xref: /openbmc/linux/drivers/block/brd.c (revision 8ef9ea1503d0a129cc6f5cf48fb63633efa5d766)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Ram backed block device driver.
4  *
5  * Copyright (C) 2007 Nick Piggin
6  * Copyright (C) 2007 Novell Inc.
7  *
8  * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
9  * of their respective owners.
10  */
11 
12 #include <linux/init.h>
13 #include <linux/initrd.h>
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/major.h>
17 #include <linux/blkdev.h>
18 #include <linux/bio.h>
19 #include <linux/highmem.h>
20 #include <linux/mutex.h>
21 #include <linux/pagemap.h>
22 #include <linux/xarray.h>
23 #include <linux/fs.h>
24 #include <linux/slab.h>
25 #include <linux/backing-dev.h>
26 #include <linux/debugfs.h>
27 
28 #include <linux/uaccess.h>
29 
30 /*
31  * Each block ramdisk device has a xarray brd_pages of pages that stores
32  * the pages containing the block device's contents. A brd page's ->index is
33  * its offset in PAGE_SIZE units. This is similar to, but in no way connected
34  * with, the kernel's pagecache or buffer cache (which sit above our block
35  * device).
36  */
37 struct brd_device {
38 	int			brd_number;
39 	struct gendisk		*brd_disk;
40 	struct list_head	brd_list;
41 
42 	/*
43 	 * Backing store of pages. This is the contents of the block device.
44 	 */
45 	struct xarray	        brd_pages;
46 	u64			brd_nr_pages;
47 };
48 
49 /*
50  * Look up and return a brd's page for a given sector.
51  */
52 static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
53 {
54 	pgoff_t idx;
55 	struct page *page;
56 
57 	idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */
58 	page = xa_load(&brd->brd_pages, idx);
59 
60 	BUG_ON(page && page->index != idx);
61 
62 	return page;
63 }
64 
65 /*
66  * Insert a new page for a given sector, if one does not already exist.
67  */
68 static int brd_insert_page(struct brd_device *brd, sector_t sector, gfp_t gfp)
69 {
70 	pgoff_t idx;
71 	struct page *page, *cur;
72 	int ret = 0;
73 
74 	page = brd_lookup_page(brd, sector);
75 	if (page)
76 		return 0;
77 
78 	page = alloc_page(gfp | __GFP_ZERO | __GFP_HIGHMEM);
79 	if (!page)
80 		return -ENOMEM;
81 
82 	xa_lock(&brd->brd_pages);
83 
84 	idx = sector >> PAGE_SECTORS_SHIFT;
85 	page->index = idx;
86 
87 	cur = __xa_cmpxchg(&brd->brd_pages, idx, NULL, page, gfp);
88 
89 	if (unlikely(cur)) {
90 		__free_page(page);
91 		ret = xa_err(cur);
92 		if (!ret && (cur->index != idx))
93 			ret = -EIO;
94 	} else {
95 		brd->brd_nr_pages++;
96 	}
97 
98 	xa_unlock(&brd->brd_pages);
99 
100 	return ret;
101 }
102 
103 /*
104  * Free all backing store pages and xarray. This must only be called when
105  * there are no other users of the device.
106  */
107 static void brd_free_pages(struct brd_device *brd)
108 {
109 	struct page *page;
110 	pgoff_t idx;
111 
112 	xa_for_each(&brd->brd_pages, idx, page) {
113 		__free_page(page);
114 		cond_resched();
115 	}
116 
117 	xa_destroy(&brd->brd_pages);
118 }
119 
120 /*
121  * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
122  */
123 static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n,
124 			     gfp_t gfp)
125 {
126 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
127 	size_t copy;
128 	int ret;
129 
130 	copy = min_t(size_t, n, PAGE_SIZE - offset);
131 	ret = brd_insert_page(brd, sector, gfp);
132 	if (ret)
133 		return ret;
134 	if (copy < n) {
135 		sector += copy >> SECTOR_SHIFT;
136 		ret = brd_insert_page(brd, sector, gfp);
137 	}
138 	return ret;
139 }
140 
141 /*
142  * Copy n bytes from src to the brd starting at sector. Does not sleep.
143  */
144 static void copy_to_brd(struct brd_device *brd, const void *src,
145 			sector_t sector, size_t n)
146 {
147 	struct page *page;
148 	void *dst;
149 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
150 	size_t copy;
151 
152 	copy = min_t(size_t, n, PAGE_SIZE - offset);
153 	page = brd_lookup_page(brd, sector);
154 	BUG_ON(!page);
155 
156 	dst = kmap_atomic(page);
157 	memcpy(dst + offset, src, copy);
158 	kunmap_atomic(dst);
159 
160 	if (copy < n) {
161 		src += copy;
162 		sector += copy >> SECTOR_SHIFT;
163 		copy = n - copy;
164 		page = brd_lookup_page(brd, sector);
165 		BUG_ON(!page);
166 
167 		dst = kmap_atomic(page);
168 		memcpy(dst, src, copy);
169 		kunmap_atomic(dst);
170 	}
171 }
172 
173 /*
174  * Copy n bytes to dst from the brd starting at sector. Does not sleep.
175  */
176 static void copy_from_brd(void *dst, struct brd_device *brd,
177 			sector_t sector, size_t n)
178 {
179 	struct page *page;
180 	void *src;
181 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
182 	size_t copy;
183 
184 	copy = min_t(size_t, n, PAGE_SIZE - offset);
185 	page = brd_lookup_page(brd, sector);
186 	if (page) {
187 		src = kmap_atomic(page);
188 		memcpy(dst, src + offset, copy);
189 		kunmap_atomic(src);
190 	} else
191 		memset(dst, 0, copy);
192 
193 	if (copy < n) {
194 		dst += copy;
195 		sector += copy >> SECTOR_SHIFT;
196 		copy = n - copy;
197 		page = brd_lookup_page(brd, sector);
198 		if (page) {
199 			src = kmap_atomic(page);
200 			memcpy(dst, src, copy);
201 			kunmap_atomic(src);
202 		} else
203 			memset(dst, 0, copy);
204 	}
205 }
206 
207 /*
208  * Process a single bvec of a bio.
209  */
210 static int brd_do_bvec(struct brd_device *brd, struct page *page,
211 			unsigned int len, unsigned int off, blk_opf_t opf,
212 			sector_t sector)
213 {
214 	void *mem;
215 	int err = 0;
216 
217 	if (op_is_write(opf)) {
218 		/*
219 		 * Must use NOIO because we don't want to recurse back into the
220 		 * block or filesystem layers from page reclaim.
221 		 */
222 		gfp_t gfp = opf & REQ_NOWAIT ? GFP_NOWAIT : GFP_NOIO;
223 
224 		err = copy_to_brd_setup(brd, sector, len, gfp);
225 		if (err)
226 			goto out;
227 	}
228 
229 	mem = kmap_atomic(page);
230 	if (!op_is_write(opf)) {
231 		copy_from_brd(mem + off, brd, sector, len);
232 		flush_dcache_page(page);
233 	} else {
234 		flush_dcache_page(page);
235 		copy_to_brd(brd, mem + off, sector, len);
236 	}
237 	kunmap_atomic(mem);
238 
239 out:
240 	return err;
241 }
242 
243 static void brd_submit_bio(struct bio *bio)
244 {
245 	struct brd_device *brd = bio->bi_bdev->bd_disk->private_data;
246 	sector_t sector = bio->bi_iter.bi_sector;
247 	struct bio_vec bvec;
248 	struct bvec_iter iter;
249 
250 	bio_for_each_segment(bvec, bio, iter) {
251 		unsigned int len = bvec.bv_len;
252 		int err;
253 
254 		/* Don't support un-aligned buffer */
255 		WARN_ON_ONCE((bvec.bv_offset & (SECTOR_SIZE - 1)) ||
256 				(len & (SECTOR_SIZE - 1)));
257 
258 		err = brd_do_bvec(brd, bvec.bv_page, len, bvec.bv_offset,
259 				  bio->bi_opf, sector);
260 		if (err) {
261 			if (err == -ENOMEM && bio->bi_opf & REQ_NOWAIT) {
262 				bio_wouldblock_error(bio);
263 				return;
264 			}
265 			bio_io_error(bio);
266 			return;
267 		}
268 		sector += len >> SECTOR_SHIFT;
269 	}
270 
271 	bio_endio(bio);
272 }
273 
274 static const struct block_device_operations brd_fops = {
275 	.owner =		THIS_MODULE,
276 	.submit_bio =		brd_submit_bio,
277 };
278 
279 /*
280  * And now the modules code and kernel interface.
281  */
282 static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT;
283 module_param(rd_nr, int, 0444);
284 MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
285 
286 unsigned long rd_size = CONFIG_BLK_DEV_RAM_SIZE;
287 module_param(rd_size, ulong, 0444);
288 MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
289 
290 static int max_part = 1;
291 module_param(max_part, int, 0444);
292 MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices");
293 
294 MODULE_LICENSE("GPL");
295 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
296 MODULE_ALIAS("rd");
297 
298 #ifndef MODULE
299 /* Legacy boot options - nonmodular */
300 static int __init ramdisk_size(char *str)
301 {
302 	rd_size = simple_strtol(str, NULL, 0);
303 	return 1;
304 }
305 __setup("ramdisk_size=", ramdisk_size);
306 #endif
307 
308 /*
309  * The device scheme is derived from loop.c. Keep them in synch where possible
310  * (should share code eventually).
311  */
312 static LIST_HEAD(brd_devices);
313 static DEFINE_MUTEX(brd_devices_mutex);
314 static struct dentry *brd_debugfs_dir;
315 
316 static struct brd_device *brd_find_or_alloc_device(int i)
317 {
318 	struct brd_device *brd;
319 
320 	mutex_lock(&brd_devices_mutex);
321 	list_for_each_entry(brd, &brd_devices, brd_list) {
322 		if (brd->brd_number == i) {
323 			mutex_unlock(&brd_devices_mutex);
324 			return ERR_PTR(-EEXIST);
325 		}
326 	}
327 
328 	brd = kzalloc(sizeof(*brd), GFP_KERNEL);
329 	if (!brd) {
330 		mutex_unlock(&brd_devices_mutex);
331 		return ERR_PTR(-ENOMEM);
332 	}
333 	brd->brd_number	= i;
334 	list_add_tail(&brd->brd_list, &brd_devices);
335 	mutex_unlock(&brd_devices_mutex);
336 	return brd;
337 }
338 
339 static void brd_free_device(struct brd_device *brd)
340 {
341 	mutex_lock(&brd_devices_mutex);
342 	list_del(&brd->brd_list);
343 	mutex_unlock(&brd_devices_mutex);
344 	kfree(brd);
345 }
346 
347 static int brd_alloc(int i)
348 {
349 	struct brd_device *brd;
350 	struct gendisk *disk;
351 	char buf[DISK_NAME_LEN];
352 	int err = -ENOMEM;
353 
354 	brd = brd_find_or_alloc_device(i);
355 	if (IS_ERR(brd))
356 		return PTR_ERR(brd);
357 
358 	xa_init(&brd->brd_pages);
359 
360 	snprintf(buf, DISK_NAME_LEN, "ram%d", i);
361 	if (!IS_ERR_OR_NULL(brd_debugfs_dir))
362 		debugfs_create_u64(buf, 0444, brd_debugfs_dir,
363 				&brd->brd_nr_pages);
364 
365 	disk = brd->brd_disk = blk_alloc_disk(NUMA_NO_NODE);
366 	if (!disk)
367 		goto out_free_dev;
368 
369 	disk->major		= RAMDISK_MAJOR;
370 	disk->first_minor	= i * max_part;
371 	disk->minors		= max_part;
372 	disk->fops		= &brd_fops;
373 	disk->private_data	= brd;
374 	strscpy(disk->disk_name, buf, DISK_NAME_LEN);
375 	set_capacity(disk, rd_size * 2);
376 
377 	/*
378 	 * This is so fdisk will align partitions on 4k, because of
379 	 * direct_access API needing 4k alignment, returning a PFN
380 	 * (This is only a problem on very small devices <= 4M,
381 	 *  otherwise fdisk will align on 1M. Regardless this call
382 	 *  is harmless)
383 	 */
384 	blk_queue_physical_block_size(disk->queue, PAGE_SIZE);
385 
386 	/* Tell the block layer that this is not a rotational device */
387 	blk_queue_flag_set(QUEUE_FLAG_NONROT, disk->queue);
388 	blk_queue_flag_set(QUEUE_FLAG_SYNCHRONOUS, disk->queue);
389 	blk_queue_flag_set(QUEUE_FLAG_NOWAIT, disk->queue);
390 	err = add_disk(disk);
391 	if (err)
392 		goto out_cleanup_disk;
393 
394 	return 0;
395 
396 out_cleanup_disk:
397 	put_disk(disk);
398 out_free_dev:
399 	brd_free_device(brd);
400 	return err;
401 }
402 
403 static void brd_probe(dev_t dev)
404 {
405 	brd_alloc(MINOR(dev) / max_part);
406 }
407 
408 static void brd_cleanup(void)
409 {
410 	struct brd_device *brd, *next;
411 
412 	debugfs_remove_recursive(brd_debugfs_dir);
413 
414 	list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
415 		del_gendisk(brd->brd_disk);
416 		put_disk(brd->brd_disk);
417 		brd_free_pages(brd);
418 		brd_free_device(brd);
419 	}
420 }
421 
422 static inline void brd_check_and_reset_par(void)
423 {
424 	if (unlikely(!max_part))
425 		max_part = 1;
426 
427 	/*
428 	 * make sure 'max_part' can be divided exactly by (1U << MINORBITS),
429 	 * otherwise, it is possiable to get same dev_t when adding partitions.
430 	 */
431 	if ((1U << MINORBITS) % max_part != 0)
432 		max_part = 1UL << fls(max_part);
433 
434 	if (max_part > DISK_MAX_PARTS) {
435 		pr_info("brd: max_part can't be larger than %d, reset max_part = %d.\n",
436 			DISK_MAX_PARTS, DISK_MAX_PARTS);
437 		max_part = DISK_MAX_PARTS;
438 	}
439 }
440 
441 static int __init brd_init(void)
442 {
443 	int err, i;
444 
445 	/*
446 	 * brd module now has a feature to instantiate underlying device
447 	 * structure on-demand, provided that there is an access dev node.
448 	 *
449 	 * (1) if rd_nr is specified, create that many upfront. else
450 	 *     it defaults to CONFIG_BLK_DEV_RAM_COUNT
451 	 * (2) User can further extend brd devices by create dev node themselves
452 	 *     and have kernel automatically instantiate actual device
453 	 *     on-demand. Example:
454 	 *		mknod /path/devnod_name b 1 X	# 1 is the rd major
455 	 *		fdisk -l /path/devnod_name
456 	 *	If (X / max_part) was not already created it will be created
457 	 *	dynamically.
458 	 */
459 
460 	brd_check_and_reset_par();
461 
462 	brd_debugfs_dir = debugfs_create_dir("ramdisk_pages", NULL);
463 
464 	if (__register_blkdev(RAMDISK_MAJOR, "ramdisk", brd_probe)) {
465 		err = -EIO;
466 		goto out_free;
467 	}
468 
469 	for (i = 0; i < rd_nr; i++)
470 		brd_alloc(i);
471 
472 	pr_info("brd: module loaded\n");
473 	return 0;
474 
475 out_free:
476 	brd_cleanup();
477 
478 	pr_info("brd: module NOT loaded !!!\n");
479 	return err;
480 }
481 
482 static void __exit brd_exit(void)
483 {
484 
485 	unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
486 	brd_cleanup();
487 
488 	pr_info("brd: module unloaded\n");
489 }
490 
491 module_init(brd_init);
492 module_exit(brd_exit);
493 
494