xref: /openbmc/linux/drivers/block/brd.c (revision 9d56dd3b)
1 /*
2  * Ram backed block device driver.
3  *
4  * Copyright (C) 2007 Nick Piggin
5  * Copyright (C) 2007 Novell Inc.
6  *
7  * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
8  * of their respective owners.
9  */
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/moduleparam.h>
14 #include <linux/major.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/highmem.h>
18 #include <linux/gfp.h>
19 #include <linux/radix-tree.h>
20 #include <linux/buffer_head.h> /* invalidate_bh_lrus() */
21 
22 #include <asm/uaccess.h>
23 
24 #define SECTOR_SHIFT		9
25 #define PAGE_SECTORS_SHIFT	(PAGE_SHIFT - SECTOR_SHIFT)
26 #define PAGE_SECTORS		(1 << PAGE_SECTORS_SHIFT)
27 
28 /*
29  * Each block ramdisk device has a radix_tree brd_pages of pages that stores
30  * the pages containing the block device's contents. A brd page's ->index is
31  * its offset in PAGE_SIZE units. This is similar to, but in no way connected
32  * with, the kernel's pagecache or buffer cache (which sit above our block
33  * device).
34  */
35 struct brd_device {
36 	int		brd_number;
37 	int		brd_refcnt;
38 	loff_t		brd_offset;
39 	loff_t		brd_sizelimit;
40 	unsigned	brd_blocksize;
41 
42 	struct request_queue	*brd_queue;
43 	struct gendisk		*brd_disk;
44 	struct list_head	brd_list;
45 
46 	/*
47 	 * Backing store of pages and lock to protect it. This is the contents
48 	 * of the block device.
49 	 */
50 	spinlock_t		brd_lock;
51 	struct radix_tree_root	brd_pages;
52 };
53 
54 /*
55  * Look up and return a brd's page for a given sector.
56  */
57 static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
58 {
59 	pgoff_t idx;
60 	struct page *page;
61 
62 	/*
63 	 * The page lifetime is protected by the fact that we have opened the
64 	 * device node -- brd pages will never be deleted under us, so we
65 	 * don't need any further locking or refcounting.
66 	 *
67 	 * This is strictly true for the radix-tree nodes as well (ie. we
68 	 * don't actually need the rcu_read_lock()), however that is not a
69 	 * documented feature of the radix-tree API so it is better to be
70 	 * safe here (we don't have total exclusion from radix tree updates
71 	 * here, only deletes).
72 	 */
73 	rcu_read_lock();
74 	idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */
75 	page = radix_tree_lookup(&brd->brd_pages, idx);
76 	rcu_read_unlock();
77 
78 	BUG_ON(page && page->index != idx);
79 
80 	return page;
81 }
82 
83 /*
84  * Look up and return a brd's page for a given sector.
85  * If one does not exist, allocate an empty page, and insert that. Then
86  * return it.
87  */
88 static struct page *brd_insert_page(struct brd_device *brd, sector_t sector)
89 {
90 	pgoff_t idx;
91 	struct page *page;
92 	gfp_t gfp_flags;
93 
94 	page = brd_lookup_page(brd, sector);
95 	if (page)
96 		return page;
97 
98 	/*
99 	 * Must use NOIO because we don't want to recurse back into the
100 	 * block or filesystem layers from page reclaim.
101 	 *
102 	 * Cannot support XIP and highmem, because our ->direct_access
103 	 * routine for XIP must return memory that is always addressable.
104 	 * If XIP was reworked to use pfns and kmap throughout, this
105 	 * restriction might be able to be lifted.
106 	 */
107 	gfp_flags = GFP_NOIO | __GFP_ZERO;
108 #ifndef CONFIG_BLK_DEV_XIP
109 	gfp_flags |= __GFP_HIGHMEM;
110 #endif
111 	page = alloc_page(gfp_flags);
112 	if (!page)
113 		return NULL;
114 
115 	if (radix_tree_preload(GFP_NOIO)) {
116 		__free_page(page);
117 		return NULL;
118 	}
119 
120 	spin_lock(&brd->brd_lock);
121 	idx = sector >> PAGE_SECTORS_SHIFT;
122 	if (radix_tree_insert(&brd->brd_pages, idx, page)) {
123 		__free_page(page);
124 		page = radix_tree_lookup(&brd->brd_pages, idx);
125 		BUG_ON(!page);
126 		BUG_ON(page->index != idx);
127 	} else
128 		page->index = idx;
129 	spin_unlock(&brd->brd_lock);
130 
131 	radix_tree_preload_end();
132 
133 	return page;
134 }
135 
136 /*
137  * Free all backing store pages and radix tree. This must only be called when
138  * there are no other users of the device.
139  */
140 #define FREE_BATCH 16
141 static void brd_free_pages(struct brd_device *brd)
142 {
143 	unsigned long pos = 0;
144 	struct page *pages[FREE_BATCH];
145 	int nr_pages;
146 
147 	do {
148 		int i;
149 
150 		nr_pages = radix_tree_gang_lookup(&brd->brd_pages,
151 				(void **)pages, pos, FREE_BATCH);
152 
153 		for (i = 0; i < nr_pages; i++) {
154 			void *ret;
155 
156 			BUG_ON(pages[i]->index < pos);
157 			pos = pages[i]->index;
158 			ret = radix_tree_delete(&brd->brd_pages, pos);
159 			BUG_ON(!ret || ret != pages[i]);
160 			__free_page(pages[i]);
161 		}
162 
163 		pos++;
164 
165 		/*
166 		 * This assumes radix_tree_gang_lookup always returns as
167 		 * many pages as possible. If the radix-tree code changes,
168 		 * so will this have to.
169 		 */
170 	} while (nr_pages == FREE_BATCH);
171 }
172 
173 /*
174  * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
175  */
176 static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n)
177 {
178 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
179 	size_t copy;
180 
181 	copy = min_t(size_t, n, PAGE_SIZE - offset);
182 	if (!brd_insert_page(brd, sector))
183 		return -ENOMEM;
184 	if (copy < n) {
185 		sector += copy >> SECTOR_SHIFT;
186 		if (!brd_insert_page(brd, sector))
187 			return -ENOMEM;
188 	}
189 	return 0;
190 }
191 
192 /*
193  * Copy n bytes from src to the brd starting at sector. Does not sleep.
194  */
195 static void copy_to_brd(struct brd_device *brd, const void *src,
196 			sector_t sector, size_t n)
197 {
198 	struct page *page;
199 	void *dst;
200 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
201 	size_t copy;
202 
203 	copy = min_t(size_t, n, PAGE_SIZE - offset);
204 	page = brd_lookup_page(brd, sector);
205 	BUG_ON(!page);
206 
207 	dst = kmap_atomic(page, KM_USER1);
208 	memcpy(dst + offset, src, copy);
209 	kunmap_atomic(dst, KM_USER1);
210 
211 	if (copy < n) {
212 		src += copy;
213 		sector += copy >> SECTOR_SHIFT;
214 		copy = n - copy;
215 		page = brd_lookup_page(brd, sector);
216 		BUG_ON(!page);
217 
218 		dst = kmap_atomic(page, KM_USER1);
219 		memcpy(dst, src, copy);
220 		kunmap_atomic(dst, KM_USER1);
221 	}
222 }
223 
224 /*
225  * Copy n bytes to dst from the brd starting at sector. Does not sleep.
226  */
227 static void copy_from_brd(void *dst, struct brd_device *brd,
228 			sector_t sector, size_t n)
229 {
230 	struct page *page;
231 	void *src;
232 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
233 	size_t copy;
234 
235 	copy = min_t(size_t, n, PAGE_SIZE - offset);
236 	page = brd_lookup_page(brd, sector);
237 	if (page) {
238 		src = kmap_atomic(page, KM_USER1);
239 		memcpy(dst, src + offset, copy);
240 		kunmap_atomic(src, KM_USER1);
241 	} else
242 		memset(dst, 0, copy);
243 
244 	if (copy < n) {
245 		dst += copy;
246 		sector += copy >> SECTOR_SHIFT;
247 		copy = n - copy;
248 		page = brd_lookup_page(brd, sector);
249 		if (page) {
250 			src = kmap_atomic(page, KM_USER1);
251 			memcpy(dst, src, copy);
252 			kunmap_atomic(src, KM_USER1);
253 		} else
254 			memset(dst, 0, copy);
255 	}
256 }
257 
258 /*
259  * Process a single bvec of a bio.
260  */
261 static int brd_do_bvec(struct brd_device *brd, struct page *page,
262 			unsigned int len, unsigned int off, int rw,
263 			sector_t sector)
264 {
265 	void *mem;
266 	int err = 0;
267 
268 	if (rw != READ) {
269 		err = copy_to_brd_setup(brd, sector, len);
270 		if (err)
271 			goto out;
272 	}
273 
274 	mem = kmap_atomic(page, KM_USER0);
275 	if (rw == READ) {
276 		copy_from_brd(mem + off, brd, sector, len);
277 		flush_dcache_page(page);
278 	} else {
279 		flush_dcache_page(page);
280 		copy_to_brd(brd, mem + off, sector, len);
281 	}
282 	kunmap_atomic(mem, KM_USER0);
283 
284 out:
285 	return err;
286 }
287 
288 static int brd_make_request(struct request_queue *q, struct bio *bio)
289 {
290 	struct block_device *bdev = bio->bi_bdev;
291 	struct brd_device *brd = bdev->bd_disk->private_data;
292 	int rw;
293 	struct bio_vec *bvec;
294 	sector_t sector;
295 	int i;
296 	int err = -EIO;
297 
298 	sector = bio->bi_sector;
299 	if (sector + (bio->bi_size >> SECTOR_SHIFT) >
300 						get_capacity(bdev->bd_disk))
301 		goto out;
302 
303 	rw = bio_rw(bio);
304 	if (rw == READA)
305 		rw = READ;
306 
307 	bio_for_each_segment(bvec, bio, i) {
308 		unsigned int len = bvec->bv_len;
309 		err = brd_do_bvec(brd, bvec->bv_page, len,
310 					bvec->bv_offset, rw, sector);
311 		if (err)
312 			break;
313 		sector += len >> SECTOR_SHIFT;
314 	}
315 
316 out:
317 	bio_endio(bio, err);
318 
319 	return 0;
320 }
321 
322 #ifdef CONFIG_BLK_DEV_XIP
323 static int brd_direct_access (struct block_device *bdev, sector_t sector,
324 			void **kaddr, unsigned long *pfn)
325 {
326 	struct brd_device *brd = bdev->bd_disk->private_data;
327 	struct page *page;
328 
329 	if (!brd)
330 		return -ENODEV;
331 	if (sector & (PAGE_SECTORS-1))
332 		return -EINVAL;
333 	if (sector + PAGE_SECTORS > get_capacity(bdev->bd_disk))
334 		return -ERANGE;
335 	page = brd_insert_page(brd, sector);
336 	if (!page)
337 		return -ENOMEM;
338 	*kaddr = page_address(page);
339 	*pfn = page_to_pfn(page);
340 
341 	return 0;
342 }
343 #endif
344 
345 static int brd_ioctl(struct block_device *bdev, fmode_t mode,
346 			unsigned int cmd, unsigned long arg)
347 {
348 	int error;
349 	struct brd_device *brd = bdev->bd_disk->private_data;
350 
351 	if (cmd != BLKFLSBUF)
352 		return -ENOTTY;
353 
354 	/*
355 	 * ram device BLKFLSBUF has special semantics, we want to actually
356 	 * release and destroy the ramdisk data.
357 	 */
358 	mutex_lock(&bdev->bd_mutex);
359 	error = -EBUSY;
360 	if (bdev->bd_openers <= 1) {
361 		/*
362 		 * Invalidate the cache first, so it isn't written
363 		 * back to the device.
364 		 *
365 		 * Another thread might instantiate more buffercache here,
366 		 * but there is not much we can do to close that race.
367 		 */
368 		invalidate_bh_lrus();
369 		truncate_inode_pages(bdev->bd_inode->i_mapping, 0);
370 		brd_free_pages(brd);
371 		error = 0;
372 	}
373 	mutex_unlock(&bdev->bd_mutex);
374 
375 	return error;
376 }
377 
378 static const struct block_device_operations brd_fops = {
379 	.owner =		THIS_MODULE,
380 	.locked_ioctl =		brd_ioctl,
381 #ifdef CONFIG_BLK_DEV_XIP
382 	.direct_access =	brd_direct_access,
383 #endif
384 };
385 
386 /*
387  * And now the modules code and kernel interface.
388  */
389 static int rd_nr;
390 int rd_size = CONFIG_BLK_DEV_RAM_SIZE;
391 static int max_part;
392 static int part_shift;
393 module_param(rd_nr, int, 0);
394 MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
395 module_param(rd_size, int, 0);
396 MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
397 module_param(max_part, int, 0);
398 MODULE_PARM_DESC(max_part, "Maximum number of partitions per RAM disk");
399 MODULE_LICENSE("GPL");
400 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
401 MODULE_ALIAS("rd");
402 
403 #ifndef MODULE
404 /* Legacy boot options - nonmodular */
405 static int __init ramdisk_size(char *str)
406 {
407 	rd_size = simple_strtol(str, NULL, 0);
408 	return 1;
409 }
410 __setup("ramdisk_size=", ramdisk_size);
411 #endif
412 
413 /*
414  * The device scheme is derived from loop.c. Keep them in synch where possible
415  * (should share code eventually).
416  */
417 static LIST_HEAD(brd_devices);
418 static DEFINE_MUTEX(brd_devices_mutex);
419 
420 static struct brd_device *brd_alloc(int i)
421 {
422 	struct brd_device *brd;
423 	struct gendisk *disk;
424 
425 	brd = kzalloc(sizeof(*brd), GFP_KERNEL);
426 	if (!brd)
427 		goto out;
428 	brd->brd_number		= i;
429 	spin_lock_init(&brd->brd_lock);
430 	INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC);
431 
432 	brd->brd_queue = blk_alloc_queue(GFP_KERNEL);
433 	if (!brd->brd_queue)
434 		goto out_free_dev;
435 	blk_queue_make_request(brd->brd_queue, brd_make_request);
436 	blk_queue_ordered(brd->brd_queue, QUEUE_ORDERED_TAG, NULL);
437 	blk_queue_max_sectors(brd->brd_queue, 1024);
438 	blk_queue_bounce_limit(brd->brd_queue, BLK_BOUNCE_ANY);
439 
440 	disk = brd->brd_disk = alloc_disk(1 << part_shift);
441 	if (!disk)
442 		goto out_free_queue;
443 	disk->major		= RAMDISK_MAJOR;
444 	disk->first_minor	= i << part_shift;
445 	disk->fops		= &brd_fops;
446 	disk->private_data	= brd;
447 	disk->queue		= brd->brd_queue;
448 	disk->flags |= GENHD_FL_SUPPRESS_PARTITION_INFO;
449 	sprintf(disk->disk_name, "ram%d", i);
450 	set_capacity(disk, rd_size * 2);
451 
452 	return brd;
453 
454 out_free_queue:
455 	blk_cleanup_queue(brd->brd_queue);
456 out_free_dev:
457 	kfree(brd);
458 out:
459 	return NULL;
460 }
461 
462 static void brd_free(struct brd_device *brd)
463 {
464 	put_disk(brd->brd_disk);
465 	blk_cleanup_queue(brd->brd_queue);
466 	brd_free_pages(brd);
467 	kfree(brd);
468 }
469 
470 static struct brd_device *brd_init_one(int i)
471 {
472 	struct brd_device *brd;
473 
474 	list_for_each_entry(brd, &brd_devices, brd_list) {
475 		if (brd->brd_number == i)
476 			goto out;
477 	}
478 
479 	brd = brd_alloc(i);
480 	if (brd) {
481 		add_disk(brd->brd_disk);
482 		list_add_tail(&brd->brd_list, &brd_devices);
483 	}
484 out:
485 	return brd;
486 }
487 
488 static void brd_del_one(struct brd_device *brd)
489 {
490 	list_del(&brd->brd_list);
491 	del_gendisk(brd->brd_disk);
492 	brd_free(brd);
493 }
494 
495 static struct kobject *brd_probe(dev_t dev, int *part, void *data)
496 {
497 	struct brd_device *brd;
498 	struct kobject *kobj;
499 
500 	mutex_lock(&brd_devices_mutex);
501 	brd = brd_init_one(dev & MINORMASK);
502 	kobj = brd ? get_disk(brd->brd_disk) : ERR_PTR(-ENOMEM);
503 	mutex_unlock(&brd_devices_mutex);
504 
505 	*part = 0;
506 	return kobj;
507 }
508 
509 static int __init brd_init(void)
510 {
511 	int i, nr;
512 	unsigned long range;
513 	struct brd_device *brd, *next;
514 
515 	/*
516 	 * brd module now has a feature to instantiate underlying device
517 	 * structure on-demand, provided that there is an access dev node.
518 	 * However, this will not work well with user space tool that doesn't
519 	 * know about such "feature".  In order to not break any existing
520 	 * tool, we do the following:
521 	 *
522 	 * (1) if rd_nr is specified, create that many upfront, and this
523 	 *     also becomes a hard limit.
524 	 * (2) if rd_nr is not specified, create 1 rd device on module
525 	 *     load, user can further extend brd device by create dev node
526 	 *     themselves and have kernel automatically instantiate actual
527 	 *     device on-demand.
528 	 */
529 
530 	part_shift = 0;
531 	if (max_part > 0)
532 		part_shift = fls(max_part);
533 
534 	if (rd_nr > 1UL << (MINORBITS - part_shift))
535 		return -EINVAL;
536 
537 	if (rd_nr) {
538 		nr = rd_nr;
539 		range = rd_nr;
540 	} else {
541 		nr = CONFIG_BLK_DEV_RAM_COUNT;
542 		range = 1UL << (MINORBITS - part_shift);
543 	}
544 
545 	if (register_blkdev(RAMDISK_MAJOR, "ramdisk"))
546 		return -EIO;
547 
548 	for (i = 0; i < nr; i++) {
549 		brd = brd_alloc(i);
550 		if (!brd)
551 			goto out_free;
552 		list_add_tail(&brd->brd_list, &brd_devices);
553 	}
554 
555 	/* point of no return */
556 
557 	list_for_each_entry(brd, &brd_devices, brd_list)
558 		add_disk(brd->brd_disk);
559 
560 	blk_register_region(MKDEV(RAMDISK_MAJOR, 0), range,
561 				  THIS_MODULE, brd_probe, NULL, NULL);
562 
563 	printk(KERN_INFO "brd: module loaded\n");
564 	return 0;
565 
566 out_free:
567 	list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
568 		list_del(&brd->brd_list);
569 		brd_free(brd);
570 	}
571 	unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
572 
573 	return -ENOMEM;
574 }
575 
576 static void __exit brd_exit(void)
577 {
578 	unsigned long range;
579 	struct brd_device *brd, *next;
580 
581 	range = rd_nr ? rd_nr :  1UL << (MINORBITS - part_shift);
582 
583 	list_for_each_entry_safe(brd, next, &brd_devices, brd_list)
584 		brd_del_one(brd);
585 
586 	blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), range);
587 	unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
588 }
589 
590 module_init(brd_init);
591 module_exit(brd_exit);
592 
593