 static void brd_probe(dev_t dev) 427 { 428 int i = MINOR(dev) / max_part; 429 struct brd_device *brd; 430 431 mutex_lock(&brd_devices_mutex); 432 list_for_each_entry(brd, &brd_devices, brd_list) { 433 if (brd->brd_number == i) 434 goto out_unlock; 435 } 436 437 brd_alloc(i); 438 out_unlock: 439 mutex_unlock(&brd_devices_mutex); 440 } 441 442 static void brd_del_one(struct brd_device *brd) 443 { 444 list_del(&brd->brd_list); 445 del_gendisk(brd->brd_disk); 446 blk_cleanup_disk(brd->brd_disk); 447 brd_free_pages(brd); 448 kfree(brd); 449 } 450 451 static inline void brd_check_and_reset_par(void) 452 { 453 if (unlikely(!max_part)) 454 max_part = 1; 455 456 /* 457 * make sure 'max_part' can be divided exactly by (1U << MINORBITS), 458 * otherwise, it is possiable to get same dev_t when adding partitions. 459 */ 460 if ((1U << MINORBITS) % max_part != 0) 461 max_part = 1UL << fls(max_part); 462 463 if (max_part > DISK_MAX_PARTS) { 464 pr_info("brd: max_part can't be larger than %d, reset max_part = %d.\n", 465 DISK_MAX_PARTS, DISK_MAX_PARTS); 466 max_part = DISK_MAX_PARTS; 467 } 468 } 469 470 static int __init brd_init(void) 471 { 472 struct brd_device *brd, *next; 473 int err, i; 474 475 /* 476 * brd module now has a feature to instantiate underlying device 477 * structure on-demand, provided that there is an access dev node. 478 * 479 * (1) if rd_nr is specified, create that many upfront. else 480 * it defaults to CONFIG_BLK_DEV_RAM_COUNT 481 * (2) User can further extend brd devices by create dev node themselves 482 * and have kernel automatically instantiate actual device 483 * on-demand. Example: 484 * mknod /path/devnod_name b 1 X # 1 is the rd major 485 * fdisk -l /path/devnod_name 486 * If (X / max_part) was not already created it will be created 487 * dynamically. 488 */ 489 490 if (__register_blkdev(RAMDISK_MAJOR, "ramdisk", brd_probe)) 491 return -EIO; 492 493 brd_check_and_reset_par(); 494 495 brd_debugfs_dir = debugfs_create_dir("ramdisk_pages", NULL); 496 497 mutex_lock(&brd_devices_mutex); 498 for (i = 0; i < rd_nr; i++) { 499 err = brd_alloc(i); 500 if (err) 501 goto out_free; 502 } 503 504 mutex_unlock(&brd_devices_mutex); 505 506 pr_info("brd: module loaded\n"); 507 return 0; 508 509 out_free: 510 debugfs_remove_recursive(brd_debugfs_dir); 511 512 list_for_each_entry_safe(brd, next, &brd_devices, brd_list) 513 brd_del_one(brd); 514 mutex_unlock(&brd_devices_mutex); 515 unregister_blkdev(RAMDISK_MAJOR, "ramdisk"); 516 517 pr_info("brd: module NOT loaded !!!\n"); 518 return err; 519 } 520 521 static void __exit brd_exit(void) 522 { 523 struct brd_device *brd, *next; 524 525 debugfs_remove_recursive(brd_debugfs_dir); 526 527 list_for_each_entry_safe(brd, next, &brd_devices, brd_list) 528 brd_del_one(brd); 529 530 unregister_blkdev(RAMDISK_MAJOR, "ramdisk"); 531 532 pr_info("brd: module unloaded\n"); 533 } 534 535 module_init(brd_init); 536 module_exit(brd_exit); 537 538